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Abstract

Brain-Computer Interface (BCI) bridges the human being’s neural world and the
outer physical world by decoding individuals’ brain signals into commands recogniz-
able by computer devices, which has attracted increasing attention in recent years.
This dissertation aims at overcoming the hurdles and stretching the horizons of data-
efficient BCI systems by developing robust deep representation learning paradigms.
First, we present a comprehensive introduction of BCI systems including the deep
learning models, state-of-the-art studies adopting deep learning for BCI drawbacks,
and the appealing real-world BCI applications. Moreover, we propose automatic
high-level representation learning methods through deep architectures addressing
the traditional time-consuming manually feature engineering and low signal-to-noise
ratio data. In addition, we develop reinforced selective attention mechanism by com-
bining reinforcement learning and deep neural network for capturing informative
representations adaptive to different scenarios. Furthermore, we design a weakly-
supervised predictive model to harness the deep generative model and generative
adversarial networks collectively under a trainable unified framework addressing the
shortage of labeled data. At last, upon the proposed models, we develop several
real-world BCI applications such as an EEG-based person identification system and
a prototype of a brain-controlled typing system which converts user’s thoughts into
text.
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Chapter 1

Introduction

1.1 Background

Brain-Computer Interface (BCI)1 is a system that translates activity patterns of

the human brain into messages or commands to communicate with the outer world

[25]. BCI underpins many novel applications that are important to people’s daily

life, especially to people with psychological/physical disorders or disabilities. BCI

can assist the disabled, elders and people with limited motion ability (e.g., people

with muscle diseases) in controlling wheelchairs, home appliances, and robots. For

instance, a BCI system can control household appliances through patients’ brain

signals. In addition, ordinary individuals can enjoy enhanced entertainment and

security when brain waves-based techniques are applied for high fake-resistant user

identification [8]. Generally, a BCI system contains a bidirectional communication

between the human brain and the computer. However, as introduced in [26], sys-

1There are several terms similar to BCI, e.g., Brain Machine Interface (BMI),
Brain Interface (BI), Direct Brain Interface (DBI), and Adaptive Brain Interface
(ABI). They all describe machines that are directly controlled by human brain sig-
nals.

3



1. Introduction

Figure 1.1: Generally workflow of BCI system.

tems based on brain signal analysis (such as mental disease diagnosis, emotional

computation, sleeping state scoring, etc.) can also be considered as a more gener-

alized BCI. This thesis investigates the generalized BCI systems to provide a more

comprehensive and vast scope of BCI applications

Figure 1.1 shows the general paradigm of a BCI system, which receives brain sig-

nals and converts them into control commands for computers. The system includes

several key components: brain signal collection, signal preprocessing, feature engi-

neering, classification, and smart equipment. The brain signals are collected from

humans and sent to the preprocessing component for denoising and enhancement.

Then, the discriminating features are extracted from the processed signals and sent

to the classifier, which recognizes the signals and convert then into external device

commands.

The collection methods differ from signal to signal. For example, EEG signals

measure the voltage fluctuation resulting from ionic current within the neurons of the

brain. Collecting EEG signals requires placing a series of electrodes on the scalp of

the human head to record the electrical activity of the brain. Since the ionic current
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generated within the brain is measured at the scalp, obstacles (e.g., skull) greatly

decrease the signal quality—the fidelity of the collected EEG signals, measured as

Signal-to-Noise Ratio (SNR), is approximately 5% of that of original brain signals

[27]. Therefore, brain signals are usually preprocessed before feature engineering

to increase the SNR. The preprocessing component contains multiple steps such as

signal cleaning (e.g., smoothing the noisy signals or resolving the inconsistencies),

signal normalization (e.g., normalizing each channel of the signals along time-axis),

signal enhancement (e.g., removing direct current), and signal reduction (presenting

a reduced representation of the signal).

Feature engineering refers to the process of extracting discriminating features from

the input signals through domain knowledge. Traditional features are extracted

from time-domain (e.g., variance, mean value, kurtosis), frequency-domain (e.g., fast

Fourier transform), and time-frequency domains (e.g., discrete wavelet transform).

They will enrich distinguishable information regarding user intention. Feature en-

gineering is highly dependent on the domain knowledge. For example, biomedical

knowledge is required to extract features from brain signals of epileptic seizures.

Manual feature extraction is also time-consuming and difficult. Recently, deep learn-

ing provides a better option to automatically extract distinguishable features.

The classification component refers to the machine learning algorithms that classify

the extracted features into logical control signals recognizable by external devices.

Deep learning algorithms are shown to be more powerful than traditional classifiers

such as Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA).

1.2 Challenges

Although traditional BCI systems have made tremendous progress [26, 28] in the

past decades, constructing a reliable BCI system that continuously interacts with

an ever-changing environment can be challenging due to the high uncertainties of
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capturing human brainwaves and complexity of human-machine interactions. We

identify the following several major challenges:

First, brain signals are easily corrupted by various biological (e.g., eye blinks, muscle

artifacts, fatigue and concentration level) and environmental artifacts (e.g., environ-

mental noise) [26]. Moreover, BCI has a low SNR due to the non-stationary nature of

electro-physiological brain signals [29]. Although several preprocessing and feature

engineering methods have been developed to decrease the noise level, such methods

(e.g., feature selection and extraction both in the time domain and frequency do-

main) are time-consuming and may cause information loss in the extracted features

[9]. Therefore, it is crucial to automatically distill informative data from corrupted

brain signals and build a robust BCI system.

Second, the feature engineering stage highly depends on human expertise in the

specific domain. For example, it requires basic knowledge of biology to investigate

the sleep state through EEG signals. Human experience may help capture features

on some particular aspects but prove insufficient in more general conditions. For

instance, the model performs well on sleep state recognition may fail in human

intention recognition. In addition, the domain-specific feature extraction decrease

the generalization ability of BCI systems. Therefore, an algorithm is required to

automatically extract representative features adapting to the specific scenarios.

Third, the labeling of brain signals is expensive in terms of finance and human

source. The acquisition of labeled neurological data generally requires a skilled

experiment conductor and professional equipment. The cost associated with the

labeling process thus may render a fully labeled training set infeasible, whereas

acquisition of unlabeled data is relatively inexpensive. For instance, the labels of

the epileptic seizure signals are manually judged by at least three neurologists while

the unlabelled signals can be easily collected from the hospital. As a result, the

BCI researchers occasionally handle with a large set of brain signal observations but

only have a small proportion labels. Thus, it is necessary to explore an effective

algorithm to achieve a competitive performance even in the situation where only a
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few labels are available.

1.3 Contributions

Addressing the aforementioned challenges, we develop a set of machine learning

algorithms and frameworks to enable and enhance data-Efficient deep representation

learning in BCI systems and its applications. In this dissertation, we mark the

following contributions:

• First, we propose novel deep representation learning frameworks to automati-

cally discover the high-level discriminative features from the raw brainwaves.

Until now, deep learning has been applied extensively in BCI scenarios and

shown success in addressing the above challenges [30, 31]. Deep learning pos-

sess two advantages. To begin with, it avoids the time-consuming preprocess-

ing and feature engineering steps by working directly on raw brain signals to

learn distinguishable information through back-propagation. In addition, deep

neural networks can capture both representative high-level features and latent

dependencies through deep structures. (Section 3 to Section 4)

• Second, aiming at the adaptive representative feature learning, we proposed

a reinforced selective attention framework by combining the benefits of rein-

forcement learning, deep neural network (e.g., recurrent neural networks and

convolutional neural networks), and attention mechanism for capturing infor-

mative temporal and spatial representations from the raw EEG signals. The

propose approach is enabled to pay attention to the most distinctive features

according to the specific scenario. (Section 5 to Section 6)

• Third, we investigate the weakly-supervised problem and proposed a novel

adversarial variational embedding approach to harness the deep generative
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model and generative adversarial networks collectively under a trainable uni-

fied framework. The proposed algorithm is sought for leveraging the unla-

belled data when labelled data is difficult or expensive to acquire, which is

also demonstrated in several application scenarios such as neurological diag-

nosis. (Section 7 to Section 8)

• At last, upon the proposed data-efficient representation learning frameworks,

we develop several real-world BCI applications including person identification,

brain typing, and geometrical shape reconstruction. We build end-to-end pro-

totypes and conduct extensive experiments to demonstrate the effectiveness

and efficiency. (Section 9 to Section 12)

The rest of this dissertation is structured as followed. Part 2 provides a comprehen-

sively introduction of recent advances on deep representation learning-based BCI

studies, along with the corresponding applications. Part II presents the proposed

deep learning frameworks to explore the latent inter-subject and intra-subject de-

pendencies targeting intention recognition in the context of person-dependent and

cross-person situations, respectively. Part III shows the reinforced selective atten-

tion frameworks which can adaptively learn the discriminative features. Part IV

introduces the proposed weakly-supervised learning framework and a novel hyper-

parameter tuning method in order to learn the optimal parameter setting. Moreover,

Part V presents several end-to-end real-world BCI applications. At last, Part VI

summarizes the key conclusions of this dissertation and points out the future direc-

tions.
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Chapter 2

Literature Review

In this chapter, we present a comprehensive review of the recent advances in deep

learning-based BCI systems including the basic knowledge of deep learning mod-

els, the state-of-the-art studies on deep learning-powered BCI, and common-used

applications.

Table 2.1 shows a summary of the existing survey on BCI. To the best of our

knowledge, the limited existing surveys [32, 33, 34, 26, 35, 25, 28, 36] only focus

on partial Electroencephalography (EEG) signals. For example, Lotte et al. [35]

and Wang et al. [37] focus on EEG without analyzing EEG signal types; Cecotti

et al. [38] focus on Event-Related Potentials (ERP); Haseer et al. [39] focus on

functional Near-Infrared Spectroscopy (fNIRS); Fatourechi et al. [33] only focus on

EMG and EOG; Mason et al. [36] brief the neurological phenomenons like Event-

Related Desynchronization (ERD), P300, SSVEP, Visual Evoked Potentials (VEP),

Auditory Evoked Potentials (AEP) but have not organized them systematically;

Abdulkader et al. [26] present a topology of brain signals but have not mentioned

spontaneous EEG and Rapid Serial Visual Presentation (RSVP).; Lotte et al. [25]

have not considered ERD and RSVP; Roy et al. [40] list some deep learning based

EEG studies but provide little analysis.
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Moreover, although some overviews have conducted in deep learning ([41, 42, 43])

and BCI ([33, 26, 35, 25, 28, 36]), few focus on their combination. To the best of

our knowledge, this thesis provides the first comprehensive summary of the recent

advances on deep learning-based BCI.

Lastly, all previous BCI surveys focus on specific areas or applications without given

an overview of the broad scenarios. For example, Litjens et al. [44] review some

leading deep learning concepts pertinent to medical image analysis without covering

many other deep learning models; Soekadar et al. [45] review the BCI systems

and machine learning methods that help overcome stroke-related motor paralysis

and focus on Somatosensory Rhythms (SMR); Vieira et al. [46] investigate the

application of BCI systems on neurological and psychiatric disorders. This chapter

provide a wide range of BCI applications from healthcare, smart environment, to

security.

In summary, addressing the aforementioned issues, we present a comprehensive and

systematic introduction of the recent advances and new frontiers of deep learning

based brain-computer interface techniques. We summarize over 230 contributions

in this field, most of which were published in the last five years.

2.1 Deep Learning Models

In this section, we formally introduce the deep learning models including con-

cepts, architectures, and techniques commonly used in the BCI field. Deep learning

is a class of machine learning techniques that uses many layers of information-

processing stages in hierarchical architectures for pattern classification and fea-

ture/representation learning [42].

In this thesis, we will give relative detail introduction of various deep learning models

for the reason that a part of the potential readers who are from non-computer area

(e.g., biomedical) are not familiar to deep learning.

10
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Table 2.1: The existing survey on BCI in the last decade. The column ‘comprehen-
sive on signals’ indicates whether the survey has summarized all the BCI signals or
not. fMRI refers to functional Magnetic Resonance Imaging.

No. Reference Comprehensive
on Signals? Signal Deep Learning Publication

Time Area

1 [33] No EMG, EOG No 2007

2 [32] No fMRI Yes 2018 Mental Disease
Diagnosis

3 [35] Partial MI EEG and P300 No 2007 Classification
4 [25] Partial MI EEG and P300 Partial 2018 Classification

6 [44] No MRI, CT Partial 2017 Medical Image
Analysis

7 [40] No EEG Yes (but without any
model introduction) 2019

8 [28] No EEG No 2007 Signal Processing
9 [37] Partial EEG No 2016 BCI Applications
10 [26] Yes No 2015
11 [47] No EEG Partial (only DBN) 2018

12 [45] No EEG, fMRI No 2015 Neuro-rehabilitation
of Stroke

13 [48] No MI EEG No 2015
14 [49] No fMRI No 2014

15 [50] No ERP (P300) No 2017 Applications
of ERP"

16 [34] No fMRI Yes 2018 Applications
of fMRI

17 [51] No ERP No 2017 Classification
18 [52] Partial EEG No 2019 Brain Biometrics
19 Ours yes Systematic EEG Yes

Deep Learning
Models

Generative 
Models Hybrid Models Representative 

Models 
Discriminative 

Models 

VAE GANMLP CNN

GRULSTM

RNN RBM DBNAE

DBN-AE DBN-RBMD-RBMD-AE

Figure 2.1: Deep learning models. They can be divided into discriminative, rep-
resentative, generative and hybrid models based on the algorithm function. D-AE
denotes Stacked-Autoencoder which refers to the autoencoder with multiple hidden
layers. Deep Belief Network can be composed of AE or RBM, therefore, we divided
DBN into DBN-AE (stacked AE) and DBN-RBM (stacked RBM).
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Deep learning algorithms divide into several subcategories based on the aim of the

techniques (as shown in Figure 2.1):

• Discriminative deep learning models, which classify the input data into a pre-

known label based on the adaptively learned discriminative features. Discrim-

inative algorithms are able to learn distinctive features by non-linear trans-

formation, and classification through probabilistic prediction1. Thus these

algorithms can play the role of both feature engineering and classification

(corresponding to Figure 1.1). Discriminative architectures mainly include

Multi-Layer Perceptron (MLP), Recurrent Neural Networks (RNN), Convolu-

tional Neural Networks (CNN), along with their variations.

• Representative deep learning models, which learn the pure and representative

features from the input data. These algorithms only have the function of fea-

ture engineering (corresponding to Figure 1.1) but fail to classify. Commonly

used deep learning algorithms for representation are Autoencoder (AE), Re-

stricted Boltzmann Machine (RBM), Deep Belief networks (DBN), along with

their variations.

• Generative deep learning models, which learn the joint probability distribu-

tion of the input data and the target label. In the BCI scope, generative

algorithms are mostly used in reconstruction or to generate a batch of brain

signals samples to enhance the training set. Generative models commonly

used in BCI include variational Autoencoder (VAE)2, Generative Adversarial

Networks (GANs), etc.

1The classification function is achieved by the combination of a softmax layer
and one-hot label encoding. The one-hot label encoding refers to encoding the
label by the one-hot method, which is a group of bits among which the only valid
combinations of values are those with a single high (1) bit and all the others low (0)
bits. For instance, a set of labels 0, 1, 2, 3 can be encoded as (1, 0, 0, 0), (0, 1, 0,
0), (0, 0, 1, 0), (0, 0, 0, 1).

2VAE is a variation of AE, but working on a different aspect. Therefore, we
separately introduce AE and VAE.
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Table 2.2: Summary of deep learning model types

Deep Learning Input Output Function Training method
Discriminative Input data Label Feature extraction, Classification Supervised
Representative Input data Representation Feature extraction Unsupervised
Generative Input data New Sample Generation, Reconstruction Unsupervised
Hybrid Input data – – –

Input Layer 

 

Hidden Layer Output Layer

(a) Basic fully-connected neural network

Input Layer 
 

Hidden Layer (1) 
 

Output LayerHidden Layer (2)
 

(b) Multi-Layer Perceptron

Figure 2.2: Illustration of standard neural network and multilayer perceptron. (a)
The basic structure of the fully-connected neural network. The input layer receives
the raw data or extracted features of brain signals while the output layer shows
the classification results. The term ‘fully-connected’ denotes each node in a specific
layer is connected with all the nodes in the previous and next layer. (b) MLP could
have multiple hidden layers, the more, the deeper. This is an example of MLP with
two hidden layers, which is the simplest MLP model.

• Hybrid deep learning models, which combine more than two deep learning

models. For example, the typical hybrid deep learning model employs a rep-

resentation algorithm for feature extraction and discriminative algorithms for

classification.

The summary of the characteristics of each deep learning subcategories are listed in

Table 2.2. Almost all the classification functions in neural networks are implemented

by a softmax layer, which will not be regarded as an algorithmic component. For

instance, a model combining a DBN, and a softmax layer will still be regarded as a

representative model instead of a hybrid model.
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ct1 ct ct+1c1

O1

I1

Ot1

It-1

Ot

It

Ot+1

It+1

ct2 ct1 ct

(a) Recurrent Neural Networks

Input layer Convolutional  
Layer 1 

Pooling  
Layer 1 

Fully-connected 
 Layer 

Output Layer Convolutional  
Layer 2 

Pooling  
Layer 2

(b) Convolutional Neural Networks

Figure 2.3: Illustration of RNN and CNN models. (a) The recurrent procedure of
the RNN model. This procedure describes the recurrent procedure of a specific node
in time range [1, t+ 1]. The node at time t receives two inputs variables (It denotes
the input at time t and ct−1 denotes the hidden state at time t − 1) and exports
two variables (the output Ot and the hidden state ct at time t). (b) The paradigm
of CNN model which includes two convolutional layers, two pooling layers, and one
fully-connected layer.

2.1.1 Discriminative Deep Learning Models

Since the main task of BCI is brain signal recognition, the discriminative deep

learning models are the most popular and powerful algorithms. Suppose we have

a dataset of brain signal samples {X,Y} where X denotes the set of brain signal

observations and Y denotes the set of sample ground truth (i.e., labels). Suppose

a specific sample-label pair {x ∈ RN ,y ∈ RM} where N and M denote the di-

mension of observations and the number of sample categories, respectively. The

aim of discriminative deep learning models is to lean a function with the mapping:

x → y. In short, the discriminative models receive the input data and output the

corresponding category or label. All the discriminative models introduced in this

section are supervised learning techniques which require the information of both the

observations and the ground truth.

Multi-Layer Perceptron (MLP)

Multilayer Perceptron, one of the simplest and the most basic deep learning model,

is modified based on the standard neural network (Figure 2.2a) which contains three

neuron layers (i.e., an input layer, a hidden layer, and an output layer). The key

14



2. Literature Review

(a) Structure of LSTM cell (b) Structure of GRU cell

Figure 2.4: Illustration of detailed LSTM and GRU cell structures. (a) LSTM cell
receives three inputs (It denotes the input at time t, Ot−1 denotes the output of
previous time, and ct−1 denotes the hidden state of the previous time) and exports
two outputs (the output of this time Ot and the hidden state of this time ct). (b)
GRU cell receives two inputs (the input of this time It and the output of the previous
time Ot−1) and exports its output Ot. Unlike the hidden state ct in LSTM cell, there
is no transmittable hidden state in GRU cell except one intermediate variable Ōt.

difference between MLP and the standard neural network is that MLP has more

than one hidden layers. All the nodes are fully-connected with the nodes of the

adjacent layers but without connection with the other nodes of the same layer.

MLP includes multiple hidden layers. As shown in Figure 2.2b, we take a structure

with two hidden layers as an example to describe the data flow in MLP. First, we

define an operation T (·) as

T (x) = w ∗ x+ b (2.1)

T (x,x′) = w ∗ x+ b+w′ ∗ x′ + b′ (2.2)

where x and x′ denote two variables whilew, w′, b, and b′ denote the corresponding

weights and basis.

The input layer receives the observation x and feeds forward to the first hidden

layer,

xh1 = σ(T (x)) (2.3)

where xh1 denotes the data flow in the first hidden layer and σ represents the non-
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linear activation function. There several commonly used activation function such as

sigmoid/Logistic, Tanh, ReLU, we choose sigmoid activation function as an example

in this section. Then, the data flow to the second hidden layer and the output layer,

xh2 = σ(T (xh1)) (2.4)

y′ = σ(T (xh2)) (2.5)

where y′ denotes the predict results in one-hot format. The error (i.e., loss) could be

calculated based on the distance between y′ and the ground truth y. For instance,

the Euclidean-distance based error can be calculated by

error = ‖y′ − y‖2 (2.6)

where ‖·‖2 denotes the Euclidean norm. Afterward, the error will be back-propagated

and optimized by a suitable optimizer. The optimizer will adjust all the weights and

basis in the model until the error converges. The most widely used loss functions in-

cludes cross-entropy, negative log likelihood, mean square estimation, etc. The most

widely used optimizers include Adaptive moment estimation (Adam), Stochastic

Gradient Descent (SGD), Adagrad (Adaptive sub-gradient method), etc.

Several terms may be easily confused with each other: Artificial Neural Network

(ANN), Deep Neural Network (DNN), and MLP. These terms have no strict differ-

ence and often mixed in literature. Generally, ANN represents neural networks with

fewer hidden layers (shallow) while DNN have more (in this case, DNN is equivalent

to MLP).

Recurrent Neural Networks (RNN)

Recurrent Neural Network is a specific subclass of discriminative deep learning model

which are designed to capture temporal dependencies among input data. Figure 2.3a

describes the activity of a specific RNN node in the time domain. At each time

ranges from [1, t + 1], the node receives an input I 3 and a hidden state c from the

3The subscript represents the specific time.
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previous time (except the first time). For instance, at time t it receives not only the

input It but also the hidden state of the previous node ct−1. The hidden state can

be regarded as the ‘memory’ of the nodes which can help the RNN ‘remember’ the

historical input.

Next, we will report two typical RNN architectures which have attracted much

attention and achieved great success: long short-term memory and gated recurrent

units. They both follow the basic principles of RNN, and we will pay our attention

to the complicated internal structures in each node. Since the structure is much

more complicated than general neural nodes, we call it a ‘cell.’ Cells in RNN are

equivalent to nodes in MLP.

Long Short-Term Memory (LSTM). Figure 2.4a shows the structure of a single

LSTM cell at time t. The LSTM cell has three inputs (It, Ot−1, and ct−1) and two

outputs (ct and Ot). The operation is as follows:

It, Ot−1, ct−1 → ct, Ot (2.7)

It denotes the input value at time t, Ot−1 denotes the output at the previous time

(i.e., time t − 1), and ct−1 denotes the hidden state at the previous time. ct and

Ot separately denote the hidden state and the output at time t. Therefore, we

can observe that the output Ot at time t not only related to the input It but also

related to the information at the previous time. In this way, LSTM is empowered to

remember the important information in the time domain. Moreover, the essential

idea of LSTM is to control the memory of specific information. For this aim, LSTM

cell adopts four gates: the input gate, forget gate, output gate, and input modulation

gate. Each gate is a weight to control how much information can flow through this

gate. For example, if the weight of the forget gate is zero, the LSTM cell would

remember all the information passed from the previous time t − 1; if the weight is

one, the LSTM cell would remember nothing. The corresponding activation function

determines the weight. The detailed data flow as follows:

f = σ(T (It, Ot−1)) (2.8)
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i = σ(T (It, Ot−1)) (2.9)

o = σ(T (It, Ot−1)) (2.10)

m = tanh(T (It, Ot−1)) (2.11)

ct = f ∗ ct−1 + i ∗m (2.12)

ht = o ∗ tanh(ct) (2.13)

where i, f , o and m represent the input gate, forget gate, output gate and input

modulation gate, respectively.

Gated Recurrent Units (GRU). Another widely used RNN architecture is GRU.

Similar to LSTM, GRU attempts to exploit the information from the past. GRU

does not require hidden states, however, it receives temporal information only from

the output of time t − 1. Thus, as shown in Figure 2.4b, GRU has two inputs (It
and Ot−1) and one output (Ot). The mapping can be described as:

It, Ot−1 → Ot (2.14)

GRU contains two gates: reset gate r and update gate z. The former decides how to

combine the input with previous memory. The latter decides how much of previous

memory to keep around, which is similar to the forget gate of LSTM. The data flow

as follows:

z = σ(T (It, Ot−1)) (2.15)

r = σ(T (It, Ot−1)) (2.16)

Ōt = tanh(T (It, r ∗Ot−1)) (2.17)

Ot = (1− z) ∗Ot−1 + z ∗ Ōt (2.18)

It can be observed that there’s a intermediate variable Ōt which is similar to the

hidden state of LSTM. However, Ōt only works on this time point and unable to

pass to the next time point.

We here give a brief comparison between LSTM and GRU since they are very similar.

First, LSTM and GRU have comparable performance as studied by literature. For
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any specific task, it is recommended to try both of them to determine which provides

better performance. Second, GRU is lightweight since it only has two gates and

without the hidden state. Therefore, GRU is faster to train and requires few data

for generalization. Third, in contrast, LSTM generally works better if the training

dataset is big enough.

Convolutional Neural Networks (CNN)

Convolutional Neural Networks is one of the most popular deep learning models

specialized in spatial information exploration. This section will briefly introduce

the working mechanism of CNN. CNN is widely used to discover the latent spatial

information in applications such as image recognition, ubiquitous, and object search-

ing due to their salient features such as regularized structure, good spatial locality,

and translation invariance. In BCI, specifically, CNN is supposed to capture the

distinctive dependencies among the patterns associated with different brain signals.

We present a standard CNN architecture as shown in Figure 2.3b. The CNN contains

one input layer, two convolutional layers with each followed by a pooling layer, one

fully-connected layer, and one output layer. The square patch in each layer shows

the processing progress of a specific batch of input values. The key to the CNN

is to reduce the input data into a form which is easier to recognize, with as little

information loss as possible. CNN has three stacked layers: the convolutional Layer,

pooling Layer, and fully-connected Layer.

The convolutional layer is the core block of CNN, which contains a set of filters

to convolve the input data followed by a nonlinear transformation to extract the

geographical features. In the deep learning implementation, there are several key

hyper-parameters should be set in the convolutional layer, like the number of filters,

the size of each filter, etc. The pooling layer generally follows the convolutional

layer. The pooling layer aims to reduce the spatial size of the features progressively.

In this way, it can help to decrease the number of parameters (e.g., weights and
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basis) and the computing burden. There are three kinds of pooling operation: max,

min, average. Take max pooling for example. The pooling operation outputs the

maximum value of the pooling area as a result. The hyper-parameters in the pooling

layer includes the pooling operation, the size of the pooling area, the strides, etc.

In the fully-connected layer, as in the basic neural network, the nodes have full

connections to all activations in the previous layer.

The CNN is the most popular deep learning model in BCI research, which can

be used to exploit the latent spatial dependencies among the input brain signals

like fMRI image, spontaneous EEG, and so on. More details will be reported in

Section 2.2.

2.1.2 Representative Deep Learning Models

The essential blocks of representative deep learning models are Autoencoders, and

restricted Boltzmann machines4. Deep Belief Networks are composed of AE or

RBM. The representative models including AE, RBM5, and DBN, are unsupervised

learning methods. Thus, they can learn the representative features from only the

input observations x without the ground truth y. In short, representative models

receive the input data and output a dense representation of the data. There are

various definitions in different studies for several models (such as DBN, Deep RBM,

and Deep AE), we choose the most understandable definitions and will present them

in detail in this section.

4AE and RBM are generally regarded as kind of deep learning although they
only have three and two layers, respectively.

5We regard AE, and RBMas representative methods as most researches in BCI
adopt them for feature representation.
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Figure 2.5: Illustration of several standard representative deep learning models. (a)
A basic autoencoder contains three layers where the input layer and the output
layer are supposed to have the same values. The process from the input layer to the
hidden layer is an encoder while the process from the hidden layer to the output
layer is a decoder. (b) In the Restricted Boltzmann Machine, the encoder and the
decoder share the same transformation weights. The input layer and the output
layer are merged into the visible layer. (c) The stacked autoencoder has more than
one hidden layer. Generally, the number of hidden layers is odd, and the middle
layer is the learned representative features. (d) The deep RBM has one visible layer
and multiple hidden layers, the last layer is the encoded representation.
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Autoencoder (AE)

As shown in Figure 2.5a, an autoencoder is a neural network that has three layers:

the input layer, the hidden layer, and the output layer. It differs from the standard

neural network, in that the AE is trained to reconstruct its inputs, which forces the

hidden layer to try to learn good representations of the inputs.

The structure of AE contains two blocks. The first block is called the encoder, which

embeds the observation to a latent representation (also called ‘code’),

xh = σ(T (x)) (2.19)

where xh represents the hidden layer. The second block is called the decoder, which

decodes the representation into the original space,

y′ = σ(T (xh)) (2.20)

where y′ represents the output.

AE forces y′ to be equal to the input x and calculates the error based on the

distance between them. Thus, AE can compute the loss function only by x without

the ground truth y

error = ‖y′ − x‖2 (2.21)

Compared to Equation 2.6, this equation does not involve the variable y because it

takes the input x as the ground truth. This is the reason why AE is able to perform

unsupervised learning.

Naturally, one variant of AE is Deep-AE (D-AE) which has more than one hidden

layer. We present the structure of D-AE with three hidden layers in Figure 2.5c.

From the figure, we can observe that there is one more hidden layer in both the

encoder and the decoder. The symmetrical structure ensures the smoothness of

encoding and decoding procedure. Thus, D-AE generally has an odd number of

hidden layers (e.g., 2n + 1) where the first n layers belong to the encoder, the

(n+ 1)-th layer works as the code which belongs to both encoder and decoder, and
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the last n layers belong to the decoder. The data flow of D-AE (Figure 2.5c) can be

represented as

xh1 = σ(T (x)) (2.22)

xh2 = σ(T (xh2)) (2.23)

where xh2 denotes the median hidden layer (the code). Then decode the hidden

layer, we can get

xh3 = σ(T (xh2)) (2.24)

y′ = σ(T (xh3)) (2.25)

It is almost the same as AE except that D-AE has more hidden layers. Apart from

D-AE, AE has many other variants like denoising autoencoder, sparse autoencoder,

contractive AE, etc. Here we only introduce the D-AE because it is easily confused

with the AE-based deep belief network. The key difference between them will be

provided in Section 2.1.2.

The core idea of AE and its variants is simple, which is that condensing the input

data x into a code xh (generally the code layer has lower dimension) and then

reconstructing the data based on the code. If the reconstructed y′ can approximate

to the input data x, it can be demonstrated that the condensed code xh carries

enough information about x, thus, we can regard xh as a representation of the

input data for future operation (e.g., classification).

Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine is a stochastic artificial neural network that can learn

a probability distribution over its set of inputs. It contains two layers including one

visible layer (input layer) and one hidden layer, as shown in Figure 2.5b. From the

figure, we can see that the connection lines between the two layers are bidirectional.

RBM is a variant of Boltzmann Machine with stronger restriction of being without

intra-layer connections6. Similar to AE, the procedure of RBM also includes two

6In a general Boltzmann machine, the nodes in the same hidden layer will connect.
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steps. The first step condenses the input data from the original space to the hidden

layer in a latent space. After that, the hidden layer is used to reconstruct the input

data in an identical way. Compared to AE, RBM has a stronger constraint which

is that the encoder weights and the decoder weights should be equal. We have

xh = σ(T (x)) (2.26)

x′ = σ(T (xh)) (2.27)

In the above two equations, the weights of T (·) are the same. Then, the error for

training can be calculated by

error = ‖x′ − x‖2 (2.28)

We can observe from the Figure 2.5d that the Deep-RBM (D-RBM) is an RBM with

multiple hidden layers. The input data from the visible layer firstly flow to the first

hidden layer and then the second hidden layer. Then, the code will flow backward

into the visible layer for reconstruction.

Deep Belief Networks (DBN)

A Deep Belief Network (DBN) is a stack of simple networks, such as AEs or RBMs

[53]. Thus, we divided DBN into DBN-AE (also called stacked AE) which is com-

posed of AE and DBN-RBM (also called stacked RBM) which is composed of RBM.

As shown in Figure 2.6a, the DBN-AE contains two AE structures while the hidden

layer of the first AE works as the input layer of the second AE. This diagram has

two stages. In the first stage, the input data feed into the first AE follows the

rules introduced in Section 2.1.2. The reconstruction error is calculated and back

propagated to adjust the corresponding weights and basis. This iteration continues

until the AE converges. We get the mapping,

x1 → xh1 (2.29)
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Figure 2.6: Illustration of deep belief networks. (a) DBN composed of autoencoders.
DBN-AE contains multiple AE components (in this case, two AE), with the hidden
layer of the previous AE working as the input layer of the next AE. The hidden
layer of the last AE is the learned representation. (b) DBN composed of RBM.
The hidden layer of the first RBM working as the visible layer of the second RBM.
The last hidden layer is the encoded representation. While DBN-RBM and D-RBM
(Figure 2.5d) have similar architecture, the former is trained greedily while the latter
is trained jointly .

Then, we move on to the second stage where the learned representative code in the

hidden layer xh1 will be used as the input layer of the second AE, which is

x2 = xh1 (2.30)

and then, after the second AE converges, we have

x2 → xh2 (2.31)

where xh2 denotes the hidden layer of the second AE, meanwhile, it is the final

outcome of the DBN-AE.

The core idea of AE is that of learning a representative code with lower dimension-

ality but containing most information of the input data. The idea behind DBN-AE

is to learn a more representative and purer code.

Similarly, the DBN-RBM is composed of several single RBM structures. Figure 2.6b
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Figure 2.7: Illustration of generative deep learning models. (a) VAE contains two
hidden layers. The first hidden layer is composed of two components: the expecta-
tion and the standard deviation, which are learned separately from the input layer.
The second hidden layer represents the encoded information. ε denotes the standard
normal distribution. (b) GAN mainly contain two crucial components: the gener-
ator and the discriminator network. The former receives a latent random variable
to generate a fake brain signal while the latter receives both the real and the gener-
ated brain signals and attempts to determine if its generated or not. In BCI, GAN
reconstructs or augments data instead of classification.

shows a DBN with two RBMs where the hidden layer of the first RBM is used as

the visible layer of the second RBM.

Compare the DBN-RBM (Figure 2.6b) and D-RBM (Figure 2.5d). They almost have

the same architecture. Moreover, DBN-AE (Figure 2.6a) and D-AE (Figure 2.5c)

have similar architecture. The most important difference between the DBN and the

deep AE/RBM is that the former is trained greedily while the latter is trained jointly.

In particular, for the DBN, the first AE/RBM is trained first, after it converges, the

second AE/RBM is trained[54]. For the deep AE/RBM, jointly training means that

the whole structure is trained together, no matter how layers it has.

2.1.3 Generative Deep Learning Models

Generative deep learning models are mainly used to generate training samples or

data augmentation. In other words, generative deep learning models play a support-
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ing role in the BCI field to enhance the training data quality and quantity. After

the data augmentation, the discriminative models will be employed for the classi-

fication. This procedure is created to improve the robustness and effectiveness of

the trained deep learning networks, especially when the training data is limited. In

short, the generative models receive the input data and output a batch of similar

data. In this section, we will introduce two typical generative deep learning models:

VAE and GAN.

Variational Autoencoder (VAE)

Variational Autoencoder, proposed in 2013 [55], is an important variant of AE, and

one of the most powerful generative algorithms. The standard AE and its other

variants can be used for representation but fail in generation for the reason that

the learned code (or representation) may not be continuous. Therefore, we cannot

generate a random sample which is similar to the input sample. In other words, the

standard AE does not allow interpolation. Thus, we can replicate the input sample

but cannot generate a similar one. VAE has one fundamentally unique property that

separates it from other AEs, and it is this property that makes VAE so useful for

generative modeling: the latent spaces are designed to be continuous which allows

easy random sampling and interpolation. Next, we will introduce how VAE works.

Similar to the standard AE, VAE can be divided into an encoder and decoder where

the former embeds the input data to a latent space and the latter transfers the data

from the latent space to the original space. However, the learned representation in

the latent space is forced to approximate a prior distribution ¯p(z) which is generally

set as Standard Gaussian distribution. Based on the re-parameterization trick [55],

the first hidden layer of VAE is designed to have two parts where one denotes the

expectation µ and another denotes the standard deviation σ, thus we have

µ = σ(T (x)) (2.32)

σ = σ(T (x)) (2.33)
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Then, the latent code in the hidden layer is not directly calculated but sampled from

a Gaussian distribution N (µ,σ2). The statistic code

z = µ+ σ ∗ ε (2.34)

where ε ∼ N (0, I). The representation z is forced to a prior distribution, and the

distance errorKL is measured by KullbackâĂŞLeibler divergence,

errorKL = DKL(z, ¯p(z)) (2.35)

where ¯p(z) denotes the prior distribution. In the decoder, z is decoded into the

output y′,

y′ = σ(T (z)) (2.36)

and the reconstruction error is

errorrecon = ‖y′ − x‖2 (2.37)

The overall error for VAE is combined by the DL divergence and the reconstruction

error,

error = errorKL + errorrecon (2.38)

The key point of VAE is that all the latent representations z are forced to obey

the normal distribution. Thus, we can randomly sample a representation z′ ∈ ¯p(z)

from the prior distribution and then reconstruct a sample based on z′. This is why

VAE is so powerful in generation.

Generative Adversarial Networks (GAN)

Generative Adversarial Networks [56] is proposed in 2014 and achieved great suc-

cess in a wide range of research areas (e.g., computer vision and natural language

processing). GAN is composed of two simultaneously trained neural networks with

a generator and a discriminator. The generator captures the distribution of the

input data, and the discriminator is used to estimate the probability that a sample
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came from the training data. The generator aims to generate fake samples while

the discriminator aims to distinguish whether the sample is genuine. The functions

of the generator and the discriminator are opposite; that’s why GAN is called ‘ad-

versarial.’ After the convergence of both the generator and the discriminator, the

discriminator ought to be unable to recognize the generated samples. Thus, the

pre-trained generator can be used to create a batch of samples and use them for

further operations such as as classification.

Figure 2.7b shows the procedure of a standard GAN. The generator receives a noise

signal s which is randomly sampled from a multimodal Gaussian distribution and

outputs the fake brain signals xF . The discriminator receives the real brain signals

xR and the generated fake sample xF , and then it predicts whether the received

sample is real or fake. The internal architecture of the generator and discriminator

are designed depending on the data types and scenarios. For instance, we can build

the GAN by convolutional layers on fMRI images since CNN has an excellent ability

to extract spatial features. The discriminator and the generator are trained jointly.

After the convergence, numerous brain signals xG can be created by the generator.

Thus, the training set is enlarged from xR to {xR,xG} to train a more effective and

robust classifier.

2.1.4 Hybrid Model

Hybrid deep learning models refers to models which are composed of at least two

deep basic learning models where the basic model is a discriminative, representative,

or generative deep learning model. Hybrid models comprise two subcategories based

on their targets: classification-aimed (CA) hybrid models and the non-classification-

aimed (NCA) hybrid models.

Most of the deep learning related studies in BCI are focused on the first category.

Based on the existing literature, the representative and generative models are em-

ployed to enhance the discriminative models. The representative models can provide
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more informative and low dimensional features for the discrimination while the gen-

erative models can help to augment the training data quality and quantity which

supply more information for the classification. The CA hybrid models can be further

subdivided into7: 1) several discriminative models combined to extract more distinc-

tive and robust features (e.g., CNN+RNN); 2) a representative model followed by

a discriminative model (e.g., DBN+MLP); 3) a generative model combined with

a representative model followed by a discriminative model; 4) a generative model

combined with a representative model followed by a non-deep learning classifier.

A few NCA hybrid models aim for brain signal reconstruction. For example, St-yves

et al. [57] adopted GAN to reconstruct visual stimuli based on fMRI images.

2.2 State-of-The-Art DL Techniques for BCI

In this section, we will systematically summarize the existing state-of-the-art stud-

ies for BCI based on deep learning. Some literature combined deep learning and

traditional machine learning methods are also listed.

More than half of the recent publications are related to EEG signals because this

approach is non-invasive, high-portable and low-cost. In this section, we will sum-

marize the state-of-the-art research based on three aspects: EEG oscillations, evoked

potentials, and ERD/ERS.

2.2.1 EEG Oscillatory

Spontaneous EEG has a vast range of applications since it is well suited to a range of

different scenarios. In particular, spontaneous EEG includes sleeping EEG, motor

7The representative model followed by a non-deep learning classifier is regarded
as a representative deep learning model.
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imagery EEG, emotional EEG, mental disease EEG, and others. Next, we will

present the studies in each scenario and the deep learning models used.

Sleeping EEG

Sleep quality is significant for diagnosing sleep disorders and cultivating healthy

habits. Sleep EEG is mainly used to recognize sleep stages (or sleep score/state)

[58]. In Rechtschaffen and Kales (R&K) rules, the sleep stages include wakefulness,

non-REM (rapid eye movement) 1, non-REM 2, non-REM 3, non-REM 4, and REM.

However, there is no clear distinction between non-REM 3 and non-REM 4. There-

fore, they are combined into slow wave sleep (SWS) [59]. The American Academy of

Sleep Medicine (AASM) recommends segmentation of sleep in five stages: wakeful-

ness, non-REM (rapid eye movement) 1, non-REM 2, SWS, and REM. Generally, in

sleep stage analysis, the EEG signals are preprocessed by a filter which has various

passband in different papers, but most of the studies notched at 50 Hz to remove

power-line noise. The EEG signals are usually segmented into 30s windows.

(i) Discriminative models. Many publications have adopted CNN for sleep-stage

classification on single-channel EEG [51, 60]. Viamala et al. [61] manually extracted

time-frequency features from sleeping EEG signals and adopted a CNN algorithm

to analyze them. The EEG signal collected from Fpz − Cz andPz − Oz channels,

was sliced into 30 s segments. The employed CNN achieved an accuracy of 86%

in five-class classification. Shahin et al. [62] manually extract 57 features in the

frequency domain and fed them into an MLP for classification, which obtained an

accuracy of 90%in insomnia detection. Fernande et al. [63] adopted CNN to analyze

physiological signals including EEG, EOG, and EMG. The model was evaluated over

the Sleep Heart Health Scoring dataset and achieved a precision of 91%, recall of

90%, and F-1 score of 90%.

RNN is also often used in sleep disorder detection. Biswal et al. [64] demonstrated

that RNN performed better than MLP, and CNN for sleep stage prediction. Tsiouris
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et al. [65] extracted many features from the time domain, frequency domain, cor-

relation, and graph theoretical features. An LSTM was employed to discover the

latent dependencies of the features for seizure detection.

(ii) Representative models. Zhang et al. [59] combined a DBN-RBM with three

RBMs for sleep feature extraction and traditional machine learning classifiers (e.g.,

SVM) for classification. Tan et al. [66] adopted a DBN-RBM algorithm to detect

sleep spindles from the extracted PSD features of the sleeping EEG signals. They

finally reached an F-1 measure of 92.78% in a local dataset.

(iii) Hybrid models. Manzano et al. [67, 68] proposed a multi-view model to predict

sleep stage by combining CNN and MLP. The CNN was employed to receive the

raw EEG data in the time domain while the MLP received the spectrum obtained

by a Short-Time Fourier Transform (STFT) between 0.5-32 Hz. Supratak et al.

[69] proposed a model by combining a multi-view CNN and LSTM for automatic

sleep-stage scoring based on raw single-channel EEG. The proposed method utilized

convolutional neural networks to extract time-invariant features, and bidirectional-

long short-term memory to learn transition rules among sleep stages. Dong et al. [70]

proposed a hybrid deep learning model aimed at temporal sleep stage classification.

They have taken advantage of MLP for detecting hierarchical features and LSTM for

sequential data learning to optimize classification performance with single-channel

recordings.

MI EEG

Extreme Learning Machine (ELM) [71] Deep learning models have shown the supe-

rior on the classification of MI EEG and real-motor EEG [72, 73].

(i) Discriminative models. CNN is widely used for the recognition of MI EEG

[74]. On the one hand, some studies CNN is only used as a classifier to recognize

manually extracted features [75, 76]. Uktveris et al. [77] extracted a large number of
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EEG features including Mean channel energy (MCE), Mean window energy (MWE),

Channel variance (CV), Mean band power (BP), etc. All the extracted features were

sent into a 2-D CNN for classification. Lee et al. [78] first processed the MI EEG

signals through wavelet transformation and then manually extracted PSD from mu

and beta bands. Finally, they employed a CNN model for recognition and achieved

an accuracy of 78.93%. Apart from CNN, Zhang et al. [2] used a modified LSTM

structure to learn affective information from EEG signals to control smart home

appliances.

On the other hand, CNN deals with the raw EEG data based on feature engineering

and classification results [79]. Wang et al. [80] designed a fast convolutional feature

extraction approach based on CNN to learn the latent features from MI-EEG sig-

nals. Several weak classifiers are applied to choose important features for the final

classification. Hartmann et al. [72] worked on the EEG signals corresponding to real

motor action. They investigated how the CNN represented spectral features through

the sequence of intermediate stages of the network, which showed higher sensitivity

to EEG phase features at earlier stages and higher sensitivity to EEG amplitude

features at later stages. Moreover, MLP is also applied for MI EEG recognition [81].

(ii) Representative models. DBN is widely employed for MI EEG classification be-

cause of its high representative ability [82, 83]. Ren et al. [84] applied a convolutional

DBN based on RBM components. They claimed that the DBN worked better in fea-

ture representation than traditional hand-crafted features (e.g., CSP, band powers).

Li et al. [85] processed EEG signals with discrete wavelet transformation and then

applied a DBN-AE based on denoising AE. They achieved an accuracy of 73.86%

over a local MI EEG dataset. The authors also used denoising AE to generate the

missing values in incomplete EEG signals such as an EEG segment with a portion

of data removed (unevenly spaced). Rekar et al. [86] employed an AE model for fea-

ture extraction followed by a KNN classifier, which achieved an accuracy of 72.38%

in binary classification over a local dataset.

Nurse et al. [87] proposed a model combining MLP with Genetic Algorithm (GA)
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where the GA was used for optimal hyper-parameter selection (e.g., the number

of hidden layers in MLP) and the MLP worked as the classifier. Zhang et al. [3]

combined AE with an XGBoost classifier to recognize the EEG signals in a multi-

person scenario. The authors also proposed a complex framework by combining

LSTM with reinforcement learning to classify multi-modality signals [4, 88].

(iii) Hybrid models. Several studies proposed hybrid models for the recognition of

MI EEG [89]. Fraiwan et al. [90] combined DBN with MLP for neonatal sleep

state identification. Twelve features were extracted from the time and frequency

domain of the sleeping EEG signals, which were refined by a designed DBN-AE.

After that, the MLP classifier gave an accuracy of 80.4% on a public dataset. Tabar

et al. [91] combined the time, frequency and location information of the EEG

signals as the input data which would be fed into a CNN for high-level feature

extraction. The features were classified through a DBN-AE with seven AEs while

the hidden layer of AE only had two nodes which corresponded to the probability of

the two labels. Tan et al. [92] proposed a complicated system to achieve multimodal

EEG classification. A denoising AE was employed for dimensional reduction. A

multi-view CNN combined with RNN was proposed to discover the latent temporal

and spatial information from the low-dimension representations. They obtained an

average accuracy of 72.22% over the IIa dataset from BCI competition IV.

Emotional EEG

The emotion of an individual can be evaluated by three aspects: the valence, arousal,

and dominance. Each aspect can be rated by an integer between 1 to 9 or can be

divided into positive and negative. The combination of the three aspects forms

the emotions which are familiar to us like fear, sadness, anger. The subject’s EEG

signals could be used to predict the affective state.

(i) Discriminative models. In the beginning, the basic MLP is adopted to classify

manually extracted features when deep learning first arose [93]. Frydenlund et al.
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[94] extracted the average and standard deviation of each EEG band and then fed

them into an MLP for emotional affect estimation.

However, CNN is the most popular in the area of EEG based emotion prediction [95,

96]. Li et al. [95] proposed a hierarchical CNN to implement the EEG-based emotion

classifier (positive, negative and neutral) in a movie-watching task. Differential

Entropy (DE) is calculated as the main feature. This paper first proposes that

converting multi-channel EEG signals into a 2-D matrix, which takes advantage of

the spatial dependencies among EEG channels. For the emotion recognition task,

this paper compared the proposed CNN with a DBN-AE and demonstrated that

CNN has better performance than DBN, which is similar to [97]. Wang et al. [98]

employed a CNN algorithm to classify emotional EEG signals. Of note is the fact

that they augmented the training set by generating new EEG samples by adding

Gaussian noise to the original samples. Li et al. [99] proposed a novel hierarchical

convolutional neural network (HCNN) to recognize the subject’s emotional state

(positive, neutral, and negative) and obtained an accuracy of 88.2%. In the HCNN

structure, each convolutional kernel only has localized receptive field, so the kernels

can capture the correlations among adjacent electrodes, which might be of great

value for the recognition task.

RNN and its variants are another group of widely used discriminative models. Ta-

lathi [100] utilized a discriminative deep learning model composed of GRU cells to

detect early seizure disease and achieved competitive performance. Zhang et al.

[101] proposed a spatial-temporal recurrent neural network (STRNN) to integrate

the feature learning from both spatial and temporal information. To capture those

spatially co-occurrent variations of human emotions, a multi-directional RNN layer

can capture long-range contextual cues by traversing the spatial regions of each

temporal slice along with different directions. Then, a bi-directional temporal RNN

layer is further used to learn the discriminative features characterizing the temporal

dependencies of the sequences produced by the spatial RNN layer.

(ii) Representative models. DBN, especially DBN-RBM, is widely used for unsuper-
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vised representation ability in emotion recognition [102, 103, 104]. For instance, Xu

et al. [105] proposed a DBN-RBM algorithm with three RBMs and an RBM-AE to

predict the subject’s affective state. Nevertheless, it is not a strictly semi-supervised

method: the model reported by [105] is composed of unsupervised feature represen-

tation and a supervised softmax layer. The authors also tried to manually extract

the PSD features from 14 narrow-down bands of the EEG signals and then fed them

into DBN-RBM for classification [106]. For Alzheimer’s Disease diagnosis, Zhao et

al. [107] adopted DBN-RBM with three RBMs to extract informative representa-

tions after filtering (0.5 ∼ 30 Hz). The proposed representative model is combined

with a traditional classifier (SVM) and achieved an accuracy of 92%. Another work

combined DBN-RBM with Hidden Markov Model (HMM) and achieved an accuracy

of 87.62% in a local dataset [108].

Compared to other repetitive models, D-RBM only appears in a few studies. Zheng

et al. [109, 110] introduced a D-RBM with five hidden RBM layers to investigate

critical frequency bands and channels in emotion recognition. The authors claimed

that they employed a DBN-RBM; however, the RBMs are trained jointly. Thus

it is regarded as D-RBM in this chapter. Jia et al. [111] proposed an interesting

algorithm which is composed of RBMs. The algorithm contains a channel selection

component and an RBM classifier. The data from each EEG channel are recon-

structed through RBM; then, the channels with high error are eliminated. Then

the representative features of the residual channels are sent to D-RBM for affective

state recognition.

Emotion is affected by many subjective and environmental factors, such as gender,

fatigue, etc. Yan et al. [112, 113] investigated the differences between males and

females in emotion recognition using EEG and eye movement data. They proposed a

novel model called Bimodal Deep AutoEncoder (BDAE) which is, however, actually

formed by RBMs. The BDAE received both EEG and eye movement features and

shared the information in a fusion layer which connected with an SVM classifier. The

results showed that the fearful emotion is more diverse among women compared with
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men, and men behave more diversely on the sad emotion compared with women.

Moreover, individual differences in fear are more pronounced than in the other three

emotions for females.

To overcome the mismatched distribution among the samples collected from dif-

ferent subjects or different experimental sessions, Chai et al. [114] proposed an

unsupervised domain adaptation technology which is called the subspace alignment

autoencoder (SAAE). SAAE combined an AE and a subspace alignment solution,

which could take advantage of both nonlinear transformation and a consistency con-

straint. The proposed approach obtained a mean accuracy of 77.88% in a person-

independent scenario.

(iii) Hybrid models. One commonly-used hybrid model is a combination of RNN and

MLP. For example, Alhagry et al. [115] employed an LSTM architecture for feature

extraction from emotional EEG signals, and the features are forwarded into an

MLP for classification, which got 85.65%, 85.45%, and 87.99% accuracy on arousal,

valence, and liking classes, respectively. Furthermore, Yin et al. [116] proposed a

multi-view ensemble classifier to recognize emotions using multimodal physiological

signals. The ensemble classifier contains several D-AEs with three hidden layers and

a fusion structure. Each D-AE receives one physiological signal (e.g., EEG, EOG,

EMG) and then sends the outputs of D-AE to a fusion structure which is composed

of another D-AE. At last, an MLP classifier classifies the mixed features. Kawde et

al. [117] implemented an affect recognition system by combining a DBN-RBM for

effective feature extraction and an MLP for classification.

Mental Disease EEG

A large number of researchers exploited EEG signals to diagnose neurological dis-

orders, especially epileptic seizures [118].

(i)Discriminative models. CNN is widely used in the automatic detection of epileptic
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seizures [119, 120, 121, 122]. For example, Johansen et al. [123] adopted CNN

to work on the high-passed filtered (>1 Hz) EEG signals of epileptic spikes and

achieved an AUC of 94.7%. Acharya et al. [124] employed a CNN model with 13

layers (5 convolutional layers, five pooling layers, and three fully-connected layers)

on depression detection. The method was evaluated on a local dataset with 30

subjects (15 normal and 15 depressed) and achieved the accuracies of 93.5% and

96.0% using EEG signals from the left and right hemisphere, respectively. Morabito

et al. [125] exploited a CNN structure to extract suitable features of multi-channel

EEG signals to classify Alzheimer’s Disease from a prodromal version of dementia

(Mild Cognitive Impairment, MCI) and age-matched Healthy Controls (HC). The

EEG signals are filtered in bandpass (0.1 ∼ 30 Hz) and finally achieved an accuracy

of around 82% for three-class classification.

In some research, the discriminative model is only employed for feature extraction.

For example, Ansari et al. [126] used CNN to extract the latent features which are

fed into a Random Forest classifier for the final seizure detection in neonatal babies.

Chu et al. [127] employed CNN for feature extraction which was sent to a random

forest for schizophrenia recognition.

REM Behavior Disorder (RBD) may cause many mental disorder diseases like Parkin-

son’s disease (PD). Ruffini et al. [128] described an Echo State Networks (ESNs)

model to distinguish RBD from healthy individuals. ESN, as a particular class of

RNN, implements nonlinear dynamics with memory and seem ideally poised for

the classification of complex time series data. The central concept in ESNs and

related types of so-called âĂĲreservoir computationâĂİ systems is to have data in-

puts drive a semi-randomly connected, large, fixed recurrent neural network (the

âĂĲreservoirâĂİ) where each node/neuron in the reservoir is activated in a nonlin-

ear way.

(ii) Representative models. For disease detection, one commonly used method is

adopting a representative model (e.g., DBN) followed by a softmax layer for clas-

sification [129, 130]. Page et al. [131] adopted DBN-AE to extract useful features
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from seizure EEG signals. The extracted features were fed into a traditional logis-

tic regression classifier for seizure detection. Al et al. [132] proposed a multi-view

DBN-RBM structure to analyze EEG signals from depressed patients. The pro-

posed approach contains multiple input pathways, composed of two RBMs, while

each corresponded to one EEG channel. All the input pathways would merge into a

shared structure which is composed of another RBMs. The results showed that the

multi-view DBN-RBM achieved competitive results. Yuan et al. [133] extract EEG

context features in parallel by using global principal component analysis (GPCA),

deep denoising AE, and EEG embeddings, respectively. The multi-features are con-

catenated into a fixed-length feature vector for seizure classification.

Some papers favor preprocessing the EEG signals through dimensionality reduction

methods such as PCA and ICA [134] while others prefer to direct fed the raw signals

to the representative model [135]. Lin et al. [135] proposed a sparse D-AE with three

hidden layers to extract the representative features from epileptic EEG signals while

Hosseini et al. [134] adopted a similar sparse D-AE with two hidden layers.

(iii) Hybrid models. A popular hybrid method is a combination of RNN and CNN.

Shah et al. [136] investigated the performance of CNN-LSTM on seizure detection

after channel selection. They used a reduced number of channels ranging from 8 to

20, and achieved sensitivities between 33% and 37% with false alarms in the range

of 38% and 50%. Golmohammadi et al. [137] proposed a hybrid architecture for

automatic interpretation of EEG that integrates temporal and spatial context for

sequential decoding of EEG events. 2D and 1D CNNs capture the spacial features

while LSTM networks capture the temporal features. The authors claimed sensi-

tivity of 30.83% and a specificity of 96.86% on the well-known TUH EEG seizure

corpus.

In the detection of early-stage Creutzfeldt-Jakob Disease (SJD), Morabito et al.

[138] combined D-AE and MLP together. The EEG signals of SJD were first filtered

by bandpass (0.5∼70 Hz) and then fed into a D-AE with two hidden layers for feature

representation. At last, the MLP classifier obtained the accuracy of 81∼ 83% in a
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local dataset. Convolutional autoencoder, replacing the fully-connected layers in a

standard AE by convolutional and de-convolutional layers, is applied to extract the

seizure features in an unsupervised manner [139].

(5) Data augmentation. Generative models such as GAN can be used for data

augmentation in BCI classification [140]. Palazzo et al. [141] first demonstrated

that brain activity EEG signals encode visually-related information that enables to

discriminate between visual object categories accurately. Then, they extracted a

more compact class-dependent representation of EEG data using recurrent neural

networks. At last, they used the learned EEG manifold to condition image genera-

tion employing GANs, which, during inference, will read EEG signals and convert

them into images. Kavasidis et al. [142] aiming at converting EEG signals into

images. The EEG signals were collected when the subjects were observing images

on a screen. An LSTM layer was employed to extract the latent features from

the EEG signals, and the extracted features were regarded as the input of a GAN

structure. The generator and the discriminator of the GAN were both composed

of convolutional layers. The generator was supposed to generate an image based

on the input EEG signals after the pre-training. Abdelfattach et al. [140] adopted

a GAN on seizure data augmentation. The generator and discriminator are both

composed of fully-connected layers. The authors demonstrated that GAN outper-

forms AE and VAE. After the augmentation, the classification accuracy increased

dramatically from 48% to 82%.

(6) Others Other researchers have explored a wide range of interesting topics. The

first one is how EEG affected by audio/visual stimuli. This differs from the potentials

evoked by audio/visual stimulations because the stimuli in this phenomenon are

constant instead of fluctuating at a particular frequency. Stober et al. [143, 144]

claimed that EEG signals of rhythm perception might contain enough information to

distinguish different rhythm types/genres or even identify the rhythms themselves.

The authors conducted an experiment where 13 participants were stimulated by

23 rhythmic stimuli including 12 East African and 12 Western stimuli. For the
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24-category classification, the proposed CNN achieved a mean accuracy of 24.4%.

After that, the authors exploited convolutional AE for feature learning and CNN

for classification and achieved an accuracy of 27% for 12-class classification [145].

Sternin et al. [146] adopted CNN to extract discriminative features from the EEG

signals to distinguish whether the subject was listening or imaging music. Similarly,

Sarkar et al. [147] designed two deep learning models to recognize the EEG signals

invoked by audio or visual stimuli. For this binary classification task, the proposed

CNN and DBN-RBM with three RBMs achieved the accuracy of 91.63% and 91.75%,

respectively. Furthermore, the spontaneous EEG could be used to distinguish the

user’s mental state (logical versus emotional) [148].

Moreover, some researchers focus on the impact of cognitive load [149] or physical

workload [150] on EEG . Bashivan et al. [151] first extracted informative features

through wavelet entropy and band-specific power which were fed into a DBN-RBM

for further refining. At last, an MLP is employed for cognitive load level recogni-

tion. The authors, in another work [152], also aimed to find representations that are

invariant to inter- and intra-subject differences from multi-channel EEG time-series

in the context of the mental load classification task. They transformed EEG activ-

ities into a sequence of topology-preserving multi-spectral images and then trained

a recurrent-convolutional network to preserve the spatial, spectral, and temporal

features of the EEG signals. Yin et al. [153] collected the EEG signals from differ-

ent mental workload levels (e.g., high and low) for binary classification. The EEG

signals were filtered by a low-pass filter, transformed to the frequency domain and

the power spectral density (PSD) was calculated. The extracted PSD features were

fed into a denoising D-AE structure for future refining. They finally achieved an

accuracy of 95.48%. Li et al. [154] worked on the recognition of mental fatigue level

including alert, slight fatigue, and severe fatigue. They adopted a simple DBN-RBM

to extract the related features from single-channel EEG.

In addition, EEG based driver fatigue detection is a popular area of research[155,

156, 157, 157, 158]. Huang et al. [159] designed a 3D CNN to predict reaction
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time in drowsy driving. This is useful to reduce traffic accidents. Hajinoroozi et

al. [160] adopted a DBN-RBM to handle the EEG signals which were processed by

ICA. They achieved an accuracy of around 85% in binary classification (‘drowsy’ or

‘alert’). The strength of this paper is that they evaluated the DBN-RBM on three

levels: time samples, channel epochs, and windowed samples. The experiments

showed that the channel epoch level provided the best performance. San et al. [161]

combined deep learning models with a traditional classifier to detect driver fatigue.

The model contains a DBN-RBM structure followed by an SVM classifier, which

achieved a detection accuracy of 73.29%. Almogbel et al. [162] investigated the

drivers’ mental state under high workload and low workload. A proposed CNN is

claimed to detect the driver’s cognitive workload directly based on the raw EEG

signals.

Research into detection of eye state has shown exceedingly high accuracy. Narejo

et al. [163] explored the detection of eye state (closed or open) based on EEG

signals. They tried a DBN-RBM with three RBMs and a DBN-AE with three AEs

and achieved a very high accuracy of 98.9%. Reddy et al. [164] tried a simpler

structure, MLP, for eye state detection and got a slightly lower accuracy of 97.5%.

There are still a lot of promising areas that have not drawn much attention to

date. Baltatzis et al. [165] adopted CNN to detect school bullying through EEG

when watching the specific video. They achieved 93.7% and 88.58% for binary and

four-class classification. Khurana et al. [166] proposed deep dictionary learning that

outperformed several deep learning methods. Volker et al. [167] evaluated the use of

Deep CNN in a flanker task, which achieved an averaging accuracy of 84.1% within

subject and 81.7 on unseen subjects. Zhang et al. [10] combined CNN and graph

network to discover the latent information from the EEG signal.

Miranda-Correa et al. [168] proposed a cascaded framework by combing RNN and

CNN to predict individuals’ affective level and personal factors (Big-five personality

traits, mood, and social context). An experiment conducted by Putten et al. [169]

attempted to identify the user’s gender based on their EEG signals. They employed a
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standard CNN algorithm and achieved the binary classification accuracy of 81% over

a local dataset. The detection of emergency braking intention could help to reduce

the responses time. Hernandez et al. [170] demonstrated that the driver’s EEG

signals could distinguish braking intention and normal driving state. They combined

a CNN algorithm which achieved the accuracy of 71.8% in binary classification.

Behncke et al. [171] applied deep learning, a CNN model, in the context of robot

assistive devices. They attempted to use CNN to improve the accuracy of decoding

robot errors from EEG while the subject watching the robot both during an object

grasping and a pouring task.

Teo et al. [172, 173] tried to combine the BCI and recommender system, which

predicted the user’s preference by EEG signals. A cohort of 16 users was shown 60

bracelet-like objects as rotating visual stimuli (a 3D object) on a computer display

while their preferences and EEGs were recorded. Then, an MLP algorithm was

adopted to classify whether the user liked or disliked the object. This exploration

got the prediction accuracy of 63.99%. Some researchers have tried to explore a

common framework which can be used for various BCI paradigms. Lawhern et al.

[174] introduced a compact CNN for EEG-based BCI. The authors described the use

of depth-wise and separable convolutions to construct an EEG-specific model which

encapsulates well-known EEG feature extraction concepts for BCI. The proposed

EEGNet is evaluated on four BCI paradigms: P300 visual-evoked potentials, error-

related negativity responses (ERN), movement-related cortical potentials (MRCP),

and sensory-motor rhythms (SMR).

2.3 BCI Applications

Deep learning models have contributed to various BCI applications including health

care, smart environments, security, affective computing, etc. In Table 2.3, we sum-

marized deep learning based BCI paradigms. The papers focused on signal classifi-

cation without a specific application are not listed in this table.
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Table 2.3: Summary of deep learning based BCI applications. The ‘local’ dataset
refers to private or not publicly available dataset and the public datasets (with
links) will be introduced in Section 2.4. In the signals, S-EEG, MD EEG, and E-
EEG separately denote sleeping EEG, mental disease EEG, and emotional EEG. The
single ‘EEG’ refers to the other subcategory of spontaneous EEG. In the models, RF
and LR denote to random forest and logistic regression algorithms, respectively. In
the performance column, ‘N/A’, ‘sen’, ‘spe’, ’aro’, ‘val’, ‘dom’, and ‘like’ denote not-
found, sensitivity, specificity, arousal, valence, dominance, and liking, respectively.

BCI Applications Reference Signals Deep Learning
Models Dataset Performance

Health
Care

Sleeping
Quality
Evaluation

Vilamala et al. [61] S-EEG CNN Sleep-EDF 0.86
Chambon et al. [58] S-EEG Multi-view CNN MASS session 3 N/A
Zhang et al. [59] S-EEG DBN + voting UCD 0.9131
Tsinalis et al. [51] S-EEG CNN Sleep-EDF 0.82
Sors et al. [60] S-EEG CNN SHHS 0.87
Manzano et al. [67] S-EEG CNN + MLP Sleep-EDF 0.732

Shahin et al. [62] S-EEG MLP
University
Hospital
in Berlin

0.9

Manzano et al. [68] S-EEG CNN, MLP Sleep-EDF 0.686/0.689

Supratak et al. [69] EEG CNN + LSTM MASS/
Sleep-EDF 0.862/0.82

Ruffini et al. [128] S-EEG RNN Local 0.85
Fraiwan et al. [90] S-EEG DBN-AE + MLP Local 0.804
Tan et al. [66] S-EEG DBN-RBM Local 0.9278 (F1)
Fernandez et al. [63] EEG CNN SHHS 0.9 (F1)
Biswai et al. [64] S-EEG RNN Local 0.8576

AD
Detection

Morabito et al. [125] MD EEG CNN Local 0.82
Zhao et al. [107] MD EEG DBN-RBM Local 0.92

Seizure
Detection

Tsiouris et al. [65] MD EEG LSTM CHB-MIT >0.99
Yuan et al. [118] MD EEG Attention-MLP CHB-MIT 0.9661
Yuan et al. [133] MD EEG D-AE + SVM CHB-MIT 0.95
Ullah et al. [119] MD EEG CNN + voting UBD 0.954
Lin et al.[135] MD EEG D-AE UBD 0.96
Hosseini et al. [134] MD EEG D-AE + MLP Local 0.94
Page et al. [131] MD EEG DBN-AE + LR N/A 0.8 ∼ 0.9

Golmohammadi et al. [137] MD EEG RNN+CNN TUH Sen: 0.3083;
Spe: 0.9686

Wen et al. [139] MD EEG AE Local 0.92
Acharya et al. [120] MD EEG CNN UBD 0.8867
Schirmeister et al. [121] MD EEG CNN TUH 0.854
Hosseini et al. [175] MD EEG CNN Local N/A
Talathi et al. [100] MD EEG GRU BUD 0.996
Johansen et al. [123] MD EEG CNN Local 0.947 (AUC)
Ansari et al. [126] MD EEG CNN + RF Local 0.77
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Table 2.3: Summary of deep learning based BCI applications (Continued).

BCI Applications Reference Signals Deep Learning
Models Dataset Performance

Health
Care

Seizure
Detection Hosseini et al. [97] EEG CNN Local 0.96

Shah et al. [136] MD EEG CNN+ LSTM TUH Sen: 0.39;
Spe: 0.9037

Turner et al. [130] MD EEG DBN-RBM
+ LR Local N/A

Others:

Cardiac
Detection

Garg [176] MEG CNN Local Sen: 0.85,
Spe: 0.97

Hasasneh et al. [177] MEG CNN + MLP Local 0.944

Depression Acharya et al. [124] MD EEG CNN Local 0.935 ∼ 0.9596

Al et al. [132] MD EEG DBN-RBM
+ MLP Local 0.695

Antoniades et al. [178] EEG AE + CNN Local 0.68

Schizophrenia Chu et al. [127] CNN + RF
+ Voting Local 0.816, 0.967, 0.992

Creutzfeldt-Jakob
Disease (CJD) Morabito et al. [138] MD EEG D-AE Local 0.81 ∼ 0.83

Smart
Environment

Robot Control Behncke et al. [171] EEG CNN Local 0.75
Exoskeleton Kwak et al. [179] SSVEP CNN Local 0.9403
Smart Home Zhang et al. [2] MI EEG RNN EEGMMI 0.9553

Brain Communication

Kawasaki et al. [180] VEP MLP Local 0.908

Cecotti et al. [181] VEP CNN + Voting
The third BCI
competition,
Dataset II

0.955

Zhang et al. [9] MI EEG LSTM+CNN
+AE Local 0.9452

Cecotti et al. [181] VEP CNN
The third BCI
competition,
Dataset II

0.945

Maddula et al. [182] VEP RCNN Local 0.65∼0.76

Liu et al. [183] VEP CNN
The third BCI
competition,
Dataset II

0.92 ∼ 0.96

Security Identification
Zhang et al. [8] MI-EEG Attention-based

RNN EEGMMI + local 0.9882

Koike et al. [184] VEP MLP Local 0.976
Mao et al. [185] RSVP CNN Local 0.97

Authentication Zhang et al. [74] MI EEG Hybrid EEGMMI + local 0.984

Affective Computing

Mioranda et al. [168] E-EEG RNN + CNN AMIGOS <0.7

Jia et al. [111] E-EEG DBN-RBM DEAP 0.8 ∼
0.85 (AUC)

Li et al. [95] E-EEG Hierarchical
CNN SEED 0.882

Xu et al. [105] E-EEG DBN-AE,
DBN-RBM DEAP >0.86 (F1)

Liu et al. [96] E-EEG CNN Local 0.82
Frydenlund et al. [94] E-EEG MLP DEAP N/A

Yin et al. [116] E-EEG Multi-view D-AE
+ MLP DEAP Aro: 0.7719;

Val: 0.7617
Chai et al. [114] E-EEG AE SEED 0.818

Kawde et al. [117] EEG DBN-RBM DEAP
Aro: 0.7033;
Val: 0.7828;
Dom: 0.7016

Li et al. [102] E-EEG DBN-RBM DEAP
Aro:0.642,
Val:0.584,
Dom 0.658
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Table 2.3: Summary of deep learning based BCI applications (Continued).

BCI Applications Reference Signals Deep Learning Models Dataset Performance

Affective Computing

Xu et al. [106] E-EEG DBN-RBM DEAP
Aro:0.6984,
Val:0.6688,
Lik: 0.7539

Zheng et al. [108] E-EEG DBN-RBM
+ HMM Local 0.8762

Alhagry et al. [115] E-EEG LSTM + MLP DEAP
Aro:0.8565,
Val:0.8545,
Lik: 0.8799

Li et al. [186] E-EEG CNN SEED 0.882

Zhang et al. [109, 110] E-EEG DBN-RBM
+ MLP SEED 0.8608

Liu et al. [113] EEG AE SEED,
DEAP 0.9101, 0.8325

Gao et al. [103] E-EEG DBN-RBM
+ MLP Local 0.684

Zhang et al. [101] E-EEG RNN SEED 0.895

Drive Fatigue Detection

Hung et al. [159, 159] EEG CNN Local 0.572 (RMSE)
Hajinoroozi et al. [160] EEG DBN-RBM Local 0.85
Hung et al. [159] EEG CNN Local
Du et al. [156] EEG D-AE + SVM Local 0.094 (RMSE)
San et al. [161] EEG DBN-RBM + SVM Local 0.7392
Almogbel et al. [162] EEG CNN Local 0.9531
Hachem et al. [187] SSVEP MLP Local 0.75
Chai et al. [155] EEG DBN + MLP Local 0.931
Hajinoroozi et al. [157, 157] EEG CNN Local 0.8294

Mental Load Measurement

Yin et al. [153] EEG D-AE Local 0.9584
Bashivan et al. [152] EEG R-CNN Local 0.9111
Bashivan et al. [148] EEG DBN + MLP Local N/A
Bashivan et al. [151] EEG DBN-RBM Local 0.92
Li et al. [154] EEG DBN-RBM Local 0.9886

Other
Appli-
-cations

School Bullying Baltatzis et al. [165] EEG CNN Local 0.937

Music Detection

Stober et al. [144] EEG CNN Local 0.776
Stober et al. [145] EEG AE + CNN Open MIIR 0.27 for 12-class
Stober et al. [143] EEG CNN Local 0.244

Number
Choosing Waytowich et al. [188] SSVEP CNN Local 0.8

Visual Object
Recognition

Manor et al. [189] RSVP CNN Local 0.75
Cecotti et al. [190] RSVP CNN Local 0.897 (AUC)
Hajinoroozi et al. [191] RSVP CNN Local 0.7242 (AUC)
Perez et al. [192] SSVEP AE Local 0.9778
Shamwell et al. [193] RSVP CNN Local 0.7252 (AUC)

Guilty
Knowledge
Test

Kulasingham et al. [194] SSVEP DBN-RBM;
DBN-AE Local 0.869;

0.8601

Concealed
Information
Test

Liu et al. [195] EEG DBN-RBM Local 0.973

Flanker Task Volker et al. [167] EEG CNN Local 0.841

Eye State Narejo et al. [163] EEG DBN-RBM UCI 0.989
Reddy et al. [164] EEG MLP Local 0.975

User Preference Teo et al. [172] EEG MLP Local 0.6399
Emergency
Braking Hernandez et al. [170] EEG CNN Local 0.718

Gender Detection Putten et al. [169] EEG CNN Local 0.81
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2.3.1 Health Care

In the health care area, deep learning based BCI systems mainly work on the detec-

tion and diagnosis of mental diseases such as sleeping disorders, Alzheimer’s Disease,

epileptic seizure, and other disorders. In the first place, for the sleeping disorder

detection, most studies are focused on sleep-stage detection based on sleeping spon-

taneous EEG. In this situation, the researchers do not need to recruit patients with

sleeping disorders because the sleeping EEG signals can be easily collected from

healthy individuals. In terms of the algorithm, it can be observed from Table 2.3

that the DBN-RBM and CNN are widely adopted for feature engineering and clas-

sification. Ruffini et al. [128] went one step further by detecting REM Behavior

Disorder (RBD) which may cause neuro-degenerative diseases such as Parkinson’s

disease. They achieved an average accuracy of 85% in recognition of the RBD from

healthy controls.

Moreover, fMRI is widely used in the diagnosis of Alzheimer’s Disease. By taking

advantage of the high spatial resolution of fMRI, the diagnosis achieved an accuracy

of above 90% in several studies. Another reason that contributes to competitive

performance is the binary classification paradigm. Additionally, several publications

aim to diagnose AD based on spontaneous EEG [125, 107].

Another area that has attracted much attention is the diagnosis of epileptic seizure.

Seizure detection is mainly based on mental disease spontaneous EEG and occa-

sionally on ECoG signals. The popular deep learning models in this scenario are

independent CNN and RNN, along with hybrid models combining RNN and CNN.

Some models integrated deep learning models for feature extraction and traditional

classifiers for detection [130, 131]. For example, Yuan et al. [133] applied a D-AE

in feature engineering followed by SVM for seizure diagnosis. Ullah et al. [119]

adopted voting for post-processing, which proposed several different CNN classifiers

and predicted the final result by voting.

Furthermore, there are a lot of other healthcare issues which can potentially be
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solved by BCI systems. Cardiac artifacts in MEG signals can be automatically

detected by deep learning models[176, 177]. Several modified CNN structures are

proposed to detect brain tumors based on fMRI from the public BRATS dataset

[196, 197, 198]. The literature demonstrates the effectiveness of deep learning mod-

els in the detection of a number of mental disorders such as depression [124], Interic-

tal Epileptic Discharge (IED) [199], schizophrenia [200], Creutzfeldt-Jakob Disease

(CJD) [138], and Mild Cognitive Impairment (MCI) [201].

2.3.2 Smart Environment

The smart environment is a promising application scenario for BCI in the future.

With the development of Internet of Things (IoT), an increasing number of smart

environments can be connected to BCI. For example, an assisting robot can be used

in smart home [2, 88], in which the robot can be controlled by brain signals of the

individuals. Moreover, Behncke et al. [171] and Huve et al. [202] investigated how to

control a robot based on the visual stimulated spontaneous EEG and fNIRS signals.

BCI controlled exoskeletons could help people with damaged to the motor control

in the lower limbs in walking and daily activities [179]. In the future, research on

brain-controlled appliances may be beneficial to the elderly people and the disabled

in creating smart homes and smart hospitals.

2.3.3 Brain Communication

The biggest advantage of BCI, compared to other human-machine interface tech-

niques, is that BCI enables patients who have lost most motor abilities, like speaking,

to communicate with the outer world. Deep learning technology has substantially

improved the efficiency of brain signal based communications. One typical paradigm

which enables individual to type without any motor system is the P300 speller which

can convert the user’s intent into text [180]. Powerful deep learning models allow
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the BCI systems to recognize P300 segments from non-P300 segments while the

former contains the communication information of the user [181]. At a higher level,

representative deep learning models can help to detect what character the user is

focusing on and print it on the screen to chat with others [181, 182, 183].

Additionally, Zhang et al. [9] proposed a hybrid model combined RNN, CNN, and

AE to extract informative features from MI EEG to recognize what letter the user

wants to type. The proposed interface including 27 characters (26 English alphabets

and the space bar) and all of them are separated by 3 character blocks (each block

contains 9 characters) in the initial interface. Overall, there are three alternative

selections, and each selection will lead to a specific sub-interface which includes 9

characters. Again, the 9 = 3 × 3 characters are divided into three character blocks,

and each of them contains nine characters. Again, the 9 = 3 × 3 characters are

divided into three character blocks, and each of them is connected to a lower level

interface. In the bottom level, each block represents only one character. However,

compared to P300 speller, the MI-based protocols have lower information transform

rate because it requires three operations to find the specific letter at the bottom

level.

2.3.4 Security

The security field is a common area of interest for BCI researchers. The security

problem can be divided into identification (also called recognition) and authenti-

cation (also called verification) aspects. The former generally is a multi-class clas-

sification problem, and its aim is to recognize the identity of the test-person [8].

The latter usually is a binary classification problem, which only cares whether the

test-person is authorized or unauthorized [74].

The existing biometric identification/authentication systems are mainly based on

individuals’ unique intrinsic physiological features (e.g., face, iris, retina, voice, and

fingerprint). However, the state-of-the-art person identification systems are vulner-
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able, e.g., anti-surveillance prosthetic masks can thwart face recognition, contact

lenses can trick iris recognition, vocoders can compromise voice identification, and

fingerprint films can deceive fingerprint sensors. In this perspective, the EEG (Elec-

troencephalography) based biometric person identification systems are emerging as

promising alternatives due to their high attack-resilience. An individualâĂŹs EEG

signals are virtually impossible to mimic for an imposter, thus making this approach

highly resilient to spoofing attacks encountered by other identification techniques.

Koike et al. [184] have adopted deep neural networks to identify the user’s ID based

on VEP signals while Mao et al. [185] applied CNN for person identification based

on RSVP signals. Zhang et al. [8] proposed an attention-based LSTM model and

evaluated it over both public and local datasets. The authors [74] then combined

EEG signals with gait information to introduce a dual-authentication system with

a hybrid deep learning model.

2.3.5 Affective Computing

The affective states of a user provide critical information for many applications

such as personalized information (e.g., multimedia content) retrieval or intelligent

human-computer interface design [105]. Recent research illustrated that deep learn-

ing models can enhance the performance of affective computing. Emotion can be

defined according to several dimensions. Dimensional models of emotion attempt

to conceptualize human emotions by defining where they lie in two or three dimen-

sions. The most widely used circumflex model states the emotions are distributed

in two dimensions: arousal and valence. The arousal refers to the intensity of the

emotional stimuli or how strong the emotion is. The valence refers to the relation-

ship within the person who experiences the emotion (positive to negative). In some

other models, the dominance and liking dimensions are used instead.

Some papers only attempt to classify the user’s emotional state into a binary (posi-

tive/negative) or three-category (positive, neutral, and negative) problem and seek
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to identify them using deep learning algorithms [94]. A range of publications adopted

CNN and its variants to classify emotional EEG signals [95, 96, 98]. The DBN-RBM

is the most representative deep learning model used to discover concealed features

from emotional spontaneous EEG [105, 109]. Xu et al. [105] applied a DBN-RBM

as specific feature extractors for the affective state classification problem using EEG

signals.

Furthermore, at a more fundamental level, some researchers aim for the recognition

of a positive/negative state for each specific emotional dimension. For example,

Yin et al. [116] proposed a multiple-fusion-layer based ensemble classifier of AE for

recognizing emotions. Each AE consists of three hidden layers to filter the unwanted

noise in the physiological features and derives the stable feature representations.

The proposed model was evaluated over the benchmark DEAP and achieved the

arousal of 77.19% and valence of 76.17%. Mioranda et al. [168] presented a multi-

task cascaded deep neural network which jointly predicts people’s affective levels

(valence and arousal) and personal factors using EEG signals recorded in response

to the presentation of affective multimedia content.

2.3.6 Driver Fatigue Detection

Vehicle driver’s ability to maintain optimal performance and attention is essential

to ensure the safety of the traffic. EEG signals have been proven to be useful in

evaluating peoples cognitive state during specific tasks [162]. Generally, the driver

is regarded as being in an alert state if the reaction time is below or equal to 0.7

seconds and in a fatigued state if the reaction time is higher or equal to 2.1 seconds.

Hajinoroozi et al. [160] considered the prediction of driver’s fatigue from EEG

signals by extracting the distinct features. They explored an approach based on

DBN for dimensionality reduction.

The detection of driver fatigue is crucial because the drowsiness of the driver may

lead to accidents. Additionally, driver fatigue detection is feasible in the real world.
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In terms of the hardware, the equipment used to collect EEG signals is off-the-shelf

and portable enough to be used in a car. Moreover, the price of an EEG headset is

affordable for most people. In terms of the algorithms, deep learning models have

greatly enhanced the performance of fatigue detection. As we summarized, the EEG

based driving drowsiness can be recognized with high accuracy (82% ∼ 95%).

The future scope of driver-fatigue detection is in the self-driving scenario. As we

know, in most self-driving situations (e.g., Automation level 38), the human driver

is expected to respond appropriately to a request to intervene, which necessitates

that the driver should maintain an alert state. Therefore, we believe the application

of BCI based drive fatigue detection will benefit the development of the self-driving

car.

2.3.7 Mental Load Measurement

Evaluation of operator mental workload levels via ongoing EEG is quite promis-

ing in Human-Machine collaborative task environments to alert when the operator

performance is degraded[153]. The human operator works as a vital component in

automation systems for decision making and strategy development. However, unlike

machines or computers, the human functional states cannot always fit the task re-

quirements due to limited working memory and time-dependent psychophysiological

experience. Therefore, In such a case, operator performance degradation caused by

abnormal cognitive states, e.g., high working stress or distraction, is considered to

be a crucial factor for catastrophic accidents [203].

A number of researchers have focused on this topic. The mental workload can be

measured from fNIRS signals or spontaneous EEG. Naseer et al. [204] analyzed

and compared the classification accuracies of six different classifiers, including five

traditional classifiers and a MLP classifier for a two-class mental task (mental arith-

8https://en.wikipedia.org/wiki/Self-driving_car
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Table 2.6: The summary of public dataset for BCI systems. ‘# Sub’, ‘# Cla’, andS-
Rate denote the number of subject, the number of class, and the sampling rate,
respectively. FM denote finger movement while BCI-C denote the BCI competition.
The datasets may contain more biometric signals (e.g., ECG) but we only list the
channels related to BCI.

BCI Signals Name Link # Sub # Cla S-Rate # Channel

EEG

Sleeping
EEG

Sleep-EDF9: Telemetry 22 6 100 2 EEG, 1 EOG, 1 EMG

Sleep-EDF: Cassette 78 6 100, 1 2 EEG (100Hz), 1 EOG (100Hz),
1 EMG (1Hz)

MASS-110 53 5 256 17/19 EEG, 2 EOG, 5 EMG
MASS-2 19 6 256 19 EEG, 4 EOG, 1EMG
MASS-3 62 5 256 20 EEG, 2 EOG, 3 EMG
MASS-4 40 6 256 4 EEG, 4 EOG, 1 EMG
MASS-5 26 6 256 20 EEG, 2 EOG, 3 EMG

SHHS11 5804 N/A 125, 50 2 EEG (125Hz), 1 EOG (50Hz),
1 EMG (125Hz)

Seizure
EEG

CHB-MIT12 22 2 256 18
TUH13 315 2 200 19

MI
EEG

EEGMMI14 109 4 160 64
BCI-C II15, Dataset III 1 2 128 3
BCI-C III, Dataset III a 3 4 250 60
BCI-C III, Dataset III b 3 2 125 2
BCI-C III, Dataset IV a 5 2 1000 118
BCI-C III, Dataset IV b 1 2 1001 119
BCI-C III, Dataset IV c 1 2 1002 120
BCI-C IV, Dataset I 7 2 1000 64
BCI-C IV, Dataset II a 9 4 250 22 EEG, 3 EOG
BCI-C IV, Dataset II b 9 2 250 3 EEG, 3 EOG

Emotional
EEG

AMIGOS16 40 4 128 14
SEED17 15 3 200 62
MAHNOB-HCI18 30 - - 32
DEAP19 32 4 512 32

Others
EEG Open MIIR20 10 12 512 64

VEP BCI-C II, Dataset II b 1 36 240 64
BCI-C III, Dataset II 2 26 240 64

metic and rest) using fNIRS signals. The experiment results showed that the MLP

outperformed the traditional classifiers like SVM, kNN and achieved the highest

accuracy of 96.3%. Bashivan et al. [151] presented a statistical approach, a DBN

model, to predict cognitive load from single trial EEG. Before the DBN, the authors

manually extracted the wavelet entropy and band-specific power from theta, alpha

and beta bands. Finally, the experiments demonstrated the recognition of cognitive

load across four different levels with an overall accuracy of 92% during execution of

a memory task.
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2.3.8 Auditory Assistance

One application of auditory steady state responses in BCI is to determine the signal

of interest for assistive hearing devices such as hearing aids and cochlear implants.

Deep learning approaches have been shown to be very effective for suppressing in-

terfering background noise and thus improving speech understanding for hearing

impaired listeners [205] and cochlear implant users [206] in the case of a known

speaker. However, for real-world applications, the source of interest needs to be

identified: for example, which of two talkers is the listener trying to understand and

which should be suppressed by the system? When a listener is paying attention to

one particular talker in a mixture their neural signals will become more correlated

with the changes in energy of that talkers speech over time (the speech envelope)

than with that of the other speech in the mixture [207]. This allows the focus of the

listeners attention to be decoded from the neural signal.

Performance of neural decoders is greatest when ECoG signals are used [208], but

approaches using EEG have also shown high performance [209], and above chance

performance when just behind the ear electrodes are used [210]. One approach that

has been employed is to use deep learning to separate the components of the audio

signal and then use linear approaches to do the neural decoding - determining which

9https://physionet.org/physiobank/database/sleep-edfx/
10https://massdb.herokuapp.com/en/
11https://physionet.org/pn3/shhpsgdb/
12https://physionet.org/pn6/chbmit/
13https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
14https://physionet.org/pn4/eegmmidb/
15http://www.bbci.de/competition/ii/
16http://www.eecs.qmul.ac.uk/mmv/datasets/amigos/readme.html
17http://bcmi.sjtu.edu.cn/ seed/download.html
18https://mahnob-db.eu/hci-tagging/
19https://www.eecs.qmul.ac.uk/mmv/datasets/deap/
20https://owenlab.uwo.ca/research/the_openmiir_dataset.html
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of the unmixed speech signals was being attended to by the listener [211]. More

recent approaches have used convolutional neural networks to determine directly

the signal of interest, either by taking speech envelopes and the EEG signals as its

input [212] or, without access to the speech signals, using the EEG signal alone to

determine whether the listener is attending to a talker on their left or right [213].

2.3.9 Other Applications

Apart from the aforementioned key applications, there are still some interesting sce-

narios, such as recommender system [172] and emergency braking [170] to which

deep learning based BCI can be applied. One possible topic is the recognition of a

visual object, which may be used in guilty knowledge test [194] and concealed infor-

mation test [195]. The neurons of the participant will produce a pulse when he/she

suddenly perceives a familiar object. Based on the theory, visual target recognition

main uses RSVP signals. Cecotti et al. [190] investigated the performance of CNNs

in terms of their architecture and how they are evaluated. Specifically, the authors

aimed to build a common model target recognition which can work for various sub-

jects instead of a specific subject. They addressed the change of performance that

can be observed between specifying a neural network for a single subject, or by

considering a neural network for a group of subjects, taking advantage of a larger

number of trials from different subjects.

Other researchers have investigated whether it is possible to distinguish the subject’s

gender using fNIRS [186] or spontaneous EEG [169]. Hiriyasu et al. [186] adopted

deep learning to recognize the gender of the subject based on the cerebral blood

flow. The experiment results suggested that there exists a relation between cerebral

blood flow changes and biological information. Putten et al. [169] tried to discover

the sex-specific information from the brain rhythms and adopted a CNN model to

recognize the participant’s gender. This paper illustrated that fast beta activity (20

∼25 Hz), and its spatial distribution is one of the main distinctive attributes.
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2.4 Benchmark Datasets

BCI related experiments is hard to be conducted due to the lack of equipment,

domain knowledge, and volunteered subjects. In this section, we extensively explore

the benchmark datasets which can be used in deep learning based BCI. As listed in

Table 2.6, we provide 27 reusable public datasets with download links, which cover

most BCI signals. The BCI competition IV (BCI-C IV) contains five datasets. We

give the access link at the first dataset. For better understanding, we present the

number of subjects, the number of classes (how many categories), sampling rate

and the number of channels of each dataset. In the ‘# Channel’ column, the default

channel is EEG signals.

2.5 Conclusion

In this chapter, we systematically summarize the recent advances in deep learning

models for Brain-Computer Interface. Compared with traditional methods, deep

learning not only enables to learn high-level features automatically from BCI sig-

nals but also depends less on manual-crafted features and domain knowledge. We

overview dominant deep learning models, followed by discussing state-of-the-art deep

learning techniques for BCI. Finally, we provide the common used BCI applications

and present a batch of public available BCI datasets.
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Effective Feature Learning
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Chapter 3

Intent recognition through deep

recurrent neural networks

As we mentioned before, EEG signals reflecting activities on certain brain areas not

requiring any initiative actions is an effective method to connect the individuals and

the outer world. The key challenge is how to learn the distinctive features from the

noisy EEG signals in order to recognize the user’s intent. In this chapter, taking

smart living as an example, we introduce an effective feature learning method, i.e.,

recurrent neural network, for EEG-based intent recognition.

Intent recognition can be used to assist individuals who have troubles in motor abil-

ities (such as aged individuals having motor neuron disease like Parkinson disease).

EEG-based intent control has shown promising performance in various applied fields.

For instance, if a person suffers from Amyotrophic Lateral Sclerosis (ALS) would

have only very limited physical capacities, she would be unable to communicate with

the outer world, such as performing most daily activities (e.g., turn on/off the light).

It can be very difficult for her to use normal platforms to control smart home ap-
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pliances. EEG signals1 are generated when a subject imagines performing a certain

action such as close hands. Therefore, EEG signal are widely captured to recognize

one’s intent, with the intent of using it as input to communicate or interact with

external smart devices such as wheelchairs or service robots a real-time BCI systems

[217].

So far, existing EEG-based intent recognition approaches face several challenges.

First, the data pre-processing, parameters selection and feature engineering (e.g.,

feature selection and extraction both in time domain and frequency domain) are

time-consuming and highly dependent on human expertise. Second, current accura-

cies mostly center around 60 ∼ 85% [218, 219, 220], which are too low for real-world

deployment. Finally, existing research mainly focus on binary intents recognition

while multi-intent scenario dominates the practical applications. The more scenar-

ios can be distinguished, the more capabilities of EEG-based control systems can be

expanded in real-world applications.

On the other hand, deep learning based approaches are capable of modeling high

level representations as well as capturing complex relationships, which are often hid-

den in raw data, via stacking multiple layers of information processing modules in

hierarchical architectures [221]. RNN is one typical model making use of sequential

information. In particular, Long Short-Term Memory (LSTM) is one RNN architec-

ture designed to model temporal sequences and their long-range dependencies, and

often results in higher accurate compared to conventional RNNs [222]. In this work,

we propose a deep recurrent neural network model for intent recognition , to help

individuals with motor impairments. Reusable source code and dataset are provided

to reproduce the results2. Our main contributions of this chapter are highlighted as

below:

• We propose a LSTM recurrent neural network for intent recognition, which

1In this chapter, the mentioned EEG refers to MI EEG.
2https://github.com/xiangzhang1015/EEG-based-Control
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directly processes raw EEG data under multi-class scenario.

• We apply Orthogonal Array experiment method for hyper-parameters tuning,

which saves 98.4% of time compared to exhausting tuning.

• We evaluate our approach over an open EEG dataset and achieves 0.9325 of

accuracy.

3.1 Related Work

The current application of EEG signals is mainly in medicine and neurology. [223]

proposes a Logistic Regression (LR) approach to analyze EEG signals to detect

seizure patient and achieves as high as 91% of accuracy. Wavelet analysis [224] is

employed to carry on a diagnosis of Traumatic Brain Injury (TBI) by quantitative

EEG (qEEG) data and reaches 87.85% of accuracy. Power spectral density [225] are

extracted as EEG data features to input into SVM, extreme learning machine and

linear discriminant analysis to predict the outcome of Transcranial direct current

stimulation treatment. The work achieves 76% accuracy with the data from FC4 ∼
AF8 channels and 92% with the data from CPz ∼ CP2 channels.

All the aforementioned literature uses binary classification and extracts features in

different areas manually. Recent research focuses more on the performance compar-

ison of different classifiers. [226] builds one deep belief net classifier for each channel

and combines them through Ada-boost algorithm and classifies the left and right

hand motor imagery.The work achieves average 83% accuracy. [219] adopts SVM

as the classifier and achieves an average accuracy of 65% with the input data be-

ing denoised by a wavelet denoising algorithm before power spectral density feature

selection. [227] yields an accuracy of 80% with the foundational universal back-

ground models (UBMs) classifier after the data is processed by I-vectors and Joint

Factor Analysis (JFA). [228] combined convolutional neural networks and stacked

autoencoders to classify EEG Motor Imagery signals and results 90% accuracy. The
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Figure 3.1: Workflow of the Proposed Approach

application of related methods in smart living in relatively limited. As an example,

[229] uses high pass and low pass filter to reduce the noise signal interference and

extracts EEG features by fisher distance. The switch control experiment results

show that their approach achieves an accuracy of 86%.

3.2 The Proposed Approach

In this section we introduce the flow chart of the proposed approach at first and then

involve to more details. The architecture of our approach is shown in Figure 3.1. The

system consists of two components: the online component and the offline component.

In the online component, raw EEG data, collected from subjects, are used to train a

deep recurrent neural network model (Section 3.2.1). The model directly works on

raw EEG data without any pre-processing, smoothing, filtering or feature extraction.

The parameters in the deep learning model are optimized by the Orthogonal Array

experiment (Section 3.2.2). In the offline component, the user’s willing (EEG signal)

is sent to above pre-trained RNN model and then recognized as specific intent. The

intent is subsequently used to command devices, such as turning lights on/off or

driving a robot to serve a cup of water.

62



3. Intent recognition through deep recurrent neural networks

3.2.1 LSTM Recurrent Neural Network

RNN, as a class of deep neural networks, can help to explore the feature dependen-

cies over time through an internal state of the network, which allows us to exhibit

dynamic temporal behavior. In order to precisely recognize the user’s intent, we

propose a 7-layer LSTM Recurrent Neural Network model including three compo-

nents: 1 input layer, 5 hidden layers, and 1 output layer. In hidden layers, two of

them are consisted of LSTM cells [230] (shown as the rectangles in Figure 3.1).

Assume one collection of EEG signals is E = {E1, E2, ..., Ej, ..., Ebs}, Ej ∈ RK with

nbs denotes the batch size, j denotes the j-th EEG sample, and K denotes the

number of dimensions in each EEG raw signal (K = 64). And in the RNN model,

we denote the i-th layer (i = 1, 2, · · · , I, I = 7) Xr
i = {Xr

ijk|k = 1, 2, · · · , Ki}, Xr
i ∈

R[nbs,1,Ki] (K1 = K = 64), where Ki denotes the dimension of the layer. Note that

the number of dimension equals to the amount of neurons accordingly in each layer.

When the input only contains one EEG sample, the first layer can be Xr
1 = Ej.

Weights between layer i and layer i+1 can be denoted as W r
i,(i+1) ∈ R[Ki,Ki+1], for

instance, W r
1,2 describes the weight between layer 1 and layer 2. bri ∈ RKi denotes

the biases of i -th layer. The connection between the i-th and (i + 1)-th layer will

be Xr
i+1 = Xr

i ∗W r
i,i+1 + bri .

Please note the sizes of Xr
i , W r

i,i+1 and bri must match. For example, in Figure 3.1,

the transformation between H1 layer and H2 layer, the sizes of Xr
3 , Xr

2 , W[2,3], and

br2 are correspondingly [nbs, 1, K3], [nbs, 1, K2], [K2, K3], and [nbs, 1]. The 5-th and

6-th layers here are LSTM layers, and they can be connected by:

fi = sigmoid(T (Xr
(i−1)j, X

r
(i)(j−1))) (3.1)

ff = sigmoid(T (Xr
(i−1)j, X

r
(i)(j−1))) (3.2)

fo = sigmoid(T (Xr
(i−1)j, X

r
(i)(j−1))) (3.3)

fm = tanh(T (Xr
(i−1)j, X

r
(i)(j−1))) (3.4)
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cij = ff � ci(j−1) + fi � fm (3.5)

Xr
ij = fo � tanh(cij) (3.6)

where fi, ff , fo and fm represent the input gate, forget gate, output gate and input

modulation gate accordingly, and � denotes the element-wise multiplication. The

cij denotes the state (memory) in the j-th LSTM cell in the i-th layer, which is

the most significant part to explore the time-series relevance between samples. The

T (Xr
(i−1)j, X

r
(i)(j−1)) denotes the operation as follows:

Xr
(i−1)j ∗W +Xr

(i)(j−1) ∗W ′ + b (3.7)

where W , W ′ and b denote the corresponding weights and biases. At last, we obtain

the RNN predict results Xr
7 and employ the cross-entropy as the cost function. The

`2 norm is selected as the regularization function and the cost is optimized by the

AdamOptimizer algorithm [231].

3.2.2 Orthogonal Array Tuning Method

Although deep learning algorithms can generally achieve good performance in many

areas, tuning the hyper-parameters (e.g., the number of layers, the number of nodes

in each layer and the learning rate) is time-consuming and dependent on one’s expe-

rience. This chapter employs the Orthogonal Array Tuning Method (OATM) [232]

to select the hyper-parameters, which works much faster than traditional hyper-

parameters tuning methods. OATM3 is widely used in design of experiments, coding

theory, and cryptography, however, to our best knowledge, this chapter is the very

first work to apply OATM of the parameter tuning in machine learning and data

mining areas. More details are shown in Chapter 8.

OATM is a systematic and statistical method and its principle is to compare the

dependent variable which is resulted from a different combination of independent

3https://www.york.ac.uk/depts/maths/tables/taguchi_table.htm
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Figure 3.2: OATM selection

Level 1 Level 2 Level 3 Level 4
λ 0.002 0.004 0.006 0.008
lr 0.005 0.01 0.015 0.02
Ki 16 32 48 64
I 5 6 7 8
nb 1 3 6 13

Table 3.1: Factors and levels

variables. It chooses certain representative combinations instead of all combinations

for testing. In this method, independent variable is called “factor" and different

values of factor are called “levels". For instance, if the program has three factors

and each of them has three levels, which are represented by a cube with 27 nodes

(each node represents one combination of hyper-parameters), OATM only chooses

9 representative groups of parameters to optimize the selection. As shown in Fig-

ure 3.2, A1, A2, A3 represent 3 levels of factor A, while factors B,C are by the same

token (the factor is supposed to be statistically independent with the others). The

9 circled nodes are the nine groups selected by OATM. Each edge (totally 27 edges)

in the cube has one circled node and each face (totally 9 faces) has three circled

nodes.

For different number of factors and levels, corresponding OATM table is provided.

Generally, an OATM table can be written as Lna(nnc
b ), where na denotes the number

of hyper-parameter combination, nb denotes the number of levels of each factor and

nc denotes the number of factors.
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3.3 Experiments

3.3.1 Dataset

We use the EEG data from PhysioNet eegmmidb (EEG motor movement/imagery

database) database, a widely used EEG database collected by the BCI2000 (Brain

Computer Interface) instrumentation system [233, 234], to evaluate the proposed

method. In particular, the data is collected by the BCI 2000 system, which owns

64 channels and an EEG data sampling rate of 160 Hz. During the collection of

this database, the subject sits in front of one screen and performs the corresponding

action as one target appears in different edges of the screen. According to the tasks,

different annotations are labeled and can be downloaded from PhysioBank ATM.

The actions in different tasks are as follows:

Task 1 : The subject closes his or her eyes and keeps relax.

Task 2 : A target appears at the left side of the screen and then the subject focuses

on the left hand and imagines he/she is opening and closing the left hand until the

target disappears.

Task 3 : A target appears at the right side of the screen and then the subject focuses

on the right hand and imagines he/she is opening and closing the right hand until

the target disappears.

Task 4 : A target appears on the top of the screen, and the subject focuses on

both hands and imagines he/she is opening and closing both hands until the target

disappears.

Task 5 : A target appears on the bottom of the screen, and the subject focuses

on both feet and imagines he/she is opening and closing both feet until the target

disappears.

Specifically, we select 560,000 EEG samples from 20 subjects (28,000 samples each
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subject) for our experiments. Every sample is one vector which includes 64 elements

corresponding to 64 channels. Each sample corresponding to one intent (from intent

1 to intent 5 separately is eye closed, focus on left hand, focus on right hand, focus

on both hands and focus on both feet).

3.3.2 Overall Comparison

This section is aimed to demonstrate the efficiency of the proposed approach, for

which we compare our approach with the state-of-the-art methods. Our model is

composed of 7 layers RNN with 2 LSTM layers, the learning rate and the λ are

set as 0.004 and 0.005, the number of the nodes in each hidden layer is 64 and the

number of batches nb is 3 (detailed in Section 3.3.3).

Our intent recognition result, the confusion matrix is presented in Table 3.4. It can

be read that our approach produces a mean accuracy of 0.9325, in tests of five

intents recognition on 10 subjects. The ROC (Receiver Operating Characteristic)

curves of five intents are displayed in Figure 3.3. Additionally, comparison with

the state-of-the-art methods is shown in Table 3.3 (the Binary/Multi column refers

binary intents recognition or multi-intents recognition). The KNN sets the num-

ber of neighbors as 3; the SVM adopts One-vs-the-rest (OvR) multi-class strategy

and the estimator is LinearSVC; the RF sets the number of estimators as 300; the

AdaBoost adopts the number of estimators as 50 and the learning rate as 0.3; all

the not mentioned parameters are set as default values. We can perceive that the

proposed approach significantly outperforms all the state-of-the-art methods, by a

large margin of 10%.
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Figure 3.4: Confusion Matrix

3.3.3 Hyper-parameter Tuning

The intent recognition results rely on hyper-parameters since we adopt deep learning

model. To achieve optimal recognition accuracy, we employ OATM to optimize the

hyper-parameters. We select five most common hyper-parameters including λ (the

coefficient of `2 norm), lr (learning rate), Ki(the hidden layer nodes size), I (the

number of layers), and nb (the number of batches4), and they are shown in Table 3.1.

Since this OATM experiment contains 5 factors and 4 levels, the total number of

factor combinations can be found in the standard orthogonal experiment table5. As

shown in the standard orthogonal experiment table, 5 factors with 4 levels OATM

experiment has 16 different combine ways, which means 16 experiments should be

conducted to optimize the hyper-parameters. The combination of hyper-parameters

and the range analysis of results of the experiment, are shown in Table 3.2. The op-

tical λ, lr, Ki, I, and nb tuned by OATM are 0.004, 0.005, 64, 7, and 3, respectively.

The parameter selection of 5 factors and 4 levels needs 1024 = 45 combinations in

an exhaustive method, while with OATM only 16 combinations are needed. This

4The size of training dataset and testing dataset depends on nb since the total
dataset is fixed, e.g., if nb equals 1, there will be 14,000 training dataset and 14,000
testing dataset. If nb equals 3, we will have 21,000 training dataset and 7,000 testing
dataset

5https://www.york.ac.uk/depts/maths/tables/l16b.htm
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No. 1 2 3 4 5 6 7 8 9 10
λ 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.006 0.006
lr 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02 0.005 0.01
Ki 16 32 48 64 32 16 64 48 48 64
I 5 6 7 8 7 8 5 6 8 7
nb 1 3 6 13 13 6 3 1 3 1
Acc 0.689 0.91 0.893 0.667 0.925 0.717 0.848 0.77 0.926 0.826
11 12 13 14 15 16 Rlevel1 Rlevel2 Rlevel3 Rlevel4 Best level
0.006 0.006 0.008 0.008 0.008 0.008 3.159 3.26 2.441 2.44 0.004
0.015 0.02 0.005 0.01 0.015 0.02 3.47 2.875 2.747 2.208 0.005
16 32 64 48 32 16 2.132 2.886 3.011 3.271 64
6 5 6 5 8 7 2.326 2.932 3.048 2.894 7
13 6 6 13 1 3 2.969 3.088 2.907 2.336 3
0.322 0.367 0.93 0.422 0.684 0.404

Table 3.2: OATM experiment factor analysis

means (1− 16/1024) = 98.4% of time are saved. In Table 3.2, Rleveli is the sum of

accuracy of all the combinations contains leveli. We selected the best levels listed

in Table 3.2 for training the model and obtain an accuracy of 0.9325.

3.3.4 Feature Evolution

To better understand the essence of the proposed model, we graphically describe the

feature evolution procedures. Figure 3.5 shows the revolution of variations between

samples from different classes. In the input layer, the samples are chaotic entangled;

and they become clear and observable in the last LSTM layer after the training

through several hidden layers. Particularly, in Figure 3.5d, the black rectangles

display parts of the dimensions which can clearly show the difference between the

intents. Conclusively, the proposed approach is enabled to automatically extract

distinguishable features (Figure 3.5d) from the chaotic raw EEG data (Figure 3.5a).
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Figure 3.5: Feature evolution. The black rectangles in Figure 3.5d indicate the
features which can clearly show the difference between the various intents.

3.4 Conclusion

In this chapter, we present an LSTM approach to recognize the smart living user

intents in EEG raw signals. By experimenting on large scale EEG dataset, we can

claim that our proposed approach significantly outperforms a series of the state-of-

the-art methods by achieving 0.9325 of accuracy. It provides insight into feature

revolution by visualizing the data shape, waveform fluctuation flowing through each

layer of our proposed model.
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Index Methods Binary/Multi Accuracy
1 Almoari [217]

Binary

0.7497
2 Sun [219] 0.65
3 Major [218] 0.68

State
of the art 4 Shenoy [220] 0.8206

5 Tolic [235] 0.6821
6 Ward [227] Multi (3) 0.8
7 Pinheiro [236] Multi (4) 0.8505

Baselines

8 KNN (k=3)

Multi (5)

0.8369
9 SVM 0.5082
10 RF 0.7739
11 LDA 0.5127
12 AdaBoost 0.3431
13 CNN 0.8409
14 Ours 0.9325

Table 3.3: Performance comparison with the state of the art methods. RF: Random
Forest, LDA: Linear Discriminant Analysis. All the methods are evaluated using
the same database.
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Chapter 4

Multi-Person Intent Recognition via

Comprehensive EEG Signal Analysis

Apart from person-independent EEG feature learning introduced in the previous

chapter, in this chapter, we propose one novel method for multi-person effective

EEG feature learning. Person-independent refers to the training and testing dataset

are gathered from the same subject, while multi-person refers to the testing data

are randomly selected from different subjects.

Although intent recognition has been widely investigated over the last several years,

it still faces several challenges such as multi-person and multi-class classification.

First, despite several studies on multi-person EEG classification, e.g., [237] em-

ployed a LDA classifier to classify two datasets with nine and three subjects, there

still has space for improvement over the existing methods in terms of the classifica-

tion accuracy (86.06% and 93% over the two datasets in [237]). Second, to the best

of our knowledge, most existing applications that adopt EEG classification are for

diseases diagnosis (such as epilepsy and Alzheimer’s diseases), which requires only

binary classification (normal or abnormal). However, there exist various other de-

ployment occasions (e.g., smart home and assisted living) that demand multi-class
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EEG classification. For instance, EEG-based assisting robots require more than two

commands (such as walking straight, turning left/right, and raising/lowering hands)

to complete assisted living tasks. Regarding this, only some preliminary research

exists, such as [238], which adopted SVM to classify a four-class EEG dataset and

achieved the accuracy of 70%.

In this chapter, we propose a novel intent recognition approach to classifying the

multi-person and multi-class EEG data. We analyze the similarity of EEG signals

and calculates the correlation coefficients matrix in both inter-class and inter-person

conditions. Then, on top of data similarity analysis, we extract EEG signal features

by the Autoencoder algorithm, and finally feed the features into the XGBoost clas-

sifier to recognize categories of EEG data, with each category corresponding to one

specific intent. The main contributions of this chapter are summarized as follows:

• We present a novel intent recognition approach based on comprehensive EEG

analysis. The proposed approach directly works on the raw EEG data, which

enhances the ductility, relieves from EEG signal pre/post-processing, and de-

creases the need of human expertise.

• We calculate the correlation coefficients matrix and measure the self-similarity

and cross-similarity under both inter-class and inter-person conditions. Based

on the similarity investigation, we propose three favorable conditions of multi-

person and multi-class EEG classification.

• We adopt the Autoencoder, an unsupervised neuron network algorithm, to

refine EEG features. Moreover, we investigate the size of hidden-layer neurons

to optimize the neurons size to optimize the classification accuracy.

• We conduct an experiment to evaluate the proposed approach on a public

EEG dataset (containing 560,000 samples from 20 subjects and 5 classes) and

obtain the accuracy of 79.4%. Our approach achieves around 10% accuracy

improvement compared with other popular EEG classification methods.
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• We design a case study to evaluate the proposed approach on a local dataset

which consists of 172,800 samples collected from 5 subjects and 6 classes. Our

approach obtains the accuracy of 74.85% and outperforms the result of the

state-of-the-art methods.

4.1 Related Work

Over the last decade, much attention has been drawn to brain data modeling, a

crucial pathway to translating human intent into computer commands to realize

Brain-Computer Interaction (BCI). BCI systems are an alternative way to allow

paralyzed or severely muscular disordered patients to recover communication and

control abilities, as well as to save scarce medical care resources. Recent research

has also found its application in virtual reality [239] and space applications [240]. As

EEG signals are the most commonly used brain data for BCI system [241, 242, 243],

significant efforts have been devoted to build accurate and effective models for EEG-

based intent analysis [244, 245, 246, 247].

EEG Feature Representation Method.Feature representation of EEG raw data

has great impact on classification accuracy due to the complexity and high dimen-

sionality of EEG signals. VÃľzard et al. [248] employed common spatial pat-

tern (CSP) along with LDA to pre-process EEG data and obtained an accuracy

of 71.59% on binary alertness states. Meisheri et al. [249] exploited multi-class

CSP (mCSP) combined with Self-Regulated Interval Type-2 Neuro-Fuzzy Inference

System (SRIT2NFIS) classifier for four EEG-based motor imagery classes (move-

ment imagination of left hand, right hand, both feet, and tongue) classification and

achieved the accuracy of 54.63%, which is significantly lower than the accuracy of

binary classification. Shiratori et al. [250] achieved a similar accuracy of 56.7% using

mCSP coupled to the random forests for a three-class EEG-based motor imagery

task. The autoregressive (AR) modeling approach, a widely used algorithm for EEG

feature extraction, is also broadly combined with other feature extraction techniques
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to gain a better performance [251]. For example, [252] investigated two methods

EEG with AR and feature extraction combination: 1) AR model and approximate

entropy, 2) AR model and wavelet packet decomposition. They employed SVM as

the classifier and showed that AR can effectively improve classification performance.

Duan et al. [253] introduced the Autoencoder method for feature extraction and

obtained an accuracy of 86.69%.

EEG Multi-person Classification. Multi-person EEG classification investigates

mental signals from multiple participants, each of whom undergoing the same brain

activities. It is the requirement of future ubiquitous application of EEG instruments

to capture the underlying consistency and inter-subject variations among EEG pat-

terns of different subjects. Kang et al. [254] presented a Bayesian CSP model with

Indian Buffet process (IBP) to investigate the shared latent subspace across sub-

jects for EEG classification. Their experiments on two EEG datasets containing five

and nine subjects showed the superior performance of approximate 70% accuracy.

Djemal et al. [237] utilized two multi-person multi-class EEG datasets to validate

sequential forward floating selection (SFFS) and a multi-class LDA algorithm. Eug-

ster et al. [255] involved forty participants in their experiments to perform relevance

judgment tasks. They also recorded the EEG signals for further classification re-

search. Ji et al. [256] investigated a dataset containing nine subjects for analyzing

and evaluating a hybrid brain-computer interface.

EEG Multi-class Classification. Multi-class classification is a major challenge

in EEG signal analysis, given that current EEG classification research is mostly

focused on binary classification. Usually, an algorithm achieves only inferior per-

formance when handling multi-classification than in handling binary classification.

Anh et al. [257] used Artificial Neural Network trained with output weight opti-

mization back-propagation (OWO-BP) training scheme for dual- and triple-mental

state classification problems. They got a classification accuracy of 95.36% on dual

mental state for triple classification problems, the algorithm performance fell off to

76.84%. With the four-class problem, Olivier et al. [258] got an accuracy of around
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Table 4.1: Inter-class correlation coefficients matrix. The correlation coefficients ma-
trix (upper left section) is the average of 20 correlation coefficients matrix separately
from 20 subjects. Self-S, Cross-S, and PD denote self-similarity, cross-similarity, and
percentage difference, respectively.

Class 0 1 2 3 4 Self-S Cross-S PD
0 0.4010 0.2855 0.4146 0.4787 0.3700 0.401 0.3872 3.44%
1 0.2855 0.5100 0.0689 0.0162 0.0546 0.51 0.1063 79.16%
2 0.4146 0.0689 0.4126 0.2632 0.3950 0.4126 0.2854 30.83%
3 0.4787 0.0162 0.2632 0.3062 0.2247 0.3062 0.2457 19.76%
4 0.3700 0.0546 0.3950 0.2247 0.3395 0.3395 0.3156 7.04%
Range 0.1932 0.4938 0.3458 0.4625 0.3404 0.2038 0.2809 75.72%
Average 0.3900 0.1870 0.3109 0.2578 0.2768 0.3939 0.2680 28.05%
STD 0.0631 0.1869 0.1334 0.1487 0.1255 0.0700 0.0932 27.33%

50% when using a voting ensemble neural network classifier. Aiming at four-class

EEG classification, Wang et al. [238] employed four preprocessing steps and a simple

SVM classifier and got an average classification accuracy of 70%.

In summary, differing from previous work, this chapter proposes anAutoencoder+XGBoost

algorithm to address the multi-class multi-person EEG signal classification problem,

which is a core challenge in applying intent recognition technologies to many impor-

tant domains. The proposed algorithm engages the Autoencoder for EEG feature

representation to explore the relevant EEG features. Also, it emphasizes on the

generalization over participants by solving an EEG classification problem with as

much as five classes and taking twenty subjects. The present approach is supposed

to improve the accuracy and practical feasibility of EEG classification.

4.2 EEG Characteristic Analysis

To gain knowledge about EEG data characteristics and prepare for the further EEG

classification, we quantify the similarity between EEG samples by calculating their

Pearson correlation coefficients, using the following equation:
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Table 4.2: Inter-person correlation coefficients matrix. STD denotes Standard De-
viation, SS denotes Self-similarity, CS denotes Cross-similarity, and PD denotes
Percentage Difference.

Class 0 Class 1 Class 2 Class 3 Class 4
subjects SS CS PD SS CS PD SS CS PD SS CS PD SS CS PD
subject1 0.451 0.3934 12.77% 0.2936 0.1998 31.95% 0.3962 0.3449 12.95% 0.4023 0.1911 52.50% 0.5986 0.4375 26.91%
subject2 0.3596 0.2064 42.60% 0.3591 0.1876 47.76% 0.5936 0.3927 33.84% 0.2354 0.2324 1.27% 0.3265 0.2225 31.85%
subject3 0.51 0.3464 32.08% 0.3695 0.2949 20.19% 0.3979 0.3418 14.10% 0.4226 0.3702 12.40% 0.4931 0.4635 6.00%
subject4 0.3196 0.1781 44.27% 0.4022 0.1604 60.12% 0.3362 0.2682 20.23% 0.4639 0.3905 15.82% 0.3695 0.2401 35.02%
subject5 0.4127 0.2588 37.29% 0.3961 0.2904 26.69% 0.3128 0.2393 23.50% 0.4256 0.1889 55.62% 0.3958 0.3797 4.07%
subject6 0.33 0.2924 11.39% 0.3869 0.3196 17.39% 0.3369 0.3281 2.61% 0.4523 0.1905 57.88% 0.4526 0.3321 26.62%
subject7 0.4142 0.3613 12.77% 0.3559 0.342 3.91% 0.3959 0.3867 2.32% 0.4032 0.3874 3.92% 0.4862 0.2723 43.99%
subject8 0.362 0.1784 50.72% 0.4281 0.2121 50.46% 0.4126 0.2368 42.61% 0.3523 0.1658 52.94% 0.4953 0.2438 50.78%
subject9 0.324 0.2568 20.74% 0.3462 0.2987 13.72% 0.3399 0.3079 9.41% 0.3516 0.1984 43.57% 0.3986 0.177 55.59%
subject10 0.335 0.1889 43.61% 0.3654 0.2089 42.83% 0.2654 0.2158 18.69% 0.3326 0.2102 36.80% 0.3395 0.2921 13.96%
subject11 0.403 0.1969 51.14% 0.3326 0.2066 37.88% 0.3561 0.3173 10.90% 0.4133 0.1697 58.94% 0.5054 0.44 12.94%
subject12 0.4596 0.2893 37.05% 0.4966 0.3702 25.45% 0.3326 0.2506 24.65% 0.4836 0.3545 26.70% 0.3968 0.3142 20.82%
subject13 0.3956 0.2581 34.76% 0.4061 0.3795 6.55% 0.3965 0.3588 9.51% 0.3326 0.1776 46.60% 0.3598 0.3035 15.65%
subject14 0.3001 0.299 0.37% 0.3164 0.2374 24.97% 0.4269 0.3763 11.85% 0.3856 0.1731 55.11% 0.4629 0.3281 29.12%
subject15 0.3629 0.3423 5.68% 0.3901 0.2278 41.60% 0.7203 0.2428 66.29% 0.3623 0.3274 9.63% 0.3862 0.3303 14.47%
subject16 0.3042 0.1403 53.88% 0.3901 0.3595 7.84% 0.4236 0.331 21.86% 0.4203 0.1634 61.12% 0.4206 0.3137 25.42%
subject17 0.396 0.1761 55.53% 0.3001 0.2232 25.62% 0.6235 0.3579 42.60% 0.5109 0.198 61.24% 0.3339 0.2608 21.89%
subject18 0.4253 0.3194 24.90% 0.3645 0.2286 37.28% 0.6825 0.222 67.47% 0.4236 0.3886 8.26% 0.4936 0.3017 38.88%
subject19 0.5431 0.3059 43.68% 0.3526 0.2547 27.77% 0.4326 0.3394 21.54% 0.5632 0.3729 33.79% 0.4625 0.219 52.65%
subject20 0.3964 0.3459 12.74% 0.3265 0.2849 12.74% 0.4025 0.3938 2.16% 0.3265 0.1873 42.63% 0.3976 0.2338 41.20%
Min 0.3001 0.1403 0.37% 0.2936 0.1604 3.91% 0.2654 0.2158 2.16% 0.2354 0.1634 1.27% 0.3265 0.177 4.07%
Max 0.5431 0.3934 55.53% 0.4966 0.3795 60.12% 0.7203 0.3938 67.47% 0.5632 0.3905 61.24% 0.5986 0.4635 55.59%
Range 0.2430 0.2531 55.16% 0.2030 0.2191 56.21% 0.4549 0.1780 65.31% 0.3278 0.2271 59.97% 0.2721 0.2865 51.53%
Average 0.3902 0.2667 31.40% 0.3689 0.2643 28.14% 0.4292 0.3126 22.96% 0.4032 0.2519 36.84% 0.4288 0.3053 28.39%
STD 0.0644 0.0723 0.1695 0.0456 0.0636 0.1518 0.1223 0.0589 0.1853 0.0717 0.0890 0.2066 0.0690 0.0759 0.1485

ρ(A,B) =
1

N̄ − 1

N̄∑
ī=1

(
Aī − µ̄A
σ̄A

)(
Bī − µ̄B
σ̄B

), ī = 1, 2, . . . , N̄ (4.1)

where A and B denote two EEG vector samples, each containing N̄ elements. µA and

σA denote the mean and standard deviation of A. µB and σB denote the mean and

standard deviation of B. The Person correlation coefficient is positively correlated

with the similarity, and both are in the range of [0, 1].

We introduce two similarity concepts used in our measurement: self-similarity and

cross-similarity. The self-similarity is defined by the similarity of EEG signals within

the same EEG category while the cross-similarity is defined by the similarity of EEG

signals of two different EEG categories. Both the self-similarity and cross-similarity

are measured under two conditions: inter-class and inter-person, respectively.

Inter-class measurement.Under the inter-class situation, we measure the corre-

lation coefficient matrix for every specific subject and calculate the average matrix

by calculating the mean value of all the matrix. For example, there are 5 classes
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for the specific subject, we calculate a 5 ∗ 5 correlation coefficient matrix. In this

matrix, ρĭ,j̆ denotes the correlation coefficient between the samples of the class ĭ and

the samples of the class j̆. The self-similarity indicates the similarity between two

different samples from the same class. The cross-similarity indicates the average of

similarity of each possible class pair of samples belonging to the specific subject.

Inter-person measurement.Under the inter-person situation, we measure the cor-

relation coefficients matrix for every specific class and then calculate the average

matrix. The self-similarity indicates the similarity between two different samples

from the same class of the same subject. The cross-similarity denotes the average

of similarity of each possible subject pair of samples belonging to the specific class.

Table 4.1 shows the inter-class correlation coefficient matrix and the corresponding

statistical self- and cross-similarity. The last column (PD) denotes the Percentage

Difference between the self-similarity and cross-similarity. We can observe from

the results that the self-similarity is always higher than the cross-similarity for all

classes, meaning that the samples’ intra-class cohesion is stronger than the inter-

class cohesion. The percentage difference has a noticeable fluctuation, indicating

the varying intra-class cohesion over different class pairs. Class 1 is easier to be

distinguished due to its highest percentage difference, while in contrast, class 0 and

class 4 are difficult to be accurately classified.

Similarly, Table 4.2 shows the inter-person correlation coefficient matrix and gives

an alternative visualization of the results. Again, we find that, for each class, the

self-similarity is higher than cross-similarity with varying percentage difference. The

standard deviations of cross-similarity in the five classes are similar. This indicates

the steady and even distribution of the dataset between different subjects and dif-

ferent classes.

The above analysis results basically satisfy our following hypothesis for multi-person

multi-class classification: 1) the self-similarity is consistently higher than cross-

similarity both under inter-class and inter-person conditions; 2) the higher inter-class
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Figure 4.1: The methodology flowchart. The collected EEG data flow into the
Feature Representation component to seek for the appropriately representation and
interpretation. Ii and I ′i separately indicate the input and output EEG data. xi,
hi, and x′i indicate the neurons in the input layer, the hidden layer and the output
layer, respectively. The learned feature representation h will be sent to an XGBoost
classifier with K trees. The classifier’s predict result is corresponding to the user’s
intent, which indicates the user’s intention such as closing eye, moving left hand or
moving right hand.

percentage difference, the better classification results; 3) lower average percentage

differences and standard deviations of the subjects result in the better classification

performance under the inter-person condition.

4.3 Methodology

In this section, we review the algorithm by first normalizing the input EEG data and

then automatically explore the feature representation of the normalized data. At

last, we adopt the XGBoost classifier to classify the trained features. The method-

ology flowchart is shown in Figure 4.1.

4.3.1 Normalization

Normalization plays a crucial role in a knowledge discovery process for handling

different units and scales of features. For instance, given one input feature ranges
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from 0 to 1 while another ranges from 0 to 100, the analysis results will be dom-

inated by the latter feature. Generally, there are three widely used normalization

methods: Min-Max Normalization, Unity Normalization, and Z-score Scaling (also

called standardization).

Min-Max Normalization. Min-Max Normalization projects all the elements in

an vector to the range of [0, 1]. This method maps features to the same range

despite of their original means and standard deviations. The formula of Min-Max

normalization is given below:

xnew =
x− xmin

xmax − xmin
(4.2)

where xmin and xmax separately denotes the minimum and maximum in the feature

x.

Unity Normalization. Unity Normalization re-scales the features by the percent-

age or the weight of each single element. It calculates the sum of all the elements

and then divides each element by the sum. The equation is:

xnew =
x∑
x

(4.3)

where
∑
x denotes the sum of feature x. Similar to Min-Max Normalization, the

results of this method also belong to the range of [0, 1].

Z-score Scaling. Z-score Scaling forces features under normal Gaussian distribution

(zero mean and unit variance), using the equation below:

xnew =
x− µ
σ

(4.4)

where µ denotes the expectation of feature x and σ denotes the standard deviation.

Depending on the feature characteristics of datasets, these 3 categories of normal-

ization methods may lead to differed analysis results.
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4.3.2 Feature Representation

To exploit the deeper correlationship between EEG signals, we adopt Autoencoder

to have a better representation of EEG. The Autoencoder [259] is an unsupervised

machine learning algorithm that aims to explore a lower-dimensional representation

of high-dimensional input data for dimensionality reduction. In structure, Autoen-

coder is a multi-layer back propagation neural network that contains three types

of layers: the input layer, the hidden layer, and the output layer. The procedure

from the input layer to the hidden layer is called encoder while the procedure from

the hidden layer to the output layer is called decoder. Both the encoder and the

decoder yield a set of weights W and biases b. Autoencoder is called either Ba-

sic Autoencoder when there is only one hidden layer or Stacked Autoencoder when

there are more than one hidden layers. Based on our prior experiment experience,

basic Autoencoder works better than stacked Autoencoder when dealing with EEG

signals. Therefore, we adopt the basic Autoencoder structure.

Let X = {Xi|i = 1, 2 · · · , N}, X ∈ RN , Xi ∈ Rd be the entire training data (un-

labeled), where Xi denotes the i-th sample, N denotes the number of training

samples, and d denotes the number of elements in each sample. hi = {hij|j =

1, 2, · · · ,M}, hi ∈ RM represents the learned feature in the hidden layer for the i-th

sample, where M denotes the number of neural units in current layer (the number

of elements in hi). For simplicity, we use x and h to represent the input data and

the data in the hidden layer, respectively. First, the encoder transforms the input

data x to the corresponding representation h by the encoder weights Wen and the

encoder biases ben:

h = Wenx+ ben (4.5)

Then, the decoder transforms the hidden layer data h to the output layer data x′

by the decoder weights Wde and the decoder biases bde:

x′ = Wdeh+ bde (4.6)

The function of the decoder is to reconstruct the encoded feature h and make the
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reconstructed data x′ as similar to the input data x as possible. The discrepancy

between x and x′ is calculated by the MSE (mean squared error) cost function which

is optimized by the RMSPropOptimizer.

In summary, training Autoencoder is the task of optimizing the parameters to

achieve the minimum cost between the input x and the reconstructed data x′. At

last, the hidden layer data h would contain the refined information. Such information

can be regarded as representation of the input data, which is also the final outcome

of Autoencoder. In above formulation, the dimension of the input data x and the

refined feature (the hidden layer data h) are d and M , respectively. The function

of the Autoencoder is either dimensionality reduction if d > M or dimensionality

ascent if d < M .

4.3.3 Intent Recognition

To recognize the intent based on the represented feature, in this section, we employ

the XGBoost [260] classifier. XGBoost, also known as Extreme Gradient Boosting, is

a supervised scalable tree boosting algorithm derived from the concept of Gradient

Boosting Machine [261]. Compared with gradient boosting algorithm, XGBoost

proposes a more regularized model formalization to prevent over-fitting, with the

engineering goal of pushing the limit of computation resources for boosted tree

algorithms to achieve better performance.

Consider n sample pairs D = {(xi′ , yi′)}, (|D| = n, xi′ ∈ Rm, yi′ ∈ R) where xi′

denotes a m-dimensional sample and yi′ denotes the corresponding label. XGBoost

aims to predict the label ỹi′ of every given sample xi′ .

The XGBoost model is the ensemble of a set of classification and regression trees

(CART), each having its leaves and corresponding scores. The finial results of tree

ensemble is the sum of all the individual trees. For a tree ensemble model of K ′
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trees, the predict output is:

ỹi′ =
K∑
k′=1

fk′(xi′), fk′ ∈ F (4.7)

where F is the space of all trees and fk′ denotes a single tree.

The objective function of XGBoost includes loss function and regularization. The

loss function evaluates the difference between each ground truth label yi′ and the

predict result ỹi′ . It can be chosen based on various conditions such as cross-entropy,

logistic, and mean square error. The regularization part is the most outstanding

contribution of XGBoost. It calculates the complexity of the model and a more

complex structure brings larger penalty.

The objective function is defined as:

Ψ =
n∑
i

l(ỹi′ , yi′) +
K∑
k′

Ω(fk′) (4.8)

where l(ỹi′ , yi′) is the loss function and
∑

k′ Ω(fk′) is the regularization term. The

complexity of a single tree is calculated as

Ω(fk′) = γT +
1

2
λ‖ω‖2 (4.9)

where T is the number of leaves in the tree, ‖ω‖2 denotes the square of the L2-norm

of the weights in the tree, γ and λ are the coefficients. The regularized objective

helps deliver a model of simple structure and predictive functions. More specifically,

the first term, Ω, penalizes complex structures of the tree (fewer leaves lead to a

smaller Ω), while the second term penalizes the overweights of individual trees in

case of the overbalanced trees dominating the model. Moreover, the second term

helps smooth the learned weights to avoid overfitting.

4.4 Experiment

In this section, we evaluate the proposed approach on a public EEG dataset and

report the results of our experimental studies. Firstly, we introduce the experimental
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setting and evaluation criterion. Then, we provide the classification results, followed

by the analysis of influencing factors (e.g., normalization method, training data

size, and neuron size in the Autoencoder hidden layer). Additional experiments are

conducted to study the efficiency and robustness by comparing our approach with

the state-of-the-art methods.

4.4.1 Experimental Setting

We adopt the EEGMMIDB dataset as described in Section 3.3.1. There are totally

five tasks and each task is labeled as one class (from 0 to 4).

4.4.2 Evaluation

Basic definitions related to classification problems include:

• True Positive (TP): the ground truth is positive and the prediction is positive;

• False Negative (FN): the ground truth is positive but the prediction is negative;

• True Negative (TN): the ground truth is negative and the prediction is nega-

tive;

• False Positive (FP): the ground truth is negative but the prediction is positive;

Based on these concepts, we define criteria to evaluate the performance of the clas-

sification results as follows:

Accuracy. The proportion of all correctly predicted samples. Accuracy is a measure

of how good a model is.

accuracy =
TP + FN

FP + FN + TP + TN
(4.10)

84



4. Multi-Person Brain Activity Recognition

The test error refers to the incorrectly predicted samples’ proportion, which equals

to 1 minus accuracy.

Precision. The proportion of all positive predictions that are correctly predicted.

Precision =
TP

TP + FP
(4.11)

Recall. The proportion of all real positive observations that are correctly predicted.

Recall =
TP

TP + FN
(4.12)

F1 Score. A ‘weighted average’ of precision and recall. The higher F1 score, the

better the classification performance.

F1 Score = 2
precision ∗ recall
precision+ recall

(4.13)

ROC. The ROC (Receiver Operating Characteristic) curve describes the relation-

ship between TPR (True Positive Rate) and FPR (False Positive Rate) at various

threshold settings.

AUC. The AUC (Area Under the Curve) represents the area under the ROC curve.

The value of AUC drops in the range [0.5, 1]. The higher the AUC, the better the

classifier.

4.4.3 Experiments and Results

In our experiments, the Autoencoder model is trained by the training dataset then

the testing dataset is fed into the trained Autoencoder model for feature extraction.

The extracted features of the training dataset are used by the XGBoost classifier,

which will be evaluated by the features of the testing dataset. The number of neurons

in the input and output layers in the Autoencoder model fixed at 64 (the input EEG

data contains 64 dimensions), and the learning rate is set as 0.01. Parameter tuning

85



4. Multi-Person Brain Activity Recognition

0 1 2 3 4
Predicted

0

1

2

3

4

G
ro

un
d 

Tr
ut

h

0.797 0.0 0.064 0.05 0.089

0.04 0.811 0.053 0.046 0.05

0.05 0.036 0.802 0.07 0.043

0.033 0.032 0.053 0.843 0.039

0.078 0.08 0.054 0.045 0.743

0.2

0.8

Figure 4.2: Confusion Matrix

Labels Precision Recall F-1 AUC
0 0.7973 0.7703 0.7836 0.9454
1 0.8108 0.9219 0.8628 0.9572
2 0.8017 0.7556 0.7780 0.9492
3 0.8429 0.7294 0.7820 0.9506
4 0.7427 0.7279 0.7352 0.9258

Table 4.3: Evaluation

experience shows that Autoencoder performs better with more hidden layer neurons.

For XGBoost, we set the objective function as softmax for multi-class classification

through pre-experiment experience. The parameters of XGBoost are selected based

on the parameters tuning document1. More specifically, we set the learning rate

η = 0.7, the parameter related to the minimum loss reduction and the number of

leaves gamma = 0, the maximum depth of a tree maxdepth = 6 (too large maxdepth
may lead to overfitting), the subsampling ratio of training instance subsample = 0.9

(to prevent overfitting), and numclass = 5, since we have samples of 5 categories.

All the other parameters are set as default value. Without specific explanation, all

the Autoencoder and XGBoost classifiers are taking above parameters setting.

The hardware used in experiments is a GPU-accelerated machine with Nvidia Titan

X pascal GPU, 768G memory, and 1.45TB PCIe based SSD. The training time is

listed in related experiments, respectively.

Multi-person Multi-class EEG Classification.To evaluate the proposed ap-

proach, 560,000 EEG sample patches are utilized in this experiment. Each sample

patch contains a feature vector of 64 dimensions and a ground truth label. The raw

EEG data is normalized by the z-score scaling method and then randomly split into

training dataset (532,000 samples) and testing dataset (28,000 samples). The rep-

1https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
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Figure 4.3: ROC curve for 5-class classification by XGBoost. Five curves separately
indicate the ROC curve of five classes. The dotted diagonal line denotes the random
classifier where TPR=FPR. The closer the ROC curve to the upper left corner, the
better performance the classifier has. It is clear to notice that the class 1 has the
best classification performance.

resentative features are extracted by Autoencoder with 121 hidden neurons and are

input to the XGBoot classifier. The confusion matrix and evaluation of the results

are listed in Figure 4.2 and Table 4.3. The classification accuracy of 28,000 testing

samples (from 20 subjects and belong to 5 classes) is 0.794. The average precision,

recall, F1 score, and AUC are 0.7991, 0.781, 0.7883, and 0.9456, respectively. Among

the evaluation standards, the class 1 obtains the highest precision, recall, F1 score,

and AUC. This means that the class 1 samples have the most obvious divergence

and are most distinguishable. On the contrary, class 4 is most confusing. This

conclusion is highly consistent with our similarity analysis results in Section 4.2.

From the ROC curve, shown as Figure 4.3, we can deduce to the same conclusion.

All the classes achieved the AUC higher than 0.92, indicating that the classifier is

steady and of high quality, according to the characteristics of AUC mentioned in

Section 4.4.2.

Effect of Normalization Method.The Autoencoder component regards the input
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Figure 4.4: The effect of normalization method. The three test error curves denote
Min-Max, Z-score, and Unity normalization method, respectively.

data as the training target and calculates the discrepancy between them for error

back propagation. This character of Autoencoder determines that the feature ex-

traction quality and training cost are affected by the amplitude of the input data. In

data pre-processing stage, the data values are directly related to the normalization

method.

To explore the impact of the normalization method, 560,000 EEG samples from

20 subjects are randomly split into a training dataset of 532,000 samples (95%

proportion) and a testing dataset of 28,000 samples (5% proportion). By setting

121 neurons for the hidden layer of Autoencoder, the XGBoost test error under

three kinds of normalization methods is shown in Figure 4.4. The figure shows

that the z-score scaling normalization earns the lowest test error while the unity

normalization obtains the highest test error. All the curves trend to convergence

after 1,600 iterations. Without specific explanation, all the remaining experiments

in this chapter use the z-score scaling method.

Effect of Training Data Size.We explore in this section the relationship between

the classification performance and the training data size. We design five experiments

with the training data proportion of 60%, 70%, 80%, 90%, and 95%, respectively.

Each experiment is repeated 5 times and the test error’s error bar is shown in Fig-

88



4. Multi-Person Brain Activity Recognition

0 200 400 600 800 1000 1200 1400 1600 1800

The number of iterations

0.2

0.3

0.4

0.5

0.6

0.7

T
e

s
t 

e
rr

o
r

95%

90%

80%

70%

60%

Figure 4.5: The relationships between test error and the iterations under various
training data proportions

Table 4.4: Comparison of various classification methods. The first nine groups
investigate the proper EEG data classifier and the last 7 groups illustrate the most
efficient feature representation method.

No. 1 2 3 4
Classifier SVM RNN LDA RNN+SVM
Acc 0.3333 0.6104 0.3384 0.6134
No. 5 6 7 8
Classifier CNN DT AdaBoost RF
Acc 0.5729 0.3345 0.3533 0.6805
No. 9 10 11 12
Classifier XGBoost PCA+XGBoost PCA+AE+XGBoost EIG+AE+XGBoost
Acc 0.7453 0.7902 0.6717 0.5125
No. 13 14 15 16
Classifier EIG+PCA+XGBoost DWT+XGBoost Stacked AE+XGBoost AE+XGBoost
Acc 0.6937 0.7221 0.7048 0.794

ure 4.6. The training time is positively correlated with the training data proportion.

The test error arrives at the lowest point 0.206, with an acceptable training time,

while the proportion is 95%. All the following experiments will take 95% proportion.

The relationships between test error and the iterations under various training data

proportions are shown in Figure 4.5. All the curves trend to convergence after 1,600

iterations and the higher proportion leads to lower test error.

Effect of Neuron Size in Autoencoder Hidden Layer.The neuron size in the

hidden layer of Autoencoder indicates the number of dimensions of the extracted
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Figure 4.6: The relationship between the test error with error bars, the training
time and the training data proportion

features. Thus it has great impact on the quality of feature extraction as well as the

classification results. We design the experiment with the neuron size ranges from 30

to 200 and the experimental results (the test error and the training time) are shown

in Figure 4.7.

In the first stage (0-120), the test error keeps decreasing with the increase of the

neuron size; in the second stage (larger than 120), the test error stands at around

0.21 with slight fluctuation. The training time curve has a linear relationship with

the neuron size on the whole. Although the gap between the test error curve and

the training time curve arrives at the minimum around 100 neurons, the test error

is still high. The test error reaches the bottom while the neuron size is 121, and

the training time is acceptable at this point. Moreover, the test error curve keeps

steady after 121. We set the hidden layer neuron size for all other experiments as

121.

4.4.4 Overall Comparison

In our approach, we employ XGBoost as the classifier to classify the refined EEG fea-

tures yielded by Autoencoder. To demonstrate the efficiency of this method, in this
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Figure 4.7: The effect of neuron size in Autoencoder hidden layer. Since the input
data is 64-dimension (marked as red line), the left part (smaller than 64) is dimen-
sionality reduction area while the right part (larger than 64) is dimensionality ascent
area.

section, we compare the proposed approach with several widely used classification

methods. All the classifiers work on the same EEG dataset and their corresponding

performance is listed in Table 4.4.

In Table 4.4, EIG denotes the eigenvector-based dimensionality reduction method

used in Eigenface recognition2; PCA denotes Principal Components Analysis which

2http://www.vision.jhu.edu/teaching/vision08/Handouts/case_study_
pca1.pdf

Figure 4.8: EEG collection and the raw data. The pure EEG data is selected for
recognition and the data, which is contaminated by eye blink and other noise, is not
included in the local dataset (dropped).

91

http://www.vision.jhu.edu/teaching/vision08/Handouts/case_study_pca1.pdf
http://www.vision.jhu.edu/teaching/vision08/Handouts/case_study_pca1.pdf


4. Multi-Person Brain Activity Recognition

is a commonly used dimensionality reduction method; DWT denotes Discrete Wavelet

Transform, which is the wavelet transformation with the wavelets discretely sam-

pled. The stacked Autoencoder contains 3 hidden layers with 100, 121, 100 neurons,

respectively.

The comparison is divided into two aspects: the classifier and the feature repre-

sentation method. At first, we classify our dataset separately by 9 commonly used

sensing data classifier (e.g., SVM, RF, RNN, and CNN) to investigate the most suit-

able classifier for raw EEG data. Then 7 categories feature extraction method (e.g.,

PCA, AE, and DWT) are conducted to investigate the most appropriately EEG

feature representation approach. The comparison results show that the XGBoost

classifier outperforms its counterpart (without pre-processing and feature extrac-

tion) and obtains the accuracy of 0.74, which means that XGBoost is more suitable

to solve this problem. On the other hand, some feature extraction is positive to

the classification whilst some are negative. Through the comparison, we find that

Autoencoder (121 hidden neurons) achieves the highest multi-person classification

accuracy as 0.794.

4.5 Case study

In this section, to further demonstrate the feasibility of the proposed approach, we

conduct a local experiment and present the classification result.

4.5.1 Experimental Setting

This experiment is carried on by 5 subjects (3 males and 2 females) aged from

24 to 30. During the experiment, the subject wearing the Emotiv Epoc+3 EEG

3https://www.emotiv.com/product/emotiv-epoc-14-channel-mobile-eeg/
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Table 4.5: Mark in experiment and corresponding intent and label in case study

Mark up arrow down arrow left arrow right arrow central cycle close eye
Intent upward downward leftward rightward center relax
Label 0 1 2 3 4 5

0 1 2 3 4
Predicted

0

1

2

3

4

G
ro

un
d 

Tr
ut

h

0.751 0.064 0.041 0.061 0.084

0.055 0.764 0.051 0.057 0.072

0.043 0.058 0.784 0.06 0.054

0.062 0.054 0.049 0.759 0.075

0.064 0.064 0.04 0.073 0.76
0.2

Figure 4.9: Confusion Matrix

Labels Precision Recall F-1 AUC
0 0.7369 0.7555 0.7461 0.8552
1 0.7448 0.7407 0.7428 0.8395
2 0.7652 0.7930 0.7788 0.8931
3 0.7374 0.7230 0.7301 0.8695
4 0.7401 0.6986 0.7187 0.8759
5 0.7765 0.8062 0.7911 0.9125

Table 4.6: Evaluation

collection headset, facing the computer screen and focus on the corresponding mark

which appears on the screen (shown in Figure 4.8). The Emotiv Epoc+ contains 14

channels and the sampling rate is set as 128 Hz. The marks are shown on the screen

and the corresponding brain activities and labels used in this chapter are listed in

Table 4.5. Summarily, this experiment contains 172,800 samples with 34,560 samples

for each subject.

4.5.2 Recognition Results and Comparison

The dataset is divided into a training set (155,520 samples) and a testing set (17,280

samples). There are 9 mini-batches and the batch size is 17,280. All the other

parameters are the same as listed in Section 4.4. The proposed approach achieves

the 6-class classification accuracy of 0.7485. The confusion matrix and evaluation

are reported in Figure 4.9 Table 4.6. Clearly, the 5th class intent (eye closed and

keep relax) has the highest precision and is the easiest activity to be recognized.

Subsequently, to demonstrate the efficiency of the proposed approach, we compare
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Table 4.7: Comparison of various classification methods over the case study dataset

No. 1 2 3 4
Classifier SVM RNN LDA RNN+SVM
Acc 0 0.356 0.675 0.343 0.6312
No. 5 6 7 8
Classifier CNN DT AdaBoost RF
Acc 0.5291 0.305 0.336 0.6609
No. 9 10 11 12
Classifier XGBoost PCA+XGBoost PCA+AE+XGBoost EIG+AE+XGBoost
Acc 0.6913 0.7225 0.6045 0.4951
No. 13 14 15 16
Classifier EIG+PCA+XGBoost DWT+XGBoost Stacked AE+XGBoost AE+XGBoost
Acc 0.6249 0.6703 0.6593 0.7485

our method with the state-of-the-art methods and the results are shown in Table 4.7.

4.6 Conclusion

In this chapter, we have focused on multi-class EEG signal classification based on

EEG data that come from different subjects (multi-person). To achieve this goal,

we aim at discovering the patterns in the discrepancy between different EEG classes

with robustness over the difference between various subjects. Firstly, we analyze

three widely used normalization methods in pre-processing stage. Then, we feed the

normalized EEG data into the Autoencoder and train the Autoencoder model. Au-

toencoder transforms the original 64-dimension features to 121-dimension features

and essentially maps the data to a new feature space when meaningful features play

a dominating role. Finally, we evaluate our approach over an EEG dataset of 560,000

samples belonging to 5 categories and achieve the accuracy of 0.794. Compared with

the accuracy of around 0.34 achieved by traditional methods (e.g., SVM, AdaBoost,

Decision Tree, and RNN), our results 0.794 show significant improvement. Further-

more, we explore the effect of two factors (the training data size and the neuron size

in Autoencoder hidden layer) on the training results. At last, we conduct a case

study to gather 6 categories of brain activities and obtain the classification accuracy

of 0.7485.
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Adaptive Representation Learning
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Chapter 5

Adaptive Sensory Data Classification

with Selective Attention

In some cases, human intention could be better predicted by combing brain signals

and other sensor signals (such as activity and location information). Nowadays,

diverse categories of sensors can be found in various wearable devices. Such devices

are now being widely applied in multiple fields, such as Internet of Things [262,

9]. As a result, massive multimodal sensor data are being produced continuously.

The question that how we can deal with these data efficiently and effectively has

become a major concern. Addressing this issue, in this thesis, we adopt adaptive

representation learning which can adaptively capture the most informative features

based on the characteristics of the input signals.

Compared to images and videos, sensory data are naturally formed as a 1-D signal,

with each element representing one sensor channel accordingly. There are several

challenges for such sensor data classification. First, most existing classification meth-

ods use domain-specific knowledge and thus may become ineffective or even fail in

complex situations where multimodal sensory data are being collected [263]. For

example, one approach that works well on IMU (Inertial Measurement Unit) signals
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5. Adaptive Sensory Data Classification with Selective Attention

may not be able to deal with EEG (Electroencephalography) brain signals. There-

fore, an effective and universal sensor data classification method is highly desirable

for complex situations. This framework is expected to have both efficiency and

robustness over various sensor signals.

Second, the wearable sensor data carries far less information than texts and images.

For example, a sample signal gathered by a 64-channel EEG equipment only con-

tains 64 numerical elements. Hence, a more effective classifier is required to extract

discriminative information from such limited raw data. However, maximizing the

utilization of the given scarce data demands cautious preprocessing and a rich fund

of domain knowledge.

Inspired by attention mechanism [264], we propose to concentrate on an attention

zone of the signal to automatically learn the informative attention patterns for dif-

ferent sensor combinations. Here, the attention zone is a selection block of the signal

with a certain length, sliding over the feature dimensions. Note that reinforcement

learning has been shown to be capable of learning human-control level policy on a

variety of tasks [265]. Then we exploit the reinforcement learning to discover the

attention zone. Moreover, considering that the signals in different categories may

have different inter-dimension dependency [266], we propose to use the LSTM (Long

Short-Term Memory [267, 268]) to exploit the latent correlation between signal di-

mensions. We propose a weighted average spatial LSTM (WAS-LSTM) classifier by

exploring the dependency in sensor data.

The main contributions of this chapter are as follows:

• We propose a selective attention mechanism for sensor data classification using

the spatial information only. The proposed method is insensitive to sensor

types since it is capable of handling multimodal sensor data.

• We apply deep reinforcement learning to automatically select the most distin-

guishable features, called attention zone, for multimodal sensor data of differ-

ent sensor types and combinations. We design a novel objective function as the
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5. Adaptive Sensory Data Classification with Selective Attention

Figure 5.1: Flowchart of the proposed approach. The attention zone x̄i is a selected
fragment from x′i to feed in the state transition and the reward model. In each step
t, one action is selected by the state transition to update st based on the agent’s
feedback. The reward model evaluates the quality of the attention zone to the reward
rt. The dueling DQN is employed to find the optimal attention zone x̄∗i which will
be feed into the LSTM based classifier to explore the inter-dimension dependency
and predict the sample’s label y′i. FCL denotes Fully Connected Layer. The State
Transition contains four actions: left shifting, right shifting, extend, and condense.

award in reinforcement learning task to optimize the attention zone. The new

reward model saves more than 98% training time of the deep reinforcement

learning.

• We propose Weighted Average Spatial LSTM classifier to capture the cross-

dimensional dependency in multimodal sensor data.

5.1 Methodology

Suppose the input sensor data can be denoted by X = {(xi, yi), i = 1, 2, · · · I} where
(xi, yi) denotes the 1-D sensor signal, called one sample, and I denotes the number

of samples. In each sample, the feature xi ∈ RK contains K elements and the

corresponding ground truth yi ∈ R is an integer denotes the sample’s category. xi

can be described as a vector with K elements, xi = {xik, k = 1, 2, · · · , K}.
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5. Adaptive Sensory Data Classification with Selective Attention

The proposed algorithm is shown in Figure 5.1. The main focus of the algorithm is

to exploit the latent dependency between different signal dimensions. To this end,

the proposed approach contains several components: 1) the replicate and shuffle

processing; 2) the selective attention learning; 3) the sequential LSTM-based clas-

sification. In the following, we will first discuss the motivations of the proposed

method and then introduce the aforementioned components in details.

5.1.1 Motivation

How to exploit the latent relationship between sensor signal dimensions is the main

focus of the proposed approach. The signals belonging to different categories are

supposed to have different inter-dimension dependent relationships which contain

rich and discriminative information. This information is critical to improve the

distinctive signal pattern discovery.

In practice, the sensor signal is often arranged as 1-D vector, which is less infor-

mative for the limited and fixed element arrangement. The elements order and the

number of elements in each signal vector can affect the element dependency. In many

real-world scenarios, the multimodal sensor data are associated with the practical

placement. For example, the EEG data are concatenated following the distribution

of biomedical EEG channels. Unfortunately, the practical sensor sequence, with the

fixed order and number, may not be suitable for inter-dimension dependency anal-

ysis. Meanwhile, the optimal dimension sequence [269] varies with the sensor types

and combinations. Therefore, we propose the following three techniques to amend

these drawbacks.

First, we replicate and shuffle the input sensor signal vector on dimension-wise in

order to provide as much latent dependency as possible among feature dimensions

(Section 5.1.2).

Second, we introduce an attention zone as a selective attention mechanism, where
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(d) Condense Shifting

Figure 5.2: Four actions in the state transition: left shifting, right shifting, extend,
and condense. The dashed line indicates the attention zone before the action while
the solid line indicates after the action.

the optimal inter-dimension dependency for each sample only depends on a small

subset of features. Here, the attention zone is optimized by deep reinforcement

learning which has been proved to be stable and well-performed in policy learning

(Section 5.1.3).

Third, we propose the WAS-LSTM classifier by extracting the distinctive inter-

dimension dependency (Section 5.1.4).

5.1.2 Data Replicate and Shuffle

To provide as much as possible information, we design an approach to exploit the

spatial relationships among EEG signals. The signals belonging to different brain

activities are supposed to have different spatial dependent relationships. We repli-

cate and shuffle the input EEG signals on dimension-wise. Within this method, all

the possible dimension arrangements have the equiprobable appearance.

Suppose the input raw EEG data are denoted by X = {(xi, yi), i = 1, 2, · · · I}, where
(xi, yi) denotes a single EEG sample and I denotes the number of samples. In each

sample, the feature xi = {xik, k = 1, 2, · · · , K},xi ∈ RK contains K elements

corresponding to K EEG channels and yi ∈ R denotes the corresponding label. xik
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5. Adaptive Sensory Data Classification with Selective Attention

denotes the k-th dimension value in the i-th sample.

In real-world collection scenarios, the EEG data are generally concatenated following

the distribution of biomedical EEG channels. However, the biomedical dimension

order may not present the best spatial dependency. The exhausting method is too

computationally expensive to exhaust all the possible dimension arrangements. For

example, a 64-channel EEG sample has A64
64 = 1.28 × 1089 combinations, which is

an astronomical figure.

To provide more potential dimension combinations, we propose a method called

Replicate and Shuffle (RS). RS is a two-step mapping method which maps xi to a

higher dimensional space x′i with complete element combinations:

xi ∈ RK → x′i ∈ RK′ , K ′ > K (5.1)

In the first step (Replicate), replicating xi for h = K ′/K + 1 times. Then, we get

a new vector with length as h ∗ K which is not less than K ′; in the second step

(Shuffle), we randomly shuffle the replicated vector in the first step and intercept

the first K ′ elements to generate x′i. Theoretically, compared with xi, x′i contains

more diverse dimension combinations. Note, this RS operation only be performed

once for a specific input dataset in order to provide a stable environment for the

following reinforcement learning.

5.1.3 Selective Attention Mechanism

Inspired by the fact that the optimal spatial relationship only depends on a subset of

feature dimensions, we introduce an attention zone to focus on a fragment of feature

dimensions. Here, the attention zone is optimized by deep reinforcement learning,

which has been proved to be stable and well-performed in policy learning.

In particular, we aim to detect the optimal dimension combination, which includes

the most distinctive spatial dependency among EEG signals. Since K ′, the length of
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x′i, is too large and computationally expensive, to balance the length and the infor-

mation content, we introduce the attention mechanism [264] since its effectiveness

has been demonstrated in recent research areas such as speech recognition [270].

We attempt to emphasize the informative fragment in x′i and denote the fragment

by x̄i, which is called attention zone. Let x̄i ∈ RK̄ and K̄ denote the length of

the attention zone which is automatically learned by the proposed algorithm. We

employ deep reinforcement learning to discover the best attention zone [265].

As shown in Figure 5.1, the detection of the best attention zone includes two key

components: the environment (including state transition and reward model) and the

agent. Three elements (the state s, the action a, and the reward r) are exchanged

in the interaction between the environment and the agent. All of the three elements

are customized based on our context in this study. Next, we introduce the design of

the crucial components of our deep reinforcement learning structure:

• The state S = {st, t = 0, 1, · · · , T}, st ∈ R2 describes the position of the

attention zone, where t denotes the time stamp. Since the attention zone is

a shifting fragment on 1-D x′i, we design two parameters to define the state:

st = {starttidx, endtidx}, where starttidx and endtidx denote the start index and

the end index of the attention zone1, separately. In the training, s0 is initialized

as

s0 = [(K ′ − K̄)/2, (K ′ + K̄)/2] (5.2)

• The action A = {at, t = 0, 1, · · · , T} ∈ R4 describes which action the agent

could choose to act on the environment. Here at time stamp t, the state

transition chooses one action to implement following the agent’s policy π:

st+1 = π(st, at) (5.3)

In our case, we define four categories of actions (Figure 5.2) for the attention

zone: left shifting, right shifting, extend, and condense. For each action, the

1For example, for a random x′i = [3, 5, 8, 9, 2, 1, 6, 0], the state {starttidx =
2, endtidx = 5} is sufficient to determine the attention zone as [8, 9, 2, 1].
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attention zone moves a random distance d ∈ [1, du] where du is the upper

boundary. For left shifting and right shifting actions, the attention zone shifts

light-ward or right-ward with the step d; for the extend and condense actions,

both starttidx and endtidx are moving d. At last, if the state start index or end

index is beyond the boundary, a clip operation is conducted. For example,

if starttidx = −5 which is lower than the lower boundary 0, we clip the start

index as starttidx = 0.

• The reward R = {rt, t = 0, 1, · · · , T} ∈ R is calculated by the reward model,

which will be detailed later. The reward model Φ:

rt = Φ(st) (5.4)

receives the current state and returns an evaluation as the reward.

Reward Model. Next, we introduce in detail the design of the reward model.

The purpose of the reward model is to evaluate how the current state impacts the

classification performance. Intuitively, the state which leads to better classification

performance should have a higher reward: rt = F(st). We set the reward modal

F as a combination of the convolutional mapping and classification (Section 6.2.1).

Since in the practical approach optimization, the higher the accuracy is, the more

difficult to increase the classification accuracy. For example, improving the accuracy

on a higher level (e.g., from 90% to 100%) is much harder than on a lower level(e.g.,

from 50% to 60%). To encourage accuracy improvement at the higher level, we

design a non-linear reward function:

rt =
eacc

e− 1
− β K̄

K ′
(5.5)

where acc denotes the classification accuracy. The function contains two parts; the

first part is a normalized exponential function with the exponent acc ∈ [0, 1], this

part encourages the reinforcement learning algorithm to search the better st which

leads to a higher acc. The motivation of the exponential function is that: the reward
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growth rate is increasing with the accuracy’s increase2. The second part is a penalty

factor for the attention zone length to keep the bar shorter and the β is the penalty

coefficient.

In summary, the aim of the deep reinforcement learning is to learn the optimal

attention zone x̄∗i which leads to the maximum reward. The selective mechanism

totally iterates N = ne∗ns times where ne and ns denote the number of episodes and

steps [271], respectively. ε-greedy method [272] is employed in the state transition,

which chooses a random action with probability 1− ε or an action according to the

optimal Q function argmaxat∈AQ(st, at) with probability ε. In formula,

at+1 =

argmaxat∈AQ(st, at) ε′ < ε

ā ∈ A otherwise
(5.6)

where ε′ ∈ [0, 1] is random generated for each iteration while ā is random selected

in A.

For better convergence and quicker training, the ε is gradually increasing with the

iterating. The increment ε0 follows:

εt+1 = εt + ε0N (5.7)

Agent Policy and Optimization. The Dueling DQN (Deep Q Networks [271])

is employed as the optimization policy π(st, at), which is enabled to learn the state-

value function efficiently. The primary reason we employ a dueling DQN to uncover

the best attention zone is that it updates all the four Q values at every step while

other policies only update one Q value at each step. The Q function measures the

expected sum of future rewards when taking that action and following the optimal

policy thereafter. In particular, for the specific step t, we have:

Q(st, at) = E(rt+1 + γrt+2 + γ2rt+3 . . . )

=
∞∑
n=0

γkrt+k+1

(5.8)

2For example, for the same accuracy increment 10%, acc : 90%→ 100% can earn
a higher reward increment than acc : 50%→ 60%.
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where γ ∈ [0, 1] is the decay parameter that trade-off the importance of immediate

and future rewards while n denotes the number of following step. The value function

V (st) estimate the expected reward when the agent is in state s. The Q function is

related to the pair (st, at) while the value function only associate with st.

Dueling DQN learns the Q function through the value function V (st) and the ad-

vantage function A(st, at) and combines them by the following formula

Q(st, at) = θV (st) + θ′A(st, at) (5.9)

where θ, θ′ ∈ Θ are parameters in the dueling DQN network and are optimized

automatically. Equation: 5.9 is unidentifiable which can be observed by the fact

that we can not recover V (st) and A(st, at) uniquely with the given Q(st, at). To

address this issue, we can force the advantage function equals to zero at the chosen

action. That is, we let the network implement the forward mapping:

Q(st, at) = V (st) + [A(st, at)− max
at+1∈A

(A(st, at+1))] (5.10)

Therefore, for the specific action a∗, if

argmaxat+1∈AQ(st, at+1) = argmaxat+1∈AA(st, at+1) (5.11)

then we have

Q(st+1, a∗) = V (st) (5.12)

Thus, as shown in the Figure 6.2 (the second last layer of the agent part), the stream

V (st) is forced to learn an estimation of the value function, while the other stream

produces an estimation of the advantage function.

To assess the Q function, we optimize the following cost function at the i-th iteration:

Li(Θi) = Est,at,rt,st+1 [(ȳi −Q(st, at))
2]

= Est,at,rt,st+1 [(ȳi − θV (st) + θ′A(st, at))
2]

(5.13)

with

ȳi = rt + γmax
at+1

Q(st+1, at+1) (5.14)
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The gradient update method is

∇Θi
Li(Θi) = Est,at,rt,st+1 [(ȳi −Q(st, at))∇Θi

Q(st, at)]

= Est,at,rt,st+1 [(ȳi − θV (st)− θ′A(st, at))

∇Θi
(θV (st) + θ′A(st, at))]

(5.15)

5.1.4 Weighted Average Spatial LSTM Classifier

In this section, we propose Weighted Average Spatial LSTM classification for two

purposes. The first attempt is to capture the cross-relationship among feature di-

mensions in the optimized attention zone x̄∗i . The LSTM-based classifier is widely

used for its excellent sequential information extraction ability which is approved in

several research areas such as natural language processing [273, 274]. Compared to

other commonly employed spatial feature extraction methods, such as Convolutional

Neural Networks, LSTM is less depends on the hyper-parameters setting. However,

the traditional LSTM focuses on the temporal dependency among a sequence of

samples. Technically, the input data of traditional LSTM is 3-D tensor shaped as

[nb, nt, K̄] where nb and ns denote the batch size and the number of temporal sam-

ple, separately. The WAS-LSTM aims to capture the dependency among various

dimensions at one temporal point, therefore, we set nt = 1 and transpose the input

data as: [nb, nt, K̄]→ [nb, K̄, nt].

The second advantage of WAS-LSTM is that it could stabilize the performance of

LSTM via moving average method [275]. Specifically, we calculate the LSTM out-

puts Oi by averaging the past two outputs instead of only the final one (Figure 5.1):

Oi = (Oi(K̄−1) + OiK̄)/2 (5.16)

The predicted label is calculated by y′i = L(x̄∗i ) where L denotes the LSTM algo-

rithm. `2-norm (with parameter λ) is adopted as regularization to prevent overfit-

ting. The sigmoid activation function is used on hidden layers. The loss function is

cross-entropy and is optimized by the AdamOptimizer algorithm [231].
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Datasets Type Task #-S #-C Samples #-D S-rate (Hz)
EID EEG PID 8 8 168,000 14 128
RSSI RFID AR 6 21 3,100 12 2
PAMAP2 IMU AR 9 8 120,000 14 100

Table 5.1: Datasets description. PID, AR, and S-rate denote Person Identification,
Activity Recognition, and Sampling rate, respectively. #-S, #-C, #-D separately
denote the number of subjects, classes, and dimensions.

5.2 Experiments

In this section, we evaluate the proposed approach over 3 sensor signal datasets (sep-

arately collected by EEG headset, environmental sensor, and wearable sensor) in-

cluding 2 widely used public datasets and 2 limited but more practical local datasets.

Firstly we describe the details of each dataset. Secondly, we demonstrate the effec-

tiveness and robustness by comparing the performance of our approach to baselines

and state-of-the-art. Lastly, we provide the efficiency of the alternative reward model

designed in Section 5.1.3.

5.2.1 Datasets

More details refer to Table 5.1.

• EID. The EID (EEG ID identification) is collected in a constrained setting

where 8 subjects (5 males and 3 females) aged 26 ± 2. EEG signal monitors

the electrical activity of the brain. This dataset gathers the raw EEG signals

by Emotiv EPOC+ headset with 14 channels at the sampling rate of 128 Hz.

• RSSI. The RSSI (Radio Signal Strength Indicator) [276] collects the signals

from passive RFID tags. 21 activities, including 18 ADLs (Activity of Daily

Living) and 3 abnormal falls, are performed by 6 subject aged 25 ± 5. RSSI

measures the power present in a received radio signal, which is a convenient

environmental measurement in ubiquitous computing.
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Methods EID Dataset
Acc Pre Rec F1

SVM 0.1438 0.1653 0.1545 0.1445
RF 0.9365 0.9261 0.9142 0.9457
KNN 0.9413 0.9471 0.9298 0.9511
AB 0.2518 0.2684 0.2491 0.2911

Non-
DL

LDA 0.1485 0.1524 0.1358 0.1479
LSTM 0.4315 0.5132 0.4278 0.4532
GRU 0.4314 0.455 0.4288 0.4218DL
1-D CNN 0.8031 0.8127 0.805 0.8278
WAS-LSTM 0.9518 0.9657 0.9631 0.9658
Ours 0.9621 0.9618 0.9615 0.9615

Table 5.2: Comparison of EID

Methods RSSI Dataset
Acc Pre Rec F1

SVM 0.8918 0.8924 0.8908 0.8805
RF 0.9614 0.9713 0.9652 0.9624
KNN 0.9612 0.9628 0.9618 0.9634
AB 0.4704 0.4125 0.4772 0.3708

Non-
DL

LDA 0.8842 0.8908 0.8845 0.8802
LSTM 0.7421 0.6505 0.6132 0.6858
GRU 0.7049 0.7728 0.6584 0.6915DL
1-D CNN 0.9714 0.9676 0.9635 0.9645
WAS-LSTM 0.9553 0.9533 0.9545 0.9592
Ours 0.9838 0.9782 0.9669 0.9698

Table 5.3: Comparison of RSSI

• PAMAP2. The PAMAP2 [277] is collected by 9 participants (8 males and

1 females) aged 27 ± 3. 8 ADLs are selected as a subset of our paper. The

activity is measured by 1 IMU attached to the participants’ wrist. The IMU

collects sensor signal with 14 dimensions including two 3-axis accelerometers,

one 3-axis gyroscopes, one 3-axis magnetometers and one thermometer.
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Methods PAMAP2 Dataset
Acc Pre Rec F1

SVM 0.7492 0.7451 0.7522 0.7486
RF 0.9817 0.9893 0.9711 0.9801
KNN 0.9565 0.9651 0.9625 0.9638
AB 0.5776 0.4298 0.5814 0.4942

Non-
DL

LDA 0.7127 0.7175 0.7298 0.7236
LSTM 0.7925 0.7487 0.7478 0.7482
GRU 0.8625 0.8515 0.8349 0.8431DL
1-D CNN 0.9819 0.9715 0.9721 0.9718
[277] 0.96 - - -
[278] 0.8488 - - 0.841
[279] 0.967 - - -

State-
of-the
-Arts [280] 0.9336 - - -

WAS-LSTM 0.9821 0.9981 0.9459 0.9713
Ours 0.9882 0.9804 0.9756 0.9780

Table 5.4: Comparison of PAMAP2

5.2.2 Results

In this section, we compare the proposed approach with baselines and the state-of-

the-art methods. Our method focuses on the attention zone which is optimized by

deep reinforcement learning and then explores the dependency between sensor signal

elements by a deep learning classifier. All the three datasets are randomly split into

the training set (90%) and the testing set (10%). Each sample is one sensor vector

recording collected at one time point. Through the previous experimental tuning

and the Orthogonal Array based hyper-parameters tuning method [2], the hyper-

parameters are set as following. In the selective attention learning: the order of

autoregressive is 3; K̄ = 128, the Dueling DQN has 4 lays and the node number in

each layer are: 2 (input layer), 32 (FCL), 4 (A(st, at)) + 1 (V (st)), 4 (output). The

decay parameter γ = 0.8, ne = ns = 50, N = 2, 500, ε = 0.2, learning rate= 0.01,

memory size = 2000, length penalty coefficient β = 0.1, and the minimum length of

attention zone is set as 10. In the deep learning classifier: the node number in the

input layer equals to the number of feature dimensions, three hidden layers with 164

nodes, two layers of LSTM cells and one output layer. The learning rate = 0.001,
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(a) EID CM (b) EID ROC

Figure 5.3: Confusion matrix and ROC curves of EID

`2-norm coefficient λ = 0.001, forget bias = 0.3, batch size = 9, and iterate for 1000

iterations.

Tables 5.2 ∼ 5.4 show the classification metrics comparison between our approach

and baselines including Non-DL and DL baselines. Since the EID and RSSI are local

datasets, we only compare with state-of-the-art over the public dataset PAMAP2.

Table 5.4 shows that our approach achieves the highest accuracy on both datasets.

DL represents deep learning. The notation and hyper-parameters of the baselines

are listed here. RF denotes Random Forest, AdaB denotes Adaptive Boosting,

LDA denotes Linear Discriminant Analysis. In addition, the key parameters of the

baselines are listed here: Linear SVM (C = 1), RF (n = 200), KNN (k = 3). In

LSTM, nsteps = 5, another set is the same as the WAS-LSTM classifier, along with

the GRU (Gated Recurrent Unit [281]). The CNN works on sensor data and contains

2 stacked convolutional layers (both with stride [1, 1], patch [2, 2], zero-padding, and

the depth are 4 and 8, separately.) and followed by one pooling layer (stride [1, 2],

zero-padding) and one fully connected layer (164 nodes). Relu activation function

is employed in the CNN. The results from Tables 5.2 ∼ 5.4 show that:

• Our approach outperforms all the baselines and the state-of-the-arts over all

the local and public datasets ranging from EEG, RFID to wearable IMU sen-
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(a) RSSI CM (b) RSSI ROC

Figure 5.4: Confusion matrix and ROC curves of RSSI. This dataset overall contains
21 classes and we only select several representative classes in ROC curves.

sors;

• The sensor spatial based WAS-LSTM classifier achieves a high-level perfor-

mance, which indicates the method that extracting inter-dimension depen-

dency for classification is effective;

• Our method (WAS-LSTM with attention zone) performs better than WAS-

LSTM, which illustrates that the learned informative attention is effective.

To have a closer observation, the CM (confusion matrix) and the ROC curves (in-

cluding the AUC score) of the datasets are reported in Figure 5.3 to Figure 5.5. The

CMs illustrate that the robustness of the proposed approach keeps high accuracy

even over few samples and numerous categories.

5.2.3 Reward Model Efficiency Demonstration

In this section, we propose a new reward model to replace the original reward

model: G → F . The original F , in our case, refers to the WAS-LSTM classifier

(Section 5.1.4), intuitively. F requires a large amount of training time to find the
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(a) PAMAP CM (b) PAMAP ROC

Figure 5.5: Confusion matrix and ROC curves of PAMAP.

optimal attention zone x̄∗. Take the EID dataset as an example, F needs around

4000 sec on the Titan X (Pascal) GPU for each step while the whole attention zone

optimization contains N (N > 2000) iterations. Therefore, to save training time,

we attempt to employ G to approximate G to update the reward. Thus, two pre-

requisites are demanded: 1) G should have high correlation with F to guarantee

arg max
x̄∗

G ≈ arg max
x̄∗

F ; 2) the training time of G should be shorter than F . In this

section, we demonstrate the two prerequisites by experimental analyzes.

First, on the attention zone optimization procedure on EID dataset, we conduct an

experiment to measure a batch of data pairs of the reward (represents the reward

of G) and the WAS-LSTM classifier accuracy (represents the reward of F). The

relationship between the reward and the accuracy is shown in Figure 5.6. The

figure illustrates that the accuracy has an approximately linear relationship with

the reward. The correlations coefficient is 0.8258 (with p-value as 0.0115), which

demonstrates the accuracy and reward are highly positive related. As a result,

we can estimate arg max
x̄∗

F by arg max
x̄∗

G. Moreover, another experiment is carried

on to measure the single step training time of two reward models G and F . The

training times are marked as T1 and T2, respectively. Figure 5.7 qualitatively shows

that T2 is much higher than T1 (8 states represent 8 different attention zones).

Quantitatively, the sum of T1 over 8 states is 35237.41 sec while the sum of T2

113



5. Adaptive Sensory Data Classification with Selective Attention

0.3 0.32 0.34 0.36 0.38 0.4 0.42

Reward

0.86

0.88

0.9

0.92

0.94

0.96

0.98

A
c
c
u
ra

c
y

Figure 5.6: The relationship between
the classifier accuracy and the re-
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Figure 5.7: Reward model training
time in various states. T1 and T2 sep-
arately denote the training time in re-
ward model G and F .

is 601.58 sec. This results demonstrate that the proposed approach, designing a G
to approximate and estimate the F , saves 98.3% training time in attention zone

optimization.

5.2.4 Discussions

In this section, we discuss several characteristics of the proposed approach.

First, we propose a robust, universal, and adaptive classification framework which

can efficiently deal with adaptive sensor data. Specifically, our approach works

better on high-dimensional feature space in that the information of inter-dimension

dependency is richer.

In addition, we propose a novel idea that adopts an alternative reward model to

estimate and replace the original reward model. In this way, the disadvantages of

the original model, such as expensive computation, can be eliminated. The key

is to keep the reward produced by the new model highly related to the original

reward. The higher correlation coefficient, the better. This sheds light on the

possible combination of deep learning classifier and reinforcement learning.
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Nevertheless, one weakness is that the reinforcement learning policy only works well

in the specific environment in which the model is trained. The dimension indexes

should be consistent in training and testing stages. Various policies should be trained

according to different sensor combinations.

Furthermore, the proposed WAS-LSTM directly focuses on the dependency among

the sensor dimensions and can produce a predicted label for each point. This pro-

vides the foundation for the quick-reaction online detection and other applications

which require instantaneous detection. However, this retires an enough number of

signal dimensions to carry sufficient information for the aim of accurately recogni-

tion.

5.3 Conclusion

In this chapter, we present a robust and efficient adaptive sensor data classification

framework which integrates selective attention mechanism, deep reinforcement learn-

ing, and WAS-LSTM classification. In order to boost the chance of inter-dimension

dependency in sensor features, we replicate and shuffle the sensor data. Addition-

ally, the optimal spatial dependency is required for high-quality classification, for

which we introduce the attention zone with attention mechanism. Furthermore,

we extended the LSTM to exploit the cross-relationship among spatial dimensions,

which is called WAS-LSTM, for classification. The proposed approach is evaluated

on three different sensor datasets, namely, EEG, RFID and wearable IMU sensors.

The experimental results show that our approach outperforms the state-of-the-art

baselines. Moreover, the designed reward model saves 98.3% of the training time

in reinforcement learning.
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Chapter 6

Adaptive Cognitive Activity

Recognition with Reinforced CNN

In the previous chapter, we proposed an adaptive learning framework which works

well on different sensory signals. In this chapter, we attempt to refine the task and

focuses on a general model to deal with various EEG scenarios.

The accuracy and robustness of EEG classification model have promising meanings

to identify cognitive activities in the realms of movement intention recognition, per-

son identification, and neurological diagnosis. Cognitive activity recognition systems

[282] provide a bridge between the inside cognitive world and the outside physical

world. They are recently used in assisted living [9], smart homes [2], and enter-

tainment industry [283]; EEG-based person identification technique empowers the

security systems deployed in bank or customs [284, 8]; EEG signal-based neurological

diagnosis can be used to detect the organic brain injury and abnormal synchronous

neuronal activity such as epileptic seizure [285, 286].

The classification of cognitive activity faces several challenges. First, the EEG

data preprocessing and feature extraction methods (e.g., filtering, Discrete Wavelet
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(a) T-2 (b) T-1 (c) T (d) T+1 (e) T+2

Figure 6.1: EEG topography with continuous samples. The interval among samples
is 0.00625 second.

Transformation, and feature selection) which are employed by most existing EEG

classification studies [268, 283] are time-consuming and highly depend on expertise.

Meanwhile, the hand-crafted features require extensive experiments to generalize

well to diverse settings such as filtering bands and wavelet orders. Therefore, an

effective method which can directly work on raw EEG data is necessary.

Second, most current EEG classification methods are designed based on domain-

specific knowledge and thus may become ineffective or even fail in different scenarios

[287]. For example, the approach customized for EEG-based neurological diagnosis

may not work well on intention recognition. Therefore, a general EEG signal classi-

fication method is expected to be both efficient and robust across various domains

for better usability and suitability.

Third, EEG signals have a low signal-to-noise ratio and more chaotic than other sen-

sor signals such as wearable sensors. Thus, the segment-based classification which is

widely used in sensing signal classification may not fit cognitive activity recognition.

A segment contains some continuous EEG samples clipped by the sliding window

method [288] while a single EEG sample (also called EEG instance) is collected at

a specific time point. In particular, segment-based classification has two drawbacks

compared with sample-based classification: 1) in a segment with many samples,

the sample diversity may offset by other inverse changed samples as EEG signals

vary rapidly (Section 6.1). 2) segment-based classification requires more training

data and a longer data-collecting time. For example, suppose each segment has

ten samples without overlapping; for the same training batch size, segment-based
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classification requires ten times of the data size and the data-collecting time than

sample-based classification. As a result, segment-based classification cannot exploit

the immediate intention of changing and thus achieves low precision in practical

deployment. To this end, sample-based classification is more attractive.

To address the aforementioned issues, first, we propose a novel framework which

can automatically learn distinctive features from raw EEG signals by developing

a deep convolutional mapping component. Additionally, to grasp the characteris-

tic information from different EEG application circumstance adaptively, we design

a reinforced selective attention component that combines the benefits of attention

mechanism [289] and deep reinforcement learning. Moreover, we overstep the chal-

lenge of chaotic information by working on EEG samples instead of segments. The

single EEG sample only contains spatial information without spatial clue1. The

main contributions of this chapter are highlighted as follows:

• We propose a general framework for automatic cognitive activity recognition

to facilitate a scope of diverse cognitive application domains.

• We design the reinforced selective attention model, by combining the deep

reinforcement learning and attention mechanism, to automatically extract the

robust and distinct deep features. Specially, we design a non-linear reward

function to encourage the model to select the best attention area that leads

to the highest classification accuracy. Besides, we customize the states and

actions based on our cognitive activity recognition environment.

• We develop a convolutional mapping method to explore the distinguishable

spatial dependency and feed it to the classifier for classification, among selected

EEG signals.

• We demonstrate the effectiveness of the proposed framework using four real-

world datasets concerning three representatives and challenging cognitive ap-

1We do not deny the usefulness of temporal information, but this chapter em-
phasizes on spatial information, which may easier to be captured.
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Table 6.1: Time domain and correlation coefficient analysis. n-points denotes the
values are measured by the samples with n sampling points. We compare EEG
signals with other sensing data (such as wearable sensor data and smartphone data)
over five different scales and the results constantly show that EEG signals have the
highest instability.

Time
Domain

Signals 5-points 50-points 100-points 500-points 1000-points Average
STD Range STD Range STD Range STD Range STD Range STD Range

Phone 0.0025 0.0061 0.0179 0.0494 0.0166 0.0612 0.0253 0.1177 0.0259 0.1281 0.0882 0.3625
Wearable 0.0012 0.0029 0.0107 0.0369 0.0147 0.0519 0.0197 0.1041 0.016 0.1058 0.0623 0.3016
EEG 0.0087 0.0218 0.0199 0.0824 0.0245 0.1195 0.0299 0.1619 0.0308 0.1802 0.1138 0.5658

Correlation
Coefficient

Signals 5-points 50-points 100-points 500-points 1000-points Average
STD Range STD Range STD Range STD Range STD Range STD Range

Phone 0.0015 0.0038 0.0243 0.0832 0.0248 0.0964 0.0244 0.104 0.0247 0.104 0.0997 0.3914
Wearable 0.01 0.0252 0.0155 0.0702 0.0147 0.0866 0.0469 0.2299 0.0729 0.3905 0.16 0.8024
EEG 0.0392 0.0991 0.1077 0.4096 0.0955 0.4849 0.1319 0.7626 0.1533 0.99 0.5276 2.7462

plications. The experiment results demonstrate that the proposed framework

outperforms the state-of-the-art and strong baselines by consistently achieving

the accuracy of more than 96% and low latency.

Note that all the necessary reusable codes and datasets have been open-sourced for

reproduction, please refer to this link2.

6.1 Analysis of EEG Signals

In this section, we demonstrate EEG signals’ unique characteristics (e.g., rapid-

varying and chaotic) and that single samples are more suitable than segments for

classification. By comparing EEG signals with two typical sensor signals collected by

smartphone (accelerometers in Samsung Galaxy S2) and wearable sensors (Colibri

wireless IMU). The participants are walking during the data collection session.

The brain activity is very complex and rapid varying, but EEG signals can only

capture a few information through the discrete sampling of biological current. Fig-

ure 6.1 demonstrates the characteristics of rapidly varying and complex of EEG

signals and provides the EEG topography of consecutive 5 samples. The sampling

2https://github.com/xiangzhang1015/know_your_mind
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rate is 160 Hz while the sampling interval is 0.00625 second. It can be observed that

the topography changes dramatically within such a tiny time interval.

Furthermore, to illustrate the chaotic of EEG signals, we compare EEG with smart-

phone and wearable sensors in two aspects: the time domain and the inter-samples

correlations.

In the time domain, we evaluate the STD and range of sensor signals on five levels

of sample length: 5, 50, 100, 500, 1000 continuous samples. The evaluations on the

above five scales are expected to show the tendency that how the EEG characteristic

varies with the sampling period.

The inter-sample correlation coefficient calculates the average cosine correlations

between the specific sample and its neighbor samples (5, 50, 100, 500, and 1000

samples). A low correlation coefficient represents EEG signals dramatically and

rapidly varying all the time.

As a result, Table 6.1 present the STD and range values in the time domain and

correlation coefficient. We observe that EEG signals have the highest STD and

range over all the five sample window scales both on time domain and correla-

tion coefficient, compared with wearable sensor data and smartphone signals. This

demonstrates that the EEG sample has more unstable correlations with neighbors

and the instability is very high even in the nearest five samples. More specifically,

EEG signals are very chaotic and rapidly changing at each single sampling point.

6.2 Proposed Method

Based on the above analysis, we propose reinforced attentive CNN to classify raw

EEG signals accurately and efficiently directly. The overall workflow is shown in

Figure 6.2. The replicate and shuffle component and the reinforced selective atten-

tion component are very similar to Section 5.1.2 and Section 5.1.3. Here, we mainly
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Figure 6.2: Flowchart of the proposed approach. The input raw EEG single sample
xi (K denotes the Kth element) is replicated and shuffled to provide more latent
spatial combinations of feature dimensions. Then, an attention zone x̄i, which is
a fragment in x′i, with the state st = {starttidx, endtidx} is selected. The selected
attention zone is input to the state transition and the reward model. In each step
t, one action is selected by the state transition to update st based on the agent’s
feedback. The reward model evaluates the quality of the attention zone by the re-
ward score rt. The dueling DQN is employed to discover the best attention zone x̄∗i
which will be fed into the convolutional mapping procedure to extract the spatial
dependency representation. The represented features will be used for the classifica-
tion. FCL denotes a fully connected layer. The reward model is the combination
of the convolutional mapping and the classifier.

introduce the convolutional mapping.

6.2.1 Convolutional Mapping

For each attention zone, we further exploit the potential spatial dependency of

selected features x̄∗i . Since we focus on a single sample, the EEG sample only

contains a numerical vector with very limited information and is easily corrupted

by noise. To amend this drawback, we attempt to mapping the EEG single sample
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from the original space O ∈ RK to a sparsity space T ∈ RM by a CNN structure.

To extract as more potential spatial dependencies as possible, we employ a con-

volutional layer [290] with many filters to scan on the learned attention zone x̄∗i .

The convolutional mapping structure contains five layers (as shown in Figure 6.2):

the input layer receives the learned attention zone, the convolutional layer followed

by one fully connected layer, and the output layer. The one-hot ground truth is

compared with the output layer to calculate the training loss.

The Relu non-linear activation function is applied to the convolutional outputs. We

describe the convolutional layer as follows:

xcij = ReLU(
b̄∑
b=1

Wcx̄
∗
ij) (6.1)

where xcij denotes the outcome of the convolutional layer while b̄ and Wc denote

the length of filter and the filter weights, respectively. The pooling layer aims

to reduce the redundant information in the convolutional outputs to decrease the

computational cost. In our case, we try to keep as much information as possible.

Therefore, our method does not employ a pooling layer. Then, in the fully connected

layer and output layer

xfi = ReLU(W fxci + bf ) (6.2)

y′i = softmax(W oxfi + bo) (6.3)

whereW f ,W o, bf , bo denote the corresponding weights and biases, respectively. The

y′ denotes the predicted label. The cost function is measured by cross entropy, and

the `2-norm (with parameter λ) is adopted as regularization to prevent overfitting.:

cost = −
∑
x

y′ilog(yi) + λ`2 (6.4)

The AdamOptimizer algorithm optimizes the cost function. The fully connected

layer extracts as the represented features and fed them into a lightweight nearest

neighbor classifier. The convolutional mapping updates for N ′ iterations. The pro-

posed adaptive cognitive activity recognition with reinforced attentive convolutional

neural networks is shown in Algorithm 1.
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ALGORITHM 1: The Proposed Approach
Input: Raw EEG signals X

Output: Predicted cognitive activity label y′i

1: Initialization s0;

2: RS: x̄i ← x′i;

3: Reinforced Selective Attention:

4: if t < N then

5: at = argmaxat∈AQ(st, at)

6: st+1 = π(st, at)

7: rt = F(st)

8: εt+1 = εt + ε0N

9: x̄∗i ← x̄i, at, st, rt

10: end if

11: Convolutional Mapping & Classifier:

12: if iteration < N ′ then

13: y′i ← x̄∗i

14: end if

15: return y′i

6.3 Experiments

In this section, we report our evaluation of the proposed approach on three datasets

corresponding to different application scenarios, with a focus on accuracy, latency,

and resilience.
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Table 6.2: Comparison with baselines

Scenarios Datasets Metrics Non-Deep Learning Baselines Deep Learning Baselines
SVM RF KNN AB LDA LSTM GRU CNN Ours

MIR EEGMMIDB

Accuracy 0.5596 0.6996 0.5814 0.3043 0.5614 0.648 0.6786 0.91 0.9632
Precision 0.5538 0.7311 0.6056 0.2897 0.5617 0.6952 0.8873 0.9104 0.9632
Recall 0.5596 0.6996 0.5814 0.3043 0.5614 0.6446 0.6127 0.9104 0.9632
F1-score 0.5396 0.6738 0.5813 0.2037 0.5526 0.6619 0.7128 0.9103 0.9632

PI EEG-S

Accuracy 0.6604 0.9619 0.9278 0.35 0.6681 0.9571 0.9821 0.998 0.9984
Precision 0.6551 0.9625 0.9336 0.3036 0.6779 0.9706 0.9858 0.998 0.9984
Recall 0.6604 0.962 0.9279 0.35 0.6681 0.9705 0.9857 0.998 0.9984
F1-score 0.6512 0.9621 0.9282 0.2877 0.668 0.9705 0.9857 0.998 0.9984

ND TUH

Accuracy 0.7692 0.92 0.9192 0.5292 0.7675 0.6625 0.6625 0.9592 0.9975
Precision 0.7695 0.9206 0.923 0.7525 0.7675 0.6538 0.6985 0.9593 0.9975
Recall 0.7692 0.92 0.9192 0.5292 0.7675 0.6417 0.6583 0.9592 0.9975
F1-score 0.7692 0.9199 0.9188 0.3742 0.7675 0.6449 0.6685 0.9592 0.9975

6.3.1 Application Scenarios and Datasets

Application Scenarios We evaluate our approach on various datasets in three

applications of EEG-based Brain-Computer Interfaces.

Movement Intention Recognition (MIR). EEG signals measure human brain activ-

ities. Intuitively, different human intention will lead to diverse EEG patterns [9].

Intention recognition plays a significant role in practical scenarios such as smart

home, assisted living [2], brain typing [9], and entertainment. For the disabled and

elders, intent recognition can help them to interact with external smart devices such

as wheelchairs or service robots real-time BCI systems. Besides, for people without

vocal ability, they may have the chance to express their thoughts with the help of

certain intention recognition technologies (e.g., brain typing). Even for the healthy

human being, intent recognition can be used in video game playing and other daily

living applications.

Person Identification (PI). EEG-based biometric identification [284] is an emerging

person identification approach, which is highly attack-resilient. It has the unique

advantage of avoiding or alleviating the threat of being deceived which is often faced

by other identification techniques. This technique can be deployed in identification

and authentication scenarios such as bank security system and customs security

check.
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Neurological Diagnosis (ND). EEG signals collected in the unhealthy state differ

significantly from the ones collected in the normal state concerning frequency and

pattern of neuronal firing [287]. Therefore, EEG signals have been used for neu-

rological diagnosis for decades [6]. For example, the epileptic seizure is a common

brain disorder that affects around 1% of the population, and an EEG analysis of the

patient could detect its octal state.

Datasets To evaluate how the proposed approach works in the aforementioned

application scenarios, we choose several EEG datasets with various collection equip-

ment, sampling rates, and data sources. We utilize motor imagery EEG signals from

a public dataset eegmmidb for intention recognition, the EEG-S dataset for person

identification, and the TUH dataset for neurological diagnosis.

EEGMMIDB. This dataset is introduced in Section 3.3.1.

EEG-S. EEG-S is a subset of eegmmidb, in which the data were gathered while the

subject kept eyes closed and stayed relaxed. Eight subjects were involved and each

subject generated 7,000 samples. Labels are the subjects’ IDs, which range within

[0-7].

TUH. TUH [291] is a neurological seizure dataset of clinical EEG recordings. The

EEG recording is associated with 22 channels from a 10/20 configuration and a

sampling rate of 250 Hz. We selected 12,000 samples from each of five subjects (2

males and three females). Half of the samples were labeled as epileptic seizure state.

The remaining samples were labeled as the normal state.

6.3.2 Parameter Settings

We configured the default settings of our approach as follows. In the selective

attention learning: K̄ = 128, the Dueling DQN had 4 lays and the node number in

each layer were: 2 (input layer), 32 (FCL), 4 (A(st, at)) + 1 (V (st)), and 4 (output).
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Table 6.3: Comparison with the state-of-the-art approaches

Scenarios Datasets Metrics State-of-the-art

MIR EEGMMIDB

Method Rashid [292] Zhang [9] Ma [293] Alomari [217] Sita [294] Alomari [295]
Accuracy 0.9193 0.9561 0.6820 0.8679 0.7584 0.8515
Precision 0.9156 0.9566 0.6971 0.8788 0.7631 0.8469
Recall 0.9231 0.9621 0.7325 0.8786 0.7702 0.8827
F1-score 0.9193 0.9593 0.7144 0.8787 0.7666 0.8644
Method Shenoy [220] Szczuko [296] Stefano[297] Pinheiro [236] Kim [298] Ours
Accuracy 0.8308 0.9301 0.8724 0.8488 0.8115 0.9632
Precision 0.8301 0.9314 0.8874 0.8513 0.8128 0.9632
Recall 0.8425 0.9287 0.8874 0.8569 0.8087 0.9632
F1-score 0.8363 0.9300 0.8874 0.8541 0.8107 0.9632

PI EEG-S

Method Ma [299] Yang [300] Rodrigues [301] Frashini [288] Thomas [302] Ours
Accuracy 0.88 0.99 0.8639 0.956 0.9807 0.9984
Precision 0.8891 0.9637 0.8721 0.9458 0.9799 0.9984
Recall 0.8891 0.9594 0.8876 0.9539 0.9887 0.9984
F1-score 0.8891 0.9615 0.8798 0.9498 0.9843 0.9984

ND TUH

Method Ziyabari [303] Harati [304] Zhang [305] Goodwin [306] Golmoh [307] Ours
Accuracy 0.9382 0.9429 0.994 0.924 0.9479 0.9975
Precision 0.9321 0.9503 0.9951 0.9177 0.9438 0.9975
Recall 0.9455 0.9761 0.9951 0.9375 0.9522 0.9975
F1-score 0.9388 0.9630 0.9951 0.9275 0.9480 0.9975

The decay parameter γ = 0.8, ne = ns = 50, N = 2, 500, ε = 0.2, ε0 = 0.002,

learning rate= 0.01, memory size = 2000, length penalty coefficient β = 0.1, and the

minimum length of attention zone was set as 10. In the convolutional mapping, the

node number in the input layer equaled to the number of attention zone dimensions.

In the convolutional layer: the stride had the shape [1, 1], the filter size was set to

[1, 2], the depth to 10, and the non-linear function as ReLU. The padding method was

zero-padding. No pooling layer was adopted. The subsequent fully connected layer

had 100 nodes. The learning rate was 0.001 while the `2-norm coefficient λ equaled

0.001. The transformation was trained for 2000 iterations. In addition, we configured

the key parameters of the baselines as follows: Linear SVM (C = 1), Random

Forest (RF, n = 200), KNN (k = 1). In LSTM (Long Short-Term Memory) and

GRU (Gated Recurrent Unit), nsteps = 5, other settings were the same as [2]. The

CNN had the same structure and hyper-parameters setting with the convolutional

mapping component in the proposed show.

6.3.3 Overall Comparison

Comparison Baselines To measure the accuracy of the proposed method, we

compared with a set of baseline methods including five non-deep learning and three
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(a) CM of eegmmidb (b) ROC of eegmmidb

(c) CM of EEG-S (d) ROC of EEG-S

(e) CM of TUH (f) ROC of TUH

Figure 6.3: Confusion matrix and ROC curves with AUC scores of each dataset.
CM denotes confusion matrix.
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deep learning based baselines. Furthermore, we chose some competitive state-of-

the-art algorithms for every single task separately.

1) MIR Baselines:

Rashid et al. [292] use Discrete Wavelet Transform (DWT) to extract features and

feed into Levenberg-Marquardt Algorithm (LMA) based neural network for motor

imagery EEG intention recognition.

Zhang et al. [9] design a joint convolutional recurrent neural network to learn robust

high-level feature presentations by low-dimensional dense embeddings from raw MI-

EEG signals.

Ma et al. [293] transform the EEG data into a spatial sequence to learn more

valuable information through RNN.

Alomari et al. [217] analyze the EEG characteristics by the Coiflets wavelets and

manually extract features using different amplitude estimators. The extracted fea-

tures are inputted into SVM classifier for EEG data recognition.

Sita et al. [294] employ independent component analysis (ICA) to extract features

which are fed to a quadratic discriminant analysis (QDA) classifier.

Alomari et al. [295] use wavelet transformation to filter and process EEG signals.

Then calculate the Root Mean Square and Mean Absolute Value features for EEG

recognition.

Shenoy et al. [220] propose a regularization approach based on shrinkage estimation

to handle small sample problem and retain subject-specific discriminative features.

Szczuko [296] design a rough set based classifier for the aim of EEG data classifica-

tion.

Stefano et al. [297] extract the mu (7 ∼ 13Hz) and beta (13 ∼ 30Hz) bands’ power

spectral density (PSD) as manual features to discriminate different motor imagery
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intentions.

Pinheiro et al. [236] adopt a C4.5 decision tree as the classifier to distinguish the

manually extracted EEG features such as arithmetic mean and maximum value of

the Fourier transform.

Kim et al. [298] use a multivariate empirical mode decomposition to obtain the mu

and beta rhythms from the nonlinear EEG signals.

2) PI Baselines:

Ma et al. [299] adopt a CNN structure to automatically extract an individual’s best,

unique neural features with the aim of person identification.

Yang et al. [300] present an approach for biometric identification using EEG signals

based on features extracted with the Hilbert-Huang Transform (HHT).

Rodrigues et al. [301] propose the Flower Pollination Algorithm under different

transfer functions to select the best subset of channels that maximizes the accuracy,

which is measured using the Optimum-Path Forest classifier.

Frashini et al. [288] decompose EEG signals into standard frequency bands by a

band-pass filter and estimate the functional connectivity between the sensors using

the Phase Lag Index. The resulting connectivity matrix was used to construct a

weighted network for person identification.

Thomas et al. [302] extract sample entropy features from the delta, theta, alpha,

beta and gamma bands of 64 channel EEG data, which are evaluated for subject-

identification.

3) ND Baselines:

Ziyabari et al. [303] adopt a hybrid deep learning architecture, including LSTM

and stacked denoising Autoencoder, that integrates temporal and spatial context to

detect the seizure.
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Harati et al. [304] demonstrate that a variant of the filter bank-based approach and

provides a substantial reduction in the overall error rate.

Zhang et al. [305] extract a list of 24 feature types from the scalp EEG signals and

found 170 out of the 2794 features to classify epileptic seizures accurately.

Goodwin et al. [306] combine recent advances in RNN with access to textual data in

EEG reports to automatically extracting word- and report-level features and infer

underspecified information from EHRs (electronic health records).

Golmohammadi et al. [307] propose a seizure detection method by using hidden

Markov models (HMM) for sequential decoding and deep learning networks.

Results Tables 6.2 presents the classification metrics comparison between our ap-

proach and well-known baselines (including Non-DL and DL baselines), where DL,

AdaB, LDA represent deep learning, Adaptive Boosting, and Linear Discriminant

Analysis, respectively. The results show that our approach achieved the highest ac-

curacy on all the datasets. Specifically, the proposed approach achieved the highest

accuracy of 0.9632, 0.9984, and 0.9975 on eegmmidb, EEG-S, and TUH dataset,

respectively. Further, we conducted an ablation study by comparing our method,

which mainly combined selective attention mechanism and CNN, with the solo CNN.

It turned out that our approach outperformed CNN, demonstrating the proposed

selective attention mechanism improved the distinctive feature learning.We show

the confusion matrix and ROC curves (including the AUC scores) of each dataset in

Figure 6.3. In Figure 6.3a, ‘L’, ‘R’, and ‘B’ denote left, right, and both, respectively.

Besides, to further evaluate the performance of our model, we compared our frame-

work with 21 state-of-the-art methods which using the same dataset. In particular,

we compared with 11 competitive state-of-the-art methods over motor imagery clas-

sification and five cutting edges separately over person identification and neurological

diagnosis scenarios. Table 6.3 shows the comparison results.
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Figure 6.4: Latency comparison Figure 6.5: Varying # of channels

We could observed that our proposed framework consistently outperformed a set of

widely used baseline methods and strong competitors on three different datasets.

The performance shows a significant improvement compared with other baselines.

These datasets were collected using different EEG hardware, ranging from high-

precision medical equipment to off-the-shelf EEG headset with a different number

of EEG channels. Regarding the seizure diagnosis in ND, by setting the normal

state as impostor while the seizure state as genuine, our approach gained a False

Acceptance Rate (FAR) of 0.0033 and a False Rejective Rate (FRR) of 0.0017. This

outperformed the existing methods by a large margin [286, 306, 307, 304].

6.3.4 Resilience Evaluation

In this section, we focus on evaluating the resilience of proposed method in coping

with various number of EEG signal channels, and incomplete EEG signals.

In practice, the number of EEG channels of EEG devices are diverse due to two

reasons. First, different off-the-shelf or on-the-shelf devices have various channels

numbers. Intuitively, the quality of signals and the contained information is di-

rectly associated with the number of channels. In the meantime, the devices with

more channels usually are more expensive and less portable. Second, incomplete
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EEG signals cause the degradation of BCI applications. It could happen when some

electrical nodes are loosened because of weak maintenance of EEG devices. To in-

vestigate the robustness of incomplete EEG signals with missing channels, we also

conduct experiments by randomly selecting part of a proportion of signal channels

over three datasets. For example, by selecting 20% of channels on the eegmmidb

dataset, the selected channel number is 12 = round(64 ∗ 0.2). Figure 6.5 shows the

experiments results (0.4 denotes the accuracy and 20% denotes the channel percent-

age used for training). The radar chart demonstrates that eegmmidb and EEG-S,

both with 64 channels, can achieve competitive accuracy even with only 20% sig-

nal channels. In contrast, TUH (22 channels) is highly dependent on the channel

numbers. The reason is that TUH only remains five channels for 20% channel per-

centage, respectively. According to our experience, the proposed framework requires

at least eight EEG channels to achieve high accuracy.

6.3.5 Latency Analysis

Except for the high accuracy of EEG signal classification, the low latency is another

critical requirement for the success of real-world BCI applications.

In this section, we take the eegmmidb dataset as an example to compare the latency

of the proposed framework with several state-of-the-art algorithms. The results are

presented in Figure 6.4. We observed that our approach had competitive latency

compared with other methods. The overall latency was less than 1 second. The

deep learning based techniques in this section do not explicitly lead to extra latency.

One of the main reasons may lie in that the reinforced selective attention has fil-

tered out unnecessary information. To be more specific, the classification latency

of the proposed framework was about 0.7∼0.8 seconds, which mainly resulted from

the classifying procedure and convolutional mapping. The latency caused by the

classifier was around 0.7 seconds. The convolutional mapping only took 0.05 sec on

testing although it took more than ten minutes on training.
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6.3.6 Reward Model Demonstration

We briefly report the empirical demonstration of the proposed exponential reward

model (Section 5.1.3). We compared the proposed reward model in Eq. 5.5 with the

traditional reward rt = eacc over three benchmark datasets (eegmmidb, EEG-S, and

TUH). The experiment results show that the novel reward model achieved higher

accuracy (0.9632, 0.9984, and 0.9975) than the traditional model (0.9231, 0.9901,

and 0.9762).

6.4 Conclusion

This chapter proposes a generic and effective framework for raw EEG signal clas-

sification to support the development of BCI applications. The framework works

directly on raw EEG data without requiring any preprocessing or feature engineer-

ing. Besides, it can automatically select distinguishable feature dimensions for dif-

ferent EEG data, thus achieving high usability. We conduct extensive experiments

on three well-known public datasets and one local dataset. The experimental results

demonstrate that our approach not only outperforms several state-of-the-art base-

lines by a large margin but also shows low latency and high resilience in coping with

multiple EEG signal channels and incomplete EEG signals. Our approach applies

to wider application scenarios such as intention recognition, person identification,

and neurological diagnosis.
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Chapter 7

Adversarial Variational Embedding

for Robust Semi-supervised Learning

In most of the real-world scenarios, it is expensive to get the accurate label of

the collected EEG signals. Thus, in this chapter, we propose a weakly supervised

representation learning frameworks where the the distribution of the labeled data

can be enhanced by the distribution of the unlabeled observations.

Semi-supervised learning from data is one of the fundamental challenges in artificial

intelligence, which considers the problem when only a subset of the observations

has corresponding class labels [308]. This issue is of immense practical interest in

a broad range of application scenarios, such as abnormal activity detection [309],

neurological diagnosis [310], and computer vision [311]. In these scenarios, it is easy

to obtain abundant observations but expensive to gather the corresponding class

labels. Among existing approaches, Variational Autoencoders (VAEs) [312, 313]

have recently achieved state-of-the-art performance in semi-supervised learning.

VAE models provide a general framework for learning latent representations: a

model is specified by a joint probability distribution both over the data and over
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(a) Standard VAE (b) VAE++

Figure 7.1: Comparison of the standard VAE and the proposed VAE++. x and x′

denote the input and the reconstructed data. µ and σ denote the learned expec-
tation and standard deviation, zs denotes the stochastically sampled latent repre-
sentation which is composed by µ, σ, and ε, where ε is randomly sampled from
N (0, 1). In standard VAE, zs is regarded as the learned representation while, in
VAE++, zI denotes the proposed exclusive latent representation which can be used
for classification.

latent random variables, and a representation can be found by considering the pos-

terior on latent variables given specific data [314]. The learned representations can

not only be used for generation but also for classification. For instance, VAE pro-

vides a latent feature representation of the input observations, where a separate

classifier can be thereafter trained using these representations. The high quality of

latent representations enables accurate classification, even with a limited number of

labels. A number of studies have applied VAE in semi-supervised classification in

the computer vision area [312, 315, 314].

Why we propose the VAE++ . One major challenge faced by the existing VAE-

based semi-supervised methods is that the latent representations are stochastically

sampled from the prior distribution instead of being directly rendered from the

explicit observations. In particular, as shown in Figure 7.1a, the learned latent

representations zs are randomly sampled from a multivariate Gaussian distribution

(see Equation 7.1). Thus, for a specific sample, the corresponding latent representa-

tion is not exclusive (i.e., the representation is not repeatable in different runnings),

which makes it inappropriate for classification. To solve this problem, in the latent

space, we propose a new variable zI (see Figure 7.1b) which is directly learned from

the input data. The exclusive latent code zI is guaranteed to keep invariant for
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a specific input x in different runnings. The modified VAE is called VAE++. In

addition, the learned expectation µ only contains a part of information of the input

observations, which is not enough to represent the observations in classification task,

even though µ is exclusive1. The comparison of performance among zI , zs and µ

will be presented in Section 7.3.

Why VAE++ needs the semi-supervised GAN. In the proposed VAE++, it is nec-

essary to reduce the information loss between the two latent representations zI and

zs to guarantee the learned zI is representative. The commonly used constraints

between two distributions (e.g., Kullback-Leibler divergence) can only utilize the

information of the observations but fail to exploit the information of labels. In this

paper, we use a novel approach to take advantage of both unlabelled and labelled

data by jointly training the VAE++ and a semi-supervised GAN.

Why semi-supervised GAN needs the VAE++. GAN based approaches [316, 317]

have recently shown promising results in semi-supervised learning. The semi-supervised

GAN trains a generative model and a discriminator with inputs belonging to one of

K classes. Different from the regular GAN, the semi-supervised GAN requires the

discriminator to make aK+1 class prediction with an extra class added, correspond-

ing to the generated fake samples. In this way, the observations’ properties can be

used to improve decision boundaries and allow for more accurate classification than

using the labelled data alone. However, the generated samples are sampled from

pre-defined distribution (e.g., Gaussian noise) [318]. Such pre-defined prior distri-

butions are often independent from the input data distributions and may obstruct

the convergence and can not guarantee the distribution of the generated data. This

drawback can be amended by gearing with VAE++ which can provide a meaningful

prior distribution that can represent the distribution of the input data.

We introduce a recipe for semi-supervised learning, a robust Adversarial Variational

Embedding (AVAE) framework, which learns the exclusive latent representations by

combining VAE and semi-supervised GAN. To utilize the generative ability of GAN

1For the same reason, σ can not be used as the exclusive code.
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and the distribution approximating power of VAE, the proposed approach employs

GAN to encourage VAE for the aim of learning the more robust and informative

latent code. We present the framework in the context of VAE, adding a new exclusive

code in latent space which is directly rendered from the data space. The generator in

VAE++ also works as a generator of GAN. Both the exclusive code (marked as real)

and the generated representation (marked as fake) are fed into the discriminator in

order to force them to have similar distribution [319].

Although a small set of models combining VAE and GAN have been previously

explored, they are all focused on the generation perspective. To our knowledge, we

are in the first batch of work that focuses on classification by aggregating VAE and

GAN. We mark the following contributions:

• We present a novel semi-supervised Adversarial Variational Embedding ap-

proach to harness the deep generative model and generative adversarial net-

works collectively under a trainable unified framework. The reproducible codes

and datasets are publicly available2.

• We propose a new structure, VAE++, to automatically learn an exclusive

latent code for accurate classification. A novel semi-supervised GAN, which

exploits both the unlabelled data distribution and categorical information, is

proposed to gear with the VAE++ in order to encourage the VAE++ to learn

a more effective and robust exclusive code.

• We evaluate the proposed approach over four real-world applications (activity

reconstruction, neurological diagnosis, image classification, and recommender

system). The results demonstrate that our approach outperforms all the state-

of-the-art methods.

2https://github.com/xiangzhang1015/Adversarial-Variational-Semi-supervised-
Learning
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7.1 Related Work

There are a host of studies that have been investigated to apply VAE for semi-

supervised learning [312, 314, 313, 320]. [312] explores semi-supervised learning

with deep generative models by building two VAE-based deep generative models for

latent representation extraction. Afterward, [314] attempts to learn disentangled

representations that encode distinct aspects of the data into separate variables.

However, in all the existing semi-supervised VAE models, the learned representations

do not only depend on the posterior distribution but also on the latent random

variables. It is necessary that learning the exclusive code which is only related to

the posterior distribution for the specified data.

Another recent arising semi-supervised method is semi-supervised GAN [316, 321]

. SGAN [316] extends GAN to the semi-supervised context by forcing the discrim-

inator network to output class labels. The CatGAN [321] modifies the objective

function to take into account the mutual information between observed examples

and their predicted class distributions. In the above methods, the generator chooses

simple factored continuous noise which is independent from the input data distri-

bution, for generation. As a result, it is possible that the noise will be used by the

generator in a highly entangled way, increasing the difficulty to control the distri-

bution of the generated data. Conditional GAN [319] and InfoGAN address this

drawback by utilizing external information (e.g., categorical information) as a re-

striction, but they both pay attention to generation or supervised classification and

have limited help in semi-supervised classification.

Despite the few works attempting to combine VAE and GAN [315], most of them fo-

cus on generation instead of classification. For example, the VAE/GAN and CVAE-

GAN employ the standard VAE to share the encoder with the generator of GAN

in order to generate new observations. For semi-supervised classification, we care

about the latent code instead of the observations. The Adversarial Autoencoder

(AAE [315]) integrates VAE and GAN but only employs GAN to replace KL di-
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vergence as a penalty to impose a prior distribution on the latent code, which is a

totally different direction from our work.

Summary. Unlike the existing VAE- and GAN-based studies, the proposed model

1) focuses on semi-supervised classification instead of generation; 2) attempts to

learn an exclusive latent representation instead of a stochastic sampled represen-

tation; 3) works on improvement of latent space instead of data space. Moreover,

the semi-supervised GAN in our work partly adopts the improved GAN [317], but

there are a number of key differences: 1) [317] adopts the semi-supervised strategy

for classification while we adopt this strategy as a constraint to reduce information

loss in the transformation from zI to zs in order to force the proposed AVAE to

learn a more robust and effective latent code; 2) [317] employs the discriminator of

GAN as the classifier while we adopt an extra non-parametric classifier since the

former has poor performance in our case (take the PAMAP2 dataset as an example,

[317] and our model achieve the accuracy around 65% and 85%, respectively); 3)

we employ weighted loss function to balance the significance of the unlabelled and

labelled observations.

7.2 Methodology

Suppose the input dataset has two subsets, one of which contains labelled samples

while the other contains unlabelled samples. In the former subset, the observations

appear as pairs (XL,Y L) = {(xL1 ,y1), (xL2 ,y2), · · · , (xLNL
,yNL

)} with the i-th ob-

servation xLi ∈ RM and the corresponding one-hot label yi ∈ RK where K denotes

the number of classes. NL denotes the number of labelled observations while M

denotes the number of the observation dimensions. In the latter subset, only the

observations XU = {xU1 ,xU2 , · · · ,xUNU
} are available and NU denotes the number of

unlabelled observations xUi ∈ RM . The total data size N equals to the sum of NL

and NU . In terms of effective classification, we attempt to learn a latent representa-

tion with distinguishable information. Then the learned representations can be fed
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Figure 7.2: AVAE is composed of VAE++ and a semi-supervised GAN. The gen-
erated zs (labelled as fake) and the exclusive code zI (labelled as real) are fed into
the discriminator. The discriminator can exploit both the labelled and unlabelled
observations. The generator in VAE++ also works as a generator of GAN.

into a classifier for recognition. In this chapter, we mainly focus on the latent code

learning.

In the semi-supervised learning, due to the lack of labelled observations, it is signif-

icant to learn latent variable distribution based on the observations without label3.

Thus, we are required to build an encoder to provide an embedding or feature rep-

resentation which allows accurate classification even with limited observations.

3For simplification, we omit the index and directly use variable x to denote
observations.
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7.2.1 VAE++

The VAE is demonstrated to provide a latent feature representation for semi-supervised

learning [312, 314], compared to a linear embedding method or a regular autoen-

coder. The VAE maps the input observation x to a compressed code zs, and decodes

it to reconstruct the observation. The latent representation is calculated through

the reparameterization trick [55]:

zs = µx + σx ∗ ε (7.1)

with ε ∼ N (0, 1) to impose the posterior distribution of the latent code on p(zs|x) ∼
N (µx, σ

2
x). µx and σx denote the expectation and standard deviation of the poste-

rior distribution of zs, which are learned from x. For the efficient generation and

reconstruction, VAE imposes the code zs on a prior Gaussian distribution:

p̄(zs) = N (zs|0, I) (7.2)

Through minimizing the reconstruction error between x and x′ and restricting the

distribution of zs to approximate the prior distribution p̄(zs), VAE is supposed

to learn the representative latent code zs which can be used for classification or

generation.

Due to the strong feature representation ability, VAE has been employed for feature

extraction and semi-supervised learning [322, 314]. However, one limitation of the

standard VAE is that the learned latent code zs = g(µx, σx, ε), as shown in Equa-

tion (7.1), is not exclusive. In other words, for a specific observation x and a fixed

embedding model p(zs|x), the corresponding latent code zs is not exclusive as it

contains a stochastic variable ε which is randomly sampled from the prior distri-

bution p̄(zs). For instance, in a pre-trained fixed VAE encoder, the specific input

x will lead to a variety of zs in different running. At high level, the latent code

zs is determined by two factors: the prior distribution of observation p̄(x) which

affects zs through the learned µx and σx, and the stochastically sampled data ε.

However, the stochastically sampled latent code is unstable and will corrupt the
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features for classification. Furthermore, the posterior distribution of zs is forced

to approximate the manually set prior distribution (commonly Normal Gaussian

distribution), which inevitably leads to information loss.

In order to completely sidestep the above-mentioned issue, we propose a novel

VAE++ model to learn an exclusive latent code zI . The VAE++ contains three

key components: the encoder, the generator, and the decoder (see Figure 7.2). The

encoder transforms the observation into a latent code zI ∈ RD which is directly

determined by the input x. D denotes the dimension of zI . We learn the:

pθen(zI |x) = f(zI ;x,θen) (7.3)

where f denotes a non-linear transformation while θen denotes encoder parameters.

The non-linear transformation f is generally chosen as a deep neural network for the

excellent ability of non-linear approximation. Then, in the generator, we measure

the expectation µ(zI) and the standard derivation σ(zI) from the latent code zI
and update Equation (7.1). The generated variable zs can be calculated by:

zs = µ(zI) + σ(zI) ∗ ε (7.4)

At last, the decoder is employed to reconstruct the sample:

pθde(x
′|zs) = f ′(x′; zs,θde) (7.5)

where f ′ denotes another non-linear rendering, called decoder, with parameters θde
and x′ denotes the reconstructed observation.

The loss function of VAE++ can be calculated by:

LV AE = −Ezs∼pθen (zs|x)[log pθde(x
′|zs)]

+KL(pθen(zs|x)||p̄(zs))
(7.6)

The first component is the reconstruction loss, which equals to the expected negative

log-likelihood of the observation. This term encourages the decoder to reconstruct
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the observation x based on the sampling code zs which is under Gaussian distribu-

tion. The lower reconstruction error indicates the encoder learned a better latent

representation. The second component is the Kullback-Leibler divergence which

measures the distance between the prior distribution of the latent code p̄(zs) and

the posterior distribution p(zs|x). This divergence reflects the information loss when

we use p(zs|x) to represent p̄(zs).

In the latent space of the novel VAE++, there are two compressed informative

codes zI and zs. The former represents directly-encoded x whilst the latter is

stochastically sampled from the posterior distribution, which makes the former more

suitable for classification. Therefore, we choose zI as the compressed latent code in

VAE++ instead of the zs in standard VAE.

From equation (7.4), we can observe that the expectation and standard deviation

of zs and zI are invariant. In particular, for a specific sample xi, the corresponding

zsi and zIi have the same statistical characteristics. Thus, we have

zs ← µ(zI), σ(zI), ε (7.7)

which indicates that the generated zs is affected by both the distribution of zI
and the prior distribution p̄(zs) (or ε). In summary, the zs inherits the statistical

characteristics of zI .

7.2.2 Adversarial Variational Embedding

One significant sufficient condition of a well-trained VAE++ is less information loss

in the transformation from zI to zs to guarantee the learned zI is representative.

As mentioned before, the information in zs is partly inherited from zI and the other

part is randomly sampled from the prior distribution p̄(zs). Since the conditional

distribution pθen(zI |x) has a better description of the input observation x, we at-

tempt to increase the proportion of inherited part and decrease the proportion of

stochastically sampled part.
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As shown in Figure 7.2, in the proposed AVAE the generator G generates zs based

on the joint probability p(µ, σ, p̄(zs)) instead of the noise in standard GAN. The zs
is regarded as ‘fake’ while zI is marked as ‘real’. Specifically, for the labelled obser-

vations xL, VAE++ encodes the input to the latent code zLI ∈ RD and generates

zLs ∈ RD; similarly, for unlabelled observations xU , we have zUI ∈ RD and generates

zUs ∈ RD. To exploit the information of the labels, we extend the y ∈ RK which

has K possible classes to yGAN ∈ RK+1 which has K + 1 possible classes by regarding

the generated fake samples zs as the (K + 1)-th class [317, 316]. In the VAE++,

the unspecified zs denotes both zLs and zUs whenever we don’t care whether the

observation is labelled or not. This rule also applies to zI . Similarly, we use zGAN

to denote the input of the discriminator D, which contains both zI and zs. The

discriminator can be described by

qϕ(yGAN|zGAN) = h(yGAN; zGAN,ϕ) (7.8)

where ϕ denotes the parameters ofD while h denotes the non-linear transformation

which is implemented by a Convolutional Neural Networks (CNN) [290]. Therefore,

we can use qϕ(yGAN = K + 1|zGAN) to supply the probability where zGAN is fake (from

zs) and use qϕ(yGAN|zGAN,yGAN < K + 1) to supply the probability where zGAN is real

((from zI)) and is correctly classified.

For the labelled input, same as supervised learning, the discriminator is supposed

to not only tell whether the input zGAN is real or generated, but also classify it into

the correct class. Therefore, we have the supervised loss function

Llabel = −EzGAN ,yGAN∼pj [logqϕ(yGAN|zGAN,yGAN < K + 1)] (7.9)

where pj denotes the joint probability.

For the unlabelled input, we only require the discriminator to perform a binary

classification: the input is real or fake. The former probability can be calculated by

1−qϕ(yGAN = K+1|zGAN) whilst the latter can be calculated by qϕ(yGAN = K+1|zGAN).
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Thus, the unsupervised loss function:

Lunlabel = −EzGAN∼pθen (zI |x)[log(1− qϕ(yGAN = K + 1|zGAN))]

− EzGAN∼pθen (zs|x)[log(qϕ(yGAN = K + 1|zGAN))]

In summary, the final loss function of the discriminator

LGAN = w1 ∗ flag ∗ Llabel + w2 ∗ (1− flag) ∗ Lunlabel (7.10)

where w1, w2 are weights and flag is a switch function

flag =

1 labelled

0 unlabelled

If the specific observation is labelled, we calculate the labelled loss function. Oth-

erwise, we calculate the unlabelled loss function. From empirical experiments, we

observe that the Lunlabel is much easier to converge than Llabel and the real/fake

classification accuracy is much higher than the K classes classification accuracy.

To encourage the optimizer to focus on the former part which is more difficult to

converge, we set w1 = 0.9 and w2 = 0.1.

The discriminator receives zGAN as input and extracts the dependencies through CNN

filters. Two fully connected layers follow the convolutional layer for dimension re-

duction. At last, a softmax layer is employed to work on the low-dimension features

to estimate the log normalization of the categorical probability distribution which

is output as yGAN.

The overall aim of the proposed AVAE (as described in Algorithm 2) is to train a

robust and effective semi-supervised embedding method. The VAE loss LV AE and the

GAN loss LGAN are trained simultaneously by the Adam optimizer. After convergence,

the compressed representative code zI is fed into a non-parametric nearest neighbors

classifier for recognition.
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ALGORITHM 2: Adversarial Variational Embedding
Input: labelled observations (XL, Y L) and unlabelled observations XU

Output: Representation zI

1: Initialize network parameters θen, θde, qϕ

2: for x ∈ {XL,XU} do

3: zI ← x

4: µ,σ ← zI

5: Sampling ε from N (0, I)

6: zs = µ(zI) + σ(zI) ∗ ε

7: x′ ← zs

8: LV AE ← x,x′, p(zs|x)

9: for zI , zs,y ∈ Y L do

10: yGAN ← zI , zs

11: LGAN ← yGAN ,y

12: end for

13: Minimize LV AE and LGAN

14: end for

15: return zI

7.3 Experiments

In this section, we demonstrate the effectiveness and validation of the proposed

method over four applications.
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Table 7.1: Overall comparison of semi-supervised classification accuracy (%) on
activity recognition. All the baselines and our approach are working on the same
dataset and sharing the same experiment settings for each specific application.

Dataset Rate (%) Algorithm-related State-of-the-art Application-related State-of-the-art Ablation Study Ours
M2 AAE LVAE ADGM [323] [324] [325] [4] VAE (µ) VAE VAE++ AVAE

Activity
Recognition
(PAMAP2)

20 64.83±0.16 63.67±0.23 69.82±0.69 67.31±0.45 72.31±0.16 70.95±0.08 67.31±0.14 76.68±0.31 58.43±0.13 76.51±0.53 78.12±0.55 78.63±0.38

40 68.92±0.23 76.83±0.25 76.43±0.19 78.21±0.38 80.51±0.21 75.38±0.12 77.28±0.21 80.15±0.16 62.74±0.12 78.78±0.22 80.88±0.38 81.37±0.29
60 72.35±0.21 77.39±0.19 78.69±0.27 79.34±0.29 80.29±0.21 76.89±0.05 79.69±0.15 82.49±0.33 67.85±0.08 79.63±0.29 81.94±0.19 84.91±0.17
80 75.88±0.35 78.28±0.11 81.41±0.23 80.38±0.16 82.12±0.16 79.95±0.18 81.65±0.09 83.56±0.11 73.43±0.06 81.75±0.17 82.08±0.26 85.56±0.21
100 77.59±0.17 80.79±0.14 84.39±0.18 83.66±0.16 83.64±0.12 81.96±0.11 82.38±0.13 84.59±0.24 76.85±0.00 82.37±0.25 83.29±0.18 86.41±0.06

Note: If the compared method can not deal with unsupervised samples, it will be
trained only by the supervised samples.

Table 7.2: Overall comparison of semi-supervised classification accuracy (%) on
neurological diagnosis

Dataset Rate (%) Algorithm-related State-of-the-art Application-related State-of-the-art Ablation Study Ours
M2 AAE LVAE ADGM [303] [304] [121] [306] VAE (µ) VAE VAE++ AVAE

Neurological
Diagnosis
(TUH)

20 71.28±0.16 80.13±0.95 82.31±0.19 86.32±0.12 87.66±0.23 86.38±0.36 82.19±0.24 86.33±0.21 80.58±0.69 86.37±0.24 0.86±0.53 93.69±0.16

40 75.32±0.16 82.95±0.26 84.38±0.16 86.99±0.05 89.25±0.19 91.58±0.35 84.21±0.08 89.25±0.34 81.35±0.24 89.69±0.27 91.28±0.25 94.32±0.28
60 76.32±0.29 86.21±0.52 87.51±0.26 87.65±0.16 91.28±0.37 92.58±0.26 85.36±0.32 90.38±0.24 82.59±0.63 90.58±0.27 92.87±0.31 95.21±0.21
80 79.65±0.37 88.53±0.28 89.56±0.25 88.05±0.12 92.59±0.26 93.25±0.31 85.16±0.24 91.59±0.16 83.21±0.21 91.69±0.35 93.96±0.28 97.86±0.26
100 82.59±0.31 89.58±0.25 90.25±0.21 88.65±0.26 93.32±0.18 94.29±0.25 86.42±0.26 92.4±0.25 84.21±0.65 92.38±0.41 94.65±0.24 98.13±0.32

7.3.1 Activity Recognition

Experiment Setup

Activity recognition is an important area in data mining. We evaluate our approach

over the well-known PAMAP2 dataset [326], which is collected by 9 participants

(8 males and 1 female) aged 27 ± 3. We select 5 most commonly used activities

(Cycling, standing, walking, lying, and running, labelled from 0 to 4) as a subset for

evaluation. For each subject, there are 12,000 instances. The activity is measured by

3 Inertial Measurement Units (IMU) attached to the participants’ wrist, chest, and

the outer ankle. Each IMU includes 13 dimensions: two 3-axis accelerometers, one 3-

axis gyroscopes, one 3-axis magnetometers and one thermometer. The experiments

are performed by a Leave-One-Subject-Out strategy to ensure the practicality.

The time window is set as 10 with 50% overlapping. The dataset is split into

a training set (80% proportion) and a testing set (20% proportion). For semi-

supervised learning, the training dataset contains both labelled observations and

unlabelled observations. We present a term called‘supervision rate’ as a handle on
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the relative weight between the supervised and unsupervised terms. For the given

number of labelled observations NL and the number of unlabelled observations NU ,

the supervision rate γ is defined by NL/(NL +NU).

Parameter Setting

We introduce the default parameter settings and the settings in other applications

keep the same if not mentioned. The input observations are first normalized by

Z-score normalization and fed to the input layer of the unsupervised VAE++. The

neuron amount in the first hidden layer, which is denoted by zI , is a quarter of M .

The second hidden layer contains 2 components which represent the expectation

and the standard deviation respectively. The third hidden layer zs has the sample

shape with zI . An Adam optimizer with a learning rate of 0.00001 is employed to

minimize the loss function of VAE++.

After each epoch of VAE++, the first hidden layer zI and the third hidden layer zs
are labelled as ‘real’ and ‘fake’, respectively, and fed to the discriminator D. The

discriminator contains one convolutional layer followed by two fully-connected layers.

There is a softmax layer to obtain the categorical probability before the output layer

which has K + 1 neurons. The convolutional layer has 10 filters which have shape

[2, 2] and the stride size [1, 1]. The padding method of the convolutional operation is

set as ‘same’ while the activation function is ReLU. The following hidden layer has

M/4 neurons and the sigmoid activation function. The loss function is optimized by

Adam update rule with learning rate of 0.0001. The object functions of the VAE++

and the discriminator are trained simultaneously. After the convergence, the semi-

supervised learned latent representation zI is fed into a supervised non-parametric

nearest neighbor classifiers with k = 3.
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Table 7.3: Overall comparison of semi-supervised classification accuracy (%) on
image classification

Dataset Rate (%) Algorithm-related State-of-the-art Application-related State-of-the-art Ablation Study Ours
M2 AAE LVAE ADGM [316] [321] [327] [328] VAE (µ) VAE VAE++ AVAE

Image
Classification
(MNIST)

20 93.22±0.62 90.25±0.25 93.25±0.26 89.61±0.27 95.23±0.34 94.25±0.13 94.58±0.25 92.96±0.28 91.58±0.24 92.31±0.53 93.59±0.31 95.12±0.19

40 93.25±0.34 93.21±0.23 93.28±0.46 91.58±0.25 95.27±0.53 95.56±0.08 95.21±0.26 93.21±0.56 93.65±0.21 94.21±0.19 94.68±0.28 96.43±0.35
60 96.24±0.51 96.35±0.27 95.34±0.21 93.21±0.34 96.38±0.22 96.54±0.08 96.48±0.32 96.28±0.57 94.89±0.21 95.34±0.14 96.42±0.25 97.21±0.21
80 98.19±0.25 95.32±0.37 96.11±0.52 95.01±0.15 97.82±0.11 97.21±0.13 97.86±0.34 97.63±0.15 96.78±0.25 97.63±0.15 98.71±0.16 99.79±0.12
100 98.65±0.21 0.98.25±0.61 96.35±0.26 95.38±0.82 99.21±0.26 98.64±0.27 99.06±0.22 98.53±0.17 97.41±0.18 98.35±0.09 99.67±0.23 99.85±0.11

Table 7.4: Overall comparison of semi-supervised classification accuracy (%) on
recommender system

Dataset Rate (%) Algorithm-related State-of-the-art Application-related State-of-the-art Ablation Study Ours
M2 AAE LVAE ADGM [329] [330] [331] [332] VAE (µ) VAE VAE++ AVAE

Recommender
System
(Yelp)

66.42±0.17 58.27±0.35 66.35±0.36 54.27±0.38 40.55±0.27 47.58±0.36 65.99±0.62 66.21±0.24 64.28±0.12 64.39±0.62 65.58±0.37 70.19±0.87

20 69.36±0.37 61.55±0.62 68.16±0.24 55.35±0.26 40.28±0.32 48.65±0.27 67.53±0.31 66.59±0.29 64.37±0.25 67.23±0.95 71.05±0.29 72.21±0.35
40 72.58±0.19 62.15±0.39 68.59±0.93 57.63±0.23 42.15±0.16 50.95±0.24 66.58±0.29 67.95±0.38 67.56±0.35 69.58±0.37 72.19±0.62 75.34±0.35
60 72.39±0.64 62.89±0.62 74.28±0.37 58.34±0.15 43.21±0.15 52.15±0.38 67.65±0.31 68.23±0.15 69.25±0.18 71.39±0.56 73.21±0.58 78.54±0.38
80 74.58±0.62 63.51±0.86 72.59±0.36 59.58±0.23 45.86±0.22 54.10±0.12 68.03±0.17 70.61±0.25 73.24±0.68 73.28±0.69 76.53±0.28 79.38±0.59

Baselines

To measure the effectiveness of the proposed method, we compare it with a set

of competitive state-of-the-art models. The state-of-the-art methods are composed

of two categories: algorithm-related and application-related. The former denotes

other VAE/GAN based semi-supervised classification algorithms, which are the same

for all the applications. The comparison is used to demonstrate our framework

has the highest semi-supervised representation learning ability. The latter denotes

the state-of-the-art models in each application, which are varied for the different

applications. The comparison is used to demonstrate our work is effective in the

real-world scenarios.

The algorithm-related semi-supervised learning solutions in our comparison are

listed as follows:

• M2. [312] proposes a probabilistic model that describes the data as being

generated by a latent class variable in addition to a continuous latent repre-

sentation.

• Adversarial Autoencoders (AAE). [315] employs the GAN to perform varia-

tional inference by matching the aggregated posterior of the hidden represen-
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tation of the autoencoder.

• Ladder Variational Autoencoders (LVAE). [313] proposes an inference model

which recursively corrects the generative distribution by a data dependent

likelihood.

• Auxiliary Deep Generative Models (ADGM). [320] extends deep generative

models with auxiliary variables, which improves the variational approximation.

We design ablation study to demonstrate the necessity of each key component of

the proposed approach. In the ablation study, we set four control experiments

with single variable among the components of AVAE. We adopt the following four

methods to discover the latent representations: 1) VAE (µ) with µ as the latent

representation; 2) standard VAE (zs as the latent representation); 3) VAE++ ( zI
as the latent representation); 4) AVAE. The extracted representations are fed into

the same classifier for classification.

The application-related state-of-the-art models on activity recognition are listed

here:

• Chen et al. [323] adopt an attention mechanism to select the most distinguish-

able features from the activity signals and send them to a CNN structure for

classification.

• Lara et al. [324] apply both statistical and structural detectors features to

discriminate among activities.

• Guo et al. [325] exploit the diversity of base classifiers to construct a good

ensemble for multimodal activity recognition, and the diversity measure is

obtained from both labelled and unlabelled data.

• Zhang et al. [4] combine deep learning and the reinforcement learning scheme

to focus on the crucial dimensions of the signals.
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Results and Discussion

First, we report the overall performance of all the compared algorithms. From

Table 7.1, we can observe that the proposed approach (AVAE) outperforms all the

algorithm-related and application-related state-of-the-art models, illustrating the

effectiveness of the latent space in providing robust representations for easier semi-

supervised classification. The advantage is demonstrated under all the supervision

rates.

In Table 7.1, through the ablation study, it is observed that each component (es-

pecially GAN) contributes to the performance enhancement. Additionally, the pro-

posed AVAE achieves a significant improvement which yields around 5% and 3%

growth than the standard VAE and the VAE++ (under 60% supervision rate), re-

spectively. This observation demonstrates that the proposed latent layer zI and the

adversarial training (between the discriminator and VAE++) encourages the pro-

posed model to learn and refine the informative latent code. Take 60% supervision

rate as an example, more details of the classification are shown in the confusion

matrix (Figure 7.3a) and ROC curves with AUC score (Figure 7.4a).

7.3.2 Neurological Diagnosis

Experiment Setup

EEG signal collected in the unhealthy state differs significantly from the ones col-

lected in the normal state [287]. The epileptic seizure is a common brain disorder

that affects about 1% of the population and its octal state could be detected by the

EEG analysis of the patient. In this application, we evaluate our framework with

raw EEG data to diagnose the epileptic seizure of the patient.

We choose the benchmark dataset TUH [333] for epileptic seizure diagnosis. The

TUH is a neurological seizure dataset of clinical EEG recordings associated with 22
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(d) Confusion matrix of Yelp

Figure 7.3: Confusion matrix of PAMAP2, TUH, MNIST, and Yelp datasets.

channels from a 10/20 configuration. The sampling rate is set as 250 Hz. We select

12,000 samples from each of 18 subjects. Half of the samples are labelled as epileptic

seizure state (labelled as 1) and the remaining samples are labelled as normal state

(labelled as 0). The experiment and parameter settings are the same as the activity

recognition applications.
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Figure 7.4: ROC curves of PAMAP2, TUH, MNIST, and Yelp datasets. The X-axis
is in logarithmic scale.

Baselines

The application-related state-of-the-art approaches in neurological diagnosis are

listed here:

• Ziyabari et al. [303] adopt a hybrid deep learning architecture, including

LSTM and stacked denoising Autoencoder, which integrates temporal and

spatial context to detect the seizure.

• Harati et al. [304] demonstrate that a variant of the filter bank-based approach,

coupled with first and second derivatives, provides a reduction in the overall
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Figure 7.5: Visualization comparison between raw data and the semi-supervised
learned features (PAMAP2 and TUH)

error rate.

• Schimeister et al. [121] attempt to improve the performance of seizure detec-

tion by combining deep ConvNets with training strategies such as exponential

linear units.

• Goodwin et al. [306] combine RNN with access to textual data in EEG reports

in order to automatically extracting word- and report-level features and infer

underspecified information from EHRs (electronic health records).
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Figure 7.6: Visualization comparison between raw data and the semi-supervised
learned features (MNIST and Yelp)

Results and Discussion

From Table 7.2, we can observe that our approach outperforms all the competitive

baselines on TUH dataset. For instance, under 60% supervision level, the proposed

approach achieves the highest accuracy of 95.21% which claims around 4% improve-

ment over other methods. The corresponding confusion matrix (Figure 7.3b) and

ROC curves (Figure 7.4b) infer that the normal state has higher accuracy than the

seizure state. One possible reason is that the start and end stage of the seizure has

similar symptoms with the normal state which may lead to misclassification.
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(a) VAE++ (b) GAN

Figure 7.7: Convergence curve of the VAE++ and GAN

7.3.3 Image Classification

Experiment Setup

To evaluate the representation learning ability in images, we test our approach on the

benchmark dataset MNIST 4. MNIST contains 60,000 handwritten digital images

(50,000 for training and 10,000 for testing) with 28 ∗ 28 pixels. The labels of this

dataset are from 0 to 9, corresponding to the 10 digits.

Parameter Settings

Images are more informative compared to other application scenarios. The encoder

of AVAE is designed to be stacked by two convolutional layers. The first convolu-

tional layer has 32 filters with shape [3, 3], the stride size [1, 1], ’SAME’ padding,

and ReLU activation function. The followed pooling layer has [2, 2] window size,

[2, 2] stride, and ’SAME’ padding. The second convolutional layer has 64 filters with

[5, 5]. The residual parameters of the second convolutional layer and pooling layer

4http://yann.lecun.com/exdb/mnist/
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are the same with the former. Similarly, the decoder contains two de-convolutional

layers with the same parameter settings.

Baselines

We reproduce the following methods under different supervision rate for comparison:

• Augustus [316] proposes a semi-supervised GAN (SGAN) by forcing the dis-

criminator network to output class labels.

• Springenberg [321] proposes CatGAN to modify the objective function taking

into account the mutual information between observation and the prediction

distribution.

• Weston et al. [327] apply kernel methods for a nonlinear semi-supervised

embedding algorithm.

• Miyato et al. [328] propose a regularization method based on virtual adversar-

ial loss: a new measure of local smoothness of the conditional label distribution

given the inputs.

7.3.4 Results and Discussion

As shown in Table 7.3, AVAE outperforms the counterparts with a slight gain with

the same supervision level. The confusion matrix and ROC curves are reported

in Figure 7.3c and Figure 7.4c. The results show that our approach is enabled to

automatically learn the discriminative features by joint training the VAE++ and

the semi-supervised GAN.
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7.3.5 Recommender System

Experiment Setup

We apply our framework on recommender system scenarios, in particular, a restau-

rant rating prediction task based on the widely used Yelp dataset.

The Yelp Dataset5 includes 192,609 Businesses, 1,637,138 Users, and 6,685,900 Rat-

ings. Each business has 13 attributes (like ‘near garage?’, ‘have valet?’) which

can describe the quality and convenience of the business. Meanwhile, each business

is rated by a series customers. The ratings range from 1 to 5, which can reflect

the customers’ satisfactory degree. Our recommender task considers a unseen busi-

ness’s attributes as input data and predict the possible ratings from the potential

customers. If the rating is high enough, the new business will be recommended to

the public.

Baselines

We compare our approach with the state-of-the-art recommender system models

which exploit the content information of items. Since these methods are used to

make rating predictions for each user-item pair, we select those users who have 200

and more ratings in the Yelp dataset, generating a set of 1,111 users. After collecting

the predicted ratings for all user-item pairs, we take the average item ratings over

the users, which are further rounded to serve as the predicted labels.

• Pazzani et al. [329] summarizes basic content-based recommendation ap-

proaches, from which we select the cosine similarity-based nearest neighbor

method as our fundamental baseline.

5https://www.yelp.com/dataset
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• Rendle [330] proposes the original implementation of factorization machine(FM)

which is capable of incorporating item features with explicit feedbacks. We

concatenate only the item indication vector and its feature after each user

indication vector following the format in [330].

• He et al. [331] enhances the original FM using deep neural networks to learn

high-order interactions between different item features.

• Chen et al. [332] applies feature- and item-level attention on item features,

which is capable of emphasizing on the most important features.

Results and Discussion

From Table 7.4, we can observe that our approach outperforms both the competitive

semi-supervised algorithms and the content-based recommender system state-of-

the-art methods. The rating prediction details can be found in Figure 7.3d and

Figure 7.4d. The classification performance is not good as in other applications.

One possible reason is that the attributes data are very sparse. The experiment

results illustrate that our approach is effective in recommender system scenarios.

7.3.6 Further Analysis

Supervision Rate. We conduct extensive experiments to investigate the impact of

supervision rate λ. The supervision rate ranges from 20% to 100% with 20% interval

and each setting runs for at least three times with the average accuracy recorded.

From Table 7.2 to Table 7.4, it is noticed that the proposed model obtains compet-

itive performance at each supervision level.

Visualization. Figure 7.5 visualizes the raw data and the learned features on different

datasets. The visualization comparison demonstrates the capability of our approach

for feature learning.
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Convergence. Take PAMAP2 as an example, Figure 7.7 presents the relationship

between the loss function values and epoch numbers. The VAE++ loss includes

the reconstruction loss and the KL-divergence whilst the loss of the discriminator

in GAN includes labelled loss and unlabelled loss (with weights 0.9 and 0.1, respec-

tively). We can observe that the proposed method shows good convergence property

as it stabilizes in around 200 epochs.

7.4 Discussion

In this section, we discuss several future scopes of the proposed AVAE.

First, our model requires adequate labelled training samples. Through from super-

vision rate analyze results, the proposed approach demands a sufficient supervised

proportion. The lower supervision rate should be one major goal for the future.

Moreover, the proposed approach partially depends on the hyper-parameter settings.

The hyper-parameter tuning (not presented in details due to space limitation), es-

pecially the key parameters like learning rate, is necessary for different data types.

In our experiments, we choose one setting for activation recognition and the other

setting for EEG signal recognition. For the parameter tuning, the Orthogonal Array

experiment method is suggested [2]. The more generalized framework which is not

sensitive to data types is one future scope.

Furthermore, the classification accuracy of the discriminator in GAN is not excel-

lent even though the overall framework achieves a competitive performance. In the

discriminator, the unlabelled classification (fake or real) achieves the accuracy of al-

most one hundred percent. However, for the labelled observations, the classification

accuracy (K + 1 classes) is much lower. We believe this is a meaningful and cru-

cial future direction in that an end-to-end semi-supervised classification framework

could be built if the discriminator achieves satisfied performance.
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7.5 Conclusion

In this chapter, we present an effective and robust semi-supervised latent repre-

sentation framework, AVAE, by proposing a modified VAE model and integration

with generative adversarial networks. The VAE++ and GAN share the same gen-

erator. In order to automatically learn the exclusive latent code, in the VAE++,

we explore the latent code’s posterior distribution and then stochastically generate

a latent representation based on the posterior distribution. The discrepancy be-

tween the learned exclusive latent code and the generated latent representation is

constrained by semi-supervised GAN. The latent code of AVAE is finally served as

the learned feature for classification. The proposed approach is evaluated on four

real-world applications and the results demonstrate the effectiveness and robustness

of our model.
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Chapter 8

Deep Neural Network

Hyperparameter Optimization with

Orthogonal Array Tuning

In this dissertation, we mainly focus on deep representation learning algorithms due

to the excellent non-linear fitting ability. Nevertheless, deep learning faces an impor-

tant challenge that the performance of the algorithm highly depends on the selection

of hyper-parameters. Compared with traditional machine learning algorithms, deep

learning requires hyper-parameter tuning more urgently because deep neural net-

works: 1) have more hyper-parameters to be tunned; 2) have higher dependency on

the configuration of hyper-parameters. [2] reports the deep learning classification

accuracy dramatically fluctuates from 32.2% to 92.6% due to the different selection

of hyper-parameters. Therefore, an effective and efficient hyper-parameter tuning

method is necessary.

However, most of the existing hyper-parameter tuning methods have some draw-

backs. In particular, grid search traverses all the possible combinations of different
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hyper-parameters, which is a time-consuming and ad-hoc process [334]. Random

Search, which is developed based on grid research, set up a grid of hyper-parameter

values and selects random combinations to train the algorithm [334]. Random search

method oversteps some disadvantages of grid search such as time-consuming but

meanwhile brings a major disadvantage which cannot converge to the global opti-

mum [335]. The randomly selected hyper-parameter combinations cannot guarantee

a steady and competitive result. Apart from the manually tuning methods, auto-

mated tuning methods being more popular in recent years [336]. Bayesian Optimiza-

tion, a most widely-used automated hyper-parameter tunning approach, attempts

to find the global optimum in a minimum number of steps. Nevertheless, the results

of Bayesian optimization are sensitive to parameters of the surrogate model and the

performance is highly depending on the quality of the learning model [337].

To address the aforementioned issue, we propose the Orthogonal Array Tuning

Method (OATM) which can achieve a trade-off of the less tuning time and com-

petitive performance. In detail, the OATM manner is proposed based on Taguchi

Approach [232]. The OATM is a highly fractional orthogonal design method that is

based on a design matrix and allows the user to consider a selected subset of combi-

nations of multiple factors at multiple levels. Additionally, the OATM is balanced

to ensure that all possible values of all hyper-parameters are considered equally.

Moreover, OATM has been commonly used as an experimental design method in a

wide variety of domains like mechanical engineering [338] and electrical engineering

[339]. To our best knowledge, our work is the first batch of work adopting orthogonal

array into parameter tuning in deep learning.

The proposed OATM adopts the orthogonal array to extract the most representative

and balanced combinations from the whole set of possible combinations. The pro-

posed OATM will be explained in detail in the context of two popular deep learning

structures (Section 8.3). In addition, the OATM is evaluated over three datasets,

which demonstrate the universality and adaptability. We notice that source codes

performing grid search, random search, and especially Bayesian Optimization on
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deep learning are hard to online acquire. Thus, we provide the reusable source

codes and datasets for reproduction1.

8.1 Orthogonal Array Tuning

In this section, we first provide the background knowledge of orthogonal array,

namely, the definition, the compose principles, and the terminology. Then, we

report the working procedure of OATM.

8.1.1 Orthogonal Array Tuning Method

In this section, we propose the Orthogonal Array Tuning Method inspired by the

basic principles of orthogonal array. Although deep learning algorithms can achieve

good performance in many research areas, tuning the hyper-parameters (e.g., the

number of layers, the number of nodes in each layer and the learning rate) is time-

consuming and dependent on user’s expertise.

In OATM, the hyper-parameters are regarded as factors and different values of each

hyper-parameter are regarded as levels. The procedure is listed as follows.

• Step 1: Build the F-L (factor-level) table. Determine the number of to-be-

tuned factors and the number of levels for each factor. The levels should be

determined by experience and literature. We further suppose each factor has

the same number of levels2.

1https://github.com/xiangzhang1015/OATM
2For the sake of simplicity, we consider all the factors with the same number of

levels. More advanced knowledge can be found in [232] for more complex situations.
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• Step 2: Construct Orthogonal Array Tuning table. The constructed table

should obey the basic composition principles. Here3 shows some commonly

used tables. The Orthogonal Array Tuning table is marked as LM(hk) which

has k factors, h levels, and totally M rows.

• Step 3: Run the experiments with the hyper-parameters determined by the

Orthogonal Array Tuning table.

• Step 4: Range analysis. This is the key step of OATM. Based on the ex-

periment results in the previous step, range analysis method is employed to

analyze the results and figure out the optimal levels and importance of each

factor. The importance of a factor is defined by its influence on the results of

the experiments. Note that range analysis optimizes each factor and combines

the optimal levels together, which means that the optimized hyper-parameter

combination is not restricted to the existing Orthogonal Array table.

• Step 5: Run the experiment with the optimal hyper-parameters setting.

8.2 Experimental Setting

To evaluate the proposed OATM, we design extensive experiments to tune the hyper-

parameters of two most widely used deep learning structures, i.e., the RNN and

CNN. Both of the two deep learning structures are employed on three real-world ap-

plications: 1) a human intention recognition task based on the Electroencephalog-

raphy (EEG) signals [340]; 2) activity recognition based on wearable sensors like

Inertial Measurement Unit (IMU); 3) activity recognition based on pervasive sen-

sors like Radio Frequency IDentification (RFID).

3https://www.york.ac.uk/depts/maths/tables/taguchi_table.htm
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8.2.1 Data Setting

The proposed OATM is evaluated over three different tasks on three benchmark

datasets where each is divided into a training set (80%) and a testing set (20%).

EEG-based Intention Recognition. We select the widely used EEG dataset

from PhysioNet eegmmidb database which contains 5 different categories (refers to

Section 3.3.1).

IMU-based Activity Recognition. This dataset is collected by 9 participants

[326], which contains 1200000 samples. 8 ADLs are selected as a subset of our paper.

The activity is measured by 3 IMUs and each IMU collects sensor signal with 14

dimensions including two 3-axis accelerometers, one 3-axis gyroscopes, one 3-axis

magnetometers, and one thermometer.

RFID-based Activity Recognition. We collect the signals from passive RFID

tags [341] and have 3100 samples in total. 21 activities, including 18 ADLs (Activity

of Daily Living) and 3 abnormal falls, are performed by 6 subjects. Each sample has

12 dimensions corresponding to 12 RFID tags. RSSI measures the power present

in a received radio signal, which is a convenient environmental measurement in

ubiquitous computing.

8.2.2 Deep Learning Structures

In this section, we briefly describe RNN and CNN structures and then introduce the

key hyper-parameters that will be tuned in the experiments.

RNN Structure

The RNN structure used in this section is shown in Figure 8.1. In the hidden layer,

to implement the recurrent function, two LSTM (Long Short-Term Memory) layer
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Figure 8.1: The schematic diagram of RNN structure. ‘H’ denotes Hidden, where,
for example, the H 1 layer denotes the first hidden layer.

is concentrated. LSTM is a simple cell structure which can be used to build a

recurrent neural network. Different from other fully connected layers, LSTM layer

is composed of cells (shown as rectangles) instead of neural nodes (shown as circles).

In this RNN structure, based on the deep learning hyper-parameters tuning experi-

ence, the learning rate, the regularization, and the number of nodes in each hidden

layer are key factors affecting the algorithm performance. The loss is calculated by

cross-entropy function, and the regularization method is `2 norm with the coefficient

λ, The loss is finally optimized by the AdamOptimizer algorithm. In summary, we

choose four factors as to-be-tuned hyper-parameters: the learning rate lr, the reg-

ularization coefficient λ, the number of hidden layers nl, and the number of nodes4

in each hidden layer nn.

CNN Structure

The CNN diagram is presented in Figure 8.2. The loss function, regularization

method, and optimizer are the same as those in the RNN structure. Based on hyper-

parameters tuning experience on CNN, we choose four most crucial factors to be

tuned by OATM: the learning rate lr′, the filter size f ′, the number of convolutional

and pooling layers n′l5, and the number of nodes n′n in the second fully connected

4Assume all the hidden layers have the same fixed number of nodes.
5We consider each convolutional layer and the following pooling layer as whole.
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Figure 8.2: The schematic diagram of CNN structure. C, P, and FC denote convo-
lutional layer, pooling layer, and fully connected layer, respectively.

layer.

8.3 Results and Analysis

8.3.1 Overall Comparison

In this section, we compare the proposed OATM with the most competitive state-of-

the-art hyper-parameter tuning approaches including two manually methods (grid

search and random search) and an automated one (Bayesian Optimization). It’s

easy to compute that there are 81 = 34 exhausted combinations in grid search since

we have four factors with three levels of the hyper-parameters. Thus, grid search

requires 81 runnings to get the optimal hyper-parameters. On the other hand, our

method requires only 9 runnings described in the corresponding orthogonal array

table (see Section 8.3.2). Due to the numbers of runnings in random search and

Bayesian Optimization are manually set, they are set as 9 runnings which is same

with our method in order to keep fair comparison. The baselines are introduced

here: 1) Grid search simply goes through all the possible combinations according

to the values provided which is exhaustive [334]; 2) Random search randomly picks

combinations from all possible ones. It may not find a decent combination but is

widely adopted in industry for the high-efficiency [335]; 3)Bayesian optimization uses

a Gaussian process to minimize the loss function in order to maximize performance
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Table 8.1: Comparison with the state-of-the-art methods over three datasets and
two deep learning architectures. The F1 ∼ F4 represent four tuning factors. Acc,
Prec and F-1 denote accuracy, precision and F-1 score, respectively. #-R refers to
the number of runnings.

Data Models Methods Optimal Factors Metrics
F1 F2 F3 F4 #-R Time (s) Acc Prec Recall F-1

EEG

RNN

Grid 0.005 0.004 6 64 81 6853.6 0.9251 0.9324 0.9139 0.9231
Random 0.01 0.008 6 32 9 766.8 0.7941 0.8003 0.7941 0.7947
BO 0.0135 0.0049 5 32 9 703.4 0.718 0.7246 0.6474 0.6838
Ours 0.005 0.004 6 64 9 821.9 0.925 0.9335 0.9223 0.9279

CNN

Grid 0.005 4 3 192 81 31891.5 0.828 0.8137 0.8256 0.8269
Random 0.003 2 1 128 9 662.8 0.7268 0.7277 0.7269 0.7266
BO 0.001 4 3 139 9 721.9 0.7244 0.7302 0.7244 0.7263
Ours 0.003 4 1 128 9 680.4 0.797 0.7969 0.8112 0.8003

IMU

RNN

Grid 0.005 0.004 6 96 81 3027.2 0.9936 0.9909 0.9976 0.9971
Random 0.015 0.004 4 32 9 1008.5 0.9139 0.9209 0.9412 0.9156
BO 0.0132 0.0041 4 48 9 1078.8 0.9872 0.9877 0.9851 0.9863
Ours 0.005 0.004 6 64 9 1138.2 0.9913 0.9924 0.9905 0.9919

CNN

Grid 0.003 2 1 128 81 41804.9 0.9732 0.9708 0.9708 0.9707
Random 0.003 2 2 128 9 7089.2 0.9692 0.9691 0.9692 0.9691
BO 0.0012 2 2 192 9 6559.7 0.9696 0.9702 0.9701 0.9701
Ours 0.003 2 2 128 9 6809.8 0.9702 0.9699 0.9703 0.9702

RFID

RNN

Grid 0.005 0.008 6 96 81 2846.1 0.9342 0.9388 0.9201 0.9252
Random 0.005 0.012 4 32 9 642.3 0.8891 0.9138 0.8826 0.8895
BO 0.0142 0.0093 6 79 9 452.2 0.9071 0.8556 0.8486 0.8436
Ours 0.005 0.008 6 64 9 497.1 0.9134 0.9138 0.9029 0.9162

CNN

Grid 0.005 4 2 192 81 7890.8 0.9316 0.9513 0.9316 0.9375
Random 0.005 2 1 128 9 1210.3 0.8683 0.9113 0.8684 0.8779
BO 0.005 5 3 64 9 872.9 0.9168 0.9058 0.9194 0.9086
Ours 0.005 4 3 192 9 980.3 0.9235 0.9316 0.9188 0.9326

[336].

The hyper-parameter levels are selected based on empirical values. For grid search,

random search, and our OATM, the empirical values are discrete as listed in Table 8.2

(take eegmmidb as an example). For Bayesian Optimization, the hyper-parameter

ranges from the maximum and minimum of each factor.

The comparison results are shown in Table 8.1. It can be observed that: 1)under

the same running numbers (9 runnings), our method outperforms the random search

and Bayesian Optimization over all the datasets and deep learning architectures; 2)

our method performs slightly lower than grid search but still competitive, however,

take EEG dataset with RNN as an example, our approach saves 88% tuning time

which is indicated from that the OATM only requires 9 runnings and costs 821.9s

while grid search requires 81 runnings and 6853.6s; 3) the optimal factors selected
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Table 8.2: Factor-Level table of RNN and CNN.

RNN

Factor 1 (lr) Factor 2 (λ) Factor 3 (nl) Factor 4 (nn)
Level 1 0.005 0.004 4 32
Level 2 0.01 0.008 5 64
Level 3 0.015 0.012 6 96

CNN

Factor 1 (lr′) Factor 2 (f ′) Factor 3 (n′l) Factor 4 (n′n)
Level 1 0.001 [1,2] 1 64
Level 2 0.003 [1,4] 2 128
Level 3 0.005 [1,6] 3 192

by our method approximate to the global optimal factors selected by grid search.

8.3.2 Case Study in RNN and CNN

In this section, we take EEG classification as an example to present the detailed

procedure of OATM in RNN and CNN architectures. The overall paradigm can be

divided into five steps.

Step 1: Build the F-L table According to the description in Section 8.2.2,

OATM will work on four different hyper-parameters (factors): the learning rate lr,

the l-2 norm coefficient λ, the number of hidden layers nl, and the number of nodes

nn. The number of levels h is set to be 3 which could be much larger in real-world

applications. Based on the related work and tuning experience [2], the empirical

values are shown in Table 8.2.

Step 2: OATM table Choose a suitable Orthogonal Array table with 4 fac-

tors and 3 levels for our experiments in this link6 wich contains 9 combinations.

The OATM table should satisfy two basic principles: 1) in each column, different

levels have the same appear times; 2) in any two randomly-selected columns, nine

differently-ordered element combinations are completed and balanced.
6https://www.york.ac.uk/depts/maths/tables/taguchi_table.htm
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Table 8.3: Range analysis of RNN

Row No. Factor 1 (lr) Factor 2 (λ) Factor 3 (nl) Factor 4 (nn) Acc
1 0.005 0.004 4 32 0.875
2 0.005 0.008 5 64 0.8
3 0.005 0.012 6 96 0.521
4 0.01 0.004 5 96 0.888
5 0.01 0.008 6 32 0.797
6 0.01 0.012 4 64 0.451
7 0.015 0.004 6 64 0.897
8 0.015 0.008 4 96 0.335
9 0.015 0.012 5 32 0.471

Rlevel1 2.196 2.66 1.661 2.143
Rlevel2 2.136 1.932 2.159 2.148
Rlevel3 1.703 1.443 2.215 1.744
Alevel1 0.732 0.887 0.554 0.714
Alevel2 0.712 0.644 0.720 0.716
Alevel3 0.568 0.481 0.738 0.581

Lowest Acc 0.568 0.481 0.554 0.581
Highest Acc 0.732 0.887 0.738 0.716

Range 0.164 0.406 0.184 0.135
Importance lambda > nl > lr > nn
Best Level Level 1 Level 1 Level 3 Level 2

Optimal Value 0.005 0.004 6 64 0.925

Table 8.4: Range analysis of CNN

Row No. Factor 1 (lr′) Factor 2 (f ′) Factor 3 (n′l) Factor 4 (n′n) Acc
1 0.001 [1,2] 1 64 0.707
2 0.001 [1,4] 2 128 0.771
3 0.001 [1,6] 3 192 0.775
4 0.003 [1,2] 2 192 0.779
5 0.003 [1,4] 3 64 0.752
6 0.003 [1,6] 1 128 0.797
7 0.005 [1,2] 3 128 0.784
8 0.005 [1,4] 1 192 0.782
9 0.005 [1,6] 2 64 0.756

Rlevel1 2.253 2.27 2.993 2.215
Rlevel2 2.328 2.305 2.306 2.352
Rlevel3 2.322 2.328 2.311 2.336
Alevel1 0.751 0.757 0.998 0.738
Alevel2 0.776 0.768 0.769 0.784
Alevel3 0.774 0.776 0.770 0.779

Lowest Acc 0.751 0.757 0.769 0.738
Highest Acc 0.776 0.776 0.998 0.784

Range 0.025 0.019 0.229 0.046
Importance n′l > n′n > lr′ > f ′

Best Level Level 2 Level 3 Level 1 Level 2
Optimal Value 0.003 [1,6] 1 128 0.797
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Step 3: Run the experiments Following the OATM table, run the 9 experi-

ments and record the classification accuracy. In our case, each experiment runs 5

times with the corresponding average accuracy recorded. Each experiment is trained

for 1,000 iterations to guarantee the convergence.

Step 4: Range analysis This is the key step of Orthogonal Array Tuning. The

overall range analysis procedure and results are shown in Table 8.3. The first 9 rows

are measured and recorded in Step 3. Rleveli denotes the sum of accuracy under

level i. For example, Rlevel1 in factor 1 is the sum of the accuracy in the first 3 rows

(2.196 = 0.875+0.8+0.521), where factor 1 is on level 1. Aleveli denotes the average

accuracy of level i, calculated by Aleveli = Rleveli/h. In the above example, we

calculate Alevel1 as 0.732 = 2.196/3. Lowest and highest accuracy values, measuring

the maximum and minimum of Aleveli respectively, are used to calculate the range

of Aleveli. The importance denotes how important the factor is, which is ranked by

the range value. Best level is the selected optimal level based on the Highest Acc

while Optimal Value represents the corresponding value of the best level.

Step 5: Run the optimal setting Run the experiment with the optimal hyper-

parameters (lr = 0.004, λ = 0.005, nl = 6, and nn = 64) and finally achieve the

optimal accuracy as 0.925. It can be observed that: 1) the optimal accuracy 0.925

is higher than the maximum of the accuracy (0.897) in the OATM experiments,

which demonstrates that the OATM is enabled to approximate the global optimal

instead of the local optimal; 2) the importance of each factor is ranked through the

range analysis: lambda > nl > lr > nn, which can guide the researcher to grasp the

dominating variable in the RNN structure and be helpful in the future algorithm

development.

The OATM paradigm of CNN is similar to RNN. Here, we only report the F-L table

(Table 8.2) and the range analysis table (Table 8.4).
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8.4 Conclusion

One disadvantage of OATM is that it requires the empirical values as prerequisites.

The values of the F-L table should be chosen appropriately. However, this is the

common drawback of all the tuning methods. For instance, the hyper-parameter

ranges in Bayesian Optimization are also pre-defined based on empirical values.

In summary, we present an efficient OATM approach for hyper-parameter tuning in

the context of deep learning. The proposed OATM is evaluated over two popular

deep learning structures(RNN and CNN) over three real-world datasets. The exper-

iment results show that our approach outperforms state-of-the-art hyper-parameter

tuning methods.
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Chapter 9

MindID: EEG-based Person

Identification System through

Attention-based Recurrent Neural

Network

One of the most promising BCI applications is the EEG-based user identification

for the unique characteristics of EEG signals (such as fake-resistance).

Over the past decade, biometric information has been widely used in identification

and have gained more acceptance due to their reliability and adaptability. Existing

biometric identification systems are mainly based on individuals’ unique intrinsic

physiological features (e.g., face [342], iris [343], retina [344], voice [345], and fin-

gerprint [346]). However, the state-of-the-art person identification systems have

been shown to be vulnerable, e.g., anti-surveillance prosthetic masks can thwart

face recognition, contact lenses can trick iris recognition, vocoder can compromise

voice identification and fingerprint films can deceive fingerprint sensors. In this
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perspective, the EEG based biometric person identification systems are emerging

as promising alternatives due to their high attack-resilience [347, 348]. EEG-based

identification systems measure an individual’s brain response to a number of stimuli

in the form of EEG signals, which record the electromagnetic and invisible elec-

trical neural oscillations. An individual’s EEG signals are virtually impossible to

mimic for imposter, thus making this approach highly resilient to spoofing attacks

encountered by other identification techniques 1.

EEG signals, compared with other biometrics, have the following significant inherent

advantages [348]:

• Attack-Resilience. EEG data is invisible and untouchable and is impossible to

be cloned and duplicated. Therefore, an EEG-based identification system is

strengthened to verify human ID and robust against faked identities.

• Universality. One’s EEG signals are typically associated with the subject all

the time and hence security can be enforced anywhere and anytime.

• Uniqueness. Each individual processes his/her EEG signals which are unique,

independent and different from other’s [349]. This can potentially achieve high

identification accuracy.

• Accessibility. We have seen an increasing effort in recent years in the develop-

ment of low-cost and easy-to-wear EEG headsets. For example, the behind-

the-ear EEG collection equipment[350] can be easily attached to the ear (sim-

ilar to wireless earphone).

We put up a table showing the comparison of EEG with other biometric information

on several key characteristics in Table 9.1.

1For example, people can easily trick a fingerprint-based identification sys-
tem by using a fake fingerprint film (http://www.instructables.com/id/How-To-
Fool-a-Fingerprint-Security-System-As-Easy-/ ) or a face-recognition-based identi-
fication system by simply wearing a 200 dollars’ worth anti-surveillance mask
(http://www.urmesurveillance.com/urme-prosthetic/ )
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However, research on EEG-based identification is still in its infancy, and several key

challenges exist. One of the most significant issues is the low identification accuracy

as a result of the inherent low precision of EEG signals. Accurate identification is

challenging because the EEG data has very low signal-to-noise ratio. The state-of-

the-art approaches can achieve accuracy in the range of 80% to 95% [351, 347, 352,

353], which is not sufficient for practical deployments, particularly in high security

environments. Additionally, the identification algorithms are highly dependent on

the environment in which the EEG signals were collected and thus not robust and

adaptable to a broader range of scenarios. Changes in the application environment

(e.g., the number of channels, the sampling rate, and the training data size) may

lead to the decrease of accuracy2. Thus, an EEG-based identification model that

may work well under one kind of application environment (e.g., 64 channels and 160

Hz), may not achieve good performance in another application environment (e.g., 14

channels and 128 Hz). So far, we have not seen a universal EEG-based identification

algorithm which can perform well in a variety of real environments.

One of the most significant challenges is poor stability (the identification system may

work well at one time but fail another time due to the EEG signals are easy to be

interfered). This may due to the user’s physiological and psychological states such as

fatigue and angry [354, 355]. Intuitively, the states shift brought by the fluctuation of

user states can be divided into two categories: the dramatically shift (e.g., hysterical,

drunk, or under threaten) and the slight shift (e.g., headache or exciting). On one

hand, the EEG signals divergence bought by the former can help to enhance the

robustness of the identification system. For example, the phenomena could enhance

the security of the identification system that it fails to recognize the subject who

is under threatening (e.g., Hijacked by kidnapper). Knyazev [356] infers that EEG

signals are affected by the inherent factors such as panic, sustained pain, and sexual

arousal. On the other hand, however, the latter will reduce the signal quality but

more commonly occurred in the real world. For instance, the identification system

could identify the user when s/he is happy but fail when upset. Thus the slight shift

2This statement can be demonstrated in Section 9.4.7.
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should be overcome for its negative effect.

To address the aforementioned problems, we propose MindID, a Delta pattern EEG-

based person identification algorithm which is based on an attention-based recurrent

neural network. At first, to eliminate the interference of the slight shift brought by

the environmental noise and the physical and mental state of the individuals, we

attempt to learn the robust and reliable representation by decomposing the EEG

patterns. For this, we decompose the full spectrum of EEG data into specific pat-

terns (Delta, Theta, Alpha, Beta, and Gamma). Decomposed EEG patterns (e.g.,

Theta, Alpha, Beta, and Gamma), have been employed for EEG signal classification

(e.g., movement task classification [357]) in some works. However, there is few exist-

ing work that has focused on the Delta pattern. In this chapter, we discover that the

Delta pattern is the most discriminative and efficient pattern through our analysis

in Section 9.2. Moreover, we introduce the attention-based RNNs (Recurrent Neural

Networks) [358] which can automatically detect the most distinguishable information

from the input EEG data. More importantly, the attention mechanism3 automati-

cally re-allocates the weights to extract most discriminative features that are resilient

to the change in environmental factors. Therefore, the proposed approach is robust

under different collection environments with changes to the EEG collection hard-

ware, sampling rate, and channel numbers. The efficiency of attention-based RNN

framework has been demonstrated by the studies in speech recognition [358, 359],

NLP (Natural Language Processing) [360, 361, 362], and computer version [363].

Our main contributions in this chapter are highlighted as follows:

• We present an EEG-based identification approach, MindID, which adopts a

novel attention-based Encoder-Decoder RNN framework for learning discrimi-

native features among the user’s brainwaves and utilizes the learned features to

identify user identity through a boosting classifier. The attention mechanism

3Simply, attention mechanism refers to select the most pertinent piece of infor-
mation rather than using all available information. Attention Mechanisms in Neural
Networks are based on the visual attention mechanism found in humans, and has
been applied in computer version, NLP areas.
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enables our approach to automatically search the most discriminative features

for identification, and consequently achieve robust and adaptive operation over

different datasets collected from environments with varying characteristics.

• We analyze the EEG pattern decomposition and propose that the Delta pat-

tern is the most steady and distinguishable pattern for user identification.

Moreover, we design and conduct a set of experiments to verify the proposed

hypothesis.

• We design and conduct an experiment for collecting EEG data and use it to

collect two two real-world local datasets (EID-M and EID-S) which are under

single and multi trial settings, respectively4.

• We evaluate the proposed approach on 3 datasets (2 local and 1 public). The

results illustrate that our model achieves an accuracy of 0.982 which signif-

icantly outperforms the state-of-the-art and baselines. We demonstrate the

robustness and adaptability by the comparison between 3 datasets.

Note that all the necessary reusable codes and datasets in this this chapter have

been open-sourced for reproduction, please refer to this link 5.

9.1 Related Work

In this section, we separately present literature on three aspects: EEG-based person

identification models, EEG pattern decomposition, and applications of attention-

based RNN.

4Single trial refers to that the dataset is collected in one session (the period from
one subject putting the EEG headset on until all the experiment are finished then
putting off). Multi-trials represents the EEG data is collected from different trials,
which considered the effect on EEG data quality caused by the headset position
errors.

5https://drive.google.com/open?id=1t6tL434ZOESb06ZvA4Bw1p9chzxzbRbj
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Table 9.1: Comparison of various biometrics. EEG have considerable rttack-resilient
which is the most significant character of identification systems. ↑ denotes the higher
the better while ↓ denotes the lower the better.

Biometrics Attack-
Resilient ↑

Univer-
-sality ↑ Unique-

-ness ↑ Stability ↑ Accessi-
-bility ↑ Perform-

-ance ↑ Cost ↓

Face/Vedio Medium Medium Low Low High Low High
Finger/Palmprint Low High High High Medium High Medium
Iris Medium High High High Medium High High
Retina High Medium High Medium Low High High
Signature Low High Low Low High Low Medium
Voice Low Medium Low Low Medium Low Low
face Medium High Medium Medium Medium Medium High
Gait High Medium High Medium Medium High Low
EEG High High High Low Medium High Low

9.1.1 EEG-based Person Identification

Since EEG can be gathered in a safe and non-intrusive way, researchers have paid

great attention to exploring this kind of brain signals. For person identification,

EEG is promising for being confidential and attack-resilient but on the other hand,

complex and hard to be analyzed [353]. Jayarathne et al. [364] decompose the

EEG data and pay attentions on the Alpha and Beta wave. The Common Spatial

Patterns (CSP) values were extracted as main features to train the LDA classifier

which achieves accuracy of 96.97% for a 12 participants dataset. Thomas and Vinod

[353] take advantage of individual alpha frequency and delta band signals to com-

pose specific feature vectors. They also prefer PSD features but only perform the

extraction merely on gamma band. However, all of the above approaches only work

in one specific environment. Few studies attempt to build a universal EEG-based

identification model.

9.1.2 EEG Pattern Decomposition

Generally, the EEG data could be decomposed into several patterns (delta, theta,

alpha, beta, and gamma) corresponding to various brain states [365]. So far, the

majority of user ID identification studies have focused on features generated from
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the Alpha and Beta patterns.[348, 352]. Moreover, these works assume that the

EEG data is collected from the most favorable settings, i.e., when the subject is

resting/relaxed for Alpha waves or concentrating for Beta waves. The rest and relax

states are represented by the Alpha wave, therefore, a number of studies decompose

EEG raw signals into the Alpha pattern for future analysis. Bashar et al. [351] use

the filtered signals with frequency ranges from 0.5− 59Hz (including Delta, Theta,

Alpha, Beta and part of Gamma patterns) and calculate the statistics for user ID

classification. Kumari and Vaish [352] employ wavelet analysis to decompose original

EEG signals into 5 patterns (Delta to Gamma) and extract statistical measures of

each pattern. Thomas and Vinod [353] take Alpha peak frequency and peak power

and Delta band power as recognition features and achieves the highest recognition

rate as 0.9. To our best knowledge, this chapter is the very first work which specially

focused on the decomposition and analysis of Delta pattern and studies the person

identification based on it (the justification is given in Section 9.2).

9.1.3 Attention-based RNN

Attention-based RNN [363] introduces an attention mechanism to the RNN frame-

work. The attention mechanism enables RNN to allocate different weights to differ-

ent parts of the input, and consequently, improve the exploration of the correspond-

ing relationship between the input sequence and the output sequence. Generally,

attention module is added to the original RNN framework as an external module, but

is trained instantaneously with the RNN structure [37]. Attention-based RNN has

achieved success in speech recognition [358], NLP (Natural Language Processing)

[362], and computer version [363]. Bahdanau et al. [358] attempt to build a Large

Vocabulary Continuous Speech Recognition (LVCSR) Systems using attention-based

RNN and demonstrate that their approach, compared with traditional methods, re-

quires fewer training stages, less auxiliary data, and less domain expertise. Luong

et al. [362] explore the architecture of attention-based neural machine translation

and examine the effects of two attentional mechanisms (one that focuses on all
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Table 9.2: EEG patterns and corresponding characters. Awareness Degree denotes
the awareness the degree of being aware of an external world.

Patterns Hz Amplitude Brain State Awareness Produced Location
Delta 0.5-4 Higher Deep sleep pattern Lower Frontally and posteriorly
Theta 4-8 High Light sleep pattern Low Entorhinal cortex, hippocampus
Alpha 8-12 Medium Closing the eyes, relax state Medium Posterior regions of head
Beta 12-30 Low Active thinking, focus, high alert, anxious High Most evident frontally
Gamma 30-100 Lower During cross-modal sensory processing Higher Somatosensory cortex

source words and and the other which focuses on a subset of words) on the WMT

translation tasks between English and German in both directions. Ba et al. [363]

present an attention-based RNN for recognizing multiple objects in images, while

only being provided with class labels during training. The results show that the

attention-based RNN is more accurate and less computation than the state-of-the-

art. To our best knowledge, we are the very first work employing attention-based

RNN for EEG-based user identification.

9.2 EEG Pattern Analysis

In this section, we first introduce some background about EEG patterns followed

by a topographical analysis of real-world EEG data to discover which specific con-

stituent patterns capture the most distinctive features that allow us to distinguish

the subject’s identity. Next, we analyze why Delta pattern works best both quali-

tatively and quantitatively.

The EEG signals collected from any typical EEG hardware can can be divided into

several non-overlapping frequency bands (Delta, Theta, Alpha, Beta, and Gamma)

based on the strong intra-band correlation with a distinct behavioral state [366,

367, 365]. Each decomposed EEG pattern contains signals associated with partic-

ular brain information. The EEG frequency patterns and the corresponding char-

acteristics are listed in Table 9.2. The awareness degree in this chapter denotes

the perception of individuals while facing outside stimuli. Each frequency band

represents a specific active situation of brain state and a qualitative assessment of
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awareness. More specifically,

• Delta pattern (0.5 − 4 Hz) is associated with deep sleep while the subject

has lower awareness.

• Theta pattern (4 − 8 Hz) corresponds to light sleep in the realm of low

awareness.

• Alpha pattern (8 − 12 Hz) mainly occurs during eyes closed and deeply

relaxed state, and corresponds to the medium awareness.

• Beta pattern (12− 30 Hz) is the dominant rhythm while the subject’s eyes

are open and is associated with high awareness. Most of our daily activities

(such as eating, walking, and talking) are captured by Beta patterns.

• Gamma pattern (30 − 100 Hz) represents the joint interaction of several

brain areas to carry out a specific motor and cognitive function. This pattern

is associated with highest awareness.

In order to investigate which EEG pattern is most intrinsic and rich of distinctive

information for user identification, we study the EEG topography of different fre-

quency patterns. Figure 9.1 shows the EEG topography of various subjects on full

bands, Delta, Theta, Alpha, Beta, and Gamma patterns, respectively. Moreover, we

calculated the cosine-similarity between EEG signals belonging to different subjects

in a pairwise manner. The averaged cosine-similarity are as follows: 0.1313 (full

patterns), 0.0722 (Delta pattern), 0.1672 (Theta pattern), 0.2819 (Alpha pattern),

0.0888 (Beta pattern), and 0.082 (Gamma pattern). This illustrates that the delta

pattern has the lowest inter-subject similarity compared to other patterns and thus

is likely to offer the most distinguishable features for person identification. In the

following, we present two arguments to explain why Delta patterns are suited for

user identification. Prior studies have shown that the functional significance of delta

oscillations is not yet fully understood[356]. Our arguments below are based on the

current knowledge of Delta patterns.
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Figure 9.1: EEG topography of various subjects under different frequency patterns.
The inter-subject EEG signal cosine-similarity is calculated under each pattern and
the results are reported as 0.1313 (full patterns), 0.0722 (Delta pattern), 0.1672
(Theta pattern), 0.2819 (Alpha pattern), 0.0888 (Beta pattern), and 0.082 (Gamma
pattern). This illustrates that the delta pattern has the lowest inter-subject similar-
ity compared to other patterns and thus is likely to offer the most distinguishable
features for person identification.
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Table 9.3: The inter-subject correlation coefficients. S denotes subject. Full denotes
the un-decomposed full-frequency band data. The lower coefficients indicate that
the subject’s EEG data is easier to be distinguished. We used data from the EID-M
dataset (detailed in Section 9.4.1).

Subject S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 STD Average
Delta 0.137 0.428 0.246 0.179 0.221 0.119 0.187 0.239 0.089554 0.219
Theta 0.447 0.671 0.552 0.31 0.387 0.207 0.199 0.386 0.151929 0.395
Alpha 0.387 0.629 0.615 0.377 0.299 0.306 0.283 0.457 0.128653 0.419
Beta 0.249 0.487 0.329 0.308 0.281 0.307 0.238 0.441 0.083224 0.33
Gamma 0.528 0.692 0.538 0.362 0.521 0.667 0.428 0.537 0.102288 0.534

Patterns

Full 0.333 0.329 0.408 0.304 0.297 0.621 0.302 0.447 0.104231 0.38

On one hand, qualitatively, Delta pattern is universal and stable. A widely accepted

view about Delta pattern is that it only occurs in deep sleep state. This is a sig-

nificant reason why most researchers neglect Delta frequency in user identification.

However, recent research in neurophysiology claims that the Delta rhythm is often

evident during ‘quiet’ wakefulness in rodents and nonhuman primates [368]. This

suggests that the delta patterns can dominate the background activity of some neo-

cortical circuits in awake individuals. In addition, Delta pattern is observed to be

related to cognitive processing [369]. It’s easy to infer that Delta pattern exists

while the subject is awake (processing cognitive tasks). Compared with baseline

(a state with no delta waves), delta waves are associated with increase of activity

in many brain regions, which suggests that Delta pattern is not associated with a

state of brain quiescence, but rather associated with an active state during which

brain activity is consistently synchronized to the slow oscillation in specific cere-

bral regions [370]. Moreover, there is evidence that suggests that Delta patterns

are primarily created in the hypothalamus [371] which is associated with a series of

life-support body functions such as autonomic regulation (e.g.,blood pressure, heart

rate, thermoregulation) and neuroendocrine control [372]. Considerable evidence on

the association between delta waves and autonomic and metabolic processes shows

that integration of cerebral activity with homeostatic processes might be one of the

Delta wave‘s functions [356]. Since the life-support functions are operational all the

time, we can argue that regardless of the state of the individual, Delta oscillations

will always be produced.
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Next, we present some qualitative arguments to demonstrate that Delta patterns

contain the most distinguishable information. We analyze inter-subject correlations

of the decomposed EEG patterns, which measure the similarity of two samples

belonging to different subjects. For example, the inter-subject correlation of subject

1 is calculated by the following steps: 1) randomly select 10 samples from subject

1; 2) randomly select 10 samples from each of other subjects (subject 2-8) to get 70

samples; 3) calculate the pair wise similarity between the first 10 samples and the

latter 70 samples to get 700 similarities; 4) average the 700 similarities to produce

the finally inter-subject correlation coefficient of subject 1. We measure the inter-

subject correlations for all the frequency patterns in order to discover the most

effective pattern. We used data from the EID-M dataset (detailed in Section 9.4.1).

The correlation coefficient analysis results are shown in Table 9.3. We can observe

that the Delta pattern has the lowest inter-subject correlation coefficients compared

with other patterns. This indicates that the Delta patterns are most dissimilar to

other samples, and thus most distinctive. Therefore, Delta patterns show promise

for user identification. The dedicated comparative experiment between different

EEG patterns will be reported in Section 9.4.7.

9.3 Methodology

In this section, we first give an overview of the proposed MindID system and then

present the technical details for each component, namely, Preprocessing, EEG pat-

tern decomposition, Attention-based RNN, and Classification.

9.3.1 Overview

Figure 9.2 outlines the specific steps of the proposed MindID system. The brain-

waves are collected by the portable EEG acquisition equipment while the user is in a
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Figure 9.2: Flowchart of the proposed approach. At the beginning of identification,
raw EEG data E is collected from the user and then fed to the preprocessing stage.
The preprocessed data E ′ is decomposed to Delta pattern δ which serves as the input
to the attention-based RNN. The encoder compresses the input sequence X1 into an
intermediate code C and produces the weights W ′

att simultaneously. The attention-
based module accepts both C and W ′

att from the LSTM layer X i′ , processes W ′
att

through a softmax layer, and calculates the attention-based code Catt. Finally, a
statistical boosting classifier is employed to identify the user.

relaxed state with his/her eyes closed (our preliminary experiment results illustrate

that the Delta wave is more domination in relaxed state although still exists in all

states). Each EEG sample is a numerical feature vector with N dimensions which

correspond to the number of channels of the wearable EEG headset. The EEG sam-

ples are first preprocessed to remove the Direct Current (DC) offset and followed

by normalization (Section 9.3.2). Next, we employ EEG pattern decomposition to

isolate the Delta waves since they contain the most distinctive information which

can be used to identify the subject (as outlined in Section 9.2). The delta waves

are fed to an attention-based Encoder-Decoder RNN, which identifies the most dis-

tinctive channels and adjusts the weights accordingly. This model learns the deep

correlations between the delta patterns which are then fed to a statistical boosting

classifier (Section 9.3.5) to identify individual users.

190



9. MindID: EEG-based Person Identification System

9.3.2 Preprocessing

The raw EEG samples are pre-processed to remove the DC offset and normalize

the signals. Eliminating DC offset is necessary because EEG headsets invariably

introduce a constant noise component in the recorded signals. The specific headset

used in our experiments (details in Section 9.4) introduces a DC offset of 4200 muV6.

In the preprocessing stage, this constant DC offset is first subtracted from the raw

signal E.

Normalization also plays a crucial role in a knowledge discovery process for handling

different units and scales of features. For example, if two raw data sources, one rang-

ing from 0 to 1 and another ranging from 0 to 100 are together used for analysis then

the results will be dominated by the latter if normalization is not employed. Gener-

ally, there are three widely used normalization methods: Min-Max Normalization,

Unity Normalization, and Z-score Scaling Normalization [3]. Our experiments (not

shown for brevity) indicated that Z-score scaling is the most suited for the EEG

data. In summary, the preprocessed data E ′ can be calculated by

E ′ =
(E −DC)− µ

σ
(9.1)

where DC denotes the Direct Current which is 4200 muV, µ denotes the mean of

E −DC and σ denotes the standard deviation.

9.3.3 EEG Pattern Decomposition

In Section 3, we used empirical EEG data to show that the part of the EEG signals

that belong to the Delta frequency band (0.5− 4Hz) is particularly well-suited for

accurate and robust user identification. To isolate the signals in the Delta band, we

use a Butterworth band-pass filter of order 3 with the frequency range of 0.5Hz to

4Hz. The designed filter has the following specifications: the order is three, the low

6https://www.bci2000.org/mediawiki/index.php/Contributions:Emotiv
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cut is 0.5Hz, and the high cut is set as 4Hz. The preprocessed signal E ′ is fed as

input to this filter which provides the decomposed Delta pattern δ as output.

9.3.4 Attention-based RNN

Next, the Delta pattern δ is fed into an attention-based Encoder-Decoder RNN struc-

ture [37] which aims to learn the most representable features for user identification.

The general Encoder-Decoder RNN framework assumes that all feature dimensions

of the input sequence are equally important and assigns them equal weights. In

the context of EEG data, each dimension refers to a different electrode of the EEG

equipment. For example, the first dimension (first channel) collects the EEG data

from the AF37 electrode which is located at the frontal lobe of the scalp while the

7-th dimension is gathered from O1 electrode at the occipital lobe.

Since different EEG channels record different aspects of the brain signals, some

of which are more representative of the individual, an approach that assumes all

dimensions to be equal may not be suitable. On the other words, various EEG

channels have different contribution to the person identification task and should

be corresponding to different weights. The effectiveness of attention-based RNN

has been demonstrated in various domains including wearable sensor based activity

recognition [323, 373], natural language processing [360, 361, 362], computer version

[363] and speech recognition [358, 359]. Inspired by the wide success of this ap-

proach, we introduce the attention mechanism to the Encoder-Decoder RNN model

to assign varying weights to different dimensions of the EEG data. The proposed

attention-based Encoder-Decoder RNN consists of three components (as shown in

Figure 9.2): the encoder, the attention module, and the decoder. The encoder is

designed to compress the input Delta δ wave into a single intermediate code C;

the attention module calculates a better intermediate code Catt by generating a se-

7Both AF3 and O2 are EEG measurement positions in the International 10-20
Systems.
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quence of distinct weights Watt for the different dimensions; the decoder accepts

the attention-based code Catt and decodes it to the user ID. Note, this user ID is

predicted by the attention-based RNN instead of MindID, and the final identified

ID of MindID approach will be introduced in Section 9.3.5.

Suppose the data in i-th layer could be denoted by X i = (X i
j; i ∈ [1, 2, · · · , I], j ∈

[1, 2, · · · , N i]) where j denotes the j-th dimension of X i. I represents the number of

neural network layers in the proposed attention based RNN model while N i denotes

the number of dimensions in X i. Take the first layer as an example, we have X1 = δ

which indicates the input sequence is the Delta pattern. Let the output sequence

be Y = (Yk; k ∈ [1, 2, · · · , K]) where K denotes the number of user ID categories.

In this chapter, the user ID is represented by the one-hot label with length K. For

simplicity, let’s define the operation T (·) as:

T (X i) = X iW + b (9.2)

Further more, we have

T (X i−1
j , X i

j−1) = X i−1
j ∗W ′ +X i

j−1 ∗W ′′ + b′ (9.3)

where W , b, W ′, W ′′, b′ denote the corresponding weights and biases parameters.

The encoder component contains several non-recurrent fully-connected neural net-

work layers and one recurrent Long Short-Term Memory (LSTM) layer. The non-

recurrent layers are employed to construct and fit a non-linear function to purify

the input Delta pattern. The necessity of which is demonstrated by our preliminary

experiments8. The data flow in these non-recurrent layers are calculated as follows,

X i+1 = T (X i) (9.4)

The LSTM layer is adopted to compress the output of non-recurrent layers to a

length-fixed sequence which is regarded as the intermediate code C. Suppose LSTM

8Some optimal designs like the neural network layers are validated by the pre-
liminary experiments but the validation procedure will not be reported in this this
chapter for space limitation
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is the i′-th layer, the code equals to the output of LSTM, which is C = X i′
j . The

X i′
j can be measured by

X i′

j = L(ci
′

j−1, X
i−1
j , X i′

j−1) (9.5)

where ci′j−1 denotes the hidden state of the (j−1)-th LSTM cell. The operation L(·)
denotes the calculation process of the LSTM structure, which can be inferred from

the Equation 3.1 to Equation 3.6.

The attention module accepts the final hidden states as the unnormalized attention

weights W ′
att which can be measured by the mapping operation L′(·) (similar with

Equation 9.5)

W ′
att = L′(ci′j−1, X

i−1
j , X i′

j−1) (9.6)

and calculate the normalized attention weights Watt

Watt = softmax(W ′
att) (9.7)

The softmax function is employed to normalize the attention weights into the range

of [0, 1]. Therefore, the weights can be explained as the probability that how the

code C is relevant to the output results. Under the attention mechanism, the code

C is weighted to Catt
Catt = C �Watt (9.8)

Note, C and Watt are trained instantaneously. The decoder receives the attention-

based code Catt and decodes it to predict the user’s identity Y ′9. Since Y ′ is predicted

at the output layer of the attention based RNN model (Y ′ = XI), we have

Y ′ = T (Catt) (9.9)

At last, we employ the cross-entropy function to calculate the prediction cost be-

tween the predicted ID Y ′ and the ground truth Y . `2-norm (with parameter λ) is

selected to prevent overfitting. The cost is optimized by the AdamOptimizer algo-

rithm [231]. The threshold for the number of iterations of the attention-based RNN

9Note, Y ′ is not the identification results of MindID model. The final identified
user ID is ID calculated in Equation 9.11

194



9. MindID: EEG-based Person Identification System

is set as niter. The weighted code Catt has a linear relationship with the output

layer and the predicted results. If the model is trained well then the weighted code

Catt could be regarded as the weighted code as a high-quality representation of the

identity of the user. We set the learned deep feature XD equals to Catt, XD = Catt,

and use it to recognize the user in the identification stage.

9.3.5 Identification

In this section, we employ Extreme Gradient Boosting classifier (XGB) [260] to

classify the learned deep feature XD for user identification. The XGB classifier

fuses a set of classification and regression trees (CART) and exploits as detailed

information as possible from the input features XD. It builds multiple trees and each

tree has its leaves and corresponding scores. Moreover, it proposes a regularized

model formalization to prevent over-fitting and it is widely used for its accurate

prediction power.

The learned deep feature XD is used to train a number of the CART (there are M

trees) and predict a set of user’s IDs. Suppose xd ∈ XD is a single sample of the

deep feature. The finally identification result of the input xd is calculated as

ym = f(xd) (9.10)

ID = F (
M∑
1

ym),m = 1, 2, · · · ,M (9.11)

where f denotes the classification function of a single tree, ym denotes the predicted

ID of the m-th tree and F denotes the mapping from single tree prediction space

to the final prediction space. The ID is the final identified user ID. The overall

procedure is summarized in Algorithm 3.
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ALGORITHM 3: The MindID User Identification Algorithm
Input: EEG raw data E

Output: Identification results ID

1: Initialization;

2: Preprocessing: E′ ← E;

3: EEG pattern decomposition: δ ← E′;

4: if iteration < niter then

5: for i = 1, 2, · · · , I do

6: X1 = δ

7: C ← X1,L(ci′j−1, X
i−1
j , Xi′

j−1)

8: Watt ← C,L′(ci′j−1, X
i−1
j , Xi′

j−1)

9: Catt = C �Watt

10: XD = Catt

11: end for

12: else

13: Return XD

14: end if

15: for XD do

16: ID ← XD

17: end for

18: return ID

9.4 Experiments and results

We first outline the experimental settings in Section 9.4.1. Next, we systematically

investigate the following questions: How does MindID compare with state-of-the-

art methods and other baselines (Section 9.4.2)? How efficient is MindID (Sec-

tion 9.4.3)? Is MindID robust under a multi-trial setting (Section 9.4.4)? Does Min-

dID exhibit consistence results when tested with different datasets (Section 9.4.5)?
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Table 9.4: Datasets details. In Trial column, M denotes multi-trials and S denotes
single-trial. EID-M is used to compare the proposed approach with the state-of-
the-art and baselines; the comparison between EID-M and EID-S are used to verify
the robustness; the comparison between EID-S and EEG-S are used to verify the
adaptability. EED-S-L is used to evaluate the influence of the number of participants
and EEG-S is a subset of EEG-S-L.

Name Source Channels Trial Frequency Subjects Comparison Robustness Adaptability
EID-M Local 14 M 128 Hz 8 X X -
EID-S Local 14 S 128 Hz 8 - X X
EEG-S-L Public 64 S 160 Hz 20 - - -
EEG-S Public 64 S 160 Hz 8 - - X

Do the number of subjects impact the results (Section 9.4.6)? How do other decom-

posed EEG signals compare with the Delta signals (Section 9.4.7)?

9.4.1 Experimental Settings

Datasets

The proposed MindID system is evaluated by three datasets: a multi-trial local

dataset (EID-M), a single-trial dataset (EID-S), and a public dataset (eegmmidb).

The details of datasets are introduced in Table 9.4. All the datasets measure the

EEG raw data from the subject’s scalp while the subject is relaxed.

EID-M denotes EEG based ID recognition with the training set coming from the

different trials in the same day. Since a multi-trial scenario is more representative

of a practical setting, EID-M dataset is used to compare MindID with the state-of-

the-art methods and baselines. The EID-M dataset is collected locally in our lab

from 8 subjects (5 males and 3 females) aged from 24 to 28. We use the Emotiv

Epoc+10 headset. The experiment setting refers to Figure 4.8 in Chapter 4.

The Emotiv Epoc+ contains 14 channels and the sampling rate is set as 128 Hz. In

the experiment, each subject undertakes three trials and each trial produces 7,000

10https://www.emotiv.com/product/emotiv-epoc-14-channel-mobile-eeg/
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Table 9.5: Evaluation report of EID-M dataset. The overall accuracy achieves 0.982
of 21000 testing samples. The support is the number of samples of each class.

0 1 2 3 4 5 6 7 Average/Total
Precision 0.9723 0.9789 0.9777 0.9894 0.989 0.9814 0.9898 0.9774 0.982
Recall 0.9822 0.9885 0.9945 0.9711 0.9808 0.9821 0.9742 0.9834 0.9821
F1-score 0.9772 0.9837 0.9860 0.9802 0.9849 0.9818 0.9820 0.9804 0.982

EEG samples. Summarily, each subject has 21,000 samples and the whole EID-M

dataset contains 168,000 samples.

EID-S is collected under the same situation with EID-M (5 males, 3 females, 14

channels, and 128 Hz). The main difference between them is the former dataset is

collected in the single trial. EID-S in total contains 56,000 samples belonging to 8

subjects (7,000 samples per subject).

EEG-S-L is a subset of the widely used online public dataset eegmmidb (EEG motor

movement/imagery database). It is collected with the BCI2000 (Brain Computer

Interface) instrumentation system 11 [233] (64 channels and 160 Hz sampling rate).

EEG-S contains 20 subjects with 7000 samples collected from each subject in a single

trial setting.

EEG-S is a subset of EEG-S-L, which only contains 8 subjects. To compare the

adaptability of the proposed approach (Section 9.4.5), we randomly select 8 par-

ticipants from EEG-S-L to compare with EID-S. This allows us to undertake a

like-by-like comparison with the only variable being the type of EEG headset used.

To assess the performance of the proposed MindID model, we employ several widely-

used evaluation metrics such as accuracy, precision, recall, F1 score, ROC (Receiver

Operating Characteristic) curve, support, and AUC (Area Under the Curve).

11http://www.schalklab.org/research/bci2000
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(a) Confusion matrix of EID-M (b) ROC and AUC of EID-M

Figure 9.3: Confusion matrix and ROC curves of EID-M

9.4.2 Overall Comparison

In this section, we firstly report the performance of MindID using the EID-M dataset

and then compare the proposed approach with the state-of-the-art approaches and

baselines. We randomly select 147,000 samples from EID-M to train the model

and the residual 21,000 samples are used to test the performance. Through tuning,

the hyper-parameters used in our approach are listed following. In EEG pattern

decomposition, we employ a 3 order butter-worth band-pass filter and the passband

is [0.5Hz, 4Hz]. In the attention-based RNN structure, the encoder consists of 1

input layer (14 nodes), 3 non-recurrent fully-connected hidden layers (164 nodes) and

1 recurrent LSTM layer (164 cells); the decoder includes 1 fully-connected hidden

layer (164 nodes) and 1 output layer (8 nodes). The learning rate is 0.001; the

parameter of `− 2 norm is set as 0.001; the encoder and decoder separately have 6

and 2 layers; training dataset is divided into 7 batches with the batch size of 21,000;

the number of training iterations is 2000. In the classifier: the learning rate is 0.7;

the sub-sampling rate is 0.9; the max depth is set as 6; the training iterations is 500.

The ground truth (from 0 to 7) is represented as a one-hot label which corresponding

to the ID of subjects.
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(a) Confusion matrix of EID-S (b) ROC and AUC of EID-S

Figure 9.4: Confusion matrix and ROC curves of EID-S

The proposed approach achieves the highest identification accuracy of 0.982. The

detailed confusion matrix, evaluation report, and ROC curves (with AUC scores)

are illustrated in Figure 9.3a, Table 9.5, and Figure 9.3b, respectively. Observe that

our approach obtains higher than 0.97 precision for each class.

In addition, we compare the accuracy of our method and other state-of-the-art and

baselines in Table 9.6. RF denotes Random Forest, AdaBoost denotes Adaptive

Boosting, LDA denotes Linear Discriminant Analysis, PD denotes for Pattern De-

composition, AR denotes AutoRegressive method, and XGB denotes for X-Gradient

Boosting classifier (the classifier used in our approach). In addition, the key param-

eters of the baselines are listed here: Linear SVM (C = 1), RF (n = 200), KNN

(k=3), and AR (13 order autoregressive from 40 samples). The setting up of PD,

RNN and XGB classifier are same as the hyper-parameters mentioned above. The

methods used in the state-of-the-art are introduced as follows:

• Jayarathne et al. [364] focus on the 8 to 30 Hz Alpha and Beta combined

frequency band across all EEG channels and extract the Common Spatial

Patterns (CSP) values as classification features. LDA is employed as the clas-

sifier.

• Bashar et al. [351] first remove noise and artifacts using Bandpass FIR filter.
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(a) Confusion matrix of EEG-S (b) ROC and AUC of EEG-S

Figure 9.5: Confusion matrix and ROC curves of EEG-S

Then learn the features through multi-scale shape description (MSD), multi-

scale wavelet packet statistics (WPS) and multi-scale wavelet packet energy

statistics (WPES). These features are finally used to train a support vector

machine (SVM) classifier.

• Keshishzadeh et al. [374] investigates the Autoregressive (AR) coefficients as

the feature set which is identified by an SVM classifier.

• Gui et al.[349] propose to reduce the noise level through a low-pass filter,

extract frequency features using wavelet packet decomposition, and perform

classification based on a deep neural network.

• Thomas and Vinod [353] combine subject-specific Alpha peak frequency, peak

power, and Delta band power values to form discriminative feature vectors

and templates.

• Kumari and Vaish [352] apply discrete wavelet analysis to decompose the raw

EEG signals corresponding to sub-band frequency (0-59Hz). The extracted

statistical measures and energy calculation of each decomposed wave are clas-

sified by a neural network structure.
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Table 9.6: The accuracy comparison with baselines and the state-of-the-art meth-
ods over EID-M dataset. The result shows that our approach achieves the highest
accuracy of 0.982.

Index Method Acc Recall F1-Sore AUC
1 Jayarathne[364] 0.919 0.914 0.9165 0.946
2 Bashar et al. [351] 0.873 0.898 0.8853 0.907
3 Keshishzadeh et al. [374] 0.815 0.843 0.8288 0.859
4 Gui et al.[349] 0.833 0.811 0.8219 0.842
5 Thomas and Vinod [353] 0.859 0.869 0.8640 0.888
6 Kumari and Vaish [352] 0.875 0.872 0.8735 0.901
7 RF 0.795 0.813 0.8039 0.827
8 KNN 0.849 0.836 0.8424 0.847
9 RNN 0.815 0.803 0.8090 0.821
10 RNN+XGB 0.808 0.789 0.7984 0.803
11 PD+RNN 0.853 0.821 0.8367 0.844
12 AR+RNN 0.811 0.798 0.8044 0.831
13 XGB 0.815 0.811 0.8130 0.853
14 PD+XGB 0.965 0.959 0.9620 0.977
15 Ours (EID-M) 0.982 0.9821 0.9820 0.999

As noted earlier, we use the EID-M dataset for the comparison. As observed from

Table 9.6, our method significantly outperforms all other methods in all metrics.

9.4.3 Efficiency Evaluation

In this section, the efficiency refers to the latency incurred to perform the identifi-

cation.High latency may limit the suitability for practical deployment. We compare

MindID with the same baselines and classification methods as in Section 9.4.2. We

run the experiments on a GPU-accelerated machine with Nvidia Titan X Pascal

GPU, 768G memory, and 145 TB PCIe based SSD.

The time required to train the identification model is illustrated in Figure 9.6(the

X-axis label denotes the index of algorithms shown in Table 9.6). Observe that our

approach (PD+RNN+XGB) and RNN+XGB require longer to train the model that

other methods. There are two reasons behind this. First, these algorithms iterate
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Figure 9.6: Training time. The index cor-
responding the index in Table 9.6.
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Figure 9.7: Testing time. The index cor-
responding the index in Table 9.6.

over a large number of rounds. RNN and XGB executes 2000 and 500 iterations,

respectively. Second, the deep learning structure and the boosting trees have an

inherent complex structure and require many more parameters than other classifica-

tion models. Compared to the training time, however, for practical considerations,

the execution time of an algorithm during testing is more important than training

which is a one-time operation. Figure 9.7 shows that the testing time of our model

is less than 1 second, which is shorter than most of the state-of-the-art methods and

baselines. Summarily, while MindID requires longer to train, the actual execution

is near real-time (< 1 sec), thus making it attractive for real-world deployment.

In practice, the amount of data needed to train the model is also an important

consideration as gathering training data is not so easy. We conduct a set of exper-

iments to investigate the influence of training data size on the accuracy. We run

the experiments for 5 times and report the error-bar of results in Figure 9.8. Our

approach achieves an accuracy of 0.9% even when only 12.5% of the available data

set is used for the training. This is rather promising and suggests that our model

has a low dependency on the size of the training data.

9.4.4 Robustness Evaluation

When an EEG-based system is deployed in the real world, the typical usage would

always be in a multi-trail setting. That is the data used to train the system is
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with training data size
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Figure 9.9: The relationship between
training subject number and accuracy

collected in one trial (i.e., one set of circumstances) which would be different form

the conditions in which the system is employed for user identification. Note that the

placement of the EEG headset on the user’s skull may vary slightly for each usage.

For example, the user wears the EEG headset and collects the first trial data; then

collects the second trial data after he/she removes the headset and puts it back

again. There may be some difference between two trials data, which is caused by

the different placement position or other internal equipment reasons. Therefore,

The divergence of the training data and testing data should be considered when the

identification system is designed.

In this section, we evaluate the robustness of the proposed approach by analyzing

whether the trial setting (single vs multi-trial) affects the identification accuracy.

Two datasets, which respectively contain single-trial identification data (EID-S) and

multi-trial identification data (EID-M), are employed.

The evaluation of EID-S is shown in Table 9.7, we can observe that our approach

achieves the overall accuracy of 0.9882% and the precision for all classes is greater

0.98. To gain further insight, the confusion matrix (Table 9.4a) and ROC curves

(Figure 9.4b) are provided. The performance of MindID with EID-M was reported in

Section 9.4.2 (Figure 9.3a, Table 9.5, and Figure 9.3b). The multi-trial setting results

in a very slight decrease (0.9882 to 0.982) in the accuracy. However, the impact of

inter-trial divergence is rather minimal (0.062). This suggests that MindID has

the potential to be deployed in the real-world and achieve repeatable and accurate

results in diverse conditions.
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Table 9.7: Evaluation report of EID-S dataset. The overall accuracy achieves 0.9882
of 7000 testing samples.

0 1 2 3 4 5 6 7 Average/Total
Precision 0.9897 0.9881 0.9944 0.9837 0.9895 0.9844 0.9866 0.9897 0.9882
Recall 0.992 0.9924 0.9944 0.9712 0.986 0.9939 0.9789 0.9977 0.9883
F1-score 0.9908 0.9903 0.9944 0.9774 0.9878 0.9891 0.9827 0.9937 0.9883

9.4.5 Adaptability Evaluation

To examine the adaptability and consistency, our model is evaluated using another

dataset (EEG-S) which is collected from a more precise EEG equipment, BCI 2000

which has 64 channels and collects signals at 160Hz. However, this headset is rather

inconvenient to the subject. We selected a subset of this publicly available headset

such that it matches the sample size of user population of our local dataset (EID-S),

i.e., 56,000 samples from 8 subjects.

The results presented in Table 9.8 illustrate that our model achieves an accuracy

of 0.9989 while all other metrics (precision, recall, and F1-score) are greater than

0.995. The confusion matrix and ROC curves are given in Figure 9.5a and Fig-

ure 9.5b, respectively. The accurate classification of EEG-S demonstrates that our

approach has good adaptability and able to handle different situations (such as

different types of EEG equipments).

Comparing with the results for EID-S (Figure 9.4a, Table 9.7, and Figure 9.4b), we

observe a slight improvement with EEG-S of about 0.01. We attribute this to the

improved precision of the EEG headset in the number of channels (64 vs 14) and a

higher sampling rate (160Hz vs 128Hz).

Section 9.4.4 and 9.4.5 illustrate that our approach is robust and adaptable and thus

has the potential for practical deployment in many different environments.
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Table 9.8: Evaluation report of EEG-S dataset. The overall accuracy achieves 0.9989
of 7000 testing samples.

0 1 2 3 4 5 6 7 Average/Total
Precision 1 0.9988 0.9988 0.9957 1 1 0.9988 0.9989 0.9989
Recall 1 0.9988 0.9988 0.9989 1 0.9988 0.9964 0.9989 0.9988
F1-score 1 0.9988 0.9988 0.9973 1 0.9994 0.9976 0.9989 0.9989

9.4.6 Effect of User Population Size

The user population size is an important factor that can influence the performance

of the identification system. Intuitively, as the target user population size increases,

there is less distinction between the EEG signals of the individual subjects, which is

thus likely to impact the identification accuracy. In this section, we design extensive

experiments in order to explore the influence of the user population size. The dataset

EEG-S-L contains EEG data collected from 20 subjects. We vary the total number

of users in the target population group from 8 to 20 (in increments of 2) and plot

the accuracy results in Figure 9.9. It is evident that there is a slight decrease in the

accuracy from 0.9989 for 8 subjects to 0.9937 for 20 subjects. However, the accuracy

is still over 99% and thus rather competitive. Furthermore, from Figure 9.9, we can

observe that the derivative of the relationship curve is negative, which suggests that

the proposed approach is likely to be effective for even larger population sizes.

9.4.7 Comparison of Different EEG Frequency Patterns

This section presents experiments to validate the hypothesis proposed in Section 9.2,

which claims that the Delta pattern signals contain most distinguishable information

for identification. In this experiment, we use the 3 dataset (EID-M, EID-S, and

EEG-S) and decompose EEG signals into 6 frequency patterns, namely: Delta,

Theta, Alpha, Beta, Gamma, and Full-frequency. The last set contains the entire

frequency band of the EEG signals from 0 to 128Hz. Since the sampling rate of the

EEG signals is 128Hz, the Butterworth filter employs a frequency range of 0 - 64
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Table 9.9: EEG Pattern Decomposition Analysis

Dataset Methods EEG Patterns Best Result
Delta Theta Alpha Beta Gamma Full

Jayarathne [364] 0.919 0.701 0.725 0.598 0.602 0.785
Bashar et al. [351] 0.873 0.716 0.425 0.393 0.412 0.571
Keshishzadeh et al. [374] 0.815 0.672 0.536 0.273 0.409 0.511
SVM 0.143 0.157 0.137 0.135 0.138 0.2745
RF 0.936 0.707 0.677 0.489 0.435 0.7935
KNN 0.941 0.804 0.618 0.35 0.313 0.819
AdaBoost 0.251 0.13 0.15 0.15 0.171 0.24
LDA 0.148 0.154 0.135 0.135 0.129 0.28
XGB 0.965 0.665 0.69 0.495 0.414 0.815
RNN 0.917 0.709 0.708 0.518 0.411 0.813

EID-M

Ours 0.982 0.713 0.73 0.513 0.423 0.822

0.982
(Delta)

Jayarathne [364] 0.938 0.799 0.764 0.602 0.663 0.828
Bashar et al. [351] 0.884 0.760 0.437 0.413 0.452 0.597
Keshishzadeh et al. [374] 0.846 0.699 0.672 0.413 0.498 0.628
SVM 0.135 0.162 0.181 0.152 0.132 0.408
RF 0.947 0.771 0.719 0.587 0.377 0.863
KNN 0.953 0.824 0.714 0.472 0.495 0.853
AdaBoost 0.278 0.29 0.162 0.2 0.16 0.3
LDA 0.14 0.16 0.183 0.152 0.122 0.41
XGB 0.981 0.785 0.791 0.599 0.489 0.893
RNN 0.9425 0.7568 0.8175 0.6331 0.5141 0.9045

EID-S

Ours 0.9882 0.821 0.8259 0.612 0.517 0.913

0.9882
(Delta)

Jayarathne [364] 0.967 0.891 0.855 0.678 0.693 0.898
Bashar et al. [351] 0.903 0.836 0.537 0.559 0.612 0.775
Keshishzadeh et al. [374] 0.928 0.832 0.732 0.611 0.589 0.801
SVM 0.216 0.167 0.148 0.169 0.186 0.652
RF 0.972 0.885 0.819 0.823 0.87 0.957
KNN 0.974 0.865 0.781 0.559 0.743 0.936
AdaBoost 0.32 0.32 0.27 0.23 0.22 0.34
LDA 0.186 0.17 0.28 0.168 0.162 0.6618
XGB 0.9972 0.982 0.967 0.959 0.953 0.989
RNN 0.9981 0.9667 0.964 0.947 0.952 0.9886

EEG-S

Ours 0.9989 0.972 0.968 0.961 0.955 0.99

0.9989
(Delta)

Hz.

We compare MindID with a subset of state-of-the-art methods and baselines as in

Section 9.4.2. In particular, we select [364, 351, 374] as these methods do not rely

on signals belonging to specific frequency bands but can rather use all 6 patterns

under consideration. The results are shown in Table 9.9. The primary conclusions

are listed as follows:

• Our approaches achieves the highest accuracy on all of the three datasets

(with different trials, collection equipment, and sampling precision), which

shows that our model has outstanding robustness and adaptability.
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• The 11 methods including MindID achieve their best results with the Delta

patterns. This result provides strong evidence to suggest that Delta pattern

contain the most distinctive information for human identification and thus

proves the hypothesis proposed in Section 9.2.

• Several statistical classification models (such as RF, KNN, and XGB) work

well on the low-frequency patterns (Delta and Theta) but do not achieve good

results with high-frequency band signals (Alpha, Beta, and Gamma).

• Deep learning methods are particularly good at extracting deep relationships

between the samples which are inherently noisy and fluctuating. This conclu-

sion can be inferred from the observations that RNN has lower accuracy than

RF/KNN/XGB with Delta and Theta patterns but performs better with other

patterns. These observations inspire the combination of the attention-based

RNN structure and the tree-boosting classifier.

• The baselines and the state-of-the-art methods can achieve acceptable identifi-

cation accuracy with high-quality EEG dataset (EEG-S) but performs poorly

with the low-quality datasets (EID-M and EID-S). Consider the Full-frequency

pattern as an example, RF/XGB/RNN achieves an accuracy of more than 0.95

on EEG-S but lower than 0.82 on EID-M. However, our approach consistently

achieves high accuracy no matter the data quality. This suggests that Min-

dID has the potential to deal with various real-world effects and thus a prime

candidate for practical deployment.

9.5 Discussion

In this chapter, we propose an EEG-based identification approach and evaluate

the robustness and adaptability over three datasets. In this section, we discuss

the challenges and potential directions for future EEG-based person identification

system.
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• First, EEG-based identification system is less vulnerable to attacks compared

to existing biometric identification systems. In order to evaluate the attack-

resilience of MindID, We test our approach to dealing with the threat from

unauthorized subjects among a number of attack categories [375]. We ran-

domly select 10 subjects from EEG-S-L dataset as authorized users while the

rest of users are as unauthorized subjects. During the testing, given the unau-

thorized users’ EEG signals, MindID predicts the probability indicating how

likely the samples belong to an authorized subject or not. The specific user

will be regarded as unauthorized if the predict probability is under a threshold.

Our experimental results demonstrate that MindID is able to precisely detect

the authorized users with around 99% accuracy under an appropriate thresh-

old setting. This suggests that our approach has the potential to distinguish

the attack from unauthorized subject.

• Second, the impact of variations in the EEG signals over longitudinal scales

on the performance of such identification systems needs to be studied. For a

thorough investigation, it would be necessary to collect EEG data over multiple

trials spread across several days. We have taken some preliminary steps in

this regards by collecting EEG data from 8 subjects across 3 separate trials.

However, there is scope to undertake more extensive evaluations in this regard.

• EEG signals are known to be sensitive to various factors such as the mood of

the subject, intake of foods, drugs and alcohol. Knyazev [356] infers that EEG

signals are affected by inherent factors such as panic, sustained pain, sexual

arousal, etc. Dubbelink et al. [376] conduct experiments in obese and lean

female adolescents and record the Magnetoencephalographic (MEG) signal

of participants’ brain. The obese adolescents had increased synchronization

in delta and beta frequency bands compared to lean controls. Reid et al.

[377] claim that the increase of delta power during the first 5 min following

cocaine was correlated with increased ratings of cocaine craving. Reward-

related decrease of delta activity has been observed after administration of

legal psycho-active drugs, such as alcohol [378], tobacco [379], and caffeine
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[380]. One future scope of our future work is to study how the identification

system is influenced by the aforementioned factors and enhance the current

approach to be more adaptive.

• The impact of population size on the performance needs further investigation.

In this chapter, explore this effect to some extent but considering a corpus of

20 subjects. However, further investigations with larger groups, for example,

100 subjects, are necessary. That said, our results already demonstrate that

MindID can be used in settings such as small offices which are accessed by a

small group of people.

• The EEG data of an individual is known to change gradually with environmen-

tal factors such as age, mental state and lifestyle. For example, Delta patterns

are known to decrease with age in older individuals [381]. This suggests that

the pre-trained model used in MindID should be updated when such changes

are detected. In our future work, we aim to develop an online learning system

which can automatically retrain the model using the data collected during the

operational phase.

• While we provide some explanations in Section 9.2 for why Delta patterns may

be most informative for user identification, the underlying mechanism is still

not well known. Further investigation is necessary.

• The privacy of pervasive EEG technology is not concerned in this chapter.

The collected EEG data may not only contain subject ID related information

but also infers other privacy of the subject (e.g., emotion and fatigue state).

In our future work, we attempt to propose an algorithm to eliminate other

private information in the collected EEG data.
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9.6 Conclusion

Taking the advantages of EEG-based techniques for attack-resilient, we propose a

biometric EEG-based identification approach to overcome the limitations of tradi-

tional biometric identification methods. We analyzed the EEG data pattern charac-

teristics and capture the Delta pattern which takes the most distinguishable features

for user identification. Based on the pattern decomposition analysis, we report the

structure of the proposed approach. In the first step of identification, the pre-

processed EEG data is decomposed into Delta pattern. Then an attention-based

RNN structure is employed to extract deep representations of Delta wave. At last,

the deep representations are used to directly identify the user’ ID. The proposed

approach is evaluated over 3 datasets (two local and one public dataset). The ex-

periments results illustrate that our model achieves the accuracy of 0.982, 0.9882,

and 0.9989 over three datasets, separately. The results also infer the robustness and

adaptability of our model. We also outline several directions for future research in

EEG-based identification.
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Chapter 10

Enabling Brain Typing via Deep

Feature Learning of EEG Signals

As an important pathway between human brains and the outside world [259], BCI

systems allow people to communicate or interact with external devices such as

wheelchairs or service robots, through their brain signals. Among the different

types of brain signals, MI-EEG is especially popular and has demonstrated promis-

ing potential in discerning different brain activities in BCI systems. Motor imagery

is a mental process where a subject imagines performing a certain action such as

closing eyes or moving feet. Basically, EEG1 is a method to analyze brain activities

by measuring the voltage fluctuations of ionic current within the neurons of brains.

In practice, electrodes are usually placed on the scalp for the measurement in a

non-invasive and non-stationary way [382].

One of the most promising and widely discussed applications of EEG-based BCI is

to enable people to type via direct brain control [383]. In this chapter, we aim at

enabling a brain typing system by enhancing the decoding accuracy of EEG signals

1In this chapter, we will use the terms EEG and MI-EEG interchangeably.

212



10. Enabling Brain Typing via Deep Feature Learning of EEG Signals

for a wider range of brain activities (e.g., multi-class scenario). We envision a real-

world implementation of such a system which can interpret the user’s thoughts to

infer typing commands in real-time. Motor disabled people would benefit greatly

from such a system to express their thoughts and communicate with the outside

world.

However, the design of a practical and effective BCI-system is faced with the fol-

lowing major challenges. First, EEG signals usually have very low signal-to-noise

ratio [384]. As a result, EEG signals inherently lack sufficient spatial resolution

and insight on activities of deep brain structures. Second, data pre-processing,

parameter selection, and feature engineering are all time-consuming and highly de-

pendent on human expertise in the domain. Third, the state-of-the-art approaches

can achieve an accuracy of at most 70∼85%, which though impressive is not suffi-

cient for widespread adoption of this technology. Fourth, existing research mainly

focuses on discerning EEG signals under the binary classification situation and little

work has been conducted on multi-class scenarios. Intuitively, the more scenarios

an EEG-based control system can distinguish, the wider is its applicability in the

real-world.

To tackle the aforementioned challenges, we propose a novel hybrid deep neural

network that combines the benefits of both CNN [222] and RNN [385] for effec-

tive EEG signal decoding. Our model is capable of modeling high-level, robust and

salient feature representations hidden in the raw EEG signal streams and captur-

ing complex relationships within data via stacking multiple layers of information

processing modules in a hierarchical architecture. The main contributions of this

chapter are highlighted as follows:

• We design a unified deep learning framework that leverages recurrent and con-

volutional neural networks to capture spatial dependencies of raw EEG signals

based on features extracted by convolutional operations and temporal corre-

lations through RNN architecture, respectively. Moreover, an Autoencoder

layer is fused to cope with possible incomplete and corrupted EEG signals to
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enhance the robustness of EEG classification.

• We extensively evaluate our model using a public dataset and also a limited

but easy-to-deploy dataset that we collected using an off-the-shelf EEG de-

vice. The experimental results illustrate that the proposed model achieves

high levels of accuracy over both the public dataset (95.45%) and the local

dataset (94.27%). This demonstrates the consistent applicability of our pro-

posed model. We have made our local dataset and the source code used in our

evaluations available to the research community to encourage further research

in this area and foster reproducibility of results.

• We also present an operational prototype of a brain typing system based on

our proposed model, which demonstrates the efficacy and practicality of our

approach. A video demonstrating the system is made available 2.

10.1 Methodology

In this section, we first provide an overview of the proposed approach and then

present the technical details.

10.1.1 Overview

The CNN and RNN have both been demonstrated to be effective for the EEG data

decoding. Intuitively, we attempt to combine the advantages of them. However,

the experiential experiments show that the simple concatenation of temporal and

spatial features can not outperform the use of only one of them. Therefore, we

design a feature adaptation method to map the stacked features to a new space

2http://www.xiangzhang.info
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Figure 10.1: The flow chart of the proposed approach. The input raw EEG data
is a single sample vector denoted by Eī ∈ RK (take K = 64 as an example). The
C 1 layer denotes the first convolutional layer, the C 2 layer denotes the second
convolutional layer, and so on. The same theory, the P 1 layer denotes the first
pooling layer; the FC 1 layer denotes the first fully connected layer; the H 1 layer
denotes the first hidden layer. The stacked temporal-spatial feature is generated by
the FC 2 layer in the CNN and the H 5 layer in the RNN.

which can fuse the distinctive information from temporal and spatial features. Fig-

ure 10.1 illustrates the various steps involved. The essential goal of our approach

is to design a deep learning model that precisely classifies the user’s intents based

on EEG data. In summary, we propose a hybrid approach which contains several

components: deep feature learning (Section 10.1.2), feature adaption and intent

recognition (Section 10.1.3).
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10.1.2 Deep Feature Learning

We aim to learn the representations of the user’s typing intent signal. Denote the

single input EEG signal as Eī ∈ RK (K = 64) where K is the number of dimensions

in the raw EEG signal. Next, we feed Eī to the RNN structure and the CNN

structure for temporal and spatial feature learning in parallel. At last, the learned

temporal features Xt and the spatial features Xs are combined into the stacked

feature X ′ for the latter feature adaption (Section 10.1.3).

RNN Feature Learning

In the temporal feature processing part, the RNN structure is employed for its

powerful ability for temporal feature extraction in time-series data. RNN, which is

one class of deep neural network, is able to explore the feature dependencies over

time through an internal state of the network, which allows it to exhibit dynamic

temporal behavior. In this section, we take advantages of this trait to represent the

temporal feature of the input EEG signal.

We design an RNN model consisting of three components: one input layer, 5 hidden

layers, and one output layer. he number of hidden layers is optimized by Orthogonal

Array Tuning method. Through the experiential experiments, the hidden layers are

designed to including 3 fully connected neural networks and two layers of Long Short-

Term Memory (LSTM) [230] (shown as rectangles in Figure 10.1) cells among the

hidden layers. Besides, the experiential experiments also show that the activation

function cannot improve the RNN performance but bring overfitting. Therefore, the

non-linear transition is not employed in this chapter. Assume a batch of input EEG

data contains nbs (generally called batch size) EEG samples and the total input data

has the 3-D shape as [nbs, 1, 64]. Let the data in the i-th layer (i = 1, 2, · · · , 7) be

denoted by Xr
i = {Xr

ijk|j = 1, 2, · · · , nbs, k = 1, 2, · · · , Ki}, Xr
i ∈ R[nbs,1,Ki], where j

denotes the j-th EEG sample and Ki denotes the number of dimensions in the i-th

layer.
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Assume that the weights between layer i and layer i+1 can be denoted by W r
i(i+1) ∈

R[Ki,Ki+1], for instance, W r
12 describes the weight between layer 1 and layer 2. bri ∈

RKi denotes the biases of i -th layer. The calculation between the i-th layer data

and the i+ 1-th layer data can be denoted as

Xr
i+1 = sigmoid(Xr

i ∗W r
i,i+1 + bri ) (10.1)

Please note the sizes of Xr
i , W r

i,i+1 and bri must match. For example, in Figure 10.1,

the transformation between H1 layer and H2 layer, the sizes of Xr
3 , Xr

2 , W[2,3], and

br2 are separately [1, 1, 64], [1, 1, 64], [64, 64], and [1, 64].

The 5-th and 6-th layers in the designed structure are LSTM layers, so the calculation

in these layers are the same as Equation 3.1 to Equation 3.6. At last, we obtain

the RNN prediction results Xr
7 and employ cross-entropy as the cost function. The

cost is optimized by the AdamOptimizer algorithm [231]. Xr
6 is the data in the

second last layer, which has a directly linear relationship with the output layer and

the prediction results. If the predicted results have high accuracy, Xr
6 is enabled

to directly map to the sample label space and has the better representative of the

input EEG sample. Therefore, we regard Xr
6 as the temporal feature extracted by

the RNN structure and call it Xt.

CNN Feature Learning

While RNN is good in exploring the temporal (inter-sample) relevance, it is unable

to appropriately decode spatial feature (intra-sample) representations. To exploit

the spatial connections between different features in each specific EEG signal, we

design a CNN structure. CNN is well-suited to extract the spatial relevance of the

2-D input data efficiently. In this chapter, we implement the CNN on the 1-D EEG

data. As shown in Figure 10.1, the designed CNN is stacked in the following order:

the input layer, the first convolutional layer, the first pooling layer, the second

217



10. Enabling Brain Typing via Deep Feature Learning of EEG Signals

convolutional layer, the second pooling layer, the first fully connected layer, the

second fully connected layer, and the output layer.

The input is the same EEG data as the RNN. The input EEG single sample Eī
has shape [1, 64]. Suppose the data in the i-th layer (i = 1, 2, · · · , 8) is denoted by

Xc
i , X

c
i ∈ R[1,Kc

i ,di], where Kc
i and di separately denote the dimension number and

the depth in the i-th layer. The data in the first layer only has depth 1 and Xc
1 = E.

We choose the convolutional filter with size [1, 1] and the stride size [1, 1] in the

first convolution. The stride denotes the x-movements and y-movements distance

of the filter. The padding method is selected as same shape zero-padding, which

results in the sample shape keeping constant in the convolution calculation. The

depth of EEG sample transfers to 2 through the first convolutional layer, so the

shape of Xc
2 is [1, 64, 2]. There is a ReLU activation function designed to work on

the convolutional results.

The pooling layer is a non-linear down-sampling transformation layer. There are

several pooling options, with max pooling being the most popular [389]. The max

pooling layer scans through the inputs along with a sliding window with a designed

stride. Then it outputs the maximum value in every sub-region that the window is

scanned. The pooling layer reduces the spatial size of the input EEG features and

also prevents overfitting. In the first pooling layer (the 3rd layer of the CNN), we

choose the [1, 2] window and [1, 2] stride. The maximum in each [1, 2] window will

be output to the next layer. The pooling does not change the depth and the shape

of Xc
3 is [1, 32, 2]. Similarly, the second convolutional layer chooses [1, 2] filter and

[1, 1] stride and results in a shape of [1, 32, 4]. The results are made non-linear by

the ReLU unit. The second pooling layer selects [1, 2] window and [1, 2] stride and

obtains the shape as [1, 16, 4].

In the full connected layer, the high-level reasoning features, extracted through

previous convolutional and pooling layers, are unfolded to a flattened vector. For

example, the data of the second pooling layer (Xc
5 with shape [1, 16, 4]) is flattened

to the vector with shape [1, 64] (Xc
6). Then the output data can be calculated by
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following the regular neural network operation:

Xc
7 = sigmoid(T (Xc

6)) (10.2)

Xc
8 = softmax(T (Xc

8)) (10.3)

At last, we have the CNN results Xc
8 with shape [1, 5] and employ the cross-entropy

as the cost function. The cost is optimized by the AdamOptimizer algorithm. Xc
7

has a directly linear relationship with the output layer and the predicted results.

Therefore, we regard Xc
7 as the spatial feature extracted by the CNN structure and

call it Xs. The proposed approach can automatically learn the distinguishable fea-

tures from 1-D EEG signals through the CNN structure. The order of the channels

does not matter if the training dataset and the testing dataset have the same order.

No effort is needed to transfer the 1-D data to 2-D for spatial feature learning.

In summary, the temporal features Xt and the spatial features Xs are learned

through the parallel RNN and CNN structures. Both of them have the direct linear

relationship with the EEG sample label, which means that they represent the tem-

poral and spatial features of the input EEG sample if both RNN and CNN have high

classification accuracy. Next, we combine the two feature vectors into a flattened

stacked vector, X ′ = {Xt : Xs}.

10.1.3 Feature Adaptation

Next, we design a feature adaptation method to map the stacked features to a cor-

relative new feature space which can fuse the temporal and spatial features together

and highlight the useful information.

To do so, we introduce the Autoencoder layer [259] to further interpret EEG signals,

which is an unsupervised approach to learning effective features. The Autoencoder

is trained to learn a compressed and distributed representations for the stacked EEG
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feature X ′. The input of Autoencoder is the stacked temporal and spatial feature

X ′. Assume h, X́ ′ denote the hidden layer and output layer data, respectively.

The data transformation procedure is described as the following:

X́ ′ = sigmoid(T (sigmoid(T (X ′)))) (10.4)

The cost function measures the difference between X ′ and X́ ′ as MSE (mean squared

error) which is back-propagated to the algorithm to adjust the weights and biases.

The error is optimized by the RMSPropOptimizer [390]. The data in the hidden

layer h is the transferred feature, which is output to the classifier. Finally, the

Extreme Gradient Boosting classifier (XGBoost) is employed [260] to classify the

EEG streams. It fuses a set of classification and regression trees (i.e., CART) and

exploits detailed information from the input data. It builds multiple trees and each

tree has its leaves and corresponding scores.

10.2 Experiments

Next, we evaluate the proposed deep learning model using a public dataset and a

local dataset collected by ourselves. First, a public EEG dataset (called eegmmidb)

is used to assess our proposed deep learning model. In addition, we evaluate our

model on a local dataset for demonstrating the good adaptability of the proposed

method (the collected EEG dataset is called emotiv) and present the corresponding

results (Section 10.2.5).

10.2.1 Experimental Setting

The public dataset is described in Section 3.3.1. The motor imagery tasks and labels,

along with and the corresponding typing command in the brain typing system are
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Table 10.1: The motor imagery tasks and labels and the corresponding typing com-
mand in the brain typing system

Dataset Item Task 1 Task 2 Task 3 Task 4 Task 5

eegmmidb intent eye closed left hand right hand both hands both feet
label 0 1 2 3 4

emotiv intent up arrow down arrow left arrow right arrow eye closed
label 0 1 2 3 4
Command up down left right confirmation

shown in Table 10.1. To evaluate the performance of the classified results, we adopt

several typical evaluation metrics such as accuracy, precision, recall, F1 score, ROC

curve, and AUC.

10.2.2 Overall Comparison

In this section, we report the performance study and then demonstrate the effi-

ciency of our approach by comparing with the state-of-the-art methods and other

independent deep learning algorithms. Recall that the proposed approach is a hybrid

model which uses RNN and CNN for feature learning, AE layer for feature adaption,

and XGBoost classifier for intent recognition. In this experiment, the EEG data is

randomly divided into training dataset (21,000 samples) and testing dataset (7,000

samples). The accuracy of our method is calculated as the average of 5 runs on 10

subjects.

Firstly, we report that our approach achieves the classification accuracy of 0.9545.

To take a closer look at the result, the detailed confusion matrix and classification

reports are presented in Table 10.2 and Table 10.2. We can observe that for every

class, our approach achieves an average precision no lower than 0.939. Figure 10.3

shows the ROC curves of the 5 classes.

Additionally, the accuracy comparison between our method and other state-of-the-

art and baselines are listed in Table 10.3. Wavelet transform and independent

component analysis (ICA) are state-of-the-art methods to process EEG signals.
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Figure 10.2: Confusion Matrix

Labels Precision Recall F-1 AUC
0 0.9618 0.9380 0.9497 0.9982
1 0.9404 0.9084 0.9241 0.9977
2 0.7652 0.7930 0.7788 0.8931
3 0.9574 0.9257 0.9413 0.9990
4 0.9732 0.9028 0.9367 0.9990

Table 10.2: Evaluation over eegmmidb

The Deep Neural Network, Random Forest (RF) and Linear Discriminant Anal-

ysis (LDA) are applied to classify the EEG data. In addition, the key parameters

of the baselines are listed here: KNN (k=3), Linear SVM (C = 1), RF (n = 500),

LDA (tol = 10−4), and AdaBoost (n = 500, lr = 0.3). To be fair, all the comparable

methods in Table 10.3 are working on the same dataset with their suggested best

setting. The results show that our method achieves the significantly higher accuracy

of 0.9545 compared to all the state-of-the-art methods. Our method also performs

better than other deep learning methods like RNN or CNN. Moreover, compared

with most existing EEG classification research focusing on binary classification, our

method works in multi-class scenario but still achieves a high-level of accuracy.

To demonstrate the advantage of our proposed hybrid model for better learning

of robust features from raw EEG data, we also compare our method (joint RNN

and CNN) with the independent deep feature learning method (RNN, CNN). All

extracted features are classified by a XGBoost classifier. The experimental results

are listed in Table 10.4, where we can see that our approach outperforms RNN and

CNN in classification accuracy by 3.38% and 11.44%, respectively. Our approach

also achieves the lowest standard deviation and range, implying that it is more stable

and reliable. Note that the RNN on its own (RNN works as both feature extract

method and classifier) without feature representation achieves a higher accuracy

of 0.9325 (in Table 10.3) than the RNN+AE+XGBoost method (RNN works as
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Table 10.3: Performance comparison with the state of the art methods. In the
Binary/Multi column, B denotes Binary classification and M (N) denotes N-class
classification.

Index Methods Binary/Multi Acc
State
of the art 1 Almoari [217] B 0.7497

2 Sun [219] B 0.65
3 Mohammad [295] B 0.845
4 Major [218] B 0.68
5 Shenoy [220] B 0.8206
6 Tolic [235] B 0.6821
7 Rashid [292] B 0.92
8 Ward [227] M (3) 0.8
9 Sita [294] M (3) 0.8724
10 Pinheiro [236] M (4) 0.8505

Baselines

8 KNN M (5) 0.8769
11 SVM M (5) 0.5082
12 RF M (5) 0.7739
13 LDA M (5) 0.5127
14 AdaBoost M (5) 0.3431
15 RNN M (5) 0.9325
16 CNN M (5) 0.8409
17 Ours M (5) 0.9545

Table 10.4: The recognition accuracy of 10 subjects under different feature learning
methods. The improvement represents the increase amplitude of our method over
the maximum of RNN and CNN feature learning methods.

Feature learning S1 S2 S3 S4 S5 S6
RNN 0.9005 0.8928 0.9506 0.9264 0.9487 0.9427
CNN 0.9021 0.5938 0.9395 0.9659 0.9013 0.9942
RNN+CNN 0.9390 0.9186 0.9784 0.9736 0.9967 0.9832
Improvement 0.0369 0.0258 0.0278 0.0077 0.0480 -0.0110
S7 S8 S9 S10 Range Average STD
0.9098 0.9293 0.9643 0.8498 0.1145 0.9215 0.0341
0.9273 0.6177 0.9310 0.6358 0.4004 0.8409 0.1580
0.9675 0.9245 0.9758 0.8954 0.1013 0.9545 0.0335
0.0402 -0.0048 0.0115 0.0456 0.0590 0.0228 0.0209
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Figure 10.3: The ROC curves of the 5-class classification. Note that X-axis is the
logarithmic of the False Positive Rate.

feature extract method), which exhibits an accuracy of 0.9215. This shows that

RNN represented features are unsuitable for other classifiers and the inappropriate

use of AE may decrease the signal quality. Figure 10.4a illustrates separately the

accuracy changes along with the training iterations under three categories of feature

learning methods. Three curves (Figure 10.4a) show that the proposed joint method

converges to its high accuracy in fewer iterations than independent RNN and CNN.

The learned features are fed into the AE for further processing and finally classified

by the XGBoost classifier.

10.2.3 Parameter Tuning

In this section, we conduct a series of empirical studies for analyzing the impact

of various parameters on the classification accuracy of the proposed approach. We

extensively explore the impact of the following key factors: the training data size,
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Figure 10.4: The influence of iteration numbers and training data proportion

the RNN learning rate, the CNN learning rate, the AE learning rate, the XGBoost

learning rate, the AE hidden neuron size, and the classifier. We next investigate

the impact of varying the data used for training on the accuracy of our model. The

results are illustrated in Figure 10.4b. As expected, the accuracy increases as more

data are available for training. Our method achieves an accuracy of 95% when 55%

of the available data set is used for training. There is only a marginal improvement

in accuracy with the inclusion of additional training data. Also, observe that we can

achieve an accuracy of 87% with only 15% of training data. This indicates that our

approach is less dependent on the training data size. The time required for training

the model is shown on the right vertical axis in Figure 10.4b and as expected varies

linearly with the size of the training data.

Figure 10.5a to Figure 10.5d show that the proposed approach performs differently

under different learning rates in each component. We choose the appropriate learn-

ing rates as 0.005, 0.004, 0.002, and 0.5 for RNN, CNN, AE, and XGBoost, re-

spectively. Figure 10.5e illustrates that the more hidden neurons in AE, the better

classification results. Therefore, we choose 800 neurons as a trade-off between the

accuracy and efficiency. Figure 10.5f shows that the XGBoost classifier outperforms

other classifiers and achieves the highest classification accuracy over the same fea-

tures refined by RNN+CNN+AE. It should be noted that all the not mentioned

hyper-parameters are set as default value except those shown in Table 10.5. All
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Figure 10.5: Influence of hyper-parameters

the hyper-parameters are tuned using the Orthogonal Array Tuning Method with

cross-validation. [2].

10.2.4 Latency Analysis

Generally, deep learning algorithms require substantial time to execute. This can

limit their suitability for BCI applications (e.g., typing) which typically require close

to real-time performance. For instance, the practical deployment of a BCI system

could be limited by its recognition time-delay if it takes two minutes to recognize

the user’s intent. In this section, we will focus on the running time of our approach

and compare it to the widely used baselines. The results are shown in Figure 10.6.

We first illustrate the time required to train the model in Figure 10.6a. Our model

requires 2,000 seconds for training, which is significantly longer than other base-

line approaches. A breakdown of the training time required for the 3 components,

namely, RNN, CNN, and XGBoost is also shown. XGBoost requires the most train-

ing time as the result of its gradient boosting structure. However, training is a
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Table 10.5: Hyper-Parameter Setting. For instance, RNN contains one input layer
(64 neurons), 5 hidden layers (64 neurons each layer), and one output layer (5 neu-
rons). Only the input layer neuron number is required to adjust with the dimension
of the input data, all the other structures and hyper-parameters are fixed and self-
adaptively.

Hyper-parameter Value
Layer 7=1+5+1
Neuron size 64*1+64*5+5*1
Iterations 2500
Batch size 7000
Learning rate 0.005
Activation function Soft-max
Cost function Cross entropy

RNN

Regularization `2 norm (λ = 0.004)
Layer 8
Input neuron size 64
1st convolutional Filter [1,1],stride [1,1], depth 2
1st pooling Window [1,2], stride [1,2]
2nd convolutional Filter [1,2],stride [1,1], depth 4
2nd pooling Window [1,2], stride [1,2]
Padding method Zero-padding
Pooling methods Max
Activation function ReLU
1st fully connected 64
2nd fully connected 120
Output neuron size 5
Iterations 2500
Batch size 7000
Learning rate 0.004
Activation function Softmax
Cost function Cross entropy

CNN

Regularization `2 norm (λ = 0.001)
Layer 1+1+1
Neuron size 184+800+184
Iterations 400
Learning rate 0.01

AE

Cost function MSE
Objective Multi:softmax
Learning rate 0.5
max_depth 6Classifier

Iterations 500

one-time operation. For practical considerations, the execution time of an algo-

rithm during testing is what matters most. Figure 10.6b shows that the testing

time of our approach is less than 1 second, which is similar with other baselines

(except KNN which requires 9 seconds). In summary, the proposed approach takes

very short testing time although it requires more time to train the model. Reducing

the training time of our approach will be part of our future work.
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Figure 10.6: The training time and testing time comparison

10.2.5 Adaptability Evaluation on Local EEG Dataset

To examine the adaptability and consistency of our model, we further evaluate

our proposed model on a limited but easy-to-deploy dataset. We conduct the EEG

collection by using a portable and easy-to-use commercialized EEG headset, Emotiv

Epoc+ headset. The headset contains 14 channels and the sampling rate is 128 Hz.

The local dataset can be accessed from this link3. Compared to the BCI 2000 system

(64 channels) used for construct the eegmmidb dataset, our local equipment (Emotiv

headset) only contains 14 channels and is much easier to be deployed in a natural

environment.

Experimental Setting

This experiment is carried out using 7 subjects (4 males and 3 females) aged from

23 to 26. During the experiment, the subject wearing the Emotiv Epoc+4 EEG

collection headset, faces the computer screen and focuses on the corresponding hint

which appears on the screen (shown in Figure 4.8). The brain activities and labels

3https://drive.google.com/open?id=0B9MuJb6Xx2PIM0otakxuVHpkWkk
4https://www.emotiv.com/product/emotiv-epoc-14-channel-mobile-eeg/
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Figure 10.7: Confusion Matrix over emotiv dataset

used in this chapter are listed in Table 10.1. In summary, this experiment contains

241,920 samples with 34,560 samples for each subject. In order to distinguish with

the aforementioned eegmmidb dataset, we name this dataset as emotiv.

Recognition Results and Comparison

For each participant, the training set contains 25,920 samples and the testing set con-

tains 8,640 samples. The experiment parameters are the same as listed in Table 10.5.

The proposed approach achieves the 5-class classification accuracy of 0.9427. The

confusion matrix is reported in Table 10.7. Subsequently, to demonstrate the effi-

ciency of the proposed approach, we compare our method with the state-of-the-art

methods and report the accuracy and testing time in Figure 10.8. To conclude, our

model still achieves good performance with EEG signals collected from hardware

with fewer channels and in a more natural setting.
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Figure 10.8: The accuracy and testing time comparison over emotiv dataset

10.3 Application: Brain Typing System

Based on the high EEG signals classification accuracy of the proposed deep learning

approach, in this section, we develop an online brain typing system to convert user’s

thoughts to texts. Compared with the state-of-the-art [387], the proposed applica-

tion achieves a trade-off of several characteristics: non-invasive (low-cost, low-risk,

and portable), complete functional (input, cancel, delete, and confirm), high speed

typing, and full-dictionary5.

The proposed system contains 5 components: EEG headset, client 1 (data collector),

the server, the client 2 (typing command receiver), and the typing interface. The

user wears the Emotiv EPOC+ headset (introduced in Section 10.2.5) which collects

EEG signals and sends the data to client 1 through a Bluetooth connection. The

raw EEG signals are transported to the server through a TCP connection. The

server feeds the incoming EEG signals to the pre-trained deep learning model. The

model produces a classification decision and converts it to the corresponding typing

command which is sent to client 2 through a TCP connection. The typing interface

receives the command and manifests the appropriate typing action.

5The lack-dictionary represents: after the user types in the character, for in-
stance, ‘w’, s/he only has 6 choices (‘A,E,H,I,O,R’ ) for the next character instead
of the overall 26 choices. The contrast situation is full-dictionary.
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Client 1

Client 2 Typing
Interface

Intent Server
Deep Learning

Model

Figure 10.9: Overview of the brain typing system. The user’s typing intent is
collected by the headset and sent to the server through client 1. The server uses the
pre-trained deep learning model to recognize the intent, which is used to control the
typing interface through client 2. The server and clients are connected using TCP
connections.

Specifically, the typing interface (Figure 10.10) can be divided into three levels: the

initial interface, the sub-interface, and the bottom interface. All the interfaces have

similar structure: three character blocks (separately distributed in left, up, and down

directions), a display block, and a cancel button. The display block shows the typed

output and the cancel button is used to cancel the last operation. The typing system

in total includes 27 = 3 ∗ 9 characters (26 English alphabets and the space bar) and

all of them are separated into 3 character blocks (each block contains 9 characters)

in the initial interface. Overall, there are 3 alternative selections and each selection

will lead to a specific sub-interface which contains 9 characters. Again, the 9 = 3∗3

characters are divided into 3 character blocks and each of them is connected to a

bottom interface. In the bottom interface, each block represents only one character.

As an example, Figure 10.10 shows the procedure to type the character ‘I’.

In the brain typing system, there are 5 commands to control the interface: ‘left’,

‘up’, ‘right’, ‘cancel’, and ‘confirm’. Each command corresponds to a specific motor

imagery EEG category (as shown in Table 10.1). To type every single character,
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Figure 10.10: The brain typing procedure to type the character ‘I’. Firstly, select the
left character block (contains ‘ABCDEFGHI’ characters) in the initial interface and
then confirm the selection to step in the corresponding sub-interface; then, select the
right character block (contains ‘GHI’ characters) in the sub-interface and confirm to
jump to the bottom interface; at last, select the right character block (only contains
‘I’) and the character ‘I’ will appear in the display block after the confirmation.

the interface is supposed to accept 6 commands. Consider typing the letter ‘I’ as an

example (see Figure 10.10). The sequence of commands to be entered is as follows:

‘left’, ‘confirm’, ‘right’, ‘confirm’, ‘right’, ‘confirm’. In our practical deployment, the

sampling rate of Emotiv EPOC+ headset is set as 128Hz, which means the server can

receive 128 EEG recordings each second. Since the brainwave signal varies rapidly

and is very easy to be affected by noises, the EEG data stream is sent to server

each half second, which means that the server receives 64 EEG samples each time.

The 64 EEG samples are classified by the deep learning framework and generate 64

categories of intents. we calculate the mode of 64 intents and regard the mode as the

final intent decision. Furthermore, to achieve steadiness and reliability, the server

sends command to client 2 only if three consecutive decisions remain consistent.

After the command is sent, the command list will be reset and the system will wait

until 3 consistent decisions are made. Therefore, client 2 must wait for at least 1.5

seconds for a command and the entire process of typing each character takes at least

9 (6 ∗ 1.5) seconds. In other words, theoretically, the proposed brain typing system

can achieve the highest typing speed of 6.67 = 60/9 characters per minute.
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10.4 Discussions

The proposed framework achieves the highest accuracy compared to the state-of-the-

art EEG classification methods. The classification accuracy of the public dataset

(eegmmidb) is consistently higher than the local real-world dataset (emotiv). The

possible reason may be due to the different channels of two datasets (eegmmidb

contains 64 channels and emotiv only takes 14 channels). In general, our framework

can achieve high classification accuracy with both datasets.

The accuracy in the online mode is, however, lower than what can be achieved in

an offline setting (over 95%), which could be attributed to a number of reasons. At

first, the user’s mental state and fluctuations in emotions may affect the quality of

the EEG signals. For example, a scenario where the offline dataset used to train

the deep learning model is collected when the user is in an excited emotional state

but then applied in an online setting when the user is upset, would lead to low

accuracy. In addition, subtle variations in the way the EEG headset is mounted on

the subject’s head may also impact online decision making. Specifically, the position

of each of the electrodes (e.g.. the 14 electrodes in the Emotiv headset) on the scalp

may vary during training and testing. Moreover, the EEG signals vary from person

to person, which makes it difficult to construct a common model that applies to all

individuals. Part of our future work is to identify the intra-class variabilities shared

by all the activities of different subjects. Last but not least, some limitations are

caused by the intrinsic attributes of the headset. For instance, the headset used

in our case study is too tight for the user to wear longer than 30 minutes and the

conductive quality of the wet electrodes decreases after prolonged usage.

10.5 Conclusion

In this chapter, we present a hybrid deep learning model to decode the raw EEG

signal for the aim of converting the user’s thoughts to texts. The model employs
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the RNN and CNN to learn the temporal and spatial dependency features from the

input raw EEG data and then stack them together. Our proposed approach adopts

an Autoencoder to recognize the stacked feature and to eliminate the artifacts and

employs the XGBoost classifier for the intent recognition. We evaluate our approach

on a public MI-EEG dataset and also a real-world local dataset.
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Chapter 11

Brain2Object: Printing Your Mind

from Brain Signals with Spatial

Correlation Embedding

In this chapter, we propose a unified approach by learning the robust structured

EEG feature representations for recognizing the imagery of object seen by the indi-

vidual. We first design a multi-class Common Spatial Pattern (CSP) for distilling the

compact representations. CSP has proven success in extracting features using eigen

decomposition based on the variance ratio between different classes [392]. Next, we

propose Dynamical Graph Representation (DGR) of EEG signals to adaptively em-

bed the spatial relationship among the channels (each channel represents one EEG

electrode) and their neighbors by learning a dynamic adjacent matrix. Finally, a

CNN is employed to aggregate higher-level spatial variations from the transformed

graph representations.

Built on top of the aforementioned computational framework, we present a mind-

controlled end-to-end system with integrated graphical interface, called Brain2Object.
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It enables an individual to print a physical replica on an object that she is observ-

ing by interpreting visually evoked EEG signals in a real-time manner. To enable

the end-to-end workflow, the proposed system gathers the user’s brain activities

through EEG acquisition equipment and forwards the collected EEG data to a pre-

trained model which automatically recognizes the object that the user is observing.

Imagine that a child observes a toy, for example Pinkie Pie (from My Little Pony)

belonging to her friend and likes it very much and wishes that she can have one

too. Brain2Object can make her wish a reality by translating her brain signals to

command the 3D printer to fabricate a copy. The ability to print a replica model

of any observable object could be of tremendous value to a variety of professionals

including engineers, artists, construction workers, students, teachers, law enforce-

ment, urban planners, etc. By automating the process, Brain2Object takes mystery

of reading human mind out of the realm of experts and opens up the possibility of

a wide range of BCI applications that can be useful for the masses.

To summarize, the chapter makes the following key contributions:

• We present an end-to-end digital fabrication system, Brain2Object, atop of the

precise decoding of human brain signals that allows an individual to instantly

create a real-world replica (or model) of any object in her gaze. The proposed

system is able to learn an illustration of an object seen by an individual from

visually-evoked EEG signals, and print a model in real-time by automatically

instructing a wireless connected 3D printer.

• We propose an effective EEG decoding model by learning a dynamical graph

representation, which could adaptively embed structured EEG spatial correla-

tions during the training process. A convolutional neural network is integrated

for capturing discriminative feature representations as well as the intrinsic con-

nections among the various EEG channels.

• The proposed approach is evaluated over a large scale benchmark dataset and

a limited but locally collected dataset. Our method outperforms a wide range
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Figure 11.1: The overview of Brain2Object. The object (e.g., Pinkie Pie) observed
by the user is reflected in the visually evoked EEG signals, which can be accurately
recognized by the pre-trained recognition model. The recognition module employs
multi-class CSP for separating the multivariate signals into additive subcomponents
which have maximum differences. The spatial dependencies among processed data
is extracted by DGR and then forwarded to the CNN for recognition. The schematic
of the identified object is loaded from the model library of the 3D printer to fabricate
a replica.

of baselines and state-of-the-art approaches in both instances, thus demon-

strating the generalized nature of the approach. Finally, a prototype imple-

mentation demonstrates the practicality of Brain2Object.

11.1 The Proposed System

The overall aim of Brain2Object is to automatically recognize the object that the

user desires to fabricate by analyzing her visually-evoked brain signals and actuate

a 3D printer accordingly. As shown in Figure 11.1, the pre-trained recognition

module employs multi-class CSP for separating the multivariate signals into additive

subcomponents which have maximum differences. The spatial dependencies among

processed data is extracted by DGR and then forwarded to the CNN for recognition.
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Figure 11.2: Example of a complete weighted undirected graph with 5 vertices and
the corresponding adjacency matrix. The five vertices are reading from Frontal
(F) and Temporal (T) lobes of human brain. The adjacency matrix is symmetric
matrices, in which the colors denote the connection weights.

The schematic of the identified object is loaded from the model library of the 3D

printer to fabricate a replica.

CSP is widely used in BCI field to find spatial filters which can maximize variance

between classes and achieves comparable performance [406]. In this paper, we adopt

the one-vs-others strategy for multi-class CSP analysis.

11.1.1 Dynamical Graph Representation

We propose DGR to transform the CSP processed signals to a new space since graph

representation has been shown to be helpful in refining and capturing spatial infor-

mation [402]. In post-CSP processed EEG data Ē, each channel (row) separately

provides the voltage amplitude of a specific electrode instead of the aggregated spa-

tial information. The signals are discrete and discontinuous in the spatial domain.

Hence, traditional spatial feature representation methods such as CNN are not well

suited for further processing [402]. Instead, we invoke the knowledge of the connec-
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tions of the brain neurons to map Ē to a new space where each element represents

not only the specific channel amplitude but also the spatial relationship with its

neighboring channels.

For this purpose, we regard the brain network as a complete weighted undirected

graph with M vertices where each vertex denotes a channel. The term ‘complete’

denotes each vertex is connected to all the residual vertices in this graph. The graph

can be defined as G = {V , E ,A} where V ∈ RM denotes the set of vertex with the

number of |V| = M and E denotes the set of edges connecting the vertices. Suppose

A ∈ RM×M denotes the adjacency matrix representing the connectivity within

V . In particular, the element in the i-th row and j-th column of the adjacency

matrix measures the weight or importance of the edges between the i-th and the

j-th vertices.

The graph representation is dynamic, which means that the elements of the adja-

cency matrix are adaptively updated with the evolution of the model during train-

ing.. Hence, the name, Dynamic Graph Representation (DGR). Figure 11.2 illus-

trates an example of a complete weighted undirected graph which is composited

by five vertices which are reading from Frontal (F) and Temporal (T) lobes of the

human brain. The diagonal elements are zero since each vertex is not connected to

itself. However, the proposed representation should also contain information repre-

sentative of each individual vertex. To incorporate this information, we include an

identity matrix I. The resulting DGR is

E′ = (A+ I)Ē (11.1)

The represented data E′ with shape [M,L] can dynamically learn the intrinsic re-

lationship between different EEG channels by training a neural network and thus

benefit most from discriminative EEG feature extraction.
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11.1.2 Object Recognition

The DGR representation of the EEG signals (with shape [M,L]) serves as input

to a specified CNN structure for feature refining and classification. CNN could

capture the distinctive dependencies among the patterns associated to different EEG

categories. The designed CNN comprises of one convolutional layer followed by

three fully-connected layers (as shown in Figure 11.1). We choose D convolutional

filters with size [2, 2], stride size [1, 1], and zero padding. In the convolutional

operation, the feature maps from the input layer are convolved with the trainable

filters and fed to the activation function to generate the output feature map. For a

specific convolutional area x which has the same shape as the filter, the convolutional

operation can be described as

x′ = tanh(
∑
i

∑
j

fij ∗ xij)

where x′ denotes the filtered results while fij denotes the i-th row and the j-th

column element in the trainable filter. We adopt the widely used Tanh activation

function for nonlinearity. The output of convolutional layer has shape [M,L,D] and

then be flattened to [1,M ∗L ∗D] and fed into the first fully-connected layer. Thus,

the first fully connected layer has M ∗ L ∗ D neurons. Afterward, the second and

the third fully-connected layers have D′ and K neurons, respectively. The operation

between the fully-connected layers can be represented by

Eh+1 = softmax(w̄Eh + b̄) (11.2)

where h denotes the h-th layer and w̄, b̄ denote the corresponding weights matrix

and biases. The softmax function is used for activation. For each EEG sample, the

corresponding label information is presented by one-hot label y ∈ RK . The error

between the prediction and the ground truth is evaluated by cross-entropy

loss = −
K∑
k=1

yklog(pk) (11.3)

where pk denotes the predicted probability of observation of an object belonging

to category k. The error is optimized by the AdamOptimizer algorithm. A drop
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Emotiv Headset

Monitor

Figure 11.3: Data acquisition experiment. The participant wears the EPOC+ Emo-
tiv headset with 14 channels siting in front of a monitor which shows the Pinkie
Pie.

out layer is added after the first fully-connected layer with 0.5 drop rate in case of

overfitting.

11.2 Data Acquisition

In this section, we aim to gather a local EEG dataset which reflects the user’s

brain voltage fluctuation under visual stimulation of a number of object images. In

the ideal environment, the system is expected to recognize the EEG pattern of a

random image. However, as this is a first exploration of this idea, we limit our study

to include images of 4 objects: a car, a boat, Pinkie Pie Pony and Mario (from the

video game).

We recruit 8 healthy participants (aged 22-27 years) including 5 males and 3 fe-

males to participate this study. The experiment is approved by the ethic committee

(HC190315). The data collection is conducted in a quiet room. As shown in Fig-
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ure 11.3, the subject wears the EPOC+ Emotiv EEG headset which contains 14

channels corresponding to the 10-20 system (which is an internationally recognized

method to describe and apply the location of scalp electrodes). The sampling rate

is set as 128 Hz and the headset can wireless connection with the computer over

Bluetooth. The participants sit in a comfortable armchair, maintain a relaxed com-

posure and gaze at a monitor placed approximately 0.5 meters in front of them.

Each subject participates in 10 sessions and each session contains 4 trials.

Each trial lasts for 15 seconds and is comprised of three phases, each lasting 5

seconds. In the first phase, the monitor shows an empty slide and the subject is

asked to be relaxed. In the second phase, a random object picture is presented in the

middle of the screen and the subject is instructed to focus on the projected image.

The final phase is identical to the first phase. Naturally, only EEF signals collected

during the second phase are used in our dataset. In the second phase, the image

is chosen with equal probability from the 4 aforementioned images. To keep the

balance of the dataset, the final EEG data of each specific participant is composed

of 40 trials where each object appears 10 times.

For each subject, there are 40 trials where each trial lasts for 5 seconds. Hence, each

participant contributes 200 seconds of EEG signals. Since the sampling rate is 128

Hz, each subject contributes 25, 600 = 128× 200 sampling points, which means the

dataset has 204, 800 sampling points in total.

11.3 Experiments

11.3.1 Datasets

In addition to the local dataset (Section 11.2, denoted by EEG-L), our model is

evaluated over a public benchmark dataset eegmmidb which is denoted as EEG-P.

The EEG-P is collected by the BCI200 EEG system contains 64 channels with 160
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Table 11.1: Overall comparison with state-of-the-art models and baselines over both
EEG-P and EEG-L

Dataset Method Accuracy Precision Recall F-1

EEG-P

KNN 0.6962 0.7325 0.7552 0.7437
RF 0.7137 0.7536 0.7328 0.7431
SVM 0.6692 0.7122 0.7156 0.7139
CSP+KNN 0.9134 0.9273 0.9135 0.9203
CNN 0.8638 0.8619 0.8722 0.8670
[81] 0.8327 0.8556 0.8559 0.8557
[75] 0.8631 0.8725 0.8669 0.8697
[410] 0.8915 0.9013 0.9125 0.9069
[411] 0.7986 0.8031 0.8219 0.8124
[9] 0.8325 0.8261 0.8433 0.8346
Ours 0.9258 0.9325 0.925 0.9287

EEG-L

KNN 0.5108 0.5212 0.5436 0.5322
RF 0.5826 0.6258 0.6246 0.6252
SVM 0.6538 0.6684 0.6825 0.6754
CSP+KNN 0.5833 0.5773 0.5833 0.5803
CNN 0.6863 0.7021 0.6038 0.6493
[81] 0.6988 0.7021 0.7086 0.7053
[75] 0.5832 0.5968 0.6013 0.5990
[410] 0.6892 0.6995 0.7021 0.7008
[411] 0.6679 0.6759 0.6821 0.6790
[9] 0.6731 0.6889 0.6921 0.6905
Ours 0.7523 0.7602 0.7528 0.7564

Hz sampling rate. EEG data is recorded while the subjects are provided a visual

stimulus (on a monitor) of certain actions and asked to imagine performing those

actions. The four actions (left hand, right hand, both hands, and both feet) are

labelled from 1 to 4. EEG-P has 560,000 samples belonging to 4 different labels and

equally from 20 subjects.

Both datasets are further sub-divided into a training set (80%) and testing set (20%).

The training set is split into 4 equal mini-batches. All the features are normalized by

the z-score method. The segmentation time window is set to 64 and 16 for EEG-P

and EEG-L, respectively. The overlapping rates are 50%.
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Figure 11.4: Confusion matrix and ROC curves with AUC score. The ROC curve
of EEG-P has log scaled x-axis.

11.3.2 Overall Comparison

Next, we report the performance of Brain2Object. Recall the adopted classification

method combines the multi-class CSP and the convolutional neural networks. All

the experiments are run on the Titan X (Pascal) GPU and accuracy results presented

are averaged over 5 runs.

First, we provide the overall comparison with several widely used baselines including

KNN, Random Forest (RF), Support Vector Machine (SVM). The key parameters

of the baselines are listed here: KNN with 3 nearest neighbors; SVM with RBF

kernel; RF with 50 trees. The independent CNN has the identical structure of the
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CNN component in our system as introduced in Section 11.1.2. The kernel and

stride information have been provided above, the learning rate is set as 0.0005 and

the depth of convolutional layer D equals to 10. The number of hidden neurons

in the second fully-connected layer is 1000 for EEG-P and 120 for EEG-L. All the

parameters are determined by empirical tuning. We also compare with a range of

competitive state-of-the-art models:

• Sturm et al. [81] proposes the application of Deep Neural Networks with

layer-wise relevance propagation for EEG data analysis.

• Yang et al. [75] combines augmented CSP with CNNs for motor imagery

performance recognition.

• Park et al. [410] introduces an augmented complex-valued CSP based on the

correlation between EEG channels.

• Thomas et al. [411] study EEG classification by selecting the subject-specific

spatial and spectral features.

• Zhang et al. [9] combines Recurrent Neural Networks (RNNs) with CNN in

order to extract the temporal-spatial features from brain signals.

The results are depicted in Table 11.1. Observe that our method achieves the

highest accuracy (which corresponds to 0.9258 for EEG-P and 0.7523 for EEG-

L) in comparison with numerous state-of-the-art approaches for both datasets. The

experiments thus demonstrate the robustness, effectiveness and generality of our

method. One can also readily observe that all methods achieve lower accuracy for

EEG-L and as compared to EEG-P. The drawbacks of EEG-L includes low fidelity,

poor spatial-temporal coverage and equipment limitations. Another reason could be

the fact that our participants did not have extensive experience with the usage of

EEG headsets and neither were there any specialized technicians available to assist.

Finally, the emotional state of the participants may have also influenced the EEG

signals.
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Table 11.2: Classification report including precision, recall, and F-1 score

Dataset Metrics Category
1 2 3 4

EEG-P
Precision 0.88 1 1 0.85
Recall 0.89 0.97 0.84 1
F-1 0.88 0.98 0.92 0.92

EEG-L
Precision 0.77 0.77 0.66 0.84
Recall 0.82 0.79 0.77 0.63
F-1 0.8 0.78 0.71 0.72

We present a range of additional metrics for our approach. This includes the con-

fusion matrix and ROC curves with AUC scores in Figure 11.4 and precision, recall

and F-1 score for each category in Table 11.2.

11.3.3 Latency

In addition to accuracy, latency is also an important performance metric for a system

such as Brain2Object.

Figure 11.5 illustrates the latency achieved by our method in comparison with a se-

lected sub-set of baselines used in Section 11.3.2. We can observe that our approach

has competitive latency compared with other methods while achieving the highest

accuracy. The overall latency is less than 0.5 second. We computed the latency in-

curred by the different methods that are employed in our system and observed that

CNN requires about 0.35 seconds for execution, while CSP and DGR together only

require about 0.12 seconds. This illustrates that the use of deep learning techniques

do not have a significant effect on the overall latency.

In a fully functional system, the end-to-end latency is not only comprised of the

algorithmic latency but also includes the delay incurred for signal acquisition and

signal transmission. The latter will be discussed in Section 11.4. In the following, we

evaluate the signal acquisition latency. In the proposed system, the signal collection

time is related to the acquisition equipment, in essential, the sampling rate. For
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Figure 11.5: Latency comparison against the accuracy. It can be observed that our
approach achieves the highest accuracy with an acceptable latency.

BCI2000, a single sample/segment is composed of 64 time points, which is gathered

in 0.4 = 64/160 seconds with 160 Hz sampling frequency. On the other hand, the

Epoc+ Emotiv headset only requires 0.11 = 14/128 seconds for signal collection.

We can observe that the precise equipment can achieve higher accuracy but demand

larger latency. In contrast, the off-the-shelf low fidelity headset has lower accuracy

but also low latency. But this statement, which is similar to ‘no free lunch’ rule,

is based on the fact that our segment length equals the channel number. Could

EEG-P keep the high level accuracy with the decrease of channel amount in order

to implement competitive performance with low latency at the same time? This

meaningful scope deserves more attention in the future.

11.3.4 Visualization

To offer a different perspective into the performance of our system, we present a

visualization of the data at two levels. At the system level, as a unified classification
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(d) EEG-L feature

Figure 11.6: A visualization comparing the raw data and extracted features for the
two datasets. Both the raw data and the extracted feature are visualized from the
corresponding testing set. This comparison demonstrates that our approach can (i)
maximize the distance between the EEG data points and (ii) accurately extract the
distinctive representations from the raw data.

model, we visualize the raw EEG data and the extracted distinguishable features

for comparison. In Figure 11.6, the visualization of both EEG-P and EEG-L are

presented. In which, Principal Component Analysis (PCA) is used for dimension-

ality reduction before visualization. Through the comparison, we can demonstrate

that our approach maximizes the distance among EEG signals and has the ability

to automatic extract the distinctive representations from raw data.

At the component level, we present the topography of various categories in each

dataset. Figure 11.7 provides the EEG topographies after CSP processing. The first
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Figure 11.7: Topography after CSP processing. Each topography in the first row
contains 64 channels while the second row map contains 14 channels. Through the
comparison, it can be observed that the patterns belong to different categories are
obviously variant, which indicates that the CSP processed features ought to be easier
classified.

row represents the EEG-P dataset with 64 channels while the second row represents

the EEG-L dataset with 14 channels. The channel names and positions strictly obey

the international 10-20 system. Through the comparison, it can be observed that

the patterns belong to different categories are obviously varying. This suggests that

the CSP processed features ought to be classified easily.

11.4 Online Demonstration

In this section, we summarize our experience in developing a working prototype of

Brain2Object. Figure 11.8 shows the working prototype in action. The graphical

user interface is provided in Figure 11.9. The top of the interface shows the port

number and baud rate of the IP printer. The IP address of the server which stores

the pre-trained model and makes the object recognition decision is also shown.

The main body of the interface displays object models for the four objects in our

experiments, namely, Mario, car, boat and Pinkie Pie Pony.

Figure 11.10 illustrates the operational workflow of the Brain2Object demonstrator.

While the user is focusing on a target object (e.g., the Pinkie Pie), the corresponding
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Figure 11.8: Online testing scenario. The user’s EEG signals are collected by Emotiv
headset for recognition. The correspond object will be printed through the 3D
printer.

brain signals are collected by a properly mounted Emotiv headset and transmitted

to client 1 over Bluetooth. Client 1 sends the EEG signal to the server over a TCP

connection. The server loads the pre-trained EEG recognition model and classifies

the EEG signal to one of the four categories. The classification result is forwarded

to the interface through client 2. The interface will highlight the selected object

by changing the color of the other 3 objects to gray (the selected object remains

blue). Simultaneously, the selected object is dispatched to the printer driver which

generates the corresponding Gcode which can be recognized by the mechanical 3D

printer. Finally, the Gcode is sent to the 3D printer, which brings the object to life.

We used a Tonxy X1 desktop 3D with the following specifications. Printer size:220×
220× 250mm, build area: 150× 150× 150mm, MK10 extruder diameter: 1.75mm,

nozzle diameter: 0.4mm, engraving accuracy: 0.1mm, filament material: 1.75mm

polylactic acid (PLA). The physical 3D model can be transmitted from a computer

to the printer or directly stored in minor SD card mounted on the printer.
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Figure 11.9: User Interface.

The sampling frequency of the Emotiv headset is 128 Hz which indicates it can

collect 128 sampling point each second. The pre-trained recognition model requires

each sample with 14 sampling point and each sampling point corresponds to a clas-

sification output. To achieve steadiness and reliability, the server will maintains a

window of the last 10 classification output and a count of how many times each

of the 4 objects has been recognized. The server will send the target to the client

2 only if one specific target appears more than 6 times in this window. In this

situation, the classification is higher than 90% although the latency is increased to

about 2 sec which includes data collection time (1.1 sec), recognition time (0.47 sec),

transmission time, etc.

11.5 Discussion

In this section, we discuss the challenges and potential directions for future research.

First, the proposed approach is significantly influenced by the quality of the EEG
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Figure 11.10: Online workflow of Brain2Object. The user’s EEG signals are collected
and send to the server through client 1. The server loads the pre-trained model to
recognize the target object and send to both the interface for showing the user
feedback and the 3D printer for printing. The solid line denotes signal transmission
while the slash line denotes feedback.

data. The pre-trained model shows better performance on the clean and precise

public dataset than on our local dataset. This suggests the need to develop novel

classification methods that are robust to noisy and low resolution EEG signals. An-

other concern is the adaptability over different EEG acquisition equipment. Ideally,

it is highly desirable that the model can consistently achieve accurate performance

across a range of hardware platforms. However, the popular platforms (e.g., Emotiv,

NeuroSky, OpenBCI) have different characteristics like sampling resolution, number

of channels, positioning of channels on the scalp, etc. Thus, there is still innovation

required to develop robust and adaptive brain signal classification algorithms.

Second, the object repository in this section is limited. An ideal instantiation of

Brain2Object should recognize any object the user observed. However, in this chap-

ter, the object repository only contains four items . The limitation of the repos-

itory scale is constrained by the learning algorithm, i.e., the ability of multi-class

classification algorithms to discriminate between a large number of classes.. The
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classification accuracy dramatically reduces with the increase of category numbers.

In our pre-experiment which are not presented in this chapter for the space limita-

tion, in the offline test, the proposed approach can achieve around 90% on binary

classification using the Emotiv headset, however, the accuracy drops to nears 80%

with three categories and about 70% with 4 objects. In our future work, we attempt

to propose an algorithm to increase the multi-class classification performance.

Additionally, the ideal printing system is supposed to automatically detects the ob-

ject which the subject ‘thinking’ (without visual stimulation) instead of ‘observing’

(with visual stimulation). however, the EEG SNR without visual stimulation is

much lower than the SNR with visual stimulation. To enhance the SNR and help

the subject to concentrate on the object, we adopt visual stimuli in our experiments.

Therefore, in the local dataset and the online demonstration phase, the correspond-

ing object images are shown on the monitor to remind the participants. However,

the public dataset not only contains visual stimuli but also includes motor imagery,

which is one possible reason why EEG-P is classified so accurately. Most of the ex-

isting public EEG dataset with visual stimulation focus on motor imagery (like the

selected EEG-P) or evoked potentials [412]. In the latter instance, the visual images

are flashed at a high frequency which results in pulsed EEG data, i.e. as objects

flash by, short pulses of corresponding EEG data are generated. However, the model

used in this chapter is based on stable EEG signal caused by steady stimuli. Hence,

we select EEG-P instead of evoked potential-based dataset for the evaluation.

Furthermore, through the online demonstration experiment, we observed that the

online performance is lower than the off-line analysis, which could be attributed

to a number of reasons: 1) the user’s mental state and fluctuations in emotions

may affect the quality of the EEG signals. For instance, if the pre-trained model

is tuned based on the EEG data which is collected when the user is relaxed, the

classification performance may be affected while the user is excited in the online

phase. 2) the conductive of the electrodes in headset is not exactly invariant during

the off-line stage and online stage, which will have impact on the data quality; 3)
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subtle variations (e.g., the position of each of the electrodes) in the way the EEG

headset is mounted on the subject’s head may also influent online decision making; 4)

subjects often have difficulty in maintaining concentration during signal acquisition.

11.6 Conclusion

In this chapter, we propose an end-to-end 3D printing system based on the com-

bination of multi-class CSP and graph embedded CNN. The performance of the

proposed model is evaluated over two datasets in off-line and also demonstrated in

the online environment. Brain2Object serves as a harbinger for exciting BCI ap-

plications which can help individuals with various tasks in their daily lives. The

proposed system employs multi-class CSP to map the EEG data to a common space

for the aim of maximizing the distance among various EEG patterns. The processed

data are embedded by dynamic graph transformation and then fed into a designed

convolutional neural network for automatically spatial feature learning. Extensive

evaluations using a large-scale public dataset and a more relevant but limited local

dataset showed that our scheme significantly outperforms a number of state-of-the-

art approaches. The system latency is shown to be acceptable and a visualization of

the signals is presented to offer additional perspectives into the performance. The

online demonstration is presented to show the applicability of the proposed system.
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Chapter 12

Multi-task Generative Adversarial

Learning on Geometrical Shape

Reconstruction from EEG Brain

Signals

In this chapter, we present a novel and interesting application that reconstructing

the geometrical shape shown in the user’s mind through accurate EEG decoding.

Since the advent of neuroscience and BCI, numerous studies tried to recover the

visual stimuli based on the informative human brain activities [413, 340]. The de-

velopment of the decoding technologies of chaotic brain signals is supposed to reveal

the mechanism of brain neurons and may implement some fantastic ambitions such

as mind reading [9]. Most of the existing work focused on fMRI monitoring brain

activities by detecting changes associated with blood flow in brain areas. However,

fMRI-based image reconstruction faces several major challenges [414, 413]. The tem-

poral resolution of fMRI is low constrained by the blood flow speed; the acquisition
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Figure 12.1: Generated samples based on EEG signals evoked by geometric shapes.
It is observed that the samples synthesized by traditional methods (e.g., GAN and
CGAN) are blur and lack of realistic details.

of fMRI requires a scanner which is expensive and hard to afford; the scanner is

heavy and has poor portability [340].

Thus, EEG recently has drawn much attention as its high temporal resolution, low

price, and high portability. EEG is a non-invasive signal measuring the voltage

fluctuations generated by an electrical current within human neurons. Researchers

have tried to exploit EEG signals to reconstruct visual stimuli [142, 141] through

Generative Adversarial Networks (GANs). Nevertheless, the previous studies suffer

from the low realism problem of the generated samples, which means that the model

can not generate images with high realism based on the input brain signals. In other

words, the current EEG-based synthesis methods can roughly present the visual

stimuli but fail to contain necessary details. For example, as shown in Figure 12.1,

the clear geometric shapes are present to the individual and reconstruct the shapes

based on the collected EEG data. It is demonstrated that the geometric shapes

generated by traditional GAN and CGAN are blurry and lack of realistic details.

Aiming at the aforementioned issues, in this chapter, we conduct experiments to

measure the individual’s EEG oscillation evoked by various geometrical shapes and

propose a novel framework in order to precisely decode the EEG signals and syn-

thesize the geometric shapes. Moreover, we employ a CNN to explore the latent

representation form the raw EEG signals since CNN is much efficient than the RNN
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with a similar EEG representation learning ability based on our empirical exper-

iments. In addition, we adopted a multi-task discriminator with a task-specific

classifier which assigns the geometric shape into the correct class for the aim of

improving the quality of the recovered shapes. Furthermore, we propose a semantic

alignment method involving the semantic information of the real shape to enhance

the realism level of the reconstructed shape. The previous works are mainly paid

attention to brain signal based images (e.g., bird and plane) reconstruction which

contain too many attributes (e.g., color, shape, size, background, and semantic in-

formation), as a result, it is difficult to figure out which attribute the human brain

is more sensitive to and which one contributes more to the object reconstruction.

Thus, in this section, we focus on the EEG-based geometric shape reconstruction

and attempt to illustrate that EEG signals are sensitive to geometries.

In detail, the contributions of this chapter are listed here:

• We present a novel deep generative model to recover the geometrical shape seen

by human beings from the EEG signals. To our best knowledge, we are the

first work investigating the brain signal based geometric shape reconstruction.

The reproducible codes are publicly available here1.

• We propose an effective semantic alignment method to harness the semantic

information of the original geometric shape in order to force the approach to

produce more realistic shapes.

• We conducted a local EEG dataset stimulated by various geometric shapes and

evaluate the proposed approach over the collected dataset. The experimental

results demonstrated that our model outperforms all the competitive state-of-

the-art baselines.

1https://github.com/xiangzhang1015/EEG_Shape_Reconstruction
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12.1 Related Work

Recent years’ research in neuroscience and neuroimaging [415] indicated that human

perception of visual stimuli can be decoded through some techniques in neuroimag-

ing. To be specific, a few works gave evidence about decoding the brain signals to

human activity by using the Functional Magnetic Resonance Imaging (fMRI) and

EEG. There are some works use the fMRI signals to reconstruct the image which is

seen by the individual and get an acceptable performance [414, 416]. The studies

show the potential of fMRI-based image reconstruction in the brain signals decoding

area, however, fMRI faces a number of crucial issues such as expensive acquisition

equipment and low portability. Apart from the fMRI based method, there are a

few EEG based methods in image reconstruction as EEG signals are less expensive

[142, 141]. As a typical investigation, Brain2image [142] encoded the raw EEG sig-

nals into a latent space which contains the distinctive information, and then sent

them to a Conditional Generative Adversarial Networks (CGAN) for image recon-

struction. Palazzo et al. [141] applied a very similar algorithm framework.

Most of the visual object reconstruction methods are based on GAN and the vari-

ations. GANs [56], as the typical deep learning frameworks, was used widely in

image generation. The standard GANs are composed of a generator network which

generates images from the random sampled noise and a discriminator network which

tried to distinguish the generated image correctly. Normally, original GANs had to

suffer from the uncontrollable issue of the generation process. In order to retard

it, the conditional GAN (CGAN) was proposed [319] which involves the conditional

information (e.g., labels) in order to control the generating process. Auxiliary Clas-

sifier GAN (ACGAN)[417] improve the performance of GAN for image synthesis.

ACGAN demonstrated that adding more structure to the GAN latent space along

with a specialized cost function results in higher quality samples. A task-specific

branch in the discriminator is empowered to enhance the discriminability.

Summary. Most brain signal based image reconstruction work is based on fMRI.
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Figure 12.2: Demonstration of discriminative EEG representation learning. The last
second layer Ē with discriminative information is selected as learned representation.
Each Conv stage contains a convolutional layer followed by a pooling layer. The basic
hyper-parameters are presented.

Due to the drawbacks of fMRI (e.g., low time resolution, expensive, and low porta-

bility), we focus on EEG based geometric shape reconstruction. Compare to the

typical EEG-based work like brain2image [142], we have several technical advan-

tages: 1) we concentrate on the influence to the EEG signals brought by geometric

attribute while [142] focus on images with a large number of attributes; 2) we adopt

CNN instead of RNN to learn the latent EEG features which cost less training time

with a similar accuracy; 3) we add an auxiliary task-specific classifier to improve the

discriminability of the discriminator; 4) we propose a semantic alignment method

to generate more realistic images.

12.2 Methodology

In this study, we aim to propose a method to convert the individual’s mental geom-

etry into physical shape. In particular, we first decode the non-invasive EEG signals

into an implicit representation (Section 12.2.1) and then propose a modified GAN

framework to generate the real shape which evoked the EEG signals (Section 12.2.2.
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12.2.1 EEG Feature Learning

In the EEG feature learning, we adopt a CNN structure to capture the latent distin-

guishable features from the collected EEG signals. Some research had demonstrated

that CNN is empowered to learn informative features from noisy EEG data[418, 120].

Suppose the EEG sample pairs can be denoted by E = {(Eh,yh), h = 0, 1, · · ·H}
where Eh ∈ RM×N and yh ∈ R5 represent the EEG observations and the corre-

sponding one-hot label. In this chapter, we focused on the decoding of five different

visual-stimuli evoked imagination, thus the number of labels is five. The H denotes

the number of EEG segments and M,N denotes the time- and spatial- resolution of

each segment.

Figure 12.2 shows the workflow of the learning procedure of the discriminative repre-

sentation. The visual-stimuli evoked EEG signals, reflecting the imagination in the

user’s mind, are feed into a CNN model with seven layers. The first convolutional

layer contains 32 filters with the kernel size of [3, 3] and stride of [1, 1]. The padding

method is ‘SAME’ while the activation function is ReLU. The first pooling layer

adopts max pooling and both the pooling size and strides are [2, 2]. The second

convolutional and pooling layers are identical to the first layers, respectively, except

the Conv 2 has 64 filters. The followed fully-connected layer has d nodes, which is

regarded as the learned representation, denoted by Ē, and contains enough infor-

mation to reconstruct the visual shape. The learning algorithm iterates for 1,000

epochs with Adam optimizer has a learning rate of 5e−4.

Compared to Brain2Image [142] which employed LSTM for feature learning, CNN

is able to achieve a similar performance but spend much less training time. In

particular, LSTM obtained the classification accuracy of 74% with 5,935s while

CNN achieved 72% but with only 1, 222s.
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Figure 12.3: Workflow of the proposed visual stimuli reconstruction framework. We
adopted a semantic classifier apart from the real/fake classifier in order to exploit
the semantic information of the EEG samples. Moreover, a semantic regularization
constraint is proposed to force the generated visual stimuli has similar semantic
information with the real visual stimuli.

12.2.2 Multi-task Generation Model

Overview

In this part, we will describe the framework which is used to reconstruct the shapes

that human seeing. As shown in Figure 12.3, the proposed geometrical shape gen-

eration framework contains two components: a generator and a discriminator.

The generator receives the learned discriminative EEG representation Ē ∈ Rd along

with a random sampled Gaussian noise z ∈ Rd′ and produces generated shape. The

EEG representation is evolved to guarantee the compelling of the generated shapes

while the Gaussian noise is adopted to keep the diversity. On the other hand, the

discriminator receives the real shape which evoked the brain signals (the imagination

which presented in the human brain) and the generated fake shape. Inspired by

ACGAN [417], we design a multi-task discriminator containing two branches while

the first branch, like the standard GAN, aims at the recognition of the fake shapes

and the second branch, an auxiliary task-specific classifier, attempts to classify what

class the shape belongs to. The first branch is called real/fake classifier whilst the

second one is called task-specific classifier. By adding the task-specific classifier, the
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designed discriminator not only is able to distinguish whether the shape is real or not

but also can recognize the category of the shape. As a consequence, the discriminator

drives the distribution of the synthesized shapes not only approximate to the general

distribution of the overall real shapes but also approximate to the distribution of a

specific category. In addition, the learned EEG representation is also input to the

discriminator, as proposed in [319], in order to make the discriminator under the

same conditional situation with the generator.

Architecture

Next we report the details of the architecture. The generator receives the input

vector which concatenates Ē and z, represented by h0 = {Ē : z} ∈ Rd+d′ , and

attempts to map it to a meaningful shape. The generator is composed of a fully-

connected and two deconvolutional layers each followed by a unsampling layer. The

h0 is first fed into the fully-connected layer with 64(M +N) nodes:

h1 = σ(wh0 + b) (12.1)

where w, b and σ denote the weight, bias vector, and the sigmoid function, respec-

tively. Then h1 is reshaped into [M,N, 64] where 64 denotes the depth. To this

end, h1 has a similar form, but deeper depth, with the raw EEG segment Eh which

is supposed to contain enough information to reconstruct the user’s imagination.

Afterward, h1 is sent to the the first deconvolutional layer with 32 filters, kernel size

[5, 5], stride [2, 2], and ’SAME’ padding method. The upsampling operation is the

invert operation of pooling and shares the same parameters with pooling layer. The

second deconvolutional with one filter and upsampling layers. We choose the Tanh

as activation function since it transforms the signals into the range [−1, 1] which

is the same range the real shape falls into. The synthesized shape F has shape

[4M, 4N ]. According to empirical experiments, we set the shape size 4 times of the

EEG raw segment in both width and height in order to have a better generation

quality. The real geometric shape R is in gray scale with format [4M, 4N ]. All
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the pixels are normalized into the range [0, 1] by max-min normalization and then

transformed to [−1, 1] by:

R̄ = 2R− 1 (12.2)

In the discriminator, as shown in Figure 12.3, both R̄ and F are fed into the

discriminator which has almost the same structure and hyper-parameters with the

discriminative representation learning model (Section 12.2.1). The input shape is

flattened to a vector and then concatenates with the learned representation Ē. The

fully-connected layer has 100 nodes. This designed discriminator has two branches

corresponding two output layers. The output layer of the real/fake classifier only has

one node which represents the fake probability. As for the task-specific classifier,

the output layer has five nodes corresponding to five different geometrical shape

categories.

Loss Function

We present the loss functions in the proposed framework. For the generator, since we

add a task-specific classifier, the loss function contains two components where one

component forces the discriminator cannot recognize the shape is generated while

another component forces the discriminator to recognize which shape category the

shape belongs to. Thus, the log-likelihood loss function for the generator can be

defined as [417]:

Lg = E[logP (C = y|X = F )] + E[log(1−D(G(y, Ē, z)))] (12.3)

in which,

F = G(y, Ē, z) (12.4)

describes the generator G, and

P (S|X), P (C|X) = D(X) (12.5)

describes the real/fake classifier and task-specific classifier of the discriminator D,

respectively. As for the discriminator, the loss function also contains two components
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separately coming from the two classifiers. The discriminator is supposed to filter

out which shape is generated, meanwhile, to assign the shape into the correct class.

The log-likelihood loss function Ld for the discriminator is:

Ld = E[logP (S = R̄|X = R̄)]+E[logP (S = F |X = F )]+E[logP (C = y|X = R̄)]

(12.6)

In the above formula, the y represents the class label. The C, S denote the predicted

class and and source, which are the classification results of the multi-task generator.

X denotes the shape fed into the discriminator. The P (S|X) denotes the probability

distribution over the source S while the P (C|X) denotes the probability distribution

over the class label y.

12.2.3 Semantic Alignment

To this end, the geometrical shape reconstruction model is able to generate a batch of

samples which have enough diversity but still less discriminability. Furthermore, in

order to increase the discriminability of the generated samples and make the samples

more realistic, we propose a semantic alignment method to adopt the semantic

information to make the synthesized shape more realistic and sharper. In particular,

we add an additional constraint on the generator loss function aiming at reducing

the distance between the real and the generated geometric shapes.

The semantic distance can be measured by Sr:

Sr =
1√
N̄

√√√√ N̄∑
i=0

N̄∑
j=0

(R̄i,j − Fi,j)2 (12.7)

where N̄ denotes the number of pixels in the geometric sample and N̄ = 4M × 4N .

The R̄i,j and Fi,j denote the pixels in the real and generated samples. In order to

improve the performance of the generator, the Sr is considered as a regularization

of the generator loss. Thus, we update the Equation 12.3 as:

Lg = E[logP (C = y|X = F )] + E[log(1−D(G(y, Ē, z)))] + λSr (12.8)
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where λ is a constant coefficient to adjust the weight of semantic regularization. If

the alignment constraint too strong, the generated shapes may have less diversity.

In this section, we set λ = 0.01 to make a trade-off between the diversity and

discriminability of the generated samples.

During the training, both Lg and Ld are optimized by the Adam optimizer. The

learning rate is set as 0.0002 with the exponential decay rate of 0.5. In each epoch,

the Lg and Ld are separately trained in turn. The proposed framework converges

after 120 epochs and trend to overfitting after 160 epochs, thus, we adopt the early

stopping strategy by breaking the iteration at the 150-th epoch.

12.3 Experiments

In this section, we will describe the experiments and the performance analysis con-

taining qualitative and quantitative aspects in detail. The qualitative comparison

will conduct the analysis in the quality of the generated shapes, and the quantitative

comparison will be based on the inception score [317] and inception accuracy.

12.3.1 EEG Signal Acquisition

We conducted a local experiment with 8 healthy participants (6 males and 2 females)

aged 25 ± 3, which is approved by UNSW ethic abroad (HC190315). During the

experiments, the participant is required to sit in an armed comfortable chair in front

of a computer monitor. We select five representative and widely-seen geometrical

shapes (circle, star, triangle, rhombus, and rectangle) to present to the subject. The

whole experiments contain two sessions and each session has five trials. In each trial,

the five geometrical shapes are presented in random order and each shape lasts for

five seconds. There are five seconds relax period among two adjacent shapes. The

relaxing time among trials and sessions are 10s and 30s, respectively. The EEG

265



12. Geometrical Shape Reconstruction from EEG Brain Signals

Ground
Truth

Ours

GAN

CGAN

ACGAN

EEG

Figure 12.4: Demonstration of the qualitative comparison. Our model can recon-
struct all the shapes correctly which have the highest similarity with the ground
truth.

signals are collected through a portable Emotiv EPOC+ headset with 14 electrodes

and the sampling frequency is set as 128 Hz. Each EEG segment contains ten

continuous instances with 50% overlapping. The dataset is randomly divided into a

training set (80% proportion) and testing set (20% proportion).

Based on the collected EEG data, we report the hyper-parameters settings. The

single EEG segment E ( M = 10 and N = 14) is compressed into a latent discrimi-

native representation Ē with dimension d = 40. In the generator, the stochastically

sampled noise z has dimension d′ = 20. The coefficient of semantic regularization λ

is set as 0.001.

12.3.2 Qualitative Comparison

In this section, we compare the quality of the generated shapes among the proposed

method and the state-of-the-art models. As shown in Figure 12.4, we choose the
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most widely used generative models including GAN, CGAN and ACGAN as the

baseline.

GAN achieve a promising result in many areas, especially in shape field [56]. On

the top of basic GAN, CGAN [319] is proposed to add the conditional information

as a constraint, which is adopted in [142]. Furthermore, ACGAN attempt to deeply

exploit the informative sample labels to enhance the discriminability of D [417]. Our

work, compared to ACGAN, proposed a semantic alignment method to constrain

the distance among the synthesized shapes and the visual geometrical shapes in

order to further emphasize the reality.

It’s easy to find that, from Figure 12.4, our approach have the best shape quality.

To be specific, the samples which generated by GAN are lack of clear edge, which

is a typical mode collapse problem, meanwhile, it’s not hard to figure out that most

of the synthesized shapes have miscellaneous features. The CGAN has a better

performance than normal GAN as the shapes have a higher integrity. However, we

still can find that some shapes generated by CGAN have combined features such

as a star have the feature from rhombus. The ACGAN have the best result among

the baseline models, which it can learn most of the shapes’ feature and correctly

reconstruct the shapes with a trivial acceptable flaw. Our model can reconstruct all

the shapes correctly which have the highest similarity with the ground truth.

12.3.3 Quantitative Comparison

The qualitative comparison is relatively easy as the shape quality is the assessment

criteria. The quantitative analyses are hard to conduct as the comparison between

reconstructed and real shape is not obvious and clearly defined. The common way

we used to do that is using the inception score and the inception accuracy [142]. We

build an inception network used the generated shapes as input in order to calculate

the inception score which measures how realistic the generated shapes are. In detail,

we generate 1,000 images for each geometric shape and calculate the overall inception
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Table 12.1: The quantitative comparison of inception score and inception accuracy

Models GAN C-GAN [142] ACGAN Ours
Inception Score 1.931 1.986 2.061 2.178
Inception Accuracy 0.43 0.67 0.79 0.83

score. Moreover, our work is supposed to convert the specific EEG signals into the

corresponding geometrical shape belonging to the specific label. Thus, we adopt

the performance of the task-specific classifier when the input data is F as inception

accuracy in order to measure how precise can our model generates shapes.

We conduct the quantitative analyses for the baselines and our proposed model.

The results are presented in Table 12.1, in which, it is easy to observe that our

model achieves the highest inception score and inception accuracy of 2.178 and 0.83,

respectively. The inception score is not good as the public datasets like CIFAR-

10 and the most possible reason is that our generated shapes are conditioned by

EEG signals which is chaotic and has a low signal-to-noise ratio. Even though, the

proposed approach outperforms all the competitive baselines.

12.4 Discussion

Next, we discuss the opening challenges and potential future work.

First of all, one major issue faced by brain signal based reconstruction is the recovery

of unseen geometrical shapes. For instance, one future scope is to decode the EEG

signals evoked by star while the star never is trained in the reconstruction model.

One possible solution is train a common generative model by a large classes of

basic geometrical shapes (e.g., circle, ellipse, straight line, triangle, rectangle, and

rhombus) in order to learn the latent features of each different shape and then

approximate the unseen shape (e.g., star) based on the learned features.

Second, we only focused on the simple geometrical shapes in this section, as a pre-
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liminary study, however, the real world application demands more complex shapes

like a bow. One of our future works is to consider more complicated geometric

shapes in the experiments. In addition, another potential research direction is to

increase the number of geometrical categories since this section only evaluated five

basic classes.

Last but not least, more participants should be involved in the experiments in order

to provide a general generative model which is robust for different individuals. The

influence of inter-subject divergence should be taken into account in future research.

12.5 Conclusion

In this chapter, we propose a novel approach to reconstruct the geometrical shape

based on the brain signals. We first develop a framework learning the latent dis-

criminative representation of the raw EEG signals, and then, based on the learned

representation, we propose an adversarial reconstruction framework to recover the

geometric shapes which are visualizing by the human. In particular, we propose a

semantic alignment method to improve the realism of the generated samples and

force the framework to generate more realistic geometric shapes. The proposed

approach is evaluated over a local dataset and the experimental results show that

our model outperforms the competitive state-of-the-art methods both quantitatively

and qualitatively.
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Chapter 13

Conclusion and Future Works

13.1 Conclusion

In this dissertation, we first present the overview of recent advanced studies which

adopt deep representation learning to deal with BCI challenges. In particular, we

provide a classification of deep learning models based on the functions in BCI proce-

dures. Moreover, we provide a systematical summary of the state-of-the-art methods

in each brain signal paradigms. Then, we discuss the current widely used real-world

BCI applications and gather a set of open source BCI benchmark datasets.

Additionally, we propose the hybrid deep representation learning frameworks to

automatically extract distinctive features from the raw EEG signals, addressing

the drawbacks of brain signals (such as low SNR, vulnerable to environmental and

artificial factors, and time-consuming feature engineering). Focusing on the multi-

class EEG classification in the context of cross-subject, the proposed approach aims

at discovering the patterns in the discrepancy among various EEG classes with

robustness over the difference between various subjects.
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In order to solve the challenge of domain knowledge-dependency, we develop a ro-

bust representation learning framework with better generalization. The proposed

framework is enabled to adaptively learn the representative features from various

scenarios. In detail, the proposed reinforced selective attention framework combines

the advantages of reinforcement learning, deep learning, and attention mechanism.

We explore the effectiveness of the modified WAS-LSTM and CNN classifier in dif-

ferent sensory signals and various EEG application scenarios. The experimental

results demonstrate that our approach not only outperforms several state-of-the-art

baselines by a large margin but also shows low latency and high resilience in cop-

ing with multiple EEG signal channels and incomplete EEG signals. Our approach

shows excellent discriminative ability over all the tested situations.

Furthermore, to efficiently exploit the latent information in EEG data, we develop

an effective and robust semi-supervised latent representation framework by combin-

ing the benefits of a modified VAE model (which is called VAE++) and a semi-

supervised generative adversarial networks. The proposed framework is empowered

to discover the distribution of unlabeled signals to enhance the convergence of the

training of the labeled samples. Then, since the complex framework contains a large

number of hyper-parameters, we adopt an orthogonal array based method, OATM,

to search the optimal settings of hyper-parameter in order to reduce tuning time

and computational cost.

At last, we developed several preliminary BCI applications based on the proposed

data-efficient deep representation learning frameworks. To begin with, we proposed

a biometric EEG-based identification approach called MindID and argue that its

inherent resilience against attacks makes it an attractive approach compared to tra-

ditional biometric identification methods. Then, we present a hybrid deep learning

model to decode the raw EEG signal for the aim of converting the user’s thoughts

to texts. The model employs the RNN and CNN to learn the temporal and spatial

dependency features from the input raw EEG data and then stack them together,

and then fed into an autoencoder to eliminate the artifacts and employs the XG-
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Boost classifier for the intent recognition. In addition, we develop an end-to-end

Brain2Object system serves as a harbinger for exciting BCI applications which can

help individuals with various tasks in their daily lives. This system collects the

user’s brain waves, decodes them into recognizable object, and print a replica of

the recognized object through a 3D printer. Finally, we develop an adversarial re-

construction framework to recover the geometric shapes which are visualizing by

the human. In particular, we propose a semantic alignment method to improve the

realism of the generated samples and force the framework to generate more realistic

geometric shapes.

According to our research experience, we would like to share some insights in the

field of deep learning-based BCI. BCI has a bright future both in academia and in-

dustrial. By bridging human mind with the outer world, BCI could be widely used

in a wide range of real-world scenarios (e.g., healthcare, public security, and enter-

tainment) for not only disabilities but also health individuals. Second, deep learning

technicals have already and will constantly play an crucial role in the brain signal

decoding which is the core component of BCI. More detailed opening challenges will

be discussed in Section 13.2.

13.2 Future Works

Although deep learning has increased the performance of BCI systems, technical

and usability challenges remains. The technical challenges concern the classification

ability in complex BCI scenarios; and the usability challenges refer to limitations

in large scale real-world deployment. In this section, we introduce these challenges

and point out the possible solutions.
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13.2.1 General Framework

Until now, we have introduce several types of BCI signals (e.g., spontaneous EEG,

ERP, fMRI) and deep learning models that have been applied for each type. One

promising research direction for deep learning based BCI is to develop a general

framework that can handle various BCI signals regardless of the number of channels

used for signal collection, the sample dimensions (e.g., 1-D or 2-D sample), and

stimulation types (e.g., visual or audio stimuli), etc. The general framework would

requires two key capabilities: the attention mechanism and the ability to capture

latent feature. The former guarantees the framework can focus on the most valuable

parts of input signals and the latter enables the framework to capture the distinctive

and informative features.

The attention mechanism can be implemented based on attention scores or by var-

ious machine learning algorithms such as reinforcement learning. The attention

scores can be inferred from the input data and work as a weight to help the frame-

work to pay attention to the parts with high attention scores. Reinforcement learning

has been shown to be able to find the most valuable part through a policy search

[4]. CNN is the most suitable structure for capturing features in various levels and

ranges. In the future, CNN could be used as a fundamental feature learning tool

and be integrated with suitable attention mechanisms to form a general classification

framework.

13.2.2 Person-independent Classification

Until now, most BCI classification tasks focus on person-dependent scenarios, where

the training and the testing sets come from the same person. The future direction is

to realize person-independent classification so that the testing data will never appear

in the training set. High-performance person-independent classification is necessary

for the wide application of BCI Systems in the real-world.
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One possible solution to achieving this goal is to build a personalized model with

transfer learning. A personalized effective model can adopt a transductive parameter

transfer approach to construct individual classifiers and to learn a regression function

that maps the relationship between data distribution and classifier parameters [419].

Another potential solution is mining the subject-independent components from the

input data. The input data can be decomposed into two parts: a subject-dependent

component, which depends on the subject and a subject-independent component,

which is common for all subjects. A hybrid multi-task model can work on two tasks

simultaneously, one focusing on person identification and the other on class recogni-

tion. A well-trained and converged model ought to extract the subject-independent

features in a class recognition task.

13.2.3 Semi-supervised and Unsupervised Classification

The performance of deep learning models highly depends on the size of training data,

which requires expensive and time-consuming manual labeling to collect abundant

class labels in a wide range of scenarios such as sleeping EEG. While supervised

learning requires both observations and labels for the training, unsupervised learn-

ing requires no labels and semi-supervised learning only requires partial labels [111].

Therefore, they are more suitable for problems with little ground truth data avail-

able.

Zhang et al. proposed an Adversarial Variational Embedding (AVAE) framework

that combines a VAE++ model (as a high-quality generative model) and semi-

supervised GAN (as a posterior distribution learner) [6] for robust and effective

semi-supervised learning. Jia et al. [111] proposed a semi-supervised framework by

leveraging label information in feature extraction and integrating unlabeled infor-

mation to regularize the supervised training.

Two methods may enhance unsupervised learning: one is to employ crowd-sourcing

to label the unlabeled observations; the other is to leverage unsupervised domain
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adaption learning to align the distribution of source BCI signals and the distribution

of target signals with a linear transformation.

13.2.4 Hardware Portability

Poor portability of hardware has prevented the wide application of BCI systems in

the real world. In most scenarios, users would like to use small, comfortable, or

even wearable BCI hardware to collect brain signals and to control appliances and

assistant robots.

Currently, there are three types of EEG collection equipment: the unportable, the

portable headset, and ear-EEG sensors. The unportable equipment (e.g., Neuroscan,

Biosemi) has high sampling frequency, channel numbers, and signal quality but is

expensive. It is suitable for physical examination in hospital. The portable headsets

(e.g., Neurosky, Emotiv EPOC) have 1 ∼ 14 channels and 128∼ 256 sampling rate

but may cause discomfort for users after a long-time use. The ear-EEG sensors,

which are attached to the outer ear, have gained increasing attention recently but

remain mostly at the laboratory stage [420]. The ear-EEG platform comprises a

set of electrodes placed inside each ear canal, together with additional electrodes

in the concha of each ear [421]. The EEGrids, to the best of our knowledge, is

the only commercial ear-EEG. It has multi-channel sensor arrays placed around the

ear using an adhesive 1 and is even more expensive. An promising future direction

is to improve the usability by developing a cheaper (e.g., lower than 200$) and

more comfortable (e.g., can last longer than 3 hours without feeling uncomfortable)

wireless ear-EEG equipment.

1http://ceegrid.com/home/concept/
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