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Introduction

This thesis consists of three self-contained essays on individual causal inference using

panel data. The first two chapters are based on the synthetic control method (Abadie

et al., 2010), which is a popular method for estimating the effect of a treatment

(e.g., policy, event, etc.) on a single aggregate unit (e.g., country, city, etc.) in a

setting where the outcome of interest is observed for a few units over many time

periods (small N , large T ). The third chapter proposes a method for estimating the

individual treatment effects in a large N and small T setting.

The synthetic control estimator (Abadie et al., 2010) is asymptotically unbiased

assuming that the outcome is a linear function of the underlying predictors and

that the treated unit can be well approximated by the synthetic control before

the treatment. When the outcome is nonlinear, the bias of the synthetic control

estimator can be severe. In Chapter 1, we provide conditions for the synthetic

control estimator to be asymptotically unbiased when the outcome is nonlinear, and

propose a flexible and data-driven method to choose the synthetic control weights.

Monte Carlo simulations show that compared with the competing methods, the

nonlinear synthetic control method has similar or better performance when the

outcome is linear, and better performance when the outcome is nonlinear, and that

the confidence intervals have good coverage probabilities across settings. In the

empirical application, we illustrate the method by estimating the impact of the 2019

anti-extradition law amendments bill protests on Hong Kong’s economy, and find

that the year-long protests reduced real GDP per capita in Hong Kong by 11.27% in

the first quarter of 2020, which was larger in magnitude than the economic decline

during the 1997 Asian financial crisis or the 2008 global financial crisis.

In Chapter 2, we generalise the conventional synthetic control method to a multiple-

outcome framework, where the time dimension is supplemented with the extra di-

mension of related outcomes. As a result, the synthetic control method can now be

used even if only a small number of pretreatment periods are available or if we worry

about structural breaks over a longer time span. We show that the bound on the

bias of the multiple-outcome synthetic control estimator is of a smaller stochastic
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order than that of the single-outcome synthetic control estimator, provided that the

unit of interest can be closely approximated by the synthetic control in terms of

the observed predictors and the multiple related outcomes before the treatment. In

the empirical application, we illustrate our method by estimating the effects of non-

pharmaceutical interventions (NPIs) on various public health, labour market and

economic outcomes in Sweden in the first 3 quarters of 2020. Our results suggest

that if Sweden had implemented stricter NPIs like the other European countries

by March, then (1) there would have been about 70% fewer cumulative COVID-19

infection cases and deaths by July, and 20% fewer weekly deaths from all causes in

early May; (2) temporary absence from work would increase by 76% and total hours

worked would decrease by 12% among the employed in the second quarter, but the

impact would vanish in the third quarter, and there would be no discernible effect

on the employment rate throughout; (3) the volume of retail sales would shrink by

5%-13% from March to May, while the other economic outcomes including GDP,

import, export, industrial production, and CPI would not be affected.

Chapter 3 changes focus to individual causal inference in the context of empirical

microeconomics. Policy evaluation in empirical microeconomics has been focusing

on estimating the average treatment effect and more recently the heterogeneous

treatment effects, often relying on the unconfoundedness assumption. We propose

a method based on the interactive fixed effects model to estimate treatment effects

at the individual level, which allows both the treatment assignment and the poten-

tial outcomes to be correlated with the unobserved individual characteristics. This

method is suitable for panel datasets where multiple related outcomes are observed

for a large number of individuals over a small number of time periods. Monte Carlo

simulations show that our method outperforms related methods. To illustrate our

method, we provide an example of estimating the effect of health insurance cover-

age on individual usage of hospital emergency departments using the Oregon Health

Insurance Experiment data. We find heterogeneous treatment effects in the sample.

Comparisons between different groups show that the individuals who would have

fewer emergency-department visits if covered by health insurance were younger and

not in very bad physical conditions. However, their access to primary care were

limited due to being in much more disadvantaged positions financially, which made

them resort to using the emergency department as the usual place for medical care.

Health insurance coverage might have decreased emergency-department use among

this group by increasing access to primary care and possibly leading to improved

health. In contrast, the individuals who would have more emergency-department

visits if covered by health insurance were more likely to be older and in poor health.

So even with access to primary care, they still used emergency departments more

2



often for severe conditions, although sometimes for primary care treatable and non-

emergent conditions as well. Health insurance coverage might have increased their

emergency-department use by reducing the out-of-pocket cost of the visits.

3



Chapter 1

The Synthetic Control Method

with Nonlinear Outcomes:

Estimating the Impact of the 2019

Anti-Extradition Law

Amendments Bill Protests on

Hong Kong’s Economy

1.1 Introduction

The synthetic control method (Abadie et al., 2010) estimates the treatment effect

on a treated unit by comparing its outcome with the outcome of the synthetic

control, which is constructed using a convex combination of the control units such

that the observed predictors and pretreatment outcomes of the synthetic control

closely match those of the treated unit. Abadie et al. (2010) show that the bias of

the synthetic control estimator is bounded by a function that goes to zero as the

number of pretreatment periods increases, provided that the outcome is a linear

function of the observed and unobserved predictors, and that the treated unit is

well approximated by the synthetic control in the pretreatment periods. When the

outcome is nonlinear, however, the bias of the synthetic control estimator can be

severe, as a good fit on the observed predictors and pretreatment outcomes between

the treated unit and the synthetic control does not necessarily imply a good fit on

the unobserved predictors. This paper generalises the synthetic control method to

cases where the outcome is a nonlinear function of the predictors.
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We first relax the non-negativity restriction on the weights, which is imposed by

Abadie et al. (2010) to prevent extrapolation biases. We show using an example

that there is no extrapolation bias when the outcome is linear, and when the out-

come is nonlinear, the interpolation bias or extrapolation bias tends to be smaller if

we construct the synthetic control using control units that are closer to the treated

unit, whereas the synthetic control method with the non-negativity restriction does

not prefer or implement the use of closer neighbours. The non-negativity restric-

tion also makes it less likely to obtain a good pretreatment fit, especially when the

treated unit takes extreme values in the matching variables or when the sample size

is small, and thus limits the applicability of the synthetic control method. In cases

where the synthetic control method can be used, the non-negativity restriction may

distort the size of the permutation test since the post/pretreatment RMSPE ratio

in the permutation test is conditional on a good pretreatment fit for the treated

unit but unconditional for the others, which would lead to over-rejection of the

null hypothesis, as noted in Ferman and Pinto (2017). Although the non-negativity

restriction acts as a regularisation method and often ensures the sparsity of the

weights, which is an appealing feature in comparative case studies due to the ease of

interpretation, this may come at the cost of a larger bias of the estimator. Relaxing

the non-negativity restriction allows more flexible regularisation methods to be im-

plemented so that the bias (and potentially the variance) of the estimator is smaller,

while the sparsity of the weights can also be achieved when appropriate.

We then move on to provide the conditions for the synthetic control estimator to be

asymptotically unbiased when the outcome is nonlinear, to complement the theo-

retical result for the linear case in Abadie et al. (2010). Furthermore, we show that

there is a tradeoff between the aggregate matching discrepancy, i.e., the matching

discrepancy between the treated unit and the synthetic control, and the pairwise

matching discrepancies, i.e., the matching discrepancies between the treated unit

and the control units used for constructing the synthetic control, depending on the

degree of nonlinearity. Specifically, when the degree of nonlinearity is low, the bias of

the synthetic control estimator tends to be smaller if we construct the synthetic con-

trol using more control units, so that the matching discrepancy between the treated

unit and the synthetic control is smaller and the weights are more spread out. When

the outcome is highly nonlinear, the bias of the synthetic control estimator tends

to be smaller if we use only the nearest neighbours, so that the pairwise matching

discrepancies are smaller.

To address this trade-off, we propose choosing the weights with elastic net type reg-

ularisation, where the L1 penalty terms are weighted by pairwise matching discrep-

ancies between the treated unit and the control units to penalise using control units
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that are farther away from the treated unit, whereas the L2 penalty term penalises

concentrating the weights on a few control units, and the optimal tuning parame-

ters for the penalty terms are selected using cross-validation. This method can be

considered as a combination of the methods in Doudchenko and Imbens (2017) and

Abadie and L’Hour (2020), where Doudchenko and Imbens (2017) propose choos-

ing the weights with the elastic net regularisation while relaxing the non-negativity

restriction and other restrictions on the weights, and Abadie and L’Hour (2020)

propose choosing the weights with L1 penalty terms weighted by pairwise matching

discrepancies between the treated unit and the control units while maintaining the

non-negativity restriction. The motivation of both these studies is to use regular-

isation methods to ensure that there is a unique set of weights that minimise the

matching discrepancy between the treated unit and the synthetic control when the

number of control units is large with no regard to nonlinearity, whereas this paper

aims to provide a flexible and data-driven method to obtain a synthetic control es-

timator that has a smaller bias when the outcome is potentially nonlinear. Monte

Carlo simulations comparing the nonlinear synthetic control method and these two

methods as well as the original synthetic control method show that the nonlinear

synthetic control method has similar performance with the method in Doudchenko

and Imbens (2017) and better performance than the other two in linear settings,

and has the best performance in nonlinear settings.

In the main empirical application, we estimate the impact of the 2019 anti-extradition

law amendments bill protests on Hong Kong’s economy. The results suggest that the

protests had a detrimental effect on Hong Kong’s economy from the second quarter

of 2019. The magnitude of the impact grew rapidly and reached its peak in the first

quarter of 2020, when real GDP per capita in Hong Kong was 11.27% lower than

what it would be if there were no protests. This exceeds the peak-to-trough decline

in quarterly real GDP per capita in Hong Kong during the 1997 Asian financial

crisis and the 2008 global financial crisis. The effect became insignificant in the

second and third quarters of 2020, when almost all economies were severely hit by

the COVID-19 pandemic, and was significant again in the fourth quarter, with the

quarterly GDP per capita 8.8% lower than its counterfactual level due to the slow

recovery of the economy in Hong Kong.

The rest of the paper is organised as follows. Section 1.2 provides an overview

of the original synthetic control method and a discussion on the non-negativity

restriction. Section 1.3 provides the conditions for the synthetic control estimator

to be asymptotically unbiased when the outcome is nonlinear, and proposes the

nonlinear synthetic control method for choosing the weights. Section 1.4 conducts

Monte Carlo simulations to compare the nonlinear synthetic control method and the

6



competing methods. Section 1.5 revisits the two applications in Abadie et al. (2010)

and Abadie et al. (2015) to illustrate the nonlinear synthetic control method, and

estimates the impact of the 2019 anti-extradition law amendments bill protests on

Hong Kong’s economy. Section 1.6 concludes. Appendix A.1 lists the data sources

for the main application. Appendix A.2 collects the proofs.

1.2 The Synthetic Control Method

1.2.1 Overview

This section provides an overview of the original synthetic control method in Abadie

et al. (2010). For a more detailed review, see Abadie (2021). Suppose that we observe

N units over T time periods. Without loss of generality, we assume that the first

unit receives treatment at period T0 + 1 ≤ T and remains treated afterwards, while

all the other J = N − 1 units are untreated throughout the window of observation.

If we denote the indicator for the binary treatment status for unit i at time t as Dit,

then Dit = 1 for i = 1 and t > T0, and Dit = 0 otherwise.

The quantity of interest is the treatment effect on the treated unit at time t > T0,

which is given by the difference between its treated potential outcome and untreated

potential outcome at time t (Rubin, 1974),

τ1t = Y 1
1t − Y 0

1t,

where Y 1
1t is the outcome that we would observe for unit 1 at time t if unit 1 is

treated at the time, and Y 0
1t is the outcome that we would observe otherwise. The

observed outcome can be written as Y1t = D1tY
1
1t + (1−D1t)Y

0
1t. Since we only

observe Y 1
1t for t > T0, estimating τ1t requires predicting the untreated potential

outcome Y 0
1t. We assume the following functional form for the untreated potential

outcome.

Assumption 1.1. The untreated potential outcome for unit i at period t is given by

an interactive fixed effects model

Y 0
it = X ′

iβt + µ′
iλt + εit, (1.1)

where X i and µi are the k×1 and f×1 vectors of observed and unobserved predictors

of Y 0
it with coefficients βt and λt, respectively, and εit is the individual transitory

shock.

Remark 1.1. Alternatively, the interactive fixed effects term µ′
iλt can be inter-

preted as the product of common time factors λt and individual factor loadings µi.
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Both interpretations are discussed in more details in Bai (2009).

Remark 1.2. The factor model presented in Abadie et al. (2010) and Abadie (2021)

also includes a common time-varying intercept, representing the time trend in the

outcome. This can be considered as a special case of (1.1), where the time-varying

intercept is one element in λt with the corresponding element in µi being 1.

The individual transitory shocks are assumed to satisfy the following assumptions.

Assumption 1.2.

1) εit are independent across i and t;

2) E
(
εit | Xj,µj, Djs

)
= 0 for all i, j, t and s;

3) E|εit|p < ∞ for all i, t and some even integer p ≥ 2.

Remark 1.3. The first part of Assumption 1.2 assumes that the individual tran-

sitory shocks are independent across units and time. In a panel data setting, cross

sectional and time serial correlations in the individual transitory shocks are to be

expected. Here we are making a simplifying assumption that the cross sectional and

time serial correlations are due to the unobserved individual and time fixed effects.

Indeed, if we treat uit = µ′
iλt + εit as the individual transitory shock, then uit are

correlated across units and time, while εit remain independent across units and time.

The second part assumes that the individual transitory shocks have zero mean con-

ditional on the observed and unobserved predictors and the treatment status. The

third part ensures that the predictors are not dominated by the transitory shocks

in determining the outcomes.

To estimate the treatment effect for unit 1 at time t > T0, a synthetic control

is constructed as a linear combination of the control units using weights wj, j =

2, . . . , N such that

N∑
j=2

wj = 1, (adding-up)

wj ≥ 0 for j = 2, . . . , N, (non-negativity)

N∑
j=2

wjXj = X1 and
N∑
j=2

wjYjt = Y1t for all t ≤ T0. (pretreatment-fit)

Assumption 1.3. There exists a set of weights (w∗
2, . . . , w

∗
N) that satisfy the adding-

up, non-negativity and pretreatment-fit restrictions.

Remark 1.4. (w∗
2, . . . , w

∗
N) are random quantities that depend on the sample. As-

sumption 1.3 is satisfied if the observed predictors and the pretreatment outcomes

8



of the treated unit fall inside the convex hull of those for the control units, in

which case there is either a unique or infinitely many sets of weights that satisfy

the restrictions, because if there exist two different sets of weights that satisfy the

restrictions, then any convex combination of them also satisfy the restrictions.1 To

ensure there is a single solution in this case, Abadie and L’Hour (2020) propose a

penalised synthetic control method, which adds penalty terms weighted by the pair-

wise matching discrepancies between the treated unit and the control units, to the

problem of minimising the matching discrepancy between the treated unit and the

synthetic control. Note that the solution of the penalised optimisation problem may

not belong to the solution set of the original optimisation problem. For a method

that pick the solution that minimises the pairwise matching discrepancies from the

sets of weights that satisfy Assumption 1.3, see the bilevel optimisation estimator

in Dı́az et al. (2015).

The synthetic control estimator for τ1t is constructed as

τ̂1t = Y1t −
N∑
j=2

w∗
jYjt. (1.2)

Before proceeding to the main theoretical result of Abadie et al. (2010), we also need

the following assumption, which ensures that matching on the observed predictors

and pretreatment outcomes implies matching on the unobserved predictors.

Assumption 1.4. The smallest eigenvalue of 1
T0

∑T0

t=1 λtλ
′
t is bounded from below

by some positive number ξ.

The following theorem gives the main theoretical result in Abadie et al. (2010), which

shows that the bias of the synthetic control estimator goes to zero as the number of

pretreatment periods goes to infinity, under the stated assumptions.

Theorem 1.1. Under Assumptions 1.1, 1.2, 1.3 and 1.4, E (τ̂1t − τ1t) → 0 as T0 →
∞.

Remark 1.5. If we construct the synthetic control by matching only on the ob-

served predictors, then the estimation suffers from the omitted variable bias since

the unobserved predictors are not included. Theorem 1.1 shows that by matching on

the observed predictors and the pretreatment outcomes, the unobserved predictors

are implicitly matched as well under the stated assumptions. The intuition is that if

the treated unit and the synthetic control have very different underlying predictors,

1The treated unit usually does not fall inside the convex hull of the control units in terms of the
matching variables, unless the number of control units is much larger than the number of matching
variables, as discussed in Section 1.2.2.
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then it is unlikely that they would match well on all the pretreatment outcomes as

T0 → ∞ simply due to the random noises.

Remark 1.6. The synthetic control estimator constructed by matching only on the

pretreatment outcomes can also be shown to be asymptotically unbiased, albeit with

a larger bound on the bias, as shown by Botosaru and Ferman (2019).

In practice, there may not be a set of weights that satisfy the restrictions in As-

sumption 1.3 exactly, and the weights are chosen as

(w̃2, . . . , w̃N) = arg min
(w2,...,wN )

K∑
m=1

vm

(
Z1m −

N∑
j=2

Zjmwj

)2

(1.3)

s.t.
∑
j

wj = 1 and wj ≥ 0,

where Zi1, . . . , ZiK are the K pretreatment variables to match on, and v1, . . . , vK are

the weights assigned to these variables, representing the importance of each variable

in determining the outcomes. The pretreatment matching variables may include the

observed predictors and the pretreatment outcomes, or some linear combinations

of them, e.g., the mean of the observed predictors or the pretreatment outcomes

across some pretreatment periods. v1, . . . , vK can be chosen by minimising the mean

squared prediction errors in the pretreatment periods, with the option of using cross-

validation by splitting the pretreatment periods into a training set and a validation

set (see Abadie et al., 2015 and Abadie, 2021 for details).

Inference for the synthetic control method is based on the permutation test, where

the treatment is recursively reassigned to each of the control units, and a synthetic

control is constructed to predict the outcomes for the control unit using all the other

units including the treated unit. The ratio between the posttreatment RMSPE (root

mean squared prediction error)
[

1
T−T0

∑T
t=T0+1

(
Yjt − Ŷjt

)]1/2
and the pretreatment

RMSPE
[

1
T0

∑T0

t=1

(
Yjt − Ŷjt

)]1/2
is obtained for each unit, and the distribution of

the post/pretreatment RMSPE ratios is used for inference, where a large ratio for the

treated unit relative to the control units is considered evidence that the treatment

effect is statistically significant.

1.2.2 Discussion

The non-negativity restriction is imposed by Abadie et al. (2010) to safeguard

against extrapolation, which happens if the values of the predictors for the treated
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unit fall outside of the convex hull of those of the control units.2 However, being in

the convex hull does not necessarily translate to nonnegative weights for all control

units. According to the Carathéodory’s theorem, it is possible for the treated unit

in the convex hull of the control units to be represented by a linear combination of

the control units, where some control units are assigned negative weights.3 Further-

more, there is no extrapolation bias when the outcome is a linear function of the

underlying predictors, whereas in the presence of nonlinearity, it is more important

to use control units that are closer to the treated unit to reduce interpolation bias

rather than restricting the weights to be non-negative. To illustrate this, we provide

two simple examples in Figure 1.1.

X

Y 0

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

XA XB XCXD

(a) Linear outcome

X

Y 0

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

XA XB XCXD

Bias 1

Bias 2

(b) Nonlinear outcome

Figure 1.1: Example

In both examples, we assume a single observed predictorX of the untreated potential

outcome Y 0. There is one treated unit A with XA = 5 whose untreated potential

outcome is not observed, and which we wish to estimate using the outcomes of

the control units. Suppose that there are only two control units B and C with

XB = 6 and XC = 7, then we are not able to construct a synthetic control that

perfectly matches the treated unit with the non-negativity restriction imposed, even

though XA = 5 is just outside the convex hull of XB = 6 and XC = 7. If a third

control unit D with XD = 1 is available, we can construct a synthetic control using

XD = 1 and XB = 6 under the non-negativity restriction, and compare it with

the synthetic control constructed using XB = 6 and XC = 7 without the non-

negativity restriction, both of which perfectly match the treated unit. In Figure

1.1a, the untreated potential outcome is a linear function of the predictor given by

Y 0 = 0.6X. We see that there is no extrapolation bias with or without the non-

negativity restriction, as both synthetic controls provide perfect estimates for the

2Interpolation happens when the values of the predictors for the treated unit fall in the convex
hull.

3The Carathéodory’s theorem states that if a point Z ∈ RK lies in the convex hull of a set of
points P , where |P | > K + 1, then Z is in the convex hull of some K + 1 points in P . In other
words, Z can be expressed as an affine combination of the points in P , where some K + 1 points
are assigned positive weights, while the other points can receive negative weights.

11



counterfactual outcome of the treated unit Y 0
A = 3. In Figure 1.1b, the untreated

potential outcome is a nonlinear function of the predictor given by the S-shaped

logistic function Y 0 = 5
1+e3−X .

4 We see that the magnitude of the extrapolation bias

(|Bias 1| ≈ 0.21) for the synthetic control estimator constructed without the non-

negativity restriction is smaller than that of the interpolation bias (|Bias 2| ≈ 0.50)

for the synthetic control estimator constructed with the non-negativity restriction,

since the former uses closer neighbours. The moral of this example is that in the

presence of nonlinearity, the interpolation bias or the extrapolation bias tends to

be smaller if we construct the synthetic control using control units that are closer

to the treated unit, whereas the original synthetic control method with the non-

negativity restriction does not prefer or implement the use of closer neighbours. For

example, suppose that there is an additional control unit E withXE = 3, the original

synthetic control method does not have a preference on 1
3
E+ 2

3
B over 1

4
D+ 3

4
B since

both match XA perfectly with positive weights, even though the bias of the former

is smaller in the nonlinear case.

The non-negativity restriction also makes it less likely to obtain a set of weights that

satisfy the adding-up, non-negativity and pretreatment-fit restrictions (Assumption

1.3). Note that without the non-negativity restriction, we need J ≥ L = 1+k+T0 to

be able to find a set of weights that match the synthetic control and the treated unit

perfectly, since otherwise the matching variables of the control units do not span

RL. For the weights to satisfy the additional non-negativity restriction, it is likely

that J needs to be much larger than L, especially when L is large due to the curse of

dimensionality. As an example, we generate 1000 samples, with a single treated unit,

10,000 control units and 10 pretreatment periods in each sample. A typical sample

is shown in Figure 1.2a, where the trajectory of the outcome for the treated unit is

depicted in black and the trajectories for 20 of the control units are in gray.5 The

levels of the outcome for the units are relatively stable over time, which is similar to

what we observe in real data. To make the treated unit even more likely to be in the

convex hull of the control units, we calibrate the level of the outcome for the treated

unit so that it is at the mean of the outcomes for the control units in period 1.

We then use the method provided by King and Zeng (2006), where the convex hull

membership check problem is characterised as a linear programming problem, to

check whether the treated unit is in the convex hull of the control units. Figure 1.2b

records the median sample size required for the treated unit to be in the convex hull

of the control units in terms of the corresponding number of pretreatment outcomes.

The result suggests that with the non-negativity restriction, the sample size needed

for a perfect fit on only a few number of pretreatment periods already exceeds the

4The intuition applies to other nonlinear functions that satisfy Assumption 1.6.
5For the detailed data generating process, see Section 1.4.
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sample sizes usually available for the synthetic control method.
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Figure 1.2: Simulated Example

Even if we were to construct a synthetic control that matches the treated unit

only approximately, the non-negativity restriction makes a good pretreatment fit

less likely, especially when the treated unit takes extreme values in the matching

variables or when the sample size is small, which limits the applicability of the

synthetic control method.6 Abadie et al. (2010, 2015) recommend using the synthetic

control method only when the treated unit can be closely approximated by the

synthetic control. However, since the units near the boundary of the distribution

may not be well approximated by the synthetic controls constructed using the other

units with the non-negativity restriction, this indicates that the post/pretreatment

RMSPE ratio in the permutation test is conditional on a good pretreatment fit for

the treated unit but unconditional for the others, which would lead to over-rejection

of the null hypothesis, as noted in Ferman and Pinto (2017).

In light of the discussion, we relax the non-negativity restriction so that a good

pretreatment fit is more likely to be obtained for the treated unit as well as for the

other units when conducting inference. This not only expands the applicability of

the synthetic control method, but also helps correct the size distortion for inference.

In addition, with the non-negativity restriction lifted, we may be able to obtain a

synthetic control estimator with a smaller bias using more flexible regularisation

methods than if the restriction were imposed, since the solution space of the weights

6In cases where the treated unit can be closely approximated by the synthetic control, the non-
negativity restriction often ensures that only a few control units receive positive weights, which is an
appealing feature in comparative case studies, since it makes it easier to interpret the contribution
of each control unit in the construction of the synthetic control.
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in the former is a superset of that in the latter.

1.3 The Synthetic Control Method with Nonlin-

earity

The synthetic control estimator is shown to be asymptotically unbiased in Abadie

et al. (2010), provided that the outcome is a linear function of the underlying pre-

dictors and that the pretreatment matching variables of the treated unit can be well

approximated by those of the synthetic control. When the outcome is nonlinear,

however, the bias of the synthetic control estimator may be severe, since a good

fit on the pretreatment matching variables between the treated unit and the syn-

thetic control does not necessarily imply a good fit on the unobserved predictors.

In this section, we provide the conditions for the synthetic control estimator to be

asymptotically unbiased when the outcome is nonlinear, and propose a flexible and

data-driven method for choosing the synthetic control weights in practice.

We start by assuming the following conditions, which are adapted from the assump-

tions for the matching estimator in Abadie and Imbens (2006).

Assumption 1.5.

1) Let H = [X ′ µ′]′ be a (k + f)×1 random vector of continuous variables, with

a version of the density c < f (H) < d for some c, d > 0 on its compact and

convex support H ∈ Rk+f ;

2) {H i}Ni=1 are independent draws from the distribution of H;

3) For almost every h ∈ H, Pr (Di,T0+1 = 1 | H i = h) < 1−ρ for some ρ ∈ (0, 1).

Remark 1.7. Assumption 1.5 ensures that the observed and unobserved predictors

for all units can be drawn independently from almost any point in the support,

and that for almost any values that the predictors of a treated unit take, it is

possible to have a control unit whose predictors take those values. This assumption

is stronger than Assumption 1.3, which restricts the application of the synthetic

control method to samples where a synthetic untreated “twin” for the treated unit

can be constructed as a linear combination of the control units. Assumption 1.5

assumes the existence of individual untreated near-identical twins in the population,

and that if the random sample is large enough some of those twins will be in the

sample. This stronger assumption is needed in the presence of nonlinearity.

The untreated potential outcome is assumed to be linked with the linear latent

outcome through a strictly monotonic function, and that its expectation with respect
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the individual transitory shock is a smooth function.

Assumption 1.6. Y 0
it = F (X ′

iβt + µ′
iλt + εit), where F (·) is a strictly monotonic

function. Eε (Y
0
it ) = G (X ′

iβt + µ′
iλt), where Eε (·) is the expectation conditional on

X i and µi, and G (·) is a smooth function.

Remark 1.8. Assuming that F (·) is a strictly monotonic function excludes binary

outcomes since they are usually modelled by discrete choice models like probit or

logit, where different values of the latent outcomes can lead to the same observed

outcome. Matching on these pretreatment outcomes only implies that the latent

outcomes are in the same interval, and there is no guarantee that the unobserved

predictors are matched. The unknown functions F (·) and G (·) need not to be esti-

mated as long as the regularity conditions in Assumption 1.6 are satisfied, since our

goal is to provide conditions for the synthetic control estimator to be asymptotically

unbiased when the outcome has an unknown general nonlinear functional form.

Let 1 (·) be the indicator function, ∥·∥ be the Euclidean norm, Zi = [X ′
i Yi1 · · · YiT0 ]

′,

and J = {2, . . . , N}, then the set of indices for the M closest neighbours of the

treated unit in terms of the observed predictors and the pretreatment outcomes can

be denoted as

JM =

{
j ∈ J

∣∣∣∣∣ ∑
l∈J

1 (∥Z l −Z1∥ < ∥Zj −Z1∥) < M

}
, (1.4)

i.e., ∥Z l − Z1∥ > ∥Zj − Z1∥ for any l ∈ J \JM and j ∈ JM , where \ takes the

difference of two sets.

Assumption 1.7. Only the nearest M > k+T0 neighbours are used for constructing

the synthetic control, i.e.,
∑

j∈JM
w∗

j = 1,
∑

j∈JM
w∗

jXj = X1 and
∑

j∈JM
w∗

jYjt =

Y1t for all t ≤ T0, and w∗
j = 0 for all j ̸∈ JM .

Using the nearest M neighbours, we can construct the synthetic control estimator

as τ̃1t = Y1t −
∑

j∈JM
w∗

jYjt. The following theorem provides the conditions for

the synthetic control estimator to be asymptotically unbiased when the outcome is

nonlinear.

Theorem 1.2. Under Assumptions 1.2, 1.4, 1.5, 1.6 and 1.7, E (τ̃1t − τ1t) →
0 as T0 → ∞ if J = O

(
T

b(T0)
0

)
with b(·) ≥ 1 and b′(·) > 0.

Remark 1.9. Theorem 1.2 states that the synthetic control estimator is asymp-

totically unbiased if the outcome is a strictly monotonic function with smooth ex-

pectation, the synthetic control is constructed using the nearest M neighbours, and

that the number of control units increases more than exponentially faster than the
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number of pretreatment periods. The idea is that the bias of the synthetic control

estimator will not vanish asymptotically when the outcome is an unknown nonlin-

ear function, unless each control unit used for constructing the synthetic control

converges to the treated unit in the underlying predictors, which happens if the

synthetic control is constructed using the nearest neighbours, and that the number

of control units increases much faster than the number of pretreatment periods so

that the nearest neighbours become closer and closer to the treated unit. This re-

sult does not conflict with the fact that the sample sizes available for the synthetic

control method are usually small, as it just provides the conditions for the existence

of control units that are similar to the treated unit. The implication of this result in

finite samples is that when the outcome is highly nonlinear, the bias of the synthetic

control estimator is expected to be small if there exist control units that are similar

to the treated unit and that we construct the synthetic control using only those

control units.7

While Theorem 1.2 provides conditions for the synthetic control estimator to be

asymptotically unbiased when the outcome is nonlinear, it is also important to

examine the bias in finite samples. From the proof of Theorem 1.2, we have

Eε

(∑
j

w∗
jYjt − Y 0

1t

)
=

∞∑
n=1

G(n)

n!

{∑
j

w∗
j

[
(Xj −X1)

′ βt +
(
µj − µ1

)′
λt

]n}
,

(1.5)

which represents the weighted average of the distances between the treated unit and

the control units in terms of the underlying predictors. Under the assumptions of

Theorem 1.2, Zj −Z1
p→ 0 implies that µj − µ1

p→ 0 for j ∈ JM . Therefore, when

the outcome is highly nonlinear, the bias of the synthetic control estimator would

be smaller if we use fewer and closer neighbours to construct the synthetic control

so that the pairwise matching discrepancies in the pretreatment variables between

the treated unit and its neighbours are smaller.

When the outcome is linear or if the degree of nonlinearity is low, the bias of the

synthetic control estimator reduces to

Eε

(∑
j

w∗
jYjt − Y 0

1t

)
=

(∑
j

w∗
jXj −X1

)′

βt +

(∑
j

w∗
jµj − µ1

)′

λt, (1.6)

representing the distance between the treated unit and the synthetic control in the

7Note that this is different from the sparsity of the weights under the non-negativity restriction,
which is achieved regardless of the degree of nonlinearity, as the few control units that receive
positive weights are not necessarily close to the treated unit.
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underlying predictors, and is smaller if we construct the synthetic control using

more neighbours so that the matching discrepancy between the treated unit and the

synthetic control is smaller. The bias is also shown in the proof of Theorem 1.1 to be

bounded by a value that increases with w̄ = maxj|w∗
j | given a good pretreatment fit

between the treated unit and the synthetic control constructed by J control units,

and thus is smaller if the weights are assigned more evenly among the control units.

The variance of the synthetic control estimator also tends to be smaller if the weights

are more spread out, which is similar to the least square estimator, whose variance

becomes smaller if the sample size is larger or if the explanatory variables are more

spread out.

This presents a trade-off between the aggregate matching discrepancy and the pair-

wise matching discrepancies, depending on the degree of nonlinearity of the out-

come function, similar to the bias-variance tradeoff in non-parametric methods,

e.g., choosing bin width in kernel density estimation. To address this trade-off, we

choose the set of weights by solving the following minimisation problem with elastic

net type penalties,

min
{wj}j

∥∥∥∥∥Z1 −
∑
j

wjZj

∥∥∥∥∥
2

+ a
∑
j

|wj| ∥Z1 −Zj∥+ b
∑
j

|wj|2 , (1.7)

s.t.
∑
j

wj = 1.

The L1 penalty terms are weighted by pairwise matching discrepancies between

the treated unit and the control units, and penalise assigning weights to control

units that are farther away from the treated unit. The L2 penalty term penalises

concentrating weights on a few control units and controls the scale of w̄. The level of

penalisation is adjusted through the nonnegative tuning parameters, a and b. When

a = 0 and b = 0, the weights are chosen solely to minimise the aggregate matching

discrepancy. When a becomes larger, the weights are more concentrated on control

units that are closer to the treated unit, thus achieving sparsity of the weights.

As a → ∞, the estimator becomes the nearest neighbours matching estimator using

only the nearest neighbour, as noted in Abadie and L’Hour (2020). When b becomes

larger, the weights are assigned more evenly among the control units. As b →
∞, all the control units are assigned equal weights and the estimator becomes the

difference-in-differences estimator. When both a and b are large, the weights are

spread out among a number of control units that are close to the treated unit, and

the estimator becomes close to the nearest neighbours matching estimator using

multiple neighbours.
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Ultimately choosing the optimal tuning parameters is an empirical problem in finite

samples, which can be done using cross-validation, as proposed in Doudchenko and

Imbens (2017) and Abadie and L’Hour (2020). One way to conduct cross-validation

is to predict the posttreatment outcomes for each control unit using the synthetic

control constructed from the other control units, and the optimal set of tuning pa-

rameters is the one that minimises the mean squared prediction error. This method

of conducting cross-validation is used for the Monte Carlo simulations and the appli-

cations in this paper. Alternatively, we can predict the outcome of the treated unit

in each pretreatment period using the synthetic control constructed from the con-

trol units, and select the set of tuning parameters that minimises the mean squared

prediction error. To make the selection of the optimal tuning parameters tractable

in practice, the tuning parameters that enter the minimisation problem, a and b,

are scaled by the nonzero eigenvalues of Z0Z
′
0, where Z0 is the J × (k+ T0) matrix

of matching variables of the control units, so that the optimal tuning parameters

a∗ and b∗ can be chosen from [0, 1]. Specifically, Z0Z
′
0 has n = min(J, k + T0)

nonzero eigenvalues, denoted as λ1, . . . , λn, in ascending order. For b∗ ∈ [0, 1], we

set b = b∗λ⌈nb∗⌉, where ⌈·⌉ is the ceiling function, so that when a∗ = 0 and b∗ = 1,

the weights are roughly evenly assigned to the control units. a is similarly scaled

by the nonzero eigenvalues of Z0Z
′
0 + diag(b), so that when a∗ = 1, the weight will

only be assigned to the nearest neighbour. To select the optimal tuning parame-

ters, we start with the initial value b∗ = 0, and then choose a∗ from [0, 1] with a

set grid size, e.g., 0.1, to minimise the mean squared prediction error from either

cross-validation construction. Given the selected a∗, we then update b∗ by minimis-

ing the mean squared prediction error. a∗ and b∗ are then updated iteratively until

convergence.

1.4 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to compare the nonlinear syn-

thetic control estimator (NSC) with the original synthetic control estimator (OSC)

from Abadie et al. (2010), the synthetic control estimator with elastic net regular-

isation (ESC) from Doudchenko and Imbens (2017), and the penalised synthetic

control estimator (PSC) from Abadie and L’Hour (2020). For the purpose of com-

parison, these other methods are modified so that OSC differs from NSC in that it

imposes the non-negativity restriction and does not have L1 and L2 penalties, ESC

differs from NSC in that the L1 penalty terms are not weighted by pairwise match-

ing discrepancies, and PSC differs from NSC in that it does not have L2 penalty.

The number of treated unit is fixed at 1, and the number of posttreatment period

is fixed at 10 across settings. The data generating process is as follows.
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First, the latent outcomes are generated from the interactive fixed effects model

as

Y ∗
it = X ′

iβt + µ′
iλt + εit, (1.8)

where the vector of observed predictors X i has dimension 2, and the vector of

unobserved predictors µi has dimension 4. The observed and unobserved predictors

are independently and identically drawn from the uniform distribution U
[
0, 2

√
3
]

for each unit, the coefficients are i.i.d. N(10, 1), and the individual transitory shocks

are i.i.d. N(0, 1).

The untreated potential outcomes are then generated as

Y 0
it =

(
Y ∗
it − Y ∗

min

Y ∗
max − Y ∗

min

)r

, (1.9)

where Y ∗
min and Y ∗

max are the smallest and largest values of Y ∗
it respectively, so that

Y ∗
it−Y ∗

min

Y ∗
max−Y ∗

min
is between 0 and 1.8 The degree of nonlinearity is adjusted by r ∈ {1, 2}.

Y 0
it is a linear function of the predictors and the individual transitory shock when

r = 1, and is nonlinear when r = 2.9

The treatment effects τit are set to [0.02, 0.04, . . . , 0.2] in the 10 posttreatment peri-

ods, and 0 in the pretreatment periods. And the observed outcomes are generated

as

Yit = Y 0
it +Ditτit, (1.10)

where

Dit =

1, if i = 1 and t > T0,

0, otherwise.

By varying the number of control units J ∈ {25, 50}, the number of pretreatment

periods T0 ∈ {15, 30} and the degree of nonlinearity r ∈ {1, 2}, we have 8 settings.

The observed and unobserved predictors and their coefficients are drawn 20 times

for each setting, and the individual transitory shocks are drawn 250 times for each

set of (X i,βt,λt,µi), so that we generate 5000 samples for each setting.10

Figure 1.3 illustrates the estimation of the treatment effects using the nonlinear

synthetic control method in a typical sample with J = 50, T0 = 30 in the linear

8The transformation in (1.9) is random since Y ∗
min and Y ∗

max depend on the sample. The purpose
of rescaling the outcomes to be within [0, 1] is to make results in different settings more comparable,
and the findings do not fundamentally change if we use some non-random transformation.

9Using a larger r or adopting other functional forms such as the logistic function considered in
Figure 1.1b does not fundamentally change the conclusion.

10To save computation time, for each set of (Xi,βt,λt,µi), the tuning parameters are cho-
sen once from [0, 1] with grid size 0.1 using cross-validation, and are then fixed across the 250
simulations.
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Figure 1.3: Simulated Example

case (r = 1, upper panel) and nonlinear case (r = 2, lower panel), respectively.

The graphs on the left visualise the trajectories of the outcome for the treated unit

(black solid line), the control units (gray solid lines) and the synthetic control (black

dashed line). The observed outcomes are more concentrated towards the bottom

in the nonlinear case due to the nonlinear transformation. In both examples, we

see that the trajectory of the outcome for the synthetic control, which is used to

estimate the untreated potential outcome for the treated unit, is able to follow the

trajectory of the treated unit closely before the treatment, and diverges after the

treatment. The gap between the trajectories of the treated unit and the synthetic

control is then used to estimate the treatment effect, as depicted in the graphs on the

right, where the black solid line is the estimated treatment effect, the black dashed

line is the true treatment effect, and the 95% confidence interval is in gray.11 We

see that the estimated effects are very close to the true treatment effects, and the

11To construct the confidence interval, we follow Doudchenko and Imbens (2017) and estimate
the variance of the estimator in each period using the mean squared error obtained from predicting
the outcome for each control unit in that period using the other control units. The confidence
interval is then constructed using the estimated variance, assuming normal distribution for the
estimator.
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confidence intervals also accurately reveal that the treatment effect is not statistically

significantly different from 0 before the treatment, and becomes significant after the

treatment.

Table 1.1: Monte Carlo Results

OSC ESC PSC NSC

J T0 r Bias SD Bias SD Bias SD Bias SD Coverage

Panel A: Linear Outcome

25 15 1 2.17 1.07 0.99 1.17 1.11 1.32 0.99 1.18 0.936

50 15 1 1.19 0.94 0.77 0.93 0.87 1.06 0.77 0.94 0.944

25 30 1 1.79 1.03 0.90 1.09 0.98 1.19 0.91 1.10 0.936

50 30 1 1.13 0.92 0.75 0.92 0.83 1.02 0.75 0.92 0.944

Panel B: Nonlinear Outcome

25 15 2 1.99 0.91 0.94 1.02 0.97 1.10 0.92 1.02 0.938

50 15 2 1.11 0.81 0.77 0.84 0.80 0.94 0.74 0.83 0.947

25 30 2 1.40 0.85 0.87 0.96 0.91 1.03 0.87 0.97 0.935

50 30 2 1.01 0.78 0.69 0.80 0.73 0.86 0.68 0.79 0.950

Note: This table compares the bias and SD of the nonlinear SC estimator and three

other SC estimators from Abadie et al. (2010), Doudchenko and Imbens (2017) and

Abadie and L’Hour (2020) respectively, and reports the coverage probability of the

95% confidence interval produced by the nonlinear SC method, in different settings

that vary in the number of control units J , the number of pretreatment periods T0

and the degree of nonlinearity r, based on 5000 simulations for each setting.

Table 1.1 reports the bias and the standard deviation (SD) for each estimator, as well

as the coverage probability of the 95% confidence interval produced by the nonlinear

synthetic control estimator in different settings.12 With a larger J or T0, the bias and

SD become smaller for all the estimators, and the coverage probability of the 95%

confidence interval also improves, in both the linear and nonlinear cases. Compared

with the original estimator, the other estimators have smaller biases across different

settings, showing the advantage of more flexible regularisation methods over the

non-negativity restriction in reducing the bias of the estimators, whereas the non-

negativity restriction has an edge on keeping the SD low. The bias and SD are on

similar levels for ESC and NSC in the linear cases, and are smaller than those of

PSC, as ESC and NSC use the L2 regularisation to control the scale of the weights.

The advantage of ESC over PSC becomes smaller in the nonlinear cases, since PSC

12The bias is measured using the average of the absolute biases across the posttreatment periods
and the 5000 simulations for each setting. The standard deviation is calculated for each posttreat-
ment period and each set of (Xi,βt,λt,µi) and then averaged over the posttreatment periods and
the 20 sets for each setting. Both the bias and the SD are multiplied by 100 for better presentation.
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now constructs the synthetic control using closer neighbours so that its bias becomes

smaller. NSC has the smallest bias among the estimators in the nonlinear cases, since

it employs both the L1 penalty terms weighted by pairwise matching discrepancies

to select closer neighbours, and the L2 regularisation to control the scale of the

weights.

1.5 Empirical Applications

In this section, we first revisit the two empirical applications in Abadie et al. (2010)

and Abadie et al. (2015) to illustrate the nonlinear synthetic control method, and

compare it with the original synthetic control method. The synthetic controls in

both methods are constructed by matching only on the outcomes in all pretreatment

periods, since the observed predictors are not essential as long as there is a good

fit on the pretreatment outcomes over an extended period of time (Botosaru and

Ferman, 2019). We then move on to the main empirical application of this paper,

where we estimate the impact of the 2019 anti-extradition law amendments bill

protests in Hong Kong on the city’s economy using the nonlinear synthetic control

method.

1.5.1 California’s Tobacco Control Program

In the first example, we revisit the empirical application in Abadie et al. (2010),

who examine the effect of a large-scale tobacco control program implemented in

California in 1988 on the annual per-capita cigarette sales.
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Table 1.2: Comparison of Synthetic Control Weights

State OSC

Weight

NSC

Weight

State OSC

Weight

NSC

Weight

Alabama 0 -0.015 Nevada 0.186 0.091

Arkansas 0 -0.057 New Hampshire 0.049 0

Colorado 0.03 0.119 New Mexico 0 0.103

Connecticut 0.08 0.112 North Carolina 0 0

Delaware 0 0 North Dakota 0 0

Georgia 0 0 Ohio 0 0

Idaho 0 0.183 Oklahoma 0 0

Illinois 0 0.02 Pennsylvania 0 0

Indiana 0 0 Rhode Island 0 0

Iowa 0 0.039 South Carolina 0 -0.003

Kansas 0 0 South Dakota 0 0

Kentucky 0 0 Tennessee 0 -0.071

Louisiana 0 0 Texas 0 0

Maine 0 0 Utah 0.385 0.045

Minnesota 0 0.027 Vermont 0 0

Mississippi 0 -0.007 Virginia 0 0

Missouri 0 0 West Virginia 0 0.083

Montana 0.271 0.176 Wisconsin 0 0.06

Nebraska 0 0.094 Wyoming 0 0

Table 1.2 compares the weights assigned to the other states by the original synthetic

control method and the nonlinear synthetic control method (a∗ = 0.3, b∗ = 0.7),

respectively. We see that the weights assigned by the original synthetic control

method are concentrated on Utah (0.385), Montana (0.271) and Nevada (0.186),

with relatively minor weights on Connecticut, New Hampshire and Colorado. In

comparison, the weights in the nonlinear synthetic control method spread out among

more states, but are still sparse.

Figure 1.4 displays the trajectories of the per-capita cigarette sales from 1970 to 2000

for California (black), the states that are assigned positive weights (red), and the

states that are assigned negative weights (blue) in the two methods. For comparison,

the depth of the colour for the trajectory is scaled by the magnitude of the weight

assigned to the state. We see that although the weights in the original synthetic

control method are sparse, they may be assigned to control units that are far away

from the treated unit, as long as the constructed synthetic control approximates the

treated unit well and the weights stay non-negative. In comparison, the nonlinear

synthetic control method constructs the synthetic control using control units that

are close to the treated unit in the presence of nonlinearity.
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Figure 1.4: States Used for Constructing the Synthetic California
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Figure 1.5: Revisiting the Example of the California Tobacco Law Program

Figure 1.5a depicts the trajectories of the per-capita cigarette sales for Califor-

nia (black solid line), the other states (gray solid line), the synthetic California

constructed using the original synthetic control method (black dashed line), and

the synthetic California constructed using the nonlinear synthetic control method

(black dotted line). We see that the trajectories for the synthetic California from

both methods are quite similar, both of which closely follow the trajectory for the

real California before 1988, and diverge after the passage of the tobacco control

legislation in 1988. Figure 1.5b shows the gap between the trajectories for Califor-

nia and the synthetic California in the nonlinear synthetic control method, which is
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used to estimate the effect of the tobacco control program on cigarette sales. The

result suggests that the tobacco control program reduced per-capita cigarette sales

by 9.5 packs in 1990, 24.5 packs in 1995 and 28.7 packs in 2000. The confidence

intervals imply that the effect became significant from 1993 onwards (except in 1996

and 1997).

1.5.2 1990 German Reunification

In the second example, we revisit the empirical application in Abadie et al. (2015),

which analyse the effect of the 1990 German reunification on West Germany’s per-

capita GDP.

Table 1.3: Comparison of Synthetic Control Weights

Country OSC

Weight

NSC

Weight

Country OSC

Weight

NSC

Weight

Australia 0 0.027 Netherlands 0.091 0.087

Austria 0.325 0.134 New Zealand 0 -0.017

Belgium 0 0.101 Norway 0.062 0.123

Denmark 0 0.058 Portugal 0 -0.034

France 0 0.092 Spain 0 -0.037

Greece 0.008 0.003 Switzerland 0.082 0.106

Italy 0.062 0.096 UK 0.072 0.079

Japan 0 0.016 USA 0.299 0.168

Table 1.3 compares the weights on the control countries in the original method

and the nonlinear synthetic control method (a∗ = 0, b∗ = 0.7). The weights as-

signed by the original synthetic control method are concentrated on Austria, USA,

the Netherlands, Switzerland, UK, Norway, Italy and Greece, with the weights in

descending order. In comparison, the weights assigned by the nonlinear synthetic

control method spread out among all countries, with positive weights on countries

that are close to West Germany in terms of the outcomes, and negative weights on

countries that are farther away. This can also be seen from Figure 1.6, which depicts

the trajectories of GDP per capita for countries used for constructing the synthetic

West Germany in the two methods.

Figure 1.7a depicts the trajectories of GDP per capita for West Germany (black

solid line), the other countries (gray solid lines), the synthetic West Germany con-

structed using the original synthetic control method (black dashed line), and the

synthetic West Germany constructed using the nonlinear synthetic control method

(black dotted line). Despite differences in the weights, the trajectories for the two

synthetic West Germanies are virtually the same, both of which follow the trajec-
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Figure 1.6: Countries Used for Constructing the Synthetic West Germany
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Figure 1.7: Revisiting the Example of German Reunification

tory for the real West Germany closely before the German reunification in 1990,

and diverge afterwards. The gap between the trajectories for West Germany and

the synthetic West Germany in the nonlinear synthetic control method indicates

that the reunification reduced the per-capita GDP in West Germany by 1166 USD

in 1995, 2520 USD in 1999, and 4356 USD in 2003. However, we fail to reject the null

hypothesis that German reunification had no effect on West Germany’s economy in

any particular period.
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1.5.3 The Economic Impact of the 2019 Hong Kong Protests

Background

In 2018, a young couple from Hong Kong, the 20-year-old woman, Poon Hiu-wing,

and her 19-year-old boyfriend, Chan Tong-kai, travelled to Taiwan as tourists. Fol-

lowing a quarrel in the hotel room, Chan strangled Poon, took her valuables and fled

back to Hong Kong (BBC, 2019a). Since the murder took place in Taiwan where

the Hong Kong authorities had no jurisdiction, they could only charge Chan with

money laundering but not homicide. Nor could they surrender Chan to Taiwan, as

there was no extradition treaty or one-off surrender agreement between Hong Kong

and Taiwan.13

To fill this legal loophole, the Hong Kong government proposed amendments to the

existing extradition law (formally, the Fugitive Offenders Ordinance, Cap. 503) in

February 2019, to allow case-based surrenders of fugitive offenders to jurisdictions

apart from the twenty with which the city already had extradition treaties (Legisla-

tive Council, 2019).14,15 While the proposed amendments would enable Hong Kong

to surrender Chan to Taiwan, the inclusion of mainland China raised concerns among

residents from different walks of life in the city that civil liberties would be infringed

upon, given previous incidents of Hong Kong residents being abducted to the main-

land for trial (AP, 2016). The open support of the amendments from several central

government officials contributed to the rising anxieties (Reuters, 2019).

The amendments bill sparked a series of protests, which started as peaceful demon-

strations in March and April, and eventually escalated into violence from June, when

the government pushed for a speedy second reading of the bill to ensure its passage

before the release of Chan from prison on money laundering charges. Hundreds of

thousands joined the protests, and clashes broke out between the protesters and

the police, with radical protesters throwing bricks dug up from the pavement, iron

bars disassembled from the roadside railings, and later petrol bombs at the police,

13The term ‘surrender’ is used formally in place of ‘extradition’ to reflect that Hong Kong is
part of China and does not have sovereign status.

14Amendments were also proposed to the Mutual Legal Assistance in Criminal Matters Ordi-
nance, Cap. 525, which were less controversial.

15Some do not consider the limitation that excludes the rest of China from both ordinances
a loophole, but rather a deliberate restriction to protect Hong Kong’s legal system (Hong Kong
Bar Association, 2019). However, since Hong Kong does not have the authority to enter into an
extradition treaty or one-off surrender agreement only with Taiwan but not the other parts of
China, this allows fugitives as Chan in the Taiwan homicide case to evade prosecution, and thus
is effectively a loophole in this regard. Some lawmakers also advocated adding a sunset clause to
the amendments, which would see the amendments expire after the resolution of the Taiwan case
(The Standard, 2019). This was rejected by the government, who reiterated that the purpose of the
amendments was not only to resolve the Taiwan case, but also to improve the existing arrangement
for the surrender of fugitive offenders (HKSARG, 2019).
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who responded with pepper spray, tear gas, and rubber bullets (SCMP, 2019; Ming

Pao, 2019). Unlike the protests in previous years, the moderate protesters refused

to split with the radical protesters this time, as most of them believed that “peace-

ful assembly should combine with confrontational actions to maximise the impact

of protests”, and that “radical tactics were understandable when the government

refuses to listen”, despite other peaceful avenues such as strikes (Yuen, 2019).

The suspension of the bill by the government on 15 June did not quiet, but rather

boosted the morale of the protesters, who raised more demands including the full

withdrawal of the bill, the retraction of the characterisation of the protests as “ri-

ots”, the release and exoneration of the arrested protesters, the establishment of an

independent commission of inquiry into police brutality, the resignation of Carrie

Lam as chief executive, and the universal suffrage for the Legislative Council and

the chief executive elections, pushing the protests to a non-resolvable end. Led by

pro-independence activists who had been at the forefront of the protests from the

beginning, the protests also evolved from aiming against the amendments bill to be

against China or the Chinese government, challenging the “one country, two sys-

tems” principle (HKFP, 2020). The oftentimes violent protests persisted through

the next few months, which saw the police headquarters besieged, the Legislative

Council stormed, the Liaison Office of the Central People’s Government attacked,

the national emblem and flag of China desecrated, the international airport occu-

pied, railway stations and shops vandalised, and several universities sieged by the

protesters (HKFP, 2019b; CNN, 2019a; HKFP, 2019a; HuffPost, 2019; CNN, 2019b;

ABC, 2019; BBC, 2019b; HKFP, 2021). Up till 14 April 2020, 8001 protesters were

arrested, among whom 41% were students, with 60% being university students and

40% being secondary school students (China News, 2020).

On 30 June 2020, the Standing Committee of the National People’s Congress of

China passed the Hong Kong national security law, which was to be enacted by

the city on its own, but which the city had failed to accomplish since its return to

China in 1997.16 Within hours, several pro-independence organisations announced

the decision to disband and cease all operations (Al Jazeera, 2020). Subsequently, a

dozen Legislative Council candidates were disqualified and several pro-independence

activists were arrested under the national security law, bringing the year-long unrest

in the city to a halt.

16Article 23 of Hong Kong’s Basic Law: “The Hong Kong Special Administrative Region shall
enact laws on its own to prohibit any act of treason, secession, sedition, subversion against the
Central People’s Government, or theft of state secrets, to prohibit foreign political organizations
or bodies from conducting political activities in the Region, and to prohibit political organizations
or bodies of the Region from establishing ties with foreign political organizations or bodies.”(Basic
Law, 1997)
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Data

To estimate the economic impact of the 2019 anti-extradition law amendments bill

protests in Hong Kong, we compare the quarterly GDP per capita of Hong Kong

and the synthetic Hong Kong constructed using 48 other major economies listed in

Table 1.4. The quarterly GDP per capita is measured in chained (2015) U.S. dollars

and is Purchasing Power Parity (PPP) and seasonally adjusted. The treatment

assignment period is the first quarter of 2019, during which the government proposed

the amendments bill to the existing extradition law and the first round of protests

was triggered. The window of observation is from the first quarter of 2011 to the

fourth quarter of 2020, which is chosen to provide enough pretreatment periods, and

in the meantime, to avoid potential structural breaks, e.g., due to the 2008 global

financial crisis, over longer periods of time (Abadie, 2021).

The data for Hong Kong, Taiwan and Singapore are obtained from the respective

government statistics websites. Purchasing power parities and the data for the other

economies are obtained from OECD Stat, among which the seasonally adjusted

GDP series for China is not available and is computed using the growth rate of the

seasonally adjusted GDP. And the population for all economies is obtained from the

United Nations. More detailed data sources are provided in Appendix A.1.
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Figure 1.8: Trajectories of GDP per capita

Figure 1.8 visualises the trajectories of the quarterly GDP per capita for Hong Kong

(black line) and the other economies in the sample (gray lines). We see that Hong

Kong had one of the highest GDP per capita in the sample, which would be better

approximated by the other economies without the non-negativity restriction. Most

economies in the sample enjoyed steady growth in GDP per capita from 2011 until

the first or second quarter of 2020, when almost all economies were severely hit by
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the COVID-19 pandemic. Most economies then had strong rebounds in the third

quarter. In contrast, the decline of the GDP per capita in Hong Kong started from

early 2019, coinciding with the onset of the protests, and persisted through the

outbreak of the pandemic, while the recovery from the third quarter of 2020 was

only mild.

This preliminary comparison clearly points to a detrimental effect of the protests

on Hong Kong’s economy. To estimate the effect more accurately, we construct a

synthetic Hong Kong that closely tracks the GDP per capita of Hong Kong before the

protests in 2019 using the other economies in the sample, which presumably is also

close to Hong Kong in the underlying predictors and thus can be used to predict the

counterfactual outcome of Hong Kong. We can then estimate the economic impact

of the 2019 protests using the difference in GDP per capita between the synthetic

Hong Kong and the real Hong Kong. The weights assigned to the other economies

for constructing the synthetic Hong Kong are determined by the nonlinear synthetic

control method to ensure a small bias of the estimator given the data.

Results

Table 1.4: Synthetic Control Weights

Location OSC

Weight

NSC

Weight

Location OSC

Weight

NSC

Weight

Location OSC

Weight

NSC

Weight

Argentina 0.12 0 Greece 0 0 Norway 0 0.01

Australia 0 0 Hungary 0 0 Poland 0 0

Austria 0 0 Iceland 0.03 0.06 Portugal 0 0

Belgium 0 0 India 0 0 Romania 0 0

Brazil 0 0 Indonesia 0 0 Russia 0 0

Bulgaria 0 0 Ireland 0 -0.01 Singapore 0.24 0.17

Canada 0 0.01 Israel 0 0 Slovakia 0 0

Chile 0 0 Italy 0 0 Slovenia 0 -0.02

China (Mainland) 0 0 Japan 0 0.07 South Africa 0 0

Colombia 0 0 South Korea 0 0 Spain 0 0

Czechia 0 0 Latvia 0 0 Sweden 0 0

Denmark 0.02 0.05 Lithuania 0 0 Switzerland 0.19 0.15

Estonia 0 0 Luxembourg 0.04 0.03 Taiwan 0.3 0.24

Finland 0 0 Mexico 0 0 Turkey 0.06 0.07

France 0 0 Netherlands 0 0 United Kingdom 0 0.02

Germany 0 0.02 New Zealand 0 0 United States 0 0.13

Table 1.4 displays the weights assigned to the other economies by the original method

and the nonlinear synthetic control method (a∗ = 0.6 and b∗ = 0.6). The synthetic

Hong Kong in the original method is constructed as a weighted average of Taiwan,

Singapore, Switzerland, Argentina, Turkey, Luxembourg, Iceland and Denmark,
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with the weights in descending order. All the other economies receive zero weight.

The weights in the nonlinear synthetic control method are similar to those in the

original method, with the noticeable difference that instead of assigning significant

weight to Argentina, the nonlinear synthetic control method assigns weight to the

United States, which is more similar to Hong Kong in terms of the outcome. This is

also reflected in Figure 1.9. Although the weights in the original method are more

sparse, the weights in the nonlinear synthetic control method are more concentrated

on economies that are closer to Hong Kong.
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Figure 1.9: Economies Used for Constructing the Synthetic Hong Kong
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Figure 1.10: Effect of Anti-Extradition Law Protests in Hong Kong

Figure 1.10a displays the trajectories of quarterly GDP per capita for Hong Kong
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(black solid line), the synthetic Hong Kong constructed using the original synthetic

control method (black dashed line), and the synthetic Hong Kong constructed using

the nonlinear synthetic control method (black dotted line). Despite the differences in

the weights, the trajectories of the synthetic Hong Kong using the two methods are

very similar and track the trajectory of Hong Kong very closely before the proposal

of the amendments bill in the first quarter of 2019, and begin to diverge immediately

afterwards. This also indicates that the results are not sensitive to the choice of the

tuning parameters. Figure 1.10b depicts the gap between the trajectories for Hong

Kong and the synthetic Hong Kong constructed using the nonlinear synthetic control

method, which is used to estimate the economic impact of the anti-extradition law

amendments bill protests, as well as the 95% confidence intervals.17 The results

suggest that the protests had a negative impact on Hong Kong’s economy from the

second quarter of 2019. The magnitude of the impact grew rapidly and reached

its peak in the first quarter of 2020, when the GDP per capita in Hong Kong was

1540.76 USD or 11.27% lower than what it would be if there were no protests. To put

it into perspective, this magnitude exceeds the peak-to-trough decline in quarterly

GDP per capita in Hong Kong during the previous two financial crises, which was

11.14% in the 1997 Asian financial crisis, and 8.08% in the 2008 global financial

crisis, calculated using the same data series. The impact was no longer significant

in the second and third quarters of 2020, but became significant again in the fourth

quarter, with the quarterly GDP per capita 8.8% lower than its counterfactual level

due to the slow recovery of the economy in Hong Kong.

Note that the above results rely on the assumption that there is no spill-over effect.

If the protests in Hong Kong benefited competing economies such as Taiwan and

Singapore by driving capital and labour to those economies, then the economic

impact of the protests would be overestimated. On the other hand, if the protests in

Hong Kong had negative spill-over effects on the economies that receive nonnegative

weights, e.g., by damaging the economic cooperation, then the impact of the protests

would be underestimated. Our results may also be confounded by the COVID-19

pandemic, which is a separate treatment from the protests. Although this treatment

affected all economies, the magnitudes of the effects may be different. For example,

there was virtually no further decline in the battered economy of Hong Kong in

2020, while the COVID-19 pandemic devastated almost all the other economies.

The pandemic may even have benefitted Hong Kong’s economy by restricting the

protests. Thus, the results in 2020 should be interpreted with this in mind.

17Note that the confidence intervals in 2019 seem narrow only due to the slope. The average
width of the confidence intervals is 274 in the pretreatment periods, and 452 in 2019.
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Robustness Checks

The synthetic Hong Kong is constructed by matching on the quarterly GDP per

capita of Hong Kong from 2011 to 2019. Although unlikely, people might have

anticipated a proposal to amend the extradition law and the turbulence that might

follow, after the Taiwan homicide case took place in 2018. To get rid of the potential

anticipatory effect, we backdate the treatment to the first quarter of 2017, two years

before the real treatment took place and one year before the Taiwan homicide case

that triggered the government proposal of the amendments bill, and construct the

synthetic Hong Kong by matching on the quarterly GDP per capita before 2017,

to see if the results are sensitive to the choice of the treatment date. This exercise

also allows us to examine the ability of the synthetic Hong Kong to replicate the

quarterly GDP per capita of Hong Kong in the absence of the treatment. If we were

to find a large gap between the trajectories of Hong Kong and the synthetic Hong

Kong after the placebo treatment in 2017 and before the real treatment in 2019,

then it would undermine the credibility of the previous results.
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Figure 1.11: Backdating the Treatment to 2017

The results of the backdating exercise are presented in Figure 1.11, which turn out

to be very similar to the previous results. We find no significant placebo treatment

effect as the trajectory of the newly constructed synthetic Hong Kong (gray solid

line) follows that of Hong Kong closely not only before the placebo treatment in

the first quarter of 2017, but also all the way through 2017 and 2018, and begins to

diverge immediately after the real treatment took place in early 2019. The magni-

tude of the estimated treatment effect is close to the previous result, and the 95%

confidence intervals in the backdating exercise similarly suggest that the treatment

effect becomes significant from the third quarter of 2019 onwards, except in the
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second and third quarter of 2020. The fact the the synthetic Hong Kong is able to

reproduce the GDP per capita of Hong Kong in the absence of the real treatment

shows the credibility of the synthetic control estimator. And the emergence of the

estimated effect shortly after the real treatment provides confidence that the results

are driven by a true detrimental impact of the protests.
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(b) Longer Pretreatment Period

Figure 1.12: Additional Robustness Checks

Apart from the backdate exercise, we conduct two additional robustness checks. In

Figure 1.12a, we conduct the leave-one-out exercise, where we exclude one economy

at a time from the construction of the synthetic Hong Kong. We see that the

trajectories for the synthetic Hong Kong constructed in the leave-one-out iterations

are all very similar to the previous results. This shows that the estimated effect of

the protests is robust to the exclusion of any particular economy.

We include observations from 2011 in our main analysis to avoid potential structural

breaks over a longer timespan. This provides us with 36 pretreatment periods, which

should be sufficient to produce credible results. Nevertheless, we check whether our

results are robust to the inclusion of more pretreatment periods. In Figure 1.12b,

we double the total time periods by further including outcomes observed from 2001

to 2010.18 The trajectory for the synthetic Hong Kong constructed by matching on

outcomes from 2001 to 2018 follows closely the trajectory for the real Hong Kong,

and the results are very similar with the benchmark results after the treatment. Thus

our results are not sensitive to the inclusion of more pretreatment periods.

18This excludes Mainland China from the analysis due to missing data.
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1.6 Conclusion

In this paper, we generalise the synthetic control method to the case where the

outcome is a nonlinear function of the underlying predictors. Specifically, we pro-

vide conditions for the asymptotic unbiasedness of the synthetic control estimator

to complement the theoretical result for the linear case in Abadie et al. (2010),

and propose a flexible and data-driven method for choosing the synthetic control

weights. Monte Carlo simulations show that the nonlinear synthetic control method

has similar or better performance in the linear case and better performance in the

nonlinear case compared with competing methods, and that the confidence inter-

vals have good coverage probabilities across settings. In the empirical application,

we illustrate the method by estimating the impact of the 2019 anti-extradition law

amendments bill protests on Hong Kong’s economy, and find that the year-long

protests reduced the real GDP per capita by 11.27% in the first quarter of 2020,

which is larger in magnitude than the economic decline in the 1997 Asian financial

crisis and the 2008 global financial crisis.
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Appendix A

A.1 Data Sources

� Quarterly GDP for Hong Kong. Sources: Seasonally adjusted GDP in real

terms and implicit price deflator (IPD) of GDP, Table E200-6, https://data.

gov.hk/en-data/dataset/hk-censtatd-tablechart-gdp.

� Quarterly GDP for Taiwan. Sources: GDP by Expenditures - Seasonally Ad-

justed Series, Implicit Price Deflators, Principal Figures, https://eng.stat.

gov.tw/ct.asp?xItem=37408&CtNode=5347&mp=5. Purchasing Power Par-

ity/Exchange Rate, https://fred.stlouisfed.org/series/PLGDPOTWA670NRUG.

� Quarterly GDP for Singapore. Sources: Gross Domestic Product In Chained

(2015) Dollars, By Industry, Quarterly, Seasonally Adjusted, https://www.

tablebuilder.singstat.gov.sg/publicfacing/createDataTable.action?

refId=16062.

� Quarterly GDP for the other economies. Sources: GDP expenditure approach,

Quarterly National Accounts, OECD Stat, https://stats.oecd.org/.

� Purchasing power parities. Sources: https://data.oecd.org/conversion/

purchasing-power-parities-ppp.htm.

� Population. Sources: Total Population - Both Sexes, Population Dynam-

ics, Department of Economic and Social Affairs, United Nations, https:

//population.un.org/wpp/Download/Standard/Population/.

A.2 Proofs

Proof of Theorem 1.1. The proof follows closely the proof in Appendix B of Abadie

et al. (2010). We thus omit many details. For more details, see Abadie et al. (2010)

or Botosaru and Ferman (2019).

36

https://data.gov.hk/en-data/dataset/hk-censtatd-tablechart-gdp
https://data.gov.hk/en-data/dataset/hk-censtatd-tablechart-gdp
https://eng.stat.gov.tw/ct.asp?xItem=37408&CtNode=5347&mp=5
https://eng.stat.gov.tw/ct.asp?xItem=37408&CtNode=5347&mp=5
https://fred.stlouisfed.org/series/PLGDPOTWA670NRUG
https://www.tablebuilder.singstat.gov.sg/publicfacing/createDataTable.action?refId=16062
https://www.tablebuilder.singstat.gov.sg/publicfacing/createDataTable.action?refId=16062
https://www.tablebuilder.singstat.gov.sg/publicfacing/createDataTable.action?refId=16062
https://stats.oecd.org/
https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm
https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm
https://population.un.org/wpp/Download/Standard/Population/
https://population.un.org/wpp/Download/Standard/Population/


Under the assumptions, we have
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The terms on the last line has zero conditional mean given Assumption 1.2, however,

the term on the penultimate line does not have zero mean because w∗
j is correlated

with εT0
j .

Denote the first term as R1t. Suppose that the elements of |λt| are bounded from

above by λ̄ for t = 1, . . . , T . Under Assumption 1.4 and using the Cauchy–Schwarz

Inequality, we have λ′
t

(
T0∑
n=1

λnλ
′
n

)−1

λs

 ≤

(
λ̄

2
f

T0ξ

)
.

Denote w̄ = maxj|w∗
j | (w̄ ≤ 1 given the adding-up and non-negativity assumptions),
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|R1t| ≤ w̄
∑
j

|ε̄j| ≤ w̄J1− 1
p

(∑
j

|ε̄j|p
)1/p

for some positive integer p.
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where the constant C(p) = E(θ − 1)p with θ being a Poisson random variable with

parameter 1.
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Thus, the bias is bounded by a value that goes to zero when the number of pretreat-

ment periods goes to infinity. Since τit = Yit − Y 0
it , this implies that

E
(
τ̂SC1t − τ1t

)
→ 0 as T0 → ∞.

Proof of Theorem 1.2. Under Assumption 1.6 that G(·) is a smooth function with

G(n) < ∞ for all n, we can expand G
(
X ′

jβt + µ′
jλt

)
for j ∈ JM at X ′

1βt + µ′
1λt

using Taylor’s rule:
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If the outcomes are linear functions of the predictors, then the bias goes to zero when

T0 → ∞ according to Theorem 1.1. If the outcomes are nonlinear functions, then

the first term on the RHS of equation (A.3) may not go to zero since matching on the

observed predictors and the pretreatment outcomes does not guarantee matching on

the unobserved predictors, and the second term will not vanish since Hj −H1 will

not go to zero when T0 and J increase at the same rate.

We now develop conditions under which the bias given by (A.3) converges to zero,

using results from Abadie and Imbens (2006).

Equation (A.3) can be written as Eε
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Y 0
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This bias goes to zero if ejt goes to zero.

Denote U j = Z1 − Zj, j ∈ JM . Without loss of generality, let M = 1 + k + T0.

Lemma 1 in Abadie and Imbens (2006) shows that U j = Op

(
J
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)
. Thus for

fixed T0, Zj −Z1
p→ 0 when J → ∞.
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Suppose T
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0 /J = O(1) for some b(T0) ≥ 1. For U j to converge to 0 when T0 goes

to infinity, we need limT0→∞ J
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b(T0) ≥ 1.
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with

b(T0) ≥ 1 and b′(T0) > 0.
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Chapter 2

The Synthetic Control Method

with Multiple Outcomes:

Estimating the Effects of

Non-Pharmaceutical Interventions

in the COVID-19 Pandemic

2.1 Introduction

The synthetic control method (Abadie and Gardeazabal, 2003; Abadie et al., 2010,

2015; Abadie, 2021) is a popular method for estimating the effect of a policy or

intervention on an aggregate unit, such as a country or a city. The procedure

consists of constructing a synthetic control unit using a convex combination of the

control units such that the distance between the outcomes of the treated unit and

the synthetic control before the treatment is minimised, and then estimating the

treatment effects using the difference between the outcomes after the treatment.

Formally, Abadie et al. (2010) show that the bias of the synthetic control estimator

is bounded by a function that is inversely proportional to the number of pretreatment

periods, provided that the treated unit is well approximated by the synthetic control

in the pretreatment periods. Intuitively, if the synthetic control constructed using

only a handful of control units can closely track the trajectory of the outcome for

the treated unit in the absence of the treatment, then the longer the pretreatment

time span is, the more confident we are that the close to perfect pretreatment fit is

due to the similarity between the synthetic control and the treated unit in terms of

the underlying predictors, rather than due to overfitting or coincidence.
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Our first contribution is methodological. On the one hand, Abadie et al. (2015) point

out that “the applicability of the method requires a sizable number of preintervention

periods” and that “we do not recommend using this method when the pretreatment

fit is poor or the number of pretreatment periods is small”. On the other hand, there

may be structural breaks in the relationship between the outcome of interest and

the underlying predictors, when the number of pretreatment periods becomes large

(Abadie, 2021). We generalise the conventional single-outcome synthetic control

method to a multiple-outcome framework, where the time dimension is supplemented

with the extra dimension of related outcomes in the same domain, so that the method

can be used even when there are only a few pretreatment periods, or if we worry

about structural breaks due to technological advances or demographic changes over

a longer time span. As we demonstrate in the replication exercise in Section 2.2.2

and the treatment backdating exercise in Section 2.4.4, our method may work well

even when we only observe the outcomes in a single pretreatment period, or in the

extreme case, when we do not observe some of the outcomes before the treatment at

all, as long as we have sufficient pretreatment information provided by the related

outcomes. The multiple-outcome synthetic control method is also useful when there

are an abundance of pretreatment periods and no structural breaks, as we show

that the bound on the bias of the estimator is of a smaller stochastic order than

that of the conventional single-outcome synthetic control estimator when the unit

of interest can be closely approximated by the synthetic control in terms of the

observed predictors and the multiple related outcomes before the treatment.

Apart from the methodological contribution, our paper also contributes empirically

to understanding the impacts of non-pharmaceutical interventions (NPIs) in the

COVID-19 pandemic. Examples of NPIs include closing school and workplaces,

restricting travels and gatherings, public information campaigns, and so on. Since

the outbreak of the pandemic, most countries have resorted to NPIs to reduce the

spread of the virus and to prevent the health system from being overwhelmed, in

the absence of vaccines. Although a variety of vaccines have become available since

late 2020, the limited production capacity, the strict storage and transportation

requirements, as well as the lack of knowledge on their effectiveness against mutant

strains of the coronavirus indicate that NPIs will continue to play a major role in

dealing with the COVID-19 pandemic in the near future.

The literature on the effects of NPIs on public health and the economy is rapidly

growing. One set of studies focus on the public health effects of NPIs (Fang et al.,

2020; Friedson et al., 2020; Flaxman et al., 2020; Hsiang et al., 2020; Born et al., 2020;

Cho, 2020; Conyon et al., 2020; Mitze et al., 2020; Chernozhukov et al., 2021). Most

of these papers point to the effectiveness of NPIs in reducing COVID-19 infection
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cases and deaths. For example, exploiting the contrasting levels of stringency in

NPIs between Sweden and the other European countries, Cho (2020) constructs a

synthetic Sweden and finds that COVID-19 infection cases and excess mortality in

Sweden would have been significantly reduced had Sweden initially adopted stricter

containment measures.1

Another set of studies examine the impacts of NPIs on labour market or economic

outcomes. Focusing on Scandinavia, where Sweden implemented much lighter NPIs

than its neighbors, Juranek et al. (2020) show that the Swedish labour market was

less severely hit, and Sheridan et al. (2020) find that most of the contraction in

consumer spending was due to the pandemic rather than the NPIs. A number of

studies exploiting the differences in the timing of the state stay-at-home policies

in the US (Forsythe et al., 2020; Baek et al., 2020; Rojas et al., 2020; Murray and

Olivares, 2020; Kong and Prinz, 2020) provide evidence that stay-at-home orders

accounted for a relatively small share of the increase in unemployment insurance

claims. Using cellphone records and consumer spending data, Goolsbee and Syver-

son (2020) find that legal shutdown orders accounted for only a modest share of

the decline in consumer visits, and Alexander and Karger (2020) show that stay-at-

home orders reduced spending on retail businesses, but increased spending on food

delivery services. In contrast, Gupta et al. (2020) and Coibion et al. (2020) find

that much of the decline in employment or consumer spending was driven by state

social distancing policies or lockdowns, using survey data.

There are also studies addressing the “trade-off” between public health and the

economy. Comparing countries and cities around the world, Fernández-Villaverde

et al. (2020) document a positive correlation between fatality rates and GDP losses.

Using high-frequency proxies like electricity consumption as economic indicators,

Demirguc-Kunt et al. (2020) and Fezzi and Fanghella (2020) show that earlier NPIs

led to better health and economic outcomes. Using historical data for the US during

the 1918 flu, Correia et al. (2020) find that NPIs could reduce disease transmission

without necessarily further depressing economic activities. Several studies using

structural modelling (Aum et al., 2020; Arnon et al., 2020; Chen and Qiu, 2020;

Acemoglu et al., 2020; Baqaee et al., 2020; Favero et al., 2020) show that NPIs

may not necessarily induce a trade-off between public health and the economic

performance: well-designed policies targeted at different age groups and risk sectors

could save lives with limited economic costs.

In the empirical application, we illustrate the multiple-outcome synthetic control

method by extending the analysis of Born et al. (2020) and Cho (2020) to multiple

1Cho (2020)’s empirical strategy follows Born et al. (2020), who did not find statistically sig-
nificant effect of NPIs on COVID-19 infection cases, based on a shorter span of observation.
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public health, labour market, and economic outcomes. Our results suggest that had

Sweden implemented stricter NPIs as in the other European countries by March,

the cumulative numbers of COVID-19 infection cases and deaths would have been

reduced by 70% and 68% respectively by July, and weekly deaths from all causes

would have been 20% fewer in early May. The impact on mortality was larger for

males and most visible for people older than 60. As for the labour market, we find

that stricter NPIs would increase absence from work by almost 76% mainly through

temporary layoffs, and reduce total hours worked by about 12%, for the employed in

the second quarter of 2020. The impacts would quickly vanish in the third quarter,

and there would be no discernible effect on the employment rate throughout. In

terms of the economy, we find that stricter NPIs would shrink the volume of retail

sales by 5%-13% from March to May, almost exclusively due to reduced sales in

non-food products. However, we do not find any statistically significant effects

of stricter NPIs on the other economic outcomes including GDP, import, export,

industrial production, and CPI, which indicates that almost all of the contraction

in the economy was due to the pandemic itself rather than the NPIs.

Our empirical results are in line with the existing studies, which largely find that

the NPIs had statistically and economically significant effects on the public health

outcomes, but a much smaller role in the downturn of the labour market and the

economy. There are several interesting new findings as well. First, we find that

the potential reduction in the cumulative number of COVID-19 deaths (per mil-

lion population) by July is 390, while the reduction in the cumulative number of

deaths from all causes between April and July is 364. One probable explanation for

the slightly smaller reduction in the latter is that people with existing conditions or

weaker immune systems are more susceptible to COVID-19, and thus mortality that

would have been attributed to other causes may have been counted as COVID-19

deaths instead. The NPIs may also have limited the spread of other transmissible

diseases through promoting good hygiene behaviours and reducing face-to-face in-

teractions. In either case, the estimated reduction in deaths from all causes due

to the NPIs, which amounts to a 64% drop from the realised level of COVID-19

deaths, may serve as a lower bound for the reduction in COVID-19 deaths. Second,

the NPIs would have significant effects on temporary absence from work and total

hours worked among the employed, but no effect on the employment rate. This is

likely due to the various employment support policies that were carried out across

European countries, with the aim of preserving jobs through income support and

wage subsidies (OECD, 2020). Third, the finding that the NPIs would only have

significant impact on retail sales in the early stages, but no effects on the other

economic outcomes may be somewhat counterintuitive. Further investigation into
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how the economy quickly absorbed the shocks brought by the pandemic and the

NPIs would be interesting for future research.

The rest of the paper is arranged as follows. Section 2.2 describes the theoret-

ical framework for the the multiple-outcome synthetic control method. Section

2.3 compares the multiple-outcome synthetic control method with the conventional

single-outcome synthetic control method using Monte Carlo simulations. Section

2.4 presents the empirical results and robustness checks. Section 2.5 discusses the

limitations and concludes.

2.2 Theoretical Framework

In this section, we generalise the conventional single-outcome synthetic control

method to a multiple-outcome framework, where the synthetic control is constructed

using a convex combination of the control units, with weights selected to match the

synthetic control and the treated unit in terms of the observed predictors and the

pretreatment values of multiple related outcomes in the same domain. It can be

shown that the bias of the multiple-outcome synthetic control estimator is bounded

by a function that shrinks to zero as the number of pretreatment periods or the num-

ber of related outcomes increases. Moreover, the bound is of a smaller stochastic

order than that of the single-outcome synthetic control estimator when the treated

unit can be closely approximated by the synthetic control in multiple related out-

comes before the treatment.

To illustrate the applicability of our method, we then conduct a compact re-analysis

of the economic cost of the 1990 German reunification, which shows that the syn-

thetic West Germany constructed by matching on multiple related outcomes in 1989

alone can closely track the trajectory of GDP per capita in West Germany from 1960

to 1990. This real-life example demonstrates that similarly with matching on the

single outcome in many pretreatment periods, the synthetic control constructed by

matching on multiple related outcomes in a small number of pretreatment periods

can closely approximate the treated unit in terms of the underlying predictors of

the outcomes as well, providing credibility of our method even when the number of

pretreatment periods is small.

We also discuss two extensions that will be useful in the empirical application. One

is to use demeaned outcomes, i.e., outcomes in differences with respect to their

pretreatment averages, to allow better pretreatment fits when the differences in the

level of the outcomes for different units are relatively stable over time. This may be

especially helpful in the multiple-outcome framework, where the relative positions

of the units may vary across different outcomes. The other extension is to include
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an additional assumption on the functional form of the treatment effect, which is

necessary if we want to estimate the treatment effect on the untreated using the

synthetic control method in cases with many treated units.

To avoid confusion, our notations largely follow those in Abadie (2021). The proofs

are collected in the appendix.

2.2.1 Multiple outcomes framework

Suppose that we observe K outcomes in domain K = {1, 2, . . . , K} for J + 1 units

over T time periods, where a domain refers to a collection of related outcomes

driven by the same set of observed and unobserved predictors. For example, the

economic domain contains different measures of the economic performance, such as

GDP, industrial production, retail sales, and CPI, which can be assumed to depend

on the same set of underlying predictors such as infrastructure, technology, natural

resources, demographic composition, work ethic, etc.

Without loss of generality, we assume that the first unit (i = 1) receives the treat-

ment at period T0 + 1 ≤ T and remains treated afterwards, while all the other J

units (i = 2, . . . , J + 1) are untreated throughout the window of observation. De-

noting the binary treatment status for unit i at time t as Dit, we have Dit = 1 for

i = 1 and t > T0, and Dit = 0 otherwise.

We are interested in the effect of the treatment on a single or multiple outcomes in

domain K for the treated unit after the treatment:

τ1t,k = Y 1
1t,k − Y 0

1t,k, t > T0, k ∈ K, (2.1)

where Y 1
1t,k is the potential outcome under the treatment, and Y 0

1t,k is the potential

outcome without the treatment, so that the observed outcome can be written as

Y1t,k = D1tY
1
1t,k+(1−D1t)Y

0
1t,k. Since we only observe the treated potential outcome

but not the untreated potential outcome for unit 1 at t > T0, we need to predict the

counterfactual outcome Y 0
1t,k.

Suppose that the untreated potential outcome k ∈ K for unit i at time t is given by

an interactive fixed effects model

Y 0
it,k = δt,k +Z ′

iθt,k + µ′
iλt,k + εit,k, (2.2)

where δt,k is the time trend in outcome k, Zi and µi are the r× 1 and f × 1 vectors

of observed and unobserved predictors of Y 0
it,k with outcome-specific coefficients θt,k

and λt,k, respectively, and εit,k is the individual transitory shock.
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Remark 2.1. Note that the above functional form of the untreated potential out-

comes does not exclude the possibility that some outcomes in the domain depend

on other predictors that are independent from the included predictors and the treat-

ment status, which can thus be treated as part of the transitory shocks. In addition,

the coefficients may contain zero so that the corresponding predictors may affect

some outcomes in some periods, but not all outcomes in all periods, as long as

there is enough variation in the coefficients across different pretreatment periods or

outcomes, as specified in Assumption 2.3.

Remark 2.2. Following Abadie (2021), we interpret the interactive fixed effects

term as the product of the unobserved predictors and the corresponding coefficients.

There is an alternative interpretation in the time series literature, where the inter-

active fixed effects term is the product of common time factors and unit-specific

factor loadings. This interpretation does not apply to the model in (2.2), as it does

not make much sense to have common time factors that vary across the outcomes,

while the factor loadings stay the same. To accommodate this interpretation, we

need a setup with common time factors λt that are invariant across the outcomes,

and outcome-specific factor loadings µi,k. Since both interpretations are accepted

in the literature, it would be important for future research to have a general model

that incorporates both setups in the multiple-outcome framework. A more general

model would be

Y 0
it,k = δt,k +Z ′

iθt,k + µ′
i,kλt,k + εit,k, (2.3)

where the first interpretation applies if we assume µi,k = µi, and the alternative

interpretation applies if we assume λt,k = λt. If we assume µi,k = µi + uk or

µi,k = µi ◦ uk, where uk is the outcome-specific factor loadings and ◦ represents

the element-wise product, then (2.3) reduces to (2.2). Allowing for a non-restrictive

structure of µi,k comes at the cost of the order of the bias, as the outcomes are no

longer related and we lose the benefit of matching on multiple related outcomes.

The individual transitory shocks are assumed to be independent across units, time

and outcomes, which is not as restrictive as it seems since the unobserved inter-

active fixed effects that account for the correlations along those dimensions have

been separated out. They are also assumed to have zero mean conditional on the

predictors and the treatment status, and that they do not dominate the predictors

in determining the outcomes. These assumptions are given in Assumption 2.1.

Assumption 2.1.

1) εit,k are independent across i, t, k;
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2) E(εit,k | Zj,µj, Djs) = 0 for all i, j, t, s and k;

3) E|εit,k|p < ∞ for all i, t, k and some even integer p ≥ 2.

A synthetic control is constructed using a convex combination of the control units

such that the synthetic control matches the treated unit in terms of the observed

predictors and the pretreatment values of the K related outcomes. This can be

achieved if the matching variables of the treated unit is in the convex hull of those

of the control units.2

Assumption 2.2. There exists a set of weights
(
w∗

2, . . . , w
∗
J+1

)
such that w∗

j ≥ 0

for j = 2, . . . , J + 1,
∑J+1

j=2 w
∗
j = 1,

∑J+1
j=2 w

∗
jZj = Z1 and

∑J+1
j=2 w

∗
jYjt,k = Y1t,k for

all t ≤ T0 and k ∈ K.

The multiple-outcome synthetic control estimator for τ1t,k is then constructed as

τ̂1t,k = Y1t,k −
J+1∑
j=2

w∗
jYjt,k. (2.4)

Note that to predict the counterfactual outcomes for the treated unit at time t > T0,

we need the synthetic control to match the treated unit in terms of the underlying

predictors. However, matching on the observed predictors and the pretreatment

outcomes does not necessarily translate to matching on the unobserved predictors,

since different combinations of the unobserved predictors may produce the same

outcomes if the coefficients are linearly dependent. This happens, for example, if

KT0 < f or if the coefficients are fixed over time. We thus need to ensure that

there is enough variation in the effects of the unobserved predictors across the T0

pretreatment periods or the K outcomes.

Assumption 2.3. The smallest eigenvalue of 1
KT0

∑K
k=1

∑T0

t=1 λt,kλ
′
t,k is bounded

from below by some positive number ξ.

To facilitate a straightforward comparison between the multiple-outcome synthetic

control estimator and the conventional synthetic control estimator based only on

outcome k, let {w̃(k)
j }J+1

j=2 be the single-outcome synthetic control weights such that

w̃
(k)
j ≥ 0 for j = 2, . . . , J+1,

∑J+1
j=2 w̃

(k)
j = 1,

∑J+1
j=2 w̃

(k)
j Zj = Z1 and

∑J+1
j=2 w̃

(k)
j Yjt,k =

2In practice, there may not be a set of weights that satisfy the restrictions in Assumption 2.2
exactly. If the treated unit is close to being in the convex hull of the control units, then we can
choose the weights by minimising the distance of the synthetic control and the treated unit in the
matching variables, so that the restrictions in Assumption 2.2 hold approximately. In Section 2.2.3,
we discuss demeaning the outcomes when there are stable differences in the level of the outcomes
for different units over time, so that the convex hull restriction is more likely to be satisfied.
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Y1t,k for all t ≤ T0. Without loss of generality, we can write

w̃
(k)
j = w∗

j + ṽ
(k)
j , j = 2, . . . , J + 1, (2.5)

where −1 ≤ ṽ
(k)
j ≤ 1.

The following result provides a unified framework for the biases of the two synthetic

control estimators, where we show that the bias of the conventional single-outcome

synthetic control method is usually O
(

1√
T0

)
, but if the single-outcome synthetic

control weights coincide with the multiple-outcome synthetic control weights, in

which case ṽ
(k)
j = 0 and w̃

(k)
j = w∗

j , then the order becomes O
(

1√
KT0

)
.

Proposition 2.1. Under Assumptions 2.1, 2.2 and 2.3,

Y 0
1t,k −

J+1∑
j=2

w̃
(k)
j Yjt,k = B1t,k +B2t,k +B3t,k +B4t,k,

Y 0
1t,k −

J+1∑
j=2

w∗
jYjt,k = B1t,k +B2t,k,

where E |B1t,k| = O
(

1√
KT0

)
, E [B2t,k] = E [B3t,k] = 0, and E |B4t,k| = O

(
1√
T0

)
.

Remark 2.3. There are two implications from Proposition 2.1. First, since the

bias of the multiple-outcome synthetic control estimator shrinks to zero as either

the number of pretreatment periods or the number of related outcomes increases,

we can now use the synthetic control method to credibly estimate the treatment

effect even when the number of pretreatment periods is small, if multiple related

outcomes are available and that the treated unit can be closely approximated by

the synthetic control in these outcomes in the pretreatment periods. Second, since

the stochastic order of the bound on the bias of the multiple-outcome synthetic

control estimator (RHS of B.1.7 in the proof) decreases in K, it follows that the

bound for the multiple-outcome synthetic control estimator constructed by matching

on K ≥ 2 related outcomes has a smaller order of (KT0)
−1/2 than the order of T0

−1/2

for the conventional synthetic control estimator, which only uses a single outcome.

Therefore, the multiple-outcome synthetic control method is also useful in cases

with an abundance of pretreatment periods, especially if we worry about structural

breaks over a long time span.

2.2.2 Empirical illustration

The multiple-outcome synthetic control method extends the applicability of the

conventional single-outcome synthetic control method to cases where only a small
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number of pretreatment periods are available. It would be reassuring if we could

show, using real data, that the results produced by matching on multiple related

outcomes in a few pretreatment periods are similar to those produced by matching

on a single outcome in many pretreatment periods.

To illustrate the applicability of our method, we re-analyse the effect of the 1990

German reunification on West Germany’s GDP per capita (Abadie et al., 2015).

This example is ideal, because not only is the outcome of interest observed in many

pretreatment periods, but also numerous related outcomes in the economic domain

are available from OECD stat. For comparison, we construct two synthetic controls

for West Germany, one by matching on the annual GDP per capita from 1960 to

1990, the other by matching on multiple related outcomes only in 1989.3 The list

of outcomes in 1989, as well as their values for West Germany, the two synthetic

controls, and the simple average of the countries in the comparison group are sum-

marised in Table 2.1. We see that both synthetic controls are generally much closer

to West Germany in the outcomes, compared with the simple average of the other

countries in the sample.

Table 2.1: Balance on Economic Outcomes in 1989

West Germany Synthetic Control Synthetic Control Sample Mean

(multiple outcomes) (single outcome)

Private social expenditure 3.4 3.5 3.5 2.0

Energy supply per GDP 0.2 0.1 0.1 0.1

Electricity generation 9.0 8.7 9.8 7.6

Triadic patent families 0.1 0.1 0.0 0.0

Real GDP growth 3.9 4.1 3.5 3.5

CPI 2.8 3.1 4.1 5.5

Trade openness 57.7 59.1 57.6 60.4

Total tax revenue 36.2 34.1 33.0 33.7

GDP per capita 18 994.0 19 028.5 19 071.6 16 493.8

Note: This table compares the list of economic outcomes in 1989 for West Germany, the synthetic West

Germany constructed using the listed outcomes in 1989, the synthetic West Germany constructed using

GDP per capita from 1960 to 1990, and the simple average of the countries in the comparison group.

Figure 2.1 compares the trajectories of GDP per capita for West Germany and the

two synthetic controls. As we would hope for, both synthetic controls are able

to track West Germany’s trajectory closely over a span of 30 years prior to the

treatment. This is not surprising for the single outcome synthetic control, which is

constructed with the aim to match the values of the outcome observed over the 30

years as closely as possible. The fact that the synthetic West Germany constructed

using only outcomes in 1989 can track the trajectory of GDP per capita in West Ger-

3The results produced by matching on multiple related outcomes in any single year from 1985-
1989 are very similar.
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Figure 2.1: Re-analysis of the Economic Cost of the 1990 German Reunification

many so well for so long demonstrates the ability of the multiple-outcome synthetic

control method to produce a synthetic control that closely approximates the treated

unit in terms of the underlying predictors, even when the number of pretreatment

periods is as small as 1. The estimated treatment effects, represented by the gaps

between the trajectories of the realised outcome and the counterfactual outcomes,

are also similar for the two synthetic control estimators after 1990, further providing

credibility of our method.

2.2.3 Adjusting for differences in levels

The conventional single-outcome synthetic control method requires the treated unit

to be or close to be in the convex hull of the control units in terms of the pretreatment

matching variables. However, there are cases where the treated unit is extreme in

the values of the matching variables, such that no convex combination of the control

units can closely approximate the outcome of the treated unit in the pretreatment

periods. In particular, it is often the case in practice that there are relatively stable

differences in the level of the outcome across units before the treatment. In such

cases, Ferman and Pinto (2019) and Abadie (2021) suggest constructing the syn-

thetic control using demeaned outcomes, i.e., outcomes measured in differences with

respect to their pretreatment means. This enables the synthetic control to track the

dynamics in the outcome of the treated unit over time, while allowing the levels to

differ by a constant amount, which is similar to the “parallel trends” assumption

in the difference-in-differences method. Using demeaned outcomes is also similar

to a proposal in Doudchenko and Imbens (2017), which includes an intercept when

minimising the difference between the synthetic control and the treated unit in the

matching variables. While their approach only accepts matching variables of the
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same scale, there is no such restriction using demeaned outcomes.

Apart from allowing a better pretreatment fit for the treated unit, using demeaned

outcomes has the additional merit that it helps correct the size distortion of the

permutation test. Inference in the synthetic control method is based on the post-

to-pretreatment RMSPE (root mean squared prediction error) ratios obtained from

permuting the treatment status among all units.4 As observed in Ferman and Pinto

(2017), since the synthetic control method is only recommended when the treated

unit can be well approximated by the synthetic control (Abadie et al., 2010, 2015),

the RMSPE ratio in the permutation test is conditional on a good pretreatment fit

for the treated unit while unconditional for the others, which would lead to over-

rejection of the null hypothesis. Demeaning the outcomes alleviates the distortion

in the size of the test, as it allows better pretreatment fits for all units in the

permutation test, so that the asymptotic distributions of the RMSPE ratio for the

treated unit and the control units are closer. Note that adjusting for differences

in the levels may not fully correct the size distortion, since the dynamics in the

outcomes over time are not guaranteed to be well approximated. In those cases, the

RMSPE ratio may still tend to be conditional on a better pretreatment fit for the

treated unit, and there may still be some degree of over-rejection.

Note that the interactive fixed effects model in equation (2.2) can be rewritten

as

Y 0
it,k = ρi,k + δ̇t,k +Z ′

iθ̇t,k + µ′
iλ̇t,k + ε̇it,k, (2.6)

where ρi,k = 1
T0

∑T0

s=1 δs,k + Z ′
i
1
T0

∑T0

s=1 θs,k + µ′
i
1
T0

∑T0

s=1 λs,k +
1
T0

∑T0

s=1 εs,k, δ̇t,k =

δt,k − 1
T0

∑T0

s=1 δs,k, θ̇t,k = θt,k − 1
T0

∑T0

s=1 θs,k, λ̇t,k = λt,k − 1
T0

∑T0

s=1 λs,k, and ε̇it,k =

εit,k − 1
T0

∑T0

s=1 εis,k. In this model, ρi,k represents the pretreatment level of out-

come k for unit i, and the other components on the right-hand-side account for the

dynamics in the outcome over time. Since the level of the outcome is determined

by the underlying predictors, the bias in the synthetic control estimator and the

size distortion in the permutation test, as a result of poor pretreatment fits due to

the differences in the levels, can be removed by allowing negative synthetic control

weights.5 While the synthetic control estimator using demeaned outcomes is still

asymptotically unbiased, it is less efficient in this case since the information on the

level of the outcomes is lost. On the other hand, if ρi,k were a free variable that

does not depend on the underlying predictors, then the synthetic control estimator

4For more details about the inference procedure in the synthetic control method, see Abadie
(2021).

5Relaxing the nonnegativity restriction on the synthetic control weights has been discussed in
numerous studies since Doudchenko and Imbens (2017), but is beyond the focus of this paper.
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using the original outcomes would be biased, whereas the process of demeaning the

outcomes removes this bias.

In the multiple-outcome framework, the relative position of the units can vary

across different outcomes, making it difficult to match on multiple outcomes si-

multaneously. The demeaning process would be helpful in these circumstances

by improving the pretreatment fits. Denote the demeaned outcome as Ẏit,k =

Yit,k − 1
T0

∑T0

s=1 Yis,k.

Assumption 2.2′. There exists a set of weights
(
w∗

2, . . . , w
∗
J+1

)
such that w∗

j ≥ 0

for j = 2, . . . , J + 1,
∑J+1

j=2 w
∗
j = 1,

∑J+1
j=2 w

∗
jZj = Z1 and

∑J+1
j=2 w

∗
j Ẏjt,k = Ẏ1t,k for

all t ≤ T0 and k ∈ K.

We can then construct the multiple-outcome synthetic control estimator for τ1t,k

as

τ̃1t,k = Ẏ1t,k −
J+1∑
j=2

w∗
j Ẏjt,k (2.7)

to account for the differences in the level of the outcomes as long as T0 ≥ 2. Similarly

with Proposition 2.1, the bias of this estimator can be shown to go to zero as the

number of related outcomes or pretreatment periods goes to infinity.

Corollary 2.1. Under Assumptions 2.1, 2.2′ and 2.3, E (τ̃1t,k − τ1t,k) → 0 as KT0 →
∞.

2.2.4 Treatment effect on the untreated

We have been focusing on the setting with a single treated unit and many control

units, where we estimate the treatment effects on the treated. However, there are

cases with many treated units, and we may wish to estimate the treatment effects

on the untreated.

Without loss of generality, suppose that unit 1 remains untreated within the window

of observation, while all the other units are treated from t = T0+1 onwards. Recall

that the treated potential outcome is Y 1
it,k = Y 0

it,k + τit,k. Since we have not imposed

any assumption on the treatment effects except treating them as fixed given the

sample, the treated potential outcomes may not have the interactive fixed effects

functional forms or depend on the same predictors as the untreated potential out-

comes. As a consequence, a synthetic unit that matches the untreated unit in the

pretreatment matching variables may not credibly reproduce the counterfactual out-

comes for the untreated unit after the treatment, even if it is similar to the untreated

unit in the underlying predictors of the untreated potential outcomes. Therefore, in
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order to estimate the treatment effects on the untreated, we include an additional

assumption that the treatment effects are determined by the same predictors of the

untreated potential outcomes. This assumption is more general than assuming that

the treatment effects are constant.6

Assumption 2.4.

τit,k = αt,k +Z ′
iβt,k + µ′

iγt,k, ∀i, t, k,

where αt,k is the time trend in τit,k, and βt,k and γt,k are the outcome-specific coef-

ficients of the observed and unobserved predictors respectively.

Together with equations (2.1) and (2.2), this implies that the treated potential

outcome k for unit i at time t is given by

Y 1
it,k = (δt,k + αt,k) +Z ′

i

(
θt,k + βt,k

)
+ µ′

i

(
λt,k + γt,k

)
+ εit,k. (2.8)

The multiple-outcome synthetic control estimator for τ1t,k, the treatment effect on

the untreated unit, can then be constructed as

τ̌1t,k =
J+1∑
j=2

w∗
jYjt,k − Y1t,k. (2.9)

Since the treated potential outcome Y 1
it,k has an interactive fixed effects structure,

we can similarly show that the bias of τ̌1t,k vanishes when we have more and more

pretreatment periods or related outcomes.

Corollary 2.2. Under Assumptions 2.1, 2.2, 2.3 and 2.4, E (τ̌1t − τ1t) → 0 as KT0 →
∞.

2.3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to compare the multiple-

outcome synthetic control method and the conventional single-outcome synthetic

control method.

We fix the number of posttreatment periods at 1, and the sample size at 30, with a

single treated unit and 29 control units. The treatment effect is set to 0, so that the

treated potential outcomes are the same with the untreated potential outcomes. The

potential outcomes are generated from the model in equation (2.2) with r = 2 and

6A similar assumption is discussed in Athey et al. (2021), where the treatment effect is assumed
to have a low-rank pattern.
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f = 4. The observed and unobserved predictors are drawn independently from the

uniform distribution U [−1, 1] for the control units, and U [−d, d] with d ∈ [0, 1] for

the treated unit. When d = 1, the treated unit is equally likely to obtain extreme

values in the outcomes as the control units. When d is smaller, the treated unit

is more likely to be in the convex hull of the control units, and thus have better

pretreatment fits.

Recall from (2.6) that the level of the outcome is given by γi,k = 1
T0

∑T0

s=1 δs,k +

Z ′
i
1
T0

∑T0

s=1 θs,k + µ′
i
1
T0

∑T0

s=1 λs,k +
1
T0

∑T0

s=1 εis,k, which is determined by the mean

time trend, coefficients and individual transitory shocks given the underlying pre-

dictors, while the dynamics over time is retained in the demeaned outcomes. To

generate outcomes that are closer to real data, where there are often clear differ-

ences in the level of the outcomes across units and that the differences are relatively

stable over time, we set the variance of the mean of the coefficients to be large rela-

tive to the variance of the coefficients and the transitory shocks. As such, the time

trend and the coefficients are drawn independently from the normal distribution

N(ωk, 1) with ωk ∼ N(0, 10), and the transitory shocks are drawn independently

from the standard normal distribution.7

In each simulation, the observed and unobserved predictors are drawn only once so

that the outcomes share the same underlying predictors, while the time trend, the

coefficients and the transitory shocks are drawn independently for each outcome.

Figure 2.2 displays the trajectories of two related outcomes from a typical simulated

sample with d = 1 and T0 = 10. The trajectories for the treated unit are in black,

and the control units in gray. As intended, there are visible and stable differences

in the level of the outcomes, and the levels for the treated unit are different across

the outcomes.
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Figure 2.2: A Simulated Example

7When ωk = 0, there would be no distinguishable levels in the outcomes for different units, and
demeaning the outcomes would not be useful in this case.
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We compare the conventional single-outcome synthetic control estimator and the

multiple-outcome synthetic control estimators constructed using K = 1, 2 and 4

demeaned outcomes, respectively. The only difference between the single-outcome

synthetic control method and the multiple-outcome synthetic control method when

K = 1 is the use of the demeaned outcomes. To measure their performances, we

estimate the treatment effect on outcome 1 for the treated unit at t = T0 + 1,

and compute the average absolute bias and standard deviation of the estimators

as well as the average rejection rate of the 10% test in 5000 simulations. The null

hypothesis of zero treatment effect is rejected in each simulation, if the RMSPE

ratio for the treated unit is ranked among the largest 10%, i.e., top 3 in our sample,

in the permutation test. When the estimation improves with better pretreatment

fits and larger numbers of pretreatment periods and related outcomes, we expect

the average absolute bias and standard deviation of the estimators to be closer to√
2
π
≈ 0.8 and 1, which are the mean and standard deviation of the standard normal

distribution folded at the mean (half-normal distribution).8 When the distributions

of the RMSPE ratio for the treated unit and the control units are close, so that

there is little size distortion in the permutation test, we expect the average rejection

rate of the 10% test to be close to the nominal rejection rate at 10%.

Table 2.2: Simulation

Conventional SC Multi-Outcome SC Multi-Outcome SC Multi-Outcome SC

(K = 1) (K = 2) (K = 4)

d T0 Bias SD Rej. Bias SD Rej. Bias SD Rej. Bias SD Rej.

1 5 1.86 2.76 0.108 1.41 1.78 0.104 1.34 1.68 0.102 1.29 1.62 0.107

1 10 1.63 2.45 0.098 1.26 1.59 0.097 1.19 1.50 0.095 1.14 1.45 0.096

1 20 1.52 2.28 0.098 1.17 1.48 0.102 1.13 1.42 0.105 1.09 1.38 0.103

0.5 5 1.11 1.39 0.362 1.16 1.46 0.315 1.11 1.40 0.184 1.08 1.35 0.140

0.5 10 1.02 1.29 0.232 1.07 1.34 0.181 1.01 1.27 0.144 0.98 1.22 0.122

0.5 20 0.95 1.20 0.175 0.98 1.23 0.144 0.94 1.19 0.126 0.92 1.16 0.112

0 5 1.06 1.32 0.584 1.10 1.38 0.489 1.08 1.35 0.264 1.04 1.30 0.176

0 10 0.97 1.22 0.343 1.02 1.28 0.244 0.96 1.21 0.163 0.93 1.16 0.134

0 20 0.92 1.15 0.235 0.96 1.20 0.181 0.92 1.15 0.139 0.90 1.12 0.131

Note: This table compares the absolute bias, standard deviation, and rejection rate of the 10% test

for the single-outcome SC estimator, and the multiple-outcome SC estimators constructed using 1, 2

and 4 demeaned outcomes respectively, with varying d and T0, based on 5000 simulations for each

setting.

Several findings emerge from the results of the simulations, which are reported

in Table 2.2. First, when the number of pretreatment periods increases, the bias

8Note that the terms from the bias decomposition in the proof of Proposition 2.1 are all close
to 0, except the posttreatment transitory shock, which follows a standard normal distribution in
our simulation.
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decreases and becomes closer to the expected value for all estimators as expected.

The bias of the multiple-outcome synthetic control estimator also becomes smaller

when the number of related outcomes is larger, albeit at a slower rate due to the

loss of information in the level of the outcomes. Similar patterns are observed for

the standard deviation of the estimators.

Second, when the support of the predictors for the treated unit is the same with that

for the control units (d = 1), demeaning substantially improves estimation in terms

of both bias and standard deviation, as the conventional single-outcome synthetic

control method is likely to perform poorly when the treated unit is far from the

convex hull of the control units, whereas demeaning adjusts for the differences in

the levels and improves the pretreatment fit. Meanwhile, the rejection rate of the

10% test is close to the nominal size, with or without demeaning in this case, since

the RMSPE ratio for the treated unit is not conditional on a good pretreatment fit.

When d is smaller, the probability of obtaining a good pretreatment fit increases

for the treated unit while staying unchanged for the other units. As a result, the

bias and standard deviation for both the conventional synthetic control estimator

and the demeaned synthetic control estimator are smaller, and the improvement in

estimation by demeaning the outcomes becomes less pronounced. In contrast, the

distortion in the size of the test increases drastically, and demeaning alleviates the

size distortion by improving the pretreatment fits for all units.

Third, a larger number of pretreatment periods or related outcomes also reduces

the size distortion, since the pretreatment RMSPE for the treated unit is less likely

to be very close to 0. Overall, the results show that the multiple-outcome synthetic

control method outperforms the conventional single-outcome method in terms of

both estimation and inference, when there are multiple related outcomes with stable

differences in the level of the outcomes.

2.4 Empirical Application

In order to curb the spread of COVID-19, most countries in Europe had imple-

mented strict non-pharmaceutical interventions (NPIs), such as requiring residents

to stay at home, restricting social gatherings and travels, as well as shutting down

schools and workplaces, by late March. As an exception, Sweden opted against

a general lockdown and implemented much lighter NPIs. For example, social dis-

tancing and working from home were advised but not mandated, bars, restaurants,

and schools for children under 16 were kept open, quarantines for infected cases were

not enforced, and facemasks were not recommended outside health care (Ludvigsson,

2020). Building upon the empirical strategy in Born et al. (2020) and Cho (2020),
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we exploit this natural experiment to estimate the impacts of the NPIs on various

public health, labour market and economic outcomes, using the multiple-outcome

synthetic control method. To minimise the risk of structural breaks, we start the

pretreatment periods from 2019. And to examine the dynamics of the impacts of

the NPIs over time, we estimate the treatment effects in the first 3 quarters of 2020,

before the second wave of COVID-19 cases in Europe from October.

2.4.1 Data

There are 26 countries in the treatment group for Sweden, including the other Eu-

ropean Union members (excluding Cyprus, Luxembourg, and Malta due to their

small sizes) as well as Norway, Switzerland and the United Kingdom.9 The NPIs

implemented in each country usually consist of a bundle of individual policies with

varying duration and magnitudes. To compare the strictness of the NPIs across

countries, we employ the Government Stringency Index, which is obtained from

Our World in Data (Roser et al., 2020). This index is a composite measure of the

strictness of government responses based on several individual metrics, and ranges

from 0 to 100, with 100 representing the strictest response (Hale et al., 2020).
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Figure 2.3: Stringency Index

Figure 2.3 depicts the stringency index for each country in our sample in the first

3 quarters of 2020, with Sweden shown in black and the others in gray. We see

that most countries rapidly tightened their intervention policies in March, and kept

9The full list of countries in our sample are: Austria (AUT), Belgium (BEL), Bulgaria (BGR),
Croatia (HRV), Czech Republic (CZE), Denmark (DNK), Estonia (EST), Finland (FIN), France
(FRA), Germany (DEU), Greece (GRC), Hungary (HUN), Ireland (IRL), Italy (ITA), Latvia
(LVA), Lithuania (LTU), Netherlands (NLD), Norway (NOR), Poland (POL), Portugal (PRT),
Romania (ROU), Slovakia (SVK), Slovenia (SVN), Spain (ESP), Sweden (SWE), Switzerland
(CHE), and the UK (GBR).
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them in place until May, when the strict NPIs began to be gradually eased. The

stringency index of Sweden almost always stayed as the lowest in the sample during

this period, consistent with the earlier observation that Sweden implemented much

lighter NPIs than the other European countries. To derive the binary treatment

status from the stringency index, we pick the average date that the stringency index

peaked for each country in the treatment group, March 28th, as the treatment date,

which is denoted by the vertical dotted line in Figure 2.3. One concern about this

choice is that the NPIs have already started to be implemented prior to this date,

albeit at lower levels compared with the peaks, and matching on outcomes that

were realised after some NPIs have been in place may attenuate our estimates of the

treatment effects. However, as we show in Section 2.4.4, the results of our analysis

remain virtually the same even if we backdate the treatment to October 1, 2019,

before the first case of COVID-19 in the world was reported.

We are interested in the impacts of the NPIs in three domains, namely, public health,

the labour market, and the economy. In the public health domain, we examine 3

outcomes: the cumulative numbers of COVID-19 infection cases and deaths, and

the number of weekly deaths from all causes. The numbers of COVID-19 cases and

deaths may suffer from reporting issues such as measurement errors and time lags,

due to differences in reporting standards in different countries and time constraints,

whereas the number of deaths from all causes is more accurately recorded, but

does not specify the exact causes. The data on COVID-19 cases and deaths are

obtained from Our World in Data and are available on a daily basis, and the data

on weekly deaths from all causes is obtained from Eurostat, the statistical office of

the European Union.10 We consider 3 labour market outcomes: employment rate,

absence from work, and total hours worked. The employment rate is the percentage

of employed persons in the total population. Absence from work is the percentage of

employed persons that are temporarily absent from work, where persons absent from

work are considered as employed if there is a formal attachment to the job in the form

of continued receipt of wage or salary, or an assurance of return to work on an agreed

date. And total hours worked are computed for all persons employed in their main

occupation and are indexed to be equal to 100 in 2006 for purpose of comparability

across countries.11 The data on the labour market outcomes are seasonally adjusted

and are available from Eurostat on a quarterly basis. Finally, we look at 6 outcomes

in the economic domain: GDP, import, export, industrial production, retail sales,

and CPI. The data on the economic outcomes are seasonally and calendar adjusted

10Since the numbers of COVID-19 cases and deaths are very small in the early stage of the
pandemic, we use the number of COVID-19 cases only on days when its sample mean is larger
than or equal to 1 per million population, and use the number of COVID-19 deaths only on days
when its sample mean is larger than or equal to 0.1 per million population.

11See https://ec.europa.eu/eurostat/cache/metadata/en/lfsi_esms.htm for more details.
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except for CPI (not adjusted), and are also available from Eurostat.12 GDP is

available on a quarterly basis, while the other economic outcomes are available on a

monthly basis. As the outcomes are observed in different frequencies, the numbers of

periods in which they are observed are also different.13 Table 2.3 summarises the unit

of measurement, the frequency of observation, the seasonal and calendar adjustment,

as well as the numbers of pretreatment and posttreatment periods available for the

outcomes of interest. Since we have an abundance of pretreatment variables to

match on, we do not include any additional covariates.14

Table 2.3: Outcomes

Domain Outcome Unit Frequency Adjustment Pretreatment Posttreatment

COVID-19 cases per million population daily NA 28 213

public health COVID-19 deaths per million population daily NA 22 207

all deaths per million population weekly NA 64 27

employment percent of population quarterly SA 4 3

labour market absence from work percent of employment quarterly SA 4 2

total hours worked index (2006=100) quarterly SA 4 2

GDP 2015 Euro per capita quarterly SCA 4 3

import 2015 Euro per capita monthly SCA 14 7

export 2015 Euro per capita monthly SCA 14 7

economy industrial production index (2015=100) monthly SCA 14 7

retail index (2015=100) monthly SCA 14 7

CPI index (2015=100) monthly NA 14 7

Note: This table summarises the outcomes of interest in our empirical application. ‘NA’ is short for ‘Not Adjusted’, ‘SA’ is

short for ‘Seasonally Adjusted’, and ‘SCA’ is short for ‘Seasonally and Calendar Adjusted’.

Figure 2.4 visualises the outcomes over time for all countries in our sample, with the

trajectories for Sweden in black and the other countries in gray. Since the outcomes

are observed in different frequencies, the vertical dotted lines are used as delimiters

to visually separate the pretreatment and posttreatment periods for the outcomes,

and may not sit on the treatment date exactly.15 In the public health domain, we see

that the numbers of COVID-19 cases and deaths began to rise quickly for countries

in the treatment group from mid-March, before flattening out in early May. In

comparison, although starting at lower levels and rates, the numbers of COVID-19

12The data on import and export for Norway, Switzerland and the United Kingdom are missing
on Eurostat, and are thus obtained from OECD stat, where they are seasonally adjusted. GDP
for Slovakia is also only seasonally adjusted.

13Although the frequencies are different for different outcomes, they are similar for outcomes in
the same domain. Using outcomes of different frequencies is similar to using linear combinations
of the outcomes as in Abadie et al. (2010), e.g., quarterly data can be considered as averages of
monthly data.

14See Botosaru and Ferman (2019) for a discussion on the role of the covariates in the synthetic
control method.

15Specifically, we only include the daily and weekly outcomes observed on and before Mar 28th,
2020, the monthly outcomes observed before March 2020, and the quarterly outcomes observed
in 2019, in the pretreatment matching variables, none of which contain observations after the
treatment date. The vertical dotted lines are positioned to reflect these choices.
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cases and deaths in Sweden continued growing to become among the highest in the

sample, before slowing down only from June. Similarly, the number of weekly deaths

from all causes in Sweden stayed near the bottom throughout 2019, but came close

to the sample mean with a sharp spike in April, despite rises in other countries

as well in this period, and only fell back to its usual level after June. The labour

market outcomes present a more varied picture. Due to various protective measures

to contain employment losses, the employment rate only experienced modest dips in

the second and third quarters of 2020 for all countries in the sample. However, there

were much more visible changes in absence from work and total hours worked among

the employed. Compared with the 2019 levels, the percentage of the employed who

were temporarily absent from work more than doubled, and the total hours worked

dropped by about 10-20% in the second quarter for countries in the treatment group,

and quickly returned to their normal levels in the third quarter when the NPIs were

relaxed. In contrast, there were only very mild changes in these two outcomes for

Sweden. When it comes to the economic domain, all outcomes except CPI were

adversely impacted by the pandemic in the second quarter and somewhat recovered

in the third. The changes were relatively modest in GDP, import and export, and

more dramatic in industrial production and retail sales for countries in the treatment

group. The economic outcomes in Sweden experienced similar changes, with the

noticeable exception that the drop in the volume of retail sales was much smaller. It

is also worth noting that the relative position for Sweden differs across the outcomes,

highlighting the necessity of adjusting for the differences in the level of the outcomes

through demeaning.

2.4.2 Estimation

As outcomes in different domains may depend on different sets of predictors, we

construct a synthetic Sweden in each of the three domains, using a convex combina-

tion of the countries in the comparison group, to closely approximate the dynamics

of the outcomes in the domain for Sweden before the treatment. Specifically, the

synthetic control weights in domain K are chosen to minimise the distance between

the synthetic Sweden and the actual Sweden in terms of the demeaned pretreatment

outcomes in the domain as follows,

(
w∗

2, . . . , w
∗
J+1

)K
= arg min

(w2,...,wJ+1)

K∑
k=1

1

#pre
k

T0∑
t=1

(
Ẏ ob
1t,k −

∑J+1
j=2 wjẎ

ob
jt,k

σ(Ẏ ob
it,k)

)2

s.t.
J+1∑
j=2

wj = 1 and wj ≥ 0,
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where Sweden is assigned as unit 1 and other countries as unit 2, . . . , J + 1, #pre
k is

the number of pretreatment periods in which outcome k is observed, the upper dot

in Ẏ ob
it,k represents that the outcome is demeaned, the superscript “ob” indicates that

the outcome is used if observed in period t, and is replaced by 0 otherwise, and σ(·)
computes the cross-sectional standard deviation of the variable. Hence, the outcomes

in the domain are equally weighted, the values of the outcomes observed in different

pretreatment periods are equally weighted within each outcome, and the match-

ing variables are demeaned and standardised. Once the synthetic control weights(
w∗

2, . . . , w
∗
J+1

)K
for domain K are obtained, we can then estimate the treatment ef-

fect on outcome k ∈ K for Sweden at time t using τ̂1t,k =
∑J+1

j=2 w
∗
j
KẎjt,k−Ẏ1t,k.

Table 2.4: Synthetic Control Weights

Country Health Labour Economic Country Health Labour Economic

Austria 0 0 0.06 Italy 0.02 0 0.1

Belgium 0 0 0.08 Latvia 0 0 0.05

Bulgaria 0 0 0.09 Lithuania 0 0.18 0.07

Croatia 0 0 0.05 Netherlands 0.31 0.12 0

Czech Republic 0 0.03 0 Norway 0.07 0 0.1

Denmark 0.26 0 0 Poland 0.09 0 0

Estonia 0 0 0.01 Portugal 0 0 0

Finland 0.2 0.02 0.09 Romania 0 0 0

France 0.03 0.17 0 Slovakia 0 0.18 0

Germany 0 – 0 Slovenia 0 0 0

Greece 0.03 0 0 Spain 0 0.27 0

Hungary 0 0 0.06 Switzerland 0 0 0

Ireland – 0.04 0.03 United Kingdom 0 0 0.21

Note: This table shows the synthetic control weights in each domain. – indicates that the country

has missing data in the domain and is thus excluded from constructing the corresponding synthetic

Sweden.

Table 2.4 displays the weights assigned to the countries in the treatment group for

constructing the synthetic Sweden in each domain.16 We see that the public health

outcomes for Sweden are best approximated by a combination of the Netherlands,

Denmark, Finland, Poland, Norway, France, Greece and Italy, with the weights

in descending order. The labour market outcomes are best approximated by a

combination of Spain, Lithuania, Slovakia, France, the Netherlands, Ireland, Czech

Republic, and Finland. And the economic outcomes are best approximated by

a combination of the UK, Italy, Norway, Bulgaria, Finland, Belgium, Lithuania,

Austria, Hungary, Croatia, Latvia, Ireland, and Estonia.

Figure 2.5 compares the trajectories of each outcome for Sweden and the synthetic

Sweden. From a visual inspection, the actual Sweden starts to accumulate more

COVID-19 cases and deaths than the synthetic Sweden from April. The gaps be-

16Due to lack of data on weekly deaths, we exclude Ireland from the construction of synthetic
control in the public health domain. Similarly, we exclude Germany from the labour market domain
due to lack of data on absence from work and total hours worked in the posttreatment periods.
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Figure 2.5: Outcomes for Sweden (solid line) and the Synthetic Sweden (dashed
line)
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tween the two widen rapidly thereafter, before stabilising from July. Similarly, we

observe more deaths from all causes in the actual Sweden than the synthetic Sweden

from April to July, with the gap peaking in May. A back-of-the-envelope calculation

suggests that had Sweden implemented stricter NPIs like the other European coun-

tries in March, the cumulative COVID-19 cases and deaths could have been reduced

by about 5300 and 390 per million population respectively by July, amounting to

70% and 68% drops from the realised levels in Sweden, and there could have been

20% fewer weekly deaths from all causes in early May. For comparison, we also

compute the cumulative deaths from all causes since April for both the synthetic

Sweden and the actual Sweden, and find that the cumulative deaths from all causes

could have been reduced by 364 per million population by July, representing an 11%

drop from the realised level in Sweden.17 Since COVID-19 is more easily contracted

by people with existing conditions or weaker immune systems, and NPIs may have

reduced the transmission of other diseases by promoting good hygiene behaviours

and reducing face-to-face interactions, the estimated reduction in deaths from all

causes, which amounts to a difference of 64% compared with the realised number

of COVID-19 deaths, may serve as a lower bound for the reduction in COVID-19

deaths. As for the labour market outcomes, we find that stricter NPIs would in-

crease absence from work among the employed by almost 76%, and reduce total

hours worked by about 12%, in the second quarter of 2020. The impacts would dis-

appear in the third quarter, and there would be no visible effect on the employment

rate throughout the first 3 quarters in 2020. In terms of the economy, we find that

stricter NPIs would shrink the volume of retail sales by 5%-13% from March to May,

whereas the effects on the other economic outcomes including GDP, import, export,

industrial production, and CPI, were all close to 0. This suggests that almost all

of the contraction in the economy was due to the pandemic itself rather than the

NPIs.

Since we are interested in the treatment effects on multiple outcomes in particular

domains, we may follow Kling et al. (2007) and summarise the estimated treatment

effects in domain K using the aggregate treatment effect, or the average of the

standardised treatment effects as

τ̂Ki (t1, t2) =
1

K

∑
k∈K

∑t2
t=t1

τ̂ obit,k

#t1,t2
k σk

,

where T0 < t1 ≤ t2 ≤ T , #t1,t2
k is the number of periods that the estimated treatment

effect on outcome k is available between t1 and t2, and σk is the average of the cross-

17Note that the percentage drop in deaths from all causes is much smaller than that in COVID-19
deaths, because the base number is much larger.
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sectional standard deviations of outcome k over the posttreatment periods.
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Figure 2.6: Aggregate Treatment Effects

Figure 2.6 summarises the aggregate treatment effects in different posttreatment

periods in the three domains. The aggregate treatment effects in the first three

quarters of 2020 overall are included in the parentheses. We see that the conclusions

drawn for the three domains from the estimated treatment effects on each outcome

are preserved using the aggregate treatment effects. The effect of the NPIs on

the public health domain increased steadily from April to June, before leveling off

from July, and the aggregate treatment effect in the posttreatment periods overall

is also the largest on the public health domain. The effect on the labour market

reached above 1.2 in the second quarter, but was close to zero in the first and third

quarters. And the magnitude of the effect on the economy remained at very low

levels throughout the first three quarters of 2020.

2.4.3 Inference

Given the common perception that the implementation of NPIs would benefit public

health by reducing the spread of the virus, while harming the labour market and

the economy, we test the null hypothesis for outcome k at t > T0

H0 : τ1t,k = 0,

against the alternative hypothesis

H1 : τ1t,k < 0,

so that if the null hypothesis is rejected, then we can conclude that the implemen-

tation of strict NPIs has statistically significant negative effect on outcome k for

Sweden.18

18We reverse the sign of the treatment effect on absence from work, so that it has the same
expected direction with the other outcomes.
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Following the one-sided inference procedure in Abadie (2021), we permute the treat-

ment status among all the units, and compute the pretreatment RMSPE for unit i

and outcome k as

Rpre
i,k =

(
1

#pre
k

T0∑
t=1

(
Ŷ 1,ob
it,k − Y ob

it,k

)2)1/2

,

and the posttreatment RMSPE as

Rpost
i,k =

(
1

#post
k

T∑
t=T0+1

[(
Ŷ 1,ob
it,k − Y ob

it,k

)−]2)1/2

,

where #post
k is the number of posttreatment periods in which outcome k is observed,

and
(
Ŷ 1
it,k − Yit,k

)−
= Ŷ 1,ob

it,k − Y ob
it,k if Ŷ 1,ob

it − Y ob
it,k < 0 and 0 otherwise.

The post-to-pretreatment RMSPE ratio is simply ri,k = Rpost
i,k /Rpre

i,k , and we can

compute the p-value based on the ranking of ri,k as

pk =
1

J + 1

J+1∑
i=1

I+ (ri,k − r1,k) ,

where I+ () is an indicator for nonnegative arguments. Replacing the posttreatment

RMSPE, Rpost
i,k , with Rpost

it,k =

∣∣∣∣(Ŷ 1
it,k − Yit,k

)−∣∣∣∣, t > T0, allows us to compute the

RMSPE ratio rit,k and the p-value pt,k in a single posttreatment period.

Note that when outcome k is observed in only a few periods before the treatment,

the pretreatment RMSPE Rpre
i,k may be very close to 0 and the RMSPE ratio may be

extremely large for some units. For this reason, we can add a small value η on both

the numerator and the denominator when computing the RMSPE ratio, so that the

ratios are in reasonable ranges.19 In the extreme case where we do not observe the

outcome at all before the treatment, Rpre
i,k would be 0 for all units, and ranking of

the RMSPE ratios
Rpost

i,k +η

Rpre
i,k +η

becomes ranking of the gaps in the outcomes after the

treatment.

Similarly to summarising the treatment effects in a domain using the aggregate treat-

ment effect, we can summarise the statistical significance of the treatment effects in

a domain in period t and in the posttreatment periods overall using

rKit =

∑
k∈K Rpost

it,k /σk∑
k∈KRpre

i,k /σk

and rKi =

∑
k∈K Rpost

i,k /σk∑
k∈KRpre

i,k /σk

,

19In this empirical application, we set η = 0.01σk, and our results are not sensitive to a larger η.
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respectively. Aggregate p-values in period t and in the posttreatment periods overall

can be computed accordingly based on these ratios.
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Figure 2.7: P-Values

Figure 2.7 shows the per-period p-values for each outcome, with the p-values in the

posttreatment periods overall reported in the parentheses. The horizontal dotted

line represents the significance level at α = 3/(J + 1) (top 3 in the ranking of

the post-to-pretreatment RMSPE ratios in the sample), with J = 25 (α ≈ 0.12)

in the public health and labour market domains, and J = 26 (α ≈ 0.11) in the
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economic domain. We find that the effects of the NPIs on COVID-19 cases and

deaths were statistically significant at the 12% level from May, and the effect on

deaths from all causes was significant from April to June. There were significant

effects on absence from work and total hours worked in the second quarter, whereas

the treatment effect on the employment rate remained insignificant throughout. As

for the economic outcomes, we only find significant effect on retail sales in March,

and we cannot reject the null hypotheses that the NPIs had no effects on the other

economic outcomes in the first three quarters of 2020. The detailed graphs showing

the gaps between each country and their synthetic counterparts in the permutation

test are in Figure B.2.1 in the Appendix.
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Figure 2.8: Aggregate P-Values

Aggregate p-values for the treatment effects on each domain in the posttreatment

periods are presented in Figure 2.8, where the aggregate p-values in the posttreat-

ment periods overall are reported in the parentheses. We find that the effect of the

NPIs on public health was statistically significant from May onwards, the effect on

the labour market was only significant in the second quarter, and the effect on the

economy was only significant in the first quarter due to the effect on retail sales

in March. Rankings of the post-to-pretreatment RMSPE ratios for the individual

outcomes as well as the three domains are shown in Figures B.2.2 and B.2.3 in the

Appendix.

2.4.4 Robustness Checks

In this section, we conduct several robustness checks to assess the sensitivity of our

results to changes in the design of the study. Since we have multiple outcomes of

interest, we can summarise the results succinctly using the radar charts to save space

for comparing results from different specifications.20

As an example, Figure 2.9 summarises the results in the benchmark specification,

where the outcomes for Sweden are connected with solid lines, and the outcomes

20The full detailed graphs showing the outcomes for Sweden and the synthetic Sweden in all
periods are in Figures B.2.4, B.2.5, B.2.6, B.2.7 and B.2.8 in the Appendix.
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for the synthetic Sweden are connected with dashed lines. The outermost poly-

gon represents the maximum values for each outcome and the innermost polygon

represents the minimums. The outcomes for Sweden and the synthetic Sweden at

different stages are presented in the two charts, where the left chart displays the

outcomes averaged over the pretreatment periods, and the right chart shows the

outcomes averaged in the second quarter of 2020, when the impacts of the NPIs

were most profound. We see that the average outcomes for Sweden and the syn-

thetic Sweden overlap perfectly in the pretreatment periods. In comparison, there

are visible differences between the two in the public health outcomes as well as total

hours worked and absence from work, in the second quarter of 2020. By and large,

the main results from Figure 2.5 are preserved in the radar charts.
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Figure 2.9: Radar Chart of Outcomes (Benchmark)

Backdating

We pick March 28, 2020, the average date on which the stringency index peaked

for each country in the treatment group, as the treatment date. As mentioned

earlier, this choice may lead to attenuated estimates of the treatment effects if

the outcomes were affected by the treatment before the chosen date either because

countries had started implementing the NPIs before this date, or because individuals

had anticipated the implementation of the NPIs and had acted in advance.

In this exercise, we backdate the treatment to October 1, 2019, to see whether we

can obtain results that are similar to those in the benchmark specification. This

alternative date was before the first case of COVID-19 infection in the world was

detected, and almost 4 months before the first case was reported in Europe, so

that we can be confident that the outcomes observed before this date were by no

means contaminated. In addition, the backdating exercise is also useful to evaluate

the credibility of the synthetic control estimator by assessing whether the synthetic

Sweden can reproduce the outcomes of the actual Sweden in the absence of the

treatment.
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Figure 2.10: Radar Chart of Outcomes (Backdating)

Figure 2.10 compares the synthetic Sweden constructed by matching only on out-

comes observed before the placebo treatment date, October 1, 2019, with the actual

Sweden at three different stages. The left figure shows the outcomes averaged in

the first three quarters of 2019, before the placebo treatment date, the middle fig-

ure shows the outcomes in the fourth quarter of 2019, which was after the placebo

treatment date but before the actual treatment date, and the right figure shows the

outcomes in the second quarter of 2020, after the actual treatment assignment. We

see that the synthetic Sweden is very close to the actual Sweden not only in the first

chart, but in the second chart as well. The absence of estimated effects before the

actual treatment date shows that the synthetic Sweden can reliably reproduce the

untreated potential outcomes of the actual Sweden. The differences between the two

emerges in the third figure and the results are almost identical to our benchmark

results. The close resemblance of our benchmark results and the results produced

by backdating the treatment to almost 6 months earlier provides compelling evi-

dence that our estimates for the treatment effects are credible. Note that we would

not have been able to do this had we been focusing on estimating the effect of the

NPIs on COVID-19 infection cases or deaths using the conventional single-outcome

synthetic control method, like in Born et al. (2020) or Cho (2020), since COVID-19

cases and deaths were not observed before this placebo treatment date.21

This exercise, along with the replication exercise in Section 2.2.2, highlights one of

the advantages of the multiple-outcome synthetic control method over the conven-

tional single-outcome synthetic control method, i.e., our method allows the users to

construct a credible synthetic control when we only observe the outcomes in very

few pretreatment periods, or in the extreme case, when we do not observe the out-

come of interest before the treatment at all, as long as the synthetic control can

closely approximate the unit of interest in multiple related outcomes before the

21Cho (2020) backdates the treatment by 3 days in one of the robustness checks, which may not
be sufficient to address the concern that the pretreatment outcome may have been affected by the
treatment.
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treatment.

Leave-one-unit-out

To check if our results are sensitive to the choice of countries in constructing the syn-

thetic Sweden, we conduct the leave-one-unit-out re-analysis, where we iterate the

estimation procedure, excluding one of the countries that received positive weights

from the construction of the synthetic Sweden at a time.
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Figure 2.11: Radar Chart of Outcomes (Leave-One-Unit-Out)

The results are presented in Figure 2.11, where the gray lines represent the bound-

aries for the distributions of the leave-one-out estimates. We see that the leave-

one-out estimates closely centre around the benchmark estimates represented by

the dashed lines, albeit with slightly larger dispersions for retail sales and absence

from work, showing that our results are robust to the exclusion of any particular

country.

Leave-one-outcome-out

Since our method constructs the synthetic Sweden by matching on multiple outcomes

in a domain, we also conduct a leave-one-outcome-out exercise to check if our results

are sensitive to the exclusion of any particular outcome from the construction of the

synthetic Sweden.

We see that the leave-one-outcome-out estimates closely centre around the bench-

mark, despite somewhat larger dispersions for the labour market outcomes due to

the small number of pretreatment periods available. This shows that our results are

robust to the exclusion of any particular outcome.

Single outcomes

Instead of matching on multiple related outcomes simultaneously, we can construct

the synthetic controls by matching on each outcome separately, although the relia-
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Figure 2.12: Radar Chart of Outcomes (Leave-One-Outcome-Out)

bility of the estimates may be questionable if the number of pretreatment periods

is small. The results are presented in Figure 2.13, which shows that despite small

changes in the magnitudes, constructing the synthetic controls by matching on single

outcomes does not fundamentally change our conclusions.
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Figure 2.13: Radar Chart of Outcomes (Single Outcome)

No demeaning

Our estimates in the benchmark specification are obtained using demeaned outcomes

to account for the differences in the level of the outcomes. In particular, the values

of the outcomes are extreme for Sweden in the labour market domain, in which

case the synthetic control method using the original outcomes would not be able

to provide credible estimates of the treatment effects due to poor pretreatment

fits. Matching on multiple outcomes may exacerbate the problem in this case as

it is more difficult to obtain a good fit on multiple outcomes. Note that this does

not invalidate the multiple-outcome synthetic control method, but rather highlights

the importance of taking appropriate measures to obtain a good pretreatment fit.

Bearing this in mind, we check whether the results produced by matching on the

original outcomes differ dramatically from the benchmark results, especially in the
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labour market domain.
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Figure 2.14: Radar Chart of Outcomes (No Demeaning)

Figure 2.14 compares the outcomes for Sweden and the synthetic Sweden constructed

using the original outcomes. Note that the synthetic Sweden is not able to match the

pretreatment means of the labour market outcomes for Sweden, indicating that the

pretreatment fit is poor for those outcomes, which is more visible in Figure B.2.8.

The other outcomes are matched reasonably well in the pretreatment periods. The

estimates in the second quarter of 2020 are not dramatically different from the results

in the benchmark specification (gray lines), except for absence from work, for which

the estimated effect is not reliable due to the poor pretreatment fit.

2.4.5 Further Analysis

In this section, we conduct subgroup analysis when data permits, to investigate

whether there is heterogeneity in the effects of the NPIs across different groups in

the population or different industries in the economy.
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Figure 2.15: Deaths by Gender and Age

Figure 2.15 shows deaths from all causes in different gender and age groups for

Sweden and the synthetic Sweden, where the outcomes for female are in red, male
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in blue, and the numbers in the peripheral axis labels are the maximums in each

age group. We see that the synthetic Sweden is very close to the actual Sweden in

the number of deaths in different gender and age groups before the treatment, but

there are differences between the two in all subgroups in the second quarter of 2020.

The comparison suggests that the impact of the NPIs was larger for males in the

60-79 age group, and larger for females in the group with age 90 or over, possibly

as a result of differences in lifestyles or risk preferences.
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Figure 2.16: Reasons of Absence From Work

Figure 2.16 compares the reasons of absence from work for Sweden and the synthetic

Sweden.22 We see that absence from work was mainly due to holidays and very rarely

due to temporary layoffs before the treatment. As a result of the NPIs, absence from

work due to temporary layoffs would quintuple and absence from work due to other

reasons would almost double in the second quarter of 2020, whereas absence from

work due to holiday and illness would not be affected.
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Figure 2.17: Retail Sales

Figure 2.17 shows the volume of retail sales in all products, food products (including

22There are missing values in ‘temporary layoffs’ and ‘other reasons’ for some countries that
received positive weights in the construction of the synthetic Sweden in the labour market domain.
These missing values are imputed using the difference between the total percentage of absence
from work and the percentages due to the observed reasons.
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food, beverages and tobacco) and non-food products (except fuel). We see that the

reduction in retail sales due to the NPIs would be mainly through reduced sales of

non-food products. Examining in more details from Figure B.2.11, we find a drop

of 9%-26% in the sales of non-food products from March to May, and very mild

changes in the sales of food products, resulting in a drop of about 5%-13% in the

total volume of retail sales from March to May.

We also examine the effects of the NPIs on the labour market outcomes by gender,

the effect on the employment rate by occupation, education and age, as well as the

effects on the individual components of GDP and CPI. However, we do not find

any heterogeneity in the treatment effects for these subgroups. These results are in

Figures B.2.12-B.2.17 in the Appendix.

2.5 Conclusion

This paper generalises the conventional single-outcome synthetic control method

to a multiple-outcome framework, where the number of pretreatment periods is

supplemented with the number of related outcomes in the domain, making the

method applicable even when the number of pretreatment periods is small or if

we worry about structural breaks over a longer time span. Following Abadie et al.

(2010), we show that the bound on the bias of the multiple-outcome synthetic control

estimator is of a smaller stochastic order than that of the single-outcome synthetic

control estimator, when the synthetic control can closely approximate the unit of

interest in terms of the observed predictors and the multiple related outcomes. We

also discuss the role of demeaning the outcomes before constructing the synthetic

control, which is to account for the differences in the level of the outcomes for

different units, and show in simulation that using demeaned outcomes can reduce

both the bias and the variance of the synthetic control estimator and alleviate the

size distortion of the permutation test, if there are relatively stable differences in

the level of the outcomes.

We move on to evaluate the effects of the non-pharmaceutical interventions on vari-

ous outcomes in the public health, labour market, and economic domains using the

multiple-outcome synthetic control method, where we construct a synthetic Sweden

in each domain using the other European countries that implemented much stricter

NPIs. We find that the NPIs would significantly reduce the cumulative numbers of

COVID-19 cases and deaths as well as deaths from all causes, increase temporary

absence from work and reduce total hours worked among the employed, but would

have limited impacts on the employment rate and the economy, other than shrinking

the volume of retail sales in the early stage.
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There are several limitations in our empirical analysis. First, our conclusions are

limited to the outcomes that are available for our analysis, and may not apply to

other outcomes in the domain. For example, our finding that the NPIs had beneficial

effects on reducing COVID-19 cases and deaths does not necessarily imply that they

had positive impacts on other outcomes in the public health domain, say mental

health. Similarly, the effects of the NPIs are estimated for Sweden in a case study

context, and may not directly apply to other countries. Second, the data on COVID-

19 cases and deaths may suffer from reporting issues such as measurement errors

or time lags, due to differences in the reporting standards in different countries

and time constraints. This issue is alleviated to some extent in our analysis by

matching on deaths from all causes, which is more accurately measured. Third, the

complexities in the NPIs due to different timings and contents in different countries

are not likely to be accurately or fully captured by the stringency index or the binary

treatment indicator. It would be worthwhile to conduct more detailed analysis on

the effects of the individual policies, as in Castex et al. (2021) and Chernozhukov

et al. (2021). Fourth, there may be spill-over effects. For example, risk-loving

individuals from other European countries might have fled to Sweden before the

travel restrictions were officially implemented in their countries, which would drive

the number of COVID-19 cases up in Sweden, and cause the public health effects

of the NPIs to be over-estimated. Note that this is different from the voluntary

social distancing behaviours, which does not invalidate our results. To see this, if all

individuals voluntarily practice social distancing to the same degree as if there were

NPIs, then we would find no effect of the NPIs, and this is not a biased estimate

since the true effect is 0 in this extreme case. Similar to the spill-over effects across

the countries, there may be other policies implemented at the same time that could

confound the estimation. This would be less of a problem if these policies were

implemented across different countries with similar contents and magnitudes, which

is the case for the employment support programs that were carried out in many

European countries.
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Appendix B

B.1 Proofs

Proof of Proposition 2.1. The proof follows closely the proof in Appendix B of Abadie

et al. (2010).

Under the restrictions
∑J+1

j=2 w
∗
jZj = Z1, we have

e1t,k ≡ Y 0
1t,k −

J+1∑
j=2

w∗
jYjt,k

=

(
µ1 −

J+1∑
j=2

w∗
jµj

)′

λt,k + ε1t,k −
J+1∑
j=2

w∗
jεjt,k. (B.1.1)

Stacking the pretreatment outcomes Y it,k over the T0 pretreatment periods, we have

Y i,k = δk + θkZi + λkµi + εi,k, (B.1.2)

where Y i,k, δk and εi,k are T0×1, and θk and λk are T0×r and T0×f , respectively.

Since the K outcomes are determined by the same set of predictors in our multiple-

outcome framework, we can further stack (B.1.2) over the K outcomes to get

Y i = δ + θZi + λµi + εi, (B.1.3)

where Y i, δ and εi are KT0×1, and θ and λ are KT0×r and KT0×f , respectively.

The restrictions
∑J+1

j=2 w
∗
jY j = Y 1 can be simplified to

λ

(
µ1 −

J+1∑
j=2

w∗
jµj

)
=

J+1∑
j=2

w∗
jεj − ε1. (B.1.4)

Assumption 2.3 states that the f × f matrix λ′λ has full rank, thus pre-multiplying
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(λ′λ)
−1

λ′ on both sides of (B.1.4), we have(
µ1 −

J+1∑
j=2

w∗
jµj

)
= (λ′λ)

−1
λ′

(
J+1∑
j=2

w∗
jεj − ε1

)
, (B.1.5)

so that (B.1.1) can be written as

e1t,k =λ′
t,k (λ

′λ)
−1

λ′
J+1∑
j=2

w∗
jεj (B1t,k)

− λ′
t,k (λ

′λ)
−1

λ′ε1 + ε1t,k −
J+1∑
j=2

w∗
jεjt,k. (B2t,k)

Whereas B2t,k has zero mean given Assumption 2.1, B1t,k does not because w∗
j is a

function of εj (Botosaru and Ferman, 2019).

We can rewrite B1t,k as

B1t,k =
J+1∑
j=2

w∗
j

K∑
q=1

T0∑
s=1

λ′
t,k

(
K∑
l=1

T0∑
n=1

λn,lλ
′
n,l

)−1

λs,qεjs,q. (B.1.6)

Let the largest element of |λt,k| for t = 1, . . . , T and k = 1, . . . , K be bounded from

above by λ̄. Under Assumption 2.3 and using the Cauchy–Schwarz Inequality, we

have λ′
t,k

(
K∑
l=1

T0∑
n=1

λn,lλ
′
n,l

)−1

λs,q


≤

λ′
t,k

(
K∑
l=1

T0∑
n=1

λn,lλ
′
n,l

)−1

λt,k

 1
2
λ′

s,q

(
K∑
l=1

T0∑
n=1

λn,lλ
′
n,l

)−1

λs,q

 1
2

≤
(

λ̄2f

KT0ξ

)
.

Let ε̄j =
∑K

q=1

∑T0

s=1 λ
′
t,k

(∑K
l=1

∑T0

n=1 λn,lλ
′
n,l

)−1

λs,qεjs,q. Then by Hölder’s In-

equality and the norm monotonicity, we have

|B1t,k| ≤
J+1∑
j=2

w∗
j |ε̄j| ≤

(
J+1∑
j=2

|w∗
j |q
)1/q(J+1∑

j=2

|ε̄j|p
)1/p

≤

(
J+1∑
j=2

|ε̄j|p
)1/p

,

with p, q > 1 and 1
p
+ 1

q
= 1.
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Using Hölder’s Inequality again, we have

E

[
J+1∑
j=2

|ε̄j|

]
≤ E

(J+1∑
j=2

|ε̄j|p
)1/p

 ≤

(
E

[
J+1∑
j=2

|ε̄j|p
])1/p

=

(
J+1∑
j=2

E|ε̄j|p
)1/p

.

Then using Rosenthal’s Inequality, we have

E|ε̄j|p ≤ C (p)

(
λ̄2f

KT0ξ

)p

max


K∑
q=1

T0∑
s=1

E|εjs,q|p,

(
K∑
q=1

T0∑
s=1

E|εjs,q|2
)p/2

 ,

where the constant C (p) = E (ϕ− 1)p with ϕ being a Poisson random variable with

parameter 1.

Let m̄p = maxj
1

KT0

∑K
q=1

∑T0

s=1 E|εjs,q|p, then we have

E|B1t,k| ≤ C (p)1/p
(
λ̄2f

ξ

)
J1/pmax

{
m̄

1/p
p

(KT0)
1−1/p

,
m̄

1/2
2

(KT0)
1/2

}
. (B.1.7)

Therefore, E |B1t,k| = O
(

1√
KT0

)
, and E (τ̂1t,k − τ1t,k) → 0 as KT0 → ∞, i.e., the

bias of the multiple-outcome synthetic control estimator is bounded by a function

that goes to zero when the number of outcomes in the domain or the pretreatment

periods goes to infinity.

We now provide a unified framework for the biases of the multiple-outcome synthetic

control estimator and the single-outcome synthetic control estimator. The bias of

the single-outcome synthetic control estimator for outcome k and t > T0 is the

expectation of

Y1t,k −
J+1∑
j=2

w̃
(k)
j Yjt,k =

(
µ1 −

J+1∑
j=2

w̃
(k)
j µj

)′

λt,k + ε1t,k −
J+1∑
j=2

w̃
(k)
j εjt,k,

=

(
µ1 −

J+1∑
j=2

w∗
jµj

)′

λt,k −
J+1∑
j=2

ṽ
(k)
j µ′

jλt,k + ε1t,k −
J+1∑
j=2

w̃
(k)
j εjt,k.

(B.1.8)

Stacking the observations over the T0 pretreatment periods, we have

Y i,k = δk + θkZi + λkµi + εi,k,

where Y i,k, δk, and εi,k are T0×1, and θk and λk are T0×r and T0×F , respectively.
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The restrictions
∑J+1

j=2 w̃
(k)
j Y j,k = Y 1,k can be simplified to

λk

(
µ1 −

J+1∑
j=2

w̃
(k)
j µj

)
=

J+1∑
j=2

w̃
(k)
j εj,k − ε1,k. (B.1.9)

Using (B.1.4), we can simplify (B.1.9) further to

−λk

J+1∑
j=2

ṽ
(k)
j µj =

J+1∑
j=2

ṽ
(k)
j εj,k. (B.1.10)

Suppose that λ′
kλk has full rank, pre-multiplying λ′

t,k(λ
′
kλk)

−1λ′
k to both sides of

(B.1.10) gives

− λ′
t,k

J+1∑
j=2

ṽ
(k)
j µj = λ′

t,k(λ
′
kλk)

−1λ′
k

J+1∑
j=2

ṽ
(k)
j εj,k. (B.1.11)

Therefore, (B.1.8) can be written as

Y 0
1t,k −

J+1∑
j=2

w̃
(k)
j Yjt,k

=λ′
t,k(λ

′λ)−1λ′
J+1∑
j=2

w∗
jεj (B1t,k)

− λ′
t,k(λ

′λ)−1λ′ε1 + ε1t,k −
J+1∑
j=2

w∗
jεjt,k (B2t,k)

−
J+1∑
j=2

ṽ
(k)
j εjt,k (B3t,k)

+ λ′
t,k(λ

′
kλk)

−1λ′
k

J+1∑
j=2

ṽ
(k)
j εj,k. (B4t,k)

We have shown that E |B1t,k| = O
(

1√
KT0

)
and E (B2t,k) = 0. It can be similarly

shown that E (B3t,k) = 0 and E |B4t,k| = O
(

1√
T0

)
.
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Proof of Corollary 2.1. The bias for the demeaned synthetic control estimator is

τ̃1t,k − τ1t,k = Ẏ1t,k −
J+1∑
j=2

w∗
j Ẏjt,k − Y 1

1t,k + Y 0
1t,k

= Y 1
1t,k −

1

T0

T0∑
s=1

Y1s,k −
J+1∑
j=2

w∗
j Ẏ

0
jt,k − Y 1

1t,k + Y 0
1t,k

= Ẏ 0
1t,k −

J+1∑
j=2

w∗
j Ẏ

0
jt,k.

Notice that the demeaned equation for Y 0
it,k retains the interactive fixed effects struc-

ture:

Ẏ 0
it,k = Y 0

it,k −
1

T0

T0∑
s=1

Y 0
is,k

= δ̇t,k +Z ′
iθ̇t,k + µ′

iλ̇t,k + ε̇it,k.

We can thus follow similar steps to show that E (τ̃1t,k − τ1t,k) → 0 as KT0 → ∞
under 2.1, 2.2′ and 2.3.

Proof of Corollary 2.2. The proof is similar to that of Proposition 2.1 and thus

omitted.

B.2 Additional Results
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Figure B.2.1: Placebo Gaps in Outcomes
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Figure B.2.2: Posttreatment/Pretreatment RMSPE Ratios
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Figure B.2.3: Aggregate Posttreatment/Pretreatment RMSPE Ratios
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Figure B.2.4: Backdating the Treatment
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Figure B.2.5: Leave-One-Unit-Out Distribution of the Synthetic Control for Sweden

Note: The outcome trajectories for Sweden and the synthetic Sweden are in solid and dashed lines
respectively. The trajectories for the leave-out-out synthetic controls are in gray. The vertical
dotted line delimits the pre/posttreatment periods for each outcome.
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Figure B.2.6: Leave-One-Outcome-Out Distribution of the Synthetic Control for
Sweden

Note: The outcome trajectories for Sweden and the synthetic Sweden are in solid and dashed lines
respectively. The trajectories for the leave-out-out synthetic controls are in gray. The vertical
dotted line delimits the pre/posttreatment periods for each outcome.
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Figure B.2.7: Single Outcomes
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Figure B.2.8: No Demeaning
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Figure B.2.9: Deaths by Gender and Age
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Chapter 3

Individual Causal Inference Using

Panel Data With Multiple

Outcomes

3.1 Introduction

The main focus of the policy evaluation literature has been the average treatment

effect and more recently the heterogeneous treatment effects or conditional average

treatment effects, which are the average treatment effects for heterogeneous sub-

groups defined by the observed covariates (for reviews of these methods, see Athey

and Imbens, 2017; Abadie and Cattaneo, 2018). Ubiquitous in these studies is the

unconfoundedness assumption, or the strong ignorability assumption, which requires

all the covariates correlated with both the potential outcomes and the treatment as-

signment to be observed (Rosenbaum and Rubin, 1983).1 Under this assumption,

the potential outcomes and the treatment status are independent conditional on the

observed covariates, and the difference between the mean outcomes of the treated

and the untreated groups with the same values of the observed covariates is an un-

biased estimator of the average treatment effect for the units in the groups. The

unconfoundedness assumption is satisfied in randomised controlled experiments, but

may not be plausible otherwise even with a rich set of covariates, since the access to

certain essential individual characteristics remains limited for the researchers due to

privacy or ethical concerns, despite the explosive growth of data availability in the

big data era.

One popular method to circumvent the unconfoundedness assumption is difference-

in-differences (DID), which assumes that the effect of the unobserved confounder on

1This is also known as selection on observables or the conditional independence assumption.
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the untreated potential outcome is constant over time, so that the average outcomes

of the treated and untreated units would follow parallel trends in the absence of the

treatment.2 This is also a strong assumption, and in many cases is not supported by

data. The interactive fixed effects model relaxes the “parallel trends” assumption

and allows the unobserved confounders to have time-varying effects on the outcomes,

by modeling them using an interactive fixed effects term, which incorporates the

additive unit and time fixed effects model or difference-in-differences as a special

case (Bai, 2009).

Several methods have been developed based on the interactive fixed effects model to

estimate the treatment effect on a single or several treated units, where the units are

observed over an extended period of time before the treatment (Abadie et al., 2010;

Hsiao et al., 2012; Xu, 2017). These methods exploit the cross-sectional correlations

attributed to the unobserved common factors to predict the counterfactual outcomes

for the treated units, and are mainly used in macroeconomic settings with a large

number of pretreatment periods, which is crucial for the results to be credible. For

example, Abadie et al. (2015) point out that “the applicability of the method re-

quires a sizable number of preintervention periods” and that “we do not recommend

using this method when the pretreatment fit is poor or the number of pretreatment

periods is small”, while Xu (2017) states that users should be cautious when there

are fewer than 10 pretreatment periods. As a consequence, despite the potential

to estimate individual treatment effects without imposing the unconfoundedness as-

sumption, these methods have not seen much use in empirical microeconomics, since

the individuals are rarely tracked for more than a few periods that justify the use

of these methods.

The main contribution of this paper is that we propose a method for estimating

the individual treatment effects in applied microeconomic settings, characterised by

multiple related outcomes being observed for a large number of individuals over a

small number of time periods. The method is based on the interactive fixed ef-

fects model, which assumes that an outcome of interest can be well approximated

by a linear combination of a small number of observed and unobserved individual

characteristics. Analogous to Hsiao et al. (2012) who predict the posttreatment

outcomes using pretreatment outcomes in lieu of the unobserved time factors, we

use a subsample of the pretreatment outcomes to replace the unobserved individ-

ual characteristics in the models, and use the remaining pretreatment outcomes as

instrumental variables. Although our method does not require a large number of

2Alternative methods that do not rely on the unconfoundedness assumption include the in-
strumental variables method and the regression discontinuity design, which estimate the average
treatment effect for specific subpopulations (the compliers or those with values of the running
variable near the cutoff).
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pretreatment periods, the number of pretreatment outcomes needs to be at least as

large as the number of unobserved individual characteristics, which may still be dif-

ficult to satisfy in microeconomic datasets if we use only a single outcome, especially

if the treatment assignment took place in the early stages of the survey or if the

study subjects are children or youths. Utilising multiple related outcomes allows our

method to be applicable in cases where there is only a single period before the treat-

ment. Under the assumption that these outcomes depend on roughly the same set of

observed covariates and unobserved individual characteristics with time-varying and

outcome-specific coefficients shared by all individuals, our method exploits the corre-

lations across related outcomes and over time, which are induced by the unobserved

individual characteristics, to predict the counterfactual outcomes and estimate the

treatment effects for each individual in the posttreatment periods.

Our method has several advantages. First, with the assumption on the model spec-

ification, it relaxes the arguably much stronger unconfoundedness assumption, and

allows the treatment assignment to be correlated with the unobserved individual

characteristics. Second, it enables the estimation of treatment effects on the in-

dividual level, which may be helpful for designing more individualised policies to

maximize social welfare, as well as for other fields such as precision medicine and

individualised marketing. It also has the potential to be combined with more flexi-

ble machine learning methods to work with big datasets and more general nonlinear

function forms. Third, it is intuitive. In real life, we may never know a person

through and through, and a viable approach to predicting the outcome of a person

is using his or her related outcomes in the past, assuming that the outcomes are

affected by the underlying individual characteristics and that these characteristics

are stable over time, at least within the study period. For example, past academic

performance is an important consideration when recruiting a student into college,

as it is believed that a student that excelled in the past is likely to continue to have

outstanding performance. To the extent that we may never observe all the con-

founders, this is perhaps the only way to predict potential outcomes and estimate

treatment effects on the individual level in social sciences without going deeper to

the levels of neuroscience or biology. Fourth, our method has wide applicability, as

it is common to have multiple related outcomes collected in microeconomics data.

For example, we may observe several health related outcomes such as health facility

usage, health related cost, general health, etc.

The rest of the study is organised as follows. Section 3.2 presents the theoretical

framework. Section 3.3 examines the small sample performance of our method

using Monte Carlo simulation, and compares it with related methods. Section 3.4

provides an empirical example of estimating the effect of health insurance coverage
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on individual usage of hospital emergency departments using the Oregon Health

Insurance Experiment data. Section 3.5 concludes and discusses potential directions

for future research. The proofs are collected in the appendix.

3.2 Theory

3.2.1 Set Up

Suppose that we observe K outcomes in domain K = {1, 2, . . . , K} for N indi-

viduals or units over T ≥ 2 time periods, where a domain refers to a collection of

related outcomes that depend on the same set of observed covariates and unobserved

characteristics. For example, health-related outcomes may be affected by observed

covariates such as age, education, occupation and income, as well as unobserved

individual characteristics such as genetic inheritance, health habits and risk prefer-

ences. Assume that the N1 individuals in the treated group T receive the treatment

at period T0+1 ≤ T and remain treated afterwards, while the N0 = N−N1 individ-

uals in the control group C remain untreated throughout the T periods. Denoting

the binary treatment status for individual i at time t as Dit, we have Dit = 1 for

i ∈ T and t > T0, and Dit = 0 otherwise.

Following the “Rubin Causal Model” (Rubin, 1974), the treatment effect on outcome

k ∈ K for individual i at time t is given by the difference between the treated and

untreated potential outcomes

τit,k = Y 1
it,k − Y 0

it,k, (3.1)

where Y 1
it,k is the treated potential outcome, the outcome that we would observe for

individual i at time t if Dit = 1, and Y 0
it,k is the untreated potential outcome, the

outcome that we would observe if Dit = 0. Instead of assuming the unconfounded-

ness condition, we characterise the two potential outcomes for individual i at time

t and k ∈ K using the interactive fixed effects models:

Y 1
it,k =X ′

itβ
1
t,k + µ′

iλ
1
t,k + ε1it,k, (3.2)

Y 0
it,k =X ′

itβ
0
t,k + µ′

iλ
0
t,k + ε0it,k, (3.3)

where X it is the r× 1 vector of observed covariates unaffected by the treatment, µi

is the f×1 vector of unobserved individual characteristics, β1
t,k and λ1

t,k are the r×1

and f × 1 vectors of coefficients of X it and µi respectively for the treated potential

outcome, β0
t,k and λ0

t,k are the coefficients for the untreated potential outcome, and

ε1it,k and ε0it,k are the idiosyncratic shocks.
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Remark 3.1. Our models for the potential outcomes are quite general, and in-

corporate the models in Abadie et al. (2010), Hsiao et al. (2012) and Xu (2017),

as well as the the additive fixed effects model for difference-in-differences as spe-

cial cases.3 Note that the related outcomes need not depend on exactly the same

set of observed covariates and unobserved individual characteristics. The vectors

of outcome-specific and time-varying coefficients may contain 0, so that outcome k

may be affected by some of the observed covariates and unobserved individual char-

acteristics in some periods, but not necessarily by all of them in all periods, as long

as there is enough variation in the coefficients over time or across the outcomes.

The potential outcomes are also allowed to depend on predictors not included in

X it or µi, as long as they are not correlated with the included predictors and the

treatment status so that they can be treated as part of the idiosyncratic shock.

The regularity conditions on the observed covariates and the unobserved individual

characteristics are stated in Assumption 3.1, and the assumptions on the idiosyn-

cratic shocks are given in Assumption 3.2.

Assumption 3.1.

1) X it, µi are independent for all i, and are identically distributed for all i ∈ T
and all i ∈ C respectively;

2) There exists M ∈ [0,∞) such that E∥X it∥4 < M and E∥µi∥4 < M .

Assumption 3.2. For d ∈ {0, 1}, we have

1) E
(
εdit,k | Xjs,µj, Djs

)
= 0 for all i, j, t, s and k;

2) εdit,k are independent across i and t;

3) E
(
εdit,k, ε

d
it,l

)
= σd

t,kl for all i, t, k, l;

4) There exists M ∈ [0,∞) such that E|εdit,k|4 < M for all i, t, k.

Remark 3.2. The distributions of the observed covariates and the unobserved indi-

vidual characteristics are allowed to differ for the treated and untreated individuals,

i.e., selection on unobservables is allowed, which is a great advantage over the policy

evaluation methods that rely on the unconfoundedness condition. The idiosyncratic

shocks are assumed to have zero mean conditional on the observed covariates, unob-

served individual characteristics and the treatment status. They are also assumed to

be independent across individuals and time periods, as the unobserved interactive

3Specifically, if we assume β0
t,k = β0

k, model (3.3) reduces to the model in Bai (2009) and Xu
(2017); if we assume Xit = Xi and the first element of µi is 1, model (3.3) reduces to the model in
Abadie et al. (2010); if we assume Xit = Xi are unobserved and the first element of λ0

t,k is 1, then

model (3.3) reduces to the model in Hsiao et al. (2012); if we assume µi = [1 ai]
′ and λ0

t,k = [bt 1]′,
then model (3.3) reduces to the additive fixed effects model for difference-in-differences.
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fixed effects that account for the cross-sectional and time-serial correlations have

been separated out.4 Furthermore, they are assumed to be homoskedastic across in-

dividuals for our inference method to be valid. The last part in Assumption 3.2 is a

regularity condition which, together with the conditions in Assumption 3.1, ensures

the weak law of large numbers and the central limit theorem hold.

Given the models for Y 1
it,k and Y 0

it,k in (3.2) and (3.3), the individual treatment effect

is identified by the observed covariates and the unobserved individual characteristics,

i.e., two persons with the same values for these underlying predictors have identical

individual treatment effect. Denote the set of observed covariates and unobserved

individual characteristics as H it = [X ′
it µ′

i]
′
, then the individual treatment effect

for individual i with H it = hit is given by

τ̄it,k ≡ E
(
Y 1
it,k − Y 0

it,k | H it = hit

)
, (3.4)

which may appear similar to the conditional average treatment effect, but is different

by conditioning not only on the observed covariates, but also on the unobserved

individual characteristics.5

Our goal is to estimate the individual treatment effects τ̄it,k, i = 1, . . . , N . Once

we have estimated the individual treatment effects, the estimates of the average

treatment effects for heterogeneous subgroups defined by some observed covariates,

also known as the conditional average treatment effects, and the estimate for the

average treatment effect for the sample or the population are also readily available

using the average of the estimated individual treatment effects in the corresponding

groups.

As µi is not observed, a direct application of least squares estimation to estimate the

models in (3.2) and (3.3) would suffer from omitted variables bias. Since we have

multiple outcomes that depend on the same set of underlying predictors, and we

observe the untreated potential outcomes for all individuals prior to the treatment,

we can use these pretreatment outcomes to replace µi in the models.6 Stacking the

4The idiosyncratic shocks may be allowed to be correlated both over time and across outcomes,
as long as they can be modelled parametrically and removed using a quasi-differencing approach.
This is left for future research.

5As we assume the parametric models for the potential outcomes in (3.2) and (3.3) for all
individuals, there is no need to impose additional assumptions on the propensity distribution for
the individual treatment effect to be identified on its full support.

6This is analogous to the first step of the approach in Hsiao et al. (2012), who predict the
posttreatment outcomes using pretreatment outcomes in lieu of the unobserved time factors in a
small N , big T environment.
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K outcomes observed in t ≤ T0, we have

Y 0
it = β0

tX it + λ0
tµi + ε0it, (3.5)

where Y 0
it and ε0it are K × 1, β0

t is K × r, and λ0
t is K × f . Let P ⊆ {1, · · · , T0}

be a set of P pretreatment periods. We can further stack the outcomes over these

periods to get

Y P
i = δP

i + λPµi + εPi , (3.6)

where δP
i =

[
· · ·

(
β0

sX is

)′ · · ·
]′

with s ∈ P is KP × 1, λP is KP × f , and εPi is

KP × 1.

To be able to recover µi from the covariates and outcomes observed in P , we need

the following full rank condition, which ensures that there is enough variation in

the effects of the unobserved individual characteristics over time or across different

outcomes.

Assumption 3.3. λP′
λP has rank f .

Remark 3.3. Although we do not require the number of pretreatment outcomes to

be large, Assumption 3.3 implies that KP needs to be at least as large as f . As T0

(and thus P ) is usually small in empirical microeconomics, this assumption is made

more plausible by having K > 1, i.e., using multiple related outcomes.

Remark 3.4. The number of factors f is generally not observed. To determine

f , one may use the method in Bai and Ng (2002) when both N and T are large.

One may also adopt a cross-validation procedure to choose f that minimises the

out-of-sample mean squared prediction error, as in Xu (2017). Although we do not

estimate the interactive fixed effects term directly, we may choose the number of

pretreatment outcomes that best accommodates f using cross-validation as well,

which will be discussed in more details later.

Under Assumption 3.3, we can pre-multiply both sides of equation (3.6) by (λP′
λP)−1λP′

to obtain

µi = (λP′
λP)−1λP′

(Y P
i − δP

i − εPi ). (3.7)

Substituting (3.7) into Y 0
it,k = X ′

itβ
0
t,k +µ′

iλ
0
t,k + ε0it,k, t > T0, and with a little abuse

on the notation by omitting the superscript P on the new coefficients and error
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term, we have

Y 0
it,k = X ′

itβ
0
t,k − · · · −X ′

isα
0
st,k − · · ·︸ ︷︷ ︸

P terms

+Y P
i

′
γ0
t,k + e0it,k, (3.8)

where

α0
st,k = β0

s

′
λ0

s(λ
P′
λP)−1λ0

t,k, s ∈ P ,

γ0
t,k = λP(λP′

λP)−1λ0
t,k,

e0it,k = ε0it,k − γ0
t,k

′
εPi .

Let Z = r(P+1)+KP . If we denote the Z×1 vector of observables [X ′
it · · ·X ′

is · · ·Y P
i

′
]′

as Zit, and the Z×1 vector of coefficients [β0
t,k

′ · · ·α0
st,k

′ · · ·γ0
t,k

′
]′ as θ0

t,k, then equa-

tion (3.8) can be abbreviated as

Y 0
it,k = Z ′

itθ
0
t,k + e0it,k. (3.9)

Similarly, substituting (3.7) into Y 1
it,k = X ′

itβ
1
t,k+µ′

iλ
1
t,k+ε1it,k, t > T0, we have

Y 1
it,k = Z ′

itθ
1
t,k + e1it,k, (3.10)

where

θ1
t,k = [β1

t,k

′ · · ·α1
st,k

′ · · ·γ1
t,k

′
]′,

α1
st,k = β0

s

′
λ0

s(λ
P′
λP)−1λ1

t,k, s ∈ P ,

γ1
t,k = λP(λP′

λP)−1λ1
t,k,

e1it,k = ε1it,k − γ1
t,k

′
εPi .

3.2.2 Estimation

Under Assumption 3.2, we have E(e1it,k | H it) = 0 and E(e0it,k | H it) = 0. This

suggests using τ̂it,k = Z ′
it(θ̂

1

t,k − θ̂
0

t,k), where θ̂
1

t,k and θ̂
0

t,k are some estimators of

θ1
t,k and θ0

t,k, to estimate τ̄it,k. Note, however, that the error terms e1it,k and e0it,k
are correlated with the regressors, since Zit contains Y P

i which is correlated with

εPi . This renders the OLS estimators biased and inconsistent, which can be seen as

a classical measurement errors in variables problem.7 We thus use the remaining

7This is noted in Ferman and Pinto (2019) as well, who also suggested using pre-treatment
outcomes as instrumental variables to deal with the problem. Our method is also related to the
quasi-differencing approach in Holtz-Eakin et al. (1988) and the GMM approach in Ahn et al.
(2013). While these studies focus on estimating the coefficients on the observed covariates, our
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outcomes as instrumental variables for Y P
i to consistently estimate θ1

t,k and θ0
t,k in

each period, which would then allow us to obtain asymptotically unbiased estimates

for the individual treatment effects.8 Since the outcomes depend on about the same

set of observed and unobserved individual characteristics, the remaining outcomes

are strongly correlated with the outcomes included in Y P
i . Additionally, given that

the idiosyncratic shocks are independent across time, the remaining outcomes are not

correlated with e1it,k or e0it,k. Thus, both the relevance and exogeneity conditions are

satisfied, and the remaining outcomes can serve as valid instrumental variables.

Let Rit = [X ′
it · · ·X ′

is · · ·Y −P
i

′
]′ be the R × 1 vector of instruments, where the

(KT − KP − 1) × 1 vector Y −P
i comprises the remaining pretreatment outcomes

as well as the posttreatment outcomes other than Yit,k.
9 Stacking Zit, Rit and

Y 0
it,k respectively over the N0 untreated individuals, we obtain the N0 × Z matrix

of regressors Z0
t , the N0 × R matrix of instruments R0

t and the N0 × 1 matrix

of outcomes Y 0
t,k for the untreated individuals. We can obtain Z1

t , R
1
t and Y 1

t,k

similarly for the N1 treated individuals. The GMM estimator for the individual

treatment effect τ̄it,k can then be constructed as

τ̂it,k = Z ′
it

(
θ̂
1

t,k − θ̂
0

t,k

)
, (3.11)

where

θ̂
1

t,k =
(
Z1

t

′
R1

tW
1R1

t

′
Z1

t

)−1

Z1
t

′
R1

tW
1R1

t

′
Y 1

t,k, (3.12)

θ̂
0

t,k =
(
Z0

t

′
R0

tW
0R0

t

′
Z0

t

)−1

Z0
t

′
R0

tW
0R0

t

′
Y 0

t,k, (3.13)

with W 1 and W 0 being some R×R positive definite matrices.

Remark 3.5. Using the residuals ê1
t,k = Y 1

t,k −Z1
t θ̂

1

t,k and ê0
t,k = Y 0

t,k −Z0
t θ̂

0

t,k, we

can further construct the two-step efficient GMM estimator by replacing W 1 and

W 0 in equations (3.12) and (3.13) with N1

(
R1

t

′
U 1

tR
1
t

)−1

and N0

(
R0

t

′
U 0

tR
0
t

)−1

,

where U 1
t and U 0

t are diagonal matrices with the squared elements of ê1
t,k and ê0

t,k

on the diagonals.

focus is on estimating the individual treatment effects.
8We may construct the vectors of regressors and instruments differently under alternative as-

sumptions on the dependence structure of the idiosyncratic shocks. For example, if the idiosyncratic
shocks are correlated across time but are independent across outcomes, then we can split differ-
ent outcomes into regressors and instruments. This would be similar to using the characteristics
of similar products (Berry et al., 1995) or trading countries (see the Trade-weighted World In-
come instrument in Acemoglu et al., 2008) as instrumental variables. Incorporating more complex
structures of the idiosyncratic shocks in the model is left for future research.

9In the special case of T1 = 1 and T0 = 1, we can include K − 1 pretreatment outcomes as
regressors, and use the posttreatment outcomes other than Yit,k as instruments so that R ≥ Z.
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Remark 3.6. One may also construct the estimators for the individual treatment

effects using authentic predicted outcomes obtained from a leave-one-out procedure,

where θ1
t,k and θ0

t,k are estimated for each individual using the sample that ex-

cludes that individual. This procedure may be computationally expensive though,

as there are no simple linear expressions for the leave-one-out coefficients estimates

and residuals as for those in linear regression (Hansen, 2021).

The following result shows that the bias of the GMM estimator for the individual

treatment effect in (3.11) goes away as both the number of treated individuals and

the number of untreated individuals become larger.

Proposition 3.1. Under Assumptions 3.1-3.3, E (τ̂it,k − τit,k | H it = hit) → 0 as

N1, N0 → ∞.

Once we have the estimates for the individual treatment effects, the average treat-

ment effect τt,k = E (τit,k) can be conveniently estimated using the average of the

estimated individual treatment effects τ̂t,k =
1
N

∑N
i=1 τ̂it,k, which can be shown to be

consistent.

Proposition 3.2. Under Assumptions 3.1-3.3, τ̂t,k − τt,k
p→ 0 as N0, N1 → ∞, and

τ̂t,k − τt,k = Op

(
N

−1/2
1

)
+Op

(
N

−1/2
0

)
.

3.2.3 Model Selection

To satisfy Assumption 3.3, we need the number of pretreatment outcomes that we

include as regressors in the model to be at least as large as f . Including more

pretreatment outcomes may increase the variance of the estimator by increasing the

variances of θ̂
1

t,k and θ̂
0

t,k, but may also reduce the variance of the estimator when

the sample is large and the variances of θ̂
1

t,k and θ̂
0

t,k are small, since

(
γ1
t,k − γ0

t,k

)′
εPi =

1

KP

∑
q∈K

∑
s∈P

(
λ1

t,k − λ0
t,k

)′( 1

KP

∑
l∈K

∑
n∈P

λ0
n,lλ

0
n,l

′
)−1

λ0
s,qε

0
is,q

(3.14)

in the prediction error converges in probability to 0 as KP grows.10

To select the number of pretreatment outcomes to include in the model, we follow a

model selection procedure similar to that in Hsiao et al. (2012), where for each usable

10Consistency of the individual treatment effect estimator may also be shown by allowing both N
and KP to grow, with restrictions on the relative growth rate, e.g., KP

min(
√
N1,

√
N0)

→ 0. We do not

pursue this path in this study, as the number of pretreatment outcomes in empirical microeconomics
that we focus on is usually not large.
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number of pretreatment outcomes, we construct many different models by including

a random subset of the pretreatment outcomes as regressors and the remaining

outcomes as instruments. We then estimate the models using GMM and obtain the

leave-one-out prediction errors for all or a subsample of the individuals. The best

set of pretreatment outcomes is chosen as the one that minimises the mean squared

leave-one-out prediction error.11

In addition to the models using only a subset of the pretreatment outcomes, we

also consider averaging different models that use the same number of pretreatment

outcomes. Since the estimators constructed using only a subset of the pretreat-

ment outcomes are asymptotically unbiased, as long as the number of pretreatment

outcomes is larger than f , this property is passed on to the averaged estimator.

The averaged estimator may also be more efficient as it uses more information in

the sample and reduces uncertainty caused by a small number of sample splits.12

The leave-one-out prediction errors are also averaged over the models, and the best

number of pretreatment outcomes to be used for the averaged estimator is similarly

determined by minimising the mean squared leave-one-out prediction error.

3.2.4 Related methods

Linear conditional mean

An alternative approach to estimating the treatment effects is to follow Hsiao et al.

(2012) and assume that

E
(
εPi | Zit

)
= C ′Zit, (3.15)

where C = E (ZitZ
′
it)

−1 E
(
Zitε

P
i
′
)
is Z ×KT0.

13 We can then separate the error

term into a part correlated with the regressors and a part that has zero conditional

11An alternative way to select the best set of pretreatment outcomes is to use information
criteria such as GMM-BIC and GMM-AIC (Andrews, 1999). To avoid the potential problem of
post-selection inference, we may also randomly split the sample into two parts, where we select
the best model on one part, and conduct inference on the other.

12We stick with simple averaging in this paper. More flexible averaging scheme, e.g., with larger
weights on those with smaller out of sample prediction errors, would be an interesting direction
for future research.

13This assumption holds in special cases, e.g., when the unobserved predictors and the idiosyn-
cratic shocks all follow the normal distribution (Li and Bell, 2017). In more general cases, this
assumption may be considered to hold approximately.
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mean, and rewrite the untreated potential outcome Y 0
it,k as

Y 0
it,k = E

(
Y 0
it,k | Zit

)
+ u0

it,k

=
(
θ0
t,k

′ − γ0
t,k

′
C ′
)
Zit + u0

it,k

= Z ′
itθ

∗0
t,k + u0

it,k, (3.16)

where u0
it,k = ε0it,k − γ0

t,k
′
εPi + γ0

t,k
′
C ′Zit. Similarly, the treated potential outcome

Y 1
it,k can be rewritten as

Y 1
it,k = Z ′

itθ
∗1
t,k + u1

it,k, (3.17)

where θ∗1
t,k = θ1

t,k −Cγ1
t,k, and u1

it,k = ε1it,k − γ1
t,k

′
εPi + γ1

t,k
′
C ′Zit.

Since E(u1
it,k | Zit) = E[e1it,k − E(e1it,k | Zit) | Zit] = 0 and E(u0

it,k | Zit) = 0, it is

straightforward to show that the least squares estimators θ̂
∗1
t,k = (Z1

t

′
Z1

t )
−1Z1

t

′
Y 1

t,k

and θ̂
∗0
t,k = (Z0

t

′
Z0

t )
−1Z0

t

′
Y 0

t,k are the unbiased estimators of θ∗1
t,k and θ∗0

t,k respec-

tively.14

We can then construct an estimator as

τ̃it,k = Z ′
it

(
θ̂
∗1
t,k − θ̂

∗0
t,k

)
, (3.18)

which is an unbiased estimator for the average treatment effect for individuals with

the same values of Zit, or the conditional average treatment effect. It follows that

the average of the conditional average treatment effects estimators τ̃t,k =
1
N

∑N
i=1 τ̃it,k

is an unbiased estimator for the average treatment effect τt,k. In addition, it can also

be shown that τ̃t,k is a consistent estimator without imposing the linear conditional

mean assumption (Li and Bell, 2017).

Proposition 3.3. Under Assumptions 3.1-3.3,

(i) if E
(
εPi | Zit

)
= C ′Zit, then E (τ̃it,k − τit,k | Zit = zit) = 0 and E (τ̃t,k − τt,k) =

0;

(ii) τ̃t,k − τt,k = Op

(
N

−1/2
1

)
+Op

(
N

−1/2
0

)
.

Remark 3.7. Note that E (τit,k | Zit = zit) is the average treatment effect for in-

dividuals with Zit = zit, or the conditional average treatment effect, whereas the

individual treatment effect is E (τit,k | H it = hit) as given in (3.4). The two are

generally not the same since C ′Zit ̸= 0.

14The linear conditional mean assumption also implies that the unconfoundedness assumption is
satisfied, as E(Y 0

it,k | Zit, Dit = 1) = E(Y 0
it,k | Zit, Dit = 0) and E(Y 1

it,k | Zit, Dit = 1) = E(Y 1
it,k |

Zit, Dit = 0).
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Interactive fixed effects model

Instead of replacing the unobserved confounders with the observed pretreatment out-

comes, Bai (2009) models the unobserved fixed effects directly by iterating between

estimating the coefficients on the observed covariates and estimating the unobserved

factors and factor loadings using the principal component analysis, given some ini-

tial values. This approach allows more general structures in the error terms, but

requires both N and T to be large, and is also more restrictive on the model speci-

fication: the observed covariates need to be time-varying, while the coefficients are

assumed constant over time. Xu (2017) adapts this method to the potential out-

comes framework to estimate the average treatment effects on the treated, assuming

that the untreated potential outcomes for both the treated and untreated units fol-

low the interactive fixed effects model, and proposes a cross-validation procedure to

choose the number of unobserved factors and a parametric bootstrap procedure for

inference.

This approach has the desired feature of being less computationally expensive com-

pared with repeated pretreatment set splitting and averaging, and is potentially

more efficient compared with using only the best set of pretreatment outcomes and

discarding the remaining information when all outcomes are related. However, its

potential to be adapted to our settings is limited by the restrictions discussed above.

In particular, we may assume the coefficients to be constant over time, but it would

be unrealistic to assume that they are the same across different outcomes, if we were

to use multiple related outcomes.

Another closely related study is Athey et al. (2021), which generalises the results

from the matrix completion literature in computer science to impute the missing

elements of the untreated potential outcome matrix for the treated units in the

posttreatment periods, where the matrix is assumed to have a low rank structure,

similar to that of the interactive fixed effects model. The bias of the estimator

is shown to have an upper bound that goes to 0 as both N and T grow. This

method allows staggered adoption of the treatment, i.e., the treated units receive

the treatment at different time periods.

Synthetic control method

Abadie et al. (2010) estimate the treatment effect on a treated unit by predicting

its untreated potential outcome using a synthetic control constructed as a weighted

average of the control units. The synthetic control method applies to cases where

the pretreatment characteristics of the treated unit can be closely approximated

by the synthetic control constructed using a small number of control units over an
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extended period of time before the treatment, which may not generally hold. In

terms of implementation, the objective function for the synthetic control method is

similar to that of the linear regression approach in Hsiao et al. (2012). However,

the weights on the control units in the synthetic control method are restricted to

be nonnegative to avoid extrapolation. This reduces the risk of overfitting, but may

also limit its applicability by making it difficult to find a set of weights that satisfy

the restrictions.

3.2.5 Inference

To measure the conditional variance of the individual treatment effect estimator,

Var (τ̂it,k | H ,D), where H is the matrix of observed covariates and unobserved

individual characteristics and D is the matrix of the treatment status for all in-

dividuals and all time periods in the sample, we follow Xu (2017) and employ a

parametric bootstrap procedure.

First, we apply our method to all outcomes in all periods to obtain Ŷ 1
it,k and ê1it,k

for the treated individuals in the posttreatment periods, and Ŷ 0
it,k and ê0it,k for the

untreated individuals in the posttreatment periods and for all individuals in the

pretreatment periods. Note that the residuals ê1it,k and ê0it,k are estimates for ε1it,k −
γ1
t,k

′
εPi and ε0it,k − γ0

t,k
′
εPi , respectively, rather than the idiosyncratic shocks in the

original model, ε1it,k and ε0it,k. Thus, the variance of the individual treatment effect

estimator tends to be overestimated using the parametric bootstrap by resampling

these residuals, especially when the number of pretreatment outcomes is small.15

Correcting for this bias would be a necessary step for future research.

These fitted values of the outcomes can be stacked into a TK × 1 vector Ŷ i for

each individual, where Ŷ i for i ∈ T contains Ŷ 1
it,k in the posttreatment periods and

Ŷ 0
it,k in the pretreatment periods, and Ŷ i for i ∈ C contains Ŷ 0

it,k in all periods. The

TK × 1 vector of residuals êi can be obtained similarly.

We then start bootstrapping for B rounds:

1. In round b ∈ {1, . . . , B}, generate a bootstrapped sample as

Y
(b)
i = Ŷ i + ê

(b)
i , for all i,

where ê
(b)
i is randomly drawn from {êi}i∈T for i ∈ T , and from {êi}i∈C for

i ∈ C.16
15See the discussion on equation (3.14).
16Since the entire series of residuals over the T periods andK outcomes are resampled, correlation

and heteroskedasticity across time and outcomes are preserved (Xu, 2017).

109



2. Construct τ̂
(b)
it,k for each i using the above bootstrapped sample.

The variance for the individual treatment effect estimator is computed using the

bootstrap estimates as

Var (τ̂it,k | H ,D) =
1

B

B∑
b=1

(
τ̂
(b)
it,k −

1

B

B∑
a=1

τ̂
(a)
it,k

)
, i = 1, . . . , N,

and the 100(1 − α)% confidence intervals for τ̄it,k, i = 1, . . . , N can be constructed

as [
τ̂
[α2 B]
it,k , τ̂

[(1−α
2
)B]

it,k

]
,

where the superscript denotes the index of the bootstrap estimates in ascending or-

der. Alternatively, we can use a normal approximation and construct the confidence

intervals as [
τ̂it,k + Φ−1

(α
2

)
σ̂it,k , τ̂it,k + Φ−1

(
1− α

2

)
σ̂it,k

]
,

where Φ (·) is the cumulative distribution function for the standard normal distri-

bution, and σ̂it,k =
√

Var (τ̂it,k | H ,D).

The variance for the average treatment effect estimator τ̂t,k = 1
N

∑N
i=1 τ̂it,k and the

confidence interval for the average treatment effect τt,k can be obtained in similar

manners using the bootstrap estimates τ̂
(b)
t,k = 1

N

∑N
i=1 τ̂

(b)
it,k, b = 1, . . . , B.

3.3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to assess the performance of

our estimator in small samples, and compare it with related methods in relevant

settings. The number of posttreatment period T1 is fixed at 1, and the number of

related outcomes K is fixed at 5 in all settings.

The untreated potential outcomes are generated from

Y 0
it,k = X ′

itβ
0
t,k + µ′

iλ
0
t,k + ε0it,k, k ∈ K, (3.19)

where X it contains 2 observed covariates, and µi contains 2 unobserved individual

characteristics as well as the constant 1. The 2 observed covariates are i.i.d. N(0, 1)

in period 1, and then follow an AR(1) process, X it = 0.9X i,t−1 + ξit, where ξit

are i.i.d. N(0,
√
1− 0.92), so that the observed covariates are correlated across

time and the variances stay 1. The 2 unobserved individual characteristics are also

i.i.d. N(0, 1). The coefficients β0
t,k and λ0

t,k are i.i.d. N(ωk, 1) with ωk ∼ N(1, 1),

for k ∈ K, so that the means of the coefficients differ across outcomes, and the
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idiosyncratic shocks ε0it,k are i.i.d. N(0, 1).

The individual treatment effect in the posttreatment period τ̄iT0+1,k is a determin-

istic function of X it and µi with the coefficients being i.i.d. N(0.5, 0.5), for k ∈ K.

And the observed outcomes Yit,k, k ∈ K are equal to Y 0
it,k − ε0it,k + τ̄iT0+1,k + ε1it,k,

where ε1it,k are i.i.d. N(0, 1), for the treated individuals in the posttreatment pe-

riod, and Y 0
it,k otherwise. X it and µi as well as their coefficients for the untreated

potential outcomes and the treatment effects are drawn 5 times, and for each set of

{X it,µi} and their coefficients drawn, ε0it,k and ε1it,k are drawn 1000 times, which

allows us to compute the bias and variance of the estimator conditional on the

observed covariates and the unobserved individual characteristics.

To measure the performances of the estimators, we compute the biases and stan-

dard deviations for the estimates of the individual treatment effects and the

average treatment effect for outcome K in the posttreatment period. Specifi-

cally, the bias of the individual treatment effect estimator τ̂iT0+1,K is measured

by 1
N

∑N
i=1

1
5

∑5
d=1

∣∣∣E(τ̂ (d,s)iT0+1,K

)
− τ̄

(d)
iT0+1,K

∣∣∣, where the superscript d denotes the

dth draw of {X it,µi} and s denotes the sth draw of ε0it,k and ε1it,k, and the

standard deviation is constructed as 1
N

∑N
i=1

1
5

∑5
d=1

√
E
(
τ̂
(d,s)
iT0+1,K − Eτ̂ (d,s)iT0+1,K

)2
.

Similarly, the bias of the average treatment effect estimator τ̂T0+1,K is measured

by 1
5

∑5
d=1

∣∣∣E(τ̂ (d,s)T0+1,K

)
− τ̄

(d)
T0+1,K

∣∣∣, and the standard deviation is constructed as

1
5

∑5
d=1

√
E
(
τ̂
(d,s)
T0+1,K − Eτ̂ (d,s)T0+1,K

)2
.17

17The performance of the estimators can also be measured using RMSE, which is computed

as 1
5

∑5
d=1

√
E
(
τ̂
(d,s)
iT0+1,K − Eτ̄ (d,s)iT0+1,K

)2
for τ̂iT0+1,K and 1

5

∑5
d=1

√
E
(
τ̂
(d,s)
T0+1,K − Eτ̄ (d,s)T0+1,K

)2
for

τ̂T0+1,K . Since the biases of our estimators are small, these measures are quite similar to SD and
are thus omitted from reporting.
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Table 3.1: Simulation Results on Model Selection

Best Set Model Averaging

ITE ATE ITE ATE

N1 N0 T0 P Bias SD Bias SD P Bias SD Bias SD

50 50 1 2.2 0.151 1.225 0.082 0.384 2.3 0.231 1.163 0.120 0.336

100 100 1 2.2 0.076 0.764 0.032 0.212 2.4 0.065 0.836 0.024 0.205

200 200 1 2.1 0.038 0.476 0.004 0.127 2.6 0.046 0.712 0.011 0.133

50 50 2 2.6 0.062 0.875 0.014 0.253 2.9 0.150 0.758 0.040 0.232

100 100 2 2.7 0.035 0.685 0.003 0.165 2.9 0.073 0.563 0.014 0.159

200 200 2 3.2 0.038 0.729 0.003 0.137 4.0 0.031 0.702 0.003 0.131

Note: This table compares the estimator using only the best set of pretreatment outcomes

and the estimator constructed from model averaging, in terms of the optimal number of

pretreatment outcomes selected by LOO cross-validation, as well as the bias and SD for

the ITE and ATE estimates, with varying sample size and number of pretreatment periods,

based on 5000 simulations for each setting.

Table 3.1 compares the GMM estimator constructed using only the best set of pre-

treatment outcomes with that constructed by averaging estimators from different

models with the same number of pretreatment outcomes. We see that the best

number of pretreatment outcomes, P , is slightly larger than the number of unob-

served individual characteristics (f = 2) for both estimators, and increases when

the sample size is larger and when there are more pretreatment outcomes available,

which is in line with our discussions in section 3.2.3. The estimators constructed

by model averaging also tends to select a slightly larger P than the estimator using

only the best set of pretreatment outcomes.

In almost all settings, the estimator using only the best set of pretreatment outcomes

tends to have a smaller bias, whereas the estimator constructed from model averag-

ing tends to have a smaller variance, except for estimating the individual treatment

effects when the number of pretreatment outcomes is very small. The bias and SD

also become smaller for both estimators when the sample size as well as the number

of pretreatment outcomes grow.

In the following simulations, we fix P at 2 when T0 = 1, and 3 when T0 = 2, and

construct the GMM estimator using only the best set of pretreatment outcomes,

with the best set of pretreatment outcomes selected at the first simulation and used

for the remaining simulations for each setting.18

18This is mainly to save computing time and does not fundamentally change the conclusions.
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Table 3.2: Simulation Results for the GMM estimator

ITE ATE

N1 N0 T0 Bias SD Coverage Bias SD Coverage

Panel A: ε0it,k uncorrelated across t and k

50 50 1 0.096 1.422 0.997 0.040 0.443 0.995

100 100 1 0.043 0.856 0.992 0.005 0.226 0.984

50 50 2 0.043 1.163 0.973 0.011 0.288 0.959

100 100 2 0.025 0.900 0.953 0.005 0.181 0.956

Panel B: ε0it,k correlated across t and k

50 50 1 0.134 1.419 0.996 0.045 0.431 0.993

100 100 1 0.065 0.851 0.991 0.018 0.230 0.982

50 50 2 0.063 1.162 0.976 0.008 0.294 0.961

100 100 2 0.037 0.906 0.964 0.009 0.183 0.967

Note: This table compares the bias and SD of the GMM estimator,

as well as the coverage probability of the 95% confidence interval, with

varying sample size and number of pretreatment periods, based on 5000

simulations for each setting.

Table 3.2 reports the bias and SD of the GMM estimator, as well as the coverage

probability of the 95% confidence interval, for estimating the individual treatment

effects and the average treatment effect. Panel A shows that the bias and SD for the

estimators are small even with a small sample size and a small number of pretreat-

ment outcomes. However, the 95% confidence intervals tend to have larger coverage

probabilities, especially when the number of pretreatment outcomes is small. This

distortion is alleviated as more pretreatment outcomes are available.

Since the validity of the GMM estimator relies on the assumption that εit,k are

uncorrelated across time or outcomes, we examine the performance of the estimator

when this assumption is violated in Panel B, where the idiosyncratic shocks follow

an AR(1) process over time with the autoregression coefficient being 0.1, and are

correlated across outcomes by sharing a common component for different outcomes

in the same period. This slightly increases the biases and SD’s of the estimators,

but the performance of the estimators are still quite good, especially in comparison

with related methods as shown in the following tables.
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Table 3.3: Simulation

OLS GMM

ITE ATE ITE ATE

N1 N0 T0 Bias SD Bias SD Bias SD Bias SD

Panel A: Linear conditional mean

100 100 1 0.099 0.622 0.041 0.186 0.113 1.297 0.086 0.257

200 200 1 0.059 0.415 0.015 0.119 0.011 0.430 0.003 0.129

100 100 2 0.046 0.677 0.012 0.158 0.026 0.901 0.003 0.179

200 200 2 0.064 0.547 0.012 0.121 0.028 0.937 0.003 0.142

Panel B: Nonlinear conditional mean

100 100 1 0.097 0.687 0.057 0.199 0.025 0.806 0.011 0.244

200 200 1 0.140 0.456 0.040 0.122 0.016 0.552 0.003 0.149

100 100 2 0.077 0.734 0.015 0.173 0.115 1.118 0.007 0.213

200 200 2 0.093 0.551 0.004 0.116 0.025 0.910 0.003 0.142

Note: This table compares the bias and SD for the OLS estimator and the

GMM estimator, with varying sample size and number of pretreatment periods,

based on 5000 simulations for each setting.

Table 3.3 compares our method with the OLS approach in Hsiao et al. (2012). In

panel A, both the unobserved individual characteristics and the idiosyncratic shocks

are normally distributed so that the linear conditional mean assumption is satisfied.

The results show that the GMM estimator outperforms the OLS estimator by having

a smaller bias in estimating both the individual treatment effects and the average

treatment effect, although the variance of the GMM estimator is also larger.

In panel B, the unobserved individual characteristics are drawn from the uniform

distribution, and the linear conditional mean assumption is no longer satisfied (Li

and Bell, 2017). We see that the results are virtually unchanged for the GMM esti-

mator, while the OLS estimator performs slightly worse by having larger biases and

SD’s, which is more pronounced in estimating the individual treatment effects. The

results indicate that the linear conditional mean assumption is not a very strong

one. Indeed, the distribution of the sum of several random variables would become

more bell-shaped like the normal distribution under fairly general conditions, as a

result of the central limit theorem. The simulation results are very similar when

the unobserved individual characteristics are drawn from a mix of other distribu-

tions.
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Table 3.4: Simulation

IFE GMM

ITT ATT ITT ATT

N1 N0 T0 Bias SD Bias SD Bias SD Bias SD

Panel A: X it constant across t

5 100 1 1.203 1.357 0.657 0.610 0.047 1.499 0.016 0.687

5 200 1 1.264 1.229 0.492 0.548 0.089 1.624 0.023 0.730

5 100 2 0.922 1.140 0.263 0.518 0.034 1.265 0.015 0.585

5 200 2 0.982 1.147 0.378 0.520 0.040 1.387 0.018 0.634

Panel B: β0
t,k constant across t

5 100 1 1.289 1.220 0.773 0.579 0.029 1.349 0.016 0.616

5 200 1 1.681 1.370 0.836 0.620 0.034 1.563 0.020 0.713

5 100 2 0.930 1.070 0.440 0.486 0.026 1.261 0.017 0.577

5 200 2 1.417 1.083 1.015 0.489 0.031 1.250 0.011 0.564

Note: This table compares the bias and SD for the IFE estimator and the GMM

estimator, with varying sample size and number of pretreatment periods, based

on 5000 simulations for each setting.

Table 3.4 compares our method with the method of estimating the interactive fixed

effects model directly, which was first developed in Bai (2009) and then adapted into

the potential outcomes framework by Xu (2017) to allow heterogeneous treatment

effects. We fix the number of treated individuals at 5, and compare the performance

of the two methods in estimating the individual treatment effect on the treated and

the average treatment effect on the treated.

We consider two scenarios that are relevant in the context of empirical microe-

conomics. In panel A, the observed covariates are constant over time. This is

plausible for covariates such as gender, race or education level, which are likely to

be stable over time. Since the IFE method requires the observed covariates to be

time-varying, the covariates that are constant over time are dropped from the esti-

mation and become part of the unobserved individual characteristics, which makes

the model equivalent to a pure factor model with 4 unobserved factors. As we have

5 related outcomes, this model should still be estimable by the IFE method. How-

ever, we see that IFE method perform poorly when there are only a small number

of pretreatment outcomes to recover the unobserved individual characteristics. The

bias and SD of the IFE estimator become smaller as more pretreatment outcomes

are available, but are still quite large compared with our method.

To accommodate the restrictive model specification for the IFE method, we allow

the covariates to be time-varying while keeping the coefficients constant over time in

panel B, although the coefficients are allowed to vary across outcomes since it is un-

likely that the coefficients for different outcomes would be the same in practice. We
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see that the IFE estimator has poor performance since the model is still misspecified

in their method, whereas the results for our method are virtually unchanged.

Table 3.5: Simulation

SCM GMM

ITT ATT ITT ATT

N1 N0 T0 Bias SD Bias SD Bias SD Bias SD

Panel A: distributions of µi same for treated and control

5 100 1 0.376 1.247 0.245 0.577 0.029 1.349 0.016 0.617

5 200 1 0.883 1.376 0.698 0.628 0.035 1.563 0.020 0.713

5 100 2 0.930 1.191 0.526 0.547 0.023 1.243 0.014 0.565

5 200 2 0.469 1.186 0.126 0.531 0.031 1.250 0.012 0.564

Panel B: distributions of µi different for treated and control

5 100 1 0.763 1.253 0.634 0.605 0.036 1.368 0.022 0.658

5 200 1 1.412 1.413 1.269 0.656 0.037 1.573 0.024 0.735

5 100 2 0.982 1.204 0.513 0.558 0.027 1.249 0.020 0.578

5 200 2 0.781 1.203 0.613 0.551 0.032 1.256 0.014 0.577

Note: This table compares the bias and SD for the SCM estimator and the

GMM estimator, with varying sample size and number of pretreatment periods,

based on 5000 simulations for each setting.

Table 3.5 compares our method with the synthetic control method (Abadie et al.,

2010). In panel A, the unobserved individual characteristics for both the treated

individuals and the untreated individuals are drawn from N(0, 1), while in panel B,

the unobserved individual characteristics for the treated individuals are drawn from

N(1, 1). Since the synthetic control method requires the treated units to be in the

convex hull of the control units by restricting the weights assigned to the control

units to be nonnegative, their method may perform poorly when the support of

the unobserved individual characteristics are different for the treated and untreated

individuals. While our method should be unaffected by the degree of overlapping in

the distributions of the unobserved individual characteristics for the two treatment

groups. The simulation results show that indeed the synthetic control estimator

performs worse in panel B. Perhaps somewhat surprising is that its performance is

also poor compared with our method in panel A. This is because the coefficients

are outcome-specific, so that the levels of the outcomes are also likely to vary across

outcomes, which makes it more difficult to obtain a good pretreatment fit under the

nonnegativity restriction. In comparison, our method has good performance in both

panels.

Overall, the simulation results show that our method has good performance in terms

of the bias and SD in estimating the individual treatment effects and the average

treatment effect under various settings, and has superior performance than related
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methods. The shortcoming of our method is that the confidence intervals tend to

be too wide, especially when the number of pretreatment outcomes is small.

3.4 Empirical Application

We illustrate our method by estimating the effect of health insurance coverage on

the individual usage of hospital emergency departments.

Although the usage of emergency departments applies to only a small proportion

of the population, it imposes great financial pressure on the health care system.

In addition, it is not clear ex ante what the direction of the effect should be.

E.g., Taubman et al. (2014) argues that health insurance coverage could either

increase emergency-department use by reducing its cost for the patients, or de-

crease emergency-department use by encouraging primary care use or improving

health.

The findings on emergency-department use have been mixed. Using survey data

collected from the participants of the Oregon Health Insurance Experiment (OHIE)

about a year after they were notified of the selection results, Finkelstein et al. (2012)

find no discernible impact of health insurance coverage on emergency-department

use.19 While using the visit-level data for all emergency-department visits to twelve

hospitals in the Portland area probabilistically matched to the OHIE study pop-

ulation on the basis of name, date of birth, and gender, Taubman et al. (2014)

find that health insurance coverage significantly increases emergency-department

use by 0.41 visits per person, from an average of 1.02 visits per person in the con-

trol group in the first 15 months of the experiment. They also examine whether

the effect differs across heterogeneous groups, and find statistically significant in-

creases in emergency-department use across most subgroups in terms of the number

of pre-experiment emergency-department visits, hospital admission (inpatient or

outpatient visits), timing (on-hours or off-hours visits), the type of visits (emer-

gent and not preventable, emergent and preventable, primary care treatable, and

non-emergent), as well as gender, age, and health condition.

In this application, we wish to estimate the effect of health insurance coverage on

emergency-department use for each individual in the sample. This would poten-

19The Oregon Health Insurance Experiment (OHIE) was initiated in 2008, targeting at low-
income adults in Oregon who had been without health insurance for at least 6 months. Among the
89,824 individuals who signed up, 35,169 individuals were randomly selected by the lottery and were
eligible to apply for the Oregon Health Plan (OHP) Standard program, which provided relatively
comprehensive medical benefits with no consumer cost sharing, and the monthly premiums was
only between $0 and $20 depending on the income. As a randomised controlled experiment, the
OHIE offers an opportunity for researchers to study the effect of health insurance coverage on
various health outcomes without confounding factors.
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tially help us better understand whether and how health insurance coverage affects

emergency-department use, compared with using only the average treatment effect

for the whole sample or for some preassigned subgroups (conditional average treat-

ment effects).

Our data combines both the hospital emergency-department visit-level data and

the survey data. There are two time periods, one before the randomisation and

one after.20 To estimate the individual treatment effects, we include 3 observed

covariates including gender, birth year, and household income as a percentage

of the federal poverty line, and 10 related outcomes including different types of

emergency-department visits and medical charges. We also consider a rich list of

variables on which we make comparisons for individuals with different estimated

treatment effects. There are 2154 individuals with complete information on these

variables.21

Table 3.6: Sample Selection

Selected Not-selected Difference Insured Not-insured Difference

(1) (2) (3) (4) (5) (6)

Female 0.59 0.60 -0.01 0.63 0.58 0.05*

Birth year 1966.24 1966.44 -0.19 1967.03 1966.09 0.95

Household income as percent of federal poverty line 79.77 75.67 4.10 53.73 86.57 -32.84***

# ED visits 0.32 0.43 -0.11** 0.48 0.33 0.15**

# outpatient ED visits 0.27 0.35 -0.09** 0.40 0.28 0.13**

# weekday daytime ED visits 0.18 0.24 -0.06** 0.27 0.19 0.08**

# emergent non-preventable ED visits 0.07 0.09 -0.02 0.11 0.07 0.04**

# emergent preventable ED visits 0.03 0.03 0.00 0.03 0.02 0.01

# primary care treatable ED visits 0.10 0.15 -0.05*** 0.15 0.12 0.04

Total charges 859.71 1276.90 -417.19* 1379.58 947.54 432.04

Total ED charges 345.48 504.64 -159.16** 494.95 396.86 98.09

# ED visits to a high uninsured volume hospital 0.17 0.22 -0.05 0.25 0.17 0.08**

# ED visits (survey) 0.24 0.30 -0.06* 0.38 0.23 0.15***

N 1103 1051 577 1577

1) This table compares the mean values of the covariates and related outcomes in the pretreatment period for individuals

selected/not-selected by the lottery, and individuals insured/not-insured.

2) Significance levels of the two-sample t-test: * 10%, ** 5%, *** 1%.

The first 3 columns in Table 3.6 present the mean values of the covariates and

outcomes in the pretreatment period for individuals selected by the lottery and

for individuals not selected by the lottery, as well as the difference between the two

groups. Since a considerable number of observations with incomplete information are

20The pre-randomisation period in the hospital visit-level data was from January 2007 to March
2008, and the post-randomisation period was from March 2008 to September 2009. The two surveys
were collected shortly after the randomisation and about a year after randomisation, respectively,
each covering a 6-month period before the survey.

21Note that our sample size is significantly smaller than the other studies using the OHIE data,
due to the inclusion of the extensive list of variables. For example, the sample size in Finkelstein
et al. (2012) is 74,922, and the sample size in Taubman et al. (2014) is 24,646. So our sample may
not be representative of the OHIE sample and the results in different studies may not be directly
comparable.
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dropped, being selected by the lottery is negatively correlated with different types

of emergency-department visits in the pretreatment period in our sample, which

suggests that the lottery assignment is not likely to be a valid instrument for health

insurance coverage. Table 3.6 also compares the mean pretreatment characteristics

for individuals covered by health insurance and those not covered, which shows that

individuals who were covered were poorer and used emergency-department more

frequently in the pretreatment period than people who were not covered by health

insurance.
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Figure 3.1: Distribution of the estimated individual treatment effects

Figure 3.1 shows the distribution of the estimated individual treatment effects using

our method.22 The mean of estimated individual treatment effects, or the estimated

average treatment effect is 0.33, which is significant at 1% level. 114 individuals have

treatment effects that are significant at 10% level, among which 23 are negative and

91 are positive.23 We then move on to compare the characteristics of the individuals

based on their estimated treatment effects, which are presented in Table 3.7-3.9.

22As mentioned earlier, since only individuals with complete information on the variables are
selected into our sample, the distribution may not be representative of the OHIE participants.
The distribution of the estimated individual treatment effects may be more spread out than the
distribution of the true effects due to noise, or less spread out since the estimates are based on the
parametric models for the potential outcomes, which may be over-simplifying compared with the
true models.

23Note that if we were to adjust for multiple testing, e.g., using the Benjamini–Hochberg proce-
dure to control the false discovery rate (FDR) at 10% level, then we would be left with only one
individual whose treatment effect is significant. Although the small number of individuals with
significant treatment effects may also be attributed to the overestimation of the variance of the
individual treatment effect estimator.
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Column (1) shows the mean characteristics of individuals whose treatment effects are

not significant at 10% level, column (2) shows the mean characteristics of individuals

whose treatment effects are significantly negative, column (3) shows the differences

between column (2) and column (1), column (4) shows the mean characteristics of

individuals whose treatment effects are significantly positive, and column (5) shows

the differences between column (4) and column (1).

Compared with individuals who would not be significantly affected by the treatment,

individuals who would significantly decrease or increase their emergency-department

visits if covered by health insurance both had more emergency-department visits and

more medical charges in the pretreatment period. However, these two groups were

also distinct in some characteristics.

The individuals who would have fewer emergency-department visits if covered by

health insurance were on average 7 years younger than individuals in the control

group and 10 years younger than the positive group, more likely to be female with

less education, and in particular, were much poorer than individuals in the other

groups. They were more likely to be diagnosed with depression but not other con-

ditions. Importantly, they were less likely to have any primary care visits, and

more likely to use emergency department as the place for medical care. In terms of

emergency-department use in the pretreatment period, they had fewer visits result-

ing in hospitalisation, more outpatient visits, more preventable and non-emergent

visits, more visits to hospitals with a low fraction of uninsured patients, fewer visits

for chronic conditions, and more visits for injury. Although their medical charges

were not as high as those for individuals in the positive group, they owed more

money for medical expenses.

In comparison, individuals who would have more emergency-department visits if

covered by health insurance were more likely to be older, male, and with household

income right above the federal poverty line, which means that they were not as

poor as the individuals in the other groups. They were in worse health conditions,

more likely to be diagnosed with diabetes and high blood pressure, and were taking

more prescription medications. They also had more emergency-department visits

of all types in the pretreatment period, including visits resulting in hospitalisation

and visits for more severe conditions such as chronic conditions, chest pain and

psychological conditions, and they incurred more medical charges.

Overall, these comparisons suggest that the individuals who would have fewer

emergency-department visits if covered by health insurance were younger and not

in very bad physical conditions. However, their access to primary care were limited

due to being in much more disadvantaged positions financially, which made them
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resort to using the emergency department as the usual place for medical care. In

contrast, the individuals who would have more emergency-department visits if cov-

ered by health insurance were more likely to be older and in poor health. So even

with access to primary care, they still used emergency departments more often for

severe conditions, although sometimes for primary care treatable and non-emergent

conditions as well.

All in all, it seems that both mechanisms discussed by Taubman et al. (2014) are

playing a role. For people who used emergency department for medical care because

they did not have access to primary care service, health insurance coverage decreases

emergency-department use because it increases access to primary care and may also

lead to improved health. Whereas for people who had access to primary care and

still used emergency department due to worse physical conditions, health insurance

coverage increases emergency-department use because it reduces the out-of-pocket

cost of the visits.

This application shows the potential value of estimating individual treatment effects

for policy evaluation. Our findings would not have been possible by only estimat-

ing conditional average treatment effects, as we would not be able to distinguish

individuals with positive or negative treatment effects at the first place.
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Table 3.7: Comparison of Characteristics

Same Fewer Difference More Difference

(1) (2) (3) (4) (5)

Birth year 1966.42 1973.90 7.48* 1964.09 -2.33**

Female 0.61 1.00 0.39*** 0.37 -0.24***

Education 2.52 1.90 -0.62** 2.30 -0.22**

English 0.89 0.90 0.01 0.95 0.07***

Race:

White 0.75 0.50 -0.25 0.79 0.04

Hispanic 0.10 0.10 0.00 0.12 0.02

Black 0.06 0.30 0.24 0.06 0.00

Asian 0.10 0.10 0.00 0.06 -0.05*

American Indian or Alaska Native 0.04 0.10 0.06 0.07 0.03

Native Hawaiian or Pacific Islander 0.01 0.00 -0.01*** 0.01 0.00

Other races 0.07 0.10 0.03 0.06 -0.01

Employed 0.53 0.60 0.07 0.48 -0.05

Average hours worked per week 2.25 2.40 0.15 2.20 -0.05

Household income as percent of federal poverty line 76.12 28.02 -48.09*** 114.98 38.86***

Household Size (adults and children) 2.99 3.50 0.51 2.61 -0.39**

Number of family members under 19 living in house 0.88 1.00 0.12 0.56 -0.33***

Overall health 3.01 2.40 -0.61 2.84 -0.17

Health change -0.09 -0.10 -0.01 -0.08 0.01

# days physical health not good 6.97 7.60 0.63 9.49 2.52**

# days mental health not good 8.43 13.90 5.47 10.30 1.87

# days poor health impaired regular activities 6.09 7.90 1.81 8.36 2.27**

Diabetes 0.10 0.20 0.10 0.20 0.10**

Asthma 0.13 0.20 0.07 0.13 0.01

High blood pressure 0.24 0.20 -0.04 0.38 0.15***

Depression 0.37 0.70 0.33* 0.47 0.10**

Any primary care visits 0.55 0.20 -0.35** 0.57 0.02

# primary care visits 1.64 1.80 0.16 1.86 0.22

Any hospital visits 0.04 0.10 0.06 0.12 0.07**

# hospital visits 0.05 0.10 0.05 0.16 0.11**

Usual place for medical care:

Private clinic 0.18 0.00 -0.18*** 0.28 0.10**

Public clinic 0.17 0.10 -0.07 0.18 0.01

Hospital-based clinic 0.07 0.00 -0.07*** 0.08 0.01

Hospital ER 0.03 0.50 0.47** 0.06 0.03

Urgent care clinic 0.03 0.10 0.07 0.02 -0.01

Other places 0.06 0.00 -0.06*** 0.07 0.00

Don’t have usual place 0.46 0.30 -0.16 0.32 -0.14***

1) This table shows the mean characteristics for individuals whose treatment effects are not statistically

significant at 10% level (column 1), whose treatment effects are significantly negative (column 2), and whose

treatment effects are significantly positive (column 4). Column (3) contains the differences between column

(2) and column (1), and column (5) contains the differences between column (4) and column (1).

2) Significance levels of the two-sample t-test: * 10%, ** 5%, *** 1%.
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Table 3.8: Comparison of Characteristics

Same Fewer Difference More Difference

(1) (2) (3) (4) (5)

Needed medical care 0.68 1.00 0.32*** 0.76 0.08*

Got all needed medical care 0.58 0.40 -0.18 0.56 -0.02

Reason went without care:

Cost too much 0.33 0.20 -0.13 0.31 -0.02

No insurance 0.36 0.50 0.14 0.35 -0.01

Doc wouldn’t take insurance 0.01 0.00 -0.01*** 0.00 -0.01***

Owed money to provider 0.05 0.00 -0.05*** 0.10 0.05*

Couldn’t get an appointment 0.03 0.00 -0.03*** 0.01 -0.02*

Office wasn’t open 0.01 0.00 -0.01*** 0.00 -0.01***

Didn’t have a doctor 0.11 0.20 0.09 0.10 -0.01

Other reasons 0.03 0.00 -0.03*** 0.04 0.01

Don’t know 0.00 0.00 0.00*** 0.00 0.00***

Needed prescription medications 0.61 0.80 0.19 0.77 0.16***

Got all needed prescriptions 0.74 0.70 -0.04 0.64 -0.09*

Currently taking any prescription medications 0.44 0.30 -0.14 0.68 0.25***

# prescription medications taking 1.37 1.30 -0.07 2.56 1.18***

Reason went without prescription medication:

Cost too much 0.21 0.20 -0.01 0.27 0.06

No insurance 0.20 0.10 -0.10 0.20 0.00

Didn’t have doctor 0.08 0.10 0.02 0.10 0.01

Couldn’t get prescription 0.08 0.10 0.02 0.07 -0.01

Couldn’t get to pharmacy 0.01 0.10 0.09 0.00 -0.01***

Other reasons 0.02 0.00 -0.02*** 0.04 0.02

Don’t know 0.00 0.00 0.00 0.00 0.00

Needed dental care 0.70 1.00 0.30*** 0.70 0.00

Got all needed dental care 0.41 0.30 -0.11 0.37 -0.05

Any ER visits 0.14 0.90 0.76*** 0.26 0.12***

# of ER visits 0.25 2.40 2.15*** 0.45 0.20**

Used emergency room for non-emergency care 0.02 0.10 0.08 0.06 0.03

Reason went to ER:

Needed emergency care 0.05 0.80 0.75*** 0.06 0.01

Clinics closed 0.01 0.30 0.29* 0.02 0.00

Couldn’t get doctor’s appointment 0.02 0.20 0.18 0.02 0.00

Didn’t have personal doctor 0.02 0.30 0.28 0.03 0.01

Couldn’t afford copay to see a doctor 0.01 0.20 0.19 0.02 0.00

Didn’t know where else to go 0.02 0.20 0.18 0.04 0.02

Other reason 0.01 0.10 0.09 0.02 0.01

Needed prescription drug 0.01 0.10 0.09 0.00 -0.01***

Don’t know 0.00 0.00 0.00 0.00 0.00

Any out of pocket costs for medical care 0.65 0.80 0.15 0.71 0.06

Total out of pocket costs for medical care 5195.07 1257.00 -3938.07 1136.44 -4058.62

Borrowed money/skipped bills to pay health care bills 0.34 0.50 0.16 0.47 0.13**

Currently owe money for medical expenses 0.46 0.80 0.34** 0.71 0.25***

Total amount currently owed for medical expenses 1559.40 7354.00 5794.60** 5694.17 4134.77***

1) This table shows the mean characteristics for individuals whose treatment effects are not statistically signifi-

cant at 10% level (column 1), whose treatment effects are significantly negative (column 2), and whose treatment

effects are significantly positive (column 4). Column (3) contains the differences between column (2) and column

(1), and column (5) contains the differences between column (4) and column (1).

2) Significance levels of the two-sample t-test: * 10%, ** 5%, *** 1%.
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Table 3.9: Comparison of Characteristics

Same Fewer Difference More Difference

(1) (2) (3) (4) (5)

Any ED visits 0.16 0.90 0.74*** 0.84 0.68***

# ED visits 0.28 3.10 2.82*** 1.94 1.67***

Any ED visits resulting in hospitalization 0.03 0.00 -0.03*** 0.37 0.34***

# ED visits resulting in hospitalization 0.03 0.00 -0.03*** 0.62 0.59***

Any outpatient ED visits 0.15 0.90 0.75*** 0.67 0.52***

# outpatient ED visits 0.25 3.10 2.85*** 1.32 1.07***

Any weekday daytime ED visits 0.10 0.60 0.50** 0.62 0.52***

# weekday daytime ED visits 0.15 1.50 1.35** 1.14 0.99***

Any off-time ED visits 0.09 0.90 0.81*** 0.51 0.42***

# off-time ED visits 0.12 1.60 1.48*** 0.83 0.71***

# emergent non-preventable ED visits 0.05 0.17 0.12 0.66 0.61***

# emergent preventable ED visits 0.02 0.14 0.12** 0.15 0.12***

# primary care treatable ED visits 0.10 1.37 1.27*** 0.46 0.36***

# non-emergent ED visits 0.05 1.22 1.16*** 0.35 0.29***

# unclassified ED visits 0.05 0.20 0.15 0.36 0.30***

Any ambulatory case sensitive ED visits 0.01 0.00 -0.01*** 0.15 0.14***

# ambulatory case sensitive ED visits 0.02 0.00 -0.02*** 0.15 0.13***

Any ED visits to a high uninsured volume hospital 0.08 0.20 0.12 0.76 0.68***

# ED visits to a high uninsured volume hospital 0.12 0.30 0.18 1.61 1.49***

Any ED visits to a low uninsured volume hospital 0.09 0.90 0.81*** 0.19 0.10**

# ED visits to a low uninsured volume hospital 0.15 2.80 2.65*** 0.33 0.17**

Any ED visits for chronic conditions 0.03 0.30 0.27 0.36 0.32***

# ED visits for chronic conditions 0.05 0.50 0.45 0.62 0.57***

Any ED visits for injury 0.06 0.40 0.34* 0.32 0.26***

# ED visits for injury 0.07 0.40 0.33* 0.43 0.37***

Any ED visits for skin conditions 0.01 0.10 0.09 0.02 0.01

# ED visits for skin conditions 0.02 0.10 0.08 0.03 0.01

Any ED visits for abdominal pain 0.01 0.10 0.09 0.06 0.05**

# ED visits for abdominal pain 0.01 0.10 0.09 0.10 0.09**

Any ED visits for back pain 0.01 0.30 0.29* 0.04 0.03

# ED visits for back pain 0.01 0.40 0.39 0.06 0.04

Any ED visits for chest pain 0.01 0.00 -0.01*** 0.05 0.04*

# ED visits for chest pain 0.01 0.00 -0.01*** 0.05 0.04*

Any ED visits for headache 0.01 0.00 -0.01*** 0.01 0.00

# ED visits for headache 0.01 0.00 -0.01*** 0.01 0.00

Any ED visits for mood disorders 0.00 0.00 0.00** 0.09 0.08***

# ED visits for mood disorders 0.00 0.00 0.00** 0.15 0.15**

Any ED visits for psych conditions/substance abuse 0.01 0.00 -0.01*** 0.17 0.17***

# ED visits for psych conditions/substance abuse 0.01 0.00 -0.01*** 0.36 0.34***

Total ED charges 274.98 1818.44 1543.46** 3195.22 2920.24***

Total charges 639.70 2223.85 1584.16** 9260.22 8620.52***

1) This table shows the mean characteristics for individuals whose treatment effects are not statistically

significant at 10% level (column 1), whose treatment effects are significantly negative (column 2), and whose

treatment effects are significantly positive (column 4). Column (3) contains the differences between column

(2) and column (1), and column (5) contains the differences between column (4) and column (1).

2) Significance levels of the two-sample t-test: * 10%, ** 5%, *** 1%.

124



3.5 Conclusion

In this paper, we propose a method for estimating the individual treatment effects

using panel data, where multiple related outcomes are observed for a large number

of individuals over a small number of pretreatment periods. The method is based on

the interactive fixed effects model, and allows both the treatment assignment and

the potential outcomes to be correlated with the unobserved individual characteris-

tics. Monte Carlo simulations show that our method outperforms related methods.

We also provide an example of estimating the effect of health insurance coverage

on individual usage of hospital emergency departments using the Oregon Health

Insurance Experiment data.

There are several directions for future research. First, our method requires the id-

iosyncratic shocks in the pretreatment outcomes to be uncorrelated either over time

or across outcomes. It would be a valuable addition to allow (or detect and adjust

for) more general dependence structure in the idiosyncratic shocks. Second, since

the residuals of the rearranged models are not estimates of the idiosyncratic shocks,

the variance of our estimator may be over-estimated, especially when the number of

pretreatment outcomes is small. A necessary step for future research is to correct

for this bias. Third, the repeated pretreatment set splitting and averaging approach

in our method is computationally expensive. It would be an interesting direction

for future research to find better ways to select related outcomes or use more flex-

ible averaging scheme. Fourth, the linear model specification may be restrictive.

There is potential to extend our method, perhaps in combination with more flexible

machine learning methods, to work with more general nonlinear outcomes.
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Appendix C

C.1 Proofs

Proof of Proposition 3.1.
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We also have E
(
e1it,k | H it = hit

)
= 0 and E

(
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)
= 0 under Assump-

tion 3.2.

Under the assumptions and by the Cauchy-Schwarz inequality, there exists M∗ ∈
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which implies that τ̂it,k−τit,k is uniformly integrable. Then by Lebesgue’s Dominated
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Thus, E (τ̃it,k − τit,k | Zit = zit) = 0. It follows that E (τ̃t,k − τt,k) = 0 using the law

of iterated expectations.
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Conclusion

This thesis contains three studies on individual causal inference using panel data.

The first two focus on the small N and large T setting, whereas the third focuses

on the large N and small T setting.

Chapter 1 generalises the synthetic control method to the case where the outcome is

a nonlinear function of the underlying predictors. Specifically, we provide conditions

for the asymptotic unbiasedness of the synthetic control estimator to complement

the theoretical result for the linear case in Abadie et al. (2010), and propose a

flexible and data-driven method for choosing the synthetic control weights. Monte

Carlo simulations show that the nonlinear synthetic control method has similar or

better performance in the linear case and better performance in the nonlinear case

compared with competing methods, and that the confidence intervals have good

coverage probabilities across settings. In the empirical application, we illustrate

the method by estimating the impact of the 2019 anti-extradition law amendments

bill protests on Hong Kong’s economy, and find that the year-long protests reduced

the real GDP per capita by 11.27% in the first quarter of 2020, which is larger in

magnitude than the economic decline in the 1997 Asian financial crisis and the 2008

global financial crisis.

Chapter 2 generalises the conventional single-outcome synthetic control method to

a multiple-outcome framework, where the number of pretreatment periods is sup-

plemented with the number of related outcomes in the domain, making the method

applicable even when the number of pretreatment periods is small or if we worry

about structural breaks over a longer time span. Following Abadie et al. (2010),

we show that the bound on the bias of the multiple-outcome synthetic control es-

timator is of a smaller stochastic order than that of the single-outcome synthetic

control estimator, when the synthetic control can closely approximate the unit of

interest in terms of the observed predictors and the multiple related outcomes. We

also discuss the role of demeaning the outcomes before constructing the synthetic

control, which is to account for the differences in the level of the outcomes for dif-

ferent units, and show in simulation that using demeaned outcomes can reduce both
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the bias and the variance of the synthetic control estimator and alleviate the size

distortion of the permutation test, if there are relatively stable differences in the

level of the outcomes.

We move on to evaluate the effects of the non-pharmaceutical interventions on vari-

ous outcomes in the public health, labour market, and economic domains using the

multiple-outcome synthetic control method, where we construct a synthetic Sweden

in each domain using the other European countries that implemented much stricter

NPIs. We find that the NPIs would significantly reduce the cumulative numbers of

COVID-19 cases and deaths as well as deaths from all causes, increase temporary

absence from work and reduce total hours worked among the employed, but would

have limited impacts on the employment rate and the economy, other than shrinking

the volume of retail sales in the early stage.

Chapter 3 proposes a method for estimating the individual treatment effects using

panel data, where multiple related outcomes are observed for a large number of in-

dividuals over a small number of pretreatment periods. The method is based on the

interactive fixed effects model, and allows both the treatment assignment and the

potential outcomes to be correlated with the unobserved individual characteristics.

Monte Carlo simulations show that our method outperforms related methods. We

also provide an example of estimating the effect of health insurance coverage on indi-

vidual usage of hospital emergency departments using the Oregon Health Insurance

Experiment data.
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