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Abstract

Salt and heat are two ocean properties of vital importance. Their mean distribution,

their advective transport and their diffusive redistribution control ocean dynamics by

setting the density of seawater and its spatio-temporal variability. In this thesis, we

investigate two aspects of the mixing and transport of salt and heat: the role of double

diffusion, a consequence of the slower molecular diffusion of salt relative to heat; and

the impact of small-scale density gradients on the poleward heat transport of the ocean.

In the first part of this thesis, double-diffusive interleaving is examined as it pro-

gresses from a linear instability towards finite amplitude. We examine the finger and

diffusive instability types and ask whether a steady state is possible. We find that

the strength of the fluxes across the diffusive interfaces must be many times stronger

relative to the corresponding fluxes across the finger interfaces than is indicated from

existing flux laws as derived from laboratory experiments. The total effect of the inter-

leaving motion on the vertical fluxes of heat and of salt is calculated for the steady-state

solutions. It is found that both the fluxes of heat and salt are up-gradient, correspond-

ing to negative vertical diffusion coefficients for heat, salt and density.

The remainder of the thesis addresses the limited spatial resolution of ocean models.

Unresolved spatial correlations between horizontal velocity and tracer fields contribute

to the actual horizontal fluxes of heat and other scalar quantities but are not accounted

for by state-of-the-art ocean models. A method of estimating these unresolved fluxes is

proposed, based on calculating an additional non-divergent velocity to advect all scalar

variables. The sum of the Eulerian-mean velocity and the extra advection calculated

here we call the Horizontal Residual Mean (HRM) velocity. The calculation of the extra

iii
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advection is based on the depth-integrated horizontal transport from the seafloor to

the density surface whose spatially averaged height is at the height of the calculation.

Incorporating the HRM velocity into an ocean model improves the effective spatial

resolution and the representation of poleward heat transport.
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φ̄ half the density variance at z, with φ̄ ≡ 1
2(γ′)2

Ψx the eastward Eulerian-mean streamfunction

Ψy the northward Eulerian-mean streamfunction
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Ψy
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Ψx
TRM the eastward quasi-Stokes TRM streamfunction

Ψy
TRM the northward quasi-Stokes TRM streamfunction

Ψx
Total the eastward quasi-Stokes streamfunction

Ψy
Total the northward quasi-Stokes streamfunction

as the absolute value of the ratio of the vertical flux of salt across the diffusive

interface to that across the finger interface in steady state

B̂ the proportionality constant between the salt flux across a finger interface

and the salinity difference across the interface

B̂S the proportionality constant between the salt flux across a finger interface

and the salinity difference across the interface at steady state

c0
p the constant value of the specific heat at constant pressure

D̂ the flux coefficient of momentum

D0 the initial flux coefficient of momentum

DSS the flux coefficient of momentum at steady state

F x, F y, F z the fluxes of x, y, z momentum

FSA , FΘ the fluxes of Absolute Salinity and Conservative Temperature

h the vertical wavelength of the intrusions, being twice the thickness of

a single intrusion

−H the height of sea floor

Lx the mean slope of the locally-referenced potential density surface in the x direction

LxE the mean slope of the locally-referenced potential density surface in the x direction

to the east of the tracer point

LxW the mean slope of the locally-referenced potential density surface in the x direction

to the west of the tracer point

Ly the mean slope of the locally-referenced potential density surface in the y direction

LyN the mean slope of the locally-referenced potential density surface in the y direction

to the north of the tracer point

LyS the mean slope of the locally-referenced potential density surface in the y direction

to the south of the tracer point
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Rρ environmental stability ratio

Rf
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ρ stability ratio of “diffusive” interface

SA Absolute Salinity [(IOC et al., 2010)]

SAl the gradient of Absolute Salinity in the direction of motion of an intrusion

(or leaf)

ū the temporally averaged zonal velocity

ū0 the Eulerian mean zonal velocity at x = 0 and z = 〈z̄a〉

ūy the meridional shear of the temporally averaged zonal velocity

ūz the vertical shear of the temporally averaged zonal velocity

〈ū〉 the resolved-scale Eulerian zonal velocity

〈ū〉x the zonal shear of the resolved-scale Eulerian zonal velocity

〈ū〉z the vertical shear of the resolved-scale Eulerian zonal velocity

ūN the vertically averaged zonal velocity to the north of a tracer point

ūS the vertically averaged zonal velocity to the south of a tracer point

ūupper the meridionally averaged zonal velocity above a tracer point

ūlower the meridionally averaged zonal velocity below a tracer point

u′ perturbation of zonal velocity

v̄ the temporally averaged meridional velocity

v̄0 the Eulerian mean meridional velocity at x = 0 and z = 〈z̄a〉

v̄x the zonal shear of temporally averaged meridional velocity
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〈v̄〉 the resolved-scale Eulerian meridional velocity

〈v̄〉x the zonal shear of the resolved-scale Eulerian meridional velocity

〈v̄〉z the vertical shear of the resolved-scale Eulerian meridional velocity

v̄E the vertically averaged meridional velocity to the east of a tracer point

v̄W the vertically averaged meridional velocity to the west of a tracer point

v̄upper the zonally averaged meridional velocity above a tracer point

v̄lower the zonally averaged meridionall velocity below a tracer point
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Chapter 1

Introduction

The ocean is profoundly affected by the presence of small-scale thermohaline structures.

The mean distribution, advective transport and diffusive redistribution of temperature

and salinity control ocean dynamics by setting the density of seawater and its spatio-

temporal variability. The general circulation of the oceans is primarily forced at large

scales, by surface wind and buoyancy forcing as well as tidal forces and geothermal heat-

ing. Yet a cascade of energy from the O(106m) scales of the forcing to the O(10−2m)

scales of the dissipation must keep the circulation in balance. The generation of small-

scale property gradients is an integral aspect of this energy cascade and, ultimately, a

key regulating factor of the circulation. At the small scale, temperature and salinity

gradients set the rate of irreversible mixing and the frictional dissipation of isotropic

turbulence. At O(1 − 100m), they reflect dissipative processes such as the small-scale

overturning of internal waves – the subsurface analogue of surface waves breaking on

beaches – or double diffusive interleaving – a layering and mixing phenomenon related

to the slower molecular diffusion of salt relative to heat. At O(100m − 1km), ther-

mohaline structure often arises from submesoscale fronts and their instabilities, which

can extract energy from larger scales and catalyze its transfer to dissipative scales. At

O(1 − 100km), temperature and salinity variance is largely the product of stirring by

mesoscale eddies, which remain unresolved by most global ocean models employed for

climate projections. Small-scale thermohaline structures are therefore ubiquitous and

central to the momentum and energy balance of the ocean, but often difficult to ob-

serve and model. Understanding their physics and how they relate to the larger-scale

1
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circulation is a major challenge for the understanding and modelling of the ocean’s role

in climate.

Both the mixing and transport of these two properties play crucial roles in the

ocean. Diapycnal mixing - mixing arcoss density surfaces - is a key process controlling

the ocean stratification and meridional overturning. Recent observations indicate that

diapycnal mixing is highly heterogeneous in the ocean, with weak mixing in much

of the open ocean [Ledwell et al. (1993), Ledwell et al. (2011)] and much stronger

mixing in the vicinity of rough topography [Ledwell et al. (2000)] and in frontal regions

such as the Drake Passage [St. Laurent et al. (2012)]. More specifically, Ledwell

et al. (2011) claimed that the diapycnal diffusivity in the ocean interior is on the

order of 10−5m2s−1 by analysing obeservational data, and St. Laurent et al. (2012)

demonstrated that the magnitude of diapycnal mixing is largely amplified in the frontal

regions in Drake Passage to the order of 10−4m2s−1. Diapycnal mixing also contributes

significantly to the overturning circulation of the deep ocean because mixing across

density sufaces changes the density of seawater and hence enables it to rise or sink.

For example, Melet et al. (2012) showed that there was a roughly 10% difference in

the amplitude of the Indo-Pacific meridional overturning circulation between two tidal

mixing parameterizations.

Given the vital role of small-scale thermohaline structures in the ocean, there is

great interest in understanding the nature of these structures and evaluating their ef-

fects on large-scale ocean circulation. Typically, efforts have focussed on two main

approaches: to better understand small-scale physical processes; and to capture the

effects of unresolved small-scale dynamics on the resolved scale of ocean models. There

is no clear distinction between these two approaches and often they are interwoven and

complementary. Intuitively, refining the grid resolution can greatly improve an ocean

model’s ability to represent the mesoscale eddy field and accept parameterizations of

subgridscale processes, at the cost of increased computational effort. However, increas-

ing the resolution, though effective and important, is not sufficient. The process of

refining model resolution must be accompanied by a proper and adjusted representa-

tion of newly resolved and still unresolved physical processes. As the resolution of ocean

models steadily improves, there will be a continued need to parameterize unresolved
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scales and physical processes for the foreseeable future.

The need to parameterize physical processes on unresolved scales is illustrated by

double diffusive convection. Double diffusive convection is a type of diapycnal mixing

caused by different rates of diffusion of two density-affecting water properties. In the

ocean, these are temperature and salinity, both of which contribute to the water density

but have molecular diffusivities that differ by two orders of magnitude. The molecular

diffusivity of salt is two orders of magnitude smaller than that of heat. Double diffusive

convection results in two distinct types of fluid motion, called the salt finger type and

diffusive type, respectively. When hot saline water lies above cold fresh seawater, it

sets up a salt finger type double diffusion because narrow fingers of fluid from the upper

layer can lose more heat than salt and so become denser and then sink. The overlying

water falls in the form of saline columns, hence named salt fingers. The diffusive type

of double diffusion occurs when the cold fresh water overlies warm salty water. This

type of double diffusive convection exhibits sharp quasi-horizontal interfaces. Double

diffusive processes not only re-distribute the temperature and salinity fields in the

ocean, but also affect the distribution of other chemical and microbial components.

Therefore, it has been considered an important oceanographic process. However, there

are still significant gaps in our understanding of double diffusive mixing processes and

their representation in ocean models.

After Stern (1960) introduced double diffusion into oceanographic research, double

diffusive convection and the associated small-scale thermohaline structures has been

found to be ubiquitous in the ocean and is suspected to be important for ocean dynam-

ics. Persistent staircases developed by double diffusive convection of salt and heat have

been well documented in the Tyrrhenian Sea within the Mediterranean [Johannessen

and Lee (1974), Zodiatis and Gasparini (1996)], in the eastern North Atlantic [Tait

and Howe (1968)], and in the western tropical North Atlantic [Mazeika (1974), Boyd

and Perkins (1987), Boyd (1989), Schmitt et al. (1987)]. The existence of fine-scale

thermohaline interleaving at ocean fronts has been reported as well. Joyce et al. (1978)

and Toole (1981) reported double diffusive intrusions in the Antarctic polar front. The

similar structure has been observed at mid-latitudes by Gregg and McKenzie (1979)

and Gregg (1980). Williams (1981) reported active double diffusive intrusions in the
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Gulf Stream using his shadowgraph device, and Schmitt and Georgi (1982) also found

strong intrusions in the North Atlantic Current. The ubiquitous occurrence of these

fine-scale thermohaline structures indicates that they are important factors in estimat-

ing the fluxes and the budgets of heat and salt. The distinct role of double diffusive

mixing in the ocean is now well recognized in oceanography.

Abundant observational evidence has motivated efforts to deepen understanding of

these processes. Significant progress has come from laboratory experiments and theoret-

ical analysis. Interestingly, the first known laboratory experiment was done about one

hundred years before Stern (1960) introduced double diffusive convection into oceanic

research. Jevons (1857) performed a heat-sugar double diffusive experiment and cor-

rectly attributed the phenomenon to the difference in the diffusivities of heat and sugar.

Turner (1965) first investigated the transfer of heat and salt fluxes across a diffusive

interface. Huppert (1971) employed Turners results to a series of diffusive interfaces

and obtained flux laws of heat and salt for double diffusive interfaces. Other variant

experiments had general agreement with Hupperts findings. For example, Marmorino

and Caldwell (1976) investigated a wider range of heat fluxes, as low as observations

in parts of the ocean. The measurements of interfacial heat flux agreed with Hupperts

flux laws. Turner (1967) and Schmitt (1979) showed how the salt flux varied as the 4/3

power of the salinity difference in two-layer tank experiments. Laboratory fluxes laws

found by McDougall and Taylor (1984) was used for fluxes across the finger interface,

as summarized in Appendix C, together with Hupperts fluxes law. Detailed reviews on

several aspects of double diffusive convction are available from Schmitt (1994), Ruddick

and Gargett (2003) and Kunze (2003).

Numerical models are mathematical equations operated by numerical time-stepping

procedures. Adjusting assumptions and parameters of a numerical model frees re-

searchers from limitations of theory and observation and allows researchers to com-

prehensively understand and mimic the real world. Numerical modelling studies have

also shed light on the impact of double diffusive processes on the large-scale ocean

circulation. Gargett and Holloway (1992) have made the first attempt at estimating

the impact from implementing unequal diffusivities for heat and salt in a numerical

model. The results suggest that the magnitude and sense of the thermohaline circula-
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tion, and the water mass characteristics of intermediate and deep water are all sensitive

to the unequal diffusivities of heat and salt. The different diffusivities resulted in no-

ticeable differences in meridional transports because the ocean was forced into different

advective-diffusive equilibriums which involve the upgradient buoyancy flux. They also

emphasised that it was the diffusivity ratio that governs the steady-state characteristics

of coarse resolution models, rather than the particular choice of each diffusivity. Fol-

lowing their work, Zhang et al. (1998) demonstrated the sensitivity of numerical models

to the double diffusive parameterizations by comparing results from three numerical

experiments. The double-diffusive parameterization of Zhang et al. (1998) lessened the

meridional overturning rate by 22% compared to the constant diffusivity parameter-

ization for the small-scale mixing processes and by 10% the amount in Gargett and

Holloway (1992). Their work proved that different parameterization of double diffusive

convection can result in sizeable changes in numerical models’ meridional overturning

circulation. These sensitivity tests suggest that more research in understanding double

diffusive processes is required.

Numerical models aim to simulate the real ocean as accurately as possible, yet

small-scale structures are never fully resolved by numerical models. The resolution

of models can prohibit the inclusion of processes that have smaller scales than the

model grid box. The contribution of these small-scale structures is thus inadequately

calculated or omitted by the model. For example, the spatial scale of salt fingers is so

small (order 0.01m) compared with the size of grid boxes in global ocean models that

they are usually not resolved and have to be parameterized in numerical models.

Rintoul and Wunsch (1991) have discussed the importance of the unresolved subgrid-

scale processes by comparing the differences between estimates of circulation from a

series of inverse models. These authors found that the unresolved spatial correlations in

some models significantly changed the estimates of tracer fluxes. Fanning and Weaver

(1997) conducted a horizontal resolution sensitivity study of the heat transport in a

coupled climate model. The results of their simulations showed that the atmospheric

heat transport is decreased to counteract the increase in oceanic heat transport. The

ocean heat transport due to the baroclinic gyre transport was enhanced by a factor

of 5 from the 4 degree to the 1/4 degree resolution. Their results point to limitations
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inherent in simulating the real ocean due to the resolution of ocean models. Penduff

et al. (2010) simulated mean sea-surface heights and sea-level anomalies with the same

model at 2, 1, 1/2 and 1/4 degree resolution. The comparison has shown that the model

resolution has great influence on the global sea-surface variability pattern. Gulev et al.

(2007) compared the estimates of water mass transformation in the North Atlantic be-

tween 1 degree and 1/6 degree ocean simulation with the identical configuration and

analysed the noticeable differences in the surface transformation rates. They claimed

that 1/6 degree high resolution provided adequate representation of eddies in the trop-

ics and mid-latitudes and enhanced the process of water mass transformation compared

to the 1 degree coarse relosolution model. Interestingly, the higher resolution did not

guarantee better ability of resolving eddies everywhere. They therefore urged more

future developments on the understanding of the sensitivity of ocean models to model

resolutions in various aspects. Another striking example is the work of Treguier et al.

(2005) in which a quantitative comparison was made between high-resolution models

in the North Atlantic subpolar gyre. The comparison demonstrated very different pat-

terns of deep convection and also showed a large drift in watermass properites with a

salinization in the Labrador Sea. It is clear that the resolution of models have profound

influences on many aspects in ocean studies. Those sensitivity studies raised a consen-

sus among oceanic researchers that capturing the effects of these unresolved small-scale

structures is a persistent obstacle that needs to be overcome. Studies of Gulev et al.

(2007) and Treguier et al. (2005) also exemplify that the resolution refining process must

be accompanied by a proper and adjusted representation of the newly resolved and still

unresolved physical processes. The continuous need to parameterize these motions for

the foreseeable future will not vanish. To summarise, research on small-scale structures

in the ocean should have high priority in oceanic and climate studies. Although many

observational and theoretical studies have been made, a full understanding of these

small-scale process still awaits further advancement in observational capabilities and

theoretical models.

Along with limited horizontal resolution in ocean models goes the limited ability to

resolve mesoscale eddy activity. Mesoscale eddies have typical horizontal scales of order

100km. Ocean models with a horizontal resolution of order 1 degree have almost no
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ability to reproduce these mesoscale eddy motions, and even at 1/4 degree resolution

the mesoscale eddy activity is rather weak. Gent and McWilliams (1990) introduced

a parameterization scheme for this mesoscale eddy activity that has since been widely

adopted in the ocean modelling community. Our present understanding of this scheme

for parameterizing mesoscale eddies owes much to the pioneering work of Andrews and

McIntyre (1976) who formulated the zonal transformed Eulerian mean approach for use

in the atmosphere. The separation of the flow into its zonal average and the deviations

therefrom has been a dominant paradigm for analyses of the general atmospheric circu-

lation. Since Eliassen and Palm (1961), residual-mean theory has provided an elegant

framework with which to understand eddy-mean flow interaction. The basic idea of

residual mean theory is that tracers are advected not by the Eulerian mean velocity,

but by the “residual” velocity. The form of this residual velocity depends on the par-

ticular formalism. The residual mean concept has totally changed our understanding

of the zonally integrated atmospheric circulation and has been extended to understand

the effect of humidity [Stone and Salustri (1984)], to the use of isentropic coordinates

[Andrews et al. (1987)], and to applications in the middle and upper troposphere [e.g.

Trenberth (1986)].

Inspired by Andrews and McIntyre (1976), this residual-mean interpretation of the

Gent and McWilliams (1990) parameterization scheme was extended to the oceanic case

where the averaging is over time, and the velocity fields are three-dimensional [rather

than the two-dimensional zonal-averaged case of Andrews and McIntyre (1976)]. Gent

et al. (1995) quantified the effects of the Gent and McWilliams (1990) parameterization

and found an eddy-induced meridional overturning streamfunction peaking at 18 Sv in

the Antarctic Curcumpolar Current. McDougall and McIntosh (2001) subsequently

showed that the Gent and McWilliams (1990) parameterization of the eddy flux was

in fact a parameterization of a type of residual circulation. McDougall and McIntosh

(2001) argued that the Gent and McWilliams (1990) eddy parameterization scheme is

essentially a parameterization of the quasi-Stokes velocity of the Temporal Residual

Mean (TRM) circulation. Succinctly, TRM applied a temporal and thickness-weighted

averaging procedure in which both the scalar variables and the velocity components

become the thickness-weighted isopycnal versions. The horizontal component of the
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TRM velocity is the sum of the Eulerian mean velocity and a velocity that accounts for

the contribution of eddies to the horizontal flux of fluid below a certain density surface.

This TRM horizontal velocity is equivalent to the thickness-weighted mean velocity

in density coordinates. In other words, Gent and McWilliams (1990) includes the

eddy-induced horizontal density flux due to unresolved temporal correlations between

temperature (or salinity) and the horizontal velocity. It remains a primary challenge

and demand of coarse-resolution ocean models to understand and quantify the effects

of vital properties (such as salinity and temperature) advected with the residual mean

velocities.

In this thesis, we focus on two specific aspects of small-scale thermohaline struc-

tures: the implications of double diffusive mixing, and the impact of limited spatial

resolution on horizontal tracer transports. We first examine double diffusive interleav-

ing and its finite-amplitude equilibration. This work extends the analysis of Toole and

Georgi (1981), who constructed a model of double-diffusive interleaving for infinitessi-

mal perturbations using linear stability analysis and showed that these quasi-horizontal

intrusions can be driven by the vertical buoyancy fluxes of double-diffusive convection.

In their studies, the vertical profiles are smooth, continuous functions of the verti-

cal coordinate, with the vertical structure function being harmonic and the nonlinear

advection terms turning out to be zero. McDougall (1985a) showed that the same grow-

ing intrusions occurred whether the environment was rotating or not, and McDougall

(1985b) made a start at studying these interleaving motions at finite amplitude. He

showed that it was feasible that steady-state balances could be achieved for both heat

and salt. Building on McDougall’s work, our study assumes an intrusion structure with

sharp interfaces as being more consistent with ocean observations than the harmonic

vertical structure.

The flux laws found in laboratory experiments opened the opportunity to show if

such steady-state balances could be achieved with the fluxes across the double-diffusive

interfaces taken from those laboratory flux laws. The laboratory-based law of the

diffusive fluxes of heat and salt is taken from Huppert (1971) and the fluxes in the

salt fingering case described by the expression found by McDougall and Taylor (1984).

In this thesis, a finite-amplitude model of double-diffusive interleaving is formed by
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integrating the temperature and salinity equations of each intrusion forward in time

using the Runge-Kutta integration technique. Each layer is taken to be well-mixed in

the vertical, separated by relatively sharp interfacial regions where the double-diffusive

fluxes originate. The vertical length scale of the intrusions, and their slope with respect

to the isopycnals are taken from the linear stability analysis.

Following McDougall (1985a), there are three regimes as the intrusions evolve:

firstly each interface is of the “finger” type. In the linear stability analysis, each alter-

native finger interface grows at the expense of its neighbor. We start our model with

a small (but finite) disturbance and the model allows the interleaving motions to grow

to finite amplitude thereafter using realistic flux laws while still in this “finger-finger”

regime. This stage is followed by a stage where each alternate interface ceases to be a

finger interface and instead becomes stably stratified in both temperature and salinity.

A third stage follows in which each alternative interface becomes of the “diffusive” type

in which cool fresh water overlies warmer saltier fluid. Ultimately, the system can reach

a steady state and the properties of the relations among variables in the steady state

are examined. Combining the theoretical and laboratory work further revealed the con-

dition for double diffusive intrusions to achieve an equilibrium and gave implications

in modelling double diffusive interleaving structure.

The remainder of the thesis aims at estimating unresolved spatial correlations due

to the limited spatial resolution of an ocean model with the aim of deliberately in-

jecting the induced transports into an ocean model. The ocean models have first been

developed in z-coordinates. The z-coordinate ocean models have been conventional and

are still in active use nowadays. However, ocean models in isopycnal coordinates have

gained popularity because researchers have widely accepted that the stirring and mixing

of tracers by mesoscale eddies mainly happen along locally-referenced potential density

surfaces [Griffies (2004); McDougall and Jackett (2005) and McDougall et al. (2014)].

The widely adopted Gent and McWilliams (1990) parameterization for mesoscale ed-

dies was originally motivated in isopycnal coorinates. These authors realized that the

epineutral diffusion of scalars would be affected by lateral variations of the thickness

between pairs of closely spaced isopycnals, and they proposed a parameterization that

acted as a sink of gravitational potential energy via the diffusion of this thickness. At
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first, it seemed that the Gent and McWilliams (1990) scheme was a diffusive process

because the coefficient in the extra advection of tracers was called the “thickness diffu-

sivity” and it caused a diapycnal transport. In hindsight, the clearest description is that

the Gent and McWilliams (1990) scheme is a representation of an extra eddy-induced

advection by a three dimensional non-divergent velocity [Gent (2011)]. McDougall

and McIntosh (2001) showed that the Gent and McWilliams (1990) parameterization

scheme essentially represents the horizontal density flux due to unresolved temporal

correlations between temperature (or salinity) and the horizontal velocity, and it can

be understood as a parameterization to arrive at the residual-mean velocity in an ocean

model. It had long been recognized that tracers (including temperature and salinity)

are not advected by the Eulerian-mean velocity, and Gent et al. (1995) showed that

the Gent and McWilliams (1990) scheme was in fact an extra velocity that advects

temperature and salinity.

McDougall and McIntosh (2001) then provided a physical interpretation of this

extra quasi-Stokes velocity field; namely that it is the contribution of eddies to the

transport of seawater that is denser than the appropriately averaged density at the

point in question. This physical interpretation and a Taylor series expression for the

perturbation velocities and perturbation tracers showed that the streamfunction of

Gent and McWilliams (1990), when added to the Eulerian-mean streamfunction, actu-

ally transports tracers in the same manner as would an eddy-resolving model, and that

the horizontal residual velocity is actually the thickness-weighted horizontal velocity

obtained by temporally averaging in density coordinates. McDougall and McIntosh

(2001) named their work temporal residual mean (TRM) theory following the com-

mon concept of residual mean circulation in atmospheric studies, more specifically

Andrews and McIntyre (1976). Notice that the TRM conducts temporal averaging

rather than the zonal averaging in Andrews and McIntyre (1976). Before this interpre-

tation, McDougall and McIntosh (1996) had already produced an application of Gent

and McWilliams (1990) for slightly different averaging in a z-coordinate ocean model.

McDougall and McIntosh (2001) also demonstrated an intuitive link between the quasi-

Stokes velocity of the TRM circulation (which is based in Cartesian coordinates) and

the eddy-induced extra advection caused by thickness-weighted averaging, which is the
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natural way of averaging in density coordinates. TRM is very important because it

retains the adiabatic nature of the Gent and McWilliams (1990) parameterization and

in the meantime allows the interpretation of results from z-coordinate models.

In the same way as the temporal correlations are considered in the quasi-Stokes

TRM streamfunction, unresolved spatial correlations between temperature and hori-

zontal velocity will contribute horizontal density fluxes that should also be included

in ocean models. Therefore, McDougall (1998) suggested that the same physical in-

tegrating procedure could be done in space rather than in time, and in so doing, an

ocean model could represent the effects of the spatial correlations between the velocity

and tracer fields that have not been represented in models to date. McDougall (1998)

thus considered the effect of spatial resolution limitations on the horizontal transport

of seawater that is denser than the isopycnal whose average height is the height be-

ing considered. The term Horizontal Residual Mean (HRM) was coined to describe

the total velocity that would include the extra advection of seawater of this density

class due to unresolved spatial correlations. The eddy-induced advection of the HRM

circulation can be regarded as the adiabatic way of including the horizontal density

fluxes due to unresolved spatial correlations. The importance of this type of unresolved

spatial correlation to oceanic meridional heat transport has been discussed by Rintoul

and Wunsch (1991).

Although McDougall (1998) hypothesized the concept of HRM, there has been no

work done regarding this idea for nearly two decades. In this thesis, I propose a

method of approximating the transport of scalar quantities due to spatial correlations

that are unresolved by ocean models. The method introduces an extra non-divergent

advection which is calculated from resolved model fields via a Taylor-series approxi-

mation. Moreover, I demonstrate that the method of calculating the streamfunction

from coarsely-resolved model fields gives a good approximation to the corresponding

transport of seawater that would be available in a finer resolution ocean model. This

HRM streamfunction does not involve a parameterization. Rather, it is an estimate

of the transport induced by the spatial correlation between the scalar and velocity

fields, and the calculation is directly made using the variables available in the ocean

model. Finally, we diagnose the contribution of the extra non-divergent advection to
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basin-scale meridional heat and mass transports contained in a model snapshot.

The method I propose can be incorporated into ocean models to include the unre-

solved spatial correlations. In a forward model, the slope of the neutral tangent plane

is estimated by taking the ratio of horizontal and vertical density gradients. We have

calculated the HRM transports in both meridional and zonal directions using the den-

sity gradient ratio as the slope of neutral tangent plane. The comparison between the

HRM transports calculated in two ways has shown that the method is not sensitive and

therefore will be feasible to be incorporated into forward ocean models. Although we

put a limit of 10−2 to the slope of neutral tangent plane, experimentally the limit has

no significant importance since only a small amount of slopes exceeded the limit. The

actual implementation certainly needs a full understanding of features of the model to

which the HRM method applies and awaits future efforts.

The HRM theory is a spatial analogue of TRM. These two theories are based on

a common ground and were in completed form when being used together. There have

been other residual mean theories proposed, for example Eden (2010) and Eden (2012)

who interpreted the scalar variables as the Eulerian-mean versions, while adopting a

version of the residual mean for the velocity field. On a more theoretical level, a fully

Lagrangian averaging framework could be envisaged, but to date there has not been a

practical implementation of this approach. Rather, the fully Lagrangian framework is

a theoretical construct to which all other forms of averaging can be compared.

The eddy closure of the GM scheme (the TRM advection) have been extensively

studied in the literature from Gent et al. (1995) to the present day, with perhaps 200

papers addressing this issue. The thesis touches on the main practical requirements of

a workable TRM quasi-Stokes streamfunction, namely that it be tapered appropriately

near the oceans boundaries. Since the HRM closure scheme of this thesis requires

no parameterization, I have not further expounded on the parameterizations that are

specific to the TRM/GM scheme, since this is not relevant to our HRM approach.

The thesis is organised as follows. Double diffusive interleaving structures are ex-

amined as they progress from linear instability towards finite amplitude in chapter 2.

We start from the model equations and go through regime by regime, using flux laws

to characterize the heat and salt fluxes across the intrusion interfaces and determine
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the conditions needed to reach steady state. In the end, we analyse the properties in

steady state and discuss possible implications one can draw from the results. In chap-

ter 3, we evaluate the HRM streamfunction as a method that estimates the transport

induced by unresolved spatial correlations. We also demonstrate the diagnosis of a

practical method that approximates the transport of seawater that is denser than the

isopycnal whose spatially and temporally averaged height is the height one is consider-

ing. The possibility of implementing the HRM streamfunction into ocean models, for

example Modular Ocean Model, has been proposed by showing that the calculation of

the HRM transport can use available data in the MOM without additional complexity.

A summary of the findings and discussions will be placed in chapter 4.



Chapter 2

Double Diffusive Interleaving:

Properties of the Steady-State

Solution

2.1 Introduction

Toole and Georgi (1981) built a theoretical model of double-diffusive interleaving using a

linear stability analysis and showed that these quasi-horizontal intrusions are driven by

the vertical buoyancy fluxes of double-diffusive convection. McDougall (1985a) showed

that the same growing intrusions occurred whether or not the environment was rotating,

and McDougall (1985b) made a start at studying these interleaving motions at finite

amplitude. He hypothesized that it may be possible that the growth of the intrusions

might be arrested at finite amplitude when every second interface changes its nature

from the finger type to the diffusive type. The reason for this possible steady state

is that the ratio of the fluxes of heat and salt across the two types of double-diffusive

interfaces is quite different. In a steady state there needs to be a three-way balance

between three processes (1) advection, (2) finger flux divergences, and (3) diffusive flux

divergences, and this three-way balance needs to occur in both heat and salt.

While McDougall (1985b) showed that it was feasible that steady-state balances

could be achieved for both heat and salt, it remained to be shown if such steady-state

balances could be achieved with the fluxes across the double-diffusive interfaces taken

14
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from the laboratory flux laws; these fluxes having been measured in one-dimensional

laboratory experiments.

	
S
A

ƿΘ

Z
Z Z

A

X

“finger”

“diffusive”

Figure 2.1: The sketch at the left is a vertical cross section through the frontal region

showing the direction of cross-frontal motion of the intrusions and their slopes. The

interfaces with vertical short lines represent the dominant finger interfaces. On the

right-hand side, the two graphs show the Absolute Salinity and the density profiles at

position A. The dashed lines indicate the initial state without perturbations, and the

full lines show the profiles at a later stage.

In this chapter we form a finite-amplitude model of double-diffusive interleaving by

integrating the temperature and salinity equations of each intrusion forward in time

using the Runge-Kutta integration technique. Each layer is taken to be well-mixed in

the vertical, separated by relatively sharp interfacial regions where the double-diffusive

fluxes originate. The vertical length scale of the intrusions, and their slope with re-

spect to the isopycnals are taken from the linear stability analysis. Following McDougall

(1985b), there are three regimes as the intrusions evolve: firstly each interface is of the

finger type (see Fig. 2.1). In the linear stability analysis, each alternative finger inter-

face grows at the expense of its neighbour. We start our model with a small (but finite)

disturbance and the model allows the interleaving motions to grow to finite amplitude

thereafter using realistic flux laws while still in this “finger-finger” regime. This stage
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is followed by a stage where each alternate interface ceases to be a finger interface

and instead becomes stably stratified in both temperature and salinity. A third stage

follows in which each alternative interface becomes of the diffusive type in which cool

fresh water overlies warmer saltier fluid (see Fig. 2.2 and 2.3).

The laboratory fluxes laws obtained by McDougall and Taylor (1984) and Huppert

(1971) did not directly lead to steady interleaving solutions. In order to achieve a steady

state, an exaggeration factor is introduced to adjust the fluxes across the diffusive in-

terface given by laboratory. The steady state can only be achieved in the presence of

this factor and we tested a range of values for this factor. The choice of exaggeration

factor has been elaborated in section 2.6.

	

Figure 2.2: Conservative Temperature - Absolute Salinity diagram showing the evolu-

tion of the properties of the double-diffusive intrusions with time. The initial properties

lie on the dashed line with slope Rρ ≡ αΘ̄z/βS̄Az . The arrowed lines connect the initial

and final points of several layers.
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Figure 2.3: Absolute Salinity Conservative Temperature diagram showing the evolution

of the subservient finger interface between layers a and b. From a to 1, it is a finger

interface and then from 1 to 2 is a non-double-diffusive interface. At last, from 2 to 3

is a diffusive interface. In the steady state, a diffusive interface exists between points 3

on this diagram.
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2.2 The model equations

For reference purposes there is a list of symbols at the beginning of this thesis. We write

down the basic conservation equations of intrusion motion following Toole and Georgi

(1981) and McDougall (1985a). We assume an initial state of rest with horizontal isopy-

cnals. We take the salinity and temperature variables to be those of the International

Thermodynamic Equation of Seawater 2010 (TEOS-10), namely Absolute Salinity SA

and Conservative Temperature Θ [IOC et al. (2010), McDougall (2003), Graham and

McDougall (2013)]. These variables vary along the initially horizontal isopycnal sur-

faces with SA and Θ increasing in the positive x direction so that S̄Ay = 0 and

βS̄Ax = αΘ̄x. (2.1)

The overbars indicate the state before interleaving sets in, and α and β are defined

from the equation of state ρ = ρ(SA,Θ, p) by

α = −1

ρ

∂ρ

∂Θ

∣∣∣
SA,p

and β =
1

ρ

∂ρ

∂SA

∣∣∣
Θ,p
. (2.2)

The conservation equations for momentum, continuity, Absolute Salinity and Conser-

vative Temperature are [see equations (3) - (8) of (McDougall, 1985a)]

u′t − fv′ = −ρ−1p′x −∇ · F x, (2.3)

v′t + fu′ = −ρ−1p′y −∇ · F y, (2.4)

w′t = −ρ−1p′z − g(βS′A − αΘ′)−∇ · F z, (2.5)

u′x + v′y + w′z = 0, (2.6)

βS′At + u′βS̄Ax + w′βS̄Az = −β∇ · FSA , and (2.7)

αΘ′t + u′αΘ̄x + w′αΘ̄z = −α∇ · FΘ, (2.8)

where F x, F y and F z are the fluxes of x, y and z momentum, and FSA and FΘ are the

fluxes of Absolute Salinity and Conservative Temperature caused by double-diffusive

convection.

In some studies [e.g. Toole and Georgi (1981) and Walsh and Ruddick (1998)]

these double-diffusive fluxes are assumed to be directed down the respective salinity

and temperature gradients with eddy diffusion coefficients that depend on whether the
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vertical gradients are conducive to the salt-fingering type of double-diffusion, or to the

diffusive type. In these studies, the vertical profiles are smooth, continuous functions

of the vertical coordinate; often the vertical structure function is harmonic and the

nonlinear advection terms turn out to be zero. We follow McDougall (1985a) and

McDougall (1985b) and adopt a different strategy which we believe is more consistent

with applications to the ocean and with comparisons to the laboratory-determined

flux laws. We take the values of Absolute Salinity and Conservative Temperature and

their respective perturbations to be constant in the vertical within each intrusion layer,

with sharp property differences across the sheared interfaces that separate the quasi-

horizontally moving intrusions. In this way we are able to apply the laboratory flux

laws that describe the fluxes of heat and salt across sharp interfaces (as opposed to

down smooth gradients).

Since we assume Absolute Salinity to be piecewise constant in the vertical direction,

the vertical profile of perturbations in this study is a square wave. The vertical flux

of salt due to finger double-diffusive convection FSA is negative, which indicates a

downward flux. During the linearly unstable growing solution, each interface is of the

finger type, with each alternate interface being either a dominant or subservient finger

interface.

In McDougall’s model, B̂ is taken as the proportionality constant between the salt

flux across a finger interface and the salinity difference across the interface during

the linearly unstable growth phase; that is, βFSAf = B̂β∆Sf
A. During this initial

exponential growth phase the fluxes are a linearization of the 4/3 flux laws. Thereafter

we adopt the finite amplitude result that the fluxes are proportional to the 4/3 power of

the property contrasts instead of the 3/3 power which has been used in previous studies.

We consider the mean vertical stratification to be in the finger sense, that is, in this work

we take βS̄Az > 0 (with height z defined positive upwards) and Rρ = αΘ̄Az/βS̄Az > 1.

Initially each interface is in the finger sense and as the perturbations S′A grow, the

salinity contrast across one interface increases by 2S′A and the salinity contrast across

the other interface decreases by 2S′A. The difference between the fluxes of salt across

adjacent interfaces is then ±4B̂S′A.

The vertical wavenumber of the intrusions is defined as m̂ and the vertical wave-
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length is h = 2π/m̂, with the height of an individual intrusion being 1
2h. The right-hand

side of the salt conservation equation 2.7 during this linearly unstable growth phase is

then

− β∇ · FSA = −
4B̂βS′A

1
2h

= − 4

π
B̂m̂βS′A = −Bm̂βS′A (2.9)

where we have defined B = 4B̂/π for convenience. Similarly, the divergences of the

fluxes of momentum in equations 2.3, 2.4 and 2.5 are given by

−∇ · (F x, F y, F z) = −4D̂
1
2h

(u′, v′, w′) = −Dm̂(u′, v′, w′) (2.10)

where D̂ is the flux coefficient of momentum, and we simply use D = 4D̂/π for conve-

nience.

This study starts with the exponentially growing linearly unstable solutions of Mc-

Dougall (1985a), and the essential features of that study are summarized in Appendix

A. We follow McDougall (1985b) in assuming that the isopycnals do not slope so that

the horizontal gradients of Absolute Salinity and Conservative Temperature are bal-

anced in their effects on density, that is, βS̄Ax = αΘ̄x , where x is the horizontal

cross-frontal coordinate. Consider one layer with thickness of h/2, where h = 2π/m̂ is

the vertical wavelength of the disturbance. In the present model, the flux divergences

are interpreted in terms of lower and upper fluxes bounding an individual intrusion.

Integrating the conservation equation 2.7 over the thickness of an individual layer gives

1

2
hβS′

At̂
+

1

2
hu′βS̄Ax +

1

2
hw′βS̄Az = βFSAlower − βF

SA
upper. (2.11)

Several properties of the growing interleaving motion are set during the exponen-

tially growing phase, namely, the slope of the intrusion to the horizontal s, the di-

mensionless vertical wavenumber m, and the ratio of the perturbation horizontal and

vertical velocities. The slope of the interleaving motions with respect to the isopycnals

s is the solution of the following cubic equation [from McDougall (1985a))]

s̃34(1 + εz)εz(σ − 1− εz) + s̃24(1 + εz)(1 + 2εz − σ) + s̃(σ − 4− 5εz) + 1 = 0, (2.12)

while the vertical wavenumber m̃ is given by

m̃ = s̃
√
σ
{
σ −

[ 1

2s̃
− (1 + εz)

]2}− 1
2

(2.13)
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and the vertical and horizontal velocity perturbations are related by

w′ = −su′. (2.14)

Here we have introduced the shorthand notations

s̃ =
s

εx
, and m̃ =

√
σm

εx
,

and the dimensionless vertical wavenumber m, slope of the intrusions to the horizontal

s , and the Prandtl number σ, are given by

m =
Bm̂

N
, s =

k̂

m̂
, σ =

D

B
,

where εx and εz are defined by

εx =
(1− γf)gβS̄Ax

N2
and εz =

(1− γf)gβS̄Az
N2

=
(1− γf)

(Rρ − 1)
.

These relationships have been written in terms of the following properties of the back-

ground mean oceanic stratification, namely, the stability ratio Rρ and the square of the

buoyancy frequency N :

Rρ =
αΘ̄z

βS̄Az
, N2 = g(αΘ̄z − βS̄Az) = gβS̄Az(Rρ − 1),

and γf is the buoyancy-flux ratio of the fluxes across the salt-finger interfaces. Equations

2.12, 2.13 and 2.14 above are the finite-Prandtl number solutions, and we will adopt

this finite-Prandtl number case in this work, as Ruddick et al. (1989) and Smyth and

Kimura (2007) considered that the appropriate value of Prandtl number is to be O(1)

or less.

Equation 2.11 is now simplified by using the known ratio of the vertical and horizon-

tal velocity perturbations (from equations 2.12, 2.13 and 2.14 above), and eliminating

w′ gives
1

2
hβS′

At̂
+

1

2
hu′βS̄Ax(1− s̃εz) = βFSAlower − βF

SA
upper. (2.15)

Similarly, equation 2.8 becomes

1

2
hαΘ′

t̂
+

1

2
hu′βS̄Ax(1− s̃Rρεz) = αFΘ

lower − αFΘ
upper. (2.16)

In what follows it proves convenient to use the following nondimensional salinity and

temperature variables X and Y , defined by

X =
2βS′A

1
2hβS̄Az

, and Y =
2αΘ′

1
2hβS̄Az

. (2.17)
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We now discuss the relationship between the perturbation horizontal velocity u′

and the density perturbation. During the exponentially growing stage the momentum

equation is deduced from equations 2.11, 2.13 and (38) of McDougall (1985b), as follows

(under the assumption of the slope of the interleaving motions, s, is small)

− λ̂u′ = sg(αΘ′ − βS′A) +D0m̂u′ (2.18)

and initially the perturbation horizontal velocity u′ is

u′0 = −
g(αΘ′ − βS′A)√

σN

s̃

m̃

[
1 +

1√
σ

(
1− s̃2

m̃2

) 1
2

]−1

, (2.19)

which is derived from the linearly unstable momentum equation [see equation (39) of

McDougall (1985a)]. If a steady state is reached, the rate of change of the horizontal

velocity perturbation (corresponding to the term on the left-hand side of equation

2.18) needs to vanish, or otherwise the intrusion velocity will continue to accelerate.

Under this assumption, the steady-state versions of the two terms on the right-hand

side of equation 2.18 will balance each other out, implying that the horizontal velocity

perturbation and the density perturbation in the steady state are related by

u′ss = − D
0

Dss

g(αΘ′ − βS′A)√
σN

s̃

m̃
. (2.20)

Beginning at equation 2.18, we have allowed the possibility that the value of the turbu-

lent viscosity may increase from D0 to Dss as steady state is approached. During the

process of evolution, we assume that the ratio of the perturbation horizontal velocity

to the density perturbation will change linearly with Y and is represented by

u′ = −
g(αΘ′ − βS′A)√

σN

[
G0 + (Gss −G0)

(Y − Y0)

(Rρ − Y0)

]
, (2.21)

where

G0 =
s̃

m̃

[
1 +

1√
σ

(
1− s̃2

m̃2

) 1
2

]−1

and Gss =
D0

Dss

s̃

m̃
. (2.22)

This rather arbitrary linear function of Y allows the velocity perturbation to be that

of the exponentially growing solution at the initial condition (X0, Y0), while ensuring

that the ratio of the velocity and density perturbations becomes constant at Y = Rρ

well before any possible steady state is reached. That is, the linear function of Y of
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equation 2.21 provides a credible way of transitioning between equation 2.19 and 2.20.

For Y > Rρ, we use equation 2.20.

Substituting equation 2.21 into equation 2.15 and dividing both sides B̂ leads to

π

m̂B̂
βS′

At̂
− π

m̂B̂
βS̄Ax(1− s̃εz)

g√
σN

(αΘ′ − βS′A)G(Y ) =
βFSAlower − βF

SA
upper

B̂
, (2.23)

where (from equation 2.21)

G(y) ≡ G(s̃, Rρ, Y ) = G0 + (Gss −G0)
Y − Y0

Rρ − Y0
.

Dividing both sides of equation 2.23 by 1
4hβS̄Az and using nondimensional time t =

t̂π−1m̂B̂, we find

Xt =
4

(1− γf)

1

m̃
(1− s̃εz)(Y −X)G(Y ) =

2
1
2hβS̄Az

βFSAlower − βF
SA
upper

B̂
. (2.24)

Similarly, the equation 2.16 becomes

Yt −
4

(1− γf)

1

m̃
(1− s̃εzRρ)(Y −X)G(Y ) =

2
1
2hβS̄Az

αFΘ
lower − αFΘ

upper

B̂
(2.25)

To choose the initial starting point for the model, we take a small value of X, X0, and

use the relationship between X0 and Y0 which applies during the exponentially growing

linearly unstable solution (see equation B.1 in Appendix B).

For the results we present in this chapter, we have taken the initial value of X0 to

be 0.1, but we have demonstrated that the results are insensitive to this starting value

by also doing some cases with X0 = 0.01 and X0 = 0.2. In summary, the cases with

X0 = 0.01 yielded values of X and Y at the steady-state that were typically larger

than those obtained with X0 = 0.1 by only 10−4, while the cases with X0 = 0.2 yielded

values of X and Y at the steady-state that were typically smaller than those obtained

with X0 = 0.1 by only 10−3. This demonstrates that the solutions are quite insensitive

to our choice of X0 = 0.1 as the initial condition where the growth of the interleaving

changes from being the linearly unstable solution to one based on the finite-amplitude

laboratory flux laws.

The sensitivity to the initial condition was tested in another way by deliberately

disobeying the ratio of the initial values of X and Y as given by equation B.2 in

Appendix B. We multiplied the right-hand side of equation B.2 by the factor 0.8 so

that the initial value of the temperature perturbation was only 80% that of the linearly
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growing solution. This changed the steady-state values of X and Y by only 10−2, or

less than 0.5% of these steady-state values. On the basis of these two types of tests,

we conclude that the model is quite insensitive to details of the initial conditions.

In this work, we adopt the finite-amplitude laboratory-based expressions for the

double-diffusive fluxes of heat from Huppert (1971) and of salt, from McDougall and

Taylor (1984), at all stages of the numerical integration after the initial condition at

X0 = 0.1. The laboratory flux laws for both finger interfaces and diffusive interfaces

are described in Appendix C. Note that in this entire study we take the flux ratio of

salt fingers to be γf = 0.5.

Last, we present the salinity and temperature contrasts across finger and diffusive

interfaces in terms of nondimensional variables X and Y . For the dominant finger

interfaces, the property contrasts across them [see Fig. 2.1, adopted from McDougall

(1985b)] are

β∆Sf
A =

h

2
βS̄Az + 2βS′A =

h

2
βS̄Az(1 +X) and

α∆Θf =
h

2
αΘ̄z + 2αΘ′ =

h

2
βS̄z(Rρ + Y ),

(2.26)

and the finger stability ratio is

Rf
ρ ≡

α∆Θf

β∆Sf
A

=
(Rρ + Y )

(1 +X)
, (2.27)

while for the other interfaces, the “subservient” finger interfaces across which the salin-

ity contrast decreases with time,

β∆Sf
A =

h

2
βS̄Az − 2βS′A =

h

2
βS̄Az(1−X) and

α∆Θf =
h

2
αΘ̄z − 2αΘ′ =

h

2
βS̄z(Rρ − Y ),

(2.28)

Rf
ρ ≡

α∆Θf

β∆Sf
A

=
(Rρ − Y )

(1−X)
. (2.29)

After sufficient time we anticipate that these subservient finger interfaces will be-

come stably stratified with respect to both temperature and salinity, and after more

time has elapsed, these interfaces will be stratified in the diffusive sense of double-

diffusive convection. After this time, the property contrasts across them are

β∆Sdiff
A = 2βS′A −

h

2
βS̄Az =

h

2
βS̄Az(X − 1) and

α∆Θdiff = 2αΘ′ − h

2
αΘ̄z =

h

2
βS̄Az(Y −Rρ),

(2.30)
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and the diffusive stability ratio is

Rdiff
ρ ≡

β∆Sdiff
A

α∆Θdiff
=

(X − 1)

(Y −Rρ)
. (2.31)
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2.3 The transition to finite amplitude in the finger-finger

(FF) regime

The evolution of double-diffusive interleaving goes through three regimes: the finger-

finger (FF) regime with finger interfaces at each interface, the finger-nondouble-diffusive

(FN) regime with nondiffusive interfaces as each alternate interface, and the finger-

diffusive (FD) regime with diffusive interfaces alternating with finger interfaces (see

Fig. 2.3). As explained above, we transition from the linearly unstable growing solution

to having the interfacial fluxes determined by the laboratory flux laws at a very early

part of the FF stage when X = X0 = 0.1. We ensure that the laboratory flux law

expressions are joined in a continuous fashion to the exponentially growing linearly-

unstable solutions that are used to initialize our model intrusions. In this study, the

value of the finger flux ratio γf is fixed at 0.5 throughout the three regimes.

The integration remains in the FF regime until X reaches 1 (see equation 2.29). In

this regime, both upper and lower interfaces are finger interfaces. More specifically, in

the intrusion we are considering the lower finger interface is dominant and the upper

finger interface is subservient. The evolution equations for the nondimensional variables

X and Y in this finite amplitude FF regime are

Xt −
4

(1− γf)

1

m̃
(1− s̃εz)(Y −X)G(Y ) = − 4X0

A(X0, Y0)
A(X,Y ), (2.32)

and

Yt −
4

(1− γf)

1

m̃
(1− s̃εzRρ)(Y −X)G(Y ) = −γf

4X0

A(X0, Y0)
A(X,Y ), (2.33)

where

A(X,Y ) =

{
(1 +X)

4
3[

(Rρ+Y )
(1+X) − 0.5

] − (1−X)
4
3[

(Rρ−Y )
(1−X) − 0.5

]}. (2.34)

These equations 2.32 - 2.34 are derived in Appendix D. The nondimensional equations

2.32 and 2.33 are used in regime FF, that is, from the initial value of X = X0 = 0.1

until x reaches 1.
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2.4 The integration in the finger-nondouble-diffusive (FN)

regime

In the FN regime, the upper interface is not double-diffusive so that the fluxes of heat

and salt across it are set to zero. In this FN regime, the lower interface remains a finger

interface. This regime lasts while X > 1 and Y < Rρ, and the evolution equations 2.24

and 2.25 become (see the first part of equation 2.34, and equations 2.32 and 2.33 for

motivation)

Xt −
4

(1− γf)

1

m̃
(1− s̃εz)(Y −X)G(Y ) = − 4X0

A(X0, Y0)

(1 +X)
4
3[

(Rρ+Y )
(1+X) − 0.5

] , (2.35)

Yt −
4

(1− γf)

1

m̃
(1− s̃εzRρ)(Y −X)G(Y ) = −γf

4X0

A(X0, Y0)

(1 +X)
4
3[

(Rρ+Y )
(1+X) − 0.5

] . (2.36)
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2.5 The integration in the finger-diffusive (FD) regime

In the FD regime, the lower interface remains a finger interface and is parameterized

exactly as in the FN regime. The fluxes across the upper interface are obtained by using

laboratory diffusive flux laws (see Appendix C). Combining the contributions from the

lower and upper interfaces, equation 2.24 now becomes

Xt−
4

(1− γf)

1

m̃
(1− s̃εz)(Y −X)Gss

= − 4X0

A(X0, Y0)

(1 +X)
4
3[

(Rρ+Y )
(1+X) − 0.5

] − 0.7674γdiff
4X0

A(X0, Y0)

(Y −Rρ)
10
3

(X − 1)2

(2.37)

where the flux ratio of the diffusive interface γdiff is given by equations C.2 and C.3 in

Appendix C, and the 0.7674 number is actually (from equations C.1 and C.4)

0.7674 ≈ 3.8× 0.085

0.19

(κT
ν

) 1
3

which is the numerical factor that arises from substituting the laboratory diffusive flux

of heat into equation 2.24, where ν is the viscosity. This same term gives rise to the

following term of the right-hand side of equation 2.25:

− 2
h
2βS̄Az

αFΘ
upper

B̃
= −0.7674

4X0

A(X0, Y0)

(Y −Rρ)
10
3

(X − 1)2
, (2.38)

and hence, in the FD regime, the evolution equation for Y (equation 2.25) is

Yt−
4

(1− γf)

1

m̃
(1− s̃εzRρ)(Y −X)G(Y )

= −γf
4X0

A(X0, Y0)

(1 +X)
4
3[

(Rρ+Y )
(1+X) − 0.5

] − 0.7674
4X0

A(X0, Y0)

(Y −Rρ)
10
3

(X − 1)2
.

(2.39)

Last, we mention that if the density difference across the diffusive interface goes to

zero, the integration cannot be continued since the layers above and below this inter-

face would physically homogenize, and this is not part of our model. This occurs when

(Y −X) ≥ (Rρ− 1). If this condition is detected, the numerical integration is stopped.
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2.6 The feasibility of the steady state

McDougall (1985b) suggested that a steady state would be possible once the fluxes

across each alternate interface are in the diffusive sense, and it is the primary purpose

of this chapter to find out the conditions under which such a steady state is achieved. In

the steady state the double-diffusive fluxes across the finger and the diffusive interfaces

must work together to balance the advective fluxes of both heat and salt so that the

temporal derivatives Θt and St are both equal to zero. However, McDougall (1985b)

only demonstrated the feasibility of such a steady state. In this chapter, we incorporate

the laboratory flux laws and we investigate the conditions under which a steady state

is actually achieved.

Fig. 2.1 [adapted from McDougall (1985b)] shows a sketch of a series of interleaving

layers, in which the dominant finger interfaces are indicated by the short vertical lines.

The two panels on the right show the Absolute Salinity and the density profiles at

position A. The dashed lines represent the initial state in which the perturbations are

zero and the full lines indicate a later state when the perturbations have grown to finite

amplitude and the flow is in the FD regime. Above the dominant finger interfaces, the

salt-finger salt flux reduces the salinity of the intrusion layer; however, the horizontal

advection of salt dominates so that actually the salinity of this layer increases with

time in the growing solution. In McDougall (1985a), it is shown that the perturbation

Conservative Temperature is greater than the perturbation Absolute Salinity (both

expressed in terms of density) during the initial growth phase. This implies that the

density contrast across the dominant salt finger interface increases with time while that

across the subservient finger interface decreases with time in the FF regime.

Fig. 2.2 [adapted from McDougall (1985b)] is a SA − Θ diagram that shows the

evolution of the layer properties. The layer properties initially lie on a line with slope

Rρ = αΘ̄z/βS̄Az. The Conservative Temperature and the Absolute Salinity change

in the ratio αΘ0/βS0 of equation (40) of McDougall (1985a). Each successive layer

has the opposite sign of change. Fig. 2.3 [adapted from McDougall (1985b)] shows

the evolution of the subservient finger interface between layers with properties a and

b. Starting as finger interfaces (from points a to 1), the subservient interfaces evolve

to be not double-diffusive interfaces (between points 1 and 2) when the interface is
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stable in both temperature and salinity contrasts. After the cold fresh water overlies

the warm salty water, the interfaces become diffusive interfaces (between points 2 and

3). Eventually, the finger fluxes, the diffusive fluxes and the advective fluxes may reach

a steady-state balance for both temperature and salinity. This stage is called steady

state because the temporal rates of change of both temperature and salinity are zero.

As stated at the beginning of this section, the steady state occurs when the sum

of the finger flux divergence term, the diffusive flux divergence term and the advective

flux divergence term is zero, which implies that αΘt = βSAt = 0. In the FF regime,

the diffusive flux does not appear, and during this stage, the growing solution is shown

in Fig. 2.4(a) with both the temporal derivative terms and the advective terms being

larger than the finger flux divergence term. This balance applies until points 1 in Fig.

2.3, and we should be mindful that in this study, even in this FF regime, the fluxes obey

the finite-amplitude laboratory-determined flux laws. Fig. 2.4(b) corresponds to the

period between points 1 and 2 of Fig. 2.3, where the rate of increase of the finger flux

divergence is approximately halved because each alternate interface is stably stratified

with respect to both Θ and S. During this FN regime it is clear that a steady state is

not possible between just a finger flux divergence and the advective term; the temporal

term and the advective term are observed to be larger than the finger flux divergence.

The feasibility of achieving a steady state is shown in Fig. 2.4(c). Diffusive fluxes

emerge as the evolution reaches point 2, and these diffusive fluxes increase with time

thereafter. Together with the finger fluxes, it is possible to reach a balance. We will

now examine this process of reaching a steady state with our model.

We started at (X0, Y0), with X0 = 0.1 and with Y0 determined from equation (40) of

McDougall (1985a). The differential equations for X and Y are then integrated forward

in time. We have done this for a range of values of the stability ratio of the water column

Rρ . To our surprise we found that a steady state was not possible with the laboratory

flux laws. Rather, the subservient interface was always driven to be statically unstable

in the FD regime. If this occurred in practice, the two layers bounding this interface

would overturn and mix, resulting in a doubling of the vertical wavelength, as sometimes

occurred in Ruddick (1984). In order to achieve a steady state, it became clear that

the fluxes across the diffusive interface needed to be stronger relative to those across
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the finger interface (or equivalently, the fluxes across the finger interfaces needed to

be weaker with respect to those across the diffusive interface). For this reason we

ran the model for a range of values of an exaggeration factor where we replaced the

0.7674 number that represents the strength of the diffusive interfaces in equations 2.37

- 2.39 with 0.7674 multiplied by an “exaggeration factor” which we varied from 5 to 40.

One way to rationalize such an exaggeration factor is that the oceanic interfaces have

much smaller property contrasts across them than do double-diffusive interfaces in the

laboratory and perhaps this affects the strengths of the finger and diffusive interfaces

in different ways.

The equations apply to any finite Prandtl number, and we show results for values

of Prandtl number σ equal to 0.3, 1 and 10, but we mainly illustrate our results using

σ = 1. To begin with, Fig. 2.5 shows contours of the steady state values of the

nondimensional salinity and temperature perturbations, denoted (Xs, Y s) plotted as

a function of Rρ and the exaggeration factor for the three selected values of Prandtl

number σ. The similarity in those three pairs of figures is obvious. The values of Xs and

Y s depend more on the environmental stability ratio than on the exaggeration factor.

In each of these panels the lower left corners are blank, which indicates that no steady

states were found; in these regions, the diffusive flux divergence is unable to balance

the advective and finger terms. With increasing Rρ, when the basic stratification is less

fingering favorable, the exaggeration factor required to achieve a steady state appears

to be smaller. The results throughout this chapter for σ = 10 are almost identical to

those for an infinite Prandtl number.

The evolution of X and Y towards the steady-state values Xs and Y s is illustrated

in Fig. 2.6(a). Once the steady state had been reached, the solution was perturbed a

little in X and Y , and the integration was continued. The stable spiraling towards the

steady-state values Xs and Y s as illustrated in Fig. 2.6(b) was a characteristic feature

of all the steady states.

The stability ratios of both the finger and diffusive interfaces at steady state can

be calculated from equations 2.27 and 2.31, and the values for σ = 1 are shown in Fig.

2.7. The stability ratio of the diffusive interfaces are mostly near 2 or greater than 2,

and this can be understood from equations C.2 and C.3 in Appendix C, which describe
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the flux ratio across the diffusive interfaces. If the stability ratio across these diffusive

interfaces becomes much less than 2 and approaches 1, then the flux ratio increases

from 0.15 and approaches 1. In this limit it is clear from the angle of the diffusive flux

vector on Fig. 2.4(c) that a steady-state balance is not possible as the flux of density

across the finger interfaces is too strong. Note that when a steady state is not possible

and the diffusive interface overturns, its stability ratio passes through 1.0 at that time.

It appears that the only steady states that are possible have the stability ratio of the

diffusive interfaces substantially greater than 1.0, with numbers greater than 1.6 being

apparent from Fig. 2.7(a).
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Figure 2.4: Contributions to the temporal derivative vector (αΘt, βSAt) from the

double-diffusive fluxes and the advective terms. (a) The stage from points a to 1

in Fig. 2.3; this is the growing solution of the linear stability analysis of McDougall

(1985a). (b) A sketch of the terms applying at the points 2 of Fig. 2.3. (c) Beyond

points 2, the diffusive fluxes begin to grow and allow the possibility of a steady state

solution in which (αΘt, βSAt) is (0,0).
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Figure 2.5: Contours of the nondimensional salinity and temperature variables Xs and

Y s of the steady state points with respect to the exaggeration factor and Rρ. Three

values for Prandtl number are selected: (top two) σ = 0.3, (middle two) σ = 1 and

(bottom two) σ = 10.
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Figure 2.6: (top) A typical evolution of the nondimensional salinity and temperature

variables X and Y towards the steady-state values at the end of the hook near the

upper right-hand of the figure. (bottom) The loci of seven artificially perturbed points

around the steady state point. These two panels are for the exaggeration factor ef = 25,

Rρ = 2.5 and σ = 1 .
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Figure 2.7: The stability ratios of the (top) diffusive and (bottom) finger interfaces at

the steady state for σ = 1.
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2.7 The relations among variables in the steady state

Notice that, in the steady state, the expressions of the vertical fluxes of salt across the

finger and the diffusive interfaces correspond respectively to the first and second right-

hand side term of equation 2.37. The absolute value of the ratio of the vertical flux of

Absolute Salinity SA across the diffusive interface to that across the finger interface in

steady state is labeled as and is given by∣∣∣∣∣FSAdiff

FSAf

∣∣∣∣∣ = as = ef × 0.7674γsdiff

(Y s −Rρ)
10
3

(Rρ−Y s
1+Xs − 0.5

)
(Xs − 1)2(1 +Xs)

4
3

, (2.40)

where ef is the exaggeration factor. Similarly, the expressions of the vertical fluxes of

Conservative Temperature across the finger and the diffusive interfaces in the steady

state, can be calculated from the two terms on the right-hand side of equation 2.39,

which gives ∣∣∣∣∣FΘ
diff

FΘ
f

∣∣∣∣∣ =
FΘ

diff

FSAdiff

FSAdiff

FSAf

FSAf

FΘ
f

=
as

γsdiffγf
. (2.41)

The values of as and as/(γsdiffγf) at each steady state point is shown in Fig. 2.8 as a

function of the exaggeration factor ef and Rρ. It is easy to notice that different values

of Prandtl number do not have significant impact on the values of as and as/(γsdiffγf).

For most of the steady-state solutions, the ratio of the diffusive to finger salt flux as

is about 0.1, while the ratio of the diffusive to finger temperature flux as/(γsdiffγf) is

about 1.0.

From equation (41) of McDougall (1985a), we have

αΘl

βSAl
= 1− s̃(1− γf)

(1− εz s̃)
, (2.42)

where Θl and SAl are the gradients of Conservative Temperature and Absolute Salinity,

respectively, in the direction of motion of an intrusion (or leaf). The ratio of these along-

leaf gradients is set in the exponentially growing solution and remains the same in each

of our three regimes. In the steady state, define B̂s by∣∣∣βFSAf

∣∣∣ = B̂sh

2
βS̄Az(1 +Xs), (2.43)

where h
2βS̄Az(1 + Xs) is the salinity contrast across the finger interface in the steady

state.
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With the shorthand notations above, at steady state equations 2.37 and 2.39 are

written as

− 4

(1− γf)

(
1

m̃

)
(1− s̃εz)(Y s −Xs)Gss = −2

B̂s

B̂
(1 +Xs)(1 + as), (2.44)

and

− 4

(1− γf)

(
1

m̃

)
(1− s̃εzRρ)(Y s −Xs)Gss = −2

B̂s

B̂
(1 +Xs)(γf +

as

γsdiff

). (2.45)

Taking the ratio of 2.44 and 2.45 gives a relation between as and γsdiff , which is,

1

γsdiff

=
αΘl

βSAl
+

1

as

(
αΘl

βSAl
− γf

)
. (2.46)

Fig. 2.9 shows the values of γsdiff , when σ = 1, at a range of steady state points as

a function of the exaggeration factor and Rρ. From equation C.3 in Appendix C, we

see that γdiff is constant when Rdiff
ρ ≥ 2, explaining why there are no contours in the

upper-right region in Fig. 2.9.

Equation 2.44 can be rewritten using equation 2.42 to give an expression that relates

as and the steady-state values of X and Y to the ratio of B̂s to B̂, namely,

B̂s

B̂
=

2( s̃m̃)2(Y s −Xs)( D0
Dss )

(1 +Xs)(1 + as)(1− αΘl
βSAl

)
, (2.47)

which is shown in Fig. 2.10. From the above equation, Xs, Y s, as and the environmental

stability ratio Rρ all contribute to this ratio, but from Fig. 2.10 we see that B̂s/B̂ is

more sensitive to the environmental stability ratio Rρ than to the exaggeration factor.

The use of the finite-amplitude laboratory flux laws has led to an increase of B̂s over

the value B̂ used in the linearly-growing solution of between 20% and 50%. Another

relationship that applies in the steady state, this time between the steady-state values

of Xs, Y s and as is given by equation E.2 in Appendix E.

In the above development we have allowed for the possibility that the turbulent

eddy viscosity may change as the interleaving motions grow to finite amplitude. We

have investigated whether this is a significant issue by doing some cases with D0/D
ss =

1/1.4 and the results of Xs and Y s were no more than 10% different to those using

D0/D
ss = 1. This value of D0/D

ss = 1/1.4 was chosen as being approximately equal
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to the corresponding ratio of the change in the coefficient B̂ of the finger salt flux at

finite amplitude (see Fig. 2.10). Since the results were rather insensitive to the value

of D0/D
ss, all the results in this chapter have used D0/D

ss = 1.
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Figure 2.8: The upper panel of each pair shows the absolute value of the ratio of the

vertical flux of salt across the diffusive interface to that across the finger interface in

the steady state. The lower panel of each pair shows the absolute value of the ratio of

the vertical flux of temperature across the diffusive interface to that across the finger

interface in the steady state. Three values for Prandtl number are selected: (a) σ = 0.3,

(b) σ = 1 and (c) σ = 10.
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Figure 2.9: Values of γsdiff for the case of σ = 1.

	

Figure 2.10: Values of the ratio B̂s/B̂ for the case of σ = 1.
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2.8 The diapycnal fluxes at steady state

One of the most important features of interleaving motions is their ability to transport

heat and salt across isopycnals. In the steady state there are two different types of

contributions to the mean diapycnal flux of both salinity and temperature. First there

is the spatial average of the double-diffusive fluxes of salt and temperature across the

finger and diffusive interfaces, and this relevant average flux is simply the average of the

finger and diffusive fluxes. Second, there is the area average on an isopycnal surface of

the spatial correlation between the vertical velocity perturbation and the temperature

(and salinity) perturbations. In turn, this advective contribution has two components:

one being due to the correlated nature of the vertical velocity and the temperature

and salinity perturbations at any location in space and the other due to the spatial

correlation across the front of the vertical velocity and the cross-front salinity and

temperature differences. This last aspect was missing from the work of McDougall

(1985b) and we will find that this spatial correlation is significantly larger than the

corresponding advective correlation at a fixed point in space (by a factor of about 4).

The need for the spatial correlation along the horizontal isopycnals can be under-

stood from Fig. 2.1. The relevant salinity perturbations that should multiply the

vertical velocity perturbations of the intrusions are the ones at the large dots of the

left-hand panel of Fig. 2.1. The total relevant salinity perturbation is then the sum

of the perturbation at a fixed point S′A and a contribution because the two dots are

separated in space in the across-front direction. The distance from the middle to the

right-hand dot is h
4s
−1, that is, half the thickness of a single intrusion divided by the

magnitude of the cross-front slope of the intrusions with respect to the density surfaces.

The positive salinity perturbation at this right-hand dot is then S′A plus h
4s
−1S̄Ax (and

S̄Ax is positive for the intrusions that move upwards from righttoleft and which have

a positive S′A ). The average vertical advective salinity flux across isopycnals is then

w′(S′A + h
4s
−1S̄Ax). The total diapycnal flux of salt, TDFS, is then

TDFS = −1

2
B̂sh

2
S̄Az(1 + xs)(1− as) + w′(S′A +

h

4
s−1S̄Ax), (2.48)

where the first term is the average of the salt fluxes across the finger and diffusive

interfaces [with the finger flux of salt being negative (downward) and the diffusive flux
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of salt being positive (upward)].

Combining equations 2.14 and 2.20 we find the following expression in the steady

state for the vertical velocity in terms of the density perturbation:

w′ = s
( s̃
m̃

)( D0

Dss

)g(αΘ′ − βS′A)√
σN

, (2.49)

and after a series of substitutions involving equations 2.13 and 2.47, we obtain

w′ = B̂s(1 +Xs)(1 + as)(1− αΘl

βSAl
)(Rρ − 1)−1. (2.50)

From the definition of εx , we have

S′A +
h

4
s−1S̄Ax = S′A +

h
4 S̄Az(Rρ − 1)

(1− γf)s̃
, (2.51)

and substituting this back into equation 2.48, using equation 2.50, we find that TDFS

becomes

TDFS =

B̂sh

4
S̄Az(1 +Xs)

{
− (1− as) + (1 + as)

(
1− αΘl

βSAl

)[ Xs

(Rρ − 1)
+

1

(1− γf)s̃

]}
.

(2.52)

For the total diapycnal flux of Conservative Temperature (TDFΘ), a similar analysis

applies, giving

TDFΘ = −1

2

β

α
B̃sh

2
S̄Az(1 +Xs)

(
γf −

as

γsdiff

)
+ w′(Θ′ +

h

4
s−1Θ̄x). (2.53)

The total temperature perturbation at the right-hand big dot of Fig 2.1 is

Θ′ +
h

4
s−1Θ̄x = Θ′ +

h
4 S̄Az

β
α(Rρ − 1)

(1− γf)s̃
, (2.54)

and substituting this into equation 2.53 and using equation 2.50 we find

TDFΘ =

β

α
B̂sh

4
S̄Az(1 +Xs)

{
−
(
γf −

as

γdiff

)
+ (1 + as)

(
1− αΘl

βSAl

)[ Y s

(Rρ − 1)
+

1

(1− γf)s̃

]}
.

(2.55)

Recall that the vertical flux of salt at steady state across the finger interface is

FSA
s

f = −B̂sh

2
S̄Az(1 +Xs), (2.56)
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and it is convenient to express the total diapycnal fluxes in terms of FSA
s

f , so that

equations 2.52 and 2.55 become

TDFS

FSA
s

f

=
1

2
(1− as)− 1

2
(1 + as)

(
1− αΘl

βSAl

)[ Xs

Rρ − 1
+

1

(1− γf)s̃

]
,

−0.29 = 0.47 − 0.15 − 0.61

(2.57)

TDFΘ
β
αF

SAs
f

=
1

2
(γf −

as

γsdiff

)− 1

2
(1 + as)

(
1− αΘl

βSAl

)[ Y s

Rρ − 1
+

1

(1− γf)s̃

]
.

−0.75 = 0.04 − 0.18 − 0.61

(2.58)

Fig. 2.11 shows these two measures of the total diapycnal fluxes of salt and temperature

as a function of the exaggeration factor and the stability ratio for Prandtl numbers of

0.3, 1 and 10. For σ = 0.3 the values of the nondimensionalized total diapycnal fluxes

of salt and temperature are both significantly less than their counterparts when σ = 1

or σ = 10 . For σ = 1 , in the case of salt, this nondimensional measure varies from

-0.48 to -0.28 while in the case of temperature, the nondimensional ratio varies from -1

to -0.7. Concentrating on the particular case when the exaggeration factor is 25 and

the stability ratio is 2, equation 2.57 is about -0.29 and equation 2.58 is about -0.75.

At these values of the exaggeration factor and the stability ratio we see from Fig. 2.8

that as ≈ 0.06 and as/(γfγ
s
diff) ≈ 0.83 so that the leading terms on the right-hand sides

of equations 2.57 and 2.58 are 1
2(1 − as) ≈ 0.47 and 1

2(γf − as/γsdiff) ≈ 0.04. These

are the average fluxes across the double-diffusive interfaces, and they are positive. It

follows that the dominant contributions to the total diapycnal fluxes of heat and salt in

these steady-state intrusions come from the advection of salt and heat, that is, from the

spatial correlations of w′(S′A+ h
4s
−1S̄Ax) for salt and of w′(Θ′+ h

4s
−1Θ̄x) for temperature

(see equations 2.48 and 2.53). The first of the spatial correlation terms, w′S′A and w′Θ′

represent the contribution from the correlations at a given point in space, while the

second terms h
4s
−1w′S̄Ax and h

4s
−1w′Θ̄x, represent the correlations arising from doing

the spatial average in the horizontal direction (see Fig. 2.1), and these are the dominant

terms.

The numbers that appear in the second line of equations 2.57 and 2.58 represent

the values of the terms above them when the exaggeration factor is 25 and the stability

ratio is 2. It is seen that the salt flux across the finger interfaces dominates that across
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the diffusive interfaces, and the resulting average salt flux is directed downward (0.47),

in the downgradient direction. It is the vertical advection of the salinity perturbations

in the intrusions (-0.76) that overpowers this downgradient salt diffusion, and most of

the negative contribution of this advection comes from the horizontal spatial salinity

correlation (-0.61), not the salinity perturbation at a fixed location (-0.15).

The corresponding situation for temperature is apparent from the numbers on the

second line of equation 2.58. It is seen that the temperature flux across the finger

interfaces slightly exceeds that across the diffusive interfaces, and the resulting average

salt flux is directed downward (+0.04), in the downgradient direction. It is the vertical

advection of the temperature perturbations in the intrusions (-0.79) that counteracts

this small downgradient temperature diffusion, and most of the negative contribution

of this advection comes from the horizontal spatial correlation (-0.61), not from the

temperature and vertical velocity correlations at a fixed location (-0.18).

These results for the dominance of the upgradient advection of both salt and heat are

in agreement with the inferences made by McDougall (1985b), but it must be said that

McDougall (1985b) ignored the dominant advective correlation, namely that between

the vertical velocity and the horizontally varying salinity and temperature fields. The

take-home message from this analysis of the total diapycnal flux of salt and heat in

double-diffusive intrusions at finite-amplitude steady state is that the total diapycnal

flux of salt is ∼38% smaller (−0.29/0.47 ≈ −0.62) than one might deduce from purely

knowledge of the fluxes across the finger and diffusive interfaces, and, most importantly,

the total salt flux is going in the opposite direction to these driving interfacial double-

diffusive fluxes. That is, the total diapycnal flux of salt is upgradient, in the sense

of a negative diffusion coefficient. The corresponding take-home message for the total

diapycnal flux of temperature is that it is 19 times (-0.75/0.04 = -18.75) what would

be deduced from only knowledge of the fluxes across the finger and diffusive interfaces.

Again, this flux of temperature is upgradient, in the sense of a negative diapycnal

diffusivity of temperature.
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Figure 2.11: The values of the total diapycnal fluxes in terms of FSA
s

f . These panels

are plots of equations 2.57 and 2.58 and the values are substantially negative. Three

values for Prandtl number are selected: (a) σ = 0.3, (b) σ = 1 and (c) σ = 10.
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2.9 Discussion

McDougall (1985b) gave a plausible analysis of the feasibility of the existence of a

steady state for finite-amplitude double-diffusively driven intrusions by analysing how

the double-diffusive fluxes and advective fluxes evolve and finally balance in both tem-

perature and salinity, and he developed expressions for some properties of the steady

state such as the vertical velocity and the total diapycnal fluxes.

The present chapter extends the approach of McDougall (1985b), and consequently

the basic assumptions of this model are the same as that of McDougall (1985a) and

McDougall (1985b). We take the buoyancy-flux ratio of salt fingers γf as the fixed

value 0.5, and we consider only the case where the salinity and temperature of the

ocean increase with height so that the basic stratification is salt-fingering favourable.

Moreover, we take the vertical structure of the property perturbations to be square-

waved since we believe this is appropriate when considering laboratory-based flux laws

that vary as the 4/3 power of property contrasts. The laboratory flux laws are taken

from McDougall and Taylor (1984) for finger interfaces and from Huppert (1971) for

diffusive interfaces.

This study complements those of Walsh and Ruddick (1998), Merryfield (2000)

and Mueller et al. (2007) who have studied the formation of intrusions in a contin-

uously stratified fluid, specifying turbulent diffusivities for salt, heat and momentum

as functions of the stability ratio and the Froude number. Walsh and Ruddick (1998)

confirmed that a steady state is possible and that this is achieved after each alternate

interface is in the diffusive sense. These studies had the double-diffusive fluxes as gen-

eral power laws of the stability ratio, whereas we have adopted the laboratory-based

flux laws, albeit with an extra multiplicative exaggeration factor for the diffusive flux

law. In addition, in contrast to these papers, we concentrate on the magnitude and

signs of the total diapycnal fluxes of heat and salt in the steady-state intrusions. In

this study, we made a linear transitioning from the initial state to the steady state

(referring to equations 2.19 - 2.22), based on the momentum equation. This fundamen-

tal assumption is made because it is inappropriate to apply the momentum equation

of the exponentially growing solution through all three stages, and we certainly know

that if a steady state is achieved, the growth rate with respect to time has to be zero,
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which gives another equation for the horizontal velocity (equation 2.20). This linear

transitioning of the momentum equation is an assumption that is not needed at large

values of the turbulent Prandtl number.

The main result of the present chapter is that we have been able to achieve steady-

state double-diffusively driven intrusions by using the laboratory flux laws, but that in

order to find these steady-state solutions we have found that the strength of the fluxes

across the diffusive interfaces need to be increased significantly (by at least an order of

magnitude) above the laboratory-determined values, relative to the laboratory-based

finger fluxes. One way of rationalizing this need for an “exaggeration ratio” is that

the laboratory experiments are performed with interfacial property contrasts that are

much larger than oceanic ones. Another explanation might be that when an interface

is near to becoming statically unstable, convectively driven turbulence is established

and this will change the effective flux ration of heat and salt across the interface. This

effect was parameterized in the study of Mueller et al. (2007) but has not been included

in the present study.

We have also quantified the total diapycnal fluxes of heat and salt, taking into ac-

count the advection of the perturbations in the steady state as well as the interfacial

double-diffusive fluxes themselves. An important new aspect of this study is the re-

alization that it is the spatial correlations of the diapycnal velocity of the intrusions

with the temperature and salinity perturbations that make the largest contribution to

the upgradient fluxes of heat and salt (see the large -0.61 numbers in equations 2.57

and 2.58); this important feature was missed by previous studies, including that of

McDougall (1985b) and it is the spatial correlation that makes the total diapycnal flux

of salt be upgradient. We have shown that the total diapycnal fluxes of both Absolute

Salinity and Conservative Temperature are upgradient, that is, both are in the sense

of a negative vertical diffusion coefficient.

Perhaps the largest assumption that we have made is that if a steady state is

achieved in salinity and temperature, then a steady state will also be achieved in mo-

mentum so that the lateral velocity of the interleaving motions becomes constant rather

than continuing to accelerate. This assumption is not needed for very large Prandtl

number (since the left-hand side of equation 2.18 tends to zero at infinite Prandtl num-
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ber), but it was invoked via our equations 2.21 and 2.22, which ensure that if or when

the salt and heat equations evolve to a steady state, then the interleaving velocity will

also approach a constant value at this stage. As a partial test of the sensitivity of

our results to this assumption, we have performed some runs where G(Y ) was simply

put equal to the initial value G0. In practice, this means that at all stages of the

process the velocity of the intrusions will be accelerating since equation 2.18 indicates

that the dimensional growth rate λ̂ would remain positive. For the case σ = 1 we find

that a steady state in temperature and salinity is still reached in this situation with

G(Y ) = G0, albeit at values of Xs and Y s that are reduced by approximately 15%

and 5%, respectively. In this situation, the minimum exaggeration factor required to

reach a steady state in temperature and salinity is larger by approximately 30%, and,

interestingly, the ratio of the negative diffusivities of temperature and salinity is still

close to unity, with the figure corresponding to Fig. 2.12 (b) showing a rather uniform

increase of only 0.05. This indicates that our conclusions are not very sensitive to the

proportionality factor between the horizontal velocity and the density perturbation of

each intrusion (see equations 2.21 and 2.22). However, if a steady state is to be achieved

then the horizontal velocity also needs to converge to a constant and for noninfinite

Prandtl numbers, this aspect of this study remains an assumption.

These effective negative diffusion coefficients for both temperature and salinity (and

density) when considering the total effect of both double diffusion and advection will

surely have implications for how these interleaving motions can or should be parameter-

ized in intermediate-scale and large-scale ocean models. For example, we suggest that

it is appropriate to take the vertical eddy diffusivity of temperature and salinity in an

ocean model (which represents regular small-scale turbulent mixing) and to reduce it

differently for temperature and for salinity to account for double-diffusive interleaving

while running an ocean model. It would be wise of course to not let the total eddy

diffusivity of either temperature or salinity to go negative, or the numerical model will

surely exhibit instabilities.

If a certain negative vertical diffusivity for salinity were decided upon to represent

the effects of double-diffusive interleaving in an ocean model, then the magnitude of

the appropriate negative vertical diffusivity for temperature would be larger by the
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ratio αTDFΘ/(RρβTDFS) and we plot this ratio in Fig. 2.12. It is seen that when the

Prandtl number is not less than 1, this ratio αTDFΘ/(RρβTDFS) is not a particularly

strong function of the stability ratio Rρ and that it is not very different from unity

over much of Fig. 2.12, especially for exaggeration factor less than 20. This suggests

that for σ ≥ 1 finite-amplitude double-diffusively driven interleaving has the net effect

of simply reducing the vertical turbulent diffusivity of both temperature and salinity

and therefore of density, thus making it harder to balance the diapycnal transport

implied by the production rate of bottom water. In other words, since double-diffusively

driven interleaving motion acts like a negative diffusivity of heat, salt and density with

almost equal negative vertical diffusion coefficients, a given amount of upward diapycnal

motion requires larger turbulent diapycnal mixing in order to combat the effects of the

interleaving process. Thus we see that double-diffusively driven interleaving acts in a

similar fashion to thermobaricity and cabbeling Klocker and McDougall (2010) in that

the presence of these three processes means that more intense mixing from the breaking

of internal gravity waves is required in order to achieve a given amount of dianeutral

advection.
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Figure 2.12: The ratio αTDFΘ/(RρβTDFS), being the ratio of the negative effective

vertical diffusion coefficient for temperature to that for salt. This is the ratio of the

numbers in the two panels in Fig. 2.11, divided by Rρ. Three values of the Prandtl

number are selected: (a) σ = 0.3 , (b) σ = 1 and (c) σ = 10.



Chapter 3

Horizontal Residual Mean:

Addressing the Limited Spatial

Resolution of Ocean Models

3.1 Introduction

The stirring and mixing of tracers by mesoscale eddies in the ocean interior is thought

to occur along locally-referenced potential density surfaces [Griffies (2004); McDougall

and Jackett (2005); McDougall et al. (2014) and McDougall et al. (2017)]. The jus-

tification for this “epineutral” direction of mesoscale mixing relies on the observation

that density overturns in the ocean interior are observed only at small scales (< 1m)

during active three-dimensional turbulence. The mixing due to such small-scale three-

dimensional turbulence is best understood and parameterized as isotropic turbulent

diffusion (although this type of mixing is often called “diapycnal mixing”). The re-

maining mixing processes in the ocean interior occur along locally-referenced potential

density surfaces as if there were no small-scale density overturns [McDougall et al.

(2014)]. This decomposition is justified by ocean observations at the fine- and micro-

scales and motivates the standard approach, in oceanographic theory and modelling,

of representing mixing of tracers as the sum of epineutral mixing by mesoscale eddies

and isotropic mixing by small-scale turbulence.

A key development in modelling ocean mixing was made by Gent and McWilliams

52
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(1990). These authors realized that the epineutral diffusion of scalars would be affected

by lateral variations of the thickness between pairs of closely spaced isopycnals, and

they proposed a parameterization that acted as a sink of gravitational potential energy

via the diffusion of this thickness. At the time it was thought that the Gent and

McWilliams (1990) parameterization acted in a diabatic manner, increasing the amount

of diapycnal mixing. However, Gent et al. (1995) showed that the parameterization

could be represented as an extra non-divergent velocity that advects ocean tracers in

an adiabatic and isohaline manner.

McDougall and McIntosh (2001) subsequently showed that the Gent and McWilliams

(1990) procedure was a parameterization of the eddy contribution to the Temporal

Residual Mean (TRM) circulation. The concept of residual mean circulation is com-

mon in atmospheric science, where the mean circulation is calculated from a zonal

average [Andrews and McIntyre (1976)]. By contrast, the TRM velocity involves tem-

poral averaging at a fixed longitude and latitude. The TRM theory of McDougall and

McIntosh (2001) introduced a two-dimensional quasi-Stokes streamfunction to repre-

sent the extra non-divergent advection due to eddies (the quasi-Stokes velocity). The

total TRM velocity is then the sum of the Eulerian mean velocity and the eddy-induced

quasi-Stokes velocity. McDougall and McIntosh (2001) showed that the product of the

lateral diffusivity and the slope of isopycnals used by Gent and McWilliams (1990) can

be regarded as a parameterization of the quasi-Stokes streamfunction.

McDougall and McIntosh (2001) also demonstrated an intuitive link between the

quasi-Stokes velocity of the TRM circulation (which is based in Cartesian coordinates)

and the eddy-induced extra advection caused by thickness-weighted averaging, which

is the natural way of averaging in density coordinates. They showed that the quasi-

Stokes velocity corresponds to the contribution of mesoscale eddies to the horizontal

transport of seawater of a certain density class; namely, seawater that is denser than

the density surface whose time-mean height is the height being considered. Thus, in

TRM theory, eddy effects are implemented in the conservation equation for the scalar

variables (such as temperature and salinity) by modifying both the advective velocity

and the advected scalar field. This is in contrast to recent work on representing the

role of mesoscale eddies in ocean models by parameterizing eddy effects directly in the
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momentum equation [e.g. Young (2012); Maddison and Marshall (2013); Porta Mana

and Zanna (2014)].

The Gent and McWilliams (1990) parameterization essentially represents the hor-

izontal density flux due to unresolved temporal correlations between temperature (or

salinity) and the horizontal velocity. In the same way, unresolved spatial correlations

between temperature and horizontal velocity will contribute horizontal density fluxes

that should be included in ocean models which carry scalar fields and velocities on a

relatively coarse spatial grid. This type of unresolved spatial correlation, and its im-

portance for the oceanic meridional heat transport, has been discussed by Rintoul and

Wunsch (1991). They found that spatial smoothing significantly reduced the estimate

of the northward heat flux across 36◦N in the Atlantic, due to missing spatial correla-

tions between velocity and temperature. Therefore, insufficient spatial resolution in the

western boundary currents of geostrophic box inversions or numerical ocean simulations

may result in under-estimation of the meridional heat flux.

McDougall (1998) considered the effect of spatial resolution limitations on the hor-

izontal transport of seawater that is denser than the isopycnal whose average height is

the height being considered. The term Horizontal Residual Mean (HRM) was coined

to describe the total velocity that would include the extra advection of seawater of this

density class due to the unresolved spatial correlations. McDougall (1998) also pro-

posed an expression for the eddy-induced HRM streamfunction in terms of the vertical

and horizontal shears of the resolved horizontal velocity and the resolved-scale slope

of density surfaces. Thus, just as the quasi-Stokes advection of the TRM circulation

can be regarded as the adiabatic way of including the horizontal density fluxes due to

unresolved temporal correlations between temperature and horizontal velocity, so the

eddy-induced advection of the HRM circulation can be regarded as the adiabatic way

of including the horizontal density fluxes due to unresolved spatial correlations.

In this chapter, we translate the idea in McDougall (1998) of calculating the HRM

streamfunction into a practical method that approximates the transport of seawater

that is denser than the isopycnal whose spatially and temporally averaged height is

the height one is considering. Expressions for approximating the transport are pre-

sented in section 3.2. In section 3.3 we demonstrate that the method of calculating the
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streamfunction from coarsely-resolved model fields gives a good approximation to the

corresponding transport of seawater that would be available in a finer resolution ocean

model. In sections 3.4 and 3.5 we diagnose the contribution of the extra non-divergent

advection to basin-scale meridional heat and mass transports contained in a model

snapshot. Section 3.6 justifies the non-tapering choice of the HRM method. Section

3.7 demonstrates an alternative way of calculating the HRM transport. By comparison,

we showed that the method we proposed is adaptable to different ocean models. We

summarize findings in section 3.8.
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3.2 Expressions for the extra non-divergent advection of

HRM

3.2.1 The expression of McDougall (1998) for the HRM streamfunc-

tion

The three-dimensional residual mean concept of McDougall (1998) provides an expres-

sion for the spatially integrated transport of ‘marked fluid’, being the fluid that lies

below the density surface whose average height is the height being considered. The

bulk of this transport is due to the resolved velocity on the coarse-resolution grid; part

is due to subgrid-scale spatial variations of horizontal velocity and density, and part is

due to any unresolved temporal correlations of the horizontal velocity and density. The

mean northward transport of marked fluid is given by the left-hand side of 3.1 and this

has been decomposed into the three terms on the right-hand side by McDougall (1998)

as

∆x/2∫
−∆x/2

z̄a(x)+η′a(x,t)∫
−H

vdzdx =

∆x/2∫
−∆x/2

〈z̄a〉∫
−H

v̄dzdx+

∆x/2∫
−∆x/2

z̄a(x)∫
〈z̄a〉

v̄dzdx+

∆x/2∫
−∆x/2

z̄a(x)+η′a(x,t)∫
z̄a(x)

vdzdx,

(3.1)

where v is the northward velocity, x is zonal distance and z is height. The over-bars

represent a temporal average and the angle brackets denote a boxcar x-average over

distance ∆x. The sea floor is at z = −H and 〈z̄a〉 is the spatially and temporally

averaged height of the locally-referenced potential density surface whose instantaneous

height at longitude x is

za(x, t) = z̄a(x) + η′a(x, t) + . . .

= 〈z̄a〉+ Lxx+ η′a(x, t) + . . . ,
(3.2)

and the perturbation height η′a(x, t) has zero temporal average. Lx is the mean slope of

the locally-referenced potential density surface in the x direction. Fig. 3.1 illustrates

the different heights used in equations 3.1 and 3.2. The curved line shows a snapshot of

the instantaneous height of a density surface za(x, t), which is a function of longitude
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and time. z̄a(x) is the temporal average of za(x, t) and is illustrated by the sloping

straight blue line in Fig. 3.1. 〈z̄a〉 is the average height of z̄a(x), namely the temporal

and spatial average of the instantaneous density surface za(x, t). It is independent of

time and location, hence is considered as the height at which the transport is calculated.

<za>

z

x0-Δx/2 Δx/2

ρ > ρa

<za> + L x

<za> + L x  + ηa

x

x

grid box

Figure 3.1: An illustration of the different height variables in equations 3.1 and 3.2.

The curved line shows a snapshot of the instantaneous height of a density surface, which

is denoted as za(x, t) [see 3.2]. z̄a(x) is illustrated by the straight blue line. 〈z̄a〉 is the

average height of z̄a(x), namely the temporal and spatial average of the instantaneous

density surface za(x, t).

The first term on the right hand side of equation 3.1 can be written as

∆x

〈z̄a〉∫
−H

〈v̄〉dz (3.3)

so that this term gives the transport from the bottom of the ocean up to 〈z̄a〉 due to
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the resolved-scale Eulerian velocity 〈v̄〉, noting that ∆x is the absolute value of the

horizontal width of the model grid box in the x direction. We interpret the resolved

northward velocity of a coarse resolution ocean model as the boxcar x-average of the

temporal mean velocity at fixed height, 〈v̄〉. Since the geostrophic relationship inher-

ently yields the spatially averaged velocity rather than, say, the velocity at the centre

of the face, this is the only interpretation that is consistent with geostrophy. Hence the

first term in equation 3.1 is the northward flux of marked fluid that can be calculated

using the model’s resolved velocity.

In order to evaluate the second term in equation 3.1, the Eulerian-mean northward

velocity v̄ is written as a spatial Taylor series,

v̄ = v̄(x, z) = v̄0 + v̄xx+ v̄z(z − 〈z̄a〉) + . . . (3.4)

where v̄x and v̄z are understood to be evaluated at z = 〈z̄a〉 and at the centre of the

box in the x direction (that is, at x = 0), while v̄0 is independent of both x and z.

Substituting this Taylor series into the middle term in equation 3.1, McDougall (1998)

obtained

∆x/2∫
−∆x/2

z̄a(x)∫
〈z̄a〉

v̄dzdx =
1

12
〈v̄〉xLx[∆x]3 +

1

24
〈v̄〉z(Lx)2[∆x]3 +O([∆x]4). (3.5)

The transport anomaly due to the horizontal shear (first term on the right-hand side of

equation 3.5) clearly depends on this shear 〈v̄〉x, times the horizontal distance. Whether

this anomaly of volume transport should be added to or subtracted from the Eulerian-

mean transport also depends on the sign of the slope Lx of the density surface. On the

other hand, the transport anomaly due to the vertical shear (second term on the right-

hand side of equation 3.5) involves the perturbation velocity which is the product of

this shear 〈v̄〉z, with the vertical height anomaly, itself proportional to Lx. As a result,

this transport anomaly attracts an additional power of the slope: it is proportional to

〈v̄〉z(Lx)2, which has the same sign as the vertical shear. The analogue to equation 3.5,

for the eastward transport is

∆y/2∫
−∆y/2

z̄a(y)∫
〈z̄a〉

ūdzdy =
1

12
〈ū〉yLy[∆y]3 +

1

24
〈ū〉z(Ly)2[∆y]3 +O([∆y]4). (3.6)
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The inner integral of the third term in equation 3.1 is what appears in the Taylor

series analysis of the TRM theory of McDougall and McIntosh (2001) so that we can

write this integral as

z̄a(x)+η′a(x,t)∫
z̄a(x)

vdz =

(
− v′γ′

γ̄z
+
v̄z
γ̄z

φ̄

γ̄z

)∣∣∣∣∣
z=za(x)

+O(α3), (3.7)

which is the northward component of the quasi-Stokes streamfunction of the purely

temporal-residual-mean velocity, evaluated at the height z = 〈z̄a〉. In equation 3.7, γ

stands for the locally-referenced potential density, and φ̄ ≡ 1
2(γ′)2 is half the density

variance at height z. The overbar denotes a temporal average and the prime indicates

perturbation. The last term in equation 3.1 is thus ∆x times the streamfunction of the

TRM quasi-Stokes velocity.

Hence the contribution of unresolved spatial correlations to the HRM streamfunc-

tion arises from the second term on the right-hand side of equation 3.1, which, when

written using a spatial Taylor series, becomes equations 3.5 and 3.6. These expressions

are the focus of the present work. The right-hand sides of equations 3.5 and 3.6 do

not require a parameterization, but rather can be evaluated using the variables that

are available to a coarse-resolution ocean model. McDougall (1998) derived the above

equations but no diagnosis or evaluation of the horizontal residual mean transport has

been conducted to date. McDougall (1998) also hypothesized that the first term in

the right-hand sides of equation 3.5 would be the dominant term in western boundary

currents, which we will confirm in our study.

In the following, we will use numerical output from the MOM5 ocean model [Griffies

2012], run at a horizontal resolution of 1/4 degree. The output is from a 300-year

control run from a coupled ocean, ice, atmosphere ACCESS (Australian Community

Climate and Earth-System Simulator) model configuration. The model we used is

MOM5 (Modular Ocean Model). This model uses B-grid with velocities located at the

northeastern lower vertex of each tracer box. MOM5 is a tripolar global model. The

output is calculated globally, but the HRM method is demonstrated in only three most

significant areas, which are the Gulf Stream area, the East Australian Current area

and the Antarctic Circumpolar Current area. We boxcar averaged the model output

over three grid boxes to construct a coarse-resolution data set. The 1/4-degree and
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3/4-degree datasets are then used to calculate the transport separately. The results are

compared to demonstrate that the HRM Taylor series expressions of equations 3.5 and

3.6, which rely on the coarse-resolution data, do approximately capture the horizontal

transport of the fine-resolution model output.

3.2.2 Estimating the HRM streamfunction from coarse-resolution model

fields

The horizontal residual mean (HRM) transport is the total transport of water of a

certain density class induced by the sum of the Eulerian-mean velocity of a coarse-

resolution model and plus the extra velocity that arises from the spatial correlations

of velocity and density within a grid box of a coarse-resolution ocean model that are

not captured by the model data at this coarse spatial resolution. The additional quasi-

Stokes streamfunction of the TRM transport is also needed to account for the unresolved

temporal correlations of mesoscale eddies in a coarse-resolution model.

This right-hand side of equation 3.8 is calculated using a spatial Taylor series expan-

sion from a certain height 〈z̄a〉 to a locally-referenced potential density surface whose

height za(x) is assumed to be a linear function of its zonal position. In this study, 〈z̄a〉

is the depth level of an ocean model and in order to evaluate the streamfunction on a

sufficiently small horizontal footprint, we allow the linear variation of za(x) to be dif-

ferent to the west and to the east of the central longitude. The name “residual” applies

to the total transport, which includes the Eulerian mean streamfunction as well as the

extra streamfunction that we calculate below and also the quasi-Stokes streamfunction

of the TRM formulation.

Equation 3.8 below calculates the extra transport (extra compared with the Eulerian

mean transport) in the northward direction that is denser than the density surface

whose average height is 〈z̄a〉 .
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∆x/2∫
−∆x/2

z̄a(x)∫
〈z̄a〉

(v̄ − v̄0)dzdx =
1

24
〈v̄〉xLxE [∆x]3 +

1

24
〈v̄〉xLxW [∆x]3

+
1

48
〈v̄〉z(LxE)2[∆x]3 +

1

48
〈v̄〉z(LxW )2[∆x]3

height-adjustment term +O([∆x]4).

(3.8)

The Eulerian-mean spatially-averaged velocity evaluated at fixed height is labeled v̄0.

The first four terms on the right-hand side here are equivalent to the two terms on the

right-hand side of equation 3.5, with each term now applying to either the eastern or

western half of the box of width ∆x. There is an additional term that must appear in

3.8 because with different slopes, LxE to the east and LxW to the west, the straight lines

emanating from 〈z̄a〉 to the heights zE and zW respectively describe a surface whose

average height over the length ∆x of the box is greater than 〈z̄a〉 by

δz =
1

8
(zE − 〈z̄a〉) +

1

8
(zW − 〈z̄a〉)

=
1

8
(LxE − LxW )∆x.

(3.9)

The heights zE and zW are the heights of the locally-referenced potential density surface

that also passes through height 〈z̄a〉 at the central longitude. The casts that contain

the points at zE and zW are separated by 2∆x in the west-east direction, being vertical

casts of the coarse-resolution model to the east and west of the central cast.

Fig.3.2 illustrates the coarse and fine resolution grids considered here. The scale

of the grid box in the low-resolution model is three times that of the fine resolution

grid box, as shown in the central low-resolution box in Fig.3.2. The left-hand side of

equation 3.8 is integrated up to the density surface whose heights are based on the

tracer and velocity data that is available to the fine-resolution model. This integration

of the transport using the fine-resolution model data is described in Appendix F. The

right-hand side of equation 3.8 is calculated using the coarse-resolution data. The

corresponding values are illustrated in Fig.3.2. Notice that the velocities are not on

vertices of grid boxes as they should be in B-grid models. This is because the velocities

used for calculating velocity shears are spatially averaged. More specifically, v̄W and v̄E

are the average of velocities at upper and lower vertices of the western and eastern edges

of the face, respectively. v̄upper and v̄lower are average velocities of adjacent vertices on
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the upper and lower edges of a grid box face. They are averaged zonally for calculating

the vertical shear in equation 3.13 and meridionally for the vertical shear in equation

3.14. In the remainder of this section we describe this procedure in more detail.

<za>

z

x0-Δx/2 Δx/2

δz

-Δx Δx

<za> + L  xx
E

<za> + L   xx
W

zE

zW

vupper

vW vE

vlower

Figure 3.2: Vertical cross-section through three boxes of a coarse-resolution ocean

model, with the central box showing three boxes of a finer resolution ocean model that

has three times the horizontal resolution compared with the coarse resolution model.

At the fine resolution boxes, density surfaces follow the lines from the central point to

the small dots at points. The small dots mark intersects of the density surfaces and the

tracer casts. At the coarse-resolution, density surfaces follow the lines from the central

point to the larger dots. The large dots mark intersects of density surfaces and the

tracer casts. The corresponding heights of intersects are denoted zW for the western

intersect and zE for the eastern intersect. v̄W , v̄E , v̄upper and v̄lower are averaged

velocities on the vertical and zonal directions, respectively. The velocities available in

the model are originally on vertices of grid boxes. 〈z̄a〉 is the height that tracers are at

and δz is the difference between the average height of density surfaces and 〈z̄a〉.

In the absence of the fifth term on the right-hand side of equation 3.8, this right-hand

side would represent the Taylor series approximation to a density surface whose average

height is 〈z̄a〉+ δz. We take the vertical variation of the northward velocity across the

whole width of the box at the height of the density surface to be approximately 〈v̄〉z
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(which is actually the vertical gradient of the northward velocity evaluated at the fixed

height 〈z̄a〉). The fifth term is responsible for the transport induced by allowing LxE

and LxW to be different and it can be written in a form to be readily evaluated in a

forward ocean model. The average perturbation northwards velocity along the thick

blue line within the central low-resolution box is 1
8〈v̄〉z(L

x
E − LxW )∆x. The average

perturbation northwards velocity that accounts for the average height adjustment is

the extra velocity 1
8〈v̄〉z(L

x
E −LxW )∆x− 1

2〈v̄〉zδz, which can be simplified as +1
2〈v̄〉zδz.

The corresponding extra transport is +1
2〈v̄〉zδz times the area |δz|δx. All scenarios

of different LxE and LxW lead to one additional term −1
2〈v̄〉z(δz)

2∆x to be add on to

equation 3.8. In any case, we find this term to be small compared with the other terms

in equation 3.8. The complete equation 3.8 is given as

∆x/2∫
−∆x/2

z̄a(x)∫
〈z̄a〉

(v̄ − v̄0)dzdx =
1

24
〈v̄〉xLxE [∆x]3 +

1

24
〈v̄〉xLxW [∆x]3

+
1

48
〈v̄〉z(LxE)2[∆x]3 +

1

48
〈v̄〉z(LxW )2[∆x]3

− 1

2
〈v̄〉z(δz)2∆x+O([∆x]4).

(3.10)

On the coarse-resolution model grid, the values of the northward velocity can be

estimated at the centres of the eastern, western, upper and lower edges of the northern

face of each grid. In terms of these velocities the velocity shears are 〈v̄〉x = (v̄E −

v̄W )/∆x and 〈v̄〉z = (v̄upper − v̄lower)/∆z, while the slopes of the density surface are

LxW = (〈z̄a〉 − zW )/∆x and LxE = (zE − 〈z̄a〉)/∆x. We note again that zW and zE are

defined at the centres of the coarse-resolution boxes on either side of the central box.

Using these expressions, the right-hand side of equation 3.10 can be written in terms

of these coarse-resolution model variables as

∆x/2∫
−∆x/2

z̄a(x)∫
〈z̄a〉

(v̄ − v0)dzdx =
1

24
(v̄E − v̄W )(zE − zW )∆x

+
1

48

(v̄upper − v̄lower)
∆z

[
(zE − 〈z̄a〉)2 + (zW − 〈z̄a〉)2 − 24(δz)2

]
∆x+O([∆x]4).

(3.11)
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Using the expression 3.9 for δz, equation 3.11 can be rearranged as

∆x/2∫
−∆x/2

z̄a(x)∫
〈z̄a〉

(v̄ − v0)dzdx =
1

24
(v̄E − v̄W )(zE − zW )∆x

+
1

48

(v̄upper − v̄lower)
∆z

[
5

8
(zE − 〈z̄a〉)2 +

5

8
(zW − 〈z̄a〉)2 − 3

4
(zE − 〈z̄a〉)(zW − 〈z̄a〉)

]
∆x

+O([∆x]4).

(3.12)

A more compact form of this equation is

∆x/2∫
−∆x/2

z̄a(x)∫
〈z̄a〉

(v̄ − v0)dzdx =
1

24
(v̄E − v̄W )(zE − zW )∆x

+
1

48

(v̄upper − v̄lower)
∆z

[
5

8
(zE − zW )2 +

1

2
(zE − 〈z̄a〉)(zW − 〈z̄a〉)

]
∆x+O([∆x]4).

(3.13)

Correspondingly, the expression for the extra streamfunction of the HRM in the x

direction is

∆y/2∫
−∆y/2

z̄a(y)∫
〈z̄a〉

(ū− u0)dzdy =
1

24
(ūN − ūS)(zN − zS)∆y

+
1

48

(ūupper − ūlower)
∆z

[
5

8
(zN − zS)2 +

1

2
(zN − 〈z̄a〉)(zS − 〈z̄a〉)

]
∆y +O([∆y]4).

(3.14)

where, in this case, δz is

δz =
1

8
(zN − 〈z̄a〉) +

1

8
(zS − 〈z̄a〉)

=
1

8
(LyN − L

y
S)∆y.

(3.15)

The right-hand sides of equations 3.13 and 3.14 are expressions for the contribution

of the HRM transport of unresolved spatial correlations across the width of the boxes

of horizontal size ∆x and ∆y. The corresponding streamfunction of the extra HRM

velocity is found by dividing these equations by ∆x and ∆y respectively, so that

Ψy
HRM =

1

24
〈v̄〉x(LxE +LxW )[∆x]2 +

1

48
〈v̄〉z

[
5

8
(LxE +LxW )2− 1

2
LxEL

x
W

]
[∆x]2 +O([∆x]3),

(3.16)



3.2. EXPRESSIONS FOR THE EXTRA NON-DIVERGENT ADVECTION 65

Ψx
HRM =

1

24
〈ū〉y(LyN +LyS)[∆y]2 +

1

48
〈ū〉z

[
5

8
(LyN +LyS)2 − 1

2
LyNL

y
S

]
[∆y]2 +O([∆y]3).

(3.17)

The extra horizontal velocities due to the HRM are then the vertical derivatives of

these streamfunctions, with the vertical derivative of Ψx
HRM (defined in equation 3.17)

being the eastward velocity component, and the vertical derivative of Ψy
HRM (defined

in equation 3.16) being the northward velocity component.

In a similar way, the extra horizontal quasi-Stokes velocity of the Gent et al. (1995)

form of the TRM velocity is the vertical derivative of (Ψx
TRM ,Ψ

y
TRM ). On the eastern

face of a coarse-resolution box the extra TRM streamfunction is given by Ψx
TRM =

−κLxE while on the northern face it is given by Ψy
TRM = −κLyN . Note that the eastward

and northward components of the quasi-Stokes TRM streamfunction are proportional to

(minus) the slopes of the density surfaces in these directions. In contrast, the dominance

of the first terms in equation 3.16 and 3.17 (demonstrated in section 3.3) implies that the

eastward component, Ψx
HRM , is proportional to the northward slope of the isopycnals

and the northward component, Ψy
HRM , is proportional to the eastward slope of the

isopycnals. Thus, the extra advection of HRM and that of TRM act in horizontal

directions that are approximately perpendicular to one another.

The streamfunction of the total velocity field is the sum of (i) the Eulerian-mean

streamfunction, (Ψ̄x, Ψ̄y), (ii) the quasi-Stokes TRM streamfunction, and (iii) the quasi-

Stokes HRM streamfunction, that is

Ψx
Total = Ψ̄x + Ψx

TRM + Ψx
HRM and Ψy

Total = Ψ̄y + Ψy
TRM + Ψy

HRM , (3.18)

with the eastward components being evaluated on the eastern face of each coarse-

resolution box, and northward component on the northern face of each coarse-resolution

box. Since the quasi-Stokes streamfunction of the HRM can be readily evaluated using

the variables that are available during the running of an ocean model, its adoption

should be straightforward. Moreover, the evaluation of this streamfunction can be

readily adjusted to the grid on which the model is formulated. This three-dimensional

quasi-Stokes velocity of the HRM can be added to the Eulerian-mean velocity and the

quasi-Stokes velocity of the TRM. The resulting total velocity can be used in ocean

models’ higher-order advection schemes.
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3.3 Assessment of the method using 1/4-degree model

snapshot

We use instantaneous model output from a global MOM5 forced ocean simulation at

nominally 1/4-degree resolution. In order to construct a low-resolution dataset we

boxcar average the model fields over three grid boxes, obtaining a zonal resolution

of 3/4 of a degree. Another way to construct a coarse-resolution dataset from the

original data is to subsample over three grid boxes. I have made comparison between

these two methods of forming the low-resolution data sets and the results were not

significantly different. The construction of the 3/4 degree resolution data may lead to

a coarser boundary at some locations. For example, if two of three averaged 1/4 degree

grid boxes are land and the other is sea, then after the box-car average, the whole

degree grid box represents land. A linear extrapolation from sea towards land has been

implemented to complete the HRM transport for boundary cells.

The right-hand side of equation 3.13 is an explicit way of calculating the HRM extra

transport of water through a face of a grid box which is centered at height 〈z̄a〉 and

has a zonal width of ∆x. Every value used in this calculation can be obtained after

simple and fast operations on the available data from an ocean model. The heights

of the density surfaces, namely zE , zW , zN and zS , are calculated on the four vertical

faces of each grid box by a fast computing algorithm developed by Riha (2017) for

computing approximately neutral surfaces. Transports are still calculated face by face,

and one face in our coarse-resolution calculation is three times as large as a face of

the fine resolution calculation that is outlined in Appendix F. The other typical way

of calculating the HRM extra transport of water is to compute using slopes of neutral

density surfaces, as shown in equation 3.10 using LxE and LxW . This approach requires

the simultaneous calculation of density differences when running the model.

The transport of water denser than the density surface whose average height pertur-

bation is zero is given by the left-hand sides of equations 3.13 and 3.14. It is evaluated

from the fine resolution model output at 1/4-degree zonal resolution, using the method

described in Appendix F. In this section we compare these fine resolution estimates

of the volume transport with those produced by the HRM Taylor series approach ap-
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plied to the low-resolution data (right-hand sides of equations 3.13 and 3.14). The

comparison is made in three areas: the Gulf Stream, the East Australian Current and

the Antarctic Circumpolar Current. In this way, we examine two western boundary

current regions as well as the eddy-rich Southern Ocean. We have calculated the quasi-

Stokes HRM streamfunctions in both the zonal (eastward) and meridional (northward)

directions.

3.3.1 Gulf Stream

We examined the region from about 32◦N to about 39◦N and from 382m to 1300m

deep. Fig. 3.3 shows the fine resolution velocity field at a depth of 414m, to illustrate

some features of the chosen area. The underlying colors indicate the fine-resolution

current speed and the arrows indicate the fine-resolution velocities, but shown every

three grid points to avoid cluttering. Within the Gulf Stream, the northward velocity

first increases and then decreases with horizontal distance from the coast.

The comparisons of the transports estimated using the fine resolution model output

(labeled LHS) and the coarse-resolution output (HRM estimates) is shown in Fig. 3.4

for five consecutive coarse resolution grid boxes from the coast. That is, the left-hand

most data points in this figure begin at the first coarse-resolution box adjacent to the

coast, and these may occur at different longitudes for the different depths shown. The

changing sign of these streamfunctions is mainly caused by the change of sign of the

zonal velocity shear, 〈v̄〉x; as already mentioned, the northward velocity first increases

and then decreases with distance from the coast. Fig. 3.5 shows a scatterplot comparing

these high and low resolution estimates of the meridional streamfunction in the Gulf

Stream region. Most of the points stay close to the one-to-one line, but there is a

clear indication that the low-resolution, Taylor-series derived estimate of the transport

underestimates the true transport by a few tens of percent. The larger values of the

streamfunction occur at relatively shallow depths, while most values at deeper levels

are smaller.
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Figure 3.3: Fine-resolution current speeds of the Gulf Stream area at a depth of 414 m

are shaded. Velocity arrows are overlain every three grid points.

3.3.2 East Australian Current

The region chosen for illustrating the transports in the East Australian Current is from

22S to 30S and the same depth range as in the Gulf Stream. A snapshot of the current

speed at 414m is shown in Fig. 3.6 with the corresponding comparisons between the fine

and coarse resolution estimates of the HRM streamfunction of equation 3.13 shown in

Fig. 3.7 and 3.8. Although the coarse-resolution-based transport anomaly is generally

of the same sign as the fine resolution one, the former tends to underestimate the latter

by about a factor of 2. We interpret this underestimation as due to the narrowness of

the simulated East Australian Current, which is confined to one or two grid cells along
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Figure 3.4: Comparison of the transports (in Sv; 1 Sv = 106m3s−1) calculated by the

two methods at three different latitudes and five different depths in the Gulf Stream

region. Red curves correspond to the two-triangle method of Appendix F which uses

the high-resolution data, while the blue curves correspond to the right-hand side of

equation 3.13 applied to the coarse-resolution fields. The x-axis is the number of

coarse-resolution grid boxes from the coast.

the straight coast, causing partial failure of the Taylor-series approximation. Hence, in

this boundary current region, the extra advection calculated from the coarse-resolution

model fields only partly compensates for the missing spatial correlations. The impact

of narrowness of the current also showed in the narrow start of Gulf Stream, around

30◦N as shown in Fig. 3.3. The HRM method behaved poorly at that latitude.

3.3.3 Antarctic Circumpolar Current

We also show a comparison between the left and right hand sides of equations 3.13 and

3.14 for a representative subregion in the Antarctic Circumpolar Current (ACC). Fig.

3.9 shows a snapshot of the fine resolution velocity field of the chosen area at depth

of 414m, illustrating the eddying nature of the ACC. Unlike previous two western

boundary current areas, this area is an eddy-rich area. The eddies are predominantly

eastward, as shown in Fig. 3.9. The Taylor-series approach of the quasi-Stokes HRM

streamfunction quite accurately approximates the corresponding transport evaluated
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Figure 3.5: Scatter plot of transports calculated by the two methods at different lati-

tudes from about 32◦N to 39◦N and different depths from about 382m to 1320m, in the

Gulf Stream. On the x-axis is the high-resolution estimate of the streamfunction (the

left-hand side of equation 3.13) and on the y-axis is the low-resolution estimate (the

right-hand side of equation 3.13). The colorbar indicates the depth of the calculated

transport in meters.

using the fine-resolution data, as can be seen in Fig. 3.10. These favourable results

are confirmed in the scatter plots of Fig. 3.11 (a) and (b) which show results from all

longitudes in the range of latitudes of the ACC.
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Figure 3.6: Fine-resolution current speeds of the East Australian Current area at a

depth of 414 m are shaded. Velocity arrows are overlain every three grid points.

3.3.4 The dominance of the horizontal shear term compared with the

vertical shear term

The first term on the right-hand side of equation 3.13 gives the transport induced by

the correlation between the zonal variations of velocity and density. In all regions

examined we find this first term to be significantly larger than the remaining terms

of the equation, which involve the vertical shear of the horizontal velocity. This is

illustrated in Fig. 3.12 and Fig. 3.13, which shows that the horizontal shear term

dominates both the meridional and zonal components. Nonetheless, this dominance is

less strong in the Gulf Stream region than in the East Australian Current or Antarctic
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Figure 3.7: Comparison of transport calculated by two methods at three different

latitudes and five different depths in the East Australia Current. Red curves correspond

to the two-triangle method of Appendix F which uses the high-resolution data, while the

blue curves correspond to the right-hand side of equation 3.13 applied to the coarse-

resolution fields. The x-axis is the number of coarse-resolution grid boxes from the

coast.

Circumpolar Current regions.
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Figure 3.8: Scatter plot of transports calculated by the two methods at different lati-

tudes from about 22◦S to 30◦S and different depths from about 382m to 1320m, in the

East Australian Current. On the x-axis is the high-resolution estimate of the stream-

function (the left-hand side of equation 3.13) and on the y-axis is the low-resolution

estimate (the right-hand side of equation 3.13). The colorbar indicates the depth of

the calculated transport in meters.
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Figure 3.9: Fine-resolution current speeds in a region of the Antarctic Circumpolar

Current at 414 m depth are shaded. Velocity arrows are overlain every three grid

points.
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Figure 3.10: Comparison of the transport estimates in the (a) meridional and (b) zonal

directions, calculated by two methods at three different latitudes and five different

depths in the Antarctic Circumpolar Current. Red curves correspond to the high-

resolution estimate of the transport, while blue curves correspond the low-resolution

estimate. The x-axis is number of coarse-resolution grid boxes, taken as 1 to 5 starting

from the coastline for all locations.
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(a)

(b)

Figure 3.11: Scatter plot of transports calculated by the two methods in the (a) merid-

ional and (b) zonal dirctions at different latitudes from about 58◦S to 60◦S and different

depths from about 382m to 1320m, in the Antarctic Circumpolar Current. The x-axis

is the high-resolution estimate of the streamfunction and the y-axis is the low-resolution

estimate, The colorbar indicates the depth of the calculation in meters.
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(a) (b)

(c) (d)

Figure 3.12: The first term (the horizontal shear term) of the right-hand sides of

equations 3.13 (meridional) and 3.14 (zonal) is plotted on the x-axis, with the full

right-hand sides of these equations plotted on the y-axis of these figures.
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(a)

(b)

Figure 3.13: The first term (the horizontal shear term) of the right-hand sides of

equations 3.13 (meridional) and 3.14 (zonal) is plotted on the x-axis, with the full

right-hand sides of these equations plotted on the y-axis of these figures.
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3.4 The HRM contribution to meridional overturning

The contribution of the quasi-Stokes velocity of the HRM to the meridional overturning

circulation is estimated by calculating the zonally-integrated meridional streamfunction

Ψy
HRM given by equation 3.16, using the same output. The extra meridional overturn-

ing of the HRM is dominated by a cell in the ACC region of strength 1.5 Sv. This

overturning cell has the same sign and a similar structure to that induced by the ad-

vection of the TRM [e.g., calculated with the Gent et al. (1995) scheme]: it advects

surface waters southward and deeper water northward, opposing the Ekman-induced

overturning. Nevertheless, at a strength of 1.5 Sv, the HRM extra overturning is ap-

proximately 10% of its TRM counterpart.

Figure 3.14: The meridional overturning streamfunction of the HRM quasi-Stokes ve-

locity in z-coordinates.
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3.5 The HRM contribution to the horizontal heat trans-

port

Rintoul and Wunsch (1991) compared the heat transport of different ocean models

and concluded that spatial smoothing is primarily responsible for the differences they

calculated in the heat fluxes. The present scheme aims to incorporate the spatial

correlations between velocity and scalar quantities that are missing in ocean models,

due to the limited spatial resolution and the box-car averaged nature of the velocity and

the scalar field. In this way, it is expected that implementing the scheme into a coarse-

resolution ocean model will improve its representation of lateral heat fluxes. In this

section, the meridional heat fluxes induced by the extra HRM advection are calculated

and analyzed. The depth-integrated heat fluxes are calculated across the northern and

eastern faces of every coarse-resolution grid column. Where the face of an individual

box is land, the streamfunction there is put equal to zero before performing the vertical

integration.

As in McDougall and McIntosh (2001), the contribution of the extra streamfunction

to the horizontal heat flux is

ρ0c
0
p

0∫
−H

dΨHRM

dz
Θdz = ρ0c

0
p

top∫
bottom

ΘdΨHRM

= ρ0c
0
p

N∑
i=1

Θi(ΨHRM,i −ΨHRM,i+1),

(3.19)

where Θ stands for Conservative Temperature, ρ0 is taken to be 1030kg ·m−3 and the

constant value of the specific heat at constant pressure, c0
p, is the TEOS-10 value given

by the GSW code [McDougall and Barker (2011)]. The last step of equation 3.19 is

the finite amplitude approximation to the integrals on the first line. The index i in

this equation goes from 1 at the sea surface to N at the sea floor. The streamfunction

is first interpolated onto the interface heights (the heights of the top and bottom of

the model boxes) before being used in this equation. The shallowest box has index

i = 1 with Conservative Temperature at mid height of Θi and the interpolated HRM

streamfunction of ΨHRM,1 is forced to be zero at the sea surface, and is ΨHRM,2 at the

bottom of this box. The HRM streamfunction at the sea floor, ΨHRM,N+1, is also forced
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to be zero. This ensures that the vertically-integrated mass flux is zero within each

water column, so that the depth-integrated extra heat flux given by 3.19 is independent

of whether the temperature is measured in Kelvin or Celsius.

The depth-integrated heat flux, ρ0c
0
p

∑N
i=1 Θi(ΨHRM,i − ΨHRM,i+1), is shown in

Fig. 3.15 for the Gulf Stream region. The underlying color map indicates the mag-

nitude of the total depth-integrated heat flux in each grid box. The direction of the

depth-integrated heat flux is given by the white arrow in each grid box. The large val-

ues are found mainly along the coastal line, which is expected because the extra HRM

streamfunction are more significant at the boundary areas. The streamfunction has

the eastward and northward components given by equtions 3.13 and 3.14 respectively,

so that it includes the widths ∆x and ∆y of the (x, y) grid and the units displayed are

PW. As expected, the additional heat fluxes introduced by the scheme are concentrated

along the coast and at eddying locations, where flows are both strong and of relatively

small scale. When the values of the meridional component of equation 3.19 are summed

across all longitudes we obtain the contribution of the quasi-Stokes velocity field to the

oceanic meridional heat transport. This contribution is typically 0.1 PW, and almost

0.2 PW at the latitudes of the ACC in the Southern Ocean (Fig. 3.16). Thus, introduc-

ing the HRM extra advection into an ocean model run at 3/4-degree resolution could

significantly impact the simulated meridional heat fluxes. The take-home message from

Fig. 3.16 is that, when running an ocean model at 3/4-degree resolution, the HRM

correlations that are missing due to the coarse nature of the model grid means that

the model misses typically 0.1 PW, and misses almost 0.2 PW at the latitudes of the

ACC in the Southern Ocean, of meridional heat flux which can readily to added to the

model code using our quasi-Stokes HRM streamfunction approach.

This 0.2 PW heat transport is induced by the spatial correlations and it is not under

the influence of the time average. The temporal and spatial correlations are calculated

simultaneously. Unlike the eddy heat transport in Treguier et al. (2017) which was a

time-averaged eddy heat transport, this heat transport will not be compensated by the

time-mean flow. When the HRM method is implemented in an ocean model, the HRM

transport is calculated at each step rather than being averaged over time as additional
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mean transport.
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Figure 3.15: The values of ρ0c
0
p

∑N
i=1 Θi|ΨHRM,i−ΨHRM,i+1| in the region of the Gulf

Stream, in units of PW. The underlying color indicates the total amount of depth-

integrated heat flux in each grid box, which is the absolute value of magnitude of the

heat flux. The white arrows show the directions.
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Figure 3.16: The quasi-Stokes HRM zonally- and depth-integrated meridional heat

transport.
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3.6 Tapering of the quasi-Stokes HRM streamfunction

The HRM method does not apply tapering near the sea surface. At the surface, the

intersection of the neutral tangent plane and the adjacent cast may located above

the sea level. However, the effective height difference we used is actually half of that

calculated on the adjacent cast (see the red dot in Fig. 3.17), because each calculation

of the HRM transport is the transport through half of the face of a grid box (the

eastern, western, northern or southern half), shown as one of the shaded areas in Fig.

3.17. Even if the effective height difference, based on an extrapolating a given isopycnal

surface, would tends to outcrop as shown in Fig. 3.18, our estimate of the quasi-Stokes

HRM streamfunction which clamps the height at the sea surface is an underestimate of

the true volume flux. These considerations justify our decision to not taper the HRM

streamfunction towards zero except right at the sea surface. This is an important

difference compared with the quasi-Stokes TRM streamfunction where the tapering

towards zero at the upper and lower boundaries is justified by physical considerations

based on the transport of water that is more dense than the density surface whose

average height perturbation is zero [see section 9 in McDougall (1998) and section 8 in

McDougall and McIntosh (2001)].
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Figure 3.17: An example of outcropping locally-referenced neutral tangent plane in

which the effective height (the red dot) is below the sea surface.

Figure 3.18: An illustration of outcropping case where the effective height (the red dot)

is also above sea surface.



86 CHAPTER 3. HRM: ADDRESSING THE LIMITED SPATIAL RESOLUTION

3.7 HRM implementation in ocean models

The HRM streamfunction can be implemented in ocean models to incorporate the

contribution from spatial correlations into models. It does not need parameterization

and can be calculated using data that are already available in the model. In the

diagnostics, we used a snapshot dataset with only salinity, potential temperature and

velocity field available. However, in a forward model run, the density field is updated

in real time. It is more reasonable and easier to use real-time densities to calculate the

neutral density slope that is needed for HRM calculation.

In the forward model, the slopes of neutral tangent planes Lx and Ly can be calcu-

lated at every time step by using the horizontal and vertical gradients of the locally-

referenced potential density,

Lx = −γx
γz
, (3.20)

Ly = −γy
γz
. (3.21)

Therefore, the quasi-Stokes HRM transport in the meridional direction can be com-

puted by substituting equation 3.20 into equation 3.10 (repeated here as equation 3.22).

Similarly, the zonal component of the quasi-Stokes HRM transport can be computed

by equation 3.23, with substitution of equation 3.21, as

∆x/2∫
−∆x/2

z̄a(x)∫
〈z̄a〉

(v̄ − v̄0)dzdx =
1

24
〈v̄〉xLxE [∆x]3 +

1

24
〈v̄〉xLxW [∆x]3

+
1

48
〈v̄〉z(LxE)2[∆x]3 +

1

48
〈v̄〉z(LxW )2[∆x]3

+
1

2
〈v̄〉z(δz)2∆x+O([∆x]4),

(3.22)

∆y/2∫
−∆y/2

z̄a(y)∫
〈z̄a〉

(ū− ū0)dzdy =
1

24
〈ū〉yLyN [∆y]3 +

1

24
〈ū〉yLyS [∆y]3

+
1

48
〈ū〉z(LyN )2[∆y]3 +

1

48
〈ū〉z(LyS)2[∆y]3

+
1

2
〈ū〉z(δz)2∆y +O([∆y]4),

(3.23)

where δz = 1
8(LxE − LxW )∆x for equation 3.22 and δz = 1

8(LyN − L
y
S)∆y for equation

3.23.
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Encouragingly, the HRM transport does not significantly change in magnitude when

the neutral density slope is calculated by taking the ratio of the density gradients. To

demonstrate this fact, we generated a density field of 3/4 degree resolution from the

known salinity, conservative temperature and pressure, since the snapshot we used for

diagnostics has no information about in situ density. The GSW code of McDougall and

Barker (2011) was used to obtain the spatial gradients of locally-referenced potential

density γx, γy and γz and hence calculate the slopes in equations 3.22 and 3.23. The

vertical density gradient γz at the face indexed (i, j, k) is given by the difference between

upper and lower potential densities whose reference pressure is at k, as

γz(i, j, k) =ρθ

(
sa(i, j, k − 1), ct(i, j, k − 1), pr(i, j, k)

)
−ρθ

(
sa(i, j, k + 1), ct(i, j, k + 1), pr(i, j, k)

)
,

(3.24)

where potential density ρθ is determined by Absolute Salinity sa, Conservative Tem-

perature ct and pressure reference pr.

We compared both meridional and zonal HRM transport in three areas to show that

the HRM transport is not sensitive to the method of obtaining neutral density slopes.

The two ways of calculating HRM transport have been compared in three areas: Gulf

Stream, East Australian Current and Antarctic Circumpolar Current. At most of the

grid points, the two methods give same HRM transports (see Fig. 3.19 and Fig. 3.20),

except for a few points of zonal HRM tranports in Gulf Stream and East Australian

Current. In the Antarctic Circumpolar Current, the two methods are very close to the

one-to-one line.

This section is simply a preliminary attempt to implement the HRM method into

ocean models. It has been shown that the HRM calculation is robust and easy to be

adapted to ocean models. An actual implementation needs a full understanding of the

target ocean model. Equations 3.22 and 3.23 provide a framework that can be amended

to match the models technical features. For example, equations 3.22 and 3.23 can be

programmed as a diagnostic module in the Modular Ocean Model (MOM). The MOM

provides tracer and velocity fields that are needed for HRM, as well as the real-time

density field. Also, the MOM has intrinsic function to calculate potential density for γz

in equations 3.22 and 3.23. Ultimately, the HRM streamfunction can be added to the

total quasi-Stokes streamfunction and calculate simultaneously in the MOM. However,
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it will require a full understanding of the fundamentals of MOM and the structure of

the numerical codes.
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(a) (b)

(c) (d)

Figure 3.19: Two ways of calculating HRM transport have been compared in the GS

and EAC areas. Both meridional and zonal HRM transports in these three areas are

compared. The x-axis gives HRM transports calculated by using the ratio of locally-

referenced potential density gradients. The y-axis presents the HRM transport calcu-

lated by the heights of neutral tangent planes calculated using all the information of

vertical casts. The color indicates the depths and colorbar shows the depths in meters.
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(a)

(b)

Figure 3.20: Two ways of calculating HRM transport have been compared in the ACC

area. Both meridional and zonal HRM transports in these three areas are compared.

The x-axis gives HRM transports calculated by using the ratio of locally-referenced

potential density gradients. The y-axis presents the HRM transport calculated by the

heights of neutral tangent planes calculated using all the information of vertical casts.

The color indicates the depths and colorbar shows the depths in meters.
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3.8 Conclusions

We have proposed a method of approximating the transport of scalar quantities due to

spatial correlations that are unresolved by ocean models. The method introduces an ex-

tra non-divergent advection, which is calculated from resolved model fields via a Taylor-

series approximation. Analogous to the quasi-Stokes TRM velocity, which accounts for

unresolved temporal correlations [Gent et al. (1995), McDougall and McIntosh (2001)],

this extra advection, or quasi-Stokes HRM velocity, can be added to the Eulerian-mean

velocity of the model. However, in contrast to the quasi-Stokes TRM streamfunction,

the proposed quasi-Stokes HRM streamfunction does not need a parameterization. In-

stead, it is estimated directly from the quantities known to the model which appear on

the right-hand sides of equations 3.5 and 3.6. The only assumption made is that the

resolved velocity field is sufficiently smooth that the Taylor series approach (equation

3.4) converges and can be approximated by the leading linear terms. This assumption

is justified in the theory by the choice of performing the spatial averaging after the

temporal averaging, and in practice by the recognition that the effective resolution of

an ocean model (run with appropriate viscosity) is several grid boxes.

The proposed method has been tested diagnostically using instantaneous output

from a 1/4-degree model simulation, boxcar averaged to 3/4-degree resolution. We com-

pared the transport of water of a certain density class within the 1/4-degree dataset to

the corresponding HRM extra transport calculated at 3/4-degree resolution. We found

that the method gives a reasonable approximation of the fine-resolution transports in

the Gulf Stream, East Australian Current and Antarctic Circumpolar Currents regions,

but tends to underestimate the true transport by several tens of percent in the first

two of these regions. These results suggest that the scheme could assist in mitigating

the limitations of coarse-resolution models in the representation of tracer fluxes such

as the meridional heat transport.

In the 3/4-degree resolution dataset, the contribution of the quasi-Stokes HRM

streamfunction to the meridional overturning circulation peaks near 1.5 Sv in the South-

ern Ocean, representing about 10% of the corresponding circulation due to unresolved

temporal correlations as parameterized using the Gent et al. (1995) method. On the

other hand, the contribution to the poleward heat flux in the Southern Hemisphere of
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the same dataset reaches 0.18 PW, which is approximately half as large as the corre-

sponding flux due to the quasi-Stokes streamfunction of the TRM method [see Fig.8

of Gent et al. (1995)]. The larger impact on the meridional heat fluxes relative to the

overturning mass transports possibly relates to the fact that no near-surface tapering

has been imposed on the extra HRM streamfunction, in contrast to standard prac-

tice for the TRM quasi-Stokes streamfunction. In our discussion of the outcropping of

isopycnals at the sea surface, we found no physical reason to taper the quasi-Stokes

HRM streamfunction. Indeed, we argued that the outcropping of isopycnals leads to

an underestimate of the quasi-Stokes HRM streamfunction.

It may come as a surprise that the zonal integral of the northward quasi-Stokes

HRM streamfunction is quite smooth and predominantly of one sign in the ACC re-

gion, and that it exhibits a similar structure to the meridional overturning circulation

associated with the Gent and McWilliams (1990) parameterization. This similarity may

even seem paradoxical when considering that the quasi-Stokes TRM streamfunction,

(Ψx
TRM ,Ψ

y
TRM ) = (−κLx,−κLy), points in the direction of minus the slope of density

surfaces, whereas the quasi-Stokes HRM streamfunction is often perpendicular to this

direction. However, both the TRM and the HRM quasi-Stokes advection aim to com-

pensate for missing correlations, which, in the context of a modelled O(1◦)-resolution

ACC, arise primarily from the unresolved mesoscale eddies. Both the TRM and the

HRM extra streamfunctions thus contribute to mimicking the effect of Southern Ocean

mesoscale eddies, which is to oppose the Ekman-forced overturning.

We proposed a method addressing the limited spatial resolution, yet now we ask

the question about to what extent the HRM method is affected by the resolution

itself. According to equations 3.16 and 3.17, the HRM velocity streamfunctions are

proportional to the second powers of resolution scale (∆x)2, (∆y)2. If changing the

resolution does not change the velocity shears and neutral density slopes, then the quasi-

Stokes HRM transport would decrease proportionally to the fineness of the resolution

of the model. However, it is likely that as the horizontal resolution is increased, both

the velocity shears and the slope of isopycnals will increase, so it is not yet known

how the quasi-Stokes HRM streamfunctions might change as the horizontal resolution

is increased. The HRM captures the unresolved correlations between velocity and
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density, but does not resolve or parametrize the subgrid-scale physical processes. Also,

a sufficiently smooth velocity field has been assumed within grid boxes for the Taylor

series and this assumption may not be true in strong frontal areas.

An important caveat related to the construction of the coarse-resolution dataset

must be acknowledged here. By boxcar averaging an eddy-permitting, 1/4-degree model

snapshot, we have formed 3/4-degree fields that contain some of the signature of the

eddies of the original simulation. The HRM extra streamfunction diagnosed here has

therefore seen these eddy signatures. In contrast, if the HRM extra streamfunction

were calculated during the running of a 3/4-degree-resolution model, with the Gent

and McWilliams (1990) scheme activated, no eddy footprints would be available to the

HRM procedure. This difference could substantially reduce the impact of the HRM

extra advection in the ACC. Future work will need to assess the impacts of the quasi-

Stokes HRM advection when incorporated online in a prognostic ocean simulation.

It has been demonstrated that the HRM calculation is not sensitive to the way avail-

able data from ocean models are used to calculate the slope of neutral tangent planes.

This enhances our confidence in the feasibility of implementing the HRM method into

ocean models to capture the unresolved spatial correlations. Equations 3.22 and 3.23

in section 3.7 in this chapter sets up the framework of HRM implementation into ocean

models where the density field can be updated in real time. The actual implementation

will need to take the model’s features into consideration.





Chapter 4

Conclusions

Two aspects of small scale thermohaline structures are explored in this thesis. Double

diffusive interleaving has been studied in chapter 2 as it is an important small scale

thermohaline structure in the ocean. Chapter 2 focused on the properties of steady-

state solutions of double diffusive interleaving. Chapter 3 aimed at evaluating and

incorporating the unresolved spatial correlations at the scale of the model resolution.

These small scale spatial correlations are unresolved in numerical ocean models, but

have important influences on the heat and salt transport in the ocean.

In chapter 2, we first built up a model which made a transition from the initial

exponentially growing stage to the steady state, based on the momentum equation

(equations 2.19 - 2.22), under the assumption that the rate of change of the horizontal

velocity perturbation needs to be zero at the steady state. In contrast to previous stud-

ies in which double-diffusive fluxes are given by general power laws of the stability ratio,

we represented the heat and salt fluxes across interfaces according to laboratory-based

flux laws of heat by Huppert (1971) and of salt from McDougall and Taylor (1984). The

transition evolved through three regimes (Finger-Finger, Finger-Nondouble-diffusive,

Finger-Diffusive) and enabled us to examine the conditions necessary to achieve steady-

state double-diffusively driven intrusions. It was found that the strength of the fluxes

across the “diffusive” interfaces need to be increased by at least an order of magni-

tude above the laboratory-determined values, relative to the laboratory-based “finger”

fluxes, in order for a steady state to be attained.

In the steady state, the ratio of the vertical flux of Absolute Salinity or Conservative

95
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Temperature across the diffusive interface to that across the finger interface is a function

of the exaggeration factor and the environmental stability ratio. The value of those

two ratios showed a strong dependence on the environmental stability ratio rather than

the exaggeration factor, especially when the exaggeration factor is greater than 15.

These two ratios also change with different Prandtl number but the dependency is not

significant. The ratio of Conservative Temperature across the diffusive interface to that

across the finger interface is close to 1 in all cases of different Prandtl numbers, while

the ratio of Absolute Salinity across the diffusive interface to that across the finger

interface is much smaller. That means that the amounts of flux of salt across two types

of interfaces are very different, whereas the vertical fluxes of heat across two types of

interfaces are of similar magnitude.

The proportionality constant between the salt flux across a finger interface and the

salinity contrast across the interface increased after reaching the steady state. This

was caused by allowing the laboratory-based flux laws to take over instead of linearly

growing. The flux of salt across a finger interface is thus enhanced relative to the

salinity contrast. The larger the environmental stability ratio, the larger the increase

in this proportionally constant is, relative to the value at the initial state.

An important aspect of this study is that we took the advection of the perturbations

in the steady state as well as the interfacial double-diffusive fluxes themselves into

account when quantifying the total diapycnal fluxes of heat and salt. This advection of

the perturbations consists of two sources, one from the correlations of vertical velocity

and heat or salt at a given point, and the other from the correlations induced by the

spatial average in the horizontal direction. As a result, we realized that it is mainly

the spatial correlations of the diapycnal velocity of the intrusions with the temperature

and salinity perturbations that is responsible for the upgradient fluxes of heat and salt

(see the large -0.61 numbers in equations 2.57 and 2.58). The dominant contributions

to the total diapycnal fluxes of heat and salt from the advection of heat and salt

were not recognized by previous studies. One would get a greater (0.47 rather than

-0.29) downgradient diapcyncal flux of salt and a much smaller (0.04 instead of -0.75)

downgradient diapycnal flux of heat, if the dominant advective correlations are ignored.

We have also shown that the total diapycnal fluxes of both Absolute Salinity and
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Conservative Temperature are upgradient, that is, both are in the sense of a negative

vertical diffusion coefficient.

The magnitude and signs of the total diapycnal fluxes of heat and salt will cer-

tainly have implications for parameterizing the double diffusive interleaving motions in

intermediate-scale and large-scale numerical ocean models. The vertical diffusivity of

temperature and salinity may need to be set at different magnitudes, with the magni-

tude of negative vertical diffusivity for temperature being larger than that for salinity.

When Prandtl number is greater than or equal to 1, and the exaggeration factor less

than 20, the ratio of the total diapycnal fluxes of heat and salt is close to 1. In this case,

the negative vertical diffusivity for temperature should be larger but still close to that

for salinity. Therefore a larger turbulent diapycnal mixing is required to counteract the

double-diffusive interleaving motion because the negative diffusions of heat and salt

have nearly equal diffusion coefficients.

It is very difficult to compare an interleaving model to observation data because the

observational data of interleaving are limited, especially the work in this thesis is three

dimensional and the interleaving observations are mainly two dimensional. Researches

in interleaving modelling commonly do not compare models with observations.

Numerical ocean models have limited ability to resolve the temporal and spatial

correlations of subgrid-scale processes. Just as the TRM theory accounted for the un-

resolved temporal correlations between temperature and horizontal velocity, the HRM

theory incorporates the unresolved spatial correlations that are missing from ocean

models. In chapter 3, we applied a Taylor-series expansion to the resolved velocity field

and calculated the transport of scalar quantities due to the unresolved spatial correla-

tions. The Taylor-series approach introduces an extra non-divergent advection named

the quasi-Stokes HRM streamfunction which can be added to the total quasi-Stokes

streamfunction. This extra non-divergent advection consists mainly of the correlation

between the horizontal and vertical velocity shear and the slope of neutral tangent

plane. The proposed quasi-Stokes HRM streamfunction does not need a parameteri-

zation. Instead, it is estimated directly from the quantities known to the model such

as velocities, tracers and densities. The instantaneous output from a 1/4-degree MOM

simulation has been used to do diagnostic tests for the HRM method. The dataset has
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been boxcar averaged to construct a 3/4-degree coarse resolution dataset in order to

show that the HRM method gives reasonable approximations of HRM transport of wa-

ter mass and scalar properties that could be resolved by a fine-resolution (1/4-degree)

ocean model. Three areas of interest are selected for comparing the transport of water

of a certain density class calculated by the original 1/4-degree dataset to the corre-

sponding HRM extra transport calculated at 3/4-degree coarse resolution. The Gulf

Stream and East Australian Current areas are famous western boundary areas and the

Antarctic Circumpolar Currents regions are of great interest to oceanographers. The

coarse-resolution-based calculation gives a good approximation of the fine-resolution

transports in these three areas, but tends to underestimate the true transport by sev-

eral tens of percent in the first two of these regions. Another finding is that the HRM

streamfunction is dominated by the spatial correlation between the horizontal velocity

shear (as opposed to the vertical shear of the horizontal velocity) and the slope of the

locally-referenced neutral tangent plane. This strong dominance has been found in all

of the three previously mentioned areas.

The HRM method has shown significant influence on the ocean circulation. A con-

tribution with a peak of 1.5 Sv to the meridional overturning circulation in the Southern

Ocean is due to the unresolved spatial correlations represented by quasi-Stokes HRM

streamfunction. This value is about 10% of the amount of the meridional overturning

circulation due to unresolved temporal correlations induced by the TRM. The zonally-

integrated northward quasi-Stokes HRM streamfunction exhibits a similar structure to

the meridional overturning circulation associated with the Gent and McWilliams (1990)

parameterization, even though the direction of the quasi-Stokes HRM streamfunction

is generally perpendicular to the direction of the quasi-Stokes TRM streamfunction.

At the 3/4-degree resolution, the contribution from the quasi-Stokes HRM stream-

function to the poleward heat flux in the Southern Hemisphere of the same dataset

peaks at around 0.2 PW. This value is approximately 50% as large as the correspond-

ing flux due to the quasi-Stokes streamfunction of the TRM method. The absence

of the near-surface tapering of the HRM streamfunction may be responsible for this

large impact on the meridional heat fluxes. We consider the non-tapering option to be

justified. Indeed, we found that the HRM method has a tendency to underestimate the
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real transport.

The only assumption made in HRM approximation is that the resolved velocity field

is sufficiently smooth that the Taylor series approach converges and can be approxi-

mated by the leading linear terms. To date, even the linear terms that we use have

been neglected, so our HRM work is clearly an improvement compared with present

practice. The linear assumption is very common in ocean studies for various ocean

properties. The non-linear terms increase the precision at the cost of largely increasing

computational complexity. Fig. 3.12 has shown that only the zonal linear terms are

dominant.

The diagnostics of the HRM method presented here is only a beginning. The

ultimate goal is to implement the HRM method in ocean models. The quasi-Stokes

HRM streamfunction that accounts for the unresolved spatial correlations of ocean

properties can be added to the Eulerian-mean and TRM streamfunctions in ocean

models. We have also calculated the quasi-Stokes HRM transport using only the density

field generated by salinity, temperature and pressure fields on the Cartesian model grid.

Computing the HRM transport using the slope of the neutral tangent plane calculated

in this manner is easier to implement in ocean models, such as MOM. Density is

a real-time variable that is updated at each time step in ocean models. Also, the

slope of the neutral tangent plane is easy to calculate as long as the in situ density

and potential density are accessible. The results calculated in this way turned out

to be very close to the transport calculated by the previous method, especially in

the ACC area where we have demonstrated the useful implications from the HRM

method for ocean models. This comparison implies that the HRM method is a stable

approximation that is adaptable to different ocean models. The implementation of

the HRM method in ocean models surely requires comprehensive understandings of

the features and technical details of the target ocean model. However, the proposed

framework and the demonstrated robustness and flexibility of the HRM method open

up the possibility for future studies. Once the HRM method can be added to both B-

grid and C-grid ocean models that contain the GM scheme. Next step is to implement

the HRM method in the newest version of MOM (which is MOM6) and NEMO. The

implementations will allow modelers to add partial or enhanced HRM to the existing
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scheme. Further studies on the impact of the HRM method on the ocean properties

can be investigated using customized numerical experiments.





Appendix A

DDI: The Linearly Unstable

Solutions

The Prandtl number σ is the ratio of the flux coefficient of momentum D to that of

salt B (see equations 2.9 and 2.10).

The disturbances of equations 2.3 - 2.8 are taken to be proportional to exp[λ̂t +

i(k̂x + l̂y + m̂z)] with amplitudes Θ0 for Conservative Temperature, S0 for Absolute

Salinity, U0 for cross-front velocity, V0 for alongfront velocity, W0 for vertical velocity

and P0 for pressure, so that equations 2.3 - 2.8 become

( ˆλU0)− fV0 = −ρ−1ik̂P0 −Dm̂U0, (A.1)

( ˆλV0) + fU0 = −ρ−1il̂P0 −Dm̂V0, (A.2)

( ˆλW0) = −ρ−1im̂P0 + g(αΘ0 − βS0)−Dm̂W0, (A.3)

k̂U0 + l̂V0 + m̂W0 = 0, (A.4)

λ̂βS0 + U0βS̄Ax +W0βS̄Az = −Bm̂βS0, (A.5)

λ̂αΘ0 + U0αΘ̄x +W0αΘ̄z = −γfBm̂βS0. (A.6)

The isopycnal surfaces are initially assumed to be flat and the x − y coordinates are

chosen so that βS̄Ay = αΘ̄y = 0. The acceleration terms which are in brackets in

equations A.1 - A.3 are neglected for large turbulent Prandtl numbers.
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Nondimensional variables are defined by

λ =
λ̂

N
,m =

Bm̂

N
, ω =

f

N
, s =

k̂

m̂
, r =

l̂

m̂
, σ =

D

B
, (A.7)

εx =
(1− γf)gβS̄Ax

N2
, εz =

(1− γf)gβS̄Az
N2

=
(1− γf)

(Rρ − 1)
, (A.8)

Rρ =
αΘ̄z

βS̄Az
, N2 = g(αΘ̄z − βS̄Az) = gβS̄Az(Rρ − 1), (A.9)

and for finite turbulent Prandtl number, the nondimensional growth rate λ satisfies

λ4 + λ3m(1 + 2σ) + λ2[ω2 + σm2(2 + σ) + (s2 + r2)]

+ λ[mω2 + σ2m3 + (s2 + r2)(1 + εz + σ)m−msεx]

+ σm2(s2 + r2)(1 + εz)−mεx(σms+ ωr) = 0.

(A.10)

The growth rate λ is now maximized with respect to m, r and s. In practice, the vertical

wavenumber m̂ is much larger than the two horizontal wavenumbers k̂ and l̂, and so

(1 + s2 + r2) ≈ 1. By differentiating equation A.10 with respect to both r and s and

setting them equal to zero, it can be shown that

r

ω
=

s

λ+mσ
. (A.11)

Substituting equation A.11 into A.10 and dividing both sides of A.10 by (1 + r2/s2)

gives

λ3 + λ2m(1 + σ) + λ(σm2 + s2) +ms2(1 + εz)−msεx = 0, (A.12)

which, as noted by McDougall (1985a), is independent of r and so the growth rate λ and

the vertical and horizontal wavenumbers are all independent of the Coriolis parameter.

Equations 2.12 and 2.13 in the body of this paper are derived from this equation, being

the values of m and s that maximize the growth rate λ of the intrusions.



Appendix B

DDI: Initial Conditions

To choose the initial starting point for the model, we take a small value of X and X0

and use the a relationship between X0 and Y0 that applies during the exponentially

growing linearly unstable solution, namely, equation (40) of McDougall (1985a) (which

is here expressed in terms of s̃ = s/εx and m̃ =
√
σm/εx),(

αΘ0
βS0
− 1
)

1− γf
= m̃

{
√
σ(m̃2 − s̃2)

1
2 + s̃2

[ 1√
σ

(m̃2 − s̃2)
1
2 + m̃

]−1
}−1

, (B.1)

which gives

Y0 = X0 +X0(1− γf)m̃

{
√
σ(m̃2 − s̃2)

1
2 + s̃2

[ 1√
σ

(m̃2 − s̃2)
1
2 + m̃

]−1
}−1

. (B.2)
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Appendix C

DDI: The Laboratory Flux Laws

A finger interface has warm salty water above cold fresh water, and for this type of

double-diffusive interface we use the laboratory results of McDougall and Taylor (1984),

where from their Fig. 2 the salt flux across the finger interface can be represented by

the function

βFSAf =
0.19

(Rf
ρ − 0.5)

(gκT )
1
3 (β∆Sf

A)
4
3 for all Rf

ρ ≡
α∆Θf

β∆SfA
> 1. (C.1)

As for diffusive interfaces which have cool fresh water above warm salty water, from

Fig. 2 of Huppert (1971), we have

γdiff ≡
βFSAdiff

αFΘ
diff

= 1.85− 0.85Rdiff
ρ for 1 ≤ Rdiff

ρ ≡
β∆Sdiff

A

α∆Θdiff
≤ 2, (C.2)

and

γdiff ≡
βFSAdiff

αFΘ
diff

= 0.15 for Rdiff
ρ ≡

β∆Sdiff
A

α∆Θdiff
≥ 2. (C.3)

From equations 2.1 - 2.4 and Fig. 1 of Huppert (1971) , we find that the flux across a

diffusive interface is given by

αFΘ
diff =

3.8

(Rdiff
ρ )2

0.085
(gκ2

T

ν

) 1
3
(α∆Θdiff)

4
3 for all Rdiff

ρ > 1. (C.4)
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Appendix D

DDI: The Finger Flux

Divergence in the FF Regime

Based on the laboratory-based flux laws, the right-hand side of equation 2.24 is given

by

2
h
2βS̄Az

(βFSAlower − βF
SA
upper)

B̂
=

−
2× 0.19(gκT )

1
3 (h2βS̄Az)

1
3

B̂

{
(1 +X)

4
3[(

(Rρ+Y )
1+X

)
− 0.5

] − (1−X)
4
3[(

(Rρ−Y )
1−X

)
− 0.5

]}.
(D.1)

As the evolution transitions to finite amplitude at the beginning point, the expression

for the FF regime is obtained by the linearly growing analysis of the physical basis of

this integration. In the linear growth case, let βFSAf = B̂β∆Sf
A such that

βFSAlower − βF
SA
upper = −B̂4βS′A, (D.2)

and the right-hand side of equation 2.24 and then becomes

2
h
2βS̄Az

(βFSAlower − βF
SA
upper)

B̂
= −4X, (D.3)

and correspondingly, equation 2.25 is

2
h
2βS̄Az

(αFΘ
lower − αFΘ

upper)

B̂
= −4γfX. (D.4)
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Now requiring that equations 2.32 and 2.34 be the same at X = X0 = 0.1 implies

that B̂ is given by

B̂ =
2× 0.19(gκT )

1
3 (h2βS̄Az)

1
3

4X0

{
(1 +X0)

4
3[(

(Rρ+Y0)
1+X0

)
− 0.5

] − (1−X0)
4
3[(

(Rρ−Y0)
1−X0

)
− 0.5

]}. (D.5)

For simplicity, let

A(X,Y ) =

{
(1 +X)

4
3[(

(Rρ+Y )
1+X

)
− 0.5

] − (1−X)
4
3[(

(Rρ−Y )
1−X

)
− 0.5

]}, (D.6)

so that

B̂ =
2× 0.19(gκT )

1
3 (h2βS̄Az)

1
3

4X0
A(X0, Y0). (D.7)



Appendix E

DDI: The Relationship between

the Steady-State Value Xs, Y s

and as

The ratio of the salt flux coefficients B̂s/B̂ at steady state to that in the linearly

unstable growth phase can also be obtained by using the definition (equation 2.43) of

B̂s together with the finite-amplitude finger flux, equation C.1 in Appendix C, giving

(using equation 2.27 at steady state)

B̂s

B̂
=

2X0

A(X0, Y0)

(1 +Xs)
1
3[

(Rρ+Y s)
(1+Xs) − 0.5

] . (E.1)

Equating equations 2.47 and E.1 leads to the following equation that is obeyed by the

steady-state values of Xs, Y s and as (we have checked that our solutions obey this

equation):

(1 + as) =
( s̃m̃)2(Y s −Xs)( D0

Dss )

(1 +Xs)
4
3

(
1− αΘl

βSAl

)[(Rρ + Y ss)

(1 +Xs)
− 0.5

][
A(X0, Y0)

X0

]
. (E.2)
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Appendix F

HRM: Evaluation of the

Left-hand Side of Equation 3.8

To calculate the left-hand side of equation 3.8, we use a “two-triangle” calculation. The

vertical face at constant latitude through which the transport passes is shown in Fig.

F.1, and the words “two-triangle” refers to triangle ABC and ADE for the calculation

of transport through area ADE. Fig. F.1 covers the width of three boxes of the coarse-

resolution model, that is, it contains three T, S points and eight velocity points. The

total transport through the whole area is the sum of the signed transport through ADE

and AD’E’ compared with that of the Eulerian-mean transport. Note that because the

slopes of AD and AD’ are being calculated separately, they are not necessarily the same.

The first step of the two-triangle calculation is to calculate the velocities at points E,

C, E’ and C’ by vertically averaging the given velocity data that is at the vertices of

the cubes of the T, S boxes of the fine resolution data. Then we calculate the spatially

averaged Eulerian velocity at 〈z̄a〉 using v0 = 1
6vE′ + 1

3vC′ + 1
3vC + 1

6vE . This spatially

averaged Eulerian mean velocity is then subtracted from all velocities to obtain the

perturbation velocities. Since the same method is conducted similarly on the western

half of Fig. F.1 as on the eastern half, we concentrate here on describing what we do

on the eastern half.

The heights of points D and B are given by zD − zE = 3
2(zH − zE) and zB − zE =

1
2(zH−zE), where zH indicates the height where the neutral tangent plane connects the

109



110 APPENDIX F. HRM: TWO-TRIANGLE METHOD

	

Figure F.1: Vertical cross-section through three boxes of a coarse-resolution ocean

model, with the central box showing three boxes of a finer resolution ocean model that

has three times the horizontal resolution compared with the coarse resolution model.

For the fine resolution boxes, the slopes of the density surfaces are given by the lines

from the central point to the dots at points on the fine-scale grid boxes, while for

the coarse-resolution data the slopes of the density surfaces are determined by the

lines from the central point to the other two dots at the centre (horizontally) of the

coarse-resolution boxes.

central point A to point H on the vertical T, S cast at the longitude mid way between

the longitudes of points C and E. Now knowing the locations of points B and D, we find

the vertically adjacent locations on the fine-resolution model grid where the velocity

components are stored, and the velocities at points B and D are then found by vertical

interpolation.

First consider the (perturbation) transport into the page passing through the ver-

tical area ACB. The perturbation velocities at these points are v′A, v
′
C and v′B. At any

position (x, z) within ABC, the velocity through the vertical area can be denoted as

v′ = v′A + (v′C − v′A) xX + (v′B − v′C) zZ , where X and Z are the signed lengths of AC and

BC. The required horizontal volume flux of marked fluid is equal to the “volume” of a

three-dimensional space where the spatial directions to the east and upwards (x, z) are
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two of the dimensions, and the third dimension is the perturbation meridional velocity

v′. The volume is

“volume” of ABC =

X∫
0

x
X
Z∫

0

v′dzdx

=

X∫
0

x
X
Z∫

0

[
v′A + (v′C − v′A)

x

X
+ (v′B − v′C)

z

Z

]
dzdx

=

X∫
0

[
v′A
Z

X
x+

(v′C − v′A)

X

Z

X
x2 +

1

2

(v′B − v′C)

Z

(
Z

X

)
x2

]
dx

=
1

2
XZ

[
1

3
(v′A + v′B + v′C)

]
.

(F.1)

We note from this expression that the transport into the page is equal to the signed

area of triangle ABC multiplied by the average of the perturbation velocity at the

three vertices of the triangle. The derivation of this expression follows the same Tay-

lor series expansion and spatial integration as performed by McDougall (1998), and

the correspondence to the main HRM result of McDougall (1998), which is equation

3.5, can be seen as follows. McDougall (1998) took the perturbation velocity at the

centre, v′A, to be zero, and in this case, we can write the last line of equation F.1 as

1
6XZ[2v′C + (v′B − v′C)]. With X being half the box width, that is, X = 1

2∆x, with

Z being Z = 1
2∆xLx, with 2v′C being v̄x∆x, and with (v′B − v′C) being 1

2L
xv̄z∆x, the

right-hand side of equation F.1 is one half of the right-hand side of equation 3.5; the

factor of one half being due to the fact that triangle ABC represents just the right-hand

half of the transport of marked fluid in this model box.

We note that in equation F.1, v′C and v′B are not individually important; rather it is

their mean value that enters this expression. We will use this property to simplify the

evaluation of the three-dimensional space corresponding to area AED, where we will

take the average of the perturbation velocities at points D and E, as well as those at

points B and C. In Fig. F.2 we sketch the three-dimensional volume whose volume we

seek to evaluate. We have drawn Fig. F.2 with both v′D and v′E equal to the same value,

0.5(v′D + v′E). The same is done for v′A and v′B, both having the value 0.5(v′A + v′B).

These average perturbation velocities are now used to extrapolate these velocities to the
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spatial location of point A, obtaining namely v′A′ . Note that this extrapolated velocity

is different to the actual perturbation velocity at point A, namely v′A, (obtained by

interpolation of the perturbation velocities at the height of point A).

	
Figure F.2: The three-dimensional view of two-triangle calculation for transports.

From Fig. F.2 the transport through the vertical triangle ACEDBA of Fig. F.1 is

equal to the difference between two volumes; being the volume from the v′ = 0 plane

up to the inclined triangle A’DE, minus the volume between the two inclined triangles

A’BC and ABC. Both of these volumes can be evaluated using the above “triangular

volume” equation with suitable reassignments of the corners of the triangle. Note that

the first volume usually dominates: for example, the relevant value of XZ for the large

triangle is nine times the corresponding value of XZ for the small triangle.
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The evaluation of HRM transport is at the average height of the neutral density

surface 〈z̄a〉. However, in practice, the average depth of the above triangle calculations

is not necessarily the same as 〈z̄a〉, since the slopes of the density surfaces are different

to the east and to the west. The two-triangle calculation includes extra transport due

to its density surface being higher in the water column by the height difference given

by equation 3.9, namely δz = 1
8(zE−〈z̄a〉)+ 1

8(zW −〈z̄a〉) = 1
8(LxE−LxW )∆x. The extra

transport is (1

6
v′D′ +

1

3
v′B′ +

1

3
v′B +

1

6
v′D −

1

2
〈v̄〉zδz

)
∆xδz (F.2)

and this transport is subtracted from that calculated using the above two-triangle cal-

culation.

The “two-triangle” method is a way to fully utilize the fine resolution data. Three

tracer points and eight velocity points are all included in the “two-triangle” calculation.

The transport calculated by this method is considered to be the accurate transport and

hence was used to determine how good the Taylor Series approximation is.



Bibliography

D. Andrews, J. Holton, and C. Leovy. Middle Atmosphere Dynamics. International

geophysics series. Academic Press, 1987.

D. G. Andrews and M. E. McIntyre. Planetary Waves in Horizontal and Vertical Shear:

The Generalized Eliassen-Palm Relation and the Mean Zonal Acceleration. 33:2031–

2048, 1976.

J. D. Boyd. Properties of thermohaline staircase off the northeast coast of South

America. Spring and Fall 1985. Journal of Geophysical Research, 94:8303–8312, 1989.

J. D. Boyd and H. Perkins. Characteristics of thermohaline steps off the northeast coast

of South America, July 1983. Deep Sea Research Part A, Oceanographic Research

Papers, 34(3):337–364, 1987.

C. Eden. Anisotropic Rotational and Isotropic Residual Isopycnal Mesoscale Eddy

Fluxes. Journal of Physical Oceanography, 40(11):2511–2524, 2010. ISSN 0022-3670.

doi: 10.1175/2010JPO4397.1.

C. Eden. Relating Lagrangian, Residual, and Isopycnal Means. Journal of Physical

Oceanography, 42(7):1057–1064, 2012. ISSN 0022-3670. doi: 10.1175/JPO-D-11-068.

1. URL http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-11-068.1.

A. Eliassen and E. Palm. On the Transfer of Energy in Stationary Mountain Waves.

Det Norske Videnskaps-Akademi i Oslo. Geofysiske publikasjoner. I kommisjon hos

Aschehoug, 1961.

A. F. Fanning and A. J. Weaver. A horizontal resolution and parameter sensitivity

114

http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-11-068.1


BIBLIOGRAPHY 115

study of heat transport in an idealized coupled climate model. Journal of Climate,

10(10):2469–2478, 1997.

A. E. Gargett and G. Holloway. Sensitivity of the GFDL ocean model to different

diffusivities for heat and salt. Journal of Physical Oceanography, 22(10):1158–1177,

1992.

P. R. Gent. The Gent McWilliams parameterization : 20/20 hindsight. Ocean Mod-

elling, 39:2–9, 2011.

P. R. Gent and J. C. McWilliams. Isopycnal Mixing in Ocean Circulation Models.

Journal of Physical Oceanography, 20(1):150–155, 1990.

P. R. Gent, J. Willebrand, T. J. McDougall, and J. C. McWilliams. Parameterizing

Eddy-Induced Tracer Transports in Ocean Circulation Models. Journal of Physical

Oceanography, 25(4):463–474, 1995.

F. S. Graham and T. J. McDougall. Quantifying the Nonconservative Production of

Conservative Temperature, Potential Temperature, and Entropy. Journal of Physical

Oceanography, 43(5):838–862, 2013.

M. C. Gregg. The three-dimensional mapping of a thermohaline intrusion. Journal of

Physical Oceanography, 10:1468–1492, 1980.

M. G. Gregg and J. H. McKenzie. Thermohaline intrusions lie across isopycnals. Nature,

280:310–311, 1979.

S. M. Griffies. Fundamentals of Ocean Climate Models. Princeton Press, 2004.

S. K. Gulev, B. Barnier, J. M. Molines, T. Penduff, and J. Chanut. Impact of spatial

resolution on simulated surface water mass transformations in the Atlantic. Ocean

Modelling, 19(3-4):138–160, 2007.

H. E. Huppert. On the stability of a series of double-diffusive layers. Deep-Sea Research

and Oceanographic Abstracts, 18(10):1005–1021, 1971.

IOC, SCOR, and IAPSO. The international thermodynamic equation of seawater 2010:

Calculation and use of thermodynamic properties. Intergovernmental Oceanographic

Commission, Manuals and Guides No. 56, (June):196, 2010.



116 BIBLIOGRAPHY

W. S. Jevons. II. On the cirrous form of cloud. Philosophical Magazine Series 4, 14

(90):22–35, 1857.

O. M. Johannessen and O. S. Lee. A deep stepped thermo-haline structure in the

Mediterranean. Deep-Sea Research and Oceanographic Abstracts, 21(8):629–639,

1974.

T. Joyce, W. Zenk, and J. M. Toole. Anatomy of the Antarctic Polar Front in the

Drake Passage. Journal of Geophysical Research-Oceans and Atmospheres, 83(8):

6093–6113, 1978.

A. Klocker and T. J. McDougall. Influence of the Nonlinear Equation of State on Global

Estimates of Dianeutral Advection and Diffusion. Journal of Physical Oceanography,

40(8):1690–1709, 2010.

E. Kunze. A review of oceanic salt-fingering theory. Progress in Oceanography, 56(3-4):

399–417, 2003.

J. R. Ledwell, A. J. Watson, and C. S. Law. Evidence for slow mixing across the

pycnocline from an open-ocean tracer-release experiment. Nature, 364(6439):701–

703, 1993.

J. R. Ledwell, E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and

J. M. Toole. Evidence for enhanced mixing over rough topography in the abyssal

ocean. Nature, 403(6766):179–182, 2000.

J. R. Ledwell, L. C. St. Laurent, J. B. Girton, and J. M. Toole. Diapycnal Mixing in

the Antarctic Circumpolar Current. Journal of Physical Oceanography, 41:241–246,

2011.

J. R. Maddison and D. P. Marshall. The EliassenPalm flux tensor. Journal of Fluid

Mechanics, 729:69–102, 2013.

G. O. Marmorino and D. R. Caldwell. Heat and salt transport through a diffusive

thermohaline interface. Deep-Sea Research and Oceanographic Abstracts, 23(1):59–

67, 1976. ISSN 00117471. doi: 10.1016/0011-7471(76)90808-1.



BIBLIOGRAPHY 117

P. A. Mazeika. Subsurface Mixed Layers in the Northwestern Tropical Atlantic. Journal

of Physical Oceanography, 4(3):446–453, 1974.

T. McDougall, S. Groeskamp, and S. Griffies. Comment on Tailleux, R. Neutrality

versus Materiality: A Thermodynamic Theory of Neutral Surfaces. Fluids 2016, 1,

32. Fluids, 2(2):19, 2017.

T. J. McDougall. Double-Diffusive Interleaving. Part I: Linear Stability Analysis. Jour-

nal of Physical Oceanography, 15:1532–1541, 1985a.

T. J. McDougall. Double-Diffusive Interleaving. Part II: Steady State Interleaving.

Journal of Physical Oceanography, 15:1542–1556, 1985b.

T. J. McDougall. Three-Dimensional Residual-Mean Theory. Springer, 1998.

T. J. McDougall. Potential Enthalpy: A Conservative Oceanic Variable for Evaluating

Heat Content and Heat Fluxes. Journal of Physical Oceanography, 33(5):945–963,

2003.

T. J. McDougall and P. M. Barker. Getting started with TEOS-10 and the Gibbs

Seawater (GSW) Oceanographic Toolbox. Number January. 2011.

T. J. McDougall and D. R. Jackett. The material derivative of neutral density. Journal

of Marine Research, 63(1):159–185, 2005.

T. J. McDougall and P. C. McIntosh. The Temporal-Residual-Mean Velocity. Part I:

Derivation and the Scalar Conservation Equations. Journal of Physical Oceanogra-

phy, 26(12):2653–2665, 1996.

T. J. McDougall and P. C. McIntosh. The Temporal-Residual-Mean Velocity. Part

II: Isopycnal Interpretation and the Tracer and Momentum Equations. Journal of

Physical Oceanography, 31(5):1222–1246, 2001.

T. J. McDougall and J. R. Taylor. Flux measurements across a finger interface at low

values of the stability ratio. Journal of Marine Research, (42):1–14, 1984.

T. J. McDougall, S. Groeskamp, and S. M. Griffies. On Geometrical Aspects of Interior

Ocean Mixing. Journal of Physical Oceanography, 44(8):2164–2175, 2014.



118 BIBLIOGRAPHY

A. Melet, R. Hallberg, S. Legg, and K. Polzin. Sensitivity of the Ocean State to the Ver-

tical Distribution of Internal-Tide Driven Mixing. Journal of Physical Oceanography,

pages 602–615, 2012.

W. J. Merryfield. Origin of Thermohaline Staircases. Journal of Physical Oceanography,

30(5):1046–1068, 2000.

R. D. Mueller, W. D. Smyth, and B. Ruddick. Shear and convective turbulence in a

model of thermohaline intrusions. Journal of Physical Oceanography, 37(10):2534–

2549, 2007.

T. Penduff, M. Juza, L. Brodeau, G. C. Smith, B. Barnier, J.-M. Molines, A.-M.

Treguier, and G. Madec. Impact of global ocean model resolution on sea-level vari-

ability with emphasis on interannual time scales. Ocean Science, 6:269–284, 2010.

P. Porta Mana and L. Zanna. Toward a stochastic parameterization of ocean mesoscale

eddies. Ocean Modelling, 79:1–20, 2014.

S. Riha. Methods for forming approximately neutral surfaces in the ocean, 2017.

S. R. Rintoul and C. Wunsch. Mass, heat, oxygen and nutrient fluxes and budgets

in the North Atlantic Ocean. Deep Sea Research Part A. Oceanographic Research

Papers, 38, Supple(0):S355–S377, 1991.

B. Ruddick and A. E. Gargett. Oceanic double-infusion: introduction. Progress in

Oceanography, 56(3-4):381–393, mar 2003.

B. R. Ruddick. The Life of a Thermohaline Intrusion. J. Mar. Res., 42(1973):831–852,

1984.

B. R. Ruddick, R. W. Griffiths, and G. Symonds. Frictional Stress at a Sheared Double-

Diffusive Interface. Journal of Geophysical Research, 94(C12):161–173, 1989.

R. W. Schmitt. Flux measurements on salt fingers at an interface. Journal of Marine

Research, 83(3):2913–1919, 1979.

R. W. Schmitt. Double Diffusion in Oceanography. Annual Review of Fluid Mechanics,

26:255–285, 1994.



BIBLIOGRAPHY 119

R. W. Schmitt and D. T. Georgi. Fine-structure and microstructure in the North

Atlantic Current. Journal of Marine Research, 40:659–705, 1982.

R. W. Schmitt, H. Perkins, J. D. Boyd, and M. C. Stalcup. C-SALT: An investigation of

the thermohaline staircase in the western tropical North Atlantic. Deep Sea Research

Part A, Oceanographic Research Papers, 34(10):1655–1665, 1987.

W. D. Smyth and S. Kimura. Instability and Diapycnal Momentum Transport in

a Double-Diffusive, Stratified Shear Layer. Journal of Physical Oceanography, 37

(1985):1551–1565, 2007.

L. St. Laurent, A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole,

A. J. Watson, L. S. Laurent, A. C. N. Garabato, J. R. Ledwell, A. M. Thurnherr,

J. M. Toole, and A. J. Watson. Turbulence and Diapycnal Mixing in Drake Passage.

Journal of Physical Oceanography, 42(12):2143–2152, 2012.

M. E. Stern. The Salt-Fountain and Thermohaline Convection. Tellus, 12(2):172–175,

1960.

P. H. Stone and G. Salustri. Generalization of the Quasi-Geostrophic Eliassen-Palm

Flux to Include Eddy Forcing of Condensation Heating. Journal of the Atmospheric

Sciences, 41(24):3527–3536, 1984.

R. I. Tait and M. R. Howe. Some observation of thermohalin stratification in the deep

ocean. Deep Sea Research, 15:275–280, 1968.

J. M. Toole. Intrusion Characteristics in the Antarctic Polar Front. Journal of Physical

Oceanography, 11(6):780–793, 1981.

J. M. Toole and D. T. Georgi. On the dynamics and effects of double-diffusively driven

intrusions. Progress in Oceanography, 10(2):123–145, 1981.

A. M. Treguier, S. Theetten, E. P. Chassignet, T. Penduff, R. Smith, L. Talley,
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