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Abstract

Investigation of Unmanned Agricultural Ground Vehicles (UAGVs) has been on the in-

crease in recent decades as UAGVs have great potential in agricultural applications, and

thus UAGVs are expected to rule farms in the future. The use of UAGVs benefits from

replacing human operators to do tiresome as well as hazardous work, thus reducing the risk.

It can also significantly improve the efficiency to solve food shortages due to the dramatic

growth of world. Path Tracking has been an important topic in the development of UAGVs,

however the automatic guidance of farm vehicle becomes more difficult and challenging

than that of standard mobile robots as farm vehicles are subjected to significant disturbances

due to rough terrain and ground engaging operations. The controller of autonomous farm

vehicles is required to be sufficiently robust to both guarantee high path tracking accuracy

and stability.

This thesis mainly researches path tracking control methods for three kinds of UAGVs

in the presence of significant wheel slip. In path tracking, UAGVs are guided to follow a de-

sired path from an initial position while the controller keeps minimizing offsets with respect

to the reference path. To achieve the accuracy required in agriculture, this work utilizes

offset models derived based on kinematic models, which take both lateral and longitudinal

slips into account. A model predictive controller with receding min-max optimization is

then proposed to address the problem of wheel slip in UAGVs. This adaptive min-max

model predictive controller provides both robustness and adaptation for path tracking.

The superior performance of the proposed controller is verified by kinematic simulation,

dynamic simulation as well as field testing, compared to that of the classical model pre-

dictive control. Then, the proposed controller is also compared with a well-known robust

sliding mode controller and a well-performing backstepping controller, which is carried out

by implementing controllers on a UAGV at Elizabeth Macarthur Agricultural Institute. Re-

sults from simulations and experiments validate that the proposed adaptive min-max model

predictive controller ensures the required accuracy and robustness in the presence of wheel

slip without any slip measurement or estimation.
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Chapter 1

Introduction

1.1 Background and Motivation

The development of Unmanned Ground Vehicles (UGV) has been the hot subject for many

years due to great potential for applications in mining, defence and industrial production. In

these applications, UGVs not only take over the work of humans to operate in dangerous

or inconvenient environments, but also see an improvement in the operational efficiency.

The above factors have led to a rapid development of efficient and effective UGVs, and

researchers keep investigating applications of UGVs in more areas to perform more complex

and challenging work.

In the near future, UGVs are expected to revolutionize the whole farming system world-

wide, which can perform farming tasks now done by humans. For example, Unmanned

Agricultural Ground Vehicles (UAGVs) that can accurately follow predefined paths can be

used to plant the crop and then repeatedly revisit the growing crop accurately for crop man-

agement including growth monitoring and fertilizer, herbicides and pesticide application.

Highly accurate autonomous machines can apply fertilizers, herbicides, and pesticides with

greater spatial precision leading up to plant level care instead of field level care thereby

bringing in significant cost savings due to reduced fertilizer and chemical usage. In addi-
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2 Introduction

tion, the use of autonomous vehicles addresses the skilled operator shortage, reduces the

labour costs and improves occupational health and safety standards of operators [77].

Path tracking is one of the most important tasks for UAGVs. It controls the UAGV to

follow a predefined reference path from an initial position under certain conditions. How-

ever, ensuring accurate operation of autonomous agricultural vehicles is a challenging and

complex task. The primary reason is that UAGVs operate on rough terrain, which at times

can be sloping and undulating. Moreover, they carry out ground engaging operations such

as ploughing. These conditions often lead to inevitable slip at the front and rear wheels in

both lateral and longitudinal directions which can result in poor performance. Currently,

many path tracking systems do not take this sliding phenomenon into account when design-

ing path tracking controllers so the desired accuracy is difficult to achieve. Therefore it is

important to design a robust controller for UAGVs to address the problem brought by high

level of uncertainties in the fields.

Generally, there are two kinds of UAGVs, Tractor only and Tractor with Implements.

In the past decades, research on the Tractor only system was carried out more, whereas

recently the demand on the tractor-trailer system is increasing due to its broader applications.

For example, seeding is an agricultural application which cannot be well implemented by a

tractor only system. However, most of previous studies related to tractor-trailer type vehicles

only concentrated on passive implement. In fact, most of farming tasks are carried out by

the implement (trailer) rather than the leading vehicle (tractor), which indicates that path

tracking accuracy of the implement plays a more important role. Thus, path tracking control

of the tractor-trailer model needs to be researched further.

1.2 Objectives

The main objectives of this research completed are listed as follows:
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1.3 Contributions 3

1. To propose a new control approach in the presence of slip for farm vehicle path track-

ing so that the accuracy can be guaranteed although vehicles traverse the farmland

with the high-level of uncertainties.

2. To extend the proposed method to three different types of farm vehicles, namely trac-

tor, tractor-trailer and tracked vehicle-trailer.

3. To validate the proposed control method and compare it with other well functioning

control methods through both simulation and field experiments.

1.3 Contributions

A novel robust model predictive controller is proposed to address the problem of wheel

slip in three kinds of farm vehicles. Classical model predictive controller is improved to

an adaptive min-max model predictive controller which can provide robustness as well as

adaptation. The superior performance of the proposed controller is verified in both simu-

lation and field experiments in comparison to that of the classical model predictive control

method. Then, the proposed controller is compared with a well-known adaptive and robust

sliding mode controller and also with a well-performing backstepping controller reported

in the literature. These comparisons are carried out by implementing the controllers on a

farm tractor in field experiments. The experimental results show that the proposed adaptive

min-max model predictive controller ensures the accuracy and robustness in the presence

of wheel slip. Furthermore, the autonomous technologies presented in this thesis can be

employed in other industries such as road construction in civil engineering, mining and

defence.

The following papers have been published or submitted during the production of this

thesis:
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4 Introduction

1. X. Wang, J. Taghia and J. Katupitiya, “Robust model predictive control for path

tracking of a tracked vehicle with a steerable trailer in the presence of slip”. In

5th IFAC Conference on Sensing, Control and Automation Technologies for Agri-

culture(AGRICONTROL 2016), Seattle, WA, USA, August 14-17, 2016.

2. J. Taghia, X. Wang, S. Lam and J. Katupitiya, “A sliding mode controller with a

nonlinear disturbance observer for a farm vehicle operating in the presence of wheel

slip”, Autonomous Robots, vol.41, no.1, pp.71-88, 2017.

3. Q. F. Tan, X. Wang, J. Taghia and J. Katupitiya, “Force Control of 2WS4WD Vehicles

Using MPC and SQP for Improved Path Tracking”, International Journal of Advanced

Robotic Systems, conditionally accepted.

4. X. Wang, J. Taghia and J. Katupitiya, “Adaptive min-max model predictive control

for field vehicle guidance in the presence of wheel slip”, a book chapter in Robotics

and Mechatronics for Agriculture by CRC Press/Taylor & Francis Group, submitted.

1.4 Thesis Outline

This thesis is organised into chapters as follows:

Chapter 2 provides a thorough review of previous literature in terms of the future of

farming, farm vehicle model as well as control methods including PID control, robust con-

trol and model predictive control.

Chapter 3 proposes an adaptive min-max model predictive controller for path tracking

control of tractor in the presence of slip. The performance of the proposed controller is e-

valuated with extensive simulation incorporating kinematic simulation, dynamic simulation

and real field experiments in which the performance of the AMM-MPC is compared with

that of the classical MPC. Moreover, the proposed controller is compared with two success-
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1.4 Thesis Outline 5

ful implementations of other forms of robust nonlinear controllers in field experiments on a

typical farm.

Chapter 4 extends and applies the proposed control method developed in Chapter 3 to

a tractor-trailer system used in autonomous farming in the presence of slip. The proposed

controller is validated by comparing its performance with the performance of the trailer

in the absence of controller as well as the performance of the classical model predictive

controller.

Chapter 5 presents a robust and adaptive MPC controller for path tracking control of

a tracked vehicle pulling a steerable trailer in the presence of slip. The kinematic model

of a tracked vehicle pulling a trailer is linearised by a method different from previous two

chapters. A realistic dynamic simulation platform is used to evaluate the performance of the

proposed controller that is compared with the performance of min-max MPC and SMC.

Finally, Chapter 6 summarizes the work performed in the production of this thesis and

provides suggestions for the direction of future work that could be explored.
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Chapter 2

Literature Review

This chapter gives an extensive review of past contributions to path tracking for UGVs.

Section 2.1 surveys the future of farming in terms of using autonomous technology. This is

then followed in Section 2.2 by a review of two common models of UAGVs. A survey of the

current control methods of guidance control for UAGVs is presented in Section 2.3. Finally,

in Section 2.4, a summary is presented that no effective solution has yet been produced

which fully achieves the objective of this thesis.

2.1 Future of Farming

Food and agriculture are fundamental to human survival and it was the birth of agriculture

that laid down the basis for human civilisation. However, it is predicted that the world will

face widespread food shortages due to the dramatic growth of world population without a

comparable increase in farmworkers in the near future [23]. The research predicted that

the world population will be 34 percent higher than today’s population, reaching 9.1 billion

by 2050. Therefore, agricultural efficiency has to be improved through farm machinery

and equipment. Unmanned Agricultural Ground Vehicles(UAGVs) are seen as an effective
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8 Literature Review

strategy that pushes forward high efficiency production by using high technology such as

observing and measuring in crops, thus becoming an trigger for the development of UAGVs.

Besides above, the second trigger would be the high labour cost in farming, especially

for Australia, since Australian farm labour costs are relatively higher than any other coun-

tries worldwide. To cope with this issue, the usage of UAGVs is expected to reduce the

amount of human labour and meanwhile improve the overall efficiency of the production

process. Finally, UAGV drivers are usually exposed to fatigue and long driving hours in

harsh weather which is a risk factor in agricultural vehicle accidents, whereas self-driving ve-

hicles will increase driver safety. Therefore, all reasons above make the research of UAGVs

become more and more important. The meaning of UAGVs is summarized as follows:

1. Compared with limited human ability, automatic farming can implement more accu-

rate operation.

2. Autonomous operation can reduce required human labour on the field.

3. The labour cost can be reduced while the efficiency can be increased in farms.

4. Safety can be improved in accomplishing hazardous tasks, e.g. handling and spraying

poisonous pesticides.

5. The overlap of fertilizer spraying can be solved by increasing guidance accuracy,

which is environmental-friendly.

Actually, autonomous mobile robots have been widely and successfully used in various

fields such as military, mining, transportation and industry fields to provide services. The

research of autonomous mobile robots in mining can be found in [62] which proposed an

autonomous navigation system - opportunistic localization for a 30 tonne Load-Haul-Dump

truck. Bagnell [8] designed a navigation algorithm for a military vehicle named Crucher.

In this study a vision system was used to provide perception of the terrain. Ch.K. Volos
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2.1 Future of Farming 9

[78] presented a chaotic path planning generator based on a nonlinear circuit, which was

implemented in military autonomous mobile robots to cover a terrain. Duff [17] used an

autonomous vehicle in mining industry where an underground autonomous mining vehicle

was operated in an uncertain and hazardous environment of mines. Autonomous vehicles

used for the surveillance of terrains can be found in [48, 49], and a floor-cleaning robot in

domestic environments was researched in [55]. Recently, a number of guidance and auto

steering systems have been commercially adopted in industry. For example, one Chinese

courier company started using auto-steering robots to efficiently sort and carry parcels at

the warehouse [47]. Kawasaki robotics made autonomous robots which are specifically

designed for cleaning the room as well as auto-steering robot arms used in industries. Con-

sidering benefits brought by these robots, demand for auto steering systems is expected to

rise worldwide during the forecast period from now to 2020. The success of autonomous

mobile robots in these areas laid the foundation for the research on unmanned vehicles in

agriculture.

In the field of farming, the research has shown many possible applications of autonomous

vehicles, such as harvesting, weeding, fertiliser spraying, seeding and hoeing. E.J. Van Hen-

ten et al. [76] reported a concept of an autonomous vehicle used for harvesting cucumbers

in greenhouse. Moreover, harvesting not only includes picking fruits but also the transporta-

tion of large quantities of fruits to the main storage area. The experimental results showed

the autonomous vehicle can pick more than 80% of the cucumbers in greenhouse without

human interference. R. Eaton et al. in [18, 20] presented a relatively complex precision

autonomous farming system which was a foundation for precision seeding and weeding op-

eration or setting guidelines for agricultural vehicles to follow, such as the most appropriate

farm layout, dosage types as well as levels for levels for fertilizer, herbicides and pesticides.

Astrand [5] studied row-following system based on computer vision for an autonomous a-
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gricultural machinery. Therefore, the potential for UAGVs to perform farm work is huge

and this field needs more investigation.

Guidance for UAGVs is the main topic of this thesis. Although different automatic farm

vehicles are used in different ways, all these vehicles contain the guidance part of farm

vehicles which is the basic component of an autonomous vehicle. In general, farm vehicles

guidance systems consist of at least three parts - sensor, controller and actuator. Sensor is

used to measure the position of the tractor or the trailer for the system. Controller is then

used to create an input such as a steering angle to control the vehicle. Finally, actuator is the

component which is responsible for controlling the vehicle and trailer to move, such as the

front and rear axle.

However, the task of farm vehicle guidance in highly uncertain and unknown environ-

ment is not trivial but rather difficult. One of the main difficulties is the uncertain wheel

slip, which makes the control design very challenging. Consequently, building an accurate

model and providing a robust and reliable controller which can be adaptive to environmen-

tal changes are very demanding. In addition to the above, safety and regulations are very

challenging for autonomous operations. I know that a number of countries have established

relevant departments to work on this area. For example, California’s Department of Motor

Vehicles (DMV) proposed regulations about operating autonomous vehicles in April, 2017.

In fact, It is rather difficult to set up rules for autonomous vehicles due to rapid changes and

diversity of autonomous technologies.

2.2 Farm Vehicle Model

The first step towards controller development is modelling. Two types of models can be

used for controller development, the kinematic models or the dynamic models. Even though

dynamic models are more complex, they actually are more accurate than kinematic models

especially when the vehicles operate with high accelerations. However, dynamic models
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are more specific to a given system than kinematic models, which are more general and

easy to use. Nevertheless, it has been shown that, for vehicles operating at low speeds with

low accelerations such as UAGVs, the kinematic models are accurate enough for designing

path following controllers [81]. Thus, kinematic models of two types of UAGVs will be

investigated in this section.

2.2.1 Tractor

To fulfil the accuracy of guidance in agricultural applications, the tractor position should be

precise enough which is usually achieved by installing Real-time Kinematic Global Posi-

tioning Systems(RTK-GPS) sensors. Details can be found in the literature [9, 24, 41]. Then,

whether the vehicle model is accurate or not is another factor related to the guidance accu-

racy. A number of kinematic models of tractor systems based on non-slip assumption have

been derived in previous research [51, 66, 74, 82]. However, this is not a valid assumption

in the agricultural environment because slip is significant and inevitable. Afterwards, re-

searchers started to take sliding phenomena into account but modelling of the slip is very

challenging in terms of agricultural fields. It is because slip is not only affected by the ter-

rain properties but also other parameters such as the speed and the curvature of the desired

path. As an initial approach, in [43, 44], Lenain et al. proposed an extended kinematic mod-

el incorporating a rear side slip angle, and a front side slip angle to take the slip effects into

account. Although the longitudinal slip velocity was not included in the model, there was a

useful strategy in this study that was the estimation of front side sliding angle parameters by

use of an "Internal Model Adaptive Scheme". A more comprehensive kinematic model was

then introduced by Fang et al. in [22]. In this model, a lateral slip velocity perpendicular to

the velocity of the field vehicle was added to the front wheels as a steering bias. The new

sliding parameter was able to include the neglected longitudinal tires’ sliding. As a further

extension, a kinematic model in [30] was derived with three slips - lateral slip velocity, lon-
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gitudinal slip velocity and steering slip angle. An offset model was then proposed which

was an extended form from the kinematic model. The error model was the result of the

lateral and orientation difference between the desired path and the actual position, which

was a more realistic kinematic model for a tractor.

2.2.2 Tractor-trailer

In recent decades, the demand of tractor-trailer systems is increasing as the implement or

trailer has more possibilities in performing farm tasks. The trailer can be either installed in

the front of a tractor or pushed by the tractor. However, in this thesis, only trailers placed

at back are discussed. In a tractor-trailer system, the tractor is to deliver a high tractive

force for the purposes of pulling the trailer. Generally, there are two kinds of trailer: passive

trailer and active trailer. ’Passive’ means no steering capabilities on the side of the trailer

or the implement side. The driving force is applied just on the tractor side; so, there is

no propulsion on the trailer side. By contrast, an active trailer means that it can deal with

an extra steering mechanism, which is on the trailer side of the system. Adding steering

capabilities on the trailer side increases manoeuvre of the vehicle in the field also increases

the stability and robustness of the path following in agricultural environment.

Ridley et al. [61] developed a kinematic model for a Load haul Dump vehicle used for

underground mining operations such as transporting ore in dangerous environment. The

vehicle was operating with a low speed of 10 km/h and cyclically travelling along a round

path by controlling the hitch angle. The control design was based on a linear kinematic mod-

el without slip involved. The simulation results showed the feasibility of this autonomous

vehicle under the low speed. In [4], A. Astolfi et al. proposed a path tracking controller

for a tractor pulling a passive trailer to follow rectilinear and circular paths. However, it

only reported simulation results of the circle reference path which does not fit the situation

in agriculture. In [15], DeSantis et al. presented development of a tractor-trailer model.
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In this work, there were two new states: steering angle which is equal to the propulsion

for steering control and vehicle velocity that is equal to combination of mass, geometrical

parameters, forces of the vehicle. Then, in [16], path tracking control for a tractor-trailer

(on-axle)-trailer (off-axle) were developed by DeSantis et al and forward as well as reverse

motion were considered in this work. In [6], Backman et al. developed a path tracking

control method for the tractor-trailer system where the drawbar of the trailer was controlled

by a hydraulically active joint. However, this research assumed that the ground is ideal and

sliding effects do not exist, which is not true in the real world. Then, the work presented

in [7], took the wheel slip into account and used extended Kalman filter to compensate for

the slippage. However, this approach was not robust due to the assumption of the Gaussian

distribution of slip, which was not a reliable assumption. In [65], a steerable trailer was

considered, similar to [11, 54], and still there was no slip considered in the modelling. In

[54], a multi-steered n-trailer is considered by OConnor et al. The kinematic model was

derived for the n-trailer scenario and there was no slip involved in the derivation. Although

this study was interesting for covering concept of multi-steerable n-trailers, the linearisation

technique presented in this paper was not applicable in our study. As indicated before, the

slip parameters must be included in the modelling and our control strategy. There are also

studies on dynamic modelling for tractor-trailer systems. In [33], Keymasi et al. proposed a

dynamic model in the presence of uncertainties for a wheeled mobile robot towing a trailer.

Finally, the work carried out by Campion et al. [12] gave classification of kinematic as well

as dynamic models for wheeled mobile robots.

In this work, the offset model presented in [30] is used to design the path tracking con-

troller. Slip is considered as slip velocity in the kinematic model. The tractor had three slips,

longitudinal slip at rear wheels, lateral slip at rear wheels and slip angle at front wheels,

while the trailer had a lateral slip velocity at rear wheels which are steerable.
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2.3 Control Methods

After reviewing vehicle modelling, another key objective is designing a path tracking con-

troller for UAGVs in this thesis. The quality of the controller plays an important role in

the accuracy of automatic guidance. As can be seen in last section, the kinematic models of

UAGVs are highly nonlinear and complex. Moreover, UAGVs are affected by inevitably sig-

nificant disturbances during tracking the desired path. Based on both factors, advanced and

robust control methods are suggested. In this section, control approaches will be reviewed

in three parts: linear control, robust control, model predictive control.

2.3.1 Linear control

A Proportional-Integral-Derivative (PID) controller is the most famous linear controller, ben-

efiting from its simple structure and fast response [56]. It has been proved to be feasible in

plenty of industrial applications such as controlling industrial robot arms [63], governing

the industrial steam turbine [29], the control of industrial hydraulic actuator [64]. A review

on applications of classical PID controllers can be found in [39]. In [53], Julio E. Normey-

Rico et al. presented a robust PID controller for path tracking of a mobile robot which

benefited from the tuning of this simple controller. In [1], Auday Al-Mayyahi proposed a

PID controller with an optimal control technique - Particle Swarm Optimization (PSO) to

solve the problem of path tracking. In this research, kinematic model as well as dynamic

model was utilized and the simulation results showed the error was minimized and the sys-

tem is globally asymptotically stable. In [2], a simple PID controller and an optimal preview

controller were combined to improve precision guidance performance and robustness. Al-

though some improvement were made, disadvantages arose because the slip phenomenon

was not considered in the design of control system presented in this study.

However, there are some limitations in these PID controllers. For example, optimal

control is generally not provided by PID control and optimization needs to be obtained by
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using other techniques, which may produce poor performance in controlling. Also, PID

control is normally used for the single-input single-output (SISO) case and not applicable

for the multi-inputs-multi-outputs case. As a result, the control method in this thesis was

expected to be a more advanced control design method.

2.3.2 Robust control

As mentioned before, wheel slip is the interaction between soil and wheels, and affected by

tyres as well as speed of UAGVs, terrain properties, and path curvatures. In specific agri-

cultural applications, 5 centimetres accuracy with respect to the reference path is required,

although farm vehicles are moving on slope and undulating ground [43]. As the experimen-

tal results shown in [42], classical control without considering the sliding deviated the farm

tractor from the desired path. To be specific, the highest lateral offset during the slope was

30 cm while errors during the curve varied from 40 cm to 60 cm. The effect brought by slip

in field is significant, and cannot be ignored definitely. Thus, robust control is expected to

be a good choice for path tracking in agriculture as this control method has the capability

to deal with uncertainties and disturbances. Generally speaking, robust control approaches

take advantage of the bounds of errors to manage disturbances. The bounds are usually

grouped into polytopic and multi-model paradigm [36].

Sliding mode control (SMC) and back stepping control (BSC) are two well-performing

robust control methods, and have been widely used in many industrial applications [35, 69,

83]. Both control methods are based on Lyapunov stability analysis, and they perform suc-

cessfully in the presence of uncertainties and disturbances [37, 68]. A good overview of

robust approaches based on their historical time line and importance is provided by Koko-

tovic [34, 35]. In [14], M.L. Corradini and G.Orlando tackled the problem of trajectory

tracking for a two driving wheels mobile robot in the presence of uncertainties. A discrete

time sliding mode controller was proposed based on the dynamic model of the robot. In
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[28], a sliding mode controller was proposed to enhance the tracking performance of a two-

degree-of-freedom robotic manipulator which was subject to external disturbances. In [46],

a backstepping controller was designed for a quadrotor helicopter, and simulation results

showed this controller stabilized the quadrotor. In [84], L. Z. Li et al. proposed a back-

stepping controller combined with the direct fuzzy logic system for the turbine steam valve

control.

Besides above, research has also been focused on applying robust control in controlling

autonomous vehicles. In [71], J. Taghia and J. Katupitiya proposed a sliding mode controller

with a disturbance observer for a steerable tractor-trailer with slip effects accounted. The

controller contained an on-line estimation algorithm called recuMrsive least squares (RLS)

of slip velocities during the tractor-trailer traverses the farmland, which brought robustness

as well as adaptation ability. The tractor-trailer in this work traversed at a low speed of 3 m/s

and the absolute value of lateral offsets in the simulation were within 2 cm. However, there

was no estimation about the trailer and this approach is sensitive to unmatched uncertainties

in the system model. In [31], V. Huynh et al. presented a PI and backstepping controller for

a tractor-steerable trailer system which was guided in both lateral and longitudinal directions

by using offset models. It was assumed that the lateral slip velocity at the rear of the trailer

was larger than it at the tractor side. However, in this work, sliding parameters were selected

as constant value which was not correct in the real world. From the simulation results, it

could be seen that the error of trailer was a constant value around 40 cm. In [22], H. Fang et

al. proposed a robust adaptive control for the kinematic model with slip of the farm tractor.

This work introduced two slip parameters, the lateral sliding velocity at and bias of the

steering angle at front wheels whereas the longitudinal tire sliding was neglected. However,

when the reference path changed to a trajectory used in the real agriculture application, the

lateral offsets were almost 52 cm at the curve, and the lateral offsets at the straight lines
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were larger than 12 cm. As a result, accuracy at both straight lines and curves needs to be

improved in the path tracking of UAGVs.

2.3.3 Model predictive control

A very promising control method for achieving high precision path tracking is Model Pre-

dictive Control (MPC) due to its receding optimization and predictive ability. In the past,

MPC has been mainly used in many industrial applications especially chemical fields such

as oil-refining and power systems, while recently, MPC is also found to be a successful con-

troller in the area of food processing, automation and aerospace areas due to its feasibility,

stability and good performance [52]. For MPC technology, [27] is a very comprehensive

books, which introduces linear and nonlinear MPC knowledge in detail. In [58], J. Richalet

described two classical applications of model based on predictive control. One was a typ-

ical crude oil distillation tower which was a slow process unit; the other was a two degree

freedom servo turret. In [57], S. Joe Qin and Thomas A. Badgewell gave an overview of

MPC technology, and the industrial survey showed the number of MPC applications has

almost doubled in four years from 1995 to 1999. In [3], M. Arnold and G. Andersson pro-

posed a MPC strategy for multi-carrier energy systems to keep the consequences of forecast

uncertainties at acceptable levels. The operation costs were reduced by implementing the

controller.

In the recent years, researchers have shown an interest in applying MPC to path track-

ing control in agriculture, whereas research results are not satisfactory. One of the major

problems is the absence of managing wheel slip in farming environments. Moreover, classi-

cal MPC is not inherently robust [25], therefore it is necessary to design a MPC algorithm

taking the wheel slips into account. In [82], MPC was developed for controlling a mobile

robot, where the path tracking errors were penalized by a quadratic cost function. In [7, 32],

Backman et al. presented a MPC law to direct a tractor-trailer kinematic model without
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slips accounted. Again, model without slips was not very good in realistic applications. In

[26] , Garcia presented a controller based on MPC for a commercial vehicle and also ob-

served with the EKF filter, not including slips. Then, the work presented in [43], developed

a model predictive controller for wheeled farm tractor path tracking in the presence of slip.

The control design was starting from a nonlinear control approach taking slip into account.

The rear side slip angle and the front side slip angle were estimated by a difference value

which was only brought by slip. This difference was the error between the actual position

measured by RTK-GPS and the predicted position computed by kinematic models without

slip. Then a predictive controller was added to reduce the transient overshoots brought by

actuation delays and vehicle large inertia. The experimental results showed the maximum

value of lateral offset was around 20 cm and most of guidance accuracy stayed in the range

between -15 cm and 15 cm during the path tracking. However, the noise levels on the two

estimated slip angles were problematic and the objective function of the model predictive

control law was only to ensure the convergence of lateral offset to zero whereas there is also

an orientation offset which can affect the accuracy of path following.

The work reviewed above was only using a classical model predictive controller, where-

as in [13] proposed a robust MPC method which incorporated robustness into MPC without

online estimation. The strategy was called minimax which means the worst-case consider-

s all possible disturbances including the worst case. However, at times, this method may

cause overcompensation because the worst case does not occur always. To avoid overcom-

pensation, Scokaert et al. in [67] proposed a min-max feedback MPC control method for a

linear system. Although this method leads to a better performance than min-max MPC, it

is computationally intensive. In [45], J. Löfberg proposed a robust model predictive control

for uncertain constrained linear discrete-time systems. In [60], Arthur proposed two dif-

ferent robust model predictive control methods involving imperfect information. One was

robust output feedback MPC, the other was robust MPC with time delay. Both were proved
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feasible in this study. In [40], a robust MPC achieved by using tube was proposed and it

can benefit linear and time-invariant systems. For details, a brief review of robust MPC

formulation was given in [59].

2.4 Summary

This chapter has surveyed the future of farm, farm vehicle models and different control

approaches for path tracking. The review of farming in the future shows that UAGVs are

expected to be a powerful tool to solve food shortages due to the dramatic growth of world’s

population in the future. The development of UAGVs is not only meaningful in increasing

efficiency but also reducing the labour cost as well as being environmental-friendly.

The review of farm vehicle models shows the importance of the accurate vehicle model

for the performance of the controller. Though dynamic models are more accurate, kinematic

models are chosen because it is easy to implement and good enough when vehicles operate

at low speeds with low accelerations. Thus, the review was focused on kinematic models

of farm vehicle. There have been several contributions on kinematic modelling made by

researchers, although some disadvantages exist in some way, e.g. no slip considered in the

model.

Finally, the review of control methods shows the importance of having robustness in

order to deal with significant disturbances in fields. The review is conducted from linear

control to model predictive control. Linear control is not suitable for highly nonliear vehicle

models although this method is simple and has fast response. Then, SMC and BSC are two

robust control methods based on Lyapunov functions against uncertainties, however, the

accuracy is not satisfactory in terms of path tracking in agriculture. Compared with MPC

which does not have robustness, robust model predictive control has more potential to be a

good path tracking controller in achieving high accuracy of path tracking due to the receding

optimization as well as robustness.
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Chapter 3

Model Predictive Control for Tractor

Path Tracking

In general, autonomous guidance is classified into two categories: path tracking and trajec-

tory tracking. In path tracking, UAGVs are driving along a predefined path starting from

a given initial position without a timing law, while in trajectory tracking control, UAGVs

must follow a geometric trajectory with a specified timing law. In the auto-farming applica-

tions, path tracking can fulfil more production duties than trajectory tracking, thus research

presented in this thesis focuses on path tracking.

As mentioned before, accurate path tracking control for UAGVs is very challenging in

farm environment, as UAGVs are subject to significant disturbances from rough soil. Hence,

path tracking control of UAGVs requires the controller to be sufficiently robust to guarantee

high path tracking accuracy and stability. By considering above requirements, model pre-

dictive control is found to be a very promising control method to acquire high precision due

to its receding optimization and predictive algorithm. However, when the vehicle is suffer-

ing from significant external disturbances, the accuracy goes beyond reasonable limits. For

example, errors in the curves can be over 50 cm and errors in the straight lines can be over
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20 cm. To bring any improvement, an adaptive min-max model predictive controller was

proposed to provide robustness and adaptation in guidance control.

This chapter presents two path tracking control algorithms for a tractor system, classical

MPC and robust MPC. The structure of this chapter is that, in Section 3.1, a kinematic model

of a tractor that takes into account sliding and an offset model extended from this kinematic

model are built. In Section 3.2 feedback linearisation is used to linearise the highly nonlinear

offset model. In Section 3.3 previous work about classical model predictive control design

is reviewed. The classical model predictive controller will later be improved to deliver

better performance. In Section 3.4, presence of a new predictive controller, by considering

the significant sliding phenomenon, an adaptive min-max model predictive control (AMM-

MPC) is derived and comparative simulation as well as experiments are presented to validate

the proposed control law.

3.1 System Modelling and Description

The vehicle in this chapter is a 2WD2WS tractor, and it is presented as a bicycle model

where two front steered wheels are simplified into one steered wheel shown in Figure 3.1.

The vehicle wheelbase is lt ,and the tractor is driven at rear wheels with a longitudinal

velocity v while steered at the front wheel with a steering angle δ . Other related variables

as well as parameters are shown in Table 3.1.

3.1.1 Kinematic model

The tractor’s states are defined by a vector pt = [xt ,yt ,θt ]
T

, where (xt ,yt) represents the

position of the tractor (middle point O′) in the global coordinate xOy and θt represents the

heading of the tractor. As shown in Figure 3.1, the tractor is subject to three wheel slips,

lateral slip velocity vsr, longitudinal slip velocity vlr and slip angle β f . In detail, the lateral
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Fig. 3.1 Tractor kinematic model and the reference path.

slip velocity vsr and the longitudinal slip velocity vlr are both located at the rear wheels of

the tractor while the slip angle β f is located at the front wheels of the tractor.

The kinematic equations of the tractor in the presence of slips are derived by using the

kinematic model introduced in [30],

ẋt = (v− vlr)cosθt − vsr sinθt ,

ẏt = (v− vlr)sinθt + vsr cosθt ,

θ̇t =
v− vlr

lt
tan(δ +β f )+

vsr

lt
.

(3.1)

3.1.2 Offset model

In Figure 3.1, path tracking errors between the position of the tractor and the reference path

are represented by path offset los and heading offset θos. The path offset los is defined as the
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Table 3.1 System description

Variables Description

cd curvature of the reference path

xt x-coordinate of point O′ in the xOy coordinate

yt y-coordinate of point O′ in the xOy coordinate

θt heading of the tractor in the xOy coordinate

v driving velocity vector at point B in the xOy coordinate,

v = ‖v‖
v f front wheel velocity, v f =

∥
∥v f

∥
∥

θd desired heading angle

δ steering angle

los path offset

θos heading offset

vsr lateral slip velocity at point B, vsr = ‖vsr‖
vlr longitudinal slip velocity at point B, vlr = ‖vlr‖
β f front wheel slip angle

lt vehicle wheelbase

Points Description

A center of the front axle

B center of the rear axle

O origin of global coordinate frame

O′ origin of local coordinate frame (coincides with B)

P point of intersection of normal from B to the reference path

distance O′P while θos is defined as the angle θos = θd −θt . Thus, based on [30], an offset

model is as follow,

l̇os =−σ |v− vlr|sinθos −σζ vsr cosθos,

θ̇os =
v− vlr

lt
tan(δ +β f )+

vsr

lt
−

σ |v− vlr|
cd cosθos

1+ cd los
+σζ vsr

cd sinθos

1+ cdlos
,

(3.2)

where σ is a direction coefficient. If σ is -1, the vehicle tracks the reference path in a

clockwise direction. If σ is +1, the tractor tracks the reference path in a counterclockwise

direction. Another coefficient added to the model is ζ which is +1 when the tractor moves
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forward and -1 when the vehicle moves backward. In this chapter, the tractor is assumed to

move forward only, and therefore ζ is always +1.

Compared to the kinematic model (3.1), the offset model (3.2) creates an immediate

connection between the position of the tractor and the reference path. Two path tracking

errors los and θos are controlled by the steering angle δ . According to [43], both los and θos

can be measured based on a RTK GPS. Thus, this model can be later used for designing a

path tracking controller.

3.2 Feedback Linearisation

As seen in Section 3.1.2, the model (3.2) is highly nonlinear, and therefore directly using

it in control design is tedious. In order to apply the MPC law developed by using a linear

state-space model [79], feedback linearisation based on [34] is thus carried out to convert

the highly nonlinear system to a linear system.

To implement feedback linearisation, two assumptions are considered as follows.

Assumption 1 The longitudinal velocity of the tractor v > 0 and satisfies v > |vlr|.

Assumption 1 is valid because the tractor is expected to move forward despite slipping.

Based on Assumption 1, the absolute part |v− vlr| in (3.2) is simplified as

σ |v− vlr|=−σ(v− vlr). (3.3)

Assumption 2 The side slip angle β f at the front wheel of the tractor is small compared to

δ +β f .
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Assumption 2 is valid because β f is generally a small value in practical situations, usually

between 0◦ and 5◦ [22, 31]. Based on Assumption 2, tan(δ +β f ) is written as

tan(δ +β f )≈ tanδ + tanβ f . (3.4)

Then the overall disturbances d1 and d2 are defined, the model (3.2) are rewritten as,

l̇os =−σvsinθos +d1,

θ̇os =
v

lt
tanδ −σv

cd cosθos

1+ cdlos

+d2,

(3.5)

where

d1 = σvlr sinθos −σvsr cosθos,

d2 =−
vlr

lt
tanδ +

v− vlr

lt
tanβ f +

vsr

lt
+σvlr

cd cosθos

1+ cd los
+σvsr

cd sinθos

1+ cd los
.

(3.6)

For cancelling the nonlinearity in (3.5), two new state variables z1, z2 and one new

control input uk are defined as

z1 = los,

z2 =−σvsinθos,

uk =−σvcosθos

( v

lt
tanδ −σv

cd cosθos

1+ cd los

)
.

(3.7)

then

ż1 = z2 +ω1,

ż2 = uk +ω2,

(3.8)

where

ω1 = d1,

ω2 =−σvcosθosd2.

(3.9)
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Finally, two vectors zk = [z1 z2]
T and ωk = [ω1 ω2]

T are defined so that a state-space

model is obtained as,

żk = Aczk +Bcuk +Dcωk,

yk = Cczk.

(3.10)

where

Ac =






0 1

0 0




 ,Bc =






0

1




 ,

Cc =

[

α sign(los) γ sign(θos)

]

,Dc =






1

1




 .

In (3.10), zk is the current state; uk is the control input; and ωk is the disturbance in the

state-space model, where Ac, Bc and Dc are defined as above. Moreover, this model has yk

as the output, which is used to represent path tracking errors. In detail, the output yk depends

on the values of α and γ which are gains on los and θos, respectively, which means that the

output is the summation of two offsets and can change by the proportion of two offsets. For

instance, if α = 1 and γ = 0, yk contains only los contribution, so the controller solely sends

los to zero. Note that, sign() in Cc guarantees errors los, θos or their combination base on α

and γ to be diminished regardless of the signs of los and θos.

3.3 Classical MPC for Tractor Path Tracking

3.3.1 Augmented discrete-time state-space model

According the literature [38, 75], the classical MPC algorithm is based on the assumption

of pure rolling without sliding, and thus disturbances in the model (3.10) is ignored as

żk = Aczk +Bcuk,

yk = Cczk.

(3.11)
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where

Ac =






0 1

0 0




 ,Bc =






0

1




 ,Cc =

[

α sign(los) γ sign(θos)

]

.

The continuous-time state-space model in (3.11) then needs to be discretized as,

zk+1 = Adzk +Bduk,

yk = Cdzk,

(3.12)

where Ad , Bd , Cd are discrete counterparts of Ac, Bc, Cc with respect to sampling interval

∆t.

Then the linear state-space model in (3.12) is converted to an augmented model with an

embedded integrator based on [79] as follows,

∆zk = zk − zk−1, ∆uk = uk −uk−1, (3.13)

then the augmented model is obtained as,






∆zk+1

yk+1




=






Ad oT
d

CdAd 1











∆zk

yk




+






Bd

CdBd




∆uk, (3.14)

where od = [0 0].

To simplify, the vector xk = [∆zT
k yk]

T is defined and (3.14) is rewritten as,

xk+1 = Axk +B∆uk,

yk = Cxk,

(3.15)

where

A =






Ad oT
d

CdAd 1




 ,B =






Bd

CdBd




 ,C =

[

od 1

]

.
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3.3 Classical MPC for Tractor Path Tracking 29

In (3.15), xk ∈ R
3×1, yk ∈ R

1×1, ∆uk ∈ R
1×1 denote the state, the controlled output, the

augmented control input, respectively.

3.3.2 Prediction of state and output variables

The basic idea of model predictive control is to calculate the future outputs together with

the future control inputs by using the current states that are measurable and minimizing an

objective function to obtain the optimal control trajectory.

This whole process is shown in Figure 3.2. To begin with, at the sampling time k, k ≥ 0,

the current state is assumed as xk|k, which is the same as xk mentioned earlier. Using xk|k,

the future states are predicted for Np sample times which is called the prediction horizon.

The state xk+n|k denotes the predicted state at k+n, predicted using xk|k at sampling instant

k. The number of control inputs to obtain the future outputs is Nc which is called the control

horizon. Note that, Np ≥ Nc, preferably, Np > Nc.

To obtain a convenient notation, vectors are introduced to denote future states X, future

outputs Y, future control inputs ∆U as,

X =
(

xk+1|k xk+2|k xk+3|k · · · xk+Np|k

)T

Y =
(

yk+1|k yk+2|k yk+3|k · · · yk+Np|k

)T

∆U =
(
∆uk|k ∆uk+1|k ∆uk+2|k · · · ∆uk+Nc−1|k

)T
.

(3.16)
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30 Model Predictive Control for Tractor Path Tracking

Fig. 3.2 Flowchart of the model predictive control algorithm.
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3.3 Classical MPC for Tractor Path Tracking 31

Based on (3.15), the future states X are calculated successively by using the future con-

trol inputs ∆U,

xk+1|k = Axk +B∆uk

xk+2|k = Axk+1|k +B∆uk+1

= A2xk +AB∆uk +B∆uk+1

...

xk+Np|k = ANpxk +ANp−1B∆uk +ANp−2B∆uk+1 + · · ·+ANp−NcB∆uk+Nc−1.

Then, the predicted output variables are calculated by substitution,

yk+1|k = CAxk +CB∆uk

yk+2|k = CAxk+1|k +CB∆uk+1

= CA2xk +CAB∆uk +CB∆uk+1

...

yk+Np|k = CANpxk +CANp−1B∆uk +CANp−2B∆uk+1 + · · ·+CANp−NcB∆uk+Nc−1.

Referring to (3.16), the output Y is obtained as follows,

Y = Fxk +ΦΦΦ∆U, (3.17)

where,

F =















CA

CA2

CA3

...

CANp















,ΦΦΦ =















CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0

...
...

...
. . .

...

CANp−1B CANp−2B CANp−3B · · · CANp−NcB















.
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32 Model Predictive Control for Tractor Path Tracking

3.3.3 Receding optimization

The objective of the model predictive control system is to find the optimal control trajectory

∆U such that the predicted output is as close as possible to the reference Rs. This process

can be implemented by minimizing a cost function J defined as,

J = (Rs−Y)T (Rs −Y)+∆UT R̄∆U. (3.18)

Then, we achieve

min
∆U

J subject to

∆U ∈ ∆U∗,

(3.19)

where ∆U∗ is constraint set, Y ∈ R
Np×1 and ∆U ∈ R

Nc×1. Moreover, the diagonal matrix R̄

is defined as R̄ = rwINc×Nc where rw ≥ 0 is a tuning parameter for penalizing the control

input. When rw is set to zero, the goal will be solely to make error as small as possible and

no attention would be paid on how large ∆U might be. For path tracking, Rs is always set to

0, as offsets are driven to zero. As a consequence, the cost function J can be simplified as,

min
∆U

YT Y+∆UT R̄∆U subject to

∆U ∈ ∆U∗,

(3.20)

To minimized the cost function, the derivative of J is calculated,

J = (Fxk)
T (Fxk)+2∆UT ΦΦΦT (Fxk)+∆UT (ΦΦΦT ΦΦΦ+ R̄)∆U, (3.21)

the derivative of J with respect to ∆U is obtained as

∂J

∂∆U
= 2ΦΦΦT (Fxk)+2(ΦΦΦT ΦΦΦ+ R̄)∆U, (3.22)
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3.3 Classical MPC for Tractor Path Tracking 33

the minimum of J is to make above (3.22) zero

∂J

∂∆U
= 0, (3.23)

then the optimal control trajectory will be

∆U =−(ΦΦΦT ΦΦΦ+ R̄)−1ΦΦΦT (Fxk), (3.24)

with the assumption that (ΦΦΦT ΦΦΦ+ R̄)−1 exists.

As per the receding control principle, only the first element ∆uk|k of ∆U at sampling time

k is implemented to the system model, thus

∆uk =

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T ∆U

=−K1xk,

(3.25)

where

K1 =

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T (ΦΦΦT ΦΦΦ+ R̄)−1(ΦΦΦT F).
(3.26)

Finally, the actual control input is,

uk = ∆uk +uk−1,

δ = arctan{(
lt

v
)(uk +σ |v|

cd cosθos

1+ cdlos
)}.

(3.27)

3.3.4 Simulation

The proposed controller above was used to control the kinematic model of a 2WD2WS trac-

tor to follow a predefined path. The simulation platform was developed in MATLAB and

the parameters were listed in Table 3.2. Note that parameters come from the John Deere

4210 Compact Utility Tractor-trailer in Figure 3.14, which also will be used for later simula-
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34 Model Predictive Control for Tractor Path Tracking

tion as well as experiments in Chapter 4 and Chapter 5. For all simulation and experiments,

we chose the value of α is larger than the value of γ , as the path offset is considered more

important in this thesis.

The reference path used in the simulation is shown in Fig. 3.3. This path has both

straight and curved segments, and the curved segments have different curvatures. There are

four curved segments labelled in the path, the sharpest curved segment is the fourth one.

In the simulation, the vehicle travelled in the clock-wise direction starting around the first

curved segment and travelled through the next three curved segments.

Table 3.2 Parameters for simulation and experiment.

Parameters Value

Vehicle wheelbase lt 1.7 m

Driving velocity v 3 m/s

Tuning parameter rw 0.1

Prediction horizon Np 5

Control horizon Nc 2

Tuning parameter for path offset α 1.5

Tuning parameter for heading offset γ 0.75

Steering angle |δ | ≤ 45◦

The comparison between the reference path and the actual path of classical MPC for

path tracking is shown in Figure 3.4 while the path offset and heading offset are shown in

Figure 3.5. From these two figures, we can see that MPC demonstrated perfect performance

under assumption of pure rolling.

However, in real world, this assumption is invalid as the tractor definitely drives under

the impact of slip in both lateral and longitudinal directions, namely slip velocities vsr, vlr

and slip angle β f in the kinematic model of tractor. Especially for UAGVs, slip will become
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Fig. 3.3 The reference path. Starting point and the curve segments are labeled.
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Fig. 3.4 Kinematic simulation: the X-Y plot of path tracking of the tractor based on MPC.
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Fig. 3.5 Kinematic simulation: path offset and heading offset of the tractor based on MPC

without slip.

more significant. Thus, we added slip phenomena to the kinematic platform and then tested

the controller to see how significant an issue wheel slip is in path tracking of UAGVs.

In simulation, the lateral slip velocity vsr and the longitudinal slip velocity vlr are as-

sumed to be less than 30% of the tractor velocity and generated by random numbers. More-

over, vsr is more curvature varying while vlr is more velocity varying, as per

vsr =−3(cd cosδ +0.2δ )(Rand()−1),

vlr = 0.3v(Rand()−0.5)+ sinδ ,

(3.28)

where Rand() is a uniform random number generator, generating numbers between 0 and

1. The steering slip angle β f is defined as random numbers within the range −5◦ to 5◦, and

generated using

β f = 10(Rand()−0.5). (3.29)
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3.4 AMM-MPC for Tractor Path Tracking 37

As shown in Figure 3.6, the path offset was under significant influence brought by wheel

slip, especially in the curve segments. The largest error was almost 16 cm occurring at the

fourth corner. However, the accuracy in straight lines was close to zero, considered to be

reasonable. To solve this significant problem, it is very necessary to create a control method

which can deliver good robustness in the curves without affecting the accuracy in straight

lines.
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Fig. 3.6 Kinematic simulation: path offset and heading offset of the tractor based on MPC

with slip.

3.4 AMM-MPC for Tractor Path Tracking

3.4.1 Augmented model with disturbances

As we need to consider the impact of disturbances, we first need to build an augmented mod-

els with disturbances based on above related work. The model in (3.10) is first discretized
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38 Model Predictive Control for Tractor Path Tracking

with respect time to sampling interval ∆t as,

zk+1 = Adzk +Bduk +Ddωk,

yk = Cdzk,

(3.30)

where Ad , Bd , Cd and Dd are discrete counterparts of Ac, Bc, Cc and Dc.

The linear state-space model in (3.30) is then converted to an augmented model with

disturbances. We define

∆zk = zk − zk−1,

∆uk = uk −uk−1,

∆ωk = ωk −ωk−1

(3.31)

and obtain the augmented model as,






∆zk+1

yk+1




=






Ad oT
d

CdAd 1











∆zk

yk




+






Bd

CdBd




∆uk +






Dd

CdDd




∆ωk,

yk =

[

od 1

]






∆zk

yk




 ,

(3.32)

where od = [0 0].

To simplify, we define xk = [∆zT
k yk]

T and rewrite (3.32) as,

xk+1 = Axk +B∆uk +D∆ωk,

yk = Cxk,

(3.33)
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where

A =






Ad oT
d

CdAd 1




 ,

B =






Bd

CdBd




 ,

C =

[

od 1

]

,

D =






Dd

CdDd




 .

.

In (3.33), xk ∈ R
3×1, yk ∈ R

1×1, ∆uk ∈ R
1×1, ∆ωk ∈ R

2×1 denote the state, the controlled

output, the augmented control input and the external disturbances, respectively.

3.4.2 Prediction of state and output variables with disturbances

We introduce an extra vector ∆W for disturbance on the basis of (3.16) as,

X =
(

xk+1|k xk+2|k xk+3|k · · · xk+Np|k

)T

Y =
(

yk+1|k yk+2|k yk+3|k · · · yk+Np|k

)T

∆U =
(
∆uk|k ∆uk+1|k ∆uk+2|k · · · ∆uk+Nc−1|k

)T

∆W =
(

∆ωk|k ∆ωk+1|k ∆ωk+3|k · · · ∆ωk+Np−1|k

)T

.

(3.34)
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The future states with disturbances are then calculated successively by using the future

control inputs:

xk+1|k = Axk +B∆uk +D∆ωk

xk+2|k = Axk+1|k +B∆uk+1 +D∆ωk+1

= A2xk +AB∆uk +B∆uk+1 +AD∆ωk +D∆ωk+1

...

xk+Np|k = ANpxk +ANp−1B∆uk +ANp−2B∆uk+1 + · · ·+ANp−NcB∆uk+Nc−1

+ANp−1D∆ωk +ANp−2D∆ωk+1 + · · ·+D∆ωk+Np

Then, the predicted output variables are calculated by substitution:

yk+1|k = CAxk +CB∆uk +CD∆ωk

yk+2|k = CAxk+1|k +CB∆uk+1 +CD∆ωk+1

= CA2xk +CAB∆uk +CB∆uk+1 +CAD∆ωk +CD∆ωk+1

...

yk+Np|k = CANpxk +CANp−1B∆uk +CANp−2B∆uk+1 + · · ·+CANp−NcB∆uk+Nc−1

+CANp−1D∆ωk +CANp−2D∆ωk+1 + · · ·+CD∆ωk+Np

Referring to (3.34), we can obtain the simple form as follows,

Y = Fxk +ΦΦΦ∆U+Λ∆W, (3.35)
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where

F =















CA

CA2

CA3

...

CANp









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




,ΦΦΦ =















CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0

...
...

...
. . .

...

CANp−1B CANp−2B CANp−3B · · · CANp−NcB















,

ΛΛΛ =















CD 0 0 · · · 0

CAD CD 0 · · · 0

CA2D CAD CD · · · 0

...
...

...
. . .

...

CANp−1D CANp−2D CANp−3D · · · CD















.

3.4.3 Receding min-max optimization

The crucial point in this subsection is how to manage disturbances and then achieve robust

MPC. In real practice, capturing all uncertainties is almost impossible but knowing the

bounds of external disturbances is realistic as these disturbances are all physical variables.

For example, in the simulation part of last section, the bound of the longitudinal slip velocity

vlr is 30% of the tractor vehicle velocity v. Therefore, utilizing bounds of disturbances is a

competitive way to obtain robustness.

In path tracking control, we have three external disturbances in the model (3.2) so we

define,

sup||vlr|| ≤ v∗lr,

sup||vsr|| ≤ v∗sr,

sup||β f || ≤ β ∗
f ,
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42 Model Predictive Control for Tractor Path Tracking

where v∗lr, v∗sr and β ∗
f are the bounds of the uncertainties, which are in fact the bounds of slip

values. Now, substituting these bounds in (3.6) and (3.9), we obtain,

sup||ω1|| ≤ ω∗
1 ,

sup||ω2|| ≤ ω∗
2 ,

ωk ∈ ω∗
k ,

∆ωk ∈ ∆ω∗
k ,

∆W ∈ ∆W∗,

where ω∗
k and ∆ω∗

k are bounded vectors of disturbances, and ∆W∗ is normally taken as a

constant matrix that corresponds to the worst case scenario.

In terms of utilizing bounds of disturbances, an approach called min-max inspired by

[45] is incorporated into the online optimization of MPC. To be specific, the ’min-max’

means minimizing the worst case scenario. In our case, the worst-case is implemented by

computing the cost function J using the bounds of external disturbances ∆W∗. Then the

worst-case cost function is minimized to obtain the optimal control input. Hence, the cost

function J can be represented as,

min
∆U

max
∆W

YT Y+∆UT R̄∆U subject to

∆U ∈ ∆U∗,

∆W ∈ ∆W∗.

(3.36)

However, in fact, this will cause overcompensation in most cases as the worst case does

not occur all the time. Thus, it is very important to consider the field conditions to determine

∆W∗. For example, vsr is a significant factor that makes the field vehicle deviate from the

reference path, and it is generally larger during travel through high curvature segments of

the path. However, it is insignificant during travel along straight segments. Thus, we can
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relate ∆W∗ to (i) the curvature of the reference path to provide robustness, (ii) the amount

of errors in offset values to provide adaptation. Hence, we define

∆W∗ =

Np
︷ ︸︸ ︷

[1 1 · · · 1]T (kpcd + kq + kt los),
(3.37)

where kp is a value based on the worst case scenario when the curvature is not zero. The

parameter kq is a small positive constant at the worst case scenario representing zero curva-

ture. The worst case scenario is decided by the bounds of vlr, vsr and β f . The parameter kt

brings adaptive behaviour, which is based on the amount of the path offset. The path offset

is selected to contribute in the adaptive part of the controller due to the importance of the

path offset in comparison to the heading offset in path tracking control.

Through minimization of J, the control trajectory vector ∆U is obtained, however, only

the first control increment ∆uk|k is applied as per MPC method, while other control inputs

are ignored. Therefore,

∆uk =

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T ∆U

=−K1xk −K2,

(3.38)

where

K1 =

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T (ΦΦΦT ΦΦΦ+ R̄)−1(ΦΦΦT F),
(3.39)

K2 =

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T (ΦΦΦT ΦΦΦ+ R̄)−1(ΦΦΦT ΛΛΛ∆W).
(3.40)

Finally, from (3.7) and (3.31), the steering angle δ , which is the actual control input is

calculated as,

uk = ∆uk +uk−1,

δ = arctan{(
lt

v
)(uk +σ |v|

cd cosθos

1+ cdlos

)}.

(3.41)
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3.4.4 Kinematic simulation

To verify the performance of the proposed controller, the AMM-MPC algorithm was first

tested in a kinematic simulation environment, controlling the kinematic model of the tractor

to follow the reference path. In this simulation, the tractor was subjected to the same dis-

turbances mentioned in Section 3.3.4, which aimed to compare with the results of MPC in

Section 3.3.4.

Figure 3.7 shows the comparison of path offset as well as heading offset between AMM-

MPC (Adaptive min-max model predictive control) (blue line) and Classical MPC (Model

predictive control) (red line). As shown, the performance at four corners was significantly

improved by AMM-MPC, even in the most challenging corner with the biggest error around

6 cm, decreasing by 10 cm compared with Classical MPC while errors in the rest of the

corners dropped to 2 cm. Note that this outstanding improvement in the corners did not

sacrifice the performance of AMM-MPC in the straight lines which was still negligible. On

the other hand, the comparison of heading offset for between AMM-MPC (blue line) and

Classical MPC (red line) indicated the heading error was decreased slightly.

To provide a better quantitative comparison, a box plot was used to depict two groups

of numerical data, which included minimum, first quartile, median, third quartile, and maxi-

mum. In the box plot, the red lines indicate the median of the data, and the red points mean

the outlier. The closer the red line is to zero, the better the result is. The upper and lower

blue lines are first quartile and third quartile respectively. Figure 3.8 shows the box plot of

path offset based on AMM-MPC and classical MPC. As shown, the median of AMM-MPC

was very small, compared to that of classical MPC. Besides, most data of AMM-MPC was

within 1cm while most data of Classical MPC was 6 cm. On the other hand, Figure 3.9

shows the box plot in heading offset of AMM-MPC and classical MPC. The median of

AMM-MPC was still smaller than that of classical MPC. The better performance of AMM-

MPC can be seen in the box plots. However, as shown in box plots, the improvement in
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Fig. 3.7 Kinematic simulation: path offset and heading offset comparison between AMM-

MPC and classical MPC. AMM-MPC shows improvement in path offset and heading offset,

compared with classical MPC.

the heading offset is not as high as the improvement in the path offset. This is caused by

the fact that the value of the path offset parameter α is chosen to be larger than the value

of the heading offset parameter γ in the simulation. In the presented application, path offset

is playing more important role than heading offset. As a result, the AMM-MPC algorithm

successfully reduced the lateral errors and heading errors, especially the lateral offset.

3.4.5 Dynamic simulation

In the previous kinematic simulation, slip was considered as velocity such as vsr(m/s) but

actually slip is a result of forces due to wheel-ground interaction. To investigate the per-

formance of the controllers in the presence of slip forces, a more realistic simulation en-

vironment was built including a dynamic model of a tractor incorporating a wheel model

generating the slip forces.
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Fig. 3.8 Kinematic simulation: box plot of path offset comparison between AMM-MPC and

classical MPC. AMM-MPC shows improvement in path offset and heading offset, compared

with classical MPC.
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Fig. 3.9 Kinematic simulation: box plot of heading offset comparison between AMM-MPC

and classical MPC. AMM-MPC shows improvement in heading offset, compared with clas-

sical MPC.
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Fig. 3.10 Tractor in dynamic simulation.

The dynamic simulation platform used in this thesis was built in C++ based on [72].

To model terrain uncertainty, a parametric noise map is introduced into the wheel-ground

system in the form of simplex noise. Under each wheel, the contact surface is determined

by evaluating the noise function across a small region of the contact patch, which is used

to determine contact and slip forces in the wheel model based on the surface’s up-vector

direction [73]. Note that these noises are configurable in the dynamic platform, where slips

and disturbances are changing within a bounded range.

In the dynamic simulation, the reference path used in the dynamic simulation was exact-

ly the same as that in the kinematic simulation, which is shown in Figure 3.3. Figure 3.11

shows the comparison of path offset and heading offset between AMM-MPC (red line) and

classical MPC (blue line). The largest error of classical MPC in the path offset figure was

almost 30 cm occurring at the sharpest corner and the second largest error was even more

than 23 cm at the third corner while errors of AMM-MPC was less than 5 cm throughout the

whole path tracking. Besides, the performance in the last straight segments was slightly im-

Page 47



48 Model Predictive Control for Tractor Path Tracking

proved. As to heading offset, the largest error was decreased from 30◦ to 20◦ by AMM-MPC

and the overall indicated adequate improvement.
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Fig. 3.11 Dynamic simulation: path offset and heading offset comparison between AMM-

MPC and classical MPC. AMM-MPC shows improvement in path offset and heading offset,

compared with classical MPC.

Box plots shown in Figure 3.12 and Figure 3.13 confirmed the significant improvement

brought about by the proposed AMM-MPC. Especially, by looking at the quartile, a majority

of path offsets produced from AMM-MPC were within the range from -2 cm to 2 cm.

3.4.6 Field testing

The AMM-MPC algorithm was tested on a tractor in two different experiments involving

two different reference paths with different terrain. The tractor used in these two tests

is a John Deere 4210 Compact Utility Tractor and was made an autonomous vehicle at

the University of New South Wales, Australia (Figure 3.14). More details about software
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Fig. 3.12 Dynamic simulation: box plot of path offset comparison between AMM-MPC

and classical MPC. AMM-MPC shows improvement in path offset, compared with classical

MPC.
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Fig. 3.13 Dynamic simulation: box plot of heading offset comparison between AMM-MPC

and classical MPC. AMM-MPC shows improvement in heading offset, compared with clas-

sical MPC.
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and hardware of the tractor can be found in [19, 50, 73]. The two tests demonstrated the

proposed algorithm’s effectiveness at reducing path-tracking errors.

Fig. 3.14 John Deere 4210 Compact Utility Tractor used in field experiments.

Comparison of AMM-MPC with Classical MPC

The first experiment was performed at Elizabeth Macarthur Agricultural Institute Farm

Square in Menangle, New South Wales, Australia (Figure 3.15). The experimental ter-

rain was plain overall but with some sand as well as grass and small slopes. The tractor

autonomously followed the reference path at the fixed speed (1 m/s) with two kinds of con-

trollers, AMM-MPC and classical MPC.

Figure 3.16 shows plots of path offset of AMM-MPC (red solid line) and classical MPC

(blue dashed line). Unlike results in both simulations, classical MPC in this experiment

showed large errors in straight lines with more than 10 cm while AMM-MPC still showed

minor errors in straight lines. Those large errors occurring in straight lines are actually

caused by the slip phenomenon in straight lines, and this is the point we do not consider in
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Fig. 3.15 Experimental site 1 according to Google Earth.

the simulation. At corners, the largest error from classical MPC reached even 50 cm which

was then decreased by a factor of 2 by AMM-MPC. Figure 3.17 plots the comparison of

heading offset between classical MPC and AMM-MPC, indicating improvement brought

by AMM-MPC at all corners.

Box plots presented the superior performance of AMM-MPC, especially in reducing

path offset. Figure 3.18 shows path offset of AMM-MPC and classical MPC, from which

most errors of classical MPC were distributed within the range from 8 cm to 18 cm and the

median was 12.5 cm. However, most errors of AMM-MPC ranged from 2 cm to 6 cm and

the median was 2.5 cm. Figure 3.19 proved slight improvement in heading accuracy. As

a consequence, compared to classical MPC, the accuracy of path tracking was significantly

improved by AMM-MPC based on above results. AMM-MPC can perform more accurately

and robustly in both curved and straight segments of the path. In addition, AMM-MPC dealt
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Fig. 3.16 Field experiment 1: path offset comparison between AMM-MPC and classical

MPC. AMM-MPC shows improvement in path offset, compared with classical MPC.
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Fig. 3.17 Field experiment 1: heading offset comparison between AMM-MPC and classical

MPC. AMM-MPC shows improvement in heading offset, compared with classical MPC.

Page 52



3.4 AMM-MPC for Tractor Path Tracking 53

with slip adaptively, without requiring slip estimation, which is the main advantage of the

proposed method.
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Fig. 3.18 Field experiment 1: box plot of path offset comparison between AMM-MPC and

classical MPC. AMM-MPC shows improvement in path offset, compared with classical

MPC.

Comparison of AMM-MPC with SMC and BSC

Although simulation as well as the first experiment has proven that AMM-MPC has the ca-

pability to deal with wheel slip compared with MPC. However, as mentioned before, MPC is

not known as an inherently robust control approach and therefore validation of AMM-MPC

needs further comparison with classical robust controllers which have the inherent ability to

deal with the slip phenomenon. In this experiment, sliding mode control and backstepping

control are chosen because they are two well-performing robust control methods. Accord-

ing to the literature, SMC (Sliding mode control) and BSC (Backstepping control) are very

famous robust controllers, based on Lyapunov’s second method of stability analysis. They

have remarkable features of accuracy and robustness and both approaches can be compre-

hensively used for autonomous guidance of non-holonomic mobile vehicles. In this case,
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Fig. 3.19 Field experiment 1: box plot of heading offset comparison between AMM-MPC

and classical MPC. AMM-MPC shows improvement in heading offset, compared with clas-

sical MPC.

the proposed AMM-MPC was compared with a successful SMC implementation, which is

presented under the title ’Robust Adaptive Controller Design’ in [21], and a BSC reported

in literature [31] that showed good performance. The second experiment was performed at

Elizabeth Macarthur Agricultural Institute for Robotics and Autonomous Systems Farmland

in Menangle, New South Wales, Australia (Figure 3.20) where the terrain was hasher with

sand, grass, wheel tracks, inclines, and slopes (Figure 3.21), which means higher wheel slip.

The second experiment was performed at Elizabeth Macarthur Agricultural Institute for

Robotics and Autonomous Systems Farmland in Menangle, New South Wales, Australia

(Figure 3.20) where the terrain was hasher with sand, grass, wheel tracks, inclines, and

slopes (Figure 3.21), which means higher wheel slip.

Three controllers were used to control the tractor to drive from a parking area to the field

and then to follow the reference path (Figure 3.22) under the same conditions. The results

were recorded and shown in Figure 3.23 and 3.24, where SMC was plotted as a blue dot
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Fig. 3.20 Experimental site 2 according to Google Earth.

1

Fig. 3.21 Experimental site 2 terrain.
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dashed line, BSC was plotted as a red dashed line and AMM-MPC was plotted as a black

solid dashed line. In Figure 3.23, the most noticeable improvement was found from 180

to 240 seconds where AMM-MPC reduced the error from more than 150 cm to 50cm. In

two parallel lines of the path, the accuracy of AMM-MPC was significant whereas errors of

SMC and BSC were 25cm and 20cm. Figure 3.24 indicated that the heading accuracy of

three controllers were almost the same.
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Fig. 3.22 The reference path used in the field experiment 2 in comparison of AMM-MPC

with SMC and BSC.

For a more compact quantitative comparison, box plots and root mean square(RMS)

values as well as standard deviation (SD) values for the three controllers were presented.

RMS value for path offset for AMM-MPC is about 12 cm that is significantly better than

the path offset of BSC which is 26 cm and the path offset of SMC is 30 cm. For the heading

offset the difference is not significant. However, the heading accuracy is also better in AMM-

MPC with RMS value of 10.44 ◦ and SD of 10.1 ◦ compared to those of SMC and BSC

shown in Tables 3.3 and 3.4. The accuracy is enough for some agricultural applications.
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Fig. 3.23 Field experiment 2: path offset comparison among AMM-MPC, SMC and BSC.
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Fig. 3.24 Field experiment 2: heading offset comparison among AMM-MPC, SMC and

BSC.
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Fig. 3.25 Field experiment 2: box plot of path offset comparison among AMM-MPC, SMC

and BSC.
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Fig. 3.26 Field experiment 2: box plot of heading offset comparison among AMM-MPC,

SMC and BSC.
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Table 3.3 RMS values and SD values of path offset.

Path Offset (cm) SMC BSC AMM-MPC

RMS 30.33 26.88 11.42

SD 27.74 25.04 11.39

Table 3.4 RMS values and SD values of heading offset.

Heading Offset (◦) SMC BSC AMM-MPC

RMS 12.48 11.50 10.44

SD 12.47 11.46 10.10

3.5 Summary

This chapter proposed a very novel and promising adaptive min-max model predictive con-

troller for path tracking control of a farm tractor in the presence of slip. The proposed

controller’s derivation was presented in detail. The performance of the proposed controller

was evaluated with extensive simulation incorporating kinematic simulation, dynamic simu-

lation and real field experiments in which the performance of the AMM-MPC was compared

with classical MPC’s performance. Moreover, the proposed controller was compared with

two successful implementations of other forms of robust nonlinear controllers, namely, a

sliding mode controller and a back stepping controller in field experiments on a typical far-

m. The results obtained show substantial improvements in the accuracy in path offsets and

heading offsets, especially at the segments with higher curvatures, where slip is greater than

slips for the straight segments. It is sufficiently proven that AMM-MPC not only provided

robustness but also dealt with wheel slip adaptively without requiring slip measurement or

estimation.
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Chapter 4

AMM-MPC for Tractor-trailer Path

Tracking

The system of a tractor pulling a trailer has become popular in agriculture due to widespread

potential of implements. The tractor and the trailer are mechanically coupled together so

that the tractor can pull the trailer carrying on more agricultural tasks in an efficient and

cost effective manner, such as ploughing and seeding. However, the tractor-trailer system

usually only steer the tractor and the trailer is passive, despite the fact that the implement is

the one that carries on the actual agricultural tasks. Moreover, the implement is significantly

affected by the ground contact forces and that easily makes the trailer to drift away. Finally,

it is rather difficult to control the accuracy of the non-steerable trailer as the controller will

only directly work on the tractor. As a result, it is essential to design a controller for the

trailer.

This chapter presents a path tracking control algorithm for a tractor pulling a steerable

trailer. Based on good performance of AMM-MPC verified in Chapter 3, the same control

approach was assumed to apply to the trailer in this chapter. The breakdown of sections

in this chapter was as follows. In Section 4.1, a kinematic model and its offset model of a

trailer were built. In Section 4.2 feedback linearisation was used to linearise its offset mod-
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el. In Section 4.3, AMM-MPC for a tractor-trailer system was derived while comparative

simulation as well as discussion were presented to validate the proposed control law in the

following section. Finally, this chapter is concluded in Section 4.4.

4.1 System Modelling and Description

A tractor-trailer system is described in Figure 4.1 and correlative notations are defined as

shown in Table 4.1. The tractor is represented by a bicycle model which is the same as

the one depicted in last chapter. The trailer is a steerable trailer and steered by rear wheels

which are represented by single wheel. Note that the whole system is driven by rear wheels

of tractor. In this chapter, it is assumed that the tractor-trailer follow the reference path in a

clockwise direction and always moves forward.

Reference Path

βt

vt

θt

θost δt

lt

c

li

lost

Pt

θrt

δi

vsi

θi

Pi

Ot

Oi

θri

x

y

O

x′

y′

x′′

y′′

βi

θosi

φ

(xt ,yt)

(xi,yi) losi

Global coordinate frame

vsr

vlr

Fig. 4.1 Kinematic model of the tractor-trailer system
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Table 4.1 Notations in the tractor-trailer model.

Notations Description for Tractor

xt , yt position of Ot in the xOy coordinate

θt heading of the tractor in the xOy coordinate

δt steering angle

vt longitudinal velocity at Ot

vsr lateral slip velocity at Ot

vlr longitudinal slip velocity at Ot

βt front wheel slip angle

lt tractor wheelbase

Pt point at normal distance from ot to the reference path

cdt
curvature of the reference path at point Pt

θrt
reference heading angle for the tractor

lost
path offset of tractor

θost
heading offset of tractor

Notations Description for Trailer

xi, yi position of Oi in the xOy coordinate

θi heading of the trailer in the xOy coordinate

δi steering angle

li length of trailer

φ hitch angle

c hitch length

Pi point at normal distance from Oi to the reference path

cdi
curvature of the reference path at point Pi

βi side slip angle at Oi

vsi lateral slip velocity at Oi

θri
reference heading angle for the trailer

losi
path offset of the trailer

θosi
heading offset of the trailer
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Tractor

The tractor’s state is given by pt = [xt ,yt ,θt ]
T

, where (xt ,yt) is the position of Ot in the xOy

global coordinate. The tractor is then controlled by a steering angle δt . The kinematic model

of the tractor in the presence of slip is as follow,

ẋt = (vt − vlr)cosθt − vsr sinθt ,

ẏt = (vt − vlr)sinθt + vsr cosθt ,

θ̇t =
vt − vlr

lt
tan(δt +βt)+

vsr

lt
.

(4.1)

In (4.1), vsr, vlr and βt are lateral slip velocity at tractor’s rear wheels, longitudinal slip

velocity at tractor’s rear wheels and side slip angle at the tractor’s front wheels, respectively.

Trailer

The trailer’s state is given by pi = [xi,yi,θi]
T

, where (xi,yi) is the position of Oi in the xOy

global coordinate. The trailer is controlled by a steering angle δi. The kinematic equations

for the trailer in the presence of slip are presented as,

ẋi = ẋt + θ̇tcsinθt + θ̇ili sinθi,

ẏi = ẏt − θ̇tccosθt − θ̇ili cosθi,

θ̇i =
1

n
(m1 +m2 +m′

3 +m4),

(4.2)
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where

n = li sinφ cosδi,

m1 =−(v− vlr)sin(δi +φ)sinφ ,

m2 = vsr sinφ cos(δi +φ),

m3 =−θ̇t sinφ(acos(δi +φ)+ li cosδi),

m′
3 =−cθ̇t sinφ cos(δi +φ),

m4 =−vsi sinφ ,

θ̇t =
vt − vlr

lt
tan(δt +βt)+

vsr

lt
.

In (4.2), vsi is lateral slip velocity and located at the trailer’s rear wheels.

Offset model

The offset model of the tractor is the same as the one in last chapter, represented as

l̇ost
= (vt − vlr)sinθost

+ vsr cosθost
,

θ̇ost
=

v− vlr

lt
tan(δ +β f )+

vsr

lt

+(vt − vlr)
cdt

cosθost

1+ cdt
lost

− vsr
cdt

sinθost

1+ cdt
lost

.

(4.3)

Path tracking errors of the trailer are path offset losi
and heading offset θosi

. The differ-

entiation of losi
is the rate of change of OiPi. From Figure 4.1, change of OiPi is affected by

two velocities v and vsi in the OiPi direction, so l̇osi
can be obtained as follow,

l̇osi
= vt cosφ sinθosi

+ vsi cos(δi −θosi
). (4.4)
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Based on [30], the equation of θosi
is

θ̇osi
=

1

li cosθi
{−(vt − vlr)sin(δi +φ)+ vsr cos(δi +φ)

−

(
vt − vlr

lt
tan(δt +βt)+

vsr

lt

)

× (ccos(δi +φ)+ li cosδi)− vsi

}

.

(4.5)

4.2 Feedback Linearisation

As can be seen in last section, offset models of the tractor-trailer system are highly nonliear.

Thus, the nonlinear tractor-trailer system cannot be directly used to design the AMM-MPC

controller. In this case, it is essential to use feedback linearisation to first transform the

nonlinear system to the equivalent state-space model by changing some variables.

Before feedback linearisation, the offset models (4.3) (4.4) and (4.5) can be simplified

based on Assumption 2, written as,

l̇ost
= vt sinθost

+d1t
,

θ̇ost
=

vt

lt
tanδt + vt

cdt
cosθost

1+ cdt
lost

+d2t
,

(4.6)

where

d1t
=−vlr sinθost

+ vsr cosθost
,

d2t
=−

vlr

lt
tanδt +

vt − vlr

lt
tanβt +

vsr

lt

− vlr

cd cosθos

1+ cdlos

+ vsr
cd sinθos

1+ cdlos

,

(4.7)

and

l̇osi
= vt cosφ sinθosi

+d1i
,

θ̇osi
=−

vt sin(δi +φ)

li cosθi

−
vt tanδt × (ccos(δi +φ)+ li cosδi)

lilt cosθi

+d2i
,

(4.8)
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where

d1i
= vsi cos(δi −θosi

),

d2i
=

1

li cosθi
{vlr sin(δi +φ)+ vsr cos(δi +φ)

−

(
vt − vlr

lt
tanβt −

vlr

lt
tanδt +

vsr

lt

)

× (ccos(δi +φ)+ li cosδi)− vsi

}

.

(4.9)

Then the linearisation of the tractor model and the trailer model is implemented sepa-

rately. For cancelling the nonlinearity in (4.6), two new state variables z1t
, z2t

and a new

control input is defined as ukt
, represented as,

z1t
= lost

,

z2t
= vt sinθost

,

ukt
= vt cosθost

(vt

lt
tanδ + vt

cdt
cosθost

1+ cdt
lost

)
.

(4.10)

With this definition, the offsets model (4.6) is described by the new system,

ż1t
= z2t

+ω1t
,

ż2t
= ukt

+ω2t
,

(4.11)

where

ω1t
= d1t

,

ω2t
= vt cosθost

d2t
.

(4.12)

Then, the state-space model is expressed by defining two vectors zkt
= [z1t

z2t
]T , ωkt

=

[ω1t
ω2t

]T and an output ykt

żkt
= Atczkt

+Btcukt
+Dtcωkt

,

ykt
= Ctczkt

.

(4.13)
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where

Atc =






0 1

0 0




 ,

Btc =






0

1




 ,

Ctc =

[

α sign(lost
) γ sign(θost

)

]

,

Dtc =






1

1




 .

In (4.13), zkt
, ukt

and ωkt
are the current state, the control input and the disturbance in

the state-space model respectively, and Atc, Btc and Dtc are corresponding matrices. ykt
in

(4.13) represents path tracking errors as the output, where ykt
are related to the values of α

and γ .

After feedback linearisation of the tractor, that of the trailer is followed by the same

approach. Two new state variables z1i
, z2i

and a new control input is defined as uki
in order

to proceed the linearisation of (4.8),

z1i
= losi

,

z2i
= vt cosφ sinθosi

,

uki
= ai(bi tanδi + ci)

(4.14)

where

ai = vt
2 cosφ cosθosi

,

bi =−
1

li
cosφ +

c

lt li
tanδt sinφ ,

ci =−
1

li
sinφ +

c

lt li
tanδt cosφ −

1

lt
tanδt .

(4.15)
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With this definition, the offsets model (4.8) is described by the new system,

ż1i
= z2i

+ω1i
,

ż2i
= uki

+ω2i
,

(4.16)

where

ω1i
= d1i

,

ω2i
= vt cosφθosi

d2i
.

(4.17)

Then, the state-space model is expressed by defining two vectors zki
= [z1i

z2i
]T , ωki

=

[ω1i
ω2i

]T and an output yki

żki
= Aiczki

+Bicuki
+Dicωki

,

yki
= Ciczki

.

(4.18)

where

Atc =






0 1

0 0




 ,

Btc =






0

1




 ,

Ctc =

[

α sign(losi
) γ sign(θosi

)

]

,

Dtc =






1

1




 .

In (4.13), zki
, uki

and ωki
are the current state, the control input and the disturbance

respectively, and Aic, Bic and Dic are corresponding matrices. The output is yki
, and α and

γ which are gains on losi
and θosi

.
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4.3 Control Design for Tractor-trailer Path Tracking

The process of control design for the tractor is the same as the process in Chapter 3. For

details, please see Section 3.4. In this section, we mainly focus on the derivation of AMM-

MPC for the trailer.

In order to design the AMM-MPC algorithm, the model in (4.18) is first discretized with

respect time to sampling interval ∆t as,

zki+1 = Aidzki
+Biduki

+Didωki
,

yki
= Cidzki

.

(4.19)

where Aid , Bid , Cid and Did are discrete counterparts of Aic, Bic, Cic and Dic.

The differences between last sampling time and current sampling time are defined as

∆zki
= zki

− zki−1,

∆uki
= uki

−uki−1,

∆ωki
= ωki

−ωki−1

(4.20)

and then the augmented model is obtained,






∆zki+1

yki+1




=






Aid oT
d

CidAid 1











∆zki

yki




+






Bid

CidBid




∆uki

+






Did

CidDid




∆ωki

,

yki
=

[

od 1

]






∆zki

yki




 ,

(4.21)

where od = [0 0].
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To simplify, the vector xki
= [∆zT

ki
yki

]T is defined and (4.21) is rewritten as,

xki+1 = Aixk +Bi∆uki
+Di∆ωki

,

yk = Cixki
,

(4.22)

where

Ai =






Aid oT
d

CidAid 1




 ,

Bi =






Bid

CidBid




 ,

Ci =

[

od 1

]

,

Di =






Did

CidDid




 .

.

In (4.22), xki
∈ R

3×1, yki
∈ R

1×1, ∆uki
∈ R

1×1, ∆ωki
∈ R

2×1 denote the state, the

controlled output, the augmented control input and the external disturbances, respective-

ly.(check size)

Then the future state vector Xi, the future output vector Yi, the input vector ∆Ui and the

disturbance vector ∆Wi are defined as,

Xi =
(

xki+1|ki
xki+2|ki

xki+3|ki
· · · xki+Np|ki

)T

Yi =
(

yki+1|ki
yki+2|ki

yki+3|ki
· · · yki+Np|ki

)T

∆Ui =
(
∆uki|ki

∆uki+1|ki
∆uki+2|ki

· · · ∆uki+Nc−1|ki

)T

∆Wi =
(

∆ωki|ki
∆ωki+1|ki

∆ωki+3|ki
· · · ∆ωki+Np−1|ki

)T

.

(4.23)
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By calculation, the simple form can be obtained,

Yi = Fixki
+ΦΦΦi∆Ui +ΛΛΛi∆Wi, (4.24)

where

Fi =















CiAi

CiAi
2

CiAi
3

...

CiAi
Np















,

ΦΦΦi =















CiBi 0 0 · · · 0

CiAiBi CB 0 · · · 0

CiAi
2Bi CiAiBi CiBi · · · 0

...
...

...
. . .

...

CiAi
Np−1Bi CANp−2Bi CiAi

Np−3Bi · · · CiAi
Np−NcBi















,

ΛΛΛi =















CiDi 0 0 · · · 0

CiAiDi CiDi 0 · · · 0

CiAi
2Di CiAiDi CiDi · · · 0

...
...

...
. . .

...

CiAi
Np−1Di CiAi

Np−2Di CiAi
Np−3Di · · · CiDi















.

The crucial point in AMM-MPC is using the bounds of the disturbances. In the trailer

model (4.8), there are four slips, trailer lateral slip velocity vsi, tractor side slip angle β f ,

tractor lateral slip velocity vsr and tractor longitudinal slip velocity vlr. All slips are physical
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variables, so the bounds of these slips exist,

sup||vlr|| ≤ v∗lr,

sup||vsr|| ≤ v∗sr,

sup||β f || ≤ β ∗
f ,

sup||vsi|| ≤ v∗si,

wherev∗lr, v∗sr, β ∗
f and v∗si are the bounds of the uncertainties.

Now, these bounds are substituted into (4.12) and (4.9), and then equations can be ob-

tained

sup||ω1i
|| ≤ ω∗

1i
,

sup||ω2i
|| ≤ ω∗

2i
,

ωki
∈ ω∗

ki
,

∆ωki
∈ ∆ω∗

ki
,

∆Wi ∈ ∆Wi
∗,

where ω∗
ki

and ∆ω∗
ki

are bounded vectors of disturbances, and ∆Wi
∗ is normally taken as a

constant matrix that corresponds to the worst case scenario.

Then, the cost function J in AMM-MPC is represented as,

min
∆Ui

max
∆Wi

Yi
T Yi +∆Ui

T R̄i∆Ui subject to

∆Ui ∈ ∆Ui
∗,

∆Wi ∈ ∆Wi
∗.

(4.25)

Then, ∆W∗ is assumed to relate to: (i) the curvature of the reference path to provide

robustness, (ii) the amount of errors in offset values to provide adaptation, represented as
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follow,

∆Wi
∗ =

Np
︷ ︸︸ ︷

[1 1 · · · 1]T (kpcd + kq + kt losi
),

(4.26)

where kp is a value based on the worst case scenario when the curvature is not zero. The pa-

rameter kq is a small positive constant at the worst case scenario representing zero curvature.

The worst case scenario is decided by the bounds of vlr, vsr, β f and vsi.

Through minimization of J, the control trajectory vector ∆U can be obtained, and only

the first control increment ∆uk|k is applied as per MPC method, while other control inputs

are ignored. Therefore,

∆uki
=

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T ∆Ui

=−K1xki
−K2,

(4.27)

where

K1 =

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T (ΦΦΦi
T ΦΦΦi + R̄i)

−1(ΦΦΦT
i Fi),

(4.28)

K2 =

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T (ΦΦΦi
T ΦΦΦi + R̄i)

−1(ΦΦΦi
T ΛΛΛi∆Wi).

(4.29)

Finally, from (4.10) and (4.20), the steering angle δ which is the actual control input is

calculated as,

uki
= ∆uki

+uki−1,

δi = arctan{
uki

aibi

−
ci

bi

},

(4.30)

where

ai = vt
2 cosφ cosθosi

,

bi =−
1

li
cosφ +

c

lt li
tanδt sinφ ,

ci =−
1

li
sinφ +

c

lt li
tanδt cosφ −

1

lt
tanδt .

(4.31)
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4.4 Simulation and Discussion

As it is seen from the previous chapter, the dynamic platform is more realistic than the kine-

matic platform. Thus, the validation of AMM-MPC for the trailer was directly carried out

in the dynamic environment in the presence of slip forces. In the simulation, the proposed

AMM-MPC was used to control a tractor-trailer shown in Figure 4.2 to follow the reference

shown in Figure 3.3, comparing with (i) MPC and (ii) the trailer with no controller which

means the trailer is only passively towed by the tractor through the hitch. The parameters of

the controllers and the vehicles were listed in Table 4.2.

Fig. 4.2 The tractor-trailer model used in the dynamic simulation platform.
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Table 4.2 Parameters for simulation

Parameters Value

Tractor wheelbase lt 1.70 m

Trailer wheelbase li 2.8 m

Hitch length c 0.88 m

Maximum steering angle of tractor δtmax
±45◦

Maximum steering angle of trailer δimax
±45◦

Prediction horizon Np 20

Control horizon Nc 4

Tuning parameter rw 0.1

Figure 4.3 and Figure 4.4 show path offset and heading offset of the trailer. Path offset

of No Controller and MPC were depicted in a blue solid line and a red solid line, respective-

ly, while path offset of AMM-MPC is shown in a black solid line. Heading offsets of the

three controllers are shown in a similar way. From Figure 4.5, very obviously, the perfor-

mance of No controller was the worst, with the biggest value of path offset reaching almost

95 cm in the sharpest corner. In terms of performance of straight lines MPC is better than

No Controller, almost the same as AMM-MPC, whereas AMM-MPC shows better perfor-

mance than MPC when it comes to the curve segments which contains more significant slip.

However, these two controllers showed the opposite by looking at Figure 4.4. This is be-

cause we chose the value of α is as twice as the value of γ , as in path tracking, path offset

is a more important factor than heading offset. As a result, this controller is feasible for

those agricultural applications where path offset plays a more important role than heading

offset. However, for the wide implement like a boom sprayer, this controller needs further

investigation.
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Fig. 4.3 Dynamic simulation: path offset comparison of the trailer among AMM-MPC,

MPC and No Controller. AMM-MPC shows improvement in path offset, compared with

other two controllers.
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Fig. 4.4 Dynamic simulation: heading offset comparison of the trailer among AMM-MPC,

MPC and No Controller.
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To provide a better statistical quantitative comparison, box plots are shown for the abso-

lute value of path offset and heading offset in Figure 4.5 and Figure 4.6, respectively. The

plots confirmed the significant improvements brought about by the proposed AMM-MPC in

the aspect of path following. The root mean square (RMS) values were listed in Table 4.3.

The RMS of MPC was 15.15 cm while the RMS of AMM-MPC was 2.755 cm, showing

significant improvement.
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Fig. 4.5 Dynamic simulation: box plot of path offset comparison among AMM-MPC, MPC

and No Controller. AMM-MPC shows improvement in path offset, compared with other

two controllers.
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Fig. 4.6 Dynamic simulation: box plot of heading offset comparison among AMM-MPC,

MPC and No Controller.

Table 4.3 RMS values of path offset.

Path Offset (cm) No Controller MPC AMM-MPC

RMS 35.21 15.15 2.755

4.5 Summary

Given the superior performance of AMM-MPC in the preceding chapter, the AMM-MPC

is extended and applied to a tractor-trailer system in this chapter with a view to achieve

increased accuracy and robustness in the control of the trailer in autonomous farming. The

controller for the tractor part is the same as the controller described in Chapter 3, while

the controller for the trailer part is designed based on the linearised offset model of the

trailer by using feedback linearisation. The proposed controller is validated by comparing

its performance with the performance of the classical model predictive controller as well as

the performance of the trailer in the absence of controller. Although the control of the trailer
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met more challenges due to the fact that the trailer is subject to more slip than the tractor,

the AMM-MPC for the trailer still demonstrated a superior performance in its capability to

deal with uncertain but bounded slip.
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Chapter 5

AMM-MPC for Tracked Vehicle-trailer

Path Tracking

In the previous two chapters, a 2WD2WS tractor is used as the leading vehicle in path

tracking. Recently, the use of a tracked vehicle is on the increase as tracked vehicles have

uniform weight distributions along the tracks which decrease the ground compaction. More-

over, the two tracks on both sides provide higher traction to weight ratios and robustness

in comparison to a standard wheeled vehicle, for example a tractor. On the other side, this

chapter further resolved the combination of two offsets by using an error angle model.

This chapter presents a path tracking control algorithm for a tracked vehicle pulling a

steerable trailer by using an error angle model. In Section 5.1, kinematic models of the

tracked vehicle as well as the trailer were presented, followed by error models of them. In

Section 5.2, AMM-MPC for tracked vehicle-trailer the trailer was derived . In section 5.3,

the proposed controller was verified in simulation and the results were discussed. Finally,

this chapter was summarized in Section 5.4.
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5.1 System Modelling and Description

5.1.1 Tracked vehicle

The schematic representation of the tracked vehicle-steerable trailer is shown in Figure 5.1,

and related parameters are listed in Table 5.1. The tracked vehicle’s states are described

by a vector pt = [xt ,yt ,θt ]
T , where (xt ,yt) is the position of the tracked vehicle in the XOY

global coordinate and θt is the heading angle of the tracked vehicle. The tracked vehicle is

controlled by two angular velocities ωr and ωl . The longitudinal velocity v and the angular

velocity of the longitudinal axis ω are represented as,

v =
r

2
(ωr +ωl),

ω =
r

b
(ωr −ωl),

(5.1)

where r is the sprocket radius and b is the wheel base.

Then the kinematic equations in the presence of slip based on [72] are presented as,

ẋt = vcosθt + vdx,

ẏt = vsinθt + vdy,

θ̇t = ω +ωd ,

(5.2)

where vdx, vdy and ωd are slip parameters and described as,

vdx =−vsinθt tanαt −
r

2
(ωrsl +ωlsr)cosθt

+
r

2
(ωrsl +ωlsr)sinθt tanαt ,

vdy =−vcosθt tanαt −
r

2
(ωrsl +ωlsr)sinθt

+
r

2
(ωrsl +ωlsr)cosθt tanαt ,

ωd =
r

b
(−ωrsl +ωlsr),

(5.3)
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where sl, sr and αt are the longitudinal slip at right track, the longitudinal slip at left track

and the side slip angle αt . Note that slip at two tracks is unit-less.

Reference Path

vr

vl

v

θt

θost

θet

αtl

c

b

d

et

tt

jt

rt

Pt

θrt

δi

vsi

θi

θei

ri

ei

ti

Pi

ji

ot

oi

θri

X

Y

O

x′y′

x′′

y′′

αi

θosi

φ

(xt ,yt )

(xi,yi)

Fig. 5.1 Kinematic model of the tracked vehicle-trailer system

5.1.2 Steerable trailer

The steerable trailer is steered by rear wheels, the same as the trailer in last Chapter. The

state of the trailer is described by a vector qt = [xi,yi,θi]
T , where (xi,yi) is the position of

the trailer in the global coordinate frame XOY and θi is the heading angle of the trailer in

the global coordinate frame XOY . And the trailer is controlled by a steering angle δi. The
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Table 5.1 Notations in the kinematic model.

Notations Description for Tracked Vehicle

xt , yt position of ot in the XOY coordinate

θt heading of the tracked vehicle in the XOY coordinate

v longitudinal velocity at ot

vr velocity at the right track

vl velocity at the left track

r sprocket radius of tracked vehicle

ωr / ωl sprocket angular velocity at the right/left track

sr / sl longitudinal slip at the right/left track

αt side slip angle at ot

b wheel base of the tracked vehicle

l half of track length

Pt point at normal distance from ot to the reference path

θrt
desired heading angle for tracked vehicle

jt unit vector in direction of tracked vehicle’s heading

tt unit vector aligned with tangent line to reference

path at Pt

rt path offset vector of the tracked vehicle

θost
heading offset of the tracked vehicle

et error vector of tracked vehicle

θet
error angle between et and jt for tracked vehicle

Notations Description for Trailer

xi, yi position of oi in the XOY coordinate

θi heading of the trailer in the XOY coordinate

δi steering angle of the trailer

φ hitch angle

d length of the trailer

c hitch length

Pi point at normal distance from oi to the reference path

αi side slip angle at oi

vsi lateral slip velocity at oi

θri
desired heading angle for the trailer

ji unit vector in direction of the trailer’s heading

ti unit vector aligned with tangent line to the reference

path at Pi

ri path offset vector of the trailer

θosi
heading offset of the trailer

ei error vector of the trailer

θei
error angle between ei and ji for trailer
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kinematic equations based on [10] are presented as,

ẋi = ẋt + θ̇t sinθt + θ̇i sinθi,

ẏi = ẏt − θ̇t cosθt − θ̇i cosθi,

θ̇i =
1

n
(m1 +m2 +m′

3 +m4),

(5.4)

where

n = d cosδi,

m1 =−
r

2
[ωl(1− sl)+ωr(1− sr)]sin(δi +φ),

m2 =
r

2
[ωl(1− sl)+ωr(1− sr)]cos(δi +φ) tanαt ,

m′
3 =−ccos(δi +φ)θ̇t ,

m4 =−vsi.

(5.5)

5.1.3 Virtual error vector model

Now, recalling the previous two chapters, the objective is to make path offset and heading

offset as small as possible and two tuning parameters α and γ were used to decide which

offset was playing an more important role during the control task. However, sometimes

there may be a problem for choosing two parameter values and how to match them. As a

result, there is a necessity to think about a method to solve this problem. In this Chapter,

these two offset of each vehicle are combined to one offset which is an error angle based on

[72]. In Figure 5.1, the error angle of the tracked vehicle is θet
while the error angle of the

trailer is θei
. If the error angle is zero, it means that both path offset and heading offsets are

zero.

As shown in Figure5.1, the vector tt is a unit vector aligned with tangent line to the

reference path at Pt and the vector rt is the path offset the tracked vehicle with respect to the

reference. Then, the vector et which is formed by rt and tt is the error vector of the tracked

vehicle. Moreover, there is a vector jt that is a unit vector in direction of tracked vehicle’s
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heading. As a consequence, the angle between et and jt is the error angle θet
. If the error

vector θet
is zero, it means that both path offset rt and heading offset θost

are zero. In other

words, the error angle shows the amount of error with respect to the reference path and the

pose of the vehicle.

Then, two new virtual states related the error vector angle θet
were defined,

x1t
=

∫
θet

kt
dt,

x2t
=

θet

kt

,

(5.6)

where kt is a tuning parameter for the tracked vehicle.

Similarly, for the trailer two states are defined as same as (5.6)

x1i
=

∫
θei

ki
dt,

x2i
=

θei

ki

,

(5.7)

where ki is a tuning parameter for the trailer.

Then, the state-space model of the tracked vehicle was obtained according to (5.6),

ẋ1t
= x2t

,

ẋ2t
=

1

kt
(ω − θ̇tt +ωd),

(5.8)

where kt is a gain and the reference path is assumed as twice differentiable.

Similarly, virtual error vector model of the trailer was derived as follows,

ẋ1i
= x2i

,

ẋ2i
=

1

ki

(T− θ̇ti +Td),
(5.9)
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where ki is a gain, and

T=−
v

d
(sinφ + tanδi sinφ)−

cω

d
(cosφ − tanδi sinφ),

Td =
1

n

(
m2 +m4 +

r

2
(ωlsl +ωrsr)sin(δi +φ)− cωd cos(δi +φ)

)
.

(5.10)

5.2 Control Design for Tracked Vehicle-trailer Path Track-

ing

In this section, AMM-MPC for tracked vehicle-trailer was derived based on [80]. Two state-

space model (5.8) and (5.9) for the tracked vehicle and the trailer can be presented in a

general form as

χ̇1 = χ2,

χ̇2 = u+h+hd ,

(5.11)

where hd is the sum of disturbance, h is the known parts in models and u is the input to the

system. In this case, for the tracked vehicle,

u=
ω

kt
,

h=−
θ̇tt

kt

,

hd =
ωd

kt
.

(5.12)

Similarly, for the trailer,

u=
T

ki
,

h=−
θ̇ti

ki

,

hd =
Td

ki

.

(5.13)
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Then a vector z = [χ1 χ2]
T was defined and the model in (5.11) was discretised as,

zk+1 = Adzk +Bduk +Ddwk,

yk = Cdzk,

(5.14)

where Ad , Bd , Cd , and Dd are matrices after discretisation.

Then, we convert the state-space model (5.14) to an augmented model with an embedded

integrator based on [79]. We define ∆zk = zk − zk−1, ∆uk = uk − uk−1, ∆wk = wk −wk−1,

and obtain the augmented model as






∆zk+1

yk+1




=






Ad oT
d

CdAd 1











∆zk

yk




+






Bd

CdBd




∆uk +






Dd

CdDd




∆wk,

yk =

[

od 1

]






∆zk

yk




 ,

(5.15)

where od = [0 0]. To simplify, we define xk = [∆zT
k yk]

T and rewrite (5.15) as,

xk+1 = Axk +B∆uk +D∆wk,

yk = Cxk,

(5.16)

where

A =






Ad oT
d

CdAd 1




 , B =






Bd

CdBd




 , C =

[

od 1

]

, D =






Dd

CdDd




 .

In (5.16), xk ∈ R
3×1, yk ∈ R

1×1, ∆uk ∈ R
1×1, ∆wk ∈ R

2×1 denote the state, the controlled

output, the augmented control input and the external disturbances, respectively.
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To obtain a convenient notation, we introduce vectors to denote future states X, future

outputs Y, future control inputs ∆U and unknown disturbances ∆W as,

X =
(

xk+1|k xk+2|k xk+3|k · · · xk+Np|k

)T

Y =
(

yk+1|k yk+2|k yk+3|k · · · yk+Np|k

)T

∆U =
(
∆uk|k ∆uk+1|k ∆uk+2|k · · · ∆uk+Nc−1|k

)T

∆W =
(

∆wk|k ∆wk+1|k ∆wk+3|k · · · ∆wk+Np−1|k

)T

.

Then, we can obtain,

Y = Fxk|k +Q∆U+L∆W, (5.17)

where

F =

[

CA CA2 CA3 · · · CANp

]T

,

Q =















CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0

...
...

...
. . .

...

CANp−1B CANp−2B CANp−3B · · · CANp−NcB















,

L =















CD 0 0 · · · 0

CAD CD 0 · · · 0

CA2D CAD CD · · · 0

...
...

...
. . .

...

CANp−1D CANp−2D CANp−3D · · · CD















Assumption 3 The disturbance hd in the model (5.11) is bounded so that we have,

sup||hd|| ≤ h∗d , ∆wk ∈ ∆w∗
k , ∆W ∈ ∆W∗. (5.18)
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The cost function J can be represented as,

min
∆U

max
∆W

(Rs −Y)T (Rs−Y)+∆UT R̄∆U subject to

∆U ∈ ∆U∗, ∆W ∈ ∆W∗.

(5.19)

where ∆U∗ is the constraint set, Y ∈ R
Np×1 and ∆U ∈ R

Nc×1. For path tracking, Rs is

always set to 0, as the error vector angle is driven to zero. Moreover, the diagonal matrix

R̄ is defined as R̄ = rwINc×Nc where rw ≥ 0 is a tuning parameter for penalizing the control

input. However, ∆W∗ is normally taken as a constant matrix that corresponds to the worst

case scenario, which will cause overcompensation in most cases as the worst case cannot

occur all the time.

Then, ∆W∗ is defined as,

∆W∗ =

Np
︷ ︸︸ ︷

[1 1 · · · 1]T (kpcd + kq + koθet
),

(5.20)

where kp is a value based on the worst case scenario when the curvature is not zero. The

parameter kq is a small constant at the worst case scenario representing zero curvature. The

parameter ko brings adaptive behaviour, which is based on the error vector angle.

Through minimization of J, the control trajectory vector ∆U is obtained, however, only

the first control increment ∆uk|k is applied as per MPC method, while other control inputs

are ignored. Therefore,

∆uk =

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T ∆U =−K1xk −K2,
(5.21)

where

K1 =

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T (QT Q+ R̄)−1(QTF),

K2 =

Nc
︷ ︸︸ ︷

[1 0 · · · 0]T (QT Q+ R̄)−1(QT L∆W).

(5.22)
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Finally, ωr and ωl are calculated using the model in (5.1).

5.3 Simulation and Discussion

In Chapter 3, SMC and BSC have been chosen to compare with AMM-MPC for evaluation.

However, BSC and SMC are both based on Lyapunov’s function and might be considered

as a repetition. In this simulation, BSC is replaced by Min-max MPC which is another

inherently robust controller. Moreover, AMM-MPC is a method improved from Min-max

MPC. As a result, in this section, AMM-MPC is compared with SMC and Min-max MPC

inspired by [13].

In the simulation, the proposed AMM-MPC is used to control the tracked vehicle cou-

pled to the steerable trailer to follow a predefined path. Vehicle slips are a result of inade-

quate reactionary forces exerted by the ground at the wheels. To simulate this realistic situa-

tion, a dynamic simulation environment incorporating the reactionary forces and the vehicle

dynamic model was created based on [72] instead of the kinematic simulation environment.

The performance of the controllers were investigated using the dynamic simulation environ-

ment in the presence of vehicle slips.

The reference path used in the simulation is shown in Figure 3.3. The parameters of the

controllers and the vehicles are listed in Table 5.2. Note that parameter values come from

the experimental model built at UNSW Mechatronics Lab.
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Fig. 5.2 The tracked vehicle-trailer model used in dynamic simulation platform [72].

Table 5.2 Parameters for simulation

Parameters Value

Sprocket radius of the tracked vehicle r 0.25 m

Hitch length c 0.7 m

Wheel base of tracked vehicle b 2 m

Half of the tracked length l 0.86 m

Length of the trailer d 2 m

Virtual model tuning parameter kt 1.03 m

Maximum angular velocity of the tracked vehicle ωmax 5.0 rad/s

Maximum steering angle of the trailer δimax
±22◦

Prediction horizon Np 20

Control horizon Nc 4

Tuning parameter rw 0.1
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Figure 5.3 and Figure 5.4 show path offset and heading offset of the tracked vehicle.

Path offset of Min-max MPC and SMC are depicted in a red dashed line and a blue dot-

ted dashed line, respectively, while path offset of AMM-MPC is shown in black solid line.

Heading offsets of the three controllers are shown in a similar way. In the path tracking of

autonomous farming vehicles, path offset is a more important factor than heading offset. As

seen in Figure 5.3, for path offsets, Min-max MPC shows overcompensation all the time ex-

cept at curved segment 4 which is regarded as the worst case in the reference path. The path

offset is about 10 cm for most of the path and it reaches 13 cm at curved segment 4. Mean-

while, AMM-MPC shows more accurate and robust performance than SMC, especially in

the straight segments and curved segments 2,3, and 4. Path offset for AMM-MPC stays in

an acceptable range with less than ±4 cm during the curves while it is negligible during the

straight segments. Moreover, in Figure 5.4, Min-max MPC and AMM-MPC show almost

the same performance in heading offsets, while SMC provides relatively better heading off-

set accuracy. In general, SMCs are good and reliable robust nonlinear controllers, and they

are widely used in path tracking controllers [70]. As a result, AMM-MPC brings the best

performance, when we consider that path offset plays a more important role.

Similarly, the trailer’s path offsets and heading offsets for three different controllers

(Min-max MPC, SMC, and AMM-MPC) are shown in Figure 5.5 and Figure 5.6, respective-

ly. The path offset accuracy of AMM-MPC is still better than those of SMC and Min-max

MPC. The path offsets for AMM-MPC are less than 6 cm during the curve segments and are

insignificant during the straight segments while the path offsets for the other two controllers

grew over 11 cm. For heading offset, the three controllers showed very similar performance.

As mentioned for the case of the tracked vehicle, during path tracking control by the trailer,

path offset accuracy is more important than heading offset.
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Fig. 5.3 Dynamic simulation: path offset comparison of the tracked vehicle among Min-max

MPC, SMC, and AMM-MPC.
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Fig. 5.4 Dynamic simulation: heading offset comparison of the tracked vehicle among Min-

max MPC, SMC, and AMM-MPC.
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Fig. 5.5 Dynamic simulation: path offset comparison of the trailer among Min-max MPC,

SMC, and AMM-MPC.
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Fig. 5.6 Dynamic simulation: heading offset comparison of the trailer among Min-max

MPC, SMC, and AMM-MPC.

To provide a better statistical quantitative comparison, box plots are shown for the ab-

solute value of path offsets of the tracked vehicle and the trailer in Figure 5.7 and 5.8, re-
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spectively. The plots confirmed the significant improvements brought about by the proposed

AMM-MPC.
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Fig. 5.7 Dynamic simulation: box plot of path offset comparison of the tracked vehicle

among Min-max MPC, SMC, and AMM-MPC.
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Fig. 5.8 Dynamic simulation: box plot of path offset comparison of the trailer among Min-

max MPC, SMC, and AMM-MPC.
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5.4 Summary

This chapter proposes a robust and adaptive MPC controller for path tracking control of a

tracked vehicle pulling a steerable trailer in the presence of slip. Compared with min-max

MPC and SMC, the proposed controller presents a superior improvement in its capability

to deal with uncertain but bounded slip. The stability analysis is also presented and proved

using the terminal state criteria. Then, instead of kinematic simulation, a more realistic dy-

namic simulation platform was used to evaluate the performance of the proposed controller

that is compared with min-max MPC and SMC. The results obtained show significant im-

provements in the accuracy in path tracking for the tracked vehicle as well as the trailer,

especially at the segments with higher curvatures, where slips are greater than slips for the

straight segments. On the other hand, the AMM-MPC design for the tracked vehicle-trailer

system is developed by only changing some parameters with respect to previous two chap-

ters. This proves that AMM-MPC can be applied in a lot of systems and only needs small

changes.
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Chapter 6

Conclusion

The final chapter begins with a summary of major contributions presented in this thesis,

followed by suggestion of future work.

6.1 Major Contributions

Wheel slip has been a significant issue in path tracking of UAGVs. The challenge of this

problem is that UAGVs are affected by the high-level uncertainties and disturbances of the

farmland when UAGVs traverse through the field. Therefore, this requires the controller

to perform both robustly and accurately. An accurate vehicle model with slip accounted

will also assist the controller to improve performance significantly. This thesis has mainly

addressed the wheel slip problem in path tracking control of UAGVs, including UAGVs

modelling, control design, kinematic as well as dynamic simulation and field experiments.

The key contributions in this thesis are listed as follows:

• A novel robust model predictive control for UAGVs guidance in the presence of sig-

nificant slip was proposed to guarantee both robustness and accuracy. One of the

novelties lies on the receding min-max optimization which minimizes the worst case

scenario of the path tracking. The worst case is characterized as curvature-varying
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since the slip in the straight path is far less significant than slip in the curve path.

Based on above, a very novel and promising adaptive min-max model predictive con-

troller for path tracking control of farm vehicles in the presence of slip was proposed

in Chapter 3. This new controller not only maintains the good performance in straight

paths that can be achieved by classical MPC but also improves the performance in

curved paths affected by significant slip. Another contribution of this controller is

that AMM-MPC dealt with wheel slip adaptively without requiring slip measurement

or estimation, but solely by utilizing the bound of slip.

• The kinematic model-based controller was tested in dynamic simulation and field ex-

periments. In the kinematic simulation, the condition that slip considered as velocity

was not true in the real world. Thus, the proposed controller was validated in more

realistic platforms, dynamic and field experiments where slip occurs in the form of

slip forces. Moreover, in field experiments, the proposed controller was not only com-

pared with classical MPC but also with two other well-performing robust controllers

- SMC and BSC through which the superiority of the performance based on the pro-

posed controller has been achieved. Finally, all conditions such as terrain and path

used in the second experiment were set the same as they were in the commercial

application of seeding.

• The proposed controller can be used in three typical farm vehicles and expected to be

extended to many applications. The proposed controller can be easily applied in trac-

tor, tractor-trailer, tracked vehicle-trailer by simply changing some related parameters,

which brings UAGVs close to commercialization in the farm system worldwide. Ac-

cording to different farm tasks, the type of farm vehicle can be chosen. The controller

can be applied to both the leading vehicle and the implement, which significantly im-

proves the precision farming as it is usually the implement which carries out farming
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tasks. Besides above, the proposed controller is expected to be used in other applica-

tions such as mining and defence using the results obtained in this thesis.

• The linearisation of highly nonlinear kinematic models is simple but proved to be

very effective with appropriate assumptions. Also, the derivation of the augmented

model with disturbances in model predictive control was presented in detail and made

it more understandable to the reader.

6.2 Future Work

The suggestions of future work are given as follows:

• The controller designed in this thesis only requires the farm vehicle to follow the

reference path in a geometric way so this controller is not available for some farm

work which requires the vehicle to move to a specific position with a specific timing

law, such as trajectory tracking. However, such task is not easy because the speed

keeps changing while tracking the reference path.
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Appendix A

Stability Analysis

The stability is proven using Lyapunov criterion based on the approach in [79].

Theorem 1 Given that the cost function J is minimized subjected to ∆U ∈ ∆U∗ and the

constraint on the final output yk+Np
= 0 resulting from the control inputs ∆uk, ...∆uk+Np−1,

the closed loop MPC system is asymptotically stable.

Proof: From Subsection 3.4.3, we know that AMM-MPC is realized by receding optimiza-

tion. The future control trajectory ∆uk, ...∆uk+Np−1 at time k is optimized by minimizing the

cost function Jk, represented as,

Jk =
Np

∑
i=1

yT
k+iyk+i +

Np−1

∑
i=0

∆uT
k+irw∆uk+i, (A.1)

where Jk is subjected to constraints and rw ≥ 0 is a gain.

Now, we assume the Lyapunov function V (xk) is equal to the minimum of the cost

function Jk with the optimal control trajectory ∆uk, ...,∆uk+Np−1 and corresponding outputs
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yk+1, ...,yk+Np
, represented as,

V (xk) = minJk

=
Np

∑
i=1

yT
k+iyk+i +

Np−1

∑
i=0

∆uT
k+irw∆uk+i.

(A.2)

The Lyapunov function V (xk) at sampling instant k is positive definite and V (xk) is

infinite if xk is infinite. Similar to V (xk), the Lyapunov function V (xk+1) at time k+1 is the

minimum of the cost function Jk+1 with the optimal control trajectory ∆uk+1, ...,∆uk+Np
and

corresponding outputs yk+2, ...,yk+Np+1, represented as,

V (xk+1) =
Np

∑
i=1

yT
k+1+iyk+1+i +

Np−1

∑
i=0

∆uT
k+1+irw∆uk+1+i. (A.3)

Now a function V̄ will be introduced to relate V (xk) to V (xk+1). The optimal control

trajectory of V (xk) is shifted one step forward and its last control input ∆uk+NP
is set to zero.

The function V̄ is formed by evaluating V (xk+1) at the above mentioned time shifted

control trajectory, which is a non-optimal control trajectory. For any non-optimal control

trajectory the objective function has to be greater or equal to V (xk+1). Therefore,

V (xk+1)≤ V̄ . (A.4)

Based on (5.16), V̄ has the same control trajectory with V (xk) at sampling times k +

1,k+2, ... ,k+Np −1, thus

V (xk+1)−V (xk)≤ V̄ −V (xk), (A.5)

then

V̄ −V (xk) = yT
k+Np

yk+Np
− yT

k+1yk+1 −∆uT
k rw∆uk. (A.6)
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Given that as per Theorem 1, yk+Np
= 0,

V̄ −V (xk) =−yT
k+1yk+1 −∆uT

k rw∆uk. (A.7)

Therefore, the derivative of the Lyapunov function is,

V (xk+1)−V (xk)6−yT
k+1yk+1 −∆uT

k rw∆uk < 0. (A.8)

This proves the asymptotic stability of the closed-loop system.
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