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Abstract. Reconfigurable computers based on field programmable gate array technology al-
low applications to be realized directly in digital logic. The inherent concurrency of hardware
distinguishes such computers from microprocessor-based machines in which the concurrency
of the underlying hardware is fixed and abstracted from the programmer by the software
model. However, reconfigurable logic provides us with the potential to exploit “real” concur-
rency. We are therefore interested in knowing how to exploit this concurrency, how to model
concurrent computations, and which languages allow us to program this dynamic hardware
most effectively.

The purpose of this paper is to describe an FPGA compiler for the Circal process algebra. In
so doing, we demonstrate that behavioural descriptions expressed in a process algebraic lan-
guage can be readily and intuitively compiled to reconfigurable logic and that this contributes
to the goal of discovering appropriate high-level languages for run-time reconfiguration.

The introductory sections of the paper motivate our work and describe the modelling method-
ology adopted by Circal before describing a technology-independent circuit representation
for system behaviours specified in Circal. The latter sections describe the automatic mapping
of these circuits to the XC6200 series FPGA chips of a SPACE.2 reconfigurable computer.

1 Introduction

A technique for compiling from a behavioural language oriented towards communication
and concurrency into field-programmable gate array devices (FPGAs) is presented. This
approach permits the rapid design and prototyping of complex, control-oriented systems,
where a design is produced automatically from a much more abstract behavioural specifi-
cation. Detailed implementation issues are dealt with by the compiler, with the designer
concentrating on higher level design decisions such as overall system architecture. In addi-
tion, the compilation technique developed gives access to techniques for formally establish-
ing design correctness and, furthermore, will lead to languages and compilation techniques
for dynamically reconfigurable computing.

The term reconfigurable computer is currently used to denote a machine based on FPGA
technology. This chip technology is programmable at the gate level, thereby allowing any
discrete digital logic system to be instantiated. It differs from the classical von Neumann
computing paradigm in that a program does not reside in memory but rather an applica-
tion is realized directly in digital logic. Since this logic is repeatedly programmable, the
underlying FPGA platform may repeatedly be instantiated to create completely different
custom computer realizations for each distinct application. Certain FPGA technologies
are also dynamically reconfigurable in that part of the FPGA logic may be reconfigured
while another part is running and, even more radically, this technology permits part of
the programmable logic to be used to reconfigure another part in real time.



For some computing and electronic control applications we are able to exploit the in-
herent concurrency of digital logic to directly realize algorithms as custom hardware to
gain a performance advantage over software executing on conventional microprocessors.
By providing a relatively cheap and rapid implementation technology, the advent of re-
configurable logic in the form of FPGAs has empowered engineers to experiment with
hardware-based algorithms. It has been shown that FPGAs can host particular classes of
high performance applications very successfully, and at relatively low cost [1-3].

It is the inherent presence of concurrent activity that distinguishes hardware from software.
Software operates at a conceptual level of abstraction such that the concurrency in the
underlying microprocessor hardware is unknown to the software programmer and is unseen
when the code runs. However, reconfigurable computing allows the potential for exploiting
the concurrency found in digital logic.

Unfortunately, current FPGA specification and design methodologies are not well-suited
to the task of harnessing this concurrency. On the one hand, the low-level orientation
of hardware description languages, such as VHDL and Verilog [4, 5], inhibit the effective
expression of parallelism in abstract, behavioural terms. Synthesis and technology mapping
tools for these languages are not yet designed for rapid compilation or dynamic circuit
replacement. On the other hand, high-level languages that have been augmented for FPGA
design [6,7, for example] rely upon the designer’s explicit expression of parallelism and
upon compilation techniques to identify implicit parallelism. Languages such as these are
typically translated to VHDL as an intermediate form, and then synthesized and mapped
using conventional tools.

We contend that sequential high-level languages and static hardware description languages
cannot satisfactorily be extended to describe inherently parallel and dynamic hardware
structures. The design of suitable languages for reconfigurable computing should begin
with a definition and innate understanding of such features of the hardware. This paper
takes a significant step in that direction by demonstrating that we can intuitively and
rapidly compile an abstract, high-level language that is oriented to describing concurrency
and communication into reconfigurable logic. We show how the core features of process
algebra [8-10], and the Circal process algebra in particular [8,11], can be mapped into
reconfigurable logic.

The rationale for focusing on using a process algebra as the basis of a language for spec-
ifying reconfigurable logic is that it allows us to express the behaviour of a design in
an abstract, technology-independent fashion and it emphasizes computation in terms of
a hierarchical, modular, and interconnected structure of concurrently active finite state
machines. The modular focus of process algebra, which arises due to the constructive,
algebraic nature of modelling via an appropriate composition operator, is seen by the au-
thors as a key approach to both formalizing and thence realizing the concepts of partial
and dynamic reconfiguration, where we may swap in and replace individual components
rather than performing complete reconfigurations.

Our ongoing research programme has the goal of determining appropriate high-level lan-
guage features and attendant compilation techniques for the rapid realization of dynami-
cally reconfigurable applications. This paper presents the results of the first phase of this
programme, during which we developed techniques for compiling the Circal process al-
gebra language into a digital logic representation, and from this technology-independent
mode into a particular FPGA technology. While the results utilize the experimental Xilinx
XC6200 technology [12], they provide us with a “proof of concept” that permits us to apply
similar techniques to current FPGA product technologies. Future research aims to build
on the strategies presented here in order to develop techniques for compiling dynamic



structures specified in the dsCircal process algebra [13], which facilitates the modelling
of systems whose structure changes as the system runs, such as found in the dynamic,
run-time reconfiguration of FPGA-based systems.

A high-level language based on a process algebra is quite different from classical hardware
description languages, such as VHDL and Verilog, that are oriented towards register-
transfer and gate-level descriptions. Instead, our approach provides designers with a design
paradigm focused on behavioural process modules and their interconnection. Because of
its modular focus, our approach aids the rapid compilation and partial reconfiguration of
designs at run-time. Our approach also presents us with the potential for formally verifying
the compilation algorithm, thereby allowing us to state that all designs expressed in the
source language are correctly implemented in the underlying reconfigurable computing
engine. Related research on verifiable compilation from Occam to FPGAs was performed
by Shaw and Milne [14], while Page, Luk, Jifeng, and Bowen [15, 16] also developed Occam
to FPGA compilation techniques.

The rapid compilation of Circal models allows assemblies of interacting finite state ma-
chines, upon which logic control paths are based, to be implemented quickly. Apart from
logic controllers, such as used in [17], we may use the approach to build and quickly modify
test pattern generators that function at near hardware speed, an application described in
detail in [18]. The future realization of such applications will involve utilizing a source lan-
guage resulting from embedding the Circal parallel programming model within a language
such as C++ or Java; the intent of the research reported here has been to focus on the
compilation of hierarchies of interacting, concurrently active finite state machines result-
ing in techniques for exploiting FPGA parallelism. As such, we have gone some way to
attacking the semantic gap between application programming languages and configurable
hardware, the case for which is elegantly presented by Snider, Shackleford, and Carter [7].

In the following section we provide an overview of the Circal process algebra which takes
on the role of source language for our compiler. Section 3 introduces our contribution with
an overview of the compiler. We describe a technology-independent circuit model of Circal
processes in Section 4. The mapping of these circuits to FPGAs, and Xilinx XC6200 chips
in particular, is discussed in Section 5. The automation of the mapping from behavioural
Circal descriptions is described in Section 6. An outline of the research described in this
paper first appeared in [19].

2 The Circal description language

In this section we present Circal as a descriptive medium for reconfigurable computing. We
describe the key language concepts and how they are used to describe concurrent systems.

Circal is a formal language used to describe interacting systems by modelling the behaviour
of their component processes, each as a finite state machine. These component processes
then interact, based on the synchronous occurrence of transition events. Systems, and
processes in turn, are described hierarchically and in a modular fashion. The description of
a system thus typically proceeds in a top-down manner with the elaboration of component
processes leading to further decomposition until the desired level of description is reached.
In principle it is possible to elaborate designs to the level of logic gates and signals (see,
for example, [11]).

We informally present the Circal language using state transition diagrams following the
approach adopted in [20]. A detailed presentation of these language constructs, their se-
mantics, and how they are used to formally describe and verify digital logic can be found
in [8,11,21].



2.1 Describing hierarchies of interacting finite state machines

Process algebras such as Circal are mathematical formalisms for describing systems of
interacting finite state machines, where interaction is achieved by synchronizing the tran-
sitions that occur in the individual finite state machines. This can be done in several
ways, which leads to differentiation between the various process algebras that appear in
the literature [22, 10,9, 11].

Circal utilizes three structural language constructs, namely a parallel composition opera-
tor, a hiding operator and a relabelling operator. The combination of the three operators
allows for the structure of any system to be modelled as a hierarchy of abstractions, as
shown in Figure 1(a). Each box represents a process that is composed of the components
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Fig. 1. (a) Hierarchy of system components; (b) Graphical representation of parallel composition.

at the next lower level in the hierarchy. For example, process @) consists of two compo-
nents: process U and process V. Only the boxes that are leaves of the hierarchy explicitly
encapsulate behaviour. In the following, such leaves are called behavioural processes and
these correspond to individual finite state machines. Each process interacts with other
processes through communication ports. Interaction between processes occurs via transi-
tion actions or events that are associated with the ports and in Circal a communication
channel connects all the ports that are labelled with the same action.

If we look at the hierarchy given in Figure 1(a) each process, apart from the root, is
embedded within its parent by composing it in parallel with its siblings, by possibly hiding
some of the actions that are used for interaction, and by possibly relabelling other actions.
For example, P and @ are embedded within S as shown in Figure 1(b). Communication
ports are represented by bullets on the periphery of a box and communication channels
are represented by lines connecting two or more ports. These channels are labelled with
their associated actions. The embedding of a set of processes within the next level of the
hierarchy is represented by a surrounding box with bullets on its periphery representing
the ports that are not hidden after the composition. These ports are externally labelled
and connected by channels to the correspondingly named internal ports. For example, in
Figure 1(b), P and @@ communicate through the channels labelled by actions a and b and
may interact independently with their environment via ports labelled ¢ and d.

The box that embeds a set of processes represents the interface of the composite process.
Every process has a sort, which is the set of action names that label the ports on the box
that embeds its components. For example, in Figure 1(b), S has sort {a, b, c,d}, P has sort
{a,b,c}, and @ has sort {a,b,d}. For a behavioural process, its sort (or interface) must
contain at least all the actions that occur in its embedded behaviour.



2.2 Process Behaviour

The parallel composition of behavioural processes may be expanded into a global behaviour
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Fig. 2. (a,b) Interfaces and behaviours of P and @; (c) Behaviour of S, the parallel composition of P and
Q.

where every state of the global behaviour is given by the product of its component states.

Given a set of processes, and for each process in a particular state, a set of possible
transitions, a combination of transitions may synchronize if, and only if, for each action
that belongs to the label of at least one transition, if the action does not occur in the
label of any transition for some other process in the set, then it does not belong to the
sort of that process; here causally independent actions are synchronized. If a combination
of transitions may synchronize, then some of these transitions must synchronize if and
only if there is at least one action in the intersection of their labels; thus identical actions
from distinct component processes synchronize. When transitions of different processes
synchronize, the label of the transition of the composite process is the union of the labels
of all components.

For instance, if we compose processes P and @ of Figures 2(a) and (b), then the transitions
labelled a from Py to P; in P and from Q)¢ to (1 in () may synchronize, as may the tran-
sitions labelled ¢ from Py and d from )y. The corresponding transitions of the composite
process, which is represented in Figure 2(c), are from Sy = Py X Qg to S5 = P; x @1, and
are labelled a and (cd) = c U d respectively. The transitions labelled ¢ and d may also
occur independently, and thus states S; = Py x Q1 and Ss = P; X Qg can also be reached
from state Sj.

Structural operators permit us to interconnect or compose processes together, as pictured
in Figure 2, to “black-box” subsystems of processes by abstracting away internalized com-
munication links, and to instantiate new process objects from generic objects. It is these
structural operators that allow us to readily describe hierarchical systems that are con-
structed from component modules. This is significant for the source language of a compiler
for reconfigurable computing since we believe most appropriate applications will be inher-
ently modular and capable of hierarchical description.

2.3 The Circal language

Behavioural features

Termination A is a deadlock state from which a process cannot evolve.

Guarding a P is a process that synchronizes to perform event a and then behaves as, or
evolves to, P, while (a b) P synchronizes with events a and b simultaneously and then
behaves as P.



Choice P + Q@ is a term that chooses between the actions in process P and those in @,
the choice depending upon the environment in which the process is executed. Usually
the choice is mediated through the offering by the environment of a guarding event'.

State Definition P < () defines process P to have the behaviour of term ). Process @
is bound to identifier P. This construct allows for the recursive definition of process
behaviour.

Structural features

Composition P Q runs P and @ in parallel, with synchronization occurring over simi-
larly named events. When P and () share a common event, both must be in a state in
which they can accept that event before the event and synchronous state evolution can
occur. P and () may independently respond to events that are unique to their specifi-
cation. Should such events occur simultaneously, the processes respond independently
and simultaneously.

Abstraction P —a hides event set a from P, the actions in a becoming encapsulated and
unobservable.

Relabelling P[a/b] replaces references to event b in P with the event named a. This
feature is similar to calling procedures with parameter substitution.

Processes, and the events they respond to, are central to process algebras such as Circal,
CCS [9], and CSP [10]. Circal differs from most process algebras in that it has a strict
interpretation of the response of processes to the simultaneous occurrence of events and
is therefore well-suited to modelling synchronous devices such as FPGAs.

2.4 Example

Using the language features of Circal, we can express the definitions of processes P and
Q from Figure 2 as follows:

P+ Po (1)
P0<—aP1—I-(ab)P1 +CP1 (2)
P1 — aP() (3)
and
Q <+ Qo (4)
Qo+ aQ1+dQ: (5)
Q1+ bQo (6)

Applying the Circal composition law, or alternatively, the transition relation for the Circal
operational semantic [8,11], we obtain the following equations for the composition of
processes S <+ P x Q:

S+ Py* Qo (7)
PoxQoaPr+xQ1+cPrxQo+ (cd)PL*Q1+dPyx Q1 (8)
P xQo+aPy*xQ1+dP*Q1 9)
Po*x Q1+ cPr*Q1 (10)
PxQi+ A (11)

! There is also a non-determinism operator used for describing the behaviour of existing systems, but
that does not have a role when Circal is used as a design language



3 Overview of the compiler

This paper describes our strategy for implementing systems described in the language
HCircal, which is, in effect, Circal without non-determinism, a concept that we do not
wish to realize in our implementation.

An HCircal source file consists of a declaration part, a process definition part, and an
implementation part. The definition part consists of a sequence of process definitions
adhering to the Circal BNF. The implementation part is introduced with the Implement
declarative and is followed by a comma-delimited list of concurrently active processes that
are to be implemented in hardware.

The compiler operates via the following three stages:

1. The user inputs an HCircal specification of the system to be implemented.

2. The compiler analyzes the specification to produce a hardware implementation and a
driver program for interacting with the hardware realization that is in the form of a
Xilinx XC6200 FPGA configuration bit-stream suitable for loading onto XC6200-based
reconfigurable coprocessors such as the SPACE.2 board [23]. The driver program is a
C program that executes on the SPACE.2 host (a DEC Alpha UNIX workstation). It
loads the configuration onto the coprocessor and allows the user to interact with the
implemented system.

3. The user runs the driver program and interacts with the hardware model by entering
event traces and observing the system response.

The following sections describe in detail the methodology we have developed to map from
behavioural descriptions to technology-independent circuits, the decomposition of the cir-
cuits into modules for which FPGA configurations are readily generated, and the derivation
of the module parameters from the Circal specification. The generation of the host pro-
gram is a straightforward specialization of a general program that obtains appropriate
event inputs, loads the input registers, and reads the process state registers.

4 A circuit representation of Circal

The aim of the model is to faithfully represent the underlying Circal semantics [11] in
hardware. The design concentrates on the representation of the Circal composition opera-
tor, which is of central importance because it is through the composition of processes that
potentially complex interacting behaviour occurs due to the concurrent execution of the
individual processes.

The hardware implementation of the Circal system follows design principles that aim to
generate fast circuits quickly. The first of these is that, for the sake of speed and scalability,
the hardware representation of Circal aims to minimize its dependence upon global com-
putation at the compilation and execution phases. The second principle is that we choose
to design for ease of run-time instantiation and computational speed over area minimality.
The motivation for these choices is the desire to leverage the speedup afforded by con-
currently executing the Circal system in hardware; they are supported by the ability to
reconfigure the gate array at run-time in order to provide a virtual chip of “limitless” cir-
cuit area. Finally, we desire a reusable design because we believe that will facilitate design
synthesis, circuit reconfiguration, and future investigations into dynamically structured
Circal.



4.1 Design outline

A block diagram of a digital circuit that implements a composition of Circal processes
in hardware. is shown in Figure 3(a). This circuit consists of a system of interconnected,
interacting processes that respond to inputs from the environment by undergoing state
transitions.

nchronization
signal

Environmental Environmental
inputs inputs
events Processlogic Event synchronization
blocks logic events
inthe
process
sort
=) Select
=] state Request
Requeg — transition g gna]
signals [ X
Q v
Enable
. y state
CX transition Synch
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| y
\
Process
state
] > ]

state feedback
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Fig. 3. (a) Circuit block diagram; (b) Circal process logic block.

An individual process is implemented as a block of logic with state. In a given state, each
process responds to events according to the Circal process definition. Individual processes
examine the event offered by the environment and produce a “request to synchronize”
signal, as pictured in Figure 3(b), if the event is found to be acceptable. The conjunction
of the request signals generated by all processes in the system produces a synchronization
signal that each process responds to independently.

Implementing Circal in synchronous FPGA circuits leads us to assume that: each process
is in a known state during each clock period; state transitions occur on clock edges; an
event occurs at most once during a clock period; the next state is determined by the events
that occurred during the previous clock period; events are sampled on positive clock edges;
and, if no event occurs between consecutive positive clock edges, then the idling process
transition P — P occurs upon the second clock edge by default. Since process evolution
is dependent upon timed samples of events, the presence of clock ticks is implicit in all
guards. Thus we have an implicitly timed system; the modelling of such systems in Circal
is discussed in detail in [8, 11].

4.2 Process logic block design

Process logic blocks are derived from the process definition syntax and represented as
compact localized blocks of logic to simplify the placement and routing of the system. A
high-level view of a process logic block is given in Figure 3(b).

A process is designed to respond to events in the environment that are acceptable to all
processes in the composed system. In order to perform this function, the process logic first



checks whether the event is acceptable to itself. If all processes find the event acceptable,
the event synchronization logic returns a synchronization signal that is used by individual
process logic blocks to enable the state transition guarded by the event.

The current state of the process is stored in a process state register using a one-hot
encoding. Each state is represented by a flip-flop that becomes active when the process
enters that state and remains active while the process remains in that state.

In a given state, each process is prepared to synchronize on some subset of the events in
its sort. However, in a composed system, for any event to occur, all processes must agree
on the acceptability of the event.

Three steps are needed to agree upon the events that are permitted. Taken together
these steps comprise the state renewal cycle and constitute a hardware realization of the
operational semantics of the Circal composition operator. In [11], these semantics are
presented in terms of a labelled transition system.

1. In the first step, each process independently and in parallel determines whether the
combination of events offered by the environment is a valid combination for its current
state. This check is performed by determining whether the combination of events that
intersects its sort forms a valid guard for the current state. If so, the process flags its
willingness to accept the event by raising a request signal. Otherwise the signal is not
raised.

2. The second step checks whether the event combination is acceptable to all processes
in the composed system by forming the conjunction of the request signals generated
during the first step. The result of this calculation is broadcast to all processes in order
for them to synchronize their transitions to a new state.

3. In the third step, each process determines its next state based on the combination of
events offered by the environment and whether or not all processes accepted the offer.
The default is to remain in the current state if no events occurred or the combination
of events was not accepted by all processes during the second step.

The following subsections describe the process logic block design in greater detail.

Determining the validity of event combinations We construct a combinational
circuit that checks whether the events in the sort of the process form a valid guard for the
current state. The process also accepts a null event (an event not in its sort) in order to
allow other processes to respond to events it does not care about. The current state of the
process is recycled if an unacceptable or null event is offered by the environment.

Let us assume that at most k (recursive) definitions Py, P, ..., P;x_1 are used to describe
the evolution of process P with sort S = {eg, €1, ..., en—1}. Suppose that P; has the form
P; < gioPio+ ... + gij P j + ... + giym; Pim;, where each P; ; defines the state P; evolves
to under guard g; ; C S, and g; ; represents the simultaneous occurrence of the events in
the set g; ;. Note that the definition for FP; consists of m; + 1 guarded terms, whereby the
simultaneous events, g; j, are all distinct. Note also that there may be at most k distinct
next states but up to m; < 2" — 1 distinct guards. That there can only be k distinct next
states is clear from the assumption that we have k definitions. Within any one definition,
no pair of distinct next states can have the same guard, since it would then be unclear as
to which choice is taken should the corresponding simultaneous event occur. Nevertheless,
any subset of the power set of the events contained in the process sort forms a set of
distinct guards that may be used in the definition.

If we think of the events and states as boolean variables, then in state P; the process
responds to event combinations in the set {v;;} U {vs}, where v;; = gpe1...e4-1 is a



boolean combination of events in the process sort and each literal corresponding to an
event is uncomplemented or not depending upon whether the event is included in the
guard or not, that is, g, = ¢; or g, = g, for 0 < < n — 1, depending upon whether or not
e € g;,;- Furthermore, vs =€y ey ... €,_1 is defined to be the null event for sort S. Process
P in state P; therefore accepts the canonical sum of products boolean expression of events

vs + 2o<j<m; Vi -

The request for synchronization signal, zp, is thus formed from the expression of accepted
events for all states, zp = > o<;<k—1 (Vs + Xo<j<m; Vij) Fi, since the parenthesized terms
represent the guards accepted in state P; and the sum is over all possible states.

Checking the acceptability of an event The conjunction of all process request signals
is formed and implemented external to the individual process logic blocks. The output of
this global AND gate is fed back to each process as the synchronization signal, y. This
realization is to be expected since the multiway synchronization of Circal composition is
in essence a labelled state transition version of logical conjunction.

Enabling state transitions The state of the process is stored in flip-flops, one for each
state. Let Dp,,0 <1 < k — 1, denote the boolean input function of the D-type flip-flop for
state P;. Then we can derive the following boolean equation from the process definitions:

Dp, =y s P+ Yo<i<k—1[Xp, ;=p il Fi) + Y B, for 0 <1<k — 1.

In the above equation, the terms in parentheses are enabled when the synchronization
signal, y, is asserted. The first term within the parentheses is due to state recycling when
a null event is offered to the process in state P;. The double summation within the paren-
theses corresponds to the guards on state transitions that lead to a next state of P, from
each current state P;. The last term in the equation forces the current state to be renewed
if the system of processes could not accept the event combination offered by the environ-
ment. By observing the synchronization signal, the environment can determine whether
or not an event was accepted and can thus be constrained by the process composition.

To initialize the process state in a known state, we designate one of the states as the initial
state. For FPGA types such as the XC6200, which allows D-type flip-flops to be cleared
but not set, the input function for the initial state is complemented and the complement
of the output is used as the value for that state.

4.3 The complete process logic block

For a process, the disjunction of the parenthesized terms in the flip-flop input functions
implements the same boolean function as that used to obtain the request signal. This is
necessarily so since in the latter we need to form all guards for each state, and in the
former, we need to combine each guard with the state it occurs in to obtain the correct
next state. We therefore use the state selection circuits to form the request signal and use
the synchronization signal to enable the selection, thus saving circuit replication.

4.4 Design example

The above Circal implementation strategy may be explained in more detail by extending
the example of Section 2.4. The high-level structure of the realization is as in Figure 4.

The system is composed of the logic blocks for processes P and (). These receive inputs
from the environment on event ports corresponding to the union of their sorts, {a,b, ¢, d}
in this case. When the environment offers a combination of atomic events, each process
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Fig. 4. Outline of composed system.

independently determines whether it can respond to the offer or not. If it can, it asserts its
request to synchronize signal, zp (respectively zg). Otherwise the request is not asserted.
According to whether or not both processes can accept the offered event combination,
each process receives the synchronization signal y, whereupon the process evolves into a
new state or recycles the current state.

Determining whether an event combination is valid We construct a combinational
circuit that checks whether the subset of the events offered by the environment that
intersects the sort of a process forms a valid guard for the current state. Let us reconsider
the process P defined by equations (1) — (3):

P+ P (1)
P0<—aP1+(ab)P1+cP1 (2)
P+ G,PO (3)

When the events and states are thought of as boolean variables, then in state P, the
process responds to any one of the event combinations in the set {ab¢,ab¢,abc,abc},
where the last term corresponds to the null event and we stay in state Py. In state P;, the
process logic would accept the event expression (a b€+ @b¢).

The request for synchronization signal, zp, is thus formed from the expressions for both
states:

zp = (@bc+abc+abc+abc)Py+ (@abc+abe) Py. (12)
In order to simplify the implementation and reuse terms, we prefer this canonical sum of
minterms representation instead of a minimized form.

Checking acceptability of the event The request signals for P and @ are ANDed
together. in an AND gate The output of this gate is fed back to each process as the
synchronization signal y.

Allowing state transitions Let Dp, and Dp, denote the boolean input functions for

the Py and P; state flip-flops. Then we can derive the following boolean equations from

the process definitions
Dp, =
Dp, =

y(al_) Py + a,I_)EPl) +y P (13)
=y(@abeP +[abc+abc+abePR)+7 P (14)

11



In the above equations, the terms in parentheses correspond to the guards on state tran-
sitions, and to state recycling if a null event was offered to this process. The last term in
the equations forces the current state to be renewed if the processes could not accept the
event combination offered by the environment.

We assume flip-flops can be cleared but not set. To initialize the process in Py, we therefore
complement its input function and use the complement of F,’s state output. That is, we
form

Dp,=y(@bcPy+abeP)+y P, (15)
and use the complemented output to represent the state,

Py=Qp,- (16)

The complete process logic block An optimized circuit to implement the logic for
process P forms the request signal, zp, by combining the logic to select the next state
with an OR gate. The resulting optimized circuit is shown in Figure 5. The circuit for
process () is easily derived in a similar fashion.

request and
@ @ @ state feedback @ @ synchronization
ports
event .
ports

@ I I logic to select lodic to enable siate selecti
Irgigr_lgery k jk j & j& j State fy Ogc;rC rgcyagle cirren? state o
. //

[ D— ] /J state

] - 1 flip-flops
»—>D—‘—>D Do |rslggal
) 0 | feedback

)
[ ' %—®)

<

*——|
o / Doy af—®
logic to select logic to form
state B request signal CLR

Fig. 5. Complete process logic for process P.

5 Mapping the circuits to reconfigurable logic

In this section we consider the placement and routing of the circuits derived in Section 4.
The derivation of circuit requirements from the specification is discussed in the next sec-
tion.

Our primary compilation goal is to generate FPGA configurations rapidly. We also want
to be able to replace circuitry at run-time to explore changing process behaviours and
to overcome resource limitations. A major reason for undertaking this research is that
conventional specification, synthesis, and mapping methodologies do not currently support
these goals.

Our approach has been to synthesize and map the abstract behavioural specifications
embodied in a simple process algebra directly to hardware instead of using current spec-
ification and synthesis tools that rely upon non-deterministic, slow, and unsystematic

12



mapping tools. This approach was adopted following difficulties with placing and routing
Circal models satisfactorily using XACTstep, the Xilinx automatic place and route tool
for XC6200.

When XACTstep was used to place and route the system from Section 4.4 without con-
straints, the tool flattened the netlist, packed the logic into a compact rectangular region
of the chip, and was unsuccessful in completing the routing. The result, which took 43
seconds to produce on a 333MHz Pentium II PC, is captured in Figure 6(a). By contrast,
preserving the logic hierarchy did not significantly aid the tool, but routing was completed
successfully in 45 seconds. The result is depicted in Figure 6(b). While adequate as a static
design, this solution does not satisfy the need to rapidly generate and modify designs. Lo-
cating logic and routes for modification is a real problem. We therefore decided to try
completely constraining the placement of the logic, but to allow the router to function
automatically. The result, which is depicted in Figure 6(c), still took 5 seconds to produce
and did not provide the desired predictability and regularity in routing. The ultimate step
was to constrain the routing as well, thereby giving the compiler complete control over
placement and routing. For the example, the HCircal compiler produced and configured
the design of Figure 6(d) in under a second.

We thus found that the performance of the Xilinx XACTstep place and route tool for
XC6200 was extremely poor, even for simple circuits, and unless every aspect of the de-
sign was constrained, it was impossible to locate components that might later be recon-
figured. These difficulties led us to consider decomposing the circuits into modules that
can be placed and routed under program control. These modules serve as an attractive
intermediate form since they are readily derived from the specification, they completely
describe the circuits to be implemented in a hardware-independent manner, and the FPGA
configuration can be generated from them without further analysis.

The process logic is represented as parameterized sub-component modules, each of which
can be rapidly mapped and placed to a specific location on chip. This approach has
the advantage that synthesis and floor-planning are combined at both the intermediate
representation and in the physical implementation and results in circuit functions that are
highly modularized and localized. As a consequence, sub-components can easily be replaced
in a dynamic reconfiguration scheme. Another significant advantage of the approach is
that the compilation is deterministic and extremely rapid. We therefore envisage using
similar techniques in an on-line interpreter that could manage hardware virtualization and
behaviourally inspired dynamic reconfiguration at run time. A drawback of the approach
is that some degree of compiler portability is lost.

We distinguish between 10 module types. Inputs are captured by an Environmental Inputs
(EI) block and are routed to process logic by Bus (B) and Input Junction (IJ) blocks.
Within a process, a series of Minterm (MT) blocks detects the combinations of event
inputs a process can respond to. The sets of minterms that lead to particular next states
from a given current state are summed in so-called Guard (G) blocks. Associated with each
Initial State (IS) and Non-Initial State (NIS) block is a Request (R) block that determines
whether any of the Guard block outputs are accepted in the current state. The process
request signals are formed from the disjunction of Request block outputs in OR Tree (OT)
blocks, and the Synchronization Logic (SL) blocks form the synchronization signal from
the individual process request signals.

Each module type implements a particular combinational logic function using a specific
spatial arrangement. Modules are specified by giving the exact function to be implemented,
e.g., minterm number, input and/or output signal vectors, and their location in the array.
To simplify the layout of the circuits, all modules are rectangular in shape and com-
municate via adjoining ports when they are abutted on the array surface. The module
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Fig. 6. (a) XACTstep APR of flattened netlist; (b) XACTstep APR with hierarchy preserved; (c) manual

placement, XACTstep routing; (d) HCircal place and route.
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arrangement for a typical system P % @ * ... is depicted in Figure 7. For a complete
description of the function, layout, and specification of the modules, please refer to [24].

Fig. 7. Typical circuit module arrangement

The compilation approach places and routes the design entirely under program control in
time proportional to the area of the circuit. A worst case assessment of the area required
by the implementation assumes there are n environmental inputs, p processes, that the
sort size of each process is O(n), that the maximum number of minterms for any process
is kK < 2™, and that no process has more than k states. In that case, the width of the
design is O(n + klogn + logp) = O(2"logn + logp), and the height of the design is
O(p x (n + k%)) = O(2*" x p).

The results reported in this paper assume the underlying FPGA architecture is fine-grained
(in the case of XC6200, a logic cell implements any 2-input function), and that local cell-
to-cell routing is available. Current FPGA architectures, such as the Xilinx Virtex series
[25], tend to be more coarse-grained, in that wider functions are supported at the logic cell
level, and if they support partial reconfiguration, that also tends to be at a coarser grain
size. One impact of these differences on our results are that current FPGAs need fewer
cells in general to implement our circuit modules because more logic can be packed into a
cell. For example, our designs make use of wide AND and OR gates that in the XC6200
compiler are mapped to balanced trees of 2-input gates. The corresponding functions in
Virtex can be mapped to fewer configurable logic blocks (CLBs) since the additional carry
logic resources and 4-input lookup tables provided allow 16-input gates to be mapped to
a single CLB. Larger gates can be constructed by linearly combining CLBs via the carry
chain.

The front-end of the XC6200 HCircal compiler produces a technology-independent de-
scription of the specified circuits in terms of a set of circuit module parameters. These
modules are instantiated by the back-end in time proportional to their area. We assume
that configuration time is proportional to the area of the circuit that is to be configured.
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With XC6200 technology, which holds to this assumption, the time to generate the module
bitstreams is of the same order as the time to load them. The Virtex FPGA series, on the
other hand, supports a model of partial reconfiguration that requires an entire “frame” or
column of configuration bits to be read/modified at a time. Configuration costs are thus
proportional to the width of the circuit and the height of the FPGA. In order to minimize
reconfiguration overheads, the model thus encourages logic to be laid out vertically into
columns of logic cells. We are currently investigating the design of module generators that
can produce dense mappings for the Virtex series which can also be configured rapidly.
These module generators will call on the JBits API to perform device configuration [26].

6 Deriving modules from process descriptions

For each unique process that is to be implemented, a process template that consists of
the modules comprising the process logic is constructed. The module parameters for a
process template include positional offsets relative to the template origin. Once the size
of the logic for each template is known, a copy with absolute offsets (final placement of
modules) is made for each process that is to be implemented and the FPGA configuration
is generated.

The steps in the derivation of the module representation of the required circuit or its
equivalent FPGA configuration are as follows:

1. Identify the processes to be implemented by scanning the Implement statement in the
specification.
2. For each process to be implemented:

(a) Determine its sort by collecting the events guarding state transitions that are found
by spanning the state tree from the initial state given in the Implement statement.

(b) Compute the minterms needed by expressing the guards on state transitions in
normalized form.

(c) Form the disjunction of minterms that lead to the same next state for each current
state. These groupings are formed in the so-called Guard blocks referred to in the
previous section.

(d) Compute the state logic, comprising:

i. state registers — one flip-flop is allocated per state;
ii. request logic, that forms the conjunction of the output of logic described in (2c)
above with the corresponding current state; and
iii. state transition logic that enables transition to the appropriate next state if the
synchronization signal is asserted.
3. For each process composition:

(a) Determine the absolute offsets for each process by stacking their logic blocks below
one another and leaving room for buses carrying input signals on the left.

(b) Compute the synchronization logic needed from the absolute process logic offsets.

4. Compute input registers and input broadcast buses from the process offsets and process
sorts.

Currently the compilation is performed off-line and the configurations generated are static.
In future implementations we plan to experiment with replacing modules at run-time to
overcome resource limitations and implement dynamically changing process behaviours.
Minor behavioural changes may simply involve replacing minterms or guard modules which
could be done very quickly. The regular shapes and small sizes of modules may allow us
to distribute them and finalize the module positioning at run-time in order to maximize
array utilization.
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7 Conclusions

Traditionally the specification of reconfigurable computing applications has utilized in-
herently structural hardware description languages such as VHDL [27] and Verilog [28],
augmented programming languages such as C/C++ [6], Ruby [29, 30], and Lola [31], or
schematic design entry, all of which take a low-level view of systems. The research re-
ported here contributes to our understanding of appropriate high-level system description
languages that are oriented towards the rapid design of highly concurrent systems. We
require appropriate languages that permit both behavioural and structural description,
as is done with high-level programming languages that are oriented towards the func-
tion of a program rather than its realization on the underlying hardware. Following the
traditional programming language approach, suitable compilation techniques are also re-
quired if we are to bring reconfigurable computing to a mainstream user community, to
make the technology more accessible, and to permit faster prototype turnaround. This will
give developers who are experienced in algorithms and applications but who have limited
understanding of the underlying hardware ready access to reconfigurable computing.

Specifically, this paper reports on the following results that contribute to the above goal.

We have shown how to realize Circal processes as circuits by developing a compilation tech-
nique that takes programs written in an abstract language that is oriented towards the
hierarchical, modular description of systems of interacting, concurrently active processes
and produces circuit descriptions. These circuits are mapped into concurrently active, syn-
chronized blocks of reconfigurable chip logic that directly exploit the inherent parallelism
of the underlying technology. Implementing system components as independent blocks of
logic allows them to be generated independently, to be implemented in a distributed fash-
ion, to operate concurrently, and to be swapped to overcome resource limitations. Our
approach exploits the hierarchy and modularity inherent in abstract system descriptions
given in a process algebra such as Circal.

We have shown how to instantiate a circuit by decomposing it into parametric modules
that perform functions above the gate level. To simplify the layout, modules are mapped to
rectangular regions that are wired together by abutting them on a chip. Since the modules
completely describe the circuits to be implemented in a hardware-independent yet readily
mapped manner, they could serve as a mobile description of Circal processes that can be
transmitted and instantiated remotely.

The circuit model is readily derived from Circal behavioural specifications. A natural
mapping from the circuit model allows modules to be generated quickly; mapping to
different technologies should therefore be straightforward. The time to calculate, produce,
and configure module logic is proportional to its area. Thus the time to instantiate a
circuit is proportional to its area, which is a desirable property since it is the minimum
time needed to configure the circuit onto the reconfigurable logic chip surface with current
technology.

Current directions extending the work reported in this paper include the development of
an interpreter that adapts to resource availability and that supports the run-time com-
pilation of process descriptions whose structure may change dynamically [32]. One such
language, called dsCircal, is presented in [13]. This work is targeting the Xilinx Virtex
series FPGA and using JBits as the programmer interface. We also intend to assess the
usability and descriptive power of process algebraic specifications for a number of applica-
tions such as the text filtering application discussed in [33]. This work involves developing
strategies for enhancing the HCircal subset of Circal to support specific applications such
as stream-oriented and data parallel computations. Our intent is to examine the feasibility

17



of developing application-oriented languages “on top of” HCircal or dsCircal to assist in
their rapid realization in reconfigurable logic.
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