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Abstract 

Exploiting organic electronic material in optoelectronic devices requires us to understand the 

generation, mobility, and recombination of charge carriers. In these materials, the quantum mechanical 

property of spin has a considerable effect on these processes. Due to weak spin-orbit coupling, spin is 

a good quantum number, and spin-dependent processes play a significant role in conductivity and 

recombination. Consequently, spin-based probes such as electron spin resonance are effective ways to 

understand the underlying electronic properties in these materials. The long-lived spin states also point 

toward applications in sensing, using either magnetoresistive or resonant effects to provide new 

functionality. A useful technique for this is electrical detection of magnetic resonance (EDMR), which 

uses electron spin resonance for spin manipulation and conductivity measurements to detect the 

resulting changes in transport properties. For example, the change in the current through an organic 

light-emitting diode (OLED) due to EDMR allows us to determine spin lifetimes and spin-dependent 

recombination rates of polaron pairs. A number of proposals have been shown that OLEDs can be used 

as magnetometers via phase-sensitive electron spin resonance approaches. Owing to the disorder 

inherent in these materials, a challenge applying these techniques to organic devices is the 

inhomogeneous broadening of polaron spin resonances due to interactions with nuclear spins in the 

organic materials. Previous work shows that adiabatic pulse schemes can improve both fidelity and 

sensitivity of EDMR in organic devices under ideal conditions. Here, I extend these results to include 

simulations with realistic spin lifetimes and recombination rates. I experimentally determine the spin 

and carrier lifetimes for MEH-PPV-based devices and use these parameters to model the impact of 

adiabatic pulse schemes using these parameters in a stochastic Liouville framework, expanding on 

previous work by explicitly including Redfield terms. I show theoretically that chirp pulses increase the 

fidelity of operation in a Hahn echo sequence compared to square pulses, and that the trajectories of 

spin pairs under adiabatic excitation schemes have a more complex impact on the resulting fidelity than 

two independent spins.  This work is important for applications which exploit the properties of organic 

semiconductors such as spin-based sensing.   
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Chapter 1 

Introduction  

Organic semiconductors have become an important and promising material with which to develop a 

variety of optoelectronic technologies, in particular organic light-emitting diodes (OLEDs) [1] and 

organic solar cells [2]. The critical need to develop organic solar cells, with low cost, flexibility, and 

environmentally friendly, is fundamentally related to producing green energy [3]. In addition, 

flexibility, lightweight, efficiency and lifetimes are some of the driving factors in the increasing use of 

organic device over devices based on inorganic materials [4, 5]. However, organic devices face some 

challenges related to their lower efficiency and stability issues. For example, organic solar cells have 

demonstrated 17.3% [3] as a maximum efficiency while the inorganic ones 46% [6]. Furthermore, 

instability and fast degradation is the main concern in organic devices [7, 8]. Therefore, most 

researchers in the field have been focused on solving these issues and investigating spin processes to 

understand underlying physics in organic materials. However, the development of organic devices has 

some limitations due to the experimental difficulties when investigating spin phenomena, spin 

randomization, and the impact of magnetic field effects [9]. 

Investigations on organic electronic materials have shown that weak spin-orbit interactions occur in 

these materials which leads to spin-conservation and has an  influence on many electronic processes 

such as generation, charge carrier recombination and transport. This thesis is based on the premise that 

explicitly understanding these properties by using spin-based probes is important for improving device 

efficiency and performance, and thus developed new technological applications [4]. One of the most 

remarkable development applications is using OLEDs for magnetic field sensing due to the sensitivity 

of spin-dependent processes to small changes in the magnetic field in organic materials. Ref. [10] 

demonstrated the first organic spintronic device achieved 30% magnetoresistance at room temperature. 

Ref. [11] presented the organic magnetic resonance magnetometer, which allowed the accurate 

measurement to the small length of intermediate fields. The utilization of a suitable technique of 

influence on OLED, such as pulsed electrically detected magnetic resonance, would lead to the spin 

coherence spectroscopy [11]. Therefore, OLED-based sensors provide a new conception for accurate 

magnetometry measurement. 
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1.1 Quantum systems spin and control 

Quantum mechanics is an important concept for describing our understanding of nature. In general, 

quantum mechanics is necessary to describe the structure, properties, and behavior of atoms and 

molecules such as intrinsic randomness, interference phenomena, and entanglement between physical 

systems, which are all common and classical mechanics failed with [12]. 

Controlling quantum mechanical system is by using the interaction between a quantum system and a 

classical control field to allow its dynamics to reach the required result [13, 14]. In organic electronics, 

the quantum mechanical property of spin has an effect on many processes such as charge carrier 

recombination and transport owing to weak spin-orbit coupling in these materials. Therefore, implicitly 

understanding of the electronic properties of these materials by using spin-based probes leads to develop 

magnetoresistance and sensor applications and new technological applications [4, 15, 16]. 

In order to analyze a quantum system, a spin Hamiltonian, which describes both the time-independent 

environmental interactions and the interaction between the electron spins and the driving field, should 

be determined [16, 17]. Furthermore, the concept of the Hamiltonian is used for describing the 

spectroscopy of electron spin resonance (ESR). ESR spectroscopy is a magnetic resonance technique, 

and its fundamental principle is absorption of the electromagnetic radiation by electrons in the presence 

of an external magnetic field [18, 19, 20, 21]. Although there are many ESR modalities (continuous 

wave ESR (cw-ESR), electron nuclear double resonance (ENDOR), and electron spin echo envelope 

modulation (ESEEM), etc), ESR measurements have some limitations due to sensitivity to charge n 

polarization and ESR spectroscopy is described by long electron interactions [18]. To overcome these 

limitations, electrical detection of magnetic resonance (EDMR) and optical detection of magnetic 

resonance (ODMR) have been used [4].    

1.2. Spins in organic systems 

Understanding the processes occurring inside organic materials such as recombination, dissociation, 

spin relaxation, and spin decoherence is needed to exploit organic materials for developing new 

technologies especially optoelectronic devices [5]. Within appropriate properties such as weak spin-

orbit coupling, long coherence times, and large magnetic field effects at room temperature, therefore, 

spin manipulation is important to understand the underlying electronic properties in these materials [15, 

16]. 

Defining spin dependent and independent processes in organic devices would be more possible with 

spin control [5]. In order to investigate spin dependent transitions which are affected by static magnetic 

fields and magnetic resonance, the observation of spins and their interaction is required. Electron 

paramagnetic resonance (EPR) or ESR and nuclear magnetic resonance (NMR) have been used to 
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observe spin-spin and spin-environment interactions, and spin relaxation. However, these methods have 

some limitations such as the measurements are sensitive to change in polarization, and limited spins 

detection due to little information about electronic transitions between paramagnetic levels, which 

caused by magnetic resonance spectroscopy. Therefore, using electrical detection of magnetic 

resonance (EDMR) and optical detection of magnetic resonance (ODMR) is required to reduce EPR 

and NMR limitations especially given the enhanced sensitivity of EDMR and ODMR which allows a 

very small sample to be detected [11].  

In 1959 [22, 23], the first ODMR experiments were performed on chromium ions in an aluminum oxide 

host matrix. The first EDMR was demonstrated in 1966 by both Maxwell and Honig and Schmidt and 

Solomon [24, 25]. Both EDMR and ODMR manipulate spin with magnetic resonance, but EDMR is 

measuring via sample conductivity while ODMR is measuring via spin-controlled radiative emission 

or absorption, as opposed to the inductive detection usually employed in ESR. In addition to the 

detection of single spins, EDMR and ODMR allow the influence of spin on a range of rates to be 

measured. In contrast of EPR, EDMR and ODMR meet the requirements of conditional experiments 

with even high temperature or low magnetic field due to the dependence of spin selection principles. 

Since most of the EDMR and ODMR are achieved by continuous wave (cw) experiments which applied 

microwave radiation within magnetic field which reveal limited data such as Landé g factors, coupling, 

and electron lifetime, thus developing the coherent, pulsed EDMR and ODMR (pEDMR/pODMR) is 

needed [4]. Organic materials  dynamics information such as recombination, dissociation, spin 

relaxation times, and spin coherence times can be determined by using pulsed electrically and optically 

detected magnetic resonance (pEDMR and pODMR) [5]. The first pEDMR was observed in 2002, while 

pODMR and pEPR have been used since 1970s [4]. These methods are strongly used in short pulsed 

excitation resonance duration which lead to spin coherent manipulation to be investigated, and during 

that charge carrier spins state change and then the observation of the current enhancement or extinguish 

is recorded [4, 26]. The system returns back to its steady state, which is before applying any pulses and 

with constant current, at longer time scales that include spin relaxation time, charge carrier lifetimes, 

and detection system constants time [26].Therefore, it is clear that applying pEDMR/pODMR to 

organic materials has fundamental benefits to access to spin dynamic information, thus new 

technologies and discoveries can exist [4, 5, 26]. 

1.3. Organic devices 

Organic materials have been used to develop technology, which is now widespread, and found in 

applications such as mobile phone, digital cameras, TVs and computers screens. The benefit of using 

organic over inorganic materials in many applications is due to features such as flexibility, foldability, 

low material cost, low density and potentially high throughput and low-cost processing. Considering 
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organic materials, especially organic semiconductors for developing optoelectronic technologies is 

appropriate because of the interest properties such as weak spin-orbit coupling, long spin coherence 

times and large magnetic field effects at room temperature [5]. 

Since organic semiconductors have very weak spin-orbit interaction, the consequence would be long 

spin coherence times which could be increased by replacing the hydrogen with deuterium in order to 

extinguish the strong interaction between free charge carriers and the hydrogen spins on the carbon. 

Integrating long spin coherence times with large magnetic field effects would produce favorable 

semiconductor that can be used to improve quantum technologies due to the effective of magnetic field 

on the device conductivity and luminosity.  Moreover, organic spin valves, which transfer spins to 

certain direction, have been influenced by magnetic field. It should be noted that spin valves 

measurement is one of the most used processes for describing organic systems [5]. 

1.4. Aim of Thesis  

The aim of this thesis is to investigate the application of adiabatic pulse schemes to improve both the 

sensitivity and fidelity of electrically detected magnetic resonance in organic devices [17]. Whilst the 

application of these schemes (which have traditionally been limited to nuclear magnetic resonance 

(NMR)) is emerging in electron spin resonance, their application to electrically detected spin resonance 

has been limited. We will report on the fidelity improvements which can be gained using these 

techniques in pulse schemes applied to systems with intrinsic disorder, and in particular benchmark the 

improvement they provide for phase sensitive organic magnetic field sensors with realistic dephasing 

mechanisms and carrier lifetimes. 

1.5. Thesis outline 

This thesis is structured as follows: 

 

Chapter 2 discusses the theoretical basics of the quantum mechanics system, spin processes in organic 

semiconductors, and the coherent and incoherent spin motion resulting from electron spin resonance. 

Also demonstrates EDMR and the historical development of p-EDMR method, and theory of Magnetic 

field sensing.  

 

Chapter 3 discusses the development of organic device fabrication processes, device characterization, 

device optimization, and stability measurements. 

 

Chapter 4 demonstrates p-EDMR experimental results on MEH-PPV diodes, which are undertaken to 

provide parameters for modeling in chapter 5. 
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Chapter 5 describes theoretical investigations of magnetic resonance on OLED with adiabatic pulses, 

pulse sequences and predicted improvements.  

 

Chapter 6 provides conclusions and suggestions for future work. 
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Chapter 2. Theory and Background 
 

2.1 Quantum systems, spin and control 
 

Quantum mechanics is a fundamental and important theory to understand and explain the properties 

and the behavior of solids, atoms, and elementary particles. With many applications such as 

conductivity, magnetism, semiconductors, lasers, light emitting diodes and furthermore in many natural, 

biological and physical phenomena, quantum mechanics is central to our understanding of the physical 

world. [12]. 

 

In organic electronics, the quantum mechanical property of spin has an effect on many processes such 

as charge carrier recombination, generation, and mobility owing to weak spin-orbit coupling, which 

results in Pauli blockade that affects conductivity and long coherence times that affects recombination 

these materials. Therefore, utilization of spin-based probes in order to understand the underlying of the 

electronic properties of these materials is critical if we are to utilize spin to develop magnetoresistance 

and sensor applications and new technological applications [15, 16]. 

 

The conception of the spin Hamiltonian is critical for describing ESR spectroscopy. A system with 

magnetic interactions and lowest electronic state in the basic form of Schrödinger wave equation can 

be described as: 

 

�̂�𝑠𝜓𝑠                                                                                                                                                                              (2.1) 

 

where �̂�𝑠  the spin Hamiltonian, 𝜓𝑠    the spin wavefunction and E is the energy of the state s. 

An isolated system with only Zeeman interaction and without hyperfine interactions can be described 

as 

 

 �̂�𝑠 = µ𝐵 𝐵 . 𝑔 . 𝑆                                                                                                      (2.2) 

with solution 

ℎ𝑣 = √𝑔𝑥
2𝑙𝑥
2 + 𝑔𝑦

2𝑙𝑦
2 + 𝑔𝑧

2𝑙𝑧
2µ𝐵B                                                                               (2.3) 

 

where ℎ is Planck’s constant, 𝑣 is the frequency of the radiation, 𝑔 is Landé g-factor, is spin operator, 

µ𝐵 is a physical constant called the Bohr magneton and 𝐵 is the applied magnetic field,  and 

   𝑔. 𝑆 = 𝑔𝑥𝑙𝑥 + 𝑔𝑦𝑙𝑦 + 𝑔𝑧𝑙𝑧 ,  
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A more detailed description of ESR and different forms of the relevant spin Hamiltonian will be 

explained in next chapters [20, 21].   

 

2.1.1 Spin and the Spin Hamiltonian 

2.1.1.1 Spin-dependent processes in organic semiconductors:  

 The bulk properties of organic semiconductors such as photoconductivity, photo- and electro-

luminescence and photo-absorption are influenced by spin dependent transitions [27, 28, 29]. These 

transitions also underly magnetoresistance [30] and magnetoluminescence effects in organic materials 

[31]. Although the physical causes for these phenomena are different, there is significant overlap 

between the theoretical models that describe them. 

 

2.1.1.2 Exciton generation: 

The formation of an exciton a strongly coupled electron-hole pair [5], is a significant spin dependent 

process in organic semiconductors. The generation of the exciton takes place following the collision of 

positive and negative charge carries. The exciton decay, which proceeds via radiative recombination, 

generates light in OLEDs. The exciton, which formed from two fermions (electron and hole) with spin 

s=1/2, is a boson with s=1 and  can exist in one singlet state and three triplet states [4]. 

 

Figure 2.1: Binding energy of electrons and holes as a 

function of spatial separation. Figure is reproduced from 

[32]. Reprinted figure with permission from [M. Segal, M. 

A. Baldo, R. J. Holmes, S. R. Forrest, & Z. G. 

Soos,“Excitonic singlet-triplet ratios in molecular and 

polymeric organic materials”, Physical Review B, 075211 

(2003)] Copyright (2003) by the American Physical 

Society. 

 

 

 

 

Figure 2.1 demonstrates the mechanism of exciton formation using the charge carrier pair’s binding 

energy dependence on the spatial separation distance. The whole formation process includes several 

steps involving different interactions at each of the stages. First, when the separation distances are large, 
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the two spin states of polarons (charge carriers) are degenerate. However, as the separation decreases, 

Coulomb attraction becomes relevant and affects the polarons, thus bringing them closer to each other 

[4, 32]. During this stage, the polarons are bonding coulombically leading to the formation of a charge 

transfer state which leads to the population of a molecular excitation. The spin interaction is still 

negligible since it is weaker than the Coulomb energy. When the separation distance reaches a non-spin 

dependent Coulomb attraction the exchange interaction becomes much stronger leading to the formation 

of the strongly exchange-coupled singlet and triplet states of the exciton. Because of spin conservation 

rule, the transition from strong Coulomb coupled to strong exchange coupled exciton determines the 

spin multiplicity of the exciton. Therefore, the spin dynamics in this stage is critical to define the 

recombination type (radiative or nonradiative) which ultimately occurs [4, 32]. 

 

2.1.1.3 Spin Hamiltonian: 

In general, the spin Hamiltonian can describe both the time-independent environmental interactions and 

the interaction between the electron spins and any applied driving field. It can be written as: 

 

�̂�(𝑡) = �̂�0 + �̂�1(𝑡)                                                                                                  (2.4)  

 

where �̂�0 is a static component, �̂�1(𝑡) is a dynamic component, with often given by  

 

�̂�1(𝑡) = ∑ µ𝐵𝑔𝑒�̂�𝑖. 𝐵1(𝑡)𝑖                                                                                          (2.5) 

 

Here, µ𝐵 is the Bohr magneton,  𝑔𝑒  is the electron Landé g-factor,  𝑆 ̂  is the Pauli operator for a spin-

½ particle, and 𝐵1(𝑡) is a time dependent magnetic field [5, 17]. 

 

In order to describe the behavior and the interaction of systems of spin-½ particles, it would be necessary 

to use the following generalized spin Hamiltonian which describes the energy structure and spin-spin 

couplings in the system. It has terms that include description of: individual spin-pair action, interaction 

between two spins pairs, and interaction with any other spins surrounding the pair [4, 5, 17, 33, 34 ]. 

 

�̂�0 = �̂�𝑍𝑒𝑒𝑚𝑎𝑛 + �̂�𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 + �̂�ℎ𝑦𝑝𝑒𝑟𝑓𝑖𝑛𝑒 + �̂�𝑑𝑖𝑝𝑜𝑙𝑎𝑟 + �̂�𝑜𝑟𝑏𝑖𝑡                          (2.6) 

 

2.1.1.4 Zeeman Interaction 

The Zeeman Hamiltonian describes the interactions between a spin and an applied magnetic field. It 

can be written as: 
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�̂�𝑍𝑒𝑒𝑚𝑎𝑛 = µ𝐵𝑔𝑒�̂�𝑖 . 𝐵0                                                                                          (2.7) 

 

where µ𝐵 is the Bohr magneton, 𝑔𝑒  the electron g-factor,  𝑆 ̂ the Pauli operator for a spin ½ particle, 

and B0 the static magnetic field.  

The Zeeman Hamiltonian can be simplified into a term corresponding to the Pauli spinors 𝑧𝑖 of the spin 

i due to the 𝐵0 field in the z-direction. In the experiment, Zeeman expression can be modified in order 

to control the whole Hamiltonian contributions [4, 17, 33, 34]. 

 

2.1.1.5 Exchange Interaction 

The exchange coupling between the two spins within the pair is due to the Pauli principle, and it is in 

general anisotropic.  

�̂�𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = −𝐽�̂�𝑎. �̂�𝑏                                                                                           (2.8) 

where 𝐽 is the exchange integral between the two spin pair wave-functions [4, 33, 34, 35].   

If  𝐽 ≫ (𝑔𝑎 − 𝑔𝑏)µ𝐵𝐵0, then the spin-pairs become strongly coupled and the rate of spin-dependent 

transitions cannot be influence by either magnetic resonance or strong magnetic fields. On the other 

hand, with low  𝐽, the spin-dependent rates become constant. However, if  𝐽 ≈ (𝑔𝑎−𝑔𝑏)µ𝐵𝐵0, then 

magnetic field and polarization strongly influence the rate of spin-dependent [4]. 

 

 

2.1.1.6 Hyperfine Interaction 

The hyperfine interaction describes the interactions between an electron spin and a nuclear spin. It can 

be written as: 

 

�̂�ℎ𝑦𝑝𝑒𝑟𝑓𝑖𝑛𝑒 = �̂�𝑖𝑠𝑜𝐻𝐹 + �̂�𝑎𝑛𝑖𝑠𝑜𝐻𝐹                                                                      (2.9) 

 

where  �̂�𝑖𝑠𝑜𝐻𝐹   is the isotropic hyperfine interaction, which takes the form: 

 

�̂�𝑖𝑠𝑜𝐻𝐹 = ∑ ∑ 𝐴𝑖𝑗�̂�𝑗 . 𝐼𝑖
𝑛
𝑖=1𝑗∊{𝑎,𝑏}                                                                       (2.10) 

 

with 

𝐴𝑖𝑗 =
2µ0

3ℏ2
𝑔𝑗𝑔𝑖µ𝐵µ𝑁 ∣ Ѱ𝑗(𝑟𝑖) ∣

2                                                                       (2.11) 
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Here, 𝐼𝑖 is the nuclear spin operator of the ith nucleus (if the electron is interacting with an ensemble of 

nuclear spins), µ0 the vacuum permeability, µ𝑁  the nuclear magneton, and ∣ Ѱ𝑗(𝑟𝑖) ∣
2 the probability 

of finding pair partner j at the position ri of the ith   nuclear 𝑟𝑖. 

And �̂�𝑎𝑛𝑖𝑠𝑜𝐻𝐹 is the anisotropic hyperfine interaction, which describes the dipole interaction between 

electrons and nuclei. It can be written as: 

 

�̂�𝑎𝑛𝑖𝑠𝑜𝐻𝐹 = ∑ ∑ �̂�𝑗
ϯ
�̃�𝐼𝑖

𝑛
𝑖=1𝑗∊{𝑎,𝑏}                                                                         (2.12) 

 

(�̃�)𝑘𝑙 =
𝑔𝑗𝑔𝑖µ0µ𝐵µ𝑁

4𝛱𝑟5ℏ2
 (𝑟2𝛿𝑘𝑙 − 3𝑟𝑘𝑟𝑙)                                                                 (2.13) 

 

The anisotropic hyperfine interaction has a strong effect on spin relaxation, and thus spin mixing and 

magnetoresistance [4, 17].  

 

2.1.1.7 Dipolar Interaction 

Dipolar interaction-induced zero- field splitting: 

From the hyperfine interaction between electron and nuclear spins previous equations, using zero-field 

splitting can describe the intrapair dipolar interaction as: 

 

�̂�𝑑𝑖𝑝𝑜𝑙𝑎𝑟 = �̂�𝑎
ϯ
�̃�𝑑�̂�𝑏                                                                                          (2.14) 

 

where  �̃�𝑑 is zero-field splitting matrix form as: 

  

(�̃�𝑑)𝑖𝑗 =
𝑔𝑎𝑔𝑏µ0µ𝐵

4𝛱𝑟5ℏ2
 (𝑟2𝛿𝑖𝑗 − 3𝑟𝑖𝑟𝑗)                                                                      (2.15) 

 Dipolar interactions depend on the pair size extremely, and compared to the hyperfine coupling for 

instance, in distant pairs is usually very weak [4, 5, 17]. 

 

2.1.1.8 Spin-Orbit Coupling 

Zero-Field Splitting and Spin-Orbit Coupling: 
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Dipolar coupling interaction between electron and nuclear spins can induce similar equation to 2.14 

including zero-field splitting equation (2.16) below at the remarkable existent of spin-orbit-coupling. 

This can often be ignored in the characterization of organic semiconductors based carbon [4, 5]. 

�̂�𝑜𝑟𝑏𝑖𝑡 = �̂�𝑎
ϯ
�̃�𝑑�̂�𝑏                                                                                           (2.16) 

 

2.1.2 Spin in a Magnetic Field 

 

For an arbitrary system, the total magnetic field experienced can be determined by the static field 𝐵0, 

the microwave pulse 𝐵1, and a detuning 𝐵∆ (due for example to variation in the total hyperfine  

interaction with the ensemble of nuclear spins, known as the Overhauser field) where ,    𝐵1 =

[𝐵𝑥1 , 𝐵𝑦1 , 0], and (for conventional EPR implementations), 𝐵∆ = [0, 0, 𝐵∆]. 

 

Considering the application of a microwave pulse as an operation that rotates a spin coherently from 

one state to another around the Bloch sphere by producing a magnetic field, the resonance frequency is 

𝜔0 = 𝛾𝐵0 and the static field equal to zero as seen in figure 2.2 taken from ref [36]. The spin will 

examine the magnetic field for only the microwave pulses (driving field) when the spin resonance with 

the external field, while it will examine the driving field and the detuning together when the spin off-

resonance [36]. 

 𝐵𝑒𝑓𝑓 = 𝐵1             for spin resonance (on-resonance)                 (2.17) 

 𝐵𝑒𝑓𝑓 = 𝐵1 + 𝐵∆        for spins detuned from resonance (off-resonance)             (2.18) 

 

 

                                                                           

 

 

 Figure 2.2: The magnetization vector during on-

resonance with pulse angle 90⁰ [36]. 

 

 

 

 

 

 

 Lost fidelity due to the detuning in the spins from resonance can be reduced by using a variety of pulse 

schemes [36]. 
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2.1.3 Spin Relaxation 

2.1.3.1 Relaxation theory 

In order to observe magnetic resonance absorption, spin relaxation is required. In EPR or NMR, the 

variation of signals with time can be described by spin relaxation. That variation relates to the increase 

of the population of an excited state, which called a non-equilibrium state. Spin relaxation is caused by 

the interaction between a spin and its environment. The transient behavior of spin-dependent 

recombination rates can be affected by both spin-lattice and spin-spin relaxation [35, 37].  

Spin-lattice relaxation enables the spin system to return to its balanced ‘equilibrium’ state along the 

static magnetic field direction where a component of a magnetization vector would reach the thermal 

equilibrium with the spins surrounding it. In this type of relaxation, the equilibrium system provides the 

transition energy, therefore the spin system returns back to its equilibrium state. In general, the spin-

lattice relaxation time (T1 ) is used to describe the characteristic time for that transition, while it refers 

to the sample z-magnetization reaching its equilibrium value in magnetic resonance spectroscopy [35]. 

 

Spin-spin relaxation refers to the decay of the transverse component of the magnetization vector wards 

its equilibrium value. The  characteristic time that generally describes this type is spin-spin relaxation 

time is conventionally labeled (T2 ). The contribution of the spin-spin relaxation time can be divided 

into two parts, adiabatic and non-adiabatic. One is due to the limitation of the spin states lifetimes, 

therefore T2  contribute as T1  and called a non-adiabatic contribution. The other is due to the random 

disorder in the spin system, the energy differences of the states fluctuates [35]. 

 

The fact that the relaxation results from the fluctuating interactions between spins has extended the 

observation of magnetic resonance spectra. In order to solve these fluctuating interactions and therefore 

the impact on the spin system, there are two methods which can be applied to treat stochastic and 

dynamic processes [35]. 

 

For the spin system in the stochastic method, considering the random modulations which are caused by 

the perturbation as a stochastic process, and the effective Hamiltonian would be a function of stochastic 

variables Ω(𝑡), written as: 

 

�̂�(𝑡)  =  �̂�0  +  �̂�1(Ω(𝑡))                                                                                       (2.19) 

 

where �̂�0 is the unperturbed Hamiltonian, and �̂�1(Ω(𝑡)) is the stochastic perturbation [9], with spin 

variables following the quantum Liouville-von Neumann equation [35, 38]: 
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𝑑⍴

𝑑𝑡
= −𝑖[�̂�(𝑡), ⍴(𝑡)]                                                                                               (2.20) 

 

In the dynamic process, describing the lattice by classical or quantum mechanics is possible, but only 

the quantum mechanics solves the spin systems. The Hamiltonian in the quantum mechanical 

description of the lattice can be written as: 

 

�̂�  =  �̂�𝐼 + �̂�𝐼𝐹 + �̂�𝐹                                                                                         (2.21) 

 

where �̂�𝐼 is the Hamiltonian in the spin system, �̂�𝐹 is the Hamiltonian in the lattice, and �̂�𝐼𝐹  is spin-

lattice coupling Hamiltonian [35], and the time evolution of the density matrix is given [35, 38] by 

equation 2.20 

 

In the semi-classical mechanics, depending on the underlying stochastic processes formalism of the 

motion, the lattice is described by random functions, and the Hamiltonian contains time-dependent and 

time-independent terms [35] as shown in equation 2.19. 

 

2.1.3.2 Redfield Theory 

For a quantum system weakly coupled to an environment, using Redfield approach gives a clear 

description to the time evolution for density operator, which would give more explanation to the 

relaxation. Considering that, then the Hamiltonian of this system would be: 

�̂� = �̂�𝑠 + �̂�𝜀 + �̂�𝐼                                                                                                (2.22) 

 

where �̂�𝑠 describes the Hamiltonian of system S, and �̂�𝜀 of the environment, while �̂�𝐼 describes the 

interaction between the system and the environment, with A interaction acting on the system and B on 

the environment: 

 

�̂�𝐼  =  ∑ 𝐴𝑘⊗𝐵𝑘𝑘 (𝑡)                                                                                         (2.23) 

 

The dynamic of the total system (S and ε) is coherent, and the state of the total system at time t, which 

performing the density matrix interaction is: 

 

⍴(𝑡)  =  �̂�(𝑡)⍴′�̂�(𝑡)ϯ                                                                                           (2.24) 
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And the interaction picture for �̂�𝐼 is: 

 

�̂�𝐼(𝑡)  =  �̂�
ϯ(𝑡)�̂�𝐼�̂�(𝑡)                                                                                       (2.25) 

 

 with a unitary transformation: 

�̂�(𝑡)  =  𝑒𝑥𝑝 [−
𝑖

ℏ
(�̂�𝑠  + �̂�𝜀)𝑡]                                                                          (2.26) 

 

Now, the Liouville-von Neumann equation in eq. 2.20 has the solution: 

 

⍴(𝑡) = 𝜌(0) − 𝑖 ∫ 𝑑𝑠[𝐻𝐼(𝑠), ⍴(𝑠)]
𝑡

0
                                                                      (2.27) 

 

By tracing the density matrix interaction picture over the environment, the evolution would be: 

 

⍴𝑠 = 𝑇𝑟𝜀{𝜌(𝑡)}                                                                                              (2.28) 

 

After inserting in (2.27) and differentiating, we obtain: 

 

𝑑

𝑑𝑡
𝜌𝑠(𝑡) = −∫ 𝑑𝑠𝑇𝑟𝜀{[𝐻𝐼(𝑡), [𝐻𝐼(𝑠), ⍴(𝑠)]]

𝑡

0
}                                              (2.29) 

 

By assuming a weak interaction between the system and the environment, the total density operator is:  

 

⍴(𝑡) = ⍴𝑠(𝑡) ⊗ ⍴𝜀                                                                                         (2.30) 

Which introduce the closed equation of motion for ⍴𝑠  called the Redfield master equation: 

 

𝑑

𝑑𝑡
𝜌𝑠(𝑡) = −∫ 𝑑𝑠𝑇𝑟𝜀{[𝐻𝐼(𝑡), [𝐻𝐼(𝑠), 𝜌𝑠(𝑠) ⊗ ⍴𝜀]]

𝑡

0
}                                    (2.31) 

 

 [39, 40]. 

 

2.1.3.3 Spin Dynamics 

Due to the invalid expectation of rapidly decaying correlations in the environment in some cases, the 

complete dynamic system cannot be described by a Markovian master equation [40].  

In order to treat the statistical ensemble spin dynamics, generation, recombination, dissociation and 

relaxation effects have to be considered. Thus, the stochastic-Liouville equation is used to describe the 
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dynamics of a statistical ensemble of quantum systems whose time evolutions depend on the relevant 

Hamiltonian. 

 

𝑑⍴̂

𝑑𝑡
= −

𝑖

ℏ
[⍴̂, �̂�] + �̂�[⍴̂] + �̂�{⍴̂ − ⍴̂0}                                                                (2.32) 

 

where �̂� = �̂�(𝑡) is the density matrix operator, �̂� is the stochastic operator and refers to the external 

changes the ensemble due to generation, spin-dependent recombination, and dissociation of spin pairs, 

�̂� describes the influence of the spin relaxation, and the Hamiltonian �̂� has time-dependent and time-

independent terms [4, 5, 17, 37] can be written as in equation 2.4. 

 

For two spin ½ systems in Hilbert space, the density operator is represented as a 4x4 matrix [ 33, 34]: 

 

|Ѱ⟩  =  |Ѱ1⟩ |Ѱ2⟩  = (    
1  
0  

)  ⊗ (    
1  
0  

) = 𝐶                                              (2.33) 

then 

 

𝜌0 = 𝐶
′𝐶                                                                                                                    (2.34) 

where  𝐶′ = (1  0  0  0 ), and the Hamiltonian can be written as [5]: 

 

�̂�0 = µ𝐵𝑔𝑒𝐵0𝑆𝑒
𝑧                                                                                                      (2.35) 

 

�̂�1 = µ𝐵𝑔1[�̂�𝑥1𝐵𝑥(𝑡) + �̂�𝑦1𝐵𝑦(𝑡)] + µ𝐵𝑔2[�̂�𝑥2𝐵𝑥(𝑡) + �̂�𝑦2𝐵𝑦(𝑡)].                     (2.36) 

 

By diagonalized �̂� using a unitary transformation in order to clarify the underlying physics: 

 

�̂�𝑒𝑛𝑒𝑟𝑔𝑦 = �̂�
ϯ
𝑒𝑛𝑒𝑟𝑔𝑦 (�̂�0 + �̂�1(𝑡))�̂�𝑒𝑛𝑒𝑟𝑔𝑦                                                         (2.37) 

 

where       �̂�𝑒𝑛𝑒𝑟𝑔𝑦 = [

1
0
               

0
cos 𝜃

       
 0
sin𝜃

         
0
0
 

0
0
    
       − sin𝜃
          0

         
cos 𝜃
0
       

0
1
  
]                                      (2.38) 

 

with         tan 2 𝜃 =
𝐽−2𝐷/3

∆𝑤
                                                                                  (2.39) 

 

Here 𝐽 is the exchange interaction, 𝐷 the dipolar interaction, ∆𝑤 = 𝑤𝑒 −𝑤ℎ/2  , and 𝜃 is the spin 

mixing angle. 
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The recombination operator is given by: 

 

�̂� = −𝑟𝑠 .  �̂�𝑠 − 𝑟𝑡 . �̂�𝑠                                                                                          (2.40) 

 

where  �̂�𝑠 is the singlet subspace:  

 

�̂�𝑠 = [

0
0
       

0
1/2

       
0

−1/2
     
0
0
 

0
0
    
−1/2
0

         
1/2
0
       

0
0
  
]                                                                       (2.41) 

 

and �̂�𝑠 is the triplet subspace:  

 

�̂�𝑠 = [

1
0
    

0
1/2

     
0
1/2

     
0
0
 

0
0
    
1/2
0
     
1/2
0
    
0
1
  
]                                                                               (2.42) 

 

and 𝑟𝑠 and 𝑟𝑡 are singlet and triplet recombination rate respectively.  

By transforming the recombination matrix into the energy eigenbasis: 

 

�̂�𝑒𝑛𝑒𝑟𝑔𝑦 = �̂�
ϯ
𝑒𝑛𝑒𝑟𝑔𝑦  �̂� �̂�𝑒𝑛𝑒𝑟𝑔𝑦                                                                       (2.43) 

 

The relaxation term can be written as: 

�̂�{�̂�(𝑡) − ⍴̂0} = �̂�𝑒/ℎ⊗ 𝐼 + 𝐼  ⊗ �̂�𝑒/ℎ                                                         (2.44) 

where �̂�𝑒, �̂�ℎ are the electron and hole relaxation term respectively and calculated separately by: 

 

 [�̂�𝑒/ℎ{�̂�(𝑡) − ⍴̂0}]𝑖𝑗 = ∑ ∑ �̂�𝑒/ℎ𝑖𝑗𝑘𝑙{�̂�𝑘𝑙(𝑡) − ⍴̂0𝑘𝑙}
4
𝑙=1

4
𝑘=1                               (2.45) 

 

This would present a Redfield matrix with coefficients:  

  

�̂�𝑒/ℎ𝑖𝑗𝑘𝑙 =

{
  
 

  
 

1

𝑇1𝑒/ℎ
,                 if       𝑖 = 𝑗 = 𝑘 = 𝑙

−1

𝑇1𝑒/ℎ
 ,          if  𝑖 = 𝑗, 𝑘 = 𝑙, 𝑖 ≠ 𝑘  

1

𝑇2𝑒/ℎ
,                      if 𝑖 ≠ 𝑗, 𝑘 ≠ 𝑙

0                                         otherwise

                                             (2.46) 
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where 𝑇1 is the spin-lattice relaxation time, and 𝑇2 is the spin-spin relaxation time.  

Redfield matrix here is called a relaxation superoperator (�̂�𝑠𝑢𝑝𝑒𝑟) and it is in the superoperator 

formalism which is used to transform the matrix from Hilbert space (𝑛 × 𝑛) to Liouville space (𝑛2 ×

𝑛2) in order to have accuracy and speed improvement. Therefore, transforming the total Hamiltonian, 

recombination operator, and density matrices is required. 

 

The recombination (stochastic) superoperator is given by: 

 

�̂�𝑠𝑢𝑝𝑒𝑟 = �̂�𝑒𝑛𝑒𝑟𝑔𝑦⊗ 𝐼 + 𝐼 ⊗ �̂�𝑒𝑛𝑒𝑟𝑔𝑦                                                       (2.47) 

 

The super Hamiltonian can be written as: 

 

�̂�𝑠𝑢𝑝𝑒𝑟 = 𝑖�̂�𝑒𝑛𝑒𝑟𝑔𝑦⊗ 𝐼 − 𝑖𝐼 ⊗ �̂�𝑒𝑛𝑒𝑟𝑔𝑦                                                  (2.48) 

 

where the super observable is: 

�̂�𝑠𝑢𝑝𝑒𝑟 = 𝑇𝑟𝑎𝑐𝑒(�̂�
ϯ�̂�(𝑡))                                                                          (2.49) 

 

The density matrix would be transformed as shown below [5, 37]: 

 

�̂� =  [

𝑎1,1
𝑎2,1

    
𝑎1,2
𝑎2,3

     
⋯
⋯     

𝑎1,𝑛
𝑎2,𝑛

 

⋮
𝑎𝑚,1

    
⋮

𝑎𝑚,2
     
⋱
⋯
    

⋮
𝑎𝑚,𝑛

  
] →

[
 
 
 
 
𝑎1,1
𝑎1,2
𝑎1,3
⋮

𝑎𝑚,𝑛]
 
 
 
 

                                                (2.50) 

 

 

2.2 Electron spin resonance 

2.2.1 ESR 

EPR (also often referred to as ESR) is a technique used to manipulate spin in materials with unpaired 

electrons such as organic semiconductors. The principle of EPR/ESR is the absorption of  

electromagnetic radiation by electrons, usually in the presence of a strong magnetic field. The spins for 

these unpaired electrons have either same or opposite directions that leads to have different energies 

levels, primarily due to the interaction between unpaired electrons and the magnetic field [20, 21]. Such 

a technique has many useful applications in physics, Chemistry, Materials Research, Biology and 

Medicine. 
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In 1946, NMR had improved in theoretical time domain area by Felix Bloch, with experimental 

demonstrations by Torrey and Hahn.  During 1960s, the rise of Fourier transform had led to 

enhancement in NMR accuracy and resolution, which produced to exploit time domain to improve 

series of pulses and analysis framework.  EPR/ESR and NMR have similar techniques; however, NMR 

concentrated on time domain area while EPR/ESR investigated electron spin with strong magnetic field 

which delayed the utilization of EPR till 1980s [5]. 

In 1993, EPR with high frequency and pulse EPR has been developed. The g-factor values with high 

resolution are one of the benefits of that development, which is useful to determine spectrum range for 

systems at the lower field. Moreover, improving the sensitivity of EPR measurements, which is 

important for systems with lower coherent paramagnetic species. Detecting NMR has been effective 

due to the development of pulse EPR through the investigating of hyperfine techniques of Electron 

Nuclear Double Resonance (ENDOR), Electron Spin Echo Envelope Modulation (ESEEM), and 

Electron Electron Double Resonance (ELDOR) [41]. 

The utilization of amplitude and frequency to include pulses has developed the sensitivity of pulsed 

NMR technique [42]. Although the developing techniques in NMR and ESR are similar, however, the 

applications to use short microwave frequency pulse are limited [17, 42]. 

As mentioned previously, in order to understand the dynamics of the materials, measuring the 

differences of the energy level in the molecular is needed, and Zeeman effect is the main responsible 

for that difference in ESR/EPR spectroscopy. In EPR experiment, often the frequency stayed constant 

while the magnetic field is changed, and the transition exists when the applied frequency is about 2.8 

MHz per Gauss of magnetic field. Although, it is about 9-10 GHz per 3400 Gauss of magnetic field in 

organic radicals [41]. In fact, Rabi frequency spectroscopy is appropriate to examine spin with high 

system, therefore using Rabi technique to motivate transition through microwave field would lead to 

clearly define spin multiplicity of different spin types [42].  

However, EPR/ESR measurements are sensitive to charge in polarization [5], and since the excitation 

time is longer than phase coherent time in quasi continues microwave fields, this leads to limited use of 

EPR/ESR because the effective of coherent observation has been forbidden [42]. 

The principle of ESR spectroscopy is the absorption of the electromagnetic radiation that leads to a 

change in the spin state of the electron [20, 21].  

Measuring the energy differences of these levels in atoms or molecular leads to understand the dynamics 

and the processes of the materials. In ESR spectroscopy, the main cause for these differences is the 

interaction between unpaired electrons and the magnetic field 𝐵0, which called the Zeeman Effect. The 

energies differences level for such a system is given by: 
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𝐸 = ±
1

2
 𝑔𝑒µ𝐵𝐵0                                                                                         (2.51) 

where 𝑔 is the electron g-factor, µ𝐵 is Bohr magneton, and 𝐵0 is external magnetic field strength which 

causes the positive and negative signs by creating two energy levels for the magnetic moment of the 

electron; up (same direction with magnetic field) and down (against the magnetic field). 

 

 

Figure 2.3 : The energy levels of a spin 1/2 state (e.g. electron) in a magnetic field [20, 21]. 

 

A transition from lower to higher energy states resultes from applied energy into the frequency 𝑣   

𝑣 = 𝑔µ𝑏𝐵0/ℎ                                                                                               (2.52) 

which leads to define the resonance condition by corresponding to Planck’s law: 

∆𝐸 = ℎ𝑣                                                                                                           (2.53) 

where ℎ is Planck’s constant, and 𝑣 is the radiation frequency [20, 21]. 
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2.2.2 Modelling ESR 

 Applying microwave radiation at fixed frequency (driving field) along with an external magnetic field 

(𝐵0) which is swept adiabatically would lead to perform ESR and EDMR as continuous wave 

experiments (cw) [4, 5]. However, these experiments have limitations in their ability to provide 

information from beyond those seen in spectra such as g factor, hyperfine coupling constant, and spin 

relaxation. Therefore, using pulsed-ESR (p-ESR) in order to define spin coherence times and dynamic 

information about organic semiconductors would be extremely effective [4]. Performing ESR in the 

time domain (p-ESR) would be achieved by applying short and powerful pulses of radiation effects, 

spin coherence manipulation, and excitation bandwidth supply. Thus, measuring spin relaxation times 

and producing higher spectral and time resolution can be provided by p-ESR due to the ability of p-

ESR to examine and treat the particular interactions. Defining ESR as a continuous wave experiment 

(cw) refers to the pulse length which should be longer than any relevant incoherent process while it 

refers to the faster excitation for a p-ESR experiment [5]. Replacing the quasi-static changes of 

polarization in cw experiments with transition frequency and amplitude at each field position would 

lead to p-ESR experiments [4, 5].    

 

2.2.3 Pulsed ESR 

 Pulsed ESR (p-ESR) spectroscopy is a technique that has been used for over 50 years for studying the 

spin characteristics of materials. However, focusing on organic thin-film devices, p-ESR has some 

limitation which can be overcome by electrical rather than inductive detection [5]. 

Electrical detection of magnetic resonance, which uses electron spin resonance to manipulate spins and 

conductivity measurements to look at the resulting changes in transport properties, is particularly well 

suited to this challenge. Applying EPR to organic light emitting diodes (OLEDs) for example, has been 

shown to result in significant changes in the current through the device (ie electrical detection), enabling 

the spin dependent recombination rates of polaron pairs (exciton precursors) to be determined [15]. 

The spin polarization is determined in p-ESR experiments via the timescales of either spin echo or free 

induction decay. However, since the ESR experiments are sensitive to the polarization changes, 

performing high fidelity operations is effective for increasing the sensitivity in p-ESR [5]. 
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2.2.4 Adiabatic Pulses for ESR 

 In order to improve the fidelity and excitation bandwidth to overcome inhomogeneous linewidths issue 

and to increase the signal amplitude in such experiments, pulse-EPR is been used. Various types of 

shaped pulses have been used to improve EPR and NMR techniques, such as Band-selective pulses, 

pulse trains, and adiabatic pulses [42]. 

 The limitation of pulse EPR lies on limited excitation bandwidth of pulses due to microwave resonator 

and pulse power. However, that excitation bandwidth is often not sufficient to enable high fidelity 

electron spin control in the presence of realistic broadening of the resonance linewidth. Recently, 

arbitrary waveform generators (AWGs) are used to create (apply) and integrate pulses in EPR 

techniques. The spectra lines in some materials, organic semiconductors, for example, are greater than 

pulse bandwidth, therefore, increasing the excitation bandwidth and the sensitivity of pulse EPR is 

necessary, and can be achieve by adiabatic pulses. Practically, using adiabatic pulses has led to 

increased fidelity and sensitivity of ESR measurements [42]. 

 Since the adiabatic pulse is a point-to-point rotation pulse, which basically offers reversal proceeds for 

all spins within specified pulse bandwidth, using the pulse power leads to detect spin rotation within 

defined bandwidth without effected the excitation shape pulse. 𝐵1  can be performed to reversal 

insensitivity by the influence of adiabatic pulses when the critical adiabaticity equation satisfied, then 

the rotation angle 𝜃 and 𝐵1
𝑚𝑎𝑥 are dissociated [42]. 

In order to preform high fidelity operations (high fidelity spin rotation), adiabatic pulses are needed. 

The application of adiabatic pulse schemes to improve both the sensitivity and fidelity of electrically 

detected magnetic resonance in organic devices is the main investigation of this thesis [43]. Whilst the 

application of these schemes (which have traditionally been limited to NMR) is emerging in electron 

spin resonance, their application to electrically detected spin resonance has been limited [44]. 

Adiabatic pulses are much more insensitive to inhomogeneity (𝐵1) and resonance offsets, and spins 

would have various manipulations resonance frequencies at different times [17, 45, 46]. Having specific 

absorption rate with sample heat decreasing would be an additional feature to adiabatic pulses [45, 46].  

During the adiabatic passage, an adiabatic sweep which is the magnetization 𝑀 follows the effective 

magnetic field 𝜔𝑒𝑓𝑓  occur under the condition: 

𝑄 =
𝜔𝑒𝑓𝑓

|𝑑𝜃/𝑑𝑡|
≫ 1                                                                                                    (2.54) 
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Where 𝜔𝑒𝑓𝑓 = 𝛾𝐵𝑒𝑓𝑓 which is given by the summation of the microwave field (RF field) and the 

detuning (off-resonance) in the rotating frame at the Lamor frequency as: 

𝜔𝑒𝑓𝑓 = 𝜔1 +𝜔∆(𝑡)                                                                                            (2.55) 

𝜔1 = 𝛾𝐵1�̂�                                                                                                           (2.56) 

𝜔∆(𝑡) = [𝜔0 −𝜔𝑅𝐹(𝑡)]�̂�                                                                                     (2.57) 

where  𝜔0 is the Lamor frequency, 𝜔𝑅𝐹(𝑡) is the frequency of the pulse, and 𝑑𝜃/𝑑𝑡 is the instantaneous 

rate of 𝜔𝑒𝑓𝑓 [17, 42, 43, 45, 46]. 

 

Figure 2.4: Visualization of the effective field and its components in the frames rotating at the RF 

(𝜔𝑅𝐹(𝑡) frequency. 

Offset Independent Adiabatic Pulses (OIA):  

 Offset independent adiabatic pulses (OIA) are one example of adiabatic pulses that tend to have 

circumstance adiabatically constant with known bandwidth [42]. Keeping the power constant over the 

required bandwidth is fundamental to preform uniform rotations over a large detuning (∆Ω) by applying 

a pulse with amplitude and frequency combined modulation. The resulted energy from the pulse would 

be expanded sequentially in time over the bandwidth. This can be satisfied by adiabatic pulses which 

are defined by amplitude modulated AM and frequency modulated FM functions: 

𝐵1(𝑡) = 𝛾𝐵1
𝑚𝑎𝑥  𝐹1(𝑡)𝑥                                                                                           (2.58) 
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𝜔∆(𝑡) = [𝜔𝑐 −𝜔𝑅𝐹(𝑡)] = [𝜔𝑐 −𝜔
𝑚𝑎𝑥𝐹2(𝑡)]�̂�                                                    (2.59) 

where 𝛾 is the gyromagnetic ratio, 𝜔𝑐 is the carrier wave frequency, 𝐵1
𝑚𝑎𝑥 and 𝜔𝑚𝑎𝑥 are amplitude and 

frequency modulation respectively, and 𝐹1 and 𝐹2 driving function which define the modulation. 

Using equations (2.59) above at each point in time 𝑡 < 𝑡𝑝𝑢𝑙𝑠𝑒 leads to introduce the adiabatic ratio 

(adiabaticity) 𝐾:  

𝐾(𝑡) =
|𝛾𝐵1

𝑚𝑎𝑥 𝐹1(𝑡)|
2

𝜔𝑚𝑎𝑥�̇�2(𝑡)
≫ 1                                                                                     (2.60) 

which can be written as: 

𝐾(𝑡)𝜔𝑚𝑎𝑥�̇�2(𝑡) = |𝛾𝐵1
𝑚𝑎𝑥  𝐹1(𝑡)|

2                                                                      (2.61) 

For all spins resonance frequency within the excitation bandwidth, must be larger than the frequency 

sweep changing rate ( 𝜔𝑚𝑎𝑥�̇�2(𝑡)) by the same factor 𝐾 [45, 46]. 

And the critical adiabaticity (𝑄𝑐𝑟𝑖𝑡) is used for linear frequency sweep in FM pulses: 

𝑄𝑐𝑟𝑖𝑡 =
𝑡𝑝𝑢𝑙𝑠𝑒   (𝛾 𝐵1

𝑚𝑎𝑥)2

2𝛱 𝐵𝑊
                                                                                        (2.62) 

where 𝑡𝑝𝑢𝑙𝑠𝑒 is the pulse length, and the pulse bandwidth 𝐵𝑊 = 2𝑓𝑚𝑎𝑥 ,  𝑓𝑚𝑎𝑥 is the total sweep width 

[17, 42]. 

 

2.3 Electrical Detection of Magnetic Resonance (EDMR): 

2.3.1 Background 

Electrical and optical detection of magnetic resonance (EDMR /ODMR) are spectroscopy techniques 

which use ESR to manipulate spins and conductivity or luminescence  measurements to look at resulting 

changes in transport or optical properties in inorganic and organic semiconductors.  Usually, these 

methods applied for the materials characterization and detecting the impurities and defects in the solid 

samples [15, 19].  

Traditionally, to investigate paramagnetic states in semiconductors magnetic resonance spectroscopies 

such as ESR or NMR have been used.  The main idea of magnetic resonance techniques consists in the 

determination of the effective Landé factor (g-factor), which realises on the district fields and, based on 

the surrounding microscopic of a particular paramagnetic centre. In other words, the magnetic 

resonance methods allow detecting the impurities in the semiconductor as well as understanding the 
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processes that occur with these defects. Past years, different techniques used for these purposes.  One 

of the first such methods was the traditional continuous wave (CW) magnetic resonance, realised on 

spectroscopy of adiabatic magnetic field. After that, it changed the spectroscopy of coherent magnetic 

resonance, which called pulsed ESR/NMR. 

However, the application of ESR/NMR to semiconductor characterization faced some sensitivity limits, 

mostly about the orders of 1011 and 1015 spins, respectively. Therefore, the samples containing two- or 

fewer-dimensional structures (quantum wells, quantum dots or quantum wires) were hard to 

characterize. In order to overcome with this limitation, electrical and optical detection of magnetic 

resonance (EDMR/ODMR) have been used. Combining the magnetic resonance with conductivity in 

EDMR or photoluminescence in ODMR, has led to taking benefit of the spin-selection-rules of 

transitions in semiconductors [22, 23, 47, 48, 49].  

The first EDMR experiment with the measurements of the bolometric effect was reported by Guéron 

and Solomon in 1965, while the first EDMR measurement depended on controlling electronic 

transitions by spin-selection rule was demonstrated by Hirose et al. and Maxwell in 1966 [24, 25]. The 

first  cw-EDMR measurements exploiting a spin-dependent recombination mechanism were conducted 

in 1972 by Lepine and Prejean on a crystalline silicon sample [50]. After that, many cw-EDMR 

researches have been done to various semiconductor materials [51, 52, 53, 54] and devices [55, 56]. 

During the almost four decades, great amount of the experimental and theoretical work on the 

absorption of cw-EDMR experiments as well as the underlying processes has been implemented. 

However, transient EDMR experiments and coherent pEDMR experiments have been presented only 

at the end of the century [57, 58, 59]. The main challenge for transient EDMR measurement is related 

to the detection of small current changes on the background of comparatively large constant current 

offsets at a high time resolution. In most cases, it is hardly possible to conduct electrical measurements 

with a time resolution sensitive enough to detect the small signal currents and which will be within the 

coherence time of the spin systems. However, this was solved by means of an indirect detection scheme 

of the coherent dynamics during the excitation [37, 57, 58,60, 61].  

There are many different physical mechanisms which can cause EDMR signals, however, the most 

common focused on the transport of spin-dependent among two paramagnetic states of the electron. 

Spin conversion can be determined by weak spin orbit coupling, and the transition probability between 

singlet and triplet by spin permutation symmetry [26]. As it can be seen from fig 2.5 a) the transition 

probability reaches its maximum value if there is a state of spin-pair and a significant of high singlet 

created by the two spins.  The basis to select spin, which is Pauli blockade, means the transitions in the 

states of spin-pair where higher singlet are probably extra than in pairs with higher triplet content. 
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Figure 2.5: a) shows the electron transport of spin-dependent between two states of electron (S=1/2). b 

) & c ) shows the rate- transport according to Kaplan, Solomon, and Mott description in the absent and 

the presence of magnetic resonance respectively [26]. Reprinted figure with permission from [C. 

Boehme, H. Malissa, “Electrically Detected Magnetic Resonance Spectroscopy”, eMagRes, 83-100.13 

(2017)] Copyright (2017). 

 

Pauli blockade in Lepine’s recombination model means when encounter happened between electron 

and hole, the probability is almost same, and the change of recombination rate will be defined when the 

charge carrier occurs. Therefore, the charge carrier changes from equilibrium to lower polarization state, 

then the transition rate changes due to magnetic resonance [26, 57]. 

Kaplan, Solomon and Mott (KSM) developed another recombination model, reported first in the case 

of Shockley-Read-Hall recombination, which differs from Lepine’s model by considering the 

intermediate-pair states. This mechanism seen in in Fig. 2.5 b and c shows two electronic states, which 

can transform to singlet state or dissociate into free charge carrier.  While the middle pair represents a 

weak system of 1/2 spin pairs, the formed during a spin-dependent transition singlet state composes the 

two strongly exchange-coupled electrons [25, 28, 62, 63, 64].  
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Furthermore,  one can find also the examples of EDMR signals, whose origin has no connection to spin-

pair processes .  These cannot be explained by the middle-pair-based EDMR theories thus need other 

theories [62, 65, 66, 67, 68, 69, 70, 71]. 

2.3.2 Continuous-wave EDMR 

The bulk of this research has been done using the basic continuous wave EDMR, where a spin spectrum 

is created by a steady sweep of magnetic field in presence of continuously irradiated electromagnetic 

radiation with constant frequency and intensity [72, 73, 74, 75]. Strong cw EDMR signals can be 

reached when the electronic processes transition times are smaller than the times of spin decoherence 

related to the mechanical processes of the electrons. Also, the frequencies modulations in cw EDMR 

are minimum than in EPR spectroscopy [68, 76]. An adiabatic frequency sweep experiment within a 

static magnetic field B0 is other process to conduct cw EDMR spectroscopy. The ability to do this kind 

of the experiments is related to the wide frequency bandwidth of EDMR which is different than EPR 

experiments, but technically still not simple so it is not common in the literature [77, 78]. 

A typical cw EDMR experiment includes two electric circuits: one is used for spin excitation while the 

other is for detection. The setup for spin excitation is usually very similar to that used in conventional 

EPR. The easiest application of an MW magnetic field B1 to the sample requires only having a 

radiofrequency or MW with an attenuator, a waveguide, and a resonant or non-resonant framework. 

[78]. Since the components required are not necessarily narrowband, EDMR is inherently suitable for 

multi frequency applications. Magnetic resonance in EDMR experiments is electrically discovered by 

measuring a sample-conductivity change. Thus, the observations preform through a sensitive 

measurement of sample resistivity, and realize by applying a constant voltage with the simultaneous 

recording of the device current with a sufficiently fast current amplifier. Such measurements often 

require separate electrical circuit than the circuit of the MW excitation as well as the minimization of 

the crosstalk between the two circuits [79, 80]. 

In addition to these components, almost all the preparations of the laboratory for cw EDMR 

configuration are prepared by a lock-in amplifier, additional Helmholtz coils, and cryostat facilities. cw 

EDMR spectroscopy is suitable when the highest sensitivities are needed. cw EDMR/ODMR 

experiments allow high spin sensitivity  up to the level of single-spin sensitivity compared with standard 

EPR techniques, due to intermediate-pair mechanisms under non-equilibrium conditions [79, 80]. 

Although, cw EDMR experiments have some advantages in contrast with cw EPR, for instance, in the 

magnetic field and frequency dependence and high sensitivity, both experiments have been limited due 

to polarization-controlled mechanisms. Moreover, EDMR cannot be applied to any paramagnetic centre 

since this method requires that a paramagnetic state to be involved into a spin-dependent process in 
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order to allow multiple spin to control electronic transitions. Furthermore, EDMR spectra are 

determined by the parameters of spin-coupling, the spin-relaxation time of paramagnetic centres 

observation, and by electronic transitions dynamics. Therefore, EDMR spectra need much more 

parameters than EPR spectra, and for convoluted spectra, this feature has the ability lead to the 

important ambiguities for the analysis EDMR signals; quantitative as well as  qualitative interpretation 

[47, 50, 79, 80]. 

2.3.3 Pulse EDMR 

 Mobility low-charge carrier has been noticed in a large number of materials which included spin-

selection rules. Thus, dielectric relaxation of such materials is limited by having longer time compared 

to spin coherent time occurs.  Practically, the ability to solve this problem is in the isolation of the two 

processes which prepare and detect the state of spin coherent during a pulse EDMR experiment. By 

looking to figure 2.6 below (taken from [26]), it shows the timeline of the experiment on a logarithmic 

time scale. Spin coherent manipulation is needed to excite pulsed EDMR in order to prepare a spin state 

charge carrier which relies on the length τ, the amplitude B1 and the frequency ω of the excitation pulse. 

The excitation occur time is much shorter than spin relaxation time. The detection of the pEDMR occurs 

by integration of the current for a long time, within a consideration of an identical charge Q with 

resonant motivation changes in conductivity. Through these changes, the experimenter counts the 

transports of charge which affected by the transitions of spin-dependent because of the excited 

magnetic-resonant. The detection of charge Q relies on both the state of spin σ following the excitation 

pulse and the excitation pulse parameters, and the detection should be done on timescales longer than 

the dielectric relaxation time of the examined material to avoid the filtering by the  the material's 

electrical signals which caused by spin. 

 The current of a spin-dependent is managed by a certain group spin, the integration of transient current 

induced by the charge excitation   of a spin-resonant is directly proportional to the singlet content of the 

probed spin manifold at the end of the spin-excitation sequence as seen in fig.2.6 [26].  Therefore, 

repeating “spin resonant excitation pulse pumping/integral of charge-examination” leads to spin 

coherent observation to be determined. During that experiment, the sequence of spin excitation is 

performed frequently, while little changes are noticed in some parameters, this leads to increase the 

duration of measurements during the pEDMR experiments compared with pEPR experiments.  

However, this allows to solve the problem of an essential limited time resolution, which is caused by 

dielectric relaxation. Therefore, this experiment introduced the new possibilities for the same area of 

spectroscopy tools that is realized from classical pEPR spectroscopy [26, 37, 81]. 
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Figure 2.6: shows pEDMR experiment time 

using logarithmic time scale [26]. Reprinted 

figure with permission from [C. Boehme, H. 

Malissa,“Electrically Detected Magnetic 

Resonance Spectroscopy”, eMagRes, 83-100.13 

(2017)] Copyright (2017). 

 

The first and the simplest scheme for pulsed EDMR measurements was implemented by C. Boehme 

and K. Lips. In 2002, C. Boehme has presented the experimental setup for pEDMR in [57]. 

 

Figure 2.7: The standard 

setup of pEDMR [57]. 

Reproduced from C. 

Bohme, "Dynamics of 

spin-dependent charge 

carrier recombination", 

(2002). 

 

 

This experiment was implemented by using microcrystalline silicon (µcSi:H). However, the pEDMR 

method can be applied for other semiconductors like organic based carbon semiconductors which was 

presented in ref. [15]. In contrast to the silicon-based samples, the results of pEDMR with organic 

carbon-based faces some challenges.  Firstly, the contact to the sample should be in a careful way that 

the contacts do not distort and inhomogenize the B1 fields that is necessary for the spin manipulation. 

In addition, preparing the sample of pEDMR must be in fast and simple way and well encapsulated 

because a lot of semiconductors with carbon-based are sensitiv to ambient air. However, in the previous 

mentioned thesis [82], the special production method for pEDMR compatible thin film templates was 

presented in order to overcome these limitations [44, 83, 84, 85]. 
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The presence of spin-dependent transitions is the most important applicability of pEDMR. Due to the 

weak spin orbit coupling which leads to spin conservation, spin selection rules produced which make 

pEDMR consonant with IV materials. Moreover, the transition in pEDMR experiments needs to be 

sufficiently slow in order to be investigated. Rabi frequencies of the order of 100 MHz can be produced 

at these frequencies ranges, thus, if the coherence decay time scales is more than 10 ns, then spin-

coherent movement is possibly clear with pEDMR. For faster transitions, the detection of magnetic 

resonant changes in spin-dependent transition rates is possible, but not the effects of coherent spin-

motion. The investigating of materials with fast decay approaches is resticted to the limited time 

resolution. The implementation of pEDMR can be done  just on spin-dependent transitions where the 

mutual spin-spin couplings within the pairs are in an average domain. However, if the coupling is weak, 

then the chance of transition is small, and then the current signal is not interest. [5, 15, 26, 57, 82].  

 

2.4 Magnetic field sensing 

2.4.1  Magnetic resonance based sensing 

 Magnetic resonance (MR) based sensors have the ability to bring electromagnetic radiation into 

resonance with paramagnetic centres to determine a magnetic field if the  Landé factor of the material 

is known, and using Planck’s fundamental relationship between the frequency of the radiation and the 

its energy. Also, MR- based sensors allow to determine the shift and offset of magnetic field for 

intermediate to strong fields [16]. 

There are a large number of techniques available for magnetic sensing. These include, for instance, 

scanning superconducting quantum interference device (SQUID) microscopy, scanning semiconductor-

based Hall probe microscopy, magnetic force microscopy [86], and optical magnetometry [87], which 

can provide the micron-scale resolution in sensing. More interesting and promising are the new 

experimental methods for magnetic sensing in nanoscale region: spin-polarized scanning tunneling 

microscopy [88]. However, most of them face a lot of challenges when measuring the small magnetic 

fields. One of the problems, for example, is the fact that magnetic fields decay rapidly with distance, by 

the 1/r3 law. Using slow quantum systems as a detector is critical to overcome this issue and measure 

such small fields. The principle of that is to manipulate spin 1/2 quantum states directly which can be 

very sensitive to small magnetic field changes.  

 

2.4.2  Spin resonance magnetic field sensing 

The simplest way to measure a magnetic field using a spin is to look at the position of the resonance. 
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From Planck’s law: 

∆𝐸 = ℎ𝑣                                                                                                                 (2.63) 

∆𝐸 = 𝑔𝛽𝐵0                                                                                                            (2.64) 

Where 𝛽 = 9.274 × 10−28   J.G-1, 𝐵0 is external magnetic field, and 𝑔 is g-factor. 

In order to calculate 𝑔, the value of the energy between the two spin levels should be determined by 

illumination with microwave radiations with a known frequency and magnetic field sweeps on the 

sample. 

Therefore: 

𝑔 =
ℎ𝑣

𝛽𝐵0
                                                                                                                (2.65) 

𝑔 = 0.7145 
𝑣(𝑀𝐻𝑧)

𝐵0(𝐺𝑎𝑢𝑠𝑠)
                                                                                         (2.66) 

As a result from that and previous discussion in section (2.2.1), the energy difference between two spin 

eigenstates is related to the magnetic field felt by the spin.  

Changing the magnetic field strength leads to change the energy differences between two spin levels. 

Therefore, the spectrum is acquired by applying a constant magnetic field and scanning the microwave 

radiation of the frequency or by remaining the frequency stable and scanning the magnetic field [20, 

21]. Note that, different magnetic field strength would require different magnetic sensors [86]. 

By looking at the resonance position, this approach is limited by the inhomogeneous broadening of spin 

resonances which limits sensing capability. 

2.4.3 Coherent approaches to spin sensing 

Techniques exist for reducing the impact of disorder, which can be applied to improve the sensitivity 

with which a spin 1/2 can be used to measure a magnetc field.    

In particular, it is the presence of long spin phase coherence times (> 0.5 µs) at room temperature that 

is of particular interest [11]. Phase sensitive approaches to field sensing allow greater sensitivity [89], 

and have been effectively used in other materials (such as NV centers in diamond [19]). The challenge 

in applying such techniques to organic devices is related to the disorder that is inherent in the material, 

which leads to inhomogeneous broadening of spin resonances [16].  
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Figure 2.8: Optical and microwave spin-echo pulse sequence used for AC magnetic field sensing, 

taken from [19]. Reprinted by permission from [J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. 

Taylor, P. Cappellaro, L. Jiang, M.G. Dutt, E. Togan, A.S. Zibrov, and A. Yacoby, “Nanoscale 

magnetic sensing with an individual electronic spin in diamond”, Nature 455, 644-647 (2008)., 

[COPYRIGHT] (2008). 

 

Fig 2.8 shows the standard method to detect a Zeeman shift.   

The application of 𝜋/2 phased pulse to a spin-½ particle placed into external field B generates a 

superposition of two Zeeman levels. During the free interval evolution time 𝜏, these levels obtain the 

relative phase 

𝜙 ∝ (𝑔µ𝐵/ℏ)𝐵𝜏                                                                                                       (2.67) 

Where 𝑔≈2 for nitrogen vacancies, µ𝐵 is the Bohr magneton and ℏ is the reduced Planck constant. 

Changing the relative phase to the different population energy level is implemented by a 𝜋/2 pulse, and 

the population difference can be measured optically in order to obtain the value of the Zeeman shift. 

The linear dependency between the magnetometer signal and relative phases values occurs when the 

relative phases are small. The measurements are repeated several times in order to increase the 

sensitivity and exclude the fluctuations, and that called averaging interval 𝑇. With consideration of shot-

noise-limited sensitivity the minimum detectable field is given by the expression: 

𝐵𝑚𝑖𝑛 ≡ 
 𝜂

√𝑇
⁄ =

ℏ

𝑔µ𝐵√𝜏 𝑇
                                                                                    (2.68) 

Changing the time of interrogation 𝜏, one can control the sensitivity of experiment. However, at some 

point, the 𝜏 increasing will result in the sensitivity decreasing due to random perturbations affecting the 

measurements. Thus, the optimal sensitivity for this type of magnetometry will be achieved, when the 
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interrogation time is approximately equal to the time 𝑇2
∗of dephasing caused by the interactions of the 

spin ½ . 

𝜂𝑑.𝑐. ≈ ℏ/ 𝑔µ𝐵𝐶√𝑇2
∗                                                                                        (2.69) 

where 𝐶 ≤ 1 is the constant parameter, which depends on the experimental setup features [89]. 

Although magnetometry with single electronic spin manipulation opens new possibilities for the 

detection of very small magnetic fields, this method faces some challenges, especially connected with 

the high impact of spin projection noise and spin coherence time on the sensitivity of the proposed 

magnetometers. Special quantum coherent control techniques have used in order to overcome these 

issues. For instance, the application of various types of sequences such as modified by extra pulses 

Ramsey sequence, Carr-Purcell-Meiboom-Gill (CPMG) sequence [90], as well as a simple idea of the 

many sensing spins utilization, was proposed [89]. All these modifications affect the sensitivity and are 

important for specific experiments. 

However, MR magnetometers are large and expensive, limiting relevant applications. We could, 

however, use spin-dependent electronic transition in an organic diode in order to overcome with these 

limitations by having electrical (EDMR) or optical (ODMR) detection of MR. With an extremely low 

magnetic field, the sensitivity of EDMR and ODMR is higher because the signal is independent of spin 

polarization [16].  

 

This has been implemented in diamond see section 2.4.4, and it is also, implemented in OLED’s see 

section 2.4.5.  This thesis is focusing on developing a technique that approaches these devices.  

The main investigation of this thesis is to improve both the sensitivity and fidelity of electrically 

detected magnetic resonance in organic devices by using adiabatic pulses. However, these approaches 

is appearing in ESR and  have been  traditionally limited to NMR , and their application to electrically 

detected spin resonance has been limited. 

 

 

2.4.4  Magnetic resonance-based sensor in diamond 

 The first successful realization of this idea was made using a nitrogen-doped nanoscale diamond [89]. 

Adding one N atom to the carbon structure (diamond), along with a neighbouring vacancy, results in an 

additional unbound electron occurring, which can be excited by a laser pulse, causing the electron to 

emit radiation. According to the Zeeman law, the energy levels of one electron placed in a magnetic 

field will split into Zeeman sublevels Thus, analyzing the frequencies of emitted radiation and detecting 

the mentioned energy splitting allows small magnetic fields to be determined. 
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Figure 2.9: The experimental setup by Taylor, et al., 2008 [89]. Reprinted by permission from J. M. 

Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and 

M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution”, Nature Physics 4, 

810-816 (2008). [COPYRIGHT] (2008). 

Figure 2.9 a shows the principal scheme of the single nitrogen-vacancy center energy level structure 

including the ∆ = 2.87 GHz crystal field splitting and a Zeeman shift δω, the nitrogen-vancy-center’s 

ground state is spin triplet. The green laser light applied to this center (at room temperature) stimulates 

spin-dependent photoluminescence, which allows to optically detect the electron spin resonance. The 

continuous illumination of the nitrogen-vacancy spin in diamond leads to its pumping into the ground 

state 𝑚𝑠=0. Figure 2.9 b reveals the crystal structure of the diamond detector with a (111) nitrogen-

vacancy center. When the static bias field 𝐵⊥ is applied to the 111 axis, the signals of small magnetic 

fields aligned with the 111 axis are detected. Figures 1c and 1d demonstrate two principal schemes of 

the measurement device. The diamond nanocrystal with nitrogen vacancy placed at the end of the 

detecting probe containing a waveguide for photon collection (Fig. 2.9 c). The second scheme includes 

a macroscopic diamond sample with several vacancies, dichroic mirror and the charged-coupled device, 

which measures the spin-dependent photoluminescence produced through the green laser light impact 

on the diamond sample. The magnetic field resolution of the scheme on Fig. 2.9 c is limited by the size 

of the nanocrystal while on Fig. 2.9 d the resolution limitations are related to optical reasons. 

The highly sensitive magnetometer based on the ensemble of nitrogen-vacancy centers in diamond was 

determined in [91]. Its deviation of the magnetic field for 100 s measurements reached 100 fT, while 

the photon-shot-noise-limited magnetic-field sensitivity for 20 kHz ac (alternating current) signals was 
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equal to 0.9 pT/𝐻𝑧1/2. Another scheme for the similar detector placed in the optical resonator and 

having the sensitivity around 20 pT/𝐻𝑧1/2 was reported in [92]. The ensemble of nitrogen-vacancy 

centers in a single-crystal diamond was also used in order to create the vector magnetometer capable to 

produce the continuous measurements of all Cartesian components for a dynamically altering magnetic 

field [93]. This device can be used in a broad range of frequencies (from 5 Hz to 1.5 kHz) and achieve 

50 pT/𝐻𝑧1/2magnetic-field sensitivity for each Cartesian component. 

 

 

 

 

2.4.5 Magnetic field sensing in an organic light emitting diode (OLED) 

Due to their ability to transduce spin information into both optical and electrical signals, a number of 

proposals have emerged to utilise OLEDs as magnetometers [16]. This is motivated by a number of 

perceived advantages – the physical properties of organic devices, particularly their flexibility, allows 

a range of unique uses, a spin resonance based sensor allows calibration free operation, and the ability 

to operate at room temperature opens up applications in biology [11].  

Organic semiconductors and other electronic devices such as organic light emitting diodes (OLEDs) 

[94, 95] organic solar cells [96, 97]  and organic field effect transistors [98, 99] have been widely studied 

for more than three decades. Recently, OLEDs have been attractive in display industries as they have 

better features compared to displays made of liquid crystals, such as better response time, lower cost, 

higher efficiency, and better picture quality and flexibility [1]. 

A regular OLED is made with an organic semiconductor layer placed between two non-magnetic 

electrodes and placed on top of a glass substrate (see Fig. 2.10 a). The highest occupied and lowest 

unoccupied molecular orbital (HOMO and LUMO, respectively) energy levels of the active layer 

(polyfluorene) and the principle work of common materials are presented in Fig. 2.10 b. After applying 

the voltage to the OLED the recombination and excitation of polaron pairs occur and the device 

produces light, which leads to the formation of singlet and triplet polaron-pair states (𝑝𝑝𝑠, 𝑝𝑝𝑇). The 

steady-state density of the Polaron pair relies on the various factors such as dissociation and 

recombination rate constants, and on the spin mixing between the singlet and triplet manifolds. If 

𝑘𝑠 ≠ 𝑘𝑇, then the change of singlet and triplet mixing rate leads to a non-equilibrium steady state and 

changing the efficiency emission and polaron density. The change of singlet and triplet mixing rate can 

be caused by triplet-triplet annihilation, hyperfine interaction from adjacent hydrogens, triplet-polaron 

inter-action, or an applied magnetic field 𝐵 [1]. 
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Figure 2.10: a) Typical OLED device. b) Principal work of some common metals of which electrodes 

are made and HOMO and LUMO energies of polyfluorene organic semiconductors. The materials on 

the left and right sides are playing the role of the charge injection electrodes. c) The OLED work 

structure shown in four fundamental processes: (1) charge injection; (2) charge transporting; (3) the P+ 

and P- polarons recombination; and (4) exciton formation and light emission. Figure is taken from [1]. 

Reproduced from R. Geng, T. T. Daugherty, K. Do, H. M. Luong, & T. D. Nguyen, “A review on 

organic spintronic materials and devices: I. Magnetic field effect on organic light emitting 

diodes”, Journal of Science: Advanced Materials and Devices, 1(2), 128-140, (2016). 

 

Fundamentally, applying an external magnetic field to OLED and changing the emission efficiency can 

be used for magnetometry measurements. The OLEDs made of Alq3 showed the modulation of the 

current density and electroluminescence by applying magnetic field around 100 mT [100]. In addition, 

increasing the magnetoresistance up to 30% in polyfluorene -based OLEDs for the same magnetic fields 

was demonstrated later [101]. In order to explain theoretically the organic magnetoresistive effect in 

OLEDs at magnetic fields <100 mT, there have been different models proposed: (i) the bipolaron 

mechanism (BP) [102, 103, 104], (ii) the loosely-bound polaron pair model (PP) [100, 105, 106], (iii) 

the triplet-exciton polaron quenching model (TPQ) [107, 108], and (iv) the different gyromagnetic 

factor mechanism [109, 110]. 

Although there have been different models, explaining the whole cases of organic magnetoresistive 

response uniformly has to date not been achieved within a single model. 
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2.4.5.1 Magnetic field sensing using MEH-PPV 

Poly[2-methoxy, 5-(2’-ethyl-hexyloxy)-p-phenylene-vinylene] (MEH-PPV) is an inflexible  

conjugated polymer and soluble in some organic solvents such as toluene and hexane, and a popular 

conducting semiconductor, which is used in many optoelectronic devices including LEDs, organic solar 

cells and for the optical-magnetic information transduction [111, 112, 113].  

Moreover, MEH-PPV with low cost is interesting to organic-based magnetometers industries, thus can 

be used for magnetic field measurements. W. Baker in ref. [16] proposed device of thin MEH-PPV 

layer (200 nm) between PEDOT with 50 nm thickness as a hole injection layer and cathode layer 

consists of 25 nm Ca and 50 nm Al. the conductivity of this device can be determined when the spin 

polaron pair decay into excitons in the organic layer, and that allows magnetic resonance in an electron 

or hole to be detected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11:  Device concept of the magnetic resonance-based magnetometer of an organic 

semiconductor, taken from [16]. Reproduced from W. J. Baker, K. Ambal, D. P. Waters, R.  Baarda, 

H. Morishita, K. van Schooten,D. R. McCamey, J. M. Lupton, and C. Boehme, “Robust absolute 

magnetometry with organic thin-film devices”, Nature Communications 3, 898 (2012).  
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Figure 2.11 reveals the principal scheme (case a) of the device proposed in ref. [16] and shows the 

response of the magnetic field to a DC current without modulation in the presented bipolar MEH-PPV 

diode as a function of magnetic field with radio frequencies equal to 200 MHz in the case b, and to 50 

MHz in the case c). The relative current changes in the highlighted rectangles correspond to the MR-

induced charge change, when the spin dynamics of the charge carrier ensembles is changing, too. 

 Since the method allows one to measure the MR-induced spin-mixing rate changes, the limitations of 

these measurements will affect the magnetic detection. Therefore, the lower limit of the magnetic field  

𝐵0, which can be measured by the proposed device is determined by the simple condition – 𝐵0,  should 

exceed the local hyperfine field of the π-conjugated polymer. Conversely, when 𝐵0 is smaller than the 

hyperfine field, the spin mixing is too fast to be detected by MR and the EDMR signal from that mixing 

disappears [16]. 

The application of the MEH-PPV for the organic-based MR magnetometry strongly reduces the cost of 

the experimental setup. Moreover, this device does not require calibration,  temperature changes, can 

be used over large magnetic field and temperature ranges, and has high precision and absolute 

sensitivity values (for the fields less than 100 mT, the resolution is equal to 50 nT 𝐻𝑧−1/2). However, 

this organic magnetometer can detect only the fields larger than 1 mT, has less sensitivity than SQUIDs, 

and meet some challenges mostly connected with the increased time of MR reference frequency 

searching [16]. 

Since the organic semiconductors have promising applications for the OLED-based magnetometers 

production, the research of spin-orbit coupling effects [114] as well as other spin-based phenomena 

[115] in them, continue to attract attention. 

 

2.5 Spins in organic systems 

Spin quantum mechanical properties are significantly impacting organic electronic materials due to the 

generation, mobility, and recombination of charge carriers. The significant interest in spin manipulation 

based probe, due to the week spin-orbit coupling, which leads to Pauli blockade (which impacts 

conductivity) and long coherence times (which impacts recombination),is to understand the underlying 

electronic features in these materials and develop new technological applications [15, 16]. 

Magnetic field effects are related to polaron pairs, biplarons, triplet-exciton polaron complexes, and 

triplet-triplet complexes, although the spin dynamics explanations still complicated in organic 

materials. In order to understand that, it is important to define spin-dependent and independent 

processes in organic devices [5]. 
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 Next sections will provide a brief explanation of the main excitations processes in organic devices. 

 

2.5.1 Excitations processes in organic devices 

2.5.1.1 Polarons 

The strong interaction between charge carriers and the nuclei surrounding in the organic materials 

introduces polarons with spin ½ and unit charge. The mobility and the conductivity of the charge 

carriers are reduced due to that strong interaction. 

The Hamiltonian below can be used to describe electron and hole polarons: 

 

𝐻𝑆𝑆𝐻 =∑ [−𝑡0 + 𝛼(𝑢𝑛+1 − 𝑢𝑛)][𝑐𝑛+1,𝜎
+ 𝑐𝑛,𝜎 + 𝑐𝑛,𝜎

+ 𝑐𝑛+1,𝜎]
𝑛,𝜎

 

+∑
𝑝𝑛
2

2𝑚𝑛 +
1

2
𝐾∑ (𝑢𝑛+1 − 𝑢𝑛)

2
𝑛                                                                               (2.70) 

Here the first term represents: electron hopping, the second term:  nuclear kinetic energy, and the last 

term: nuclear potential energy,  where 𝑡0 is the transfer integral, 𝛼 and K are spring constants, u, p and 

m are the nuclei position, momentum and mass, and c and 𝑐+ are the annihilation and creation operators 

for the polarons. The first summation refers to the electron hopping, the second one is nuclear kinetic 

energy, the last term is nuclear potential energy.  

 

Describing the formation and dissociation of higher spin particles like excitons, polaron pairs, and 

solitons is achieved with the SSH Hamiltonian models, while latest models for p-EDMR and p-ODMR 

concentrate on uncoupled spins [5]. 

 

2.5.1.2 Polaron pairs 

Polaron pairs with bounded state and weak spin interaction are formed by two polarons with opposite 

charges.  

𝑒 + ℎ → [𝑒 + ℎ]                                                                                                  (2.71) 

where 𝑒 and ℎ are the polarons electron and hole respectively, and [𝑒 + ℎ] refers to a coulombically 

bound state. 

Polaron pairs can dissociate back to a free electron and hole as in: 

 

[𝑒 + ℎ] → 𝑒 + ℎ                                                                                                 (2.72) 

 

or create a strongly-bound exciton which recombines quickly as: 
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[𝑒 + ℎ] → 𝑆                    or                [𝑒 + ℎ] → 𝑇                                           (2.73) 

where 𝑆 and 𝑇 is singlet and triplet exciton respectively. 

An external magnetic field has the ability to influence transitions or spin mixing between the singlet 

and triplet manifolds before spin-dependent recombination or dissociation. The bases of the transition 

rate are the strength of the magnetic field, the weak coupling (exchange and dipolar) between polarons 

pair, and moreover, strong coupling to the external environment.  

From spin mixing rate, spin dependent current contribution is provided by spin dependent reaction yield, 

where the singlet and triplet are different in the probabilities of dissociation and recombination. It can 

be provided also by spin dependent reaction rate where the singlet and triplet have the same 

probabilities, while the constant rates are different [5]. 

2.5.1.3.Exciton 

When an electron-hole (exchange-coupled) pair is strongly bounded, it is called an exciton [5]. 

Producing excitons in organic devices occurs when positive and negative charge carriers encounter each 

other, while the decay to the uncharged ground state results from radiative recombination [4]. 

The recombination of singlet excitons occurs on nanosecond timescales, and the separation of them 

would be around 5-20 nm during that time. However, triplet excitons stay to milliseconds and separate 

between 10 to 250 nm [4, 5]. 

 

2.5.1.4 Bipolarons 

Two polarons with the same polarity can combine to create a bipolaron, which has similar position and 

weakly spin coupled charges. 

 

𝑝 + 𝑝 → [𝑝 + 𝑝]                                                                                                     (2.74) 

 

where 𝑝 is either a positive or negative polaron, and can integrate to a singlet bipolaron only because of 

great exchange interaction as: 

 

[𝑝 + 𝑝] → 𝑆++/−−                                                                                               (2.75) 

 

Although they have short lifetimes [5], bipolarons still generate magnetic field effects and have action 

like polaron pairs [5]. 
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2.5.1.5 Triplet-exciton polaron complex 

A triplet-exciton polaron complex can occur when a triplet-exciton is coupled to a polaron, which then 

will have three spin ½ particles. 

𝑇 + 𝑝 → [𝑇 + 𝑝]                                                                                                   (2.76) 

And when the complex is dissociated, it can be written as: 

[𝑇 + 𝑝] → 𝑇 + 𝑝                                                                                                  (2.77) 

Unless there is a doublet content in the spin state which result in destroy the complex and provide 

polaron in excited state [5]. The conductivity can change after the exciton reaches the ground state and 

transfer its energy to the polaron.  

𝑇 + 𝑝] → 𝑆0 + 𝑝
∗                                                                                                (2.78) 

 

2.5.1.6 Triplet-triplet complex 

T. Keevers presented in his thesis [5] the two triplet- excitons combine, which gives a triplet-triplet 

complex. 

𝑇 + 𝑇 → [𝑇 + 𝑇]                                                                                              (2.79) 

And when the complex is dissociated into a pair of triplets,  it can be written as: 

[𝑇 + 𝑇] → 𝑇 + 𝑇                                                                                             (2.80) 

Unless the total wavefunction is spin 0, then the complex annihilates and provides a two singlet excitons 

[5] 

 [𝑇 + 𝑇] → 𝑆0 + 𝑆1                                                                                        (2.81) 

 

2.5.2 Spin dependent processes 

In organic materials, static magnetic field and magnetic resonance impact on spin states and then spin 

dependent rates which lead to have magnetoresistance and magneto luminescence [4].   

From the excitations processes discussed above, exciton is the most important spin dependent states in 

organic materials. Exciton provides a spin 1 system (from electron spin =1/2 and hole spin =1/2), which 

come out with four possible spin eigenstates, one singlet and three triplet states. Singlet decay is mainly 
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cause of producing light in organic materials because radiative triplet decay is negligible for some 

reasons. Therefore, the spin of the charge carriers is fundamental for the internal quantum efficiency in 

organic devices because of the conservation of electronic spin in exciton formation and decay. Thus, 

polaron pair formation model is principle of many electrical and optical applications in organic 

semiconductors, since it has the ability to manipulate spins with magnetic resonance which resulted in 

conductivity and fluorescence impacts, and through EDMR and ODMR experiments, obtaining the 

physical parameters of the spin states [4]. 

Next is the bipolaron pair model, which as explained previously is formed from either electron-electron 

or hole-hole pairs only. Spin-dependent conductivity “which is obtained due to the pair formation leads 

to increase hopping mobility of the charge carriers” [4] and magnetoresistance contribution have been 

effective by bipolaron pairs.   

In short, polaron pair formation and bipolaron pair models are different in fundamental physics but have 

similar behavior. Importantly, using EDMR and ODMR experiments to analyze some spin dependent 

processes such as spin-dependent scattering, spin trapping, spin polarization, and intermediate pair 

processes showed that signals of all pair processes are strongly spin-polarization dependent, thus the 

observation of these processes under some condition is complex.  However, the intermediate pair 

processes are spin polarization independent, and polaron pair formation and bipolaron pair models are 

important examples [4]. 

 

2.5.3 Spin independent processes 

Detecting and analyzing spin independent processes are impossible with magnetoconductance or 

EDMR spectroscopy because the overall reaction yield will not be affected by changing spin mixing 

rate. Therefore, these processes would be determined by device design or condition operation. The 

demand for spin independent processes is concentrated in developing an accurate microscopic picture. 

Changing the charge carrier density, or providing a compatible/ competitive pathway by spin 

independent processes would lead to effect spin dependent processes certainly. 

Next sections will provide a brief explanation of the main spin independent processes in organic 

materials [5].  
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2.5.3.1 Singlet-exciton polaron quenching 

A singlet-exciton annihilation or polaron dissociation would be consisted in this process. Both 

annihilation and dissociation lead to expand the sample conductivity by increasing the mobility 

(annihilation process) and the density (dissociation process) of the average charge carriers. 

𝑆1 + 𝑝
+/− → 𝑆0 + 𝑝

+/−∗ + 𝑝ℎ𝑜𝑛𝑜𝑛                                                            (2.82) 

 

𝑆1 + 𝑝
+/− → 𝑝+/− + 𝑝+ + 𝑝− + 𝑝ℎ𝑜𝑛𝑜𝑛                                                   (2.83) 

 

where 𝑆1 is the first singlet exciton state, 𝑆0 is the ground singlet exciton state,𝑝+/− is a 

positive/negative polaron, and * refers to excited state [5]. 

 

2.5.3.2 Singlet –singlet annihilation 

In this process two singlet-exciton annihilations would be involved producing a singlet-exciton in the 

second excited state (𝑆2). 

 

𝑆1 + 𝑆1 → 𝑆0 + 𝑆2                                                                                         (2.84) 

 

The sample conductivity would not be impact in this process, while some other relative processes might 

increase [5].  

  

2.5.3.3 Singlet-exciton triplet-exciton annihilation 

This process produces singlet-exciton annihilation and triplet-exciton excitation.  

 

𝑆1 + 𝑇0 → 𝑆0 + 𝑇1 + 𝑝ℎ𝑜𝑛𝑜𝑛                                                                       (2.85) 

 

where 𝑆 and 𝑇 refer to singlet and triplet exciton respectively [5]. 

 

2.5.3.4 Singlet-exciton bipolaron quenching 

Recombining and transferring a singlet-exciton’s energy to bipolaron is the basement of this process.  

𝑆1 + 𝑏𝑝
++/−− → 𝑆0 + 𝑏𝑝

++/−−∗ + 𝑝ℎ𝑜𝑛𝑜𝑛                                               (2.86) 

 

where 𝑏𝑝 is the bipolaron state. 
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The sample conductivity here is expanding due to increasing the mobility of the average charge carriers 

[5]. 

 

2.5.3.5 Singlet fission 

In this process, as T. Keevers presented, recombination of two singlet states would provide two triplet-

excitons, which is basically the inverse process of triplet-triplet annihilation mentioned in section 

2.5.1.6 

 

𝑆0 + 𝑆1 → 𝑇1 + 𝑇1                                                                                     (2.87) 

 

Increasing the sample conductivity in this process would be occurred by increasing in some relative 

processes such as triplet exciton polaron quenching and triplet-triplet annihilation [5]. 

 

2.6 Organic devices 

Low cost, flexibility, low density and potentially high throughput, and the low cost of processing 

organic materials have led to a range of organic electronics technologies. Due  to  the  intriguing  

properties  of  organic materials,  especially  organic  semiconductors,  these  materials  have  been  

identified  as  suitable  for  developing optoelectronic technologies  which require properties such weak 

spin-orbit coupling, long spin coherence times and large magnetic field effects at room temperature [5]. 

The next following sections will introduce organic light-emitting diodes (OLED), concentrating on 

OLED design and structure, operation and measuring the efficiency of OLED, and some challenges and 

applications of OLED [116]. 

 

2.6.1 OLED design and structure 

The first OLEDs with a luminance of over 1000
𝐶𝑑

𝑚2  at voltages  ≈ 10 𝑉𝑜𝑙𝑡 were developed by Tang 

and Van Slyke in 1987. Using two-layers with a separate hole and an electron transporting layers was 

the basic format of the diode, where increasing the efficiency and decreasing the voltage were the effects 

[3, 26]. Between 1990s and 2000s, the OLEDs have become the future technology because of improved 

understanding of phosphorescent OLEDs (PHOLEDs) with power efficiency over 100 𝑙𝑚/𝑊 [116]. 
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Figure 2.12: First OLED’s device structure by Tang and Van 

Slyke [116]. Reproduced from M.Cai, "Organic Light-

Emitting Diodes (OLEDs) and Optically-Detected Magnetic 

Resonance (ODMR) studies on organic materials", (2011).   

 

 

 

There are two types of OLEDs based on small molecules (with low “molecular weights”) and polymers 

(“large molecules with repeating structural unit”): small molecule OLEDs (SMOLEDs) and polymer 

OLEDs (PLEDs). 

The thermal evaporation in a vacuum is required in order to fabricate SMOLEDs. The ability of the 

vacuum deposition process leads to preform high flexible multilayer with well controlled and 

homogeneous films, thus charge transporting and blocking layers would be performed and high 

efficiency provided. The limitations of this process refer to the difficulty and high cost.  

Fabrication of PLEDs can exploit potentially cheaper and simpler techniques like spin-coating, inkjet 

printing, and screen printing. The production efficiency is small compared to that in SMOLED [116].  

The development of OLED technology leads to increase the complexity of OLEDs structure.  Given 

SMOLEDs as an example to discuss OLEDs structure, the multilayers here have seven different organic 

layers (the total thickness of the layers in the OLEDs usually is ~ 100 𝑛𝑚) between two electrons as it 

shown in fig. 2.13. [37]. 
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Figure 2.13: The structure of SMOLEDs (seven multilayers) [116]. Reproduced from M.Cai, "Organic 

Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on 

organic materials", (2011).   

 

The electron/hole transport layer (ETL/HTL)  transfers the injected electron/hole to the light emitting 

layer (EML) “recombination area” by decreasing barrier and charge injection. In the electron/hole 

blocking layer (EBL/HBL), the electron/hole charges are preventing from being extended to the other 

electrode, and then holding to light emitting layer (EML). In the light emitting layer (EML), light is 

produced due to the electron and hole recombination, which is happened because the length of the 

exciton diffusion is ~10 𝑛𝑚. It is possible to have different color of OLEDs by replacing the emitter 

materials. Most of classical OLEDs are bottom-emitting, emitting light from substrate and bottom 

electrode which are transparent or semi- transparent. However, Top-emitting OLEDs will be emitting 

light through the transparent or semi-transparent top electrode. In addition, transparent or semi-

transparent top electrode in OLEDs would have significant effects on increasing contrast and providing 

clear image. Moreover, connecting some OLEDs as a series will improve the efficiency which leads to 

increase lifetime, while an expensive cost keeps it limited [116, 117]. 
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2.6.2 OLED operation 

The operation of the OLEDs is basically providing the process of electrons and holes movement 

separately from cathode to anode after applying a voltage, then transforming them into each OLEDs 

layers [116]. Note that the operating lifetime is an important feature of OLEDs performance [118]. In 

the EML, where the exciton occurred, the spin wavefunction can be either singlet (S=0) or triplet (S=1), 

then the difference of the energy level between singlet and triplet would be big. The light emission 

(fluorescence) is produced only by singlet excitons, while triplet excitons do not [119]. Importantly, 

light emitting is controlled by charge (electron) injection, transport, and recombination. Since there is 

no free charge carriers, device efficiency would be effective by incapable injection and extraction of 

charge [116]. The internal quantum efficiency is given by: 

𝜂𝑖𝑛𝑡 = 𝛾𝑟𝑠𝑟𝑞                                                                                                  (2.88) 

where 𝛾 is the ratio of the number of exciton formation happens within the device to the number of 

electrons following in the external circuit (charge balancing) , 𝑟𝑠𝑟 is the fraction of 

excitons(recombination), and 𝑞 is the efficiency of radiative decay of single excitons (radiative 

emission) [119]. 

The charge injection and charge transport processes are extremely connected. The injection process is 

controlled by charge injection barriers which have been effective between active layers and metal 

electrodes [116]. Injection barriers cannot be estimate easily from the work function of the metal 

electrode and the highest and lowest occupied molecular orbitals (HOMO) (LUMO) due to the 

deviations from chemical reactions between metal and semiconductor. The current flow is limited by 

the injection of charge in devices with large barriers charge injection [116, 119]. 

In the recombination charge process  which was described earlier, lower mobility of one charge carrier 

than the other is required in order to have high local charge density which leads to having high efficiency 

in the device’s structure. The device of the photonic structure has an extreme impact on the efficiency 

of radiative decay. The internal quantum efficiency mentioned above has the necessary components to 

have favorable efficiency: Charge balancing  can lead to high-efficiency. The recombination which has 

a 25% limitation due to the exciton formation provided one singlet and three triplet states; however, 

this does not included all devices at the present time. Finally, radiative emission from excitons has 

shown “under conditions measurements” reaches high-efficiency improvement can be occurred up to 

50% [119].  
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2.6.3 Challenges and applications of OLED 

OLED technology has been expanded dramatically recent years. However, as any other technologies, 

OLEDs have some challenges such as cost, water damage, and limited lifespan of the devices. 

Moreover, as known before, the efficiency of most OLEDs is high except of blue OLEDs, which 

particularly have low efficiency and short lifespan. 

The improvement of OLEDs technology has led to many applications such as flat-panel displays and 

solid-state lighting. Flat-panel displays have been divided to large screens as TVs and small screens 

such as mobile phone, digital cameras, and car radios.  Also, using high light produced from OLEDs is 

significant for sunlight reading. In solid-state lighting, more development with flexible lighting and 

signs has led to create for example OLED lighting samples [116]. 
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Chapter 3. Methods-Device Fabrication 

3.1 Organic device fabrication 

     3.1.1 Principle of Operation 

As mentioned previously in chapter 2, organic light emitting diode (OLED) in general contains seven 

layers as seen in the fig. 3.1, the principle of OLED can be started with electron injected from cathode 

and hole from anode as applied particular voltage in between. In between, there are transport layers. 

Injection processes format is particularly affected by the difference between HOMO, LUMO and 

electrodes.  In the emitting layer, either excited molecules or exciton are generated which lead to 

electrons-holes recombination which emit light as the concentration distribution of the exciton moves 

from high to low [120].  

The photon diffusion either emitting light through the glass or returning back to cathode and converted 

energy to heat or transferred [120].  

 

 

 

 

 

   Figure 3.1: The seven layers of an OLED. 
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Figure 3.2: A schematic shows the principle work of OLED’s bilayers [121]. Reproduced from H. A. 

Méndez-Pinzón, D. R. Pardo-Pardo, J. P. Cuéllar-Alvarado, J. C. Salcedo-Reyes, R. Vera, and B. Páez-

Sierra, “Analysis of the Current-Voltage Characteristics of Polymer-Based Organic Light-Emitting 

Diodes (OLEDs) Deposited by Spin Coating”, Universitas Scientiarum, Vol. 15, no. 1, Jan. pp. 68-76, 

doi:10.11144/javeriana.SC15-1.aotc (2010). 

 

By looking at fig. 3.2, the device would have bipolar conduction by electrons and holes injection. 

However, if the different between LUMO and Fermi energy level is high or above 1eV, electron 

injection is little, then the device has unipolar conduction. Also, the different between HOMO and 

valence band can be reduced by increasing hole injection, therefore PEDOT: PSS is used for hole 

injection development [121]. 

 

    3.1.2 OLED Fabrication processes: 

1) Cleaning: 

The first step of OLED’s devices fabrication is to ensure clean glass substrates (dimensions 70 mm x 3 

mm). In fact, there are several steps for cleaning a substrate, started by using UV for 15min, followed 

by acetone (10 mins), isopropanol (10 mins), distilled water and ultrasonic bathed. After that, baked it 

overnight, and prepared for spin coating [120]. 
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2) Spin coating: 

Before moving to spin coating, device structure as in fig. 3.3 is needed, so the indium tin oxide (ITO) 

of the substrate is between 100-150 nm, then the PEDOT:PSS 40nm, then MEH-PPV layer between 

100-150nm (MEH-PPV), after that 10 nm of  calcium ,to ensure good electron injection, and at last 

100nm of aluminium [120]. PEDOT: PSS is provided by Heraeus and MEH-PPV by Luminescence 

Technology Corp and made with toluene. 

Thus, the glass is spin coating with PEDOT: PSS at different spin coating speed as seen in table 3.1 for 

60s, then the sample has placed on hot plate for 12 hours at 100 °C to ensure the solvent is totally 

evaporated. After that, MEH-PPV is spin coating with also different spin coating speed for 60s, then 

place the sample on hot plate for overnight at 60 °C. As seen in fig. 3.4 the PEDOT:PSS and MEH-

PPV should be applied on shaded part, but due to lack of spin coating control, it will cover up to lined 

part [120]. 

 

 

 

 

             Figure 3.3: OLED device structure. 

 

 

 

 

 

 

 

 

              

Figure 3.4: Two substrates show the area that PEDOT: PSS (black shaded) and MEH-PPV (red shaded) 

should be applied and the lined area where both practically been applied. 
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 Figure 3.5: PEDOT: PSS and MEH-PPV chemical structure [116, 122]. 

 

3) Thermal evaporation: 

During thermal evaporation, the efficiency is high enough to provide high flexible multilayer with well 

controlled and homogeneous films due to the vacuum deposition capability. As mentioned before in 

chapter 2, the limitations of this process refer to the difficulty and high cost [116] 

In thermal evaporation, shadow mask with top cover as in shaded area in fig. 3.6 has been used in order 

to hold the substrates which been faced up. After that, the mask has been flipped in order to deposit 

Ca/Al on top of MEH-PPV layer at room temperature [120]. 

Then the device is applied voltage in the range between 5v-15v after been connected. The light is 

emitting from the bottom of the device as most of OLEDs [120].  

 

 

 

 

 

 

Figure 3.6: A substrate after deposited Ca/Al.  

 

In order to keep the device stable during the measurement, I designed a sample holder and printed in 

the School of Physics at UNSW as seen in fig 3.7 below. 



52 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 A sketch of the sample holder developed during the course of this thesis. The sample holder 

is 3D printed and provides secure support and well-defined placement, which enables high quality 

electrical contacts to the device via pogo pins. The holder is attached to the end of a standard EPR 

sample tube, through which electrical wiring is run to all sample measurement in the resonator.  

 

The sample holder shown in Fig. 3.7  is a single piece with contact pads, and has a number of benefits 

over previous designs. These advantages include: 

 It removes the challenges associated with the very small and often magnetic screws used in 

previous designs, whilst providing simpler assembly. 

 It can be modified easily due to its fabrication via 3D printing, whilst retaining stable sample 

positioning during electrical measurements 

 It has proven to facilitate good electrical contact at low temperature.  
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a)                                                                                                                    b) 

 

Figure 3.8: a) Photo of OLED device held by EDMR sample holder b) Photo of OLED device 

encapsulated inside an MD5 EPR tube. 

 

3.2 Device characterization  

In OLED’s fabrication, two main cases have been considered: 

A. Spin coating PEDOT:PSS inside glovebox which included two incidents: 

1) Different spin coating speed for both PEDOT: PSS and MEH-PPV 

2) Different concentrations of the solution (MEH-PPV) 

 

B. Spin coating PEDOT:PSS outside glovebox 

1) Different solutions with same concentration 

2) Different cathode layers 

A. Spin coating PEDOT:PSS inside glovebox which included two incidents: 

3.2.1 Different spin coating speed for both PEDOT: PSS and MEH-PPV 

For spin coating PEDOT: PSS inside the glovebox within same MEH-PPV solution concentration 

(15mg/ml, made with toluene) and different spin coating speeds for both PEDOT:PSS and MEH-PPV, 

as seen in table 3.1 
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PEDOT:PSS 

  
MEH_PPV 

2000 rpm 800 rpm 

2000 rpm 900 rpm 

2000 rpm 1000 rpm 

3000 rpm 900 rpm 

3000 rpm 1000 rpm 

3000 rpm 2000 rpm 

3000 rpm 3000 rpm 

 

Table 3.1: Different spin speeds for both PEDOT: PSS and MEH-PPV have been used to make OLED’s 

devices. 

 

 

a)                                                                                  b) 

Figure 3.9: Current-voltage (I-V) characteristics of OLED’s with different spin coating speeds for both 

MEH-PPV and PEDOT: PSS 

a. Compare different MEH-PPV active layer with same PEDOT: PSS spin coating speed 2000 

RPM 

b. Compare different PEDOT: PSS with same MEH-PPV 1000 RPM 

It is clear from Fig. 3.9 that with different spin coating speeds has a reasonable impact on device 

performance. Increasing spin coating speed leads to a decrease in the thickness of the (film) active layer 

MEH-PPV or PEDOT: PSS and an increase in the current. Observing higher slopes indicate lower 

overall ohmic resistances in these devices which implies an increase in pinholes density in thinner films 

[67, 121]. Because the pinholes are critical to defining the axial and transverse resolutions of the 
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devices, which affect the light emission of the devices too,  higher pinhole density is extended the 

parasitic currents and short circuit between cathode and anode which affected the device performance 

[121, 123]. 

 

      3.2.2 Different concentrations of the solution (MEH-PPV) 

From the different spin coating speeds results above, 3000 rpm for both PEDOT: PSS and MEH-PPV 

has been chosen to be used for all next device fabrication processes. Therefore, within that case, 

different concentrations of MEH-PPV solution has considered. Note that the MEH-PPV solution here 

is made with toluene only.  Fig 3.10 shows comparison between two groups of devices, both within 

3000 rpm for PEDOT:PPV and MEH-PPV, but with different MEH-PPV solution concentrations: 10 

mg/ml and 15 mg/ml. Devices average has been taken in each group for better result. 

a)                                                                                       b)  

 

Figure 3.10: Current-voltage (I-V) characteristics of averaged devices with different MEH-PPV 

solution concentrations and same spin coating speed for both PEDOT: PSS and MEH-PPV. 

a. Current-voltage (I-V) characteristics  

b. Log ( Current-voltage (I-V) ) characteristics 

From fig 3.10, the effective of different MEH-PPV solution concentrations is clearly observed, with 

higher current and lower voltage. Therefore, reducing the concentration of MEH-PPV solution leads to 

reduce the thickness of organic layer which increase current intensity and thus device performance. 
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In addition, using fresh MEH-PPV solution (less than one week old) indicates better result as seen in 

fig 3.11 

 

Figure 3.11: Current-voltage (I-V) 

characteristics of two with fresh and old MEH-

PPV solution, same concentrations and same 

spin coating speed for both PEDOT: PSS and 

MEH-PPV, then deposit LiF, Ca, and Al. 

 

 

Fig 3.11 shows comparison between two devices both made with same condition: PEDOT: PSS and 

MEH-PPV (10 mg/ml, 50% toluene, 50% cyclohexane) spin coating at 3000 RPM, followed by LiF 

(0.8 nm) at 0° C, Ca and Al at RT, except one made with fresh MEH-PPV solution while the other made 

solution that prepared 14 days before using it. It is clearly that the device made with fresh solution 

shows better result than made with old one.  

From sections 3.2.1 and 3.2.2 we realized that decreasing the absorption of organic layer and increasing 

the current intensity both can be reached by reducing the thickness and increasing electroluminescence. 

The best result of OLED’s device with higher current intensity performance at low voltage is achieved 

when the thickness reduction of electroluminescence layer occurred by increasing the spin coating 

and/or decreasing the concentration of MEH-PPV solution. 

   B. Spin coating PEDOT: PSS outside glovebox 

Before moving to different solutions with same concentration, it is critical to compare between spin 

coating inside and outside under same conditions: PEDOT: PSS and MEH-PPV spin coating speed 

3000 RPM, and MEH-PPV solution 10 mg/ml made with toluene only. It can been easily seen from fig 

3.12 that spin coating PEDOT: PSS outside the glovebox has higher current intensity at lower voltage 

compare to inside. 
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Figure 3.12: Current-voltage (I-V) 

characteristics of two devices: one with 

PEDOT: PSS spin coating inside and 

the other outside the glovebox, both 

with same MEH-PPV solution 

concentration and 3000 RPM spin 

coating speed for PEDOT: PSS and 

MEH-PPV. 

 

 

 

3.2.3 Different solutions with same concentration 

For spin coating PEDOT: PSS outside the glovebox within same spin coating speed as MEH-ppv (3000 

RPM), and different MEH-PPV solutions: one has made with toluene only and the second with 50% 

toluene and 50% cyclohexane, both with same concentration (10 mg/ml).  The effective of different 

types of MEH-PPV solution is realized in fig3.13 
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a)                                                                              b) 

 

 c)                                                                                                                                                           d) 

 

 

 

 

 

 

 

 

 

Figure 3.13 The effect of two types of MEH-PPV solution (1.with toluene only, 2. with 50% toluene 

and 50%cyclohexane) on devices within same solution concentration (10mg/ml) and spin coating speed 

3000 RPM for both PEDOT: PSS and MEH-PPV  

a) Current-voltage (I-V) characteristics of devices: two with different kinds of solution, both with same 

concentration and 3000 RPM spin coating speed for PEDOT: PSS and MEH-PPV.  

b) Averaged of a). 

c) Pixel of OLED device made with 50% toluene and 50% cyclohexane solution. 

d) Pixel of OLED device made with 100% toluene solution 
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From Fig 3.13, higher current intensity has observed at lower voltage on the devices that were made 

with toluene only compared to the 50% toluene: 50% cyclohexane solution, which lead to increased 

performance of these devices. Closely look at fig3.13 c) and d) 100 µA with different voltages applied 

on both OLED’s devices, and it is clearly seen that with MEH-PPV solution made with toluene only 

has almost full pixel producing light, although 50 %toluene and 50% cyclohexane solution presenting 

more brighter. The dark spots in both devices might be refer to the level of oxygen inside the glovebox 

which would affect the calcium layer in OLED’s devices. 

 

      3.2.4 Different cathode layers 

In this part we will illustrate different cathode layers by taking the advantage of the brightness of MEH-

PPV solution made with 50% toluene and 50% cyclohexane, and 3000 RPM spin coating speed for 

MEH-PPV and PEDOT: PSS outside. The structure of OLEDs here is: PEDOT: PSS, MEH-PPV 10 

mg/ml solution (made with 50%toluene and 50% cyclohexane), then deposit Lithium Fluoride (LiF) 

with 0.8 nm thickness, Calcium (Ca) 10 nm, and finally Aluminium (Al) 100 nm all at room 

temperature. The device structure band of principle work in OLED and the thickness are shown in fig 

3.14 and 3.15 respectively. The I-V characteristic of this structure is shown in fig.3.16. 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: OLED device structure band. 
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Figure 3.15:  OLED device structure with 

thickness indicated. 

 

 

 

                                                                     

 

 

 

 

 

 

 

 

 

Figure 3.16: Current-voltage (I-V) characteristics of OLEDs devices with 3000 RPM spin coating 

speed for both PEDOT: PSS and MEH-PPV (50% toluene and 50% cyclohexane), LiF at RT, Ca, and 

Al. 

Then compare that result to devices made with same conditions but without adding  LiF layer, fig 3.17 
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a)                                                                               b) 

 

Figure 3.17: Comparing current-voltage (I-V) curves of OLEDs devices with 3000 RPM spin coating 

speed for both PEDOT: PSS and MEH-PPV (50% toluene and 50% cyclohexane), with and without 

adding LiF at RT, before Ca, and Al layers. 

a. Current-voltage (I-V) characteristics  

b. Log (Current-voltage (I-V)) characteristics 

It is clear from fig 3.16 that the current increasing gradually when the voltage approximately above 3V 

in devices with LiF layer, indicating lower resistance than the devices without LiF. This reveals that the 

devices without LiF layer have less electron injection than with LiF. 

In fact, examine adding LiF with 0.8 nm thickness at 0° C  instead of RT demonstrate better result than 

above as seen in fig 3.18, note that Ca and Al both deposit at RT in all cases. 
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a) 

 

 

 

 

 

 

 

 

b)                                 c)                                     d) 

 

 

 

 

 

 

 

Figure 3.18: Comparing current-voltage (I-V) curves of OLEDs devices with 3000 RPM spin coating 

speed for both PEDOT: PSS and MEH-ppv (50% toluene and 50% cyclohexane), with one LiF at RT 

and the other at 0° C  , while Ca, and Al both at RT.  

a) Current-voltage (I-V) characteristics.   

b) Pixel of OLED device with deposit LiF layer at 0° C, when 2.5 V voltage applied at 100 µA.  

c) Pixel of OLED device with deposit LiF layer at RT, when 3 V voltage applied at 100 µA. 

d) Same device in c) but within increasing the current up to 0.5 mA. 

 

From fig 3.18 a) lower resistance in device with LiF at 0° C indicates higher current at lower voltage 

compared to device in LiF at RT which enhance the performance of the device. Also, close looking to 
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fig 3.18 b), c), and d) shows clear and full pixel emission of OLED device in b) compare to c) and even 

after increasing the current as seen in d). 

 

      3.2.5 Conclusion: 

Therefore, all the results of OLED’s IV characterisation demonstrated above approved that the best 

device with higher current intensity at lower voltage, and full clear pixel light emission can be reached 

by 3000 RPM spin coating speed for both PEDOT: PSS and MEH-PPV fresh solution 10 mg/ml (50% 

toluene and 50% cyclohexane), deposit LiF (0.8 nm) at 0° C, while Ca (10 nm), and Al (100 nm) both 

at RT.  Increasing the spin coating speed or decreasing MEH-PPV solution concentration leads to reduce 

the thickness which produces higher current intensity at lower voltage and lower resistance which can 

be connected with higher density of pinholes in theses organic layers. Producing parasitic currents route 

between cathode and anode due to higher pinholes density leads to increase the device performance 

with high emission. Devices made to this recipe will be used for measurements in the following chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 

 

Chapter 4. Experimental determination of spin properties 

Although organic semiconductors have been used for developing a variety of optoelectronic 

technologies, measuring spin coherence time has remained difficult in these materials. However, 

measuring spin coherent time allow important awareness to spin relaxation mechanism which is critical 

for spin dependent transport and recombination with high-level spin mixing included [15, 67].  

In this thesis, puled EDMR has been used to drive spin singlet-triplet Rabi oscillation in order to 

manipulate spin coherent time in OLED.  Changing the current through the device leads to determine 

spin recombination rate and that present spin control of electronic transport and spin coherent time over 

0.5 µs [15, 67]. 

Due to the low atomic number of hydrocarbon atoms in organic semiconductors, weak spin orbit 

coupling indicate in these materials which would give the ability to transduce spin information into both 

optical and electrical signals [15, 16].  

 

The observation of the coherent effects when the excitation time is longer than coherent time in organic 

devices is impossible by ESR technique due to quasi continue microwave fields limitation. To overcome 

with this issue and thus confirm that the microwave field duration time is shorter than spin excitation 

dephasing time, pulsed EDMR has used to allow spin coherent elaboration [11, 15, 16, 67]. 

 

The aim of the experiment is to manipulate spin coherent of polaron pairs between singlet and triplet 

and detect the effect of this on the OLED device current.   
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4.1 The polaron pair model: 

 

 

Figure 4.1: Diagram schematic indicates recombination and dissociation processes polaron 

pairs in organic semiconductors [15]. Reprinted by permission from [D. R. McCamey, H. A. 

Seipel, S.-Y. Paik, M. J. Walter, N. J. Borys, J. M. Lupton and C. Boehme, “Spin Rabi 

flopping in the photocurrent of a polymer light-emitting diode”, Nature Materials 7, 723 - 728 

(2008), [COPYRIGHT] (2008). 

 

 The polaron pairs, as presented in the 4th section in ch 2, after formation have three possible 

transformation processes shown in fig 4.1, which are necessary for the detection of spin coherent 

manipulation. 

The three processes are: 

1. Polaron pair can dissociate into free charge carriers with singlet and triplet dissociation constant 

rate (𝑑𝑝𝑝𝑠& 𝑑𝑝𝑝𝑇) , and that will increase the photocurrent 
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2. Polaron pair can combine to produce an exciton formation, which leads to reduce the 

dissociation into free charge carriers process and that will decrease the photocurrent 

 

3. Polaron pair can transient spin manifold between singlet and triplet states through two 

procedures:  

 

a) Through incoherent spin lattice relaxation with the rate 𝑘𝑆𝐿 

b) Through coherent motion resulted between singlet and triplet configuration by using pulsed 

ESR to manipulate spin coherent control with strong microwave fields applied 

  

 [5, 15, 124] 

 

As mentioned previously, a strong magnetic field has resulted in significant changes in the current 

through the OLED, enabling the spin dependent recombination rates of polaron pairs (exciton 

formation) to be determined [5]. Therefore, detecting spin nutation between singlet and triplet polaron 

pairs is based on the dependency of the current to the population of polaron pair singlet and triplet [5, 

15, 67].  Singlet and triplet populations return back to their equilibrium state after the transition process, 

thus the device current these perturbations cause also return to equilibrium [5, 15]. Conductivity 

changing as a function of time is expected in this experiment and has the form  

 

∆𝜎(𝑡) = 2𝜇𝑒∆𝑛(−𝑑𝑝𝑝𝑠  𝑒
−(𝑘𝑠+𝑑𝑝𝑝𝑠)𝑡 + 𝑑𝑝𝑝𝑇  𝑒

−(𝑘𝑇+𝑑𝑝𝑝𝑇)𝑡                              (4.1) 

∆𝑛 = ∆𝑛𝑇 = −∆𝑛𝑆                                                                                            (4.2) 

where ∆n presents the number of polaron pairs moved from singlet to triplet, μ is the average mobility 

of free charge carrier, and (𝑘𝑠 + 𝑑𝑝𝑝𝑠) and  (𝑘𝑇 + 𝑑𝑝𝑝𝑇) are the two time equilibrium rates [15]. 

Notice that singlet and triplet transients have an opposite sign and that explained the increasing and 

decreasing in the current which is observed experimentally. The polaron-pair loss rates (Γ𝑆) and (Γ𝑇  ) 

are defined in the equations (4.3) and (4.4) below: 

Γ𝑆 = 𝑑𝑆 + 𝑟𝑆                                                                                                                                                     (4.3) 

 Γ𝑇 = 𝑑𝑇 + 𝑟𝑇                                                                                                   (4.4) 
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where 𝑑𝑆 , 𝑑𝑇 are the singlet and triplet dissociation rate, and 𝑟𝑆 , 𝑟𝑇 are the singlet and triplet 

recombination rate respectively.  

And from [125] the transient solutions to the singlet and triplet rate equations above are: 

𝑛𝑠(𝑡) = 𝐴1𝑒
(− Γ1𝑡) + 𝐴2𝑒

(− Γ2𝑡) + 𝑛𝑠
0                                                            (4.5) 

𝑛𝑇(𝑡) = 𝐵1𝑒
(−Γ1𝑡) + 𝐵2𝑒

(−Γ2𝑡) + 𝑛𝑇
0                                                              (4.6) 

where  𝐴1,2 and 𝐵1,2 present the amplitude, and  𝑛𝑠
0 and 𝑛𝑇

0  the steady state solutions given by: 

𝑛𝑇
0 =

𝜌𝐺𝑆𝑘𝑆𝑅+(Γ𝑆+𝜌𝑘𝑆𝑅)𝐺𝑇

Γ𝑆Γ𝑇+(1−𝜌)𝑘𝑆𝑅Γ𝑆+𝜌𝑘𝑆𝑅Γ𝑇
                                                                         (4.7) 

𝑛𝑆
0 =

(1−𝜌)𝐺𝑇𝑘𝑆𝑅+(Γ𝑇+(1−𝜌)𝑘𝑆𝑅)𝐺𝑆

Γ𝑆Γ𝑇+(1−𝜌)𝑘𝑆𝑅Γ𝑆+𝜌𝑘𝑆𝑅Γ𝑇
                                                                   (4.8) 

 

Where 𝐺𝑆 & 𝐺𝑇 are singlet and triplet generation rate, 𝑘𝑆𝑅 is spin relaxation rate, and  Γ1and    Γ2  are  

rates given by: 

Γ1 =
(Γ𝑆+Γ𝑇+𝑘𝑆𝑅)−[(Γ𝑆−Γ𝑇)

2+2(2𝜌−1) 𝑘𝑆𝑅(Γ𝑆−Γ𝑇)+𝑘𝑆𝑅
2  ]1/2

2
                                 (4.9) 

Γ2 =
(Γ𝑆+Γ𝑇+𝑘𝑆𝑅)+[(Γ𝑆−Γ𝑇)

2+2(2𝜌−1)𝑘𝑆𝑅(Γ𝑆−Γ𝑇)+𝑘𝑆𝑅
2  ]1/2

2
                                (4.10) 

4.2 Pulsed EDMR experiment: 

Spin coherent manipulation of polaron pairs between singlet and triplet and detect the effect of this on 

the OLED device current is the main purpose of this experiment.   

Although electrically detected magnetic resonance of OLEDs has previously been undertaken [15], the 

capability had not been demonstrated in our laboratory. As such, we considered it important to 

reproduce those measurements for several reasons: 1) to provide a level of confidence in the 

reproducibility of the results obtained previously on devices with different fabrication parameters, 2) to 

develop the capability to undertake those measurements and in future apply them to other materials, 

and 3) to enable future measurements in applying adiabatic pulses to OLEDs building on the work in 

this thesis.  

In this experiment, organic semiconductors materials have been used, practically OLED device with 

MEH-PPV see fig 4.2.  The devices, as detailed in chapter 3, were fabricated on a glass substrate with 

70 mm X 3 mm dimensions and be formed of ITO (100-150 nm), PEDOT:PSS (40 nm), MEH-PPV 

(100 nm), LiF (0.8 nm), Ca (50 nm), and Al (100 nm). Figure 4.3 below shows the I-V curve for the 

OLED device that been used in these experiments. 
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Figure 4.2: a) Organic light emitting diode held by EDMR sample holder 

b) OLED pixel showed in a) 

c) OLED encapsulated inside MD5 tube. 
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Figure 4.3: Current-voltage (I-V) 

characteristics of OLEDs devices 

with 3000 RPM spin coating speed 

for both PEDOT: PSS and MEH-

PPV (50% toluene and 50% 

cyclohexane), LiF at RT, Ca, and 

Al. 

 

 

 

A Bruker Elexsys E580 pulsed electron paramagnetic resonance system was used in the implementation 

of the measurements provided with an Oxford continuous flow nitrogen cryostat to maintain the 

resonator cavity at 80K.  Applying voltage to the sample with current about (100) µA produced visible 

light through a small window in the resonator.  A Stanford Research Systems SRS 570 is used to amplify 

the signal after it was filtered to remove the noise of D.C. component. After that, the amplified signal 

was observed and averaged by a transient recorder in the Bruker system. See fig 4.4 
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Figure 4.4: EDMR experiment setup. 

 

By applying microwave pulses 𝐵1 to the sample within 20 mw and for 160 ns, which regenerated every 

500µs and recording changing current (∆I), the transient behaviour was determined. By applying an 

external magnetic field 𝐵0during the measurement, which causes two Zeeman split eigenstates of each 

polaron pair spin, orthogonal to 𝐵1 leads to spin polaron pair movement between singlet and triplet 

configurations [5, 15, 124].  In the measurement, the external magnetic field is increased by 0.1 mT for 

each scanning time. Also, repeating and averaging the measurement led to a better result. A non-

resonant background due to sample magnetoresistance was subtracted. 

The microwave frequency can be determined from the spin resonance equation condition below: 

𝑓 = 𝑔µ𝐵𝐵0/ℎ                                                                                                       (4.11) 
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Where g is the Lande g-factor, µ𝐵 is the Bohr magneton 𝐵0 is an external magnetic field and h is 

Planck’s constant. This allows spin manipulation where the polaron pairs move between singlet and 

triplet states owing to either one or both spins flip and produce permutation symmetry of the spins [5, 

15, 124].   

By assuming that    𝑔𝑒 ≠ 𝑔ℎ where 𝑔𝑒 and 𝑔ℎ are the g factor for electron and hole respectively, which 

leads to spin polaron pairs mixing states, the fact that (𝑔𝑒 − 𝑔ℎ)𝐵0 > 𝐵1  will allow either electron or 

hole to be nutated, while this  (𝑔𝑒 − 𝑔ℎ)𝐵0 < 𝐵1 will allow both of them to be nutated, with the 

oscillation of the singlet and triplet population ratio occurs between minimum and maximum in two 

situations [5, 15, 124].   

 

4.3 Results and discussion: 

 4.3.1 Transient EDMR: 

As seen in fig 4.5 a), the current changes as a function of time at 80 K in OLED   through the impact 

of the applied microwave pulse and static magnetic field.  
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Figure 4.5: a) The changing current in OLED with time and magnetic field following the microwave 

pulse, the color plot represents a resonance at 𝐵0 = 345 mT with a large quenching of the current 

(blue) and small enhancing  (orange). 

b) The quenching and enhancing of the current signal from a) as a slice at static field 𝐵0 = 345 mT 

along time in µs. 

c) Transient EDMR spectrum shows resonance at 345 mT. 

 

 The plot shows a resonance at 𝐵0 = 345 mT, with a large quenching of the current (blue) peaked at 

17.6 µs after 100 ns duration microwave pulse, and small enhancing of the current (orange) observed 

before that time (at 5 µs).  

In fig 4.5 b), changing the current as a function of time at 𝐵0 = 345 mT is observed. Increasing the 

current above the steady state at about 3 µs (due) is related to the slow triplet population ratio reaching 

the equilibrium state. Dropping down at 10 µs below the steady state showing the quenching current, 

followed by slightly increasing above the steady state before reaching the equilibrium level at a later 

time (~66 µs)   
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The quenching of current followed by an enhancement signals in transient observation is because the 

dissociation rate of singlet polaron-pairs is greater than triplets, which is related to the different energy 

levels of singlet and triplet due to the difference in exchange coupling, as shown in Ref [15]. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: The spectra linewidth in organic semiconductors; disorder. 2 spin distributions: polaron 

pairs. The resonance spectrum of polaron pairs fit with two Gaussians. 

From fig 4.6, the spectra linewidth ∆𝐵1= 2.06 mT, and ∆𝐵2= 4.14 mT for the two spins respectively, 

and all the below parameters are extracted from the transient EDMR. 

Singlet and triplet loss rates are: 

1/Γ𝑆  ≤ 8.5 µs 

1/Γ𝑇 = 25 µs 

And Spin lattice relaxation time T1 ≥ 8.5 µs is extracted from the transient [125]. 

We used equations 4.5 and 4.6 to get the numerical simulation of the current transient signals as seen 

in fig 4.7. This was implemented via a script, which solved equations 4.5 and 4.6 simultaneously, then 

using the curvefit routine of Matlab with time and change in current as fit parameters. In this 

simulation, we have set the values for 𝑛𝑇
0   and  𝑛𝑆

0 as:  

𝑛𝑆
0 =  𝐴3𝑒

(− Γ3𝑡)                                                                                                   (4.12) 

𝑛𝑇
0 = 𝐵3𝑒

(− Γ3𝑡)                                                                                                   (4.13) 
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with Γ3 = 64 µs
−1 and A3 = −4.1 × 10

5
 to account for the slight rise at long times (t >35 µs), which 

is potentially due to the experimental apparatus, particularly the time constant of the constant current 

source. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Numerical simulation (blue) and experimentally measurement (red) of the current transient. 

The current transient shows an enhancement-quenching signal. The simulation transient created by 

using eq. 4.5 and 4.6 with parameters: Γ1 = 8.9 × 10
4 µs−1, Γ2 = 9.6 × 10

4 µs−1, A1 = −5.8 × 10
6,

A2 = 6.2 × 10
6 

 

4.3.2 Rabi oscillation: 

The fundamental examination for spin coherent time manipulation in OLED is demonstrated by the 

previous results. Figure 4.8 below (taken from [15]) shows the result of the changing of microwave 

pulse as a function of time. This result allows determining changing spin due to coherent excitation by 

modulated the total charge in the quenching part of the transient [15]. With different microwave power, 

the microwave pulse increased in a range between 0 to 500 ns in figure 4.8, and the increase is in 

conjunction with the absolute value of the total charge |ΔQ|. This measurement allows to electron-hole 

spin state in OLED to be coherently determined. The fluctuation of the pulse here is related to the spin 

coherent manipulation; at around 100 ns, the triplet population obtains its maximum and the current is 

decreased. However, when τ > 100 ns, the spin polaron pair is rotated into transverse plane xy by an 

angle greater than π, and then returns back to its initial state which leads to reducing the triplet density 

and increasing the current [15]. 
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The rotating-frame Bloch spheres show the time evolution of spin relative to the microwave field 𝐵1. 

Spin-coherent manipulation can be described by the quasiperiodic transfer function in  equation 4.14 

whenever the applied microwave pulse is a spatially homogeneous 𝐵1field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Spin coherent control of OLED [15]. Reprinted by permission from [D. R. 

McCamey, H. A. Seipel, S.-Y. Paik, M. J. Walter, N. J. Borys, J. M. Lupton and C. Boehme, 

“Spin Rabi flopping in the photocurrent of a polymer light-emitting diode”, Nature Materials 

7, 723 - 728 (2008), [COPYRIGHT] (2008). 

 

𝑇(α) =  𝜋 ∫ 𝐽0(2𝑥)
α

0
𝑑𝑥                                                                                           (4.14) 

where α is a parameter described by 2α = Ω𝑅𝜏, where 𝜏 is the pulse length and Ω𝑅 is Rabi frequency, 

and   𝐽0 is the first-order Bessel function. The value of Ω𝑅  for each microwave power used is illustrated 

as a linear function in the small plot in fig 4.8. 

Remarkable points from fig 4.8 mentioned in [15], that the higher microwave power provides noisier 

than the lower one and this resulted from the sample affected by microwave powers which produce the 

increasing of electromagnetic background. In addition, 𝑇(α) works when the microwave pulse with an 

excitation width is smaller than the resonance linewidth and this when the pulse length is ~50 ns.  
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 D. McCamey et al. have  shown in [15] that the phase coherent time 𝑇2
∗ > 0.5 µs as Rabi oscillation 

observed at this time. They proposed that phase coherent estimated time resulted in [13] occurs at 

relaxation lower time for all polaron pairs. This point of confinement is the base time in which polaron 

sets change among singlet and triplet. Therefore, in polaron pair in MEH-PPV, the spin configuration 

is not changing with the static magnetic field due to long spin coherence time’s observation as the spin 

dynamics for this is far too slow. However, they showed that spin dependent recombination and 

dissociation, with the two spin configurations determined in the time domain. 

They conclude that high sensitivity investigation for spin phase coherence and spin–spin coupling is 

provided by spin coherent manipulation in macroscopic and nanoscale organic optoelectronic devices 

by detecting spin coherent manipulation in an OLED through spin-dependent transport mechanism, and 

demonstrate spin coherent time > 0.5 μs. 

In this thesis, Rabi oscillation measurement has different device fabrication with a different voltage 

applied compared to the one presented by D. McCamey et al [15] previously.  

 

 

 

 

 

 

 

 

Figure 4.9: Experiment result of integrated charge as a function of microwave pulse length.  Rabi 

oscillation. 

 

The fluctuation of the pulse in fig 4.9 is around 9 ns when the triplet population is reaching its maximum 

and the current is decreasing. For the pulse length τ > 9 ns , the triplet density is decreasing and the 

current is increasing due to the rotating of polaron pair to the transverse plane and then return back to 

the initial state. 
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The spin coherent manipulation can be described by equation 4.14 as shown previously, and  𝑇(α) 

satisfies at pulse length~ 10 ns when the microwave pulse with an excitation width is smaller than the 

resonance linewidth.  

From Rabi oscillation plot in fig 4.9, the phase coherent time 𝑇2
∗ determined to be ~ 0.04 µs at the 

relaxation lower time when the polaron sets change between singlet and triplet. This 𝑇2
∗ was extracted 

using fit function consisting of a cosine function with an exponential decay envelope, cos(Ω𝑡)𝑒−𝑡/𝑇2
∗
, 

as seen in fig 4.9. The low limit of 𝑇2
∗  comes from Rabi oscillation as seen in fig 4.9, and we know that 

they are effectively short due to microwave inhomogeneity. Other researchers found 𝑇2
∗ of a couple of 

100 ns using hanh echo approaches.  This proves again that the spin configuration in MEH-PPV polaron 

pair does not change with the static magnetic field because of the observation of long spin coherence 

time in polaron pair. 

The above results demonstrate the reproducible is in agreement with the previous work and demonstrate 

sufficient measurements to improve the sensitivity of EDMR technique for investigating both spin 

phase coherent and spin-spin coupling in nanoscale organic optoelectronic devices, in practically 

OLED’s by applying adiabatic pulses as well demonstrated in the following chapter.  
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Chapter 5. Improving Magnetic Field Sensing in OLED with 

Adiabatic Pulses 

 5.1 Theoretical and practical limits of magnetic field sensing 

Generally, every measurement method has its limits. From the theoretical point of view, the 

fundamental barrier for the precision or sensitivity growth of any measurements in the quantum world 

is the Heisenberg limit. This restriction is based on the well-known quantum-mechanical Heisenberg 

uncertainty principle and consists of the impossibility of measuring the physical values of the 

complementary variables or canonically conjugate variables. In magnetometry, this limit can be defined 

as the field strength at which identifying the magnetic field from the quantum noise is impossible. Thus, 

the standard quantum noise limit of sensitivity is 𝛿𝑋~1/√𝑁, where 𝑁 is the number of independent 

particles used for measurements as a quantum interferometer. Although this sensitivity limit is 

determined by the 𝑁, the typical absolute values of it are approximately equal to 102 − 103 𝑎𝑇/𝐻𝑧1/2. 

At the present time, various schemes for achieving the Heisenberg limit in magnetic measurements 

[126, 127, 128], or even go beyond it [129, 130] have been proposed. 

In the practical use, the sensitivity limits depend on the method and specific features of the experimental 

device. For instance, the shot-noise-limited sensitivity of the NV diamond magnetometer [89] is 

determined by the interrogation time, which, depending on the chosen laser pulse sequence type, should 

optimally be equal to the ensemble dephasing time or to the intrinsic spin coherence time (see previous 

sections). In ref. [89] and other papers, researchers have achieved the sensitivity in the range from 120 

nT 𝐻𝑧−1/2 to 250 aT 𝐻𝑧−1/2𝑐𝑚−3/2for various types of sequences and different numbers (and 

densities) of the nitrogen-vacancy centres. On the contrary, the sensitivity of the OLED-based 

magnetometers is smaller and rarely exceeds the 50 nT 𝐻𝑧−1/2 [16]. 

Numerical simulation is an important and useful method for modelling organic systems and 

understanding the spin dynamics quantitatively. In the next section, we introduce the simulation of 

pulsed electrical detected magnetic resonance response of organic light-emitting diode with realistic 

dephasing mechanisms of an ensemble of two spin polaron pairs. Also, we demonstrate the simulation 

of various pulse schemes on that ensemble in the presence of spin relaxation.  We solved the stochastic 

Liouville equation to describe the dynamics of a statistical ensemble of spins subject to a time-

dependent driving field and subject to recombination and decoherence mechanisms. The stochastic 

Liouville equation allows us to model multiple microscopic reactions using a single framework. 

Previous work [4, 42] used a simple Liouville equation; here we add the Redfield component in order 

to include spin lifetime and phase coherence and provide a more realistic simulation of a system in 

which we know these effects occur on relevant timescale (from our experimental results in Chapter 4) 

s. Although we initially began with earlier code from the group, the substantial structural and functional 
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changes required to implement both a Redfield component as well as recombination and dissociation 

terms mean that the resulting code bears little resemblance to the earlier code. The final version of the 

code generated and used in this thesis can be found in Appendixes A – D.   

5.2 Numerical/ Superoperator simulation: 

We solve the stochastic Liouville equation to describe the dynamics of a statistical ensemble of two 

spin-1/2  polaron-pairs subject to a time-dependent driving field and subject to recombination and 

decoherence mechanisms. In contrast to earlier work in this group, we now include a Redfield term to 

explicitly incorporate the impact of spin phase-decoherence and lifetimes, as well as including a spin-

dependent recombination and dissociation term. See Appendix A for details of the implementation. 

As explained previously in chapter 2, the stochastic Liouville equation [131] used to describe the 

dynamics of a statistical ensemble of quantum systems whose time evolutions depend on the relevant 

Hamiltonian is 

 

𝑑⍴̂

𝑑𝑡
= −

𝑖

ℏ
[⍴̂, �̂�] + �̂�[⍴̂] + �̂�{⍴̂ − ⍴̂0}                                                                     (5.1) 

 

where �̂� = �̂�(𝑡) is the density matrix operator, �̂� is the stochastic operator and refers to the external 

changes the ensemble due to generation, spin-dependent recombination, and dissociation of spin pairs, 

�̂� describes the influence of the spin relaxation, and �̂� is Hamiltonian for the summation time dependent 

and independent [11, 19, 132, 133] 

 

�̂�(𝑡) = �̂�0 + �̂�1(𝑡)                                                                                              (5.2) 

 

�̂�0 = µ𝐵𝑔𝑒𝐵𝑧1𝑆𝑒
𝑧 + µ𝐵𝑔𝑒𝐵𝑧2𝑆𝑒

𝑧                                                                         (5.3) 

 

where 𝐵𝑧1 & 𝐵𝑧2 are Overhauser field for spin 1 and 2 respectively, and  

 

�̂�1 = µ
𝐵
𝑔
1
[�̂�𝑥1𝐵𝑥(𝑡) + �̂�𝑦1𝐵𝑦(𝑡)] + µ𝐵𝑔2[�̂�𝑥2𝐵𝑥(𝑡) + �̂�𝑦2𝐵𝑦(𝑡)]                (5.4) 

 

Here, I used  𝑔 = 2  which is close to the value seen in MEH-PPV (2.006) and other organic materials 

[37], although the specific value is not critical for the simulations which follow.  

I used equation 2.6 in chapter 2 to define the Hamiltonian. We know from earlier work that the line 

widths are set by the hyperfine interaction and that the  𝐽  and  �̃�𝑑 terms are substantially smaller than 

these [79], and we therefore exclude 𝐽 and  �̃�𝑑 from the model [37]. We know, again from earlier work, 
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that there is variation in the hyperfine interaction [134], and we include this in the model. We also note 

that this detuning will have a similar effect  to variations in 𝐽  and  �̃�𝑑 in the high field limit, giving us 

further confidence that excluding them from the model will not negatively impact our simulations.  

 

The recombination operator and spin relaxation superoperator have been defined in equations 2.40 and 

2.44 and Redfield matrix with coefficients in equation 2.46 in chapter 2. 

 

Note that, in this modelling, we assume singlet and triplet dissociation rates are both equal to zero. 

As addressed in chapter 2, using a superoperator formalism to transfer Hamiltonian, recombination, and 

density matrices from Hilbert space (𝑛 × 𝑛) to Liouville equation (𝑛2 × 𝑛2) leads to enhancement of 

the calculation precision and speed [19, 132]. 

Therefore, the recombination (stochastic) superoperator and Super Hamiltonian and observable are as 

defined as in equations 2.47, 2.48, and 2.49. 

 

Transforming the density matrix is implemented with the following equation: 

�̂� =  [

𝑎1,1
𝑎2,1

    
𝑎1,2
𝑎2,3

     
⋯
⋯     

𝑎1,𝑛
𝑎2,𝑛

 

⋮
𝑎𝑚,1

    
⋮

𝑎𝑚,2
     
⋱
⋯
    

⋮
𝑎𝑚,𝑛

  
] →

[
 
 
 
 
𝑎1,1
𝑎1,2
𝑎1,3
⋮

𝑎𝑚,𝑛]
 
 
 
 

                                                     (5.5) 

MATLABTM has been used to solve the superoperator Liouville equation with a set of 16 x 16 matrix. 

Starting with defining the density initial state  𝜌0  for the two spins polaron pairs in the product base as 

showed in equation 2.33 

𝜌0 = 𝐶
′𝐶 =   [

1
0
            

0
0
       

  0
  0
         

 0
 0
 

  0
  0
    
        0
        0

         
0
0
          

0
0
  
]                                                      (5.6) 

Then convert the density initial state from Hilbert space (4x4) to Liouville density vector  (16 x 1). 

The spin Hamiltonian �̂�𝑠𝑢𝑝𝑒𝑟  is calculated in Liouville space for the two spins with different 

Overhauser field  𝐵𝑧1 & 𝐵𝑧2 and (a constant driving field) applied magnetic field 𝐵𝑥  and produces 16 x 

16 matrix size. 

Also, the recombination �̂�𝑠𝑢𝑝𝑒𝑟  is calculated in Liouville space and given 16 x 16 matrix with singlet 

and triplet recombination rate 𝑟𝑠 =0.1  µ𝑆−1 , 𝑟𝑇 = 0.001  µ𝑆
−1 respectively.  

The Redfield matrix for one spin (electron) with coefficients is: 
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�̂�𝑒 =  

[
 
 
 
   

1

𝑇1𝑒

0
              

0
1

𝑇2𝑒

       
  0

   −
1

𝑇2𝑒

         
−

1

𝑇1𝑒

     0
 

     0    

 −
1

𝑇1𝑒

    
  − 

1

𝑇2𝑒

      0
             

1

𝑇2𝑒

 0   
             

 0

 
1

𝑇1𝑒

  
]
 
 
 
 

                                                (5.7) 

Then the spin relaxation matrix which is defined before can be written as: 

�̂�𝑠𝑢𝑝𝑒𝑟 = �̂�ℎ⊗ 𝐼�̂� + 𝐼�̂� ⊗ �̂�𝑒                                                                        (5.8) 

where �̂�ℎ is the Redfield matrix for the second spin (hole) which is same as �̂�𝑒  , and  𝐼�̂� is the unitary 

operator that projects the matrix onto itself. The form of the spin relaxation matrix �̂�𝑠𝑢𝑝𝑒𝑟 (16 x 16) is 

given below, with additional coefficients 𝑇3 , 𝑇4 , 𝑇5 , 𝑇6 , 𝑇7 , 𝑇8 , 𝑇9 𝑇10  where: 

 

 
1

𝑇3
=

1

𝑇1𝑒
+

1

𝑇1ℎ
     ,          

1

𝑇4
=

1

𝑇1𝑒
−

1

𝑇1ℎ
     ,           

1

𝑇5
= −

1

𝑇2𝑒
−

1

𝑇2ℎ
     ,               

1

𝑇6
=

1

𝑇1𝑒
−

1

𝑇2ℎ
   ,            

 
1

𝑇7
=

1

𝑇1𝑒
+

1

𝑇2ℎ
    ,           

1

𝑇8
= −

1

𝑇2𝑒
−

1

𝑇1ℎ
     ,           

1

𝑇9
= −

1

𝑇2𝑒
+

1

𝑇1ℎ
 ,            

1

𝑇10
= −

1

𝑇2𝑒
+

1

𝑇2ℎ
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�̂�𝑠𝑢𝑝𝑒𝑟 = 

 

Fig 5.1 and 5.2 show the simulation results of spin density and the magnetization movement for two 

spins one initially up and one initially down, in the rotating frame, with applied field 𝐵𝑥= 1 mT, and 

singlet and triplet recombination rates 𝑟𝑠 =0.1 µs−1 ,  𝑟𝑇 = 0.001 µs−1 and spin lattice relaxation times  

𝑇1𝑒 = 1 µs , 𝑇1ℎ = 1.1 µs , and spin-spin relaxation times  𝑇2𝑒= 0.2 µs , 𝑇2ℎ= 0.3 µs for both spins 

respectively, ii) and iii)  demonstrate the magnetization movement on Cartesian along the time 400 ns 

for both spins,  v) shows the Fourier transformation of i) along the time axis with a frequency peak at 

~ 28 𝑀𝐻𝑧  on resonance (in a), and at ~ 64 𝑀𝐻𝑧 off resonance (in b),  and vi) ) the spin density decay 

due to the quenching in triplet density and enhancing in singlet density and decay further in b) due to 

the detuning, while with spin relaxation the density decay further ,figures in a) when both spins on 

resonance (both  Bz1,2 = 0 ) while figures b) include detuning at   Bz1= 2 mT.  
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a)  Both spins on resonance in a system with recombination                                                                                                                                                                                  

 

 

 

 

 

 

 

 

b) One spin on resonance, and one off resonance in a system with recombination                                                                                                                                                                                   

 

 

 

 

 

 

 

 

Figure 5.1: The magnetization movement for two spins (one initially up, one initially down) on the 

Bloch sphere including recombination with singlet and triplet recombination rates 𝑟𝑠 =0.1 µs−1 , 𝑟𝑇 =

0.001/10  𝑒−2 µs−1 respectively , ii) and  iii)  Sz1 and Sz2 show the magnetization movement on 

Cartesian along the time 400 ns, v) shows the Fourier transformation of i) along the time axis with a 

frequency peak at ~ 28 𝑀𝐻𝑧 on resonance, and at ~ 64 𝑀𝐻𝑧 off resonance and vi) the decay of spin 

density due to the recombination, figures in a) when both spins on resonance (both  𝐵𝑧1,2 = 0 ) while 

figures b) include detuning at   𝐵𝑧1= 2 mT. 
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a)  Both spins on resonance in a system with recombination and relaxation                                                                                                                                                                                                   

 

 

 

 

 

 

 

 

 

 

b) One spin on resonance, and one off resonance in a system with recombination and relaxation                                                                                                                                                                                                  

 

 

 

 

 

 

 

 

 

Figure 5.2: The magnetization movement for two spins (one initially up, one initially down) on the 

Bloch sphere including recombination with singlet and triplet recombination rates 𝑟𝑠 =0.1 µs−1 , 𝑟𝑇 =

0.001 µs−1 and spin lattice relaxation times  𝑇1𝑒 = 1 µs , 𝑇1ℎ = 1.1 µs , and spin-spin relaxation times  

𝑇2𝑒= 0.2 µs , 𝑇2ℎ= 0.3 µs for both spins respectively , ii) and  iii)  Sz1 and Sz2 show the magnetization 

movement on Cartesian along the time 400 ns, v) shows the Fourier transformation of i) along the time 

axis with a frequency peak at ~ 28 𝑀𝐻𝑧 on resonance, and at~ 64 𝑀𝐻𝑧 off resonance, and vi) the 

decay of spin density due to both recombination and spin relaxation, figures in a) when both spins are 

on resonance (both  𝐵𝑧1,2 = 0 ) while figures b) include detuning at   𝐵𝑧1= 2 mT. 
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Both simulation results in fig 5.1 and 5.2 have the same conditions except adding spin relaxation on fig 

5.2. It is clearly seen that when spin are on-resonance, the spin density in both figures never reaches the 

equilibrium state due to disability to approach to the singlet and triplet manifold for the pair. However, 

when spin off-resonance, it moves far from the ideal orientation and this leads to bring the triplet 

population in to combine, thus the spin density decay to reach the equilibrium state. With recombination 

only, the density of spin decay due to the singlet and triplet enhancing and quenching densities 

respectively. With recombination and relaxation, the spin density decay further compare with 

recombination only because the spin relaxation impacts the transient behavior of the recombination rate. 

The fact of including on/off-resonance is that the recombination rate varies, and that matches the change 

in the density matrix as the raw goes in and out resonance when we do Rabi oscillation during the pulse. 

So, if we recombine then the recombination rate is a function of the rotation angle during the pulse. 

Thus, we need to do a perfect 2𝜋 rotation from up-up to up -up. Even if the rotation itself is done with 

very high fidelity, the fact that going through down-up to some period of time leads to having not a 

perfect state when going back to start state. Thus, these are the implication of realistic modeling of that. 

 

The equations below taken from [42] have been used in this simulation. 

𝐵1(𝑡) = 𝐴(𝑡)𝑒
𝑖𝜙(𝑡)                                                                                                 (5.9) 

𝐴(𝑡) = 𝐵1𝑚𝑎𝑥𝐹1(𝜏)                                                                                                (5.10) 

𝜙(𝑡) = 𝜙0 + 2𝛱∫ 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑓𝑚𝑎𝑥𝐹2(𝜏)𝑑𝜏
𝑇𝑝
0

                                                        (5.11) 

where 𝐵1(t) is the magnetic field generated by an amplitude, 𝐵1𝑚𝑎𝑥 is the maximum signal amplitude, 

𝐹1(𝜏)and 𝐹2(𝜏) are the frequency modulation functions, 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 is the carrier frequency of the signal,  

which is the transition of a fixed frequency that is modified with a signal to transfer information, 𝑓𝑚𝑎𝑥 

is the maximum frequency sweep amplitude, 𝜙0 is the initial phase,  𝑇𝑝 is the pulse length, and 𝜏 is the 

normalized time for 𝑡, 𝜏 =
2𝑡

𝑇𝑝
− 1 . And the magnetic field component of the pulse along 𝑥 and �̂� can 

be written as: 

𝐵1
𝑥(𝑡) = 𝐵1𝑚𝑎𝑥𝐹1(𝜏)cos [∆𝜙(𝑡)]                                                                       (5.12) 

𝐵1
𝑦
(𝑡) = 𝐵1𝑚𝑎𝑥𝐹1(𝜏)sin [∆𝜙(𝑡)]                                                                       (5.13) 

Some of the common modulation function 𝐹1and 𝐹2 used in this simulation taken from [42] are 

demonstrated in the table 5.1 below. 
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𝑭𝟏(𝝉) 
  

𝑭𝟐(𝝉) 

Square 1 - 

Gaussian 
𝑒
−(
𝜏−𝑡0
√2𝜎

)2

 
- 

Chirp 1 𝜏 
 

Table 5.1: Some of common modulation functions for various pulses, taken from [42]. 

 

The below figures shows a comparison of amplitude, frequency, and signal of various pulses used in 

this simulation with 𝐵1𝑚𝑎𝑥 = 1 mT, 𝑇𝑝 = 200 𝑛𝑠, and 𝑓𝑚𝑎𝑥 = 250 MHz. The amplitude is𝐵1𝑚𝑎𝑥 𝐹1(𝜏), 

and frequency  𝑓𝑚𝑎𝑥 𝐹2(𝜏). For chirp pulse we have sweep the frequency in a range between (-250 to 

+250) MHz  in a time of 200 ns. 

a)                                                                       b) 

 

c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: The amplitude, the frequency, and 𝐵𝑥  𝑎𝑛𝑑  𝐵𝑦  for a) square pulse, b) Gaussian pulse, and 

c) chirp pulse with pulse amplitude 𝐵1𝑚𝑎𝑥 = 1 mT, 𝑇𝑝 = 200 𝑛𝑠, and 𝑓𝑚𝑎𝑥 = 250 MHz. 

 

 

5.2.1 Hahn Echo Simulations – no recombination-no relaxation 

The Hahn echo sequence is a significant spin detection method in pulsed EPR spectroscopy and it is 

used to investigate the decoherence time of the spin system. We will first investigate a system with no 

relaxation or recombination, to understand the impact of adiabatic pulse in an ideal system. 

 

For all simulations in this section and sections 5.2.2, 5.2.3, 5.2.4, and 5.2.5 we simulated conventional 

Hahn-echo sequences as 

[π/2sq,18ns : τ200ns : πsq,36ns : τ200ns : π/2sq,18ns] , [π/2G,71ns : τG,200ns : πG,141ns : τG,200ns : π/2G,71ns], and  
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[π/2Ch,270ns,400MHz : τCh,200ns : πCh,540ns,400MHz : τCh,100ns : π/2Ch,270ns,400MHz]  for square, Gaussian, and chirp 

pulses respectively.  

 

In this pulse sequence (π/2 : τ : π : τ : π/2 ), the first π/2 pulse rotates the spins into the xy plane. After 

that, during the evolution time τ, the spins start to dephase and spins off-resonance with large detuning 

moves far from the typical orientation.  The π-pulse rotates the system around the x-axis and the off-

resonance spins with large detuning still moves far from y-direction. After the rephasing process caused 

by having the same evolution time, the last π/2 returns the system back into singlet or triplet state. The 

fidelity of the square pulse will decrease gradually because of the detuning, and the lost fidelity can be 

fixed by adiabatic pulses. The adiabatic pulses increase the excitation bandwidth and uniformity of spin 

rotations. 

 

Initial condition: 

In a realistic device where singlet recombination is fast, we usually start in a pure  triplet state which is 

equivalent to up-up or down-down. In the simulations below, we will use these interchangeably, but we 

will not start in the up-down state anymore as it is not the dominant steady-state in OLED. If this work 

had been focused on photogenerated spins, it would perhaps have been appropriate to address both 

singlet and triplet initial conditions. Although the product states up-up and down-down are triplet, the 

products state up-down has both triplet and singlet character. We do not use these as initial states as the 

singlet component is short lived, and the triplet component dynamics should be reflected in the up-up 

and down-down triplet results. 

 

Fig 5.4, 5.5 and 5.6 show the spin density and magnetization for simulation results of a conventional 

Hahn-echo square, Gaussian, and chirp-pulses sequences (see Appendix B) for two spins both initially 

up with maximum pulse amplitude 𝐵1𝑚𝑎𝑥 = 0.5 𝑚𝑇 ,  𝜎 = 70.7 (used in Gaussian pulse), and 𝑓𝑚𝑎𝑥 =

400  𝑀𝐻𝑧 (used in chirp pulse), figure  a) shows the detuning at (𝐵𝑧1𝑚𝑎𝑥 = 2 mT) through 100 steps 

(loop over time), b) without detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 steps, c) when 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇  

through 5 steps where (𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ), d) shows the 

magnetization movement on Cartesian along the time 472, 683, and 1480 ns for square, Gaussian and 

chirp pulse respectively with some detuning  (at  𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps in i) and without 

detuning in ii), and iii) shows the spin density.  
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Figure 5.4:  The magnetization movement for two spins (both initially up, on and off resonance) on the 

Bloch sphere a) with detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without detuning 

(𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps where 

(𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the magnetization 

movement on Cartesian along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps, ii) 

without detuning ( 𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇)  and iii) the spin density for square pulse. 
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Figure 5.5:  The magnetization movement for two spins (both initially up, on and off resonance) on the 

Bloch sphere a) with detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without detuning 

(𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps where 

(𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the magnetization 

movement on Cartesian along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps, ii) 

without detuning ( 𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇)  and iii) the spin density for Gaussian pulse. 
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Figure 5.6:  The magnetization movement for two spins (both initially up, on and off resonance) on the 

Bloch sphere a) with detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without detuning 

(𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps where 

(𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the magnetization 

movement on Cartesian along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps, ii) 

without detuning ( 𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇)  and iii) the spin density for chirp pulse. 
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Discussion: 

Fig. 5.4 , 5.5 and 5.6  show that where there is no relaxation or recombination, all three pulse schemes 

tend to produce similar outcomes. However, Gaussian and chirp are very effective and produce higher 

fidelity and the reason is they have better ability to rotate slightly off resonance spins with higher fidelity 

than the square pulse which has a faster sequence with low fidelity. Details of the impact of detuning 

will be discussed in section 5.2.4 below.  

 

 

5.2.2 Hahn Echo Simulations – with recombination 

In this section, we extend the simulations above to consider the impact of recombination. Due to the 

fact that recombination causes energy loss transitions of electrons and holes, we anticipate that the 

fidelity of operation will be reduced compared to the ideal case above. We will investigate the impact 

of recombination on square, Gaussian, and chirp pulse Hahn echo sequences. 

 

Fig 5.7, 5.8 and 5.9 show the spin density and magnetization for simulation results of a conventional 

Hahn-echo square, Gaussian, and chirp-pulses sequences for two spins both initially with 𝐵1𝑚𝑎𝑥 =

0.5 𝑚 𝑇 , 𝜎 = 70.7 (used in Gaussian pulse),  𝑓𝑚𝑎𝑥 = 400  𝑀𝐻𝑧 (used in chirp pulse), and singlet and 

triplet recombination rates 𝑟𝑠 =0.1 µs−1 ,  𝑟𝑇 = 0.001 µs−1 respectively, figure 5.7 a) shows the 

detuning at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 

steps, c) when 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇  through 5 steps where (𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 =

1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) shows the magnetization movement on Cartesian along the time 472, 683, and 1480 

ns for square, Gaussian and chirp pulse respectively with some detuning  (at  𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 

5 steps in i) and without detuning in ii), and iii) shows the spin density.  
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Figure 5.7: The magnetization movement for two spins (both initially up, on and off resonance) on the 

Bloch sphere including recombination with singlet and triplet recombination rates 𝑟𝑠 =0.1 µs−1 ,  𝑟𝑇 =

0.001 µs−1 respectively. a) with detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without 

detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps 

where (𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the 

magnetization movement on Cartesian along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 

steps, ii) without detuning ( 𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇)  and iii) the spin density for square pulse. 
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Figure 5.8:  The magnetization movement for two spins (both initially up, on and off resonance) on the 

Bloch sphere including recombination with singlet and triplet recombination rates 𝑟𝑠 =0.1 µs−1 ,  𝑟𝑇 =

0.001 µs−1 respectively. a) with detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without 

detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps 

where (𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the 

magnetization movement on Cartesian along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 

steps, ii) without detuning ( 𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇)  and iii) the spin density for Gaussian pulse. 
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Figure 5.9:  The magnetization movement for two spins (both initially up, on and off resonance) on the 

Bloch sphere including recombination with singlet and triplet recombination rates 𝑟𝑠 =0.1 µs−1 ,  𝑟𝑇 =

0.001 µs−1 respectively. a) with detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without 

detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps 

where (𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the 

magnetization movement on Cartesian along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 

steps, ii) without detuning ( 𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) and iii) the spin density for chirp pulse. 

 

 

 

Discussion: 

Comparing figures in this section with figures in section 5.2.2, it is clearly seen that the Hahn-echo 

struggles in this level of recombination time and that will reduce the fidelity operation. When spin on-

resonance, the square pulse with recombination works better than Gaussian, however, when spin off-
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resonance Gaussian is better. Thus, in order to get higher fidelity in a system that includes 

recombination, a fast and short pulse is required because if the recombination time is similar to the pulse 

length then the pulse extremely recombine and thesystem decays Section 5.2.4 discussed the impact of 

detuning. 

 

5.2.3 Hahn Echo Simulations – with recombination and relaxation 

In this section, we further extend the simulations above to include the impact of recombination and spin 

relaxation. Spin relaxation impacts the transient behavior of the recombination rate, so we anticipate 

that the fidelity of operation will be reduced compared to the two cases above. We will investigate the 

impact of both recombination and spin relaxation on square, Gaussian, and chirp pulse Hahn echo 

sequences. 

 

 

Fig 5.10, 5.11, and 5.12 show the spin density and magnetization for simulation results of a conventional 

Hahn-echo square, Gaussian, and chirp-pulses sequences for two spins both initially up with 𝐵1𝑚𝑎𝑥 =

0.5 𝑚 𝑇 , 𝜎 = 70.7 (used in Gaussian pulse),  𝑓𝑚𝑎𝑥 = 400  𝑀𝐻𝑧 (used in chirp pulse), singlet and 

triplet recombination rates 𝑟𝑠 =0.1 µs−1 ,  𝑟𝑇 = 0.001 µs−1 respectively, and spin lattice relaxation 

times are   𝑇1𝑒 = 1 µs , 𝑇1ℎ = 1.1 µs , and spin-spin relaxation times are 𝑇2𝑒= 0.2 µs  , 𝑇2ℎ= 0.3 µs  for 

both spins respectively, figure 5.10 a) shows the detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) 

without detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 steps, c) when 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇  through 5 steps where 

(𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) shows the magnetization movement on 

Cartesian along the time 472, 683, and 1480 ns for square, Gaussian and chirp pulse respectively with 

some detuning  (at  𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps in i) and without detuning in ii), and iii) shows 

the spin density.  
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Figure 5.10:  The magnetization movement for two spins (both initially up, on and off resonance) on 

the Bloch sphere including recombination and spin relaxation with singlet and triplet recombination 

rates 𝑟𝑠 =0.1 µs−1 ,  𝑟𝑇 = 0.001 µs−1 rrespectively, and spin lattice relaxation times  𝑇1𝑒 = 1 µs , 𝑇1ℎ =

1.1 µs , and spin-spin relaxation times 𝑇2𝑒= 0.2 µs  , 𝑇2ℎ= 0.3 µs  for both spins respectively. a) with 

detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 

steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps where (𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/

 (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the magnetization movement on Cartesian 

along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps, ii) without detuning ( 𝐵𝑧1𝑚𝑎𝑥 =

0 𝑚𝑇)  and iii) the spin density for square pulse. 
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Figure 5.11:  The magnetization movement for two spins (both initially up, on and off resonance) on 

the Bloch sphere including recombination and spin relaxation with singlet and triplet recombination 

rates 𝑟𝑠 =0.1 µs−1 ,  𝑟𝑇 = 0.001 µs−1 respectively, and spin lattice relaxation times  𝑇1𝑒 = 1 µs , 𝑇1ℎ =

1.1 µs , and spin-spin relaxation times 𝑇2𝑒= 0.2 µs  , 𝑇2ℎ= 0.3 µs  for both spins respectively. a) with 

detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 

steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps where (𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/

 (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the magnetization movement on Cartesian 

along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps, ii) without detuning ( 𝐵𝑧1𝑚𝑎𝑥 =

0 𝑚𝑇)  and iii) the spin density for Gaussian pulse. 
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Figure 5.12:  The magnetization movement for two spins (both initially up, on and off resonance) on 

the Bloch sphere including recombination and spin relaxation with singlet and triplet recombination 

rates 𝑟𝑠 =0.1 µs−1 ,  𝑟𝑇 = 0.001 µs−1 respectively, and spin lattice relaxation times  𝑇1𝑒 = 1 µs , 𝑇1ℎ =

1.1 µs , and spin-spin relaxation times 𝑇2𝑒= 0.2 µs  , 𝑇2ℎ= 0.3 µs  for both spins respectively. a) with 

detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 

steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps where (𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/

 (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the magnetization movement on Cartesian 

along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps, ii) without detuning ( 𝐵𝑧1𝑚𝑎𝑥 =

0 𝑚𝑇)  and iii) the spin density for chirp pulse. 
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Discussion: 

Compare figures in this section with figures in section 5.2.2 and 5.2.3 it is clearly seen that Hahn echo 

effected by both recombination and relaxation. Spin relaxation impacts the transient behavior of the 

recombination rates, and that will reduce the fidelity operation more compare to previous cases. When 

spins are on-resonance, the square pulse with recombination works better than Gaussian and chirp 

pulses, however when spins are off-resonance Gaussian and chirp are better. Section 5.2.4 discussed 

the impact of detuning.  

 

5.2.4 Effect of Detuning: 

In this section, we will discuss the impact of detuning of spin and compare that with the presence of 

recombination and spin relaxation for all three pulses.  

In figures 5.4 to 5.12 above we showed the ability to model the impact of recombination and relaxation 

and varies of adiabatic pulses on the dynamic of pulse scheme that we use here. Plots in Fig 5.13 show 

the simulation signals of the magnetization 𝑀𝑧1 following a π/2 pulse (red) and Hahn echo sequence 

(blue) as a function of  detuning, where the detuning  𝐵𝑧1𝑚𝑎𝑥 = 6 𝑚𝑇 through 200 steps for square, 

Gaussian and chirp pulse with singlet and triplet recombination rates   𝑟𝑠 = 0.1  µs
−1,    𝑟𝑡 = 1  µs

−1, 

and spin lattice and spin-spin relaxation times  for both spins  𝑇1𝑒 = 3 µs,     𝑇1ℎ = 3 µs   , 𝑇2𝑒 =

0.8 µs ,    𝑇2ℎ =  1.1 µs .  The red line is the excitation function after π/2 pulse and the blue after the 

whole sequence (π/2, π , -π/2), where the pulse length is 472, 683, and 1480 ns for square, Gaussian and 

chirp pulse respectively . This figure shows how that modeling works for a range of different detuning 

and how well we reach the target state which is 1. 
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a) Ideal pulse                         b)  Recombination                c)  Recombination and Relaxation 

 

 

Figure 5.13: 𝑀𝑧1 following a π/2 pulse (red) and Hahn echo sequence (blue) [π /2sq,18ns : τ200ns : πsq,36ns : 

τ200ns : -π/2sq,18ns] , [π/2G,71ns : τG,200ns : πG,141ns : τG,200ns :- π/2G,71ns], and  

[π/2Ch,270ns,400MHz : τCh,200ns : πCh,540ns,400MHz : τCh,100ns : -π/2Ch,270ns,400MHz]    as a function of detuning for 

square, Gaussian, and chirp pulses. b) including recombination, c) including recombination and spin 

relaxation with singlet and triplet recombination rates   𝑟𝑠 = 0.1  µs
−1,    𝑟𝑡 = 1  µs

−1, and spin lattice 

and spin-spin relaxation times  for both spins  𝑇1𝑒 = 3 µs,     𝑇1ℎ = 3 µs   , 𝑇2𝑒 = 0.8 µs ,    𝑇2ℎ =  1.1 µs 

for both spins respectively. 
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For the ideal pulses in the fig 5.13, it is clearly seen that the Gaussian and chirp pulses work better and 

has higher fidelity operation compared to square pulse because they are better in rotation off-resonance 

spins with higher fidelity.  

For the case with recombination, square pulses are better and have higher fidelity compared to Gaussian 

and chirp. When the pulse length is similar to the recombination time, the system starts to decay, thus 

faster pulse is needed. So, manipulating the system including recombination and producing high fidelity 

required short pulse length because this fast pulse will not extremely recombine.  

For the pulses with recombination and relaxation, it gives similar results as with recombination only. 

However, spin relaxation has an impact on the transient behaviour recombination rates, thus more 

reduction of the fidelity is observed. 

Therefore, the Gaussian pulse is a reasonable choice when there is no recombination and relaxation or 

when the length of the pulse sequence is smaller than recombination or relaxation time. The chirp pulse 

in the ideal case is also effective, however, it is not very good with recombination and relaxation, 

because the chirp scheme takes longer between pulses and therefore allows more time to recombine and 

relax. Thus, it depends on the pulse length, square and Gaussian are faster but chirp is longer. Hence, if 

we are trying to compete with recombination and relaxation processes that on the same time scale, then 

the faster and shorter sequence with lower fidelity gives a better outcome than the slower and longer 

sequence with high fidelity. Therefore, a simple pulse sequence is better than a complex pulse. 

 

5.2.5 Modeling experimental data: 

In this section, we used the simulations above including the impact of recombination and spin relaxation 

with the parameters determined in the experiments described in chapter 4. We will investigate the 

impact of both recombination and spin relaxation on square, Gaussian, and chirp pulse Hahn echo 

sequences. 

 

Figures below show the simulation results of square, Gaussian and chirp pulse for two spins both up 

with real parameters from the experiment: singlet and triplet recombination rates 𝑟𝑠 =(1/8.5) µs−1 ,  

𝑟𝑇 = (1/25) µs
−1 respectively, and spin lattice relaxation times are  𝑇1𝑒 = 8.5 µs , 𝑇1ℎ = 8.5 µs , and 

spin-spin relaxation times are chosen to satisfy this equation 𝑇1 > 𝑇2 > 𝑇2
∗ , thus, 𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 

1.1 µs for both spins respectively. And  𝐵1𝑚𝑎𝑥 = 0.5 𝑚𝑇 ,    𝐵𝑧1𝑚𝑎𝑥 = 6 𝑚𝑇 through 200 steps along 

472 ns, 683 ns, and 1480 ns for square, Gaussian and chirp pulse respectively. 
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Figure 5.14: The magnetization movement for two spins (both initially up, on and off resonance) on 

the Bloch sphere including recombination and spin relaxation with singlet and triplet recombination 

rates 𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 respectively, and spin lattice relaxation times 𝑇1𝑒 = 8.5 µs 

, 𝑇1ℎ = 8.5 µs , and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both spins respectively. a) 

with detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 

100 steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps where (𝐵𝑧1 =  𝑛 ×

𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the magnetization movement on 

Cartesian along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps, ii) without detuning ( 

𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) and  iii) the spin density for square pulse. 
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Figure 5.15: The magnetization movement for two spins (both initially up, on and off resonance) on 

the Bloch sphere including recombination and spin relaxation with singlet and triplet recombination 

rates 𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 rrespectively, and spin lattice relaxation times 𝑇1𝑒 = 8.5 µs 

, 𝑇1ℎ = 8.5 µs , and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both spins respectively. a) 

with detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 

100 steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps where (𝐵𝑧1 =  𝑛 ×

𝐵𝑧1𝑚𝑎𝑥/ (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the magnetization movement on 

Cartesian along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps, ii) without detuning ( 

𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇)  and  iii) the spin density for Gaussian pulse. 
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Figure 5.16: The magnetization movement for two spins (both initially up, on and off resonance) on 

the Bloch sphere including recombination and spin relaxation with singlet and triplet recombination 

𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 respectively, and spin lattice relaxation times 𝑇1𝑒 = 8.5 µs , 𝑇1ℎ =

8.5 µs , and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both spins respectively. a) with 

detuning in at (𝐵𝑧1𝑚𝑎𝑥 = 2 𝑚𝑇) through 100 steps, b) without detuning (𝐵𝑧1𝑚𝑎𝑥 = 0 𝑚𝑇) through 100 

steps, c) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps where (𝐵𝑧1 =  𝑛 × 𝐵𝑧1𝑚𝑎𝑥/

 (𝑠𝑡𝑒𝑝𝑠 𝑛𝑜.−1), 𝑛 = 1: 𝑠𝑡𝑒𝑝𝑠 𝑛𝑜. ),  d) Sz1 and Sz2 show the magnetization movement on Cartesian 

along the time i) with detuning at ( 𝐵𝑧1𝑚𝑎𝑥 = 4 𝑚𝑇)  through 5 steps, ii) without detuning ( 𝐵𝑧1𝑚𝑎𝑥 =

0 𝑚𝑇)  and  iii) the spin density for chirp pulse. 

 

I now turn to investigating the ability of adiabatic pulses to increase the fidelity and uniformity of spin 

rotations and increase the excitation bandwidth. Figures 5.17 and 5.18 show 𝑀𝑧1 and  𝑀𝑦1 for 

simulation square, Gaussian, and chirp pulses  
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a) Ideal pulse                          b)  Recombination                       c)  Recombination and Relaxation 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Simulations of 𝑀𝑧1 as a function of time and detuning for Square, Gaussian and Chirp 

pulses including recombination and spin relaxation. a) Hahn echo simulation for square pulse b) with 

recombination c) with recombination and relaxation where singlet and triplet recombination rates 

𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 respectively, and spin lattice relaxation times 𝑇1𝑒 = 8.5 µs , 𝑇1ℎ =

8.5 µs , and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both spins respectively. 
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a) Ideal pulse                          b)  Recombination                       c)  Recombination and Relaxation 

 

Figure 5.18: Simulations of 𝑀𝑦1 as a function of time and detuning for Square, Gaussian, and Chirp 

pulses including recombination and spin relaxation. a) Hahn echo simulation for square pulse b) with 

recombination c) with recombination and relaxation where singlet and triplet recombination rates 

𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 respectively, and spin lattice relaxation times 𝑇1𝑒 = 8.5 µs , 𝑇1ℎ =

8.5 µs , and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both spins respectively. 
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a) Ideal pulse                           b)  Recombination                          c)  Recombination and Relaxation 

  

Figure 5.19: 𝑀𝑧1 following a π/2 pulse (red) and Hahn echo sequence (blue) [π /2sq,18ns : τ200ns : πsq,36ns : 

τ200ns : -π/2sq,18ns] , [π/2G,71ns : τG,200ns : πG,141ns : τG,200ns :- π/2G,71ns], and  

[π/2Ch,270ns,400MHz : τCh,200ns : πCh,540ns,400MHz : τCh,100ns : - π/2Ch,270ns,400MHz]  as a function of detuning for 

Square, Gaussian, and Chirp  pulses respectively, b) including recombination, c) including 

recombination and spin relaxation where singlet and triplet recombination rates 𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 =

1/25 µs−1 respectively, and spin lattice relaxation times 𝑇1𝑒 = 8.5 µs , 𝑇1ℎ = 8.5 µs , and spin-spin 

relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both spins respectively. 
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Fig 5.19 shows the simulation signals of 𝑀𝑧1 following a π/2 pulse (red) and Hahn echo sequence (blue) 

as a function of detuning, where the detuning  𝐵𝑧1𝑚𝑎𝑥 = 6 𝑚𝑇 through 200 steps for square, Gaussian 

and chirp pulse with real parameters, the red line is the excitation bandwidth after π/2 pulse and the blue 

after the whole sequence (π/2, π , -π/2).  It proves the outcome from section 5.2.4 with real parameters 

from the experiment, if we are trying to compete with recombination and relaxation processes that on 

the same time scale, then the faster and shorter sequence with lower fidelity gives a better outcome than 

the slower and longer sequence with high fidelity. Therefore, a simple pulse sequence is better than a 

complex pulse. 

 

The result from modeling using experimentally determined parameters gives the same outcome 

demonstrated in sec 5.2.4. Gaussian and chirp pulses work better and produce higher fidelity operation 

compared to square pulse in the ideal case due to the pulse length. However, a square pulse is better 

and has higher fidelity for both recombination and recombination with relaxation due to the fact that 

faster pulse has less recombination which leads to higher fidelity. More reduction in the fidelity has 

been observed when spin relaxation is included in the simulations due to its impact on the transient 

behaviour of the pair recombination rate. 

 

5.3 Fidelity on realistic disorder function: 

Tables below demonstrate a comparison of the fidelity of square, Gaussian, and chirp pulses including 

spin recombination and relaxation where singlet and triplet recombination rates 𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 =

1/25 µs−1 respectively, and spin lattice relaxation times 𝑇1𝑒 = 8.5 µs , 𝑇1ℎ = 8.5 µs , and spin-spin 

relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both spins respectively, and 𝐵1𝑚𝑎𝑥 = 0.5 𝑚𝑇 ,   

 𝐵𝑧1𝑚𝑎𝑥 = 6 𝑚𝑇 through 100 steps along 472 ns, 683 ns, and 1480 ns for square, Gaussian and chirp 

pulse respectively. 

As the target state is Mz = -1, we define the fidelity of a pulse on a single spin with a given detuning to 

be 

 𝐹𝑧( 𝐵𝑧) =  −1/2(𝑀𝑧( 𝐵𝑧) − 1)                                                                      (5.14) 

The fidelity of a single spin operation on the entire ensemble of spins is then calculated by:  

𝐹𝑒𝑛𝑠 =
∑    𝐺 ∆𝐵1   (𝐵𝑧1)𝐹𝑧1(𝐵𝑧1)𝐵𝑧1

∑   𝐺 ∆𝐵1  (𝐵𝑧1)𝐵𝑧1

                                                                        (5.15) 

And for operation on an ensemble of pairs of spins: 

𝐹𝑒𝑛𝑠 =
∑ ∑ 𝐺 ∆𝐵1  ( 𝐵𝑧1)   𝐹𝑧1(𝐵𝑧1)   𝐺

∆𝐵2  ( 𝐵𝑧2)  𝐹𝑧2(𝐵𝑧2)𝐵𝑧2𝐵𝑧1 

∑ ∑ 𝐺 ∆𝐵1  ( 𝐵𝑧1)𝐵𝑧2   𝐵𝑧1
    𝐺 ∆𝐵2  ( 𝐵𝑧2)

                                (5.16) 
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where 𝐺∆𝐵1 and  𝐺∆𝐵2  are normalised Gaussian functions with the spectra linewidth from the 

experiment section 4.3.1,  𝑀𝑧1(𝐵𝑧1) and  𝑀𝑧2(𝐵𝑧2) are the spin magnetization, 𝐹𝑧1 and 𝐹𝑧2  are the 

fidelity of a pulse on spin 1 and 2 respectively, and 𝐵𝑧1 and  𝐵𝑧1  refer to the detuning. Tables below 

demonstrate a comparison of the fidelity of a single spin operation on the entire ensemble of spins for 

square, Gaussian and chirp pulses with recombination and relaxation; in table 5.2 we used the spectra 

linewidth from the experiment, while in tables 5.3 and 5.4 used different assumptions of spectra 

linewidth.  

 

 

Ideal recombination Relaxation 

 recombination 

+ relaxation 

Square 0.3203 0.3306 0.4217 0.4262 

Gaussian 0.2878 0.3054 0.4133 0.4202 

Chirp 0.7507 0.7138 0.5973 0.5827 

 

Table 5.2: The ensemble fidelity 𝐹𝑒𝑛𝑠 of square, Gaussian, and chirp pulses with spin recombination 

and relaxation at  ∆𝐵1 = 2.06 mT . 

 

 

 

Ideal recombination Relaxation 

 recombination 

+ relaxation 

Square 0.9347 0.9133 0.8295 0.8129 

Gaussian 0.9892 0.9545 0.8271 0.8033 

Chirp 0.7151 0.6871 0.6144 0.5997 

 

Table 5.3: The ensemble fidelity 𝐹𝑒𝑛𝑠 of square, Gaussian, and chirp pulses with spin recombination 

and relaxation at  ∆𝐵1 = 0.206 𝑚𝑇 . 

 

 

 

Ideal recombination Relaxation 

 recombination 

+ relaxation 

Square 0.9811 0.9589 0.8796 0.8616 

Gaussian 0.9996 0.9661 0.8485 0.8246 

Chirp 0.6753 0.6571 0.6298 0.6152 

 

Table 5.4: The ensemble fidelity 𝐹𝑒𝑛𝑠 of square, Gaussian, and chirp pulses with spin recombination 

and relaxation at  ∆𝐵1 = 0.1 𝑚 𝑇 . 
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From the fidelity tables for ensemble of differnt widths, we see that if 𝐵1𝑚𝑎𝑥 > ∆𝐵1 then the Gaussian 

pulse is better for the ideal case and for the case with recombination only, while the square pulse scheme 

is better for situations with recombination and spin relaxation or with spin relaxation only. However, 

when  𝐵1𝑚𝑎𝑥 < ∆𝐵1 , then the chirp pulse is better compared to Gaussian and square pulses.  Figure 

5.20 demonstrate the compasion of (𝐺  ∆𝐵1    ( 𝐵𝑧1)   𝐹𝑧(𝐵𝑧1)) (blue) and normalised Gaussian functions 

𝐺∆𝐵1 (red)  with ∆𝐵1 = 2.06 mT in a) and   ∆𝐵1 = 0.1 mT in b) as a function of detuning for square, 

Gaussian, and chirp pulses. These figures include recombination and spin relaxation where singlet 

and triplet recombination rates 𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 respectively, and spin lattice 

relaxation times  𝑇1𝑒 = 8.5 µs , 𝑇1ℎ = 8.5 µs, and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs 

for both spins respectively. 
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 a)                                                                            b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Comparison of (𝐺  ∆𝐵1( 𝐵𝑧1)𝐹𝑧(𝐵𝑧1)) (blue) and normalised Gaussian functions with the 

spectra linewidth (𝐺∆𝐵1) (red) with different values of ∆𝐵1 in a) and b) as a function of detuning for 

Square, Gaussian, and Chirp  pulses including recombination and spin relaxation where singlet and 

triplet recombination rates 𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 respectively, and spin lattice relaxation 

times 𝑇1𝑒 = 8.5 µs , 𝑇1ℎ = 8.5 µs , and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both 

spins respectively. A zoom of low detuning when ∆𝐵1 = 0.1 mT  is shown in the inset. 
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From Fig. 5.20, square pulse produced better shape of (𝐺  ∆𝐵1(𝐵𝑧1) 𝐹𝑧(𝐵𝑧1)) when ∆𝐵1 = 0.1 mT  while 

the chirp pulse is better at ∆𝐵1 = 2.06 mT. 

Table 5.5 below demonstrate a comparison of the fidelity for operation on an ensemble of pairs of spins 

for square, Gaussian and chirp pulses with recombination and relaxation, we used the two spectra 

linewidth from the experiment. It is clearly seen that the chirp pulse produces better fidelity compared 

to square and Gaussian in all cases. 

 

 Ideal recombination Relaxation 

 recombination 

+ relaxation 

Square 0.0662 0.0711 0.0976 0.1021 

Gaussian 0.0497 0.0569 0.0962 0.1027 

Chirp 0.5632 0.5220 0.4304 0.4078 

 

 

Table 5.5: The ensemble fidelity 𝐹𝑒𝑛𝑠 of pairs of spins for square, Gaussian, and chirp pulses with 

spin recombination and relaxation at  ∆𝐵1 = 2.06 mT  and at  ∆𝐵2 = 4.14 mT. 

 

 

Fig 5.21 provides a comparison of (𝐺∆𝐵( 𝐵𝑧)𝐹𝑧(𝐵𝑧)) and normalised Gaussian functions with the 

spectra linewidth (𝐺∆𝐵) for two spins as a function of detuning for square, Gaussian, and chirp pulses 

respectively, at ∆𝐵1 = 2.06 mT  and at  ∆𝐵2 = 4.14 mT . This fig shows the comparison for ideal pulse 

in a), and pulse including recombination and spin relaxation in b) where singlet and triplet 

recombination rates 𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 respectively, and spin lattice relaxation times 

𝑇1𝑒 = 8.5 µs , 𝑇1ℎ = 8.5 µs , and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both spins 

respectively. From that fig. Square pulse produced better shape of (𝐺  ∆𝐵1(𝐵𝑧1) 𝐹𝑧(𝐵𝑧1)) when ∆𝐵1 =

0.1 mT  while the chirp pulse is better at ∆𝐵1 = 2.06 mT. From this fig the fidelity operation on an 

ensemble of pairs of spins is higher in chirp pulse compared to square and Gaussian pulses. 
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a) Ideal pulse                                                            b) Pulse with recombination and relaxation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: Comparison of (𝐺∆𝐵( 𝐵𝑧)𝐹𝑧(𝐵𝑧)) and normalised Gaussian functions with the spectra 

linewidth (𝐺∆𝐵) for two spins as a function of detuning for Square, Gaussian, and Chirp  pulses 

respectively, a) for ideal pulse, b) pulse including recombination and spin relaxation where singlet and 

triplet recombination rates 𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 respectively, and spin lattice relaxation 

times 𝑇1𝑒 = 8.5 µs , 𝑇1ℎ = 8.5 µs , and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both 

spins respectively. 
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a) Ideal pulse                                                           b) Pulse with recombination and relaxation 

 

 

 

 

 

 

Figure 5.22: Fidelity for two spins as a function of detuning for Square, Gaussian, and Chirp  pulses 

respectively, a) for ideal pulse, b) pulse including recombination and spin relaxation where singlet and 

triplet recombination rates 𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 respectively, and spin lattice relaxation 

times 𝑇1𝑒 = 8.5 µs , 𝑇1ℎ = 8.5 µs , and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both 

spins respectively. 
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Fig 5.22 demonstrate the fidelity for operation on an ensemble of pairs of spins as a function of detuning 

where the detuning  𝐵𝑧1𝑚𝑎𝑥 = 6 𝑚𝑇 through 100 steps for square, Gaussian, and chirp  pulses 

respectively, a) for pure pulse, b) pulse including recombination and spin relaxation where singlet and 

triplet recombination rates 𝑟𝑠 =1/8.5 µs−1 ,  𝑟𝑇 = 1/25 µs−1 respectively, and spin lattice relaxation 

times 𝑇1𝑒 = 8.5 µs , 𝑇1ℎ = 8.5 µs , and spin-spin relaxation times  𝑇2𝑒= 0.8 µs , 𝑇2ℎ= 1.1 µs for both 

spins respectively.  

We have shown that using Gaussian shaped pulses or chirp adiabatic pulses leads to improved fidelity 

response of OLEDs devices with realistic dephasing mechanisms and carrier lifetimes. However, this 

improvement is the result of increasing pulse length because they have better ability to rotate slightly 

off resonance spins with higher fidelity than the square pulse which has a faster sequence with low 

fidelity.. The specific details of the permutation symetry along the trajectory that is traversed during the 

pulse sequence impacts the resulting fidelity. If we can find a route that minimises the non-triplet states, 

we maximise the fidelity in systems where the triplet recombination rate is slower than the singelt 

recombination rate, and where recombination rate is the dominant timescale.  

A significant insight provided by this thesis is that there are meaningful differences during spin 

evolution of spin-pairs compared to single spins, related to the influence of permutation symmetry on 

recombination.  This is seen more strongly during adiabatic pulses, which tend to take longer to apply, 

and which can lead to non-trivial trajectories and correspondingly non-trivial recombination 

dynamics.  

In retrospect, the insights above could perhaps have been inferred from earlier work on pulse EPR, 

however, to our knowledge this is the first time that this effect has been described. Previous studies 

have considered the starting and ending point to be changed in symmetry, but they didn't consider the 

impact of changes in the symetry during the pulse. This is likely due to the fact that spins in conventional 

EPR measuremtns generally take similar paths, and the prior work on adiabatic pulses in EPR focused 

on fidelity of singel spin operations. The work described above is different from the conventionally 

EPR system, and represents a new insight for systems comprised of  spin-pairs. The theoretical results 

in this chapter are significant for future work which could explore the design and optimisation of 

trajectories with the aim of minimizing these effects. 
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Chapter 6. Conclusion and outlook 

Conclusion 

The significant interest in understanding the underlying spin properties in organic electronics has led to 

the development of spin-based technologies such as spin resonance-based magnetometers. 

In this thesis, we have presented a primarily theoretical investigation of approaches that may be used to 

overcome challenges such as inhomogeneous disorder in these materials by using suitably designed 

adiabatic pulses in EDMR techniques. We have also extended previous efforts in this area to include 

the influence of recombination and spin relaxation on the models investigated. We demonstrated the 

solution of Liuoville equation for a two spins polaron pair which includes the spin Hamiltonian, charge 

carrier recombination as well as spin relation characterization. 

We have developed OLED device processing recipes, performed device optimization, and undertaken 

stability measurements. We confirmed that the improved processes lead to increased device 

performance with high emission.   

We have developed a number of magnetic field sensing techniques based on spin OLEDs devices which 

exploits these advances. We have modelled EDMR response of OLEDs devices with realistic dephasing 

mechanisms and carrier lifetimes and shown theoretically that using adiabatic pulses improves the 

sensitivity of pEDMR techniques. The fidelity enhancement and optimized shaped pulses compensate 

for decoherence pathways and lead to an increase in the gained frequencies precision which effected by 

Hahn echo large amplitude. 

In this thesis, we investigated three different types of pulses, and we have seen that the fidelity of a 

single spin operation on the entire ensemble of spins and for pair of spins with the spectra linewidth 

resulted from the experiment is better in chirp pulse compared to square and Gaussian when both 

recombination and spin relaxation are considered. In particular, using OLEDs devices with MEH-PPV 

for field sensing with realistic dephasing mechanisms and carrier lifetimes, and one of the challenges is 

inhomogeneous broadening. Thus, at the end of this thesis, we demonstrate the ability to use adiabatic 

pulses scheme to improve the fidelity. We have seen that when including recombination and spin 

relaxation the fidelity of a single spin operation on the entire ensemble of spins reached 58 %, 42 %, 

and 43 % for a chirp, Gaussian, and square pulses respectively. The fidelity for operation on an 

ensemble of pairs of spins reached  41%, 10%, and 10% for chirp, Gaussian, and square pulses 

respectively. Adiabatic pulses therefore have a larger influence on the fidelity of control in systems 

consisting of pairs of spins, which are central to electrically and optically detected techniques, and 

therefore should be considered at lower error thresholds in those systems.  
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This thesis has provided a clear understanding of differences during spin evolution of spin-pairs 

compared to single spins, related to the influence of permutation symmetry on recombination. This has 

a significant impact during adiabatic pulses, which in general take longer to apply. Although earlier 

work on applying shaped pulses in EPR has demonstrated that fidelities are improved, the application 

to spin-pairs led to a new insight related to the role that the trajectory of the spins in the pair has on their 

recombination dynamics. We also illustrate the influence that recombination and spin decoherence has 

on this fidelity improvement, which differs from conventional EPR experiments. 

Finally, we describe a fidelity loss mechanism which arises uniquely in pairs of spins, namely that the 

joint trajectory of the spins can modify the permutation symmetry of the pairs, and this can lead to 

modification of the recombination rate for trajectories that would be considered equivalent in isolated 

spin systems with magnetization readout. The theoretical results are important for future application 

and should be effective with some experimental implementation of spin based sensing. In particular, by 

choosing trajectories which result in less recombination, the fidelity of operations on pairs can be 

enhanced even when the fidelity of equivalent single spin operations are identical. 

In the future, this approach may be able to be extended to a range of other systems where spin pair 

permutation symmetry plays a role. The insights gained in this thesis and the modelling code included 

below should allow other researchers to extend on this work in those contexts in the future.  
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Appendix A 

Superoperator simulation for two spins ½ system 

The superoperator Liouville formalism with a set of 16x16 matrix as discussed in Chapter 5 has been 

implemented in Matlab. Solving the stochastic Liouville equation to describe the dynamics of a 

statistical ensemble of two spins polaron pairs ½ particles subject to a time-dependent driving field and 

subject to recombination and decoherence mechanisms is the aim for this simulation.  

The superoperator Liouville equation is: 

𝑑⍴̂

𝑑𝑡
= −

𝑖

ℏ
[⍴̂, �̂�] + �̂�[⍴̂] + �̂�{⍴̂ − ⍴̂0}                    (A.1)  

 �̂� is Hamiltonian for the summation time dependent and independent and written as: 

�̂�(𝑡) = �̂�0 + �̂�1(𝑡)                                 (A.2) 

�̂� is the recombination operator: 

�̂� = −𝑟𝑠 .  �̂�𝑠 − 𝑟𝑡 . �̂�𝑠                                 (A.3) 

Both  �̂�  and �̂� are in Hilbert space 4x4 matrix and need to transform to Liuoville space 16x16 matrix, 

so the identity operator is used: 

The Hamiltonian superoperator is: 

�̂�𝑠𝑢𝑝𝑒𝑟 = 𝑖�̂� ⊗ 𝐼 −  𝑖𝐼 ⊗ �̂�                      (A.4) 

And the recombination superoperator is: 

�̂�𝑠𝑢𝑝𝑒𝑟 = �̂� ⊗ 𝐼 + 𝐼 ⊗ �̂�                                (A.5) 

�̂� is the spin relaxation superoperator: 

�̂�{�̂�(𝑡) − ⍴̂0} = �̂�𝑒/ℎ⊗ 𝐼 + 𝐼  ⊗ �̂�𝑒/ℎ                 (A.6)           

�̂�𝑒 has been define in Appendix C. 

Starting with defining the density initial state  𝜌0  for the two spins polaron pairs in the product base as 

shown below: 

∣ Ѱ >=∣ Ѱ1 >< Ѱ2 ∣ = (    
1  
0  

)  ⊗ (    
1  
0  

) = 𝐶           (A.8) 

𝜌0 = 𝐶
′. 𝐶 =   [

1
0
            

0
0
       

  0
  0
         

 0
 0
 

  0
  0
    
        0
        0

         
0
0
          

0
0
  
]                (A.9) 
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Then convert the density initial state from Hilbert space (4x4) to Liouville density vector to (16 x 1). 

The spin Hamiltonian �̂�𝑠𝑢𝑝𝑒𝑟  is calculated in Liouville space for the two spins with different 

Overhauser field  𝐵𝑧1 & 𝐵𝑧2 and (a constant driving field) applied magnetic field 𝐵𝑥and produces 16 x 

16 matrix size. 

Also, the recombination �̂�𝑠𝑢𝑝𝑒𝑟  is calculated in Liouville space and given 16 x 16 matrix with given 

values to singlet and triplet recombination rate 𝑟𝑠 =1/10 𝑒−6  𝑆−1 , 𝑟𝑇 = 1/10 𝑒
−8  𝑆−1 respectively.  

where the super observable is: 

�̂�𝑠𝑢𝑝𝑒𝑟 = 𝑇𝑟𝑎𝑐𝑒(�̂�
ϯ𝜌(𝑡))                                          (A.10) 

Transforming the density matrix is implemented with the following equation: 

�̂� =  [

𝑎1,1
𝑎2,1

    
𝑎1,2
𝑎2,3

     
⋯
⋯     

𝑎1,𝑛
𝑎2,𝑛

 

⋮
𝑎𝑚,1

    
⋮

𝑎𝑚,2
     
⋱
⋯
    

⋮
𝑎𝑚,𝑛

  
] →

[
 
 
 
 
𝑎1,1
𝑎1,2
𝑎1,3
⋮

𝑎𝑚,𝑛]
 
 
 
 

                            (A.11) 

 

 
 
%% System 
ub=9.274e-24;         %J/T 
hbar= 1.0545718e-34;  %J*s 
g1=2.0023;            %g factor for spin 1 
g2=2.0023;            %g factor for spin 2 
dt=01e-9;             %pulse step size in sec 

  
_____________________________________________ 
%%  square pulse 

  
 Bmax=0.5e-3;   %microwave field in T 
 B1=Bmax; 

 
 [Bxp1,Byp1] = Create_theta_Pulse(Bmax,pi()/2,g1,dt); 
 [Wx1,Wy1] = Create_wait_time(200e-9,dt); 
 [Bxp2,Byp2] = Create_theta_Pulse(Bmax,pi(),g1,dt); 
 [Wx2,Wy2] = Create_wait_time(200e-9,dt); 
 [Bxp3,Byp3] = Create_theta_Pulse(Bmax,pi()/2,g1,dt); 
 Bx=[Bxp1' Wx1' Bxp2' Wx2' -Bxp3']'; 
 By=[Byp1' Wy1' Byp2' Wy2' -Byp3']'; 

 %Bx=[Bxp1' Wx1' Bxp2' Wx2' Bxp3']';  %use for pi/2, pi, pi/2 pulse 

sequence 
 %By=[Byp1' Wy1' Byp2' Wy2' Byp3']';  %use for pi/2, pi, pi/2 pulse 

sequence 

 
 steps = length(Bx); 
 t=linspace(0, steps-1, steps)*dt;  

 
_____________________________________________________________ 
%% Gaussian Pulse 

  
 Bmax=0.5e-3;   %microwave field in T 
 B1=Bmax; 
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 [Bxp1,Byp1] = Create_Gauss_Pulse(Bmax,pi()/2,g1,dt);  %pi()/4 
 [Wx1,Wy1] = Create_wait_time(200e-9,dt); 
 [Bxp2,Byp2] = Create_Gauss_Pulse(Bmax,pi(),g1,dt); 
 [Wx2,Wy2] = Create_wait_time(200e-9,dt); 
 [Bxp3,Byp3] = Create_Gauss_Pulse(Bmax,pi()/2,g1,dt); 
 Bx=[Bxp1' Wx1' Bxp2' Wx2' -Bxp3']'; 
 By=[Byp1' Wy1' Byp2' Wy2' -Byp3']'; 
 %Bx=[Bxp1' Wx1' Bxp2' Wx2' Bxp3']'; %use for pi/2, pi, pi/2 pulse sequence 
 %By=[Byp1' Wy1' Byp2' Wy2' Byp3']'; %use for pi/2, pi, pi/2 pulse sequence 

 
 steps = length(Bx); 
 t=linspace(0, steps-1, steps)*dt;  

  
_______________________________________________ 
%% Chirp pulse  

  
Bmax=0.5e-3;   %microwave field in T 
B1=Bmax; 

 
[Bxp1,Byp1,phi_d] = Create_Chirp_Pulse(Bmax,pi()/2,g1,dt); 
[Wx1,Wy1] = Create_wait_time(200e-9,dt); 
[Bxp2,Byp2] = Create_Chirp_Pulse(Bmax,pi(),g1,dt); 
[Wx2,Wy2] = Create_wait_time(200e-9,dt); 
[Bxp3,Byp3] = Create_Chirp_Pulse(Bmax,pi()/2,g1,dt); 

Bx =[Bxp1 Wx1' Bxp1 Bxp1 Wx2' -Bxp3]';  

By =[Byp1 Wy1' Byp1 Byp1 Wy2' -Byp3]'; 

%Bx=[Bxp1' Wx1' Bxp2' Wx2' Bxp3']'; %use for pi/2, pi, pi/2 pulse sequence 
%By=[Byp1' Wy1' Byp2' Wy2' Byp3']'; %use for pi/2, pi, pi/2 pulse sequence 

 
steps = length(Bx); 
t=linspace(0, steps-1, steps)*dt;   

 

%%___________________________ 

 
%% Pauli matrices 
Sx=[0,1; 1,0];      %sigma x 
Sy=[0,-1i; 1i,0];   %sigma y 
Sz=[1,0; 0,-1];     %sigma z 
I=[1,0;0,1]; 

  
Sx1=kron(Sx,I); 
Sy1=kron(Sy,I); 
Sz1=kron(Sz,I); 
Sx2=kron(I,Sx); 
Sy2=kron(I,Sy); 
Sz2=kron(I,Sz); 

  
Sztot=kron(Sz,I)+kron(I,Sz); 
Sxtot=kron(Sx,I)+kron(I,Sx); 
Sytot=kron(Sy,I)+kron(I,Sy); 
Sys.Z=kron(Sz,Sz); 
Sys.X=kron(Sx,Sx); 
Sys.Y=kron(Sy,Sy); 
I4=eye(4); 

 

%%____________________________________ 
%% Recombination 
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% Rs=1/10e-4; %invers sec 
% Rt=1/1e-6; 

  
% Rs=1/10e-6; %invers sec 
% Rt=1/10e-8; 

  
%%real parameters 
Rs=1/8.5e-6; %invers sec 
Rt=1/25e-6; 

  
% Singlet subspace 
subspaceS=[0,0,0,0; ... 
           0,1/2,-1/2,0; ... 
           0,-1/2,1/2,0; ... 
           0,0,0,0]; 

     
% Triplet subspace 
subspaceT=[1,0,0,0; ... 
           0,1/2,1/2,0; ... 
           0,1/2,1/2,0; ... 
           0,0,0,1]; 

  
Is=eye(4); 
S=-Rs*subspaceS-Rt*subspaceT; 

  
SSuper=kron(S,Is)+kron(Is,S); 
SSuper=0; 

 

%%___________________________________ 
%% Relaxation 

  

  
% T2e=200e-9;    %sec   
% T1e=1000e-9; 
% T2h=300e-9; 
% T1h=1100e-9; 

  
% T2e=800e-9;    %sec 
% T1e=3000e-9; 
% T2h=1100e-9; 
% T1h=3000e-9; 

  
 %%real parameters in second 
T1e=8500e-9;      %sec 
T1h=8500e-9; 
T2e=800e-9; 
T2h=1100e-9; 

  
[RSuper,Re]=two_spins_RELAX(T1e,T2e,T1h,T2h); 
RSuper=0; 

%%_______________________________ 
%% Loop over detuning 

  
det_steps= 5; 
 for j = [1:1:det_steps]; 
Bz1max=4e-3;   
%Bz1 = (j-1)*Bz1max/(det_steps-1); 
Bz1 = j*Bz1max/(det_steps-1); 
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Bz1store(j)=Bz1; 
% Bz2 =(j-1)*Bz1max/(det_steps-1); 
Bz2 = 0*j*Bz1max/(det_steps-1); 
Bz2store(j)=Bz2; 
%% define Static Hamiltonian 
Hzee=0.5*ub/hbar*(g1*Bz1*Sz1+g2*Bz2*Sz2); 

  
%% Define initial state 
M1=[0, 0, 1]; 
M2=[0, 0, 1]; 
[phi,theta,R]=cart2sph(M1(1),M1(2),M1(3)); 
[phi2,theta2,R2]=cart2sph(M2(1),M2(2),M2(3)); 
Th=-1*(theta-pi/2); 
Th2=-1*(theta2-pi/2); 
psi1=[cos(Th/2); exp(1i*phi)*sin(Th/2)]; 
psi2=[cos(Th2/2); exp(1i*phi2)*sin(Th2/2)]; 

  
PSI=kron(psi1, psi2);     %composite state |w> 
rho0=PSI*PSI';            %4*4 density matrix rho 

   
p0=vec2mat(rho0,1);       %16*1 Liouville density vector  

  
%define equilibrium 
p_eq=p0; 
%define initial state 
p_t=p0; 

  
%observable 
Mx1(1,:)=real(trace(ctranspose(vec2mat(Sx1,1))*p_t));   
My1(1,:)=real(trace(ctranspose(vec2mat(Sy1,1))*p_t)); 
Mz1(1,:)=real(trace(ctranspose(vec2mat(Sz1,1))*p_t)); 
Mx2(1,:)=real(trace(ctranspose(vec2mat(Sx2,1))*p_t));   
My2(1,:)=real(trace(ctranspose(vec2mat(Sy2,1))*p_t)); 
Mz2(1,:)=real(trace(ctranspose(vec2mat(Sz2,1))*p_t)); 

  

  
%% loop over time 
h=waitbar(0, 'looping over t'); 
 for ii=1:length(t) 

  
%define time dependant Hamiltonian 
HRF=0.5*ub/hbar*(g1*(Bx(ii)*Sx1+By(ii)*Sy1)+g2*(Bx(ii)*Sx2+By(ii)*Sy2)); 
Htot=Hzee+HRF;   %4*4 
Hsuper=kron(Htot,I4)-kron(I4,transpose(Htot)); 

  
Gs=1i*Hsuper+SSuper+RSuper; 
Gss=1./Gs; 
G=RSuper*hbar*1./Gs;       
G(isnan(G))=0;            %replace all NaN with 0 assuming 0*a/0 
p_ss=G*p_eq;              % steady state 

  
%% Evolve the density 
%Evolve for H only 
% L=-1i*Hsuper; 
% Usuper=expm(L*dt); 
% p_t=Usuper*p_t; 

  
%Evolve for H and S 
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% L=-1i*Hsuper+SSuper; 
% Usuper=expm(L*dt); 
% p_t=Usuper*p_t; 

  
%Evolve for H,S and R 
L=-1i*Hsuper+SSuper-RSuper;    
p_t=p_ss+expm(L*dt)*(p_t-p_ss); 

  
%% calculate observable 
Mx1(ii,j)=real(trace(ctranspose(vec2mat(Sx1,1))*p_t));   
My1(ii,j)=real(trace(ctranspose(vec2mat(Sy1,1))*p_t)); 
Mz1(ii,j)=real(trace(ctranspose(vec2mat(Sz1,1))*p_t)); 
Mx2(ii,j)=real(trace(ctranspose(vec2mat(Sx2,1))*p_t));   
My2(ii,j)=real(trace(ctranspose(vec2mat(Sy2,1))*p_t)); 
Mz2(ii,j)=real(trace(ctranspose(vec2mat(Sz2,1))*p_t)); 

  

  
rho_normalization(ii)=p_t'*p_t; 

  
waitbar(ii/length(t)) 
  end 
close(h) 

  
 end 
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Appendix B 

Defining shape and adiabatic pulses 

In this appendix, we present the definition for each pulse that has been used in the simulation in 

Appendix A. As demonstrated in ch5, the magnetic field component of the pulse along 𝑥 and �̂� can be 

written as: 

𝐵1
𝑥(𝑡) = 𝐵1𝑚𝑎𝑥𝐹1(𝜏)cos [∆𝜙(𝑡)]                 (B.1) 

𝐵1
𝑦
(𝑡) = 𝐵1𝑚𝑎𝑥𝐹1(𝜏)sin [∆𝜙(𝑡)]                  (B.2) 

where 

𝜙(𝑡) = 𝜙0 + 2𝛱∫ 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑓𝑚𝑎𝑥𝐹2(𝜏)𝑑𝜏
𝑇𝑝
0

            (B.3) 

These equations with different modulation function 𝐹1and 𝐹2  (shown in table 5.1)have been used to 

define the pulses. 

B.1. Square pulse 
 

function [Bx,By] = Create_theta_Pulse(B1,theta,g1,dt) 

  
ub=9.274e-24;  %J/T 
hbar= 1.0545718e-34; %J*s 
s=2*pi()/(theta); 
tau = 2*pi()*hbar/(s*g1*ub*B1); %4 for pi/2 
steps = round(tau/dt); 

  
Bx=1*ones(steps, 1)*B1;    %T 
By=0*ones(steps, 1)*B1;    %T 
end 
 

 

 

B.2. Gaussian pulse 
 

function [Bx,By] = Create_Gauss_Pulse(B1,theta,g1,dt) 

  
ub=9.274e-24;  %J/T 
hbar= 1.0545718e-34; 
cut = 10; 
FWHM=28e-9*theta*0.505e-3/(B1*pi()); %ns 
sigma = FWHM/(2*dt); 
length=sigma*cut; 
steps = round(length); 
x = 0:1:steps-1; 

  
Bx = B1*(gaussmf(x,[sigma, steps/2])'); %B1*F1(t) 
By=0*ones(steps, 1)*B1;   
end 
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B.3. Chirp pulse 
 

function [Bx,By,phi_1] = Create_Chirp_Pulse(B1,theta,g1,dt) 

  
ub=9.274e-24;   %J/T 
hbar= 1.0545718e-34;  %J*s 
sweep=400e6;       %frequency sweep in MHz 
length=540*theta/pi();  
steps = round(length); 
t=linspace(0, steps-1, steps)*dt;    
phi_1=2*pi*sweep*((t.*t/t(end))-t); 

 
Bx=B1*ones(1,steps).*cos(phi_1); 
By=B1*ones(1,steps).*sin(phi_1); 

  
end 

  

 

B.4. Waiting time between pi and pi/2  pulses 

After defining the pulses, Hanh echo sequence is used as a spin detection method. As we simulated 

conventional Hahn-echo sequences as  [π/2 : τ200ns : π: τ200ns : π/2] 

we define the waiting time to be same for all pulses. 

 

function [Bx,By] = Create_wait_time(wait,dt) 

  
steps = round(wait/dt); 

 
Bx=0*ones(steps, 1);    %T 
By=0*ones(steps, 1);    %T  

 

End 
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Appendix C 

Determine Spin relaxation matrix 

 

We used Redfield theory to define spin relaxation matrix as a set of 4x4 matrix.  

 

The Redfield matrix for one spin (electron) with coefficients is: 

�̂�𝑒 =  

[
 
 
 
   

1

𝑇1𝑒

0
              

0
1

𝑇2𝑒

       
  0

   −
1

𝑇2𝑒

         
−

1

𝑇1𝑒

     0
 

     0    

 −
1

𝑇1𝑒

    
  − 

1

𝑇2𝑒

      0
             

1

𝑇2𝑒

 0   
             

 0

 
1

𝑇1𝑒

  
]
 
 
 
 

                  (C.1) 

 

Then it has been transformed to superoperator by unitary operator 

 

�̂�𝑒 =  [

1 1 1 1
1 1 1 1 
1 1 1 1
1 1 1 1

]                     (C.2) 

 
function [ Rij_t,Re]=two_spins_RELAX(T1e,T2e,T1h,T2h) 

  
Re(1,1)=1/T1e; 
Re(2,2)=1/T2e; 
Re(3,3)=1/T2e; 
Re(4,4)=1/T1e; 

  
Re(1,2)=0; 
Re(2,1)=0; 
Re(1,3)=0; 
Re(3,1)=0; 
Re(3,4)=0; 
Re(2,4)=0; 
Re(4,2)=0; 
Re(4,3)=0; 
Re(1,4)=-1/T1e; 
Re(4,1)=-1/T1e; 
Re(2,3)=real(-1/T2e);     
Re(3,2)=real(-1/T2e);     

 
Rh(1,1)=1/T1h; 
Rh(2,2)=1/T2h; 
Rh(3,3)=1/T2h; 
Rh(4,4)=1/T1h; 

  
Rh(1,2)=0; 
Rh(2,1)=0; 
Rh(1,3)=0; 
Rh(3,1)=0; 
Rh(3,4)=0; 
Rh(2,4)=0; 
Rh(4,2)=0; 
Rh(4,3)=0; 
Rh(1,4)=-1/T1h; 
Rh(4,1)=-1/T1h; 
Rh(2,3)=real(-1/T2h);     
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Rh(3,2)=real(-1/T2h);     

   

 
Ue=[1,1,1,1;...         %Unitary matrix for spin 1 
    1,1,1,1;...     
    1,1,1,1;... 
    1,1,1,1]; 

  
Uh=[1,1,1,1;...         %Unitary matrix for spin 2 
    1,1,1,1;...     
    1,1,1,1;... 
    1,1,1,1]; 

  
Rij_t=kron(Rh,Ue)+kron(Uh,Re); 

  
 End 
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Appendix D 

Calculating the fidelity 

 

The fidelity of a single spin operation on the entire ensemble of spins and for operation on operation 

on an ensemble of pairs of spins has been calculated in this simulation.        

 
calculate the fidelity 
%%real data 
deltaB1=2.06e-3;    %T 
deltaB2=4.14e-3;    %T 

  
%%assumption values used for deltaB1 
%deltaB1=2.06e-4;   %T 
%deltaB1=0.1e-3;    %T 

  
%%use for fidelity of a single spin operation on the entire ensemble of 

spins and ignore the loop 
y = normpdf(Bz1store,0,deltaB1); 
Mz1weighted=-1/2*(Mz1-1).*y*Bz1max/(det_steps-1);  %Fz(Bz1)*G(Bz1) 
perfect = -1*ones(length(t),length(Bz1store)); 
perfectweighted=-perfect.*y*Bz1max/(det_steps-1);  %G(Bz1)for deltaB1 
perfectfidelity = sum(perfectweighted(length(t),:))*2 -

perfectweighted(length(t),1); %2 for the half gaussian 
fidelity = sum(Mz1weighted(length(t),:))/sum(perfectweighted(length(t),:));   
  

 
%%use the loop for fidelity for operation on operation on an ensemble of 

pairs of spins 
  i=0; 
  FIDELITY=zeros(40,40); 
  for deltaB1 = [0:0.5e-4:deltaB1] 
     i=i+1; 
     k=0; 
     for deltaB1 = [0:0.5e-4:deltaB2] 
          k=k+1; 

  
 %%for spin 1 
y = normpdf(Bz1store,0,deltaB1); 
Mz1weighted=-1/2*(Mz1-1).*y*Bz1max/(det_steps-1);  %Fz(Bz1)*G(Bz1) 
perfect = -1*ones(length(t),length(Bz1store)); 
perfectweighted=-perfect.*y*Bz1max/(det_steps-1);  %G(Bz1)for deltaB1 
perfectfidelity = sum(perfectweighted(length(t),:))*2 -

perfectweighted(length(t),1);%2 for the half gaussian 
fidelity = sum(Mz1weighted(length(t),:))/sum(perfectweighted(length(t),:));   

  
 %%for spin 2 
y2 = normpdf(Bz2store,0,deltaB2); 
Mz2weighted2=-1/2*(Mz2-1).*y2*Bz1max/(det_steps-1);   %Fz(Bz2)*G(Bz2) 
perfect2 = -1*ones(length(t),length(Bz2store)); 
perfectweighted2=-perfect2.*y2*Bz1max/(det_steps-1);%G(Bz2)for deltaB2 
perfectfidelity2 = sum(perfectweighted2(length(t),:))*2 - 

perfectweighted2(length(t),1);%2 for the half gaussian 
fidelity2 = 

sum(Mz2weighted2(length(t),:))/sum(perfectweighted2(length(t),:));   
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 %%for two spins  
FID=Mz1weighted(length(t),:); 
FID2=Mz2weighted2(length(t),:); 
a=FID'*FID2; 
b=perfectweighted(length(t),:)'*perfectweighted2(length(t),:); 
FIDELITY(i,k)=sum(sum(FID'*FID2))/(sum(sum(b))); 
end 
end 
FIDELITY(end) 
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