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ABSTRACT 
 

This research studies indoor positioning using power-level-fingerprinting 
with a time-synchronised Locata network. We compare our results to another 
fingerprinting-based positioning method using WiFi access points. With an 
accuracy of 1.2 - 1.5 metres, our technique can be a powerful fall-back 
option when regular Locata positioning fails due to difficult signal 
conditions. Moreover, our results serve as a benchmark for future research 
on indoor positioning with Locata. 
 
KEYWORDS: Locata, Pseudolites, Fingerprinting. 

 
 
1. INTRODUCTION 
 
The location of a mobile node in a wireless network is very powerful information. It allows 
the development of Location Based Services - applications that deliver context aware 
functionality based on the user’s location. Navigational tools that provide visual map-based 
instructions such as the GPS Navigators for vehicles are examples of LBSs.  
 
GPS (The Global Positioning System) is a fully functional Global Navigation Satellite System 
(GNSS). It uses a constellation of 24 satellites in medium Earth orbits which transmit precise 
signals in the L band. Despite its widespread usage and increasing popularity, it has its 
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limitations. The satellite signals are very susceptible to shadowing effects and are easily 
absorbed and reflected by buildings, walls and mountains thus making it imperative to have 
direct line of sight between the receiver and satellites. Hence GPS does not work well 
indoors, inside tunnels, and in urban canyons. 
 
Indoor positioning is especially useful for several commercial and security applications. Many 
dedicated systems exist for this purpose [9], for example: Active Badge [2], Cricket [3], and 
The Bat [4] - to name a few. These systems typically require the installation of a dense system 
of beacons which incurs considerable establishment overheads. There have been attempts to 
perform indoor localisation using existing infrastructure like WiFi access points [1][5], 
mobile phone networks [10][18] and television signals [11]. For example, [1], [17], [19] and 
[5] explore the fingerprinting approach for estimating locations using wireless access points 
within a building. Ekahau [6], Pango [7], and Skyhook [8] are some commercially available 
wireless positioning products based on fingerprinting. 
 
Fingerprinting requires the construction of a reference database of fingerprints in the area 
where location information is required. A fingerprint F at a particular location is defined as a 
vector { }NfffF ,,, 21 K=  where fi is the signal strength received from transmitter i and N is 
the total number of transmitters used to construct the database. A reference database consists 
of fingerprints at points with known locations. Once this set of reference points has been 
collected, it can be used to estimate locations of new points by measuring a fingerprint at the 
required location and then comparing it with the reference database. [1] studies different 
algorithms for this purpose - ranging from a simple nearest neighbour to more complicated 
statistical approaches. 
 
This paper extends the concept of fingerprinting to an indoor Locata Network for the first 
time. 
 
Locata (developed by Locata Corporation [12]) is a terrestrial GPS-like positioning 
technology [13][14][15][16] which has given promising results with several positioning 
applications like construction environments and military, reaching upto centimetre level 
accuracy in some scenarios like structural deformation studies [20]. It deploys a network 
(LocataNet) of terrestrially-based transceivers (LocataLites – see Figure 1(a)) which transmit 
precise ranging signals. A LocataNet achieves a high level of time-synchronisation using the 
TimeLoc procedure developed by Locata. Thus, it can potentially perform single point 
positioning with centimetre-level accuracy without differential corrections and data links 
requirements. Currently, Locata operates in the 2.4 GHz ISM frequency band and uses its 
own proprietary signal structure for positioning. A Locata Rover (Figure 1(c)) is a stand-alone 
GPS-like receiver that tracks the signals from the LocataNet. 
 
The LocataLites read their configuration parameters from a flash memory card. For the 
TimeLoc algorithm to work correctly, each LocataLite should be configured with the 
coordinates of its 2 transmitting antennae (Figure 2) as well as those of the master's. We 
surveyed the positions of all antennae with a total station to obtain accurate coordinates for 
this purpose. 
 
In this paper, we study the fingerprinting approach of positioning in a LocataNet as opposed 
to using the original Locata technique. The reasons we examine fingerprinting are two fold: 
first, it is useful to have fingerprinting accuracy to indicate a 'lower bound' of the accuracy 
that is acceptable from an indoor Locata network. Second, if the indoor conditions are so 
challenging that normal Locata positioning is not possible, fingerprinting offers a 'fallback' 
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method. We also compare our results with those of [1] which studies a similar fingerprinting 
positioning method using Wifi access points. In areas where WiFi access points are available, 
[1] offers another option to obtain location information. 
 

 
 
 
 
 
 
 
   (b) 

 
 

    
 
 
 

   (a) 
 
 
         (c) 
Figure 1: (a) A LocataLite box; (b) Omnidirectional antenna used by the rover; (c) A Locata 

Rover 
 

It is important to note that the equipment used for our experiments was optimized for outdoor 
use and an 'indoor' version of Locata is under development1. Using this indoor technology in 
the past, Locata has demonstrated cm-level positioning accuracy in a severe multipath 
environment using line-of-sight signals [21], and sub-metre level accurate positioning in an 
office block with non-line of sight signals [15]. 
 
Even though we are interested only in the 'power levels'2 received from different LocataLites, 
we still require them to be time-synchronised (using Locata's TimeLoc technology). There are 
two main reasons for this: firstly, when the LocataLites are synchronised to each other, we 
can use the TDMA (or 'pulsing') technique and have each LocataLite transmit its signal on an 
exclusive time slot. This solves the 'Near-Far Problem' where if the rover is closer to one of 
the LocataLites, the power level from the latter will be much stronger and will mask out the 
signals from any other LocataLite which is transmitting at the same time thus making it 
impossible to record a complete fingerprint. Secondly, if all LocataLites are not synchronised, 
their codes will drift at different rates. Hence, when they transmit simultaneously, there will 
be a time-varying cross-correlation at the rover which will make it very difficult to obtain 
fingerprint data. However, when synchronised, this cross-correlation is a constant value which 
becomes an inert part of the fingerprint. 
 
Clearly, due to the multipath indoors, the synchronization between LocataLites will not be as 
accurate as when a direct line-of-sight exists. We need synchronization only to make sure that 
reliable fingerprints can be collected. Thus, the precision of positioning from our technique is 
                                                           
1This does not affect our experiment because we do not perform positioning using Locata's original technique. 
2The output of the rover is not actually the true received power level but an indication of power after software 
scaling and possible variable AGC (Automatic Gain Control). We will use the term 'power level' for these 
indicators henceforth. 
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independent of the accuracy of synchronization. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: The patch 
antenna used by LocataLites for transmitting and receiving signals 

 
A Locata receiver is similar to a GPS receiver. It uses an omnidirectional antenna (Figure 
1(b)) to receive ranging signals from the LocataLites and calculates its position using 
pseudorange measurements (much like a GPS receiver – except that Locata works in the 
unlicensed ISM frequency band and gives a 2D position estimate). The rover reads 
configuration parameters from a flash memory card. There are two methods for positioning – 
the Code Solution and Carrier Phase solution; the latter being more accurate. The carrier-
phase solution can give a very high level of accuracy (sub-centimetre level in appropriate 
conditions) but at present the rover requires a priori information on the initial location of its 
receiving antenna to resolve ambiguities. On the other hand, the code solution gives metre-
level accuracy. These accuracies are similar to the code and carrier solutions in GPS. 
 
2. Experiment 
 
2.1 Setup 
 
We setup a small indoor LocataNet in the School of Surveying and Spatial Information 
Systems at the University of New South Wales.  
 
Figure 3 shows the floor plan of the experiment location and the positions and orientations of 
the 5 LocataLites used. These were placed in approximately similar positions to the wireless 
access points in [1] so as to make the comparisons of our results with those of  [1] more 
meaningful. 
 
Each LocataLite has 2 transmitting antennae which emit ranging signals allowing rovers to 
calculate their positions. These are similar to the way a GPS receiver calculates its position by 
using the signals transmitted by the satellites. Since a LocataNet is time-synchronised, one of 
the LocataLites is designated as the master to which all other slave LocataLites synchronise 
their clocks.  Hence, all slaves have an additional receiving antenna for this purpose.  
 
LocataLites use patch antennae with 70° beam width (Fig. 2) for transmitting signals. In order 
to have maximum signal coverage in the testing arena, the 10 antennae (2 per LocataLite) 
were oriented in such a way that their principal beam directions were well distributed over all 
directions (e.g. both antennae of L-1 point to the right, while both antennae of L-3 point to the 
left). Similarly, the transmitting antennae of L-2, L-4, and L-5 are also distributed in different 
directions. Figure 3 shows the direction of the principal beam of each transmitter. 
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It was initially decided to have a single master LocataLite (marked L-1 in Figure 3) and have 
all other LocataLites synchronise to it. For this purpose, we configured all receiving antennae 
(on L-2, L-3, L-4, and L-5) to point towards L-1. Since many of the slave LocataLites were 
separated by several walls, we configured L-1 to transmit at full power. Although there was 
initial scepticism about LocataLites actually synchronizing with the master, it turned out to be 
satisfactorily stable despite the severe multipath due to walls and furniture. There were, 
however, a few problems with L-3, the farthest LocataLite, which was unable to sustain its 
TimeLoc with L-1. Upon investigating the cause, we realized that the power levels from both 
antennae of L-1 were severely attenuated (due to walls and furniture). Hence, L-3 was 
configured to synchronise with L-4 which was relatively closer. Thus, in Fig. 3, L-4 is a 
secondary master for L-3 as well as a slave to L-1. 
 
Figure 4 shows the positions of the points in the database of reference fingerprints. Taking 
into account static obstacles like cabinets and other furniture, we tried to maintain a uniform 
density of points over the entire test area. The distance between consecutive reference points 
is always kept between 0.8 and 1.5 metres and constant in a single room. 
 
The rover uses an omnidirectional antenna for receiving signals from the LocataLites. The 
rover connects to a laptop computer through a serial port and power levels were automatically 
collected from the rover. More about the computational tools used for this purpose is 
discussed in section 2.2. Throughout the experiment, we tried to measure all fingerprints at a 
constant height by keeping the rover on a stool. Figure 5 shows the equipment used in the 
experiment. 
 
2.2 Computational Aids 
 
We created several tools to assist in the experimentation process. Figure 6 shows a screenshot 
of the main tool used to collect the fingerprinting data. 

 
Figure 3. Floor Map of the School of Surveying and Spatial Information 

Systems, UNSW. The location of all 5 LocataLites are marked as L-1, 
L-2, ..., L-5 
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This tool collects the output of the rover (referred to as the power levels from now on) at a 
frequency of 2Hz and displays them on the screen. It maintains a running average of the last 
10 samples for each transmitting antenna. If each measurement is within a reasonable 
threshold from the average, the software decides to start logging the measurements of the 
fingerprint. 
 
The image of the floor plan on the left hand side is a geo-referenced image. Clicking on a 
reference point stores its coordinates automatically along with the fingerprint data. Local 
coordinates are used for the purpose of this experiment. 
 
It was also observed that the rover output drops down extremely low every now and then. 
Since these are obvious outliers that are not representative of the real power levels, we 
configured the software to ignore these sudden drops when recording data. These drops may 
be due to software or hardware problems and are ignored while collecting test points for 
positioning as well. Further investigation of these drops may occur later. 
 
2.3 Measurements 
 
Preliminary measurements were initially made during office hours and the received power 
levels fluctuated significantly with people walking around in the corridors. Therefore, all 
subsequent measurements were made in the relatively sterile environment of late nights. This 
has the obvious problem of not matching a real positioning scenario, but is appropriate for 
comparison with [1]. 
 
For each reference point, sixty measurements of the power levels were recorded. For any 
measurement which had too many points outside a certain threshold of the running average 

 
Figure 4: The numbered points on the grid represent the set of 186 

reference point. The points marked with crosses are test points 
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(which could be due to varying multipath from moving people or closing doors for example) 
the measurements were performed again in order to ensure that the reference database is free 
from any outliers – as far as possible. Any devices that could interfere with our signals in the 
ISM band were also turned off (mainly computers using WiFi). 
 

 

Figure 5: The equipment used in the experiment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The software used to record data
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To get an idea of the effect of multipath in the severe indoor environment, changes in power 
levels on a smaller distance scale were recorded. It was observed that the power levels 
fluctuate greatly even with a 10cm shift in the position of the antenna. Even in an empty 
corridor, the power levels of some LocataLites as much as doubled with only a 10cm shift in 
position. However since the measure for fingerprinting used is not a true power level, this 
variation might not be due to multipath. 
 
3. RESULTS 
 
3.1 Distance Functions 
 
A fingerprint F is defined as: { }NfffF ,,, 21 K=  where f1 is the power level received from 
transmitting antenna 1 of LocataLite L-1; f2  is the power level received from  transmitting 
antenna 2 of LocataLite L-1; f3 is the power level received from transmitting antenna 1 of 
LocataLite L-2; and so on. 
 
The analysis of the results from our experiments are based on the basic assumption that the 
distance between 2 fingerprints F1 and F2 in the 10-dimensional space defined above 
corresponds meaningfully to the physical distance between the points at which the 
fingerprints  F1  and F2  were collected.  
 
Let D(F1 ,F2) be the distance between 2 fingerprints. Here, RRRD →× 1010: . We will 
discuss the nature of the function D later. 
Let P(F1) denote the actual point at which fingerprint F1 was taken. 
In the following analysis we assume that if D( F1 , F2 ) < D( F1 , F3 ) then P(F1) is closer to 
P(F2) than to P( F3 ). 

 
This assumption may be flawed in that the measurements from the rover are the result of 
possible software scaling and AGC, but these effects are not known. However, later results 
(section 3.2) indicate that the assumption is useful. 
 
Definition 1: (Ratio Distance) 
Let { }1021 ,,, aaaA K=  and { }1021 ,,, bbbB K=  be 2 fingerprints. Then, the ratio distance 
between A and B is defined as: 
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It was anticipated that this distance function may cancel out some scaling issues with the 
'unknown' measurements. The use of this distance function is backed up by the results. 
 
Definition 2: (Logged Manhattan Distance) 
Let { }1021 ,,, aaaA K=  and { }1021 ,,, bbbB K=  be 2 fingerprints. Then, the logged 

Manhattan distance between A and B is defined as ( ) ( )∑
=
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Lemma 1:  
Let { }1021 ,,, aaaA K=  and { }1021 ,,, bbbB K=  be 2 fingerprints. Then, 

( ) ( )( )BADBAD RM ,log, = . 
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Proof: 
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Since log(x) > 0 when x > 1; and log(x) < 0 when x < 1, 
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Definition 3: (Logged Euclidean Distance) 
Let { }1021 ,,, aaaA K=  and { }1021 ,,, bbbB K=  be 2 fingerprints. Then, the logged Euclidean 
distance between A and B is defined as  
 

( ) ( ) ( )2
1010

2
22

2
11 loglogloglogloglog bababaDE −++−+−= K  

 
One major difference between Manhattan Distance and Euclidean Distance is that the latter 
penalizes large distances disproportionately more than smaller distances. For example, 
consider 2 points in 2-dimensional Euclidean space with coordinates (0,1) and (1,0). Then, the 
Manhattan distance between them is 2 and the Euclidean distance is . Now consider 2 
points with coordinates (0,0) and (2,0). Again the Manhattan distance between them is 2. But 
this time the Euclidean distance is also 2. More generally, when for 2 points there is a large 
difference between the value of only one coordinate, Euclidean distance returns a larger value 
than if the same difference is distributed over several coordinates. 
 
It is for this reason that Euclidean distance is more appropriate for this experiment than 
Manhattan Distance. Since analogue versions of power levels are collected, their values at the 
same point will differ from time to time, albeit within a small range when compared with 
values at points separated by some distance. Hence, typically for points that are far apart, 
there will be a large difference in certain coordinates3 as compared to the same coordinates 

                                                           
3For a fingerprint { }NfffF ,,, 21 K= , each of the if  are referred to as the coordinates of the fingerprint. 
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for physically closer points. Thus, we want a distance function that takes this into account and 
returns a larger 'distance' for fingerprints where certain coordinates differ by a large amount. 
Also, the Logged Euclidean Distance is used to negate the software and hardware 
normalization effects. 
 
In section 3.2, we discuss the results using Euclidean distance. Due to lack of space, we do 
not show the results obtained using Manhattan Distance (which, on an average, had 20cm 
worse accuracy than Euclidean distance). 
 
3.2 Results 
 
Table 1 shows the results of positioning accuracy with fingerprinting. After collecting the 
reference database of fingerprints, test points were collected in each room. Figure 4 shows the 
positions of these test points. The estimated position of these test points was then determined 
using fingerprinting and compared to the actual position. This accuracy is reported in the 
following tables. 
 
AvgNN denotes the average distance to the nearest neighbouring reference point that was 
obtained through fingerprinting. Avg2NN denotes the average of the distances between each 
test point and the centroid of its 2 nearest neighbours (as derived from fingerprinting). More 
generally, AvgiNN denotes the average of the distances between each test point and the 
centroid of its i nearest neighbouring reference points. 
 
In the test points database, there are 3 types of test points. Type-1 points were taken on 
exactly the same position as a reference point. Type-2 points lie on the centre of a line (a line 
parallel to a wall of the room) joining 2 neighbouring reference points. Type-3 test points lie 
on the centre of a square formed by 4 reference points (figure 7). 

 
 
 
 
 
 

Figure 7: The points in red represent the reference points. The blue labels denote the type of 
test points 

 
It was found that Type-1 points typically have the best accuracy when only 1 nearest 
neighbour is considered. In fact, in 70% of the cases, the fingerprinting method identifies the 
exact reference point on whose position the test point was taken. There are 13 Type-1 points, 
15 Type-2 points and 10 Type-3 points in the test fingerprint database. Type-2 points show a 
better accuracy when more than 1 nearest neighbour is considered4. Type-3 test points have 
the worst accuracies when only 1 nearest neighbour is considered (see Table 1). However, as 
more nearest neighbours are taken into account, the accuracy improves significantly (for 
example, with 6 nearest neighbours, type-3 test points give an accuracy of 1.422 metres). 
 
These results can be explained as follows. Consider test point 3 in Figure 7. The first nearest 
neighbour would be (say) reference point 1 (labelled in red). The next nearest neighbour 
would be (say) 2. The centroid of reference points 1 and 2 is closer to 3 than either of the 
                                                           
4 Note that this trend is not reflected in Table 1 due to a single outlier test-point (413/6) that dramatically deviate 
the averages. When the outlier is excluded from the calculations, the average results for Type-2 points are: 1.914, 
1.714, 1.740, 1.669, 1.696 and 1.820 (AvgNN to Avg6NN respectively). 
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reference points themselves. The next 2 nearest neighbours would be 4 and 5 (say). The 
centroid of reference points 1, 2, 4, and 5 is exactly point 3. Thus, the accuracy of positioning 
improves if we consider more nearest neighbours. The case for test points of type 2 is similar. 
For type-1 test points, it is the opposite case. As we keep taking more nearest reference 
points, their centroid is likely to move further away from the actual position of the test point. 
This is especially the case when the test point is near a wall because 'nearby' test points in 
space are not necessarily nearby in the fingerprint space. 

 
Table 1: Accuracy of positioning using Euclidean distance function for fingerprints. All 

values are in metres. 
 

 AvgNN Avg2NN Avg3NN Avg4NN Avg5NN Avg6NN 

All Test Pts. 1.551 1.817 2.079 2.041 1.974 1.929 

Type-1 Pts. 0.998 1.816 2.231 2.426 2.317 2.418 

Type-2 Pts. 1.820 1.991 2.122 1.958 1.907 2.077 

Type-3 Pts. 1.865 1.578 1.816 1.664 1.629 1.422 
 
 

Table 2: Positioning accuracies for all test points. All values are in metres. 
 

Type Test-Pt. 1NN 2NN 3NN 4NN 5NN 6NN 

1 Cor/1 0 1.554 2.000 1.871 1.531 1.036 

2 Cor/2 0.735 0.467 1.405 1.940 2.879 3.268 

3 Cor/3 0.863 1.509 1.267 2.257 1.960 2.007 

1 Cor/4 0 0.467 1.044 1.567 1.597 0.973 

1 Cor/5 0 0.748 1.496 1.884 2.422 2.292 

3 Cor/6 0.884 0.346 0.883 2.020 1.855 0.862 

2 Cor/7 4.525 3.832 2.578 2.381 1.485 1.369 

3 Cor/8 0.900 0.019 0.748 0.734 0.153 0.272 

1 413A/1 0 2.079 3.008 3.787 3.712 3.505 

3 413A/2 0.666 0.699 2.317 2.700 2.670 2.084 

2 413A/3 0.435 0.041 0.844 1.120 1.495 1.411 

3 413A/4 2.911 3.653 3.713 2.093 2.636 2.916 

1 413B/1 0 2.799 2.141 1.406 1.438 1.275 

3 413B/2 1.372 0.960 1.232 1.253 0.718 0.623 

2 413B/3 2.464 1.983 2.863 2.497 2.553 2.461 

2 413B/4 4.638 4.149 4.632 4.408 4.458 3.665 

1 413/1 0 1.018 2.471 2.955 3.005 3.452 

3 413/2 3.759 4.853 4.383 2.625 2.545 2.152 

1 413/3 1.495 1.248 2.013 2.605 2.625 2.040 

2 413/4 2.950 2.065 2.235 2.437 2.094 1.624 

2 413/5 2.401 2.853 2.396 2.119 2.474 2.941 

2 413/6 0.509 5.873 7.469 6.010 4.861 5.690 

1 414/1 5.647 5.505 5.146 5.158 4.126 3.412 
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2 414/2 1.838 1.825 1.085 0.319 0.970 1.550 

2 414/3 2.060 2.518 0.593 0.967 0.311 0.523 

1 414/4 3.513 3.585 2.452 2.514 2.753 2.954 

3 414/5 2.496 1.008 1.166 1.600 1.333 1.007 

2 414/6 1.119 1.514 1.685 1.044 1.016 1.520 

2 423/1 1.143 1.591 1.989 1.512 1.318 1.288 

3 423/2 2.526 1.578 1.486 0.785 1.475 1.522 

1 423/3 0 0.990 1.319 1.134 0.503 0.199 

3 423/4 2.276 1.155 0.968 0.571 0.948 0.774 

2 423/5 1.214 0.558 1.222 0.970 1.437 1.389 

1 423/6 2.286 1.143 1.660 1.867 1.706 2.066 

1 423A/1 0 0.975 0.971 1.711 1.957 2.301 

2 423A/2 0.425 0.565 0.095 0.673 0.425 0.915 

2 423A/3 0.842 0.040 0.734 0.976 0.834 1.548 

1 423A/4 0.029 1.499 3.276 3.084 2.748 2.416 

 

Table 2 lists the positioning accuracies5 for all the test points. It can be seen that certain points 
are particularly poor – for example point 414/1 (i.e. test point 1 in Room 414 – see Fig 4 for 
its position). Typically, each room has a 'signature' fingerprint. That is, the signals from some 
LocataLites (especially the one placed in that room) will always be stronger than the others. 
This makes sure that while calculating Euclidean distances of fingerprints in the 10-
dimensional power-level space, at least the correct room is always identified (as was the case 
in [22]). However, points like 414/1 may be in a region handicapped by severe multipath, thus 
distorting its fingerprint beyond appropriate limits from the 'signature'-fingerprint of that 
room, and hence leading to degraded positioning accuracy with fingerprinting. 
 
Accuracies for type-3 points improve further when additional nearest neighbours are 
considered. Table 3 shows these accuracies for 7, 8, 9, and 10 nearest neighbours. With about 
1.2 m accuracy, these results are fairly promising. 
 
Table 3: Positioning accuracies for type-3 test points with greater than 6 nearest neighbours. 

 
Avg7NN Avg8NN Avg9NN Avg10NN 

1.186 1.199 1.161 1.176 

 
3.2 Power Level Distributions 

Figure 8 shows the power level distributions in Room 414 (the room which had the worst 
positioning accuracy). Although the signal levels from most LocataLites do not follow a 
theoretical quadratically decreasing value (which is due to the software scaling and AGC of 
outputs as well as severe multipath), we still get decent positioning accuracies because 
fingerprints at a particular position are near-constant and repeatable (i.e. if we record a 
                                                           
5Note that all positioning accuracies would have at least a ± 10cm error. There are several factors leading to this 
error. Firstly, to mark the coordinates of test points, a software was used to identify the position by clicking on 
the screen, which could have upto 5cm of error. Also, there can be a further error of 5cm while placing the rover 
antenna at a particular point. These error values have been identified by analysing the data shown in Table 2. 
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fingerprint at the same position at a different time, we will get similar values). 
 
 

 
  
  
 
 
 
 

 
  
 
 
 
 
 

Figure 8: Observed power levels of the reference points in room 
414 for all 10 received signals. The door of the room is marked in 
the first image to indicate the orientation of these graphs 
 
 
 
 
 

4. FUTURE WORK 
 
The concept of fingerprinting has a scope of refinements to improve its accuracy. Consider a 
test point near a wall. As more and more of its nearest neighbouring reference points are 
considered, their centroid will keep drifting away from the test point - in the opposite 
direction from the wall (see Figure 9). Such cases can be identified by observing the 
increasing iNN values with increasing i. Our experiments have revealed that points near walls 
have poorer positioning accuracies than points away from walls. This can be corrected by 
identifying points near walls (using the aforementioned technique) and considering only a few 
(1 or 2) nearest neighbours to determine the X-coordinate. However, several nearest 
neighbours can be considered to obtain a very accurate Y-coordinate. 
 
Another interesting technique to study would be to first create a 'signature'-fingerprint for 
each room. Using this, test points can first be localized to one room (or a set of rooms). 
Subsequently, nearest neighbour algorithms can be run within this reduced reference database 
(similar work was done in [22]). It was observed that on many occasions, the average position 
estimate gets thrown off because fingerprints from different rooms are identified as closer to a 
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test point. Such situations can be eliminated by this method. 
 
Several other more complicated statistical approaches can be adopted as distance measures in 
the fingerprint space. A weighted average of nearest neighbours [1], which gives more weight 
to closer neighbours, can be experimented with. 
 

 
 
 
 
 
 
 
 

Figure 9:The thick black line on the left indicates the wall. The point marked in blue is a test 
point. The grid of red points are the reference points. The axes are labelled to the right 

 
 
5. CONCLUSION 
 
With an average positioning accuracy of approximately 1.5m, we feel that fingerprinting 
using Locata signals emerges as a cogent fallback option when regular Locata positioning is 
unable to provide satisfactory results. Moreover it serves as a competent benchmark for more 
complicated indoor positioning technologies (like Locata itself). 
 
With accuracies in the range of 1.2 m – 1.5 m (which include extremely poor points like the 
ones in Room 414), Locata signals fingerprinting is comparable to WiFi fingerprinting as 
studied in [1]. The authors of [1] observed positioning accuracies in the range of 1.2m – 1.8m. 
These accuracies are under ideal conditions at night with minimal activity from people 
walking around and all 2.4 GHz devices such as WiFi turned off. In a more 'real-world' 
scenario, accuracies are likely to be worse. 
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