
A presentation service for rapidly building interactive
collaborative web applications

Author:
Sweeney, Michael

Publication Date:
2009

DOI:
https://doi.org/10.26190/unsworks/22113

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/43621 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/22113
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/43621
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

A Presentation Service

for

Rapidly Building
Interactive Collaborative Web

Applications

MANU E T MEN
TE

SCIENTIA

A thesis submitted to the

School of Computer Science

University College

University of New South Wales

Australian Defence Force Academy

for the degree of Doctor of Philosophy

By

Michael Joseph Sweeney

31 March 2008

c© Copyright 2008 by Michael Joseph Sweeney

i

Certificate of Originality

I hereby declare that this submission is my own work and that, to the best of

my knowledge and belief, it contains no material previously published or written by

another person, nor material which to a substantial extent has been accepted for the

award of any other degree or diploma at UNSW or any other educational institution,

except where due acknowledgement is made in the thesis. Any contribution made to

the research by colleagues, with whom I have worked at UNSW or elsewhere, during

my candidature, is fully acknowledged.

I also declare that the intellectual content of this thesis is the product of my own

work, except to the extent that assistance from others in the project’s design and

conception or in style, presentation and linguistic expression is acknowledged.

Michael Joseph Sweeney

ii

Abstract

Web applications have become a large segment of the software development domain

but their rapid rise in popularity has far exceeded the support in software engineer-

ing. There are many tools and techniques for web application development, but the

developer must still learn and use many complex protocols and languages. Products

still closely bind data operations, business logic, and the user interface, limiting

integration and interoperability.

This thesis introduces an innovative new presentation service to help web application

developers create better applications faster, and help them build high quality web

user interfaces. This service acts as a broker between web browsers and applications,

adding value with programming-language independent object-oriented technology.

The second innovation is a generic graphics applet (GGA) component for the web

browser user interface. This light component provides interactive graphics support

for the creation of business charts, maps, diagrams, and other graphical displays in

web applications.

The combination of a presentation service program (BUS) and the GGA is explored

in a series of experiments to evaluate their ability to improve web applications. The

experiments provide evidence that the BUS and GGA technology enhances web

application designs.

iii

Acknowledgements

First, I would like to thank my academic supervisor Dr Graham Freeman for his

timely advice, support, and patience. Graham was always supportive, and was

understanding of my competing obligations to my family and career. I also have

appreciated the positive and helpful attitude of all the staff in the Computer Science

school at the Australian Defence Force Academy.

I would also like to thank my wife Kerry and children Joanne, David, and Samantha

who have been very supportive and understanding during this period. They have

had to do without a husband and father on too many evenings, weekends, and

holidays.

My brother Dr Peter Sweeney was tireless in encouraging me to finish the work, and

provided lots of practical advice on thesis writing over many glasses of wine.

My colleagues at DSTO have contributed with advice which I found very valuable.

In particular I would like to thank Dr David Miron, Dr Paul Whitbread, and Dr

Iain MacLeod.

This work has been supported by the Australian Defence Science and Technology

Organisation (DSTO). DSTO has generously provided study leave, computing re-

sources, conference trips, an environment to run a case study, programming staff

support, and scientific library services.

The GGA, GOL, OMA, and S3DA components were built by professional program-

mers working directly to me. Each component was programmed in Java by engineer-

ing staff or contractors to my original specifications. I was the sole customer, had

complete design control, and performed all acceptance testing. The programming

iv

staff performed most of the internal applet design and unit testing. I have included

attributions in the thesis where programmers or others have contributed in other

capacities.

The OpenMap application is open source software managed by the American BBN

company. The 3D engine at the heart of the S3DA applet is a Java product owned

by Anfy.com.

A special thanks to Peter Hoek, a talented software engineer I have worked with for

many years, who displayed endless patience in implementing my unusual specifica-

tions and long lists of enhancements.

This thesis is produced using BibTeX (version 0.99c) and LATEX2ε (release 2001/06/01)

and dvips (version 5.92b). Figures were drawn with tgif version 4.1, and converted to EPS

files. Python programs are designed for version 2.4.2 of the language.

v

Contents

Certificate of Originality i

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Introduction to Web Applications . 2

1.2 Evaluating Web Applications . 3

1.3 Challenges in Developing Web Applications 8

1.4 Research Aims . 10

1.5 Approach . 12

1.6 Scope . 13

1.7 Innovation . 14

1.8 Thesis Structure . 16

2 Background 18

2.1 Introduction . 18

2.2 Inside Web Applications . 19

2.3 Web Application Design Techniques . 31

2.4 Web Application Software Environments . 36

vi

2.5 Open Frameworks . 41

2.6 Web Application Research Projects . 49

2.7 Related Technologies . 51

2.8 Summary . 57

3 A Presentation Service 58

3.1 Introduction . 58

3.2 Web Application Problem Space . 58

3.3 Design Concepts . 61

3.4 Synthesis of the Presentation Server . 68

3.5 Presentation Service Functions . 72

3.6 Architecture Features . 74

3.7 Summary . 78

4 Interactive Graphics for the Browser 79

4.1 Introduction . 79

4.2 The Browser Presentation Environment . 79

4.3 Current Techniques . 82

4.4 The Generic Graphics Applet . 84

4.5 Technology Evaluation . 96

4.6 Related Work . 98

4.7 Further Work with the GGA . 99

4.8 Summary . 100

5 The BUS Concept 101

5.1 Introduction . 101

vii

5.2 Developing a Browser-based User-interface Service 102

5.3 Application Communication API . 108

5.4 Building BUS Applications . 116

5.5 Technology Evaluation . 122

5.6 Summary . 125

6 Prototypes and Results 127

6.1 Introduction . 127

6.2 Experimental System Design . 128

6.3 A simple web forum application . 130

6.4 Situation Display Experiment . 139

6.5 Lightweight Collaborative Experiment . 142

6.6 Geospatial Integration Experiment . 144

6.7 Geospatial Applet Component Experiment 147

6.8 Virtual Reality Integration Experiment . 150

6.9 Evaluation of Experiments . 152

6.10 Summary . 159

7 Conclusion 161

7.1 Summary . 161

7.2 Benefits of Technology . 161

7.3 Significance . 162

7.4 Future work . 163

A Glossary 165

B Abbreviations 168

viii

C The Dynamic Markup Template language 172

C.1 Structure definition . 172

C.2 Expression definition . 173

C.3 Discussion . 174

D BUS Active Expression Syntax 175

ix

List of Figures

1.1 Web Application properties and benefiting stakeholders. 6

2.1 Components of the URL. 20

2.2 Web Protocol Layers. 20

2.3 Web Page Components. 21

2.4 Web application models. 22

2.5 Example of complex URL building code (from tiki-view forum.php in tiki

v1.9). 26

2.6 The complexity of real-world web application architectures. 28

2.7 Example of the Python in HTML template code style. 45

2.8 An example Mason component. 47

3.1 Shared services in a three tier model. 64

3.2 Architecture of a web application framework using a Presentation Service. . 70

4.1 Example of usage of the Vector Graphics Library (from [zor06]). 83

4.2 GGA Architecture Diagram . 85

4.3 Specification of GGA object creation commands. 87

4.4 Objects created and manipulated inside the GGA. 88

4.5 Specification of GGA default setting commands. 89

x

4.6 Specification of GGA group commands. 89

4.7 Specification of GGA object manipulation commands. 90

4.8 Specification of GGA set view commands. 90

4.9 Specification of GGA event messages. 91

4.10 Specification of GGA applet element options. 92

4.11 Business Chart Display Example . 93

4.12 Mapping Display Example . 93

4.13 Example GGA Commands . 94

4.14 Graph Display Example . 95

5.1 BUS to browser transaction chart. 103

5.2 GGA transactions with the BUS. 105

5.3 BUS Architecture. 105

5.4 BUS Design. 106

5.5 Inside a BUS transaction servicing a HTML request. 108

5.6 Operation requests sent by Application Components. 110

5.7 XPath syntax supported by BUS in object operations. 111

5.8 BUS messages sent to Application Components. 111

5.9 Dynamic presentation objects. 113

5.10 Attributes of GGA presentation objects. 114

5.11 Graphics creation elements in GGA presentation objects. 115

5.12 Action elements in GGA presentation objects. 116

5.13 Using the GGA UI component in a web page. 117

5.14 Syntax of messages using the BUS Control Port. 119

5.15 A distributed web application system example using BUS architecture. . . . 120

xi

6.1 The architecture of the prototype experimentation framework. 129

6.2 Web forum application design. 130

6.3 Program listing of the prototype web forum application. 134

6.4 Example of the data update format for the swforum application. 135

6.5 Example of a general purpose entry list component. 136

6.6 Example of the Dynamic Markup Template language. 138

6.7 Simple Situation Display. 139

6.8 A Situation Display with mapping and controls 140

6.9 Simple File Map Tool. 142

6.10 Maps displayed with GOL in OpenMap application. 144

6.11 Example commands for OpenMap GOL-based application layer. 145

6.12 Example initialisation data file for an OpenMap Applet application. 148

6.13 Examples of OpenMap Applet Javascript commands. 149

6.14 Message definition for S3DA input. 150

6.15 Flying POV example using the S3DA component. 151

C.1 Structural elements of the Dynamic Markup Template language. 173

C.2 Variables and expressions of the Dynamic Markup Template language. . . . 174

xii

List of Tables

1.1 Properties enhanced by Web Application support software (part 1). 6

1.2 Properties enhanced by Web Application support software (part 2). 7

1.3 Properties enhanced by Web Application support software (part 3). 8

2.1 File statistics for the TikiWiki PHP web application (version 1.9) 25

2.2 File statistics for the Plone web application (version 2.0) 27

2.3 File statistics for the Zope web framework (version 2.7) 27

4.1 Application Display Types. 81

4.2 Interactive properties of the Graph Display example. 96

4.3 Evaluation of GGA Web Application Properties. 97

5.1 Benefits of developing applications with the BUS. 122

5.2 Evaluation of BUS Web Application Properties. 123

6.1 Class statistics for the UI component applets 159

Chapter 1

Introduction

Since 1995, the internet has grown exponentially in both users and active servers. Once an

elite network for academics, the internet is now the foundation for many industries, a vital

business resource, the common communications tool, the centre of many social groups,

and a homework assistant. The internet age has been enabled by the rapid increase in

networking, the ubiquitous web browser application, available web server software, and the

HTTP, URL, and HTML standards. The World Wide Web (WWW or simply the Web)

is the emerging dominant information platform that is based on this internet technology.

As segments of business and social interaction have moved to the Web, the quantity of

information to be captured, managed, and presented has increased rapidly. Hand-crafted

static web pages authored by a web master are no longer sufficient. Demand has driven

the IT industry and open source developers to produce tools that enable non-expert users

to produce content, and enable IT staff to build and maintain large web sites.

The World Wide Web (WWW) is being used for increasingly complex application delivery.

The types of applications being built for the web include e-commerce, personal communi-

cation and coordination, data repository dissemination, and business workflow. Software

development projects created to build these new applications have to deal with a new set

of tools, components, and limitations.

This rapid growth in tools to enhance productivity, capacity, reliability, and security in

web sites has caused many problems for software developers. Many ad hoc tools have been

quickly implemented as a temporary solution and then built upon as demand has grown.

CHAPTER 1. INTRODUCTION 2

Standards for languages, protocols, and API access have been evolving rapidly and devel-

opers have freely extended or ignored them. Academic contributions to the field have also

been lagging behind, leaving developers without guidance on development methodologies,

user interface designs, applicable software patterns, and effective architectural frameworks.

This thesis consists of a study in technology, the innovation of a software design concept,

the innovation of a new graphics web component, and experiments on the application of

these new ideas. The study covers the techniques, technologies, and tools that underpin

the development of web applications. The focus is on the shortcomings of the current

development environment, and understanding the fundamental architectural themes that

web applications are built upon. The new software design concept is a presentation service

which is designed to mitigate some of the problems experienced in building and maintain-

ing web applications, and encapsulate some of the complex design that web applications

require. The new graphics component offers to bring general purpose interactive graphics

to any web application. It is a synthesis of many current designs that support graphics in

the browser, wrapped in an easy-to-use interface and adding hooks for flexible integration.

Finally, a number of experimental applications have been built and evaluated. The mech-

anisms of how these new concepts work are discussed with an analysis of experimental

performance and opportunities for future research.

This chapter introduces the web application subject and current challenges before outlining

the thesis aims and method. The original and significant contributions to the field are

summarised, and the last section provides an overview of each chapter in the thesis.

1.1 Introduction to Web Applications

The idea for the WWW can be traced back to a document called “Information Manage-

ment: A Proposal”, authored by Tim Berners-Lee in 1989 [Berners-Lee 89]. The original

design called for a network oriented primarily toward academic use with no clear distinc-

tion between a reader user and a writer user. Software and protocols grew (mostly due

to the contribution of key staff in CERN), and these new concepts were propagated for

wider adoption in 1994 [Berners-Lee et al 94].

In the early years of the internet, content was almost exclusively static text combined

CHAPTER 1. INTRODUCTION 3

with image files. Since the internet has become available at work and home to many

western world people, an increasing number of commercial, government, and community

customer services have been made available using the now well-known internet browser

user interface. These services are implemented as web applications. They typically receive

information requests from customer browsers and use server software to update agency

databases, then return pages of information to be displayed in the browser.

The popularity of web-based applications has grown rapidly over the period from 1995 to

2007. The web now has over 65,000,000 active web sites as of December 2007 [Net07], and

most of these sites are supported with web application tools to assist users in managing

content and deploying applications. The number of users on the web is also climbing. More

than 20% of the World’s population are now web users, and in developed countries, usage

rates exceed 75% [Min08]. Users are also spending more time using the web; in Australia,

users now spend more time using the web than watching television [Sultana 08]. This

huge number of web sites and active users drives the need for new and better methods to

manage web content and web systems.

Most major software vendors offer web application support as standard in new software,

and organisations are using this facility to build complex business-critical systems accessi-

ble from their intranet and the internet. The applications are closely integrated with the

organisation’s web site, and typically provide remote staff, customers, and business part-

ners a level of interaction with the organisation’s information systems. With a growing

trend to move organisation structure and processes into cyberspace, some organisations

are run where the web site is the organisation (eg: outsourcing companies, Sourceforge

development teams, and internet standards organisations).

1.2 Evaluating Web Applications

There have been many studies on the performance of different web technologies and on

how to manage these aspects of performance [Abdelzaher & Bhatti 99], but these works

focus on the quantitative analysis of resource consumption and scalability. One of the

problems in evaluating and comparing web application technologies is the difficulty of

assessing their qualitative properties [Wampler 01]. These qualitative properties are often

CHAPTER 1. INTRODUCTION 4

of more interest to the prospective developer that the quantitative properties. If the

number of web requests served per second on the server is poor, a larger server may need

to be purchased; however problems in reliability, interoperability, or flexibility may doom

a project that is based on this architecture, technology, or framework.

The performance of software is typically measured by the computing power needed to

support the internal algorithms, the memory space consumed, and the network bandwidth

used. In high-performance applications, or where the transaction rate is very high or

resources constrained, these performance measures may be the dominant factor in the

decision of whether to use this software; however web frameworks and services are not

chosen because of their minimisation of system resources, but their design features that

assist product development, application integration, system administration, and the user’s

productivity.

In most circumstances (looking at the total cost of ownership), the dominant factors in

the software domain that affect the organisation the most are:

• The cost and risk in developing solutions using this software,

• The difficulties in building collaborative software that allows staff or clients to work

together,

• The lack of flexibility and adaptability in resulting solutions,

• The frequency and severity of system unavailability,

• The ability to integrate with other current and future systems,

• The time required for developers to become proficient with this software,

• The usability (user learnability and efficiency) of user interfaces developed using this

software,

• The ongoing cost of being trapped into a particular operating system, programming

language, network service protocol, or database,

• The ease in reuse of existing internal and external working components, and

• The cost of infrastructure to support the software under typical and stressful user

loads.

CHAPTER 1. INTRODUCTION 5

These factors are, in part, affected by the properties of the supporting software used to

build systems. The other factors such as staff quality, management technique, executive

and user participation, and appropriate development methodology are outside the scope

of this study.

Web applications are more highly dependent on support software than other software

due to the complex and ever changing technology environment, the demand for good

web programmers, and short timeframes imposed on development teams. The software

supporting web application developers can be divided into developer support, web content

creators, and run-time support. Developer support tools are intended to help the developer

design and build software (not necessarily web applications) and include modelling software

and Integrated Development Environments(IDEs). Web content creators, interactively or

via batch mode, build and maintain web sites (eg: Microsoft Frontpage). The last category,

and the one I will be examining in this thesis, is run-time support software.

Run-time software support for web applications include frameworks, services, components,

and code libraries. This software is used as a foundation or parts of a programmed web

application. Examples include the Java environment, the .NET framework, the PHP

module, and the YUI Javascript libraries.

The properties of web application run-time support software is shown in Figure 1.1. A

link between a stakeholder and a property indicates that the stakeholder benefits from an

enhancement to this property. The use of a framework, architecture, component, or tech-

nology in the building of a web application will have an effect on one or more properties,

and therefore an effect on the efficiency or effectiveness of the work of the stakeholder

group. These properties are sometimes called Quality Attributes. The set of quality

attributes used in this thesis are a combination of those found in software engineering

[Barbacci et al 95] and those used in software architectures [Clements et al 02].

Around the properties are the Supported Activities. These activities are not directly linked

to a set of properties but located in an approximate position that indicates the type of

activity that is dominant in the spectrum of web application concerns.

CHAPTER 1. INTRODUCTION 6

Separation
of Concerns

Inheritance

Application
Architect

Application
Programmer

Network
Provider

Solution
Integrator

Infrequent
User

Experienced
User

System
Administrator

Enhancement
Programmer

Simplicity

Useability

Learnability

Consistency

Familiarity

Language
Independence

Encapsulation

Reuse
Modularity

Clarity

Applicability
Multiple

Interfaces

Open
Standards

Multiple
UI Devices

Interoperability

Efficiency

Scalability

Thin
Client

Platform
Independence

Manageability

Confidentiality

Availability

Integrity

Instrumentation

Maintainability

Interactivity

Collaborative

Multi
Media

Productivity

Orthogonality

Flexibility

Customisability

Configurability

Adaptability

Continuity

USE

MODIFY
LEARN

RUN

SUPPORT

APPLY

DESIGN

BUILD

Figure 1.1: Web Application properties and benefiting stakeholders.

The core properties which positively influence all stakeholders are the separation of con-

cerns, modularity, and simplicity. These properties are important in any system, and

systems operating in complex environments (such as web applications) require these prop-

erties to manage the tangle of interacting components, interfaces, and behaviours.

Table 1.1: Properties enhanced by Web Application support software (part 1).
Property Enhancement

Sep. of Concerns System division of work responsibilities with minimum
coupling.

Simplicity Intuitive, clear, logical, and minimal mechanisms.
Modularity Division of the system into interacting logical compo-

nents.

In Tables 1.1, 1.2, and 1.3, the properties are listed with a short explanation of the role the

property plays in web application development. Each property may enhance more than

CHAPTER 1. INTRODUCTION 7

Table 1.2: Properties enhanced by Web Application support software (part 2).
Property Enhancement

Familiarity Appearance and behaviour similar to established meth-
ods.

Learnability Intuitive functionality usable with minimal training.
Useability Support of efficient work practise with speed and control.
Consistency Uniformity of appearance and internal behaviour.
Orthogonality Independence of function, structure, presentation from

each other.
Interactivity Support for user control of the UI with rapid feedback

and updates.
Multi-media Support for integrated rich text, images, graphics, and

media file presentation.
Continuity Recovery from infrastructure faults and software en-

hancement with minimum user disruption.
Flexibility Breadth of functions, structures, and interfaces in the

design.
Customisability Support for users to modify system operation for opti-

mising work.
Productivity User or developer work efficiency.
Configurability System versatility by editing configuration without code

change.
Collaborative Facilities to connect user sessions to provide a common

workspace.
Adaptability Able to be easily adapted by programmers for new pur-

poses.
Clarity Ease of understanding of the design, languages, and pro-

tocols.
Reuse Use of existing resources in new roles.
Inheritance Building new components by referencing and extending

existing work.
Encapsulation Support for each aspect of the system in components with

clear APIs.
Lang. Independence Freedom of computer language in software enhancements

and applications.
Interoperability Open, flexible, and simple methods to connect with other

systems.

one aspect of web application design and use.

Note that these properties are intrinsic attributes of the technology or technique. Other

relevant properties are a product of the application such as workflow, data persistence,

value validation, and business rules. Another set of properties that would inform a decision

to adopt or purchase a new web application framework, architecture, components, or tools

would be the business properties. These properties (such as technical support, industry

acceptance, extent of documentation, compatible products, and programmer availability)

CHAPTER 1. INTRODUCTION 8

Table 1.3: Properties enhanced by Web Application support software (part 3).
Property Enhancement

Multiple UI Devices Support for multiple UI technologies including desktop,
web, email, and mobile.

Open Standards Use or provision of open published standards for lan-
guages, protocols, and components.

Multiple APIs Facilities for integration at multiple layers in the system.
Thin Client Minimisation of client platform configuration change to

support system.
Applicability Extent of application roles this software can be used in.
Scalability Ability to handle large datasets, transaction rate, and

user count.
Plat. Independence Minimisation of requirements for facilities supplied by a

subset of available computing platforms.
Efficiency Conservation of computing power, memory, disk space,

and network bandwidth.
Maintainability Ease of fault isolation and repair without side-effects.
Instrumentation Monitoring and presentation of system parameters.
Manageability Facilities to control running systems.
Confidentiality Protection of information from unauthorised access.
Integrity Protection of information or system from damage or loss.
Availability Ability to serve users with minimum interruptions and

failures.

must be considered for business reasons, but are not intrinsic properties of the technology.

Effective evaluation of web application environments would include the three core prop-

erties and capabilities in some of the other properties. The ideal web application environ-

ment would form the foundation of web applications that excel in all of the thirty seven

properties shown in Figure 1.1; however, as many of these properties require trade-offs in

the real world (such as flexibility vs. efficiency), there can be no perfect environment. My

goal in this thesis is to understand the available technology and current research, then

develop new concepts which offer enhancements in several of these properties.

1.3 Challenges in Developing Web Applications

One of the main reasons that web application development methodology and support has

lagged behind mainstream software engineering is the history of the web as a document

publication and dissemination medium.

CHAPTER 1. INTRODUCTION 9

Previous researchers [Gellersen & Gaedke 99] have described this aspect of the problem:

One reason for the lack of a structured approach may be in the Web’s

legacy as an information medium rather than an application platform. Web-

development is seen primarily as an authoring problem rather than a software

development problem to which well-established software engineering principles

should apply.

Another problem derives from the complexity in the web environment. The more sophis-

ticated web applications use a mix of Javascript, HTML, style sheets, Java applets, server

side programs, databases, email, security, and web server customisation to achieve the

required functionality. This combination of rapidly evolving protocols and technology has

uncovered a number of development and management problems that are not addressed by

traditional software engineering techniques.

The lack of formal development methodology, application layer models, or design pat-

terns applicable to the web application development domain have caused web application

developers to adopt ad hoc methods [Gellersen & Gaedke 99]. The vast menagerie of sup-

port software have overlapping concerns, different approaches, incompatible interfaces,

and immature documentation. Web developers use a set of familiar tools combined with

home-grown tools and custom code to assemble and grow web applications. These ad hoc

methods lead to inefficiencies, brittle systems, and unreliable operation.

Standard web applications typically use a large number of programs, components, services,

and configuration files located within the web server. This custom software uses a tangle

of code developed over years to receive user events, apply application logic, and process

database transactions. Differing web application architectures and components have trade-

offs in scalability, flexibility, performance, interoperability, and vendor lock-in, but the

combination of multiple types of architecture and components with custom glue code to

hold it together and adapt it to the user requirements is a source of failure for many web

applications.

CHAPTER 1. INTRODUCTION 10

In an analysis of the design of web applications [Brown 02], Brown stated in his thesis:

A successful Web application design must bring together three major ele-

ments: structure, navigation, and presentation. To bring these elements to-

gether in a Web application requires a clear and systematic design approach

that overcomes design problems related to separation of concerns, design frame-

works and patterns, and framework representation.

In this thesis, Brown went on to point out that intermixing of structure, navigation, and

presentation makes it difficult to organise, reuse, and extend the application. There is a

need for a comprehensive approach to web application development that is built on object

orientation and accepted design patterns.

A standard web component architecture that is independent of language and platform,

and uses strong architectural features such as object orientation, middleware, and multi-

tier concepts, is yet to be defined. There is currently no language-agnostic framework

for re-use and integration of DHTML [Niederst 99] [Goodman 98] content and structure,

event propagation (typically get and post requests), and presentation logic.

1.4 Research Aims

This thesis is centred on the user interface aspects of run-time support software for web

applications. The aims are to understand the architectural and technological concepts

behind the problems of building web application user interfaces, and create innovative

architectural and technological solutions that improve on the current state of the art.

The design of SQL database systems was influenced by the need to encapsulate the spe-

cialised and shared data handling requirement into a simple data service. The resulting

design hides the complexity of indexing, query optimisation, relational joins, disk space al-

location, multi-user access, error recovery, and caching behind a simple structured English

protocol exchanged over a network connection.

This thesis investigates how the concepts of the data service can be adapted to hide the

complexities of web application presentation mechanisms behind a simple protocol over

a network connection. The aim is to combine common browser display functions into a

CHAPTER 1. INTRODUCTION 11

long-running process that receives connections from applications that supply services, and

manage user events and UI generation with multiple user interfaces.

To understand the environment and create a presentation service, this study will be guided

by the following questions:

• What functions are needed within the service?

• How will multiple UI client protocols be handled?

• How will the service route user events to applications?

• How will presentation rules and data be handled within the service?

• What protocol will applications use to communicate with the service?

• What are the benefits of using the presentation service?

• What new capabilities become possible when using a presentation service?

• What are the limitations of the presentation service?

During the study, it became obvious that server-side innovation would be unable to address

a number of common web application requirements. The lack of interactive graphics

support, poor integration of graphics with surrounding web components, and page-oriented

transactions limiting interactivity and information currency, suggested the development

of a general purpose client-side graphics component with strong integration and server-

communications.

The study was expanded to also investigate the design of this client-side component.

This component extends the capabilities of the presentation service by providing graph-

ics capabilities, client side integration, and asynchronous events and commands between

applications and user interfaces.

This study will also seek to address these questions:

• What graphical functions are needed in the UI component?

• How would the component integrate within the browser environment?

• What is the protocol between the component and presentation server?

• What are the benefits in using this over current solutions?

• What are the limitations of the graphics component?

CHAPTER 1. INTRODUCTION 12

Overall, this thesis aims to answer the question:

Can a presentation service combined with the graphics component provide a

simple and powerful framework for implementing interactive and collaborative

web application user interfaces?

1.5 Approach

I have approached these problems with a combination of analysis, exploration, and ex-

perimentation. My first step was the research of the protocols and languages that make

up the web application environment. I then analysed common web frameworks, services,

components, and libraries, examining how they operated, and their features and perfor-

mance. Further study included a survey of current research in web run-time support

software. This introduction includes a definition of the properties I will evaluate to assess

web application technology.

To better understand the work of the web application designer, I designed and built a num-

ber of small web applications and a small web application framework (called WebFrame).

This experience provided an insight into the real issues programmers encounter when

building web applications for the real world. The complexity of all the protocols and

languages, combined with constantly evolving software tools and the lack of software en-

gineering support demonstrated to me that there was significant opportunity to create

innovative solutions that would have immediate impact.

My first innovation was the development of the presentation service concept. This service

would encapsulate some of the complexity of the UI code and provide a simple API for web

applications to use. I designed and built a browser-oriented version of the presentation

service called the BUS. The BUS was used in experiments to test a number of internal

logic designs, object structures, interfacing protocols, and communication languages. After

many trials, I achieved a flexible service that displayed many of the target properties (see

Figure 1.1).

A major limitation in the browser user interface was the lack of graphics support. After

further research in available technology and methods currently in use, I commenced an-

other development effort. The aim was a general purpose graphics component that would

CHAPTER 1. INTRODUCTION 13

integrate with the surrounding web page and act as another user interface device for the

BUS. The developed prototype was used to implement a number of interactive graphics

functions, and was found to not only meet the requirement, but offered many new web

application support functions.

To evaluate the BUS and UI component technology, I devised a number of experiments to

gather information on development effort and UI enhancements using the new technology.

The properties of the resulting web applications and user interfaces were evaluated to

determine which properties were improved by the use of this new technology. An analysis

of the enhanced properties provides evidence of the benefits of using the presentation

service and UI components in web application architectures.

1.6 Scope

The web application domain is a large area for research. My research is focused on

the techniques and technologies in building dynamic interactive web user interfaces. The

research will include the protocols and markup languages that web browsers use to interact

with web applications, and the current architectures and techniques used to generate

displays in user browsers and capture user events.

There are many other problem areas that contribute to make web application development

so challenging. These topics are worthy of study but are excluded from my research:

• Web application analysis and design methodologies.

• Development of models and resource generation.

• Site navigation schemes.

• Web page content layout and ergonomics.

• Interactive web resource editing tools.

• Programmer support tools (eg: IDE, RCS).

• Business modelling and code conversion and generation.

• Security (authentication, script/SQL injection, HTTPS).

CHAPTER 1. INTRODUCTION 14

• Engineering for reliability (eg: Error detection and recovery, load balancing, failover,

logging, profiling).

• Usage of proprietary products and protocols.

• Highly interactive UI applications (eg: paint, 3D games, video editing).

• Javascript libraries (Javascript is useful to enhance a UI; however, Javascript is an

enhancement rather than a part of the presentation service).

• Media without embedded hyperlinks (eg: audio, video, file transfers). Binary media

is served by the presentation service — not part of the presentation service.

• Web service protocols (SOAP, WSDL, UDDI).

• Web service architecture (where used in application and data layers).

• Project management, deployment, and maintenance.

In this thesis, I will use many common terms from computer science without definition, but

new terms or terms used in a different context will be explained in the text, the glossary,

or the abbreviation list. In particular, I will assume the reader is familiar with the basics

of the following topics:

• Internet network protocols (eg: TCP/IP, HTTP).

• Web markup languages (eg: HTML, XHTML, XML).

• Network programming (eg: Sockets, blocking, forking, threading).

• Web navigation (eg: Hyperlinks, URLs, forms, buttons, icons, frames).

• Basic software engineering (eg: Objects, modules, APIs, distributed systems).

• Database server architecture (eg: SQL, schema, client-server, data operations, data

storage).

1.7 Innovation

The value in this research work can be divided into three parts: the research and develop-

ment of a new presentation service, the research and development of a new general purpose

CHAPTER 1. INTRODUCTION 15

graphics component, and the experimental evaluation of a new web architecture based on

these two innovations.

The presentation service is a unique contribution to computer science. There are some

elements in common with database management systems and the X Windows system,

but the central concepts are my original work. Some early client-server research (such as

[Cassell 94]) explored the design of a presentation server, but this new work explores a

network component that offers services to both user interface components and dynamically

connecting applications, providing a separation of concerns between the users’ UI tools

and the application development issues.

The Browser-based User-interface Service is a prototype based on the presentation service

concept. The BUS is a long-running service that supports multiple user interface devices

binding dynamically to a user interface adaptor, and application components binding

dynamically to an application handler. The BUS encapsulates user interface protocols,

logic, and functions, simplifying the application design and improving the functionality of

web applications.

The GGA graphics component is also a unique contribution to computer science. There

is some superficial similarity between the GGA and applets such as the ROSA applet

[DM 02] and the CSIRO SVG Viewer [Robinson & Jackson 99]; however the GGA applet

offers asynchronous communications with a server using English-like commands, a rich

variety of event reporting (including drag and drop), and layer and group management.

This flexibility and ease of integration makes the GGA a very useful component that will

enhance the properties of many web application designs.

The employment of the BUS and the GGA require a rethink in the design of web applica-

tion architectures. To evaluate the enhancements to resulting web applications, I devised

and conducted six development experiments. Three of the experiments involved the de-

sign and testing of new UI components (the GOL for GIS integration, the OMA for GIS

encapsulation, and the S3DA which encapsulates a 3D world engine).

The properties of the developed applications and user interfaces were evaluated and found

to be significantly enhanced by the application of this new technology. The simplicity of

the resulting applications and the high functionality of the user interfaces provides evi-

CHAPTER 1. INTRODUCTION 16

dence to support my claim that the presentation service concept and generic-graphics user

interface components provide an enhanced architecture for the development of interac-

tive collaborative web applications. This unique technology has the potential to increase

web developer productivity and enhance the user experience in the huge web application

software industry.

1.8 Thesis Structure

This chapter has introduced the web application, and the problems developers have in

building them. The aims of the thesis were then stated. The methods used to investigate

the thesis problem and develop innovative solutions were discussed, and the scope of

the study defined. Finally, the original and significant contributions of this thesis were

presented.

In Chapter 2, I will describe in more detail the issues that affect web application developer

productivity and the quality of resulting applications. A review of major web application

architectures, technologies and tools is then presented, illustrating the diversity and com-

plexity of the web application environment. I will then describe some of the key software

engineering techniques that are often applied to the web application domain, and sum-

marise a number of web application research projects. At the end of this chapter, I include

a discussion of three related web technologies: SOAP services, rendering with XSLT, and

the new Web 2.0 technologies.

The concepts and technologies underpinning the new Presentation Service design are ex-

plored in Chapter 3. In this chapter, I describe how the service encapsulates user interface

functionality, and how the service is designed to interact with user interface devices and

application components. The key design concepts of the XML API, inversion of control,

management of presentation objects, dynamic client binding, and separate data context

are explained. This chapter is closed with a statement of the properties of the presentation

service concept, and how these properties assist the web application developer.

In Chapter 4, I describe the lack of support for interactive graphics in current web tech-

nology, and introduce a novel general-purpose graphics component called GGA. I describe

the key GGA design parameters before explaining how the component operates. I have

CHAPTER 1. INTRODUCTION 17

supplied example displays and examples of interface communications to demonstrate the

utility of the component and its simple yet powerful interfaces. The enhancing proper-

ties of the GGA are presented with links to the web application developer problems they

address. I have included a review of related research and opportunities to extend on this

work at the end of the chapter.

Chapter 5 builds on the presentation service concepts described in Chapter 3. In this chap-

ter, I introduce and explain the design and operation of a prototype presentation service

called the Browser-based User-interface Service (BUS). I describe the internal structure,

transaction patterns, and the XML language developed to communicate with web appli-

cation components. The BUS concept is then evaluated by analysing the benefits and

limitations in the web application developer context.

In Chapter 6, I present a number of experiments using the BUS and UI components.

I explore the experience of developing web applications using this new technology, and

evaluate the small web application code and user interface capabilities to determine the

advantages and limitations of the technology. The significant findings are presented at the

end of the chapter.

In the conclusion in Chapter 7, I summarise the work in the thesis and review the original

content. In this final chapter, I also state the significant contributions and potential for

impact in the web application architecture domain. Lastly, I propose several possibilities

for future work that have emerged from my research.

A glossary of specialist terms has been included in Appendix A, and a helpful list of

abbreviations can be found in Appendix B. Appendix C describes the syntax rules and

extra information about the DMT template language. The Active Expression syntax

introduced in Chapter 5 is described in Appendix D. A bibliography is listed at the end

of this document, containing entries for all important resources referenced in this thesis.

Chapter 2

Background

2.1 Introduction

There are a number of diverse web application architectures in use. The standard method

triggers the browser to request a static resource from the webserver which delivers it

from the server filesystem. Basic dynamic interaction is achieved through the return of

pages filled from an attached database. Some user interface functions (such as an outline

browser) or application logic (such a field validation) can be performed within the browser

by the addition of Javascript which operates inside the browser. For integration with multi-

page application logic and datastore access, the webserver may be integrated with servlet

or CGI programs [Tittel et al 95] that process the submission of user-completed forms. A

processor may also be attached to the web server which preparses special HTML files that

contain application logic embedded in extension tags. In the same way, complete programs

may be closely bound to the web server with APIs such as NSAPI, ISAPI, mod-perl, or

pyApache. Another option that exhibits good performance but poor interoperability is the

custom web server with integrated single-language support. Another approach is the large

single applet based application that uses the web server for deployment but otherwise

uses very little web functionality. The applet often is the only object on the page and

communicates with services on the web server host with JDBC, CORBA, RMI, or URLs.

Web application developers have a large number of software packages available to increase

their productivity and quality of developed applications. These packages assist the devel-

oper in different ways. Packages may be page editors, template based page generators, ex-

CHAPTER 2. BACKGROUND 19

tension modules, frameworks, code libraries, and web server application platforms. There

are categories of web applications that employ these packages in different ways. These

web application types are discussed in Section 2.2.2. This chapter analyses these web

technology platforms and investigates research in the complex domain of web application

architecture.

I will discuss the relevant characteristics of a selection of the most popular development

methods first. Next, I will discuss the advantages and limitations of a number of web appli-

cation development environments. Finally, I present a survey of web engineering research

prototypes and analyse how these prototypes address the problems I have identified.

2.2 Inside Web Applications

Web applications are differentiated from other applications by the use of a remote web

browser as a user interface. Additionally, the web application needs to act as a web server,

or work through a web server. The web application will typically run on the same host as

the web server because web servers are not designed to initiate other network services to

convert protocols. Instead, they support the web application via a custom extension API,

fork a separate process which will then executes the web application, or return Javascript

or browser components to the client that implement the application functionality.

2.2.1 Web Applications Operations

To interact with the web application, the user clicks on a hyperlink or button in the client

browser. This action triggers a potentially complex sequence of software events, then

the client browser will update the user’s window with web application supplied media.

The URL (Uniform Resource Locator) coded into the hyperlink or web form contains the

required information to identify the target web server, web application, and user data

parameters.

The components of the URL are shown in Figure 2.1. For web applications, the HTTP

protocol [Fielding et al 98] is usually used, though a secure HTTPS version can also be

used to encrypt client-server communications to protect confidentiality and data integrity.

The web server hostname is used to uniquely identify the target web server in the network

CHAPTER 2. BACKGROUND 20

where the web application can be accessed.

http://www.example.com/myblog/find?text=research&after=20040812

Protocol Web Server Host Resource Path User Data Parameters

Figure 2.1: Components of the URL.

First, the client host establishes a TCP/IP network link with the server host (see Figure

2.2). The Transmission Control Protocol (TCP) offers reliable point to point communica-

tion over network sockets, but until the development of HTTP 1.1, the connection was only

used for one transaction then discarded. Subsequent user clicks require the connection to

be re-established. This limitation is addressed in HTTP 1.1 where the TCP/IP socket can

be maintained over several HTTP transactions, avoiding the overhead of connection and

initiation of new sockets with each transaction.

Once the connection is made with the web server, the client transmits a HTTP (Hyper-

Text Transfer Protocol)1 request to the server containing the resource path and user data

parameters. The most common request types are GET to fetch new content without re-

questing any changes, and POST for submitting requests to take some internal action on the

submitted data (such as buying an item or subscribing to a journal). Other requests such

as HEAD and PUT are also used but are less common. After the client sends the request, it

waits for a server response.

Server HostClient Host

TCP/IP

HTTP

URL

Browser Web
Server

Browser
Window Web

Application

MIME

Figure 2.2: Web Protocol Layers.

1The HTTPS protocol has a more complex sequence of transactions between client and server, but as
this is handled by the browser and web server, and is largely invisible to the web application, we will use
the simpler HTTP protocol here.

CHAPTER 2. BACKGROUND 21

When the web server receives an HTTP request, it examines the resource path to determine

which action to take. This action is described in the web server configuration files which

are maintained by the web server administrator. If the resource path indicates a static

resource file, a separate web server thread or process is assigned the task of sending the

file to the client given the path of the file and the socket to the client. This leaves the

web server free to rapidly respond to other requests while other threads feed content to

the clients at network speeds.

If the resource path indicates that a web application is to handle the request, the web

server calls the web application with the path, header details, and user data. The web

application processes the user request then sends a response to the client containing MIME

(Multipurpose Internet Mail Extension)2 encoded data. As web applications use the same

URL request, MIME output format, and transaction sequence, client software and inter-

mediate services (such as proxy servers and firewalls) do not require changes to handle web

applications — the transactions appear to be identical to web requests for static content.

The content that is returned to the client can be of many types. The web page in HTML

format with embedded links to GIF, PNG, and JPG images is the most common content

used as static resources or returned by web applications. Other static resources (but rarely

dynamically synthesised by web applications) are plain text, document files (PDF), flash

animation (SWF), file archives (ZIP and TAR), Microsoft office files (DOC, XSL, and

PPT), movie (MOV, MPG, and AVI), and sound (WAV and MP3) content.

Style
Sheet
file

Javascript
Code
file Image files

<HEAD>

Java Applet file

Embedded
Javascript

Embedded
Stylesheet

Annotated Text

Form

Links to static files

External
Links

Internal
Web Application
Links

Dynamic content fetch

Structural Layout

Figure 2.3: Web Page Components.

2The MIME format was initially developed to encode multiple media segments in email messages and
was then adopted in the web environment for the same purpose.

CHAPTER 2. BACKGROUND 22

The dynamically generated HTML (HyperText Markup Language) page is the centre of

web application development. The HTML page communicates information to the user,

contains mechanisms to capture user information, and provides links to other information

in the user context. Information communication is supported by structural tags, embedded

graphics, and text annotation. User information can be captured using a form or selection

of a hyperlink in a list of options. Other links allow the user to navigate to another part

of the web application, change interaction focus to another web application, or request

static content. The creative combination (see Figure 2.3) of these elements implements

the user interface [Musciano & Kennedy 02].

2.2.2 Web Application Models

Web based applications are currently built using a number of different models. These

models illustrated in Figure 2.4 show the distribution of custom code (shaded parts) that

implements the web application inside the architecture.

Web
Browser

CGI

Web
Server

Database

Monolithic
Application

Browser
Components

CGI
Program

Server
Framework
Processing

Database
Web Server
Application

A B C D E

Figure 2.4: Web application models.

The A type uses a large client component such as a Java, ActiveX, or plug-in to em-

bed functionality and connect to remote data stores for client-server applications. The

network is typically used only for loading from the centralised software archive and for

CHAPTER 2. BACKGROUND 23

database transaction transport. This application type is common on intranets of large

organisations. The user interface, application logic, and data services are combined into

the same monolithic program.

The B type is often used for lightweight applications such as calculating the cost of prod-

ucts and services from an interactive form. The application flow, rules, and computation

code is embedded in the page markup language. Once the form has been edited for values

acceptable by the user and the embedded logic, the form may be submitted to the web

server which will pass the data to more sophisticated applications for further processing.

Complex AJAX applications also follow this model, using code in the web page to dynam-

ically load content and other code on demand. The user interface, application logic, and

data are embedded in the web pages.

Probably the most common type on the open internet is type C . A Common Gateway

Interface (CGI) program [Ramu & Gemuend 00] is a program spawned by a web server

for each URL request, takes a URL argument string and encoded form input on the

standard input, executes application logic, and outputs MIME content (typically HTML)

on standard output. The CGI programs can be written in any language but the most

common are Perl [Wall & Schwartz 92], C, and Python [Lutz 96]. One of the most common

functions of CGI programs is to take a set of variables generated by a user with a form,

store the data in an RDBMS, query the database for data to populate a new page with,

and generate that page. The user interface is mostly generated with strings in procedural

code with application logic, and data queries are combined in the same code to perform

updates and fill dynamic parts in pages. To help with managing the separation of the UI

from code, there are many template HTML generators for each language.

Another common type is D . Typical implementations of the D type are PHP, SSI,

PyApache, Perlmod, NSAPI programs, and Java Servlets. These applications are similar

in construction to CGI programs, but the server executes the code internally which gives

an increase in performance at the expense of server stability due to errors in application

code. Another species of this type is the application environment or engine that acts as a

web server. These style of application is often a complex cooperating set of components

and infrastructure operating in a single-technology web application environment. These

environments are intended for large scale developments and can be deployed with several

CHAPTER 2. BACKGROUND 24

different web servers, or their own internal server. Development suites such as Websphere

and .NET are examples of this model.

For data intensive applications, the E type is used. An RDBMS product will supply a

web-server front end to the database. Markup code is stored in tables, and application

logic is implemented in stored procedures or custom 4GL programs. These environments

are optimised for large-scale complex data displays and large-scale data entry operations.

Web page and data caching combine with low overheads due to presentation, business

logic, and database running in the same machine (sometimes in the same process), to

exhibit excellent performance. The limitations of this model are reduced interoperability

and flexibility, and difficulties in using the most appropriate components and development

environment in the system design.

Small web applications may use only one of these models, but large applications use a

number of these models in complex inter-related designs. The larger frameworks and web

application environments include software to support most of these models, although there

is a large variety in the extent of support, the functions implemented, and the interfaces

available.

2.2.3 Examples of Web Applications

I have selected two moderately large web applications to analyse. I have chosen open

source projects so I am able to access the source code. Both TikiWiki and Plone have

large numbers of deployed systems and are still in active development. I have measured the

amount of code and types of files to estimate the amount of development and complexity of

the web application software. These two examples illustrate the size of web applications.

The TikiWiki Web Application

The TikiWiki software is a Content Management System (CMS) developed using an open

source model over several years. It is based on the PHP language and MySQL database.

The release chosen for analysis is version 1.9. The line counts in the following section

includes comment lines and blank lines.

The application consists of 1384 PHP code files containing 326000 lines averaging 235 lines

CHAPTER 2. BACKGROUND 25

Table 2.1: File statistics for the TikiWiki PHP web application (version 1.9)

File Type Extension Count
Include inc 9
Code php 1384
Template tpl 567
Database sql 34
Javascript js 64
Icon gif 958
Icon png 176
Others – 691

TOTAL 3883

per file. The code uses some 1100 include calls and 651 require calls to reuse common files.

The application contains 567 template files that use the Smarty template engine. The

templates have 47000 lines together averaging 82 lines per file. The templates also have

reusable components requiring 479 include calls.

The application also has 12000 lines of Javascript in 64 files, and 4600 line SQL file to

initialise the 193 tables in the database.

The counts of files in Table 2.1 show the distribution of the 3883 files in the software

package. The application makes use of the Pear database service, Smarty templates, the

Adodb database interface to manage the architecture of such a large web application.

TikiWiki also encapsulates the Galaxia workflow engine, which also adds to the size and

complexity of the application.

The Smarty template uses assign calls to link data with an internal variable name. For

example:

$smarty->assign(’varname’, $data);

$smarty->assign by ref(’varname’, $data);

The linked data can be the name of another template (eg: mymenu.tpl) to adapt the

display using the referenced component. In TikiWiki there are 7115 calls to assign data

to a variable, of which 283 are template component replacements. The actual template

rendering is performed with a call like:

$smarty->display(”templatename.tpl”);

CHAPTER 2. BACKGROUND 26

In the application, there are 1277 calls to render a Smarty template.

$url = ’tiki-view forum thread.php?comments parentId=’

. urlencode($threadId)

. ’&topics threshold=0&topics offset=1&’

. ’topics sort mode=commentDate desc&topics find=&forumId=’

. urlencode($ REQUEST[”forumId”]);

Figure 2.5: Example of complex URL building code (from tiki-view forum.php in

tiki v1.9).

One of the most common code segments in the TikiWiki application is the creation of a

URL from constants and variables. A typical example is shown in Figure 2.5. Extensive

use of this repetitive type of code with complex syntax involving a range of carefully placed

punctuation characters and URL-escaped variables increases error rates and maintenance

problems.

The TikiWiki application is a large and complex application. The Smarty template library

and Pear database library are used to enhance the web application, but complex, tangled,

and repetitive code sections are common. Large web applications are difficult to design,

build, and maintain.

The Plone Web Application

The Plone web application is a CMS built on the Python Zope web framework. The 91000

lines of python code reside in 803 files. There are a total of 513 template files containing

38000 lines. In Table 2.2 we see the distribution of file types in the 2536 files in the Plone

application.

The Plone application is built with the Zope, which is included in the downloaded archive.

Zope includes a web server, web server adaptors, template engines, an object database,

and management functions.

There are 210000 lines of Python code in 1045 files implementing Zope. There is an

additional 34000 lines of C code in 69 files that implement speed sensitive functions.

Another 204 files contain 14000 lines of template code. The framework includes 438 files

containing documentation.

CHAPTER 2. BACKGROUND 27

Table 2.2: File statistics for the Plone web application (version 2.0)

File Type Extension Count
Python code py 803
Template dtml 224
Template pt 241
Template zpt 48
Javascript js 37
Stylesheet css 16
Document stx 56
Document rst 14
Document txt 100
Icon gif 171
Icon png 82
Others – 744

TOTAL 2536

Table 2.3: File statistics for the Zope web framework (version 2.7)

File Type Extension Count
Python code py 1045
C Code c,h 69
Template dtml 204
XML xml 56
Document stx 190
Document html 146
Document txt 102
Icon gif 97
Others – 659

TOTAL 2568

The counts of Zope files are shown in Table 2.3. The Zope framework is the most mature

of all Python web application frameworks, but it often criticised for its complexity (as

hinted at by the 438 documentation files). Together, the two-layer Plone and Zope CMS

require over 5000 files containing 380000 lines of code.

2.2.4 Problems in Building Web Applications

Large web applications typically grow from smaller web applications. The application

might start out as a simple CGI script on a shared server, and be continually modified as

the demand for the service grows. The number of users and the amount of content can

expand rapidly (eg: the Slashdot effect). Programmers frantically extend databases, add

CHAPTER 2. BACKGROUND 28

new features, glue on authentication, page templates, usage reporting, access control, RSS

feeds, and dozens of other capabilities. New sections may be built within a framework

(intending for the older code to be migrated in the programmer’s free time), useful CGI

programs installed, other web applications used as sub-services, and gateways to non-web

applications. This tangle of code, displays, and data is held together by configuration

files, hyperlinks, shared database tables, and custom protocols and mini-languages. Such

a web application is illustrated in Figure 2.6.

Web
Browser

CGI

Web
Server

Database

Filesystem

Custom SoftwareStandard Software

Figure 2.6: The complexity of real-world web application architectures.

This complex architecture is not the result of design. It is the product of rapid growth,

the complexity of the technology, unclear user requirements, and a lack of standard archi-

tectures, patterns, and interfaces from software engineering.

The lack of architectural guidance and frameworks has encouraged web application design-

ers to build designs that are based on previous experience or available tools. This has led

to problems in maintaining many home-grown frameworks, protocols, services, and code

libraries. This custom code is often written for an outdated version of a web protocol and

single operating system or product, which limits integration options and interoperability.

Most web applications are designed to perform one task and integrating the functionality or

merging the output with another application is difficult without deliberate design. There

is currently no standard environment to ease the application interoperability task.

CHAPTER 2. BACKGROUND 29

As many applications are designed without a scalable architecture, increasing throughput

often means a significant redesign of the application software. Many applications use a set

of CGI scripts, servlets, or PHP programs each of which generate a user interface, imple-

ment application logic, and execute transactions on the database. As applications grow

this architecture becomes unmaintainable, and inconsistencies and subtle errors become

common.

Tangled code also causes problems with the consistent look and feel in the user interface.

Programmers build their own interface generation code within the application software

and use hand coded HTML pages when possible. The different icons, navigation methods,

layout, link conventions, and site structure increases the mental load on the user.

Web application software is hard to build, test, and maintain as the web environment

is complex and always changing, making developed content hard to reuse. A multitude

of modules, components, and interfaces are available for developers in each of the main

languages of Java, C#, Python, Perl, Ruby, C, C++, and PHP but this does not solve

the problem. Different approaches, non-standard interfaces, and complex functions cre-

ate problems in reusing components within applications. Reusing components between

languages and platforms has not been achieved.

Web application solutions are typically targeted at a single RDBMS product, a server side

language processor, a particular web server, or a particular server or client platform. The

choice of solution constrains the organisation to applications supported by the product

and limits interoperability and migration to other environments.

The web protocols and technology offer little support for software engineering during de-

velopment or maintenance. The ability to re-use developed HTML, Javascript, stylesheet,

and applet content is vital for efficiency, consistency, speed of development, error isolation,

and change control. Using an object oriented [Booch 91] web object structure allows the

developer to use inheritance to build more specialised objects from base ones, aggrega-

tion to compose an object hierarchy, and encapsulation to hide data and methods within

objects. Although object oriented languages are widely used (such as C++, Java, C#,

and Python), there is little use of object orientation in web engineering, even though it is

accepted as a vital concept in the rest of the software engineering field. The web proto-

cols do not use object concepts, web servers do not use reuseable object structures, and

CHAPTER 2. BACKGROUND 30

developers find it hard to make application code communicate objects to other services

based on a different language or platform (although CORBA[Obj95] and more recently

SOAP[Karmarkar et al 07] have been used with some success).

Intrinsic Web Application Limitations

The page-oriented nature of HTTP ensures that a page will remain visible in the browser

even if the network connect is broken, the server crashes, or the user leaves the browser

window open for days or weeks. The user may even be able to fetch the page from the local

cache if the network or server is unavailable. This feature seems like a benefit; however

this creates severe problems for the web application designer. A web application may be

asked for a resource that has not existed since it was deleted weeks ago, so the programmer

must design the application to respond to the user’s request in a logical and consistent

manner. This may require the display of an error message or the display of an updated or

closely related resource.

This problem [Theng & Thimbleby 98] is typically referred to a the Lost in Hyperspace

Problem or the Time Travel Problem because this error is caused by a request from a URL

that existed previously in time. User bookmarks (or “favourites” in IE) only amplify this

effect, as users may click on a bookmark to a dynamic resource from years before, which

will be very confusing to the business logic in the web application.

The most significant danger from this circumstance is the re-issue of a GET request that

has side-effects in the web application. The re-issue of a POST request will prompt the

user for confirmation before continuing, but a GET request will be transparently sent to

the server. A bookmark with the URL to a GET request such as:

GET /docfixer?filter=“all”&action=“delete”

could delete all the documents in storage, which may have been useful during the testing

phase but has immediate and catastrophic consequences when selected (even accidentally)

during operation. This is an extreme example, but other subtle effects are almost as

dangerous. Competent web developers ensure that only idempotent requests use the GET

method, and others use the POST method. The REST design pattern (see section 3.3.1)

is very effective at mitigating the time travel problem, but requires a significant change in

CHAPTER 2. BACKGROUND 31

application architecture with which many tools are not compatible.

A related problem which is common to all multi-user systems is conflict resolution. A user

may view a page that indicates a resource is available, yet when a form is submitted to

perform an action on the resource3, the resource may have been deleted or changed by

another user. The web application must recognise the conflict and resolve it (typically by

displaying the conflict to the user and offering a choice of recovery actions). The impact of

this conflict is exacerbated by complex transactions involving internal state. For example,

the user may not wish the transaction to proceed if one item of the order is no longer

available or has changed specification.

The page-oriented transaction protocol does not support real-time adjustment of display

control widgets or provide real-time notification of a change of state in the web application

on the server. The creative use of Javascript (see AJAX in section 2.3.4) can alleviate

this problem with asynchronous data exchanges with the server, but no standard exists

for real-time interactivity.

The browser is designed to render HTML using internal algorithms that implement the

semantics of the HTML language. This reduces the UI programming load on the program-

mer by supplying many native UI components which are standard across all browsers4;

however this automatic layout with native components limit the options for the web de-

veloper.

2.3 Web Application Design Techniques

2.3.1 Web server applications

An early method of building web applications involved the close integration of the custom

code with hooks provided in the web server itself. The HTTP request and resource pro-

cessing and transmission can be intercepted at any point to replace standard methods or

insert additional methods. The Microsoft web server offers this feature through MSAPI,

and the Netscape server uses the NSAPI.

3This resource may be goods at an auction, a car, a document, or a task. The action may be to buy,
sell, hire, review, delete, or read. I shall simply refer to a resource and an action in this section.

4Browsers do not in fact follow standards exactly, and much programmer effort is required to ensure
applications display and behave in the correct manner in each major browser release.

CHAPTER 2. BACKGROUND 32

Building applications into the server with the API allows applications to extend web server

functions such as authentication, access control, resource pre-processing, and logging,

as well as typical business functions. This web application method results in fast and

highly flexible applications, but offers no support for architecture, distributed components,

multiple independent developers, or multiple languages. Developers are expected to take

control of the web server and manage all aspects of server operations and extensions.

2.3.2 CGI programs

Some of the first Web Applications were built using simple programs called using the

CGI protocol [Coar & Robinson 99]. The CGI program is executed as a separate process

every time the web server receives a URL request from a client that uses a URL path that

corresponds to that program. A string containing a set of name–value pairs is supplied

to that program as the standard input stream (stdin) or as a command line argument.

The program takes application-defined actions on the input data and returns output data

to the web browser in the form of HTML page, GIF image, or other browser-understood

format.

One of the biggest problems in developing CGI programs is the computing cost and re-

sponse delay caused by the spawning of a new process to handle each web request. The

web server typically forks, executes the CGI program in the child process, and passes re-

quest information to the program on its stdin file handle. The program executes, returns

a HTTP header and MIME content on stdout, and then terminates.

2.3.3 CGI Scripts

Short programs written in a scripting language is a fast and simple way to build small web

applications. Interpreted languages such as Perl and Python are ideal for this and are used

widely. The flexibility and rapid development speed of the script-language solution is off-

set though by its additional load on the server and delay in user interface response. For a

script-based CGI program, the web server has the extra overheads of initialising a script-

ing environment, loading script modules, and possibly dynamic compilation. Scripting

programs also run slower and consume more computing resources.

CHAPTER 2. BACKGROUND 33

In some ways a script program is more reliable that a compiled program due to the

automatic memory management, exception control, and the absence of the common null-

pointer error; however, the dynamic typing and object polymorphism used in scripts can

mask subtle design and coding errors that might only become visible in production use.

Security is also a concern in interpreted scripts, as user entered data can be executed in

a poorly written application, allowing hostile programs to be run using the host process

user id and resources.

user_age = eval(page.age)

if user_age < 5 : theme = play_school

If page.age contains "3" or "2007-1968", the program works correctly, however a user

value of "os.unlink(’program.database’)" may cause severe problems. This script-

injection attack vulnerability is a major reason against using scripting languages for

internet-based (public access) web applications. Script applications have to be carefully

designed to keep user-defined data separate from data which may be executed by the

interpreter.

2.3.4 AJAX

The AJAX (Asynchronous Javascript and XML) approach is designed to mediate between

the user and web services via scripts that execute within the client browser. The AJAX

code is embedded with the web page or attached as a library, and performs actions as

requested by user and system events. The primary aim of this technique is improved

usability through higher user interface response.

User interface widgets, simple business functions (such as field validation), and context

dependant data fetches improve interactive experience and minimise page transactions.

Data is mostly transfered in the XML format, however alternatives such as JavaScript

Object Notation (JSON) [JSONspec 06] and MIME types are now popular alternatives.

This technique has roots in 1996 and 1997 with the IFRAME and LAYER DHTML com-

ponents, that were able to dynamically fetch content under Javascript control. The dy-

namic content technique evolved through several generations before reaching its current

XMLHttpRequest form.

CHAPTER 2. BACKGROUND 34

This usage of the web page as a “mini-application” brings a number of problems. The

user is often unable to bookmark a particular information configuration, and must navigate

through the dynamic page upon each visit. A related effect prevents a user from returning

to the previous information view by using the ”back” button (instead, the browser returns

to a previous ”mini-application” or launching page). Users may also become frustrated

with delays in content update due to hidden client-server transactions. Search engines

will also have trouble with indexing page content, as the engines use static content – not

dynamic content.

2.3.5 Server-side template scripting modules

The web server can be configured to pass specially designated files through an associated

script processor. The processor searches for encoded sequences in the text content, and

substitutes a computed result in its place. The computed result may be a content fragment

from the file system, a formatted data item from a database, or content created by a

transform based on the coded sequence - such as a graph, bar chart, or formatted string.

Typically, page names with a recognised active extension (such as .php .jps .asp) are routed

to the appropriate engine for processing before returning the result to the requesting

browser.

2.3.6 Database with server

Database vendors offer database management products with built-in web servers. The

application functionality and user interface templates are stored in database tables and

dynamically assembled to produce business applications. These products are designed to

excel in data intensive applications as data transactions operate at high speed due to the

close binding of the database, application code, and user interface components.

2.3.7 Java Servlets

Servlets are small application programs or components written in Java and configured

with the web server to service requests from client browsers or software, in a similar way

to CGI programs. Servlets can use Enterprise JavaBeans for rich functionality and JDBC

for connection with databases.

CHAPTER 2. BACKGROUND 35

2.3.8 Applets

Web applications are often built into a Java applet that executes on the client machine.

The client applet will have its own multi-page GUI (using a Java library such as AWT or

Swing) and conduct transactions with a remote database using JDBC in the familiar client–

server pattern. The main web advantage being exploited is the freedom from managing

the client machine software configuration - as it is downloaded from the server on each

invocation. As the client CPU performs most of the business computation, the server has

a lighter load.

Microsoft’s ActiveX components are very similar to Java applets, and provide complete

application development support with access to remote databases and integration with the

client Microsoft operating system. These components are limited to Microsoft browsers,

protocols, and operating systems so have constraints on portability and integration hooks,

though they offer a rich functionality in a 100% Microsoft environment. These components

are available to provide extra simple widgets up to complex client-server applications.

2.3.9 Client scripting

Simple application functionality can be built using client side scripts in the HTML pages.

These scripts are mostly written in ECMAscript (also known as Javascript) and implement

functions such as:

• Data field validation,

• Mandatory field completion checks,

• Dynamic response of the user interface to entered choices,

• Conditional content depending on browser type and version, and

• Graphical changes dependent on pointer location.

Client scripting is mostly used in conjunction with other techniques to improve the user

experience by making the user interface more attractive, interactive, and functional. The

JSON data format was created specially for Javascript clients to communicate with server

processes. A simple JSON [Sim] is also available with direct mapping to Javascript objects

and Python objects.

CHAPTER 2. BACKGROUND 36

Some of the more common Javascript client-side libraries are:

• Mochikit [jsMochi 06]

• Dojo Toolkit [jsD]

• Prototype [jsP]

2.3.10 Web application frameworks

The web application framework is a cooperating suite of software components that sup-

port the common web application functional blocks. Frameworks typically bind to a web

server (or implement an internal web server) and link to one or more web applications

via developer configuration changes. Common components in a framework include session

management, authentication, data validation, execution of application code in threads,

database access (often with object-relational mapping), template based rendering, AJAX

extensions, and error recovery. The framework operates by incoming web requests, inter-

preting the URL and associated data, and launching the appropriate application code to

handle the request. The application would execute using extensions to base components

and interact with framework services, before return MIME content to the framework

for routing back to the requesting browser. Some frameworks are lightweight with one

template component, a database interface, and a web server binding. Others are very

complex involving hundreds of components and many framework interfaces and protocols.

Very large and complex web frameworks with extensive support packages and tools could

be called a Web Application Software Environment.

2.4 Web Application Software Environments

An option for large-scale web application development is the Web Application Software

Environment. These software suites attempt to provide a complete solution to the web de-

veloper’s requirements. They incorporate frameworks, communication protocols, common-

use functions, reusable components, and development support tools. The advantages for

developers include pretested inter-operating components, extensive documentation, user

interface consistency, and a large community of users. The disadvantages are: complexity,

CHAPTER 2. BACKGROUND 37

mandatory framework and design patterns, lack of interoperability with other technologies

and environments, system and product dependencies, flexibility limited to current compo-

nent function, reliability dependent on provided infrastructure, and useability of the user

interface limited to current display components.

The environments are popular in large commercial development teams, as they provide a

common infrastructure, protocol and toolset that all developers can build with, avoiding

specialist technologies or products that isolate developers and create a maintainability

problem when key skilled personnel leave.

Some of the main web application environments are described below and a discussion of

the use of these environments follows.

2.4.1 Java

Struts is a Java framework for building web applications. It provides: a request handler

to allocate web requests to a URI, a response handler to manage a resource that pro-

cesses requests and generates a response, and a tag library to create dynamic web forms.

Struts is designed on the Model-View-Controller (MVC) interaction pattern, and builds

on J2EE technologies with servlets, Java Server Pages, and AJAX. Stripes is another Java

framework that extends Struts with validation, file upload support, page wizards, and

configuration improvements.

Shale is a new Java-based web application framework that weaves several strong Java

technologies into software that is designed to succeed Struts. This framework is imple-

mented as a modular set of services which enable flexible development of service based

architectures. It uses a servlet container infrastructure, Java Server Faces (JSF), JSP

Standard Tag Library (JSTL), several Jakarta Commons packages, and other powerful

Java software.

Java Server Pages (JSP) are HTML or XML pages that have Java code sections that

implement dynamic behaviour at display time. The first time they are viewed, the JSP is

transparently compiled into a Java servlet (see section 2.3.7), and executed by the server

Java Virtual Machine (JVM). This compiling phase introduces a delay on the first use,

but users can expect servlet performance on subsequent use. The classes used in JSP

CHAPTER 2. BACKGROUND 38

are JavaBeans (EJB), and the rich variety of EJBs (such as Object Relational Mapping

(ORM) to a database) allow most classifications of web applications to be constructed.

Web applications that have a design based on many template pages with small amounts

of embedded business logic are well suited to the JSP development style.

The JSF is an application framework that includes a controller servlet, JSP templates,

state maintenance, field validation, and support for custom components. It builds on many

of the concepts in Struts and Swing and is IDE friendly. JSF was intended to complete

with the Microsoft .NET environment.

Another Java framework is Spring. This framework uses the MVC design pattern to

separate database, business logic, and presentation. The configuration is maintained in

XML files that include page flow and navigation rules.

The Apache Software Foundation project Wicket is a lightweight web application frame-

work that has a number of novel features that make it attractive to developers needing an

object oriented approach with built-in design pattern support. Wicket comes with authen-

tication, authorisation, a test framework, and a set of plain Java classes to inherit from.

Applications run in a servlet container using XHTML compliant templates and plain Java

code.

The wingS [Engels et al 07] framework brings the models, event, and listener features from

Swing into the web environment. A servlet API governs user interaction, and Swing-like

components are called via a session control layer when triggered by user events. The

wingS framework is novel in that it successfully adapts a desktop Java framework to the

web environment.

There are many other web tools and frameworks developed under the Apache Software

Foundation. This Apache software includes major packages such as Jakarta, Tomcat, Axis,

Geronimo, Turbine and Velocity.

The huge range of Java-based web application tools and frameworks offer many ways to

build web applications. The majority of this software is mature and well designed, and in

use in thousands of projects around the world. One of the limitations of the Java technol-

ogy is complexity — Java has migrated from a useful tool to help develop web applications

to a career choice. The complexity requires full time dedication and immersion to capi-

CHAPTER 2. BACKGROUND 39

talise on the benefits of the technology, raising a culture of mono-technology specialists

that place little emphasis on interoperability, simplicity, and elegance5.

The Java framework software has constantly evolved through releases, redesigns, and inter-

species competition to a current level of holding the standard in large scale web application

development infrastructure. Its very success however has created a wall to adoption with

the steep learning curve of hundreds of thousands of pages of documentation and hundreds

of APIs. Java has a dominant position among many professional developers yet many

smaller and simpler web application technologies thrive.

2.4.2 Macromedia

The Macromedia technologies provide a rich graphical UI for the user with high interactiv-

ity, attractive display widgets, animation, graphics transforms, and a wide variety of fonts.

The custom client display engine, server infrastructure, and special-purpose client-server

protocol is an alternative to the standard HTML over stateless HTTP designs.

The Macromedia web applications use Flash MX for user interface display and interaction

and ColdFusion MX for server interfacing. The developers use DreamWeaver MX as an

IDE to build the applications. The applications are rendered in the browser using Shock-

wave (SWF) media files which have embedded ActionScript code to implement application

behaviour at the client side. Shockwave applications do not use HTML to interact with

the user, but its own UI components much like a Java Applet does. Because of this heavy

client design, most of the application processing is built into the SWF client which im-

proves UI response time, frees the server from most application processing (improving

server scalability), and reducing network utilisation. The clients communicate with the

ColdFusion server via Action Message Format (AMF) transactions.

The server is built using Cold Fusion Components (CFC) that provide server-side functions

such as database access. These components are created using the Cold Fusion Markup

Language (CFML) and use the Flash Remoting interface to connect to clients, and the

Cold Fusion MX infrastructure for basic services. Servers can also be implemented in Java

or .NET technologies.

5In this software context, I intend elegance to mean having the properties of balance, efficiency, cognitive
resonance, and linguistic clarity (ie: to the experienced eye, it looks right).

CHAPTER 2. BACKGROUND 40

Adobe AIR

Adobe have created a new product that is based on a rich application platform for the

desktop that is an alternative to browser-based tools. The AIR platform supports an

enhanced set of SWF protocols and integrates with the local filesystems and desktop,

incorporating standard desktop application functions such as cut-copy-paste and drag-

and-drop. AIR applications are packaged and digitally signed, then installed on the client

machines.

The AIR concept offers re-use of developers’ skills and existing tools (in the flash domain)

and integrates well with the Microsoft Windows desktop, but the technology has split

from the standard browser-based web application architecture. AIR applications lack the

ability to be integrated into other web applications and miss the benefits of server-based

software, session, and data management.

2.4.3 Microsoft

Microsoft’s tool for delivering dynamic web content is called Active Server Pages (ASP).

The ASP pages are text files that are preprocessed by the Microsoft Internet Information

Server (IIS) and sent to client browsers in the standard HTML format. The active part of

the page can be coded in Visual Basic or Microsoft’s JScript and connect to databases with

ODBC. Hypertext pages can be dynamically created by server-side scripts, scripts within

hypertext pages can add functionality, and embedded ActiveX components (which work

similarly to Java applets) provide additional interactivity. ASP.NET Web Parts connects

to SQL server and Internet Explorer sessions to provide a GUI development environment

for web application construction.

Microsoft’s current flagship web application environment is .NET. This environment pro-

vides the infrastructure to support a cooperating system of web components using presen-

tation generation, business logic, and database access technologies tied together with the

COM+ proprietary protocol. The components use the Microsoft C# language to extend

supplied classes that provide common web application functionality. Applications are de-

signed and implemented inside Microsoft Visual Studio, a sophisticated single-technology

Integrated Development Environment (IDE) that uses wizards, drag and drop designers,

CHAPTER 2. BACKGROUND 41

and interactive debugging. Some of the more powerful abilities of .NET include: database

interfacing provided by the System.Transactions service, authentication implemented with

the Membership Provider, page flow specified with the Wizard Control, and page content

and behaviour encapsulated in a Master Page.

Provided that developers are willing to build complete web applications using the .NET

architecture and infrastructure, the environment offers many components, services, struc-

tures, and tools to assist the web development team in rapidly building sophisticated web

applications. The obvious limitation of this approach is the complete dependence on a

single technology and product provider, and the imposed restrictions on interoperability

with other non-Microsoft web application technologies.

2.4.4 Limitations in using Commercial Environments

Many development environments have been developed and sold to assist web application

developers. This software is designed to be a product that generates profit for a company,

so the architecture is constrained to “lock in” customers to the methodology, training,

support contracts, design patterns, interfaces, and protocols embedded within the vendor

product range. This insular and myopic approach to web application software offers some

benefits in “one stop solutions” but limits the flexibility, integration, and interoperability

of applications. Productivity is also adversely affected. Developers must use components

that are not well suited to the requirement as this is the only option provided by the

vendor. Errors in closed software can only be fixed by the vendor, so developers must wait

for the error to be fixed, or substitute a “work-around” which is usually brittle and hard

to maintain.

2.5 Open Frameworks

2.5.1 LAMP

Many web applications are built using what has come to be known as LAMP technology

(Linux OS, Apache web server, MySQL database, and Perl, Python, or PHP code). All

of these systems are open source and designed to work together. In addition, there are

abundant extensions and tools to support the web application developer.

CHAPTER 2. BACKGROUND 42

2.5.2 PHP

The PHP (PHP Hypertext Processor) module is one of the most popular open source web

application development tools. There are over two million Apache servers running on the

internet with an enabled PHP module [Sec02] as of May 2002. The PHP module is often

used as part of a LAMP web application environment, which is a combination of free and

open components that form an effective infrastructure for web applications.

The PHP program that implements the business logic is embedded in sections of extended

HTML pages. The web server passes these pages to the PHP module for execution when

the user sends a request for this URL. The PHP module executes the code sections within

the HTML and replaces the code with HTML output — which is often fetched from a

database. A rich array of functions, network protocols, content generation, and database

interfacing are built in for application construction, and over 50 code libraries are available

for many application support needs.

To improve speed, run-time compilers are available that compile and optimise PHP code

on demand, then cache the high-speed code for subsequent access. A database access

library called Pear provides some separation between the business logic and data access

protocols and formats.

The Smarty [Maia 02] Template Engine employs a strong separation between business

logic and presentation logic by using a PHP template library to handle HTML generation

from within PHP applications. For speed and efficiency, Smarty templates are compiled

into PHP code, may then be run with a PHP accelerator, and is cached for fast loading.

Smarty can be extended with add-ons and plug-ins, but it is limited to PHP applications.

2.5.3 Python Web Application Frameworks

Python is a language that has deep support for web application frameworks, and Python

developers have produced several mature frameworks and many experimental frameworks.

The included web-support modules in the Python software package make it easy for devel-

opers to experiment with new web framework concepts, and this has been the genesis of

many of the frameworks below. The abundance of many external web application support

libraries has been suggested [Gregorio 06] as another reason for the many Python web

frameworks currently available.

CHAPTER 2. BACKGROUND 43

Django

Django is a popular and mature framework that manages UI templates, URL dispatching,

caching, database operations, and many lesser functions. Web applications are built in

Python using the defined APIs and scripts. Django can be configured to use many different

types of web server front ends, and relational database back ends. It also has modules

available for administration, syndication, authentication, and other common requirements.

Pylons

The Pylons framework complies with the new WSGI specification, which allows it to

support middleware components at many layers in the web application processing chain.

Database interactions are controlled through the SQLAlchemy or SQLObject ORM mod-

ules. The output content can be generated by a number of template-based modules:

• Mako,

• Genshi,

• Jinja,

• Kid,

• Cheetah,

• or other generator compatible with the Buffet middleware.

The framework is adapted for use with Javascript libraries (such as Mochikit and Proto-

type) for AJAX-oriented applications.

TurboGears

TurboGears [Ramm et al 06] had its first release in June 2005, and rapidly became popular

as a useful and stable web application framework. It was designed in reaction to the

multitude of complex and hard to maintain frameworks that tangle application logic, user

interface code, and database code. TurboGears uses the MVC pattern to separate its three

main components: the SQLObject database interface, the Kidd templating engine, and

CherryPy web server interface.

CHAPTER 2. BACKGROUND 44

Zope

Zope is an open source web application environment produced by Digital Creations and

is one of the oldest and largest of the Python frameworks. The Zope package includes an

internet server, a transactional object database, a search engine, a web page templating

system, a management tool, and extension facility.

An internal multi-threaded web server called ZServer is included in the Zope framework,

but Zope can also bind with an external web server using FastCGI or Persistent CGI

(PCGI). The Apache web server has a FastCGI module which can send requests to the

Zope application server without the overhead of forking a new handler or initialising a

program. The PCGI option is a Python module that manages the running of the Zope

server which is less complex that FastCGI, but still requires a new handler to be forked

for each request.

Webpy

The web.py framework was developed by Aaron Swartz to fill a need for a very simple but

robust and fast framework. It is WSGI compatible, integrates with the Cheetah template

engine, and uses the error page generator from Django. Incoming URLs are mapped to

class and method names, which are called in a separate thread. This high transaction-rate

Reddit web site runs this framework.

Webpy is designed to be lightweight yet it includes its own Python-like language parser.

The parser is designed so that script-injection attacks can be prevented and developers

can use a familiar language for template behaviour design.

Karrigell

The Karrigell framework [kar08] takes a lightweight but full-featured approach. It includes

a simple non-blocking Async web server but also has adaptors for Xitami and Apache. It

uses the simple KirbyBase database or the Python GadFly SQL database to manage

data. The framework manages sessions, basic HTTP authentication, and error reporting.

A unique feature is the four different methods that can be used to implement application

logic and presentation — application code and presentation markup can be combined in

CHAPTER 2. BACKGROUND 45

different styles (see Figure 2.7) depending on the preference of the developer and the

complexity of the application.

1: <h1>Squares</h1>

2: <%

3: for i in range(10):

4: print ”%s :%s” %(i,i*i)

5: %>

Figure 2.7: Example of the Python in HTML template code style.

The many other Python web frameworks include Web2Py, CherryPy, Myghty, Cymbeline,

CleverHarold, Quixote, Skunkweb, Spyce, Divmod, PEAK, Snakelets, Albatross, Wasp,

Aquarium, Spark, HTMLgen, Python Service Objects, and Webware.

The Python WSGI Standard

There are currently dozens of web frameworks based on the Python language. The larger

and more popular frameworks have been described above in this section. This menagerie

of frameworks has split the Python development efforts, causes confusion in users, and

acts as a barrier to the reuse of tools, components, and modules.

The WSGI protocol [Pyt06] is a set of interface specifications which divides the web

application control flow into a number of distinct layers. Software developers can build

software to fit into a layer, and system integrators can select that software for the selected

function in the WSGI stack. There are middleware modules available [Ste05] for sessions,

authentication, validation, URL routing, and presentation generation. Most large Python

frameworks have updated their codebase to be compliant with the WSGI specification.

The WSGI is a Python-only architecture, but it suggests a way forward in separating

concerns in the web application design. This design pattern would provide a way for web

application developers to interchange, insert, and upgrade functions in the web applica-

tion flow minimising the risk of interface non-compliance and increasing modularity for

enhanced maintainability.

CHAPTER 2. BACKGROUND 46

2.5.4 Ruby on Rails

The Ruby language originated in Japan in the early 1990’s, and gained a following among

programmers due to its combination of Smalltalk’s conceptual elegance, Python’s ease

of use and learning, and Perl’s pragmatism [Walton & Hibbs 06]. The Ruby On Rails

software is a web framework that is intended to reduce the number of lines of code pro-

grammers have to write, and work without the need for verbose configuration files. The

number of lines of code and complex configuration files were seen by the designers of Rails

to be an impediment to the development and maintenance of web applications [Black 06].

The website [Rub07] describes rails as:

Rails is a web-application and persistence framework that includes every-

thing needed to create database-backed web-applications according to the Model-

View-Control pattern of separation. This pattern splits the view (also called

the presentation) into ”dumb” templates that are primarily responsible for in-

serting pre-built data in between HTML tags. The model contains the ”smart”

domain objects (such as Account, Product, Person, Post) that holds all the busi-

ness logic and knows how to persist themselves to a database. The controller

handles the incoming requests (such as Save New Account, Update Product,

Show Post) by manipulating the model and directing data to the view.

Another writer [Rustad 05] describes the benefits of developing in Rails as:

Rails prefers explicit code instead of configuration files, and the dynamic

nature of the Ruby language generates much of the plumbing code at runtime.

Most of the Rails framework has been created as a single project, and application

development benefits from a set of homogeneous components.

In the Rails MVC architecture, the model layer is managed by an ORM called Active

Record, which handles the mapping of object to and from relational database entities.

The corresponding controller layer is called Action Controller and the view is called Action

View. The controller and view functions are closely bound in Rails, which reduces the lines

of code that implement business logic components with display responsibilities but negates

the separation of concerns and loose coupling software engineering features of MVC.

CHAPTER 2. BACKGROUND 47

One of the strengths of Ruby on Rails is all the web servers it is designed to integrate with.

It is preferred to use the Ruby web server: Mongrel, but can also work with Lighttpd and

attach to Apache, LiteSpeed, and IIS servers through FastCGI. For local prototyping, a

simple Ruby webserver called WEBrick can be used.

There is also a strong preference in Ruby on Rails towards code generation. A generator

is used at the beginning of a project to build the code directories and stubs, then again

during each development iteration to create new files that support changes in the database.

Code generation is rarely used in frameworks as it constrains the developer in how the

web application is designed and maintained. If a desired feature is not allowed for in the

generated framework, the generated code must be changed — this can cause unforeseen

side-effects in other parts of the framework and may be overwritten by the code generator

in the next development iteration. Although useful for beginners, and development of small

applications that follow the framework designer’s intent, the drawbacks for professional

web development are substantial.

2.5.5 Mason

The Mason web framework became a popular way of building small Perl web applications

in 2000 and 2001. It is a platform-independent Perl based framework that supports web

development through URL request routing to components and output generation with

templates. Blocks of HTML and Perl can be configured as reusable components. In the

example Mason “component” shown in Figure 2.8, a local variable assignment is made in

line 1, followed by HTML text with an embedded variable reference in line 3.

1: % my $greeting = ’Hello’;

2: <h1>Message</h1>

3: <p><% $greeting %> World.</p>

Figure 2.8: An example Mason component.

CHAPTER 2. BACKGROUND 48

The Mason documentation [Web05] provides a description of the framework:

Mason’s various pieces revolve around the notion of “components”. A com-

ponent is a mix of HTML, Perl, and special Mason commands, one component

per file. So-called “top-level” components represent entire web-pages, while

smaller components typically return HTML snippets for embedding in top-level

components. This object-like architecture greatly simplifies site maintenance:

change a shared component, and you instantly changed all dependent pages that

refer to it across a site (or across many virtual sites).

Other Perl frameworks include Catalyst, Maypole, and Jifty.

2.5.6 FuseBox

Fusebox [Quarto-vonTivadar et al 05] is an application framework that builds on Cold-

Fusion and PHP. It uses components called “circuits”, and a pipe-and-filter architecture.

Configuration and application behaviour are described in XML, which includes variable

controls, loops, and branching syntax. FuseBox consists of the Runtime, Loader, Trans-

former, and Parser modules. It is a combination technology that in some ways offers the

best aspects of ColdFusion and PHP; however, no new approach is offered to tackle the

more difficult problems of the web application designer, such as collaboration, maintain-

ability, encapsulation, or reuse.

2.5.7 ClearSilver

ClearSilver is a high speed templating engine written in C. It merges templates and struc-

tured data files dynamically to generate web content. The ClearSilver software does not

offer the developer much more than high-speed template-based rendering, so web applica-

tions that use ClearSilver will have to be combined with other software to support all the

required functions of the application. Another limitation is the custom Hierarchical Data

Format (HDF) specification for input data files and the custom template language.

This huge range of web application frameworks and environments each have advantages for

the developer; simplicity, completeness, integration hooks, flexibility, range of components,

CHAPTER 2. BACKGROUND 49

or compliance with standards for example.

In the next section, we will explore some research projects that have investigated aspects of

the web engineering problem and have produced an experiment or concept demonstrator.

2.6 Web Application Research Projects

The WOOM (Web Object Oriented Model) [Coda et al 98] has been developed to add

a layer of abstraction to the web application design process. This system divides web

sites into resources, elements, sites, servers, links, and transformers. A framework is also

provided to convert a model into an instantiation in the web environment. The goal is

to bring an abstraction layer, separation of concerns, modularity, and flexibility to web

application engineering.

It has been observed that building web applications is a complex and time–consuming

process [Schwabe et al 01] and new design techniques are needed to manage the design

complexity and facilitate reuse [Gellerson et al 97] of design. The OOHDM–Frame has

been developed [Schwabe et al 01] to determine key architectural components and design

structures that lend themselves to reuse. This model separates application behaviour,

navigation modelling, and user interface design — offering design reuse across these three

domains. Schwabe et al. have found that systematic reuse of design parts is a key approach

for maximising reuse in web application development.

A common technique is a dynamic HTML page generation using a template and application

supplied variables. There was several early generators such as HTML++ [Schranz 98],

then a multitude of popular but incompatible languages such as PHP, ASP, JSP and dozens

of minor dialects. New template languages are still being developed (Google cTemplates

[Goo06] for example).

The Hera [Houben et al 05] model driven design methodology uses a presentation gener-

ator to build web information systems from RDF resources.

The Strudel [Fernandez et al 00] site implementation tool offers a structured query lan-

guage joined with a rudimentary HTML templating system to build data–driven web sites.

The WebRB visual programming environment [Leff & Rayfield 07] allows developers to

CHAPTER 2. BACKGROUND 50

visually create and edit relational algebra components and relationships in a single tool.

The declarative language representation of the application is then executed, implement-

ing a data–driven web application. This design has a steep learning curve and limits

interoperability and integration.

Web applications can also be structured around creative Javascript libraries. The KnowNow

[Zhao et al 02] architecture uses dynamic interaction with the server via an event router

that links the HTML user interface with server logic.

Another solution investigates cooperating agents [Ciancarini et al 98b] coordinating in

PageSpace to execute application logic, dynamically connect to external services via gate-

way agents, and interact with the user with user-interface agents. PageSpace is based

on the combination of Linda TuppleSpace and Java Applet technologies. Browsers that

load the base applet are able to host application agents which can interact with the user,

communicate with other agents in the same browser or remote browsers, and exchange

transactions with the server. This is a novel solution that provides an excellent infras-

tructure for collaborative applications, however reliability, scalability, and security remain

challenges for this style of architecture.

WebComposition [Gellerson et al 97] uses Web Composition Markup Language(WCML)

which is used to define web components, properties, and relationships. The WCML is

based on XML and uses prototype-instance reuse. Supplied components support the set,

get, and generate methods, and can be extended with the use of prototype inheritance.

When the site is built, components are fetched from the attached RDBMS, assembled

into pages, and then stored in the web server file system for access by the web server

when HTTP requests are received. This is an innovative approach to the management of

large static web sites, but does not address the dynamic aspects of the web application

development domain.

Another object oriented web component environment designed for re-use and management

is JESSICA [Barta & Schranz 98]. The system uses a custom language and Java based

compiler to generate a web site from a set of JESSICA templates and objects.

The WebBroker is a process which runs on the web server and uses XML-RPC, DCOM,

RMI, and CORBA to communicate user HTTP requests to distributed software objects.

CHAPTER 2. BACKGROUND 51

The CGILua [Hester et al 98] is a web development tool that is implemented as an ex-

tension language which is embedded in HTML and processed by a CGI program. It has

a simple language including regular expression matching, database access, and dynamic

linking to C++ libraries.

The W3Objects [Ingham et al 98] is a distributed object service based on RPC communi-

cation and a TCL-like scripting language. The objects have a management interface and

multiple views.

An early attempt [Brown & Najork 96] at distributed collaborative network of components

used Oblets written in the special purpose language Obliq. The Oblets were configured

and programmed to provide application functionality by communicating between browsers,

allowing users to collaborate dynamically. This was a peer to peer collaborative application

architecture that used browser components for architectural building blocks.

All of these research projects mentioned are designed to provide a technique or technology

to assist web application developers in building professional applications efficiently. They

each propose a different solution that addresses a different subset of the problem space.

2.7 Related Technologies

2.7.1 SOAP Web Services

The most popular and formal set of protocols used to implement web services are based

on the Simple Object Access Protocol (SOAP) [Karmarkar et al 07]. Web services are

processes that advertise an API and set of functions for other software to use via web

protocols (typically HTTP). Web services do not interact with browsers or users, but web

applications may use or be based on web services, and display content that was indirectly

supplied by web services.

The SOAP protocol defines an XML envelope specification around an XML payload that

can be transmitted to another process using a variety of transport mechanisms. SOAP

messages are commonly sent over a TCP/IP socket as part of a transaction exchange, but

are sometimes sent over SMTP or other asynchronous message orientated protocols. The

content of SOAP messages can be encoded using a number of XML dialects and structural

CHAPTER 2. BACKGROUND 52

extensions. Name spaces are defined with the XMLNameSpaces [Layman et al 06] protocol

which provide context for tag and attribute names. A richer data structure specification

is provided by XMLSchema [van derVlist 02] where new and compound data types can be

defined for validation, interoperability, and interpreter designs.

Web services that use the SOAP protocol can use the Web Services Description Language

(WSDL) [Ryman et al 07] to describe the functions and parameters of the web services.

This description can be used by clients at run-time to dynamically locate and call a

service with the required function. A web services broker uses UDDI [Clement et al 05]

to exchange WSDL with clients ans services, and can redirect clients to needed active

services based on service requirements.

The set of SOAP-related protocols bring distributed systems architecture into the web

applications domain. The sophisticated data format specification, technology-agnostic

transport, service advertisement, and dynamic client-service binding lay the foundations

for large-scale enterprise web systems. In many ways the sophistication and complexity

of this suite of protocols has limited its acceptance. Incompatibilities between web ser-

vice software due to incomplete implementations, mistakes in software construction, and

custom extensions to protocols have made the goal of transparent interoperability hard to

achieve. This complexity is not only a hindrance to the building of robust software sys-

tems, but requires highly skilled and educated developers who have devoted time reading

extensive documentation and gathering expertise in these protocols.

Alternatives to the SOAP protocol for web services are XML-RPC, Java RMI, Microsoft

COM+, Corba, DCE, and plain URL input and MIME output over HTTP.

2.7.2 Rendering User Interfaces with XML and XSL

Another method of dynamically generating web content is via transformation of XML

structures into XHTML [Ishikawa et al 07] markup code using XSL [Berglund 06]. The

XSL style sheet defines the mapping of XML elements and contents into the XHTML

stream, and XSLT [Kay 07] can be used for more complex transformations. The mapping

uses a series of rules that search for patterns in XML elements and apply actions to produce

the final XHTML content. This technology was introduced in 1998, and was used in some

CHAPTER 2. BACKGROUND 53

frameworks [Kristensen 98]; however most dynamic web content is generated by processes

that use methods separate from the XSL standards.

Similar operations can be applied to incoming XML to produce SVG [Ferraiolo et al 03]

content. This use of style sheets could map an XML fragment containing data to be

displayed in graphical form into a spatial map, a business chart, a diagram, or other

vector-based graphical output.

2.7.3 Web 2.0

In recent years, there have been innovative developments in information tools focused on

using the properties of the Web. These developments are often called Web2.0 technology,

however this term is widely abused [O’Reilly 05]. The keys to this new web technology is

user participation and user owned data. The Web2.0 sites offer interactive functionality,

providing a useful service for clients, and linking client information together using social

network techniques.

Developers designing applications for Web2.0 are using new tools and technologies to

build better applications in less time. New web applications and services are mostly built

on frameworks now. It is difficult to justify custom designs when there are so many

highly functional frameworks with pre-tested components and trusted security. There are

also many content management systems (CMS) packages now available that can be used

without further development by user communities needing to create and manage structures

of web content.

The increased use of Javascript has improved web page appearances and dynamic update

behaviour. By using Javascript, user interface components can quickly validate user data,

expand showing more information, implement menus, perform animations, and load new

data on demand. The development of Javascript components that operate like a word pro-

cessor application (eg: FCKedit and TinyMCE) has eased the migration of users changing

from desktop computing environments to user services on the Web. The alternative light

markup languages are non-trivial to learn and lack many of the features of a WYSIWYG

editor6.

6It could also be argued though that the use of light markup promotes consistency of appearance and
reduces frivolous text decorations.

CHAPTER 2. BACKGROUND 54

Writing glue code (typically Javascript) to make two or more web 2.0 applications with

lightweight APIs work together is called a Mashup and can be used to combine multiple web

applications. Another option is hosting custom web applications in a large web application

environment managed by an external organisation. The Google engine (Gears) and the

Amazon E-Commerce site offer a simplified API for developers to use for embedding

custom applications that use a common web infrastructure and data storage engine.

Older web applications arranged content in a hierarchy and limited connections with con-

tent to explicit URL hyperlinks. The Web2.0 methods of navigating through information

and linking content with external resources include tagging, RSS feeds, and mapping

toolkits. Users prefer to use their own terminology for keywords (tags) describing content,

rather than navigating a taxonomy of terms to select the most appropriate one. This

has been called tagging by folksonomy and results in multi-dimensional navigation paths.

Changes in Blogs or other content of external Web Applications can trigger syndication

(RSS) messages to be sent to subscribing software, signalling new material. This noti-

fication by opt-in protocol has transformed the web of static hyperlinks to a Live Web.

Mapping services offer tools for users to add data to the map environment and an API to

integrate the service into other tools. The mapping functions allow linking by geospatial

proximity and the simple visualisation of content locations.

Many web companies are now offering desktop-like productivity tools that have the added

benefits of secure off-line storage and collaborative features. Many sites are now offering

free storage for user data. The benefits are availability from anywhere and the protection

of a large data centre, but questions remain on who owns the data and the user’s rights

to privacy. Several webmail services provide an email address and email program func-

tionality. A central service that manages email is attractive to users because of the global

accessibility, ease of configuration, and integration with other services. The Google organ-

isation has experimented with many innovative user tools based on web technologies. Pure

web applications such as the calendar, document editing, web page editor, and spread-

sheet show how users can potentially use web-based user services for all their computing

needs. Web based commercial transactions have become robust and ubiquitous. Large

e-commerce web companies such as Ebay, Amazon, and PayPal are constantly improv-

ing services to users, exploiting emerging web technologies to enhance payment handling,

CHAPTER 2. BACKGROUND 55

the user experience, and reputation management. There are many options on integrating

new web applications with these services. The support for issue tracking has become an

important pillar of collaborative work in the Web2.0 environment. The ability for a user

to log an issue and track its progress to resolution provides a sense of shared ownership

in the enterprise. It also assists the problem solvers in understanding current user issues

with the service, and helps manage progress towards the solution.

The increased popularity of communications services is a significant characteristic of the

Web2.0 community oriented nature. The communications methods are stll dominated by

email, but other methods have secure places in the Web2.0 environment:

IRC and IM: Inter-Relay Chat and Instant Messaging are communication tools that

allow groups of people to exchange short text messages in a defined chat room, much

like a face-to-face conversation.

Online real-time 3D games: The high penetration of broadband Internet into homes

across the Western World has fuelled the growth of multi-user games. The games

use the Internet for passing message traffic between a game server and many game

clients, but have little to do with the Web itself.

Subscriptions: Information services strive to make content attractive to their user de-

mographic, and then offer the material as a subscribed service, linking the user to

the website with a loose producer-consumer relationship. This subscription provides

the website with a channel to invite the user to explore other content and services,

and generate revenue through placed adverts.

A main component of Web2.0 is the support of social networks. These network links are

within sites and between identities in external sites. The links are based on a shared

community of interest and may be permanent or transient. Some sites concentrate on

supporting the communication and expression of users. The well known social network sites

(eg: Facebook, MySpace, Orkut, Friendster, LinkedIn) provide spaces to express interests

and support communication and communities of users with similar interests. Other sites

are based on bookmarking. These types of sites (eg: Technorati, Reddit, del.icio.us) make

it easy for users to manage their bookmarks for URLs on the web. Additionally, other

related web resources can be suggested based on the correlation of a user’s URLs with

CHAPTER 2. BACKGROUND 56

other user’s URLs. Another form of social network is centred on a media type. Some Web

organisations have built a large user base from providing user value in handling media.

The Flikr, YouTube, and Picasa web sites are examples of user media services that do one

thing, and do it right.

The discussion forum and blog can also be considered to support social networking. The

community forum is a threaded group discussion with a complete message for each entry

(unlike a phrase in IRC). The forum may be used for information sharing or the reach

a decision, and can be kept as an online knowledge resource. A social network based

on blogs is called a blogosphere and support communities of interest by linking blogs. A

blog is basically a chronologically ordered online journal; however the real benefits of the

blogging environment are the RSS feeds that notify interested parties, the comments that

can be added to blog entries (forming a distributed community discussion between a loose

network of blogs), and the creation of Permalinks (permanent URIs) for each entry for

reliable referencing.

Another feature of the Web2.0 environment is the availability of global knowledge. The

best example of this global knowledge store is WikiPedia, a web-based encyclopedia that

uses a huge community of contributors and editors to store and link knowledge. It uses a

soft security feature that allows any user to change any content, but provides simple tools

for editors to check, change, or reverse additions. This resource can be integrated and

linked into web applications. Smaller sized knowledge repositories can be created using

commonly available wiki software. Rapid content creation and linking can be performed

with this style of collaborative web application. Simple text can optionally be enhanced

with special punctuation sequences to build readable hyperlinked pages, lowering barriers

for new web users and increasing productivity of information workers that require simple

management of notes and knowledge capture.

An essential part of the new Web is attracting users with web services containing high-

value content and simple functionality. Successful sites will also have simple methods for

programmers and content aggregators to make use of site services. Web sites will tend to

be in constant refinement based on continuous feedback from user behaviour, and supply

a service in a simple and intuitive user interface.

The Web 2.0 way of thinking defines the environment for web applications in the near

CHAPTER 2. BACKGROUND 57

future. This suggests a number of desirable properties of new web application development

software:

• To attract users, new web applications will require high quality user interfaces. The

UI must be consistent and intuitive, yet be able to sustain constant refactoring.

• A website in constant development will need to be based on software that is modular,

reusable, flexible, configurable, and implements a separation of concerns.

• To attract programmers who will link with our web service using a variety of meth-

ods, the software should have a variety of lightweight integration options.

• New services will need to display and interact on a variety of devices, so support for

multiple UI technology and transaction patterns is a growing requirement.

Many of these properties align with the web application properties given for evaluation in

the introduction (see Figure 1.1), providing a method of validation, and some indication

that these properties will also be important in the next generation of web application

technology.

2.8 Summary

We can see from this chapter that web application development has seen a lot of innova-

tion, software experiments, hundreds of new protocols, standards, and interfaces. Despite

this, the web application designers job is harder than ever — the complexity of the tools

combined with the complexity of the web environment and engineering requirements is

difficult to understand, communicate, and manage.

In the next chapter, I propose a technological solution that has the potential to encap-

sulate some of this complexity in a reusable service. This service is called a presentation

service, and can increase the productivity of web application developers while increasing

the manageability of the product and the quality of the user experience.

Chapter 3

A Presentation Service

3.1 Introduction

We have seen that the web application developer is faced with a number of problems

when designing, implementing, managing, and extending web applications. Most of these

problems are with managing the software that controls the browser user interface. The

other parts of the software that implement business logic and interface to data stores are

better supported by techniques and products, although subtle influences caused by web

application design choices can complicate these parts too. This chapter discusses these

problems, proposes a solution based on a separate presentation service, and describes the

architecture and high-level design of the concept.

3.2 Web Application Problem Space

Contemporary web application designers are faced with a complex array of limitations,

pitfalls, and productivity drains that reduce development effectiveness and increase risks.

User Interface Entanglement: Many of the existing tools and frameworks are designed

for code that shows close coupling between the user interface and application logic.

This often seems to be the best design choice as it combines the application code

and UI code that work together. The problem only manifests itself when the code

grows larger and the developers realise that the UI code is spread around the whole

CHAPTER 3. A PRESENTATION SERVICE 59

codebase, introducing subtle incompatibilities, inconsistent appearance and function,

and making maintenance and enhancement a difficult task.

Browser Compatibility: Each developer in the web environment must contend with

multiple browser vendors, release versions, and platforms, each having subtle in-

compatibilities and non-perfect standards compliance. The developer must not only

learn and keep up to date on a multitude of languages and protocols (such as HTML,

CSS, HTTP, XML, XSL, URI, and Javascript), but needs to code for each browser

possibility and test to ensure the intended code works for each possibility.

Complexity: Developers are also required to build code connecting to other user inter-

face technologies (ie: flash, bitmap libraries, geospatial clients), and maintaining

skills and running code in multiple evolving technologies has high developer costs,

introduces extra complexity into the project, and increases the risks of project failure

and application faults.

Collaborative Sessions Support: Most applications benefit from collaborative work

functions however application developers are required to build collaborative capa-

bilities in ad hoc ways, customised for each application, or put off these advanced

features for later versions. Multi-protocol collaborative sessions are even more com-

plex and attempts at implementing this has been only partially successful.

Inconsistent UI: Software with user interface code interwoven with application code

tends to suffer from inconsistency in appearance (such as a button labelled OK some-

where and Accept somewhere else) and behaviour (such as a Delete button clearing

field contents on one screen compared with deleting the all the screen items and the

record on the database elsewhere). Inconsistency affects user trust in subtle ways

and can lead to product or service failure.

A related inconsistency problem happens when two or more teams develop appli-

cations for the same user base and build the user interface within the teams. The

result is often both inconsistent user interfaces and poor integration.

Stovepiped Applications: When user interface design is closely bound with applica-

tions, the resulting software is difficult to integrate. A single hyperlink or button

may open the related application on its front page, which hardly satisfies the user

CHAPTER 3. A PRESENTATION SERVICE 60

need to see information from several applications merged on the same screen with

options for actions in either application. An integrated user interface requires inti-

mate collaboration between teams and increased work, or interfaces and software to

provide the capability.

Redundant Work: User interface code that is closely coupled with application code

cannot be reused in later projects, despite the user interface requirements being

very similar. Many libraries are available that provide some of these reusable user

interface functions though they can only support one language or platform, and are

very complex to learn and use. Simple multi-language cross-platform user interface

software is difficult to develop.

Vendor Lock-in: Current web applications are mostly built using Java, .Net, PHP, or

other environment that ties the application to the environment, unless a custom

interface is developed to support special transactions with a different environment.

This single environment is mostly not a problem as this arrangement is more efficient

in developer skills and reduces complexity. Unfortunately the single environment pre-

vents applications having the best functionality from several tools based on different

environments. A method of combining the capabilities across environments has to

be found before these benefits can be realised.

Page Oriented: Web applications are built on the HTTP protocol which uses syn-

chronous page oriented transactions. This coarse grained protocol limits interac-

tivity with large and slow page loads for each mouse click, and consumes network

bandwidth. There have been many web components and libraries that have been

developed to ease this problem by supporting many small transactions and updating

small parts of the page as required [Zhao et al 02], but a general purpose robust and

simple solution remains elusive.

Complex Extensions: When user interface code is spread through the application, the

ability to adapt and extend the user interface and the business logic are both affected.

It is harder to find the right part of the code, and a change to the user interface may

have an unexpected effect on the business logic, and a business logic change may

cause a side-effect in the user interface. The perceived efficiency in keeping both

types of code together may be attractive at the start of the project; however the

cost and risk is much higher over the life of the project.

CHAPTER 3. A PRESENTATION SERVICE 61

Diagnostics: To exacerbate the situation, the closely coupled code also makes it hard

to find errors, fix, and test them. Web applications are rarely built within a test-

ing framework, so simple diagnostic tests such as inspecting the web server log and

inserting print statements into code are used. These simple methods are not effi-

cient, especially in large and complex software. When correcting errors in current

typical web applications, changes may also have unforeseen side effects, leading to

application faults or additional software repairs.

Lack of Graphics: Web applications developers have used many ad hoc techniques to

add maps, diagrams, and business charts to the browser user interface, but the work

is hard to generalise and adapt to different requirements. The resulting functionality

is often simple and clumsy despite the large complex code used to implement it. The

smooth rich graphical environment that desktop applications excel at is extremely

difficult to design into web applications, and usually not worth the effort for less

than major projects.

UI Coding Effort: The effort and expense in redeveloping the user interface handling

code for each application or project could be reduced if a general purpose software

package could be designed that could handle most of the user interface complexity

internally and expose a language-independent platform-independent simplified API.

These web application design problems have been addressed by many different technolo-

gies, protocols, frameworks, and products, yet each offering not only solves only a subset

of the problem space, but can also introduce additional problems (such as language or

platform lock-in and complex new interfaces to learn). The web application design do-

main requires a new way to manage web user interfaces and simplify the task of designing

and implementing new web applications.

3.3 Design Concepts

The software engineering world uses many design concepts to aid in the creation of com-

plex software. These concepts categorise sections of the software system and extract the

core section properties and transactions between sections. Each of these concepts adds a

different view on the software design problem.

CHAPTER 3. A PRESENTATION SERVICE 62

The main web engineering concepts are described by Fraternali in a survey of web de-

velopment tools [Fraternali 98]. In this survey, the design dimensions of Structure, Nav-

igation, and Presentation are emphasised. The critical properties of component reuse

[Lee & Shirani 04], three tier architecture, and user interface useability were also identi-

fied.

The benefits of separating presentation code from business logic has been described in

Sun’s Enterprise Applications blueprint document [Sun02] as:

• Minimises impact of change–Business rules can be changed in their own layer, with

little or no modification to the presentation layer. Application presentation or work-

flow can change without affecting code in the business layer.

• Increases maintainability–Most business logic occurs in more than one use case of

a particular application. Business logic copied and pasted between components

expresses the same business rule in two places in the application. Future changes

to the rule require two edits instead of one. Business logic expressed in a separate

component and accessed referentially can be modified in one place in the source code,

producing behaviour changes everywhere the component is used. Similar benefits

are achieved by reusing presentation logic with server-side includes, custom tags,

and stylesheets.

• Provides client independence and code reuse–Intermingling data presentation and

business logic ties the business logic to a particular type of client. For example,

business logic implemented in a scriptlet is not usable by a servlet or an application

client; the code must be reimplemented for the other client types. Business logic

that is available referentially as simple method calls on business objects can be used

by multiple client types.

• Separates developer roles–Code that deals with data presentation, request process-

ing, and business rules all at once is difficult to read, especially for a developer who

may specialise in only one of these areas. Separating business logic and presentation

allows developers to concentrate on their area of expertise [Parr 04].

CHAPTER 3. A PRESENTATION SERVICE 63

3.3.1 Engineering Techniques

There are a number of software engineering techniques we can consider. These techniques

are popular in mainstream software development but often have only partial adoption by

the web application design community.

Object Orientation

Most of the useful measures of effectiveness in software systems, such as reuseability, flexi-

bility, reliability, maintainability, and useability have proved difficult to measure. In 2005,

researchers reported [Darcy & Kemerer 05] on a number of efforts to correlate various ob-

ject orientation attributes of software with fault rates, reuse, and maintainability. There

appears to be no conclusive evidence that would provide absolute design rules; however

internal object cohesion and a lack of coupling were associated with better designs. Sur-

prisingly, inheritance was not seen as a significant factor in the resulting software quality

(although it may have a positive affect on other parameters - such as productivity and

reliability).

One of the simplest and useful methods of reuse is through prototype based inheritance

[Ungar & Smith 87] [Taivalsaari 96]. The WebComposition [Gellerson et al 97] prototype

found this inheritance method was lighter than class inheritance, but still allowed abstract

objects which could be extended.

Three Tier Design

By encapsulating user interface functionality in a separate service, the applications need

only contain business logic. The common data, communications, and user interface func-

tions are separately designed, implemented, and managed using the appropriate data,

communications, and user interface services. The addition of a presentation layer creates

a true three tier application architecture (see Figure 3.1).

CHAPTER 3. A PRESENTATION SERVICE 64

Presentation
Layer

Application
Layer

Data
Layer

Traditional
monolithic
applications

Applications
with shared
data services

Applications
with shared
data and
presentation
services

Figure 3.1: Shared services in a three tier model.

Model-View-Controller Separation

Contemporary web application frameworks often use a Model-View-Controller (MVC)

[Cox & Novobilski 86] design. This pattern makes a logical division in the application

between the presentation (view), business logic (controller), and the database (model).

This separation of concerns assists developers in managing the complexity of the design

and implementation [Krasner & Pope 88]. In the web application domain the view layer

is implemented by a template driven generator or an object serialiser. The controller is

typically a multi-threaded request handler managing simultaneous request-response cycles

through implemented business logic and rules. The model may be specialised to implement

page navigation and state persistence, but is commonly designed as a standard application

database.

The MVC pattern is an important design technique to use in the presentation service.

The service will provide a universal view layer, and also capture user events and transmit

them to the controller (which would be inside the application).

Inversion of Control

Many web applications use a technique called Inversion of Control (IoC). An application

uses this method to bind itself to a web request handler and then it passes “control” to

CHAPTER 3. A PRESENTATION SERVICE 65

the handler and waits for requests. The handler will process an incoming request, and if

the URL matches a pre-configured pattern, the web application is sent the request, and

the application assumes control until the web content is returned to the handler, where

the web application will then “sleep” again.

The IoC technique is applicable to the design of the applications connecting to the presen-

tation service. The applications will be primarily reactive, and spend most of their time

idle, waiting for a user event. The presentation service acts as a server to both UI clients

and application clients.

Usage of Patterns

Architectural and design patterns provide a pool of proven solutions to many recurring

design problems [Buschmann et al 96]. The presentation service can make use of many of

these established patterns to achieve a high level of functionality with minimum risk of

complications or failure. We will be able to use the Broker pattern to provide services while

hiding unnecessary complexity. The Blackboard pattern can be employed to store objects

within the service that can be updated or used by multiple cooperating interfaces. The

modified client-server architecture can be based on the Client-Dispatcher-Server pattern

which protects clients from communications and protocol complexity. The challenge is

to use patterns in appropriate places within the architecture and combine them into an

effective whole.

Representational State Transfer

Representational State Transfer (REST) [Fielding & Taylor 00] is a design technique for

web applications to exchange data based on the GET, POST, PUT, and DELETE methods

of the HTTP protocol. This protocol uses data in the form of documents, and limits

the influence of state [Fielding 00]. The REST design can be contrasted with the more

common Remote Procedure Call (RPC) technique. A web application designed with

REST will have a unique URI for each resource held, a representation (or format) of

each resource, a set of methods that can create or act on a resource, and a set of status

codes that could be returned. This allows application resources to be bookmarked, guards

against resubmitted forms, and defines an effective API for other software to use. The

CHAPTER 3. A PRESENTATION SERVICE 66

REST design technique can be used with any web application design and works with most

implementation technologies.

When using a REST-based application, the calling software need only know the URI

of the resource to be acted upon. The methods are the familiar GET, POST, PUT,

and DELETE operations which mirror the Create, Retrieve, Update, and Delete (CRUD)

operations used in database applications. To use other other styles of API (such as SOAP),

the caller needs to understand the methods available, the arguments for that method, the

data structure schema, the transaction pattern, and the conditions for exceptions and how

they are handled. The power of the REST technique lies in its simplicity and reuse of the

browser-based method of resource interaction [Bianco et al 07].

Frameworks

A popular definition of a framework [Johnson & Foote 88] is:

A framework is a reusable, semi-complete application that can be specialised

to produce custom applications.

However, in the web context, this definition should be extended to an executable empty web

software environment that can be extended to meet application requirements by additions

of custom code and configuration.

In describing object oriented frameworks, experienced designers [Fayad & Schmidt 97]

identify the key properties: modularity, reuseability, extensibility, and inversion of control.

These properties allow the developer to create software with higher productivity and qual-

ity. To achieve these benefits, a project built using a framework must consider a number

of related issues:

• the effort in developing the framework itself,

• the learning curve of developers who are to use the framework,

• the complexity of integrating the framework with other tools, interfaces, and code,

• the problems in coordinating changes in the framework and dependent application

software,

CHAPTER 3. A PRESENTATION SERVICE 67

• difficulties in debugging complex software with a shared flow of control,

• the balancing of run-time efficiency and flexibility of the framework, and

• maintaining compliance to evolving internal and external standards.

An effective framework has several simple APIs for applications to use to integrate com-

ponents, configuration, and custom code. The key attributes for a framework are the

separation of concerns, and simplicity. The purpose of the framework is to hide the com-

plexity of operating a style of software while automating the repetitive and common parts.

The Database Service Model

Can we learn from another software concept used to mitigate a similar set of problems?

The purpose of a Relational Database Management System (RDBMS) is to hide the com-

plexity of data management from applications, provide optimised data handling services,

enable applications to share data, and support data management. It supplies this capa-

bility via an ASCII text command set (SQL) over a network socket connection to multiple

simultaneous clients.

The presentation service (PS) concept mirrors the RDBMS concept. The PS hides the

complexity of user interface connections and protocols, enables the sharing of sessions,

enables applications to share user interface resources, and supports UI management. Mul-

tiple simultaneous applications access the PS over a network. A similar example can be

found in an SMTP server which encapsulates the email communications service function-

ality.

The discussed design concepts are methods of managing complexity using abstractions.

The presentation service concepts will be presented in the next section, where we will see

how these design concepts have been folded together into a new style of software.

CHAPTER 3. A PRESENTATION SERVICE 68

3.4 Synthesis of the Presentation Server

There are subtle differences between software architectures, frameworks, toolkits, libraries,

products, components, and services. They are all software concepts and artifacts intended

to assist a software developer in building applications with less effort and less risk; however

they are used at different levels of abstraction in the development process.

A software service is one or more separately executing processes that make logically sepa-

rable functionality available to multiple software clients via a publicly described protocol

over a communications channel. A software service is intended to make available some

shared resource or commonly required application functionality while hiding implementa-

tion details.

The presentation part of applications deals with the dynamic generation of media designed

for display to humans, and the capture of human generated input device events. The

media generation uses programmer-defined presentation rules to process selected raw data

into user information displays, and add information entry, application navigation, and

data transaction components. Generation is controlled by the types of interaction the

user requires, the user profile configuration, user security permissions, and system state

changes. User activity within the user interface (such as mouse gestures) result in an

event being reported to the remote application with information on the type of event, the

identity of the component the event was focused on, and the identity of the user.

To develop a separate presentation layer for web applications, we will need to explore how

the browser communicates with application software. The browser initiates a transaction

as a result of the user opening a web page, clicking on a button, or clicking on a hyperlinked

text or image. A TCP connection is established with the server specified in the host part

of the URL, and the HTTP protocol is used to request (GET) content or send (POST)

data in key-value pair format. In both cases, content is returned to the requesting browser

in MIME format that can contain references to other content expressed in URL strings

(typically images, style sheets, Javascript packages, or frames). The MIME data (most

often HTML, GIF, or JPG) is then displayed in the browser surface, presenting information

and interaction options for the user. When the server receives a GET or POST transaction

from a browser, it will try to locate the local resource described in the path of the URL.

CHAPTER 3. A PRESENTATION SERVICE 69

If this resource is a static file, it is returned to the browser client. If the resource is active

(a program, script, or module), the resource will be executed with the key-value data as

input and the output stream is then redirected to the requesting browser’s TCP socket.

In either case, the local browser attempts to render it according to the client configuration

and content handling software.

The presentation service is unusual in exposing two separate API types and acting as

a value-adding broker between them. The service offers connections and adaptors for

multiple user interface client types and an application interface for many simultaneous

applications that are configured to use presentation services. The client and application

connections may be long lasting and supporting many transactions, or transient and sup-

porting a single transaction (such as an HTML web page GET request).

The applications API uses an inversion of control technique. The presentation service

exposes a network TCP service to applications like a server; however after an application

connects and registers, the transaction style inverts and the application then functions as

a server and waits for user events from the presentation service. Of course, an application

may have other interfaces that it responds to too (perhaps even a local host user interface).

Asynchronous messages from the application may also occur due to timing logic or a change

of state caused by software external to the application.

It is important to differentiate here between the concepts of a service-like application and

the traditional workstation single-user program. The workstation program maintains state

for only one user and may be started and stopped as required. The service-like application

described here would be normally long running and support multiple simultaneous sessions.

All user transactions that require this application functionality would be routed to this

application, where the event is processed in the context of the relevant session, and actions

performed on data stores and user interface(s) via the presentation service. This approach

can offer an increase in space efficiency (the code is only loaded once and kept in one

memory image), time efficiency (the code is server based and is always running), but

may present problems in scalability if a single host is required to process hundreds of

simultaneous user events. Server based applications need to be carefully designed if CPU

or IO intensive algorithms are required in a large system.

CHAPTER 3. A PRESENTATION SERVICE 70

Browsers

Application
ComponentWeb Server

Presentation
Server

Gate
way

Application
Component

Route

Render

Change

Application
Component

Data Pres

Figure 3.2: Architecture of a web application framework using a Presentation Service.

The architecture of a web application framework that employs the presentation service

concept is illustrated in Figure 3.2. After registration (where an application nominates a

unique name to the presentation service used for UI event routing), the service accepts

presentation components and data components that determine how the user interfaces will

be rendered. These components are organised in a hierarchical data structure within the

presentation service and can be manipulated by a set of object oriented messages. The

presentation components are template fragments for a UI command language, and use

active fields to dynamically synthesise UI update streams using designated data compo-

nents. There can be many presentation component types, but only one data component

type.

The components in the presentation service should be easy to understand and use. Each

component has a tag that reflects the type of object (such as table), an optional list of

attributes in key-value pairs, and optional sub-components and string data. This object

design simplifies conversions to and from XML, and matches the concept of an object in

object oriented programming, thereby reducing the learning load on developers. Attribute

values and string content can be labelled as dynamic with some simple transparent syntax

so that the content will be interpreted as instructions at render time. A number of special

objects (such as looping, conditional, and data selection) are also available which are

acted upon by the renderer and not emitted to the UI command stream. These simple

component structures and features are capable of supplying much of the user interface

synthesis requirement for applications.

CHAPTER 3. A PRESENTATION SERVICE 71

Components are created and manipulated inside the presentation service by commands

sent from attached applications. These components may be inserted by the applications,

created by inheriting existing components, changed by updating attribute values, moved

between parent objects, and deleted. The presentation service does not enforce when

component commands are issued, but applications would be expected to write most pre-

sentation components and foundation data components on attachment, and then update

components due to state changes from user interface or other events.

When an application needs to update one or more user interfaces, the components inside

the presentation service are updated and a render command is issued. This command

identifies which presentation object sub-tree to render, which data sub-tree to make avail-

able, and which connection or session is to be sent the render streams. The presentation

service then builds the user interface stream according to the presentation object struc-

ture and dynamic fields, recursing through presentation and data trees until both are

exhausted. The output streams in the format compatible with the remote user interfaces

are then sent to a single connection, or to all connections in a session depending on the

application’s command.

We have seen how presentation service components are used to build user interfaces, but

how are user interface events handled? Captured user interface events from linked user

interface clients are transformed into a standard format and routed to the appropriate

application based on the default for that client, or a nominated application name that has

been registered by an application. These events either describe a raw user interface event,

request an update to a data object, or request a change to the user interface. Raw events

describe an action happening to a defined user interface object, leaving the application to

derive meaning using its internal state. An update request presents an object defined by

key-value pairs to be used in a transforming or selecting operation based on the applications

interpretation of the request type. User interface change requests use the key-value pair

data to express the requested change to the application (such as presenting the next record

or displaying completely new information). These events do not require answers to the

UI through the presentation service (except for CGI types that require returned content

as defined by the HTTP protocol) as the user interface to application protocol is left to

the application system designer; however standard user interface patterns of user event

capture leading to user interface update is provided for.

CHAPTER 3. A PRESENTATION SERVICE 72

3.5 Presentation Service Functions

Given the above outline of a presentation server, how can we design it to meet the re-

quirements of the web application developer without introducing design artefacts that

would cause unnecessary new problems. One limitation of any new service will always be

the new API language and transaction pattern. One of the goals in the design will be

to minimise the complexity of any new language, and simplify transactions patterns. By

reusing familiar syntax (such as XML, and familiar transaction styles, developer cognitive

requirements will be reduced.

User’s browsers attach to the web server and send through a URL, which can be viewed as

a user event. An adaptor then converts the event into a PS compatible message and sends

it to the PS on a network socket. The PS routes the message to a connected application

via another network interface, and waits for a response on that connection.

The application is required to understand the user event message and respond with a

command that causes the PS to return a user interface page to the user’s browser. Business

logic within the application may cause many operations before this happens, such as

updates to a database, queries from a database, updating data structures within the

PS, or communicating with other services, file systems, and applications. The minimum

requirement for a PS compliant application is the acceptance of user event messages and

transmission of user interface update commands via a network socket.

The protocol used for application interfaces is based on XML, and consists of structured

messages for event description, object operations, and user interface update requests.

User events that are sent to the application are descriptions of data entry, navigation

directives, option selection, and UI object manipulation. The application uses object

operation commands to create, delete, and modify objects with the PS as a response to

user events or at other times due to other communication links or changing file system

state. The application also sends user interface update messages to the PS to request

changes to one or more user interfaces.

Once the PS has been given the command to return a user interface to the user by the

application, it dynamically assembles the specified UI from components and data, and

returns the web-standard MIME data to the requesting client. The web server then closes

CHAPTER 3. A PRESENTATION SERVICE 73

that connection with the PS and the client and waits for the next request. Applications

can also receive and transmit other messages independent of PS transactions at any time.

Inside the PS, user interfaces are assembled as required from presentation components and

data components. These components are objects with types, attributes, and sub-objects,

structured into a tree. Some objects are created from configuration files when the PS is

started, and others are created by applications dynamically, and applications may change,

copy, or delete their own objects at any time. Applications may also reference or copy

another application’s presentation and data objects (ie: rendering external presentation

components with local data, or rendering local presentation components with external

data).

To create a user interface (such as HTML), a presentation object is serialised in a data

context. The data context is simply a pointer into the data object tree, and defines what

data will be made available to the presentation object and sub-objects for user interface

generation. The serialising object outputs initial UI content, then iteratively gives control

to its sub-objects (with a possible data sub-context), before outputing final UI content and

returning control to its encapsulating object or caller. The range of standard rendering

objects are expanded with special objects which implement data context change, simple

decision logic, and looping constructs. These special objects do not themselves generate

UI output, but control the rendering of sub-objects and content. In addition, raw content

and attribute values can have active content, which is computed at render time using the

current data context.

This transaction pattern and UI generation method is not only effective at generating

HTML – the primary web application output language, but any markup language. The

concept can be extended to generate any output content by defining a serialisation method

for the new presentation objects. This rendering method could equally well build dynamic

PNG images, VRML worlds, or RTF documents.

The PS can serve many simultaneous UI connections with embedded child components,

and many applications, while sharing presentation and data objects, managing multi-

connection sessions, and exposing a management interface for dynamic status, usage statis-

tics, and control. As the interfaces to the PS are ASCII and/or simple XML over network

sockets, any UI technology and any application on any platform written in any language

will be able to use the PS.

CHAPTER 3. A PRESENTATION SERVICE 74

3.6 Architecture Features

The presentation service architecture is designed around a number of strong software engi-

neering concepts. These concepts are employed in many parts of the software engineering

world, but have been slow to penetrate the web application development environment.

Many web application technologies, techniques, frameworks, libraries, and toolkits employ

some of these engineering concepts but fail to consider all the facets of the web applica-

tion environment. The presentation service is a combination of the best of contemporary

software engineering concepts, adapted to the web application environment, and designed

for simplicity and effectiveness.

Hides UI syntax: The encapsulation of UI complexity minimises developer learning re-

quirements. Having less complexity to remember reduces the cognitive loading of

the developer, and allows his or her mental efforts to be expended on unique prob-

lems of the web application. The delegation of the UI “problem” to UI experts also

minimises the frequency of errors in UI generation functions. Common UI functions

are available for use without the need for these functions to be rebuilt in every web

application project, saving the developer time. Developers are shielded from pro-

tocol and UI device diversity and upgrades, as the dependent UI functionality is

managed by the presentation service.

Separate long running server process: A long running process spends less time load-

ing, initialising, allocating memory, and connecting to other services. This is more

efficient than restarting processes for each user event, session change, or service call.

A single service handling multiple clients will also use less memory than multiple

processes with one client each. There is also a benefit in user response time, because

the responder does not have to load and initialise before answering the request. A

long running process can support collaborative applications, as user information can

be shared without complex inter-process protocols.

A single long running service does have some limitations. If the software fails, all user

connections will be lost. The service will be a single point of failure. A successful

service will use internal exception management, guard against memory leaks, and

validate incoming data structures and values.

CHAPTER 3. A PRESENTATION SERVICE 75

As a single service manages all user connections in a single process, load sharing

over multiple processors and multiple hosts is difficult to manage. Scalability will

be a problem as the concurrent user count grows, particularly if transactions are

expensive in CPU time, memory, or network bandwidth.

Dynamic update of the content and applications: By designing the service so that

applications and users may connect and disconnect dynamically, flexible architec-

tures can be achieved. If the update of service content, the user events, and the

application messages are designed to be asynchronous, user interface responsiveness

will be improved, and applications become easier to write. Dynamic updates also

assist rapid application development methodologies. New content can be inserted

by programs, and tested in the user interface without halting the service.

Minimum thin client requirement: By using standards such as HTML and CSS to

build the user interface, clients can use standard browsers without configuration

changes, large downloads, new software, or changes in operating system. Using a

standard browser as a thin client frees system managers from maintaining software

on client machines.

Hierarchical object trees: Programmers are familiar with hierarchy trees for informa-

tion organisation (eg: file systems and organisation structure). This structure is also

a perfect match for XML elements and sub-elements. Trees are good for partitioning

data and managing access control.

Object oriented: Object orientation is accepted as a strong engineering technique to

manage complexity, and can easily represent real world concepts. The OO technique

emphasises re-use. The re-use advantages in the presentation service are:

• Consistency of UI

• Productivity

• Reduced testing

• Greater stability (pre-tested components)

Platform independent: This independence to hardware and operating systems means

the service will be installable on diverse machines within organisations. It also makes

the service immune to hardware, OS, or network migrations and updates.

CHAPTER 3. A PRESENTATION SERVICE 76

Language independent: Applications can be developed in any language with XML and

TCP socket support. This allows developers to use the most familiar and efficient

language. Specialist languages can also be used for special purposes and specialist

libraries can be used with its required language.

Multi-user sessions: In the presentation service, multiple users may appear as one user

for simpler application design. Actions in one UI may transfer to all other UIs in

the same session, implementing collaborative sessions. Users joining a session can

have their UI updated to the current cumulative state.

Multiple transport protocols: A range of adaptors can be used with the UI interface

side of the presentation service, allowing many protocols to be connected and used

(such as HTTP, WTP from mobile phones, email via POP3/SMTP, and strings over

TCP sockets).

Multiple dynamic content protocols: The content types that can be supported over

these transport methods can be extended too. As well as HTML and XML, markup

languages such as SVG, VRML, RSS, WML, and SOAP could be used. With the

appropriate media generators, other media content such as Flash animation, Sound,

Voice, PDF, CSV, and CSS could be managed and rendered.

XML API protocol: XML has the benefit that it is human readable for ease of learning

and ease of debugging. It is also is a universal standard and many tools and languages

support it. The separation of syntax from semantics protects the service from change

or errors. Unwanted, new, or optional attributes and elements can be ignored.

System Integration: The service design uses URL based calls returning dynamic MIME

content, which is supported by most software. This interface can be used by a

browser, or another application. It forms an application interface for connecting

other applications. The application interface can connect to any number of small

and large applications. This combination of connection options provides flexible

facilities for integration.

CHAPTER 3. A PRESENTATION SERVICE 77

Powerful object operations: The service implements add, delete, move, copy, and ob-

ject change. Objects are chosen using an XPath search, which selects objects by

combinations of the select operators:

• Tag type

• Element attribute existence

• Element attribute value

• String content

• Element content

• Numerical index or range

The objects support a method of prototype based inheritance, and use overloading

of object attributes to specialise objects. Dynamic binding of data structures to

presentation objects when rendered creates the dynamic user interface.

Separation of concerns: Graphic designers can change the UI without programming

skills, and load the new objects into the PS. Developers use the UI and session

support to simplify applications. System administrators use the control interface to

monitor and manage systems, and system integrators can link other applications to

PS systems without code changes.

There are some intrinsic limitations to the use of XML as an API protocol:

• Attributes cannot have compound values (but references allowed).

• White space may not be preserved.

• Serialisation and parsing is slow.

• HTML entities are poorly supported in XML representation.

These architectural features match many of the desired web application properties shown

in Figure 1.1. The presentation service supports many of the required functions and

attributes in web application designs.

CHAPTER 3. A PRESENTATION SERVICE 78

3.7 Summary

The presentation service removes the common user interface handling code into a separate

service, which is optimised for this work. The concept is familiar within the domain of

data management, but the employment of this concept within the user interface domain

is innovative and delivers design improvements. If applied to web application design

methodologies and frameworks, this combination of engineering concepts will assist with

productivity, integration, management, user interface quality, and reliability.

Chapter 4

Interactive Graphics for the

Browser

4.1 Introduction

The requirements of web applications are becoming more complex but the software de-

signer has very few tools to assist in development. The HTML specification has no support

for graphical displays such as maps, diagrams, and graphs so the software designer is forced

to use custom specialised software or inadequate parts of the HTML protocol to implement

this part of the web application user interface.

This chapter introduces the Generic Graphics Applet (GGA) which is intended to be

a flexible general-purpose interactive graphics component. The GGA manages a large

collection of images, vector objects, and text. These graphics primitives are organised

into layers and groups, allowing complex interactive displays to be created on the applet

surface. It can be used to build interactive maps, diagrams, and business charts into web

applications.

4.2 The Browser Presentation Environment

As web applications become more complex, the software designer is faced with the diffi-

culty of building an application user interface (UI) within the limits of web protocols and

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 80

technology. Many varieties of software platforms have emerged to ease web application

development [Fraternali 98], however little has been achieved to bring the interactive dis-

play properties currently available on the desktop into the browser based UI. The user

of the browser UI suffers delayed responses, lack of interface feedback, limited widget

range, limited layout options, and frequent screen refreshes to transmit and receive state

information from the server [Rees 97].

The web UI designer is limited to “whole of screen” transactions by the page-oriented

nature of the HTTP protocol. Interactive interfaces that support desirable features such as

fast feedback, direct manipulation, and graphical visualisation methods [Shneiderman 97]

cannot be supported without bypassing the web protocols with complex custom software

such as browser plug-ins or special Java applets. Such custom software is typically built

for a particular purpose and uses a proprietary protocol to communicate with a remote

server, causing problems with integration, interoperability, and reuse of software.

Desktop UIs use a familiar set of interactive display tools that are consistent in the objects

and relationships they show, and the behaviour they exhibit. For the purposes of this work,

the eight common displays of text, table, image, form, outline, chart1, map, and diagram

will be used.

These fundamental components of displays are described in Table 4.1 with a summary of

the HTML supporting elements. These theoretical components have a number of common

properties:

• Each of the displays can be embedded in others of the same or different type. For

example, a table may contain text and images, a diagram may contain charts or

tables, and form may contain a sub-form or a map for location choice.

• The presentation of the data is separate from the content so that different displays

can be used to provide alternative views of the same data. For example, an aircraft

flight plan could be viewed in the geospatial context with a map, in data format

with a table, as a diagram showing temporal inter-relationships between entries, or

a hierarchical format organised by flights segments and subordinate waypoints with

an outline display.

1In order to reduce confusion about the difference between a business graph and a nodes-and-edges
graph, the terms diagram and chart are used within this chapter.

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 81

Table 4.1: Application Display Types.
Display
Type

Definition Examples HTML Support

Text A linear word or object
stream

Memo, Email, Letter,
Comment

b, i, p, pre, sub, sup,
cite, etc.

Table A rectangular array of
objects

Train Timetable, Calen-
dar

table, tr, td, th

Image A sampled projection of
an object or space

Photo, Sketch, Scan img, map, area

Form A set of name and at-
tribute fields

Address, Login, Data
entry

form, input, select,
textarea

Outline A vertical indented hi-
erarchy

Table of Contents, File
Manager

ul, ol, li, dl, dd, dt

Chart A graphical representa-
tion of quantities

Bar, Pie, Scatter plots,
Histograms

None

Map A proportional spatial
representation

GIS, Building, Plan,
Aerial photo

None

Diagram A graph of nodes and
edges

Block diagram,
Trouble-shooting
diagram, Pert chart,
Flowchart

None

• Components within the display can be linked to perform operations on other displays

or display components. For example, a file manager application may be configured

so that a directory entry in a hierarchical outline is linked to an associated table

that shows the contents of the directory.

• The attributes that define the appearance of the component (such as line thickness,

font name, or column width) are independent of the data attributes.

• Each component contains a structure of smaller components. A table contains a

heading and rows. An outline contains a list of indented elements. A diagram

contains nodes and edges. An image component can areas of high resolution sub-

images and have highlight areas with annotation.

Other display types such as movie, 3D environment, graphical control, and dialog box do

not share these common properties. These display types are not directly considered in

this work; however, they can easily be connected to a web application without being fully

integrated into the interactive display set. Emerging 3D environments show potential for

bidirectional interlinking and customisation, however they have yet to mature.

Of the eight displays, only five can be implemented directly with components available in

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 82

HTML [Ishikawa et al 07]. The chart, map, and diagram types require additional client-

side or server-side development to be part of the browser UI.

4.3 Current Techniques

The three most common methods currently in use for generating map, chart, and diagram

displays in the browser are :

• Configuring a program on the web server to generate the graphic content, then write

the result to an image file which is sent to the browser. To provide the interactive

behaviour, Javascript, style sheet overlays, image tiles, or image maps are used.

This complex solution is often inefficient (transferring large raster images often takes

longer than a vector data set containing the same information), and does not provide

immediate UI feedback and direct manipulation behaviour.

• Creation of a custom applet or other browser component which is intended for that

single display purpose and must be changed to fulfil a related task. The applet is

usually not provided with an application programmer’s interface (API) with which

it can be integrated into a new application. Further, the protocol it uses to commu-

nicate with the server is rarely made public which stops web application developers

from using the applet with their own data sources and applications.

• The development of Javascript code that dynamically builds a graphic display inside

the web page. Some highly functional and complex solutions have been developed

using this style (such as maps with GoogleMaps [Goo08] and charts with PlotKit

[Plo06]), but these efforts use extensive code and many “browser tricks” to perform

graphical functions. The result is a satisfactory user interface but developers have

problems with extending functionality, integration to other components, flexibility,

and maintainability.

An approach to rendering general purpose graphics to the browser was developed into

the High Performance JavaScript Vector Graphics Library [zor06]. The developer of this

library describes his approach to the problem:

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 83

In HTML there are no such elements as oblique lines, circles, ellipses or

other non-rectangularly bounded elements available. For a workaround, pixels

might be painted by creating small background-coloured layers (DIV elements),

and arranging these to the desired pattern.

This library allows developers to use Javascript functions to draw coloured vector graphics

in any container on the HTML page. Extra programming is needed though to build the

raw vector objects into charts, map, and diagram displays.

1: <script type=”text/javascript”>
2: <!–
3: function myDrawFunction()
4: {
5: jg doc.setColor(”#00ff00”); // green
6: jg doc.fillEllipse(100, 200, 100, 180); // co-ordinates related to the document
7: jg doc.setColor(”maroon”);
8: jg doc.drawPolyline(new Array(50, 10, 120), new Array(10, 50, 70));
9: jg doc.paint(); // draws, in this case, directly into the document

10: jg.setColor(”#ff0000”); // red
11: jg.drawLine(10, 113, 220, 55); // co-ordinates related to ”myCanvas”
12: jg.setColor(”#0000ff”); // blue
13: jg.fillRect(110, 120, 30, 60);
14: jg.paint();

15: jg2.setColor(”#0000ff”); // blue
16: jg2.drawEllipse(10, 50, 30, 100);
17: jg2.drawRect(400, 10, 100, 50);
18: jg2.paint();
19: }

20: var jg doc = new jsGraphics(); // draw directly into document
21: var jg = new jsGraphics(”myCanvas”);
22: var jg2 = new jsGraphics(”anotherCanvas”);

23: myDrawFunction();

24: //–>

25: </script>

Figure 4.1: Example of usage of the Vector Graphics Library (from [zor06]).

An example of the use of this vector library is shown in Figure 4.1 where standard calls

to graphics functions mask the poor browser graphics support. The visible vector objects

consist of hundreds of overlaid colour <DIV> elements carefully placed to form the required

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 84

shape. These objects are static once rendered, cannot be moved or adjusted, and there is

currently no practical way to capture mouse events on these objects.

Current techniques for implementing interactive graphics in the browser environment fall

far short of the capability available to desktop application developers. The next section

describes an innovative solution to the interactive web display of maps, diagrams, and

charts which is called the Generic Graphics Applet (GGA).

4.4 The Generic Graphics Applet

4.4.1 Requirements

The design of the GGA [Sweeney 00b] must provide a flexible light-weight web page com-

ponent that can be used to display a broad range of interactive displays. The display will

be composed of combinations of graphics primitives which are placed on an arbitrarily

large canvas.

A number of design attributes and features were identified that would need to be imple-

mented to achieve the aim of the Generic Graphics Applet. These attributes were chosen

as they individually and collectively enhance many of the key web application properties

displayed in Figure 1.1. These attributes are:

• Small, flexible and simple,

• Human readable (non-binary) APIs,

• Interactive with event reporting to server application,

• Full range of 2D graphics primitives,

• All objects support targeted hyperlinks,

• Web page integration API and web standards compliant,

• Configurable through embedded commands in the applet element,

• Support flexible group assignment and usage,

• Built as layers with commands to manipulate order,

• Object identifiers to be server addressable,

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 85

• Draggable option with drag and drop messages,

• Fixed display objects for user controls, and

• Flexibility through attributes and configurable defaults.

The interactive requirement of the design will require a communication channel to an

application. The application will be hosted on the web server or a separate server and

respond to dynamically attaching GGA components. This application will build graphics

displays by sending a rendering command to the GGA. User actions to objects within the

GGA should be reported to the application so applications can implement business logic,

possibly providing user feedback by updating UI graphics.

Web Browser

Generic
Graphics
Applet

Web
Server

Applet
Services

HTML
Page

Web
Resources

Web Server Host

<PARAM>

Javascript

Load New URL

Data and
Communication

Services

Browser
User

Figure 4.2: GGA Architecture Diagram

Figure 4.2 shows the architecture of a GGA-based web application. The GGA is a com-

ponent in the browser user interface that presents graphical information to the user and

captures user actions on graphics objects. Graphics commands can also be embedded in

the page in PARAM elements, which are executed directly after the applet completes load-

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 86

ing. To provide web page integration capabilities, the GGA exposes a number of internal

variables and two methods to DHTML Javascript code in the browser. The GGA will also

have the ability to issue a URL request and have the response display in another window

in the browser.

The useability of the GGA is a prime design parameter. To ensure adequate response

time for user operations and information display, optimisations such as simultaneous im-

age loading (with threads), local image caching, fast internal data structures, and block

command transfers should be used. Responsive panning and object dragging will enhance

the direct manipulation experience, even if the connection to the server is slow.

4.4.2 Implementation

The GGA was developed in Sun’s Java 1.5 but only uses features available in Java 1.2

[Gosling & McGilton 96] to be compatible with the majority of browsers without any

required extensions or plug-ins. It is deployed in a single JAR file, and is less than 100kB

in size. The applet is rapidly downloaded and initialised in web pages, creating a minimum

of delay in the browser user interface. Once downloaded, further use fetches the file from

the browser cache, reducing load delay to zero.

Every object created in the GGA is assigned a layer. The applet by default will load

each successively defined object over the existing objects; however, the layer ordering can

be changed at any time with the change layer command. Layers are a core concept in

the GGA: they determine what objects can be seen and which objects are triggered by a

mouse click.

The GGA component uses three communication methods, which may be used separately or

in combinations. The GGA can build graphics displays from embedded commands inside

param elements inside the applet’s object element. Another option is the use of events on

the web page to control the graphics content of the GGA using Javascript (also known as

ECMAscript [ECM97]). The Javascript can be attached to many types of event handlers

supported by the web page model (such as the onClick() attribute of many elements).

The most powerful method is a TCP socket connection to an application on a remote

server. A simple plain-language protocol is used to send and receive messages from the

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 87

application. The remote application is able to build graphics displays with named objects,

and respond to user mouse actions on these objects. The names used in these objects are

separate from XML Id names and named elements in the surrounding DHTML.

4.4.3 Command Language

The requirement for simplicity and readability drove the API choice toward a structured

English style dialogue. The use of line-feed terminated command and event strings was

used over a standard TCP connection for communication between the GGA and the server.

This method was chosen over RMI [RMI97] and CORBA [Obj95] as the target program

only needed a standard network library and the ability to handle strings to function as

a GGA server. Any language from Cobol to Basic to TclTk to Smalltalk to Perl could

be used to implement a server application. The increased flexibility of the strings over

TCP solution allowed flexible parameter types as they are transferred in an ASCII string

representation. The human readable format also promoted ease of learning and debugging.

A complication arising from this choice was the need for a sophisticated language parser in

the GGA; however this development cost would only be paid once, allowing many future

web application developers to make use of the clear and simple syntax.

load [draggable] [fixed] <url img> at <x,y>
using <id> [<notify>] [<urllink>]

draw [draggable] [fixed] [<prop>] line <x,y> to <x,y>
using <id> [<notify>] [<urllink>]

draw [draggable] [fixed] [<prop>] circle at <x,y> radius <r>
using <id> [<notify>] [<urllink>]

draw [draggable] [fixed] [<prop>] rectangle <x,y> to <x,y>
using <id> [<notify>] [<urllink>]

draw [draggable] [fixed] [closed] [<prop>] polygon <point set>|<delta set>
using <id> [<notify>] [<urllink>]
<point set> ::= 3{<x,y>}
<delta set> ::= at <x,y> 3{<dx,dy>}

write [draggable] [fixed] [<prop>] text <string> [with <fontspec>] at <x,y>
using <id> [<notify>] [<urllink>]

draw [draggable] [fixed] [<prop>] ellipse at <x,y> major <w> [minor <h>]
using <id> [<notify>] [<urllink>]

where:

<notify> ::= notify [click] [doubleclick] [grab] [drag] [drop]

<urllink> ::= add link <url> [into (self|blank|parent|top|<name>)]

Figure 4.3: Specification of GGA object creation commands.

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 88

The object-creation parts of the language are shown in Figure 4.3. An example of the GGA

command language is shown in Figure 4.13 in Section 4.4.6. These commands instruct the

GGA to load and display an image, draw a shape, or render some text. The x and y values

specify the place to put the object on the canvas. The applet starts with position (0,0)

of the canvas in the top left corner of the GGA display. The fixed keyword attaches the

object to the applet’s surface rather that the canvas. This means the object will not move

when the canvas is scrolled or panned; this is very useful for creating UI controls. The

draggable keyword indicates that the object may be picked up with a mouse click and

moved to a new location by the user. Each object must have a unique ID name specified

when it is created. This name is used for reporting events on the object, and identifying

the object when an operation on it is requested. This name is unrelated to the Id name

of XML elements used in BUS transactions or the names of elements in the DHTML

environment.

Career
Options

Polygon

Image

Rectangle Line

Ellipse

Filled option
ColoursLine styles

Fonts

Scroll
bars

GR MB

Large virtual canvas

Figure 4.4: Objects created and manipulated inside the GGA.

The types of objects and attributes are shown in Figure 4.4. The objects are shown within

a scrollable viewport on a large virtual canvas. Each object maintains its own identity

and can be manipulated by the server in groups or independently.

Other properties such as linecolour, linewidth, fillcolour, and flag for filled shapes may

be specified. Bounds on how far an object can be dragged is specified with xmin, xmax,

ymin, and ymax. Each object can be configured to report on the user mouse events that

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 89

occur such as click, doubleclick, grab, drag, and drop. Additionally, each object may have a

nominated URL that is opened when this object is doubleclicked by the user. Text objects

have specialised properties such as style, fontsize, fontname, and justification settings.

set attribute 1{ linewidth <int> | linecolour <color> |
fillcolour <color> | filled <bool> |
xmin <int> | ymin <int> | xmax <int> | ymax <int> }

set font [style <styleopt>] [fontsize <int>] [fontname <nameopt>]
[justify left | right | centre]

set notify (all <bool>) | 1{ <action> <bool> }
set outline shape rectangle | line | circle | ellipse | freehand | text

where:

<styleopt> ::= plain | ([bold] [italic])

<nameopt> ::= serif | sansserif | monospaced | dialog | dialoginput

<action> ::= click | doubleclick | grab | drag | drop | annotation

<bool> ::= true | false

Figure 4.5: Specification of GGA default setting commands.

At any time, a command to change object defaults can be received. These set commands

change the default properties that will apply to new created objects. In Figure 4.5, we

see the range of default properties that can be set. The set outline shape command is

special as it does not change defaults, but changes the behaviour of mouse gestures. The

outline mode can be set to a rectangle, line, circle, ellipse, freehand, or text. The text

mode is unique in allowing the user to type in a word or phrase into the mouse pointer,

then every click can report this “text annotation” on this object to the application.

group [with drag] <id> is 1{<id>}
ungroup <id>

remove <id> from group <id>

add <id> to group <id>

Figure 4.6: Specification of GGA group commands.

The group capabilities (see Figure 4.6) allow an object to be a member of one or more

(possibly overlapping) groups. Actions resulting from a command with a group name

in the ID field affect every member of the group. A special group name all objects is

always available and includes every object in the applet. The with drag modifier causes

all objects in a group to be dragged if one of the objects is dragged. This feature is very

useful for building compound objects.

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 90

remove <id>

show <id> [with <alpha> visibility]

hide <id>

move <id> (to|by) <x,y>

change <id> layer (to top | to bottom | up | down |
to above <id> | to below <id>)

Figure 4.7: Specification of GGA object manipulation commands.

A command can be sent to manipulate existing objects by addressing the change oper-

ation to the object’s ID name (see Figure 4.7). Changes to a group ID name will affect

all members of the group. With these object manipulation commands, objects can be

destroyed, moved, and hidden. The display layer order of an object can also be changed

in absolute terms or relative to another object. Objects may also have a transparency

property changed which will give the object a see-through effect.

pan (n|ne|e|se|s|sw|w|nw) by (<int>% | <int> pixels)

center on <id> [at <x,y>]

loadURL <url> [into (self|blank|parent|top|<name>)]

Figure 4.8: Specification of GGA set view commands.

In Figure 4.8, the pan and center commands that alter the user’s view are specified.

The pan command moves the applet’s view port in one of eight directions by the specified

amount. The center2 command scrolls the viewport so that the object with the requested

ID name is in the centre of the view. The loadURL command is a powerful feature that

sends a URL request to a web server and returns the result in another frame or browser

window. Like other commands, loadURL can originate from the applet’s parameters,

Javascript via the gga.cmd() method, and the application via the communications socket.

This flexible method of calling web URLs is a powerful integration feature for dynamic

asynchronous web application designs.

4.4.4 GGA Generated Messages

The GGA can emit messages through the application socket. These messages are typically

reports on user actions within the applet so that the application can trigger business logic

2As is common in the computer science world, the American spelling for words often “leak” into British
and Australian software.

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 91

and change state. This event reporting mechanism is an important part of the GGA’s

interactivity support functions.

object <id> had <user action> at <x,y> [text ”<string>”]

user action ::= click | doubleclick | grab | drag |
drop on <tgt id> |
anchor | stretch | pin | annotation

message ”<msg>”

invocation <methodstring>

ERROR: <msg string> failed because <reason>

Figure 4.9: Specification of GGA event messages.

There are four types of messages (see Figure 4.9) that the GGA can send to an application.

The object event message tells the application that the user performed a mouse operation

on the object with the ID name in the message. The logic within the application will

determine the meaning of the event from its knowledge of what that object represents and

the current internal status. The text clause will be added to events that originate from a

user annotating an object with a word or phrase.

The message type of message typically originates from the surrounding DHTML via the

gga.sendmsg() method or from an embedded applet parameter command that uses the

sendmsg "<string>" command. The string will have a regular structure that the designer

of the application has defined, so that an understanding between the message sender and

message receiver is assured. An example would be the use of a DHTML button to send a

verb-noun pair such as “display aircraft” or “zoom 200%”.

In order to maintain internal state, the application is sent an invocation message each

time the browser environment sends a command to the applet via the gga.cmd() method.

Errors in GGA processing of commands are sent to the application in an error message.

It is the responsibility of the application to take action on these errors or write them to a

log.

There is a sendmsg "<string>" command too; however it is not useful for the application

(as it would just send a message back to itself), or in the DHTML code (the gga.sendmsg()

method is intended for this purpose). The sendmsg "<string>" is designed to be used in

the parameter commands to communicate context from the web page to the application.

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 92

4.4.5 Embedding the GGA in a Web Page

The GGA is a standard applet and is used in a web page by specifying the applet attributes

in a HTML object tag. The GGA, like other applets, occupies a rectangular space in the

web page, obeys web page content flow rules, and can be addressed and manipulated via

Javascript using the Document Object Model (DOM).

Figure 4.10 shows the typical method of embedding the GGA applet in the web page. All

parameter entries are optional. The TCP port that the applet is to connect to is given in

the PORT parameter tag in the applet specification. A set of command strings can also be

given in the parameter tags. These parameters are executed in order, computed by the

integer as part of the parameter name (eg: CMD1, CMD5, CMD6, then CMD12). Note

that command numbers can be skipped — this allows the insertion of other commands

later. Parameters can set graphics defaults, create graphics objects, manipulate graphics

objects, and send message strings to the server application.

<object name=GGA
classid=URL
codebase=/hiat/applet/gga
archive=gga.jar
code=dsto.himalaya.HimalayaApplet.class
align=baseline|center|left|middle|right
width=INT height=INT hspace=INT vspace=INT
>

<param name=PORT Value=11907/>
<param name=HORIZONTALSCROLLBAR value=true/>
<param name=VERTICALSCROLLBAR value=true/>
<param name=DEBUG EVENTS value=true/>
<param name=DEBUG SOCKET IN value=false/>

<param name=”CMD1” value=GGACMD+”;”+INT/>
<param name=”CMD2” value=GGACMD+”;”+INT/>
<param name=”CMDn” value=GGACMD+”;”+INT/>

</object>

Figure 4.10: Specification of GGA applet element options.

4.4.6 Demonstration

Several demonstrations of the application of the GGA to support web applications are

described below.

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 93

Figure 4.11: Business Chart Display Example

In Figure 4.11, a simple business chart has been generated by a server application using

the GGA. The server application has produced the surrounding dynamic HTML page and

configured the embedded applet to connect to itself when loaded. The application uses

combinations of dynamic web pages to display standard HTML content, and the GGA to

supply an interactive user interface for charts and other graphical content.

Figure 4.12: Mapping Display Example

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 94

The mapping display example in Figure 4.12 shows the user interface of a simple travel

planning application based on the GGA. The application has built a map background by

specifying two map images and added a weather map image. The map images have been

scaled to be compatible with a single resolution, and metadata provides information on

where each map should be placed to join correctly with other maps. The GGA adds the

maps at the correct pixel locations, using layer controls to ensure smaller higher resolution

maps appear on top of larger low resolution maps.

Figure 4.13 shows a snapshot of the GGA commands that were used to build the map

example in Figure 4.12. Local image URLs were used in this instance but remote URLs

fetched through a local HTTP proxy work equally well.

1: load /hiat/map/world/map30s150e60deg1024pix.jpg at 0,0 using map1

2: load draggable /hiat/map/world/png small2.jpg at 340,17 using map2

3: load /hiat/map/weather.gif at 100,310 using map3

4: set attribute linecolour white filled true fillcolour 333333 linewidth 1

5: draw linecolour red linewidth 2 line 442,293 to 466,155 using line1

6: write linewidth 0 text ”CNS-POM\n1015/1140\nQF281 ” at 420,200 using t1

7: draw linecolour red linewidth 2 line 186,214 to 442,293 using line2

8: write linewidth 0 text ”DRW-CNS\n0545/0835\nQF62 ” at 280,230 using t2

9: draw linecolour red fillcolour white circle at 442,293 radius 4 using dot1

10: write linewidth 0 text ” Cairns ” at 455,286 using city1

11: draw linecolour red fillcolour white circle at 466,155 radius 4 using dot2

12: write linewidth 0 text ” Port Moresby ” at 479,148 using city2

13: draw linecolour red fillcolour white circle at 186,214 radius 4 using dot3

14: write linewidth 0 text ” Darwin ” at 199,207 using city3

Figure 4.13: Example GGA Commands

The lines, text, and city circles are placed interactively by the server in reaction to events

generated by user mouse actions. Other events were also generated by messages initiated

by Javascript enabled buttons in the surrounding HTML page. Javascript messages to

a GGA instance can originate from many DHTML sources such as buttons, hyperlinks,

icons, timed calls, images, and the page itself.

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 95

Figure 4.14: Graph Display Example

Many information displays consist of a layout of vertices and edges. These include organi-

sation charts, trouble-shooting charts, flowcharts, flow diagrams, block diagrams, schemat-

ics, and network diagrams. The Graph Display Example in Figure 4.14 shows how a display

of vertices and edges can be implemented using the GGA.

In this diagram example, the application initially draws the network of edges between

pairs of node locations. Then, for each node, the application sends commands to build

the node representation. A filled rectangle (or a circle depending on node properties) is

placed at the node location. The text associated for each node is placed over the rectangle

and a number of small image icons is then placed beneath the node rectangle. The shape,

text, and icons of each node are linked with a drag-group association so they are dragged

and addressed as a single logical object.

The supplied interactive options in this example are a sample of the interactivity that can

be achieved with the GGA: The nodes can be dragged to another location so the user

can optimise the graph layout. A double click on a node shape will open a browser form

containing the node data for editing. A double click on a node icon will open a different

browser window using the URL from the icon attribute. The user can pan across the

diagram using the built-in scrollbars. A Start button in the web page sends a command

to the GGA to centre the display on the Start node. The user can select a number of

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 96

nodes to list in a table by outlining the nodes with a bounding box and clicking on the

Display Selection button in the web page. These interactive aspects of the user interface

are described in table 4.2.

Table 4.2: Interactive properties of the Graph Display example.
Object Mouse

Action
Application Se-
mantics

Application Behaviour

Node shape Double
click

Open node data
in browser win-
dow for editing

When the data is saved with the
submit button, all GGA displays
in the session are transparently up-
dated.

Node icon Double
click

Open URL in
named window

This is a native GGA feature. The
application only assigns a URL to
an object. It is not involved in open-
ing the resource.

HTML but-
ton

Click Send message “go
to Start”

The application responds to the “go
to Start” message by sending a
center on Start to the originating
client.

Scroll bar Click or
drag

Pan this applica-
tion view

The server does not control this ac-
tion. Each user may view a different
part of the diagram.

Display Drag out
bounding
box

Select nodes The application finds the nodes
within the box and stores the selec-
tion linked with this client.

HTML Dis-
play Selec-
tion button

Click Send message
“display selec-
tion”

The application will send a loadURL

request to the client GGA to load a
browser window with the selection
of nodes in this client browser.

These interactive properties are not implemented in the application with hundreds of lines

of code. They are directly supported by the GGA design.

4.5 Technology Evaluation

To evaluate how the GGA performs, we check which properties of the web application

environment would been enhanced by the use of the GGA features (see Table 4.3). The

GGA contributes strongly to simplicity due to its straight-forward APIs and clear encap-

sulation of graphics functions. It is also strong in integration properties with its multiple

APIs and URL support, with independence from platform and language. It’s user inter-

face properties are probably GGA’s strongest features, so multi-media and interactivity

are significantly enhanced.

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 97

Table 4.3: Evaluation of GGA Web Application Properties.
Property Enhance Features

Sep. of Concerns
√

Separate DHTML, applic, GGA dev domains
Simplicity

√√
Simple language, events, DHTML API, UI

Modularity
√

Reusable light component

Familiarity
√

Drag and drop, graphics
Learnability

√
Direct manipulation

Useability
√

Better understanding of data using graphics
Consistency
Orthogonality
Interactivity

√√
Asynchronous protocol

Multi-media
√√

Graphic display
Continuity
Flexibility

√
General purpose graphics

Customisability
Productivity
Configurability
Collaborative

√
Application can connect multiple GGAs

Adaptability
√

Adaptable to any graphics purpose
Clarity

√
Readable protocol language

Reuse
Inheritance ∼ Objects inherit from defaults
Encapsulation

√√
Graphics handling layer

Lang. Independence
√√

Any application language
Interoperability

√√
Connects through APIs, URLs

Multiple UI Devices
Open Standards ∼ DHTML, TCP socket
Multiple APIs

√√
3 APIs

Thin Client
√

Only standard browser needed
Applicability

√
General purpose

Scalability
Plat. Independence

√√
Any modern browser without change

Efficiency
√

Cached, client CPU, light protocol
Maintainability
Instrumentation
Manageability

√
Deployed as standard web resource

Confidentiality
Integrity
Availability

Legend: ∼ = partial enhancement,
√

= enhancement,
√√

= major enhancement.

The GGA design has a number of intrinsic limitations but none are unexpected or onerous.

The command language is another thing for the developer to learn. Its clear readable

syntax should make this task easy, but developers will need to be convinced of the net

productivity gain in learning to use this new technology. Applets are typically restricted

from connecting sockets to any host except its originating web server. This forces the

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 98

GGA applications to be deployed to the web server unless security settings are modified

on the clients (which violates the run-anywhere without client change requirement). A

socket proxy on the web server would avoid this problem at a cost in performance and

reliability.

There are also a number of unsolved GGA implementation problems which could be ex-

pected to be solved before applying this technology in a production environment. It is

unclear under what conditions an applet terminates. Applets seem to hibernate when the

web page it has executed in is replaced by another web page, only to spring back to life

when the back button is pressed. Hundreds of hibernated applets inside browsers due to

visiting many GGA-equipped pages will have serious memory demands. There are prob-

lems with loading large images in applets. This may be caused by an over-zealous Java

security manager or a limitation on the JVM memory allocator.

4.6 Related Work

Early work by the CGM Open Consortium with WebCGM [Gebhardt & Henderson 99]

produced a CGM (Computer Graphics Metafile) specification and the WebCGM Profile

became a W3C recommendation. The Scalable Vector Graphics (SVG) [Ferraiolo et al 03]

work at the World Wide Web Consortium (W3C) has pioneered the development of 2D

vector objects as an integrated web content type. This work is gaining support and is

likely to be integrated with the next generation of web browser that is based on XML.

The CSIRO has developed an SVG Viewer [Robinson & Jackson 99] which is implemented

as an applet and displays graphics downloaded from a URL. By using Javascript and the

Document Object Model (DOM), client side application logic can be built around the

SVG viewer. This is a powerful solution and is likely to gain favour for use in static vector

display usage.

This work parallels the GGA work in many respects. The main areas where the work differs

is in the server interaction and the lightweight client. The GGA is designed to interact

with an application component compared to the SVG Viewer which has limited server

connection options. The SVG viewer also requires a large Java library to be downloaded

then stored on each client where the GGA is self-contained and lightweight.

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 99

The work on Displets [Ciancarini et al 98a] takes the approach of extending HTML and

intercepting the extensions at the client with an applet displet manager that performs pre-

parsing of the HTML stream and rendering of extension functionality into bitmaps. The

GGA work concentrates on interactive graphics and dynamic content within the graphics

applet. The displet work is suited more to extensions for HTML to display domain specific

extended HTML rendering.

The ROSA Applet [DM 02] is a Java applet designed to display an image and support a

number of button actions and drawing operations. It was originally developed to support

geospatial web applications, but over time other features have been added to support

other web application requirements. User events due to drawing operations are inserted

in an associated HTML form and sent to a server application encoded as a MIME form.

Buttons have a variety of settings and also populate form values to be sent to the server.

The applet has a distance measurement tool and configurable legend box.

Thousands of other Java applets are available from Java sites such as Gamelan [Gam] and

Java Boutique [Jav]; however, very few are general purpose and none offer the functionality,

simplicity, and flexibility of the GGA.

4.7 Further Work with the GGA

The GGA uses a English-like text command language which is easy to learn and read, but

is non-standard. The Scalable Vector Graphics [Ferraiolo et al 03] dialect of XML may

offer a more standard method of describing graphics operations, though it is not intended

as an interactive protocol and would still need to be extended to support functionality

equivalent to the GGA.

Current browsers do not print canvas based applets well. More work is to be done under-

standing the limitations of browser printing and modifying the GGA to print inside the

web page.

More testing needs to be undertaken on using the applet under real internet conditions

and with more complex web application designs. Experimental work to date has taken

place behind a firewall on a LAN.

CHAPTER 4. INTERACTIVE GRAPHICS FOR THE BROWSER 100

The current prototype lacks any security features that are not inherently provided by the

Java environment. More work is needed on connecting the applet to TCP ports on remote

machines, authentication, and access control (to control the rights of applications to move,

change or delete graphical objects created by other applications for example).

Web pages in web applications are mostly dynamic and applet pages which are replaced

by another page remain dormant until that page is revisited. Research on understanding

the behaviour and memory requirements of applets is a growing need. Hundreds of applets

attached to dynamic pages which will never be revisited again would have a large impact

on client machine memory usage.

To keep the UI component lightweight and flexible, only basic functionality was built into

the applet. To create a map or chart requires computation and command generation in

the application process to implement the display. A high-value enhancement would be the

development of an extension to support maps, charts and diagrams of different types.

4.8 Summary

The existing HTML protocol supports the basic needs of displaying text, images, outlines,

forms, and tables but the more graphical displays such as charts, diagrams and maps

are unsupported. Web application developers and programmer product vendors have

developed specialised and proprietary methods to display graphical data; however, there

is yet to be a general purpose graphical display component.

The GGA is designed to fill this need. The applet is a general purpose component for

web application developers to include small interactive graphical components or build

complex user interfaces that rival desktop interfaces in functionality. It offers a simple

human readable API, a range of orthogonal commands to manipulate the user interface,

and comprehensive event management. The applet is lightweight and able to be used in

applications without client modification. The one applet can be used to display all graphs,

diagrams and maps, and the applet can be closely integrated with DHTML in the browser

to achieve a flexible and highly functional user interface.

Chapter 5

The BUS Concept

5.1 Introduction

In Chapter 3, I discussed the problems facing web application developers and proposed

a solution based on the presentation service architectural component. This chapter in-

troduces a design of the Browser User-interface Service (BUS) which is based on the

presentation service concept.

The BUS offers an object oriented presentation language to build custom web user in-

terfaces that dynamically connect to application components. The components are able

to re-use HTML, Javascript, and stylesheet content using prototype inheritance and dy-

namically bind presentation objects with data supplied in XML format. The BUS is

designed to be independent of operating system, web-server, and browser software. The

BUS uses XML messages on TCP sockets to communicate with distributed application

component processes that implement business logic and connect with data stores. The

BUS is a flexible component that is intended to improve consistency and flexibility in web

interface design and application maintenance. The BUS is also an integration component

that can connect a single user-specific user interface to multiple distributed application

components.

CHAPTER 5. THE BUS CONCEPT 102

5.2 Developing a Browser-based User-interface Service

I examined several aspects of web application architecture to understand the limitations

and develop a software solution which would mitigate existing limitations and enhance the

potential for web based applications.

An implementation of the presentation service was required that maximised the positive

properties of web applications. The solution would need to encapsulate user interface

functionality and enhance the user interface for users. It must provide methods to integrate

and interoperate with other components in web applications, supporting communications

with simple readable interfaces. The software must be easy to deploy, configure, and

manage. The application interface must also maximise reuse of components and flexibility.

The solution is the Browser User-interface Service (BUS) [Sweeney 00a] that runs as a

separate process on a server, connects to users via a minimal gateway program and offers

a page composition and event application programming interface (API) to application

components in a distributed computing system. The BUS prototype is written in Python

[Lutz 96] because it offers rapid development features, a rich set of libraries, and high

readability (it is sometimes referred to as executable pseudo-code). The user interface

designer and application component developer do not have to learn Python as the APIs

are designed with a simple object oriented language and XML data messages.

In Figure 5.1, a typical browser initiated transaction is illustrated. Application compo-

nents (AppCmp) connect to the BUS dynamically through TCP sockets that carry XML

[Cowan et al 06] messages. The browser communicates user requests to the gateway pro-

gram which converts the GET and POST request, along with key values from the web

server environment, into an XML event and sends this to the BUS. The BUS will use its

internal logic to route the event to the appropriate application component and use the

returning and stored presentation objects, and data objects to assemble a DHTML (or

XML,PNG,WAV,WML) presentation stream.

CHAPTER 5. THE BUS CONCEPT 103

Browser Bus.cgi AppCmp Services

HTTP
POST or GET

HTML in HTTP

XML
Message

HTML
Content

Register

XML
Message

Object
Update

Render
Command

Asynchronous
Service
Transactions

Asynch
Object
Updates

User

Hyperlink or
Form Button

View UI Content

BUS

Service Request

Result

Figure 5.1: BUS to browser transaction chart.

The choice of an XML based application API is intended to help application developers

by using a standard syntax with wide support. However, the use of XML based messag-

ing applies a speed penalty to cooperating processes, but the development benefits are

more important. Arbitrarily complex object structures can be communicated and altered

without requiring re-compilation of either program. Unlike many other communication

protocols, this method will also work with any language-platform combination that has a

socket library and can process strings.

The use of the common scripting language Python, the CGI protocol, and XML messages

on TCP sockets was chosen primarily so the architecture would have the maximum flex-

ibility. BUS-based web applications can be built using any web server product on any

operating system. BUS application components can be written in any programming lan-

guage, and hosted on any operating system. The applications work with over 95% of the

installed web browsers on any operating system without configuration change or software

installation. This extreme flexibility is of particular use in large organisations without

centralised IT control and employing many different computer systems.

This design effectively separates the presentation layer from the application and data

layers. As the application logic and state are not located in the browser (unlike an appli-

cation applet) or the web server (unlike standard CGI based applications), the application

components can be shared among multiple sessions on multiple web servers, allowing col-

laborative applications.

CHAPTER 5. THE BUS CONCEPT 104

5.2.1 Using the GGA with the BUS

The Generic Graphics Applet (GGA) has been introduced in Chapter 4, where we saw the

many benefits of using this flexible UI component in web application designs. Developers

using the GGA, however, still need to build code to generate GGA commands and interpret

GGA return messages. Effort is also required to implement a design where all GGA

connections are accepted, monitored and responded to promptly. GGA applications must

also manage both the GGA interactions and web page interactions using the same sessions,

state, and data structures. A presentation service has the potential to encapsulate these

application requirements with reusable components and enhanced integration features.

The BUS was intended to only demonstrate the presentation service concept as a dynamic

web page manager. This role has been expanded to include the integration of the GGA

(and other prototype UI components described in Chapter 6). The BUS services GGA

connections in a similar way to URL requests, except GGA connections are long-lasting

where URL requests only exist for a single transaction. The URL and GGA events are

normalised and managed identically in the BUS. A separate object store in the BUS

manages the GGA presentation objects in a similar way to the HTML objects. The GGA

presentation objects use the same data object structures as HTML presentation objects

when rendering user interface changes. This means that data need only be updated in one

place, and all presentation objects (HTML, XML, GGA, or other types) use a consistent

view of the data when rendering user interfaces.

The transaction pattern for the embedded GGA component (Figure 5.2) illustrates the

integration of the GGA protocol with the BUS user interface API. The graphics capabilities

and the real-time transactions support truly interactive and effective user interface designs.

The GGA has three APIs for integration with web applications. The BUS is able to

work with each of these APIs to support flexible and functional applications. Web pages

generated by the BUS may include a GGA applet. This applet may have graphics com-

mands embedded in parameter strings, created from BUS presentation objects. The web

page may also have BUS-generated components which are configured to call the GGA

methods: cmd(STRING) and sendmsg(STRING) using Javascript statements. The most

flexible and interactive method is the dynamic socket connection to a BUS service using

the BUS-allocated port.

CHAPTER 5. THE BUS CONCEPT 105

GGA GGAMgr BusMgr AppMgr AppCmp Services

Register

UI Message

UI String

Register
Register

Message Object XML
Message

Object
Operation

Object Operation
Render Cmd

Render Cmd

Asynchronous
Service
Transactions

Asynch
Object
OperationAsynchronous

Object Operation

Register

Graphics
Cmd

Browser

Applet Load

DHTML Events

Page Load

Asynch
Object
OperationAsynchronous

Object Operation

UI String
Graphics
Cmd

User

Hyperlink

User Events

GGA User Event

GGA
Event
Msg

GGA User Event

BUS

Figure 5.2: GGA transactions with the BUS.

5.2.2 The BUS Design

The architecture of a web application that includes the BUS technology (see Figure 5.3)

uses the BUS as a value adding layer between application components and the user inter-

face software. Application components and UI components have long-lasting connections

through the BUS, and URL-based transactions use single transaction connections through

a web server equipped with a lightweight BUS Gateway extension.

Web Server Host Browser

Application

Browser

Browser

Browser

Application

Application

BUS Server Host
Web
Server

BUS
Gateway

BUS Server

GGA

GGA

BUS
Gateway

Figure 5.3: BUS Architecture.

The BUS Gateway is an adaptor that routes HTTP requests to a BUS server. Two versions

of the BUS gateway have been developed: a CGI adaptor for the Apache web server and a

dedicated simple web server. Both versions accept multiple HTTP requests, translate the

CHAPTER 5. THE BUS CONCEPT 106

request data and environment variables into a BUS XML message, and send it to a known

BUS server. The gateway then waits for a MIME-based reply, and sends this message to

the client without change before closing client and BUS connections. The CGI adaptor is

convenient to install in existing server installations but has the common disadvantages of

CGI programs: high resource consumption and transaction latency. The dedicated server

is a single process that uses a multi-threaded design to optimise throughput and limit

latency, but offers spartan functionality beyond the BUS gateway requirement. Because

the gateway works with HTTP and MIME messages, any MIME compliant media can be

supported including HTML, XML, SVG, PNG, WML, JPG, PDF, and RDF for example.

Control
Manager

BUS
Manager

GGA
Manager

Other
Manager

URL
Manager

Application
Manager

Nexus

BUS

BUS
Web Server
Gateways

GGA
Components

Other
Components

System
Management

Software

BUS
Applications

Data
Objects

HTML
Objects

GGA
Objects

Other
Objects

Figure 5.4: BUS Design.

The internal design of the BUS can be seen in Figure 5.4. The nexus is a socket-oriented

asynchronous server that builds and manages the relationship between a TCP socket and

a service object. The Application Components connect dynamically and are assigned

an Application Manager by nexus. User interface components also connect dynamically

and are assigned a GGA Manager (or another manager if they are a different type of

component). As HTTP uses TCP sockets which are created and destroyed for every HTTP

request, the assigned URL Managers also exist only for a single transaction; however,

internal session management in the BUS can simplify application designs by creating a

CHAPTER 5. THE BUS CONCEPT 107

virtual persistent HTTP user session. A virtual session makes sequential requests from

the same client UI appear as a single permanently connected UI.

The single BUS Manager holds the control logic that operates the BUS. It receives new

objects, object operation requests, and render requests from Application Managers as

messages are interpreted from application component communications. The BUS Manager

executes the request by manipulating the appropriate object structure, calling a method of

an object it manages, or returns an error message to the originating Application Manager.

The BUS Manager also receives normalised user events from user interface managers. If

these events are intended for the BUS itself, the BUS Manager interprets and acts on

them. If the events include the name of a destination application, the event is routed to

the responsible Application Manager for dispatch.

The Control Managers are created when an external process connects to the BUS control

port. The Control Managers are designed to interpret and act on messages from system

management software. When sent a recognised query, the Control Manager will read the

requested BUS parameter or object, serialise it, and return it to the requesting software.

It is also possible for authorised external software to send commands to the BUS which

can change its internal configuration.

In Figure 5.5, the transactions inside the BUS are shown. A new user interface connection

is registered to provide a link for responses. After registration new user events in a message

object format are sent to the BUS Manager. A chain of events are then triggered which

results in a user interface update stream being sent to the source user interface manager,

and then on the the originating user interface. A URL Manager will terminate at this

point, but long-connection components (such as the GGA) will remain open.

CHAPTER 5. THE BUS CONCEPT 108

Browser Bus.cgi UI Mgr BusMgr AppMgr AppCmp Services

HTTP
POST
or GET

HTML
in HTTP

XML
Message

HTML
Content

Register
CGI Event

UI String

Register
Register

App
Event XML

Message

Object
OperationObject

Operation
Render CmdRender

Cmd

Asynchronous
Service
Transactions

Asynch
Object
Operation

Asynch
Object
Operation

User

Hyperlink
or Form
Button

BUS

View UI
Content

Figure 5.5: Inside a BUS transaction servicing a HTML request.

A browser attaching to the BUS through a gateway will be given an initial page and

hyperlinks activated within that page will cause an XML GET or POST request to be sent

to the BUS. If the request is for a different view of the interface, the control logic will call

the render method of the required presentation object to render the new user interface. If

the event requires application action, the XML event message will be constructed and sent

to the appropriate application component. The application component may apply business

logic, transform data, and use a connected database before responding. A response to the

BUS usually requires sending an update for BUS data objects, and possibly a new user

interface component (usually using parts of existing components). The final action is often

to send a render command (mandatory for URL events) to update the user interface.

5.3 Application Communication API

The application API works on the asynchronous exchange of XML messages. The mes-

sage design has been kept as simple as possible to aid readability, minimise the learning

requirement, and reduce fault finding time. Unlike a SOAP-based message, the BUS mes-

sage uses no extra layers of XML such as XML Schema, XML Data, or an envelope. A

CHAPTER 5. THE BUS CONCEPT 109

minimal use of the BUS namespace is implemented to differentiate a BUS element from

a content object element. The only extra XML technology employed is XPath, which is

used in messages to describe which objects in the object stores to act upon.

The typical chain of events in a BUS and GGA enabled application is shown in Figure

5.1. Application components open a socket to the advertised BUS port, then send the

BUS a registration message with a unique name. The application then uses BUS messages

to build presentation and data objects inside the BUS. The application then idles and

waits for user events. User events addressed to this application are received, then the

application takes action based on its internal logic. The application then sends update

messages to the BUS and finally sends a render command to update the user interface.

The application would then return to idling, waiting for the next user event.

5.3.1 Messages from Applications Components

In Figure 5.6, the set of possible operation requests accepted by the BUS is shown. The

most used operations are add and render. The add operation creates or replaces objects

in one of the BUS object stores. The render operation instructs the BUS to direct the

target presentation object to serialise itself, recursively rendering through sub-objects, and

referencing data objects to be inserted in dynamic values. Note that the application must

send the connect and session values with a render operation so the BUS can determine

which user interface (or multiple user interfaces) are to be updated.

An example of the messages sent by the BUS to the application components and sent by

the application components to the BUS can be found in section 6.3.1 and section 6.3.3.

CHAPTER 5. THE BUS CONCEPT 110

Application Registration:
<register name=”STRING”/>

Mandatory attributes (except for <register>):
connect = IDSTRING
session = NAME

Action Requests:
<render ctype=CTYPE dest=XPATH dataset=XPATH/>
<config NAME=VALUE [offx,offy,pixdeg,...] >

[<xml object>,...]
<unconfig/>
<query ctype=CTYPE src=XPATH/>

Object Operations:
<comment> CONTENT </comment>
<build ctype=CTYPE dest=XPATH/>
<ref ctype=CTYPE dest=XPATH>

[<xml object>,...]
<add ctype=CTYPE [src=XPATH] [dest=XPATH] [offset=OFFSET]

[position=POSITION] [context=keep|follow(def)]>
[<xml object>,...]

<move ctype=CTYPE src=XPATH [dest=XPATH] [offset=OFFSET]
[position=POSITION] [context=keep|follow(def)]>

[<xml object>,...]
<del ctype=CTYPE dest=XPATH/>

Attribute Operations:
<seta ctype=CTYPE [src=XPATH] [dest=XPATH] srcname=CSL destname=CSL

value=STRING/>
<rema ctype=CTYPE [dest=XPATH] destname=CSL/>

where:

CTYPE = html | xml | gga | OTHERS

XPATH = XML object selection specification

OFFSET = after(def) | before | replace

POSITION = first | INT | last(def)

INT = integer describing position of reference

(negative indicates reverse index: -1 is last object)

CSL = comma seperated list of attribute names

Figure 5.6: Operation requests sent by Application Components.

The abbreviated XPath language used in the BUS operations is defined in Figure 5.7. The

syntax is similar to file path specifications, with added numeric indexing and selection by

attribute. For the XPath implementation in the BUS, I added the non-standard negative

numeric index option for the selection of items located from the end of the sub-component

list.

CHAPTER 5. THE BUS CONCEPT 111

/ : Root

. : Self

.. : Parent

// : Recursive Search

* : Wildcard

[INT] : Index (base=1)

[-INT] : Index from end (BUS extension)

[name] : Node Select by Child Tag

[@name] : Node Select by Attribute Existence

[name=”STR”] : Node Select by Child Tag and Child Content

[@name=”STR”] : Node Select by Attribute Value

TAGNAME : Selection of Children by Tag

Figure 5.7: XPath syntax supported by BUS in object operations.

5.3.2 Messages to Application Components

Applications are sent events by the BUS, when user events are sent to the BUS tagged

with the name of this application. GGA events are directed based on the application

name which makes up part of the graphic object’s name, or a default application assigned

to the BUS session. It is possible for many graphic objects in the same GGA display to

be managed by applications using no cooperation (eg: a map serving application and the

application managing the aircraft track symbols having no knowledge of each other).

<cgi|event|message|invocation|error
session = NAME

connect = XXX (managed by BUS for APP use)

client = html(def)|xml (SUPERCEDED)

userid = user name (authenticated from UI?)

format = html|txt|xml (from BUS EXT)

urlbase = web site URL base (from SCRIPT NAME)

NAME = VALUE (xN) (derived from <event|cgi>)

/>

<result NAME=VALUE (from query)>

[<xml object>,...]

Figure 5.8: BUS messages sent to Application Components.

The syntax of the user events is specified in Figure 5.8. The message will be a user event

message or a result from an earlier query to the BUS. The event message will contain

values to the connection ID, session ID, type of media the client is expecting, and the

CHAPTER 5. THE BUS CONCEPT 112

web server gateway path (for URL events only). An authenticated user name may also

be present if the web server has authenticated a URL requester, or the GGA user has

been authenticated via a custom method. Each of these BUS-supplied tags have a trailing

double underscore in the name to separate then from user data (user data fields that have

a trailing double underscore are truncated). The remaining attributes refer to user data.

The URL messages (with the cgi tag) have GET and POST data from the hypertext

URL or HTML form. The GGA messages (with the other element tags) have object ID,

x, y, action type, and other optional fields.

When an application sends a query (see Figure 5.6), the BUS will fetch the indicated

objects and return them in a result message, so the application can determine the current

state of its own and other’s objects in the BUS object stores. The query attributes are

repeated in the result attributes so the application will know which query this result is an

answer to.

5.3.3 Dynamic Presentation Objects

All BUS presentation objects may use special BUS dynamic objects in their object struc-

tures (see Figure 5.9). These objects are interpreted by the BUS at render-time and

implement looping, selection, data referencing, presentation referencing, recursion, and

variable updates. The presentation reference instructs the renderer to render presentation

objects managed by other applications using the current data context.

All presentation objects including dynamic presentation objects can use Active Expressions

in content and attribute values. This expression evaluation is triggered by surrounding

the value with dollar signs. A number of examples illustrate how active content is used:

<div> $ ’Take off at ’ + data.LaunchTime + ’ Tuesday’$ </div>

<td class=”$ var.cellstyle $”> $ data.organisation $ </td>

 $ 1024 * int(data.kilobytes) $

These active expressions can use most of the capabilities of the Python language, and can

use properties of the current data object and variables within scope (see SetVar in Figure

5.9). For the definition of the syntax of active expressions, see Appendix D.

CHAPTER 5. THE BUS CONCEPT 113

<Reference busobject=LABEL>

<UseData [dpath=XPATH | ref=OBJREF]> BLOCK

OBJREF=data (”.”+ATTRIB | ”[” INDEX ”]”)*

<UsePres [prespath=XPATH | ref=OBJREF]> BLOCK

<SetVar name=IDENT value=STRING> BLOCK

<Choose>

BLOCK

<test expr=EXPR> BLOCK then exits...

<If expr=EXPR>

BLOCK

<Then> BLOCK

<Elif expr=EXPR> BLOCK then exits...

<Else> BLOCK

<ForEach [dpath=XPATH | ref=OBJREF] [seq=data(def)|pres|match]>

BLOCK (with p total, d total, p index, d index vars)

Figure 5.9: Dynamic presentation objects.

These dynamic elements can be used in the HTML, XML, GGA, and other data stores

as required by the application designer. Variables can be set with the setvar element,

and these values exist within the element scope. Inside the foreach loop, four additional

variables are available which contain the total and current index of child presentation and

data elements used in this loop.

Any element can have a busname=LABEL attribute. This is used by the reference element,

which will search back through its parent objects for the given label, then render that object

and its sub-objects using the current data context. This recursive rendering is used for

trees of data that use the same presentation. Note that this recursion is self-terminating

as the renderer will, at some point, reach the bottom of the data tree.

This combination of dynamic rendering capabilities encourages the reuse of presentation

components and the integration of external presentation components from different appli-

cations. These features allow the creation of user interfaces that contain combinations of

user-oriented displays and links from different applications.

5.3.4 Graphics Presentation Objects

The major work in adapting the GGA to the BUS design was the creation of a library

of objects which can be expressed in XML, support the dynamic elements mentioned

previously, and serialise themselves into valid GGA commands.

CHAPTER 5. THE BUS CONCEPT 114

Mandatory:

Id = IDENT (”Id”+INT automatic default Id format)

idgen=IDENT (alternative ID generator - optional)

x1=NUM

y1=NUM

For line and rect:

x2=NUM

y2=NUM

General options:

geo = r|t (r=georeferenced,t=geotransformed optional)

busname=LABEL

Object options:

draggable=YES

fixed=YES

Properties options:

linewidth=0-16

linecolour=COLOUR (COLOUR=WORD|HHHHHH hex value)

fillcolour=COLOUR

filled=BOOL

xmin=NUM|null

ymin=NUM|null

xmax=NUM|null

ymax=NUM|null

Font options:

style= (plain | ([bold] [italic]))

fontsize=INT

fontname= serif | sansserif | monospaced | dialog | dialoginput

justify= left | right | center

Notify options:

all=YES

click=YES

doubleclick=YES

grab=YES

drag=YES

drop=YES

annotation=YES

Link options:

link=URL

target=self(def)|blank|parent|top|NAME

Figure 5.10: Attributes of GGA presentation objects.

CHAPTER 5. THE BUS CONCEPT 115

The common attributes of the graphics elements are listed in Figure 5.10. Attributes are

serialised into command options when the GGA presentation object is requested to render

itself. Attributes which are not specified can take the value present in the current default

environment inside the GGA.

<set> BLOCK

<defaults [FONT] [PROP] [NOTIF] [outline=MODE]>

MODE=freehand|rectangle|circle|ellipse|text
<image img=URL X1Y1 [OPT] [alpha=0-1.0]>

<line X1Y1 X2Y2 [OPT] [PROP]>

<rectangle X1Y1 X2Y2 [OPT] [PROP]>

<circle radius=NUM X1Y1 [OPT] [PROP]>

<ellipse [major=NUM] [minor=NUM] X1Y1 [OPT] [PROP]>

<polygon [closed=YES] plist=POINTS X1Y1 [OPT] [PROP]>

POINTS = [(x,y),...] | STRINGREP

<symbol [xscale=RATIO] [yscale=RATIO] [heading=DEGEAST]

[symbol=plane(def)|plus|triangle|diamond|hexagon|arrow|square|
airport|radar|towedgun|tank|bigplane|ground|ship|sub|missile]

[closed=YES] X1Y1 [OPT] [PROP]>

<ovalarc [majrad=NUM] [minrad=NUM] [startangle=DEGEAST]

[endangle=DEGEAST] [segment=YES] [closed=YES] X1Y1 [OPT] [PROP]>

<text text=STRING [FONT] X1Y1 [OPT] [PROP]>

Figure 5.11: Graphics creation elements in GGA presentation objects.

In Figure 5.11, the syntax of graphics elements that can be used in the GGA display are

described. The defaults object is used to set default attributes for objects that follow,

reducing the need for repetitive attributes, and improving consistency. The image, line,

rectangle, circle, ellipse, polygon, and text elements mirror their counterparts in the GGA

command set (see Section 4.3). The symbol and ovalarc objects on the other hand, are

virtual objects. They are used as symbols and arcs in the BUS and applications, but are

implemented by many-sided polygons in the GGA applet.

The full set of GGA actions have been implemented in GGA objects (see Figure 5.12).

These objects will send an instruction to the GGA to change a graphic element or user

view when rendered. Like all BUS objects, these actions can be assembled into sequences

that can be used to implement sophisticated graphics effects.

CHAPTER 5. THE BUS CONCEPT 116

<hide obj=IDENT>

<show obj=IDENT [alpha=0-1.0]>

<move obj=IDENT [abs=BOOL]>

<remove obj=IDENT>

Note: Magic IDENT ”all objects” deletes it all.

<layer obj=IDENT where=PLACE [target=IDENT]>

PLACE=up|down|top|bottom|above|below

(above and below require target)

<pan [amount=PERC”%”|INT] direction=n|ne|e|se|s|sw|w|nw>

<centre obj=IDENT>

<load url=URL [target=self(def)|blank|parent|top|NAME]>

<group [drag=BOOL] group=IDENT members=IDLIST>

IDLIST=IDENTS separated by single space

<disband group=IDENT>

<expel member=IDENT group=IDENT>

<joinup member=IDENT group=IDENT>

Figure 5.12: Action elements in GGA presentation objects.

The reusable properties of the graphics elements, when combined with dynamic tags,

active content, and shared data resources, make this pairing of BUS and GGA technology

a potent combination for flexible and effective user interfaces in web application designs.

5.4 Building BUS Applications

The BUS uses a number of advertised TCP/IP ports to communicate with other web

application components in a similar way to SQL database engines and web servers (eg:

port 80).

A number of special URLs are available to the web application developer to help in test-

ing systems of components and diagnosing faults. The BUS can provide information on

the BUS gateway configuration, application component connections, internal data store

contents, and connected user interface components.

On startup, the BUS is configured to load a local XML file called bus.xml and process

these object operations. This foundation configuration file can load other files and be

annotated with comments.

CHAPTER 5. THE BUS CONCEPT 117

The BUS XML file loader recognises the special line syntax:

include files : [SPACE] ”#include” SPACE FILENAME

comments : [SPACE] ”#” COMMENT ”\n”

The include directive reads and processes the next XML file before continuing with the

next line. The comment lines are discarded before processing by the XML parser. These

two additions add simple improvements to XML configuration files to assist with reuse,

modularity, and maintainability.

5.4.1 Using the GGA UI Component

The GGA is embedded in a web page using the familiar object element (see Figure 5.13).

To attach to the BUS port for servicing GGA connections, the PORT value must be set

to the 11907 value. When using the BUS services, GGA instances should not include

graphics commands in the param elements, as the BUS and serving applications will have

no knowledge of what has been placed on the canvas.

<object name=GGA

classid=URL

codebase=PATH

archive=gga.jar

code=dsto.himalaya.HimalayaApplet.class

class=STYLE

width=INT

height=INT

>

<param name=PORT Value=11907/>

<param name=HORIZONTALSCROLLBAR value=true/>

<param name=VERTICALSCROLLBAR value=true/>

<param name=CMD ID value=CMD OPERATION/> (zero or more commands)

</object>

Figure 5.13: Using the GGA UI component in a web page.

CHAPTER 5. THE BUS CONCEPT 118

The GGA applets in a dynamic page can be sent a message or a command using the

standard DHTML GGA interface:

document.gga.cmd(STRING)

document.gga.sendmsg(STRING)

Commands sent to the GGA will be reported to the attached application as an invocation

event, so the application can track external changes to the GGA internal state. Messages

sent using the sendmsg(STRING) method can carry structured language commands for the

BUS or applications to interpret.

The message capabilities of the GGA can be used to add new capabilities to the GGA

and BUS relationship. Dynamic (or static) pages with GGA applets can embed the

sendmsg(STRING) command in applet param elements to send information to the attached

server when the applet is loaded. The sendmsg(STRING) method may also be used from

DHTML for the same purpose. The GGA Manager in the BUS currently recognises two

forms of message syntax sent via this method:

message ” set NAME = VALUE”

where NAME = session|ggaver|appname

message ” auth USERNAME = MD5 HASH”

The set message stores the name-value pair in the connection environment, which is passed

on to applications. These values can also be used internally by the BUS to form sessions,

and modify output depending on the software version. The auth message returns a user

name and security hash supposedly sent by this BUS instance. The user name will be

hashed with the secret BUS server number and compared to the user supplied hash before

associating this user name with this connection. This is a simple form of authentication

transference, which is not robust, but useful for experimentation purposes.

5.4.2 Using the Control Port

The BUS control port is accessed by connecting to BUS port 11910. Passing an XML

formatted query on this socket will request the BUS to look up an internal data structure

(see Figure 5.14). The query can request the value of an expression in the Control Manager

context, or the value of a BUS Manager attribute.

CHAPTER 5. THE BUS CONCEPT 119

<query expr=OBJEXPR/>
returns:

<result error=MSG [expr=OBJEXPR]> OBJECT TREE </result>

<query param=ATTRIB/>

returns:

<result error=MSG [param=ATTRIB]> VALUE STRING </result>

Figure 5.14: Syntax of messages using the BUS Control Port.

The requested value is serialised (possibly into XML for an object from the object stores),

and returned in a result message. This feature allows management software to track

transaction rates, memory usage, current sessions, and names of attached application

components for example. In future this feature could be extended to allow authenticated

users to change parameters in the BUS to optimise performance. This feature is designed

to enhance the manageability and instrumentation of BUS web application designs.

5.4.3 Large Scale BUS Systems

A highly distributed system can be developed using the BUS architecture. In Figure

5.15, an example system is illustrated that shows how multiple clients of varying types

can interact with applications using more than one BUS service. Browsers of different

types interact with BUS-enabled applications via standard URL requests and MIME data

display (such as XHTML, XML data, PNG image, or WAV sound). The GGA instances

connect directly to the designated BUS service and interact asynchronously via user events

and graphics update commands.

External applications may also fetch datasets in XML from the BUS directly using the

BUS API, or via a web server and BUS gateway using the standard URL protocol. Web-

enabled applications can use the gateway feature without modification – the gateway on

the server behaves like any other web server resource.

CHAPTER 5. THE BUS CONCEPT 120

Browser
Objects

Paris PDA

WML

London Client

Web
Enabled
Application

Async Event,Data
XML/TCP Socket

Browser
Objects

URL->MIME
HTTP

Sydney Client

GGA

GET/POST
 (Hyperlink/
Form Submit)

User Mouse/KB or
Javascript Event

BUS BUS

Web
Server

Web
Server

Application

Database
Server

BUS
Application
Wrapper

Legacy
System

Communication
Server

Application

Graphics Update
Command

BUS
Gateway

Browser
Objects

TCP Socket

External
Application

External
XML->MIME
Requests

Management
Interface

External
Applications

Web
Server BUS

Gateway

Browser
Objects

Canberra Client

GGA

Chicago Notebook

Sydney

CanberraLondon
New
York

Brisbane

London

Melbourne

Melbourne

Sydney

Sydney

London

Dublin

AC AC

External
HTTP
Requests

Figure 5.15: A distributed web application system example using BUS architecture.

Application components (AC in Figure 5.15) can be located on the BUS server host or

another host available over a network. The applications may also connect to more than

one BUS service (for reliability or load management) and may provide another API for

client connections or its own user interfaces.

The architecture also enables highly reliable and scalable services. If a web server should

fail or become overloaded, the browser based application can be routed through another

server equipped with BUS without losing the session. Should the application component

fail, other instances of the application component can be used by BUS with the same pro-

tocol; however the current state information will be lost if not designed into the application

program.

Systems based on BUS technology have been tested on a small scale where the BUS,

web server, BUS gateway, application components, and the database run on the same

CHAPTER 5. THE BUS CONCEPT 121

server host. The technology also scales to a very large size with globally distributed web

servers with BUS gateways, BUS servers, applications running on other servers connected

to standard database engines. Such large systems allow specialised server installation,

gradual degradation on failures, and dynamic load sharing using established designs from

large scale web server systems.

5.4.4 Collaborative Application Support in BUS Architecture

Collaborative applications enable geographically distributed teams to work effectively in a

common information environment. This is achieved through common views, shared data,

change notification, workflow, group work status display, and communication tools. Web

applications are often the best choice for collaborative applications because they offer a

central system to maintain state, store data, and deploy software. The problems of peer-

to-peer designs (such as synchronisation and compatibility between platforms and software

versions) are avoided.

The BUS and GGA technology support the design of collaborative web applications with

shared view components, shared data stores, asynchronous content updates, real-time in-

teractive graphics, and multiple-user graphics sessions. The shared but composable view

components allow flexibility but also encourage reuse so the team members have a con-

sistent view of the work space. The data stores in the BUS are able to be referenced by

other presentation components, ensuring data need only be updated in one place so that

team members have current and consistent information within the UI. Asynchronous con-

tent updates are achieved through communication through the GGA, triggering DHTML

content update when the server state changes. This asynchronous update provides real-

time UI changes that reflect each team members’ contribution – ensuring that the team

is always working in an internally consistent and valid information environment.

The most innovative aspect of the GGA though is the provision of real-time interactive

graphics where changes in the graphics space can be shared with other team members as

updates occur. This shared graphics session can support shared whiteboard, a distributed

slide show, simultaneous annotation of an image, continuous situation assessment and

dynamic distributed planning using a map, and group creation of large mind maps for

example. The integration between the GGA and BUS technologies also allows form users

CHAPTER 5. THE BUS CONCEPT 122

to create shared graphics objects, and graphics events to display BUS generated pages.

Other uses for the GGA include a shared ticker tape for group news, a shared navigation

display for drilling down in complex deep content, and a central clearing house for spatial

and image related information in an emergency situation (such as placing events on a map,

or assigning data to people or vehicles in a security camera image).

5.5 Technology Evaluation

The BUS language and transaction pattern is designed to be compliant with the specifica-

tions given in chapter 3, so the benefits of this technology will be aligned with the benefits

(and limitations) of the more abstract presentation service in section 3.6. The benefits of

the BUS technology are summarised in Table 5.1.

Table 5.1: Benefits of developing applications with the BUS.

Capability Benefits

Hides user interface de-
tails

Eases developer work by using abstracted web
and graphics structures.

Adds reusable objects
to DHTML

Eases re-use of tables, pages, lists, and more
complex compound components.

Manages collaborative
sessions

The BUS can transparently transmit UI render-
ing to multiple users and simulate a single user
to applications.

Integrated graphics The GGA can display interactive maps, dia-
grams, and charts.

Promotes consistent
user interfaces

Reuse of objects and graphics increase applica-
tion consistency and developer productivity.

Webify legacy applica-
tions

Adding adaptor code will allow legacy applica-
tions to work over the web through the BUS.

Application integration Multiple applications can contribute to a sin-
gle user interface and a single user interface can
launch events to multiple applications.

Interoperability Operating with external web systems is eased
with multiple interfaces to integrate with.

Speeds development By letting the BUS handle the user interface,
developers can work faster and concentrate on
application logic, flow, and transforms.

Allows client profiles The BUS can change its behaviour to suit user
profiles. It can scale from simple text on PDA
screens over GSM up to rich graphical content
on multiple powerful LAN workstations.

When evaluating the BUS technology with the web application properties as criteria (see

CHAPTER 5. THE BUS CONCEPT 123

Table 5.2), we observe that many of the properties are positively influenced by the use of

the BUS.

Table 5.2: Evaluation of BUS Web Application Properties.
Property Enhance Features

Sep. of Concerns
√√

Separate UI, web services, BUS, and application
layers

Simplicity
√

Simple language, events, application API
Modularity

√√
Tiered design, modular internal design

Familiarity
√

Standard HTML + graphics element
Learnability ∼ Basic XML used, simple applications work
Useability

√
Integrated UI

Consistency
√

Reuse of presentation
Orthogonality

√
Data, pres, app independence

Interactivity
√√

Async GGA protocol + DHTML integration
Multi-media

√√
Enriched graphic display

Continuity ∼ Seamless application restart
Flexibility

√√
Combinations of UI and graphics, APIs

Customisability
Productivity

√
Built UI from other UIs, async web update

Configurability
√

Base presentation + data in BUS XML config
Collaborative

√√
Multi-GGA + web user sessions

Adaptability
√

Adapt to new UI via new manager
Clarity

√
Defined manager roles, objects, protocols

Reuse
√√

Reusable presentation, data, referencing
Inheritance

√
Objects copy and overload

Encapsulation
√√

UI handling service with graphics
Lang. Independence

√√
Any application language

Interoperability
√√

Connects multiple APIs, URLs, XML
Multiple UI Devices ∼ Possible mobile extension, email adaptor
Open Standards

√
DHTML, sockets, XML, XPath, CGI, HTTP

Multiple APIs
√√

URL, HTML, XML, GGA, Control, App APIs
Thin Client

√
Only standard browser needed

Applicability
√

General purpose web application tech
Scalability
Plat. Independence

√√
Any modern browser without change

Efficiency ∼ Shared CPU tasks, low BUS-app traffic
Maintainability

√
Split applications, reusable modules

Instrumentation
√

Control port
Manageability

√
One BUS process, web deployed applet

Confidentiality
Integrity
Availability ∼ BUS can serve without app, BUS is critical node

Legend: ∼ = partial enhancement,
√

= enhancement,
√√

= major enhancement.

It implements the separation of concerns at several levels. The BUS-based design has five

tiers: The browser, DHTML, and GGA for the user tier; the web server with local resources

and BUS gateway form the second tier; the BUS itself is the third tier; the applications and

CHAPTER 5. THE BUS CONCEPT 124

data services form the fourth and fifth tiers. The BUS also maintains a separation between

data and presentation logic up to the time the UI requires an update. Configuration files

use the XML syntax with transparent extensions, allowing non-programmers to build UI

templates with XML editors.

To enhance system modularity, the BUS is separated from the GGA, web server, appli-

cations, and management software by simple but effective interfaces. Internally the BUS

is also very modular, allowing the support of new UI managers and presentation object

types with minimal changes to existing code.

The BUS and GGA technology is very strong on integration, user support properties,

and a structured architecture. The developer, system support personnel, integrators, and

users benefit from this architecture’s clear focus on a high quality user interface while

minimising the work programmers and integrators need to perform.

The BUS, like most web technologies, has limitations too. The BUS design shows some

intrinsic limitations due to design choices:

• The speed is limited by multiple layers and XML parsing.

• Careful design is needed in asynchronous servers or one complex transaction can

block all others until a time-out triggers.

• Using the BUS imposes another protocol and language web developers need to learn.

• There will be delays in adopting new protocol extensions, as the BUS adaptor will

need to be modified.

• The BUS and applications must be reliable. Failures, data integrity problems, or

memory leaks will have serious consequences, as these processes have global effects

and must run without restarts.

• The BUS is a single point of failure. A software failure would terminate ALL current

transactions leaving applications and user interfaces unconnected. Errors must be

caught and handled gracefully (with rollbacks and restore).

• Database data must also be duplicated in the BUS for presentation objects to render

it. This dataset duplication in the DBMS, application, and the BUS adds unwanted

complexity and inefficiency to application design.

CHAPTER 5. THE BUS CONCEPT 125

It would be possible to attack these limitations with aggressive design changes, but the

resulting design would be likely to exhibit other design flaws. These design trade-offs affect

all complex designs, so the best approach is to support the primary design features and

minimise the effects of negative side effects.

The BUS prototype implementation also has some limitations:

• The speed is limited due to using an interpreted language and an unoptimised pro-

totype.

• Only simple error detection and recovery is currently implemented.

• There is no access control between application object trees, so any application can

write over or delete any other object.

• The user preferences capability is not implemented.

• There is limited protection against cross-site scripting attacks.

• The BUS does not currently check on the impact of possible operations. Large data

transactions could use all memory and cause a fatal error.

The application of more development effort would overcome these problems for use in

production systems.

5.6 Summary

In this chapter I have described the implementation of the presentation service in a

Browser-based User-interface Service, which employs a number of novel features: The

BUS supports component re-use through a prototype inheritance mechanism that is easy

to learn and use; a simple language-independent XML language is used for communication

with applications; and multiple users using different user interfaces can collaborate in the

same session.

The BUS offers a unique solution to some of the problems that affect web application

design; it is designed as a service that web application developers can use to build better

web applications faster. The service hides some of the complexities of the web user in-

terface protocols and languages, while offering significant engineering benefits. The BUS

CHAPTER 5. THE BUS CONCEPT 126

architecture is designed for flexibility and platform independence and provides interface

methods to suit many web application requirements.

In the next chapter, I will employ the BUS and GGA technologies in a number of exper-

iments. The analysis of these experiments will explain more of how the BUS works in

practise.

Chapter 6

Prototypes and Results

6.1 Introduction

The BUS and the GGA were designed around software engineering principles applied to

the web application development domain. The core of this thesis is the claim that the

presentation service and browser component simplify the development process and enhance

the qualities of the resulting web applications. In order to test the improvements to the

development process and application quality, a number of experiments were conducted

using these new technologies.

The benefits of improvements in software engineering only become obvious in large projects

where increasing complexity can cause severe losses in productivity and escalating fault

counts. A large project is not the place to test new engineering concepts, so another

method must be found.

In chapter 1, I presented a set of qualitative properties that web software can be evaluated

against. I will use a number of small experiments in this chapter to demonstrate how

the BUS and graphics component are used, and explain how the use of the new approach

provides improvements in many of these web application properties.

CHAPTER 6. PROTOTYPES AND RESULTS 128

6.2 Experimental System Design

The architecture of the system used to evaluate the characteristics of the prototype BUS

and UI component is shown in Figure 6.1. The application behaviour is implemented in

the experimental application component and, like most current web application designs,

an external SQL database is used for data services. The significant difference from other

designs is the use of a presentation service and UI components to handle common user

interface functions and add to the user interface capability.

The architecture diagram in Figure 6.1 is colour coded to identify the role of each compo-

nent. The red components are under test and are the focus of the experiments. The grey

components are open source software in common use in many web application designs.

The software components and data that have been acquired, adapted, and created for

these experiments are coloured blue. Lastly, the components that have been developed

to evaluate the features and characteristics of the BUS and UI components is shown in

green. The communications paths, user interfaces, and internal data stores are also shown

in green, as these artefacts can also be examined to gain insight into the operation of the

web application.

Note that inside the application component, process flow appears similar to other designs,

with familiar validation, authentication, and data access functions. The two major design

differences are that the BUS application component must be able to handle multiple

concurrent users and sessions, and responsibility for user interface handling is delegated

to the BUS.

CHAPTER 6. PROTOTYPES AND RESULTS 129

Web pages

Images

Std
UI Code

Applic
UI Code

Data

Web
Server

Client
Machine

Webserver
Host

Machine

BUS
Host

Machine

Application
Host

Machine

Data
Host

Machine RDBMS

Files

Data
Storage
Media

Data
in

Memory

ProcessFramework
Infrastructure

m
ps

er
vi

ce
 +

 m
ps

er
ve

r +
 n

ex
us

other
web

services
HTML

Component

bu
sc

li+
 x

m
lc

lie
nt

 +
 m

pc
lie

nt
 +

 n
ex

us

BUS
CGI

Manager

Event
Processor

UI
Updater

Event
Processor

UI
Updater

Msg
Sender

Cmd
Receiver

Control
Receiver

Result
Sender

XHTML
Structures

Data
Structures

Other UI
Structures

many many

many

many

many

many

BUS Client

Object Db

Event Handler

Validate

Authenticate

Update
Db

Pick View

Render BUS ops

Build Resource

Struct & Links
Fetch

Raw I/F

Other
CGIs

Object
Updates

apache

mysql

many

Browser
GFX

Figure 6.1: The architecture of the prototype experimentation framework.

CHAPTER 6. PROTOTYPES AND RESULTS 130

6.3 A simple web forum application

A simple BUS application was implemented to investigate and demonstrate the design of a

web application using a separate presentation engine. This simple web forum application

allows users to maintain a list of topics, where each topic has a name and a set of associated

posts. Posts may also contain other posts (or comments).

TopicList TopicForm

PostList PostForm

TOPIC

POST

post editviewdel

new topic add/upd

all topics new post add/upd

post editdel

updobj/newobj
topic
origin=category,Id
vp*

delobj
topic
Id

newform
topic
origin=category,Id

newform
post
origin=topic,Id

editform
topic
Id

newform
post
origin=topic,Id

viewobj
topic
Id

delobj
post
Id

viewlist
topic

updobj/newobj
post
origin=xxx,Id
vp*

editform
post
Id

newform
post
origin=post,Id

view=category:topic:post/.../post[15-29]COMMON: view=table[5]:table-subtype(Name like "%truck%")[8-15]:table[20-29]

Figure 6.2: Web forum application design.

The application design is shown in Figure 6.2. The design consists of two list displays and

two form displays. The small boxes are buttons which send the given parameter set to the

BUS when clicked. The small polygon in the form displays are submit buttons that send

form data with the parameters. The “del” buttons invoke a POST BUS event (as do the

submit buttons), and other buttons invoke standard GET events using HTML hyperlinks.

The arrows point to the display to be generated when this event is triggered.

CHAPTER 6. PROTOTYPES AND RESULTS 131

The design of the application follows a standard pattern:

Application initialisation: Allocate internal structures and connect with external ser-

vices (such as an SQL database).

BUS registration: Send the name of the application to the BUS for registration. Any

event sent to the bus with appname ="swforum" will then be routed to this appli-

cation.

BUS initialisation: Create a “branch” of the data object tree, and send a set of presen-

tation components to the presentation tree structures that this application supports

(just HTML in this case).

Respond to events: Block on the BUS socket waiting for a user event.

Validation: Validate the user event fields to ensure mandatory fields are present

and values are within expected ranges.

Authentication: Check the authentication fields (if present), and set an authenti-

cated user name for this connection if correct.

Database update: If the operation is permitted, and the user event includes a

request to create, update, or delete data, send the database request.

BUS data changes: Identify the display the user is requesting, or the display that

logically flows from the previous operation. If the data needed to support the

presentation rendering is not present in the BUS, fetch data from the database

and send new or the updated data objects to the BUS data store.

BUS render UI: Send the command to render to the correct BUS presentation

object.

Termination: Close BUS socket, close any service connections, save internal state, and

close database connection before exiting.

6.3.1 Initialisation

When initialising the BUS objects, it is good design to delete existing objects which may

exist from a previous relationship with this application component (remember that the

BUS is a long running service). This cleanup is achieved with the BUS operation:

CHAPTER 6. PROTOTYPES AND RESULTS 132

<bus:del ctype=”html” dest=”/swforum”/>

This operation will instruct BUS to find all elements of the root object “html” with the

tag “swforum” and delete them and all of their children. Now we can create a fresh

presentation object tree:

<bus:add ctype=”html” dest=”/”>

<swforum>

<ErrorPage>

<PostPage>

<html>

<head><title>Edit Post</title></head>

<body class=”std”>

..page template here..

</body>

</html>

</PostPage>

</swforum>

</bus:add>

For this application, I have used XML configuration files to initialise the presentation

object store. A preprocessor executes on the XML configuration file when it is read into

the application component. The preprocessor simply interprets lines beginning with a

hash (#) as a comment to be excluded, except for lines of the form:

#include template/postform.xml

where the engine inserts the included file and continues processing with those contents.

These preprocessor extensions help manage and reuse XML resources, but still allow an

XML editor to read and write the file.

A simple presentation component for displaying an error to the user should be available

for every BUS application. Here is an example error display that can be included in an

application presentation structure, or installed in the root “html” object:

<ErrorPage>

<html>

<head><title>Application Error</title></head>

<body bgcolor=”#ff88cc”>

<h1>Application Error</h1>

<p> An application error has occurred.

CHAPTER 6. PROTOTYPES AND RESULTS 133

Full error data is in the log file. </p>

</body>

</html>

</ErrorPage>

If the application detects an error it cannot handle during a HTML resource request, the

application can simple instruct the BUS with:

<bus:render ctype=”html” dest=”swforum/ErrorPage” dataset=”swforum”/>

The application branch of the data object tree also needs to be initialised:

<bus:del ctype=”html” dest=”/swforum”/>

<bus:add ctype=”data” dest=”/”>

<swforum>

<Posts/>

<Comments/>

</swforum>

</bus:add>

6.3.2 Application Code

Like many applications, the swforum application has parts to validate input, write updates

and links to the database, and finally update the user interface. The significant difference

with the BUS approach is in the user interface update method. To update the user

interface, we must fetch new UI data and update the BUS, before sending the rendering

request.

The high level parts of this web application is displayed in Figure 6.3, and we can see the

structure of the application. The buscli class (imported in line 1) handles the common

BUS client functions for Python BUS applications (such as reading in and sending an

XML BUS operations file with the name “swforum.xml”). The “initac” method (line 15)

is called at the start by buscli, and this method opens a data service link (line 16) , and

sets the this class’s path in the BUS object structures (line 17).

CHAPTER 6. PROTOTYPES AND RESULTS 134

1: from acfw import buscli, runsvc
2: import sys, os, urllib, cgi, time, traceback
3: from uniobj import *
4: import simwebdb
5: from dataobj import dataobj
6: from xmlobj import xmlobj, xmltable

7: xo = xmlobj(’data’)
8: err = sys.stderr.write
9: uesc = urllib.quote plus

10: dbesc = simwebdb.dbesc
11: hesc = cgi.escape

12: class swforum(buscli):
13: title=’Simple forum application using the BUS’
14: appname=’swforum’

15: def initac(self):
16: self.db = simwebdb.dataservice(’InfoWeb’, passwd, ’SimpleWeb’)
17: self.branch = ’/%s’ % self.appname

18: def bus cgi(self, obj):
19: # assume init has built structures and components
20: try:
21: sysdata, userdata = self.processevent(obj)
22: self.dbupdate(sysdata, userdata)
23: self.updatebus(sysdata, userdata)
24: self.render()
25: except:
26: traceback.print exc()
27: self.procerror(’Error: %s’ % self.appname, obj)
28: def processevent(self, obj): STUB
29: def dbupdate(self, sysdata, userdata): STUB
30: def updatebus(self, sysdata, userdata): STUB
31: def render(self): STUB

32: if name == ’ main ’:

33: runsvc([swforum])

Figure 6.3: Program listing of the prototype web forum application.

The code in “runsvc” will wait on a user event from the BUS. An event will call the buscli

handler which in turn will call the bus cgi method (line 18) in our application (if the

event came from a web browser). The bus cgi method interprets and separates the event

data into system and user data (line 21), then updates the database if required (line 22),

before sending new data to the BUS (line 23) to service a new display request, and finally

commanding the BUS to render (line 24) the required presentation object with the correct

CHAPTER 6. PROTOTYPES AND RESULTS 135

chain of data objects. The application will then go back to waiting for another user event

inside the “runsvc” function.

1: <view AppName=”swforum” HostUrl=”/bus.html” Table=”Item”

2: urlfmt=”/bus.html?appname =swforum&objtype =Item&Id=%s&act =%s”>

3: <heading>

4: <column fname=”Id”/>

5: <column fname=”Name”/>

6: </heading>

7: <dataset>

8: <item Id=”4”>

9: <data value=”4”/>

10: <data value=”Summary of Sydney progress meeting”/>

11: </item>

12: <item Id=”6”>

13: <data value=”6”/>

14: <data value=”New management agenda?”/>

15: </item>

16: </dataset>

17: </view>

Figure 6.4: Example of the data update format for the swforum application.

The updatebus() method above is responsible for keeping the data object structures inside

the BUS current. A change in the presentation object selection will require updatebus() to

send <bus:del> and <bus:add> messages with new data objects. The data update object

(see example in Figure 6.4) will match the data object structure that the presentation

object is designed to accept.

6.3.3 Template code

The application appearance is defined in the presentation objects that the swforum ap-

plication sends to the BUS. In Figure 6.5, the design of the component which displays

a listing of posts or comments is shown. This is one of the components that was sent

to the BUS when the application started, and could be modified in real time if required,

but most applications modify the data objects and leave the presentation objects in their

initial state.

CHAPTER 6. PROTOTYPES AND RESULTS 136

1: <SetVar name=”urlfmt” value=”$ data.urlfmt $”>

2: <table class=”list”>

3: <FOREACH seq=”match”>

4: <tr class=”heading”>

5: <foreach>

6: <th class=”list”>$ data.fname $</th>

7: </foreach>

8: </tr>

9: <ForEach>

10: <tr class=”list”>

11: <foreach>

12: <td class=”list”>$ data.value $</td>

13: </foreach>

14: <SetVar name=”action”

15: value=”$ var.urlfmt % (data.get(’Id’,’NULL’),’%s’) $”>

16: <td class=”actions”>

17: Delete

18: Copy

19: Edit

20: </td>

21: </SetVar>

22: </tr>

23: </ForEach>

24: </FOREACH>

25: </table>

26: <div class=”navblock”>

27: Create New

28: Category List

29: </div>

30: </SetVar>

Figure 6.5: Example of a general purpose entry list component.

Analysing the components structure, we see a hierarchy of XML elements with some

content and attributes computed at display-time (expressions delimited by dollar signs).

The outer element (in line 1) copies an attribute (the format string for URL requests to

the host application) from the current data item (see Figure 6.4 for an example of the data

structure) and assigns it to urlfmt which is visible anywhere in the scope of the SetVar

element. The single child of the SetVar element is a table (line 2) — a standard HTML

object.

CHAPTER 6. PROTOTYPES AND RESULTS 137

On line 3, the active element FOREACH1 with a sequence attribute defined to match

allocates one child of the current data structure to each of the child presentation elements

of this node for rendering.

Continuing to reference the data objects from Figure 6.4, the rendering now builds the

table contents. The tr(table row) element on line 4 will then render in the context of the

heading data object in this example (and the ForEach active element on line 9 will use

the dataset data object). The foreach element (line 5) in the tr element (line 4) will

then loop through each child data object and create a th (table heading) element (line

6) with the content supplied by the data object’s fname attribute. In a similar way, the

ForEach on line 9 loops through its data objects and creates a table row (using line 10)

which renders the td elements (on line 12) with the values from the grandchildren objects.

The parts in lines 14 to 21 require more explanation. The SetVar element initialises the

string URL template with the Id field from the data object, then creates the options for

operations on this row (which in a more realistic example could be different for each row).

Three hyperlinks are built and displayed with delete, copy, and edit actions. The final

href attribute will be similar to:

/bus.html?appname =swforum&objtype =Item&Id=4&act =edit

The /bus.html part identifies the web resource that acts as a gateway for this instance of

the BUS. The appname__=swforum instructs the BUS on which application is to receive

this user event message (this may not be the same application that created this web page).

From the remaining fields, the swforum application can determine that the user wishes to

edit a data item of object type Item and a identity number of 4.

The div block on lines 26 to 29 provide two other options for the user: a request to create

a new posting, and a request to list all posting categories. These hyperlinks are built with

the same method as above.

1Upper or lower case letters do not matter in active tags or HTML tags. Different usage of case is used
here to aid the reader matching opening and closing XML elements

CHAPTER 6. PROTOTYPES AND RESULTS 138

6.3.4 Template script

The declarative XML language is human readable, but is not efficient or reliable for humans

to write directly. Each computer language has a library to build XML streams from an

object tree or calls to an API, and this is an effective way to build and maintain XML

specifications; however humans are often required to manipulate the XML directly. Various

XML based WYSIWYG editors are available which assist the human operator in building

compliant XML and detecting errors.

Another option is using a more concise language with extensions to short-cut repetitive

operations. The DMT (Dynamic Markup Template) syntax was produced to support

the building and editing of a simpler template file and output the equivalent XML file,

shielding the user from learning and using XML directly. An example usage is shown in

Figure 6.6 which produces an XML file equivalent to the gplist.xml file shown in Figure

6.5.

1: $input data urlfmt style=list

2: table ∼$style

3: $match $data

4: tr

5: $loop

6: th $.fname

7: $loop

8: tr

9: $loop

10: td $.value

11: $action = ${ $urlfmt % ($(.Id else ’NULL’),’%s’) }
12: $macro alink = a ∼button href=${action % $1} $1

13: td ∼actions

14: $alink(Delete)

15: $alink(Copy)

16: $alink(Edit)

17: div ∼navblock

18: a ∼button href=${ $urlfmt % (’NULL’,’new’) } Create New

19: a ∼button href=${ $urlfmt % (’NULL’,’dblist’) } Category List

Figure 6.6: Example of the Dynamic Markup Template language.

The language is still declarative and hierarchical, but uses indentation to signify the hier-

archy (like Python) instead of closing tags, and the use of macros and syntactical shortcuts

reduce the need for repetition and special punctuation letters. This language is designed

CHAPTER 6. PROTOTYPES AND RESULTS 139

to be used in specifying configuration files in the application component server, where

BUS operations and object definitions are maintained. More information about the DMT

language can be found in appendix C.

Other web applications in this set of experiments have a similar design, but instead of

explaining the detailed operations of the application component again, I will concentrate

on the new features being demonstrated.

6.4 Situation Display Experiment

The Situation Display is an application that helps an information worker understand the

history, current configuration, and plans and capabilities of deployed resources, opposition

resources, and the environment. The application is typically map-based and is overlaid

with layers of vector objects and labels. Mouse actions on visible objects allow the user

to drill down into details.

Figure 6.7: Simple Situation Display.

I designed an experiment that explored how the GGA component and the BUS could

be used to implement a simple Situation Display. The application used an aircraft track

display on a geospatially registered map image. A screen shot of part of the display is

shown in Figure 6.7.

CHAPTER 6. PROTOTYPES AND RESULTS 140

The map background was built from dynamically resized map images, overlay order being

determined from scale detail. The position and breadth of each map was stored in meta-

data embedded in its filename, then the SA application selected and transformed map

images to suit the viewport the user had selected. If a higher resolution map segment was

available, but too small to effectively display, the application rendered a black rectangle

instead of the transformed image.

The active elements in the display were aircraft positions. The symbols were created with

filled polygons, the track labels with text commands, and the radar range limits with

simple circles. Each set of aircraft objects was assigned to a group so move commands

would act on the set of objects, but still leave the application free to update aircraft

heading (rotating the polygon object) and track label (replacing the text object). The

application was configured so that a mouse double-click would show detailed aircraft track

information in an associated named browser window.

The prototype application component linked dynamically with the BUS, simultaneously

maintained other connections to data services, and updated the user interface in real time

as new data became available. All user interfaces in the session were updated with changes

to aircraft tracks using the same session presentation objects and data object tree. Other

user controls were configured on a connection basis, which allowed users to pan to different

areas of the map for instance. Several sites around Australia used the web application as

air track updates were generated and enhancements were made to the live system.

Figure 6.8: A Situation Display with mapping and controls

CHAPTER 6. PROTOTYPES AND RESULTS 141

Enhancements (see Figure 6.8) were easy to implement, as the BUS functions and GGA

component remained unchanged. A complete tiled image map of the world was added

using meta-data embedded in filenames with no change to the application. The addition

of panning controls involved some simple changes. The four direction buttons were added

to the surface of the GGA display with new presentation objects:

<bus:add ctype=”gga” dest=”sitapp/SESSION” offset=”after”

connect =”CONNECT” session =”SESSION”>

<image fixed=”YES” img=”/icon/right.png” x1=”50” y1=”40” ID=”PanEast”

click=”YES”/>

..others..

</bus:add>

The objects are specified in an application UI specification file, so a UI designer can change

the appearance of the UI without possible changes in application behaviour. Note that

the buttons are fixed so they will not pan when the display is panned. If the user clicked

on the button, the application was sent a message of the user event in the form:

<event name=”PanEast” action=”click” x=”4” y=”7”/>

Initially the application saw no significance in this user event and ignored clicks on this new

button. I then modified the event handler in the application to send a pan presentation

object to the connection structure (not the session), and render the change to the User

Interface. A pan command to the session would cause ALL attached components viewing

the situation display to pan. The BUS operation to add the presentation object to the

structure is:

<bus:add ctype=”gga” dest=”sitapp/CONNECT” offset=”replace”

connect =”CONNECT” session =”SESSION”>

<pan direction=”e” amount=”50%”/>

</bus:add>

<bus:render ctype=”gga” dest=”sitapp/CONNECT” dataset=”sitapp/global”/>

These changes were made while users were using the application. The application state

save, restart, and rebinding of the application component to the BUS were transparent to

the user. Users across Australia just noticed richer maps appear and extra buttons that

allowed them to pan the display. Many simple changes were made this way, in minutes

instead of days.

CHAPTER 6. PROTOTYPES AND RESULTS 142

The combination of features in the BUS and the GGA allowed this web application to be

rapidly built, to demonstrate basic collaborative session features, to provide an easy-to-use

display, and allow quick and effective enhancements.

6.5 Lightweight Collaborative Experiment

Another prototype investigated the interactive multi-user aspects of the architecture with

a simple geospatial media application. A screen snapshot of this prototype is shown in

Figure 6.9. The application maintains a set of icons located on a map with associated URL

data, providing an awareness of web resources related to world locations. The application

tracked multiple users all sharing the same session, and updated displays in real time as

users added or moved information.

Figure 6.9: Simple File Map Tool.

A palette of web media types was available on the left of screen to build displays. To

create a new resource, the user dragged an icon into a position on the map. The icon was

immediately replaced on the palette, and the user was free to update the new resource.

The user could click on the icon to view or edit the linked data in a browser form, or

double-click on the icon to open the content in an attached browser window.

CHAPTER 6. PROTOTYPES AND RESULTS 143

The database structure was a single table that stored one record for each resource in the

application:

1: map VARCHAR –eg: africa.gif

2: name VARCHAR –eg: Economic Summary

3: url VARCHAR –eg: http://www.worldtrade.gov/report/WE4456.html

4: x INT –eg: (x,y) is location on map from top-left

5: y INT

6: mtype VARCHAR –Media type eg: gif,html,avi,pdf,svg

The application logic was equally simple:

1: Handler(event):

2: if action==grab:

3: if ID in palette:

4: Restore palette icon

5: elif action==drop:

6: Update db entry

7: elif action==click:

8: Open form for ID

9: elif submit:

10: Store form to db with ID (without x,y)

11: Update URL in object ID

Note that the doubleclick event is handled internally to GGA. Once the GGA objects have

a link assigned, a doubleclick on that object will fetch that URL resource. The algorithm

is simple and logical. The complexity of collaborative applications is handled inside the

architecture. Conflicts are automatically resolved to align with the last event.

The web application was easy to build in this new environment and gave users a collab-

orative information tool that would require a major development effort using traditional

development tools and components. The built-in drag-and-drop, click, and double click

support made the application algorithm straightforward and low risk. The transparent

collaborative support required no coding support. The whole application was built in a

few hours, which represents high productivity for a multi-user graphical web application.

CHAPTER 6. PROTOTYPES AND RESULTS 144

6.6 Geospatial Integration Experiment

The OpenMap application is an open source Geospatial Information System (GIS) appli-

cation written in Java. Application developers can write a custom layer using a supplied

API, and integrators can configure the application to run a set of applications (layers)

together in one OpenMap application. The user can switch available layers in and out,

and mouse interactions are cascaded down through layers until one layer detects an object

that it manages at that location and captures the event. This approach to integrating

applications is novel, but extensive learning, development, and debugging is required to

get each application layer to work as required.

A version of the GGA applet was designed as a general purpose UI layer for the OpenMap

geospatial Java application. It is called the GOL (Generic OpenMap Layer) 2 and it

interfaces with the OpenMap application via the layer API provided by BBN. The GOL

is not an applet, but a Java class that extends an OpenMap base layer class, and it

implements a number of interfaces so it can communicate with the host application and a

BUS server.

Figure 6.10: Maps displayed with GOL in OpenMap application.

2The GOL was implemented in Java by Peter Hoek from DSTO. I designed and tested the GOL, and
provided the server applications.

CHAPTER 6. PROTOTYPES AND RESULTS 145

Using the GOL, multiple layers dynamically connect with the BUS, and application com-

ponents have been able to show raster maps at various resolutions and show moving radar

tracks on client displays. In Figure 6.10, a cascading set of geospatially linked raster maps

are overlaid on a Digital Chart of the World (DCW) dataset. User events on layer objects

are sent to the correct application component through the BUS, and the BUS generates

complex geospatial components as required.

An example of the GOL command set is shown in Figure 6.11. The commands create

an aircraft track over a map background. The command in line 1 loads a processed map

image to location -15.43 degrees latitude and 132.10 degrees longitude. Lines 5–9 set the

defaults for commands that follow. A blue circle representing the range of a radar is drawn

by the command in line 10, and the track path is shown by a light blue multi-segment line

is drawn at line 12. A circle for the tracked aircraft and a multi-line label are created by

commands in line 17 and 19. The final command ensures that the map image is moved

underneath the vector graphics objects.

1: load image ”http://adder/hiat/cgi/imgproc.cgi?

2: f:zoom=13&q:file=../map/www.lib.utexas.edu/

3: map11.22s14.01s132.28e130.28e1274x1812.jpg”

4: at -15.43,132.10 deg using topo layer notify click false

5: set font fontname sanserif fontsize 14

6: set notify all false

7: set notify click true

8: set attribute linecolour ”FF0000” linewidth 1 fillcolour ”FF00FF” filled false

9: set attribute offset 0 0

10: draw linecolour ”000099” linewidth 1 circle -13.8,132.4 to -14.2,132.8

11: using trackradar2

12: draw linecolour ”3333DD” polygon

13: -14.5,132.35

14: -14.3,132.2

15: -14.0,132.6

16: using trackpath2

17: draw offset -8 -8 linecolour ”0000FF” linewidth 2 circle -14.0,132.6 size 16,16

18: using trackhead2

19: write draggable offset 12 0 anchor w linecolour ”FF0000” text

20: ”TX2-y\nFA-18\n4120m\nseeking”

21: with fontname 10 at -14.0,132.6 using tracktext2

22: change topo layer layer to bottom

Figure 6.11: Example commands for OpenMap GOL-based application layer.

CHAPTER 6. PROTOTYPES AND RESULTS 146

Note that a CGI image processing program is called to zoom the image to 13% of its size.

This is an example of the high flexibility that an architecture can have when based on the

HTTP protocol and use URL requests returning MIME content. Any hyperlink can fetch

dynamic content or signal another web application.

The notify click true default setting requests OpenMap to send any mouse clicks on

these objects to the layer server as a user event message. The server associates mouse clicks

to application behaviour. As a result, the server may (for example) send a command to

the OpenMap layer to change trackpath2 to red:

draw linecolour ”FF3333” polygon

-14.5,132.35

-14.3,132.2

-14.0,132.6

using trackpath2

and internally store state that the user has selected this object. Future mouse gestures or

button presses may cause other internal and UI actions with trackpath2 as the subject.

The GGA command set needed to be extended to suit the geospatial component. The

location and size parameters could now be specified by a degrees value in nnn.mmmm

format or with standard integer pixels. Objects with a Latitude-Longitude location are

said to be georeferenced and move with map projection changes and panning. These

projection changes are sent from the applet to the server as another part of the spatial

extensions:

projection change BN,BS,BW,BE,WIDTH,HEIGHT,PROJ\n

Objects with pixel-based locations are not linked to the map. If an object also has a size

based on degrees, it is geotransformed and changes both location and size with changes

to the linked map view. Objects may also be allocated an offset which allows the display

designer to move objects a fixed distance from a point to aid in clarity (eg: a city labels

can be offset from the cities they are related to).

The GOL brought the benefits of a general purpose UI component into the OpenMap

application world. Once the GOL was developed, it was loaded on the machines used

for the experiment and small applications were developed on the server side. If changes

CHAPTER 6. PROTOTYPES AND RESULTS 147

were needed, the small server application component scripts were changed and tested,

then the component was restarted. The running machines noticed an improvement in the

application with little development effort, deployment hassles, interruptions to the user

experience, or risk of hidden faults crashing the application.

We can contrast this with the experience of the other application developers. They em-

ployed a variety a Java development environments and tools. Each complex application

layer needed to be changed and tested. Then client applications must be exited and the

new class libraries installed and configured, before clients are able to restart the applica-

tions. The frequency of errors was also higher in these layers, due to the mixing of UI and

application logic. To create collaborative features, the traditional developers needed an

elaborate multi-threaded RMI architecture, where the GOL application component han-

dled collaboration internally. There was also a benefit in encapsulation, where the GOL

programmer was an expert in Java and the OpenMap API but needed to know nothing

about the Python application on the server. The application programmer need only know

the GOL language, and know nothing of Java or the complexities of the OpenMap API

and platform dependencies.

6.7 Geospatial Applet Component Experiment

Another experiment built3 the OpenMap Java application into a Java Applet with com-

munication and integration APIs similar to the GGA. This development resulted in a

complete GIS tool deployable on the web, having integration hooks into the surround-

ing web page, and binding with a remote BUS server for connection with application

components. The OpenMap Applet (OMA) operated in a similar way to the OpenMap

application described above, however each layer operated as a GOL except that layers

shared the communication socket with the server. The resulting applet was much larger

than the GGA, as it contained the OpenMap application, the GOL code, and included

GUI functionality from the Java Swing library.

3The OMA was built in Java from my specifications by a DSTO contractor.

CHAPTER 6. PROTOTYPES AND RESULTS 148

The applet is embedded in a web page using the standard HTML markup:

<applet name=”om” code=”dsto.om.OMApplet” codebase=”/hiat/applet/openmap”

archive=”omapp.jar” width=640 height=480>

</applet>

After loading and initialising, the applet may connect to a server if configured, or take

commands directly from the user interface or web page use of the applet methods. Required

GIS datasets are loaded from URLs using standard HTTP transactions.

1: om load graphics.class as gfx
2: om select gfx

3: # A few fixed objects:
4: draw circle at 20,20 radius 50 using c1
5: draw linecolour 00ffc0 rectangle 20,20 to 250,350 using r1

6: # A two degree circle around darwin:
7: draw linecolour ff4040 circle at 130.9:-12.4 radius 1 deg using DarCirc

8: # A yellow line from darwin to brisbane:
9: draw linecolour ffff00 line 130.9:-12.4 to 153:-27.5 using DarBrisLine \

10: add link http://adder/hiat/doc/ioa api.html into DataWindow

11: # City nodes:

12: set attribute linewidth 1

13: set attribute linecolour ffffff

14: set attribute fillcolour 202080 filled true

15: set font style italic fontsize 10 fontname sansserif justify center

16: set notify click true drop true drag false

17: set attribute anchor c offset 0,0

18: draw circle at 115.8:-31.9 radius 5 pix using c1a

19: write anchor e offset -10,0 text ”Perth\n117-88” at 115.8:-31.9 using c1b

20: draw circle at 151.2:-33.9 radius 5 pix using c2a

21: write anchor w offset 10,0 text ”Sydney\n154-02” at 151.2:-33.9 using c2b

22: draw circle at 147.3:-42.9 radius 5 pix using c3a

23: write anchor n offset 0,10 text ”Hobart\n201-23” at 147.3:-42.9 using c3b

24: draw fillcolour ffa0a0 circle at 149.15:-35.3 radius 5 pix using c4a

25: write anchor se offset -10,-10 text ”Canberra\n195-91” at 149.15:-35.3 \
26: using c4b

Figure 6.12: Example initialisation data file for an OpenMap Applet application.

The applet contains all of the native OpenMap functionality, so may also be used without

integration with the web page environment or an application component on the server,

CHAPTER 6. PROTOTYPES AND RESULTS 149

but the strong architectural features are realised with UI integration to browser resources

and connection to one or more application components.

The OMA applet used a similar command language (see Figure 6.12) except that the

application needed to identify which layer it was addressing before sending commands.

Events coming into the server were also annotated with the name of the layer that the

event came from.

setProjection(PROJ)
where PROJ = Mercator | CADRG | Gnomonic | Orthographic
eg: onClick=”om.setProjection(’CADRG’)”

zoom(MODE, AMOUNT)
eg: onClick=”om.zoom(om.RELATIVE, 0.5)”

pan(DIRECTION, AMOUNT)
eg: onClick=”om.pan(om.SOUTH WEST, 10.0)”

layers(LAYERS)
where LAYERS = DayNight | Graticule | Countries | Cities | Lakes
eg: onClick=”om.layers(’Graticule’)”

setCenter(LAT, LONG)

eg: onClick=”om.setCenter(-9.65, 109.04)”

Figure 6.13: Examples of OpenMap Applet Javascript commands.

New web page integration methods were needed to support the geospatial functionality

of the OMA (see Figure 6.13). These new methods allowed HTML buttons and other

Javascript sources to change the configuration of the running applet.

The conversion of the OpenMap application to a UI component compatible with the pre-

sentation service concept opened up new possibilities for geospatial web applications and

added to the adaptability of the BUS and general-purpose browser component architec-

ture. The mapping support of GGA has been limited to images of raster maps with objects

placed at computed locations based on a non-realistic flat earth projection. The OMA

offers a complete GIS component that performs geospatial projections and transforma-

tions, with the added benefits of web-based deployment, browser integration API, and

UI-application separation with BUS technology.

CHAPTER 6. PROTOTYPES AND RESULTS 150

6.8 Virtual Reality Integration Experiment

To extend the BUS and UI component architecture into a three dimensional UI, a number

of protocols and tools were considered. The VRML markup language was a standard for

3D work on the web, but not all browsers were equipped with the required plug-in, and

web page integration and server interaction had limited and non-standard functionality.

To build a 3D UI capability that would work with all browsers and the BUS technology,

I designed an applet that would include a 3D library and a communication language that

supported the building and transforming of 3D worlds, and the capture and reporting of

user events. The Spatial 3D Applet (S3DA) prototype applet was built4 around the Anfy

3D library and an XML language designed for server interaction.

<message> CMD* </message>
CMD is one of:
<Style {ATTRIBNAME=VALUE} name=ID />
<Image bn=LL bs=LL be=LL bw=LL url=URL name=ID alpha=INT />
<Line n1=LL e1=LL a1=LL n2=LL e2=LL a2=LL alpha=INT

style=STYLE ID colour=COLOUR size=INT name=ID />
<Symbol n1=LL e1=LL a1=LL pitch=DEG yaw=DEG roll=DEG alpha=INT

ref=SYMNAME style=STYLE ID colour=COLOUR size=INT name=ID />
<Camera n1=LL e1=LL a1=LL pitch=DEG yaw=DEG roll=DEG name=ID />
<Change target=ID {ATTRIBNAME=VALUE} />
<Delete target=ID {ATTRIBNAME=VALUE} />

where:

LL = Float value of displacement

ID = Identifier in form [A-Za-z][A-Za-z0-9]*

DEG = Decimal degrees

COLOUR = Integer in signed decimal format:

Bits 0-7 Blue, bits 8-15 Green, bits 16-23 Red

SYMNAME = Plane | Ship | OTHER

ATTRIBNAME = Object attribute identifier name

VALUE = String attribute value

Figure 6.14: Message definition for S3DA input.

The S3DA message input options are shown in Figure 6.14. For this experiment, I at-

tempted the use of an XML API instead of the structured English API used in the other

applet languages. This had the advantage that the language mapped directly onto the

4The S3DA applet was skillfully coded in Java by Peter Hoek at DSTO from my specifications. Con-
siderable testing and refinement was needed before we were able to reliably run the component with the
server interface. Peter also assisted in the conduct of this experiment.

CHAPTER 6. PROTOTYPES AND RESULTS 151

BUS presentation object design, but it was difficult to read easily. The language supports

a minimal set of 3D objects, but sufficient for the exploration of the 3D UI component

concept.

The applet supports the loading of image tiles to form base maps, and a flexible generation

of symbol objects and lines to create information displays on the maps. The applet will

determine objects indicated by mouse gestures and return these events to the server for

application logic actions. A camera object allows applications to move the user viewport

through the 3D space, controlling position, height, zoom, pitch, and roll.

<message>
<Change target=”Camera” n1=”3.55” e1=”14.11” a1=”2.45”

pitch=”-71.6” yaw=”118.2” roll=”0.0” />
</message>

<message>
<Change target=”Camera” n1=”3.51” e1=”14.12” a1=”2.45”

pitch=”-71.4” yaw=”117.9” roll=”0.0” />
</message>

<message>
<Change target=”Camera” n1=”3.47” e1=”14.13” a1=”2.45”

pitch=”-70.9” yaw=”117.5” roll=”0.0” />
</message>

<message>

<Change target=”Camera” n1=”3.42” e1=”14.13” a1=”2.45”

pitch=”-70.5” yaw=”117.2” roll=”0.0” />

</message>

Figure 6.15: Flying POV example using the S3DA component.

A fly-through model was evaluated. A series of camera coordinates was produced by a

server (see Figure 6.15), and sent to a number of S3DA applets in the session at regular

time steps. This produced a distributed fly-through of a simulated battlespace5, providing

decision makers with an appreciation of the conflict area from different vantage points.

This UI component further extends the applicability and flexibility of the BUS and com-

ponent UI architecture. The S3DA can co-exist with OMA and GGA instances in the

same web page or across the country, sharing sessions and interacting with shared data.

5For security reasons, screen images and code examples cannot be included in this thesis

CHAPTER 6. PROTOTYPES AND RESULTS 152

6.9 Evaluation of Experiments

This set of experiments demonstrated simple development designs, user interface encap-

sulation, and high useability displays. I will now evaluate what properties of the web

application domain were enhanced by this new approach, and which features of the tech-

nology was responsible for the enhancement. I will also dissect problems that occurred

during development, isolate the causes, and suggest solutions.

If the resources were available, it would have been useful to have a programmer experienced

in another web application technology develop applications to an identical specification. It

would also be a useful experiment to have a web application programmer use the BUS and

GGA technology without an understanding of its internal mechanisms. These experiments

would permit a detailed comparison of the utility of this new web technology. Of course,

it would be difficult to draw reliable conclusions from single samples, especially using only

toy web applications.

As resources and time were not available, my approach is to analyse the experimental

prototypes in the framework of the desirable web properties stated in Chapter introduction.

This analysis is somewhat subjective, but each claimed property enhancement can be

traced back to a feature designed into the BUS and GGA technologies. Many of these

features have also been demonstrated in the above experiments.

Separation of Concerns: The above experiments demonstrate the separation of the

web application into: the browser user interface device augmented with the GGA; the

web server with BUS Gateway, applet deployment and passive content storage; the

BUS for the presentation service engine; the application components to implement

business logic; and a database for application data persistence.

A separation of concerns is also used inside the BUS. The BUS internal design uses

independent modules such as UI Managers to control and convert UI protocols,

Application Managers to communicate with application components, and a Control

Manager to service management software. The BUS also maintains a clear division

between presentation logic and data objects, up to the point where the UI is rendered.

Simplicity: Basic XML syntax is used with XPath expressions to communicate with the

BUS. The presentation object semantics are based on familiar HTML elements, basic

CHAPTER 6. PROTOTYPES AND RESULTS 153

graphic objects, and dynamic elements based on simple program-control concepts.

Modularity: The BUS is designed as loosely coupled objects, cooperating to produce

sophisticated functionality. This modularity allows new UI Managers to be installed,

additional functionality added to an API, or a new presentation object type to be

added without unintended side-effects.

Familiarity: From the user’s point of view, the only change from traditional web appli-

cations that require new skills will be the inclusion of interactive graphics in the user

interface. However, application designers that use familiar and intuitive graphics UI

dialogue will assist in providing a familiar and comfortable environment for the user.

The developer using the presentation service and GGA component will be in unfa-

miliar territory though, and need to adapt their development style and application

architecture to make use of this new technology.

Learnability: The interfaces of the BUS and GGA are straight-forward, orthogonal, and

readable, which eases the learning task for new developers.

Useability: The useability of these new web applications is enhanced by the graphical

representation of data to aid understanding, the interactivity supplied by the GGA

component, and the composite UI web displays possible through referencing object

structures in the BUS.

Consistency: The abilities to reuse presentation and data material in the BUS encour-

ages consistent use of existing and externally supplied objects. A single graphics

component will provide consistent behaviour in all graphical display roles (such as

drag and drop, scroll bars, and a double-click to open content).

Orthogonality: The dimensions of presentation, data, and application logic are indepen-

dent in the new design. One aspect can change without influencing others. In fact,

creators of data, presentation, and applications do not need to know of each others

work. The integration of these three aspects are performed inside the BUS.

Interactivity: The BUS makes no direct contribution in this area, however the GGA adds

many enhancements for interactive web applications. The asynchronous nature of

the protocol allows the UI to respond directly to user actions, web page events, and

state changes in the BUS and the application.

CHAPTER 6. PROTOTYPES AND RESULTS 154

Multi-media: The capabilities of the GGA adds basic graphics components to enable

the creation of charts, maps, and diagrams. These displays can include pictures and

text, and be overlaid with other graphics and annotations. This graphics capability

fills the gap in the HTML set of presentation components.

Continuity: The BUS adds some service continuity support, as it will continue to display

existing user interface content from internal presentation and data stores, even if the

responsible application is temporarily unavailable. The BUS is, however, a critical

component for an architecture using this technology, and a failure of the BUS will

paralyse all user interfaces.

Flexibility: The BUS and GGA are independently flexible components, and together

they provide extensive flexibility. The full range of dynamic web interfaces aug-

mented with interactive graphics is available.

Customisability: The BUS and GGA do not enhance this attribute of web applications

directly. The ability for users to customise the user interface is left to application

components.

Productivity: The GGA encapsulates the functionality for implementing interactive

graphics. The BUS encapsulates dynamic web resource management and event

reporting. This removes some the complexity from web application development,

enhancing the productivity of the programmer.

The user productivity is also assisted. Using the BUS, developers can more easily

build user web views that are assembled from various presentation components from

different applications.

Configurability: Base presentation and data objects are supplied in the BUS config-

uration file. Changing this file can change the appearance and behaviour of web

applications without code changes to the BUS or the application components.

Collaborative: The support for collaborative applications is one of the strongest features

of BUS and GGA technology. The examples above illustrate how easy it is to build

a small web application that supports many cooperating users. The BUS can also

support collaborative sessions between different UI technology clients which offers

new possibilities of sophisticated applications with minimum programming work.

CHAPTER 6. PROTOTYPES AND RESULTS 155

Adaptability: The BUS is designed with adaption in mind. New UI Managers can be

integrated with a minimum of coding and a minimum of internal complications. Each

Manager module is a separate object using simple interactions with other objects,

so behaviour can be easily extended (to implement authentication for example).

Clarity: The BUS and the GGA use many interaction methods and APIs, but each pro-

tocol and language is self-contained and logical. It can be seen from the experiments

above that the simple BUS operations, presentation objects, and data structures are

logical, uncluttered, and readable.

Reuse: The BUS is designed to extract maximum reuse from existing and externally

managed presentation and data objects. These objects can be copied and modified by

BUS operations, or referenced during rendering. The BUS and GGA themselves are

general-purpose reusable components, able to be employed in many web application

designs.

Inheritance: The BUS objects implement a type of prototype inheritance where objects

are copied then attributes can be overloaded and sub-objects changed. The GGA

graphics components uses a weak form of inheritance with defaults providing base

object attributes.

Encapsulation: Both the BUS and the GGA are designed to encapsulate user interface

functionality. The prototypes above demonstrate the use of the BUS and GGA APIs

to generate user interfaces using minimal effort.

Language Independence: The GGA can communicate with applications developed in

any language using simple strings. The BUS has XML APIs which are also language-

agnostic. This technology can merge presentation and data from many types of

application environments in many languages simultaneously. The UIs from a Perl

application, a PHP application, and a Java application can be seamlessly joined in

a BUS managed user interface (and user events will also be sent back to the correct

application).

Interoperability: This technology can interoperate with a variety of other systems and

technologies via DHTML, URLs, and XML (including XHTML and RSS). The BUS

and GGA can both send and receive requests using APIs.

CHAPTER 6. PROTOTYPES AND RESULTS 156

Multiple UI Devices: The BUS is designed for any web interface, so it can display and

interact with users on workstations, fixed web appliances, and PDAs. Several of the

experiments above involved the development of a new UI manager for the BUS to

support the new UI component. This demonstrates the ability of the BUS to be

configured for new UI devices.

Open Standards: The BUS is designed around the open web standards: DHTML, TCP

sockets, XML, XPath, CGI, and HTTP. The GGA is a standard Java applet compli-

ant with DHTML standards. No proprietary protocols have been used in the design

of the BUS and GGA.

Multiple APIs: The BUS has multiple APIs: URL, HTML, XML, GGA, Control, and

Application. The GGA uses the embedded parameter commands, DHTML interac-

tion, and the socket connection to the BUS or directly to an application.

Thin Client: The BUS supports standard DHTML and other MIME types without re-

quiring any change in the configuration or software installation in the client hosts.

The GGA is designed using older features of Java so this UI component will run on

almost all browsers being used today.

Applicability: Neither the BUS nor the GGA are designed for a particular domain or

segment of the web environment. Both technologies are able to be used over the full

spectrum of web application designs.

Scalability: There is always a trade-off between scalability and flexibility. The BUS and

GGA are designed to be very flexible, so the designs will require revision if scalability

becomes the dominant factor in the usage of the technology.

Platform Independence: The GGA is designed to run in almost any browser in use

today (without downloads). The BUS is developed in the Python language, which is

supported on all major platforms. The majority of development and testing of this

technology has been with the Linux operating system, the Apache web server and

the Firefox browser, but no part of the technology is limited to these products.

Efficiency: This property is another victim of the trade-offs to gain flexibility and the

separation of concerns. This property could be enhanced with further optimisation

and development.

CHAPTER 6. PROTOTYPES AND RESULTS 157

Maintainability: The separation of concerns, modularity, and the ability to split appli-

cation functionality over many separate processes assists with the identification of

faults, fault isolation, and repair without unintended side effects.

Instrumentation: The BUS Control Port offers an API to gather information on the

running BUS process, including applications connected, transaction rates, memory

statistics, and response times. This is a unique feature that offers system managers

insight into the performance of a running service.

Manageability: The BUS is a single running process which is easy to deploy to any

platform, and uncomplicated to run. The GGA is deployed by a web server, is

cached on the client, and can be updated in a single place. This simple architecture

requires only simple management procedures.

Confidentiality: The BUS and GGA offer no enhancements to confidentiality. Practical

web designers would need to consider adding a web server that supports HTTPS,

strong user authentication, user access control in the applications, and database

encryption.

Integrity: The BUS and GGA offer no enhancements to this web application property.

Availability: There are little benefits in availability by using the BUS and GGA tech-

nology. There is in fact a weakness due to the BUS becoming a critical node that

will disable all connections should it fail. This is a common problem for essential

software such as framework cores, web servers, and authentication agents.

6.9.1 Discussion

The speed of developing applications is governed by the ease in mastering the develop-

ment environment, the efficiency of translating business requirements into software, the

availability of stable well-supported libraries of code for common functions, and the de-

tection of errors in design and implementation. The BUS and GGA technology has been

demonstrated in the above experiments to assist the developer in each of these developer

support areas. These developer oriented features reduce developer effort, reduce mistakes

due to complexity, and allow the creation of more maintainable web applications.

CHAPTER 6. PROTOTYPES AND RESULTS 158

Efficiency is not a key decision factor in the choice of web application technology, but

extremely poor efficiency would impact on the user experience and extra hardware costs.

Runtime efficiency is to be considered for user interface response, scalability in user count

and application size, and minimising server infrastructure investment. The three key

factors in the BUS runtime speed are XML transformations, signal routing, and presen-

tation rendering. The XML parsing and generation take significant time (compared to

binary or flat structured protocols), but performance can be increased with the use of new

high-efficiency XML libraries. The signal routing is governed by fast lookup tables and

if-statements so this function is generally not a significant factor in performance. The ex-

ception here is if sending a signal causes a socket to block, possible delaying other services

or clients until the request times out. This is a problem for all multi-connection servers

but can be mitigated with careful refinement of the design. The presentation rendering

is a complex operation, but has been observed providing satisfactory response times in a

lightly loaded server. For a serious application with hundreds or thousands of concurrent

users, a local presentation content cache would need to be implemented, or an external

cache service (eg: the Squid cache server or Memcached) would need to be configured.

A BUS based solution offers many levels and types of integration. It’s URL and XML

interfaces allow it to connect to many other software systems without modification, the

GGA component can be embedded in other applications, and many different types of

software can be adapted to use the application component interface.

The BUS is written in the Python language, allowing it to run on almost all current

hardware and operating systems. The XML based API is designed to allow connections

from any programming language over the network. The user interface side allows con-

nections from any software that can make a request via a URL, and will serve XHTML,

XML, text, and images as required. This makes the BUS and GGA install-anywhere and

plug-into-anything technology.

Each UI component was developed using a different architecture. The concept of a reusable

UI component that could execute commands from a server and report user interface events

was a common theme, but the each experiment explored different methods of achieving

the goal. In Table 6.1 we see the large differences between the applet implementations.

The GOL was a very large component, due to the necessary inclusion of two large class

CHAPTER 6. PROTOTYPES AND RESULTS 159

Table 6.1: Class statistics for the UI component applets

Applet Size (bytes) Class Files Includes

GGA 157255 81 –
GOL 1600805 644 Openmap layer and java swing classes
OMA 490838 192 –
S3DA 153152 24 Anfy 3D core and Microstar XML library

libraries: the openmap layer bean and the java swing library. The OMA in contrast

dynamically loaded classes under server control. The S3DA was different again. It is a

component that was built using an XML based API and wrapped a simple space-optimised

3D library.

Each component serves a different purpose and can be integrated into a BUS web appli-

cation design. This flexibility in architecture and deployment eases the burden of web

developers and promotes highly functional, interactive, and distributed applications.

6.10 Summary

With the above experiments, I have explored several different styles of web applications

using the new architecture. In the development of each prototype, I found significant

benefits. Collaborative applications became easy to build. Web applications were easy to

integrate with each other and with other systems. With only a small amount of application

code and XML configuration files, user interfaces became highly functional and easy to

change (particularly by non-programmers). It all operated on basic browser functionality,

so all users could use these web applications without downloads or configuration changes.

Applications could be changed transparently to the users, at low risk, without software

rollout, reboots, or application server reconfiguration. The separation of web applications

into five layers (browser and UI components, web server, BUS server, application compo-

nents, and database and communications services) made it easy to isolate faults and easy

to change an aspect of the application without side-effects. The code is event driven but

without excessive layers of object factories, schema designs, complex transaction patterns,

or needing a full IDE to build.

There are some costs in this new architecture that should be considered too. The use of

CHAPTER 6. PROTOTYPES AND RESULTS 160

structured English and XML as a protocol in a multi-tier architecture introduces latency

as these protocols must be generated and parsed in multiple processes during the servicing

of a user event. The ever rising performance of computing power and network capacity

will mitigate this limitation over time; however this performance limitation will influence

the choice of this architecture for high transaction web applications.

Another problem observed in these experiments is the need to duplicate data in the BUS

that is managed in the database. Each application component must track changes to the

database and refresh the BUS data store so that rendering presentation components will

use state information that mirrors that information in the application data store. For small

items of information at low transaction rates, deleting the BUS objects and re-inserting

them is an option. For the majority of applications though, this requirement to keep the

BUS data objects current is the price we pay to have the advantages of separation of

concerns and encapsulation of the user interface into a reusable service.

Of course, this architecture introduces new languages and protocols for the developer to

learn, but the intention is to encapsulate some of the user interface complexity inside

the presentation service and UI components. As a result, the developer will be able to

build sophisticated web applications using a small set of simple protocols (English-like and

simple XML) instead of the complex array of protocols and languages currently required.

Even taking into account the limitations above, I am confident that these experiments have

proved that the web application built on the concepts of a presentation service and general-

purpose UI components can offer significant improvements in development productivity,

user interface quality, adaptability, interactivity, manageability, and support for systems

integration.

Chapter 7

Conclusion

7.1 Summary

I set out in this thesis to investigate the problems in building and maintaining high quality

web applications, to develop innovative software that would address these problems, and

describe and test this new software technique.

I have proposed a unique presentation service, and described how this approach manages

much of the user interface complexity. I then proposed and investigated a client-side

graphics component that would provide benefits for collaboration, visualisation, and user

responsiveness. The design of the BUS then explored the operation, interfaces, data

structures, and protocols for a browser based presentation service integrated with the GGA

component. Through several experiments with prototype software, I demonstrated the

enhancements to the development processes, enhancements to applications, and benefits

to the user through improved user interfaces.

7.2 Benefits of Technology

The use of a presentation service will reduce the development effort required to build new

web applications. Many of the functions that are needed in each new web application are

provided as part of the presentation service and new applications can reuse and adapt

previously created presentation objects. This reuse not only reduces design, build, and

test time, but also promotes the consistent look and feel of the user interface.

CHAPTER 7. CONCLUSION 162

Highly interactive web applications are supported by a number of innovative features.

A general purpose graphics component enables asynchronous messages to travel between

browser and application component, as well as providing graphics functions within the user

interface. User interface components and sessions can be shared, aiding collaborative work

by immediate visualisation of changes in application state. Actions within the browser

page can be configured to affect graphical objects as well as other HTML components.

Javascript and other AJAX techniques can also be integrated to further enhance the

interactive experience.

The presentation service provides several interfaces for integration and application syn-

thesis. The client interface is designed for user interface connection but is also able to

return HTML, XML, and other MIME types to software through a standard URL fetch

mechanism. The application component interface enables any program written in any

language to nominate itself as a service for presentation clients. Application components

may also take a role in maintaining data or presentation structures inside the presentation

service without any client transactions. The control interface is designed to allow external

management tools to fetch usage parameters and statistics, and selectively modify control

variables.

User interface may be constructed from the outputs of several application components

without the application component requiring change. The data structures updated by ap-

plication components are dynamically folded into rendering streams controlled by the pre-

sentation object definitions. Application components can also embed hyperlinks into data

and presentation components that will allow users to open links to presentation provided

by the application component owning the data. Integration into external applications can

also be performed by the embedding of a descriptive URL hyperlink.

7.3 Significance

The field of web applications is experiencing strong growth, yet many aspects of web

application development remain difficult, and problems remain unsolved. This work offers

a software technology that has the potential to save developer programming hours and

increase application quality in a software technology that is used by over 70% of the

developed world.

CHAPTER 7. CONCLUSION 163

The presentation service is a unique and useful contribution to the field of computer

science. It introduces a new architecture for the development of user interface software

that is simple, modular, and implements a separation of concerns.

The GGA component and the other related UI components are also unique developments

that implement an orthogonal set of features to support highly interactive graphical user

interfaces in web application designs. The extreme flexibility and functionality of these

components are due to the product of the innovative use of layers, groups, addressable

objects, and the variety of integration methods.

The combination of the presentation service and generic UI components has been shown

to enhance the web application development task, and improve the functionality and

useability of the resulting user interfaces. These two design technologies offer significant

improvements to the run-time environment for all web applications.

7.4 Future work

The presentation service and UI component technology enhances the properties of web

applications built using it; however this has only been demonstrated in small scale devel-

opments. A large scale web application development that used this technology would give

researchers the opportunity to measure the positive and negative effects the technology

has on the development process and the end product.

The current GGA command language requires the replacement of an object even when

only one attribute is to be changed. The language could be expanded to allow attribute

level operations, which would free the application from the need to keep a copy of these

objects for updating purposes.

The GGA language supports general purpose graphics operations, but needed extending

to support GIS functionality in the GOL and OMA components. Further research is

needed to develop a language that is simple to use, but can easily extend to specialised

UI component functions.

The SVG graphics language is designed for the display of vector graphics in the browser

environment and, as it matures, may be a better language for graphics descriptions and

CHAPTER 7. CONCLUSION 164

user event handling than the GGA protocol. Currently, the SVG is only partially sup-

ported by browsers, and advanced abilities such as event reporting and drag-and-drop are

not standardised.

The drive for higher user interface interactivity and more attractive appearance has driven

the demand for AJAX based tools and libraries. This is a cooperative rather than com-

petitive technology to the BUS, and the highly interactive GGA design is able to work

well with the Javascript behind most AJAX libraries. There is an opportunity for fur-

ther research in understanding the boundaries and interfaces between frameworks, AJAX

toolkits, code toolkits, SOAP web services, and the new BUS presentation service.

The BUS currently supports HTML, XHTML, XML, and text interfaces via URL, and

GGA interfaces as long-running clients. Some experimental work has been done on serving

dynamically generated images and GGA commands from complex presentation objects

such as maps, business charts, and diagrams. The development of these new compound

components in the BUS would enable applications to display interactive maps, charts, and

diagrams by simply supplying a set of data objects to the BUS and sending a render

command.

The BUS has potential for presenting applications with WML on mobile devices. This

BUS extension would allow mobile user application to benefit from BUS technology, and

also enable mobile UI connections to join BUS sessions to implement mobile collaborative

applications. Research is required on how mobile UI technologies can be implemented in

a presentation service.

The current BUS implementation uses multiplexed synchronous sockets that are efficient

and simplify design; however, calls to application components that require lengthy process-

ing times may block access for users that do not need access to that component. To counter

this, the BUS could move toward a mixed design employing multiplexed synchronous sock-

ets and application access threads that allow access to application components that block.

Research is required to understand the complex transaction patterns of a service that

exposes multiple styles of socket interfaces that may block.

Appendix A

Glossary

This glossary provides a short explanation of some of the technical terms used in this

thesis. Where the definition comes from an external source, that source is cited. Terms

in italics are also defined in this glossary.

Adaptability: The capability to be adapted to a new purpose. This may require the

development of an adaptor to interface to the new protocol or interface. An adaptable

application is design with loose coupling between modules, general purpose interfaces,

and an architecture that allows new software to be inserted at various places in the

execution chain.

Application: A computer program that is designed to accept user input, perform busi-

ness logic, and return information to the user. An application is different software

to a server, a framework, a utility, or a toolkit for instance.

Brittle System: A system that performs as required, but when work is applied to change

it slightly, it fails catastrophically. A flexible system changes shape easily and still

retains its core properties.

BUS Application: A long-running program that tracks multiple simultaneous sessions

and is connected and registered to one or more BUS APIs. Receives user events,

updates data and presentation objects within the BUS, and updates UI BUS sessions.

Provides business logic, workflow, and transformation functions. May provide or

connect to communication and persistence capabilities.

APPENDIX A. GLOSSARY 166

Class Inheritance: A reference to an abstract object skeleton that provides the object

with default attributes, data, and behaviour. Relies on a shared and agreed under-

standing of class taxonomy.

Flexibility: For this thesis, a flexible application will mean an application that can be

extended by users to perform an unanticipated role without extra code development

or database changes.

Integratability: The ability of software to be connected to the user operating environ-

ment with a minimum of development and system administration effort. This may

include the facility for this software to make requests and updates on external sys-

tems using a variety of standard protocols and transaction patterns, and the facility

to accept similar requests and updates.

Maintainability: A maintainable application is designed to support rapid problem di-

agnosis, resolution, enhancements, and testing. Maintainability is enhanced by an

architecture that uses modular design, loose coupling, a separation of concerns, and

human-readable data structures, protocols, and configuration.

Orthogonality Properties that can vary freely without affecting or requiring changes to

other properties are said to be orthogonal. This term is borrowed from mathematics

and CPU instruction set design (where an instruction set is orthogonal if instructions

can be used with most registers, contrasting with architectures that define special

registers or special instructions).

Prototype Inheritance: A copy of an existing instantiated object so that it may be

specialised by changes to location, contained data, attributes, and/or behaviour.

Does not use abstract classes. Contrast with Class Inheritance.

Robustness: In this thesis, robustness is the property of software to keep functioning

despite programming, system, network faults, and unexpected data input. It also

covers the ability of a system to recover from faults, supporting rapid fault identifi-

cation, rectification, and controlled restart using non-development personnel.

Usability: The properties of the system, perceived at the user interface, that enable

users to quickly learn and use the system to meet user functional requirements.

This includes a rapid response time, familiar terminology and processing sequences,

clear and consistent display and controls, and reversible actions.

APPENDIX A. GLOSSARY 167

Web Application: An application that provides functionality to many users through a

web server to web browser client software. A web application must support multiple

simultaneous users and sessions, cope with high peak transaction loads and a vari-

ety of possible network errors, and be adaptable to rapidly changing requirements,

protocols, and software infrastructure.

Web Application Framework: A working software structure that allows developers to

“plug in” code at a number of places in the user response chain. A web application

framework will typically bind to a web server (or embed a web server), interpret

incoming requests, route requests to an appropriate internal handler or user code,

generate content, and manage the response to the client. Frameworks will also typi-

cally detect and handle errors, keep transaction logs, and provide security protection.

Web Application Toolkit: A code library, set of modules, or programs that perform a

set of well-defined functions of typical web applications. The toolkit functions may

decode or encode web protocols, dynamically generate MIME content, manage multi-

threading, authenticate users, track sessions, or recover from errors for example.

Web Service: Software functions that are available via web request-response transac-

tions using a published web address (URI) is considered a web service. This func-

tionality may simply return content to an anonymous client for each request, or

maintain state and use authentication and session. Typically, applications that are

accessed via the SOAP protocol using WSDL and UDDI are known as web services,

but most web applications can be considered a web service as the same protocols

that a user browser uses to fetch a web resource can be used by other software acting

as a client to this server.

Appendix B

Abbreviations

AJAX Asynchronous Javascript And Xml.

API Application Programming Interface.

ASP Active Server Pages (Microsoft dynamic web pages).

BUS Browser User-interface Service.

CGI Common Gateway Interface.

CMS Content Management System.

CORBA Common Object Request Broker Architecture.

CRUD Create, Read, Update, Delete transaction types.

CSS Cascading Style Sheets (CSS2 and CSS3 are more recent versions).

CSV Comma Separated Variable data file format.

DCE Distributed Computing Environment.

DCOM Distributed Component Object Model.

DHTML Dynamic HTML (includes Javascript and stylesheets).

DMT Dynamic Markup Template language.

DOM Document Object Model.

DRY Don’t Repeat Yourself (A design principle).

DTD Document Type Definition.

EBNF Extended Backus-Naur Form (Language syntax format).

APPENDIX B. ABBREVIATIONS 169

ECMA European association for standardising information and communication systems.

EJB Enterprise Java Beans (Large scale Java framework).

FCGI FastCGI (web application to web server interface).

GD A image building library.

GGA Generic Graphics Applet.

GIS Geospatial Information System.

GOL Generic Openmap Layer (A plug-in layer for OpenMap applications).

GUI Graphical User Interface.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

IDL Interface Description Language.

IE Internet Explorer (Microsoft web browser software).

IIS Internet Information Server (Microsoft web server software).

IP Internet Protocol.

IRC Internet Relay Chat.

ISAPI Internet Server Application Programming Interface.

IT Information Technology.

J2EE Java 2, Enterprise Edition.

JAR Java Archive format.

JDBC Java DataBase Connectivity.

JS JavaScript.

JSF Java Server Faces.

JSON JavaScript Object Notation.

JSP Java Server Pages.

JVM Java Virtual Machine.

LAMP Linux, Apache, MySQL, and PHP/Perl/Python web application environment.

LDAP Lightweight Directory Access Protocol.

APPENDIX B. ABBREVIATIONS 170

MIME Multipurpose Internet Mail Extension.

MVC Model View Controller software pattern.

NSAPI Netscape Server Application Programming Interface.

ODBC Open Database Connectivity.

ORM Object Role Modelling or Object-Relational Mapping (a software layer that trans-

parently converts database content into host language objects).

OS Operating System.

PDA Personal Digital Assistant.

PDF Portable Document Format.

PHP PHP: Hypertext Preprocessor (recursive acronym).

RAD Rapid Application Development.

RDBMS Relational DataBase Management System.

RDF Resource Description Framework.

REST Representational State Transfer.

RGB Red Green Blue colour format.

RMI Remote Method Invocation (Java protocol).

RSS Really Simple Syndication (a web feed format).

SCGI Simple Common Gateway Interface.

SOA Service Oriented Architecture.

SOAP Simple Object Access Protocol.

SQL Structured Query Language.

SSI Server Side Includes.

SSL Secure Sockets Layer.

SVG Scalable Vector Graphics (XML graphics language).

SWF ShockWave Flash.

TCP Transmission Control Protocol.

UDDI Universal Description, Discovery and Integration service.

APPENDIX B. ABBREVIATIONS 171

UI User Interface.

URI Uniform Resource Identifier (A global identifier in the context of the World Wide

Web).

URL Uniform Resource Locator.

VRML Virtual Reality Markup Language.

WAP Wireless Application Protocol.

W3C WWW Consortium (Guides web standards and protocol development).

WML Wireless Markup Language.

WSDL Web Services Definition Language.

WSGI Web Server Gateway Interface.

WSUI Web Service User Interface.

WTP Wireless Transaction Protocol.

WWW World Wide Web.

WYSIWYG What You See Is What You Get (interactive GUI editors).

X11 X Windows UI Protocol.

XHTML Xml version of HTML.

XML eXtensible Markup Language.

XP eXtreme Programming (a software development methodology).

XPATH XML path definition syntax.

XSL eXtensible Stylesheet Language.

XSLT eXtensible Stylesheet Language Transformations.

Appendix C

The Dynamic Markup Template

language

The aim of the DMT is to be concise, expressive, and easy to learn and read. Using

the DMT should allow developers and site designers to be more productive, create more

reliable BUS structures, and increase the flexibility of designs.

C.1 Structure definition

The structural elements of the language are line elements and must begin a line, but may

wrap across two or more lines. Values are strings and can omit quotes if consisting of a

single word or number. These elements are listed in Figure C.1.

APPENDIX C. THE DYNAMIC MARKUP TEMPLATE LANGUAGE 173

1: $inputvars ARG1 ARG2 ARG3=DEFAULT [assign input values to identifiers]

2: $rawfile FILENAME(ARG1 ARG2) [insert raw file contents in output]

3: $include FILENAME(ARG1 ARG2) [process file contents]

4: $template FILENAME(ARG1 ARG2) [process file with this output as body]

5: $match [renders matched presentation and data objects]

6: $loop [renders all child presentation for each data object]

7: $find XPATH [sets the data pointer to item(s) found with xpath expr]

8: $choose

9: $test EXPR

10: $if EXPR

11: $then

12: $elif EXPR

13: $else

14: $reference EXPR [select data object within current data object tree]

15: $VAR = TEXT

16: $macro MACRONAME = TEXT $1 $2 TEXT

17: TAG ∼STYLE PROP1=VALUE TEXT

18: # COMMENT

19: ”TEXT”

Figure C.1: Structural elements of the Dynamic Markup Template language.

The $loop iterates through the current dataset, rendering contents. The $if, $then, $elif,

and $else allow decisions on conditional display to be implemented using current data

values. The $choose and its embedded $test operate like a case statement in many

languages. A test will select a single presentation object to render and then exit the

$choose element.

The language has been designed to make flexible presentation design easy, but there is no

support (deliberately) for coding application logic with the template language.

C.2 Expression definition

Expressions may use a combination of variables, operators, constants, and functions (see

Figure C.2). Variables are sources from the local variable scope, special system-supplied

variables, values available from a template body (at a depth of two or more if required),

and the attributes of the current data object.

APPENDIX C. THE DYNAMIC MARKUP TEMPLATE LANGUAGE 174

1: $VAR

2: $ VAR [system variable. eg: templatebody, (index, maxindex,

3: item, itemlist) in loops, now, filedate, filename]

4: $.VAR [replaced with data attribute variable]

5: $/VAR [replaced with template body variable]

6: $//VAR [replaced with body of body variable, etc]

7: $MACRONAME(ARG1 ARG2)

8: $(VAR default VALUE) [use variable, defaulting it to new value if N/A]

9: $(VAR else VALUE) [use variable, or return value if N/A]

10: ${ EXPR }

Figure C.2: Variables and expressions of the Dynamic Markup Template language.

C.3 Discussion

Indentation defines scope and therefore the content (resolution) hierarchy. Local variable

definitions are searched before variables from outer or global scopes.

Filenames do not require an explicit extension. The DMT will search for a filename with

the expected extension on the path.

A backslash before a character voids its special meaning, and a backslash at the end of

the line joins this line to the next line, deleting the leading space of that line.

Values only need quotes if string contains space. Single words, numbers, color values, and

pathnames do not need quotes.

Keyword names are searched before variable names, so it is impossible to assign a value

to for with $for = 43.

A special attribute ‘busname‘ can be used for recursive reference. Assigning a value to

this attribute in a node allows children nodes to reference this presentation node with

their place in the data tree, implementing display object recursion. As the data tree is of

finite depth and cannot have recursive elements, the renderer is protected against infinite

recursion.

Appendix D

BUS Active Expression Syntax

Content and attributes in the BUS can use “$ EXPR $” syntax to compute dynamic values

during object rendering. The resolution of the expression uses the Python interpreter

engine, and most Python language features are available to the BUS application developer

(even when the application is built in another language).

Expressions can have the following format:

EXPR = TERM | EXPR OP EXPR

TERM = CONST | VAR | TERM ”.” METHOD TUPLE | TERM ”.” ATTRIBUTE

| ”(” EXPR ”)” | FUNC TUPLE | TERM ”[” INDEX ”]”

| LISTCOMP

TUPLE = ”(” [EXPR] (”,” EXPR)* ”)”

INDEX = INTEXPR | [INTEXPR] ”:” [INTEXPR] | KEYEXPR

There are three major namespaces that can be referenced:

var: Variables in scope from <SetVar> element.

Reference with var.NAME

data: Current data object from data resource hierarchy.

Child nodes in data[INDEX],

Attributes in data.NAME or data.get("NAME"[,default])

self: This presentation element.

Element tag is in self.otype,

Child nodes in self.content, accessed with self[INDEX],

Attributes in self.NAME or self.get("NAME"[,default])

APPENDIX D. BUS ACTIVE EXPRESSION SYNTAX 176

Note: As presentation and data objects are built from XML, numbers will be in string

format. The expression writer needs to use int(value) or similar before using the number

in a numeric context.

Constants:

INT | FLOAT | ”STRING” | ’STRING’ | TUPLE | LIST | DICT

List Comprehensions:

LISTCOMP = ”[” EXPR (for VARLIST in SEQ)+ (if EXPR)* ”]”

Operators:

VALUE ARITH OP VALUE

TEMPLATE % TUPLE : Replace %s with values from tuple

TEMPLATE % DICT : Replace %(KEY)s with values from dictionary

SEQ + SEQ

STRING + STRING

Boolean Operators:

A COMP OP B

A and B

A or B

not A

VALUE [not] in SEQ

STRING [not] in STRING

String Test Methods:

find(SUB)

index(SUB)

count(SUB)

startswith(SUB)

endswith(SUB)

isdigit()

isalpha()

String Transform Methods:

strip()

replace(OLD,NEW)

APPENDIX D. BUS ACTIVE EXPRESSION SYNTAX 177

title()

upper()

lower()

split(SEP [,MAX])

join(SEQ)

Regular Expression Functions:

All RE library functions start with ”re.”

search(PAT, STRING [,FLAGS]) -> MATCHOBJ

split(PAT, STRING, [,MAX]) -> SEQ

findall(PAT, STRING, [,FLAGS]) -> SEQ of TUPLES

sub(PAT, REPLACER, STRING [,COUNT]) -> STRING

escape(STRING) -> SAFE STRING

FLAGS = re.I(ingore case) | re.M(mutiline) | re.S(dotall)

MATCHOBJ has .group(GROUP), .groups(), .groupdict()

General Functions:

int(EXPR[,BASE])

float(EXPR)

str(EXPR)

len(SEQ|STRING)

max(SEQ)

min(SEQ)

sum(SEQ)

reversed(SEQ)

sorted(SEQ)

zip(SEQ (,SEQ)*)

range(MIN [,MAX] [,STEP])

enumerate(SEQ)

lambda VARLIST ”:” EXPR

reduce(FUNC, SEQ [,INIT])

This language provides for most requirements for data transformation and decision branch-

ing in the presentation layer. However, for specialist uses, the language can be expanded

by simply including a module containing the required functions in the BUS rendering

environment.

Bibliography

[Abdelzaher & Bhatti 99] T. F. Abdelzaher and N. Bhatti. “Web server QoS management

by adaptive content delivery”. In Intl. Workshop on Quality of Service,

pp 216–225, London. June 1999.

[Barbacci et al 95] Mario Barbacci, Mark H. Klein, Thomas A. Longstaff, and Charles B.

Weinstock. “Quality Attributes”. Technical Report CMU/SEI-95-TR-

021, Software Engineering Institute, Carnegie Mellon University. 1995.

[Barta & Schranz 98] Robert A. Barta and Markus W. Schranz. “JESSICA: An Object-

Oriented Hypermedia Publishing Processor”. Computer Networks,

Vol. 30, No. 1-7, pp 281–290. April 1998.

[Berglund 06] Anders Berglund. “Extensible Stylesheet Language (XSL) Version

1.1”. Technical report, World Wide Web Consortium. Available from

http://www.w3.org/TR/2006/REC-xsl11-20061205/. 2006.

[Berners-Lee 89] Tim Berners-Lee. “Information Management: A Proposal”. Technical

report, CERN. March 1989.

[Berners-Lee et al 94] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Se-

cret. “The World-Wide Web”. Communications of the ACM, Vol. 37,

No. 8. 1994.

[Bianco et al 07] Phil Bianco, Rick Kotermanski, and Paulo Merson. “Evaluating a

Service-Oriented Architecture”. Technical Report CMU/SEI-2007-

TR-015, Software Engineering Institute, Carnegie Mellon University.

September 2007.

BIBLIOGRAPHY 179

[Black 06] David Black. “Ruby for Rails: Ruby Techniques for Rails Developers”.

Manning Publications. May 2006.

[Booch 91] G. Booch. “Object Oriented Design with Applications”. The

Benjamin-Cummings Publishing Company, Redwood City, CA. 1991.

[Brown & Najork 96] Marc H. Brown and Marc A. Najork. “Distributed active objects”.

Computer Networks, Vol. 28, No. 7-11, pp 1037–1052. May 1996.

[Brown 02] David Bruce Brown. “A Views-Based Design Framework for Web Ap-

plications”. M.Sc. thesis, University of Waterloo, Canada. 2002.

[Buschmann et al 96] F. Buschmann, R. Meunier, H. Rohnert, P.Sommerlad, and M. Stal.

“Pattern-Oriented Software Architecture: A System of Patterns”.

John Wiley and Sons Ltd, Chichester, UK. 1996.

[Cassell 94] James Cassell. “The Total Cost of Client/Server: A Comprehensive

Model”. In A Gartner Group Conference on the Future of Information

Technology Industry. November 1994.

[Ciancarini et al 98a] P. Ciancarini, A. Rizzi, and F Vitali. “An extensible rendering

engine for XML and HTML”. In Proceedings of WWW7, Computer

Networks and ISDN Systems, volume 7, pp 225–238. 1998.

[Ciancarini et al 98b] Paolo Ciancarini, Robert Tolksdorf, Fabio Vitali, Davide Rossi, and

Andreas Knoche. “coordinating multiagent applications on the WWW:

A reference architecture”. IEEE Transactions on Software Engineer-

ing, Vol. 24, No. 5, pp 362–375. May 1998.

[Clement et al 05] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers.

“Universal Description, Discovery and Integration v3.0.2 (UDDI)”.

Technical report, Organization for the Advancement of Structured In-

formation Standards. Available from http://uddi.org/pubs/uddi_

v3.htm. 2005.

[Clements et al 02] Paul Clements, Rick Kazman, and Mark Klein. “Evaluating Software

Architectures: Methods and Case Studies”. Addison-Wesley. 2002.

BIBLIOGRAPHY 180

[Coar & Robinson 99] K. Coar and D. Robinson. “The WWW Common Gateway Inter-

face Version 1.1”. Internet Draft, Internet Engineering Task Force.

Work in progress. April 1999.

[Coda et al 98] F. Coda, C. Ghezzi, G. Vigna, and F. Garzotto. “Towards a Software

Engineering Approach to Web Site Development”. In Proceedings of

the 9th International Workshop on Software Specification and Design,

pp 8–17, Ise-Shima, Japan. April 1998. IEEE Press.

[Cowan et al 06] John Cowan, C. M. Sperberg-McQueen, Francois Yergeau, Eve Maler,

Tim Bray, and Jean Paoli. “Extensible Markup Language (XML) 1.1

(Second Edition)”. Technical report, World Wide Web Consortium.

Available from http://www.w3.org/TR/xml11. 2006.

[Cox & Novobilski 86] Brad J. Cox and Andrew J. Novobilski. “Object Oriented Pro-

gramming: An Evolutionary Approach”. Addison-Wesley. 1986.

[Darcy & Kemerer 05] D.P. Darcy and C.F. Kemerer. “OO metrics in practice”. Software,

Vol. 22, No. 6, pp 17–19. Nov.-Dec 2005.

[DM 02] DM Solutions Group. “ROSA Java Applet”. August 2002. Available

from http://www.maptools.org/rosa/.

[ECM97] ECMA. “Standard ECMA-262 ECMAScript: A general purpose,

cross-platform programming language”. June 1997.

[Engels et al 07] Holger Engels, Christian Kochs, and Stephan Schuster. “wingS White

Paper”. Technical report, Wings Framework Development Team.

Available from http://wingsframework.org/doc/whitepaper/pdf/

whitepaper.pdf. 2007.

[Fayad & Schmidt 97] Mohamed Fayad and Douglas C. Schmidt. “Object-oriented ap-

plication frameworks”. Commun. ACM, Vol. 40, No. 10, pp 32–38.

October 1997.

[Fernandez et al 00] Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and Dan Suciu.

“declarative specification of web sites with strudel”. VLDB Journal,

Vol. 9, No. 1, pp 38–55. 2000.

BIBLIOGRAPHY 181

[Ferraiolo et al 03] Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. “Scalable Vector

Graphics (SVG) 1.1 Specification”. Technical report, World Wide Web

Consortium. Available from http://www.w3.org/TR/SVG/. 2003.

[Fielding & Taylor 00] Roy T. Fielding and Richard N. Taylor. “Principled Design of the

Modern Web Architecture”. In ICSE2000: Procedings of the Interna-

tional Conference on Software Engineering. 2000.

[Fielding 00] Roy Thomas Fielding. “Architectural Styles and the Design of

Network-based Software Architectures”. PhD thesis, University of Cal-

ifornia, Irvine. 2000.

[Fielding et al 98] R. Fielding, J. Gettys, J. Mogul, H. Nielsen, L. Masinter, P. Leach, and

T. Berners-Lee. “Hypertext Transfer Protocol – HTTP/1.1”. Internet

Draft, Internet Engineering Task Force. Work in progress. November

1998.

[Fraternali 98] Piero Fraternali. “Web development tools: a survey”. Computer Net-

works, Vol. 30, No. 1-7, pp 631–633. April 1998.

[Gam] “Gamelan Java Software Development Web Site”. http://www.

gamelan.com/.

[Gebhardt & Henderson 99] J. C. Gebhardt and L. Henderson. “WebCGM: Industrial-

strength vector graphics for the Web”. Technical report, CGM

Open Consortium, Inc. Available from http://www.cgmopen.org/

webcgmintro/paper.htm. January 1999.

[Gellersen & Gaedke 99] Hans-Werner Gellersen and Martin Gaedke. “object-oriented

web application development”. IEEE Internet Computing, Vol. 3,

No. 1, pp 60–68. 1999.

[Gellerson et al 97] Hans-Werner Gellerson, Robert Wicke, and Martin Gaedke. “Web-

Composition: An Object-Oriented Support System for the Web En-

gineering Lifecycle”. In Proceedings of the 6th International WWW

Conference. 1997.

BIBLIOGRAPHY 182

[Goo06] Google. “How To Use the Google Template System”. February

2006. Available from http://google-ctemplate.googlecode.com/

svn/trunk/doc/howto.html.

[Goo08] Google, Inc. “Google Maps”. 2008. http://code.google.com/apis/

maps/.

[Goodman 98] D. Goodman. “Dynamic HTML: The Definitive Reference”. O’Reilly

and Associates Inc., Sebastopol, CA. 1998.

[Gosling & McGilton 96] J. Gosling and H. McGilton. “The Java Language Environment:

A White Paper”. Technical report, Sun Microsystems. Available from

http://java.sun.com/docs/white/langenv/. 1996.

[Gregorio 06] Joe Gregorio. “Why so many Python web frameworks?”. Septem-

ber 2006. Available at http://bitworking.org/news/Why_so_many_

Python_web_frameworks.

[Hester et al 98] A. Hester, R. Borges, and R. Ierusalimschy. “Building Flexible and Ex-

tensible Web Applications with Lua”. Journal of Universal Computer

Science, Vol. 4, No. 9. 1998.

[Houben et al 05] Geert-Jan Houben, Peter Barna, and Flavius Frasincar. “Hera Presen-

tation Generator”. In Proceedings of WWW conference: 2005. 2005.

[Ingham et al 98] D. B. Ingham, S. J. Caughey, and M. C. Little. “Supporting Highly

Manageable Web Services”. In Proceedings of the 7th International

WWW Conference. 1998.

[Ishikawa et al 07] Masayasu Ishikawa, Peter Stark, Mark Baker, Shin’ichi Matsui, Toshi-

hiko Yamakami, and Ted Wugofski. “XHTML Basic 1.1 Specifica-

tion”. Technical report, World Wide Web Consortium. Available from

http://www.w3.org/TR/xhtml-basic/. 2007.

[Jav] “Java Boutique Java Developer Web Site”. http://javaboutique.

internet.com/.

[Johnson & Foote 88] Ralph Johnson and Brian Foote. “Designing Reusable Classes”.

Journal of Object-Oriented Programming. June/July 1988.

BIBLIOGRAPHY 183

[jsD] “Dojo Javascript Library”. http://dojotoolkit.org/.

[jsMochi 06] Mochi Media Inc. “Mochikit: A lightweight Javascript library”. 2006.

http://www.mochikit.com.

[JSONspec 06] JSON.org. “Introducing JSON”. 2006. http://www.json.org/.

[jsP] “The Prototype Javascript Library”. http://www.prototypejs.

org/.

[kar08] “Karrigell Website”. http://karrigell.sourceforge.net/en/

front.htm. 2008.

[Karmarkar et al 07] Anish Karmarkar, Yves Lafon, Noah Mendelsohn, Martin Gud-

gin, Jean-Jacques Moreau, Henrik Frystyk Nielsen, and Marc Hadley.

“SOAP Version 1.2 part 1: messaging framework (second edition)”.

Technical report, World Wide Web Consortium. Available from

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/. 2007.

[Kay 07] Michael Kay. “XSL Transformations (XSLT) Version 2.0”. Technical

report, World Wide Web Consortium. Available from http://www.

w3.org/TR/2007/REC-xslt20-20070123/. 2007.

[Krasner & Pope 88] Glenn E. Krasner and Stephen T. Pope. “A Cookbook for Using

the Model View Controller User Interface Paradigm in Smalltalk 80”.

Journal of Object Oriented Programming, Vol. 1, No. 3. August 1988.

[Kristensen 98] Anders Kristensen. “Template resolution in XML/HTML”. Computer

Networks, Vol. 30, No. 1-7, pp 239–249. April 1998.

[Layman et al 06] Andrew Layman, Richard Tobin, Dave Hollander, and Tim Bray.

“Namespaces in XML 1.1 (Second Edition)”. Technical report, World

Wide Web Consortium. Available from http://www.w3.org/TR/

xml-names11. 2006.

[Lee & Shirani 04] Seung C. Lee and Ashraf I. Shirani. “a component based methodology

for web application development”. J. Syst. Softw., Vol. 71, No. 1-2, pp

177–187. 2004.

BIBLIOGRAPHY 184

[Leff & Rayfield 07] Avraham Leff and James T. Rayfield. “WebRB: A Language and

Runtime for Multi–page Relational Web Applications”. In PLDI 2007.

2007.

[Lutz 96] M. Lutz. “Programming Python”. O’Reilly and Associates Inc. 1996.

[Maia 02] Joao Prado Maia. “Introducing Smarty: A PHP Template En-

gine”. May 2002. Available from http://www.onlamp.com/pub/a/

php/2002/09/05/smarty.html.

[Min08] Miniwatts Marketing Group. “Internet World Stats - December 2007”.

2008. http://www.internetworldstats.com/stats6.htm.

[Musciano & Kennedy 02] Chuck Musciano and Bill Kennedy. “HTML & XHTML: The

Definitive Guide”. O’Reilly Media, Inc., 5th edition. August 2002.

[Net07] Netcraft Ltd. “December 2007 Web Server Survey”. De-

cember 2007. http://news.netcraft.com/archives/2007/12/29/

december_2007_web_server_s%urvey.html.

[Niederst 99] J. Niederst. “Web Design in a Nutshell”. O’Reilly and Associates Inc.,

Sebastopol, CA. 1999.

[Obj95] Object Management Group Inc. “The Common Object Request Bro-

ker: Architecture and Specification”, 2.0 edition. July 1995.

[O’Reilly 05] Tim O’Reilly. “What is Web 2.0? Design Patterns and Models for

the Next Generation of Software”. O’Reilly Network. September

2005. Available from http://www.oreillynet.com/pub/a/oreilly/

tim/news/2005/09/30/what-is-web%-20.html.

[Parr 04] Terence John Parr. “enforcing strict model-view separation in template

engines”. In Proceedings of the Thirteenth International World Wide

Web Conference, pg 224. ACM Press, New York, NY. May 2004.

[Plo06] “PlotKit - Javascript Chart Plotting”. 2006. http://www.liquidx.

net/plotkit/.

BIBLIOGRAPHY 185

[Pyt06] Python Software Foundation. “Python Web Server Gateway Inter-

face v1.0”. 2006. Available from http://www.python.org/dev/peps/

pep-0333/.

[Quarto-vonTivadar et al 05] John Quarto-vonTivadar, Brian Kotek, Brian LeRoux,

Sandy Clark, and Perry Woodin. “Discovering Fusebox 4”. Techs-

pedition, 2nd edition. 2005.

[Ramm et al 06] Mark Ramm, Kevin Dangoor, and Gigi Sayfan. “Rapid Web Applica-

tions with TurboGears”. Prentice Hall. 2006.

[Ramu & Gemuend 00] Chenna Ramu and Christina Gemuend. “cgimodel: CGI pro-

gramming made easy with Python”. The Linux Journal, Vol. 75. July

2000.

[Rees 97] M.J. Rees. “Exploiting the Full Web User Interface Spectrum”. In

Proceedings of AusWeb97. 1997.

[RMI97] “Remote Method Invocation Specification”. 1997. Available from

http://www.javasoft.com/products/JDK/1.1/docs/guide/rmi/

spec/rmiTOC.doc%.html.

[Robinson & Jackson 99] B. Robinson and D. Jackson. “SVG Viewer”. http://sis.

cmis.csiro.au/svg/. 1999.

[Rub07] “Ruby on Rails”. http://api.rubyonrails.org/. 2007.

[Rustad 05] Aaron Rustad. “Ruby on Rails and J2EE: Is there room for both?”.

July 2005. Avalaible from http://www.ibm.com/developerworks/

web/library/wa-rubyonrails/.

[Ryman et al 07] Arthur Ryman, Roberto Chinnici, Sanjiva Weerawarana, and Jean-

Jacques Moreau. “Web Services Description Language (WSDL) Ver-

sion 2.0 Part 1: Core Language”. Technical report, World Wide Web

Consortium. Available from http://www.w3.org/TR/wsdl20/. 2007.

[Schranz 98] Markus Schranz. “Engineering Flexible World Wide Web Services”.

In Symposium on Applied Computing (SAC). February 1998.

BIBLIOGRAPHY 186

[Schwabe et al 01] Daniel Schwabe, Luiselena Esmeraldo, Gustavo Rossi, and Fernando

Lyardet. “Engineering Web Applications for Reuse”. IEEE Multime-

dia, Vol. 8, No. 1. jan-mar 2001.

[Sec02] Security Space. “Apache Module Report”. June 2002.

http://www.securityspace.com/s_survey/data/man.200205/

apachemods.html.

[Shneiderman 97] B. Shneiderman. “Direct Manipulation for Comprehensible, Pre-

dictable and Controllable User Interfaces”. Technical report, Human

Computer Interaction Lab, Dept. of Computer Science, University of

Maryland. 1997.

[Sim] “SimpleJSON”. http://www.python.org/pypi/simplejson/1.3.

[Ste05] “WSGI Server Utils”. 2005. Available from http://www.owlfish.

com/software/wsgiutils/documentation/.

[Sultana 08] Deanie Sultana. “Aussie Internet usage overtakes TV viewing for the

first time”. News release, The Nielsen Company. March 2008.

[Sun02] Sun Microsystems, Inc. “Designing Enterprise Applications with

the J2EETM Platform”, second edition. 2002. Available from

http://java.sun.com/blueprints/guidelines/designing_

enterprise_applicat%ions_2e/DEA2eTOC.html.

[Sweeney 00a] M. Sweeney. “BUS: a Browser Based User Interface Service for Web

Based Applications”. In Australian Computer Science Communica-

tions: Proceedings of the First Australasian User Interface Confer-

ence, volume 22, pp 103–109. IEEE Computer Society, Los Alamitos,

California, USA. January 2000.

[Sweeney 00b] M. Sweeney. “Interactive Graphics for Web Based Applications”. In

Proceedings of the 1st International Conference on Web Information

System Engineering, volume 1, pp 395–399. IEEE Computer Society,

Los Alamitos, California, USA. June 2000.

BIBLIOGRAPHY 187

[Taivalsaari 96] A. Taivalsaari. “On the Notion of Inheritance”. ACM Computing

Surveys, Vol. 28, No. 3. September 1996.

[Theng & Thimbleby 98] Yin Leng Theng and Harold Thimbleby. “Addressing Design

and Usability Issues in Hypertext and on the World Wide Web by Re-

Examining the “Lost in Hyperspace” Problem”. Journal of Universal

Computer Science, Vol. 4, No. 11. 1998.

[Tittel et al 95] E. Tittel, M. Gaither, S. Hassinger, and M. Erwin. “Foundations of

World Wide Web Programming with HTML and CGI”. IDG Books

Wordwide, Foster City, CA. 1995.

[Ungar & Smith 87] D. Ungar and R. B. Smith. “Self: The Power of Simplicity”. In

OOPSLA ’87 Proceedings. 1987.

[van derVlist 02] Eric van der Vlist. “XML Schema”. O’Reilly and Associates, Inc.

2002.

[Wall & Schwartz 92] Larry Wall and Randal L. Schwartz. “Programming Perl”. O’Reilly

and Associates, Inc. 1992.

[Walton & Hibbs 06] Bill Walton and Curt Hibbs. “Rolling with Ruby on Rails Revis-

ited”. December 2006. Available from http://www.onlamp.com/pub/

a/onlamp/2005/01/20/rails.html.

[Wampler 01] Dean Wampler. “Cat Fight in a Pet Store: J2EE vs .NET”. On-

Java.com. 2001. Available from http://www.onjava.com/pub/a/

onjava/2001/11/28/catfight.html.

[Web05] “Introduction (version 1.39)”. 2005. Avalable from http://www.

masonhq.com/docs/manual/Mason.html.

[Zhao et al 02] Weiquan Zhao, David Kearney, and Gianpaolo Gioiosa. “architectures

for web based applications”. In The Fourth Australian Workshop on

Software and System Architectures. 2002.

[zor06] “High Performance JavaScript Vector Graphics Library”. 2006. http:

//www.walterzorn.com/jsgraphics/jsgraphics_e.htm.

	Title page - A presentation service for rapidly building interactive collaborative web applications
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Chapter 2 - Background
	Chapter 3 - A presentation service
	Chapter 4 - Interactive graphics for the browser
	Chapter 5 - The BUS concept
	Chapter 6 - Prototypes and results
	Chapter 7 - Conclusion
	Appendix A - Glossary
	Appendix B - Abbreviations
	Appendix C - The dynamic markup template language
	Appendix D - BUS active expression syntax
	Bibliography

