
User guided biomedical image segmentation and usable
interfaces

Author:
Hosseini, Mohammadreza

Publication Date:
2016

DOI:
https://doi.org/10.26190/unsworks/19071

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/56398 in https://
unsworks.unsw.edu.au on 2024-04-27

http://dx.doi.org/https://doi.org/10.26190/unsworks/19071
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/56398
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


User guided biomedical image 
segmentation and usable interfaces 

 

 
 

Mohammadreza Hosseini 
 

School of Computer Science and Engineering 
University of New South wales, Sydney, Australia 

A thesis submitted in fulfillment of the requirement for the 
degree of PhD 

 
 

2016 
 
 
 
 
 



z8503529
Text Box

z8503529
Text Box



z8503529
Text Box

z8503529
Text Box



z8503529
Text Box

z8503529
Text Box



! a!

Abstract 
 
 

The ability to measure objects boundary and dimensions in medical and 
biomedical images and to assure a safe interaction with these images in the 
experimental laboratory using computer vision technology are the principal goals 
of this thesis. The accurate estimation of the dimensions of bacteria in the 
biomedical images has a significant impact on observing the reactions to a new 
environment. Accurate measurement of organs boundary in medical images has a 
great impact on designing reliable surgical plan. The safe interaction with usable 
interfaces will decrease any chance of bacterial contamination. 
 
In a high-resolution microscopic image, where the growth rate of bacteria may be 
less than 1/10 of a pixel width, more accurate estimation of object dimensions is 
required. Segmentation methods that rely on image intensity for segmentation tend 
to overestimate the bacterium dimensions. Instead, removing the blurring effect 
will result in more accurate dimension estimation. In this thesis, a novel approach 
to bacterium segmentation and measurement based on a new bacterium model is 
presented. The model can be used to estimate the bacterium dimensions and 
orientation with high accuracy.  
 
For medical images of human organs, on the other hand, automatic segmentation 
methods may not produce expected boundaries due to non-rigidity of organs.  
Therefore, interactive segmentation approaches based on expert feedback are 
becoming popular. These are often based a single feature of the feedback. In this 
thesis, the use of multiple features of user feedback in defining the energy function 
in energy-based segmentation methods is evaluated. Experiments on lung MDCT 
(multi-row detector computed tomography) images show that the proposed 
method performs better than a comparative automatic and single feature 
interactive segmentation methods.  
 
Interfaces that rely on human gestures to control a machine is a promising 
approach for increasing biological laboratory safety. An important issue is the 
usability of these new interfaces, which has not been thoroughly studied. Usability 
study of touchless and touch-based interfaces for interaction with biomedical 
images is conducted in this thesis. The knowledge gained based on user 
experience is then used to design a new interface more aligned with user needs. 
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Chapter 1  

Introduction 

Computer vision is fast becoming an acceptable approach for modeling and analyzing 

biomedical digital images. Research in these areas is driven by the characteristics of the 

different imaging systems and the objects in the images. While better approaches for analyzing 

biomedical digital images are being proposed, many problems are still not completely solved 

using traditional image processing and computer vision techniques. 

In addition, computer vision research can add value to analyzing biomedical images by the 

ability to provide new forms of interaction with the images. Safety concerns in the experimental 

laboratory can be thereby guaranteed by minimizing direct contact with all the samples and 

equipment. Developing interfaces that rely on human gestures to control a machine based on 

computer vision algorithms is a promising approach for increasing biological laboratory safety. 

An important issue is the usability of these new interfaces, which also has not been thoroughly 

studied. 

1.1 Thesis Motivation 

Image segmentation as an approach to obtain useful information from digital images can be 

implemented differently based on the image characteristics. For biomedical images, as will be 

discussed in Section 1.1.1, the general image segmentation approaches are not applicable 

because of the blurring effect of the imaging devices. On the other hand, to be discussed in 



! 2!

Section 1.1.2, automatic methods may not produce expected results due to lack of a clear 

boundary between objects in biomedical images.   

Interfaces are real or virtual devices for delivering instructions to computer machines. In the 

design of each new interface, the concept of usability and also the user advantages must be 

considered. A new form of interface that uses an image processing approach has emerged that 

also empowers user mobility. The usability of this new interface and its advantages for 

designing a secure interaction in the experimental laboratory are addressed in section 1.1.3. 

 

1.1.1 Biomedical Images and Innovative Segmentation 

Bacteria are single cell organisms without any membrane. Typically a few micrometres in 

length, bacteria have a variety of shapes such as rods, spirals and spheres. Bacteria can 

reproduce simply and rapidly by doubling their contents and splitting in two. Just one bacterium 

dividing every twenty minutes can produce 5000 billion billion bacteria in one day. While the 

majority of bacteria in the human body are countered by the immune system, there are some that 

are pathogenic and can cause disease in the body of their host. 

Biofilms are bacteria colonies that are attached to a surface. The formation of biofilms begins 

with the attachment of free-floating bacteria to a surface. If the colonies are not immediately 

separated from the surface, they can anchor themselves more permanently using cell adhesion 

molecules. This is the reason for their ability to resist new drugs and also antibiotics. 

Active expansion of bacterial biofilms is important in the spread of infection along implanted 

medical devices [1] and waterborne, airborne, foodborne and household illness. The expansion 

occurs by bacteria travelling over surfaces using a tail-like appendage called the flagellum. 

Bacteria’s flagella are used for swimming through liquids and in bacterial gliding [2]. Bacteria 

with flagella have two different modes of movement. When the flagella rotate clockwise the 

bacteria move forward, but if the former rotate counterclockwise, the bacteria start to tumble 
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[2].  

Another form of bacteria translocation over surfaces is called twitching motility. In this mode, 

translocation occurs by expansion, tethering, and then retraction of pilis, which are thread-like 

structures attached to bacteria membrane [3]), and operate in a manner similar to a grappling 

hook (Fig 1.1). When the external ends of the pilis adhere to a solid surface or to other bacteria, 

this will pull the bacteria forward.  

 It is observed that bacteria can move differently depending on whether they are close to the 

surface or inside the fluid [4]. Other factors such as chemical signaling, fluid molecular 

Brownian motion and also flagella rotation can affect the pattern of movement of the bacteria.  

When observed under natural conditions, bacterial cells in a dense population are very difficult 

to distinguish from each other, as they tend to aggregate and are multi-layered [5] (Fig. 1.2). 

Observing and characterizing bacteria using traditional methods is a daunting task. In the case 

of tracking bacteria in a movie with more than 1000 frames, matching of bacteria in different 

frames is part of the problem. 

 

Fig 1.1-A bacterium with pilis (hair like structure around the body) [6]  

Laboratory evidence shows that bacterial movement between two different frames does not 

follow a single pattern, therefore simple traditional methods such as nearest neighbourhood are  
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Fig 1.2- Bacteria Sample colony ([7]) 

not suitable for tracking bacteria.  

Bacteria shape contributes a measure of survival value in the face of three primary selective 

pressures: (i) nutrient acquisition, ii) cell division and (iii) predators [4]. Pseudomonas 

aeruginosa, a rod-shaped bacterium of interest, can react to nutrient availability and predation 

pressure by adapting its length. Research in bacteria and biofilm image processing is mainly 

classified into bacteria segmentation, bacteria tracking and biofilm morphology evolution. The 

segmentation methods used usually differ based on the quality of images.  

Phase contrast microscopy, first described in 1934 by the Dutch physicist Frits Zernike, is a 

contrast-enhancing optical technique that can be utilized to produce high-contrast images of 

transparent specimens such as living cells, and sub-cellular particles (such as nuclei and other 

organelles) [8]. One of the major advantages of phase contrast microscopy is that living cells 

can be examined in their natural state without being killed and fixed. As a result, the dynamics 

of ongoing biological processes in live cells can be observed and recorded in high contrast with  
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Fig 1.3- Phase contrast microscopy of bacteria ([7]) 

Sharp clarity of detail [8] (Fig 1.3). 

After image capture, image segmentation is performed. Extracting bacteria from the image and 

estimating their shape, orientation and length is called cell segmentation. Usually the 

segmentation and localization method starts by removing noise from the image in case the 

signal to noise ratio (SNR) is not as high as expected. For any electronic measuring system, the 

SNR characterizes the quality of measurement and determines the ultimate performance of the 

system. Low SNR is the main reason of failure of tracking and segmentation algorithms [9].  

Research in the area of bacterium segmentation, where the rate of change in the size may be less 

that one pixel between frames, shows the importance of developing specific segmentation 

approaches for the purpose. Overcoming the SNR effect of microscopic devices improves the 

efficiency of bacterium dimension estimation. An accurate estimation of bacteria length can be 

used to locate the possible breakpoint in future mitosis. This has great impact on improving the 

accuracy of bacteria tracking, which will be used to track biofilm morphological properties such 

as the speed of spread of biofilms. Tracking the bacteria and biofilm dynamics can be used to 

trace the effects of new drugs. 
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1.1.2 Medical Imaging and Interactive segmentation 
 
Medical images are produced using different forms of imaging technology such as magnetic 

resonance imaging (MRI) and Computed Tomography (CT). MRI uses the body's natural 

magnetic properties to produce detailed images from any part of the body (Fig. 1.4). CT scan,  

on the other hand, uses x-rays that pass through the body. They will absorb or weaken at 

different levels, creating a profile of x-ray beams of different strengths. The x-ray profile is 

captured on film, thus creating an image (Fig. 1.5). 

Segmentation involves separating an image into regions with some similarities. Sampling 

artifacts, spatial aliasing and noise can cause the boundaries of structures to be indistinct and 

disconnected, which is a common shortcoming of typical sampled data. The challenge of image 

segmentation is to extract boundary elements belonging to the same structure and to integrate 

these elements into a consistent object model. Traditional low-level image processing 

techniques that consider only local information can make incorrect assumptions during this 

integration process and create implausible object boundaries. 

In this situation, the medical image data alone is usually not sufficient for reliable and 

unambiguous computerised segmentation [10] and as a result, the views of an experienced 

physician remain mandatory. 

Novel interactive segmentation approaches that can potentially overcome the limitations of 

automatic approaches may be beneficial in improving the segmentation and creating more 

plausible object boundaries. This issue becomes critical when dealing with the precise 

delineation of tumour boundaries. Accurate estimation of boundaries can increase the chance of 

targeting the right objects instead of damaging healthy tissues during  routine planning and 

monitoring in neurosurgery and radiology.  

 
 



! 7!

 

Fig 1.4- Head image using an MRI device [101] 

 

Fig 1.5- Abdomen CT Scan [11] 

1.1.3 Biomedical interaction, Interfaces and usability concerns 

Information such as the biofilm diffusion coefficient, bacterium dimension and trajectory are 

among quantities that scientists are most interested in. Computer vision and imaging techniques 

could be utilised to support better understanding of these factors and to help localise, track and 
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measure bacteria features. Another interesting area of research is the development of advanced 

interactive visualisation techniques, which could enhance users’ understanding of complex 

interior structures and morphology of bacteria during biofilm formation.  

Advances in computer vision, pattern recognition and tracking have led to the development of 

new forms of interaction, such as touchless interfaces and augmented reality, that can enhance 

user safety and collaboration in the experimental laboratory.  

Although touchless systems are beneficial for user safety, user willingness to use these systems 

in experimental conditions needs to be evaluated through user experience design (UX). The 

primary outcomes of such a study could answer questions such as the user's willingness to use 

an interface, the system accuracy, and the feelings evoked by the interaction. 

While single person interaction with a system might be attractive, in many laboratories, multiple 

users must be able to interact with data and discuss results during team meetings. Having a 

collaborative interaction system such as an augmented reality application would allow any 

number of users to interact remotely with the system at a time, without interfering with other 

users during collaboration. 

 

1.2 Thesis Scope 

 

The primary focus of this thesis in the first part is on the isolated Pseudomonas Aeruginosa, a 

rod-shaped bacterium that can cause disease in animals and humans [7]. The interest in this 

bacterium is due to its capability to thrive in moist areas such as medical equipment that can 

cause cross-infection in hospital and clinics. If the bacterium can colonise inside body organs 

such as the lung and kidney, the results could be fatal. The rod shape structure of this bacterium 

invites development of an innovative interactive approach for high accuracy dimension 

estimation in this thesis. Such an approach can overcome the limitations of the traditional 

approach, which often leads to misclassification of the bacterium growth rate due to inaccurate 

dimension estimation [12].  
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In the second part of the thesis, the focus is on interactive lung extraction in 50 complete multi-

detector computed tomography (MDCT) datasets. In Australia, 18.95% of death by cancer is 

caused by lung cancer [12]. Isolating the lung from its surrounding anatomical structures is a 

crucial step in cancer studies and the detection and characterisation of lung cancer lumps [13].  

Developing applications that can increase the performance of traditional segmentation 

approaches can help physicians improve the accuracy of diagnosis and the effectiveness of 

treatments. 

In the third part of this thesis, the focus is on touchless interaction with biomedical images and 

creating a better user experience using it. Touchless interaction systems use image processing 

for detecting the human body and skeleton using a combination of images from cameras and 

depth sensors. Creative Senz3D [14], shown in Fig. 1.6, is a state-of-the-art interaction system 

with the capability of detecting human hands at a short distance. 

 

Fig 1.6- Creative camera. The right sensor is an RGB camera and the left sensor is an infrared sensor designed to 

estimate scene depth [6] 

The capability to detect hands and fingers makes it suitable for the development and study of 

applications in the field of secure interaction. The ability to recognise the centre of the palm 

makes it an appropriate device to replicate touch-based applications, usually developed in an 
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environment such as the iPad, in a touchless format. The usability study of touchless 

applications can provide guidelines for the manufacturer and software developer on the 

drawbacks and strengths of these interfaces. In addition, the technical efficiency of another form 

of interaction, that combines virtual information with real objects in order to increase user 

knowledge during the interaction, will also be discussed. This type of interaction usually relies 

on heavy computing power for image processing, which in the case of the highly detailed 

biomedical image, may not provide an exciting user experience. The trade-off between user 

experience and time complexity will be reviewed more thoroughly. 

The idea that binds all these seemingly separate but aligned studies together is about the 

importance of interactivity and its role in improving the solution to two common image 

processing problems, namely biomedical image segmentation and highly accurate dimension 

estimation. As will be discussed in future chapters, the role of the user in providing guidelines 

has a considerable effect on improving the accuracy of the image processing technique used. On 

the other hand, as these image processing techniques are mostly used by scientists in an 

experimental laboratory, the study of the usability of different approaches for interaction, 

together with concerns about the safety of the interaction, is a primary concern in the third part 

of this thesis. 

 

1.3 Thesis Aims 

This thesis has three goals: 

(i) The development of an innovative algorithm with user input for estimating bacterium 

dimensions with high accuracy in bacterial biofilm images. The data model is 

approximated using an iterative curve fitting approach, and dimensions are estimated 

using this model. No prior knowledge of the microscopic device blurring effect is 

assumed. 

(ii) The design and development of an innovative interactive medical image segmentation 
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algorithm. A new energy function is introduced for detecting the object boundary in 

medical images and achieving the segmentation.  

(iii) Design and implementation of different user interfaces and the evaluation of their 

usability for interacting with biomedical images. The usability study has been carried 

out by collecting and analysing user experience data, drawing conclusions and making 

recommendations for a new human-computer interface.  

In all the above, the unifying theme is that of biomedical image segmentation using user 

inputs to improve the results, and evaluation of user interactions in system design. 

1.4 Thesis Overview 

The three goals of the thesis are achieved by developing appropriate techniques, which are 

briefly described below. 

1.4.1 Highly accurate bacterium dimension estimation 

Accurate estimation of bacterium dimensions is achieved by utilising a model fitting approach. 

Model selection is performed by analysing various models and determining their capability to 

simulate the bacterium form. After selecting the model and defining the model parameters, a 

cost function that measures the similarity between the blurred bacterium model and the 

bacterium image is optimised and the values of the parameters estimated. These parameter 

values are then used to calculate the bacterium dimensions. The proposed approach achieves 

superior performance over general segmentation techniques that do not consider blurring 

effects. 

1.4.2 An interactive approach for image segmentation 

An interactive segmentation approach is initialised by the user selecting pixels inside the object 

of interest. Segmentation is then performed by minimising an energy function which utilises 



! 12!

two features of the pixels selected by the user. The first is the intensity range, which is used in 

the definition of the energy function and is inspired by the Chan-Vese [15] energy function, 

which penalises dissimilarities in the segmentation. The second is the locations of pixels, which 

are used to define an energy function based on the probability of reaching selected pixels in the 

image domain. The estimation of the probability is performed using a method motivated by the 

RandomWalk segmentation approach [16]. Minimising the energy then produces the object 

boundaries. 

1.4.3 User interface evaluation 

Evaluation of different user interfaces for interaction in biomedical images is then conducted. 

The first category of interface is a touch-based one, where the user utilises the sense of touch to 

communicate instructions to the computer. In the second category are interfaces that do not use 

touch for interaction, and include interaction using cameras that have the capability to recognise 

hand gestures. Evaluation is performed by measuring the system usability and the feelings 

evoked in the user during the interaction, to measure the success of each interface. The lessons 

learned from these studies are then applied to develop a new interface based on augmented 

reality, which combines the response feature of touch-based interaction with the safety of 

touchless interaction to provide a safe, responsive and multi-user system. Its accuracy and real-

time capability are also studied. 

1.5 Thesis Contributions 

The research presented in this thesis contributes to numerous areas of computer science, human 

computer interaction and health and safety in the biological sciences. 

(i) Contributions to Computer vision: The proposed algorithm for interactive image 

segmentation is based on an innovative approach that uses a combination of features 

from user-provided information for image segmentation. The interactive segmentation 

method presented in this thesis makes considerable headway in developing more 
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accurate segmentation for estimating organ boundaries in medical images. 

(ii) Contributions to Human computer interaction:  The study of touch-based versus 

touchless interactions with biomedical images is the first in the area of biomedical 

image interactions. The study presented not only shows the limitations of each 

interface, it was also used for designing a more collaborative interactive system based 

on the lessons learned from the user experience. 

(iii) Contributions to biological sciences: A major contribution of this thesis is to the field 

of biological science. High accuracy estimation of bacteria will allow researchers to 

obtain a better approximation of bacteria dimensions from samples taken from dairy 

factories, for example. The more accurate measurements would allow better analysis of 

the effects of drugs and assist in stopping bacterial biofilm expansion. 

1.6 Thesis Organisation 

The remaining chapters of this thesis are organised as follows. Related work in the field of 

interactive segmentation using computer vision techniques, innovative approaches for image 

segmentation of microorganisms and the history of human-computer interaction (HCI) and 

evolution of user interfaces are presented in Chapter 2. In particular, the definition of the energy 

function, level sets and various approaches that employ prior information in developing 

interactive segmentation are discussed. A more detailed description of the blurring effect of 

microscopic devices and its simulation are presented. It also introduces high precision 

dimension estimation of other microorganisms in microscopic images. Finally, the concepts of 

HCI and the history of interface evolution are presented, especially touchless interaction and 

augmented reality as the two newest forms of interaction. A novel approach to estimating 

bacterium dimensions with high accuracy, based on model fitting of the bacterium shape, is 

presented in Chapter 3. The definition of the model and a cost function for obtaining the 

optimised model are presented. Quantitative evaluations of the proposed approach in estimating 

artificial and real bacterium dimensions are also presented. 
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A novel interactive segmentation method is described in Chapter 4. A more detailed description 

of the Chan-Vese approach is provided, and an interactive approach for image segmentation 

based on the concept of the energy function is presented. The idea of using various features 

based on prior information for designing the energy function is also discussed. To evaluate the 

efficiency of this approach, a quantitative evaluation of the proposed algorithm in comparison 

with other segmentation methods such as RandomWalker [16], GrabCut [17] and Chan-Vese 

[15] is presented. 

A deeper investigation of user interfaces is carried out in Chapter 5. A usability study of a 

touchless and touch-based interface through a series of user experiments is carried out. The 

lesson learned from the usability study is then applied to design a more collaborative real-time 

interface in the form of an Augmented Reality (AR) application. The truthfulness and real-time 

capability of this new system is then evaluated. 

Finally, closing remarks are presented in Chapter 6. The benefits of the model fitting approach 

for bacterium dimension estimation and interactive segmentation method are reiterated along 

with their limitations. The chapter concludes with a discussion of possible system extensions to 

overcome the limitations.!

!
!
!
!
!
!
!
!
!
!
!
!
!
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Chapter 2 

Interactive Image Segmentation 
and Human Computer Interaction  
 
Image segmentation is a classical topic of research. Image segmentation is about detecting 

object boundaries in an image, where objects consist of pixels that share some similarities. Even 

when there are many similar pixels in an image, a segmented region may also contain some 

dissimilar pixels. Interactive segmentation methods attempt to guide the segmentation towards 

more precise object boundaries.  

In areas such as biomedical image analysis, an additional post-processing step is usually 

necessary to detect object boundaries because of the blurring effect of the microscopic imaging 

device used. As the sise of an object in biomedical images may vary by less than a single pixel 

width in different frames, there is much interest in high accuracy measurements of objects. 

Since normal segmentation approaches are insufficient for this purpose, other inventive 

approaches are required to achieve this goal.  

In both interactive segmentation and high precision measurement of object boundaries in 

biomedical images, the inputs of an experienced user are necessary. User input can be supplied 

as the estimated boundary of an object, or by selection of some pixels inside the object of 

interest. In both cases, the user requires an interface that suits the problem and the interaction 

environment. For example in a surgical room, the interaction interface must be designed in such 

a way as to minimise any form of touch in order to preserve human safety.  
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In this chapter, a review of the relevant research will be presented. In Section 2.1, an inclusive 

review of interactive segmentation is presented. Since most collaborative methods perform 

segmentation using energy function minimisation, Section 2.1.1 begins by describing the 

concept of an energy function. An optimal solution to the energy minimisation problem can be 

defined as a contour or the zero level set of a function, both of which are discussed in Section 

2.1.2. This is followed by a discussion of diverse interactive segmentation methods. The 

interaction can be implemented by the user providing prior shape information (Section 2.1.3), or 

object location and its content (Section 2.1.4). 

High precision dimension estimation of microorganisms is reviewed in section 2.2. In section 

2.2.1 the main causes of blurring in microscopic devices is described, and motivations for 

research to estimate microorganism dimension with high precision explained. In section 2.2.2, 

the methods developed to estimate size when standard segmentation and dimension estimation 

methods fail to produce reasonable results are described.  

In section 2.3 a review of diverse interfaces is presented. In section 2.3.1 a history of computer 

interfaces is provided. In this section two of the newest forms of interaction, namely touchless 

interaction and augmented reality, are described. For touchless interaction, the motivation 

behind developing the user interface and the environment and its benefits are discussed in 

section 2.3.2. In section 2.3.3, after introducing augmented reality, a discussion of tracking as a 

major challenge in AR is presented. The concepts of feature detection and matching as a 

solution to the tracking problem are defined. In section 2.4 a summary of this chapter is 

presented. 

 

2.1 Interactive image segmentation 

Image segmentation is not an easy task. Within the large amount of pixels that may exist in a 

digital image, detecting an object involves search through all possible logical relationships 

among pixels. Researchers have made several attempts to tackle the problem in order to come 
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up with meaningful solutions. This is easily demonstrated by the large number of surveys on the 

topic [18,19,20,21,22,23]. 

To overcome the limitations of automatic segmentation methods, researchers have proposed 

new human collaborative techniques to guide segmentation methods towards the object of 

interest. This collaboration mostly occurs by the user providing an object shape prior, selecting 

some seeds inside the object of interest or providing boundaries around the object of interest. 

The forms of collaboration differ mainly by the type of human interaction. In the first type the 

user providing information defines a prior probability distribution function before the start of 

algorithm execution. In the second type, the interaction occurs after the start of execution, by 

asking the user to provide seeds or draw the boundaries, which are referred to as interactive 

segmentation methods.  

As most collaborative methods perform segmentation using energy function minimisation, the 

concept of an energy function is described in detail in Section 2.1.1. 

 

2.1.1 Energy Function 

 

An energy function, or cost function, is a mathematical functional that assigns a cost (energy) to 

a curve. This energy is defined based on characteristics of the curve such as its distance to 

another curve or some morphological property of the curve. By minimising the energy function, 

the user will be able to find an input that is similar to a predefined curve, with defined 

morphological properties.  

The energy function minimisation is performed iteratively while the function moves towards an 

optimal solution. The energy could be defined on the function itself, which is referred to as 

active contours. In others cases, instead of defining the energy over the function, it is defined on 

a signed distance function from the original function. The zero level set of the optimised 

distance function will be an optimal solution. Active contours and the benefits of level sets are 

discussed in greater detail now.  
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2.1.2 Active contours and level sets 

 

The active contour model or “snakes” is a framework for extracting objects from possibly noisy 

2D images [24]. This framework attempts to minimise an energy associated with the current 

contour as a sum of an internal and external energy such that: 

i. The external energy is minimal when the snake is at the object boundary position 

ii. The internal energy is minimal when the contour has a shape that is ‘similar’ or ‘close’ 

to the shape of the sought object.  

In order to guarantee the stability of contour evolution, mechanisms are used to avoid overlap of 

control points, which also enables the splitting and remerging of contours during evolution [25].  

There are other methods that evolve implicitly represented contours, such as level set methods 

(Fig. 2.1). In these methods, a contour is propagated by evolving a time-dependent embedding 

function !!(!, !) according to an appropriate speed function, and the zero level set of ! 

represents the contour. 

 

Fig 2.1- Level Set Simulation. ! is represented as the red volume [25] 

Knowing the initial value of ! at t = 0 and its speed of motion over time, it is possible to know 

! !, !  at any time by evolving the initial curve over time. The zero level set will then define 

the estimated object boundary. Since the object boundary gradient is a parameter in defining the 
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speed function, other approaches are required for objects whose boundaries are not necessarily 

defined by their gradient.  

Chan et.al [15] propose a level set approach for detecting object boundaries without using the 

image gradient. As this method is the basis of the novel interactive segmentation approach 

presented in Chapter 4, a more detailed discussion is postponed to that chapter.  

 

 

2.1.3 Collaboration by providing prior information 

 

Prior information about object shape or intensity distribution can be used in the energy function 

in the form of the posterior distribution computed from a prior. Energy minimisation usually 

leads to selecting an image segmentation that has higher posterior. These approaches to image 

segmentation are usually referred to as Bayesian methods for image segmentation [26].  

In images where objects and background may exhibit very similar intensity characteristics, 

higher-level prior knowledge about the shape of an expected object can be merged in the 

Bayesian formulation of the image segmentation problem [27]. The use of graph-edge-weights 

that contain information about a level-set function of a template, in addition to the usual 

boundary and region terms, is another Bayesian approach for image segmentation using prior 

shape [28]. This allows the edges of the graph to convey information about the image as well as 

the prior shape knowledge.   

 

2.1.4 Interactive image segmentation 

 

The topic of interactive image segmentation has received considerable attention in the computer 

vision community [29]. In interactive image segmentation the user is required to specify the 

object of interest. Usually the selection is limited to a part of an object (for e.g. a small section 

of lung in MRI image).  
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A B c d e 

Fig 2.2- Different methods of interaction. a) White brush on foreground b) selecting pixels on object boundary c) 

selecting pixels on object boundary and background d) drawing stripes in background and foreground e) rectangle 

around the object  

The user can select a series of seed points inside the object, roughly trace the object boundary 

with a mouse or draw stripes in the foreground and background (Fig. 2.2).  

Boykov and Jolly [30] proposed a very effective graph cut approach for interactive image 

segmentation. An initial trimap ! = !! ,!! ,!!  partitions the image into three sets: !!  is the 

set of foreground pixels selected by the user, !! the set of background pixels also selected by 

the user, and !! the set of unmarked pixels. It is assumed that the intensity distributions of the 

foreground and background are either known prior or assembled directly from labeled pixels in 

the respective trimap. For every pixel, an energy function that evaluates the fit of the pixel to 

each data model is computed. This energy function encourages coherence in regions of similar 

intensities. The graph cut algorithm adjusts the current segmentation efficiently without 

recomputing the whole solution from scratch when new seeds are incorporated into the system. 

GrabCut [17] is the first modification of the basic graphcut segmentation model. In this 

approach the user defines a bounding box around the object to be segmented. The intensity 

distributions of the target object and the background are estimated using a Gaussian mixture 

model. This is used to construct a Markov random field over the pixel labels, with an energy 

function with internal energy that prefers connected regions to have the same label. Using a 

graph cut approach to minimise the function, the pixel labels are estimated.  This estimate is 

expected to be more accurate than the original, and the two-step procedure is repeated until 

convergence. The absence of strong boundaries and the presence of a number of objects with 

similar intensity profile in some medical images cause this method to fail. Incorporation of 
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shape priors using a level-set template within this framework may minimise these problems 

[31].   

Another type of interactive segmentation method works by selecting seeds inside the object of 

interest, and no prior information about the foreground and background is assumed [10]. Using 

the user selected seeds, a new energy term is incorporated in the energy function. This energy 

term prefers that selected seeds are part of the final object segmentation. Another approach to 

interactive segmentation is through belief propagation [32], and starts when the user selects 

seeds inside the object of interest. The method iteratively estimates the belief of one labeled 

pixel about other pixels having the same label. Belief integration is then used to calculate the 

pixel label. 

Random walk is another method for performing multi-label, interactive image segmentation 

[16]. Given a small number of pixels with user-defined labels, the algorithm starts by 

determining the probability that a random walker starting at each unlabeled pixel will reach one 

of the pre-labeled pixels. By assigning each unlabeled pixel to the label that has the greatest 

probability, high-quality image segmentation is obtained.  

To improve the efficiency of this approach the use of image priors to find disconnected pieces 

of an object was proposed [51,52], while removing the necessity of user interaction. 

In all the above discussed methods, interactive segmentation is achieved by creating a single 

measurement from user input and aggregating it in an energy function. It is logical at this stage 

to consider how the methods will perform, if instead of extracting a single feature based on user 

input, multiple features are extracted and integrated in the energy function. As will be 

demonstrated in Chapter 4, more features from user input and energy functions based on these 

new features do have an impact on the accuracy of the interactive method. This improvement 

specially is significant, where the decrease in the number of pixels that are incorrectly classified 

as object is considered. The proposed approach in Chapter 4 is a seeded approach that is a 

combination of an iterative and a non-iterative part. The position of the proposed approach 

among other interactive segmentation is demonstrated in Fig. 2.3. 
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Fig 2.3- Position of the proposed approach among other interactive image segmentation method 

 

Segmentation results are usually followed by morphological property estimation. Possible 

morphological properties estimated at this stage include but are not limited to volume, length, 

orientation and centre of mass. In large object segmentation (not microorganisms), a deviation 

of a few pixels does not have a major effect on the conclusions made based on segmentation 

results, which is not the case for microorganisms. The challenges involved in segmenting 

microorganisms and the solutions available are discussed in the next section.  

 

2.2 Interactive High precision measurement 

The segmentation methods discussed so far are not applicable to microorganism (bacterium) 

segmentation. This is due to the fact that a good bacterium segmentation method should be able 

to detect the bacterium boundary with 1/10 of pixel accuracy, which is a not possible using 

normal segmentation method. The 1/10 of pixel width in a high-resolution image corresponds to 

the bacteria growth rate in the experimental laboratory. The major cause of error in current 
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segmentation methods is the blurred effect induced by the point-spread function of microscopic 

devices.  

2.2.1 Causes of Blurring effect  

For any imaging system, the signal-to-noise ratio (SNR) characterises the quality of 

measurement and determines the ultimate performance of the system. Low SNR is the main 

reason for failure of tracking and segmentation algorithms [49]. As Fig. 2.4 shows, low SNR 

makes it difficult even for a human observer to detect particles. 

 

 

Fig 2.4- Images of the same particles shown with different SNR [49] 

Methods that increase SNR can improve the performance of segmentation methods. Gaussian 

smoothing [95], isotropic undecimated wavelet denoising [96], patch based denoising [97] and 

variance stabilising techniques [98] have been used for improving the SNR in microscopic 

images. Experimental results show that good noise reduction techniques such as patch-based 

filtering can improve detector performance [49]. This intuitive result is due to the fact that non-

linear patch-based denoising increases SNR much better that linear convolution-based filter 

such as Gaussian smoothing [49].  

When dealing with biomedical images, the source of noise is somewhat different from that in 

digital sensors designed to image large objects. In phase contrast microscopy, several factors 

complicate quantitative data analysis. In practice, careful design of experiments, the imaging 

system and selection of appropriate tools for analysis can greatly reduce the influence of some 
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factors. Nonetheless, microscopy also has fundamental limitations that cannot be easily 

overcome and, in real experiments biologists inevitably face these barriers.  

One of them is the microscope point-spread function (PSF), which is a diffraction pattern of 

light emitted from an infinitely small point source in the specimen and transmitted to the image 

plane through a high numerical aperture [40]. The image of the diffraction pattern can be 

represented as an intensity distribution as shown in Figs. 2.5 and 2.6. The bright central portion 

of Fig. 2.5 corresponds to intensity peaks in the distribution. 

The PSF is intuitively defined as the response of an imaging system to the light emitted by a 

point source. In case of multiple emitters in very close proximity (such as bacteria), more 

complex intensity profiles will be created, making it difficult to decide which pixels in the 

image belong to the bacteria. In practice, a Gaussian approximation of the PSF is used, which is 

favoured for computational reasons but is nevertheless almost as accurate as more complicated 

PSF models [49]. The approximation (normalised to unit magnitude at the origin) is given by 

 
  Fig 2.5- Point Spread Function [40] 
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For typical microscope setups, sophisticated post-acquisition computational analysis methods 

such as deconvolution algorithms and super-resolution methods are used [49], which necessarily 

use prior knowledge about the optical system and/or the image formation process. 

A number of advanced deconvolution methods are available for removing the effect of PSF in 

microscopy imaging [80,82].  Most reports on tracking of subcellular structures do not use 

deconvolution, and much higher accuracy and precision have been reported using super-

resolution methods [79,81,83]. 

On the other hand, the deconvolution and super-resolution approaches for image enhancement 

are not completely independent. For instance, fitting a model of the PSF to some degree is in 

fact deconvolution carried out implicitly. Although other factors are involved that complicate 

the data analysis, in the approach presented here the PSF is assumed to be the only source of 

blurriness encountered on measuring the dimensions of subcellular structures, especially 

bacteria.  

 

   Fig 2.6- The effect of PSF on real object image [50] 

2.2.2 High precision measurement method  

Nanometer length estimation of bacteria has not been done before, but other research on 

nanometer estimation of microtubules size, which is another tiny object of interest to 

researchers, may be helpful.  
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Microtubules (MT) are filamentous structures that are responsible for various cell movements 

such as mitosis, polarisation and axon extension (see Fig. 2.7 a). Demchouk et al. [4] proposed 

an approach to estimate the MT tip, which is the location of a pixel at the end of the MT 

backbone. The method starts by defining a region of interest that contains at least one 

microtubule tip. The white box (Fig. 2.7 (a)) is a region of interest (ROI) containing at least one 

MT tip. The x and y axes represent the camera coordinates. An MT tip is chosen within the ROI. 

The user defines the MT tip by two mouse clicks (red circles in Fig. 2.7 (b)). 

The new coordinate system of the ROI are x′ and y′ (Fig. 2.7 (b)). Lines drawn parallel to the  

vertical axis (y′) at a given position on the horizontal axis will have different intensities in 

different positions (Fig. 2.7 (c)). For a single line, the intensity distribution will be similar to Fig 

2.7 (d). The mean of the Gaussian (red line) fit to the line scans identifies the backbone of the 

MT (red points) (Fig. 2.7 (c)).  

In the next stage the line x″ is defined, which is the best-fit line through MT backbone 

coordinates (see Fig. 2.7 (e)). This direction defines the MT tip axis  (blue line). Then the 

intensity of the pixel along the MT tip axis is estimated. A Gaussian survival function is fitted to 

the profile (blue line Fig. 2.7 (f)). Intuitively the inflection point of the Gaussian survival 

function, which is the mean of this function, is used to determine the MT tip location. 

A spline interpolation of a microtubule that localises the centrelines and tips of the curved 

filaments with nanometer precision has been described [74]. The idea is based on the 

observation made about the PSF Gaussian blurring effect. To measure the length of the 

microorganism, the image is first segmented to a series of patches (Fig. 2.8 (a)). Each blurred 

patch is then approximated by a numerical model similar to those shown in Fig. 2.8 (b). First 

selecting the appropriate model and then optimising the model parameters using an iterative  
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Fig 2.7- Super-resolution approach to estimating the end of MT backbone [4] 

optimisation method achieves the approximation. The interpolation of the optimised model is 

then used to estimate the length. 

Among the approaches for removing the blurring effect and estimating object morphology with 

higher accuracy, the proposed approach in Chapter 3, relies on concurrent estimation of the 

morphological properties of bacterium and the microscopic PSF properties.  
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(a) 

 

 

(b) 

Fig 2.8- a) Microtubule interpolation b) Gaussian function to approximate patches of microtubules [74] 

2.3 Human computer Interaction 

As discussed in Section 2.1, user interaction has been used in developing image-processing 

techniques. In some cases it is used to improve the accuracy of the method or as the trigger to 

start an application. The interfaces used to perform the interactions have been evolving during 

the last fifty years, and more advanced forms of human-computer interaction (HCI) have been 

proposed recently.  
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The study of the usability of these new interfaces for special applications is the subject of a vast 

amount of research. In this section, a history of computer interfaces and the challenges of new 

interfaces from the usability point of view are discussed. 

2.3.1 HCI history 

User inputs in the form of an approximate boundary of a bacterium or selected seeds inside the 

object of interest can be utilised in image segmentation. Humans can interact with computers in 

many ways and the interface between them is crucial for facilitating this interaction.  Various 

HCI technologies, which are related to the computer side of human computer interaction [47], 

will be discussed now. The early stages of HCI technology included interfaces that can directly 

manipulate graphical objects [47]. These technologies usually can be classified as touch-based 

interfaces. Being close to the system for interaction is the common characteristic shared by all 

touch-based systems. The mouse was developed at Stanford Research Laboratory to replace old 

interfaces.  

The next generation of HCI technology started introducing gesture recognition interfaces. A 

“gesture” is a stroke or mark made with a stylus that causes an operation to be invoked rather 

than data to be entered [48].  

Virtual reality (VR) and augmented reality are other forms of interaction that have recently 

found much interest among researchers. VR is a computer-simulated environment that can 

simulate physical presence in a virtual world. It can recreate the sensory experience including 

the visual, sound and touch. While considering a particular technology, VR can be defined as an 

alternative world filled with computer-generated images that respond to human movement and 

can be visited using sophisticated interfaces such as video goggles and fiber-optic data gloves 

[33]. On the other hand if the technology is removed from the definition, VR may be defined as 

a real or simulated environment in which a perceiver experiences telepresence, which is defined 

as the experience of presence in an environment by using a communication medium [33].  
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Another form of interaction is by using the electrical activity along the scalp. By measuring this 

electrical activity using special devices such as electroencephalogram (EEG), it is possible to 

control or react to user requests. A real-time EEG-enabled system may be developed for 

medical applications, e-learning, entertainment and marketing. Modern EEG devices and recent 

advances in signal processing and pattern recognition have made it possible to integrate brain 

state recognition algorithms in HCI. These systems allow the user to input some information 

into the computer system just by “thinking.” Brain states such as stress level, concentration 

level and human emotions can be recognised in real time from EEG [34].  

With the arrival of more sophisticated sensing techniques, one can interact with the digital 

world without touch. A touchless interface can be interacted with, without the necessity of being 

close to the system. Many of these new interfaces rely on a two-stage process for detecting the 

hand or body gesture. The first stage is about creating a depth map by analysing patterns 

produced by laser light. In the second stage, using a machine-learning approach, different body 

parts are recognised using the depth maps. These new mechanisms open up opportunities for 

exploring new experiences and applications in a range of new settings, where touch-based 

interactions alone may neither be possible, desirable nor as engaging [35]. Lightspace, a system 

that combines various depth cameras and projectors, is one of the initial attempts to create a new 

form of touchless interaction. In this system, all projectors and cameras are suspended at a 

central location above the users, leaving the rest of the space open as a user workshop. This 

configuration allows the user to interact with virtual objects projected from the projectors. The 

collaboration between the projectors and the 3D environment that is created by collecting 

images from different depth cameras allows the user to change the positions of virtual objects or 

move them from one surface to another, by changing their posture or moving their hands [106]. 

The touchless interaction concerns are around method and application development. In method 

development, the principal concern is around developing more precise algorithms to detect and 

recognise human actions. The major concerns in application development are to understand the 
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 properties, challenges and social consequences of touchless interactions and to design 

experiences with these instruments in order to achieve value and meaning for humans. As the 

main concern is around the application side of touchless interaction in this thesis, the trends and 

challenges in this area are discussed next. 

 

2.3.2 Touchless Interaction Applications 

 
As discussed in section 2.3.1, touchless interaction is a form of HCI that allows the user to 

control a system without touching any interfaces (see Fig.. 2.9). This type of interaction is 

interesting because safety is a major concern around interactions with medical and biomedical 

images in an operating room or experimental laboratory. In this environment, the user is 

interested in reducing any kind of touch-based interaction, in order to decrease the chance of 

direct exposure. As shown in Fig 2.9, the touchless interaction of a surgeon with a patient’s 

medical image has zero chance of the surgeon being exposed to bacteria. 

Outside the medical and biomedical imaging fields, touchless interaction has found some 

interest among researchers who are interested in applications where touch-based interaction is 

either not possible or not safe. Son et al. [36] suggested a touchless hand control system that can 

assist humans who have difficulties with moving one of their arms the system allows a user to 

drive and control the vehicle with only one hand. 

Fikkert et al. [37] evaluated gesture-based interaction with very large interactive screens, to 

learn which gestures are suited and why. In their experiments, users completing several simple 

puzzle tasks also evaluated the interactions with the interface. Each task consists of finding a 

goal-state that is at a certain orientation and zoom-level in a complex 3D mesh. The user uses a 

glove with a laser pointer for pointing at the object of interest. Computer vision methods are 

used to detect the laser location on the display. Each glove is equipped with two buttons for 

detecting various hand gestures. Based on this research, it was found that gesturing to issue a 
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command is an enjoyable task, but at the same time users experienced some fatigue in the hands 

and arms. The research concludes that easy-to-learn and remember gestures are preferred.  

 

 

Fig 2.9- Touchless interaction with medical image using a Kinect sensing device [35] 

Murthy et al. [38] proposed a touchless measurement of the breathing function. The method is 

based on developing a statistical model of dynamic thermal data captured through an infrared 

imaging system. The experimental results show that touchless measurement conforms to a 

ground truth rate at 92%. Yuksel et al. [39] introduces another form of interaction that changes 

the magnetic field around a handheld device, which is achieved by a magnetic sensor embedded 

in the new generation of mobile phones. The change in magnetic field is detected using a simple 

small magnetic cylinder. In this form of interaction, the system can recognise various patterns of 

hand movement by sampling the momentary status of the field during a trial. Based on this 

study, the user can make a gesture in the air similar to their signature that could be used for 

identification.  In this case, the user can save the previous air signature to portable devices and 

access is only granted when the gesture pattern in the air is matched with the saved signature.  
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One important observation from these studies is that the complexity of data that users are 

interacting with, the number of objects, and the time to finish one task in touchless interaction is 

limited. The main question addressed in this thesis is how the user reacts to this new interaction 

technology when data complexity and the time to finish a task are increased.  

 

2.3.3 Augmented reality 

 

The limitations of touchless or touch-based unimodal interaction, including limitations on user 

mobility and lack of ability to interact with real objects, are the major reason for introducing 

another form of interaction. An augmented reality (AR) system tries to enhance a user’s 

perception of and interaction with the real world by supplementing the real world with virtual 

objects that appear to coexist in the same space as the real world [56,57]. The difference 

between VR and AR is that in the former the surrounding environment is virtual, while in AR 

the surrounding environment is real, as demonstrated in Fig. 2.10 [56]. 

 

Fig 2.10- Mixed reality environment [56] 

For example Fig 2.11 shows an AR application for maintenance of an airplane fuel filter [41]. 

Many different solutions for AR are already available and simple handheld devices such as 

smartphones integrate state-of-the-art sensors such as compass, GPS, gyroscope or cameras to 

create an AR experience for entertainment or navigation [41]. The most successful AR 

applications are in the fields of entertainment, maintenance, manufacturing and medical care. 

All AR solutions have some specific common needs and, therefore, some specific hardware: 

one or more cameras and tracking hardware to perceive the real world, a processing unit to 
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analyse collected data and a display to show information to the user. 

 

 

Fig 2.11- The virtual engine is displayed on the surface [41] 

 

First of all an AR system must be aware of the environment that it has to augment, so cameras 

are used to provide images of the real world. Most common AR solutions make use of just one 

camera, but multiple cameras may be used if necessary. Then, in order to match the virtual and 

the real world, object movements in both worlds must be tracked. While in VR everything is 

artificially created so that object positions are well-defined, in AR the system has to follow 

changes in the real world and then adapt the virtual world to effectively match the reality. For 

this reason, different types of trackers are used: infrared, mechanical, inertial, ultrasound, 

vision-based and hybrid systems. Each type of tracker has different operating conditions and is 

suited for different kinds of tasks. The goal of tracking is to provide high accuracy, low latency, 

low jitter and robustness. After these steps, an analysis of all the information collected from 

cameras and trackers is needed: the data is processed and the positions of the objects in the real 

world are estimated. At this point the AR system is able to correctly superimpose virtual objects 

on real world images, thus offering useful instructions to users. Although AR is promising 

technology, it still suffers from some disadvantages that limit its usability in different 
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applications. One of the main problems is the computational cost of AR applications. They 

could involve necessary computation to find a correspondence between 2D image features and 

their 3D world frame coordinates to calculate the camera pose by projecting the 3D coordinates 

of the features into the observed 2D image coordinates, and minimising the distance to their 

corresponding 2D features [57]. The number of polygons that can be drawn on a single frame is 

also limited.  

Among all AR needs, tracking is the most studied subject, as it has great impact on displaying 

an artificial object at the right position. This means that although the user might change the field 

of view, the object should still be displayed at the right spot. Since tracking is an essential part 

of success of every AR interface, an overview of tracking methods is presented next. 

2.3.3.1 Tracking Methods  

Tracking is a major challenge in every AR application [57]. Different researchers have 

developed different approaches for tracking the user point of view. Lee et al. [42] proposed a 

real-time system architecture that combines two types of feature tracking methods. Image 

features are detected and then tracked frame by frame by computing the optical flow. In order to 

achieve real-time performance, multiple operations are processed in a multi-threaded manner 

for capturing a video frame, tracking features using optical flow, detecting distinctive invariant 

features and rendering an output frame. In their method [42], SIFT is applied and key points are 

extracted from a captured video frame. Given a new captured video frame, newly detected SIFT 

features are matched to features of a reference frame. The point correspondence between the 

features in the captured frame and the reference frame are used for estimating the camera pose. 

To achieve real-time capability in their application, Lee et al. utilise a multi-threaded system to 

create a parallel application [42]. This design is either not yet applicable, or there is no access to 

this capability on handheld devices. 

In another application [43] a Kanade-Lucas-Tomasi feature tracking method was used for 

camera registration and tracking. The images were acquired in such a way that the camera is 
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always perpendicular to the scene. To make the application real-time, a 2.4GHZ Intel® Core™2 

Quad was used which is more powerful that the current processing power in normal handheld 

devices. A fast recognition method that detects the known parts of the scene and registers the 

camera with respect to it has been presented [44]. In this approach, a database of key feature 

points is constructed and a machine learning method is used to define a function for matching 

between the camera pose and each key feature. Every new set of key features then can be used 

to estimate the camera pose. It is not clear whether this method has real-time capability on 

handheld devices. 

Another method [45] first calculates the correspondences between frames using fixed region 

tracking, and then estimates the motion parameters on projective transformation following the 

homography of the tracked region. To achieve illumination insensitive tracking, the illumination 

parameters are solved jointly with motion parameters in each step. Based on the perspective 

motion parameters of the tracked region, 3D registration and the camera’s pose and position can 

be calculated with calibrated intrinsic parameters. This method has been implemented to run on 

a common workstation (Pentium 4 3.0 GHz CPU) in real time. In another approach [46] a real-

time AR system on standard workstations was developed by tracking planar local image 

patches, and bringing them into complete correspondence, so then a virtual texture can directly 

be added to them.  

Schall et al. [64] concentrates on tracking features for localising a mobile computer using an 

online boosting approach. The core of this tracker is an online learning algorithm, which 

updates the tracker as new data become available. In this method, a detector extracts the features 

from the whole image. It is assumed that the object region is given. When tracking proceeds, the 

region is propagated automatically. Feature descriptors are classified to detect the objects. In 

order to detect the objects in the following frame, a set of key points is extracted. Then the class 

of key points is computed by finding the best possible match.  The Ransac algorithm [77] is 

used to remove possible outliers. The subset of correct matches is verified by using the 

homography. For every classified object the corresponding patch in the current frame is used for 
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making a positive update of the classifier. For learning and updating the key point descriptors, 

on-line boosting is used for feature selection. The experiment shows that tracking can be 

performed at about 5 frames per second on an ultra-mobile PC (Intel Core Solo 1.1 GHZ).  

In all solutions for tracking, features have been used. Features are object characteristics that are 

used to distinguish an object from other objects. In image processing, feature extraction is about 

detecting features that are intended to be informative and non-redundant, and facilitate future 

matching steps. Since features are the core of every tracking method including the method 

presented in Chapter 5, a short survey of feature detection and description is given in section 

2.3.3.2. 

It is also necessary to mention that real-time capability was achieved in every instance by 

performing the processing on a powerful CPU. This processing power is not yet available in 

portable device. 

2.3.3.2 Feature Detection and Feature Description 

In image processing, features are defined as interesting “parts” of an image. Features are used as 

a starting point for many computer vision algorithms such as image matching or object 

detection. Consequently, the desirable property for a feature detector is repeatability: whether or 

not the same feature will be detected in two or more different images of the same scene. 

Image features can be classified into three categories: regions, special segments and interest 

points [84]. Interest points such as corners (Fig. 2.12) are usually faster to detect in images and 

more suitable for real-time applications. Scale-invariant feature transform (SIFT) [75], Speeded 

Up Robust Features (SURF) [74] and Harris corner detector [85] have been used widely in the 

literature to detect features but heavy mathematical computation involved in these methods may 

slow down an application significantly. SCARF [69] and ORB [72] are recent attempts to 

improve the speed of feature detection. 
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Fig 2.12- Image features [71] 

 

Once features have been detected, a local image patch around the feature can be extracted.  

Feature descriptors are used to describe the image structure in the neighbourhood of a feature 

point. Using the descriptors (Fig. 2.13), feature points in an image can be matched with features 

in other images. This can only be achieved if the descriptor is robust against any image 

transformation. The feature descriptors can be compared using various vector similarity 

methods. Similar vectors may represent the same pixel in a single image, taken from different 

points of view. SIFT, SURF and ORB are among feature descriptor methods that are rotation 

and scale invariant. Other feature descriptors such as BRIEF [73] and Daisy [87] are designed to 

be fast by sacrificing the rotation and scale-invariant properties. In the latter cases it is assumed 

that the camera has not undergone any rotation and the images are at the same scale. The study 

of the usability and tracking accuracy of an AR application in a really dense environment is a 

major concern addressed in this thesis.  

2.4 Summary 

A brief introduction to the family of segmentation methods based on contour evolution has been 

presented. Human collaboration techniques that can overcome the limitation of the automatic  
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segmentation methods were discussed. This collaboration may be performed by providing prior 

information about the object shape or intensity distribution, or by specifying the object of 

interest. In the latter approach, the user can select seeds inside the object, roughly tracing the 

object boundary with a mouse or drawing stripes in the background and foreground. The 

contour evolution approach allows users to optimise various energy functions that contribute 

collaborative information for refining the segmentation results. 

 

 

Fig 2.13- Feature descriptor generation based on neighbourhood properties of the feature point [71] 

 

In the latter sections, the failure of general segmentation approaches in segmenting tiny objects 

like bacteria was discussed. The blurring effect of microscopic devices can create a complex 

intensity profile, which makes it difficult to decide which pixels in the image belong to the 

objects. The needs of microscopic image segmentation and the conditions caused by the PSF 

demand newer forms of interactive segmentation approaches that can model intensity variation 

for a better approximation of object boundaries.  

A general overview of different HCI methods alongside some of their usability concerns was 

discussed. The trends and challenges of touchless interaction and AR as the latest form of 

interfaces were also discussed.  
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Chapter 3 

An Interactive Approach for High 
Precision Estimation of Bacteria 
Dimensions1 
 
High precision estimation methods go beyond usual image segmentation for estimating the 

dimensions of tiny particles. The standard segmentation algorithm classifies a pixel as either 

background or foreground, therefore the object dimensions determined by these methods can 

achieve at most one-pixel accuracy. In a high-resolution microscopic image, where the growth 

rate of bacteria may be less than 1/10 of a pixel width, more accurate estimation of object 

dimensions is expected. As discussed in Chapter 2, for measuring tiny object dimensions in 

images, novel methods that infer object size by analysing the intensity variation around the 

object boundary or the object surface are necessary.  

In this chapter, the necessity for high precision estimation of dimensions of tiny objects like 

bacteria will be discussed in section 3.1. Then a novel approach for estimating bacterium 

dimensions using a model-fitting approach is presented in section 3.2, where model fitting is 

performed by minimising a cost function. In section 3.3, cost function minimisation is discussed 

in more detail. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!Parts of this chapter were presented in: Hosseini, M.; Sowmya, A. ; Vallotton, P. ; Bednarz, T., “High 
Precision Localization of Bacterium and Scientific Visualization”,  ICCVW, 210-213 [53] 
!
!
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In section 3.4, experimental results and evaluation of the new approach to estimating bacterium 

dimensions in comparison with general segmentation approaches is studied. In section 3.5, a 

summary of the chapter is presented.  

 

3.1 Bacteria and Bacterial Biofilms 

 

As previously mentioned, bacteria are single cell organisms without any membrane. Typically a 

few micrometers in length, bacteria have a wide range of shapes such as rods, spirals and 

spheres. Bacteria can reproduce simply and rapidly by doubling their contents and splitting in 

two. Just one bacterium dividing every twenty minutes can produce 5000 billion billion bacteria 

in one day. While the majority of bacteria in the human body are countered by the immune 

system, there are a few that are pathogenic and can cause disease in the body of their host. 

Biofilms are bacterial colonies that are attached to a surface. The formation of biofilms begins 

with the attachment of free-floating bacteria to a surface. If the colonies are not immediately 

separated from the surface, they can anchor themselves more permanently using cell adhesion 

molecules. This is the reason for their ability to resist new drugs and also antibiotics. 

As previously mentioned, active expansion of bacterial biofilms is important in the spread of 

infection along implanted medical devices [1] and waterborne, airborne, foodborne and 

household illness. The expansion occurs by bacteria travelling over surfaces using a tail like 

appendage, which is called the flagellum. The flagella are used for swimming through liquids, 

also called bacterial gliding [2]. Bacteria with flagella have two different modes of movement. 

When flagella rotate clockwise they move forward, but if they rotate counterclockwise they start 

to tumble [2].  

Another form of bacterial translocation over surfaces is called twitching motility. The motility 

occurs by expansion, tethering, and then retraction of “pilis” which are thread-like structures 
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attached to the bacterial membrane [3], operating in a manner similar to a grappling hook (Fig 

3.1). When the external ends of the pili adhere to a solid surface or to other bacteria, the bacteria 

are pulled forward.  

 It has been observed that bacteria can move differently depending on whether they are close to 

the surface or moving through fluid [4]. Bacterial chemical signaling, the fluid molecular 

Brownian motion and also bacteria flagella rotation can affect the pattern of movement.  

 

Fig 3.1- A single bacterium [54] 

When observed under natural conditions, bacterial cells in a dense population are very difficult 

to distinguish from each other as they tend to aggregate and are multi-layered [94]. Observing 

bacteria using traditional methods and characterising the bacteria are daunting tasks. In the case 

of tracking in a movie with more than 1000 frames, assignment of bacteria in different frames 

becomes part of the problem. As evidence shows, a bacterium movement between two different 

frames does not follow the same pattern, therefore simple traditional methods such as nearest 
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neighbourhood are not suitable for tracking bacteria. 

Bacterial shape contributes a measure of survival value in the face of three primary selective 

pressures: nutrient acquisition, cell division, and predators [4]. Pseudomonas aeruginosa, a rod-

shaped bacterium of interest, can react to nutrient availability and predator pressure by adapting 

its length (Fig. 3.2). Even a 0.01% increase in the growth rate of bacteria can impart a fitness 

advantage of 10% compared to its unaltered competitors [4]. 

 

Fig 3.2- Length adaptation based on external forces [4] 

The growth rate of bacteria as mentioned before in the experimental laboratory may be less than 

1/10 of a pixel width in high-resolution images, which is not detectable by normal segmentation 

methods. In analysing the effect of new drugs on bacteria, nanometer scale measurement is 

essential. As far as is known, bacterial length measurement has been made manually based on 

visual inspection of microscope movies, which cannot reach the expected level of accuracy. A 

new algorithm for estimating the variable lengths of bacteria in a biofilm with nanometer 

accuracy is the first step towards understanding bacterial morphology. 

An accurate estimation of bacterial length can be used to locate possible breakpoints in future 

mitosis. This has great impact on improving the accuracy of bacteria tracking, which is used in 

biofilm morphological analysis.  

 

3.2 Bacteria morphology 

As discussed in section 2.2.1, the effect of microscopic device PSF creates blurry bacterial 

biofilm images. The intensity of a pixel in a blurry image is the sum of all the intensities of 
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neighbourhood pixels weighted using a Gaussian Normal distribution. This will cause methods 

relying on image intensity for segmentation to overestimate the bacterium dimensions. In this 

situation removing the blurring effect will result in a more accurate estimation of bacterium 

dimensions. Instead of following the general approach of removing the blurring effect of PSF to 

estimate the bacterium dimensions, in this work a novel approach based on creating a  

bacterium model is presented. If the model is realistic, then it can be used to estimate the 

dimensions and orientation of the bacterium. In reality, as there is no access to the bacterium, in 

this approach the blurred bacterium model is evaluated against the blurred bacterium image. 

Evaluation is based on the definition of a cost function that penalises mismatched intensity 

between corresponding pixels in the blurred model and bacterium image. By minimising the 

cost function over the model parameters, the optimised bacterium model can be used as a good 

approximation of the bacterium. In this case, the dimensions and orientation of the bacterium 

can be estimated from the dimensions and orientation of the bacterium model itself. The 

selection of the model and its parameters will be discussed in section 3.2.1. In section 3.2.2 the 

approach for estimating the initial values of the parameters is presented. In section 3.2.3, a more 

descriptive definition of the parameters and how PSF effect is simulated in the experiments will 

be presented. In section 3.2.4, the cost function definition and its optimisation are discussed. It 

is also important to mention that PSF variance is assumed to be unknown and will be estimated 

in this approach. 

 

3.2.1 SELECTING THE MODEL 

Based on the shapes of bacteria in biomedical images, two suitable models that describe the 

bacterium shape are a simple line or a rectangle, as their representations do not require many 

parameters. These two models can be represented as follows: 

! !, ! = ! −ℎ,!!!!! ≤ ! ≤ !!, ! = !!" + !
0, !"ℎ!"#$%!!!!!!!!!!!!!!!!!!!!!  (3.1) 



! 45!

! !, ! = ! −ℎ,!!!!! ≤ ! ≤ !!, !! ≤ ! ≤ !!
0, !"ℎ!"#$%!!!!!!!!!!!!!!!!!!!!!  (3.2) 

where h is a fixed, nonzero integer. Initial experiments with these two models showed that they 

are not flexible enough to adjust to different bacterium shapes. As shown in Fig. 3.3, a straight 

line of only one pixel width is not wide enough compared to the bacterium image. At the same 

time, the simple rectangular model does not have sufficient flexibility to estimate the bacterium 

shape, especially for one whose boundary curvature is not fixed. 

 

 

 

Fig 3.3- The initial assumption about bacterium shape was not accurate since the line does not have the 

necessary width and a rectangle does not have the necessary flexibility 

To overcome these limitations, a more flexible model is defined. The new model as shown in 

Fig. 3.4 is a series of lines of variable length and orientation that are connected piecewise. 

In Fig. 3.4, for a 4-line model, the horizontal red line shows the horizon and !!, !!, !!, !! are the 

line orientations. In this model the length and orientation of each line is not known. To make 
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sure that this new model can approximate every possible bacterium, the connected lines are 

replaced with connected rectangles as shown in Fig. 3.5. 

 

Fig 3.4-  Selected Model for bacterium shape 

 

Fig 3.5- Selected model when lines are replaced with rectangles 
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Similar to lines, the length and orientation of each rectangle are variable. Each rectangle width 

is also a variable that can be estimated by minimising a least square error energy function. 

Before applying a minimisation approach to the least square error, a major question should be 

answered. The question is how to calculate the number of rectangles in the model, so that it can, 

with high precision, estimate the real bacterium dimensions. In the next section, a method for 

determining the number of rectangles is presented. 

 

3.2.2 Estimating number of rectangles 

To estimate the number of rectangles in the model, the approximate boundary of the bacterium 

in the biofilm image is first estimated using a general segmentation method [7]. This boundary 

will be used in defining the minimisation problem constraints. 

In the next stage, the skeleton line of the bacterium is estimated. The estimation is performed by 

applying erosion and opening operations from mathematical morphology. Using an interactive 

interface, the user then uses the skeleton line to define the number of rectangles in the model. 

For example for the skeleton line in Fig. 3.7, the user can detect four lines that compose the 

skeleton line (Fig. 3.8). These four lines then will be used to define four rectangles of variable 

widths. It is necessary to mention that the line lengths are not fixed, and an optimal length will 

be calculated during optimisation.  

  

Fig 3.6- The bacterium Boundary Fig 3.7- Skeleton line 
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Fig 3.8- Skeleton line approximation 

After optimisation, the number of lines that will be used to estimate the real bacterium 

morphology properties may be less than four. 

 

3.2.3 Parameters definition and PSF effect simulation 

For every line, based on the coordinates of the first and last points, a first-degree polynomial is 

defined. The polynomial is then used to create a rectangle of variable width. Let !!, !!… !! be 

first degree polynomials: 

!!(!) = tan !! ! + !!
!!(!) = tan !! ! + !!

…
!!(!) = tan !! ! + !!

 (3.3) 

where !!, !!… !!are first-degree polynomial orientations. Let the X and Y coordinates of the 

endpoints be !!, !!… !! and !!, !!… !!. It is assumed that the lines are connected, so that   the 

following relationships hold between !!, !!… !!:   

!! = !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! − tan !!!!
!! = !!!!!!!!!!!!! − !!(tan !! − tan !!)
!! = !!!!!!!!!!!!! − !!(tan !! − tan !!)

…
!! = !!!!! − !!(tan !! − tan !!!!)

 

 

                    (3.4) 
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Fig 3.9- Relationship between connected rectangles and line intercepts 

Fig. 3.9 can be use to clarify equation (3.4) to derive the relationship between line intercepts if it 

is assumed that rectangles are connected. 

Based on equations (3.4), it is obvious that by knowing !!, !!… !! and !!, all other !! , ! ∈

2, , , !  can be calculated.  

For every rectangle, define !! !, ! ∈ {1,2,… , !} as the set of points inside the rectangle. !! can be 

defined based on coordinates of corners. Assuming that rectangles have width !! the corner 

coordinates of the !!! rectangle can be defined as follows: 

Top$Left$Corner =! cos !! sin !!
− sin !! cos !!

!!
!! + !!

!
 (3.5) 

Bottom$Left$Corner =! cos !! sin !!
− sin !! cos !!

!!
!! − !!

!
 (3.6) 

Top$right$Corner =! cos !! sin !!
− sin !! cos !!

!!!!
!! + !!

!
 (3.7) 
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Bottom$Left$Corner = 
cos !! sin !!
− sin !! cos !!

!!!!
!! − !!

!
 (3.8) 

These definitions are illustrated in Fig. 3.10.  

 

Fig 3.10- Integral area of a single parallelogram 

Based on equations for lines, the relationships between !!, !!… !! and the definitions of 

!!,!!…!!, the proposed model ! !, ! !!,!!…!!,!!,!!,!!…!!,!!,!!…!!,! , which is a combination 

of n rectangles, is defined as follows: 

!(!, !)(!!,!!…!!,!!,!!,!!…!!,!!,!!…!!,!) =
ℎ, !, !! ∈ !!
ℎ, !, !! ∈ !!

…
ℎ, !, !! ∈ !!

 (3.9) 

 

In this model ℎ is the colour intensity, which is assumed to be fixed over all rectangles.  

In the next stage, to estimate the values of parameters !!,… !!, !!, !!, !!… !!,!!,!!…!!, ℎ  

using an optimisation method, the blurring effect of the PSF (point spread function) is applied 
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on the model as shown in Equation 3.10. 

! !!,!!…!!,!!,!!,!!…!!,!!,!!…!!,! !, !

= ! !, ! !"#! ! − !, ! − ! !"!#!!!! 
(3.10) 

 

where ! !, ! is the blurred model. The PSF of the microscopic device is unknown, therefore to 

use ! !, !  as an estimate of the blurred bacterium image, it is assumed that the microscopic 

device PSF follows a normal distribution with zero mean and standard deviation !: 

!"#! !, ! = 1
2!!! !

!!!
!
!

!
! !
!

!

 
(3.11) 

Since ! is unknown, ! !, !  also depends on the value !.  

The right hand side of definition (3.10) can be expanded as follows: 

! !, !
!!

!!!

!!!
!"#! ! − !, ! − ! !!"!# =! 

! !, !
!!

!!!

!!!

1
2!!! !

!!!
!!!
!

!
! !!!

!
!

!!"!#! (3.12) 

 

by performing the following substitution  

!
! = cos !! −sin !!

sin !! cos !!
!
! + 0

!!  
(3.13) 

 

Definition (3.12) can be rewritten as follows: 

1
2!!! !

!!!
!!!
!

!
! !!!

!
!

!!
!

!!!
!

!"!#

!!!!
!"#!!

!!
!"#!!

!!!

!!!
= 
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!!!
2 !"# 1

2!! !
!!
2 − ! − !"#( 1

2!! !
−!!
2 − ! )

!!!

!!!

∗ [!"# 1
2!! !

!!!!
cos !!

− ! − !"# 1
2!! !

!!
cos !!

− ! ] 

(3.14) 

 

In (3.14) ERF denotes the error function and ! = ! cos !! + (! − !!) sin !!  and 

! = −! cos !! + (! − !!) cos !!. In the next section equation 3.14 is used to formulate an 

optimisation problem in order to estimate the values of parameters in the model. 

 

3.2.4 Cost function minimisation 

Because of the complexity of solving the minimisation problem directly, an iterative approach is 

utilised. The Levenberg-Marquardt iterative method [76] is used to solve the least square error 

problem. The primary application of the Levenberg–Marquardt algorithm is in the least squares 

curve fitting problem. Assume a set of data pairs (!! ,!!)  of independent and dependent 

variables, where !! are coordinates of a pixel and !! is the blurred bacteria intensity at that 

point. The parameters ! = !!,… !!, !!, !!,… !!,!!,…!!, ℎ,!  of the model curve !! !!  in  

(3.10) are optimised when the sum of the squares of the deviations 

! ! = !! − !! !!
!

!!
 

(3.15) 

is minimal.  

In this formula, the X-coordinates of the start and end points of each rectangle, its orientation 

and width plus the image intensity and standard deviation of the PSF are to be estimated 

through the minimisation.  
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To start the minimisation, the user should provide an initial guess for the parameter vector β. 

For this problem the initial values of !!, !!,… , !!, !!, !!,… , !!, !! are selected based on the 

lines drawn by the user on the skeleton image using the interactive interface. The initial values 

of !!,!!,… ,!! are the blurred bacterium width in pixels. ! is assumed to have initial value of 

1.  
For every bacterium an optimal combination of parameters is used to define the best fitted 

!(!, !)(!!,!!…!!,!!,!!,!!…!!,!!,!!…!!,!).  

Using the optimal value of parameters and using Fig. 3.9, the following bacterium measures can 

be estimated: 

Bacterium length =! xi+1−xi
cosoi

n
i=1                                                                  (3.16) 

Bacterium width =!!1n win
i=1                                                                      (3.17) 

Bacterium orientation =!tan!! !! !"# !!!!! !"# !!! !!!
!!! (!"# !!!!"# !!!!)

!!!!!!!
       (3.18) 

The bacterium high precision dimensions estimation method is summarised in Algorithm 1. One 

of the applications of the proposed method is to observe the expansion or contraction of the 

bacterium in consecutive frames. By applying this approach and determining the bacterium 

dimension, the scientist will be able to assess the effect of a new drug on the bacterium biofilm. 

In some cases, the frames have to go through a series of image resising due to the limitation of 

the media channel. To guarantee the accuracy of the approach, a more advanced resising must 

be applied. This form of resising preserves visually prominent features and allows the distortion 

of image regions with solid content (such as the bacterium inside the biofilm image), to be 

minimised [107]. 
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3.3 Algorithm Time complexities 

The proposed algorithm, like any other iterative algorithm, will run until no further change is 

possible. At every iteration, with the assumption that the image size is !×!, the algorithm tries 

to minimise the difference between the intensity estimated by the model and the pixel intensities 

in the image. Minimising a cost function using the Levenberg-Marquardt method starts by 

determining the Jacobian of the cost function in every pixel over the set of parameters !. The 

Jacobian estimation is performed by calculating the difference between cost functions when 

parameters are adjusted slightly (! !!∆! !! !
∆!  where ∆! is very small). This operation involves 

!(! ∗!) divisions. The next stage involves solving a linear system in the form Ax=B, where 

the rank of A is !×!. Solving this linear system using backslash method in Matlab, will cost 

!(! ∗ !). This process is followed by updating the values of the parameters, which will 

continue until no further change is possible. Based on the above description, the algorithm time 

complexity in the worse case will be !(! ∗! + !!).  

 

3.4 EXPERIMENTS AND RESULTS 

As discussed in section 3.2, the major contribution of this work is the proposal of a model 

fitting approach for estimating the bacterium dimensions. In Fig. 3.11 the application of the 

proposed method on a single bacterium is visualised. As summarised in Fig 3.11a, the user 

selects lines that define the centreline of a bacterium based on the bacterium skeleton image. 

The selected lines are overlaid on the bacterium image. The initial model is defined based on the 

properties of the selected line (Fig. 3.11c). The final model is a series of connected rectangles 

whose parameters are estimated by minimising the cost function. The final blurred bacterium 

model is shown in Fig 3.11e. It is also necessary to mention that the initial values of the 

parameters have an enormous impact on reaching an optimal value instead of being trapped in 

local minima. This is one of the main reasons why user inputs are critical in selecting the model.  

To evaluate the efficiency of this method, three different experiments were conducted. In the 
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first, the accuracy of the model in simulating a blurred bacterium image is estimated. In this 

approach, the S β  value, where β is an optimal solution of the minimisation algorithm for a 

particular bacterium, is investigated. This investigation is performed over a series of E-Coli 

bacteria inside a biofilm. In the second experiment, to evaluate the efficiency of the method, 

dimensions of a series of artificial bacteria (bacterium image that are produced by blurring 

ellipses with variable dimensions) are estimated. The estimated dimension is then compared 

with results from one of the state-of-the-art approaches in bacterium dimension estimation in 

the literature. In the third experiment, dimensions of Pseudomonas Aeruginosa, a rod shaped 

bacteria, are estimated by using the proposed method and it will be shown that other general 

segmentation approaches fail to consider the blurring effect induced by the PSF in their 

estimation. 

Algorithm 1. 

1. Estimate the bacterium boundary using earlier method  [7] 

2. Create the bacterium skeleton 

3. Extract initial value for !!, !!… !! from user selected lines 

4. Create the bacterium model ! !, !  

5. Initialise !!! parallelogram width and orientation  

6. Initialise microscopic device PSF standard deviation (s) 

7. Calculate the blurred bacterium model!! !, ! = ! !, ! !"#! ! − !, ! − ! !"!#! 

8. Define cost function ! ! = !! − !! !! , !!
!

!!  where !! is the blurred bacterium intensity at !! , !!  

9. Minimise cost function ! ! !using Levenberg-Marquardt iterative method  

10. Use the optimal set of parameters to estimate bacterium measures 3.16, 3.17, 3.18, reproduced below: 

i. Bacterium length =! !!!!!!!
!"#!!

!
!!!  

ii. Bacterium width =!!! w!!!  

iii. Bacterium orientation =!tan!! !! !"#!!!!! !"#!!! !!!
!!! (!"#!!!!"#!!!!)

!!!!!!!
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(i)  Experiment 1 

To estimate the efficacy of the selected model for determining the real bacterium shape, S(�) is 

estimated for 100 bacterial images (Fig. 3.13). In this study, the blurred optimised model 

difference from every blurred bacterium image was computed. The value of the error function 

S(�) for each bacterium in the dataset is shown in Fig 3.12.  As it shows, the selected model 

(series of attached rectangles) is a reasonable fit for the bacterium shape as the optimal square 

error is very small on the data. The average error is around 60, so for an image with 10000 

pixels, the error rate per pixel is around 0.006, and not more that 0.0085. 

 

 

Fig 3.11- The bacterium shape approximation process a) The blurred bacterium image b) lines selected by user on the 

centerline of bacterium c) Initial rectangles d,e) The evolution of the model  
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Fig 3.12- Error rate on sample bacteria 

 

(ii) Experiment 2 

To evaluate the efficiency of the high-precision method, 100 artificial isolated blurred bacterium 

images with variable lengths and orientations were created (Fig. 3.13). Using the proposed 

approach, the bacteria dimensions were estimated and then compared with MicrobeTracker [55] 

results as well as bacterium real sizes. The estimated size is pixel based. MicrobeTracker is a 

software package designed to detect and outline bacterial cells in microscopy images. The 

Microbetracker applies a two-stage approach for cell detection. In the first stage, the program 

separates the bacterium from the background, after which it further detects the cell boundary 

using algorithms based on edge-detection and watershed transform. These methods efficiently 

separate individual bacteria, producing initial guesses for their shapes. The basic cell outlines 

obtained after the first stages are refined during the second stage using a variant of active 

contour models. These methods, already discussed in Chapter 2, describe the shape of an 

individual bacterium with an outline, which is adjusted smoothly by the action of so-called 

image forces until it converges to the form of the actual bacterium in the image. The contour 

also obeys various internal constraints such as smoothness to ensure that the detected object 
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shape is within the range of realistic bacterium shapes. 

As Figs 3.14 and 3.15 reveal, the proposed method outperforms Microbe Tracker for estimating 

bacterium dimensions. In all cases, the proposed method produces a better estimation of the 

bacterium length and width compared with Microbetracker. The average and standard deviation 

of the error rate for both length and width estimation using the two approaches compared to real 

dimensions of all samples are shown in Fig. 3.16 and 3.17. In Fig. 3.16, the average error length 

for the proposed method (1.99) is smaller than the failure rate by Microbetracker (4.05). While 

the standard deviation for both approaches is mostly similar, it shows that both methods are 

consistent in estimating the bacterium length although the proposed approach is a better 

approximation of bacterium length.  The same is the case for estimating the width as shown in 

Fig. 3.16. The width error rate of the proposed method (0.5) compared to the MicrobeTracker 

approach (1.14) displays the superiority of the proposed algorithm over a general segmentation 

approach for high-precision dimension estimation of bacteria. A larger value of standard 

deviation in estimating bacterium width shows that MicrobeTracker is not a consistent approach 

for estimating the bacterium width. 

 

(iii) Experiment 3 

Fifty isolated bacteria were selected from a biofilm, and the dimensions were estimated using 

the proposed algorithm and two other general segmentation approaches [55,7], the latter two of 

which will be referred to as “MicrobeTracker” and “Dense” method.  In this experiment, it will 

be shown that for every real bacterium (shown in Fig 3.18), the estimated dimensions by the 

proposed method are smaller than those obtained by a normal segmentation approach. This 

means that neglecting the effects of the PSF generally leads to overestimation of the bacterium 

dimensions. 
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Fig 3.13- Sample artificial bacteria 
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Fig 3.14- Length Estimation on sample bacteria  

 

   Fig 3.15- Width Estimation on sample bacteria 
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Fig 3.16- Deviation from actual bacterium length in two different approaches 

 

Fig 3.17- Deviation from actual bacterium width in two different approaches 
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Fig 3.18- Real Bacterium sample  

In Figs 3.19 and 3.20, the estimated length and width using three different approaches are 

shown. These figures show that the estimated bacterium length and width using the proposed 

method in all cases are smaller those estimated by the other methods. It shows that a smaller 

shape, when blurred by PSF, can create a similar bacterium image. This means that other 

approaches include pixels that are not part of the bacterium, which is the reason why the 

estimated dimensions are much larger. This shows that the proposed innovative approach is 

superior to general segmentation approaches that are misled by the blurring effect. 

 

Fig 3.19- Bacterium length estimation using Dense[7], MicrobeTracker[55] and proposed method  
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Fig 3.20- Bacterium width estimation using Dense [7], MicrobeTracker [55] and proposed method  

 

3.5 Discussion 

Bacterium rate of growth may be less than a pixel width, which is not detectable by a general 

segmentation approach. A novel method for estimating bacterium dimensions with high 

accuracy based on model fitting has been presented. The definition of the model and estimation 

of its parameters were discussed. Convolving the model and a normal distribution function 

simulates the effect of the PSF of microscopic devices. A cost function was defined to measure 

the similarity between the blurred bacterium image and the convolved bacterium model. By 

minimising the cost function, optimal parameter values were estimated. The optimal model is 

then used to determine the properties of a single bacterium such as length, orientation and 

width. This approach shows promising superiority over general segmentation methods for 

segmenting tiny objects.  

The limitation of this approach as for any other iterative method is its sensitivity to the initial 

values of the parameters. Although an interactive approach is applied for selecting lines that 

form the bacterium centerline, there are cases where the chosen lines, and therefore, the initial 
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values of the parameters, are not close to optimal values. In these cases, the algorithm may not 

be able to estimate the optimal values of parameters. In this situation, the user would have to 

adjust the lines manually and restart the method. 

There are some issues that must be studied further in future research to make this method 

applicable for universal bacterium high precision dimension estimation. The first assumption in 

this study is that no light source other than the bacterium itself has contributed to the bacterium 

blurred image intensities. In case two bacteria are very close to each other so that pixels from 

one bacterium contribute to the intensities of another bacterium-blurred image, this assumption 

will be violated. In this case, the approach proposed in this chapter may not be applicable. In 

simple form, the proposed method is appropriate for an isolated bacterium. The model made up 

of piecewise connected rectangles may be further improved by making it more flexible to 

simulate a larger variety of bacterium shapes.  
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!

Chapter 4 

Interactive Chan-Vese Approach 
with Random Walk for Medical 
Image Segmentation2 
!
!
Images alone are not usually sufficient for reliable and unambiguous computerised 

segmentation [10] and, as a result, the views of an experienced observer remain mandatory. The 

observer can provide feedback on the outcome of an entirely automatic segmentation method. 

The feedback may indicate pixels that must be in the final segmentation results, using a few 

mouse clicks or by drawing a boundary around the object of interest. In most interactive 

segmentation approaches, the proposed methods utilise a single feature of the feedback 

provided. This single feature could be the intensity or coordinates of pixels inside the object of 

interest. In this chapter, the use of multiple features of the feedback in defining an energy 

function is evaluated. The expected outcome of this study is an approach that performs better 

than an automatic segmentation method and single feature interactive segmentation methods.  

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Parts of this chapter have been submitted: M. Hosseini, A. Sowmya, T. Bednarz, “Interactive Chan-
Vese Approach with Random Walk for medical image segmnetation”, In Proc. Of 3 International 
Conference in Bioimaging, 2016. 
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As the gradient is not a compelling indication of edges in images, an energy function relying on 

the image gradient can miss those object boundaries that are not necessarily defined by the 

gradient. The Chan-Vese approach [15], illustrated in Fig 4.1, is of particular interest in this 

study since its energy function does not depend on the gradient of the image. 

 

 

 

 

  

 

 

Fig 4.1- Illustration of the general Chan-Vese approach [15] 

As foreshadowed in Chapter 2, a brief overview of the Chan-Vese method is provided in section 

4.1. In section 4.2 an interactive approach for image segmentation based on the concept of 

energy function is presented. To make the interactive segmentation applicable to any general 

image, another component that will be referred to as reachability will be added to the energy 

function definition in section 4.3. In Section 4.4 the experimental results are presented. 

 

4.1 Chan-Vese method 

 

The Chan-Vese method [15] provides a model for detecting objects in an image using the active 

contour and Mumford Shah’s model, when boundaries are not defined by gradients [15]. 

Let !:!Ω⟶ ℝ where Ω ⊂ !ℝ! be an image. Let ! = (!, !) specify the coordinates of the pixels 

in the image !. It is assumed that the image is composed of two objects (background and 

foreground).  The goal is to evolve a curve C, so that C is at the boundary of the object in the 

image. Defining !!, !! as the average intensities of pixels inside and outside of the curve 

respectively, the Chan-Vese method [15] defines the energy function !! !!, !!,!  as follows: 
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F! c!, c!, C = !. Length C + !.Area inside C

+ λ! U! x, y − c! !
!"#!$%(!)

+ λ! U! x, y − c! !
!"#$%&'(!)

 

(4.1) 

 

where ! ≥ 0,! ≥ 0, !!, !! > 0 are fixed parameters. The minimisation problem 

Inf !! !!, !!,! ! 

is used to detect the boundary of the object. The level set formulation of the energy function can 

also be defined. In the level set method, ! ⊂ Ω is represented by the zero level set of function 

!:Ω → R such that 

! = !!!!!!!!!!!!!!!! { !, ! ∈ Ω:!ϕ x, y = 0}
!"#!$% ! = { !, ! ∈ Ω:!ϕ x, y > 0}
!"#$%&' ! = { !, ! ∈ Ω:!ϕ x, y < 0}

 
(4.2) 

Using Heaviside function H, and the one-dimensional Dirac measure !! [15] which are defined as:  

! ! = 1!!!!"!! ≥ 0
0!!!"!! < 0   , !! ! = !

!"!(!)           (4.3) 

 

the terms in the energy function F are defined as follows: 

 

!"#$%ℎ ! = 0 = |∇! ! !, ! !"!!"!!
!

 
          (4.4) 

 

!"#$ ! ≥ 0 = ! ! !, ! !"!!"
!

 
          (4.5) 
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and 

|!! !, ! − !!|!!"!!"
!!!

= !! !, ! − !! !!(! !, ! )!"!!"
!

 

         (4.6) 

 

|!! !, ! − !!|!!"!!"
!!!

= !! !, ! − !! !(1 − ! ! !, ! )!"!!"
!

 

           (4.7) 

 

The energy !! !!, !!,!  can then be written as 

!! !!, !!,! = ! !!(! !, ! ) !"(!, !) !"!#
!

+ ! !! ! !, ! !"!#
!

+ !! ! !, ! − !! !
!

!! ! !, ! !"!#

+ !! ! !, ! − !! !
!

(1 − !! ! !, ! )!"!# 

               (4.8) 

 

The basic assumption in the Chan-Vese method is that two regions of approximately piecewise-

constant intensity form the image [15]. In images where this assumption is violated because of 

the presence of different objects with different intensities, Chan-Vese fails to segment the object 

from the background [59]. In Fig. 4.2 a series of sample images with objects of various 

intensities is shown. The white regions in the first row are the expected results of the 

segmentation and the second row is the Chan-Vese results. This shows that the existence of 

different piecewise constant intensity objects inside an image when no prior information is 

provided by the user about the object of interest, will not produce the expected segmented 
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results. In the next section, a novel interactive segmentation approach based on a new energy 

function will be discussed. In section 4.3, the energy function will be improved by including 

more features from user-provided information in the definition of the energy function. 

 

4.2 Interactive Chan-Vese method 

   

   

   

   

Fig 4.2- The expected result (first and third row); The Chan-Vese result (second row and fourth row) 
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The limitation of the Chan-Vese method in detecting an object of interest with specific intensity 

is the main reason for introducing a new interactive segmentation method. In this approach, the 

Chan-Vese energy function is modified such that it is responsive to user inputs.  

Assume that user inputs !! = !! , !! !! = 1…!  are given. These points are selected by the 

user and are inside the object of interest, and will be called “seeds”. 

Two terms are defined: 

!" = min!{!(!!)|! = 1,… ,!}! 

!" = max!{!(!!)|! = 1,… ,!} 
(4.9) 

 

!"  is the minimum intensity and !" is the maximum intensity of seeds. The idea is to design a 

new energy function such that it is penalised if the segmentation includes objects with 

intensities lower that !"!or higher that !". At the same time, it is also penalised if it does not 

include objects with intensities in the range [!",!"]. Based on this idea, two functions L1 and 

L2 are defined as follows: 

!!(!) =
2! − !"
!" − !" − 1

!
 

!!(!) = !!
!!!(!"!!")

!"!!"
!
 

(4.10) 

 

where ! is a positive even integer. In Figs 4.3 and 4.4, !! and !! for a single k value are shown. 

For the sake of demonstration, it is assumed that  !" = 100 and  !" = 150. !1 is very small for 

intensities in the range of !", !"  and !2 is small for intensities outside the selected range.  

The functions !1 and !2 are used in the formulation of the energy term of the level set in Chan-

Vese [15], which incorporates user feedback: 
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!!"#$ ! = ! !! ! !,! ∇! !,! !"!#
!

+ ! !! ! !,! !"!#
!

+ !! !!(! !,! )
!

!! ! !,! !"!#

+ !! !!(!(!,!)
!

)(1− !! ! !,! )!"!# 

(4.11) 

It is clear that !!"#$ will be minimised if pixels with intensities in the range of [!",!"] are 

within the segmented region, and pixels with intensities outside the selected range are outside 

the segmented region. 

Minimisation of !!"#$  with respect to !  is carried out by an iterative Gradient-Descent 

approach. Parameterising the descent direction by an artificial time variable  ! ≥ 0  [15], 

!(!, !, !) (with ! 0, !, ! = !0(!, !) as the initial contour) is: 

!"
!" = !! !!div ∇!

∇! − ! − !!!! + !!!!  
(4.12) 

 

 

Fig 4.3- !! for k=4 ,!!" =100 ,!!" =150 
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Fig 4.4- !! for k=4 ,!!" =100 ,!!" =150 

The discretisation process to solve this PDE can be found [102]. 

The results of applying this modified segmentation method on various medical and biomedical 

images are displayed in Fig. 4.5. Clearly for some segmentation problems, the method performs 

well, but in other cases, when there are multiple objects in the same intensity range as the object 

of interest, segmenting all of the objects may not align with the purpose of segmentation. In Fig. 

4.5, for the first two samples, the returned objects are aligned with user expectation. In other 

samples, the results may not be what the user expects. In the last three examples, interactive 

segmentation also returns other objects that have a similar intensity as the object of interest,  

and  this may not be what the user expects from segmentation. 

To improve the method with the capability to select only one object among many objects based 

on user feedback, the concept of reachability is introduced. 
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Fig 4.5. Applying the interactive Chan-Vese method on grayscale images. The first and third rows are the original 

images and the second and fourth rows are the results of interactive Chan-Vese method. The first sample is an image 

of a biofilm. The interactive approach can successfully detect the biofilm boundary. In the second sample, the method 

can identify the boundary of the tumor. This is because the tumor intensity has intensity range entirely different from 

other parts of the image. In the  last three samples, since there are other objects with the same intensity as the object 

of interest, some other pixels are also returned, which is not the expected result of the segmentation. 
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4.3 Reachability 

 

Reachability ℜ !, ! !is defined as the probability of getting from a pixel !, !  to other pixels 

(not necessarily its neighbours) inside an image by moving inside the image. It is assumed that 

each pixel is connected to its four neighbours and every edge connecting a pixel to its neighbour 

has a weight. An edge with larger weight has a higher chance of being picked for the next 

movement from the current pixel. It can be argued that by adding a reachability component to 

the energy function developed in section 2.4, the user can more specifically select an object 

from an image. 

In the new energy function, seeds are not only used to select the intensity range, but also to 

remove other objects that are not reachable from the seed pixels.  

For every pixel !, !  in an image while applying the interactive method, ℜ !, !  will be 

estimated. The new energy function is defined in such a way that lower reachability implies 

higher energy and vice versa. For estimating the reachability from the seeds to any other pixel, 

the Random walker [16] steps discussed in Section 2.1.4 will be followed. 

 

4.3.1 Reachability Estimation 

Given a small number of pixels with user defined labels, reachability is about determining the 

probability that a random walker starting at each unlabeled pixel will first reach one of the pre-

labeled pixels. Random walking is the process by which an object wanders away from where it 

started. It is assumed that the image contains two different regions (object and background). The 

user selects some pixels in the object as seeds. These seeds will be used to create an intensity 

range. Pixels whose intensities are not in the range are assumed to be in the background.  

If an image is represented as an undirected graph ! = (!,!) where !is a set of pixels and !  

the set of pairs of pixels that are neighbours in the image, a random walk is a path that consists 

of a succession of edges selected randomly based on their weights[16]. The weight of an edge 

lies within the range (0,1) and can be interpreted as a measurement of transition probability 
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from one vertex to another. Depending on the weight of the edge, the random walk is likely to 

transit from one vertex to another vertex if they are very similar and is unlikely to make a 

transition if they are very dissimilar [81]. The definition of similarity will be discussed shortly. 

To estimate ℜ !, !  at the first stage, the set!! of image pixels is partitioned into three different 

sets, namely “labeled set” !! which are the seeds, “labeled background” !! which are pixels 

that certainly are not part of the object, and “Unlabeled set” !! which are the remaining pixels. 

The background points are pixels where intensities are smaller than the lower threshold or 

greater than the upper threshold. A label function called ! is defined over !! ∪ !!! as follows: 

!(!) = 1, !! ∈ !!
0, ! ∈ !!  

(4.13) 

For every !! , !!!where !! , !!! ∈ !!let 

! !! , !! = ! !! − (!" + !")
2

!

+ ! !! − (!" + !")
2

!
 

(4.14) 

be the similarity measure. Then the weight of the edge can be expressed as: 

! !! , !! = !!
!(!!,!!)
!!  (4.15) 

Based on this definition, similar pixels have a higher weight compared to dissimilar pixels. 

It turns out that the estimation of!ℜ !, !  is equal to the harmonic solution of a combinatorial 

Dirichlet problem with label of the seeds as the boundary condition [16]. The harmonic function 

that satisfies the boundary condition also minimises the Dirichlet integral ![16]. By defining 

the combinatorial Laplacian matrix as 

!!" = ! ! =
!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!! = !
−!!" !!!!!!!!!!!!!"#!!!!"#!!"#!$%&'
0!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"ℎ!"#$%!

 (4.16) 



! 76!

and rewriting the Dirichlet integral and assuming that the nodes in L are ordered such that seed 

nodes are first and background nodes are second and unseeded nodes are third, then ! can be 

decomposed as [16]: 

! !! = 1
2 !!! , !!! , !!!

!! ! !
!! !! !
!! !! !!

!!
!!
!!

 (4.17) 

where !!(!, !), !! !, !  and !!(!, !) correspond to the potential of the seeded, background 

and unseeded nodes, respectively. Differentiating ! !!  with respect to !!  and finding the 

critical points yields [16]: 

!!!! = −!!!! (4.18) 

 

ℜ !, ! =
1, !!!!!!!!!!! (!, !) ∈ !!
0,!!!!!!!!!!!!!!!!!!!!(!, !) ∈ !!
!!(!, !), (!, !) ∈ !!

 (4.19) 

Reachability as discussed before can be used to estimate the probability of reaching another 

pixel from a starting point after infinitely many steps. This idea can be applied to guide the flow 

of a level set function [16]. As Fig. 4.6 shows, the pixels of an object with the same intensity 

ranges have different probabilities of reaching one of the selected points in the image. 

   

a b c 

Fig 4.6-. a) Original image b) selected labels inside the image c) the probability of reaching the Label 1 (brighter 

points have higher probabilities) 



! 77!

As mentioned before, inclusion of reachability in an energy function is an innovative approach 

utilised in this work to improve the accuracy of interactive segmentation. The proposed energy 

function, which is a modification of equation 4.11, is defined as follows:  

! ! = !!"#$ ! − !! Γ(!( !, ! )
!

)!! ! !, ! !"!# (4.20) 

where !!"#$ !is the same as discussed in equation 4.11, !! > 0 is a fixed parameter and Γ(!), 

referred to as the gamma function, is selected in such a way that it has lower value for high 

reachability and high value for lower reachability (Fig. 4.7). In the new energy function, every 

pixel is not only tested for its similarity to the intensity range of the object of interest, it is also 

evaluated on its reachability. If the intensity matches the intensity range but is not reachable, it 

will eventually be removed from the final segmentation.  

Minimising ! using the approach presented earlier [15] will result in an optimal level set !. The 

zero crossing of the final level set function is used to detect the object boundary. 

It is apparent that ! will be minimised if pixels within the intensity range and having high 

probability of reaching the seeds are within the segmented region.  

 

Fig 4.7-. Gamma Function 
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4.4 Experimental Results 

 

The efficiency of the proposed method was analysed experimentally. To avoid any additional 

processing on multichannel images, only gray scale images were selected for this study. In Fig. 

4.8, the performance of the method after the user selects some pixels inside the object of interest 

is shown. In Fig. 4.9, the result of applying the proposed method (interactive segmentation with 

random walk) on a series of medical images is shown. 

   

a 
b c 

   

d e f 

 

 

 

g 
 

h 

 

Fig 4.8-. Visualisation of segmentation using interactive segmentation with random walk a, b, c) User selects seeds 

inside the object d) Segmentation starts after user initiates the method.  e, f, g, h) The segmentation process continues 

until no further change is possible 

As Fig. 4.9 shows, the segmentation results from the interactive segmentation with random walk  

are more accurate compared to other segmentation methods. To evaluate the efficiency of the 

interactive method over other segmentation methods, experiments on segmenting a series of 
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lung images from 50 different patients were conducted. For every patient, 5 slices of the lung 

images were selected and the boundaries were marked by an experienced radiologist to produce 

the ground truth (Fig. 4.10).3 

In the experiments, the performance of the interactive segmentation with random walk method 

versus the original Chan-Vese method was also evaluated. 

The evaluation is based on an estimate of the true positive and false positive percentages. The 

definition of each measure is based on the following four different categories shown in Table 

4.1: 

 Pixel detected as foreground Pixel detected as background 

Pixel is foreground True Positive (TP) False negative (FN) 

Pixel is background False positive (FP) True negative (TN) 

Table 4.1: Definition of performance metrics 

Based on this definition, the true positive percentage is: 

!"" = !"
!"!!" * 100 (4.21) 

and the false positive percentage is: 

!"" = !"
!"!!" *100 (4.22) 

 

 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Acknowledgement: Lung Images were provided and ground truth marked by Daniel Moses, 
Director of Medical Imaging, Northern Hospital Network, Sydney, Australia 
 
!!
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                 a                b                 c                 d                    e 

Fig 4.9-. The results of applying different segmentation methods a) Original images b) Applying automatic Chan-

Vese method, no control over the region of interest c) Applying the interactive segmentation with random walk 

method without the Random Walker effect (!!=0) d) Applying the interactive segmentation with random walk 

method with the Random Walker effect (!!> 0) e) Random Walker algorithm alone 
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Fig 4.10- Lung images (first row) and the left lung segmentation ground truth (second row) 

 

In 4.21 and 4.22 the denominators are the total number of foreground and background pixels, 

respectively. In Fig. 4.11 and Fig. 4.12, the true positive and false positive percentages of 

applying each method separately on the test set are shown. 

In Fig. 4.10, the percentages of true positives in both approaches are very close. This means that 

in both approaches, pixels within the object of interest have a high chance of being among all 

pixels extracted as foreground. This is promising but the problem with the original Chan-Vese 

method is that, it also extracts pixels that are not part of the object of interest, as shown in Fig.. 

4.11. Here the false positives of the proposed method are almost zero in every sample in the 

dataset, while it is over 45% for the Chan-Vese method. The average and standard deviation of 

the true positives and false positives computed over all patient segmentations were assessed. 

The results are shown in Fig. 4.12 and Fig. 4.13, and establish that interactive segmentation 

with random walk has mostly the same TPP, while providing a much better FPP compared to 

the original Chan-Vese. 
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Fig 4.11-. True Positive Percentage 

4.4.1 Further tests 

The proposed algorithm was further evaluated on the test dataset using two other well-known 

interactive segmentation methods. The first method is the random walker [16] on its own. In 

random walk, seeds are selected inside and outside the object of interest. After estimating the 

reachability, pixels with higher probability to reach the seeds inside the object are classified as 

objects, and the other pixels as background. Another well-known interactive segmentation 

method is GrabCut [17] , which was described in Section 2.1.4. 
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Fig 4.12-. False Positive Percentage 

 

Fig 4.13- The average and standard deviation of True Positive percentage over all images  
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Fig 4.14- The average and standard deviation of False Positive percentage over all images  

In Grabcut, the user specifies a bounding box around the object to be segmented, and the 

algorithm estimates the colour distribution of the target object and that of the environment using 

a Gaussian mixture model. This is then used to construct a Markov random field over the pixel 

labels, with an energy function that prefers connected regions having the same label, and a 

graph cut based optimisation is used to infer their values. Removing or adding background or 

foreground pixels to the result can further refine the GrabCut results. To assess the proposed 

method against these approaches, they were all tested on all the test dataset. True positive and 

false positive percentages of the different approaches were used as a measure of their 

correctness. 

As Figs 4.15 and 4.16 reveal, Grabcut has higher performance in detecting true pixels inside the 

object, but worst among the three in removing unrelated pixels. 
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Fig 4.15-. True Positive Percentage 

The bounding box around an object of interest can describe more comprehensively the object 

intensity variations compared to a few seeded pixels selected by the user. This could explain the 

higher true positive percentage of GrabCut in comparison to the other two methods. At the same 

time, the interactive segmentation with the random walk approach performs better compared to 

random walker alone. Based on experiments (Fig. 4.9), pixels that are part of the object of 

interest may be classified as background in the random walker approach because the probability 

starts fading away as pixels get further away from seeds. In contrast, the energy function 

definition of the interactive segmentation forces the final contour to cover all the object pixels, 

regardless of their location.  

The high false positive rate of GrabCut in comparison to the other two approaches is because 

there is a chance that unrelated pixels inside the object of interest may also contribute to the 

object Gaussian mixture model. 
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Fig 4.16-. False Positive percentage 

 

This will result in a higher false positive percentage. These results are clearer in Fig. 4.17 and 

4.18, which show the average and standard deviation of the true positive and false positive 

percentages of each of the three different methods when applied to the test data set. As shown in 

these two figures, the interactive segmentation with the random walk approach has low false 

positive rate, which means that it is able to remove unrelated pixels from the final segmentation. 

At the same time, it performs better than random walker in retaining related pixels in the final 

segmentation result. 
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Fig 4.17- True Positive percentage of 3 methods 

 

 

Fig 4.18- False Positive percentage of 3 methods 
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4.5 Algorithm Complexity 

After selecting the initial seeds inside the image, the interactive segmentation method runs until no 

further improvement is possible. At each iteration, the estimation of the energy function is performed 

over the whole image  before estimating the new level set curve. In this case, if the size of the image is 

! ∗! the time complexity of the interactive method will be O(!").  

The reachability estimation is just estimated once at the beginning of the algorithm. As described before, 

the probability of reaching the seeds from other image pixels is calculated by solving a sparse linear 

system over all unlabeled pixels. The approach used is based on Cholesky decomposition, which for a 

dense matrix with !!  unlabeled variables will cost O(!!!). As the number of unlabeled pixels is not 

fixed, in the worse case, the reachability algorithm will cost O( !" !). 

Therefore, the complexity of the interactive segmentation with random walk is O(! ∗! + !" !). 

 

4.6 Summary 

In this chapter, a new interactive segmentation approach is presented. This new approach is 

developed based on the deficiencies observed in the Chan-Vese method in segmenting medical 

images. In this approach, introducing user interaction eased the assumption about the image 

consisting of two consistent objects. The new approach is based on modifying the  components 

in the original energy function of Chan-Vese that are sensitive to user feedback. The user can 

provide information by selecting pixels inside the object of interest. These seeds are then used 

to define a new energy component based on the intensity range of seeds. The new energy 

function segments objects with pixels in the same range as the seeds. This approach can be 

beneficial for images with multiple objects in different intensity ranges, and the user is 

interested in segmenting all objects with similar intensity.  
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In cases where the user is just interested in the object that contains the seeds, an additional 

component has been added to the energy function. This new component is based on the concept 

of reachability, which is defined as the probability of getting from a pixel to other pixels inside 

an image when a randomly moving object wanders away from where it started. The new energy 

function components will penalise those pixels that are not reachable from seeds and therefore 

they will be removed from final segmentation. This new component based on reachability uses 

the locations of seeds to impose some restrictions on interactive segmentation. 

The proposed energy function is the first among similar methods [10,16,59] that use two 

features of selected pixels, namely the intensity and location to define energy components.  

The efficiency of the proposed approach was analysed experimentally. It is shown that the 

proposed new method could lower the false positive percentage of the automatic Chan-Vese 

approach, with an almost equal true positive percentage. The efficiency of the method was also 

evaluated compared with random walker,  and GrabCut which is the leading approach for 

interactive segmentation. It was shown that the interactive segmentation with random walk 

method presented in this chapter outperforms the random walker alone in detecting true object 

pixels and outperforms GrabCut in identifying background pixels. 

 As in any other interactive segmentation method, the selection of seeds has a significant impact 

on the accuracy of the proposed approach. A major assumption is that the user selects pixels 

that cover the full intensity range of the object. Any shortfall then can cause the algorithm to 

lose its superiority to other interactive segmentation methods. 
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Chapter 5 

Human Computer Interaction 
With Biomedical Images: User 
Experience Design and 
Experiments4  
 
In chapters 3 and 4, two computer vision problems were discussed and it was shown that some 

feedback from the user can have a great impact on developing more accurate solutions. In 

chapter 3, some input from the user on selecting lines to approximate the bacterium skeleton 

line, has an effect on the algorithm that estimates the bacterium dimensions with high accuracy. 

In chapter 4, it was shown that selecting seeds inside an object of interest could increase 

localisation of a segmentation method. In both approaches, the user interacts with the system to 

initialise a series of activities by the system. Human computer interaction (HCI) involves the 

study, planning, design and uses of the interfaces between human users and computers. The 

latest forms of interaction attempt to give more flexibility to the user by developing touchless 

form of interfaces. Interaction with the system does not involve touching anything, compared to 

interaction with a touch-based system. By studying various touchless interfaces, it is 

hypothesised that there is a trade-off between user flexibility in touchless interaction and system 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Parts of this chapter have been presented: 

M. Hosseini, T. Bednarz, and A. Sowmya, “A study of touchless versus touch-based interactions with 
bacterial biofilm images “,ACM SIGGRAPH International Conference on Virtual-Reality Continuum 
and Its Applications in Industry 2012 
M. Hosseini, T. Bednarz, and A. Sowmya, “Multi-users Real-Time Interaction with Bacterial 
Biofilm Images Using Augmented Reality.” 6th International Conference, VAMR 2014, Held as Part 
of HCI International!
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accuracy and real-time capability. To investigate this hypothesis, a deeper investigation of 

human user interfaces is carried out in sections 5.2 and 5.3, by designing touchless and touch-

based interfaces and studying their usability through a series of user experiments. In section 5.4, 

a new interface that can overcome the limitations of the system proposed in section 5.2 will be 

discussed. The knowledge gained based on user experience in section 5.4, will be used to design 

a new interface in section 5.5 that is more aligned with user needs and positively overcomes the 

drawbacks of two studied interfaces. In section 5.5, various implementations of the new 

interface will be evaluated on accuracy and real-time capability. 

 

5.1 Safe Interaction 

 

Image review and manipulation within sterile environments [58], and maintaining boundaries 

between sterile and non-sterile areas of the work environment, are essential in biology studies. 

The traditional mouse and computer keyboard paradigm is not an acceptable Human- Computer 

Interaction method in an environment where safety is important. Interest in touchless image 

manipulation interfaces has resulted in the development of various gesture recognition systems. 

Enabling of remote control and visualisation of biomedical images can reduce direct exposure 

of researchers to viruses and bacteria.  

The aim of the study is to uncover the limitations of current technology in the design of a real-

time natural contactless interactive system. HCI experiments are carried out with the Creative 

Interactive Gesture Camera [6] as a touchless input device to track a user’s hand gestures and 

translate them into the point of focus. This can be achieved by providing a correspondence 

between the camera field of view and a computer display.  

Although these systems are beneficial to the user, their willingness to use these systems under 

experimental conditions and challenging applications has not been studied. The goal of this 

work is to evaluate a touchless system in a challenging environment through user experience 

design (UX). The goal of UX [60] is to evaluate and improve customer satisfaction and loyalty 
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through the usability and ease of use provided in interaction with a product.  

To evaluate the usability of a touchless interaction system, at the first stage, both a touchless 

interaction system and a touch-based interaction system were designed. In the next stage, a 

system usability scale evaluation of the touchless interface was conducted and compared with 

the usability of the touch-based system. The usability scale evaluation follows the standards and 

guidelines in the international standard ISO 9241-11 [61]. Although the importance of usability 

as an objective is widely recognised, a report [62] shows that pleasure has more effect than 

usability alone in encouraging a consumer to use a product. For evaluating the pleasure evoked 

by using the touchless system, SAM (self assessment manikin) [63], which is a graphical figure 

depicting values along one of three dimensions on a continuously varying scale, was used to 

assess the Pleasure, Arousal and Dominance [86] that an application invokes in the user.  

 

5.2 Computer interfaces evaluation: system design  

The touchless system that was designed is based on a hand gesture recognition camera that 

reacts to predefined gestures. The system configuration is shown in Fig. 5.1. 

 

Fig 5.1- Touchless system configuration 
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An image-processing tool developed at CSIRO [7] for bacteria segmentation and tracking is 

utilised in the touchless system. When applied to biofilm images, it produces morphological 

data such as length and orientation in a series of frames for every individual bacterium. The 

information is stored in a database and can be projected on a visualisation display screen to 

provide detailed understanding of bacteria and biofilm morphological properties. HCI takes 

place utilising the user’s hand gesture as the natural interface. Creative Interactive Gesture 

Camera [6] is used as an input device to track the user’s hand gestures and translate them into 

change of the virtual camera field of view. The reason for selecting this camera is its ability to 

recognise different hand gestures at a distance of 50-60 centimetres from the user. This 

capability was almost unique at the time this application was developed. This camera has two 

sensor inputs (Fig. 5.2). Inferring hand gestures is a two-stage process: first a depth map is 

computed using structured light, then hand gestures are inferred using a machine learning 

method. Various gestures are inferred using a randomised decision forest [65], learned from a 

large dataset of training examples. 

 

Fig 5.2- The camera with capability to recognise hand gesture [6] 



! 94!

 

The gestures can also be translated to extract information from the database, which can then be 

overlaid onto the final image. In Table 5.1, a list of predefined gestures and their corresponding 

actions are provided. The camera is located in front of a hemispherical dome, as shown in Fig 

5.3. 

Thumbs up pauses the biofilm evolution movie. Palm central position controls a pointer on the 

display screen (Fig. 5.4). By passing over a bacterium, information is extracted from the 

database and displayed on the screen (Fig. 5.5). The closed hand zooms into the biofilm image 

around the selected bacterium to have a more detailed view of bacteria morphological 

information. Waving the hand will cause a jump to the next or previous frame when the movie 

is paused. Thumbs down will resume the movie. These gestures were selected since the camera 

SDK can recognise them easily. 

A touch-based system was developed as an iPad application that performs similar tasks but 

instead of receiving the user gestures via a camera, the user can interact with the biofilm 

through the touch sensitive display of the iPad.  

The available user actions are summarised in Table 5.2. Tapping on the iPad will pause and 

resume the biofilm evolution movie. A pointer controlled by finger position rolls over the 

biofilm and can be used to select a bacterium. The morphological properties of the selected 

bacterium are extracted and displayed on the display screen. The “pinch” zooms the biofilm 

images in and out. 

 

5.3 User Experience Design  

As discussed in section 5.1, at the time of doing this experiment, no other survey was found that 

compared the usability of touchless and touch-based systems for interaction with highly dense 

images. Participants interacted with both touchless and touch-based interfaces. The task was to 

locate a bacterium in the biofilm image that has an unusual length in comparison with other 

baccteria. Participants were then asked to fill up a questionnaire that measured the usability and 
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also the feelings evoked during system use. The questionnaires [66] used in this study were 

designed to evaluate each interface from an ergonomic viewpoint during the experiments. 

 

 

Fig 5.3- Interaction through touchless device 

 

 

Fig 5.4- The green dot controlled by hand movement 
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Fig 5.5- Information visualised for selected bacterium 

 

 

 
    

Pause the movie Control the pointer Extract and zoomed in  Changing video frame Resume video play 

 

Table 5.1- Predefined hand gestures for touchless system 

System usability scale (SUS) is a ten-item Linkert scale [67] (Table 5.3) with a weighted 

scoring range of 0-100, giving a global view of system usability [61]. It is often used to 

compare two system usabilities. It has been shown that SUS is a reliable measure of usability 

[68]. It is anchored with 1 at Strongly Disagree and 5 at Strongly Agree. The questionnaire 

shown in Table 5.3 asks questions on how usable a system is. To calculate the SUS score, the 

score contributions from each item are summed. Each item score contribution will range from 0 

to 4. For items 1, 3, 5, 7, and 9, the score contribution is the scale position minus 1. For items 2, 

4, 6, 8 and 10, the contribution is five minus the scale position.  
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Multiplying the sum of the scores by 2.5 provides the overall value of SUS [61]. The scores are 

then converted to a percentile rank using a process called normalisation. The SUS score 

percentile rank is usually referred to as a school grade scale and is shown in Fig 5.6 [100]. 

 

Fig 5.6- Translating SUS score to grade scale 

 

   

Pause the movie Control the pointer Zooming in and out 

 

Table 5.2- Predefined hand gestures for touch-based system 

Self Assessment Manikin (SAM) is a graphical figure used to measure feelings of pleasure, 

arousal and dominance (P.A.D.), associated with any people affective interaction with a system 

or product [63]. SAM displays each P.A.D. dimension with a graphical character array along a 

continuous nine-point centre movement scale (Fig. 5.6). For pleasure, SAM shows characters 

from smiley happy faces to unhappy and sad faces. For arousal, SAM displays figures that are 

very excited with eyes open down to sleepy and bored faces. 

A very large figure presenting feelings of strength and being in control, and a small figure 

showing the feeling of being controlled or submissive are used to show dominance (Fig. 5.7). 

To make the experiments easier, the odd bacteria, whose dimensions are unusual, were 

displayed in red on the screen when passed over by the pointer.  
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    Strongly 
Disagree       Strongly 

Agree 

1 I am familiar with this 
kind of system            

   1 2 3 4 5 

2 I found the system is 
complex           

   1 2 3 4 5 

3 I thought the system was 
easy to use           

   1 2 3 4 5 

4 
I think that I would need 
some help to be able to 
use this system 

          

   1 2 3 4 5 

5 
I found the various 
functions in this system 
were well integrated 

          

   1 2 3 4 5 

6 
I thought there was too 
much inconsistency in 
this system 

          

   1 2 3 4 5 

7 
I imagine that most 
people would learn to use 
this system very quickly 

          

   1 2 3 4 5 

8 I found the system very 
cumbersome to use           

   1 2 3 4 5 

9 I felt very confident 
using the system           

   1 2 3 4 5 

10 
I needed to learn a lot of 
things before using this 
system 

          

   1 2 3 4 5 

11 Which screen felt more 
natural 

 

dome 
 

iPad   

12 Other Comments and 
recommendations: !!

 

Table 5.3 . SUS questionnaire 



! 99!

 

 

Fig 5.7- SAM questionnaire 

After obtaining ethics approval for doing the experiments, 10 participants, who were selected 

randomly from scientists and employees in CSIRO [70], were asked to participate in the 

experiments. The participants came from different backgrounds, nationalities and genders. At 

the beginning of the experiments, every participant, after signing the Participant Information 

Statement and Consent (PISC) form, was introduced individually to the system by an expert. 

They could observe the expert interacting with the two systems. The participants were then 

seated in front of the dome for experiencing touchless interaction. The participants could then 

interact with a movie of biofilm expansion displayed on the surface of the dome. After pausing 

the movie, the time to find odd bacteria was measured. As soon as the participants found the 
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first unusual bacterium, the timer was stopped and the participants were asked to start 

interacting with the touch-based system implemented as an iPad application. As before, the time 

to find the first odd bacterium was measured. Participants were then asked to fill up two 

questionnaires (Table 5.3 and Fig. 5.7). They were given sufficient time to fill the survey forms. 

They were also requested to indicate which interface felt more natural. Recommendations and 

comments were collected at the end of the experiments. 

 

5.4 User experience outcome 

 

Usability study results disclose that a majority of users found the touchlesss interaction to be an 

ok (E) or poor (F) form of interaction (Fig. 5.8). On the other hand a majority of users chose 

touch-based interaction as an excellent (A) choice for interaction (Fig. 5.9).  

 

Fig 5.8- Touchless SUS grade scale score 

At the individual level as shown in Fig. 5.10, all participants gave higher scores to the touch-

based system in comparison to the touchless interaction system. The third quartile and the 

overall average for each type of interaction were estimated and are displayed in Fig. 5.11. The 

majority of scores for touchless interaction lie below 70, which is an average score in the SUS 

system. On the other hand, a majority of observations (75 percent) are over 76 for the touch-
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based system, which is interpreted as a good or above average score in the SUS system. The 

overall average score of 86 for touch-based interaction compares with 62 for touchless 

interaction and reveals the higher usability of touch-based interaction in comparison to 

touchless interaction. 

The user SAM scores for each different feeling are displayed in Figs 5.12, 5.13, and 5.14. In Fig 

5.12, in all cases, the users found higher control over the system when interacting with a touch-

based interface in comparison to a touchless system. This conclusion may not be easily drawn 

for the other two feelings based on the graphs in Fig. 5.13 and 5.14. To gain a clearer view 

about the feeling evoked during system interaction, the average of feelings over all participants 

for each system was calculated. As Fig. 5.15 shows, people feel happier and more in control 

when they are interacting with a touch-based interactive system. This is not the case for the 

feeling of arousal. Arousal as mentioned before is the feeling of excitement endured during a 

mission. The higher arousal in interacting with a touchless system in comparison to the touch-

based system could be the result of human preference to experience new devices over regular 

ones.  

 

Fig 5.9- Touch-based SUS grade scale score 
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Fig 5.10- Individual participant SUS score for two systems 

 

Fig 5.11- Individual participant SUS scores for the two systems 
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!  

Fig 5.12- Individual participant SAM dominance feeling  

 

5.5 Analysis 

Participant observations during user experiments reveal that moving the entire hand is not an 

ideal way to communicate with the system. Based on the comments provided, users agreed that 

the system would be better if it tracked fingers or eyes instead of hand gestures. However the 

limits of current cameras in tracking eyes and fingers at a distance of over 60 centimeters do not 

permit more accurate interactions. The feeling of tiredness that users experience when using 

hand gestures to interact with the touchless system could explain why the touchless system is 

less pleasurable compared with a touch-based system, as shown in Fig 5.15, column 1. It is 

necessary to mention that standard deviation of feelings estimation was tiny among all 

participants in this experiment. It shows that the rate of feeling evoked during the interaction are 

very similar among the participants. 
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!  

Fig 5.13- Individual participant SAM arousal feeling  

 

Fig 5.14- Individual participant SAM happiness feeling  
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Fig 5.15- SAM feeling average for both systems 

The major cause of tiredness in the users when they are observed was the frustration endured 

when working with large images where information content is very high. The biofilm expansion 

movie displayed on the surface of the dome or on iPad, has more than one thousand bacteria 

that have to be scanned before the user is able to lock on an eccentric bacterium.  

Another issue raised by all participants is the speed of interaction for the touchless system. The 

reaction of the touchless system to a hand gesture was slower than that of the touch-based 

system, and there was a delay between the hand movement and pointer positioning on the 

screen. In high density biofilm images, the distance between bacteria may be less than 6 pixels, 

which would make tasks even harder when there is no accurate correspondence between hand 

position in space and the pointer on the image. It is believed that this could be a reason for the 

feeling of not being in control of the touchless interface, compared with the touch-based 

interface. These drawbacks overall cause the delays in locating the eccentric bacterium as 

shown in Fig. 5.16.  
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Fig 5.16- Time to finish the task using two different interfaces  

Every participant also thought that an iPad is a more natural screen than a 3-meter 

hemispherical dome. Based on the observations collected during the experiments and the results 

from SUS and SAM analysis, it appears that touchless interaction with detailed images, 

although useful, is not mature enough yet to replace touch-based devices. 

After analysing the usability study data and measuring the feelings evoked during interaction, 

the following positive and negative points about each system may be inferred. 

   

 Touchless System Touch-based System 

Positive  1- Safe, no direct interaction 

2- Fun to use 

3- User mobility 

4- Real-time 

1- Accurate 

2- Easy to use 

3- Not overwhelming 

4- Real-time 

Negative  1- Hard to control 

2- Single User 

3- Lack of moving flexibility 

4- Tiredness 

5- Use of shared interface 

6- Single user 

7- User stuck behind desk 

8- Not innovative enough 

   

Table 5.4 . Positive and negative facts about each interface 
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The next question is how to develop an interactive system that has all the positive features of 

each system while avoiding the limitations.  

The answer is an augmented reality (AR) application for interaction with medical and 

biomedical images that is innovative and fun to use. AR applications can run individually on 

every device so it is a multi-user system and the user field of movement can be very large. 

Although an AR system appears to be backward compared to touchless system regarding user 

safety, AR systems are more personalised in comparision to touch-based interfaces using 

keyboard and mouse, and can support remote and multi-users. It is easy to learn and interact 

with. The remaining questions to answer are around accuracy and real-time performance during 

interaction with complex images. In section 5.6, the proposed AR application, in particular the 

tracking system is presented. Then the effect of changing the parameters of the tracking system 

on the accuracy and real-time capability of the application will be discussed. It will be shown 

that there is a trade-off between accuracy and real-time performance when dealing with AR in a 

complex environment.  

The proposed AR system in this chapter, unlike the two previous touchless and touch-based 

systems, will not be analysed from the usability point of view. The major concern is around the 

limitations of current technology for developing AR applications in highly dense environments. 

Tracking based on unique features is a major component of AR system, which is studied. 

 

5.6   AR System for Image Interaction 

 

The major goal of this research was to evaluate the real-time performance and accuracy of an 

unmarked AR system when relying on handheld device processing power in a highly dense 

environment.  

The system for interacting with biomedical images through proposed AR application is 

configured as shown in Fig. 5.17. 
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The morphological properties of each object in every frame are extracted using a general 

segmentation method [7] and stored in the database. The information stored in the database is 

indexed using object position in every frame. This information is necessary for the success of 

the tracking method used in the proposed AR application. 

The following is a possible scenario for interacting with an image using an AR application to 

extract information for a particular object in the image. 

1. Objects in a biomedical image frame are displayed over a wall surface. A user views the 

objects through the camera of a handheld device that runs the AR application. 

2. The viewed image is displayed on the handheld device. 

3. Tapping on a single object in the image observed on the handheld device triggers the 

tracking algorithm. 

4. Using tracking results, the object position in the database image is calculated.  

5. This object position is used to extract the required information from the database. 

6. The selected object is highlighted and information is displayed back in augmented form 

on the handheld device. 

7. Till the next tapping, the previously detected object position will be used to update the 

object location in the subsequent image.  

The primary concern as discussed in Chapter 2 is tracking. It is about locating the position of an 

object in the video frame and aligning the virtual information with the user field of view. It is 

assumed that the handheld device camera is always in front of the user's face. The proposed 

approach for tracking is by detecting features in the image received from the camera and 

matching it with image features stored in the database. The transformation from the matched 

features can be used to locate the selected bacterium position in the image stored in the 

database. The inverse transformation can be used to display virtual information in a position 

that is aligned with the user field of view.  

The detailed implementation of this system is now described.  
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Fig. 5.17-  Overall System Configuration 

5.6.1 System design 

Every AR system consists of a handheld device that is equipped with a camera and a touch-

sensitive surface. The image from an environment, which in this case is a biofilm expansion 

movie, is projected on the surface. The projected movie does not show any morphological 

information about a bacterium. However, such morphological information for every bacterium 

in every frame has been extracted and stored in a database beforehand. The user interacts with 

every bacterium by tapping on it. The bacterium information stored in the database is then 

extracted and shown on the tablet display. This is the major part of the AR application where 

additional information is added to real images to increase the knowledge about the environment 

by using some virtual information. In this implementation of the system, it is assumed that the 

server responsible for displaying the video through the projector transmits the frame number of 
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the biofilm expansion movie to the handheld device. The nature of augmented reality is that the 

user can view the images from any angles and in any position. The reason for sending the frame 

number of the image to the device is to increase the speed of the feature matching and also the 

tracking process. The only interaction with the handheld device is by the user tapping on the 

handheld device surface (Fig 5.18). 

Translation from the coordinates on the hand device display surface to a particular bacterium 

inside a biofilm is by feature matching, which matches similar features in two images. If the 

number of features matched by feature matching is higher than a threshold, it can be concluded 

that both images have similar objects. Finding the same objects in two images can also be used 

to estimate a possible transformation of one image to cover similar objects in another image. 

Some feature matching methods can find similar features in cases where the images have gone 

through a series of transformations by doubling the processing time while others are just limited 

to images on the same scale and orientation. More will be discussed in section 5.6. In the 

experiments, the two images used are an image in the database and one taken by the handheld 

device camera. Matching these two images and estimating the transformation can then translate 

the tapped coordinates to a pixel inside the biofilm image stored in the database. 

If there is any bacterium at that pixel position inside the image, the information about that 

bacterium is extracted and using the inverse transformation from the last stage, it will be 

displayed in the right position on the handheld device display surface, which is visible to the 

user. As mentioned before, feature matching is the major process behind any AR system, and in 

the next three subsections, a complete description of various steps in performing feature 

matching and every possible option for doing each step will be described. 
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Fig. 5.18-  The user watches a biofilm movie through the camera of the handheld device. Tapping on a single 

bacterium on the image received through the hand-held camera causes the AR application to first find out if any 

bacterium is present under the tapped point and in case there was one, grab the information of that individual 

bacterium from the database, highlight it on the display of the handheld device and display related information. 
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5.6.2   Feature Detector  

 

Features around a tapped object are used to retrieve the object position in the original 

biomedical image. Researchers have introduced various feature detectors, each with different 

characteristics. As discussed in section 5.4, lack of real-time performance has a direct effect on 

decreasing system usability. An AR application with a fast feature detector can increase the 

chances of creating a real-time experience for the user. FAST is one of the fastest corner 

detection methods that is also suitable for real-time applications [105]. It is based on pixel 

intensity comparison around a circular neighbourhood of a query point. Each pixel on the circle 

is labeled from 1 to 16 clockwise. If N contiguous pixels on the circle are all brighter than the 

candidate pixel p plus a threshold value t, or all darker than the candidate pixel p minus a 

threshold value t, then p is classified as a corner. Since feature scale and transformation are not 

considered, FAST detected features are not invariant to image scale and rotation. In the next 

section, a general description of feature descriptor estimation and a real-time approach for doing 

so are presented. 

 

5.6.3   Feature Descriptor 

 

Feature descriptors are used to describe properties of an image around a feature point. Some 

methods represent the neighbourhood based on responses to a series of filters [74,75]. In these 

methods, the complexity of estimating the responses make them very time consuming and 

mostly not suitable for real-time experience. To decrease the processing time in calculating the 

feature descriptor, other approaches use simpler indicators for describing the environment 

around a feature point. Descriptors are neutral on orientation invariance if the feature point does 

not carry any orientation information. BRIEF is a feature descriptor with low processing 

overhead that describes a feature based on intensity variation in an area around the feature point 
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[73]. To implement BRIEF as a binary vector, a series of N pairs (X,Y) are selected where X 

and Y are pixels around the feature point and N is the length of a binary feature. For every pair 

(X, Y), if the intensity of X is less than the intensity of Y, the descriptor will be 1 for that pair 

otherwise it will be 0. The combination of N values of 0 and 1 is used as feature descriptor. 

Selecting the size of the patch around the feature point and selection of N pairs can affect the 

accuracy of the method. A study [73] has shown that the selection of pairs from a double 

Gaussian distribution or selecting randomly around the feature points can produce better results. 

The advantage of the binary string as a descriptor is the ability to calculate the distance between 

every pair (e.g. Hamming distance) very quickly on many processors [73]. After creating the 

feature descriptor, the next stage is to find similar descriptors. Similar descriptors may show the 

same pixel in an image observed from different points of view. Finding similar descriptors is by 

measuring the distance between every pair of descriptors making this task, very time-consuming 

in an AR tracking implementation. In the next section, an overview of a data structure for the 

implementation of feature matching that has shown promising results for matching features is 

presented [92]. 

 

5.6.4 Feature Matching using VP-Tree 

As discussed already, the most time-consuming task in an AR tracking algorithm is the feature 

matching. Feature matching is about finding the first nearest neighbourhood of every feature 

vector in one set to other feature vectors in another set. A useful data-structure for answering 

nearest-neighbour queries for image descriptors is the KD-tree [103], which is a form of 

balanced binary search tree. 

A binary search tree divides the search space recursively based on a similarity measure in order 

to increase search speed, which is possible by pruning nodes that cannot be better than the best 

answer already found. In more recent forms of KD-tree,  rather than partitioning points on the 

basis of relative distance from multiple centres, the points split using the absolute distance from 

a single centre [92]. This approach, which is referred to as VP-Tree, constructs a tree by 
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assigning all points to the root node, and then recursively partitioning the points into one of 

several children of the node. This process continues until some termination criteria are met. 

Because of the advantages of the VP-tree [92], it was used as a feature matching method in the 

current AR tracking algorithm. In Fig. 5.19, pairs of feature matches of the source image 

(images on left viewed through a handheld device camera) and destination image (biofilm 

images stored in a database) are displayed. As the images show, although there are some correct 

matches there are also many mismatches that must be removed before further processing. The 

presence of bad feature matches in the data can introduce significant errors in the computation 

of the transformation [77]. RANSAC [78] is a standard approach for removing outliers by 

finding a homography matrix that is agreed by most of the matching features. The result after 

removing the outliers is shown in Fig. 5.20. In the next section it will be shown how the 

estimated homography matrix based on inliers is used to display the virtual information aligned 

with the user field of view. 

 

5.6.5   Bacteria Position Retrieval and displaying Information 

 

The core of the presented tracking approach is to estimate the homography matrix based on 

inliers of matching features. The homography matrix is used to translate the tapped position in 

the handheld device coordinates to image coordinates. A search of the database is carried out to 

find the closest bacterium. In case there is a bacterium in that position in image coordinates, the 

inverse of the homography matrix is used to estimate the location of the augmented virtual 

information in the handheld coordinate system. The estimated location is then used to highlight 

the bacterium and display the morphological information. Applying feature matching on every 

frame preserves the alignment of the virtual information and user field of view even if the 

handheld device moves in various directions (Fig. 5.21). 
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Fig. 5.19-  Matching features based on similarity of feature descriptor 

 

Fig. 5.20-  Removing outliers 

In the next section, the performance of the AR tracking algorithm is studied, in terms of 

accuracy and real-time performance. 

 

5.7   Experimental results 

The AR tracking accuracy and real-time performance is computed when different combinations 

of feature detector and descriptor methods are used in the feature-matching segment. To 

evaluate real-time performance, the application was run for 30 seconds and frame rate recorded 

for different combinations. As Fig. 5.22 shows, the combination of FAST feature detector and 

BRIEF feature descriptor methods (Fig. 5.22 c) is the best choice for a real-time application. 

This result is valid for high-density biofilm image sets and may not be valid for other image 

sets.  
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The accuracy was also evaluated and compared with other implementations of the application 

using different feature detection and matching methods. The application accuracy was estimated 

by measuring the acceptable range of device rotation. The acceptable range is the maximum 

rotation in every direction before the application loses the bacterium position between two 

consecutive taps. This is carried out by comparing the positions extracted from the inverse 

homography of different matching methods with results of the SURF matching inverse 

homography method in different device orientations.  The reason for selecting SURF as the base 

model is because of its rotation and scale invariant properties. The results are shown in Fig. 

5.23. These images were produced when the device was rotated around the vertical axis. 

In Fig. 5.23 it is clear that the acceptable device rotation range of FAST/BRIEF is limited to     

[-5.05, 25.80] (Fig. 5.23 b) which is smaller than other rotation and scale invariant feature 

detectors and descriptors. This means that the user can only use the application in situations 

where there are no significant changes in handheld vertical device orientation. 

 

Fig. 5.21-  Displaying the information in right position in different device orientations 

It can be argued that, instead of scanning the video from handheld device cameras, sending the 

image directly to the handheld device can improve the efficiency of the application. There are 

two reasons why this approach was not followed. The first is that in the current setup, sending 

the frame number to a handheld device is much faster that sending the whole image to the 

device which severely decreases the real-time performance of the application. The second 

reason is that in a real scenario, there would be no connection between the server and a remote 
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handheld device. As any other AR application, all the processing must be done on the handheld 

device without receiving any supporting information from another instrument. The reason for 

defining a channel between the server and handheld device to transit the frame number in the 

proposed application is just for experimentation. After removing the burden of searching all the 

video frames stored locally on the handheld device memory, the processing power of the device 

is used for feature matching on a single frame alone. 

 

5.8   Remarks 

In the first part of this chapter, evaluation of a touchless system using hand gesture recognition 

was performed. The assessment was based on measuring the system usability and feelings 

evoked in the user during the interactions in comparison with a touch-based interface. The SUS 

and SAM for measuring the usability and feelings were deployed in this study. Experimental 

analysis shows that touchless interaction with detailed images, although useful, is not mature 

enough yet to replace touch-based devices. The usability study suggests that deploying more 

accurate interfaces with the ability to interact using eye or finger could optimistically produce 

better results. The insights gained from the usability study were then applied to design an AR 

application for biomedical image interaction. Tracking for an AR application is about 

displaying information in the right place while the device may go through a series of 

movements. It has been recognised in the literature that   tracking is the major issue in any AR 

application [57]. The tracking method presented in this chapter is based on matching the image 

from a handheld device with images stored in the database and using the inverse homography 

matrix to display the information in the correct position. Employing a feature descriptor method 

that is not scaled and rotation invariant was the only option for designing a real-time tracking 

method. The application lets the user experience a real-time AR but with limited device 

rotation. The experiments reveal that a real-time and rotation and scale interactive tracking 

method in highly dense environments is still an open problem. A limitation of the tracking 

method is that real-time performance and accuracy have to be tested off against each other. 
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a) Detector, SIFT Feature Descriptor b) SURF Detector, SURF Feature Descriptor 

  

c) FAST Feature Detector, BRIEF Feature 

Descriptor 

d) FAST Feature Detector, SURF Feature 

Descriptor 

  

e) FAST Feature Detector, SIFT Feature 

Descriptor 

f) ORB Feature Detector, ORB Feature 

Descriptor 

 

Fig. 5.22-  Frame rate achieved during 30 second experiments using different methods 
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a) FAST Feature Detector, SURF Feature 

Descriptor 

b) FAST Feature Detector, BRIEF Feature 

Descriptor 

  

c) ORB Feature Detector, ORB Feature 

Descriptor 

d) FAST Feature Detector, SIFT Feature 

Descriptor 

 

Fig. 5.23-  Difference between estimated positions using inverse homography of various methods and SURF feature 

and descriptor matching 
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Chapter 6  

Conclusion 

For biomedical images, the general approach to image segmentation does not work well because 

of the blurring effect of the imaging devices used. In a high-resolution microscopic image, 

where the growth rate of bacteria may be less than 1/10 of a pixel width per frame, more 

accurate estimation of object dimensions is expected.  Possible applications include locating 

possible breakpoints in future mitosis and improving the accuracy of bacteria tracking, which in 

turn may be used to track biofilm morphological properties such as the speed of spread of 

biofilms that can be utilised to trace the effects of new drugs. Therefore, the first aim of this 

thesis was  to develop a novel segmentation approach mediated by user input and  based on a 

bacterium model to measure bacterium dimensions with high accuracy. 

For biomedical images, automatic and single feature based segmentation methods may not 

produce expected results, due to the lack of clear boundaries in many of them. Overcoming the 

limitations of automatic and single feature approaches is beneficial in improving the 

segmentation and creating more plausible object boundaries. This issue becomes critical when 

dealing with precise description of tumour boundaries in medical images such as MRI and CT 

scans. Therefore, the second thesis goal was the use of multiple features in user provided 

feedback in defining an energy function for image segmentation. 

Novel touch-based and touchless interfaces are a promising technology for increasing biological 

laboratory safety. The knowledge gained based on user experience with such interfaces could be 
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used to design a newer interface that is more aligned with user needs and overcomes the 

drawbacks of previous interfaces.  In the third part, the usability of various new interfaces such 

as touchless interaction and augmented reality for interacting with medical and biomedical 

images has been studied. 

In the entire thesis, the unifying factors are user interaction-guided segmentation of biomedical 

images, whether they are microscopic (bacteria images) or macroscopic (tissue images such as 

MRI and CT), and the design and implementation of novel user interfaces for biomedical 

images to increase usability and safety. 

6.1 Thesis Summary 

This thesis has achieved all three goals by developing a realistic bacterium model based on user 

inputs for measuring bacterium dimensions with high accuracy, designing a new energy 

function for biomedical image segmentation based on multiple features from user inputs, and 

performing a usability study of interfaces for biomedical images and providing directions for 

developing a new interface.   

The model proposed in this thesis for bacterium dimension estimation is a series of rectangles of 

variable length and orientation that are connected piecewise. The initial estimation of the 

number of rectangles in the model is done by the user utilising an interactive interface. A cost 

function based on the similarity of the blurred model and the bacterium image using model 

parameters is defined. By minimising the cost function an accurate estimate of the model 

parameters is achieved, which is then used to estimate the bacterium dimensions. The efficiency 

of the bacterium model in creating a more accurate estimation of the bacterium dimensions is 

shown through experimental results.  

The advantages of utilising multiple user-defined features in defining the energy function in 

segmentation have been evaluated against state-of-the-art interactive segmentation methods. 
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The proposed new interactive segmentation method utilises user inputs, which are a series of 

pixels selected inside the object of interest. The proposed energy function has a part that 

penalises the segmentation if it does not include all objects in the intensity range of the selected 

pixels. It also has another part that penalises the segmentation if pixels without reachability to 

the selected pixels are included in the segmentation. The efficiency of this approach against 

automatic and single feature interactive segmentation is then analysed experimentally. 

A usability study to uncover the limitations of current technology in the design of a real-time 

contactless interaction system for biomedical systems has been performed, after designing and 

implementing various interfaces, their usability is evaluated by performing a user experience 

study, and factors essential for designing usable interfaces are uncovered. In the next stage an 

integrated system based on the wisdom gained from the usability study is designed. The 

efficiency of this new interface is evaluated in experiments. 

6.2 Contributions 

The research presented in this thesis contributes to and explores numerous areas of computer 

vision, human computer interaction and biological science. 

 6.2.1 Contributions to computer vision 

The thesis has made contributions to the theory and algorithmic design of segmentation 

methods in computer vision, which are summarised below. 

i. The proposed algorithm for interactive image segmentation developed within this thesis 

and presented in Chapter 4 uses an innovative approach based on a combination of 

features from user-provided prior information. The interactive segmentation method 

presented enables more accurate segmentation of organs in medical images. The 

accuracy is achieved by removing unrelated tissues with intensity similar to the object 

of interest, which normal segmentation methods cannot handle and leading to over 
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segmentation. The approach presented addresses this issue by utilising user input, which 

is incorporated in the energy function of level sets, and also random walk to make sure 

that only connected regions are segmented. 

ii. The interactive segmentation algorithm with random walk presented in this thesis 

contributes to advance the idea that designing a well defined energy function based on 

the problem specification is an achievable task. 

iii. Mitosis detection algorithms that are based on bacterium length distribution can benefit 

from the high accuracy bacterium length estimation presented in Chapter 3, section 3.2. 

It has been shown that there is a relationship between bacterium size and the bacterium 

cell division [13]. For some cells, division is not initiated until the cell reaches a certain 

size. The overestimation of bacterium size using a general segmentation approach 

makes the prediction of mitosis untrustworthy. By having a more accurate estimation of 

bacterium dimensions, more accurate estimation of the mitosis moment becomes 

possible. 

iv. The model fitting approach for the bacterium dimension estimation presented in 

Chapter 3 makes an essential contribution to the use of optimisation approaches in 

biomedical image analysis. Model fitting is achieved in three steps involving 

optimisation.  In the first step, a function that takes in a set of parameters and predicts a 

data set is defined.  In the second step, an error function that provides a number 

representing the difference between real data and the prediction is computed. This 

function is defined as a cost function.  The minimisation of this difference to find 

parameters is the last step. 

v. A new tracking approach to unmarked augmented reality (AR) is introduced in this 

thesis. The proposed markerless tracking approach uses the touched point in image 

coordinates, to detect the correct position to project virtual information. This tracking 

approach can be applied in the AR applications when previous information about the 

environment is available.  
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6.2.2 Contributions to Human computer interaction: 

The thesis makes novel contributions in the area of Human Computer Interaction, many of 

which are the first in the field. These are described below. 

i. A study of touch-based versus touchless interactions with objects in a very dense 

environment was carried out in this thesis. This study not only shows the limitations of 

each interface, it was also used for designing a more collaborative interactive system 

based on the lessons learned from the user experience. 

ii. The usability study has shown that being in control is a major user concern. 

In addition, the evaluation of the augmented reality application emphasises the necessity of 

more processing power such as a GPU on the handheld device for designing real-time high 

processing applications. 

6.2.3 Contributions to medical science 

i. The key issue in the success of laser-guided surgery is to know the boundary of the 

tumour being excised. An approach that does not rely on image processing is to view 

the tumour and surrounding tissue under a microscopic device and look for intensity 

differences to locate the tumour boundary. The use of user guided image segmentation 

enables the surgeon to make an accurate estimation of the boundary.  The results of 

segmentation can be further adjusted to the surgeon’s satisfaction by adding additional 

seeds. 

6.2.4 Contributions to biological sciences 

While the thesis has made strong contributions to computer science, as outlined in subsections 

6.1.1 and 6.1.2, the study area is that of biomedical images at the micro and macro level. The 

thesis has made a number of contributions in the field of biological sciences also, which are 
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outlined below. 

i. High accuracy estimation of bacteria dimensions, which is enabled by the algorithm 

presented in Chapter 3 will allow biology researchers to obtain a better approximation 

of bacteria dimensions. The more accurate approximation would allow them to better 

analyse bacterium expansion and its reaction to various external stimuli. 

ii. The bacteria dimension estimation algorithm can be added as a post-processing step to 

any general bacterium segmentation approach whenever a more accurate estimation is 

essential. 

iii. One of the outcomes of high accurate bacterium dimension estimation is a better 

approximation of bacterium morphology. This would assist biologists to better 

understand how bacteria cope with their environment by changing their morphology. 

6.3 Limitations and Future Work 
 
While the thesis has made a number of innovative contributions that are also highly useful in a 

production environment, inevitably there are omissions as well as further opportunities for 

improvement that have been uncovered by the research. The following are some of the 

limitations, along with suggestions for possible future extensions. 

 
i. The presented algorithm for accurate estimation of bacterium dimensions assumes that 

the bacterium is isolated. Therefore the intensity of a single bacterium is assumed to be 

unaffected by the intensities of neighbouring bacteria. In a highly dense bacterium 

colony, this is not the case, therefore a mixture model may be more appropriate for 

modelling the PSF.  

ii. The selection of the rectangle as the base of bacterium shape was to keep the formula 

simple as its representation does not require many parameters. Employing another shape 

like an ellipse as the base of the proposed algorithm, which has higher flexibility, may 

be effective in increasing the accuracy of the approach. 
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iii. Instead of selecting pixels from both the foreground and background [16,17], the 

proposed interactive segmentation algorithm starts by selecting pixels in the foreground 

object alone. This frees the user from having to select different seeds from different 

objects. In this approach, the pixels within the selected intensity range have the 

potential to be in the foreground, while the pixels outside the range are assumed to be 

part of the background. This approach may fail for images with objects that have similar 

intensity and are separated by a weak boundary. Future improvement may be possible 

by incorporating different labels in the energy function definition. 

iv. The current tracking method developed for the augmented reality application cannot 

attain real-time performance while also maintaining high accuracy. A possible way to 

increase the processing speed is to develop a parallel version of the algorithm and use 

GPU processing capability on handheld devices, when it becomes available. 

 

6.4 Concluding Remarks 

Computer vision aims to develop methods to simulate the human capability to understand and 

analyse images and to make inferences from them. Although the results achieved in this thesis 

are useful, there is still a long way to go to reach human intelligence. The capability to identify 

various objects inside the image and their boundaries in severe cases such as when there is 

occlusion is still an open problem. 
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