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Abstract

Advances of computational power, data collection and storage techniques are making
new data available every day. This situation has given rise to hypothesis generation
research, which complements conventional hypothesis testing research. Hypothesis
generation research adopts techniques from machine learning and data mining to
autonomously uncover causal relations among variables in the form of previously
unknown hidden patterns and models from data. Those patterns and models can
come in di↵erent forms (e.g. rules, classifiers, clusters, causal relations).

In some situations, data are collected without a priori supposition or imposition
of a specific research goal or hypothesis. Sometimes domain knowledge for this
type of problem is also limited. For example, in sensor networks, sensors constantly
record data. In these data, not all forms of relationships can be described in advance.
Moreover, the environment may change without a priori knowledge. In a situation
like this one, hypothesis generation techniques can potentially provide a paradigm
to gain new insights about the data and the underlying system.

This thesis proposes a general hypothesis generation framework, whereby as-
sumptions about the observational data and the system are not predefined. The
problem is decomposed into two interrelated sub-problems: (1) the associative hy-
pothesis generation problem and (2) the causal hypothesis generation problem. The
former defines a task of finding evidence of the potential causal relations in data.
The latter defines a refined task of identifying casual relations.

A novel association rule algorithm for continuous domains, called functional as-
sociation rule mining, is proposed to address the first problem. An agent based
causal search algorithm is then designed for the second problem. It systematically
tests the potential causal relations by querying the system to generate specific data;
thus allowing for causality to be asserted.

Empirical experiments show that the functional association rule mining algo-
rithm can uncover associative relations from data. If the underlying relationships
in the data overlap, the algorithm decomposes these relationships into their con-
stituent non-overlapping parts. Experiments with the causal search algorithm show
a relative low error rate on the retrieved hidden causal structures.

In summary, the contributions of this thesis are: (1) a general framework for
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hypothesis generation in continuous domains, which relaxes a number of conditions
assumed in existing automatic causal modelling algorithms and defines a more gen-
eral hypothesis generation problem; (2) a new functional association rule mining
algorithm, which serves as a probing step to identify associative relations in a given
dataset and provides a novel functional association rule definition and algorithms to
the literature of association rule mining; (3) a new causal search algorithm, which
identifies the hidden causal relations of an unknown system on the basis of func-
tional association rule mining and relaxes a number of assumptions commonly used
in automatic causal modelling.
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Knowledge discovery, hypothesis generation, data mining, causal modelling, associ-
ation rule mining, evolutionary computation, heuristic search, artificial neural net-
works, agent systems
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Chapter 1

Introduction

1.1 Thesis Overview

Traditional scientific research (or knowledge discovery) starts with a hypothesis sug-

gesting an interpretation or description of a phenomenon. This hypothesis becomes

the foundation for all further inferences and experiments. Its construction is heavily

dependent on the researcher’s vision and skills, such as observation, domain knowl-

edge, reasoning, imagination and creativity. Once constructed, a hypothesis leads

to the design of the experiments and data collection required to test it. Therefore,

this type of research is often called hypothesis-testing research (or hypothesis-driven

research).

The development of penicillin (in 1877 by Louis Pasteur) is a classic example

of constructing a hypothesis based on a researcher’s competencies [141]. Initially,

Pasteur simply observed how anthrax bacilli stopped growing in the presence of

mould. Then using his domain knowledge and creativity, he formed the initial

interpretation of the phenomenon, i.e., the hypothesis. As a result, experiments

were designed. Eventually, penicillin was developed.

However, in hypothesis-testing research, constructing a hypothesis is a slow

and incremental process, which requires the accumulation of domain knowledge

and the interest of researchers in progress towards new knowledge. Advances in
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computational power, as well as data collection and storage techniques have provided

researchers an overwhelming amount of data. Although critically important, the

rates at which hypotheses are manually constructed and experiments designed to

extract knowledge from data, have fallen behind the speed of data accumulation.

This situation has given rise to another type of knowledge discovery: hypothesis

generation.

Hypothesis generation is related to finding patterns from data through data

mining or machine learning tools [12, 184, 99, 50, 98, 141]. In situations in which

a prohibitive amount of data is collected, domain knowledge may not be su�cient

for the construction of a complete hypothesis [98]. The automatic generation of

hypotheses based on pattern searching and identification provides an alternative

approach to, and accelerates the process of, knowledge discovery.

In hypothesis generation research, the definition of a ‘hypothesis’ can take dif-

ferent forms; for example, as a rule, cluster, classifier, graph or equation [10]. In this

thesis, hypothesis refers to classical causal relations in a system. Causal relations

can provide insights about a system, as characterised by the variables measuring it

and can also be used to apply e↵ective control to a system. In the literature, the

hypothesis generation approach for a causal structure falls in the field of automatic

causal modelling [181].

The problem that automatic causal modelling aims to solve is reconstruct-

ing the causal structure of a system from only observational data. This is made

possible by the connection between a causal structure and conditional indepen-

dence/dependence. A true causal structure which satisfies the Causal Markov Con-

dition (CMC) encodes conditional dependencies among its variables [147]. That

is, if its variables are connected by causal relations, they show certain dependency

patterns. Conversely, if the dependency patterns of the variables are due to only

the underlying causal relations, they can be tested to retrieve these relations from

data, as demonstrated in automatic causal modelling algorithms [181].

However, retrieving a causal structure in this way makes a number of assump-

Bing Wang November 26, 2014
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tions about the data and underlying causal structure. Firstly, causal relations are

assumed to exist in observational data, with the underlying causal relations satisfy-

ing the CMC, while the dependency patterns of observational data are caused only

by the underlying causal relations (i.e. the faithfulness assumption [147]). No latent

variables exist in a system. When the observational data are comprised of contin-

uous data, additional assumptions are included. The interrelations of continuous

variables are assumed to be linear and the density distributions of their associated

values assumed to be identical.

Instead of developing hypothesis generation approaches for a system confined

by a number of assumptions, this thesis considers a more general scenario. In it, the

interrelations of variables measured from a system are not assumed to be subject

to only causal relations. In addition, no specific a priori knowledge is assumed to

be available about the underlying structure of the system. The concern here is that

there are situations, in which the observational data collected are not particularly

for the purpose of retrieving causality. For example, in the big data problem [116],

data are recorded on daily bases. No specific research purpose was set when the

data were recorded. People are interested in analysing the data. However, what

questions can be answered remains unknown. Hypothesis generation helps to form

initial questions about how to use the accumulated data.

Another example is in the field of intelligent systems in which sensors record

activity data from the environment and can perform pre-defined tasks to adapt to

human activities through machine learning techniques [122]. Such tasks can be de-

veloped manually when we know the common activities in typical scenarios, e.g.,

o�ces, lecture theatres. However, we need new ways for an intelligent environ-

ment agent to hypothesise about how to adapt to non-standard scenarios for which

knowledge about what the observational data are describing is not available.

A similar situation occurs in cyber security in which, due to the constant evolu-

tion of hacking activities, previous knowledge about abnormal activities in log data

can get outdated. How to use log data to actively acquire updated insights into a

system is an interesting research direction for which an agent that can generate new

Bing Wang November 26, 2014
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hypotheses from data could be an advantage [174].

Generalising from the above scenarios, this thesis first defines the problem of

hypothesis generation for continuous domains whereby a system is measured by a

set of continuous variables for which no specific a priori knowledge regarding their

underlying relations is assumed. Then, the proposed hypothesis generation problem

takes the observational data of the system as input and considers the system’s

underlying casual structure as its final output. In a situation in which minimum

domain knowledge is available, identifying causal relations could provide a maximum

information about the target system.

The strategy in this thesis for dealing with such situations is to focus on devel-

oping hypothesis generation approaches in particular ones that can identify causal

relations. The inspiration for this is that, without specific domain knowledge, causal

relations give us direct insights into a system. This information is particularly use-

ful as it provides solid a priori knowledge about how to understand and control the

system. However, it is possible that the variables measured from a system do not

possess causal relations. If so, the associative relations among them can be used as

evidence for conducting causal hypothesis generation.

From the above, this generalised problem is further decomposed into two sub-

problems: an associative hypothesis generation problem (AHGP) and a causal hy-

pothesis generation problem (CHGP). The AHGP defines a task of identifying the

associative relations in given observational data, while the CHGP defines a task of

identifying causal relations. This decomposition is as shown in Figure 1.1.

Given the proposed problem definitions, another main focus of this thesis is to

develop approaches for solving them. These are designed separately. For the AHGP,

firstly, a novel associative relation representation, termed the functional association

rule (FAR) is proposed. The approach for searching for associative relations in the

FAR form is then designed. To solve CHGP, an experimental causal search approach

is introduced.

This thesis draws on association rule mining (ARM) to build a solution to the

Bing Wang November 26, 2014
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Causal 
Hypothesis 
Generation

Problem

Associative 
Hypothesis 
Generation

Problem
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X

G

 Hypothesis Generation for 
Continuous Domains

AHGP CHGP

causal graph

Figure 1.1: General view of hypothesis generation problem and sub-problems. X-
observational data, F - a set of associative hypotheses. G - final causal hypotheses.

AHGP. However, in the literature, conventional ARM for continuous variables has

a disadvantage when building up associations among these variables. Conventional

ARM mainly converts variable values into intervals. By applying such discretisation,

it can find associations among discretised sets rather than continuous variables.

Therefore, an alternative rule form, a FAR, which directly represents the associative

relations among variables, is proposed. A FAR groups and separates the related

variables. Identifying the FARs in the observational data establishes the evidence

and inputs for the CHGP.

Two specific types of associative relations are investigated as FARs: linear asso-

ciative relations and general associative relations. In this thesis, a linear regression

model is adapted for the former and artificial neural networks (ANNs) for the latter.

As the downward closure property often adopted in ARM does not apply in the FAR

definition [6], in this thesis, functional association rule mining (FARM) is cast as

a heuristic search process. Its search space is infinitely large since the number of

possible combinations is large enough to be considered unbounded. It is also decep-

tive since similar combinations can perform quite di↵erently. It is multimodal since

we are expecting there to be multiple valid rules existing in the data. For dealing

with such a di�cult, rugged, multimodal search space, evolutionary algorithms are

often more e�cient than other techniques [208]. An evolutionary algorithm (EA)

Bing Wang November 26, 2014
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works with a population of candidate solutions that permits concurrent exploration

of di↵erent parts of the search space, with a crossover operator working on multiple

di↵erent genes at the same time. It has the potential to preserve interrelated vari-

ables in its building blocks. EAs as heuristic search methods are known for their

robustness and low sensitivity to noise, therefore they can be applied for designing

the search approach. Three EA-based search methods are proposed for linear func-

tional association rule mining (LFARM) and cooperative co-evolutionary algorithm

based approach for the general functional association rule mining (FARM).

In this thesis, the FAR and its mining approaches serve as a solution to the

AHGP. However, independent of the context of hypothesis generation, they also

contribute to continuous variable ARM which provides a novel rule form to the defi-

nitions of association rules as well as the corresponding mining approaches. This sug-

gests a new perspective on what associative knowledge can be mined from datasets

besides discretising their variables. Many if not most real world datasets comprise

continuous variables.

The existence of FARs provides evidence of potential causal relations with the

results from FARM comprising the input for the CHGP. FARs also reduce potential

causal relations to subsets of the original measured variables. As per the above-

mentioned general problem definition, a priori knowledge about the underlying

structure of the system is not required. By relaxing the assumptions about underly-

ing relations, our proposed solutions for causal hypothesis generation is based on the

potential outcome of interventions. This has become popular in hypothesis testing

research [15, 77, 153, 202]. This often relies on manually designing experiments on

the variables of interest selected by domain knowledge. Since FARs group these

variables, an intervention can be systematically applied on the associated variables.

Then, an experimental casual search algorithm is designed to apply interventions on

the potential causal relations specified by the FARs.

Empirical experiments are conducted to study the performance of the designed

solutions, with comparisons of the proposed LFARM algorithms using complexity

and perceptual selectivity metrics suggesting that there is no significant di↵erences

Bing Wang November 26, 2014
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among three EA-based LFARM approaches in these respects. Experiments on the

general FARs indicate the similarity between those mined and the hidden associative

relations in the observational data. The main factor a↵ecting performance identified

as the overlapping of the underlying relations. Experiments on the CHGP show that

it has a low error rate in identifying the underlying causal relations. The error rate

is influenced by the quality of the mined FARs. The remainder of this chapter

restates this thesis research objectives and questions, summarises contributions and

significance, and concludes with an overview of its organisation.

1.2 Research Objectives

The primary focus of this thesis is to formulate a generalised hypothesis generation

problem and develop systematic approaches for solving it. This research is focused

on the following specific objectives:

• The first objective is to define a general hypothesis generation problem for au-

tonomously learning about unknown systems measured by a set of continuous

variables. We also aim to identify sub-problem components that may assist

with the design of solutions.

• The second objective is to design algorithms as solutions for the defined au-

tonomous hypothesis generation problem, and its subproblem components.

This step is focused on how the algorithm(s) can probe the system for po-

tential useful knowledge. This objective will be measured by the features of

the probing results, for example, the number of rules found, their complexity,

their similarity to the known rules in the underlying system and comparison

with other state-of-the-art algorithms in relevant fields.

• The third objective is to design algorithm(s) that can finalise the hypothe-

sis generation process based on the probing process. This objective will be

measured by error rate of the final hypotheses generated by the algorithm(s)

compared with knowledge of interest in pre-designed systems.

Bing Wang November 26, 2014



CHAPTER 1. INTRODUCTION 8

The scope of the proposed problem is an unknown system that is measured by

a set of continuous variables. It has assumed that there is limited specific domain

knowledge about its underlying relations known in advance.

1.3 Contributions and Significances

In addressing the above research objectives, this thesis makes the following contri-

butions:

• A new problem definition for hypothesis generation in continuous domains

is proposed. This problem definition looks into situations where data are col-

lected from unknown system, but domain experts have no su�cient knowledge

to systematically construct hypothese about the underlying system, or manual

hypothesis testing does not catch up with the speed of data accumulation. The

novelty of our problem definition lies in the fact that it does not assume priori

knowledge about the hidden structure in data. The proposed problem defini-

tion does not specially require that the unkown system is only constructed by

causal relations. The underlying system can even include several independent

systems. However, in literature, automatic causality investigation often poses

a number of restrictions to the system, e.g. Causal Markovian Condition,

faithfulness[147].

Our hypothesis generation problem is further decomposed into two sub-problems,

the AHGP and CHGP, which are presented in Chapter 3. Decomposing the

problem into a hierarchical structure introduces two benefits. On one hand,

decomposition enables a probing step, which makes the relaxation of under-

lying system possible. On the other hand, it introduces a useful pattern that

also plays an important role in knowledge discovery, association pattern. By

introducing decomposition, association is not just one-o↵ investigation in data

mining, but also preparation for investigating causal relations. The common

critics on mining association that association relations may lead to misleading

Bing Wang November 26, 2014



CHAPTER 1. INTRODUCTION 9

interpretation (as association does not always imply causation) can be allevi-

ated, as we integrate the study of association into causal hypothesis generation.

Besides, due to this probing step of associative relations, when we proceed to

investigate causal relations, constraints on the unknown system can be re-

laxed to a certain extend. This decomposition creates a mutual support and

integration between associative relation study and causal relation study.

• Two FAR representations, LFAR and FAR, based on the linear regression

model and ANNs to narrow down the search space for possible causal relations

are introduced. They are used to probe associative relations among a set of

variables. Novel algorithms for mining associative relations represented by

LFAR and FAR are proposed.

Search for associative relations in continuous domain falls into the field of

association rule mining. However, the conventional methods convert variables

into intervals, rather than catching variable level associations. Interval based

association rule often makes it relatively di�cult to progress to causal relation

investigation, as the relations are among subsets of the variable values, rather

than general relations among variables. The LFAR and FAR definition extends

the association rule mining to reflecting variable level association. Such an

extension is important as it forms the foundation for investigating whether

there are causal relations hidden in the unknown system.

In Chapter 3, we present the detailed definition of the FAR and LFAR, and

aslo discuss the characteristics of the FAR and LFAR generation from a search

perspective. Due to the new definition of FAR and LFAR, conventional ARM

framework is no more suitable for generating FAR and LFAR from a given

dataset. Therefore, we propose novel algorithms for mining such associative

relations. In Chapter 4, LFARM approaches are designed according to the

representation and search strategies discussed in Chapter 3, with three evolu-

tionary algorithm-based mining approaches designed for the LFARM problem.

Two metrics for evaluating the quality of the generated FARs by comparing

the behaviours of di↵erent algorithms are proposed. Empirical studies show

Bing Wang November 26, 2014
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that, in general, three algorithms have significantly di↵erent performances in

the number of LFARs found and the computational time used. However, for

the complexity and perceptual selectivity, there is no evidence that shows dif-

ferences among the three approaches.

Linear association rules have the advantage of being simple and easily inter-

preted. However, such simplicity is also a barrier to them capturing complex

relations among variables as it is common for the underlying relations of vari-

ables to form complex non-linear relations. Chapter 5 presents the general FAR

form and its mining approach (FARM) for improving the representational ca-

pability of the linear FAR. Details of the implementation of the cooperative

co-evolutionary algorithm for FARM are provided, with empirical experiments

showing that the general FARM can uncover the associative relations. The

factor that influences the performance of the algorithms is identified as the

overlapping of the underlying relations. This algorithm is also compared with

two state-of-the-art evolutionary algorithm based association rule mining ap-

proach [119, 8]. Although, our problem definition is di↵erent from interval

based association rule, since they both deal with continuous variables, we con-

duct comparison experiments, and FARM has shown competitive performance.

• An experimental causal search algorithm for causal hypothesis generation

based on FARs is proposed. FARs place the given variables into groups, where

those within one group are interdependent, and causal hypotheses are built on

these confined variable sets. We present this algorithm as an agent architec-

ture, which systematically applies interventions on the interrelated variables

and, according to their consequences, can establish the causal relations. Con-

ventional automatic causal modelling requires that the interrelations reflected

among variables are only caused by causal relations [147, 181]. This assump-

tions imply that a certain understanding/domain knowledge about the target

system is necessary for modelling causal relations. With rapid development of

monitoring techniques and accumulation of data, domain knowledge is often

unavailable or not su�cient to confirm the characteristics of the underlying

Bing Wang November 26, 2014
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structure. Our approach relaxes this condition, it does not require specific

assumptions between the underlying structure and observational data. This

characteristic allows it to be used for exploring new environment with limited

prior knowledge. These content is presented in Chapter 6. Two sets of ex-

periments (50 and 25 datasets respectively) on synthetic datasets with causal

relations of di↵erent complexities are conducted and used to investigate the

algorithm’s performance in retrieving the underlying causal relations, with the

factors that a↵ect its performance discussed. In addition, a play-board envi-

ronment is designed to introduce context for the causal investigation, with the

experiments on its underlying causal relations revealing two other factors that

influence the experimental causal search algorithm.

Bing Wang November 26, 2014





Chapter 2

Literature Review

2.1 Introduction

Hypothesis generation serves a complementary role to hypothesis testing in knowl-

edge discovery. It uses data mining and machine learning techniques to automat-

ically find patterns and models in data. It accelerates the knowledge discovery

process in data–rich fields where the domain knowledge for manually designing in-

dividual hypotheses is often limited [98]. However, in general, it still relies on a

certain amount of domain knowledge to interpret semantics, formulate interesting

knowledge and define the regularities for generating corresponding hypotheses. For

example, one hypothesis generation study of genomics conducted by King et al.

[99] first encodes the background knowledge of biochemical equations of aromatic

amino acid synthesis pathways. Its goal is to generate connections between genetics

and biochemistry, with a logical model of yeast metabolism attached as a priori

knowledge and the hypotheses automatically generated by abducting the di↵erent

probabilities from the model.

For the common hypothesis generation research studies in the literature, data

are often collected assuming a certain purpose and their relevance to certain confined

fields. However, although these studies have general research goals and certain

domain knowledge of the fields, hypothesis testing research cannot catch up with
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the speed of data accumulation [98]. In contrast, data can be logged on a very general

basis without a specific purpose being initially set or a clear idea of how to use the

data collected. When domain experts analyse such datasets, they are often biased

by their existing knowledge and focus on the patterns that they are familiar with.

Faced with such a situation, this thesis raises the question of whether the hypothesis

generation paradigm can provide methods for establishing initial insights into, and

understanding of, the system behind the data, thus avoiding human bias. As the

scenarios considered place more constraints on the available domain knowledge, a

hypothesis can be defined by the causal relations in the system behind the data.

The advantage of such a definition of hypothesis is that, it not only provides a

compressed representation of the data but also implies potential control strategies.

However, without particular domain knowledge, it is also not known in advance

whether any causal relation exists in the data. As potential causal relations join

related variables, associative relations are often used as evidence and to refine the

related variables for further hypothesis generation for causal relations.

The generalised problem on which this thesis focuses involves synthesising re-

search from a number of di↵erent fields, including ARM, heuristic searching and

causal models, which seek to answer similar questions. This chapter begins with

Section 2.2 by reviewing the research field of automatic identification of associative

relations, that is, ARM. As well as the general framework, its applications to con-

tinuous domains are also reviewed to determine how they can be adopted to the

problem with which this thesis is concerned. Without specific domain knowledge

of the underlying system for guiding hypothesis generation, a generation strategy

often relies on heuristics. Consequently, evolutionary computation as a heuristic

search approach is discussed in Section 2.3. The theory and notions of artificial neu-

ral networks (ANNs), and their connections to the representation of the associative

relations of the proposed problem definition are reviewed in Section 2.4. The above

three sections provide background knowledge for the work presented in Chapter 3

and Chapter 4. The principles and algorithms that focus on causal inference are

presented in Section 2.5 and their relevance to the problem with which this thesis

Bing Wang November 26, 2014
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is concerned are discussed. The types of hypothesis definitions commonly used in

hypothesis generation research are reviewed in Section 2.6 to assist in further distin-

guishing the interest of this thesis from those of other hypothesis generation studies.

Finally, Section 2.7 provides a summary of this chapter.

2.2 Hypothesis Generation for Associative Rela-

tions: Association Rule Mining

Strategies for generating hypotheses have included observing associations in research

settings; for example, a study of the correlation between marital happiness and a

certain gene (5-HTTLPR) [29]. On the one hand, although critically important,

they are based on domain knowledge and interest of the individual researcher. On

the other hand, some major discoveries have been the product of serendipity from

observations beyond domain knowledge; for example, Louis Pasteur observed that

the growth of the anthrax bacilli in a culture was inhibited when the bacilli were

contaminated with moulds (1877), an associative relation that led to an important

discovery in modern pharmacology. Focusing attention on such an association, re-

quires the researcher to not be biased by his/her domain knowledge and be open

to factors not covered by his/her background knowledge [141]. The substantial

increases in data accumulation speeds have stimulated the rapid development of

data mining. This o↵ers the potential to break down barriers to the rapid growth

of knowledge bases by making use of unbiased observations to find new leads for

follow-up studies. The specific sub-field that deals with associative relations mining

in data mining is association rule mining (ARM), the concept and techniques of

which are discussed in the following sections.

ARM is a family of techniques that searches for associations in datasets. The

original problem it addressed was finding a correlation among sales of di↵erent prod-

ucts (the shopping basket problem) [6]. It then became a focused theme in data

mining research due to its simplicity, interpretability and adaptability to a broad

Bing Wang November 26, 2014
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range of problems. Many e↵orts have been dedicated to this research and tremen-

dous progress has been made. The following sections review ARM from three main

perspectives: basic ARM framework, ARM approaches, and ARM for extended

patterns.

2.2.1 Association Rule and Association Rule Mining Frame-

work

An association rule represents a relationship between two sets of variables, speci-

fying that their co-occurrence in a dataset exceeds some threshold, and its formal

definition is as follows: Let I = {I1, I2, ..., Im} be a collection of items. A sub-set of

I (A ✓ I) is called an itemset and, if k = |A|, we call A a k�itemset. Let D be a

dataset, each instance of which is a sub-set of I and is called a transaction (T ) as-

sociated with an identifier (TID). Then, if A ✓ T holds, an A itemset is supported

by a T . An association rule employs the expression A ) B, where A ⇢ I, B ⇢ I

and A\B = ;. It is supported by database D, which is the fraction of transactions

containing A [ B, with confidence used to describe the percentage of transactions

in D, which contain both A and B.

support = P (A [B)

confidence = P (B|A)

Support and confidence are important measures of interestingness in terms of

an association rule as they reflect its validity and certainty, and also provide the

criteria for extracting association rules. ARM is a two-step process. Firstly, it

identifies frequent itemsets in the data. An itemset (A) is frequent if support(A) �

min supp (a pre-defined minimum support threshold). Once all frequent itemsets

and their support values are known, deriving association rules is straightforward.

The following rule generation step checks the confidence of all the rules of the forms

Bing Wang November 26, 2014
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A\B ) B, B 2 A, B 6= A 6= ; and drops all those that do not exceed the minimum

confidence value. It is su�cient to use the support values of the sub-sets of A to

determine the confidence because of the Apriori property [7], that is, all non-empty

sub-sets of a frequent itemset must also be frequent. Based on this, the mining task

can be reduced to the problem of finding all itemsets that are frequent with respect

to min supp.

For practical applications, looking at all the sub-sets of I in order to find fre-

quent patterns is not desirable as a linearly increasing number of items implies an

exponentially increasing number of itemsets that need to be considered. Due to

this exponential growth in complexity for identifying frequent patterns, naive explo-

ration techniques are often intractable. If a boundary that separates the frequent

and infrequent itemsets is also independent of any specific data and min supp, the

search space can be compressed. Substantial research e↵orts have been devoted to

finding an e�cient means of discovering frequent itemsets.

2.2.2 Association Rule Mining Approaches

The fundamental algorithm for ARM is the Apriori algorithm [7], which has had a

great impact on a variety of later ARM research and, as the name implies, uses its

Apriori property as prior knowledge to reduce exploration.

This algorithm derives candidate frequent itemsets using an iterative search

method. For example, suppose that L
k

represents a set of valid frequent itemsets of

cardinality k (i.e., the support of each itemset in L
k

exceeds the value of min supp),

with C
k

its candidate set (i.e., the superset of L
k

members of C
k

, which can be

either frequent or not frequent). In order to generate L
k

, the Apriori algorithm

uses the valid frequent sets of cardinality k � 1, L
k�1. Supposing that the valid

frequent set is L
k�1, the candidate set (Ck

) is generated by applying the ./ operator

on its members. Given two frequent itemsets ( l
i

= {l
i

(1), l
i

(2), ..., l
i

(k � 1)} and

l
j

= {l
j

(1), l
j

(2), ..., l
j

(k� 1)}), they can be merged into a k-itemset only when only

their last items are di↵erent, as shown in Equation 2.1. The items in each itemset
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are sorted in a certain order (e.g., alphabetically), and the dataset is scanned to

determine support of the candidates in C
k

. Then, the Apriori property is applied

to compress the exploration space of C
k

. If a sub-set of an itemset candidate in C
k

is not in L
k�1, that can be deleted from C

k

(by applying the Apriori property), a

process detailed in Algorithm 1.

c = {l
i

[ l
j

| l
i

, l
j

2 L
k�1^

{l
i

(1), l
i

(2), ..., l
i

(k � 2)} = {l
j

(1), l
j

(2), ..., l
j

(k � 2)}^

l
i

(k � 1) 6= l
j

(k � 1)}

(2.1)

where c refers to a k-itemset.

2.2.2.1 Candidate Generation ARM Algorithms

The Apriori algorithm provides a standard search space reduction technique, mainly

through its Apriori property, and also features a family of ARM algorithms, which

generate candidates for identifying frequent itemsets. However, candidate generation

still su↵ers from a very large number of candidate sets, which requires repeated

scans of the database to check candidates by pattern matching. An extension of the

Apriori algorithm [136] is delayed accrual, which is based on the observation that

any support of itemset C
i

(|C
i

| = {k + 1, k + 2, ..., 2k}) can be the union of some

pair of L
k

itemsets. Thus, from a single scan of D, the support of all candidates of

lengths k + 1, k + 2, ..., 2k can be computed. However, a trade-o↵ has to be made

between the time saved by reducing the number of dataset access and the number

of false positives generated through the projection of C
k

.

Dynamic itemset counting [32] aims to reduce the number of database scans

required to determine the support of frequent patterns. Its main concept is that

it allows support counting of larger frequent patterns during early scans of smaller

frequent patterns using dataset partitioning and checkpoints. If, during processing,

all (k�1)-itemsets and larger patterns (e.g., k-itemset) are determined to be frequent
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Algorithm 1: Pseudo code of basic Apriori algorithm [6, 71]

Intput : transactional database (D), min supp
Output: all frequent itemsets (L)

1 k = 1
2 L1 = {frequent 1-items}
3 for k=2; L

k�1 6= ;; k ++ do
4 C

k

= apriori gen(L
k�1)

5 foreach transaction t in D do
6 C

t

= subset(C
k

, t);
7 foreach c 2 C

t

do
8 c.count ++
9 end

10 end
11 L

k

= {c 2 C
k

|c.count � min supp}
12 end
13 Return L = [

k

L
k

14

15 apriori gen(L
k�1)

16 for i = 1; i < sizeof(L
k�1); i++ do

17 for j = 1; j < sizeof(L
k�1); j ++ do

18 if {l
i

(1), l
i

(2), ..., l
i

(k � 2)} = {l
j

(1), l
j

(2), ..., l
j

(k � 2) } ^
l
i

(k � 1) 6= l
j

(k � 1) then
19 c = l1 ./ l2
20 if has infrequent subset(c, L

k�1) then
21 delete c
22 else
23 add c to C

k

24 end
25 end
26 end
27 end
28 Return C

k

29

30 has infrequent subset(c, L
k�1)

31 foreach (k-1)-subset s of c do
32 if s /2 L

k�1 then
33 return TRUE
34 else
35 return FALSE
36 end
37 end
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at a particular checkpoint, the count of occurrence starts until the scan reaches

the same checkpoint during the next iteration. As, within a single scan, frequent

patterns of multiple lengths can be checked, the overall amount of data access is

reduced.

Direct hashing and pruning (DHP) [144], a hash-based technique, deals with

e�ciency from the angle of reducing the number of candidate frequent itemsets as

the more generated itemsets, the more pattern matching is required. When scanning

each transaction in the database to count the support of candidate k-itemsets, DHP

accumulates information about candidate (k+1)-itemsets in advance by hashing the

possible (k + 1)-itemsets of each transaction into di↵erent buckets of a hash-table

structure and increasing the sizes of their corresponding bucket counts. As a (k+1)-

itemset with a corresponding bucket count below min supp cannot be frequent, it is

deleted from the candidate set. The algorithm also incorporates progressive dataset

pruning to discard items and objects of no further use. As a transaction that does

not contain any frequent k-itemsets cannot contain any frequent (k+1)-itemsets, it

can be marked or removed from further data scans. This study showed significant

speeding up of Apriori for short frequent itemset lengths, especially 2. A follow-up

study of perfect hashing and pruning [142] used perfect hashing to eliminate the

hash-table collision that a↵ects the algorithm’s performance in DHP.

The partition algorithm, which adopts a divide-and-conquer approach, is partic-

ularly suitable for very large databases and ideal for parallelisation [170]. It discovers

all valid itemsets in two dataset scans and consists of two phases. The first divides

dataset D into n non-overlapping partitions, in each of which frequent patterns are

found and called local frequent itemsets. The data structure is then converted into

one that for each itemset the record is the TIDs containing it. Consequently, one

scan can find all local frequent items. Although not all local frequent itemsets are

always frequent in reference to the entire dataset (D), they are candidate item-

sets with respect to D. The collection of these itemsets forms the global candidate

itemsets for D and a second scan of the dataset assigns the real supports to each

candidate itemset to derive the final output. The e�ciency of such an algorithm
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is further improved in the studies conducted by Mueller et al. [136] and Lin et

al [113]. The SPINC algorithm reduces processing time by dynamically processing

global candidate frequent itemsets and starting their counting supports during the

first scan, which results in reductions in scanning times. The study carried out by

Lin et al. focuses on the partitioning process with the aim of eliminating data skew

in the partition results, which may cause the generation of false candidates [113].

While many studies focus on the e�ciency of mining algorithms, how the data’s

representation, organisation and access may a↵ect performance is also a research

interest. The data formats used in ARM in its very basic form are horizontal and

vertical. That using the identifier TID is horizontal, that is, each row contains items,

whereas a vertical data format uses an item to lead a record and each row contains

the TIDs with that item. Equivalence CLAss Transformation (ECLAT) [212] is an

approach for mining frequent itemsets using the vertical data format, which first

intersects the TID set of every pair of frequent single items, with its following

steps based on the Apriori property that candidate k-itemsets are constructed from

frequent (k � 1)-itemsets, until no more frequent itemsets can be found.

The bitmap-based algorithm optimises the e�ciency of association rule discov-

ery by transferring the data into a bitmap format (i.e., every couple of< transaction�

item > is represented by a bit in a bitmap array, with bit i encoding the presence or

absence of the itemset in transaction TID
i

) [64] . The e�ciency of this algorithm

emanates from its calculations of the supports of itemsets through manipulating

the bitmap together with logical operators. The naive bitmap algorithm (NBM)

works directly on the bitmap while the hierarchical bitmap algorithm (HBM) uses

a bitmap index to take advantage of the sparsity of a typical bitmap.

The column-wise approach, which uses a column-based data access, is concerned

mainly with datasets containing large items (i.e., each transaction contains many

di↵erent items in contrast to datasets with large numbers of short transactions). It

uses intersections to create candidate frequent itemsets and, similar to the Apriori

algorithm, uses transactions with horizontal layouts but its advantage is limited by

the characteristics of the data to be processed [49].
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Yen and Chen [210] proposed a graph-based technique using a vertical bit layout

of the data as a starting point (i.e., each item is converted to a binary array of the

length of the number of transactions, where 0 means a transaction does not contain

this specific item, otherwise the bit is 1). When putting two items through the logic

AND operator, with the number of 1s in the result greater thanmin supp, a directed

edge added between two 1-items points to the one with the higher index (the items

are sorted in a certain order). When generating a frequent k-itemset, the last item

in the (k � 1)-itemset is used to extend this itemset into a k-itemset. If there is a

directed edge from the last (k � 1)-itemset to another item, the (k � 1)-itemset is

extended to a k-itemset. The support of the new candidate k-itemset is calculated

by applying the AND operator to the itemset’s members.

Since the number of records in a dataset can be very large, one type of processing

is to simply use a sample of the dataset. In contrast to the abovementioned data

reduction method, which marks o↵ transactions according to their usefulness for

future scans, a sampling approach proposed by Toivonen et al. [194] samples dataset

D and applies ARM to only the sampled data (S), whereby a trade-o↵ between

degrees of accuracy and e�ciency need to be made. The sample size of S is such

that the search for frequent itemsets can be undertaken in main memory and, since

the mining is on S, as it is possible that some global frequent itemsets will be missed,

a lower support threshold is used for the sample data. After the frequent itemsets

(L
s

) are found, the original data are used to recalculate the support of them. The

sampling approach is especially beneficial when the e�ciency of the application is

of utmost concern.

Candidate generation algorithms based on the Apriori property can compress

the candidate size and there is a rich body of research on improving their e�ciency.

The two problems of the candidate generation approach mentioned above (i.e., a

huge number of candidate sets and repeated scans of the database) can be reduced

but not avoided. In contrast, frequent pattern growth algorithms eliminate the need

for candidate generation through the creation of pattern growth trees and conditional

databases.
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The first frequent pattern-growth method (FP-growth) [72], which was proposed

by Han et al. to mine a complete set of frequent itemsets without candidate genera-

tion, works in a divide-and-conquer way. The first scan of the data extracts frequent

1-itemsets and sorts them in descending order. Then, the database is scanned again

to compress the transactions and put item-count information into a FP-tree, which

is constructed as follows: the algorithm first creates a root node (marked “null”)

and then adds a branch for every item in the data, with the order of the items in

the branch according to the descending order of their frequencies. During this pro-

cess if, for one transaction starting with an item, for example, I1, there is already a

branch in the tree with an I1 connected to its root, this new transaction merges into

the existing branch, but separates into a new branch at this item if the next one

in the existing branch is di↵erent. A count number is attached to each node and,

when parts of two transactions overlap on one branch, the counts of the overlap-

ping nodes accrue. On a FP-tree, mining is a bottom-up process in which, starting

with a frequent pattern of length 1, the algorithm searches the tree to collect all

its prefix paths (the set of prefix paths in the FP-tree that occur with this pattern)

and then constructs its conditional FP-tree. Items with counts in the collection of

prefix paths of less than min supp are dropped and frequent patterns constructed

by concatenating the filtered prefix paths with su�xes, with the support of each

itemset that of the least frequent item in that combination.

FP-growth has been shown to be e↵ective in mining datasets with not too many

di↵erent items but when this number increases, the size of the FP-tree typically

expands exponentially due to the reduced number of commonly shared prefixes.

Grahne et al. proposed an FP-growth* using an array-based structure to reduce the

number of tree traversals [68], the algorithm of which relies on a density heuristic to

determine the benefit of constructing an array and its instantiation is generally not

guaranteed. The study of Wang et al. [197] improved the FP-growth algorithm by

alleviating the need to generate conditional pattern bases. It processes the FP-List

in a top-down order, recursively creating conditional FP-Lists.
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2.2.2.2 Pruning

In many cases, the basic ARM produces an extremely large number of association

rules, often thousands or even millions because, if a pattern is frequent, its sub-sets

are all frequent, especially when the min supp set is low. It is almost impossible

for end-users to comprehend or validate such large numbers of complex association

rules, especially as most can end up being unrelated or uninteresting. To overcome

this problem, specific patterns, such as the closed and maximal frequent patterns

[145, 97], have been proposed.

It is usually assumed that domain experts know what patterns may be inter-

esting and useful, and the contexts in which they have high possibilities of being

discovered. Including this knowledge in the loop of the ARM process to confine the

search space is one strategy for pruning, is known as constraint-based mining and

includes rule, data and interestingness constraints [138, 104].

Rule constraints specify the form or condition of the rules to be mined. The

meta-rule is a rule form whereby the user specifies the form or length of association

of interest and the mining algorithm only generates rules of this specific form; for

instance, P1(X, Y )^P2(X,W )) buys (X, “o�ce software”) , where P1 and P2 are

the predicates the ARM algorithm can match using the attributes and values from a

given database. In addition, a user can specify the length of the rule required. The

use of the meta-rule as a syntactic or semantic filter to define the forms of interesting

single-dimensional association rules was proposed by Klemettinen et al. [102], while

a relation-based approach to the meta-rule-guided mining of association rules was

studied by Fu et al. [61].

Rule constraints can also set limits on pattern spaces to reduce the number

of patterns needed to be checked during an ARM process. According to the type

of itemsets to be pruned, there are five categories of pattern mining constraints:

(1) if an itemset does not satisfy an anti-monotonic constraint because none of its

supersets can satisfy it, its supersets can be pruned; (2) if an itemset satisfies a

monotonic constraint rule, so do all its supersets; (3) if a rule constraint is succinct,
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the sets that satisfy it can be precisely generated, even before support counting

begins; (4) convertible rule constraints describe the constraints that belong to none

of the above categories but may become so if the items in an itemset are arranged in

a particular order; and (5) inconvertible constraints cannot be transferred to any of

the above four constraints. Methods for applying ARM under the above constraints

have been discussed in various studies [138, 104, 149]. Constraints can also be applied

to the data space, a strategy that prunes pieces of data if they will not contribute

to the subsequent generation of satisfiable patterns in the mining process, and can

introduce a concept of hiding rules, as discussed by Wu et al. [207].

Interestingness constraints, such as support, confidence and correlation, can

be applied after mining to filter out discovered rules. The statistical independence

of rules in data mining is studied by Shapiro [150], while interestingness measures

of association rules are discussed in a number of studies [5, 33, 16, 206], and those

forming filter infrequent patterns are studied in the work of Jin et al. [93]. Ontology-

based domain knowledge can be encoded into the post-mining process to preserve

only patterns of interest to users [117].

2.2.3 Association Rules for Extended Patterns

In real-world applications, as end-users are often interested in specific frequency

patterns, which may require the data types to receive specific treatments, there is a

need for research on extended frequent patterns.

Multilevel and multidimensional patterns In many applications with

multilevel and multidimensional patterns, it is di�cult to find strong associations

among primitive data items due to the sparsity of data. However, using an as-

sociation rule in high-level abstraction can reasonably e�ciently reveal interesting

patterns in certain applications. Multilevel association rules provide su�cient flexi-

bility for mining and traversal at multiple levels of abstraction whereby one can first

mine high-level association frequent itemsets and then only those itemsets the corre-

sponding high-level itemsets of which are frequent [185, 70]. Redundant rules can be
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filtered out if lower-level rules can essentially be derived based on higher-level rules

and the distributions of corresponding items [185], while e�cient mining can also be

achieved if min supp at di↵erent levels varies. If the LHS of a rule includes multiple

predicates, e.g., age(X, “20...29”)^ income(X, “52K...58K”)) buys(X, “iPad”), it

is a multidimensional association rule.

Infrequent and negative patterns an infrequent (or rare) pattern is one

with a frequency support below (or far below) a user-specified min supp threshold

while a negatively correlated pattern is one in which itemsets X and Y are both

frequent but rarely occur together and, therefore, are negatively correlated. Mining

rare patterns by pushing group-based constraints was proposed by Wang et al. [196]

and mining negative association rules discussed by Savasere et al.[169].

Approximate/Compressed patterns the concept of approximate/compressed

patterns was proposed to control the number of patterns found by ARM. A com-

pressed pattern is used to present a pattern cluster. From this respect, frequent

patterns are viewed as a set of patterns grouped together based on their pattern

similarity and frequency support. In a study conducted by Pei et al. [148], frequent

patterns are grouped based on their support, and then the most representative

patterns are found for each group. A formulation with the minimum description

length (MDL) principle is proposed for selecting representative patterns by Siebes

et al.[176].

Colossal pattern some applications may need to mine high-dimensional data;

for example, in micro-array data analysis in bioinformatics, researchers are more

interested in finding large patterns (e.g., long sequences) than small ones since they

usually carry more significant meaning and are called colossal patterns. Zhu et al.

[214] investigated a novel mining approach, Pattern-Fusion, for e�ciently finding

a good approximation to a colossal pattern in which a pattern is discovered by

fusing its small fragments in one step whereas incremental pattern growth mining

strategies, such as those adopted in Apriori and FP-growth, have to examine a

large number of mid-sized ones. There are other patterns proposed in the literature,

such as Chiu’s nested associative pattern, which focuses on core associative structure
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extraction from a dataset [40], and a study that applied di↵erent weights to itemsets

and transactions [191].

Quantitative association rule although typical ARM methods are applied

on nominal data types, relational datasets often involve quantitative attributes,

which can be discretised into certain intervals and treated as nominal data before

an ARMmethod is applied. One approach for discretisation is binning [186] whereby

attribute values can be discretised by applying equal-width, equal-frequency binning,

and then replacing each bin value by a bin mean or median. However, this often

results in a huge amount of association rules being mined. In order to overcome this

problem, several methods, such as the data cube, clustering-based and statistical

analyses, have been proposed.

Applying clustering techniques to mine quantitative association rules can be

viewed from two aspects: clustering the attribute values or clustering the associa-

tion rules. In addition to binning discretisation, clustering is another method for

transforming numerical data into categories for ARM and can be applied on each

quantitative attribute to find clusters that satisfy min supp. Then, such a cluster

can be combined with clusters or nominal values from another cluster to examine

the support, with the Apriori property still suitable for pruning during this pro-

cess. If the current combination does not satisfy min supp, it is not necessary to

proceed with further combinations. As for the association rules already generated,

clustering is also useful for merging rules into more interesting and interpretable

ones. Lent et al. proposed a BitOp method for clustering association rules gener-

ated from binned attribute values [111], and clustering two-dimensional quantitative

association rules was studied using geometric properties [62, 211]. The main issue

with these approaches is the preparation of the datasets before mining. The mining

algorithms are applied to the discretised datasets, therefore the quality of the de-

rived ARs relies on the quality of the discretisation process. As for the discretisation

pre-processing, characteristics of numeric attributes are in general unknown and it

is unrealistic that relevant prior knowledge is always available for determining the

best discretisation scheme. Some researchers therefore have proposed to apply evo-
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lutionary algorithms to automatically obtain variable intervals. Mata et al. [119]

proposed a genetic association rule algorithm (GAR) to find frequent itemsets in

numeric databases without needing to discretise the attributes, and the amplitudes

of these intervals are decided by the evaluation function of the evolutionary process.

However, the encoding is not e↵ective for genetic operators to be performed, when

the algorithm is applied to datasets with a large number of attributes. Alatas et al.

[8] later proposed a di↵erential evolution algorithm based association rule mining

(MODENAR). Instead of searching for frequent itemsets, MODENAR focuses on

mining ARs using evolutionary algorithms. Multiple objective functions are used

in the proposed algorithm, so that the support and the confidence of potential ARs

are both evaluated. There are also other objective functions incorporated to control

interval amplitude and comprehensibility. Since the support and the confidence met-

rics are designed into the objective functions, there is no need to define thresholds

for them. MODENAR is thus a database-independent approach.

The definition of an association rule can result in an exponential increase in

the number of rules generated. Aumann et al. [13] proposed a new definition

of the association rule to overcome this problem, which, rather than converting

quantitative data into categorical items, considers distributions of the continuous

data via standard statistical measures such as mean and variance. This is a rule of

the form: population subset ) means of values for the subset, where the mean

of the subset is significantly di↵erent to the mean of its complement in the database

(as validated by an appropriate test). Similarly, Zhang et al. proposed a statistical

quantitative association rule form based on a statistical property in which the rule’s

RHS can be any statistic that satisfies its LHS [213].

In general, the techniques reviewed above either convert quantitative variables

into intervals or study the behaviours of the subsets of quantitative variables.
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2.3 Automatic Hypothesis Generation Strategies:

Heuristic Searches

2.3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of heuristic methods developed from the

idea of natural evolution and survival of the fittest, which were initially designed

to model simple evolutionary systems [94]. In general, they embody four basic

components in an evolutionary system:

1. populations of individuals competing for limited resources;

2. dynamically changing populations due to the births and deaths of individuals;

3. the concept of fitness, which reflects the ability of an individual to survive and

reproduce; and

4. the concept of inheritance, which determines the resemblances between parents

and their o↵-spring.

For the specific computational implementation of such a characterisation, classes

of EAs, such as evolutionary programming (EP) [57], evolution strategies (ES) [173],

genetic algorithms (GAs) [81], estimation of distribution algorithm (EDA) [107] and

di↵erential evolutionary (DE) [123], have been developed.

The paradigm of EP models the evolutionary process with a fixed-size popu-

lation whereby each individual produces an o↵spring. These new individuals are

merged into the current population to form selection candidates for the next gener-

ation, with the top half of the individuals in the enlarged population (according to

their fitness values), surviving to the next generation. ES is based on the natural

phenomenon that most organisms produce many o↵spring, with the characteristics

of its dynamic that an o↵spring population of size � is produced from a parent pop-

ulation of size µ (often � > µ) only through mutation and a new parent population
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is generated from either both the previous µ+� populations or the single � o↵spring

population.

The distinctive reproduction paradigm of a GA is that it uses a stochastic ap-

proach to select individuals to be parents in the mating pool, which is similar to the

natural selection process [66, 81, 95]. Its fitness-proportion selection method assigns

a probability to each individual according to its fitness in reference to the current

population, with the selection process biased to prefer more fit to less fit individuals.

An individual with an above-average fitness will produce more than one o↵spring

while those with lower than average fitness values will have less than one o↵spring

[81]. A typical selection operator adopting the above scheme is roulette wheel se-

lection [66]. Another commonly used selection operator is tournament selection,

in which an individual is selected by picking the best individual from a randomly

chosen population subset [126]. In practice, the selection operator often needs to be

adapted to the specific problem under study to assist the search for better solutions.

The new populations are produced through crossover and mutation operators.

The crossover operator combines two chromosomes (parents) to produce o↵spring,

simulating the natural mating phenomenon. If the o↵spring inherit the best charac-

teristics from both parents, then they may perform better than the parents. There

are a number of basic crossover operators: one-point crossover, two-point crossover,

and uniform crossover [66]. The one-point crossover operator specifies a location

on the parents’ chromosomes, and all the genes beyond that location are swapped

between the parents. The two-point crossover operator calls for two locations, and

swaps the genes in-between. The uniform crossover operator uses a fixed mixing

ratio to select genes from the two parents. The mutation operator in a GA intro-

duces an unexploited gene into the population to prevent premature convergence.

For binary chromosomes, the mutation operator is often implemented by flipping

the binary code using a predefined mutation rate.

Learning classifier systems (LCSs) are hybrid machine learning techniques that

adopts a GA for rule discovery, and incorporates reinforcement learning or other

conventional machine learning techniques for evaluation. Holmes et al. [84] sum-
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marised four basic components of LCSs: (1) a finite population of rules (called

classifiers) representing the current knowledge; (2) a performance component regu-

lating the interaction between the environment and the classifier population; (3) a

reinforcement component assigning rewards to the classifier population; and (4) a

discovery component evolving the population of classifiers. The early development

of LCS algorithms started with the cognitive system proposed by Holland and Re-

itman [80]. The immediate drawbacks of early LCSs are the inherent complexity of

the implementation and the lack of comprehension of system operation. Later with

the development of reinforcement learning, Wilson introduced eXtended classifier

systems (XCSs), which are distinguished by an accuracy based fitness, a niche GA

and an adaptation of standard Q-learning for credit assignment. XCSs have gained

popularity to date [45]. At the same time, there are also other LCS algorithms

that have been developed. Stolzmann [189] introduced anticipatory classifier sys-

tems (ACSs), which formalised a type of LCSs with a feature of anticipation. ACS

uses rules in the form of condition-action-e↵ect, as opposed to the classic condition-

action form. Consequently, the system not only specifies what to do in a given

situation, but also gives information about what will happen after a particular ac-

tion is executed. In contrast to ACSs, the sUpervised Classifier Systems (UCSs) are

designed to address single step problems such as classification and data mining, in

which delayed reward does not have special advantages [27]. UCSs replace the RL

component with supervised learning. It demonstrates that a best action map can

yield e↵ective generalisations and evolve compact knowledge representations.

An EDA models the generation of a population through sampling a probability

distribution model and then selecting the fittest individuals to update this model

with, in the following generation, the new population generated from the updated

model. This algorithm is concerned with the interrelationships among genes, it

models directly through a joint probability distribution (e.g., Bayesian network). For

population evolution, it does not particularly apply genetic operators (e.g., crossover,

mutation) to the actual population but realises it through evolution of the joint

probability model [26].
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DE models the evolutionary process by using the di↵erences among individ-

uals to construct candidate individuals, with a new population created through a

selection process that compares each candidate individual with a randomly selected

individual from the old population [155].

An EA models the process of evolution through its natural resemblance to a

swarm of individuals searching for a certain target, not using a pre-planned group

search procedure but reorganising as clues regarding the target are encountered.

Its simulated evolutionary dynamics produce an adaptive, fitness-biased exploration

of the search space and, when the evolutionary process is terminated, the results

obtained from that search process (e.g., the best individual found) can be viewed as

the search result.

For a problem involving complex non-linear component interactions, there are

often two options: either simplify the problem to permit analytical solutions or

develop e↵ective computational search procedures for finding solutions to a non-

linear complex problem. An EA can serve as a problem-independent paradigm

for designing e↵ective search procedures but several instantiation aspects must be

designed when applying it to a specific problem, such as: (1) deciding what an

individual in the population represents; (2) providing a means for computing the

fitness of an individual; (3) deciding how children are generated from parents; (4)

specifying population sizes and dynamics; (5) defining a termination criterion for

stopping the evolutionary process; and (6) returning the search result. In order for

these procedures to be e↵ective, the design decisions must also reflect the properties

of the particular class of problems to which they are being applied. EAs have been

surprisingly e↵ective in a wide range of problem areas, due mainly to their not

making many assumptions about the underlying fitness landscape [66].

However, there are problems on which EAs tend to perform poorly; for example,

a search domain constructed by two or more interacting sub-spaces with no intrinsic

objective measure for measuring the fitness of each individual. For these kinds of

problems, researchers have turned to a natural extension of EAs, co-evolutionary

algorithms (CEAs), which o↵er great potential for this purpose and have become an
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important area of research in the field of evolutionary computation.

2.3.2 Co-evolutionary Algorithms

In biological terminology, co-evolution is defined as a reciprocally induced evolution-

ary change between two or more species or populations [156]. Inspired by this natu-

ral process, in the computer science community, co-evolutionary algorithms (CEAs)

usually break a problem down into a few sub-solutions, each of which possesses a

population for searching for its own best form. A CEA di↵ers from canonical EAs

by subjectively determining fitness based on the interaction of an individual with

other individuals [152]. In fact, it does not always use multiple populations since

its essential feature is the use of an indirect fitness measure. Darwen and Yao [46]

demonstrated that co-evolution can also be achieved between evolving individuals

within a single population by means of a niching mechanism.

The CEA suggests a divide-and-conquer strategy when the problem under inves-

tigation is large and complex and its implementation has two basic levels depending

on the types of modules being simultaneously evolved. In the case of single-level

co-evolution, each evolving sub-population represents a sub-component of the prob-

lem to be solved while a two-level co-evolutionary process involves simultaneous

optimisation of the system and modules in separate sub-populations.

Co-evolution can be classified as competitive or cooperative depending on the

nature of the interactions. The former is often likened to a predator-prey model

in which individuals or populations compete with one another, with the prey im-

plementing potential complete solutions to a problem and the predators individual

fitness cases, and has been found to show an arms race phenomenon [11, 162]. The

two populations reciprocally drive each other to increased levels of performance and

complexity, with the increased fitness of one implying a diminution in the fitness

of the other. Such evolutionary pressure tends to produce new strategies in the

populations in order for them to maintain their chances of survival.

However, such a co-evolutionary idea has some problems as, when implemented

Bing Wang November 26, 2014



CHAPTER 2. LITERATURE REVIEW 34

in a naive way, a number of ‘Pathologies’, such as cyclic dynamics, loss of the fitness

gradient and evolutionary forgetting, can occur. This prevents the algorithm from

finding high-quality solutions. The cyclic dynamics depicts a situation in which

the solutions found in a population repeat themselves in the evolutionary process.

For example, suppose we co-evolve two systems against each other. If, in the first

generation, population A finds that solution A1 performs well against the individuals

in the current B population, then A will evolve individuals resembling A1. Next,

if population B evolves solution B1 that performs well against A1, it will fill its

population with B1. Next, if population A discovers A2, which resists B1, population

B will then find B2 to counteract A2. Finally, if population A finds that A1 is

its best strategy against B2, the evolution starts a loop of strategies. Recently,

researchers have applied game theory concepts to better understand the dynamics

and pathologies of such CEAs [157], and developed improved algorithms that can

overcome problems such as cyclic dynamics.

In contrast, cooperative co-evolution decomposes a problem into sub-components

with the aim of finding co-adaptive individuals that together form a complete prob-

lem solution [152]. Although each population contains sub-components of the com-

plete solution and evolves separately, the fitness of an individual depends on its abil-

ity to collaborate with individuals from other species. This evolutionary pressure

favours the development of cooperative strategies and individuals, and the strate-

gies have been successfully applied to a number of applications, e.g., benchmark

optimisation problems [151], string matching and NN design [134].

For instantiation, the cooperative CEA needs to specify three components: (1)

a decomposition scheme for dividing the complex problem into sub-species; (2) a col-

laboration scheme in which the individuals from di↵erent species can be combined

into a complete solution for evaluation; and (3) an evolutionary process in each sub-

population [36]. This algorithm was first introduced by Potter and De Jong [151]

for function optimisation and then the authors extended its prototypical idea of de-

composing a complex problem into multiple co-evolving species to several modelling

principles: firstly, one species represents a sub-component of a potential solution
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and complete solutions are obtained by assembling representative members of each

of the species; secondly, credit assignment at the species level is defined in terms of

the fitness values of the complete solutions in which the species members partici-

pate; thirdly, when required, the number of species in the system should evolve; and,

finally, the evolution of each sub-population is controlled by an EA. This proposed

cooperative CEA was applied on a function optimisation problem with internal evo-

lution (on one of its sub-populations) using a GA (called the CCGA) and showed

competitive performances compared with those of a standard EA. The authors also

pointed out its potential for extension with other EAs to solving complex problems.

The CCGA was later developed into a general architecture for cooperative co-

evolution [152], which introduced explicit notions of modularity for e↵ectively apply-

ing EAs to increasingly complex problems. It models an ecosystem consisting of two

or more species, which are genetically isolated, with individuals mating only with

other members of their species, although the species interact with one another within

a shared domain model and have a cooperative relationship. This architecture also

introduced a mechanism that allows the emergence of new species for adaptation.

Such a dynamic adaptation architecture improves performances by being able to

scale up to large and complex problems that often challenge standard EAs.

Collaboration schemes in shared domains were studied in depth in the study

conducted by Wiegand [201], with examining a variety of them and providing in-

sights about how to select an appropriate one. This also relates to the concept of

cross-population epistasis, that is, the presence of non-linear relationships among

genes, which has been an important part of evolutionary computation research [66].

In cooperative co-evolution, partitioning the problem into components may sepa-

rate related genes into di↵erent populations. This study showed that, when there

is significant contradictory cross-population epistasis, the co-operative co-evolution

design should use more sophisticated collaboration methods. In the case of static

function optimisation, using an optimistic credit assignment method is typically a

good choice.

The cooperative co-evolutionary approach has been shown to be a powerful
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tool for solving complex problems and its performance advantages demonstrated in

various studies. In this thesis, a cooperative co-evolutionary technique is adapted

for the searching procedure for hypothesis generation in continuous domains.

2.4 Representation of Functional Associative Re-

lation

2.4.1 Artificial Neural Network

The unparalleled intelligence demonstrated by the human brain has attracted sci-

entists to explore its underlying mechanism for centuries. Neurons form the basic

functional units of a brain and their biological function in its simplest form is to

receive input and produce a response. The massive interconnections among neurons

constructs the physical base for the memory, knowledge, skill, experience and think-

ing of humans’ intelligent activities. Interested in simulating the basic functionality

of neurons and investigating their consequent behaviours, Warren McCulloch and

Walter Pitts [120] proposed the first artificial model of a neuron and, since then, its

classification power has attracted the interest of scientists in exploring its potential.

This field is commonly referred to as ANNs and, in the following section, a brief

overview of it, including the basic structure of an ANN, its application advantage

and evolution-based method, is presented.

2.4.1.1 ANN Units and Architecture

Neuron Models: an ANN is a network connecting a group of artificial neurons.

The first artificial neuron model, that of McCulloch and Pitts [120], produces binary

output, with its inputs connected to it by two types of connections, excitatory

(positive weights) and inhibitory (negative weights), as shown in Figure 2.1. A

neuron is associated with a threshold value (✓) and, if the net input to the neuron

is greater than this threshold, the neuron is supposed to fire. However, as the
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Figure 2.1: McCulloch and Pitts’ artificial neuron model

inhibitory input absolutely vetoes the excitatory, if the neuron receives inhibitory

input, its output will be fixed at 0 regardless of whether the sum of the excitatory

input exceeds the threshold.

This scheme can be used to perform the Boolean logic function with single

or multiple neurons. However, as such networks are essentially ‘hard-wired’ logic

devices, they are too inflexible to apply to di↵erent systems and require manual

designs of their weights and connections. The main importance of this study was

that it showed that networks of neuron-like elements could do computations.

Donald Hebb later changed the view of artificial neuron modelling. His proposal,

known as Hebb’s rule, states that “When an axon of cell A is near enough to excite

a cell B and repeatedly or persistently takes part in firing it, some growth process or

metabolic change takes place in one or both cells such that A’s e�ciency, as one of the

cells firing B, is increased.” [76]. This rule is important as it also points out that the

changing of the connection strength is one of the fundamental operations necessary

for learning and memory, a perspective that is then reflected in the modelling of an

artificial neuron.

The perceptron model [161] incorporates the basic structure and learning be-

haviour of the McCulloch-Pitts neuron. In essence, a perceptron is a function that

maps weighted input values to output. More precisely, given the inputs of a percep-

tron are x1 through x
n

, its output is:
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Figure 2.2: General perceptron

o = �(
nX

i=0

!
i

x
i

) (2.2)

The perceptron unit computes a weighted sum of its input and then applies an

activation function (�) to this sum to derive the output. This model also incor-

porates learning, which allows changes in the connection weight towards producing

the intended output, as discussed in a later section. The step function, which is

an active function in Equation 2.3, was used in the early stage of NN development

and can represent most Boolean functions, but its structure and learning rule can-

not deal with non-linear relations [127]. Therefore, non-linear activation functions

and a second training scheme (i.e., the delta rule) were introduced into the family

of perceptron activation functions that include the sigmoid, which is used in this

thesis (Equation 2.4), piecewise linear and Gaussian.

�(y) =

8
<

:
1 if y > 0,

�1 otherwise.
(2.3)

�(y) =
1

1 + ey
(2.4)
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ANN Architecture: although a single perceptron unit can express a num-

ber of basic logical functions, as it becomes inflexible when used in more complex

non-linear functions, its representation needs its units to be cascaded into networks

[198]. The two main elements that a↵ect the expressive power of an ANN are its

architecture and weights. Its architecture refers to how it is constructed in terms

of its number of layers, number of nodes (each node refers to a perceptron) in each

layer, and how its nodes are connected.

An ANN is often represented in a directed graph with arrows pointing in the

direction of the information flow. It can be a feedforward NN (FFNN), where there is

no feedback connection, or a recurrent NN (RNN), which has feedback (often applied

in temporal data analysis) or cyclic connections. Examples of such basic structures

are shown in Figure 2.3. ANNs are usually arranged in layers, with a multilayer

network having one more layer of units not connected directly to its output, which

is called a hidden layer. The number of hidden nodes and their connections influence

the overall computational power of an ANN.

Besides the above basic ANN structures, another type of ANN is Boltzman ma-

chine (BM) [4]. A BM is a bidirectionally connected network of stochastic processing

units, which can be interpreted as a neural network model. A BM can be used to

learn the probability distribution from sample data. However, due to its complex

structure, the learning process is di�cult and time-consuming. Solutions were later

developed by imposing restrictions on the network topology to simplify the learning

problem, which lead to restricted Boltzmann machines (RBMs) [179]. RBMs consist

of two types of unit: visible units and hidden units. The visible units constitute the

first layer of the RBM and correspond to the components of an observation. The

hidden units model dependencies between the components of observations. The

connections are restricted to be between di↵erent types of units. No visible unit is

connected to any other visible unit, and no hidden unit is connected to any other

hidden unit. Unlike the ANN structure introduced above, the connections in RBM

are undirected. The hidden units can be trained to represent the dependencies in

the visible units [78]. The states of the visible units can be sampled from the hidden
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units [91, 101, 106, 163].

RBMs can be stacked and trained to form deep belief networks (DBNs) [79].

The idea is that the hidden units extract relevant features from the observations.

These features can serve as input to another RBM. By stacking RBMs in this way,

one can learn features from features so that a high level representation can be

achieved. A common DBN architecture has undirected and symmetric connections

between the top two layers. The lower layers have top-down directed connections

from layers above. The units in the lowest layer represent input data. Deep architec-

tures have the advantage of automating the selection of an appropriate feature space

where input instances have desirable properties for solving given problems. There-

fore, training deep architectures has been a research focus [25, 109, 31, 130, 131].

An essential idea is to learn a hierarchy of features one level at a time by using

the values of the latent variables as input data for training the next layer. It has

been empirically shown that DBNs often yields better representations in terms of

lower classification error [105], higher quality of the samples generated [168] and

invariance properties of the learned features [67].

Another aspect of an ANN architecture is that the units can be fully or partially

connected. The computational cost of a partially connected ANN is relatively less

than that of a fully connected one when training a network in the same experimental

setting. While a carefully designed partially connected ANN can be more precise

than a fully connected one, how to select the nodal connections requires either

prior knowledge or systematic experiments [108, 51]. Following the development of

evolutionary and co-evolutionary computation, incorporating the former to achieve

an optimal architecture for an ANN while training it has been explored [1, 134].

Studies show that such integration increases an ANN’s representation accuracy and

reduces the computational cost.

As the weights associated with each connection of an ANN determine the

strength of the input to that node, they also determine the behaviour of the ANN

when its architecture is selected. In general, the learning of a NN means changing

its weight values so that it outputs expected values, a process discussed in the next
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Figure 2.3: Examples of basic ANN architectures

section.

2.4.1.2 Artificial Neural Network Learning

The learning of an ANN is achieved by presenting the ANN with a set of training data

whereby it changes its weight so that its output approaches expected values. There

are a few basic learning rules for this weight adjustment. The first, for an artificial

neuron, is based on Hebbs description of how biological neurons learn [76]. It is

referred to as the Hebbian learning rule, which states that, if two neurons on either

side of a connection are simultaneously activated, the strength of that connection is

increased as �!
ij

= ⌘ ·x
j·out ·xi·in, where ! refers to a connection weight between two

neurons (x
i

and x
j

). Although the Hebbian learning rule is biologically plausible

(similar behaviour has been found in the hippocampus), it is unstable in functional

representation as chance coincidences can build up a connection’s strength.

Another type of learning rule is based on minimising some error function and

measuring the di↵erence between the expected and real outputs, that is, �! =

⌘(y � ŷ) · x
i

. It adopts a supervised learning scheme in which the outputs from

the training set (y) guide the weight adjustment. In contrast, competitive learning,

usually suitable for finding clusters within data, is an unsupervised learning scheme

in which the output units compete to respond to a sub-set of the input data, with the
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winning unit updating its weights using the learning rule, that is, �!
ji

= ⌘(x
i

�!
ji

).

A final type of learning is Boltzman learning in which a network is constructed by

stochastic binary-state neuron-like units with defined energy measures. The value

of the energy measure of each unit determines the probability of that unit being in

an on or o↵ state. Weight learning maximises the probability distribution of the

training data representing the network, with the learning rule �! = ⌘ · (p+
ij

� p�
ij

),

where p+
ij

and p�
ij

measure the associations between two units, one derived from each

of the training and re-constructed training examples respectively, which push the

network to approximate the distribution of the training examples.

Backpropagation (BP) the FFNN is a popular ANN architecture com-

monly used in di↵erent applications, which adopts the learning rule based on error

correction, that is, the systematic adjustment of network weights using the BP ap-

proach [165]. This thesis applies this strategy in the process of hypothesis generation

searching.

BP is built on the gradient descent concept. The following presents how a

single perceptron weight is learnt using gradient descent and then BP is employed

for network weight learning. The learning process of a perceptron is finding the

weights that best fit the examples, which is usually transformed into minimising the

predictive error between the example output (y) and the output calculated from the

unit (ŷ) as:

E(!) =
1

2

X

d2D

(y
d

� ŷ
d

)2 (2.5)

where D is a set of training examples and E a function of ! as ŷ
d

= �(!,x) . The

gradient search minimises E by modifying ! towards the deepest descent at any

given point of !, with the direction of descent calculated by the derivative of E with

respect to ! as:

rE = [
@E

@!0
,
@E

@!1
, ...,

@E

@!
n

] (2.6)
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As, in order to achieve a decrease in E, each weight should be modified towards

this direction, the modification rule for weights becomes:

!  ! + (�⌘rE(!)) (2.7)

For each individual weight (!
i

),

!
i

 !
i

+ (�⌘ @E
@!

i

) (2.8)

where ⌘ is called the learning rate, which controls the weight-changing rate, with a

small one resulting in a smooth trajectory but slower convergence. A large step size

speeds up the learning but may cause instability (e.g., as the minima are missed)

[75]. The selection of the error rate is often through a trial-and-error approach. This

learning method requires the activation function to be di↵erentiable, e.g., sigmoid,

which has the very convenient property that its derivatives are easily expressed in

terms of its output. When applying this gradient descent learning method to a

multilayer network, the error term for the hidden units is not immediately available

but, fortunately, we can backpropagate it from the output to the hidden layer. The

adjustment of weights can be carried out after presentation of either each example

(incremental learning) or the entire set of examples (batch learning). Algorithm 2

presents the incremental learning of a NN constructed with sigmoid perceptrons,

which updates the weight after each example is presented to the network. In batch

training, the weight error term ( �1!ij

,�2!ij

, . . . ) is computed for each example,

with the overall weight update computed when all training examples have been put

through the network (the end of an epoch), that is, �!
ij

=
P

n

l=1 �l

!
ij

, where n is

the number of training examples.

As the goal of training is not to represent the training data but to be able to

perform further tasks, after the training phase, ANN is applied to new tasks of the

same kind, which is its generalisation aspect. A network that is not su�ciently

complex can fail to fully detect the relationships in complicated datasets, which
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Algorithm 2: Backpropagation algorithm for learning in feed-forward neural
network using sigmoid activation function (adapted from [128])

Input : training examples (X), each with input vector (x) and output
vector (y), X = (x,y); FFNN

Output: trained neural network
1 foreach weight (!

ij

) do initialise weights
2 !

ij

 a random number
3 repeat
4 foreach example (x,y) in training example do propagate input forward

through network
5 Calculate output (o

k

) from each unit ;
6

7 foreach Network output unit (k) do calculate its error term
�
k

 o
k

(1� o
k

)(y
k

� o
k

)
8

9 foreach hidden unit (h) do calculate its error term;
10 �

j

 o
h

(1� o
h

)
P

k2outputs !kh

�
k

11

12 Update each network weight (!
ji

)
13 !

ji

 !
ji

+ ⌘�
j

x
ji

14 until stopping criteria satisfied ;

leads to under-fitting. An ANN that is too complex may fit the noise as well as the

main underlying mechanism. This over-fitting is particularly dangerous because it

can easily lead to predictions of unseen data far beyond the range of the training

data. This generalisation problem can be seen as a bias/variance trade-o↵. The

bias refers to the model fitting specific training data and the variance to it being

su�ciently flexible to fit a variety of training sets [177].

Training with noise: one approach for alleviating over-fitting is to train

with artificial noise in the training examples as, if we have two cases with similar

inputs, the desired outputs will usually be similar. This means that we can take any

training case and generate new ones by adding a small amount of noise to the input

and then the output can be assumed to be the same as that before the addition of

noise [9, 85].

Early stopping: the idea of the early stopping approach for handling over-

fitting is to stop the training before it starts to over-learn the training data. It splits
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Figure 2.4: General early stopping scheme

the given data into two sets, training and validation, and uses the latter to measure

the generalisation of the ANN. During the overall training phase, the error value

on the training dataset decreases but, at some points, that on the validation data

increases, which means that the ANN starts to memorise the training set. Therefore,

in order to preserve generalisation, the training should stop. An early stopping

approach has several advantages: it is fast (compared with cross-validation); and

can be applied to an ANN with a large number of weights (thereby alleviating the

di�culty of designing an ANN structure). In most training exercises, the validation

curve is not very smooth and can rise and fall during iteration, as shown in Figure 2.4.

The method most commonly used is to train the ANN to converge and select the

ANN that has the lowest validation error [154]. In this thesis, early stopping is

applied.

Weight decay: this adds a penalty to the error function used in BP with its

common form being the sum of squared weights times a decay constant, as shown

in Equation 2.9. As large weight values can cause excessive variations in an ANNs

outputs if the output unit is not bounded [65], this penalty term penalises them and
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causes them to converge to smaller absolute values. Other penalty terms, including

weight elimination, as in Equation 2.10, are also used. Weight decay can require

di↵erent decay constants for di↵erent types of weights (i.e., input to hidden, hidden

to output) and adjusting the decay constant can be computationally expensive.

E
!

= c⇥
X

i

!2
i

(2.9)

E
!

=
X

i

!2
i

!2
i

+ c2
(2.10)

2.4.1.3 Advantage of Approximating Functions

A FFNN can be viewed as a practical tool for approximating non-linear functions,

which means that it can be used to capture hidden relationships of a non-linear

nature as an alternative to commonly used statistical tool regression. This feature

is supported by the universal approximation theorem first presented by Cybenko in

1989 [44], which states:

Let '(·) be an arbitrary non-constant, bounded, and monotone-increasing con-

tinuous function. Let X ✓ Rm, X is compact. The space of continuous functions

on X is denoted by C(X). Then 8f 2 C(X), 8" > 0 : 9 n 2 N , a
ij

, b
i

, w
i2R,

i 2 {1, ..., n}, j 2 {1, ...,m}, such that:

A
n

(x1, x2, ..., xm

) =
nX

i=1

w
i

'(
mX

j=1

a
ij

x
j

+ b
i

) (2.11)

can be considered an approximation of the function f :

kA
n

� fk < " (2.12)

The compatibility of the universal approximation with FFNN is obvious: the acti-

vation function used in FFNN (e.g., sigmoid) can be a non-constant, bounded and
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monotone-increasing function as '(·); the FFNN can use m input units with n units

in a hidden layer, where each hidden unit consists of a connection weight (a
ij

) and

bias (b
i

); and the FFNN output can be a linear combination of the outputs from

hidden units. The universal approximation theorem describes that the standard

multilayer FFNN with a single hidden layer containing a finite number of hidden

neurons and an arbitrary activation function are universal approximators in C(Rm).

Hornik emphases that it is not the specific choice of the activation function but,

rather, the multilayer feedforward architecture itself, which gives a NN the poten-

tial to be a universal approximator [86]. Most non-continuous functions can also

be approximated by a FFNN under Lusin’s theorem that any finite and measurable

function is continuous in most of its domain.

Barron states that, for a single-layer FFNN trained by BP, the total risk (R),

the mean squared error between the target function and function estimated by the

FFNN, is bounded by O(
C

2
f

M

) + O(Mp

N

logN), where C
f

is the first absolute moment

of the Fourier magnitude distribution of the target function (f), M the number of

hidden units, p the number of FFNN inputs and N the number of training examples

[18, 19, 75]. This analysis implies that the size of the training example does not

need to be exponentially large to achieve a good approximation generalisation. As

previously mentioned, in this thesis, early stopping is used to control generalisation.

The universal approximation theorem states that a function can be represented

by a FFNN but does not specify how to determine this FFNN with the stated

property. In addition, the functions being approximated are usually unknown and

the number of hidden units cannot be set to be unlimited. In practice, the units in a

single-layer FFNN tend to influence each other and result in unstable approximation

performances when the function is complex. Often, in practice, a two-layer FFNN

is used for complex function approximation [63, 37]. By using two hidden layers,

the units in the first layer can respond to local features and partition the input

space into regions while those in the second layer receive the output from the first

layer and learn global features [75]. In this thesis, both single- and two-layer FFNNs

are used for function approximation depending on the complexity of the underlying
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relations hidden in the data.

2.4.1.4 Evolutionary Artificial Neural Network

Unlike a NN using the Boltzman learning rule, which inherently incorporates the

feature that it can escape poor local optima to some extent (i.e., stochastically acti-

vated unit states), in general, NN training based on gradient descent will be trapped

in local minima if no additional adaptive procedure is incorporated. This training

only guarantees that the error function value towards the direction of a local min-

imum is reduced. Some common solutions to this problem include selecting proper

initialisation weights through domain knowledge or trial-and-error and adding a per-

turbation to the weight or architecture during training. However, the combination

of EAs and ANN provides a better remedy and also brings other appealing charac-

teristics to ANN training and application, e.g., an adaptive ANN architecture and

weights. The following section reviews applying a combination of EAs and ANN,

which is often referred to as an evolutionary ANN (EANN).

Yao [208] described the combination of EAs and ANN on three levels of evo-

lution, those of the weights, learning rule and architecture as shown in Figure 2.5,

with the lower the evolution, the faster it is.

Evolution of ANN weights: applying an evolutionary approach for

ANN weight training is relatively straightforward and includes representations of the

ANN’s weights and evolutionary schemes. Representing weights in the genotype can

be either binary or real numbers [208]. A binary representation [200, 34, 187, 92] is a

natural extension of a standard EA, where the weights of an ANN are converted into

binary bits and concatenated to a genotype chromosome, and can adopt standard

evolutionary operators. However, such a scheme often results in a large chromosome,

which consequently a↵ects the e�ciency of the evolutionary process. A real-number

representation of a chromosome has the advantage of accuracy of representation but

needs new genetic operators or a di↵erent evolutionary strategy [54, 20, 132, 121].

Montana et al. [132] showed that, using specifically designed genetic operators, the
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Figure 2.5: General framework for EANN (adapted from [Yao 1999])
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EANN performs much faster than BP. Regarding di↵erent strategies, EP and ES

have been used as the evolutionary component of an EANN due to their advantages

for continuous domains [209].

A hybrid scheme that evolves an ANN with a local search is an e�cient way of

accelerating the training process. For a search space with multiple local minima, an

EA can be used to search for the location of a basin where a global minimum may

be within the reach of a local search so that the local search can identify it [22, 110].

This scheme is adopted in this thesis to identify the initial weight sets for an ANN

in terms of function approximation.

Evolution of ANN structure: another concern regarding evolving ANN

weights is that, although studies have shown that combining evolution with ANN

training achieves better performance in terms of accuracy and less sensitivity to

initial conditions [55, 56, 20], the design of an ANN still depends on either prior

knowledge or experimenting with a number of di↵erent ANNs, which indicates the

need to adaptively improve the ANNs’ architecture. The evolution of an ANN ar-

chitecture has two di↵erent chromosome design schemes: direct encoding (i.e., the

chromosome encodes all information about the architecture) and indirect coding

(i.e., the chromosome encodes the main parameters or provides a compact represen-

tation of the architecture).

In direct coding, the architecture is often encoded into a matrix, in which the

entities represent connections between two units (on or o↵) in the ANN, which is then

converted into a vector-like chromosome. In the evaluation phase, the chromosome

is translated into an ANN, which is randomly initialised and trained on a given task,

with the training error incorporated in the fitness measure. Because of the flexibility

of an EA, the architecture of an ANN can be measured in multiple dimensions using

complexity, statistical and information theory measures [53, 28]. Although such a

coding scheme is very simple to implement and can generate a competitive ANN

architecture [171], it can be a↵ected by noise during evaluation; for example, as

the initialisation procedure with random values introduces noise into the training,

di↵erent initialisations can cause di↵erent evaluation results, thereby leading to
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inaccurate evaluations. Fortunately, this problem can be alleviated by evolving

weight information with the architectural matrix. One hybrid evolution approach is

to replace a binary representation of the architecture with values representing the

weights on corresponding connections [103, 30, 140, 118]. However, to use real-value

representations to evolve both the architecture and connection weights, an issue is

how to design the evolutionary operator. Pareto-front di↵erential evolution is used

by Abbass [1], and the proposed evolutionary scheme, which is enhanced with a

local search (e.g., ANN architecture evolution plus BP training), is often referred

to as memetic evolution. In order to preserve building blocks of potential solutions,

one option is to adopt only mutation operators for evolution [166][209].

As this encoding scheme for the overall architecture often ends up in a large

genotype representation and increases the computational time required for evolution,

another approach, the indirect encoding scheme, has been used by many researchers

[100, 73, 74, 48]. In it, only important parameters are used for genotype representa-

tion while other details are predefined by prior knowledge. However, although this

coding produces a compact genotype, the evolution might not be su�ciently flexible

to find an ANN with good generation [100, 129, 124]. NeuroEvolution of augment-

ing topologies (NEAT) proposed by Stanley et al. evolves both the weights and the

structure of an ANN [188]. It employs crossover of di↵erent topologies, structural

innovation protection, and incremental structure growing to increase the e�ciency

of the evolutionary ANN. Although it has the advantage of autonomously determin-

ing both the weights and the structure of an ANN for a particular learning task,

this is achieved through the evolutionary process. In the context of FARM, as we

have introduced in the first chapter, FAR searching itself is an evolutionary process.

If for each potential FAR, another internal evolutionary process is introduced, the

computational complexity will become exponential. Therefore, in this thesis, NEAT

is not considered for FAR evaluation.

Evolution of learning rules: a last perspective concerning ANN training

is the learning rule. For di↵erent ANN architectures, di↵erent learning rules will

a↵ect their learning performances. Therefore, it is of interest to researchers to adopt
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a learning rule appropriate to the particular ANN architecture and given tasks. Such

research starts with evolving the BP parameters (e.g., learning rate and momentum)

[22, 73] and then progresses to evolving the learning rule itself (i.e., how the weights

are updated). The challenge lies in designing the representation of the general

learning rule, which is usually achieved by assuming that the updating of weights

is based on the local variables (e.g., states of the connected units and previous

connection weights), with the learning rule the same for all connections. Chalmers

[35] designed a learning rule representation based on forming a linear relationship

using local variables, which shows that the evolution produces the commonly used

delta rule. Similar studies have been conducted [24, 23, 59, 21] and Nolfi et al.

and Parasi et al. [139, 143] emphasised the importance of environmental diversity

whereby a variety of architectures and learning tasks is available for evolution.

2.5 Causal Hypothesis: Causal Models

2.5.1 Rubin Causal Model

The Rubin causal model, also known as the ‘Neyman-Rubin causal model’, is a fam-

ily of approaches to the statistical analysis of cause and e↵ect based on the potential

outcome framework. This framework refers to an experimental design principle that

every unit has di↵erent potential outcomes depending on its assignment to a condi-

tion. In the terminology of this model, treatments are variables that are conceptually

manipulable and units the objects to which these treatments are assigned. Responses

are any variables the values of which may have been a↵ected by their treatments

and concomitants any variables the values of which are una↵ected. A causal study

under the potential outcome framework aims to find the relative e↵ect of treatments

on the responses of selected units with given values of concomitants.

To explain this through an example, if a study aims to provide evidence for

the e↵ect of multivitamin supplement tablets on reducing levels of cardiovascular

disease risk, it uses two treatments, taking multivitamin tablets (treatment a) and
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taking placebos (treatment b). For each unit (patient) in the study, after a certain

time period (�t), there are two potential outcomes. If it received treatment a, the

cardiovascular disease risk level would be Y
ua

and, if it received treatment b, it

would be Y
ub

, with the di↵erence between Y
ua

and Y
ub

due to exposure to di↵erent

treatments. In addition, the di↵erence between Y
ua

and Y
ub

can tell us how much

the level of cardiovascular disease risk for unit u would change if treatment a were

used instead of treatment b.

This is the strategy used in our causal hypothesis generation, with the reverse

engineering scenario that allows for the values of the variables to be manipulable. In

studies in uncontrolled situations, such as those involving humans, we cannot assign

two treatments to one unit at the same time. The suggested solution is to create two

groups of units, with one receiving treatment a and the other treatment b. However,

since units are not exactly the same as individuals, di↵erences in variables other

than the treatment may a↵ect responses. The strategies studied include randomised

experiments [137], matching [164], blocking and stratification [164].

2.5.2 Automatic Causal Modelling

While the major means of causal investigation is based on the potential outcome

framework, there are obvious practical and ethical considerations that limit the ap-

plication of randomised experiments in many instances, particularly those involving

human beings. Several techniques for representing causal relationships and infer-

ring them from purely observational data, which rely on the relationship between

causation and probability, have been developed.

A causal model in this branch of study consists of two parts, a directed acyclic

graph (DAG) and a distribution over a set variables (X). Each x
i

is expressible in the

form of x
i

= f
i

(pa
i

, u
i

), i = 1, 2, ..., n and, in its general form, f
i

is not committed to a

certain function but assumed to be in the form of a deterministic, functional equation

[147]. The main reason for preferring a deterministic form is that it is a more

general representation as every stochastic model can be emulated by many functional
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relations (with stochastic inputs) but not the other way around. Commonly used

causal models in the literature are structural equation models and causal Bayesian

networks. By incorporating a graph into a causal model, the directionality of the

underlying process can be expressed by a prototype , where f is represented by a

linear equation [205].

The connection between causality and probabilities is established by the condi-

tional dependence among the variables and is built upon certain assumptions, the

Causal Markov Condition (CMC) and Faithfulness [147]. The CMC in a DAG is

that, given a set of variables (V ), each variable in V is independent of the variables

that are not its parents or descendants, given its parents. V is said to be causally

su�cient if, and only if, there is no variable (C) not in V that is a direct cause of

more than one variable in V . The CMC places a constraint on the probability dis-

tribution of the variables so that their joint probability distribution satisfies it. The

Faithfulness assumption states that, for a causally su�cient set of variables (V ), ev-

ery true conditional independence relationship in the density over V is curtailed by

the local directed CMC for the causal DAG. This assumption means that the causal

structure fully determines the independence and dependence among the variables

under investigation, which, if there is external perturbation, stay the same.

To identify the above causal model, there are two basic categories of algorithm

for learning a causal network without intervention: score- and constraint-based. The

score-based approach generally defines a scoring function for each network structure,

which represents how well it fits the data, with the goal being to find the highest-

scoring one, which, in general, is a NP-hard problem. Cooper and Herskovits [41]

proposed a Bayesian scoring metric (log-likelihood) and a heuristic search algorithm

called K2 for learning a network structure when the data is fully observable. As the

log-likelihood metric itself favours graphs with many edges, later, a Bayesian infor-

mation criterion [172] with an additional penalisation to favour graphs with fewer

parameters was applied. Another metric based on a similar idea is the minimum de-

scription length [159]. However, the possible number of graphs grows exponentially

with increasing numbers of nodes [160]. The score-based approach often applies a
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Markov process to deal with this curse of dimensionality [114] [42]. Friedman et

al. proposed the sparse candidate algorithm for reducing searching complexity by

focusing on a relatively small number of candidate parents for each variable [60].

The optimal re-insertion [133] constrains the search on a candidate’s parent set and

corresponding child set. The greedy search algorithm [38] searches for DAGs of only

an equivalent class to further constrain the search space, and is guaranteed to return

an optimal structure if there is a faithful DAG.

Constraint-based approaches look for the constraints, e.g., conditional indepen-

dence, in data and return a Markov equivalent class. When testing for conditional

independence, the SGS algorithm introduced by Spirtes et al. [183] tests every possi-

ble conditioning set. It was later developed into a PC algorithm where the testing of

conditional independence is reduced to the variables connected by directed or undi-

rected paths to the variable under test [182]. It is faster than the SGS algorithm but

can produce errors in removing arcs although Li and Wang showed how to control

the false positive rate while using it [112]. Inductive causation (IC), introduced by

Pearl and Verma, is a variation of the SGS algorithm, which starts by generating an

undirected graph based on the dependencies between variables, as opposed to using

a completely undirected graph as in SGS, and takes into account latent variables

[146] [195]. The general procedure for the IC algorithm and its orientation is as

follows [147].

1. For each pair of variable a and b in V , search for a set S
ab

such that a ?| S
ab

holds in P̂ . Construct an undirected graph G, such that vertices a and b are

connected with an edge if and only if no set S
ab

can be found.

2. For each pair of nonadjacent variables a and b with a common neighbour c,

check if c 2 S
ab

.

If it is, then continue;

If it is not, then add arrowheads pointing at c (i.e. a! c b).
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3. In the partially directed graph that results, orient as many of the undirected

edges as possible subject to two conditions: (i)orientation should not create a

new v�structure; and (ii) the orientation should not create a directed cycle.

The Step 3 of above algorithm can be systematised in following ways [147]:

Rule 1 : Orient b� c into b! c whenever there is an arrow a! b such that a and c

are nonadjacent.

Rule 2 : Orient a� b into a! b whenever there is a chain a! b! c

Rule 3 : Orient a�b into a! b whenever there are two chains a�c! b and a�d! b

such that c and d are nonadjacent.

Rule 4 : Orient a � b into a ! b whenever there are two chains a � c ! d and

c! d! b such that c and b are nonadjacent and a and d are adjacent.

IC is a general framework summarised from previous work on causal search

models [183][146] [195]. As input, its algorithm takes a stable probability distri-

bution (P̂ ) generated by an underlying autonomous mechanism that can be repre-

sented by a DAG, and outputs a pattern that represents the equivalence class of the

underlying mechanism. The idea at its simplest level is that a certain pattern of

dependence among variables implies causal relations, that is, when the independent

relations (both conditional and unconditional) are eliminated from variables, the re-

maining links imply causal relations. The constraint-based algorithm outputs a set

of Markov-equivalent causal models but does not show how much better one model

is than another as it has only one test criterion, conditional dependence. In addition,

due to a constraint-based approach’s multiple testing, it is prone to over-fitting if

not specifically controlled.
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2.6 Hypothesis Generation Research

A hypothesis is traditionally constructed by researchers to formulate a potential

knowledge of interest and, in hypothesis testing research, means a “specific propo-

sition about the behaviour of a (biological or other) system, based on a logical rea-

soning that leads to an experimentally verifiable prediction that is either confirmed

to be consistent with it or not” [98]. Constructing a hypothesis of this type requires

the researcher to manually select the relevant factors and design experiments to test

the hypothesis; for example, in the study in concerning marital happiness [29], the

hypothesis states that marital happiness and a certain gene 5-HTTLPR are corre-

lated, which is based on domain knowledge and the interest of the researcher. To test

this hypothesis, experiments need to be manually designed and data precisely col-

lected. Such hypothesis testing research adopts a reductionist strategy, also known

as a ‘bottom-up’ approach, which asserts that, if we can break a system into its

component parts and understand them and their interactions, we can intelligently

reconstruct the system. Therefore, hypothesis testing research is a relatively slow

and incremental process.

Sensing, data collection and data storage have advanced over the years, with sci-

entists starting to piece together techniques for automating the process of knowledge

discovery. Such work is usually motivated by the research requirement to alleviate

the excessive workloads of human experts and speed up the knowledge discovery

process, a trend that has given rise to hypothesis generation research. Hypothe-

sis generation infers knowledge from data via various kinds of pattern recognition

techniques and is not a new concept. Technological advances allow the handling

of overwhelming amounts of data, thereby promoting the advantages of hypothesis

generation which is a cross-disciplinary practice that di↵erent research fields apply

di↵erently according to their domain knowledge and research interests. A variety of

hypothesis representations can be found in hypothesis generation approaches.

King et al. designed a robotic scientist [99] that can automatically identify

the yeast metabolism pathway but has not yet been tested and validated. This
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work was demanded by the fact that, despite being one of the best understood of

organisms, the functions of about 30 % of the 6,000 genes of yeast (S. cerevisiae)

are still unknown. However, since the biochemical equations of its basic metabolic

pathway are known, how its biochemistry is related to genetics can be left to the

machine to investigate.

The author designed a directed graph to encode the prior biological knowledge.

Such a graph allows an algorithm to compute the phenotype of a particular knockout

or to infer a missing reaction that could explain an observed phenotype. This

domain knowledge assists in forming the basis of the hypothesis generation approach

for inferring new knowledge. In the study carried out by Moss et al. [135], the

researchers designed an ontology-driven system for monitoring real-time data to

detect and explain anomalous patient responses to treatments in an intensive care

unit. The hypothesis is represented by logic rules that express possible reasons for

the detected anomalies. The knowledge about treatments and responses are first

built in terms of ontology and then hypothesis generation is executed by following

the strategies human clinicians use for reasoning.

The hypothesis representation can take the form of a probability model [199].

Such hypothesis generation is to produce a set of possible matches between extracted

image features (R) and pre-calculated model features (M). The hypothesis is pre-

sented as a Markov random field variable (X
M,R

), which indicates that region R in

the image arose from object region M . Similarly, in the study of image processing

in [39], the representation of a hypothesis is the probability of two points arising

from the same model.

The hypothesis can also be represented by graph models and refers to the dif-

ferent phenomena in biological signalling networks, e.g., certain reactants lead to

certain products [167]. Based on a basic biological signalling network, an hypoth-

esis can be generated automatically by solving the problems of the constrained

downstream and minimum knockout. Graph models are also used for hypothesis

representation of causal structures, as reviewed in Section 2.5.
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It can be seen that hypothesis generation is a cross-disciplinary practice. There

is a variety of forms of representation for hypotheses depending on the specific re-

search fields and research knowledge. Hypothesis generation provides an inductive

paradigm that automatically finds interesting patterns in data as potential knowl-

edge. Conventionally, representations reflect the specific domain knowledge and

interest of the researchers, that is, the researchers have a clear idea of how to use

the data or the knowledge they expect to extract from them. Guided by such inten-

tions, an hypothesis representation is selected and a generation strategy developed.

However, in a situation for which knowledge about the objective system and how

to use the data is not available in advance, this system is di↵erent from systems in

the conventional sense. Traditionally, a system is defined as a group of components

interacting together to achieve an overall objective or a number of objectives known

as the system-level objectives [90]. This thesis is concerned with systems that can be

measured by a set of variables but their objectives or underlying structures are un-

known; for example, sensor networks, large data problems, intelligent environments

and cyber security. For a large data problem [116] for which data are recorded on a

daily basis but not according to specific research concerns, one aspect is that peo-

ple are interested in analysing the data. However, if no specific domain knowledge

is provided in advance, how to use the data is not known. Therefore, hypothesis

generation potentially provides a paradigm for establishing interpretable knowledge

from such situations.

In an intelligent environment, sensors record activity data from the environ-

ment and pre-defined tasks can be performed by adapting these data to human

activities through machine learning techniques [122]. Although such techniques can

be designed manually when we know the common activities in typical scenarios, e.g.,

o�ces and lecture rooms, we need new ways for an intelligent environment agent

to build up an hypothesis about how to understand and adapt to non-standard

scenarios as a priori knowledge about what the observational data describes is not

available.

The cyber security scenario has similar characteristics. Due to the constant
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evolution of hacking activities, previous knowledge about abnormal activities in the

log data can be outdated. How to use log data to actively acquire an updated insight

into a system remains an interesting direction for which agents that can generate

new hypotheses from data could be an advantage [174, 175].

In situations with the above features (e.g., systems measured by a set of vari-

ables and domain knowledge not well established), one type of knowledge that can

provide initial insights into the underlying system is that regarding causal struc-

tures. Identifying a causal structure that controls the dynamics of a system can

build up the knowledge base for further use, e.g., visualisation, control strategy. Ex-

isting principles and models for studying causation are reviewed in Section 2.5, and

automatic causal modelling techniques can potentially be used for the above pur-

pose. However, for the systems considered above, the assumptions set for automatic

causal modelling may not be satisfied, which raises the need to define such a gener-

alised hypothesis generation problem and its corresponding approaches. This thesis

focuses on formulating a generalised hypothesis generation problem and developing

its solutions.

2.7 Chapter Summary

This chapter reviewed the literature concerning general hypothesis generation as well

as the techniques related to di↵erent aspects of causal hypothesis generation; that

is, ARM, causal modelling, ANNs and heuristic searches. These approaches provide

principles and techniques for representing potential associative relations, automati-

cally mining associative relations and undertaking causal modelling. However, their

advantages for a generalised hypothesis generation problem have not been widely

considered. Likewise, no systematic approaches exist for developing or evaluating

computational methods for interrogating an unknown system to gain new insights.

These issues are addressed in the following chapters.
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Chapter 3

Hypothesis Generation for

Continuous Domains: Problem

Definition and Solution Design

The previous chapter reviewed the techniques related to hypothesis generation ap-

proaches and discussed the problems associated with their adaptation to continuous

domains. This chapter integrates the advantages of ARM and the counterfactual

causal modelling criteria, with the aim of formally defining the problem of hypothesis

generation for continuous domains and distinguishing it from other similar problems

investigated in the literature. Based on this definition, the design of solutions to the

problem is also discussed.

This chapter is organised as follows. Section 3.1 defines the problem of hypoth-

esis generation for continuous domains and decomposes it into two sub-problems:

the associative hypothesis generation problem (AHGP) and causal hypothesis gen-

eration problem (CHGP). Section 3.2 discusses the issues that need to be addressed

when designing solutions to the AHGP and describes how they are considered. Sec-

tion 3.3 presents an experimental causal search approach based on an artificial agent

architecture as a solution to the CHGP. Finally, the conclusions drawn from this

study are presented in Section 3.4.
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3.1 Hypothesis Generation For Continuous Do-

mains: Problem Definition and Comparisons

with Similar Problems

One of the aims of this thesis is defining the problem of hypothesis generation in

continuous domains, with the context being situations in which data can be collected

about an unknown system. The unknown system is measured by a set of variables. It

is a system with conventional definition (A group of components interacting together

to achieve an overall objective or a number of objectives, known as system level

objectives [90]). However, limited a priori knowledge is available for characterising

the structure and dynamics of system. Hypothesis generation in such a situation can

provide a paradigm for gaining new insights into the relevant data and the system.

The ultimate goal of investigating a system often boils down to studying the

causal structure that dominates it, which provides us with the knowledge to develop

further control and application strategies. In general, as a hypothesis generation

approach, automatic causal modelling [183, 147] deals with a similar problem, as

discussed in Chapter 2. However, the algorithms developed for automatic causal

modelling are based on a set of assumptions, which place constraints on the underling

system and observed variables. The context considered in this thesis does not strictly

satisfy these assumptions, the characteristics of the underlying system are unknown.

In addition, for continuous domains, automatic causal modelling adds additional

assumptions about variables; for example, that they follow the same distribution

while relationships among them are assumed to be linear. In contrast, the hypothesis

generation problem defined in this thesis does not assume specific structures and

characteristics of the variables. The proposed problem of hypothesis generation in

continuous domains is defined as follows.

Autonomous Hypothesis Generation Problem in Continuous Domains

Input: observational dataset (X) measured from unknown system (E). X has
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p instances, each of which (X) a vector comprised of n variables and X =

[x1, x2, ..., xi

, ..., x
n

], where x
i

continuous variable.

Output: causal graph (G) describing underlying interrelations among variables

in X, with each node in G a variable (x
i

); edges in G with arrowheads represent

direct causal relation between two variables and if arrowhead from variable x
i

to x
j

, x
i

is a direct cause of x
j

.

In the case of human knowledge discovery, causation discovery is a progres-

sive process, with the understanding of the causal law behind a system beginning

with the observation of associations, which leads to an inquiry into causal relations.

Similarly, the hypothesis generation problem above can be decomposed into two

progressive sub-problems: the AHGP and CHGP. As shown in Figure 1.1, the first

problem is to find associative patterns, which provide evidence of potential causal

relations. However, without a priori knowledge about the system, it is possible that

there are no specific causal relations between its variables and, if so, it is not nec-

essary to proceed to causal hypothesis generation. Also, associative hypotheses can

potentially reduce the number of variables that needs to be examined when form-

ing causal hypotheses and, because their generation procedures exclude irrelevant

variables, the CHGP can take advantage of the output from the AHGP to form a

causal hypothesis in a reduced variable space.

3.1.1 Definition for the Associative Hypothesis Generation

Problem

The AHGP, the first sub-problem of the general hypothesis generation problem, is

defined as follows: X is a vector of variables x
i

; and the associative hypothesis

generation procedure outputs several associative variable sets, that is, the variables

within each set are associated with each other in a certain way.

Bing Wang November 26, 2014



CHAPTER 3. HYPOTHESIS GENERATION FOR CONTINUOUS DOMAINS:
PROBLEM DEFINITION AND SOLUTION DESIGN 64

Sub-problem 1: Associative Hypothesis Generation Problem (AHGP)

Input: observational dataset (X) with p instances; each instance (X) vector

comprised of n variables and X = [x1, x2, ..., xi

, ..., x
n

], where x
i

continuous

variable.

Output: set (F = {f1, f2, ..., fm}) of associative hypotheses; m number of hy-

potheses generated from observational data (X). f
j

a single associative hypoth-

esis taking the form, X
A

) X
B

, X
A

\X
B

= ;, X
A

, X
B

⇢ X.

The above definition of the AHGP is similar to the general definition of the

ARM problem. The di↵erence is that the AHGP aims to extract associations by

examining variables whereas the dominant ARM techniques for continuous variables

firstly convert the values of the variables involved into intervals and then extract

associations from them. However, discretising the variables presents di�culties for

obtaining evidence as to how individual variables are related to other variables. The

AHGP does not convert variables into intervals, but defines associative relations

directly among variables.

3.1.2 Definition of the Causal Hypothesis Generation Prob-

lem Definition

The second sub-problem is the CHGP, the input for which is a set of associative

hypotheses ( F={f1, f2, ..., fm}), with the hypothesis generation task to retrieve the

underlying causal relations among the variables based on the evidence provided by

F.

Sub-problem 2: Causal Hypothesis Generation Problem (CHGP)

Input: set (F = {f1, f2, ..., fj, ..., fm}) of associative hypotheses and m number

of associative hypotheses.
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Output: causal graph (G) describing underlying interrelations among variables

in X; edges in G with arrowheads represent direct causal relation between two

variables and if arrowhead from variable x
i

to x
j

, x
i

is a direct cause of x
j

.

The final causal hypothesis representation takes the same form as that used in

automatic causal modelling techniques in the literature, but the problem definition

takes di↵erent inputs and is set in a di↵erent context. Assumptions about the pres-

ence of causal relations within the objective system are not predefined. For example,

the patterns among variables are not limited to the consequences of the causal rela-

tions among them. The patterns can be due to associations or coincidences, that is,

the underlying system measured is not necessarily comprised of only inter-connected

components. This allows for a situation in which the underlying system contains

independent components that do not form a system in the conventional sense. The

relaxed assumptions about the underlying system in this thesis distinguish the pro-

posed CHGP definition from that for automatic causal modelling in the literature

[183, 147].

3.2 Associative Hypothesis Generation: Functional

Association Rule Mining

The previous section defined the problem of hypothesis generation for continuous

domains and decomposed it into two sub-problems. This section describes these

sub-problems and the issues that need to be addressed when solving them.

In this thesis, we identify three issues that need to be addressed when designing

algorithms for solving the AHGP: the representation of the associative hypothesis,

the strategy for generating associative hypotheses, and the strategy for evaluating

associative hypotheses.

There is a variety of representations of associative relations ranging from condi-
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tional probability [183], correlation and regressions among variables of interest [96]

to association rules [6]. This thesis focuses on representing them in terms of the last

form. Although approaches for extracting association rules can automatically group

multiple interrelated variables together, a typical association rule definition does

not reflect such information for continuous variables but, in general, converts them

into intervals, which it treats as categorical data. However, as the AHGP defined

above requires establishing relations among variables rather than intervals, in this

thesis, instead of discretising the continuous variables into intervals, an alternative

association rule form, termed FAR (functional association rule), is proposed.

FAR is a specific representational form of the associative hypothesis for con-

tinuous variables. It takes the form f(X
A

) ) X
B

(X
A

, X
B

⇢ X,X
A

\ X
B

= ;),

which is interpreted as the variations of the variables in X
B

that can be predicted

by the variations of the variables in X
A

. However, although it can establish associa-

tive relations among variables, it has the problem that it cannot enumerate all the

functional expressions. Therefore, it is imperative to either constrain the associa-

tive relations of interest to fixed forms or select a general form that can represent

all possible relations. In this thesis, both are considered, with the fixed relation

form assumed to be linear and the ANN adapted to represent arbitrary functional

relations.

The second issue to be addressed for associative hypothesis generation is the

evaluation criteria, which are required to confirm whether a generated FAR is sup-

ported by the observational data. Such identification implies applying a machine

learning technique to fit a FAR to given observational data and, if the data support

it, preserving that FAR as a valid hypothesis for upper-level hypothesis generation.

In this thesis, a predictive accuracy measure is used to perform the validation, that

is, if the accuracy of the FAR predicting values of the variables on its right-hand

side (RHS) exceeds a certain threshold, this rule is considered a valid associative

hypothesis.

The last issue to be addressed is the process of generation itself, which is usually

automated as a search procedure. The following two sections present details of the
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designs of the search strategies. Both of the two FAR representation forms are

discussed, fixed function form and arbitrary function representation.

3.2.1 Linear Functional Association Rule Mining

3.2.1.1 Linear Functional Association Rule Representation

The first associative hypothesis representation considered in this thesis is fixed func-

tion form representation, i.e., the associative relations are assumed to be linear. The

corresponding functional association rule is then called linear functional association

rule (LFAR). The proposed LFAR form only designates the variables involved in an

associative relation. It does not represent how they are associated. Therefore, it

needs another representation to express the specific relations among these variables.

This thesis proposes to use the regression model to represent such linear rela-

tions constructed by a LFAR. Although, the ultimate goal of this thesis is identifying

arbitrary associative relations, the LFAR is studied as a starting point of the hy-

pothesis generation approach. In addition, LFAR can be applied to conventional

association rule mining tasks as an alternative association rule form. It is necessary

to conduct an initial study on extracting LFARs from data as an association rule

mining approach.

3.2.1.2 Search Strategy for Linear Functional Association Rule Mining

For simplicity, the search for the LFAR problem is termed LFARM, the objective of

which is to find as many LFARs as possible hidden in the observational data. The

search space is defined by all possible LFARs among the variables as f(X
A

)) X
B

,

X
A

, X
B

2 X, |X
B

| = 1. As an initial study on functional association rule mining,

the number of the RHS variable of a LFAR is constrained to 1. The search space

has the following features:

1. infinitely large since the number of possible combinations is large enough to

be considered unbounded;
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2. deceptive since similar combinations can perform quite di↵erently; and

3. multimodal since we are expecting there to be multiple validation rules existing

in the data.

For dealing with such a di�cult, rugged, multimodal search space, evolutionary

computational algorithms are often more e�cient than other techniques [208]. An

evolutionary algorithm (EA) works with a population of candidate solutions, which

concurrently explore di↵erent parts of the search space, with a crossover operator

working on di↵erent multiple genes at the same time, and it has the potential to

preserve interrelated variables in its building blocks. EAs as heuristic search meth-

ods are known for their robustness and low sensitivity to noise, therefore they can

be applied for designing the search approach for the LFARM problem. This de-

sign involves three main issues: (1) the encoding scheme for the LFARs; (2) the

objective function design for guiding the evolution; and (3) the EA for evolving the

chromosomes.

Encoding scheme: there are two schemes for encoding a set of rules into

chromosomes: Pittsburgh [178] and Michigan [82]. The former encodes a set of rules

in one single chromosome, which has the advantage of evaluating the cooperative

performance of a set of rules on certain domain tasks. From this point of view,

it is a direct extension of the EA for a supervised learning problem. In the latter

approach, each individual encodes only a single rule, with each member competing

with every other member for evolution priority. It is adapted in this thesis, with

every rule representing a potential LFAR in its search space and no specific domain

task requiring all the rules to participate together.

Objective function : the evaluation of each individual involves the learning

task of fitting the encoded LFAR to the observational data. In essence, a single

LFAR is a regression model, which predicts the values of its RHS variables using a

linear function constructed with its LHS variables. The learning task in the eval-

uation process is to estimate the parameters of the encoded linear function. As

previously mentioned, predictive accuracy is used to evaluate a LFAR validation
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level. Since the variables under study are continuous, the predictive accuracy used

here is the correlation between the predicted and observed RHS values. The squared

correlation co-e�cient r2 is used for computing this correlation as in Equation 3.1:

r =

P
k

i=1(XBi

� X̄
B

)⇥ (X 0
Bi

� X̄ 0
B

)qP
k

i=1(XBi

� X̄
B

)⇥
qP

k

i=1(X
0
B

� X̄ 0
B

)
(3.1)

where X̄ 0
B

here refers to the predictive value of X
B

from variables in X
A

, k is the

number of observations. X̄
B

and X̄ 0
B

are the means of actual values of X
B

and

predicted values of X
B

respectively.

Search strategy : previous analysis of the search space feature of LFAR has

shown the advantages of applying an EA to FARM. The general structure of the

EA adapted to FARM is as follows, and the detailed implementation is introduced

in Chapter 4.

1. collect observational data;

2. initialise a population of chromosomes, each of which encodes LFARs;

3. evaluate each individual and assigns it a fitness value;

4. produce a new generation of LFARs using evolutionary operators, i.e., crossover

and mutation;

5. repeat the process from step 3 until the stopping criteria are met.

3.2.2 General Functional Association Rule Mining

3.2.2.1 General Functional Association Rule Representation

The LFARM approach presented above uses regression models to capture linear

associations; nevertheless, one of the main interest of this thesis is to investigate the

possibility of generating an associative hypothesis for arbitrary relations. In order

to generalise the representational power of the FAR, a general FAR is proposed.
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The representational form of this general FAR is the same as that of LFAR, that

is f(X
A

) ) X
B

, X
A

, X
B

⇢ X, X
A

\ X
B

= ;, except that the function f is not

constrained to a linear function but can be an arbitrary function.

The design of FARM algorithm needs to consider the following aspects. Firstly,

unlike a linear relation that has a fixed representational form, a nonlinear relation

can take any form. Therefore, a general representation of an arbitrary function needs

to be designed which, in this thesis, is an adaptation of an artificial neural network

(ANN). There have been concerns about applying ANNs to represent relations due

to their inability to interpret the relations. In our FARM scenario, the essential

interpretation we are looking for is to find which set of variables are associated, this

is done using ANN predictive models. In addition, ANN based FARs also refine this

information with a quantitative prediction. An example of a traditional AR is that

milk and bread are often bought together. This rule specifies related variables, but

does not include information about how much milk is bought when a certain number

of bread is purchased. In comparison, ANN based FARs can append quantitative

information to the rule. It builds up a functional relation among the variables

through the ANN model.

Secondly, similar to that of LFARM, the evaluation of a FAR involves a ma-

chine learning practice that fits the FAR to the observational data for which back-

propagation (BP) is used. Finally, the search scheme of FARM has di↵erent features

from that of LFARM due to its ANN representation. Since the training of an ANN

is itself a search problem, a few factors a↵ect the performance of the ANN approx-

imation (e.g., how its architecture is designed; how its initialisation of weights is

conducted). These factors need to be taken into account when designing the mining

approach for FAR.

3.2.2.2 Search Strategy for General Functional Association Rule Mining

Although the FAR search strategy using ANN as a general representational form

has the potential to capture non-linear relations, the performance of such an approx-
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imation is constrained by the ANN’s architecture and initialisation [208]. For the

best evaluation of an arbitrary FAR, an appropriate ANN, which can be designed

by either applying domain knowledge or casting it as a search problem, should be

assigned. This thesis considers the latter because its autonomous hypothesis gener-

ation approach assumes minimum a priori knowledge. Therefore, another layer, a

search problem, is introduced on top of the FARM problem. For this FARM prob-

lem, on one hand, the FARs in the observational data are searched for interesting

associations and, on the other hand, the most appropriate ANN for each FAR’s

representation and evaluation is also searched. The combination of potential FARs

and their matching ANNs form the search space for the FARM problem, for which

evolutionary computation again possesses advantages. This search space is:

1. infinitely large since the number of possible combinations is unbounded;

2. deceptive since similar combinations can have quite di↵erent FAR evaluation

performance outcomes;

3. multimodal since we expect there to be multiple validation rules existing in

the data; and

4. non-di↵erentiable since changes in the ANN initialisation weights or FAR con-

struction can have a discontinuous e↵ect on evaluation performance.

The paradigm of the cooperative co-evolution architecture [152] is to decompose

a complex problem into several sub-problems, each of which represents a partial so-

lution and evolves in its independent sub-population. However, as the fitness of one

individual is determined by the complete solution in which it participates with indi-

viduals from other sub-populations, the overall evolutionary process favours coop-

erative individuals. The search problem of FARM discussed above can be naturally

mapped to this cooperative co-evolutionary prototype. Constructing a potential

FAR is only a part of the solution to finding valid FARs in observational data while

the other part is determining cooperative ANNs that best match the FARs. Based

Bing Wang November 26, 2014



CHAPTER 3. HYPOTHESIS GENERATION FOR CONTINUOUS DOMAINS:
PROBLEM DEFINITION AND SOLUTION DESIGN 72

on such concerns, the search strategy designed for the FARM problem in this thesis

is a cooperative co-evolutionary FARM algorithm.

Both an ANN’s architecture and initialisation a↵ect its approximation perfor-

mance on a potential function. In this thesis, only the proper ANN initialisation is

evolved for cooperation with the FARs and also, for a FAR evaluation, the proper

ANN architecture search can be designed in the cooperative co-evolutionary ap-

proach. However, incorporating an additional search sub-problem into the FARM

problem significantly increases the complexity of the search. For a novel definition

of the FARM problem, this thesis is firstly concerned with a concise design for the

search solution.

A properly initialised ANN for a FAR evaluation is important, especially when

the BP approach is used. As reviewed in Chapter 2, BP is a gradient descent

technique in which the training can easily be trapped in a local optimum. For a

potentially valid FAR, it is possible that, in its evaluation, the learning task could

mean a multiple modal search space for the ANN training. If initialisation of the

ANN can be located close to the slope of the global minimum, the BP may have

a better chance of identifying a valid FAR. Therefore, the search for appropriate

ANN initialisation is incorporated in the cooperative co-evolutionary solution. The

general structure of its search algorithm is as follows, the detailed implementation

is introduced in Chapter 5.

1. collect observational data;

2. encode FAR and ANN into chromosomes and initialise the parameters for their

sub-populations;

3. apply a combination scheme to form a complete solution for the individuals

in each population, evaluate each solution and return fitness values to the

constituent individuals;

4. apply an evolutionary operator to the respective population to form the next

generation;
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f (x1, x )⇒ x

Functional association rule

Figure 3.1: Visualisation of tasks for causal hypothesis generation

5. repeat step 3 until the stopping criteria are met.

3.3 Causal Hypothesis Generation: Experimental

Causal Search

The CHGP defines the task of examining whether the input FARs contain valid

causal relations, which are then integrated into a directed graph to generate the final

causal hypothesis about the underlying system (as in Figure 3.1). To accomplish

this, the main problem to be addressed is the criteria for identifying the causal

relations.

Automatic causal modelling, as in the constraint-based causal search algorithms

[182, 147], relies on conducting dependency tests to identify causal relations. When

the variables under study are continuous, additional assumptions are made, i.e.,

that all follow the same statistical distribution and the interrelations among them

are linear. In this thesis, such assumptions are not specifically set for the variables

under study but, instead, the causal relations identification problem is approached

from a systematic experimental perspective based on an agent architecture.

In hypothesis testing research, investigations on causal relations are generally

conducted by applying the Rubin causal model (details of which are provided in

Chapter 6). A causal e↵ect is estimated by comparing the di↵erence between the out-
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Figure 3.2: Agent in environment (adapted from [123])

comes for a supposed e↵ect variable from two di↵erent experimental settings. In one

experimental setting, the supposed causal variable is given a treatment/intervention,

whereas in the other experimental setting, there is no treatment/intervention. Other

variables involved in the supposed causal relations are adjusted to eliminate their

potential influence on the e↵ect variable. This basic principle of the causal e↵ect

inference incorporates temporal information which, in general, is considered essen-

tial for identifying potential causal relations [158]. It is also one of the most critical

factors that people use for distinguishing causal relations from other types of asso-

ciations.

Inspired by the above principle, the strategy planned for addressing the CHGP

is to automatically apply a systematic manipulation using an agent [204]. An agent

is considered as a system that uses sensors to monitor some subset (S) of the world

(W), reasons about the sensed world and uses a set of actions (A) to trigger e↵ectors

that cause a subset of transitions (T) to occur, as shown in Figure 3.2. Such an

architecture defines three fundamental characteristics of an agent as encompassed

by the systematic manipulation approach for CHGP: (1) it obtains inputs through

sensing, (2) it makes decisions and (3) it acts through e↵ectors.
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3.3.1 Sense

The sensed information an agent receives from its environment includes the obser-

vational data and FARs from previous processes. The observational data (X) are

collected from the unknown system, where no specific domain knowledge is available

about its structure and dynamics. The FARs are the associative hypotheses (F =

{f1, f2, ..., fm}).

3.3.2 Reason

In hypothesis testing research, the relevant variables required to be included for

experiments are manually selected by the researchers based on their domain knowl-

edge. The FARs mined from the observational data in the previous step can be

considered automatic counterparts of this practice as a FAR of form f(X
A

) ) X
B

provides evidence of which variables can potentially serve as cause variables (X
A

)

or e↵ect variables (X
B

). Therefore, intervention experiments will be applied on the

LHS of a FAR.

3.3.3 Action

The systematic interventions the experimental causal search algorithm applies on

the objective system form the action part of the agent. At an abstract level, the

action is first to adjust the system of interest to a state the same as, or similar to, a

history state according to the observational record. Then, an intervention is applied

to the supposed cause variable and, after a certain time step (�t ), the value of the

supposed e↵ect variable recorded. If a change in the e↵ect variable after intervention

is confirmed, the causal relation is established, otherwise the relation is merely an

association. For example, the currently received FAR is f(x1, x2)) x3 and, in the

observational history, there is a record of the variables: x1 = x(1,c), x2 = x(2,c) and

x3 = x(3,c). Suppose that the current causal relation under intervention is {x1, x3},

and the values of the variables x1, x2 and x3 are adjusted to the above record
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(i.e., x(1,c), x(2,c), x(3,c) respectively). Then a disturbance �x is added to variable

x1 (x1 = x(1,c) + �x). After a time step �t, the value of the e↵ect variable (x3,

x3 = x(3,�t)) is compared with its value without disturbance (x(3,c)). During this

process, the value of the variable x2 is kept unchanged (x(2,c)) in order to eliminate

its potential influence on x3.

The typical cycle of the proposed experimental causal search process is:

1. collect observational data;

2. receive a FAR;

3. select a LHS variable, adjust the system to a history state, apply the interven-

tion, control other LHS variables and record the change in the RHS variable;

4. repeat the last step a certain number of times on di↵erent history states of the

system;

5. reason about the causal relation between the LHS and RHS variables under

study;

6. if not all the LHS variables have been tested, return to step 3; or

7. if all the LHS variables have been tested, return to step 2.

The word ‘experimental’ is used to reflect the interaction of the agent with the

given unknown system. By integrating the experimental causal search algorithm into

an agent, the agent has the potential to autonomously acquire knowledge about its

environment, as explored in Chapter 6.

3.4 Chapter Summary

This chapter proposed a generalised hypothesis generation problem in continuous

domains, which was further decomposed into two sub-problems, the AHGP and

CHGP, the formal definitions of which were also presented. It discussed appropriate
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strategies for developing solutions to the two sub-problems; that is, a novel FAR

form was proposed to represent the associative hypothesis and further refined into

linear and general FARs, and then the AHGP was cast as a FARM problem. Two

approaches based on evolutionary computation were proposed, with a prototypical

experimental causal search algorithm presented for causal hypothesis generation.

The following chapters present the detailed implementation of the algorithms de-

scribed in this chapter, together with the subsequent experiments conducted on both

synthetic and real-world data.
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Chapter 4

Associative Hypothesis

Generation: Linear Functional

Association Rule Mining

The previous chapter defined a generalised hypothesis generation problem, which

was then decomposed into two sub-problems, the associative hypothesis generation

problem (AHGP) and causal hypothesis generation problem (CHGP), the definitions

of which were also presented. For the AHGP, a functional association rule (FAR)

was proposed as its representation. The generation strategy was cast into a heuristic

search process, the preferred method for which was using evolutionary algorithms

(EAs) as they are often very e�cient for complex, multimodal and discontinuous

search spaces. The previous chapter also described the strategies for developing

linear FAR mining (LFARM) algorithms.

This chapter presents details of the implementations of three di↵erent EAs, a

genetic algorithm (GA), population-based incremental learning (PBIL) and di↵er-

ential evolution (DE), adapted for the LFARM problem. To analyse the LFARs

generated from the search process, two metrics, hypothesis complexity and variable

perceptual selectivity, are proposed. Experiments are conducted on both a synthetic

dataset and four real-world datasets. The remainder of this chapter is organised as
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follows: Section 4.1 provides details of the methodology for LFARM, including the

chromosome encoding scheme, objective function design and the three search algo-

rithms for mining LFARs; Section 4.2 explains the proposed metrics for analysing

the hypotheses generated; the experimental results are presented in Section 4.3; and

the conclusions drawn discussed in Section 4.4.

4.1 Methodology for Linear Functional Associa-

tion Rule Mining

A LFAR can be viewed as an alternative form of the quantitative association rule.

As discussed in Chapter 2, the general quantitative ARM usually applies a strategy

of converting continuous data into intervals whereby the data form can be adapted

to the support and confidence framework of the classic ARM. However, as a LFAR

describes an associative relation in terms of functions for which the downward closure

property in ARM does not hold [7], the idea of generating a complete set of LFARs

has to be abandoned. However, instead, we can adopt heuristic search approaches in

which the algorithms return as many valid LFARs as possible. This section presents

the algorithms designed for the LFARM problem and includes: (1) the scheme for

encoding a LFAR into a chromosome; (2) the evaluation strategy and objective

function design for assessing the individuals; (3) the procedure for extracting valid

LFARs; and (4) implementations of the three EA-based LFARM approaches, the

general process of which is illustrated in Figure 4.1. The termination criteria used

is whether the specified number of generations for evolution is reached.

4.1.1 Linear Functional Association Rule Representation

As defined in Section 3.1.1, Chapter 3, the input observational data for FARM con-

sist of n continuous variables. Accordingly, a chromosome for a LFAR is designed to

be a binary vector of length n, with a gene in it referring to a bit and corresponding

to one variable in an observed instance (X). The values 1 and 0 in a chromosome
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Figure 4.1: General process for evolutionary algorithm-based LFARM (numbering
refers to subsections of this chapter)
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Table 4.1: Examples of individual representation of LFAR

Chromosome LFARs Chromosome LFARs

11100000 f(x4, x5, x6, x7, x8)) x1 11001100 f(x3, x4, x7, x8)) x1

f(x4, x5, x6, x7, x8)) x2 f(x3, x4, x7, x8)) x2

f(x4, x5, x6, x7, x8)) x3 f(x3, x4, x7, x8)) x5

f(x3, x4, x7, x8)) x6

represent its right-hand side (RHS) and left-hand side (LHS) variables respectively.

Examples of such chromosomes are given in Table 4.1. As this encoding scheme

incorporates several LFARs in one chromosome, it allows one chromosome to in-

vestigate multiple rules at the same time, which increases its chance of finding a

valid LFAR. For initialisation, each gene in a chromosome with a probability 0.5 is

assigned value 1, otherwise 0. If all genes in a chromosome are either 0s or 1s, then

the chromosome’s fitness is set to 0.

4.1.2 Evaluation Strategies

4.1.2.1 Objective Function

In the conventional ARM, the ‘interestingness’ of an association rule is determined

by its support and confidence measures [7] and, for one LFAR, by how well it is

supported by the observational data. In the last chapter, we stated that, in essence,

a LFAR is a regression model in which the variables involved are automatically

selected by the evolutionary process. In contrast, conventionally, variables involved

in a regression model are manually selected by analysts [96]. A LFAR in the form of

f(X
A

)) X
B

specifies the variables involved in a linear relation, e.g., f(x1, x2, x3))

x4, and its analytical expression can be written as:

x4 = b0 + b1x1 + b2x2 + b3x3 (4.1)
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The parameters, {b0, b1, b2, b3}, are estimated by a multiple regression procedure

which fits the observational data (X) to the equation [3] (Algorithm 3, Line 4).

Then, the quality of the corresponding LFAR can be evaluated and, with the com-

plete analytical expression, can be used to estimate the values of its RHS variables.

The predictive accuracy (R2) (as in Equation 3.1, Chapter 3) determines the inter-

estingness of one LFAR (Algorithm 3, Line 5).

According to the above encoding scheme, each chromosome can include multi-

ple LFARs, each of which has its own predictive accuracy value (R2
r

i,j

), where r
i,j

refers to the ith chromosome in a population and j the jth LFAR encoded in one

chromosome. The objective function of the chromosome is then determined by the

maximum prediction value among the LFARs as:

#
r

i

= max
j

R2
r

i,j

; j = 1, 2, ..., n
r

i

(4.2)

n
r

i

is the number of LFARs encompassed in one chromosome. This overall evaluation

procedure for one chromosome r
i

is given in Algorithm 3.

Algorithm 3: LFARM chromosome evaluation: regressionEvaluation(r
i

, X,
h
r

)

Input : chromosome (r
i

), observational data (X), predictive accuracy
threshold (h

r

)
Output: fitness value (#

r

i

), valid LFARs recorded (F)
1 n

r

i

 number of FARs in r
i

2 for j  1 to n
r

i

do
3 Decode jth LFAR from rule r

i

, denote as LFAR
i,j

4 Apply multiple regression on LFAR
i,j

, and estimate regression parameters
5 Calculate predictive accuracy (R2

r

i,j

) of current LFAR
i,j

6 if R2
r

i,j

� h
r

then
7 //Apply backward elimination variable selection on valid LFAR

(Section 4.1.2.2)
8 LFAR’  backwardElimination (LFAR

i,j

)
9 end

10 if LFAR’ unique then store in F
11 end
12 #

r

i

 max(R2
r

i,j

); j = 1, 2, ..., n
r

i

The search process for the LFARs has a unique characteristic. The valid LFARs,
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as defined by their predictive accuracies (R2) being beyond a threshold (h
r

) (Algo-

rithm 3, Line 6), are recorded during the evolutionary process in a set (F). Although

a chromosome including a valid LFAR can be replaced by its o↵spring according to

the evolutionary principle, as di↵erent LFARs can represent di↵erent relations, sim-

ply replacing a parent chromosome during evolution can cause a loss of valid FARs.

Assume that each of two LFARs (LFAR
a

and LFAR
b

) in two chromosomes (r
a

and

r
b

) has a predictive accuracy greater than h
r

, and that LFAR
a

is f(x1) ) x2 and

LFAR
b

f(x3) ) x4, with r
b

the o↵spring of r
a

. Then, a basic evolutionary process

will discard r
a

and replace it with r
b

when entering the next generation. However, as

LFAR
a

represents a di↵erent relation from LFAR
b

, discarding it could mean losing a

valid linear associative relation. Therefore, it is necessary to record the valid LFARs

encountered during the evolutionary process into a set (F) (Algorithm 3, Line 8).

4.1.2.2 Sequential Search Variable Selection

During the recording process, a LFAR identified as valid by the above fitness cal-

culation may have independent variables that do not contribute significantly to its

linear relation. According to Occams Razor or the principle of parsimony, a model

should contain all that is necessary for its purpose but nothing more; for example,

if a regression model with two independent variables is su�cient to explain its de-

pendent variable, only these two independent variables should be used. Therefore,

since the independent variables are already specified by the LFAR, each valid LFAR

also goes through a variable selection process, which is performed by the backward

elimination procedure [96].

This procedure begins with a regression equation and sequentially deletes the

independent variables that do not significantly contribute to the relation. Suppose

an identified LFAR is f(x1, x2, x3) ) x4 with a predictive accuracy of R2 greater

than h
r

for x4. The variable selection procedure sequentially drops each independent

variable to determine whether the rest of the independent variables can still predict

the dependent variable with an accuracy beyond a certain threshold; for example,

when the variable x1 is being checked, the LFAR becomes f(x2, x3) ) x4. The
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multiple regression is then used to re-estimate the LFAR regression parameters. If

the re-calculated prediction accuracy is still greater than a slightly lower thresh-

old (h
r

��a) (�a reduces the accuracy threshold for re-estimation), the discarded

variable can be considered to not contribute significantly to the relations and be

eliminated from the LFAR. However, if the re-evaluation result shows that the pre-

diction accuracy drops below the threshold (h
r

��a) after removing one variable,

that variable is put back in the LFAR and the backward elimination process moves

to the next variable.

4.1.3 Evolutionary Algorithm based Linear Functional As-

sociation Rule Mining Strategies

In this thesis, the LFARM problem is considered a search problem. The feature

of such a search space as well as the advantages of applying EAs were discussed in

Chapter 3. Three di↵erent EAs, GA, PBIL and DE, are adapted as novel approaches

to solve the LFARM problem, as discussed in the following three respective sections.

These algorithms are selected due to the di↵erent characteristics of their evolutionary

processes. DE maintains a parallel temporary population during its evolution, which

also takes part in the evaluation. This feature should give it the capability to

find more LFARs than other algorithms using a single population. PBIL uses a

probability vector to generate its population, which it adjusts to move towards

the direction of the current best individual. Although its evolutionary operators

are relatively simple, as constantly shifting its population towards only the best

individual could constrain its coverage of the search space, it is expected to find

fewer LFARs. The GA is used as a canonical EA to be compared with. These three

algorithms are compared using two proposed metrics to determine the di↵erences in

their performances.

Bing Wang November 26, 2014



CHAPTER 4. ASSOCIATIVE HYPOTHESIS GENERATION: LINEAR
FUNCTIONAL ASSOCIATION RULE MINING 86

01010011

1110001111101001

01011001

Single-point crossover

Point mutation
11101001 11101101
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Initial string After mutation

Figure 4.2: Single-point crossover operator and mutation operator

4.1.3.1 Genetic Algorithm based Linear Functional Association Rule

Mining

The evolution in a GA is determined by a set of operators that recombine and mutate

selected members of the current population. This GA-LFARM approach uses a single

point crossover operator. It creates two o↵spring by exchanging a certain amount

of genes between two parents specified by a gene position (as in Algorithm 7).

Then, the mutation operator produces small random changes to the bit string by

choosing a single bit at random and changing its value (as in Algorithm 6). These

two operators are visualised in Figure 4.2. Roulette wheel selection is applied to

select the parents for the generation of o↵spring [66] (as in Algorithm 5). Details of

the implementation of the GA-LFARM algorithm are shown in Algorithm 4. The

functions rnd(lower, upper) and rand(lower, upper) return respective integer and

real values sampled from [lower, upper] using a uniform distribution, where ‘lower’

and ‘upper’ refer to the lower and upper bounds of a range respectively. These two

functions are also used in the other two EA-based LFARM approaches.
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Algorithm 4: Genetic algorithm-based linear functional association rule min-
ing: GA-LFARM(n

p

, X, n, R
m

, R
c

, h
r

)

Input : population size (n
p

), observational data (X), number of observation
variables (n), mutation rate (R

m

), crossover rate (R
c

), accuracy
threshold (h

r

)
Output: valid LFARs recorded (F)

1 Create initial population: R
p

= {r1, r2, ..., rn
p

}. do
2 //Evaluate fitness of each chromosome and record valid LFARs
3 for i 1 to n

p

do
4 #

r

i

 regressionEvaluation(r
i

, X, h
r

)
5 end
6 ⇥

p

= {#
r1 ,#r2 , ...,#r

n

p

}
7

8 //Attach probability (p
i

) to each chromosome individual for roulette
wheel selection

9 for i 1 to n
p

do

10 p
i

 ✓

r

iP
n

p

i=1 #r

i

11 end
12

13 //Create temporary o↵spring population (supposing population size even
number):

14 for i 1 to n
p

/2 do
15 parent1  Selection(⇥

p

, R
p

, n
p

)
16 parent2  Selection(⇥

p

, R
p

, n
p

)
17 {child1, child2} Crossover(parent1, parent2, R

c

, R
m

, n)
18

19 //Add two children into temporary population (R0
p

= {r01, r02, ..., r0n
p

}):
20 r02i = child1, r02i+1 = child2

21 end
22

23 //Replace current population with temporary population
24 for i 1 to n

p

do
25 r

i

= r0
i

26 end
27 while Termination criteria is not met ;
28 access LFAR archive (F), and return LFARs stored
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Algorithm 5: Selection operator implemented in GA-LFARM :
Selection(R

p

, n,⇥
p

)

Input : population (R
p

= {r1, r2, ..., rn
p

}), number of variables (n), set of
fitness of each individual chromosome (⇥

p

= {#
r1 ,#r2 , ...,#r

n

p

})
Output: Selected parent (parent)

1 s =
P

n

p

i=1 #r

i

2 selection
sum

= s⇥ rand(0, 1)
3 partial

sum

 0
4 j  0
5 repeat
6 j  j + 1
7 partial

sum

= partial
sum

+ #
r

i

8 until partial
sum

� selection
sum

or j == n
p

;
9 Select jth individual for mating pool: parent r

j

10 Return parent

Algorithm 6: Mutation operator implemented in GA-LFARM :
Mutation(gene,R

m

)

Input : binary bit (gene), mutation rate (R
m

)
Output: gene

1 if rand(0, 1) < R
m

then gene ¬gene
2 Return gene
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Algorithm 7: Crossover operator implemented in GA-LFARM :
Crossover(parent1, parent2, R

c

, R
m

, n)

Input : Parent1, Parent2, number of variables (n), crossover rate (R
c

),
mutation rate (R

m

)
Output: child1, child2

1 if rand(0, 1) < R
c

then
2 cross

site

 rnd(1, n)
3 else
4 cross

site

 n
5 end
6

7 //i refers to gene position in chromosome
8 for i 1 to cross

site

do
9 child1

i

 Mutation(parent1
i

, R
m

)
10 child2

i

 Mutation(parent2
i

, R
m

)
11 end
12

13 //i refers to gene position in chromosome
14 for i cross

site

+ 1 to n do
15 child1

i

 Mutation(parent2
i

, R
m

)
16 child2

i

 Mutation(parent1
i

, R
m

)
17 end
18 Return child1, child2
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Probability vector 1

0.5, 0.5, 0.5, 0.5, 0.5
0 0 1 1 0 1

Chromosome population 1

1 1 1 0 0 0

0 1 0 0 1 0
1 0 0 1 1 1

0.75, 0.5, 1, 0.25, 0
1 0 1 0 0 0
1 1 1 0 0 0

0 1 1 0 0 0
1 0 1 1 1 0

Probability vector 2 Chromosome population 2

Figure 4.3: Examples of using probability vector (P ) to generate population

4.1.3.2 Population based Incremental Learning for Linear Functional

Association Rule Mining

PBIL belongs to the family of estimation of distribution algorithms (EDA) [17].

Its distinctive evolutionary process is that it maintains a probability vector (P ) to

evolve its populations. In a binary encoding chromosome, P specifies the probability

of each bit position containing a value of 1 while the probability of that bit position

containing a 0 can be derived by subtracting the probability specified in the vector

from 1. This population generation process is visualised in Figure 4.3. The evolu-

tionary process of PBIL adjusts P towards the best-fit individual in each generation,

the population of which tends to be scattered around the regions represented by P .

Then, the population is shifted towards the direction of the best individual in each

generation through the updating of P . The probability update rule in Equation 4.3

shows that each element in the probability vector shifts towards one specific individ-

ual. This feature could cause the PBIL to converge faster but could also constrain

its exploration of the search space to some extent. As a consequence, it is expected

that it will identify fewer LFARs for the LFARM problem.

P
i

= P
i

⇥ (1.0� l
r

) + (l
r

⇥ ri
best

) (4.3)
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ri
best

is the ith position in the best performing individual in the current population,

towards which P moves and l
r

a learning rate.

Unlike GA, most of the evolutionary operators of PBIL are not defined on

the population but mainly occur directly on the probability vector, the adjustment

of which corresponds to the selection and crossover operators in a GA. Regarding

the mutation operator, there are two ways of defining it. The first is to perform

a mutation on the probability vector, which is defined as a small probability of

perturbation on each of the positions in it. The second is to perform a mutation

on individuals in the current population, as conducted by the mutation operator

used in a GA. In this thesis, the first mutation operator is used (Algorithm 8, Lines

15-18), with details of the implementation of the PBIL-LFARM approach shown in

Algorithm 8.

Algorithm 8: Population-based incremental learning for linear functional as-
sociation rule mining: PBIL-LFARM(n

p

, X, n, R
s

, R
m

, h
r

)

Input : population size (n
p

), observational data (X), number of variables
(n), mutation shift (R

s

), mutation rate (R
m

), accuracy threshold
(h

r

)
Output: valid LFARs recorded F

1 P  initialised vector (P
i

 0.5 , i = 1, 2, ..., n) do
2 //Create the current population i 1
3 while i  n

p

do
4 Create chromosome (r

i

) by sampling each probability value in P
#
r

i

 regressionEvaluation(r
i

, X, h
r

) //Algorithm 3 i i+ 1
5 end
6 Select best individual (r

best

), best = argmax
i

#
r

i

Update P towards r
best

using Equation 4.3
7 //Apply mutation operator to P i 1 while i  n do
8 m rand(0, 1) if m < R

m

then P
i

 P
i

⇥ (1�R
s

) + rnd(0, 1)⇥R
s

i i+ 1
9 end

10 while Termination criteria not met ;
11 access LFARs recorded and return set F
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4.1.3.3 Di↵erential Evolution based Linear Functional Association Rule

Mining

DE is an EA initially designed to solve real-value problems using a population of

floating-point encoded individuals [190]. It generates its o↵spring by firstly forming

an intermediate trial individual from a set of selected parents using a mutation

operator. The mutation operator perturbs one of the parent individuals (called the

main parent) with a weighted di↵erence derived from the other parents. The main

parent can be either a randomly selected individual or the best individual found so

far. The following equation defines how the perturbation is implemented using three

randomly selected individuals and is known as the DE/rand/1 scheme [8].

rt = r
pa1 + F

s

⇥ (r
pa2 � r

pa3) (4.4)

F
s

is known as a scale factor and is a real number that controls the rate, at which the

population evolves. While there is no upper limit on it, in practice, its e↵ective values

are seldom greater than 1.0 (in Algorithm 9, Line 13, a Gaussian random number is

used to determine its value, as adapted from [1]). rt refers to the trial individual, and

r
pa1 , rpa2 , rpa3 are randomly selected individuals from the current population. There

are also other variants of this perturbation procedure; for example, DE/best/1,

where the main parent is the best-performing individual found so far and DE/rand-

to-best/1, where perturbation is achieved from a pair of di↵erences derived from

four di↵erent individuals [8].

The trial individual (rt) then goes through a crossover operator process by being

mixed with another randomly selected parent individual (r
pa

) as:

rt
,j

=

8
<

:
r
pa,j

rand(0, 1) < R
c

or j == rand(1, n)

rt
,j

otherwise
j = 1, 2, ..., n; (4.5)

the index j is used to refer the genes in the individual chromosome. R
c

is crossover
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rate (Algorithm 9 Line 12-17). The function rand is defined in Section 4.1.3.1.

Since the chromosomes used in the evolution is binary bit, the trial vector is then

converted into binary vector (Algorithm 9 Line 14) as follows:

where the index j refers to the genes in the individual chromosome, R
c

is the

crossover rate (Algorithm 9, Lines 12-17) and the function ‘rand’ is defined in Sec-

tion 4.1.3.1. Since the chromosomes used in the evolution are binary bits, the trial

vector is then converted into a binary vector (Algorithm 9, Line 14) by:

rt
,j

=

8
<

:
1 if rt

,j

� 0.5

0 otherwise
j = 1, 2, ..., n; (4.6)

The o↵spring is eventually created by a selection operator, which compares the

fitness values of r
pa

and the trial individual (rt) to determine which should proceed

to the next generation (Algorithm 9, Lines 23-29) as:

roffspring =

8
<

:
rt #

r

t � #
r

pa

;

r
pa

otherwise;
(4.7)

It can be seen in the above selection process that this algorithm evaluates more

individuals than the other two as it considers those in both the main and trial

populations. Although some individuals in the trial population may not participate

in evolution due to the selection operator, since they go through the evaluation

process, any valid LFARs will be extracted. Due to these extra evaluations, DE-

LFARM is expected to extract more FARs than those which evaluate only one

population, and its implementation is shown in Algorithm 9.
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Algorithm 9: Di↵erential evolutionary algorithm-based linear functional as-
sociation rule mining: DE-LFARM(n

p

, X, n, R
m

, R
c

, h
r

)

Input : population size (n
p

), observational data (X), number of observation
variables (n), mutation rate (R

m

), crossover rate (R
c

), accuracy
threshold (h

r

)
Output: valid LFARs recorded (F)

1 Create initial population of LFARs: R
p

= {r1, r2, ..., rn
p

}
2 do
3 for i 1 to n

p

do
4 #

r

i

 regressionEvaluation(r
i

, X, h
r

) //Algorithm 3
5 end
6

7 //Generate trial population
8 for i 1 to n

p

do
9 Select individual at random as main parent (r

pa1) and two other
individuals as supporting parents (r

pa2 and r
pa3)

10 j
rand

= rand(1, n)
11 for j  1 to n do
12 if rand(0, 1) < R

c

or j
rand

== j then
13 rt

i,j

 r
pa1,j +Gaussian(0, 1)⇥ (r

pa2,j � r
pa3,j)

14 Convert rt
i,j

into binary form
15 else
16 rt

i,j

 r
pa1,j

17 end
18 end
19 end
20

21 //Create new population:
22 for i 1 to n

p

do
23 #

r

t

i

 regressionEvaluation(rt
i

, X, h
r

)

24 if (#
r

t

i

> #
r

i

) then
25 r

i

 rt
i

26 else
27 r

i

 r
i

28 end
29 end
30 while Termination criteria not met ;
31 access LFARs recorded and return the set F
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4.2 Performance Metrics for Linear Functional As-

sociation Rule Analysis

To analyse the LFAR results, one basic target is to uncover as many valid and

unique LFARs as possible. However, it is not the completeness of the underlying

rules that is of specific interest. Since the downward closure property [7] does not

hold for LFARs, it is not expected that a complete set of LFARs will be generated.

Therefore, one measure of performance is the number of rules found by di↵erent

algorithms for the same experimental settings. This metric characterises the extent

of the natural coverage of the search space obtained by di↵erent algorithms.

Other than the numbers of LFARs obtained, a particular point of interest in

the experiments is their characteristics derived from di↵erent algorithms, which is

achieved using the two metrics of complexity and perceptual selectivity.

4.2.1 Complexity

One aspect regarding analysing LFARs is complexity and, according to the principle

of parsimony, which requires a model to be precise and simple, this metric examines

the qualities of the LFARs found. Complexity evaluates LFARs by measuring the

numbers of LHS variables for each RHS variable by:

Complexity
x

i

=

P
N

x

i

k=1 Jk
N

x

i

(4.8)

where x
i

refers to a variable that appears as a RHS variable in a LFAR, N
x

i

the

number of LFARs found with x
i

and J
k

the number of LHS variables in the kth

LFAR of the LFARs with x
i

as the RHS variable. This metric characterises the

qualities of the LFARs found by di↵erent algorithms from the perspective of the

parsimony principle.
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4.2.2 Perceptual Selectivity

Another aspect of the performances of the di↵erent algorithms is the dynamics of

their searching procedures; specifically, whether they behave similarly when con-

structing LFARs. Such behaviour can be characterised by perceptual selectivity,

which is a term used in artificial agent design initially for the purpose of reducing

computational complexity [58]. It characterises an agent’s capability to limit the

set of sensory data to be attended at any one time. Similarly, in LFARM, percep-

tive selectivity can be used to capture the dynamic choices of variables, which form

LFARs and is defined as a frequency measure by:

PerceptualSelectivity(x
j

,x

i

) =
N(x

j

,x

i

)

N
x

i

(4.9)

where PerceptualSelectivity(x
j

,x

i

) is the frequency of x
j

appearing as an LHS vari-

able in LFARs where x
i

acts as the RHS variable (i 6= j), N(x
j

,x

i

) the number of

valid LFARs found so far with x
i

the RHS variable and x
j

the LHS variable at the

same time, and N
x

i

the number of LFARs found so far with x
i

as the RHS variable.

As this perceptual selectivity metric can be applied during the evolutionary process,

it can visualise the dynamics of di↵erent algorithms when constructing FARs during

their search processes.

4.3 Experiments on Linear Functional Associa-

tion Rule Mining

The proposed methods and metrics are applied to four real-world datasets down-

loaded from the UC Irvine machine learning repository (UCI) [14] (1-12) and func-

tion approximation repository [?], that is, (1) breast cancer Wisconsin prognostic

(BCW prognostic), (2) breast cancer Wisconsin diagnostic (BCW diagnostic), (3)

breast cancer Wisconsin original (BCW original) (4) concrete (slump), (5) concrete

(strength), (6) dermatology, (7) fertility, (8) housing (Housing), (9) sonar, (10)
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Table 4.2: Data set summary [14]

Data (X) No. variables (n) No. instances (p)

1 BCW prognostic 34 194

2 BCW diagnostic 31 569

3 BCW original 10 599

4 Concrete (Slump) 10 103

5 Concrete (strength) 9 1030

6 Dermatology 35 358

7 Fertility 10 100

8 Housing 14 506

9 Sonar 61 208

10 Stockprice 10 506

11 Wine 14 198

12 Yacht 7 308

13 Baskball 5 96

14 Body fat 18 252

15 Bolts 8 40

16 Pollution 16 60

17 Quake 4 2178

18 Sleep 8 51

19 Vine 4 52

20 Iris 5 150

stockprice (11) wine (Wine) (12) yacht, (13) baskball, (14) bodyfat, (15) bolts, (16)

pollution, (17) quake, (18) sleep, (19) vine, and (20) iris. Instances with missing

values are deleted from the original datasets, and a summary of the experimental

datasets is given in Table 4.2. In these datasets, the variables representing the

participant ID are removed. The treatment of missing data is done assuming that

domain knowledge about the given dataset is unavailable. In particular, whether

the missing data corresponds to dependent variables or independent variables is as-

sumed to be unknown. Due to this assumption, the instances with missing data are
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Table 4.3: Experiment parameters

Parameters GA-LFARM PBIL-LFARM DE-LFARM

Population size (n
p

) 100 100 100

Generation size (n
g

) 100 100 100

Crossover rate (R
c

) 0.7 0.7 0.7

Mutation shift (R
s

) n/a 0.02 n/a

Mutation rate (R
m

) 0.02 n/a n/a

R2 threshold (h
r

) 0.9 0.9 0.9

simply removed. Some of the datasets are discrete (e.g. BCW original), while oth-

ers are continuous (e.g. sonar). In this chapter, the basic idea is to use regression

to identify and represent hidden relations. Therefore, both discrete and continu-

ous datasets can be handled using our FARM algorithm. Furthermore, continuous

datasets need not be discretised (unlike in traditional methods).

It should be noted that the original data mining tasks of these datasets are

not important in this chapter as we ignore the default tasks and use these datasets

assuming no a priori knowledge of them. The parameters used in the experiments

are summarised in Table 4.3, and each approach is run 30 times with di↵erent seeds.

Table 4.4 shows the overall numbers of LFARs found by each approach. For each

approach, these LFARs are stored in the set F, in which each member is unique and

has the predictive accuracy on the given dataset greater than h
r

. In most datasets

that returns LFARs, DE-LFARM finds more rules than the other two approaches (

1, 2, 4, 6, 10, 11, 18). DE-LFARM is expected to return the most LFARs due to

that it maintains a parallel trial population during its evolution. There are datasets,

where three approaches converge to similar rules (e.g. dataset 4, 5, 11, 15, 16, 18).

This can be attribute to that all possible linear relations in the data have been

explored. Notably, there are datasets in which none of the three methods return

any rules (e.g. 7, 8, 13, 17). It is known that there are hidden relations in the

datasets, as these datasets have been commonly used for data mining tasks set
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by domain experts. This result thus implies that assuming only linear relations is

not su�cient for identifying complex hidden relations in the given datasets. This

problem is further discussed in Chapter 5.

In Table 4.5, it can be seen that the PBIL-LFARM algorithm uses the least

computational time to complete its evolution. Although DE-LFARM in general

returns more LFARs, it takes significantly longer to process the data while, GA-

LFARM performs moderately in comparison with the other two in terms of run

time.

The two proposed metrics are also used to evaluate the performances of the

three mining approaches. Figures 4.4 and 4.5 present the complexities of di↵erent

LFARs using di↵erent RHS variables from the BCW prognostic dataset. The 95%

confidence intervals are calculated and shown in order to compare the performance

of the three algorithms. In general, the complexities of the LFARs identified by the

three approaches gradually increase over generations, except for those variables that

do not have their own LFARs (as in Figure 4.4 (c)(e)(f) and Figure 4.5(e)). In six of

the eight plots, PBIL-LFARM has significantly longer LFAR lengths than the other

two approaches. Of the remaining two plots, one shows that PBIL-LFARM has a

shorter LFAR length than the other two approaches while the other indicates no

evident di↵erence. For GA-LFARM and DE-LFARM, except in Figure 4.5(f), there

is no evidence of di↵erent performances measured by the complexity metric. Overall,

there is no consistent evidence indicating significant di↵erences in the complexity

performances of the three approaches.

Figure 4.6 and 4.7 plots the perceptual selectivity metric analysis results for the

three approaches using di↵erent datasets. This analysis is also executed along the

generation dimension and we calculate the perceptual selectivities of di↵erent LHS

variables and RHS variables in the LFARs. In Figure 4.6 (a) and (b), at the end of

the evolution, PBIL-LFARM shows higher perceptual selectivity values for variables

x5 and x6 but, in Figure 4.6 (f), a lower perceptual selectivity value for variable

x10. In the other plots, the di↵erences are statistically ambiguous. In general, there

is no consistent evidence indicating performance di↵erences in terms of perceptual
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(a) complexity analysis of RHS x2
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(b) complexity analysis of RHS x4
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(c) complexity analysis of RHS x6
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(d) complexity analysis of RHS x8
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(e) complexity analysis of RHS x10
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(f) complexity analysis of RHS x12

Figure 4.4: Average complexities of LFARs featured by di↵erent RHS variables: x2,
x4, x6, x8, x10, x12 (BCW prognostic )
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(a) complexity analysis of RHS x22
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(b) complexity analysis of RHS x24
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(c) complexity analysis of RHS x26
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(d) complexity analysis of RHS x28
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(e) complexity analysis of RHS x30
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(f) complexity analysis of RHS x31

Figure 4.5: Average complexities of LFARs featured by di↵erent RHS variables: x22,
x24, x26, x28, x30, x31 (BCW prognostic )
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selectivity among the three approaches.

In summary, the complexity metric reflects the quality of the LFARs found

from the perspective of the principle of parsimony. The experimental results do not

provide any evidence of di↵erences among the three algorithms. From the results

for the other metric, perceptual selectivity, which reflects the dynamic aspects of

the di↵erent approaches for constructing LFARs during their evolutions, the same

conclusion can be drawn, that is, there are no consistent significant di↵erences among

the three approaches. Regarding the number of rules found by each algorithm,

DE-LFARM can find most LFARs but at a higher computational cost. Although

PBIL-LFARM has the fastest processing speed, it returns the fewest rules of the

three while GA-LFARM performs moderately in terms of both processing speed

and number of rules found. The experiment on the Housing dataset returns no

LFARs while the default task suggests there is a certain relation(s) hidden in the

dataset, which indicates the need to increase the representational power of the FARs.

4.4 Chapter Summary

In this chapter, details of three EA-based LFARM approaches for solving the AHGP

were presented. Both quantitative and qualitative comparisons of them were con-

ducted through performing experiments on di↵erent datasets. PBIL-LFARM took

the least amount of time for its evolutionary process but found significantly fewer

LFARs using the same parameter settings as the other two approaches. DE-LFARM

found the most LFARs but at a higher computational cost while GA-LFARM per-

formed moderately in terms of both computational time and the number of LFARs

found.

Applications of the two metrics, complexity and perceptual selectivity, showed

that the performances of all three algorithms were not significantly di↵erent. There-

fore, any of them could be selected depending on the computational time available

and number of LFARs required. DE-LFARM could be selected when the target

is to find the most LFARs and computational cost is not the main concern, while

Bing Wang November 26, 2014



CHAPTER 4. ASSOCIATIVE HYPOTHESIS GENERATION: LINEAR
FUNCTIONAL ASSOCIATION RULE MINING 103

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Generations

P
e

rc
e

p
tu

a
l s

e
le

ct
iv

ity

Perceptual selectivity: LHS variable x5 RHS x16

 

 
GA−LFARM
PBIL−LFARM
DE−LFARM

(a) perceptual selectivity of LHS x5, with RHS
x16, in each generation
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(b) perceptual selectivity of LHS x6, with RHS
x16, in each generation
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(c) perceptual selectivity of LHS x7, with RHS
x16, in each generation
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(d) perceptual selectivity of LHS x8, with RHS
x16, in each generation
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(e) perceptual selectivity of LHS x9, with RHS
x16, in each generation
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(f) perceptual selectivity of LHS x10, with RHS
x16, in each generation

Figure 4.6: Di↵erent LHS variables measured by perceptual selectivity metric for
LFARs with x16 as RHS variable (BCW diagnostic)
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(a) perceptual selectivity of LHS x14, with RHS
x31, BCW diagnostic
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(b) perceptual selectivity of LHS x7, with RHS
x18, Body fat
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(c) perceptual selectivity of LHS x19, with RHS
x35, Dermatology
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(d) perceptual selectivity of LHS x14, with RHS
x18, Body fat
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(e) perceptual selectivity of LHS x3, with RHS
x10, Stock price
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(f) perceptual selectivity of LHS x9, with RHS
x10, Stock price

Figure 4.7: Di↵erent LHS variables measured by perceptual selectivity metric for
LFARs in di↵erent datasets
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PBIL-LFARM has an advantage regarding computational time.

The experiments also exposed the disadvantage of LFARs for extracting com-

plex predictive relations from data. Those on the Housing dataset did not return

any LFARs although we know that there are certain associations in the data. Firstly,

this emphasizes the need to investigate general representations of associative rela-

tions for the AHGP. In this chapter, we only searched for linear relations hidden

in the data using LFARs. A general associative hypothesis representation and its

specific search scheme are discussed in the next chapter. Secondly, there are other

factors that potentially a↵ect the performance of the LFARM algorithm, such as

epistasis. In an underlying relation, some variables may belong to the same building

block. During the evolutionary process, such building blocks should be preserved

(not disturbed by the evolution operators) for valid relations to emerge. Our current

algorithm design has not taken such a situation into consideration. However, for fu-

ture work, this is a potential direction to pursue for improving the performance of

LFARM algorithms.
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Table 4.4: Average numbers of unique LFARs over 30 runs with 95% confidence
interval

Data GA-LFARM PBIL-LFARM DE-LFARM

1 BCW prognostic 6667.5±190.3 3658.9±100.3 10350.0±71.6

2 BCW diagnostic 10036.0±200.7 6361.9±158.6 15223.0±80.2

3 BCW original 0.0±0.0 0.0±0.0 0.0±0.0

4 Concrete (Slump) 41.7±0.2 41.2±0.2 42.0±0.0

5 Concrete (strength) 0.0±0.0 0.0±0.0 0.0±0.0

6 Dermatology 1192.0±51.9 1068.5±62.9 1813.5±24.7

7 Fertility 0.0±0.0 0.0±0.0 0.0±0.0

8 Housing 0.0±0.0 0.0±0.0 0.0±0.0

9 Sonar 14341.8±346.3 24865.9±421.4 20823.9±148.7

10 Stockprice 38.4±0.2 36.4±0.5 39.0±0.0

11 Wine 0.9±0.1 1.0±0.0 0.7±0.2

12 Yacht 3.0±0.0 3.0±0.0 3.0±0.0

13 Baskball 0.0±0.0 0.0±0.0 0.0±0.0

14 Body fat 1114.3±21.6 660.0±10.2 1433.0±7.7

15 Bolts 1.0±0.0 1.0±0.0 1.0±0.0

16 Pollution 2.0±0.0 2.0±0.0 2.0±0.0

17 Quake 0.0±0.0 0.0±0.0 0.0±0.0

18 Sleep 13.0±0.1 12.5±0.2 60.9±0.3

19 Vine 0.0±0.0 0.0±0.0 0.0±0.0

20 Iris 6.0±0.0 6.0±0.0 6.0±0.0
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Table 4.5: Average run times (seconds) of three algorithms with 95% confidence
interval

Data GA-LFARM PBIL-LFARM DE-LFARM

1 BCW diagnostic 1627.4±46.1 1173.1±31.4 3918.8±48.6

2 BCW prognostic 1654.7±33.4 1192.8±24.4 4052.7±50.3

3 BCW original 29.2±0.4 15.6±0.3 63.0±0.3

4 Concrete (Slump) 41.0±1.3 41.6±0.4 60.5±0.3

5 Concrete (strength) 30.1±0.7 21.0±0.7 72.8±0.8

6 Dermatology 289.2±6.7 391.6±12.5 563.6±3.3

7 Fertility 14.5±0.2 10.2±0.2 44.3±0.2

8 Housing 33.9±0.5 17.5±0.2 78.7±0.4

9 Sonar 1935.1±54.3 4981.3±78.5 5427.6±140.5

10 Stockprice 52.6±1.1 69.5±0.3 97.9±0.4

11 Wine 25.2±0.3 27.9±0.2 63.6±0.2

12 Yacht 26.0±0.6 28.0±0.1 47.1±0.9

13 Baskball 8.4±0.2 6.6±0.2 20.8±0.3

14 Body fat 278.0±3.6 192.0±1.7 525.7±2.9

15 Bolts 14.3±1.6 25.2±0.2 38.0±0.2

16 Pollution 51.7±0.7 54.6±0.5 101.9±0.4

17 Quake 21.3±0.5 12.0±0.1 31.6±1.6

18 Sleep 35.8±0.4 32.5±0.2 13.0±0.0

19 Vine 7.3±0.1 6.0±0.1 16.1±0.1

20 Iris 24.2±0.4 21.3±0.1 42.4±0.1
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Chapter 5

Associative Hypothesis

Generation: General Functional

Association Rule Mining

The last chapter presented three evolutionary algorithm (EA)-based linear func-

tional association rule mining (LFARM) approaches as solutions to the associa-

tive hypothesis generation problem (AHGP), with two additional metrics, complex-

ity and perceptual selectivity, used to analyse their performances. Although they

showed di↵erent performances regarding the number of LFARs found and computa-

tional time, there was no evidence that they performed di↵erently on the complexity

and perceptual selectivity metrics. In addition, the experiments demonstrated the

limitation of the LFAR representation as, although using linear functions as analyt-

ical expressions has the advantage of simplicity and interpretability, some complex

hidden relations may not be captured.

In this chapter, a general FAR representation is presented, followed by a novel

cooperative co-evolution based algorithm for mining FARs. Experiments on a set

of synthetic and real-world datasets are conducted to assess the performance of

the proposed algorithm for solving the AHGP. Besides providing inputs for the

causal hypothesis generation problem (CHGP), a FAR is an alternative definition
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for a general quantitative association rule. It can be implemented independently for

quantitative ARM tasks and, to illustrate its performance on solely these tasks, we

compare the proposed general FAR mining (FARM) algorithm with other closely

related ones in terms of the metrics often used in ARM algorithms (e.g., rule size,

predictive accuracy) and it is shown to be competitive. Also, in order to match the

flexibility of the general association rule form, we extend the FAR representation to

allow multiple RHS variables.

The remainder of this chapter is organised as follows: Section 5.1 outlines the

design strategies for the FARM approach; Section 5.2 details implementation of the

cooperative co-evolutionary FARM (CCFARM) algorithm; in Section 5.3, experi-

ments on sets of synthetic and real-world datasets and a comparison with other

EA-based quantitative ARM algorithms are presented; and conclusions are drawn

in Section 5.4.

5.1 Outline of the Functional Association Rule

Mining Approach Design

Like the LFAR, a FAR is an alternative form of an association rule but has fewer

constraints on the underlying relations. Hereafter, for simplicity, FAR is used to

refer to the general FAR and the AHGP defined in Chapter 3 is restated as follows.

Suppose a given observational dataset (X) has p instances, each of which is a vector

of the form X = [x1, x2, ..., xi

, ..., x
n

] (n is the number of variables) and each x
i

is

a continuous variable. The target is to generate a set (F = {f1, f2, ..., fj, ..., fm}) of

m associative hypotheses, each of which (f
j

) is represented in terms of the proposed

FAR, which takes the form:

f(X
A

)) X
B

(5.1)

where X
A

, X
B

⇢ X and X
A

\ X
B

= ;. This rule is interpreted as meaning that
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the values of the variables in B can be predicted by the values of the variables in

A (e.g., f(x1, x2, x3) ) x4). The mining task is to generate as many valid FARs

as possible from the given dataset. Considering a FARM algorithm as a potential

solution to the AHGP, we focus mainly on its right-hand side (RHS) having one

variable (|X
B

| = 1). Then, as input to the causal hypothesis generation, a FAR

with |X
B

| = 1 can allow the experimental causal search algorithm (solution for the

CHGP) to focus on testing one response variable for each FAR, as presented in the

next chapter. However, FARs inherently allow the RHS to have multiple variables

(|X
B

| � 1), a representation discussed in Section 5.3.5.

Chapter 3 provided a preliminary discussion of the problems that need to be

addressed when designing solutions for FARM, including the representation, evalu-

ation and search strategy for FARs. This section presents more details about the

design of solution strategies. As noted in Chapter 4, the LFAR has an inherently

analytical expression (i.e., a regression model). However, a FAR does not have a

general analytical expression as, although its general functional relation can take any

form, e.g., polynomial, exponential or sigmoid, it is not applicable for enumerating

all functional forms. Therefore, an intermediate representation of any function is

needed to conduct the mining task. The evaluation strategy is to specify a metric

to measure how well a FAR is supported by the data and whether it is a valid hy-

pothesis. Also, the search strategy should be updated to accommodate changes in

the FAR form and metric.

For the intermediate function, the artificial neural network (ANN) is chosen to

represent the arbitrary relations among continuous variables. By using it, we can

bypass the problem of specifying a particular mathematical form for mapping from

the left-hand side (LHS) to RHS of a FAR because, if the FAR does represent a

hidden relation, it has the potential to be uncovered by the ANN’s training process.

As reviewed in Chapter 2, an ANN is a universal function approximator. An ANN

with two layers can approximate any bounded continuous functions with arbitrary

small error [43] . An ANN with three layers (two hidden layers and one output

layer) can approximate any function to an arbitrary precision with mild assumptions
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about the activation function (activation function should be continuous and non-

linear) [44], [87]. Although the universal approximation theorem does not specify

how to determine the structure of such an ANN, in practice, for relatively simple

underlying relations, an ANN with one hidden layer is used. For relatively complex

relations, ANNs with two hidden layers are adopted as discussed in Section 2.4.1.3.

If a trained ANN can predict unseen data (e.g. a reserved test set) with a certain

degree of accuracy, it indicates that a FAR is identified.

A common concern when using an ANN as a predictive model is its lack of

interpretability, which is not totally eliminated when using it for FARs. FARs can

be perceived on two levels, with one being that several variables are related; for

example, customers who buy milk, also buy bread. This interpretability is still

preserved in the mining algorithm, which, in addition, describes the relationship

itself for which we adopt an ANN. As, in the previous example, the rule does not

necessarily say how much bread is being bought as a function of how much milk is

being bought, the ANN adds a predictive layer on top of the association layer.

The search strategy designed in this chapter is also based on EAs. In order to

find valid FARs, which have high predictive accuracies on their RHSs, we apply the

genetic algorithm (GA). Each individual in its population is designed to represent

one potential FAR. Predictive accuracy is incorporated in the objective function

in order for the evolutionary process to favour FARs with high ones. As discussed

above, the evaluation of FARs is conducted by an ANN approximation, which, in this

algorithm, is carried out by backpropagation (BP). As a gradient-based technique,

BP can become stuck in a local minimum and may miss a potential interesting FAR

if the weight initialisation of an ANN is not properly assigned. This indicates that

a complete solution for FARM requires a potential FAR individual and a relatively

matched ANN, which forms a cooperative structure. Based on this feature, we

introduce a cooperative co-evolutionary search strategy for the FAR mining problem.

For this mining problem, as we expect multiple solutions (multiple FARs) to

exist in the observational data, we do not want the solution to converge to one

best solution in the last generation of evolution. Therefore, the archival procedure
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introduced in [193] is adapted in the proposed mining approach, by storing all the

FARs identified during the search, which serves as an elitist mechanism. In addition,

it is also used as a comparison set in fitness assignments for the purpose of increasing

coverage of the search space of the FARs. The implementation of the CCFARM

algorithm is explained in the following section.

5.2 Cooperative Co-evolutionary Functional As-

sociation Rule Mining Algorithm

A CCEA involves several co-existing populations that together form a solution to

a given problem. As the fitness of each individual depends on its collaboration

with individuals from other populations, evolutionary pressure favours cooperative

individuals [151], [134], [152]. The CCFARM algorithm proposed in this chapter

evolves two sub-populations, FAR and ANN. A valid solution for the mining task

is comprised of a potentially interesting FAR and an appropriately initialised ANN

for the FAR. After training, the ANN can predict the RHSs of FARs on unseen test

data, which exceed a certain threshold (h
r

).

The collaboration of the two sub-populations is a complete mixing whereby

an individual in one sub-population is paired with every individual in the other

to determine its fitness. Although this scheme is computationally expensive, it is

recommended when cross-population epistases are expected in the sub-populations.

In cooperative co-evolution, a cross-population epistasis refers to the genes in one

sub-population having non-linear relations with those in other sub-populations and,

when they evolve separately, a↵ecting the performance of the co-evolutionary algo-

rithm. As the FAR and ANN sub-populations are dependent on each other, this

complete mixing scheme is adopted for the mining algorithm.

The external archive used in the proposed mining algorithm not only stores the

valid FARs during the evolutionary process but also serves as a base to increase

the coverage of the search in its search space. The complete solutions that exceed
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the accuracy threshold (h
r

) are selected for the archive so that individuals in the

sub-populations can focus on regions that are not su�ciently explored. A measure

of distance is added into the objective function to serve this purpose. A flowchart

of the CCFARM algorithm is shown in Figure 5.1 and a detailed explanation of the

process provided in the following sections.

5.2.1 Functional Association Rule Representation

A FAR chromosome encodes a FAR in such a way that each gene encodes a variable.

The first gene indicates, which variable is on the RHS of the FAR while the rest

indicate those on its LHS. Specifically, given the dataset X = [x1, x2, ..., xi

, ..., x
n

],

the FAR chromosome is of the form r = [o, e1, e2, e3, ..., ei, ..., en], where o is an

integer value indicating the RHS variable of the FAR and e1 to e
n

binary values

indicating whether the corresponding variables are on the LHS. The above encoding

scheme only encodes one FAR in one chromosome in contrast to that for the LFAR

in the last chapter, an update that increases evaluation e�ciency. The complete

mixing strategy for the adapted CCEA requires each FAR chromosome to pair up

with every individual. The FAR chromosome, which encodes one FAR in it evaluates

only once with one ANN individual in the other sub-population.

An ANN chromosome encodes the weights of an ANN using either a binary

or real representation. As real coding has the advantage of being compact and a

natural representation, we choose real values for the ANNs weight coding.

5.2.2 Evaluation Strategy

As a valid FAR can be applied to predict the value of its RHS variable, its predictive

accuracy on an unseen data set reflects its validity in a similar way to the confidence

measure for the conventional association rule. Therefore, the objective function uses

this predictive accuracy as its component for the mining process (the given dataset

(X) is split into a training set (X
train

) and a test set (X
test

)). The other component

of the objective function is the distance measure, which is used to push the search
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FAR sub-population 
initialisation

(5.2.3.1)

ANN sub-population 
initialisation

(5.2.3.1)

Mutual evaluation:
FAR (5.2.3.3) & 
ANN (5.2.4.2)

Assign fitness to each 
member of two 

populations

Termination criteria 
met?

FAR sub-population 
update: selection 

(5.2.3.3); 
crossover & mutation

(5.2.3.4)

ANN sub-population 
update

(5.2.4.3) Yes

Start

Termination

Valid and unique 
FARs stored in 

archive 
(5.2.5)

No

Figure 5.1: cooperative co-evolutionary functional association rule mining algorithm
(numbers represent corresponding sections in this chapter and Algorithm 11 de-
scribes general process)

to expand in its search space. The FARs that are more valid and more di↵erent

than others are favoured in the evolution, with the objective function for each FAR

individual:
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#
r

i

=
c
r

i

(d
r

i

)2
(5.2)

where c
r

i

indicates the best predictive accuracy of r
i

. Suppose the FAR population

is of size n
r

and the ANN population of size n
a

. Then, the predictive accuracy of r
i

paired with an ANN (a
j

) is represented by c
ij

and, since each r
i

is exposed to every

ANN, is:

c
r

i

= max
j

c
ij

; j = 1, 2, ..., n
a

(5.3)

The operatormax influences the evolutionary process by preferring more valid FARs

while d
r

i

is a distance measure indicating how di↵erent a FAR is from other FARs

in both the archive and its current population and is:

d
r

i

=
1

1 + �
r

i

(pop) + �
r

i

(arc)
(5.4)

where �
r

i

(pop) is the average hamming distance (h) between r
i

and the rest of the

FARs in the FAR sub-population, and �
r

i

(arc) the average hamming distance between

r
i

and the FARs stored in the archive. �
r

i

(arc) starts to a↵ect fitness when the size

of archive n
c

exceeds a certain threshold (h
c

) and:

�
r

i

(pop) =
1

n
r

� 1

n

rX

l=1,l 6=i

h(r
i

, r
l

) (5.5)

�
r

i

(arc) =

8
><

>:

0 If n
c

< h
c

1
n

c

P
n

c

l=1 h(ri, rl) If n
c

>= h
c

(5.6)

Figures 5.2 and 5.4 illustrate the process for calculating the predictive accuracy

(c
r

i

) and distance measure (d
r

i

) for a FAR.

The objective function for an ANN individual (a
j

) follows the same form and

the ANN’s accuracy measure is presented in Figure 5.3.
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Figure 5.2: Visualisation of calculating accuracy (c
r1) for FAR individual (r1).
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Figure 5.3: Visualisation of calculating accuracy (c
a1) for ANN individual (a1)
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Figure 5.4: Calculation of distance (d
r1) for FAR (r1) (Notion arc r1 used to distin-

guish FARs stored in archive from those in current population)

#
a

j

=
c
a

j

(d
a

j

)2
(5.7)

c
a

j

= max
i

c
ij

; i = 1, 2, ..., n
r

(5.8)

The distance measure for a
j

is adopted from the best-matching FAR (r
m

) of a
j

. The

corresponding ANN of the FAR that has a high fitness for generating o↵spring also

achieves a high fitness.

d
a

j

= d
r

m

; m = argmax
i

c
ij

; i = 1, 2, ..., n
r

(5.9)

5.2.3 Search Strategy: Evolution of the Functional Associ-

ation Rule Sub-population

5.2.3.1 FAR Sub-population Initialisation

We first create a random initial population of FAR chromosomes, each of which is a

vector of length n+1, which represents a candidate FAR. For each individual chro-

mosome, its first element, which indicates the RHS variable, is an integer generated
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Figure 5.5: Example of using uniform crossover operator on FAR sub-population

between [1, n] using a uniform distribution. The other elements (binary bits) are

also generated using a uniform distribution and indicate whether the corresponding

variable appears on the LHS of the FAR, with 0 meaning ‘yes’ and 1 ‘no’. The

variable indicated by the first chromosome element appears on only the RHS.

5.2.3.2 Mutual Evaluation (FARs)

The FAR sub-population evaluation is conducted according to Equation 5.2-Equation 5.6.

5.2.3.3 FAR Sub-population Update (selection)

Binary tournament selection [126] is conducted to select individuals from the popu-

lation for the generation of a mating pool. Then, individuals from the mating pool

are used to create new o↵spring by applying crossover and mutation operators.

5.2.3.4 FAR Sub-population Update (Crossover and Mutation)

The crossover function uses a uniform crossover operator to exchange genes between

two parent FARs, as shown in Figure 5.5. We apply two mutation operators on the

o↵spring: for the integer gene (d), to re-select a value between [1, n] to form a new

RHS using uniform distribution; and, for the binary genes (e), to flip their values to

0 or 1.
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5.2.4 Search Strategy: Evolution of the Artificial Neural

Network Sub-population

5.2.4.1 ANN Sub-population Initialisation

For initialisation, a random population of ANNs, with each ANN a multi-layer feed-

forward neural network (FFNN) with fixed numbers of layers and nodes, is created.

For the input layer, the number of nodes is determined by the number of variables

in the given dataset. When an ANN approximates a FAR, the input nodes that

correspond to the LHS of the FAR are set to active and the other nodes inactive,

which means that their input values are set to a constant 0. The output layer is

restricted to one node as, according to our FAR construction, the RHS of a FAR has

only one variable. For this investigation, the hidden layer is set manually, with the

number of nodes a maximum of 10. The initial weights are assigned with random

values between [0, 1] using a uniform distribution. The activation function of the

nodes in both the hidden and output layers is sigmoid.

5.2.4.2 Mutual Evaluation (ANNs)

The evaluation of each ANN (a
j

) (where j = 1, 2, ..., n
a

) is based on Equation 5.7

to Equation 5.9.

5.2.4.3 ANN Sub-population Update

Di↵erential evolution (DE) [190], which is a versatile population-based optimiser

over continuous domains, is implemented to evolve the ANN population. Since we

encode the ANN chromosome using a real representation, DE is a compatible tool

for ANN evolution [208, 89, 1]. In the last chapter, the classic DE algorithm was

discussed in the context of the LFARM problem in Algorithm 9. In this chapter,

the DE algorithm is adapted to evolve ANNs using a modification inspired by the

method proposed by Abbass [1], due to its simplicity and competitive performance

in function approximation. The pseudo-code for crossover and mutation is given in
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Algorithm 10.

Algorithm 10: Generation of a trial individual for ANN evolution:
trialANN(R

c

, R
m

, !, n
!

)

Input : crossover rate (R
c

), mutation rate (R
m

), ANN weight vector (!),
number of weights in ANN (n

!

)
Output: trial ANN (a

c

)
1 Select individual at random as main parent (a

p1), and two individuals (a
p2

and a
p3) as supporting parents for generating trial individual (a

c

);
2 jr  rnd(1, n

!

)
3 for k  1 to n

!

do
4 pr  rand(0, 1)
5 if pr < R

c

or k = jr then
6 !a

c

k

 !
a

p1

k

+Gaussian(0, 1)⇥ (!
a

p2

k

� !
a

p3

k

)
7 else
8 !a

c

k

 !
a

p1

k

9 end
10 pr  rand(0, 1)
11 if pr < R

m

then
12 !a

c

k

= !a

c

k

+Gaussian(0, R
m

)
13 end
14 end
15 Return generated trial ANN (a

c

)

Using a uniform distribution, the function rnd(1, n
!

) in Algorithm 10 generates

an integer number sampled from [1, n
!

] and rand(0, 1) a real value sampled from

[0, 1] (as defined in Section 4.1.3.1, Chapter 4).

Also, each trial individual goes through the evaluation process defined in Equa-

tion 5.7 to Equation 5.9. The selection operator implemented in this study is adopted

from [1], where the individual being compared is the main parent. It compares the

fitnesses of the trial individual and its main parent, and selects the one that performs

better for the next generation as:

a
s

=

8
><

>:

a
c

If #
a

c

>= #
a

p1

a
p1 Otherwise

(5.10)

a
s

represents the ANN individual selected for the next generation.
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5.2.5 Global Archive

Similar to the cooperative co-evolutionary system, the archive is comprised of two

related parts, a FAR archive and an ANN archive. The former stores the valid

FARs found during the evolutionary process, with the criterion that the predictive

accuracy value (c
r

) of a FAR exceeds a predefined threshold (h
r

), and the latter

holds the ANNs that can represent the FARs in the FAR archive.

The FAR archive also serves as a base for pushing the FAR search to spread out

in its search space by adapting the evolutionary search to focus on the unpopulated

region. As the FARs in the archive represent the regions already explored in the

search space, the current population only needs to search new regions, with the

second FAR distance measure (d
r

) used to reflect this feature. Thereby, those FARs

that reside far away from explored regions are encouraged to evolve.

After the mutual evaluation of the two sub-populations, if the accuracy measure

of a FAR exceeds a predefined threshold (h
r

), that FAR and its corresponding

ANN are placed in the archive, with feature selection applied. Sequential backward

selection of each valid FAR is executed to eliminate redundant variables [192], with

variables not contributing to the relation dropped and only unique FARs gaining

admission to the archive.

The main steps of the above mining approach is presented in Algorithm 11

corresponding to Figure 5.1

Algorithm 11: Main steps in CCFARM algorithm

Input : dataset (X)
Output: FAR archive (F)

1 Population (FAR and ANN) initialisation;
2 while termination criteria not met do
3 Mutual evaluation
4 Archive valid solutions
5 FAR new population selection, crossover, mutation
6 ANN new population crossover, mutation, selection
7 end
8 Return F
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5.2.6 Pruning

The main idea behind pruning is to perform an extraction procedure on the archive

(F) to create a concise output set. The archive stores all the FARs identified during

co-evolution that meet the accuracy measure and minimum variable involvement

measure (feature selection). For each unique RHS variable in the FAR archive, we

extract only the one with the best c
r

value.

It is not practical to extract the complete set of FARs hidden in the data.

Therefore, for the set of valid FARs found by the algorithm, the question of interest is

how well the hypotheses represented by the FARs match the real underlying hidden

relations. This investigation is executed on synthetic datasets where underlying

associative relations can be ascertained from prior knowledge.

5.3 Experiments on Functional Association Rule

Mining

In order to test the performance of CCFARM, a set of experiments is carried out

to cover several objectives. Firstly, we run tests on synthetic datasets to check that

CCFARM is able to find hidden relations among continuous variables. We also

adjust the complexity of the hidden relations to test the changes in the FARs mined

by CCFARM. The second set of experiments is conducted on real-world datasets

from the UCI repository to test whether the CCFARM algorithm can identify default

relations defined by the domain experts in them. In addition, an experiment that

compares it with two state-of-the-art quantitative ARM algorithms in the literature

is presented to demonstrate its performance. Finally, we discuss an alternative FAR

form with an enhanced flexibility for its RHS variables.
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Table 5.1: List of parameters used in experiments

Parameter Symbol used in context Value

FAR sub-population size n
r

30

ANN sub-population size n
a

14

No. generations n
g

50

Crossover rate R
c

0.8

Mutation rate R
m

0.1

Accuracy threshold h
r

0.95

Learning rate l
r

0.1

No. of epochs n
e

500

ANN structure (hidden nodes) - 10

5.3.1 Synthetic Dataset Generation and Experiment Param-

eters

We use polynomial functions to program the hidden relations into the synthetic

datasets. A synthetic dataset is formed by 20 continuous variables (X = [x1, x2, ..., x20])

with a size of 500 instances after their values are randomly generated by a uniform

distribution over the range [0, 1]. Then, the polynomial functions are written into

the dataset through a two-step process: selecting the independent variables (IVs)

from the first 10 variables and the dependent variable (DV) from the rest; and form-

ing the polynomial function and replacing the values of the DV variable with those

calculated from the function.

Suppose we want to write a polynomial function of the third order into one

dataset. Firstly, a uniform distribution is used to randomly select 3 variables from

x1 to x10. Assuming that they are x10, x7, and x5, the corresponding function is

then written as x11 = 1 + x10 + x2
7 + x3

5, with each instance of x11 consequently

replaced by values calculated from this function. For multiple polynomial functions,

we use sampling without replacement and, when the candidate sampling set for IVs

is empty, we refill it with the original 10 variables (x1 to x10).

Therefore, the complexity of the hidden relations is reflected in two dimensions;
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that is, the number of functions contained in one dataset and the highest order of

them. To denote di↵erent datasets, we use a notation (Dp-q) to reflect these two

dimensions, where D refers to a dataset, p to the number of functions and q to

the highest order of these functions; for example, a dataset with two polynomial

functions of the third order is denoted as D3-2. The highest number and order of

functions hidden in a dataset of all 50 synthetic datasets are 10 and 5 respectively.

The proposed algorithm is applied to each of the 50 datasets with 20 seeds

using the experimental parameters shown in Table 5.1. The parameter values for

CCFARM and ANN are those commonly used in the literature [47]. As for the

ANN structure, since the underlying relations are polynomial up to the fifth order,

a relatively complex structure (10 hidden nodes) is chosen to capture the hidden non-

linear relations. Experiments are carried out on an Oracle/Sun Cluster in which each

node has two quad-core 2.93GHz Intel Nehalem CPUs, with 15 cpus used for each

run and average run times of 60 to 120 mins. We can compute the time complexity

of the cooperative co-evolutionary process as follows. Suppose two population sizes

are n
r

and n
a

, and the complete mix interaction scheme between the two populations

is run at O(n
r

⇥ n
a

). Then, the time complexity is O(n
g

⇥ n
r

⇥ n
a

) for the core

cooperative co-evolution algorithm.

In order to distinguish the hidden functions and FARs, we use the term ‘function

set’ to refer to the set of hidden functions a dataset contains and ‘FAR set’ for the

set of FARs after pruning. Table 5.2 shows an example of these two sets for D3-4.

5.3.2 Performance Metrics and Analysis of Experimental

Results

To find FARs that match the original functions, as in the example shown

in Table 5.2, the CCFARM can identify the original hidden functions in its FAR set.

We are now interested in its strength when the complexity of the hidden relations

increases. This is examined by a function-matching metric defined as the percentage

of the hidden functions in the function set that has a matching FAR in the FAR set.
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Table 5.2: Example of hidden functions and FARs extracted from dataset D3-4

Dataset Function set FAR set Accuracy

D3-4 x11 = 1 + x10 + x2
7 + x3

5 f(x5, x7, x10)) x11* 0.996

x12 = 1 + x4 + x2
9 + x3

3 f(x3, x4, x9)) x12⇤ 0.998

x13 = 1 + x6 + x2
8 + x3

2 f(x2, x6, x8)) x13* 0.998

x14 = 1 + x1 + x2
5 + x3

4 f(x1, x4, x5)) x14* 0.996

f(x4, x5, x14)) x1 0.996

f(x4, x9, x12)) x3 0.984

f(x3, x9, x12)) x4 0.994

f(x1, x4, x14)) x5 0.991

f(x2, x8, x13)) x6 0.994

f(x5, x10, x11)) x7 0.984

f(x2, x6, x13)) x8 0.984

f(x3, x4, x12)) x9 0.987

f(x5, x7, x11)) x10 0.993

The matching criterion considers whether the variables in a FAR match the

variables in a hidden function with IV/DV separation not considered. Since we

are aware that the IVs and DV of the polynomial function are exchangeable in

this experiment, our interest is in revealing under what situation the constituent

components of the FARs deviate from those of the hidden functions.

Figure 5.6 shows the plot of this percentage from each dataset. The match-

ing percentage indicates a decreasing trend when the number of hidden functions

increases. Note that ‘decreasing’ does not mean that the mismatched FARs are in-

valid as all FARs in the FAR set have passed the accuracy check (the h
r

threshold)

but these increases suggest that multiple functions use the same variables as their

IVs; for example, as shown in Figure 5.6, in dataset D2-8, where the matching per-

centage drops, 60% of the IV candidate set ([x1, x2, ..., x10] ) is sampled twice and,

in dataset D4-8, 100% three times. This demonstrates that CCFARM is sensitive

to the overlapping of hidden relations.
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The sensitivity of CCFARM depends on the level of overlap in the functional

relations. When the same variables are used in multiple functions, new functional

relations emerge; for example, from x12 = 1 + x8 + x2
10 and x20 = 1 + x5 + x2

10, a

new relation such as x12 = x8+x20�x5 could be formed, as shown in Table 5.3. As

such relations are indistinguishable from the perspective of CCFARM, the matching

percentages decrease at certain points.

Table 5.3: Example of discovered relations from dataset D2-10

Dataset Hidden function Relevant FAR Accuracy

D2-10 x12 = 1 + x8 + x2
10 f(x5, x8, x20)) x12 0.998

x20 = 1 + x5 + x2
10 f(x5, x8, x12)) x20 0.999

Essential relation metric, DV Matching: the functional relations hidden

in the synthetic datasets are, in essence, formed by the DVs responding to the IVs

values. We are now interested in whether, in experimental settings, such DVs can

be identified as the RHSs of FARs. The results show that, in each experimental

dataset, 100% of the DVs in the function sets appear as RHSs in the FAR set that

suggest good DV matching.

The above two metrics show us the characteristics of the output. On one hand,

the FAR set identifies the underlying relations, which, on the other, deviate from the

original form in terms of constituent components when the hidden relations overlap

with each other. The following metrics are designed to study the characteristics of

the di↵erences.

Di↵erence metric, active variable ratio: the active variable ratio (ar)

is the ratio of the number of variables appearing in a FAR set or function set to the

number of all variables in a given dataset and is:

ar =
n
av

n
(5.11)

where n
av

is the number of variables in a given dataset appearing in a set (function
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Figure 5.6: Matching results for underlying relations in each dataset

Table 5.4: Comparison of active variable ratio (hidden/found) for di↵erent datasets

Dataset q=1 q =2 q =3 q =4 q =5 q =6 q =7 q =8 q =9 q =10

D1- (p = 1) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

D2- (p = 2) 0.15 0.30 0.45 0.60 0.75 0.80 0.85 0.90 0.95 1.00

D3- (p = 3) 0.20 0.40 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00

D4- (p = 4) 0.25 0.50 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

D5- (p = 5) 0.30 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
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or FAR) and n is the number of all variables in the same dataset; for example, if we

write two functions (x11 = 1+x10+x2
4 and x12 = 1+x9+x2

2) in one dataset, the active

ratio of the function set should be 6/20 = 0.3. Table 5.4 shows the comparison of

the active variable ratios calculated from each function set and corresponding FAR

set, where there is only one value for each dataset because these ratios are exactly

the same in the two sets. This table illustrates the consistency of the active variable

ratio between the function and FAR sets. It implies that, of the 50 datasets on which

experiments are conducted, the CCFARM is capable of avoiding inactive variables,

which are those not used in hidden function generation and do not contribute to any

hidden relation in a given dataset. Table 5.4 shows that they are also not included

in the corresponding FAR set, which supports the correctness of the FAR set for

mining hidden relations.

Di↵erence metric, frequency : as discussed above, the FARs in the FAR set

could be di↵erent from the hidden functions in terms of their constituent variables

due to the discovered functions. The frequency metric is a visualisation tool for

reflecting this di↵erence by counting the number of occurrences of every variable in

the function or FAR set. Due to the IV/DV exchangeable feature of the polynomial

functions, in the FAR set, if two FARs have the same variables, they are merged

into one. We visualise the results using the greyscale figures shown in Figure 5.7

and 5.8, in which each plot represents a variable and its number of occurrences in

either the function or FAR set.

A significant di↵erence is observed for the case of DVs ([x11, x12, ..., x20]), as

shown in Figure 5.8. The DVs in FAR sets are observed to have higher frequencies

than those in the function sets, particularly for the datasets with both higher number

of hidden functions and more complex functions. This suggests that FARs are prone

to including discovered functions.

Principal component visualisation : another visualisation tool for com-

paring the di↵erences between the FARs and hidden functions is the principal com-

ponent analysis (PCA), which we use to investigate whether a FAR and its corre-

sponding function behave similarly. it is first applied to form the principal compo-
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(a) variable x1 in FAR
sets
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(b) variable x1 in
function sets
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(c) variable x2 in FAR
sets
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(d) variable x2 in
function sets
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(e) variable x3 in FAR
sets
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(f) variable x3 in func-
tion sets
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(g) variable x4 in FAR
sets
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(h) variable x4 in
function sets
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(i) variable x5 in FAR
sets
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(j) variable x5 in func-
tion sets
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(k) variable x6 in FAR
sets
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(l) variable x6 in func-
tion sets
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(m) variable x7 in
FAR sets
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(n) variable x7 in
function sets
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(o) variable x8 in FAR
sets
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(p) variable x8 in func-
tion sets
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(q) variable x9 in FAR
sets
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(r) variable x9 in func-
tion sets
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(s) variable x10 in
FAR sets
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(t) variable x10 in
function sets

Figure 5.7: variable frequencies of FAR and function sets for variables x1 to x10.
(each figure represents frequencies of one variable in 50 di↵erent dataset, with hori-
zontal axis indicating the number of hidden functions and vertical axis their order)
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(a) variable x11 in
FAR sets
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(b) variable x11 in
function sets
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(c) variable x12 in
FAR sets
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(d) variable x12 in
function sets
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(e) variable x13 in
FAR sets
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(f) variable x13 in
function sets
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(g) variable x14 in
FAR sets
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(h) variable x14 in
function sets
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(i) variable x15 in FAR
sets
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(j) variable x15 in
function sets
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(k) variable x16 in
FAR sets
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(l) variable x16 in
function sets
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(m) variable x17 in
FAR sets
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(n) variable x17 in
function sets
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(o) variable x18 in
FAR sets
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(p) variable x18 in
function sets
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(q) variable x19 in
FAR sets
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(r) variable x19 in
function sets
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(s) variable x20 in
FAR sets
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Figure 5.8: variable frequencies of FAR and function sets for variables x11 to x20.
(each figure represents frequencies of one variable in 50 di↵erent dataset, with hori-
zontal axis indicating the number of hidden functions and vertical axis their order)
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nent space and then instances of the variables involved in the hidden function or

FAR are plotted against the first two principal components.

We select a few functions and their corresponding FARs that are a↵ected by

discovered relations, examples of which are shown in Figure 5.9 to Figure 5.12. In

Figure 5.9(g), it can be seen that the PC plots of FARs and the hidden functions are

very similar, but do not overlap exactly. This is due to the di↵erences in constituent

variables between FARs and the hidden functions as demonstrated in Table 5.3.

From the analysis of synthetic datasets, we can summarise that the FAR sets

can focus on the relevant variables of hidden relations (as shown in the active variable

ratio) and the FARs may not be in exactly the same form as the original hidden

relations when the complexity increases (as shown in the function matching and

frequency metrics). However, the FAR sets are capable of encompassing the essential

relations in given datasets (as shown in DV identification) and uncovering original

relations when the underlying relations do not overlap.

Table 5.5: List of parameters used in the real world data experiments

Parameters Symbol used in this thesis Value

Rule population size n
r

30

ANN population size n
a

14

Generation size n
g

50

Crossover rate R
c

0.8

Mutation rate R
m

0.1

Accuracy threshold for real world data h
r

0.8

Learning rate lr 0.03

No. Epochs - 100

No. nodes (hidden) for real world data - 2/5/10
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Figure 5.9: Visualisations of first two principal component (PC) plots of hidden
functions and corresponding FARs for D2-8
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Figure 5.10: Visualisations of first two PC plots of hidden functions and correspond-
ing FARs for D3-7
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Figure 5.11: Visualisations of first two PC plots of hidden functions and correspond-
ing FARs for D4-6
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Figure 5.12: Visualisations of first two PC plots of hidden functions and correspond-
ing FARs for D5-5
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5.3.3 Experiments on Real-world Datasets

The original purpose of CCFARM is to identify hidden associative relations in given

datasets and assist further investigations of causal relations. The experiments on

the synthetic datasets contribute to our understanding of the final output from

the mining algorithm. In summary, a FAR set represents a good duplication of a

function set when the hidden functions’ IVs do not greatly overlap; otherwise, it

can comprise emerging relations from the hidden functions and provide more FARs

than the function set. A FAR set is able to avoid inactive variables to the extent of

the complexity that the experimental data possess.

In the following experiments, to check the performance of CCFARM, we ap-

ply it to 10 real-world datasets from the UCI data mining repository and Belkent

University function approximation repository. The datasets are Breast Cancer Wis-

consin (BCW) original and diagnostic, Sonar, Concrete, Body fat, Sleep, Vine yard,

Pollution, Bolts and Stock price, the details of which are shown in Table 5.6. These

datasets are selected essentially due to the fact that they contain continuous vari-

ables. In addition, they also have been used in experiments for two state-of-the-art

ARM algorithms concerning continuous variables, which makes them suitable can-

didates for conducting comparison experiments. For the two BCW datasets, the

variable representing participant ID is deleted, and hence the number of variables

is one less than that stated in the repository website. In addition, the instances

with missing data in these datasets are removed. This treatment for missing data is

chosen according to our assumption in the AHGP definition. The AHGP assumes

that the prior knowledge about the given dataset is not provided and, consequently,

domain knowledge about the meaning and interrelations of the variables should not

be considered in the algorithm. A range of other missing data treatment methods

require analysis of the characteristics of missing data (e.g. whether the missing data

corresponds to IVs or DVs). This is often conducted by human experts.

The parameters used in the experiments are shown in Table 5.5. The parameter

values for CCFARM and ANN are the standard values used in the literature [1, 8].
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Table 5.6: Parameters used in experiments on read datasets

Database No. variables No. instances Source

Sleep 8 51 Bilkent

Vineyard 4 52 Bilkent

Pollution 16 60 Bilkent

Bolts 8 40 Bilkent

Body fat 18 252 Bilkent

Stock price 950 10 Bilkent

BCW(original) 10 683 UCI

BCW(diagnostic) 31 569 UCI

Concrete(strength) 9 1030 UCI

Sonar 61 208 UCI

The accuracy threshold is empirically selected for finding relatively more valid po-

tential relations. Tenfold crossover validation is not applied due to its computational

complexity. During the evolution process, the evaluation of a single rule is conducted

using a collection of candidate neural networks. Training without ten-fold crossover

could lead to bias. However, a FAR will be re-evaluated by the experimental causal

search algorithm (introduced in the next chapter), which reduces the potential bias

introduced here. Experiments on a number of di↵erent ANN structures are con-

ducted in order to test the sensitivity of CCFARM to the ANN structures used.

In contrast to the above synthetic dataset experiments, for these real world

datasets, the only prior knowledge available is their default tasks defined by domain

experts (i.e. predicting the values of the last variable in the dataset). These default

regression/classification tasks specify the basic relations in the datasets. Our exper-

iments are not focused on comparisons with previously reported results in literature,

but on whether the CCFARM algorithm can identify these basic relations. We run

the algorithm on these datasets with 30 di↵erent seeds, and the results are shown in

Table 5.7. We checked whether the default task is identified in terms of (1) whether

there is a FAR in the final output using the last variable as its RHS variable, and
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Table 5.7: Percentage of the default task identification among 10 real world datasets

ANN structure Percentage of identification

ANN with 2 hidden nodes DV as RHS 50%

DV included 80%

ANN with 5 hidden nodes DV as RHS 50%

DV included 60%

ANN with 10 hidden nodes DV as RHS 50%

DV included 80%

(2) whether the last variable is involved in a FAR. Di↵erent ANN structures do not

a↵ect the percentage of default task identified, if we only consider the first criterion.

When applying the second criterion, the identification rate slightly increases. These

results suggest that CCFARM is able to find basic relations in these datasets. How-

ever, there are some default tasks not identified, it can be attributed to the single

accuracy threshold value (h
r

) used across all the datasets. This implies a potential

further work for the CCFARM algorithm, which is to investigate how to improve

the adaptivity of the CCFARM when di↵erent datasets are given.

In addition to extracting a single default task, we integrate other FARs into

network forms to visualise the overall interdependency among the variables based

on all extracted relations from each dataset. These networks are plotted in Fig-

ure 5.13, 5.14, 5.15 and, in them, the variables in the same FAR are connected with

links to one another. It is possible that multiple links exist between two variables;

for example, in Figure 5.14 (I), two FARs (f(x3, x10) ) x2 and f(x2, x6) ) x10)

are extracted from the corresponding archive and, when plotting them, there will

be two links between x2 and x10. In this situation, these links are plotted with

a strengthened width to indicate that both the connected nodes play roles on the

RHS and include the other as a LHS in their FARs. Some of the networks are

sparsely connected, e.g., Figure 5.15 (a) to (c), which means that there are limited

basic functions in the datasets while others shows more complicated variable inter-
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Figure 5.13: Networks generated by FARs extracted from each archive (numbers
refer to variables in respective datasets)
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Figure 5.14: Networks generated by FARs extracted from each archive (numbers
refer to variables in respective datasets)
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Figure 5.15: Networks generated by FARs extracted from each archive (numbers
refer to variables in respective datasets)
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actions. Such representations illustrate the hidden relations and interdependencies

in a dataset. They present domain experts with preliminary knowledge about given

data and reduce the amount of exploration work on data usually undertaken by

human domain experts. In the literature, studies using the BCW (original) data

have been reported with di↵erent algorithms. For example, Wilson [203] reported

that if clump thickness (x1) is 7 and uniformity of cell size (x2) is 5 or above, then

malignancy (x10) is indicated; If bland chromatin (x7) is 8 or greater, then malig-

nancy is indicated (variable x10); If uniformity of cell shape (x3) is 8 or above and

marginal adhesion (x4) is not 1, then malignancy is indicated (x10). There are clear

consistencies with the network generated for BCW (original) (Figure 5.14 (j, k, l)),

as the variable x10 (malignant or benign) is directly related to uniformity of cell size

(x2), bland chromatin (x7), and uniformity of cell shape (x3). This variable (x10)

is also indirectly related to marginal adhesion (x4). The relation between clump

thickness (x1) and the class variable (x10) is not found.

5.3.4 Comparison Experiments with other Evolutionary Com-

putation based Quantitative Association Rule Mining

Algorithms

FAR can not only be used as input to the CHGP but also independently for ARM

tasks. In order to demonstrate the performance of the proposed CCFARM in this

respect, we conduct experiments to compare it with two state-of-the-art continuous

variable ARM techniques: GAR (Genetic ARM algorithm [119]); and MODENAR

(multi-objective DE algorithm for mining numeric association rules [8]).

These two algorithms, which are based on evolutionary computation, aim to

mine the interval-based association rules without the discretisation pre-processing,

while CCFARM works on FARs. Although, CCFARM works on a novel ARM

form, since it is also based on heuristic search and evolutionary computation, it is

appropriate to compare it with the other two state-of-the-art ARM algorithms. The

experiments are conducted on six public domain databases available from [69]: body
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fat, bolts, pollution, sleep, stock price and vineyard, as they are the datasets used in

the other two algorithms. The summary of these data sets is given in Table 5.6, and

the parameters used in these experiments are shown in Table 5.5. The experiments

are conducted with 30 random seeds.

Due to their di↵erent association rule forms, it is di�cult to compare the accura-

cies of the FARs mined by di↵erent algorithms. However, as the confidence measure

of conventional association rules can be seen as a predictive accuracy when used for

prediction, we base the comparison on it. The accuracies of the FARs refer to their

predictive accuracies on unseen test data, while those of the interval-based associ-

ation rules refer to rule confidence, but both measure the strengths of the derived

associations in terms of prediction. The accuracy results are shown in Table 5.8, in

which it can be seen that the accuracies of the FARs extracted by CCFARM are

relatively higher compared with those by MODENAR. Di↵erent ANN structures do

not show constant impact on the performances of CCFARM regarding this metric,

as in dataset Pollution, the highest accuracy is achieved when using ANN with 5

nodes, while in dataset Sleep, it is achieved when using ANN with 2 nodes.

The coverage metric shows the percentage of data covered by the derived FARs

and other association rules. The CCFARM extracts FARs with a lower coverage

compared with GAR and MODENAR as shown in Table 5.9. Standard deviation

is shown for the purpose of comparing the performance of the algorithm proposed

in this thesis with those reported in the literature. In four datasets (Sleep,Vine

yard, Pollution and Bolts), the CCFARM has relatively higher coverage. Again, the

di↵erent ANN structures do not impact the performance of the CCFARM regarding

this metric of coverage.

The metric rule size shows the mean numbers of variables contained in the

derived FARs. As shown in Table 5.10, the FARs from CCFARM are generally

smaller than the association rules from the other two algorithms, which could be at-

tributable to the feature selection process, where the LHS variables of the potentially

interesting FARs are checked for their contributions to the FARs when entering the

archive. Those variables that do not contribute significantly to the associative rela-
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Table 5.8: Comparisons of the results with MODENAR on metric accuracy

Data set Accuracy/Confidence (%) with standard deviation

CCFARM CCFARM CCFARM MODENAR

(2 nodes) (5 nodes) (10 nodes)

Body fat 94±6.5 94±7.1 94±7.1 62±3.2

Sleep 86±5.8 85±5.9 85±5.1 64±3.4

Vine yard 89±6.4 90±5.6 89±6.9 –

Pollution 88±6.0 90±5.7 88±7.3 67±2.7

Bolts 100±0.1 100±0.0 100±0.1 65±1.8

Stock price 84±3.4 84±5.0 83±4.9 56±1.9

tions are eliminated from the FARs. As for the ANN structure, it does not impact

the performance of the CCFARM regarding this metric.

The comparisons of these metrics indicate that CCFARM is competitive with

other interval-based ARM algorithms in terms of finding FARs with a relatively

high predictive accuracy and smaller sizes, however, as for the data coverage, CC-

FARM does not show evident advantages. The ANN structure does not impact the

performance of the CCFARM on any of the metrics.

5.3.5 Alternative Functional Association Rule Form

In the previous section, we introduced the coding scheme with only one RHS to

demonstrate that the algorithm is capable of extracting hidden relations from con-

tinuous datasets. In this section, we provide another complementary coding scheme

that allows for an enhanced flexibility of the FAR form, where the RHS can have

multiple variables. Such a chromosome has the same number of genes as the in-

stances (X) in a given dataset and is of the form [e1, e2, ..., en], with each gene

having three candidate values {0, 1, 2}. Value (0) is interpreted as the variable not

included in the FAR encoded in this chromosome, the value (1) as the corresponding
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Table 5.9: Comparisons of the results with GAR and MODENAR on coverage metric

Data set Coverage (%)

CCFARM CCFARM CCFARM MODENAR GAR

(2 nodes) (5 nodes) (10 nodes)

Body fat 61.1 72.2 77.8 86.0 86.1

Sleep 100.0 87.5 87.5 80.6 79.0

Vine yard 100.0 100.0 75.0 – 100.0

Pollution 100.0 93.8 100.0 95.0 95.0

Bolts 87.5 87.5 87.5 80.0 77.5

Stock price 80.0 80.0 90.0 98.7 98.7

Table 5.10: Comparisons of the results with GAR and MODENAR on rule size
metric

Data set Rule size

CCFARM CCFARM CCFARM GAR MODENAR

(2 nodes) (5 nodes) (10 nodes)

Body fat 3.3 3.6 3.5 7.5 6.9

Sleep 3 3.1 2.7 4.2 4.2

Vine yard 2.3 2.3 2 3.0 –

Pollution 4.9 4.6 4.5 7.3 6.2

Bolts 2.6 2.6 2.3 5.2 5.2

Stock price 4.0 4.3 3.4 5.8 6.0
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variable appearing in the LHS of the FAR and the last value (2) indicating that the

variable is in the RHS of the FAR. The coding scheme for the ANN is the same as

that introduced in Section 5.2.1 and the co-evolutionary process the same as that

applied for a single RHS FAR.

We compare this alternative FAR form with its single RHS output counterpart

on three datasets, with the results shown in Table 5.11. The accuracy measures

in the first column are presented with standard deviations. By using the multiple

output form, the average predictive accuracy is slightly lower than that of the single

output form of FARs, which can be attributed to the predictive accuracy being

averaged over multiple outputs. The multiple RHS has a higher rule size on the body

fat and sleep datasets but a lower one on the vineyard dataset. Regarding coverage,

the multiple RHS covers fewer variables than the single RHS on the vineyard dataset

but more on the other two datasets.

5.4 Chapter Summary

In this chapter, we introduced a more general FAR form for variables in contin-

uous domains, with the general functional relation represented by an ANN and a

CCFARM for mining such FARs presented. The experiments on synthetic and real-

world datasets showed that the proposed algorithm was able to identify similar basic

relations to those hidden in the dataset and provide an insight into the underlying

regularities of the dataset. Other than producing input for the CHGP, the proposed

CCFARM could also be used to carry out the conventional quantitative ARM task.

The comparison with other evolutionary computation-based quantitative association

rules showed its competitive performance on mining association rules. The FARs

were also extended to allow multiple output forms. Although an arbitrary output

FAR was more general, it had a relatively lower predictive accuracy than a single

RHS FAR.

The representational ability of the FARs encouraged us to base the CHGP on

it. In particular, we preferred the single RHS form of a FAR as it more e↵ectively
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Table 5.11: Comparison of single RHS FAR and multiple RHS FAR (accuracy with
95% confidence interval)

Data Accuracy(%) Coverage Size

Body fat Single RHS *93.7± 4.2 72.2 3.6

Multiple RHS 79.7±0.2 100.0 7.4

Sleep Single RHS 86.1±3.7 100.0 2.8

Multiple RHS 83.8±1.6 87.5 3.9

Vine yard Single RHS 89.2± 8.1 100.0 2.7

Multiple RHS 88.1±4.9 100.0 2.6

Pollution Single RHS 88.0± 3.6 100.0 4.4

Multiple RHS 81.4±3.0 100.0 4.4

Bolts Single RHS *100.0± 0.0 87.5 2.6

Multiple RHS 93.6±1.1 100.0 4.9

Stock price Single RHS 86.1± 4.5 70.0 4.0

Multiple RHS 83.8±3.0 60.0 4.0

BCW (original) Single RHS *90.2± 3.1 87.1 3.9

Multiple RHS 77.6±0.1 100.0 11.0

BCW (diagnostic) Single RHS 85.4± 4.9 60.0 3.0

Multiple RHS 81.0±1.0 90.0 5.6

Concrete (strength) Single RHS 91.4± 10.2 66.7 6.0

Multiple RHS 87.4±8.9 77.8 6.3

Sonar Single RHS *87.3± 2.9 50.8 4.4

Multiple RHS – – –
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reduces the search space for causal hypothesis generation, as presented in the next

chapter.

Bing Wang November 26, 2014





Chapter 6

Causal Hypothesis Generation:

Experimental Causal Search

The general associative hypothesis generation approach, CCFARM, introduced in

the last chapter aims to identify associative relations from the observational data

of a system. The associative relations of interest are not limited to linear relations.

Non-linear associative relations among variables can be also potentially captured

due to the combination of ANN and FAR. CCFARM is featured by a cooperative

co-evolution strategy that searches both the FARs and their matching ANN in order

to capture valid associative relations. The experiments show that the FARs mined

by CCFARM can find the relations that are similar to the underlying associative

relations of a system. The factor which leads CCFARM to perform di↵erently re-

garding di↵erent datasets is identified as the overlapping of underlying relations

which means that the constituent components of the FARs can be di↵erent from

the real underlying relations. Except for serving as a solution to the associative

hypothesis generation problem (AHGP), CCFARM can be applied to tasks of con-

ventional continuous variable association rule mining (ARM). Comparisons of it

and other evolutionary computation-based ARM algorithms show its competitive

performance.

This chapter departs from the FARs that identify the associative relations from
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observational data and presents the algorithm developed to solve the causal hypoth-

esis generation problem (CHGP). In Chapter 3, we introduced a general strategy

based on an agent architecture for designing solutions to the CHGP. In this chapter,

details of its implementation are presented. The remainder of this chapter is organ-

ised as follows: Section 6.1 revisits the CHGP and relative causal models related

to it; Section 6.2 introduces the experimental causal search algorithm based on an

agent architecture; experiments on synthetic datasets are presented in Section 6.3,

with both overlapping and hierarchical relations explored to test the performance

of the proposed algorithm in terms of its metric error rate; in Section 6.4, a game

environment within the context of retrieving causal relations is designed to explore

the performance of the algorithm; and Section 6.5 discusses the conclusions drawn.

6.1 Causal Hypothesis Generation Revisited

The focus of this thesis is placed on an unknown system measured by a set of contin-

uous variables, for which there is no prior knowledge about the system’s underlying

structure. The CHGP is a problem of retrieving the underlying causal relations po-

tentially existing in a system and is defined in Chapter 3 as follows. Given a set of

associative hypotheses ( F = {f1, f2, ..., fj, ..., fm}), m is the number of hypotheses

and the goal is to retrieve the potential causal relations existing in F. The causal

hypothesis is represented by a graph (G), where an arrowhead from x
i

to x
j

specifies

that x
i

is a direct cause of x
j

.

The hypothesis generation in this thesis focuses on causal relations because

causation is often the central practical interest of di↵erent disciplines in terms of

knowledge discovery. In medical science, the e�cacy of a medicine, including its

side e↵ects, must be well studied. In epidemiology, the interest is often in the causes

of diseases while social scientists look for the causes of human behaviour patterns.

Retrieving causal relations from an unknown system can provide insights into the

system and suggest a controlling strategy [2]; in order to change the state of an

e↵ect variable, one can apply intervention on the cause variable.
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The basic question in a causal relation investigation is what forms a cause and

how can it be determined. In the remainder of this section, a number of causal

models are briefly discussed in the context of the above CHGP problem based on

the information gained from FARs.

Hume [88] defined causality in terms of the induction of observed phenomena,

arguing that causation is a metaphysical concept and, in practice, can only be

adequately defined in terms of empirical regularity. He proposed three criteria for

indicating causation: contiguity; succession; and constant conjunction. Mill [125]

[83], who shared the same regularity view, proposed the following four rules regarding

how to discover causation in practice. Suppose that L and M are two potential

causes, and N a potential e↵ect: (1) if M varies as N varies, M might be a cause of

N ; (2) the di↵erence in N whenM happens and when L happens indicates the cause;

(3) the e↵ect of L on N can be observed by taking the di↵erence in N between, when

L and M both happen and when only M happens; and (4) L and M are not causes

of N if N does not change regardless of L and M happening. Rule (1) describes

a situation which implies potential causation. In this thesis, the FARs generated

from the previous AHGP serve such a purpose. Rule (2) is important as it outlines

the empirical principle of discovering causation. However, it has been criticised on

a variety of grounds; for example, as a causal relation is regular, the possibility of

measurement error and uncertainty is precluded. Later development of the causality

theory has enriched the rule of di↵erence from a counterfactual perspective and

established a systematic approach for designing experiments to conduct comparisons

of di↵erent outcomes.

The counterfactual model defines causality in terms of comparisons of observ-

able and unobservable events. Generally, a counterfactual is a conditional state-

ment, where the first clause expresses something contrary to fact; for example, “If

I had taken the medicine, my headache would have gone by now”. In a counter-

factual model, a treatment (T ) is a variable that is manipulable and considered the

potential cause of a certain response. A unit (u) refers to an object to which treat-

ments are assigned while concomitants are any variables in u the values of which
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are una↵ected by the treatments. For any treatment applied, there are two po-

tential outcomes from a unit, Y0(u) and Y1(u), which are the responses of u when

treatment 0 (T = 0) and treatment 1 (T = 1) are applied respectively. Without

any further assumption, the time when a treatment is applied is important since

it is possible that treatments applied at di↵erent times cause di↵erent responses.

Therefore, only one response can be observed. When Y0(u) is observed, Y1(u) be-

comes counterfactual and, when Y1(u) is observed, Y0(u) becomes counterfactual,

with ⌧(u) = Y1(u)� Y0(u) defined as the e↵ect of the treatment. However, this dif-

ference cannot be directly observed on the same unit and is called the fundamental

problem of causal inference (FPCI). Counterfactual responses can be constructed by

randomised experiments [137] in which treatments are randomly assigned to each

unit, with each unit having an equal probability of receiving either the T = 0 or

T = 1 treatment while assignments are independent of the concomitants.

If randomised treatment experiments cannot be conducted in some situations,

in order to create a counterfactual group, a commonly used approach is matching

[164]. Matching constructs paired units for comparison by selecting units of similar

concomitant values which then form the counterfactual group for comparison. How-

ever as, in certain scientific settings, it is reasonable to assume that the FPCI does

not apply, there are two assumptions for specifying such a situation. Temporary

stability states that a response does not change if treatment times are slightly dif-

ferent. Causal transience describes a situation in which the response is not a↵ected

if the unit has been previously exposed to a di↵erent treatment. A third assumption

is that the units are homogeneous with regard to treatments and responses. The

experimental causal search algorithm uses these assumptions to form the solution

to the CHGP.

A FAR specifies an associative relation among a set of variables and an instance

of this set can be considered a unit in the counterfactual model. Suppose a FAR

is f(x1, x2) ) x3. In order to investigate the potential causal relations in it, the

above counterfactual causal experiment principles are adopted to design the algo-

rithm for causal hypothesis generation. Since applying an intervention to the system
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requires actions with the environment, the algorithm’s design is based on an agent

architecture.

There is another branch of causal modelling, automatic causal modelling, which

aims to retrieve a causal structure from only observational data [183, 147]. The

causal relations are defined on the assumption of faithfulness which states that

the conditional independence relations presented in the data are due to only the

underlying causal structure [183]. This family of approaches has the advantage of

reducing the intervention of human experts. However as, for the system in which this

thesis is interested, such an assumption is not satisfied, causal hypothesis generation

is not approached from this perspective.

6.2 Experimental Causal Search based on Agent

Architecture

The above counterfactual causality definition and its inference form the basis of

the reasoning process of the proposed causal search algorithm. Since this reasoning

process requires interactions with the objective system, we therefore design the

causal search algorithm using an agent architecture. A single agent is used in the

proposed causal search algorithm. Details of the design are presented in the following

sections.

6.2.1 Sense

As defined by the CHGP, its input is the set of FARs derived from solving the AHGP

(F = {f1, f2, ..., fm}) which comprises one part of the agent’s sensed information

while the information from the objective system (i.e. observational data X) with

which the agent interacts through its sensors forms the other part. The experimental

causal search algorithm aims to form two groups of instances, where one group is the

other’s counterfactual group. The observational data (X) provide a database from
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which a number of instances can be selected to form one of the instance sets (D
s

).

The construction of its counterfactual instance set (D0
s

) relies on the actions of the

agent applying interventions to the potential causal variables. Such a construction

is possible based on the temporary stability, causal transience and homogeneous

assumptions introduced in the last section.

6.2.2 Reason

The reasoning part of the agent determines how to select the set of instances and ac-

tions to execute in order to construct the corresponding counterfactual set. Suppose

a currently received FAR is f(x
p1 , xp2 , ..., xp

i

, ..., x
p

k

)) x
q

, where {x
p1 , xp2 , ..., xp

i

,

..., x
p

k

} 2 X, x
q

2 X and {x
p1 , xp2 , ..., xp

i

, ..., x
p

k

} \ x
q

= ;. The variables involved

in the current experiments are confined to those specified by this FAR, that is,

{x
p1 , xp2 , ..., xp

i

, ..., x
p

k

, x
q

}. The RHS variable (x
q

) is considered as a response vari-

able while the LHS variables ({x
p1 , xp2 , ..., xp

i

, ..., x
p

k

}) are examined one by one as

potential cause variables. Suppose the potential cause variable under examination is

x
p

i

and the observational data (X) are sorted according to its values (Algorithm 12,

Line 3). Thirty instances are selected from the sorted data ( X0
xpi

) and form the set

(D
s

), which will be compared with its counterfactuals (Algorithm 12, Line 4).

In order to construct the counterfactual set (D0
s

) of (D
s

), the agent applies an

intervention (�x
p

i

) to each instance of variable x
p

i

in D
s

, which is calculated as in

Equation 6.1 (Algorithm 12, Line 5). In this equation, the maximum and minimum

values of x
p

i

are extracted from its instances in (X0
xpi

) to form a pair of boundaries.

Then this range is divided by 30, as 30 instances of x
p

i

are selected from X0
xpi

to

form D
s

. This interval is further halved to form an intervention value (�x
p

i

). By

doing so, when �x
p

i

is applied to x
p

i

in D
s

, the value of x
p

i

does not exceed its

original boundary. If after the intervention is applied to x
p

i

, x
q

shows a di↵erent

state, then there is a potential causal relation between x
p

i

and x
q

.

�x
p

i

=
(max(x

p

i

)�min(x
p

i

))/30

2
(6.1)
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6.2.3 Action

The agent’s actions are to create counterfactual instances for the corresponding

instances in D
s

. Given the current potential cause-e↵ect variable pair {x
p

i

, x
q

}, for

each jth instance in D
s

(D
s,j

), the agent adjusts the system to the same state as

D
s,j

and applies the intervention (�x) to x
p

i,j

(Algorithm 12, Line 10). However, as

the other LHS variables might also have causal relations with the RHS variable, it

is usually preferable to control them to eliminate their influences [164]. The other

LHS variables are then adjusted back to the values in D
s,j

and this newly generated

instance D0
s,j

forms the counterfactual for instance D
s,j

(Algorithm 12, Lines 8-13).

When all the counterfactual instances are constructed, for each one, the di↵er-

ence between the paired values of x
p

in D
s

and D0
s

is calculated. In order to rule

out the possible influence of random error, this di↵erence is confirmed by the paired

t-test (Algorithm 12, Line 15 ). If the test results show no di↵erence between the

x
q

values in D
s

and x0
q

values in D0
s

, then x
p

i

is not the direct cause of x
q

and the

link between them is dropped. Otherwise, an arrowhead points from x
p

i

to x
q

to

indicate that x
p

i

is the direct cause (Algorithm 12, Lines 16-20). Figure 6.1 shows

a visualisation of this process conducted on an example FAR of f(x1, x2)) x3.

6.3 Experiments on Synthetic Datasets

We are interested in the accuracy of the overall algorithm, including CCFARM, for

recovering the underlying mechanism. The experimental design involves two levels of

investigation: separated hidden relations and chained hidden relations. The former

is defined in terms of the dependent variables not being directly influenced by each

other. The latter means that, among the underlying relations, the dependent vari-

able of one relation can become the independent variable of another, settings which

increase the complexity of the underlying relations. Visualisations of separated and

chained hidden relations are presented in Figure 6.2 and Figure 6.3 respectively.

The experiments are applied on synthetic datasets.
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{
All LHS variables 
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f (x1, x2 )⇒ x3

e.g. ∆x→ x1

if ∂x3
∂x1

= 0

if ∂x3
∂x1

≠ 0

x3
x2

x1
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x2
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x3
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Apply intervention to LHS 
variable being investigated

Compare difference on  
RHS variable

Confirm difference on  
RHS variable 

Output oriented 
graph
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Figure 6.1: Process flow of experimental causal search for one FAR (process repeated
for multiple FARs)

Bing Wang November 26, 2014



CHAPTER 6. CAUSAL HYPOTHESIS GENERATION: EXPERIMENTAL CAUSAL
SEARCH 159

Algorithm 12: Experimental causal search algorithm based on agent archi-
tecture
Intput : FAR (f(x

p1 , xp2 , ..., xp

i

, ..., x
p

k

)) x
q

), observational data (X)
Output: causal relations between {x

p1 , xp2 , ..., xp

i

, ..., x
p

k

} and {x
q

}
1 i = 1
2 while i  k do
3 Sort observational data (X) according to x

p

i

4 Select 30 instances from the sorted data using equal intervals to form a set
(D

s

).
5 Determine intervention value (�x

p

i

) according to Equation 6.1
6

7 //Creating D0
s

through intervention:
8 for j  1 to 30 do
9 //j refers to the jth instance in D

s

10 x
p

i

,j

= x
p

i

,j

+�x
p

i

11 Adjust other LHS variables to their values in D
s,j

12 Add this post-intervention instance to D0
s

13 end
14

15 Apply paired t-test to the values of x
q

in D
s

and D0
s

16 if average di↵erence 0 then
17 Drop link between x

p

i

and x
q

18 else
19 Orient link x

p

i

! x
q

20 end
21 i = i+ 1
22 end

x4

x11 x20 x16 x1 x13 x15 x17 x18 x19 x12

x5 x6 x7 x8 x9 x10x3x2x1

Figure 6.2: Example of separated hidden relations in D3-3
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Table 6.1: List of parameters used in two synthetic data experiments

Parameter Symbol used in context Value

Rule population size n
r

30

ANN population size n
a

14

Generation size n
g

50

Crossover rate R
c

0.8

Mutation rate R
m

0.1

Accuracy threshold h
r

0.95

Learning rate lr 0.1

No. epochs n
e

500

No. nodes (hidden) n
u

10

6.3.1 Experimental Design for Separated Hidden Relations

The synthetic data generation for separated hidden relations is the same as that for

the dataset used in experiments with CCFARM. Each hidden relation is a polynomial

function and each dataset has a di↵erent number of relations. Details of the data

generation steps are provided in Chapter 5. Each dataset (D) is denoted as Dp� q,

where p refers to the order of its hidden functions and q to its number of hidden

functions.

In order to measure the accuracy of the final hypotheses derived from the causal

search, an error rate metric is used. In the literature, when reconstructing a causal

network from a synthetic dataset, the analysis is often conducted on either the

number of links or orientation matching [182] [41], or the matching of the network

[38]. Inspired by these analyses, the error rate is defined as the percentage of the

links in the hidden relations not correctly identified by the algorithm:

error = m
h

/n
h

(6.2)

where m
h

refers to the number of links in the hidden relations not identified by the
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Figure 6.3: Example of chained hidden relations

search algorithm and n
h

the number of overall links hidden in the dataset.

6.3.1.1 Searching Pruned Archive

In Chapter 5, we discussed the overlapping problem in the FARM. Due to the

potential overlapping of the independent variables, greedy pruning may filter out the

FARs that are potentially useful for retrieving the underlying mechanism. Table 6.2

shows the error rates incurred when rebuilding the causal network for each dataset

from the pruned FAR set using the experimental causal search algorithm. The high

error rates appearing in the right-hand bottom corner show that, when the number

of hidden relations increases, using the pruned archive as a guide for causal search

is unreliable. Therefore, we would suggest using the archive without pruning for a

causal search. However, if the overall process is not for reverse engineering (e.g.,

building a causal network) but a predictive task (e.g., predicting the value of one

variable), the pruned archive is still preferred as it selects the associative relations

with the highest accuracies.

6.3.1.2 Searching Unpruned Archive

The following experiment is applied on the original output from the archive. Ta-

ble 6.3 shows the error rates for the 50 synthetic datasets with separate hidden
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Table 6.2: Error rates of causality orientation for pruned CCFARM output

Datasets q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10

D1- (p = 1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D2- (p = 2) 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.06 0.11 0.15

D3- (p = 3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D4- (p = 4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.097 0.21 0.31

D5- (p = 5) 0.00 0.00 0.00 0.00 0.28 0.7 0.34 0.48 0.53 0.72

Table 6.3: Error rates of causality orientation for original archive of CCFARM

Datasets q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10

D1- (p = 1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D2- (p = 2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D3- (p = 3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D4- (p = 4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00

D5- (p = 5) 0.00 0.00 0.00 0.00 0.08 0.03 0.00 0.00 0.00 0.02

relations. In contrast to Table 6.2, the error rates decrease significantly, especially

in the 10 datasets with fifth-order hidden relations; for example, they drop from 0.7

to 0.03 in dataset D5-6 and from 0.72 to 0.02 in dataset D5-10. This suggests that

pruning schemes need to be selected carefully according to task requirements.

Although the error rate decreases when a di↵erent FAR candidate set is used,

Table 6.2 shows that some individual dataset outcomes still have errors (e.g., D5-5,

D5-6, D5-10). As the causal relations search in Algorithm 12 is exhaustive, the

reason for some datasets still showing error rates higher than 0 lies in the FAR can-

didates supplied by CCFARM which, in essence, adopts an evolutionary algorithm

(EA) for its rule searching. In other words, the FAR search is based on heuristics,

hence, it is not expected that a complete set of FARs hidden in a dataset will be

extracted. Therefore, in some cases, CCFARM could, provide FARs that do not

cover all the genuine relations in the underlying mechanism.
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6.3.2 Experimental Design for Hierarchical Hidden Rela-

tions

The synthetic datasets for chained hidden relations are generated based on the

datasets for separated hidden relations. Each one is generated in the following way

and has 20 variables. The first 10 variables ([x1, x2, ..., x10]) are used as indepen-

dent variable candidates for generating relations for [x11, x12, ..., x15]. Then, these

5 variables become independent variable candidates for generating relations for the

remaining higher-level variables; for example, supposing that the dataset currently

being generated has two higher-level variables (x16, x17), the functions generating

them could take the form:

x16 = x12 + x2
14 + x3

15 + 1

x17 = x11 + x2
13 + x3

13 + 1

The independent variables for each function are sampled from [x11, x12, ..., x15]. In

order to present chained relations, these candidate variables are also generated from

polynomial functions such as those presented below:

x11 = x2 + x2
9 + x3

6 + 1

x12 = x4 + x2
1 + x3

8 + 1

x13 = x7 + x2
5 + x3

10 + 1

x14 = x3 + x2
6 + x3

1 + 1

x15 = x7 + x2
4 + x3

5 + 1

A hierarchical dataset is denoted as Hp � q, where p indicates the order of its

polynomial function and q the number of its higher-level functions. The above

example dataset is denoted as H3�2, where 3 indicates that the hidden polynomial

functions are of the third order and 2 that there are two higher-level functions in

the dataset. Figure 6.3 illustrates the coding scheme for such underlying relations.

Hierarchical hidden relations increase the order of hidden relations and the level of

overlapping among hidden relations. In the previous chapter, we saw the influence
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Table 6.4: Error rates of causality orientation for datasets with hierarchical relations

Data q = 1 q = 2 q = 3 q = 4 q = 5

H1- (p = 1) 0.00 0.00 0.00 0.00 0.00

H2- (p = 2) 0.00 0.00 0.00 0.00 0.00

H3- (p = 3) 0.00 0.00 0.00 0.00 0.00

H4- (p = 4) 0.00 0.00 0.00 0.00 0.00

H5- (p = 5) 0.1 (3/30) 0.17(6/35) 0.15(6/40) 0.09(4/45) 0.16 (8/50)

of hidden relation overlapping on the performance of CCFARM. With hierarchical

hidden relations, we can further investigate whether overlapping can influence of the

performance of the proposed experimental causal search algorithm.

The experimental results for the error rate are shown in Table 6.4 which in-

dicates that most of the synthetic datasets have average low error rates. However,

datasets with hidden functions reaching the fifth order, have relatively higher error

rates than the other datasets. As this could be attributed to the lack of su�cient

FARs to cover the direct causal links within a layer, the FARs are checked against

the underlying functions. The comparison criterion is whether the FARs found from

lower-level hypothesis generations include the causal links designed in the synthetic

datasets. The results shown in Table 6.4 indicate that, in the current experiment,

the error rate is caused by the quality of coverage provided by the input FARs.

6.4 Experiments with Play-board Context

One component that the above analysis of causal searching on synthetic datasets

is missing is ‘context’, which is at the heart of a causal search. The context pro-

vides regularities and constraints that allow causal relations to materialise and give

meaning for further interpretations. The overall process of hypothesis generation

enables an agent to observe, learn about, and use reverse engineering for controlling

its environment. The experiments presented in the following subsections instantiate

an agent that uses CCFARM and an experimental causal search algorithm in order
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to learn how to retrieve the underlying causal structure of a coloured puzzle.

6.4.1 Experimental Design for Reverse Engineering Game

The game is a coloured control play-board, as shown in Figure 6.4. The rainbow

colours in the upper left box possess a set of underlying mutually influential rela-

tions. Each coloured stripe has a corresponding sliding controller in the upper right

box that allows for external intervention on its stripe. The underlying influence

mechanism behind the play-board is shown in Figure 6.5. The play-board has two

main states: active and stable. During the active state, the stripes change colour

by their own underlying mechanisms which allows the learning agent to observe and

record the values of the colours. The colour variables in the lower left box in Fig-

ure 6.5 (C = {c1, c2, c3, ..., ci, ..., c7}) refer to the coloured stripes. The underlying

relations of variables c3, c5 and c7 are defined in Equations 6.3, 6.4, 6.5 and the

values of variables {c1, c2, c4, c6} are all in the range of [�5, 5].

The arrows in Figure 6.5 define the direction of influence. In any time step, if

any change happens to a colour (c
i

), its influence materialises over all the mecha-

nisms in the network after time step �t. This assumes that the observation time

step is su�ciently long for all e↵ects to materialise, for example, when c4 changes

its colour in the play-board, by the end of time step �t, all its e↵ects (i.e., c3 and

c5) are materialised.

In the stable state, the controls are connected to the colour stripes, which allow

an agent to experiment with the colour stripes according to its observations and

knowledge (e.g. FARs). The notations, {k1, k2, k3, ..., ki, ..., k7} in Figure 6.5, are

used to represent the control knobs. The dashed lines in Figure 6.5 mean that the

controls do not exert influence on the colour stripes when the play board is in the

active state. When the agent has collected a certain number of observations forming

dataset X (500 instances in the current experiments), it moves to the CCFARM

process to search for interesting associations. This association search is followed by

the proposed causal search procedure, during which the agent interacts with the play
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board to examine potential causal relations. For example, suppose one of the outputs

of CCFARM is a FAR (c1 ! c2). The agent will investigate whether c1 causes c2 to

change. It first sorts the dataset X according to the values of c1 in ascending order.

Then, it selects 30 instances from the sorted dataset (X0
c1
) with equal intervals (in

this experiment it selects one instance every 16 instances for covering the range of

c1). This selection forms an experimental dataset D
s

. For each instance in D
s

, D
s,j

(j = 1, 2, 3, ..., 30), the agent adjusts the values of the colour stripes to those stored

in D
s,j

by moving the knobs. It moves the knob connected to c1 to adjust its value

from (c1,j) to (c1,j+�c1). The values of the rest of the colour stripes are adjusted to

the same values as in D
s,j

except c2. The values of {c1, c2, c3, ..., ci, ..., c7} after the

above manipulation are recorded to form an instance D0
s,j

. This process is iterated

over each instance in D
s

to create its counterfactual set D0
s

. When all 30 instances

in D
s

are examined with the above procedure, the values of c2 in D
s

and D0
s

are

analysed to determine whether c1 is its cause (as in Algorithm 12 Line 15). When

all the FARs have been examined, the final output is given in a causal network form.

Algorithm 13: Process flow for game control learning agent

1 Record coloured stripe values of play-board every �t time to form
observational data (D)

2 Apply CCFARM on D to extract FARs
3 Use experimental causal searching algorithm in Algorithm 12 to determine
casual relations

4 Output derived causal network

The functions that constitute this underlying control mechanism is list in the

following equations.

Color c3:

c3 = sin(c2 ⇥ c2) + c4; (6.3)

Color c5:

c5 = c3 ⇥ c3 + c4; (6.4)

Color c7

c7 = ec1 ⇥ sin(c1) + c6; (6.5)
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Figure 6.4: Colour control environment for a causal game
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K7K6K5K4K3K2K1

c2c1 c7c6c5c4c3

Figure 6.5: Illustration of the causal game

In summary, this play-board environment provides the context for a causal

search, possesses continuous underlying relations and has a complex influencing

mechanism that challenges conventional causal modelling. The parameters used in

this experiment are shown in Table 6.5.

Table 6.5: List of parameters used in play-board experiments

Parameters Symbol Value

Rule population size n
r

30

ANN population size n
a

14

Generation size n
g

50

Crossover rate R
c

0.8

Mutation rate R
m

0.1

Accuracy threshold h
r

0.8

Learning rate lr 0.1

No. epochs n
e

500

No. nodes (hidden) n
u

10
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6.4.2 Experiment Results for the Play-board Game

The experiments on the play-board game reflect other aspects that can influence the

performance of the experimental causal search algorithm. The play-board experi-

ments use 30 di↵erent seeds for the FARM step. After applying the experimental

causal search algorithm, we find that the error rate for retrieving the causal structure

is 0.5.

The causal structure retrieved by the algorithm is shown in Figure 6.6, together

with the original causal structure. Each causal relation in Figure 6.6(b) is marked by

a di↵erent colour. There are three underlying causal relations in total corresponding

to Equations 6.3, 6.4, and 6.5. From Figure 6.6 (a), each underlying relation has

a missing link compared with the original relations. The reasons for the present

missing links can be categorised as two types: from the coverage of the FARs; and

from testing accuracy.

The two missing links (c2 ! c3 and c6 ! c7) are caused by the coverage of the

FARs, that is, for the first, after checking the FARs on which the experimental causal

search algorithm is based, there is no rule for its RHS to be c3 and, at the same time,

for its LHS variables to include c2. The same situation applies to the missing link

c6 ! c7. The coverage of the FARs a↵ects the quality of the experimental causal

search results.

The missing link c3 ! c5 is a result of the di↵erence test of the experimental

causal search algorithm. The FARs in the input to the search algorithm include

this c3 ! c5 association but the di↵erence test (i.e., paired t-test incorporated in

Algorithm 12) in the algorithm does not identify the di↵erence of c5 between before

and after applying interventions on variable c3. Table 6.6 shows examples of FARs

including the link c3 ! c5 in di↵erent seeds, and according to the prior knowledge of

Equation 6.4, we can tell that applying interventions on c3 will cause the values of c5

to change. However, the missing link in the final output (i.e., Figure 12 (a)) indicates

that the di↵erence test fails to confirm the change of c5 from the intervention. This

situation suggests another factor that a↵ects the performance of the experimental
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C1

C2C3

C4

C5
C6

C7

C1

C2C3

C4

C5
C6

C7

(a) retrieved causal structure (b) underlying causal structure 

Figure 6.6: Comparison of causal structure retrieved from experimental causal search
algorithm and underlying causal structure

causal search algorithm, that is, the performance of the di↵erence test used for

comparison.

Table 6.6: Examples of FARs including causal link c3 ! c5 in di↵erent seeds

FAR Predictive accuracy

f(x3, x4)) x5 0.987 (Seed 2)

f(x3)) x5 0.992 (Seed 1)

f(x3, x4)) x5 0.990 (Seed 14)

f(x3, x4)) x5 0.990 (Seed 15)

Table 6.7 shows the percentages of causal links found in all 30 seeds. We checked

the FARs in the experimental outputs using di↵erent seeds, to see whether all the

causal links are included. It can be seen that c2 ! c3 and c6 ! c7 are missing

from all experiments regardless of seed. This result reveals that in the final output

of CCFARM, there are no associative relations specifying the links (c2, c3) and (c6,

c7). This raises a question of whether it is CCFARM that cannot identify associative

relations. Therefore, we record the number of causal links in the valid and archived

FARs in each generation in di↵erent steps.

The results are shown in Figure 6.7 in which it can be seen that, in the first

two plots, all six causal links are covered in each generation. However, after the
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(a) number of causal links in the population
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(b) number of causal links in the valid rules of
each population
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Figure 6.7: The number of the causal links in each generation at di↵erent step with
95% confidence interval
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Table 6.7: Percentage of causal links for 30 seeds

Causal links Percentage

C2� C3 0

C4� C3 0.9

C3� C5 0.8

C4� C5 0.9

C1� C7 0.95

C6� C7 0

archiving process, two links disappear from the FARs. The archival process includes

a variable selection procedure (presented in Section 5.2.5 and Section 4.1.2.2) which

deletes a variable from a given valid FAR if, without that variable, the FAR still

has a predictive accuracy higher than a threshold (h
r

� �a). These experimental

results reveal that, for real world systems, for the purpose of providing input for

causal hypothesis generation, the archive process can be skipped to preserve more

potential causal links. However, if CCFARM is applied to conventional quantitative

ARM tasks, where the main goal is to extract concise association rules, it is still

necessary to conduct the variable selection procedure in the mining process.

6.5 Chapter Summary

In this chapter, an experimental causal search algorithm for CHGP was proposed.

It relaxes the assumptions currently made about continuous variables when their

causal relations are under investigation. It completes the final component of the

methodology for the general hierarchical hypothesis generation problem presented

in this thesis. Experiments on synthetic data showed the relatively high accuracy of

retrieving the underlying causal relations as an approach for automatic hypothesis

generation.

On the other hand, the play-board game revealed two factors identified as af-
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fecting the performance of the experimental causal search algorithm: the coverage of

the FARM results; and the quality of the statistical test of the intervention results.

Further analysis of the causal links revealed that the coverage of the FAR could be

a↵ected by the archiving step in the CCFARM algorithm. This suggested an option

for improving CCFARM to increase its coverage of the associative relations hidden

in observational data by FARs could be to skip the variable selection step during

archiving of the FARs found.

The advantage of the proposed experimental causal search algorithm was that

the causal influences identified in the results were consistent with the original causal

relations. In addition, due to its experimental nature, the causal hypothesis gener-

ation was not sensitive to hidden variables that influenced the measured variables.

Identifying the factors that a↵ected the performance of the experimental causal

search algorithm presented the possibility of improving the algorithm, as discussed

in the next chapter.
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Chapter 7

Conclusion and Future Work

The advances in data collection, transmission and storage have given rise to hypoth-

esis generation research which uses data mining and machine learning techniques to

automatically find patterns of interest in datasets. A pattern representation is usu-

ally defined by the researcher, with the techniques involving fitting it to observed

data [52]. This, provides a paradigm for automatic knowledge discovery with lim-

ited involvement of human experts. This thesis explored its potential extension to

knowledge discovery for a general system, the underlying structure of which is un-

known, measured by a set of continuous variables. The primary contributions of

this thesis are:

• defining a generalised hypothesis generation problem;

• decomposing a problem into an associative hypothesis generation problem

(AHGP) and a causal hypothesis generation problem (CHGP);

• developing functional association rules (FARs) and FAR mining (FARM) al-

gorithms as solutions to the AHGP;

• developing an experimental causal search algorithm based on an agent archi-

tecture as a solution to the CHGP; and

• using new metrics that enable evaluations and visualisations of the perfor-
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mances of the hypotheses generated and comparisons of di↵erent algorithms..

Section 7.1 provides a summary of the research contributions made by this thesis

and analyses the conclusions drawn in previous chapters. Section 7.2 discusses the

limitations of this work and considers possible avenues for future development and

application of the proposed autonomous hypothesis generation approach.

7.1 Summary of Research Contributions and Con-

clusions

This work contributes to knowledge discovery in a generalised hypothesis generation

scenario where an unknown system can be measured by a set of continuous vari-

ables. A priori knowledge of the underlying structure of the system is not available

in advance and the causal structure that dominates its dynamics is automatically

explored. The contributions of this research are detailed below.

7.1.1 Generalised Hypothesis Generation Problem Defini-

tion and Decomposition

A new problem definition for hypothesis generation in continuous domains was pro-

posed. It focused on situations in which a general unknown system was measured

by a set of continuous variables and aimed to provide initial insights into the struc-

ture of the underlying system. Compared to conventional hypothesis generation

practice, it avoids bias introduced by the limitation of human domain knowledge in

the manual design of hypotheses. Our hypothesis generation problem was further

decomposed into two sub-problems, the AHGP and the CHGP.
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7.1.2 Development Solutions to Proposed Hypothesis Gen-

eration Problems

This category of contributions had the following components.

• Two FAR representations based on the regression model and ANNs. They

addressed the issue of representing associative hypotheses for the first sub-

problem, and could process the linear and non-linear relations existing among

the variables respectively. They do not require conversion of variables into

intervals as in the conventional association rule form. The definition of FARs

introduces a new AR definition to the field of ARM.

• Three evolutionary algorithm (EA)-based search approaches for linear FAR

mining (LFARM). They provided solutions to the problem of how to identify

LFARs from observational data. The associative hypothesis generation prob-

lem was cast as a heuristic search based on the characteristics of the proposed

associative hypothesis representation.

• A cooperative co-evolutionary algorithm for mining general FARs. CCFARM

provides another solution to the problem of associative hypothesis generation

when the representation of a hypothesis is concerned with general associative

relations. Also, it decomposes FARM into two search problems: one searches

for the valid associative hypothesis; and the other for the appropriate ANN

initialisation that is likely to collaborate best with the potentially valid asso-

ciative hypothesis. Comparison experiments with two state-of-the-art ARM

algorithms have shown its competitive performance.

• An experimental causal search algorithm for causal hypothesis generation

based on FARs. FARs places the variables into sub-sets in which the variables

within one sub-set are interdependent. Causal hypotheses are built on such

variable sets. We presented this algorithm as an agent architecture which sys-

tematically applies interventions on the interrelated variables and, depending

on the consequences of these interventions, can establish the causal structure
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of the system. The algorithm does not require the conventional assumptions

that the underlying structure of the unknown system is limited to causal rela-

tions, or that the dependency patterns in observational data are only due to

causal relations as in conventional automatic causal modelling.

7.1.3 Performance Metrics for the Hypothesis Generation

Approaches in Continuous Domains

The metrics proposed and experiments conducted are summarised as follows.

• New metrics that enabled evaluations and visualisations of the performances

of the hypotheses generated and comparisons of di↵erent algorithms were pro-

posed. They assisted in evaluating the characteristics of the generated hy-

potheses. For LFARM, to compare the performances of di↵erent LFARM

algorithms, complexity and perceptual selectivity were proposed. For general

FARM, to evaluate and visualise the quality of the general FARs, matching,

frequency and active ratio were used.

• Empirical experiments were conducted to study the performances of the de-

signed solutions. Empirical comparisons of the proposed LFARM algorithms

using complexity and perceptual selectivity suggested that there was no sig-

nificant di↵erence among the di↵erent EA-based LFARM approaches. Exper-

iments on CCFARM indicated similarities between the FARs mined and the

hidden associative relations in the observational data. The main factor that

a↵ected performance was identified as the overlapping of the underlying rela-

tions. Experiments on the causal hypothesis generation problem showed a low

error rate for determining underlying causal relations. Also, the experiments

showed that the error rate was influenced by three factors: the coverage of the

FARs; the di↵erence test; and the variable selection step in CCFARM.
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7.2 Limitations of This Study and Suggestions for

Future Work

Hypothesis generation as a complementary tool for knowledge discovery has become

popular in a number of research fields conventionally dominated by hypothesis test-

ing research. This thesis has begun to explore its potential extension to situations

in which domain knowledge is not su�ciently specific for the precise design of a

domain-specific knowledge representation and generation strategy. The problem

and solutions proposed in this thesis provide a basis for further research in a num-

ber of di↵erent directions.

7.2.1 Computational E�ciency and Additional Experiments

An issue identified by the experiments using FARM was computational cost. The

collaboration scheme adopted by CCFARM was a complete mixing, in which two

populations evolved in parallel and each individual was paired up with every in-

dividual in the other sub-population. Although this scheme was used to handle

the epistasis in co-evolution, the computational power required would become an

issue when the number of variables involved increases. Other collaboration schemes

could be investigated and compared with this scheme in terms of the performance of

FARM; for example, the search process could evolve in a round-robin fashion [180],

that is, one sub-population being evolved while the other remains fixed.

A second potential extension on the FARM algorithm is that niching techniques

can be added to the mining procedure. Unlike the conventional association rules,

where the Apriori property can guarantee all possible frequent patterns extracted,

functional association rules rely on heuristic search to find as many rules as possi-

ble. Niching methods extend evolutionary computation approaches to domains that

require the location and maintenance of multiple solutions [115]. Di↵erent nich-

ing techniques can be implemented with the FARM algorithms for the purposes of

increasing the diversity of the solutions and the coverage of the mining process.
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7.2.2 Interrelation of the Functional Association Rule Min-

ing and Experimental Causal Search

The experiments for causal hypothesis generation identified that the quality of the

FARs essentially a↵ected the error rate of causal discovery. Although FARs can be

seen as a necessary condition of causal relations, it is not a su�cient condition and

not all associative relations are due to potential causal relations. It would benefit an

experimental causal search if a FARM algorithm could exclude most FARs unrelated

to potential causal relations. This can maybe achieved using the advantages of

evolutionary computation by including additional criteria in the objective functions

of the EA and treating the problem as multi-objective.

7.2.3 Alternative Applications of Hypothesis Generation

The focus of the hypothesis generation problem in this thesis was on a general un-

known system and the solution presented provided an insight into basic approaches

that could be adopted automatically. The paradigm introduced could be incorpo-

rated into an intelligent agent architecture as part of an approach for assisting it

to understand its environment. Based on this, the agent could adapt to di↵erent

scenarios without requiring hard-coded information of their environments. Another

potential application could be in cyber security, where new activity patterns could

be hypothesised without the need to rely on old knowledge.

7.2.4 Experiments Examining Hypothesis Generation Us-

ing Datasets With Di↵erent Characteristics

Our experiments in Chaps. 4-6. have shown promising results for hypothesis gen-

eration from a number of well-known datasets. However, we have only considered

a relatively small number of datasets in this thesis. There may be datasets with

certain characteristics for which our algorithms perform di↵erently according to the

metrics presented in this thesis. Another area of future work is thus to widen the
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types and characteristics of datasets studied to understand the strengths and weak-

nesses of our algorithm in response to data with di↵erent characteristic patterns and

trends.

7.3 Concluding Remarks

Hypothesis generation provides a complementary tool for automating the knowl-

edge discovery process. In general, it requires researchers to formulate the necessary

knowledge representation and generation strategy with a certain amount of domain

knowledge. Then, with the assistance of machine learning and data mining tech-

niques, the patterns that encompass the knowledge of interest can be automatically

extracted. This thesis has begun to explore the potential extension of hypothesis

generation to situations in which the available domain knowledge is not su�ciently

specific for the precise design of its representation and generation strategy. The

problem and solution development it proposed provide a basis for further research

in several di↵erent directions.
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