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SUMMARY:

The question of ponderomotive or of the more general non-linear
forces and absorption procesées in a plasma in presence of an external
electromagnetic field, e.g. of laser radiation , are considered from a
statistical point of view. _

First the stress tensor for thé system matter-field is studied in
relation with the concept of local eguilibrium ; which permits to obtain
the expression firét proposed by Helmholtz and used by Landau and Lif-
shitz later , for the ponderomotive force.

Then the properties of an absorptive-dispersive medium are discussed
Here we come to the conclusion that for the considered medium , the ex -
pression for the stress tensor and ponderomotive force is still an o -
pen qguestion. |

Only for the case of a medium whose response is linear in the
applied field , the generated heat could be written as a function of the
imaginary part of the dielectric constant.

The discussion of the method proposed by Pekar for determining the
expressions for energy density and generated heat in the electrodynamics
of a dispersive and absorbing medium , is discussed . Here ﬁe come to the
conclusion that this method is questionable.

A discussion of the mechanism of entropy production by relaxation
and absorption , is done. The absorption properties of a plasma are stu-
died considering three different approaches : 1l.- A special model is de-
rived using a set of oscillators . 2.-The hydrodynamic two fluid plasma
is used 4, and 3.-The linear response theory is used.

The role of the Onsager coefficients is evaluated , and it is de -
monstrated that the determination of the absorption constant in each of
the three approaches can. be considered as an application of the fluctua-
tion dissipation theorem.

The theory used here is based in the theory of fluctuations for
systems near eguilibrium and it presents a unifiying point of view to

study the non-equilibrium process in a plasma without utilizing the



kinetic eguations approezch. _

It enables us to discuss the energy relation for a plasma in
an external field whick is not only useful for understanding the mechanism
and the character of the absorption and relaxation phenomena , but it is
2lso used in the calculation of the "energy-velocity" , ie. the rate of
energy transfer in electromagnetic waves propagating'in an a2bsorptive

plasma.

An extension of the theory in order to include more general cases

is discussed.



CHAPTER 1

1). INTRODUCTION

The interaction of laser light and plasma has intrinsic theoreti-
~cal interest ,both as a general topic in the wide field of interaction
of electromagnetic fields and -matter ,and specially also for its pre-
sent practical interest due to its application to the problem of laser-
induced thermonuclear fusion.Together with magnetic-confinement fusion,
laser-induced fusion has been the subject of intensive studies in lea-_
ding centers in Japan , the Soviet Union, United States and Europe,
as a princiral prospect for generating controlled thermonuclear power.(l).
Appart from this very direct application ,there are several o-
ther processes which arise when intense laser radiation interacts
with solids ,the key idea in all the processes is to irradiate a solid
with sufficient.intense laser beam ,in such a way that the solid will
perform a rapid transition to a plasma state; there the absorption me-
chanism, both in the plasma state and in the initial solid state ,is a
very important question whose solution is basic for the insight in

the dynamics of the interaction. (2).

For high laser intensities the nonlinear effects have a domina-
nating influence in the structure of the plasma flow ; thére we have
to differentiate between the thermo-kinetic forces due to gas dynamics
pressures, and the forces of electrodynamic origin ,even though both e-
ffects will be present in the macroscopic description of the "dielectric”

properties of the plasma. (3).
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The intgnsity dependent collision freguency will set a criterium for
the predominance of the so called non-linear forces of electromagnetic ori-
gin over the thermokinetic forces. These non-linear forces are related to
the processes such as :generation of [Kev] ions, self focusing, production
of magnetic fields and in relation with the problem of controlled thermonu-
clear fusion , the non-linear force could be the principal mechanism to
compress plasma in order to produce exothermal nuclear reactionse.

’ There are two different schemes proposed to compress plasma :the gas
dynamic scheme and the optical compression scheme based in non-linear for-
ces.’

In the gas dynamic scheme for compressed plasma , the outer corona of
the plasma pellet absorbs the laser energy which is. transported to the core
by hot electrons producing the heating and later the blow-off of the outer
layer of the core. The resulting reaction forces will compress the inner
nart of the core to high densities. ‘

On the other hand in the optical scheme very short and high intensity
laser pulses are applied , in this way thermalization is avoided and fast,
cold , thick plésma blocks are produced due to non-linear forces , these
blocks will play the role of compressing material in order to get the condi-
tions demanded by controlled thermonuclear fusion. If this optical compression
scheme is used ,since the transfer of laser energy directly to plasma kinetic
energy is a low entropy process (Isentropic in ideal conditions), due to the
negligible heating it will provide the same plasma compression than the gas
dynamics compression scheme, with less laser energy ( 10 less laser energy)
for the same reaction gein , the later being defined as the ratio<3={;5=f0m1‘)
where €¢ is the rezction energy and Eo is the input energy (2,3).

Also the optical scheme does not need the tayloring of the laser pulse
in order to achieve isentropic conditions, as required by the gas dynamic
scheme, where the undesirable effects of entropy production due to generation
of shocks are always present.Further there are complications with the meaning

of the collision freguency , which decreases rapidly at high laser irradian-

ces. (3 ).
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We can formulate the two central guestions in laser-plasma interac-
tion: a2)the zbsorption of energy , and b) the forces acting on the plasma.
fany theories have been developed to explzin such interaction , each of them
facing one or both central cuestions.The following descriptions or theories
cen be mentioned:

1) The hydrodynamical description of laser plasma interaction, where the ab-
sorption rrocesses are associated with the introduction of an effective
coliision freguency 4 that jncludes all the mechanisms with which the exter-
nal-field is pumvping energy to the plasma.

2)The kinetic description:Here it is assumed that the interaction is a slow
irreversible process ,described by a Fokker-Planck type equation.

3) The statistical description , where the same results of the kinetic theory
can be obtained, but using here the linear response theory , with the advan-
tzge that in this case it ic rot recessary to intrcduce an arbitrary cut-off
varaneter, as reguired by the Fokker-Flanck eguation.In the statistical des-
cription , the absorpiion processes will be descrited by the introduction of
the so called "generzlized susceptibility".(5).

After the zbsorption processes azre described by one'of the above men-
tioned thecries , we turn our zttention to the bslance ecuations for thre
plasma particles, whichk , in combinstiorn with thke Maxwell eguations for plas~-
mz 4 will give us explicit expressione for the non-linear force. In order to
see the principal features of thkis problem , we begin summarizing some of
the plasma properties. First the plasma parameters sre introduced statistica-
llyand their relation with the concept of thermal eguilibrium is studied; tken
the classicel description of the non-linezr forces in transperent plasma

is given and finally the hydrodynamical description of the plasmz is studied.

€).



-4 -
2.-GENERALIZED DESCRIPTION OF THE PLASMA

Adopting the definition of H.Hora (7), we understand for plasma a state
of matter characterized by a high electrical conductivity and mostly gaseous
mechanical properties.Historically the first studies in the modern Plasma
Fhysics were realized in connection with the phenomena of gas discharges,
that is the production of ionized gas by application of electric fields.

Large regions of the Universe are made up of plasma , with the conse-
quence that until recent years the study of strongly ionized gases has been
connected to Astrophysics .Nuclear explotions ,however, produce almost com-
plefely ionized matter , whose connection with the production of fully ionized
plasma in the laser »lasma interaction has revived the interest in this
field with the aim of obtaining controlled nuclear fusion.

A fully ionized plasma can be considered as a mixture of charged parti-

cles which can be descr1bed by the Ham11ton1an(8)

2.1)- =EZ Tr_ 4+ e* \/S(W)

usv o fa [, 978 Vy.u 14”

where
() A
=Z,Z
202)0‘- V'Il“ M y x‘ﬂ-ﬂ“\’

The index JA,y are characterizing the kind of particle, the index 4

is characterizing a particular particle, A is the number of particles of
the type w swhich are electrically characterized by a charge Zue and
dynamically by a mass . , a position vector 79% sand a momentum pyu -Now
in order to avoid the complications that arise when work with the mixture of
charged particles, the model of one component plasma moving in a background

oppositely charged is adopted, the Hamiltonian for this system being:

N
2.3)e- Y _ > 2 .
H -%—:-f—:-“— + e Z{M% VJ'N“xf'x’"l) where

2.4) V,M=Tx—ém

This Hamiltonian describes an assembly of particles interacting through
two body forces, deriving from a.potential ez\ém\ (we are assuming particles
of valency one), in the absence of any external fields, and it contains all
the information about the plasma .The Hamilton canonical equations are deduced

from the Hamiltonian in the form:
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2.5) Mwwd) __ B - Dim)
D%y ﬁ 2 Py -

But better than that is to follow the mechanical description of the system.

As usual we are interested in the statistical description .In order to obtain

such description ,a Gibbsia.n ensamble in the phase space is introdnded.A par-

ticular system in a given state of motion will be described by a point in the

phase space, the ensamble representing the real system will correspond to a

cloud of points whose density will be given in the space by the function :

2. 6) SN (11 'x») .- ,POJ) - *’rat)

called the N-particle dlstrlbutlon functmn, f,u evolves in t:une according to

he Li lle th —--
the Liouville theorem; ‘3},, 3 { v - Bf " ’-F?‘ } -0
2.7) y opt

which combined with the Hamilton canonical equations 2.5) , gives:

2.8) ' : 'D;: " [éﬂh\‘ﬂ =0

where the Poisson bracket is defined as:

2.9) Do b
BLY b] Z 976:'5 bs 2:; 23;)

Now since the varlable tﬂ ,the velocity , will be more connected to

between m1croscop1c and macroscopic quantities (poult that it will
later), we will wri‘te the N-particle distribution function as:

2.10) f}._(%,x; PR N 5, - - ’U'IUJ'(T)
the change from 5 to U being a trivial one.

the relation

be developed

As long as magnetic fields are absent and relativistic effecis are not

taken into account, then the Liouville equation becomes:

2.11) - = g -2
%_éf + 2> U4 oq»}(fld =-‘—ﬁ%— %(% (V,erM)a]mQCN

Now without entering into the discussion about the Ergodic hypothesis,

we adopt as valid the pdint of view that in introducing a macroscopic descrip-

tion ,the observable value of any macroscopic dynamical guantity is the avera-

ge value weighed with JN sof the corresponding microscopic quantity, then:

2.12 ).

N = JO0D" fu (% ) HIRE)
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‘and éincefﬁis a kind of probability functién y it verifies:
2,13) 1 =\N s
- ‘S Qﬂ SE)h%glhc) :}N = l [ j?N 2 ()

Now since all macroscopic quantities are functions of the coordinates of onﬁy
a small number of particles , say one , two , therefore the weighing func-

tion in equation 2.11) is actually the integral of}h over all partjcles except

those on which M depends 3 these integrals are called reduced distribution

functions of s particles and they will be defined as:
2.14) = O A N—/J
&b (xl ) "")xb) '\f;," J§ ) )— M )\ S(CIX) (AU) N

in terms of these functions the more important macroscopic gquantities are de-
fined as follows: ‘

2.15) Density at point X:
2.16) Local hydrodynamics velocity:
- : N -3 - ,_-, Y > S > >
K (x;{):. [m(x;t)] ScL?Cl&U’;N’L%(X—Xx) 5:1<7C1 )I\f;;t)
2.17) Local energy density at point x: _ = = .y
7(,-&) ['Q(X t)] {det A’U‘\.J—M’Vg 8(7("7(1)§1 (')(1>'U'1, ) +
4 C Sd?ﬁ d’)(z,cl'\f;am’q_ \/\q_(XL’-')(z)S(X“'XL) '59.. (7(1 ,x:.)vuu’ ){)}
2.18) Density correlat1on between points X, X0 .
9(’?1;’;’&: Sa‘z’&i d#%,di; 8(_’?‘—'X)8(;"rx’)[ t2 (’E)?"ﬁ‘)’frzﬁ) ':";(?‘/ait)jx (%, , 77 Ef)]

Some points which characterize the statistical description have to be
understood .First there is the point that , unlike the mechanical description,
here the momentum or velocity and the position are not regarded as func-
tions of the time , in a statistical theory the evolution of the system is
described by the change in time of the density at a given point ( 5,5) in

the phase space; #quilibrium statistical mechanics makes a "a priori" hypothe-
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sis about the form of JN s and arrives at time-independent solutions for
the Liouville equations (9), from which expectation values are computed,
but no such simple functionzl exist in the non-equilibrium situation and in
order to handle this situation the kinetic theory is introduced as the theo-
ry of the processes.evolving to equilibrium.

Summarizing , the method operates in the following way: if we multiply
the Liouville eguation by NL/(N-A)) ana we integrate overjdfou&wunder the
following hypothesis:

2.19) i.- _‘&(§l,...l,;¢,.., ;(3)...52”)':5“,(??1;-., ,%’f)"x:;")i’“)

ii)e- }” e . outside some arbitrary large but finite

-

region of the phase space.

then after the indicated operations , the equation 2.11). becomres:

2.20) 3&,,(1,,_,,;)+1§A;;.v3 I ezggasz,,ﬂa\na,, (V}\/,,A..)’D,,{,,ﬂ(\,,/‘w)

™

In order to avoid beingqgoncerned with boundary effects , one passed to the
therrodynamics limit JTV:Z .y where N is the numlber of particles, the
volume enclosing them and c¢ the average density. Physically it means that
in a real gas all local properties such as hydrodynamiczl variables ,intensive
thermodynamics parameters , etc , must have finite values which are indepeh-
dent of the size of the system. i

The chain of equations represented by letting s=1,2,3y¢ cece.oeeyin
equation 2.20), is the so called B.B.G.K.Y. hierarchy.It has the noteworthy
property of giving Dh/btin terms of §A+\ y thus if we want to know §t,to
get it from 2.20) we need to know 4. and {, and so forth.Clearly we have
to mzke some simplifications: this is done assuming some approximate expression
for fz in terms of -}L » If that expression exist , then the s=1 equation
will be:
2.21)

i+ 7N = =S (47 d@ (TVe)- A (f)
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It would amount to an equation which would govern the time development of
fl swithout knowing the higher f;.Such equation as?iigivinggﬁ?in terms of
{i alone is called a kinetic equationj the various evolution eguations so
obtained correspond to different approximations and are calleds
i). The Boltzmann equation ,with no second term or the single particle
Liouville equation.

ii). The Vlasov egquation.
iii).The Boltzmann eguation.
iv). The Landau eguation.
v ). The Fokker-Planck equation.

A last statement about the physical meaning of the functions fib j;§
has to be made now , this is in relation with the fact that over 5k sunlike

the case of§b3£r#1,we have the possibility of external control.A system

could be prepared with a given velocity distribution by putting together se-
veral streams of particles with various velocities, also on the system seve-
ral inhomogeneities can be created, imposing over it mechanical or thermal
constraints, but we have no control over the correlations; these are produ-
ced by the molecular interactions and adapt themselves to the instantaneous
microscopie state , according to the laws of dynamics,This different behaviour
offL in relation with the other functions{;,.o:#i ,allow us , according to
R. Balescu ( 5) , to set a criterion with respect to the order of magnitude
of the physical parameter of the system.Refering again to R. Balescu ( 5) ,
we ask for an initial condition which guarantee that the correlation appea-
ring in the time zero has :been produced and has the same order of magnitud
that the ones appearing in later times , even if by an extremely improbable
fluctuation , a correlation of radical differegt order of magnitud appears
at given times , it will decay very rapidly and it will be replaced by another
one of the normal order of magnitude , which it will be set by the size of
the correlations in a system in thermodynamical eguilibrium.

For an inhomogeneous system , that is in particular having in mind the
laser-plasma interactions, a system in which the inhomogeneity is crated by

an external field , due to the macroscopic origin of the perturbation , the
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scale length over which the local macroscopic quantities (which are func-
tionals‘of f} ) vary , is usually long compared with the microscopic lenght.
This knowledge allows us to consider a region large compare to microscopic
length in which f; is the same that the one in equilibrium.This hypothesis
of local equilibrium is stated more precisely as the condition Lm<Q<Lh ,

where L, is the largest microscopic parameter (as the mean free path or

the range of the interactions') and Ly, is the hydrodynamical length, defi-

3
Vs

This length will fix the size of each cell in which the condition of local

ned as:

Ly = minimun

equilibrium is valid for fg , s; 1, 25 35cc-0¢ oSome of these ideas will be

applied in the determination of the plasma parameters.(10).

3). PLASMA PARAMETERS.

Let us assume a plasma fully ionized in thermodynamic equilibrium , for
which the temperature is high enough to produce the ionization, but not high
enough .to produce relativistic effects.Let us suppose also that the plasma

behaves classically, the quantum effects are not important; also due to the

long"fanéeicaulomb forces among the plasma particles ,there are correlations,
Assume for such a plasma that the correlations are weak , in order to make
a linear approximation in the B.B.G.K. (2.20) hierarchy of kinetic equations
J.Ivon (11) proved that the correlation is given by
3.1) I LR T
E=Fx €

-—
-

2
C
: No=
where o YT

2
a ?L _' 4nme€
ands D XT is the Debye length.
-1
e=1.602 10 [coulomq , is the elementary charge , Mhe is the electron den-

sity ,1( is the Boltzmamn constant , T is the temperature.
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Note : The number of elementary charges for the ions is z=1.

A method like this one allows us fo study the thermodynamics of a
gas of charged particles and of course since it takes into account the mo-
lecular structure of the system , it is more general than the one proposed
by Debye and Huckel ( 1923 ) for electrolytes.The importance of this method
rests in its statistical nature and second in the fact that it is based in
trhe study of correlations, concept that it will be used later to study the
idea of local equilibrium.The key concept +that we get from the theory is

the Debye length , defined in equation ( 3.1 ). ' ,

The Debye length is the characteristic parameter that limits the
collective behaviour of.the phenomena , due to the electrostatic interactions
among the plasma particles ¢ollective oscillationsare produced, from the-
re it is easy to see that under the influence of an external perturbation
with wave length nN< %Q) it is impossible for the plasma to react collecti-
vely.

Considering then the mean square root velocity Mo of the electrons in
terms of the temperature , we can define the freguency of the electrostatic

oscillations of the electrons : \
32) wp =)’ (_‘m_)/
P Mo Mne
where me is the electron mass.

As we can see, the two plasma parameters %y and Wp are functions of the
four quantities e2 , mg , ne andJEUﬂ?hith this quantities , for a classical
plasma we can construct the non-dimensional parameter Y = 82“heﬁ%-C
Taken into account that: | |
<:%:nnozf:;tx1 L and ﬂ42,0¥>lﬁeﬂ§
we can see that the parameter ¥ is proportional to the ratio of the average
interaction energy of the two particles to their average kinetic energy.In
a classical plasma we assume ¥ <<} (12 ).

Now in relation to the four quantities 82 »y Mg 5 Ng andaC, we can de-
fine +two characteristic times for the classical plasma . Let us first consi-

der the plasma time:
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MC )l{
t, =
3.3) P (87‘N\e

tp is proportional to the square root of the mass and is independent of

the particle velocity.It is analogous to the period of oscillation of a par-
ticle subject to an elastic force with a spring constant equal to e2 ng.
This is not = just a coincidence , it express a fundamental property of the
plasma behaviour.Since tpoccuﬁLthen tp is a time which is reflecting the
behaviour of the plasma particles as an harmonic oscillator , due to Cou-
lomb interactions .

The second time that it will be defined is a relaxation time

3.4). tr = efme)” [mie L

Another time that we will consider is the "duration of the collision",
tc , that is the time which a particle moving with the average velocity
spends in the sphere of influence of another particle. This time which has
a precise meaning in a gas , due to the long range of coulomb interactions
in a plasma , it losts its meaningj each plasma particle is interacting si-
muitaneously with a large number of other particles , but due to its defi-
nition , we can consider a time tcectiyas this characteristic time .

Algebraically it is easily proved that the relation among the two cha-

racteristic times of a plasma is:

te L2
tha

_ EA
therefore the scale of characteristic time for a plasma is t, > th‘*L <&
He note that this ratio is given by many authors (8) as the fundamental
parameter of the plasma. N

Finally we introduce the expression for the collision freguency in

the model of a perfect Lorentz gas :

S AT (e

wherex;ﬁhs Spitzer's correction factor for electron-electron collision
- -3
and Lm[(HVﬁroiza) ] is the Coulomb logarithm.

Now in order to set a criterium for the strength of the field, let us
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consider the following: an electron "quivers" in the field of a wave Eoe"iwt,

\FE\?\eE"\ 5 owe 222 MT [omsect]

with a velocity :

-2
where7\ is in M\J and I in [WW] «The electron thermal velocity is of the
)
order of Mg = (Y‘TE)A s this two magnitudes are defining the field strength

parameter ')'l H

.6) - ‘
3-6) N = Ve
o AFr
When 'n =1, VE - vp and the field intensity can be measured by introducing
the characteristic frequency wg as: e = eEo _ eFEo - oL
€ e T T o

then the limit for a critical field E; which does not disturb appreciably
the electron velocity distribution during a period of the plasma oscillation,
( that is , during an effective duration of the collision ) is given by:

w i &L
£ -5 E& <l

wp

In the limit wg / wp = 1 ,from there we obtain the expression for the cri-
tical field E; = 2\[5:%‘- .For example for a typical thermonuclear field

To 307 L g e io® [Ael]

™ = ‘018 [_o.m-%] P)
In the region of strong fields one actually expects , taking into account our
previous considerations , that the "collision operator " C depends on the e-
lectric field .We are talking here of a collision operator , assuming that
there exist a kinetic equation describing the evolution of such plasma. The
limit '(‘L =1 1is setting also the optimun irradiance Iopt at which the po-
wer absorbed by the plasma due to inverse Bremsstrahlung will be maximum ,
that is Jop® 3x|o'?[—T7:f—] [Vl with Te in[ev]and 2 in[am].

Now in order to connect the plasma parameters with the macroscopic re-

~~
fractive index "\, we recall ( as it will be proved in chapter 2. ), that
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that the same expfessions can be obtained from the model of a plasma , as a

set of independent oscillators described by the equations:

. — 2 =
3.7) ?{n +‘){)‘r~+wn;’lk=—% X=12,.

where for a plasma wy =0
This one is also. a macroscopic description , but it is mentioned since in it
is clearly exposed the collective behaviour of the plasma.And , at least for
a "collisionless " plasma , that is for example in the case of a plasma
under the influence of a high frequency field , the same expression is obtai-
ned By fhe Linear Response theory. (13).

Finally a last consideration for the following: when the quantum effects
are important , that is when we are talking about plasmas at low temperatures
and of high densities s the non-dimensional parameter of the plasma must be
modified , in order to take into account the statistical behaviour of the par-
ticles . Apart from the characterlstlc parameters e* sTe, he, &L sthe gquamtum
character is introduced with #L 1p7 where h is the Planck constant' under
this conditions the non-dimensional parameter is: 4( W1 oL e~
which measures the importance of quantum statistical effects or the "degree
of degeneration " of the system .Now in order to measure simultaneously the
effects of 1nteractlons and quantum statlstlc s the parameter:

oL,’ __ - e’-wn-*i 2

is introduced , then for a degenerate eleetron ga3¢£”<?fj .
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4). CLASSICAL EXPRESSIONS FOR THE PONDEROMOTIVE FORCE.

As we mentioned in the first paragraphs ; the ligth absorpion processes
and the forces acting in the plasma medium are the central questions in -the
following discussion about the laser-plasma interaction. We will discuss now
till what extent the expressions for the forces as given by Landau and Lifshitz

04) could be applied +to plasma-laser interaction.
. The expressions for ponderomotive forces acting in a dielectric medium
in the presence of a constant external electric field were obtained by the
mentioned authors , based in energy considerations in connection with the ther-

modynamics of a deformation. The basic equatlons are:

4.1 ) i.- F =F(T,p)-eg(pT) gu
ii.- = £(57) E

where F is the free energy for given values of temperature and deﬁsity
per unit volume of fhe dielectric thermally isolated, which is adiabatically
deformed under the action of a static field , ff; is the free energy in
absence of the field , and the linear relation between the electric field
E and  the electric induction D is determined by the "dielectric constant "
E?(P,T) 9 Which depends only on the density and on the temperature T.
Combining the expressions 4.1 ), with the thermodynamical expressions for

the deformation : E?tl)r

4.2 )o ie- VcK‘[F f)( )E,TJS"' un

iio"’ -g' = ’DG—(r—
t DR (3 -

wherelyis the stress tensor and f’the force acting on the dielectric

we obtain finally the expre951on for the force in the 1sotherma1 case:
4.3 ). _j: %AP(?T).;. ( )T] qwd&

where the second and third terms in this expression are called the

Helmholtz ponderomotive force.



~15-

The calculations for the case where a magnetic field is present are si-
milar to the electric case , as far as the thermodynamical energy relations are
coneerned , but due to the presence of conduction currents , another term
appears. Taking this ideas into account, the expression for the force due

to a maggetlc field is: : L -
1) T <k p (57 4 e 7 (SR ] o+ 2344

In a medium where/wm different from the unity , 2ll the terms in (q~"l)
are approxlmatelly of the same order . But if , as it usually happens,/,( L

then the last term will be the dominant one and the expression for the force
will become: \ ’
% P H

The assumptions that were made in the obtainment of equations 4.1 and.
4.3 1imit drastically the application of the theory.These limitations are con-
nected with a question until now open in Fhysics , which is : what is the
form of the macroscopic energy-momentum tensor of the electromagnetic field
in ponderable matter?.Problems related with statistical considerations as well
as relativistic generalizations will show us that the application of expre-~
ssions like those ones +to laser plasma interactions has to be examined
more carefully.

Relat‘ivity requieres that energy and momentum conservation laws are wri-
tten as : '
4.5 ) Dﬁ_‘:c ? =0

oA =0 for energy , o(=l,2,3 for mom'entum .

In the case of a system made up of charged particles and a electromagnetic
field , the tensor can be split in a part corresponding to ma,1','t;er(m)—r<,¢TB
and one corresponding to the field (ﬁ T,f o« Then defining Dfs )Tol JL,( as

the ponderomotive four-force due to the splitting of the tensor , we get:
4.6 ) o 5
fa T. B _ &L - "()TOLF

Now different splitting of the Eﬁ will give different expressions for

the force and there is where the Abraham-Einkovski controversy arises (16 ).
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De Groot has proposed the expressions:

_ N e
DT WL P TR M M B U U
UL UPUY R, M U

2 .
where‘F“Pare the macroscopic fields , M 4 the polarization , and IANL the

macroscopic four-velocity . Also is defined H<P_- F=P _ y*P# .On the o-.
ther hand, the material part of the tensor is :
4.8)0 ('TY'\)

\oL _Fuo(.uﬁ""@d_‘

where ?C? is the rest mass and internal energy density in the rest frame
and G, contains fluctuations and correlations . The space-space components
of O.P are the relativistic generalizations of the pressure tensor.In the

three dimensional notation , the field tensor become:

4.9).

Cj)‘f°‘3‘=

E*+8Y (E 1) I 00
‘%:1\_ O'AO

| oo+4d
O O°¢

!—00()

(€ xW)f _EDgetley Lot sty

This tensor agrees with the one proposed by Einstein and Lamb (11) in several
terms and it. is used when is applied to obtain the expression for the pon——

deromotive force.It resulté in:

1100 £ o (FENP(UBI + 2% (PxE) - FixE)

which is a relativistic generalization of the expression proposed for the
force by Kelvin.(18).

If we adopt now the point of view of Minkowski-Abraham in the split of
the total Energy-Momentum tensor , that is the hypothesis which says that the
material part of the tensor correzponds to the one in absence of any field ,
we obtain again:

4.11 ). (w)

(2 T ¥ = © uotu'ﬁ + Qo
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If we postulate also:
4.12 )i.- Pow(pDE
M=X($DB

ii.-Thermodynamical equilibrium and non relativistic behaviour in

the rest frame.

It is possible then to obtain for the field tensor:

4’13 )- > - N
[ aPERiaE T PTG
) a3 = - =.® -
,)T»‘ - JC"(E-K*‘DL _E‘D\‘H BT+(.(D°|:+BH El Bf:?.é—)%t?

As we can see , these expressions will result in the case where the

susceptibilities are'independent of the temperature in a expression for the

| energy: C{)
4434 4. °c . L (p-E +Bv

Also if the system remains in statistical equilibrium , under the assump-

tion of: 'D W((P)E
M- X (B

only in this case we have for the electric field part of the field

: Fre
T rem - B [e-p ()] e SEE

which is the expression obtained by Landau and Lifshitz . Other considerations

have to be taken into account thinking about the laser plasma interaction in

relation with the material part of the tensor . These authors reduced the mate-

(M;T- (P't)gkk_ )

which corresponds to the energy-momentum tensor for a fluid in rest, whose par-

rial part of the tensor to:

ticles are not in interaction, in other words it behaves as a perfect gas. They
did not considered correlations or colective behaviour , which are principal
plasma characteristics.

Summarizing one can say that an expression as (14) proposed by Landau and

and Lifshitz , based in considerations of Abraham and Minkowski ( 19) ,due




~-18-
to the severe restricfive hypothesis we have to make , that we have:
1).-Statistical equilibrium , non-relativistic behaviour in the rest
system,
2).-Linear susceptibilities , depending only on density.
3).-Non interacting particles.

Then we only have a2 limited range of applicability and the conditions
required are not always fulfilled by the parameters characterizing the laser
plasma. interaction.

There are other questions associated with the energy-momentum tensor
in the closed system field-matter , when the fields are time dependent (20 ),
these are related to the absorption and dispersion processes that become do-
minant now. But there is a domain of frequencies in which a macroscopic des-
cription is possible , in this case due to the dependance on time of thé
Hamiltonian ( energy ), the susceptibilities become frequency dependente. The
relation between .5‘and‘§ is summarized in this case by f): E(L%)E? ’
where the "dielectric constant'" depends on the frequency and on the proper-
ties of the body, the details of this formulation will be given later , but
for now on it will be assumed that the relation exists. In that case, for

a weak field we assume:

4.15 ). U= = (ED+HB

This then is the expression for the energy in the static field , taking

into account the relationships:

—IS::E(W)E
H=%

~

we will get for the energy in a transparent medium , that is a medium
where absorption is not taken into account , the following expression for

the average energy:

.16 ). dwo) B> L 3’
4.16 ) QL:'Téﬁ‘[ “;io [N J

Using (4k) a basic relation in the thermodynamics of a deformation

in a transparent medium , P. Pitaevsiii Ql) was able to show that the form



-19-
of the stress tensor remains the same as the ohe deduced for a static field

for a medium in thermodynamical equilibrium. In this case:
) =2 43 . Eife
Cie= -po(g,T)Sck,-— _FF[E'?('D—FJ‘JS‘K"? € ~7

is valid, even in the presence of dispersion.

There it remains the question of the validity of the eguation
as the expression for the energy in a phenomenon as the laser plasma inter-
action , where absorption and fluctuations are important . It is clear that

the problem must be analyzed more carefully. (22)

5. HYDRODYNAMICAL DESCRIPTION OF PLASMAS.

Following H.Hora (4 ) , the plasma as a continuum will be described
by functions of the densityMm (r,t) ,velocity V(¥,t),temperature T{¥,t) ,
which are continuous functions of the coordinates and time , and the energy
exghange of the plasma.

Considering the plasma as composed by a fluid of ions and one of elec-
trons , its evolution is given by the Euler equation of motion:

5.1 ).

—'). > S — - e —_
M ome %_QE’_‘ =miel + Zom & e x +Me e V(U -w2) + 7 1m: Te + Yo
5020)0

P > -~ - —_— = Y -
Me e %;f = -eE - & Noxl —memey (-0 + T HmeTe + e
where equal density was assumed for electrons and ions , SZC-jlie, are the

-

external forces acting on the plasma , V¢ and U? are the velocity fields of the
fluids , the term ) is the collision freguency which is given by a statistical
theol'yo

The eguations of motion are complemented by the eguations ef continui-

ty:
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5.3 ) .- %M_ £ (M) =0

ii.- —af;‘.é «+ G(W\C EL) =0

r'.

vhich are expressing the mass balancesand the energy balance;

5'4) . - - 2
") M e o . o )
E (—— D) vy + 2 mi KT) + W! = =F Ue
2 meme = L2 mekT ) +We = 2 )
=3 2 e , ot “€

where \Je s W¢ is the emitted or absorbed energy.
Now , it has been shown by Schluter -(2) , that the substraction of the

equations of motion 5.1 and 5.2 results in a generelized Ohm's Law for plas-

5.6) —ae (DJ +V5>=§+ 7+ = 35: <+ eCmVPe

eimme ot

neglecting the non-linear terms and considering the definition of plas-
ma freguency , which defines the electrostatic oscillation of the electrons
as follows:

5.7 ) w;- Hi e’ he

then the eguation 5;6 becomes:
08 ’ f
5.8 ) yy ( -\-93—):w|: E

This equation plus the Maxwell equation for the electromagnetic fields

of the plasma:

> )y oH
5.9 ) N X = -7 3F -
. 4=z ARE
it results for the periodic fields in a wave equation?

5. ‘ 2 \ | Lo ﬁbl = _
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where the complex refractive index , given by:

. 4

5.11) S 1 g __LJ_P_—A—-—- 2
m_ = m-*'k«}l = j" L«)"(l_‘\"‘%

is introduced , in order to describe the optical properties of the plas-

ma (23) The real part of M s called the refractlve index is glven by

. < T U
5.12 ) wi ¥y  we V) " 2
m = [E {[{3“ ?:%)*(’:J 10_:::—> +(1- —————va; |

The imaginary part , called the absorption coefficient , is given by:

{1 s - (- <]

‘As ‘we can see , the complezx refractive index is determined by the dis-

ol

persion relation of the electromagnetic wa&es in the plasma. The macroscopic
properties of the medium are determining (PP through the extensive variables
”\9[WL s a2nd the irreversible character of the phenomenon is given by the
collision frequency ) , which is also a function of the temperature and which
was introduced macroscopically as a friction coefficient between the fluids.
Now , from the equations (5.)) and (52) and considering the expression
for the refractive index s it results in an expression for the ponderomotive

force , with which the electromagnetlc field act on the plasma medium( 4):

514)f--vp+v [’UL*"?<'“ 1)E§] = %:TH

wherelﬂ,ls the Maxwellian stress tensor:

H(EX-B-ES 4Ny -HD)  Ex Ey +Hxly ExEz+ Hx He W
W | Ty ey (BT EyEe iy iz
q‘lT ) ~ 2 1 2
Ex Ey +Hx Hz E7 Ez ‘\:’H\/ Hz 5"(‘5)( ‘EY'!'E;' H;(l' Hy + Y )
L -

and ﬁ'represeﬁts the total gas dynamics pressure
In difference to the former subsection , this force 5.14) is automatically
valid for the dispersive plasma , even with dissipation . (3).

Before the discussion of the microscopic description of the plasma ,
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we need , in order to show its importance , to consider the basic hypothe-
sis underlying in all the macroscopic description , that is the hypothesis
of local equilibrium.

In the previous discussions we did not take into account the molecular
structure of the systems. We considered them as. a continuous medium ; which
could be divided into small but still macroscopic elements to assure that each
element contained many particles and we were there assuming that each small
element could be assigned ordinary thermodynamic character.Each of them had
definitive temperature , mean density and thermodynamic potential.In relation
with this , the dependance of thermodynamics quantities on coordinates and time
is to be understood as a variation of the local equilibrium ch#racteristics.
For such small elements , the local equilibrium is established extremely ra~-
pidly for the majority of the systems even when the systems as a whole re-
main in a state of non-equilibrium, but in doing so , we can formulate the
law of change of states for a system in incomplete equilibrium. In order to
set the size of the small element or cell in local equilibrium , we have to
get a characteristic parameter of the system s then we are sure that there

DP |

2 () ywhere P

z

3
is local equilibrium in the cell of volume L® when

is a thermodynamical variable ( 24).
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. CHAPTER II

ENTROPY PRODUCTION

1 ).ENTROPY PRODUCTION:

In chapter 1 we discussed some expressions for the force~denaities

acting in plasmas based on relations of the energy and momentum balance ‘e-
quations. The irreversible character of the interaction of a: system with
an external field ( in particular laser - plasma interaction ), was stre-
ssed making the hypothesis of local equilibrium , which allows us to for-
mulate the first Law of éhermodynamics locally.

Now we will procede to discuss the second Law of thermodynamics , which
in the form of the so called entropy balance eguation plays a central ro-
le in the whole theory of non-equilibrium thermodynamics « This equation
expresses the fact that the entropy of a volume element changes with time
due to two reasons . First it changes beécause entropy flows into the vo-
lume element , second because there is an entropy source due to irreversi-
ble phenomena inside the volume -element . This entropy source is always a
non-negative quantity , since entropy can only be created , never destroyed.

For reversible transformations the entropy source vanishes. ( 1).

These statements for systems whose properties are continuous func-
tions of space coordinates and of time can be formplzted ag:
1.1 ).

S = Sng\n
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1.2 ). | W
9 PAh i IHal — o )d.o =0
ot ;

. . . @f ‘s th
where is the den81ty'9,/&1s the entropy per unit mass , totells e
total entropy flow density per unit area and unit time , s is the
entropy source strength per unit volume and unit time or entropy pro-
‘duction due to irreversible processes.

In a more familiar form with the identities :

1.3 ).
S=S?A&n
1.4 ). - -~
: CLfSe. - - S Gé)ait;k[ -cL:E
at L)
1.5 ). dS:

'ZI;; = 5 C?'cJ~SZ_

the second law takes the form:

160 ds = dse+dse

where, c&Se.is the entropy supplied +to the system by its surroundings

and dS; is the entropy produced inside the system, d S have the pro-

perties:
1.7). 45: =0 for reversible processes

ol { >0 for irreversible processes
which is one of the formulations of the second law of the Thermodynamics

Now , in order to relate the variations in the properties of the systems to
the rate of change of entropy , we will consider the following relations ,
all of them valid in a cell in local equilibrium , for a system of n compo-
nents among which r chemical reactions are possible:
1.8 ).Gibbs's relation:

-FCi/§>:: Ci 1L,ﬂ'r3CJ4f'-— égijlﬁLCng;



-25-
where p is equilibrium pressure, W is internal energy , \\ is specific
volume , Mg is chemical potential, Ck is the mass fraction.

1.9).Balance of mass:

a e _
d:" N %vmj, K=42,-- . m

where 3} is the diffusion flOW,VﬁfJ} is the rate of production of k
rer unit volume in the § chemical reaction.
1.10) ‘Balance of energy:
— > - S
du.de  de T gt 4 0= TR
It 4t Pac ) t

where:
1.11). -% - - -&_—'

is the total pressure tensor, dg is the heat, Fr.  force per unit. mass.

Then , taking into account 1.8), 1.9) and 1.10), plus the equations:

1.12) ?%%_ = - divdg

where 31% is the heat flow.

énd the definition of chemical affinities:
Mo
Qy:r%éQVp¢1*h J=4, -

we come to the balance of entropy:

1.13) 9_53 - T T%—_‘:rw’&j- ‘ To'-rywlT-__ZJy [Tgtte . ]

T T =

| { n
- 5 A - —— = Tk
— 6 = = dr ¥

From this eguation we arrive to the equation for the entropy flux:

1.14)
o« [ 74 - & ]
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and entropy production:

1.15 )
TK-(TjM-g - FK)"?—T;-"}M‘JU —-_‘LSE:‘I,H

I\YES

-

C = -T“_z, Jﬁ"j}wJT—%

We can see that the structure of the expression for G is that of a bi-
linear form. It consists of a sum of products of two factors. One of thefe
factors in each term is a flow quantity ( heat flow j@ g diffusion flow J¢ ’
momentum flow or viscous pressure tensor:$ and the chemical reaction rate

95 ), the other factor in ‘each term is related to a gradient of an inten-

sive state combined with the external force when there is one. These quanti-
ties are called "thermodynamic forces" or affinities. (2),

In general the entropy source strength , as we saw an example before ,

could be written as:
1-16 ) G-=§ J&Xa }O
‘ o=
that is a product of affinities and the conjugate flow term
The products of conjugated thermodynamic forces and the effect of their
actions'must be a scalar , and hence are the products of two scalars, the
dot products of two vectors , or double dot products of two tensors of rank

two, that is:
i M= —
1.17) Mo My = = =
=3 JaXa + = JasXa ¥ Z Jai Xe
T o=t =

vhere Mo number of scalars , NL‘ is the number of vectorial, and h

the number of tensorial ( rank two )thermodymamic forces.

We noted also that the local formulation of the second law of the Ther-
modynamics in the form (1.6) , allows irreversible phenomena , called "cou-
pled phenomena" , which entail a decrease in entropy to occur at some place,
provided that concurrently occurtring at the same place are irreversible phe-
nomena , called "coupling phenomena" , which result in such a considerable

production of entropy that the ultimate overall entropy increment is positi-

Ve,
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Also we have to take-into account that G can be factorized in a diffe-
rent way corresponding to determinated elections of X, and Ja .This choi-
ce must accomplish the condition that in equilibrium state , when j(a::O,
then ©=0 .

Other property of G is that it has to be invariant Galilei , sin-
ce the irreversibility or reversibility of the phenomena must be invariant
under that transformation. ‘

Finally it must be noted that in contradiction to the entropy, the en-
tropy source strength is not a function state , since it depends on the

mode of change between given states.

2. LINEAR PHENOMENOLOGICAL EQUATIONS.

There are a set of relationships among affinities and the fluxes in
the expi'ession for the entropy source strength § =% J»Xo_ that can be
deduced from the phenomenological linear 1laws of irreversible Thermodyna-—
mics , for instance the Fick law of diffusion , the Ohm law, etc. ( 3)
or from a statistical theory taking into account the microscopic stucture
of the system.These are called the "linear phenomenological laws" , we
shall summarize the principal features of them , without going into too
much detail at this stage.

| We know that the generalized flows , as functions of the affinities,

are depénding on all forces, as expressed by:

2.1 ). Ja = jo.(Xb) b = 1; 2, --- M

from that expression , using a Maclaurin series expansion , we
get:

2.2 ). STa

m
|
4+ —
Ja = Jk(xbro) +b2=i Xk b 2}

m ;fg\
= == ..
b,c=1 DXb oXe bXct
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If x,=0 , the system goes into an equilibrium state , for which Ja=0»
then:

2.3 ). Ja;(”(b=03 =0

In first approximations , that is for states not very far from equi-
librium , we can confine ourselves to linear relationships called linear

phenomenological equations of the type:
m
J‘a = bz Labxb
=)

in which:

2.4 ). Lw:n&) ,&) c#b
D Xp | Xe xXb [ X =O

The physical meaning of the coefficients depend on the specific a-

pplications of the theory , at this point it can be said in general terms
that these coefficients are not functions of the thermodynamical forces,
hence also they are not functions of the effects , that is the fluxes.On
the other hand they can depend on the parameters of the local state of a
substance or depend on the kind of substance . Also coefficients of the
type L.o.o— (the same index ) relate the conjugate forces and fluxes ,and
coefficients of the type Lab are concern with cross effects.
The linear phenomenological law:
2.5 ). by
3& = E)Lab Xb

allows us tc write for the entropy source:

2.6 )
ac
and the expression:
M
2.7 ) § = = LaEXa.Xb

&bt

Finally , due to spatial and time symmetries , the phenomenological
coefficients satisfy the so called:

a ).- Spatial symmetries ; ( Curie Principle) : Quantities whose tensori-
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al character differs by an odd number of fank, cannot interact in an i-
sotropic medium.
b ). Onsager Reciprocal Relations (Time Symmetries ). With a proper choice
of thermodynamical forces and generalized flows , the phenomenological coe-

fficients are related by:
2.8
) La_l,:fmgb[bo-
_if there are no forces related by a vector product.
The coefficients are given by:
2.9 ) _ -
LC\L( B,Uu) = Ea.ebL ('B)' 'w)
if ‘there are forces related by a vector product. The index &,={ cha-
racterizes the so called dﬁv—variables and "€o: ==l for 3 variables.

The results of chapter one will be reset in this more general frame.

3. ENTROPY PRODUCTION IN DIELECTRIC SYSTEMS.

The question of irreversible processes in a polarizable or dielectric
system in presence of an external electromagnetic field has been the sub-
ject of studies for several years , we have for example the discussion in
the last century between Helmholtz and Kelvin about the expressions for the
density of ponderomotive forces with which a static field acts in a liquid
dielectric medium (4 ) .0f course this problem was not formulated in the
frame of non equilibrium Physics , but since we are dealing there with
the phenomena of dielectric relaxation , it fits perfecitly with the current
csubject of studying irreversible Thermodynamics. On the other hand , the
balance equations , in particular the balance of energy in plasmas has been
a subject for controversy in the last years , here the point of controver-
gy 1is the erroneous interpretation of some terms in the balance energy e-

quation , without taking into account its statistical character . (5 ) .
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Aléo it wili only be mentioned the related problem of the definition
of the "material" energy momentum tensor , having in mind that in a ther-
modynamical theory , dealing both with the electromagnetic field and the
material system , Minkowski or Abraham's definition may be equivalent , but
since some studies analizing the problem from different points of view
have solved the problem in favour of Abraham's formulation, we will adopt
that definition here. (1 ).

In order to discuss the irreversible phenomena due to electromagnetic
forces , we have to formulate the basic conservation laws of energy and
momentum, taking into account the presence of an electromagnetic field,
the evolution of the fields will be determined by the Maxwell's equations,

summarized as follows in the Gauss system:

3.1) ID = pe

32) 9.3 =0

3-3) Q_T__c€7)<ij=—]
ot
3.4 ) 2 -
2B =
t:O
ST t¢ AV

here , gD is the density of mass , e 1the electric mass per unit mass,
P - -

I is the electric current density, the quantities D and H are the e-
lectric and magnetic displacement vectors , and in a system at rest

they are connected with the fields b and B by the relations:
3.5 ). = A = ‘
D:E'E

3.6 ). oy :/a_g.g

called the constitutive equations.

In an isotropic system we have:

307). ?:E’ﬂ'



-31-
8) A 1
A .
W where is the unity tensor , and € ‘is the dielectric constant and/Ab
the magnetic permeability.

Now we shall define :
3'9)' > A
—t— - A
- 'p=D—E=(£-—2L)E -%.E
where P is the polarlzatlon and}( is the electric susceptibility
tensor.

In a similar way:

3.10 )o — A~ -= Ve
F A B =R
where M is the magnetic polarization and‘)( the magnetlc suscepti-
b111ty tensor .As before in an isotropic system )c }QQL’;( BKZL
We recall that in all these relations Y and ;K depend only on the ther-
modynamical variables characterizing the local equilibrium state of the sys-
tem ; in doing that we will consider then the same expression for the Gibbs's
Law as in the case of reversible Thermodynamics. (6 ). The restriction that
this hypothesis of local equilibrium is imposing in the theory , has a clear
meaning. The ' thermodynamical theory that it will be developed in the follo-
wing could be applied to the case of weak fields , for which the system remains
also in a state of polarization eguilibrium . ( Stationary field and pola-
rization (7)det us consider first the balance equations for the momentum den-
sity of the electromagnetic field.Following Abraham ‘'s definition and equa-
tions (3.9 ) and ( 3.10 ) we gét:

3011) - - VEPAN S — - - 3‘
& 3 [Exi] =2 F[(BxE) - (PxE) - (ExF)
On the other hand from the Maxwell's equations ( 3.1 ) ;_,. (3.4 )

we have:

212 %_%(DXB) div[DE+BR - (LB + LB ﬁaé’))]
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and from (3.11 ) and (3.12 ) , we get:

313)i§t[€xH d*V'[D B l[F“‘_";
[(qredE)-B - (g 8)oF - L2 [FxB 4 Fix

Let us consider now +the balance of mass :

3.14) ;D_E:_a,;’\f‘?f\-?’

ot
wheref is the total density 33 :é?n and Vv the barycentric velo-
city:
3.15 ) =S Peox!

P
and the definition of the barycentric substantial time derivative:

3.16 ).
-

._>
= — % . A/OGL
at Ot c.]
From (3.14 ) and (3.16 ) we can derive the following equations:

3.17) Balance of polarization P:
2P RO s TD) e
—_— T - Ul VT
ot ( : +S) t

3.18 ) Balance of Magnetization M:
—

. Ny ™
%_z-&w(um)wj—t

with P.—.?F and f and since:
2B _ 4B SE_dE _ Fped €
5C “g9E — N qrod B >t~ ae ~ Ve

we get the equatibn: S
3.19 ) —‘ ) > = - . = - F
- ﬁ[f xH] = divr &

where O is the stress tensor given by:
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3:20) = _ (m: N Bu).,—<PxB> (MxE)-i-(%’-r"‘-:ﬁ")fl
and F the volume force, given by:
F = yeE + 1 3<% +(jnmLE\ P +(éjnoi 6} +—§§‘7C[|:;8' "?"“;—]

Since the momentum of the field and matter must be conserved , we

3.21 ) _

have the balance of momentum equation:
3'22 ) ~ - ' = = . ] K
ﬁ(?"""? ExH =—Aw'(Pru—nf+$j— S
whereﬁDis the pressuré tensor , from-where we get , considering equa-

tion ( 3.20 ), the motion equation:

% i%g? = - U SFD + ??

We recall that the quantities that have a well defined meaning in

3.23 )

the thermodynamics of a polarizable medium are div T - F (4.) ’
and 5D- S due to the modification of the pressure tensor ¥ ,for
the presence of the electromagnetic field.
Now , from equation ( 3.23 ) , multiplying by ¥ , we obtain:
3. 24). 2 . > >  E.5
_Q_LSD(D—’ -__OL,;U—<_‘? N--r-ﬁpzu') FPirgred U7+ Fem
ot\ 2 2
balance of kinetic energy , where is the trasposed tensor.Then con-
sidering the Poynting theorem , derived from the Maxwell 's equations
(3.1).4.10(304 ) ’we get H

3025 ) >o?ﬁ5 > :f _ . - a) _JI.F
€30« B3k - o (ExW) - 18

After considering the expression 3.24) for the volume force, we get the
energy : balance equation:

3.26 )

>
> > > i =t =

— N B A=y / 18 N {~\
2{{2 2‘*'%-E.* %:?>‘_ N'.B-+C E'.invx j},4.iur{?z?4r v+

SP,Q’;—.- pl.r_:-'erB)u- -tCEKH} ?cw.ﬁw, E‘,S)?.‘_Od‘_?.- é‘_%g:“_'



-34-
In 3.26) , the dashed quantities are the magnitudes measured by an observer
moving with the velocity v of the medium .There the terms of the order(ﬁf>

are neglected in a non-relativistic approximation.

Now . if we consider the balance of total energy of matter and field,
we get:

AU - 4k,
3.27 ). St a
. from there is deduced the balance of internal energy H
3.28 )
. \ <, \d\ >( ‘.}l .\J l -9' —>l ‘ 'm._-, —L:a _)' °|
SM:IA{' -z?'v— +ED‘E *EB’H”ZP‘E —E * '+20/U'°(EKH

Now , in equation 3.28), if we consider the relationships:

3.29 ) -
D= D'--}:GXH"

E -E'-4 7§
,’P=$’+‘E v x M

_— > >

M = M *‘éi vox P

'H = H‘-‘*"E_ II%D'

é = ﬁ’-{"% Jx%'

whirh are the relationships for the fields ﬁ',ﬁ',ﬁ',ﬁ' and M

measured by an observer moving with velocity v of the medium, then
we get the equation:

3.30 ) - > -, & _>' > - > :_‘ o
O M = Uy -{—;[?fr‘ +DLB 4+ B-H! -PE! - M’-B']» +9ct r\r-<t Ix H'))}
| then if the heat flux is defined as:

3.31 ).

J"{j'&—{—;: ?ﬁlr\? + QU fig 'A‘F-@',E + ﬁhﬁ)ﬂ} N (gx; )}
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from equations 3.26) , 3.27) , 3.30)

irternal energy as:

and 3.31) , we get the balance of

3.32 ).
\ dé:
+ PE. ¥

?g__ :—AwJar— fgmo\v-*IE *?E'

for a reversible (equilibrium)transformation , we have the rela -

tions:
3.33() Mj% ?_aa_q:

>, =_.\
Eeg =§ K P!
- = =.Z-1
\
B = p(X+WX “omi
where N and jK are the electric and magnetic susceptibility
depending only on the thermodynamic variables characteri-

tensor , Y
zing the (local ) equilibrium state of the system.Now , tzking in-
to account 3.32) , 3.33) , and 1.15) , we come to the expression

of balance for the entropy:

3.34 )
| 3 ) EJL.{T%M_;‘_‘S_.Z,VE'}

= = =

N=P-pl . :

where is the viscous pressure tensor , then from this last
expression , the entropy flux is given by: '

3.35 ) i=i( Ig - % ,.MJ.L)

and the entropy sourée strength is given by:
~ -
- L qed W

- \ [\ )
J 7MJT ___T__%‘.T,‘ {T‘jrwcl — ~Zk E} —
P AR (g 9 f
DL 3B By 7 - £ 45 {8ey )
As a difference with other system° s in a polarizable one

T
exnression that describes the entropy source , two terms appear swhich(&)

3.36 )

sin the
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are related to that phenomenon. lLet us consider then separately this pheno-
menon , analizing just the case of electric relaxation , since in a plasma

the magnetic case is irrelevant. From 3.36) , we have the expression:

3'37 )' - -
v =_Eé.E.(Ee -E)ao
P=F g ¢
For the term that describes the entropy source associated with the

polarization in a system at rest ,'?: O . Then we get:

3.38 ). =
o= 4 25 (Fey-E)

Now , if we consider that 3.38) satisfies the conditions established

in (2.5) , the linear phenomenological law associated with 3.38)

: is:
3.39 ). 2% _ L & _-,;-)
2 =

where L is the phenomenological coefficient connected to relaxation

phenomena. An integral of 3.39) is:

3.40 ). — - L
PW=xE(l-e™)
For an isotropic system ,where the equation 3.39) becomes 745:11'<
we have:
PN
ot T\(

There the relaxation time 'is given by:

3.42 ). (T - XT
L

For time dependent fields E (t) , a Fourier expansion integral for
E (t) and P (t) gives the relation:

343 ) Pru) = R(w) El(w

where A~
K(w)ys —%
| = 2 T

and where @



3.44)
K (w) o % _ () = _ WTK
\ 4+ Wt |+

satisfying the Kramers-Kroning relations.
From the last considerations it is clear that only when (u=0

we have that K(0)=K .(statistic equilibrium). Only in this case the
value of the expressionsU?1Jqoi) for the energy or(Ij4.|4.{)for the stress ten-
sor .haye a clear thermodynamical meaning .When the relaxation phenomena are
present , the expression I;4.3  (the Helmholtz force) can be considered va-
lid for a frequency which is small compared with the frequencies that charac .-
terized the set up of the electric and magnetic polarization of the material.
If the frequency is such that allows the dispersion to appear, we have then
to consider another approach in order to study the phenomenon of relaxation.
(9 ). Since we cannot define the usual thermodynamic functions in the classi-
cal sense , a possible approach could be the statistical one 4 using for ex-
ample the fluctuation dissipation theorem, that relates the correlation func-
tion of spontaneous fluctuations for the stationary process c[L*) s to the
relaxation function'xta which contains the susceptibility matrix , and_it
is related to the dissipation (or entropy production ) of the system under
the influence of time dependent driving forces and will give us also a crite-
rium to establish local equilibrium (11) . Also it gives a precise meaning
to the concept of relaxation time.

Without going into all the details of the kinetic desciption, the prin-
cipal features of the dispersion phenomenon will be discussed in the follo-

wing paragraphs.
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4.— DISPERSION RELATIONS

In our discussion in subsections 1 , 2 , and 3 , the medium has been
assumed to be non-dispersive .In that case , without taking into account ab-
sorption , all the terms in the balance equations can be interpreted unam -

bigously (3 ) , so as it was established in equations 3.33), in subsec -
tion 3), for a linear medium at rest , non changing in time , non-absorp-

tive , non-dispersive and isotropic .In such case the constitutive equations

are:
401) > et -~ ~ A
- ~-l B A _A
In this case E’,‘jﬁ- are real quantities and under the assumption
of local equilibrium , they depend only on the thermodynamics va-
riables .Considering 4.1) , we get the Poynting theorem:
4.2 ), . = e
z. 3 (2 A) - dovc(Eni)- 6
E 3 (E8) « R (H) - -dive(E
. A ~ . . .
But since & and At are depending only on the thermodynamical varia-
bles , 4.2 takes the form:
4'3)‘ >

- -2 , >

2 (e€7+ H js dire(Ex®) «TE -

>t M

In this case , with the restrictions we have already mentioned , the

quantitys

4.4 ) U= (8?74/&{?)

is inmediately identified with the energy density , and the vector

given by:

) (B
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is the total energy flux.

Now , if we consider electromagnetic fields whose frequencies are
not small compared with the frequencies that are characterizing the set
up of electric and magnetic polarizations , then expression 4.4). will
have 'not a clear meaning . In the general case , in presence of disper -
sion , we cannot define U_ as the thermodynamic value of the energy .
This'conclusion comes from the fact that the dispersion is always given
simultaneously with the dissipation of the energy . This means that a dis-
persive medium is at the same time an absorptive one . ( 11). Thinking
in terms of a plasma , even a éollisionless one will have to some degree
Landau damping , such that a certain amount of dissipation will always
occur.

The question of the energy relations in a dispersive medium has beéen
considered in several monographs , nevertheless , in considering the ques-
tion of energy relations in an absorptive medium , we can say that the
proposed answers are insufficiently clear, as indicated for example by
the appearance of several articles in the current literature, so we con-
sider necessary %o discuss the subject again in order to find the con-
nection with the Tluctuation theory , which it will be used in the next
sections.

From the Maxwell's equations , we arrived before to the Poynting

theorem
RRE o (57 exi)-1-
p r\oﬁ_\ ) ° - _ N x - .
E-.;t(& t)+ H -55(/& H) OQ-«-U:C(
where:
4‘7)‘ 5: é\oE‘°
and
4.8)
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Here é? and/il. depend on the temperature and density in the case of
local thermodynamic equilibrium. The Poynting theorem ( 4.2 ) remains
valid in a dispersive medium , but in this case , for a weak field (that
is the case it will be considered first ) , D is a linear functional of
'ﬁ 9 2nd we can write:

4.9 ) t
D(’(H—){) = 5 ATL 543/105:3‘ (TA);°) 7}"*) ET(T"J’?’)

Looking at this equation , we can see that the value of B ( ?,t )
is determined by the field.E (ne/1,) at times V3 € t and for points
}. situated in a neighborhood of T, . The generalizations about 4
are the same ,but considering that/;A.ezi s even below the optical
frequencies , we shall consider only ¢ for which a macroscopic
description is possible , in a certain range of frequencies w: for

which :

e~ o> o

where a is the atomic dimension.
For a medium homogeneous and not changing in time , let us consider
the Fourier transform ¢

4.10 ) . =" E'R—w‘l’) s
) =, (EG DT Lidt

(27)"

and similarly for D we get from equation 4.9). the relationship:
4.11 ).
D; (K,w) =Ecp (w, B) B4 e, k)

The dependance of .ézd- in Ww is related with the frequency dis-

-
persion and the dependance on k correspond to spatial dispersion
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but since we are considering a wavelegth 7\;§>CL., we will consider in

the following only frequency dispersion due to the fact that the field

strength may be looked upon as a slowly varying function of the coordinates

since the field strength varies only a little over a distance equal to a -

For example , for an electromagnetic 1ligth wave in a dielectiric we have:
w ~10'° [se<d]  , A 5x10° [en] o 10° [e~]

.Now , in order to explain the basic features of the problem of disper-
sion and absorption of electromagnetic waves in a dielectric medium , we
will consider a very general model .It wi;l be assumed that the matter con-
sists of atoms having one electron each.If the electrons are displaced from
the equilibrium position , an elastic force appears which is proportional
to the displacement, also it will be considered that the main mass of the
atom is connected with its positively charged part. When a monochromatic
electromagnetic wave is passing through the dielectric medium, an alter -
nating electric field appears in each point , given by the expression:

4.12 )

- = ~lwt

EH) =E, €

as a result of the field variation , the electrons have a periodic
motion and become itself a source of electromagnetic waves , which leads
to the electron losing energy, that is , it will be considered that when
an electron moves 4, it is acted upon by a frictional force, proportio -
nal to the electron velocity . Then , for a medium consisting of a set of
oscillators with masses my , free eigen - frequencies wok and friction
coefficients Yy with the mentioned properties , we will have tie equa -~
tion of motion:

4,13

R+ Y Re xwp ik - € B(Y
k e

>
wvhere Egis the charge and €,k is the dipole moment of the osci -



"

- .
llator 4 E (t) is identified with the averaged macroscopic field , for a
plasma wr=0 .Anyway this assumption is completely justified.
rhx_ it will be used to denote the concentration of the oscillators

of the type X , then the polarization is given by:

(P:Z e': nK’h}g
| 4

now , from 4.13). , we get:

4.14 ). .s er”r’
Pr *Vp? *U%v?p = EH)

the solution of 4.14) is given by:
4.15 ).

<ﬁ2(4) = 7%@ P+ TD(Q 'H

where :

.6 e - -
4.1 )‘ —Vrt [D;C‘”w“'t— +Pg2«'>0mw1,t]

and: 2= (wp - vE)

This part of the solution does not depend on E(4) and the cons-
tants Ay and Ajare determined by the 1n1t1a1 values of the
polarization vectog and jts derivative. 'Pplt)le given on the

other hand by:

. > 2 T _o(t-t) -
e POW =2 ) e ”‘( sonwr (t-t) B AY

my o

As we cen see , there is noc dependance on the initial data.
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If we write: - ;, -
D=F+« 4i P
-
for the induction vector D , in order to intoduce later the plas-

ma frequency , we get from 4.16) and 4.17)

4.18 ) c (bt
N > _ 2 e (t-t = _ Do
bl - Bwr Zf e [P0, (b-e)Ewdr s iw FIw)

. defining:

4.19 ). —t)
Z‘F(t t) = '-lue mi Vr—(t v Sin oy (£-)

we get:

B - Ews 3 [ [fu-vEwde + unfery)

4.20 ).

If‘(f ‘te)) ( where t. is the initial time), satisying:
{
—1e) > —
(k) > 5
" where VE) is the time required for the establishement of steady

conditions . We can consider the asymptotic expression of 4.16)

with the initial time approach +to -»-oc , then:

4.21 ). _ + -
B =-Ew+={_ JE-t)E®Y

=
which is giving the connection between D and E for a steady pro -

cesSse.

Now as it is customary , it will be defined:

N TR R e ey

and then y We get:
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4.23 ). ‘ R
D) = jt £ (t-t) E(t)dt
L oc
where for simplicity , the plasma is assumed to be a one-~-compo -
nent one and the index k is omitted.
The Fourier transform of 4.23) will give as before:
4424 )
D) = £(w) E(W)
and
4.25 ).

glud =4 +S:c-}(+) et < | +f(w)

In this equation E({-{) is the dielectric constant , and  ECw),the
Fourier component of the dielectric constant.

In general €£€(w) is complex :
ECw) = Ew) +Ew)

and from 4.21) , we get the relationships:
4.26 ) ,
E(-w) =EF (W)
Eltw) = g'(-w)
EVNw) = -g"(-w)
so €'(») is an even function of o> , and €'Cw) is an odd one.

From the relations 4.2 ) , we are considering that in linear elec -

trodynamics the loss density Q is given by:

_ wEY 122
Q= 8T \E"

Some authors have been trying to get a general criterium for the determi-

nation of the expression for the energy density and evolved heat in elec-

trodynamics , for example guoting the work of Pekar ( 12), we have:
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4.27 ). "
d _4 9 (‘ . ) L N ‘“)
(d't’ - ‘l_ﬂ— ot Devep E)+ ﬁ ot B B
4.28 )
Q= L 2Deds ¢
Y ER
wherellis the energy density , and Q is the loss density
and:
4.29 ) |
Bewo =S eep A7 ED) Dups == £apur 427 EH
evep ~ P P—dt—q,P odd = - 2p+) pyeTl

Eluw) =3 Em(-iw)™
M

But this method as it has been discussed in the literature from a
different point of view 4 is erroneous because of general considerations
and also from particular applications. ( 9).

In relation with this problem , we think that it needs a more pre-
cise investigation , since it is related with the very basics of non- equi -
librium Physics . In order to clarify this view , we shall write some ex -
pressions of the linear response theory .(3). It is well known that the
relation:

4.30 ). ,
<E>=<my [T <A, Wi W ave

describes +the retarded response of the average values of an opera -
tor A to the switching on of a perturbation H;(f? , for a quantum statis-
tical ensemble .The classical equations have the same form , except that

the quantic Poisson bracket is replaced by a classical Poisson bracket ,
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in 4.30 ).
In the Heinssenberg picture , the operator A(t) is given by:

4‘.31)
M) * Re

and:

<ooeode = Ta| po ]

represents an average with the equilibrium statistical operator,

since the perturbation Ht(h@)cén often be represented in the form:
[} .
Hy = =2 Brlp 0HY

Here T?LD are representing the externally driven forces, which are functions
of time , and Bqu@)are the dynamic variables conjugate to the fields

and are not explicily +time dependent. The connection between the driving
force F(t) and the response AQLQ of the system is given by the linear
integral relation:

4.32 ) t
AR <B>-<By = | L(t-t) F(H)aAY

Jeag

Now , the symmetric relations 4.26) are valid for:

L(t-¢) = - <K (L) BLOD

4.33 )

~

which are related to the non-thermodynamic fluctuations of the
quantity A in the presence of an external field and therefore they are
related to the "Onsager principle of Kinetic coefficients", but it has
nothing to do with the time symmetry of the electromagnetic quantities

E and D. These are macroscopic expressions obtained either by the tradi-
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tional method of Lorenz or by the method of phased averaged procedures ,
assuming in both cases that the fluctuations of the gquantities are irre -
levant.

Now , coming back to the expression :

£Cud = |+ [Ty At

and using the theory of complex variables , it is proved , as it has been
done elsewhere ( 6 ), that E/(w), e"w) satisfy the relations:
4.33 ). ’

\ Lop | e > |
£'e) -) = — ER_gu ;e =o)L P jiw-k.._ due
1 oL - !

where the sign’“P indicates that we are taking the principal va -
lue of the integral.
Considering now again the case of the harmonic oscillators , substi-

tuting the expression ( 4.19) -in ( 4.25) and integrating with respect

tot , we find for w' =0 and w=w! that:
4.34 ).
2 ~ _2
g(w) = ‘_ Z w(P)K. 3 : w@)b - q" eK NN
K (L-w)4 Cvcw vk

For a one component plasma ( we do not consider the question of
the background of positive ions maintaining the quasi-neutrality of the

medium) we get:

; = P . : _ Hne‘m
€l =1- Gy 5 WP =
4.36 )o
2 w"-
Ew) = | - ol T s Ew)= )))__.L
W+ vt ? W/ W+ p?
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which are the same expressions for the "dielectric constant " of the
plasma as they are obtained from the macroscopic'two fluids theory of
the plasma , for example . (1Y4).

In equations 4.25) and 4.26) , the guantity associated with non-
equilibrium properties is the friction coefficient V) (/¢)e In the or-
dinary hydrodynamical theory of plasma , Y  is assumed to be given
as collision frequency and it is responsible for 11 the absorption
procésses in the plasma. In order to clarify its meaning , we will con -
sider first the spontaneous electric moment appearing in our system
in thermodynamic equilibrium s due to the fluctuation in the position
and the movement of the chargeé.

From the eguation (Y4.|4) , considering just the one component
model , we get:

4 .31) .e 2
P ryP +wd?P :-%“”LAJH)

where g({) is a random force , and (o 1is the free eigen fre -
guencye.

If we consider 4 .27 ) simultaneously with the system:

4.38 ). 5 ~(O)(ME) - (’T) (ﬁ%)
§ o -(fmei?) _ pm(e)

P zemn
1’3 :QM.J:L

are given in 4.38) by the usual canonical eguations

for 2 damped oscillator ; that way of writing 4.38 ) makes
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more transparent the symmetry of the kinetic coefficients . Now conside -
ring the Linear phenomenological 1law (2.5 ) of this chapter , written

in tha generzl forms:

4.39 )
Xi=— B Kr

.we see that the rol of the fluxes is given in equations 4.38) by

P and p and the corresponding generalized forces are given by:
L
M\.Wu? R
and T Vs mT

where the temperature T appears from the relation:

As = — :&.""L
T
where A S is the variation of the entropy in the fluctuations, and
R ﬁin is the minimun work necessary to produce a reversible chan -

ge in the thermodynamic parameters . (15 ).
In this formulation ¥crare playing the role of the Onsager coeffi -

cients, then we can write:

j_'\"_‘o 5 \E\Z :'gﬁi :—T ) %—22 :VT

S0 , the friction coefficient in this elementary formulation as in the
general case , is an Onsager coefficient , closely related to the fluc-
tuations in the system. From 4.37 ) it is possible to prove that for the
Fourier component of the fluctuations of P , we have the expression:

4.40 )

(’Pz)w - VT e*m mt |
i [(w wi) v’
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and the expression:

.41 ).
441 (Pz)w =% .

This result agrees with the expression for (jqzl“ obtained in
- the quantum mechanical case.

This relationship between 4 and the fluctuations in linear i -
rrevefsiﬁle thermodynamics , will be deduced now using the theory of 1i -
near response.,

As we are also interested in comparing the different macroscopic
descriptions of irreversible phenoména in plasma , we will briefly discuss
the conclusions reached by E. Schmutzer and B. Wilhelmi ( |6 ).Reading
these authors it can be seen that the connection between and fluc -
tuations appears very transparent in a general waye.

A medium consisting of N different kinds of particles , for example
a plasma moving under the influence of arbitrary external gravitational
and electromagnetic fields , isAconsidered s without taking into account
boundary effects and irreversible cross effects as thermoelectricity
or others. The equation of motion for a particle of the kind‘k is given

ass:

4.42 )

D] & cgaf SHER 1] T

) A

¢ v is the re -

where «é. is the electric charge , m is the mass , €
lative velocity of the particles in relation with the medium ,Gdj is the
atomistic friction coefficient , 5; is the bulk velocity of the medium,

®F  is the Lorentz force given by :

4.43 )

Pg, = Ea-r-a‘-.@’ x B
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- -
vhere E is the electric field and B is the magnetic field , and }/ is
a Newtonian gravitational potential.

Then we introduce the coefficients:
a).- J

QOG'Q =

{4 2 B
2@92

b)e-

(3 ©
0()6-“ - ()ﬂ“ Qo

My
c)e-
X
s, (K)m\() (\c)D:
(l)?z
d).-
: L B
vs, . e ®ms,
3= dz@vB
e).-
®
QQB’( 0‘) C;D
‘ (ﬁ.g
f).:
W 2
“%Y&"(hca e
C(Uy"
g)e-
® A ©e® ¥,
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( The meaning of this coefficients appears in a clear way when values are
given to the variables they depend on .This coefficients were introduced by
Schmutzer ( 16) ).

Hith the coefficients and equation 4.42), we get:

4.44 ) (
- MRS K) - - v) -
Wiy S P kB e B Bl = o [+ 4w <8 P, 3

- o a K) - > ) - ;_GQ)A

o BlER-g== 8]+ LExB - L w2 x B] -5, 0x 8 =°F

vhere : = .
X =W« qruodd
is the bulk acceleration of the medium.
The equation 4.44) is then applied to the opticai case for a medium

at rest , in the presence of an external electromagnetic field. Then in 4.44)
the following restrictions are imposed :

>

=0 ;J =0

w
w= I

vhere O is the angular freguency of the applied fields , written as:

L;r-goouv(k-'ﬁ—wt) . E':'Ewa C.wa—‘wi)

and ('orv _ \ (K),\) '

MGL (an\ v Go

is related to the collision freguency.
As it is well known for the linear polarized and monocromatic wave
crossing the medium , we have the linear relationships:

Aa45 . ao'—

B, = K <Eo
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b).-
- Al
-Ebu ?— = Bor’ =O
C)o— -— L
E-B=0°
a).-
KP= EM  2_ w©
C?— - Peed 2
Pn
e).m

SRl T Q[.H com2(KR 'wf)]

-
vhere S is the Poynting vector .

It is necessary to recall that +the equations:

46 ). D=£E ; B=p4h

are being used.

These equations (the constitutive equations ) that in view of our dis. -
cuseion are valid only in a very special case , are reitainly not wvalid
here , where we have @%%—Q/OO $ nevertheless the other considerations in
Schmutzer 's article are very useful , so following with it , we have,
taking into account the restrictions 4.44' ) , the equation of motion for

the particle of tke kind (k) becomes:

4.47 ). ,
* 0 & (k) - K)
) 0G4 anf s Fo
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vhich is ‘the equivalent of 4.1C ). for the case of 2 plasma
The solution of 4.47 ) , is
4.48 ).

given after the descomposition:

= '’ A~ (¢
(OM- =€y )N—.L + ez(r)m.z -+ /ég(r)(lrg

A P~ = -~ A
e,=-’f 2 €L = E‘- P) ea=es_’<?7—
Ikl =
then , putting 24.48 ) into 4.47) , we get the system:
2.49 ) - ,
K, K2 . G
(K9 VL +¥ ~ ®r .__CG:_,‘ v; B
Y oW, 40y, e B _Pe ¥y B
c
() .
by W5 - o

The last equation in 4.49 )

_(K)-J 't

gives ¢

(3
and because as t->°‘>( 'b'fbéo sthis equation is not taken into ac-

count any further . Solving the system for v, )0‘)«1—2 and assuming that:

To = il ~ 4
'8 BT
- C’Z @v‘b
we get ¢
4.50 ) , ,
“‘%&7-:5 - Eo» Bo ¥
J a ~
20‘ G) ((k)}—-. —H,o"‘)
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Here the symbol &> stands for time average. Then comsidering 4.50)
the solution of 4, 4y4a is given by:

4.51 ).

= ~ 2
<('° o> - _Hire { 2
Cz(x)mﬂ w N*4 o

With this value of(’aﬂf sy the expression for the average electric
-
current in the direction of S :

<3I> = = 9Ny,

is given by:

4'52 )' —
<Js . um s _YN¥2
e O+ =

ce)m

and in the same way , for the diffusion current:

4.53 ). —

-—

@T> eye, o hrheg?
I +ax)

where GN is the particle density.If we call:

® R (oo - Y ON ©p 2
20,2 w
c*% (l +

then we have
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As we can see the relationship between the expressions 4.52) and

4.53) , and the equations 4.35) and 4.36) of the first part , is clear
and is based in a function ®R(0) which is connected with fluctuations .
Also we would like to mention that equation 4.51) was used by Schmutzer
and Wilhelmi in order to explain the apparition of a strong magnetic
field . The average current 3? will be the cause of this strong field (17)
On the other hand Schmutzer has considered also a general relativistic
equation of motion for a continuum , introducing in it the irreversible
effect , but this equation is only applied to a case of weak external
fields , that is , the expression for the %ransport coefficients is stu-
died considering the dynamical constrains imposed over the system. Then
as it has already been shown , in equations 4.52 ) and 4.53 ) , the re -

lation between the electric and diffusion current is established :

4.54 ). — _
<J> = ZK' e <Ey>

This relationship is not surprising but it corresponds to the
group - of general relationsAexisting between the response of the system
to a 'mechanical perturbation and some of the coefficients appearing in
the transport equations (18 ), or in a more precise way , between the On-
sager coefficients and the response of the system.If we consider the equa-
tion (4.14) for the harmonic oscillator or the equation ( 4.42 ) for the
k- particles , as a Langevin equation , .and on the other hard the expre -
ssions ( 4.52 ) and ( 4.53) , it can be proved that they are related to
the linear susceptibility matrix . This connection is summarized in the

equation: '
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This relationship is easily proved , taking into account the expre-
ssion (4.53 ) for J , relating electric response and diffusion.

At this stage , we come back to our question of entropy production,
since in order to get an expression for the entropy production when dis-
persive processes are present , it is necessary to know +the susceptibi -
lity matrix. In the case of a "monocromatic " driven field , oscillating

with a frequency wo , we can write for the field:

4.55 )e oo .
T =[Py 6 + Fr) e ]

In a period QE/Luo the entropy production in the system will be
given by:
4.56 ). av

wo

ds ;7 ?{ﬁ‘cwg- R} T
L2 A 2T

where 1(o)is the susceptibility for <he process. (15 ).
The details of this deduction and an evolution of the entropy pro-
duction will be discussed in the next chapter , since they are not just
based in linear phenomenological eguations as in the case of irreversible

thermodynamics , but in a statistical description of irreversibilitye.
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CHAPTER 3

FLUCTUATIONS

l.- STATISTICAL METHODS

In the precedings chapters we analized different expressions for
the forces acting on the plasma and considered some macroscopic descrip-
tions of the absorption processes in it . In particular we compared the
expressions for the dielectric constant from the two fluids theory with
the'expressions based on considerations of the plasmg as a set of osci -
llators . Also it was mentioned the relationchip of relevant physical
magnitudes with fluctuations . In this chapter the same questions and pro-
blems studied in the other chapters are going to be considered , but in
the frame of statisticel physics.

In nor- equilibrium physics , 2 theoreticzl investigation of the
'electromagnetic properties of the plasma can be done , setting up the
so called kinetic equation or transport equation for the particle dis-
Qtribution function . This is the traditional microscopic theory of trans-
port coefficients j; in this theory the kinetic equation describes the long
time behaviour of the system , and is then solved for stationary or perio-
dic conditions . It is necessary however to have in mind that the kine -

tic equation is itself an approximation and cannot be derived without
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some restrictive conditions ( 1), these restrictions introduce some di-
fficulties which arise when the method of kinetic equations is applied to
the description of plasmas. The more important difficulties are (2 ):

a ).-A rigorous molecular definition of a thermal constraint, in other
vords - what is the form of an effective Hamiltonian which descri-
bes the thermodynamical flows? - . The problem does not exist for
dynamical constraints , which can be represented adding a perturba-
tion term in the Hamiltonian.

b ).-The correlation part of the transport coefficients: this problem is
connected with the fact that in general we have to consider two con-
tributions to the transport coefficients ; one is the contribution
of the velocity distribution and the other is the contribution of the
correiation function. For example for the case of a plasma in an ex-
ternal field , we have to take into account when discussing the con-
ductivity that the field detected by the particles is not really the
external field , but an effective field , including polarization e -
ffects which are due to intermolecular correlations ( 3 ).

.In‘general also the heat flow is defined more completely as the .
transport of kinetic energy and potential energy , the last one connected
with the correlation function.This concept cannot be discussed with a ki-
netic equation which only gives the velocity distribution in the stationa-
ry state .

Some other problems have already been mentioned in the discussion
about plasma parameters , that is the problem of a strong field , and the
dependance of the fields on time . In the study of the behaviour of a plas-
ma in a oscillating electromagnetic field of very high frequency w A& W)
the 1long time approximation *r$>'“JFL wipes out all the details of the
evolution processes. In order to consider these details we have to intro-
duce a kinetic equation not just valid for the "long time approximation",
but valid as well on the whole range of time associated with this: genera-

lization , then we have to consider a non -Markoffian equation valid for
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short times ( 4 ).

On the other hand , there is a method from statistical mechanics
which allows us to consider the non-equilibrium processes in a system with
imposed mechanical constraints , without some of the restrictions of . the
kinetic eguation ( 5 ) , that is , the "Theory of Linear Response of Cla-
ssical and Quantum systems to Mechanical Perturbations " . Eventhough the
formulation of the theory by R. Kubo ﬂq5ﬁ and other authors has been cri-
ticized { 6), it is clear that it is.particularly useful in the study of
the high frequency properties of the plasma , without the utilization of
the kinetic equation . (7 ).

For strong fields , due to the fact that strong mechanical constraints
arise in the system s thermal constraints cannot be included as a pertur -
bative term in the Hamiltonian , the theory in that case is not well foun-
ded as in the cease of a weak field , eventhough attempts to extend the theo-
ry to botk cases , that is , strong fields { 8 ) and thermal constrzints
( 9 ) have been proposed . Here s better than discussing the difficulties
of the theory , we will study how it can be used in order to describe the
dielectric properties of a plasma from a unifying point of view , that em-
brace the different models proposed.

With this purpose in mind , the eentral idea is the following: the
linear response theory resulted in a proof of the fluctuation - dissipa -
tion theorem , vhich states that the linear response of a given system
to an external perturbation is expressed interms of fluctuation proper -
ties in thermal eguilibrium . On the other hand , this theorem may be re-
presented by a2 stochastic equation describing the fluctuation equation
that corresponds to a generazlization of the familiar Langevin equation of
the theory of Brownian movement, the generalization allows us to introdu-
ce both random arnd friction freguency dependent forces which are connec -
ted at the same time for 2 fluctuation dissipation theorem .

These extentions of the Langevin theory of Brownian motion became
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y after a exjended period of time, a general theory of non-eguilibrium
processes ., The early attemps along the lines of the fluctuation-dissi-
pation theorem by Einstein and Nygquist (10), vere later developed by
Uhlenbeck and Orstein (11), which applied Langevin's theory to the har-
monic oscillator . In the same way Onsager and Machlup were able to es -
tablish a stochastic foundation for irreversible thermodynamics ( 12 ),
using as base 2 extension of Langevin's theory .Subsequently , Callen ,
Welton (13) and Kubo , among others, gave general formulations of the
fluctuation-dissipation theorem . These results were used by Landau and
Lifshitz when they extended the theory in order to include equations for
hydrodynamic fluctuations and for electfomagnetic fluctuations ( 14 ) .
Other developments and discussions about the domain of validity of the
theory can be seen in the articles of Zwanzing ( 15 ) or Fox and Uhlen-
beck . ( 16 ).

2.— LANGEVIN'S EQUATION.

The classiczl description of the Brownian motion it is based in the

phenomenological stochastic equation :
.1.). .
3-1) m o lt) =- oy o) «R(T)

where mvu is the frictional force exerted by the medium , and R(+)
is the random force , whose average value is zero due to the
random collisions of the surrounding molecules.
In order to simplify the model , the following two assumptions are
made about R(X) (17). :
3.1'). i.- R({) describes a Gaussian process.

4jo— The time correlation of 1{09 is infinitely short , that is :

T REYRE)S = 2WC8(t-t)
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where C is a constant and <Ef{>> stand for statistical average.

The model descrited in that way , is suitable for the description
of a Brownian particle , having a mass much bigger than the mass of the
colliding molecules , because the motion is then disturbed by a great
number of successive collisions which remain correlated only over the
time scale of the molecular motion , which is much shorter than the ti-
me scale of the Brownian motion , justifying +then the two assumptions
i) and ii). '

On the other hand , the .consideration of these two assumptions ,
will determine the properties of the stochastic process LLL*) .It
was proved by Wang and Uhlenbeck (1945) ,{ 17 ) s that due to the hy-
pothesis ‘i) and ii) , ALL¥> is Gaussian by i) , and a Markoffian
rrocess by ii ) s then all the information about LLLﬁ)can be obtalned

from the transition probability:
3.2 ). :
) \t\]<Mo){°5M){'o): S(M’,U-o)

- which is a solution of the Fokker - Planck equation:

3.3 ).

9 W = _%91[ D(U»)-a?h + B(M)] W

ot

VJ(llofo u.t))uOJu-ls defined as the joint probability of finding
JA  at the range (L\o Wo -H“) in to and in the range (U uw)u)
in the time t.

The coefficients in the Fokker - Planck equation are deffined as:

3.4 ). H(M) = Lmy\ <AIL>

At>0 At
D) = b DD
M=o At

which can be computed from the Langevin 's equation ( 3.{) in the
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following way: integrating 3.4 over a short time At we get:
l t+at

AM:—YMA{: -\--—N-YT- A ‘R({s)dt\

therefore:

3.5).

Al o Lom SB22> _u
At=>0 pHt

since <RUW> =0

then , since
1+t

Caw>= v att el (et SRR

-+

we have for D(u) :
1+t

N LA _ 'RLD"R(U)A%‘A%“
D= %:o At §S<

Since

<R RG> = 927CS (4.~ ta)

we get:

36 )- D) = 21C

R

The expression .3.5) can be written in a more general form

as:
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3.7).

D(u)=_m'\_£ S“<RK%O)R(+<>**)>&£

and since we are assuming that the Brownian motion is taking pla-
ce in a medium in thermal equilibrium , we have:

3.8 ).

| wou>
W (MO,toj)},t>‘ QUP<-—QT T
where K is the Boltzmann.constant and T the temperature, which
requires that the Einstein relation must be valid between D(a)
the diffussion constant and the friction constant , in the
form:

3.9)

Combining this equation with equation 3.3.6) , we get :
3.10 ).

v D o L (CRUIR (et ot

T KT o

Equation 3-9). is in this way written as an expression for the
fluctuation - dissipation theorem , which states that the systematic
part of the microscopic force which appears as the friction Y in a
forced motion is actually determined by the correlation in equilibrium
of the random forces.

The extension of equation .3.1 for the case of a harmonically

bound particle , was established by Ornstein ( |7 ) in 1919 ,
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while studying the microscopic bases of Smoluchowski 's eguation . He

considered the system of equations :

3.11 ).
:%}-MH)
d‘t +Pu= MJC)+«—— k(x>

For this process , the information is given by the Fokker - Planck
equation :

3.12 ). \

| . ‘ 4
2w __ ' 2 ( mx)w};,l)_?_\i
ot + ox ox?
where f and D are defined by:

3.13 ). i.-

[
o

ii.-
Ax® = 2KT A¢ - 2DAt
o 2
For the particular case of a harmoniecally bound particle , for
hich :
whic -—L—K(X)::-w"?(
m
where (WO is the frequency , equation 3.11 ) becomes:
3.14 ). 2\
N [xw]+D2 :
2% [3 ’€>7< 7@‘
whose solution is given by: .
3.15 ). ] i | o
2 2 - "fr‘f)
4 ’ 2uP(l—e 257¢) P 28D ) = e Xet
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that gives :
3016 )o io‘- ' kS

<7§> = 7(0 e—?

iie- r — “Z2'
< = KT < ‘—7(01_- .—E_‘_‘] c B
Mm w?* w :

' ; -4
This result is valid for times 'L > ‘3 «Now 4 for the parti -
cular case of ¥K(¥)= - mw’X the system becomes:

3.17).

P ax 4 w"?( R (.'k)
el

( wWwhich is the same equation ( L.37 considered in chapter 2, as a
model for the matter , as for the forces in such equation ( L.3/7) , they

. Jare assumed random forces M)  with the properties 3.1)i and 3.1)ii.)

With the initial conditions:

3.18 ). i.- 7((*,"-:0)57(0

ii.- dx = 1
(d’t)-\;:o °

the solution of equation 3.17 ) is given by:

3.19). i.- Bt __g_(:
M—“zw’xo*]}MO c Sow T+ Mo € cos wrt +
2wy M
LT [ L sin - Dewnanan (0] dy
iie- __E%_ At
7(=<_157(D + 2 Yo e su‘v\w_l,t’\"?(oe Q.Mw"_t n
ol Bley)

LM ETT s by
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where :

Then considering that for the condition : & {}(+)>: O

equation 3.19) ii , gives :
3.20 ). 2 -J%E
‘ <7(> = BXo 124~ o S,L'mo.,_[t-i-?(oe Cos wost
(x‘)‘”) ER ’

This equation gives the mean value of x s in a canonical ensamble
of the harmonic oscillators for which , at t = O , we pick a sub - ensam-
ble of oscillators , which have a deviation and velocity X,,do  Tes-
pectively . If we pick an ensamble for which the deviations x,at t=0
are the same , but the velocities are arbitrary , since in that ensamble

the velocities and deviations are not correlated ,, that is :

3.21 )0 i .- P
\’UQ O:O

ii .-

2 _ XTU
<’u>7<o""'w7

we then get for the average of x :

_Bt |
{x» =%o€ ) Qis_%wit e ot
‘o
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Now , considering the condition 3.1 ).ii , or <ﬂ'('tx.) HL%;)> = ¢ (-{:L—‘(:z)

where %(X) is an even function with a sharp maximun at x =0 4, we
get:

3.23 ). 2N\ P%o + 2 o "'g_i ) "—Z‘t" 2
<X >(7C0)M°);: 2 Wy @ " st 47 € Ceon st 1
. -pt’
4 ’]*—: \—'GB_’ ﬁ PG c;a:QdeT.}Qo\Le S,M\Zu.;ft
20y 3 ' 8(» w?
where :
3.24 ). i.- -~
T = S gé(ruf)cdvcoLchur

ii .-

= S: 55('1»0 dwr

which are conditions about the form of ;/[w) e Due to the
fact that it is a function with a sharp maximun , we can ma-
ke use of cCoowural , then we get :

Tizva . ZBET S°° Blaw)d s

m

3.25 ).

with

X A A = B +)

that gives
3.26 ).

g ) <(,0$th + —23— Sn WLJ()
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Actually, more important for us than the obtention of averages va-
lues , is the relation 3.25 ), which appears again as a manifestation
of the fluctuation =dissipation theorem. There the microscopic friction
force is determined by the correlation of the random force in the same
way that is was done in the preceding paragraphs.

From the fluctuation theory we also have , in order to get other

demonstration of 3.25 ) or 3.10 , the relation:

3.27 ). : _
fr4) o = b (e )

where f\)@ is the random force and 8¢ r is an Onsager coefficient
From equations LU.37 and 4.38 (chapter 2 ) , we have for ihe
Onsager coefficient :

$o2 = YT

from where :
3.28 ).

which is basically the same relation ( 3.25) , but in a diffe -

rent notation. . | "
Summarizing , we then have the relations: wm v=—ﬁ S<R(+)R({'+f°)>6lt
(3]

For the Langevin equation:

0T _§° pladdew  Plbtd) = (pHIAED

o

For harmonic oscillators
w ™

where V1 is an Onsager coefficient.
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Einstein relation:

Y
D= -2 kT

A11 these eqguations lead to the prototype Fluctuation Dissipation Theo -

rem 3

3.20 ). CFAYRE)> = 26Ty $(t-t2)

This is not surprising , since all of the above equations are des -
criptions of & Gaussian Markov process .
3. LINWEAR RESPONSE.

Now we will discuss the relation 3.29) from a statistical point of\
view , which 2llows its extension to non - Farknffian systems ( 19 ).
The following discussion does not pretend to be a complete exposition of
the subject ; it is just a summary of the ideas relevant to this work .
Landau and Lifshitz 's work (14 ) will be followed in this discussion:

Let us consi;lcr the quantity 7’((/1’,{) and its random fluctuations, ;?(i,ﬂ
hes to be understiood as a rezl gquentity , for vwhich the mean value is
zerc in the zbsence of externzl effects . The deviations of the averzge
value of % in that way defined , zre characterizing the non-thermodynamic
fluctuations of % .
\ In the guantum mechanical case , the operator associated with the
quantity X(0t) will be ;E . Let ns define the space-time Fourier com-
ponents of the onerator gﬁﬂ{) by means of the ecguations:

3.30 ). )
Xrw =.S—Ji dt e*u(u‘t -le)_;‘c(){’f)

> /. | - -i(‘“’t’f’ﬁ)
*(RY = w),(gci Edw e Xw

Yle novw consider the correlation function defined as the mean value

of the nroduct of the fluctuations of ;? et different points of spa-
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ce at different times , in order to describe the characteristics of the
fluctuations .The average is carried out on both , the gquantum-mechanical
state of the system and on the statistical distribution of the various
quantum mechanical states of the system. If the medium is spatially homo-
geneous and only stationary states of the system are considered , the co-
rrelation will take the form:

3.31 )

e Pt iy, b <ot xndae

where @
> - >
I‘=I‘.)_—!‘\
t =1, - t,

that is , it will depend only on the relative distance and the ab-
solute value of the time segment between the points of which the
fluctuations are analized .

The spectral distribution of the correlation function will be:

3032 )
SC(CR —woY)
<'xncq>w= 837’1:’1’ e {rene> ¢

with (32D ) and (332) we deduce the relation:

3.33 )
<7(:‘~(.E\) w) 7(«(2’)@')> :(2’\7) 51}5: F’—’)S(w-w')<?ﬂf xQ)K«-o

where Kifis the Hamiltonian conjugate of A .

Now the general relationship between the correlation function and

the dissipative properties of the system will be discuss . This is the
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centrgl concept in the fluctuation « dissipation theorem .

Let us first calculate the mean value of the product of 7(1*(J’ w)
and 7(§(V'£D‘> . If the system is in a definite stationary state n , then
the quantum mechanical average value is defined as the corresponding dia -
gonal matrix element of the operator :

3. 34 ).
> - *— > - .
(K?—(l’(w)x,‘[/\c', L’"»'Mt = % T"(K‘w)mm Xt (K',w’>m,\

Since x is time dependent s the evaluation of the matrix ele -
ments must be done considering the wave functions of the stationary sta -
tes , then:

3.35 ).
<7< yw) mrm = 278 (e + LO i) (Vr)mmx

where:

Em—CE
A

is the frequency of the transition from the stationary sta-

Wernm =

te n to the stationary state m , and (7GJAN“ is the matrix element inde -
pendent of time . Putting 3.35 ) into 3. 34 ) anagously for (7%%%mﬁnd
taking the statistical average , we get:

3. 36 ). -

< O, =202 JEDAR), meE), . Skomcam)

where Jlfh) is the statistical distribution function of the va -
rious gquantum mechanical states of the system, f{ﬁ@) for the case of

statistical equilibrium is defined by the Gibbs distribution :
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3.37 ).
[(Em) =exp (F-En) /T

where F is the free energy and T is the temperature.
Let us suposse now that a periodic perturbation with frequency v is
acting over the system , if then we write the perturbation as the poten -

tial'K.(f',t } , the energy operator of the perturbation may be written

as ¢
3.38 ). N '_ )
Y =-—Sdn AR % (R, )
Transforming to Fourier components in this equation , we get:
3.39 ).

V=t Re = el X (1)

where:
-lwt

‘qk;t+) = f*KLD e

Under the influence of the perturbation,transitions between diffe-
rent states of the system are possible . Considering 3.38) and 3.39)
they give for the matrix element of the transition of the system Mm-—>m
3.40 ).

\/‘\M = -ﬁ?’z{ ﬁf“ (x:)hmg(w ""-’Nm«)* H:w CXK)AMS[(»U'(' oy, m}

From this equation we obtain the following expression for the

transition probability of the system per unit time:
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3.41 ).
W= e X Bl X1, A S (o ) * X0, 27D,y oo}
KK!

In each transition n -= m the system absorbs the energy quantum

'k""mm vhose source is the external perturbation , hence the energy absorbed
per unit time eguals :

3. 42).

= % M’hm«w(\"’\m

Averaging this ecuation over 211 the stationary states n 4 we get:

3.43 ). |
Q=2 S(E”") W f W

then putting 3.41 ) into 3.43 ) , we get :
3.44 ).

w o N 1 g -
& - T'l_f_ felireDR (hy wizm{j( (E-’F\uﬁ-f(E n\>}7<( () 0 2k, S0 Comm

K ¥

then taking into account 3.36 we have finally:
2.45 ).

:—-Z Pe(k ) Q'ﬁ @ w){<7(c+(r)7<‘b(r)>xw <7<' (& ?‘T(F>/K

‘KY\

Ao .
vhere the symbol < ,> stands for the averazge calculated with
w
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f(Ep-Rw ).

The relation 3.45), is in that way connecting the mean energy absor -
bed by the system per unit time , to the correlation function of the fluc-
tuating quantities ;}. _

On the other hand , considering the definition of X as a quantity
whose average value is different from zero only when the perturbation is

present , we can write :

3.46 )

| <:§Kc:>‘=:ji;§ 55‘

where(ikfis a linear space time integral operator .( These consi -
derations are valid for a field weak enough to have just a linear respon-
se ). Transforming to Fourier components we have:

3.47 ).
?(c(_K)w) =°(.LT(E)°-’) pf'y (K)w)

where o(.ﬂi,»o) are macroscopic coefficients characterizing the
dissipative properties of the system.

The relation 3.47 ) is then characterizing a so called Linear Dissi -
pative process. For this process , the absorbed energy Q is expressed di-
rectly in terms of the coefficients Jk¢ o« In order to see that , let us
consider a change in the mean internal energy of the system . As we know
this change equals the mean value of the partialvderivative of the Hamil-
tonian of the system with respect to the time .Since in the Hamiltonian

only V depends on time , we have :
3.48).

AU W X (R
R A 5an9(n,+)<x1 >
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Averaging 3.48) with respect to the period of the external perturbation
and taking Fourier components , considering 3.47) , we have :

3.49).

&= Ek_( g - s )P( (K, w) By (0

Taking into account the expression (3.326 ) for the average of the
correlation , and comparing with (3.’-/‘-]) s, we get the expression:

3050 )o

<7(( 7<2>/::)— <?£(‘?C¢>Kw=’hf{°(¢?;\ (£, w) - °Cjw°CR: w)}

Fundamental equation that establishes the general connection bet -
ween the correlation function of the fluctuating quantities and the dissi-
pative properties of the system characterized by the coefficients Icf .

The classical case is simplified by using the expansion of the dis -
tribution function ,g(E—‘v’\ w) in <7C(°7€¢>¥::: in a power series of .
In the limit as 4 —0O s We have:

3.51 ).

_‘_‘:_?_é <x“7c'7>w>'—' C{f(m‘ (K, w) -o(;(k),w)}

-

with
3.52 )

D <7(b7(> S(K’K) LQH) Z Dj(Fm) +(V)mm\ XT(K) S(w ~Wem)

O Em
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Then , just considering equilibrium distributions and taking into

account s

Aw K
v<7rt'?(,’~>hw -’ <7<L' xT>K_u)

ve get:

3.53).

BRI

eep (koo /T)~1

IR R ACHSEY : (R}

formula obtained in 195'1 by Caéllen and ielton (19) ,which connect
the fluctuations of the guantities in the system with the dissipaxivé pro-
perties of it. |

The equation 3.53) may be modified by considering that the fluctua-

tion ' of is dve to a random potential R (t) sy for which :

3.54 ). -
o) ’RC = J\ij\.l?(1~

then 3.53) could be applied in the form:
3.54' ).

CRiRyden = i {y? (o - oLy (R}
‘O ep (koy/T) - L
The equations 3.54) and 3.54') are known as the fluctuation - di -
ssipation theorem and expressed in this form they are especially suitable
for our considerations. |
Considering the definition of a symmetrized space-time correlation

function :

2.55).
e = {7, )% (o) + e (0, )% (s O

the speétral distribution of the symmetrized correlation function
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is determined by the expression
3.56 ) - W | ;
<7(C7C3~ Fw:ﬁl. Co+am\'\_ %_L{O(.C,} (K,w)—&j[(l()w)}

for sufficiently high temperatures T.:;>¢10 3.56 ) becomes:
3.57 ).

<xe x§>Kw-: _LID_ : {OLE}( I, w) - cﬁﬁg(ﬁjw)}

The properties of the tensor °(Cr0aU0 zre deduced in the general
case from the properties of the correlation function <§zz§§?i « We just
mention this properties which have been demorstrated ( |4 ). In general

ctif is complex. Let us write :

then :
3.58) i.-

-
in presence of an external field Bo, ( a magnetic field ), we

have :

ii.- &CJ (w)—lz,g,):c{g: (—K;w,—&.)
0[9:"([{, W) deot

Tw! - W

iiio-

)= diy(Fo0) =

5wy e L Lalbod-dit (B g
o0 - w

u w
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Let us now apply the general theory of fluctuations exposed in the
previous sections to the analysis of electromagnetic fluctuations in a
medium with time dispersion. Here temporal fluctuations are understood as
temporal oscillations of physical quantities averaged in volumes physica -
11y infinitesimal. The essential result does not change if we consider
the guantities as classical magnitudes .

' Due to fluctuation in position and velocity of the charges of the
medium , spontaneous electiric and magnetic momentum appear in the medium,
let us call them %€ and ‘ﬁ‘respectively sy refered to the unit volume .
These fields are connected to.the induction and intensity of the magne -
tic field by the relations:

3.59 ).
DC=§U¢E#’- +el

Be = Kt +ome

In Fourier components these equations become:

3060.)0 ’
'D{w = Cipl(w) E_Kko teiw

B, = kg (W) Hkw+ racs

The Maxwell's equations are then:

3061 ). io-' R ,
(hotgb)f *SJ (Uionw-fnwho)

]

ile—

\

: (ﬂot Hw>; = —-éc—u")— (EJ,‘); Ewe, + Qa)

Then considering the balance of energy , as it is deduced from

the Maxwell 's equations
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3.62 )

t J2. 20 p.28 = - £ £ (ExR)dS
S—ﬁ{‘:"*—t-*“ r}dv‘ G §(ExR}dZ
after the replacement of 3.59 ) in 3.62 ) , we get:

3.63 ).

j {E' &rvEn)-le (Mtk.“p)}AV" -—-—§ Exi)-JE— —S(Ec_e_.y.l%- 23 )dV

from where we deduce thet the variation of the energy connected
with the exterior action 4, in this case the random fields e and m ’

is given by:

3.64 ).
\ = 'aé\ A.DN,:\
-;;;S(E“S?* 5% ) IV

Comparing with (%.38) , then we can see the correspondence :
3.65 ). i.-

”~

{?r(ﬁ,'() — & o Mm

ii.- -, > = s
x(n,t) — €& o H
Also the relation (3.22) , expressed in Fourier components
as:
3.66 ).

is here replaced by the Maxwell equations (3.4)), and then we have:
3'67 )O ic—

eiw = — E:r, Eku.‘) <+ —'(Mtﬁw)&
iie- vc
nn;, = - Lk wa- :‘:’-—( Mt Ew)‘,
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Taking into account (3.66) and (3.54) , we can see that the coefficients

v[,-‘n relating for example Eyw and Cowo are equal to -8
if we consider éw and gw at the same point , otherwise they
are zero. So we have finally:

3.68 ).

(e(t) (1))w - (8)(,_ - Euc) S(ni-22) C/O'l"ﬂ ’kz(-*r’

Analogously , according to (3.61) we have :
3.69 ).

(M mr«”’)w = K (M)cz -,uur.) S(ny ~le) &J+3 T

Now 4, considering that:
Ei=(&7)" 3 € =B +En”

finally we have:

3.70 ).
< ei(\) eéz)}» = 2K g”. S(nr1-13) Cotom h Ew
-
i miD, = 28 uf Su-1) cotam h %‘

These equations have been obtained in different ways by several
authors (22 ). The important point for us is their connection with the
imaginary part of the "dielectric constant " .

For low frequency and for temperatures KT»/hu_; s considering
the relations :

3.71 ). de- Eop = MO
(8%
ii.- - ‘o .
T g

A~ .
Sy where is the conductability and J a fluctuational current,
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we get : (22).
3.72 ).

Z 33Ny s sk S n-ns)

1

Now we are in condition to come back to the problem of the Lange -
vin equation , in order to see the relation between both theories:
Let us consider first the definition of the mobility A5 o8s it ds gl -
ven by the Einstein relation: -

3.73 ). ' D !
AT T
Considering now the definition of the diffusion constant D:
3.74 ). .
D = }m EEIDEFIC)
- o
since @ t
AL -x(D = | Tult)dt
we have :
3.75 ).

D = Lum __jtan jtdfz ) ulh))

\
t=c 2t Yo

< (s (e >

t>% ot VO
if again we impose the condition:

Lom < 1 o) tt (to+£)> =0

4 -»oc

we have :
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3.76 ). | | o
M= -2 - ga {ultfu(tort)>dt

tm vV kT kT

that is the mobility is connected to the correlation function
of L .
Now , considering the inversion of the fluctuation - dissipation
theorem ( 7 ) , in the form:
3.77 ).

— L " ()

"

o :
—q:“<:7<i>iu.

T L K x> = (7 8 (o)

simultaneously with the Langevin equation:

3.78 ). .
8 == (V) ulddt « - RW + Lo

where:
k(‘l’):l{ow’)wt ,-oc('t'

is a periodical external force , and R(t) is a random for-

ce for which we assume

3.79 )o de= CRIDD> = O

ii .-

<:Q*L{z£)?3.(£):> =0 t>to
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the identification of ﬂj—v, K and X; —s ;x in expression (3.46)

gives:

Cuw)=TRel puludKoet]

where /(,L(u.;) is a complex linear operator playing the rol of °C'~'j\
in the general formulation.
Now /a(w) is evaluated from the equation (3.72) s considering the

conditions (3-79) and the Fourier transform:

ylw) = S“ e-cwt)»H)cit'
o

so 4 we have:

3.80 ). ‘
//LL(LD) =

l 1

(wo + Y(w)

On the other hand , from the equation (3.77 , we have:
3.81 ).

//L”(CU):: .—-c':—_;:’-—_< ’U.7’>w

and considering also the expression for the fluctuation-dissipation

theorem : oC”

<R =

in the particular case of (3.78) , when K(t)=0 . it will give:

LuloL"l

3.82 ).

<R, = T

then from the equations 3.81) and 3.82 ) we get the equation:
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3.83 ).

11%>uu = \ R
< = [;k\1 <<\ ‘;>UJ

This equation is connecting the spectrum of W and the random
force R(t). |
. Now 4, since the correlation is an even function in t and considering
3.80) and 3.83), and the relation (3° Zg) . we have the relationships:
3.84 )e i.-

ReLute] = Qus,,

ii.-

m(Rg[vi( u.:)] = Re [/u(w)"L]

Result which is a generalization of (3.l0).

Another example in which the fluctuation ~dissipation theorem is u-
sed in connection with the Brownian motion , is in the determination of
dynamic friction and diffusion coefficients in a plasma. Slow irreversible
processes for which the relaxation time considerably exceeds the time of
the particle mean free path are possible in a plasma , in a non- equili -
brium state , due to the long range character of the Coulomb forces .

Long range collisions for which deflections of the colliding particles o-
ccur only at a small angle with little change of velocity ,play a princi -
pal rol in the evolution of the plasma. That kind of processes are descri-
bed by the Fokker-Planck equation in which the effect of the collisions is
reduced to particle diffusion into the velocity space. The eguation that
we  will consider is :

3.85 )

W Ch
'3:(:-: DN"(V W)+ 2 Oy DU5\<‘DLTW)
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where W is +the distribution function of an isolated group of par -
ticles due to the diffusion into the velocity space. In this equation y.

and T7£f are defined as :

3.86 ) ie-
e LAV
Lt
ii.-

Dig= LAV D o >
At

In the general case ,the friction coefficient Y( and the diffusion
coefficient (DG? depend on both the distribution function of an isolated
group of particles , called "test particles ", and on the distribution:
functio of the remaining particles of the plasma.

Considering the motion of the individual test particles in the plas-
ma and assuming the other particles are in thermal equilibrium, the coe -
fficients of friction and diffusion can be evaluated expressing them as
functions of the spectral distributioniof random electric fields in the
medium .Several authors proposed such a method of determining the coeffi-
cients (23)

The calculations in this approach are based in the equation:

3.87 ).
t ot ,

. “’ _ q , ..0 q‘z dtl vE - /1y ] 'D Ec h.(t)’t -

R R e R AR )t 2 EleD)

withs ' '
Nold) = np + o (X =to)
t = t+bt
where q is the charge of the particle and m is the mass.
E.[f(}),+] is a random fluctuating field.The time in which

the integration is done is much bigger than the period of the

fluctuating field .
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Averaging 3.87 ) with respect to the fluctuations g it gives
3.89 ).

Y = ._g__—— IJW\SCiK 4 _Eii_amr S r c*, <:E;z:>KLU

2V o kK*e(K w) b

D%‘“‘:‘" Sdb Kkh(ﬂ o , Ro=<

Which are essentially the same expressions that we analized before.
In equation 3.89 ) , the fluctuation fields E? are evaluated consider-
ring the fluctuation - dissipation theorem , in order to express them as
a functioh of the "dielectric constant" .

In this way the theorem appears as a2 powerful method to calculate
the fricction coefficient responsable for the absorption in a forced mo-
tion, as a function of the properties of the system or in another way ,
as a function of the fluctuating random forces in equilibrium.

_ ‘ In this chapter we have shown that “essentially the same method
is applied to different models of a plasma . In this analysis we were
trying to present a . unifying methodoelogy in which all the processes of
absorption in plasmas are based . The extension to include a gravitational
field is a trivial one and it was already considered in the discussion
of the equation (3,72) with the inclusion of the potential field K(x) .
On the other hand , if we consider the generalized Ohm's Law from the
Schluter equation (%;5.8) , in the linear approximation with the inclussion

of a random force field R (t)
3.90 ).

d3 5 - 2 @i
d‘t Hn
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where 'f is the current; we can see that it qorresponds at least for-
mally also with the type of equation (3.)) , or following Schluter ,
we call 3.90 ) a Diffusion Equation .The coefficient Y that appears
in this eguation is anyway , undoubtly determined by the random forces
in the medium,

Summarizing , we can say that the determihation of the absorption
constant in all the different models that we discussed is based in di -

fferent formulations of the fluctuation -dissipation theorem.
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CONCLUSIONS

In this thesis we discussed some problems associated with the expressions
of the forces acting in a plasma in an external electromagnetic field , espe-
cially a laser field, and the related question of entropy production.
The central idea was to use a simple method to embrace other apparently
unrelated fundamental plasma-physics problems. Here the external pertur-
bation was included as a perturbative term in the Hamiltonian in order
to apply the Linear-response .Theory as'it was formulated by Landau and
Lifshitz, for electromagnetic fluctuations . Considering this theory it
was possible to relate a coefficient characterizing the forced evolution of
the system by the friction coefficient to the randomly fluctuating glec—
tromagnetic fields in an equilibrium systém. -

This result y formulated in that way , appears as an application of
the fluctuation dissipation theorem.

In chapter I , the first Law of Tharmodynamics was discussed in
connection with two diffefent phenomena: first the relaxation in a po -
larizable system , that leads for "small freguencies" to Helmholtz °'
ponderomotive force , and secondly , we discussed the dispersion pheno -
mena for 2 model of matter as a set of oscillators.

For the two fluids model of a plasma , from this work , two princi-
nal conclusions arised: first , taking into account dispersion, it resul-
ted in a frquency dependent dielectric constant.From there it is clear

that we do not have any reason to assume that the stress tensor and then -
the ponderomotive force will have the same form in a dispersive medium
than it has in a medium in local equilibrium , besides,from here we can
see that the domain of validity for the expression of the ponderomotive

force proposed by Abraham and by Minkowski,is reduced just for the case
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of a static field. .

In chapter II, the question of entropy production is discussed
for the same models. The expression for entropy production due to relaxation
is discussed and especially the entropy production in an absorptive medium
was considered . In relation with this an equation was proposed in order
to describe the regression of the fluctuatingvpolarization. From there it
is derived that the Onsager coefficient is of value yT where Y
is the"friction coefficient" and T is the temperature,

Also the balance of energy is discussed in relation with the electro -
magnetic fields in macroscopic electrod&ﬁamics o There we make clear the
differences between the average macroscopic fields of classical electro -
dynamics calculated in thermal equilibrium with the quantities charac -
terizing a non-equilibrium state.

In chapter III , the theory of fluctuations is developed in ordér
to unify the different approaches . From that analysis we came to the con-
clusion that as far as we limit ourselves to a linear theory , we can al-

ways use the fluctuation-dissipation theory in order to evaluate the ab-
sorption constants in a non-equilibrium plasma.

Eventhough the theory of the Fokker-Planck equation was used before ,
to study the diffusion phenomena in a plasma , as far as we know it was.
not connected to other models of laser-plasma interactions , as the two
fluid theory or our new model of oscillators . Here we have shown that
in all those models , the absorption processes could be studied by different
formulations of the fluctuation dissipation theorem.

The limitations of the theory in that way formulated came from the
basic hypothesis we made: 2) The theory is valid for a system which is
closed to equilibrium (linear approximation ). b) The correlation time
for the fluctuating forces is considerable less than the relaxation time
for all the systems . This is expressed by a fluctuating force function ,

involving a Dirac delta function of the time variables.
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The basic hypothesis we made are showing us the possible future extensions
of the theory , in order to study more generel cases: First we have to
consider the theory of fluctustions for a2 system far from equilibrium, a
situation that will arise for 2 system in the presence of a strong ex-
ternal electromagnetic field .Here we have to consider , appart from the
mechanical nerturbation , the thermal constraint acting on the system due
to the non linear interaction with the field.

Secondly , the case of a strong high frequency field has to be
analized , here the problems associated with the determination of the
nlasma polarization are caused'by the nonstationarity of the fluctua-
tion prccess connected with the time dependance of the field.

These two characteristic of the field , that is high intensity and
freguency will result in  a change of the expressicn for the diffusion’

and friction coefficimnt of the plasma.
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