
Graph Data Processing and Analysis: From Algorithms to
System Development

Author:
Li, Shunyang

Publication Date:
2022

DOI:
https://doi.org/10.26190/unsworks/24117

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/100410 in https://
unsworks.unsw.edu.au on 2024-05-05

http://dx.doi.org/https://doi.org/10.26190/unsworks/24117
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/100410
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Graph Data Processing and Analysis:

From Algorithms to System

Development

Shunyang Li

A thesis in fulfilment of the requirements for the degree of

Master of Philosophy

School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

19/06/2022





THE UNIVERSITY OF NEW SOUTH WALES
Thesis/Dissertation Sheet

Surname or Family name: Shunyang

First name: Li Other name/s:

Abbreviation for degree as given in the University calendar: MPhil

School: School of Computer Science and Engineering Faculty: Faculty of Engineering

Title: Graph Data Processing and Analysis: From Algorithms to System Development

Abstract
There are many real-world application domains where data can be naturally modelled as graphs, such as social
networks and computer networks. The amount of data generated and published is rapidly increasing with the
explosion of information. Effective storage of graph data and querying has become a significant challenge; hence
the graph database is emerging to address this challenge. Graph databases have the unique advantages of
modelling and querying complex relationships, capturing and navigating complex data relationships and recursive
path querying when handling graph data. In this thesis, we enhance graph databases from both system and
algorithm perspectives.

Firstly, we propose two systems, SQL2Cypher and FSPS, to improve the usability and efficiency of graph databases.
SQL2Cypher automatically migrates data from a relational database to a graph database. This system also
supports translating SQL queries into Cypher queries. FSPS is the first FPGA-based system for accelerating
graph queries on the massive graph. FSPS has the following features 1) a CPU-FPGA co-designed frame-
work, 2) a fully pipelined FPGA execution, and 3) reduced data transfer from FPGA’s external memory. FSPS
supports the two most fundamental types of graph queries, namely subgraph and path queries. Performance
evaluation shows that FSPS outperforms the most popular graph database Neo4j by up to three orders of
magnitude. All the draft demo videos can be found at https://www.youtube.com/watch?v=oSpHtJ8iVio and
https://www.youtube.com/watch?v=eGaeBrVTJws.

Secondly, the graph database does not widely support the cohesive subgraph models (i.e., Neo4j and PatMat).
Many real-world relationships can be naturally represented as a bipartite graphs such as customer-product, user-
item, and author-paper. Therefore, we use efficient construct algorithms to investigate the bipartite hierarchy
model. The bipartite hierarchy is the first model to discover the hierarchical structure of bipartite graphs based on
the concept of (α, β)-core and graph connectivity. These algorithms can effectively identify the affected regions to
limit computation scope and avoid re-building the bipartite hierarchy from scratch. Extensive experiments on 10
real-world graphs demonstrate the effectiveness of the proposed bipartite hierarchy and validate the efficiency of
our hierarchy constructions algorithms.

Declaration relating to disposition of project thesis/dissertation

I hereby grant the University of New South Wales or its agents a non-exclusive licence to archive and to make
available (including to members of the public) my thesis or dissertation in whole or part in the University libraries
in all forms of media, now or here after known. I acknowledge that I retain all intellectual property rights which
subsist in my thesis or dissertation, such as copyright and patent rights, subject to applicable law. I also retain the
right to use all or part of my thesis or dissertation in future works (such as articles or books).

For any substantial portions of copyright material used in this thesis, written permission for use has been obtained,
or the copyright material is removed from the final public version of the thesis.

Signature Witness Date 19/06/2022

FOR OFFICE USE ONLY Date of completion of requirements for Award

https://www.youtube.com/watch?v=oSpHtJ8iVio
https://www.youtube.com/watch?v=eGaeBrVTJws




Originality Statement

I hereby declare that this submission is my own work and to the best of my knowledge it con-
tains no materials previously published or written by another person, or substantial proportions
of material which have been accepted for the award of any other degree or diploma at UNSW or
any other educational institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is
explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the
product of my own work, except to the extent that assistance from others in the project’s design
and conception or in style, presentation and linguistic expression is acknowledged.

19/06/2022





Copyright Statement

I hereby grant the University of New South Wales or its agents a non-exclusive licence to archive
and to make available (including to members of the public) my thesis or dissertation in whole or
part in the University libraries in all forms of media, now or here after known. I acknowledge that
I retain all intellectual property rights which subsist in my thesis or dissertation, such as copyright
and patent rights, subject to applicable law. I also retain the right to use all or part of my thesis or
dissertation in future works (such as articles or books).

For any substantial portions of copyright material used in this thesis, written permission for use
has been obtained, or the copyright material is removed from the final public version of the thesis.

19/06/2022

Authenticity Statement

I certify that the Library deposit digital copy is a direct equivalent of the final officially approved
version of my thesis.

19/06/2022



 Welcome to the Research Alumni Portal,
Shunyang Li!
You will be able to download the finalised version of all thesis submissions that were processed in GRIS here.

Please ensure to include the completed declaration (from the Declarations tab), your completed Inclusion
of Publications Statement (from the Inclusion of Publications Statement tab) in the final version of your thesis
that you submit to the Library.

Information on how to submit the final copies of your thesis to the Library is available in the completion email
sent to you by the GRS.

Thesis submission for the degree of Master of Philosophy

Thesis Title and Abstract Declarations Inclusion of Publications
Statement

Corrected Thesis and
Responses

ORIGINALITY STATEMENT

 I hereby declare that this submission is my own work and to the best of my knowledge it
contains no materials previously published or written by another person, or substantial
proportions of material which have been accepted for the award of any other degree or
diploma at UNSW or any other educational institution, except where due acknowledgement is
made in the thesis. Any contribution made to the research by others, with whom I have worked
at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the
intellectual content of this thesis is the product of my own work, except to the extent that
assistance from others in the project's design and conception or in style, presentation and
linguistic expression is acknowledged.

COPYRIGHT STATEMENT

 I hereby grant the University of New South Wales or its agents a non-exclusive licence to
archive and to make available (including to members of the public) my thesis or dissertation in
whole or part in the University libraries in all forms of media, now or here after known. I
acknowledge that I retain all intellectual property rights which subsist in my thesis or
dissertation, such as copyright and patent rights, subject to applicable law. I also retain the
right to use all or part of my thesis or dissertation in future works (such as articles or books).

For any substantial portions of copyright material used in this thesis, written permission for use
has been obtained, or the copyright material is removed from the final public version of the
thesis.

AUTHENTICITY STATEMENT

 I certify that the Library deposit digital copy is a direct equivalent of the final officially
approved version of my thesis.



 Welcome to the Research Alumni Portal,
Shunyang Li!
You will be able to download the finalised version of all thesis submissions that were processed in GRIS here.

Please ensure to include the completed declaration (from the Declarations tab), your completed Inclusion
of Publications Statement (from the Inclusion of Publications Statement tab) in the final version of your thesis
that you submit to the Library.

Information on how to submit the final copies of your thesis to the Library is available in the completion email
sent to you by the GRS.

Thesis submission for the degree of Master of Philosophy

UNSW is supportive of candidates publishing their research results during their candidature as
detailed in the UNSW Thesis Examination Procedure.

Publications can be used in the candidate's thesis in lieu of a Chapter provided:

The candidate contributed greater than 50% of the content in the publication and are the
"primary author", i.e. they were responsible primarily for the planning, execution and preparation
of the work for publication.
The candidate has obtained approval to include the publication in their thesis in lieu of a
Chapter from their Supervisor and Postgraduate Coordinator.
The publication is not subject to any obligations or contractual agreements with a third party that
would constrain its inclusion in the thesis.


The candidate has declared that some of the work described in their thesis has been
published and has been documented in the relevant Chapters with acknowledgement.

A short statement on where this work appears in the thesis and how this work is acknowledged
within chapter/s:

The introduction, motivation, system overall and demonstration sections
from "SQL2Cypher: Automated Data and Query Migration from RDBMS
to GDBMS" in the International Conference on Web Information
Systems Engineering (published) is contained in parts in Chapters 1
and 3.

Candidate's Declaration

Thesis Title and Abstract Declarations Inclusion of Publications
Statement

Corrected Thesis and
Responses

I declare that I have complied with the Thesis Examination Procedure.





Abstract

There are many real-world application domains where data can be naturally modelled as graphs,
such as social networks and computer networks. The amount of data generated and published is
rapidly increasing with the explosion of information. Effective storage of graph data and query-
ing has become a significant challenge; hence the graph database is emerging to address this
challenge. Graph databases have the unique advantages of modelling and querying complex rela-
tionships, capturing and navigating complex data relationships and recursive path querying when
handling graph data. In this thesis, we enhance graph databases from both system and algorithm
perspectives.

Firstly, we propose two systems, SQL2Cypher and FSPS, to improve the usability and efficiency
of graph databases. SQL2Cypher automatically migrates data from a relational database to a graph
database. This system also supports translating SQL queries into Cypher queries. FSPS is the first
FPGA-based system for accelerating graph queries on the massive graph. FSPS has the following
features 1) a CPU-FPGA co-designed framework, 2) a fully pipelined FPGA execution, and 3)
reduced data transfer from FPGA’s external memory. FSPS supports the two most fundamental
types of graph queries, namely subgraph and path queries. Performance evaluation shows that
FSPS outperforms the most popular graph database Neo4j by up to three orders of magnitude.
All the draft demo videos can be found at https://www.youtube.com/watch?v=oSpHtJ8iVio and
https://www.youtube.com/watch?v=eGaeBrVTJws.

Secondly, the graph database does not widely support the cohesive subgraph models (i.e., Neo4j
and PatMat). Many real-world relationships can be naturally represented as a bipartite graphs such
as customer-product, user-item, and author-paper. Therefore, we use efficient construct algorithms
to investigate the bipartite hierarchy model. The bipartite hierarchy is the first model to discover
the hierarchical structure of bipartite graphs based on the concept of (α, β)-core and graph con-
nectivity. These algorithms can effectively identify the affected regions to limit computation scope
and avoid re-building the bipartite hierarchy from scratch. Extensive experiments on 10 real-world
graphs demonstrate the effectiveness of the proposed bipartite hierarchy and validate the efficiency
of our hierarchy constructions algorithms.
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Chapter 1

Introduction

Graph has been playing an increasingly important role in data management with the prevalence

of graph data in different application domains in recent years, such as social networks [1, 2], road

networks [3–5] and protein-protein interaction networks [6, 7]. With the increased data, storing

and querying highly connected data is a significant problem. Since it is hard for relational database

management systems (RDBMS) to capture the relationships and inherent graph structure of data

and are inappropriate for storing highly connected data, graph databases have emerged to address

the challenges of high data connectivity. Graph database management systems (GDBMS) are

among the most fundamental infrastructure when managing graph data and have received a lot

of attention from researchers and programmers globally [8]. GDBMS have the unique advan-

tages of modelling and querying complex relationships, capturing and navigating complex data

relationships and recursive path querying when handling graph data.

It has been more than 50 years since E.F. Codd introduced the concept of relational databases in

1970 [9]. Therefore, for legacy reasons, relational databases are still the majority in the market,

even when storing highly connected data. However, in relational databases, there is a significant

system overhead for highly connected data or complex relational join operations, which can lead to

long execution times and excessive consumption of computer resources [10]. Therefore, the need

for converting relational databases to graph databases emerged. Most of the current algorithms

for graph databases are based on CPU design. Compared with CPUs, field-programmable gate

1



CHAPTER 1. INTRODUCTION

arrays (FPGAs) have significant advantages in parallelism and energy efficiency over CPUs and

GPUs. Furthermore, FPGAs are widely deployed by many enterprises and cloud service providers

nowadays. Currently, the graph database does not support many algorithms, graph types and

models (i.e., bipartite graph and (α, β)-core model). This thesis investigates graph databases from

both system and algorithm perspectives.

1.1 Motivations

1.1.1 SQL2Cypher: Automated Data and Query Migration from RDBMS to GDBMS

However, relational database management systems (RDBMS) still comprise the majority share of

the database market for legacy reasons, even when storing highly connected data [10]. Querying

highly connected data in an RDBMS usually requires complex join operations and significant

system overhead, which can lead to a long execution time [11]. Hence, there naturally emerges

the demand for migrating from RBDMS to GDBMS. In this work, we demonstrate SQL2Cypher,

an automated tool for migrating data from RBDMS to GDBMS.

Migrating data from RDBMS to GDBMS involves redefining data schema, mapping relations and

rewriting queries. The migration process is often time-consuming and labour-intensive. The high

time and labour costs are significant reasons why companies choose to keep their legacy RDBMS.

To address this problem, several automated tools [12–14] have been proposed to migrate data

from RDBMS to GDBMS. However, we find that they are either outdated or incomplete. For

example, [12] focuses on XQuery and [14] focuses on RDF data, while ignoring the nowadays

more widely adopted property graph model [8]. The open-source tool Neo4j-ETL [13] allows the

user to import data from relational databases to the popular graph database Neo4j. However, it

does not provide automatic query translation, and users have to rewrite all previous SQL queries

to Cypher queries manually [15] (the graph querying language used by Neo4j). More critically,

Neo4j-ETL is not well maintained and has many issues at present1 (e.g., error when loading large

dataset and error when mapping relations).

1https://github.com/neo4j-contrib/neo4j-etl/issues

2
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1.1.2 FSPS: Accelerating Subgraph and Path Queries Using FPGA

Challenges. To convert RDBMS to GDBMS, a basic approach is to covert all the tables in

RDBMS to nodes in GDBMS. (1) However, this approach may ignore the relationship between

tables and take up a lot of storage space. And occasionally, the tables may contain very similar

data and need large storage space. Our system needs to convert RDBMS to GDBMS with less

memory usage to store the relationships between tables. (2) Another challenge is to convert the

SQL queries to Cypher queries because we need to consider all the relationships between tables

when converting the queries.

Our Approaches. For the first challenge, we implement an optimization strategy based on [16].

The strategy is to convert the join table to an edge and the attributes in the join table as properties

of the edge. This strategy will save memory usage and make the data more adaptable to the nature

of the graph database. And, we implement duplication detection [17] further to improve the speed

and the quality of the migration. For the second challenge, we store all the relationships between

converted tables as a graph structure in the file. Then we can translate the queries based on the

relationship graph.

1.1.2 FSPS: Accelerating Subgraph and Path Queries Using FPGA

Considerable efforts are made in industry and academia to develop efficient systems for subgraph

and path queries [18–22]. However, almost all solutions are developed on CPUs which have

the following limitations when handling graph data: 1) CPUs do not offer flexible high-degree

parallelism, and 2) CPU caches do not work effectively for irregular graph processing with the

limited locality.

With the recent advance of field-programmable gate arrays (FPGAs), people are provided with

a new alternative to accelerate graph computations at the hardware level. FPGAs have shown

significant advantages over multi-core CPUs in parallelism due to their pipelining design and

highly efficient hardware circuit. Furthermore, compared with GPUs, FPGAs are more energy-

efficient [23]. FPGAs are now widely deployed by enterprises and cloud service providers such as

Microsoft, Alibaba, Tencent, Huawei, and Amazon Web Services (AWS).
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Challenges. To design a graph database system, we have the following challenges: (1) storing the

data of nodes and edges for quick access, and all the nodes and edges have properties. (2) Design

a query approach that is easy to express for the user. (3) Design the most basic two algorithms

(subgraph matching and path queries) based on FPGA for the graph database.

Our Approaches. For the first challenge, we use the RocksDB2 (a key-value database) to store the

data graph on disk and build an additional inverted index of user-defined properties to accelerate

the query speed. We design a new query approach for the second challenge that lets the user

draw the query pattern with properties in the frontend. This approach could save the user time

in learning a new Cypher3 language. For the last challenge, we adopt the subgraph matching

algorithm in [24] and a simple path enumeration algorithm in [25] for path queries for fast and

efficient subgraph and path queries on FPGA.

1.1.3 Discovering Hierarchy of Bipartite Graphs with Cohesive Subgraphs

Finding the hierarchy of graphs is a popular research topic in the field of graph analysis. Existing

studies mainly focus on finding the hierarchy of general (unipartite) graphs based on the models of

k-core [26, 27], k-truss [28, 29], k-ECC [30, 31], and nucleus [32, 33]. However, these models are

unsuitable for bipartite graphs since they do not consider the special structure of bipartite graphs

(i.e., formed by two different vertex layers). Note that the two vertex layers represent two different

types of entities and are usually of different scales. Alternatively, one may consider using graph

projection [34] to first project the bipartite graph into a unipartite graph and then build a hierarchy

based on the projected graph. However, it is not practical in many real-world cases since graph

projection can usually cause the explosion of edges/triangles and information loss [35, 36].

Only a few studies [35,37,38] focus on finding the hierarchy of bipartite graphs directly, which are

all based on the butterfly structure (i.e., the 2×2-biclique). Specifically, they study the k-bitruss (or

called k-wing) and k-tip decomposition problems. Here k-bitruss and k-tip are the subgraphs that

2https://rocksdb.org/
3https://neo4j.com/developer/cypher/
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require each edge/vertex is contained in at least k number of butterflies, respectively. However,

these butterfly-based models are prone to include “loosely connected” vertices in a k-bitruss/k-tip

with a high k value since they do not consider two vertex layers separately. Such circumstances

can usually happen if some vertices are linked to two hub vertices (i.e., high degree vertices). For

instance, consider H as a complete bipartite graph with 2 upper vertices and 1,001 lower vertices.

Then, a “loosely connected” lower vertex v ∈ H with only two incident edges is contained in

a k-bitruss with k = 1000. The butterfly-based decomposition approaches can generate mislead-

ing information since real-world graphs are usually skewed and contain many hub vertices. The

following challenges need to be addressed to make our idea practically applicable.

1. How to bound the bipartite hierarchy size and the constructing time.

2. How to efficiently maintain the bipartite hierarchy.

Our Approaches. To address the first challenge, we propose the bipartite hierarchy model, which

is the first to reveal the hierarchy of bipartite graphs based on (α, β)-cores and graph connec-

tivity. The bipartite hierarchy has a two-dimensional structure to analyze bipartite graphs with

different granularity levels. Notably, it only has a linear space usage and can depict the hier-

archical tree structure of bipartite graphs. Because for every bipartite hierarchy the vertex only

appeared in one tree node. We will explain the implementation details in Chapter 5. By utilizing

the nested property of (α, β)-core and exploring possible cost-sharing, we also propose efficient

algorithms HC-BU to construct the bipartite hierarchy. For the second challenge, we present algo-

rithms HM-Ins and HM-Del to maintain the bipartite hierarchy incrementally regarding the edge

insertion/deletion cases. The proposed algorithms can effectively identify the affected regions to

limit the computation scope and achieve high efficiency.

1.2 Contributions

In this section, we will summarize our contributions to this thesis.
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• We propose SQL2Cypher that can convert the RDBMS to GDBMS. SQL2Cypher could

represent the relationships between tables and translate the query language based on these

migrated tables.

• We develop and demonstrate the prototype of the first FPGA-based subgraph and path

querying system, called FSPS. Specifically, FSPS has the following features. (1) A CPU-

FPGA co-designed architecture. (2) Fully pipelined execution on FPGA. (3) Reduced data

transfer from FPGA’s external memory.

• Based on the nested property of (α, β)-core and exploring possible cost-sharing, we pro-

pose an algorithm HC-BU to build the bipartite hierarchy with linear space usage. We also

present an efficient algorithm HM-Ins and HM-Del for maintaining the bipartite hierarchy.

And we conduct comprehensive empirical studies on 10 real-world bipartite graphs.

1.3 Organization

This dissertation is organized as follows.

• Chapter 2 reviews the existing works related to our work in this thesis.

• Chapter 3 presents our approaches for implementing SQL2Cypher.

• Chapter 4 presents the implementing detail of FSPS.

• Chapter 5 presents our algorithms for bipartite hierarchy.

• Chapter 6 concludes our research and provides several possible future directions.
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Chapter 2

Literature Review

This section will revisit some existing solutions of subgraph pattern matching and bipartite graph

(k-core, (α, β)-core ). Specifically, (1) we will review some graph data storage implementations,

(2) we will revisit some distributed subgraph pattern matching and (3) we will revisit the models

on the bipartite graph, such as (α, β)-core and k-core. Before revisiting articles, we will introduce

some fundamental definitions.

2.1 Definitions

Definition 1. (Vertex Degree) The degree of a vertex of a graph is the number of edges that are

incident to the vertex.

Definition 2. (Unlabeled Graph) A unlabeled graph g can be defined as a 2-tuple, g = (V , E),

where V is the vertex set and E ⊆ V × V is the edge set of g.

Definition 3. (Subgraph) A graph g
′

is a subgraph of g if and only if ∀v ∈ V (g′), v ∈ V (g) and

∀(vi, vj) ∈ E(g′
, (vi, vj) ∈ E(g).

Definition 4. (Bipartite Graph) A bipartite graph G = (U, V, E) is a graph that nodes set U and

nodes set V are disjoint such that every edge in E is E ⊆ U × V .

7
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Definition 5. ((α, β)-core) A bipartite graph G with two integer α and β, (α, β)-core can be

denoted as Cα,β . Cα,β has two node set U
′ ⊆ U(G) and V

′ ⊆ V (G). For all nodes in U
′

have

degree at least α and for all nodes in V
′

have degree at least β.

Definition 6. (k-core) Given a graph G and an integer k. k-core is the largest subgraph of G in

which all vertices have degree at least k.

1 Model Comparison

(2, 1)-core

u0 u1

v1 v2

u999

v0

u1000…

(2, 1000)-core

Figure 2.1: Definition examples

Example 1. According to Figure 2.1, we present several examples of definitions. Firstly, the graph

in Figure 2.1 is an unlabelled bipartite graph. The degree of u0 is 2, since u0 connects v0 and v1.

The blue area in the figure represents the (2,1)-core, and the square formed by the red dotted line

represents the (2,1000)-core.

2.2 Graph Storage

Efficient storage and data management are critical in graph databases and relational database files.

Existing databases can be divided into two categories: row-based and column-based. The row-

based database has the advantage of reading and writing efficiently, and the column-based database

has the advantage of querying data. However, none of the existing storage solutions can effectively

handle both the querying and column aggravation. Huang D et al. [39] presented an HTAP (hybrid

8
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transactional and analytical processing) system based on a consensus algorithm and implemented

a Raft-based HTAP database called TiDB.

The author [39] highlights the limitations of existing HTAP systems before explaining how the

HTAP system they developed guarantees data freshness and isolation and efficiently handles

transnational and analytical processing. Their HTAP system provided the learners (dedicated

nodes) based on the Raft consensus algorithm. The learners will transform the data in row format

into column format to provide high performance when handling analytical queries. In addition, the

learners provide real-time OLAP (online analytical processing) queries by generating a columnar

store. The system reduces the latency of replication to ensure data freshness. They also optimize

HTAP requests based on row and column format data replicas.

They evaluated the system’s OLAP and OLTP (online transactional processing) separately by us-

ing CH-benCHmark, consisting of TPC-H and TPC-C. For OLTP, OLTP and HTAP models, the

result shows that in most cases, both throughput and latency are better than the existing distributed

databases. Additionally, the evaluation of log replication delay shows that log replication delays

no more than 300ms on ten warehouses. Most cases are less than 100ms. The benchmark result

indicates that the system can achieve real-time analytical processing and efficiently execute OLAP

and OLTP queries.

The HTAP system provides a new approach to solving OLAP and OLTP quires in a database

compared to existing databases. Meanwhile, the system also contributed to real-time processing,

consistency, freshness, and isolation. Chang F et al. [40] and Sivasubramanian s. [41] presented

NoSQL systems which are Google Bigtable and DynamoDB. The features of these two systems are

a flexible data structure and high scalability. However, data consistency has not been implemented

well for these systems. Weak consistency may result in different thread processes that access the

same data and display different results.

However, the weakness of the system is that it is a relational database. In the past, relational

databases have been the mainstay of the database industry. However, relational databases have

difficulty capturing relationships between highly connected data. De Virgilio R et al. [12] describe

that traversal over highly connected data with a relational database requires a large number of

9
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Shuffle

MapTask1

MapTask2

Map

MapTask....

ReduceTask1

ReduceTask2

ReduceTask....

ReduceShuffle

Figure 2.2: MapReduce Architecture

complex join operations, which is time-consuming.

In this paper [39], they proposed a new database design concept as a hybrid OLAP and OLTP

model and provided comparative experiments in the database field. The experiment results offered

a new idea to design the graph databases storage system.

2.3 Distributed Computing Frameworks

Distributed computing is a framework for dividing data that requires multiple calculations into

small pieces of work calculated by various computers. After uploading the results, the results are

unified and combined to produce the final result. There are many distributed frameworks such as

MapReduce [42], Pregel [43], Spark [44], Flink [45], and so on.

MapReduce. MapReduce is a framework proposed by Google [42]. It greatly facilitates pro-

grammers to run their programs on distributed systems when they do not know distributed parallel

programming. In addition, it also supports high scalability and high fault tolerance. The current

software implementation specifies a Map function to map a set of key-value pairs into a new set of

key-value pairs, and a concurrent Reduce function ensures that all mapped key-value pairs share

the same set of keys. A MapReduce algorithm executes in a few rounds, for each round involves

10
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three phases: map, shuffle and reduce as shown in Figure 2.2. Assume that our data is stored as

a key-value in The Hadoop Distributed File System (HDFS). The main three steps are as follows.

• Map : At this stage, the map function processes the data row by row, encapsulating each

row into a key-value pair ((key : value)). When the data has been processed, it is sent to

the shuffle function.

• Shuffle : The key-value pairs (key : value) comes from in Map stage are shuffled across

all machines. The shuffle function will partition the data firstly. When the amount of data

written reaches a pre-set queue, the spill thread is started to spill the data in the buffer to a

temporary file on disk and sort and combine (optional) according to the key before writing.

Finally, Shuffle allocates the data to the Reduce task function and makes sure that each

reduced task gets the same key-value pairs (key: val1), (key: val2), ...

• Reduce : The Reduce function sorts all the data in a single merge. The Reduce function then

sequentially processes the datasets with the same key as (key : val1, val2, ...) and writes the

results to HDFS.

However, the weakness of the MapReduce framework is that it is hard to process the complex

architecture. When constructing more complex processing architectures, you often need to coor-

dinate multiple Map and Reduce tasks. However, each MapReduce step has the potential to go

wrong. Many people have started designing their orchestration systems (orchestration) to handle

these exceptions, which is a time waste. And MapReduce cannot do real-time processing because

MapReduce saves intermediate results to disk.

The author [42] proposes a new distributed MapReduce framework. MapReduce has the advan-

tage of processing large amounts of data offline and is also easy to develop. The drawback of

MapReduce is that it cannot perform real-time streaming computation.

Pregel. Pregel is designed based on BSP (Bulk Synchronized Parallel) [43]. In BSP, a computation

process consists of a series of global supersteps composed of three steps: concurrent computation,

communication, and synchronization. The completion of synchronization marks the completion

11
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of this superstep and the beginning of the next superstep. The criterion of the BSP model is bulk

synchrony, which is unique in that it introduces the concept of superstep. A BSP program has

both horizontal and vertical structures. Vertically, a BSP program consists of a series of serial

supersteps.

BSP has the following features: (1) divides the computation into supersteps, effectively avoid-

ing deadlocks, (2) separating processors and routers emphasizes the separation of computing and

communication tasks, while routers accomplish only point-to-point messaging and do not provide

functions such as combining, replication, and broadcasting, which obscures the specific intercon-

nect network topology and simplifies communication protocols and (3) global synchronization

using barrier synchronization, implemented in hardware, is a controlled coarse-grained level and

provides an efficient way to perform tightly coupled synchronous parallel algorithms.

Pregel chooses a pure message-passing model, ignoring remote data reading and other shared-

memory methods. Because (1) message passing is efficient enough to express itself without remote

reading and (2) reading a value from a remote machine is subject to high latency. But the obvious

drawback is that for vertices with many neighbours, the messages it needs to process are substantial

and cannot be processed concurrently in this model. So, it is easy to crash under this computational

model for natural graphs that conform to a power-law distribution.

[43] proposes a new distributed graph processing framework, Pregel, based on bulk synchronized

parallel. The Pregel framework uses the Master-Worker cluster model. The typical edge-cutting

method is used to store the graph, which divides the graph into many partitions, each containing

some vertices and edges (outgoing edges) starting from these vertices. However, with a large

number of vertices, it needs to process a massive number of messages which may cause downtime.

In summary, distributed computing frameworks and strategies provide a new and efficient way

to compute. Therefore, we can use design distributed frameworks to accurate the graph compu-

tation. Distributed computing frameworks can also improve the computational performance of

graph databases.
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2.4 Join-based Subgraph Matching

The state-of-the-art subgraph matching algorithm is a join-based strategy [46]. The main cate-

gories are (1) Binary-join-based (BINJOIN), and (2) worst-case optimal [46]. This section analy-

ses the binary-join-based algorithm (BINJOIN) and worst-case optimal join (GenericJoin). BIN-

JOIN strategy computes subgraph matching through a series of binary joins. It first decomposes

the original query graph into a set of concatenated units whose matching terms can satisfy the

basic relations of the concatenation. Then, the basic relations are joined based on a predefined

join order. For example, StarJoin [47], TwinTwigJoin [48] and CliqueJoin [49].
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(c) Another decomposition of
query q

Figure 2.3: Decomposition And Order Selection

Definition 7. (Star Decomposition) Given a pattern graph G and a node v ∈ V (G), star(v)

denotes the star rooted at v with N(v) as the child nodes. A start decomposition is p0, p1, ... pk

of a pattern graph G, such that there exists vk0 , vk1 , ..., vkt ⊆ V (G) with p0 = star(vk0 and px =

star(vkx) E(Gx−1) for i ≤ x ≤ t).

In the following section, this paper will be reviewed [47]. In this article, a new join algorithm is

proposed, which is StarJoin. StarJoin applies to star as join a unit, a tree with depth 1, following

left-deep join order. The query will be decomposed into a set of STwig. The following example

will illustrate query partitioning. To process the query in Figure 2.3(a), it will be decomposed into

STwig, as shown in Figure 2.3(b) and 2.3(c). Figure 2.3(c) shows another possible decomposition
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which contains only 3 STwig. different decomposition will result in different query processing

costs. To ensure the optimal solution of STwig Order Selection, two rules of edge selection are

added to the algorithm (1) selects the edge that has been attached to the previously selected edge

and (2) selects the edges incident to the nodes with high selectivity.

Example 2. In Figure 2.3(b), the execution order can be: <q1,q2,q3> and <q2, q1, q3>. It is

obvious that the first order is the optimal solution. Because, the root node of q2 and q3 will be

processed in q1. However, for the second order, the root node of q1 is not bound by the result of q2

(repeat computation).

Compared to other join-based algorithms, the StarJoin algorithm generates fewer intermediate re-

sults during execution, thus avoiding a large amount of computing time due to decomposition op-

timization and execution order optimization. However, StarJoin still encounters scalability prob-

lems because many matches are generated when evaluating stars with many edges.

Ngo et al. proposed a worst-case optimal join algorithm GenericJoin [50]. Before we review

this algorithm, we will introduce what the worst-case optimal join is. Given a query vertex set

{v0, v1, ..., vn}, the worst-case optimal strategy first computes all matches for {v0} that can appear

in the result, then matches for {v0, v1}, after that matches for {v0, v1, v2}, and so on, until the

result is constructed. Given a query Q and the data graph G, the maximum possible result set can

be denoted as RG(Q). The algorithm is worst-case optimal if all intermediate result aggregation

can be bounded by O(|RG(Q)|). The algorithm uses the optimal join in the worst case so that the

size of the intermediate result does not exceed the final result.

In conclusion, the subgraph matching algorithm provides operations commonly used in graph

databases. Subgraph matching algorithms are supported by most graph databases, such as Pat-

Mat [51], Neo4j [19], etc. The subgraph matching algorithm provides an effective computational

operation for our graph database.
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u1 u2 u3 u4

v1 v2 v3 v4

Figure 2.4: An example of (α, β)-core

2.5 Core like Graph Processing

(α, β)-core decomposition. The (α, β)-core is a maximal subgraph of the bipartite graph G such

that the vertices on the upper or lower level have at least α or β neighbours, respectively, and is

initially recommended for the fault-tolerant group [52]. For example, as shown in Figure 2.4, the

graph is a bipartite graph shown is (2, 2)-core, because the minimal degree on the top layer is 2

and the minimal degree on the lower layer is 2. An online algorithm for (α, β)-core computation

is proposed by Ding D et al [53]. The naive approach starts from the input graph and iteratively

vertices without sufficient neighbourhoods and incident edges until all remaining vertices in the

subgraph satisfy the degree constraint. However, the online algorithm is inefficient when huge

data graph (more than 1 billion edges). To avoid long processing time, Liu [52] proposes a new

approach to compute (α, β)-core and build a BiCore − Index with a linear size of the input

graph. The time complexity of the index is O(δ · m), where m is the number of edges and δ is

the maximum value such that (δ, δ)-core in the data graph is nonempty and is bounded by
√

m.

Experiments show that query processing with index support is several orders of magnitude better

than the state-of-the-art online computation algorithms.

The naive of BiCore − index is that first calculate all the combinations of α and β. Then store

these α and β values as two-dimensional arrays. The values of the two-dimensional arrays are the

nodes corresponding to the (α, β)-core nodes. But there are a lot of duplicate values and some

cases of no data in the double array. The author then proposes an optimization strategy that restricts

the loops of α and β by using δ. Moreover, the empty and duplicate values will be removed from

the index. In addition, the user also proposed index maintenance on dynamic graphs.
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Buyer1 Buyer2 Buyer3 Buyer4

Item1 Item2 Item3 Item4

Figure 2.5: An example of (α, β)-core application

Compared with other core computation algorithms [53–55], BiCore − index query time and

efficiency have been significantly improved, and the index design is a great space saver. However,

as the data graph continues to grow beyond the capacity of a single machine, the author did not

consider a distributed framework, so this is a relatively weak point.

Applications of (α, β)-core (α, β)-core can be used to build online recommendation systems. In

user-product networks, collaborative filtering techniques are often used to build recommendation

systems. In this process, it is important to group similar users. Fault-tolerant panel recommenda-

tions are proposed to handle missing values in incomplete data and have proven their effectiveness

in panel recommendations [56, 57]. An example will be given to help to understand as shown in

Figure 2.5.

Example 3. As shown in Figure 2.5, "Buyer 1-4" have all purchased "Item 1-3" recently, while

only "Buyer 1-3" have bought "Item 4". It can be reasonably inferred that "Buyer 4" may also be

interested in "Item 4" and suggested accordingly [51]. The graph can be presented as (3,4)-core.

k-core decomposition. In this section, a k-core decomposition paper will be described, which is

"k-core decomposition of large networks on a single PC" [58]. Currently, it is possible to compute

and process graphs with scales up to hundreds of millions of edges through distributed systems.

However, the shortcoming is that although distributed resources are now readily available, there

are few distributed algorithms for graph computation. Developing distributed algorithms for graph

computation can be difficult because, based on existing frameworks, the first thing to face is an

effective graph partitioning method. So it is challenging to develop a distributed graph processing

system to solve significant graph computation problems. In this paper, the authors propose to use
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a personal computer (PC) with external memory technology to implement k-core decomposition.

The schemes mentioned above are inefficient or infeasibility led the author to implement the k-core

algorithm based on GraphChi. GraphChi uses a parallel sliding window technique (BSW). This

technique stores the graph in external memory (SSD or disk) and requires only a small number

of non-sequential reads and writes to the secondary memory to compute graph updates up to a

million times per second and supports an asynchronous computation model. The processing of

graphs in BSW is divided into three steps: (1) transfer a subgraph of the entire diagram from the

secondary storage into the memory, (2) update the data graph based on the user-defined update

function and (3) write the updated subgraph into the disk.

In summary, in the bipartite graph and unbipartite graph, cohesive subgraph models have been

extensively studied. Based on these cohesive subgraph models, finding the hierarchical structure

of graphs is a popular research topic in the field of graph analysis. Moreover, cohesive subgraph

mining is also a potential trend for graph databases.
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Chapter 3

SQL2Cypher: Automated Data and

Query Migration from RDBMS to

GDBMS

3.1 Introduction

Graphs have played an increasingly important role in data management with the prevalence of

graph data in different application domains such as social networks, road networks and protein-

protein interaction networks. Graph database management systems (GDBMS) are among the most

fundamental infrastructure when managing graph data and have received a lot of attention from

researchers and programmers globally [8]. GDBMS have the unique advantages of modelling and

querying complex relationships, capturing and navigating complex data relationships and recursive

path querying when handling graph data.

However, relational database management systems (RDBMS) still comprise the majority share of

the database market for legacy reasons, even when storing highly connected data [10]. Querying

highly connected data in an RDBMS usually requires complex join operations and significant

system overhead, which can lead to a long execution time [11]. Hence, there naturally emerges
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the demand for migrating from RBDMS to GDBMS. In this thesis, we demonstrate SQL2Cypher,

an automated tool for migrating data from RBDMS to GDBMS.

Migrating data from RDBMS to GDBMS involves redefining data schema, mapping relations

and rewriting queries. The migration process is often time-consuming and labour-intensive. The

high time and labour costs are one of the major reasons why companies choose to keep their legacy

RDBMS. To address this problem, several automated tools [12–14] have been proposed to migrate

data from RDBMS to GDBMS. However, we find that they are either outdated or incomplete. For

example, [12] focuses on XQuery and [14] focuses on RDF data, while ignoring the nowadays

more widely adopted property graph model [8]. The open-source tool Neo4j-ETL [13] allows the

user to import data from relational databases to the popular graph database Neo4j. However, it

does not provide automatic query translation, and users have to rewrite all previous SQL queries

to Cypher queries manually [15] (the graph querying language used by Neo4j). More critically,

Neo4j-ETL is not well maintained and has many issues at present1 (e.g. error loading large dataset

and error when mapping relations).

Motivated by the above reasons, we develop and demonstrate SQL2Cypher. SQL2Cypher focuses

on graph databases adopting the property graph model, in which each vertex/edge in the graph can

have an arbitrary number of key-value pairs to represent its properties. SQL2Cypher automatically

allows users to migrate from relational databases to property graph databases. It automatically de-

rives the relationships among migrated tables, maps the relational model to the property graph

model, imports the data from RDBMS to GDBMS, and finally translates the corresponding SQL

queries to Cypher queries. It supports Open Database Connectivity (ODBC) [59] compliant rela-

tional databases (e.g., MySQL, PostgreSQL and Microsoft SQL Server) and Cypher-based graph

databases (e.g., Neo4j, SAP HANA Graph [60] and PatMat [51]). In addition, several optimiza-

tion strategies are implemented based on predictive interaction framework [16] and duplication

detection [17] to further improve the speed and the quality of the migration.

1https://github.com/neo4j-contrib/neo4j-etl/issues
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3.2 System Overall

Figure 3.1: SQL2Cypher architecture

SQL2Cypher consists of three-layer as shown in Figure 3.1. The first is the user services layer,

which is comprised of user interfaces (both graphical and command-line) where the user can op-

erate the system. Second, the application layer will receive commands from the user services and

complete background processing. Finally, in the configuration layer, we efficiently store and man-

age different system configurations on the disk. We present the details of these three layers as

follows.
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3.2.1 User services

Regarding the user services, as shown at the top of Figure 3.1, we build several user-friendly

graphical interfaces. User services pass the information entered by the user to the application layer

and receive data from the application layer that needs to be displayed. User services are comprised

of three sections: configuration, table connections and query translations. In the configuration

section, users can configure the essential information of the RDBMS and GDBMS (i.e., username,

password and database URL). The table connection section presents the relationship between the

tables to the user in a graph. Users can modify the relationship between tables if any are incorrect

or missing. Lastly, users can use the system to translate SQL queries to Cypher queries after the

application layer processes the relationships among tables. As shown in Figure 3.3, we use the d32

and layui3 libraries to provide graph visualization and CodeMirror4 to provide code highlighting.

To improve usability, a command-line interface (CLI) is also provided with has the same workflow.

3.2.2 Application layer

The application layer connects the RDBMS and GDBMS. The server in this layer processes all

background tasks. In order to make our system flexible and allow it to adapt to different database

systems (e.g., MySQL, PostgreSQL and Microsoft SQL Server), the application layer connects

RDBMS via Open Database Connectivity (ODBC) [59]. ODBC achieves database independence

by using the ODBC driver as the translation layer between the application and RDBMS. Applica-

tions written using ODBC can be ported to other platforms on the client and server sides without

changing the data access code. In the following section, we will explain in detail how the data

migration is done in our system.

2https://d3js.org/
3https://www.layui.com/
4https://codemirror.net/
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CHAPTER 3. SQL2CYPHER: AUTOMATED DATA AND QUERY MIGRATION FROM
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Algorithm 1: Generate edges
Input: tuples = tablerelationshiptuples

Output: E

1 PE = ∅

2 GE = ∅

3 tuple = next(tuples)

4 while tuple ̸= ∅ do

5 if isJoinTable(src, dst) then

6 e←Make a property edge with src, dst and label

7 PE.add(e)

8 else

9 if isConnect(src, dst) then

10 e←Make a edge without property with src and dst

11 GE.add(e)

12 tuple = next(tuples)

13 E = GE ∪ PE

14 return E
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3.2.2 Application layer

3.2.2.1 Parsing table relationship.

Table relationships can be seen as graph structures where tables are vertexes and edges are rela-

tionships. Our system can extract the relationships between tables based on the RDBMS schema;

these relationships will be displayed as a graphical user interface or as a relationship path in the

CLI. After data migration, the relationships between tables are stored in the configuration layer.

For the naive approach, we store all the tables in the RDBMS as nodes in our GDBMS, then create

edges for all the connected tables (connected by foreign keys). However, this approach can lead

to high memory usage, and we will analyze memory usage and focus on optimization strategy in

the following section (optimization analysis).

Algorithm 1 describes the transformation of the RDBMS to the GDBMS. The input value tuples

is a set of tuples consisting of source, destination and label. Edges and vertexes are accessed via

several functions: IsJoinTable and IsConnect. IsJoinTable is to check whether there exists

a join table (a table that contains two foreign keys) between connected tables. IsConnect is to

check whether the source table and destination table are connected. The processing of generating

edges can encounter two cases.

Case 1. In this case, we implement an optimization strategy based on [16]. The strategy is to

convert the join table to an edge and the attributes in the join table as properties of the edge. This

strategy will save memory usage and make the data more adaptable to the nature of the graph

database. In the algorithm 1 lines 4-6 can convert the join table to an edge with properties. We

will explain this process with an example.

Optimization analysis. Our optimization strategy will reduce the amount of vertex storage and

edge storage. We will show this result with a theoretical analysis. In the IMDB database, the

principal is connected to the name and title tables respectively. Suppose name has n rows of data,

title has m rows of data, and principal has e rows of data. For the naive approach, we need to

connect principal with name and principal with title, so we need to store n + m + e nodes and

2 ∗ e edges. For our optimization strategies, we can connect principal, name and title together

without saving the principal nodes. We only need to store n+m nodes and e edges. Thus, we will
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save 2 ∗ e of storage compared to the naive approach. In the real world, the edges of the graph are

usually very numerous , so our system can help users save more storage space after data migration.

Figure 3.2: Example of extracting table as edge

Example 4. In the top area of Figure 3.2, there are three tables named Person, Visit and Place.

The Visit table connects the Person table and the Place table and the Visit table also has two

attributes which are startTime and endTime (the start time and end time of visiting a place) be-

sides two foreign keys. In our system, the Visit table will be seen as a join table, so it will be

converted to an edge and startTime and endTime attributes will be converted as the properties of

that edge. In Cypher query pseudocode, this is like: (Person)-[:VISIT{startTime: value, endTime:

value}]→(Place)

Case 2. In algorithm 1 lines 8-10, if there is no join table, the system will detect the connection

of two tables (at line 8). If src and dst are connected, the system will build an edge without

properties (line 9).

3.2.2.2 Translating query language.

We also provide conjunctive queries (e.g. selections, join, projection and insertion), which are

expressed in SQL that translate to Cypher queries based on relationships path traversal operations.

In our mechanism, we parse SQL into a list of tokens by building an abstract syntax tree (AST)

and then traverse different operations to translate separately based on the relationships that are

stored in the configuration layer. For example, as shown in Figure 3.4, the box on the left-hand
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3.2.3 Configuration

side shows the SQL query, when we click the convert button, the SQL will be translated to the

Cypher query (the box on the right-hand side).

3.2.3 Configuration

In this layer, all the configuration, database information and the relationship between the tables is

stored in a pickle5 file. The relationships are then used to translate the query language. The system

keeps the relationships and configuration updated based on the user input.

Figure 3.3: Modify relationships among tables

Figure 3.4: Query language translation

5https://docs.python.org/3/library/pickle.html
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3.3 Demonstration

We will use two real-life example scenarios to demonstrate the overall experience of SQL2Cypher.

The first scenario is COVID-19 spread which contains information about the COVID-19 test day

of a person, the places visited by an infected person and the corresponding time. The purpose

of the data migration is to effectively find people who have come into contact with infected peo-

ple to avoid COVID-19 spreading. The second scenario is IMDB, which contains basic movie

information, title, crew, rating, person name, etc. The second scenario aims to demonstrate the

optimization strategy of the system.

SQL2Cypher processes the schema in the RDBMS to form a graph structure, and then the graph

will be presented in the user interface as shown in Figure 3.3 and Figure 3.4. Figure 3.4 presents

queries translation and the execution result. In our demo, we will conduct the following sections

to explain how to use our system to migrate data and translate queries.

3.3.1 Data migration

Figure 3.3 displays the original relationships between person, visit and place tables from the first

scenario. Users can modify (delete, add, and change) the connections between tables. After

submission, our system will process the join table automatically.

The IMDB dataset contains movie names, aliases, basic information, episodes, crew, actors, di-

rectors, movie ratings and personnel information, and relationships between the data. The IMDB

dataset contains the relationship between tables that can be converted to edge attributes. Therefore,

based on the IMDB dataset, we demonstrate relationship modification during the data migration

processing, as some tables need to be connected by reference key form. For example, the IMDB

dataset contain a principal table, and the principal table connects with title and name tables by

using reference key. Unfortunately, RDBMS can not detect reference key, therefore, users need to

add edges among principal, title and name tables. To ensure that the migrated data is accurate, we

do several queries on MySQL and Neo4j to compare the results. The queries contain the number

of nodes/tables, values in nodes/tables and the value of relationships between tables.
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Table 3.1: Data comparison
Table Name Title Episode Rating Aka Crew Principal

RMDBS 11,684,622 8,974,009 6,740,446 1,251,067 32,265,777 8,974,009 50,646,116
GDBMS 11,684,622 8,974,009 6,740,446 1,251,067 32,265,777 8,974,009 50,646,116

3.3.2 Query translation

This section will use the first scenario to demonstrate our system’s use to find potentially infected

persons. A person is considered potentially infected if the person stays in the same place as an

infected person at the same time. We can use the following SQL join operations to accomplish

this task.

SELECT ∗ FROM person AS p, place AS pl, visit AS v

WHERE p.PersonID = v.PersonID

AND pl.P laceID = v.P laceID AND p.Healthstatus = ”Sick”;

After translating, SQL2Cypher will generate a graph pattern to find the potentially infected people

using the following code:

MATCH (p : person{Healthstatus : ”Sick”})− [r : V ISIT ]− > (pl : place)

RETURN ∗;

In addition, users are able to execute both SQL and Cypher queries in the user interface, and we

provide several different forms of displaying the result. As shown in Figure 3.4, we demonstrate

SQL queries result with tabular data and demonstrate graph structure for Cypher queries result.

Graph structure makes finding relationships between data easier than tabular data.

3.4 System evaluation

Migrating speed is not an essential evaluation aspect of our system. The migrated result accuracy

is essential to evaluate. In this section, we evaluate our system based on the IMDB dataset, and the

experiment is run on a Linux server with an Intel I5-8500T processor, 16GB main memory and

500GB hard disk. For RDBMS and GDBMS, we use MySQL 8.0 and Neo4j 3.5.14, respectively.
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As shown in Table 3.1, IMDB contains seven tables in RDBMS. After the database migration, we

can observe that the RDBMS and GDBMS data are the same. Note that the Principal table will

be considered as the edge with properties between Title and Name tables. Therefore, we compare

the number of edges between Title and Name tables in GDBMS with table rows in RDBMS.

3.5 Conclusion

In this work, we proposed a system that automatically converts relational databases into graph

databases and translates SQL queries into Cypher queries. The system saves time and labour

costs. The system is also optimized for repetitive data and graph database attributes.
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Chapter 4

FSPS: Accelerating Subgraph and Path

Queries Using FPGA

4.1 Introduction

Graph has been playing an increasingly important role in data management with the prevalence of

graph data in different application domains in recent years. There are two fundamental types of

graph queries in graph analysis [61], namely subgraph queries and path queries. Given a pattern

graph q and a data graph G, subgraph queries aim to find all subgraph instances in G that are

isomorphic to q. As for path queries, they navigate the graph to investigate the relations between a

source vertex s and a target vertex t within k hops to find all paths. Subgraph and path queries are

associated with a wide spectrum of applications in the areas of network & IT operations, finance,

e-commerce, cyber security, bioinformatics, chemistry, social science, etc. Below we present two

real-life scenarios.

Scenario I. In enterprise relationship analysis, it is common to investigate how one person could

control a company. Investors can use a path query algorithm to determine if a competent person

owns the company to decide whether to invest. In the example of Figure 4.1(a), given a person

as the source vertex and a company ’E’ as the target vertex, we want to enumerate all paths from
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the source person to the target company within k hops (k = 3 in this example). As a result, one

can notice that although the person does not hold company ‘E’ directly, he holds it via companies

‘A’, ‘B’, ‘C’, and ‘D’. Finally, the investor can decide whether to invest after finding out that the

person controls the company.

Scenario II. In practice, the entire fraud process may involve complex chains of transactions

through many entities, which require complex cycle detection with various constraints [62]. A

simple financial network can be represented as a graph where each account is a vertex, and the

transactions in between are edges. Figure 4.1(b) demonstrates a subgraph pattern for possible

financial fraud [20]. In this pattern, the three accounts’ transactions form a triangle that may

indicate money laundering.

Company B

Company A

Company C Company D

Company E

holds

holds

Person

(a) Enterprise relationship analysis

Account 3

Account 1 Account 2Transfer

(b) Fraud Detection

Figure 4.1: The real-life graph analysis scenarios.

Considerable efforts are made in both industry and academia to develop efficient systems for

subgraph and path queries [18–22]. However, almost all solutions are developed on CPUs which

have the following limitations when handling graph data: 1) CPUs do not offer flexible high-

degree parallelism, and 2) CPU caches do not work effectively for irregular graph processing with

limited data locality.

With the recent advance of field-programmable gate arrays (FPGAs), people are provided with

a new alternative to accelerate graph computations at the hardware level. FPGAs have shown

significant advantages over multi-core CPUs in parallelism due to their pipelining design and

highly efficient hardware circuit. For instance, one FPGA card can efficiently parallelize a loop

with 1,000 iterations, while we have to find a host equipped with 1,000 CPU cores to offer the

same parallelism. Furthermore, compared with GPUs, FPGAs are more energy-efficient and can
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handle irregular graph processing with more stable parallelism by fully exploiting their pipeline

mechanism [23]. FPGAs are now widely deployed by enterprises and cloud service providers such

as Microsoft, Alibaba, Tencent, Huawei, and Amazon Web Services (AWS).

[24] and [25] present the latest idea of subgraph and path query algorithms based on FPGA.

However, these algorithms do not store graph data (i.e., temporally load in the memory), parse the

query and property filtering, etc. Furthermore, these algorithms do not provide an interface for the

user to query, which is not easy for the user to use. To improve the efficiency of the graph database,

we explored the acceleration of graph database queries based on FPGA. Therefore, motivated by

the above reasons and based on the latest research efforts [24,25], we develop and demonstrate the

prototype of the first FPGA-based Subgraph and Path querying System, called FSPS. Specifically,

FSPS has the following features:

• A CPU-FPGA co-designed architecture. FSPS employs a CPU-FPGA co-designed framework.

The CPU is in charge of parsing, prepossessing, and scheduling, whereas the FPGA is respon-

sible for the de facto computation for subgraph and path queries.

• Fully pipelined execution on FPGA. We design and implement the system on the FPGA side

in a fully pipelined manner. This allows FSPS to achieve massive parallelism and maximised

efficiency.

• Reduced data transfer from FPGA’s external memory. FPGAs have small sizes of on-chip mem-

ory (BRAM) that is usually only tens of megabytes. As fetching data from FPGA’s external

memory (DRAM) is very expensive, FSPS applies partition and caching techniques to reduce

the data transfer between DRAM and BRAM to improve the efficiency further.

4.2 System overall

Figure 4.2 shows the system architecture of FSPS. On the front end, FSPS provides the user

interface for entering different types of queries, displaying query results and loading graph data

from the local disk. Users are able to draw the subgraph and path queries when entering queries,
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Figure 4.2: System Architecture

and FSPS will return and display the results either in a graph view or a table view. FSPS uses

d31 and layui2 libraries to build the front end. It communicates with the back-end web server on

HTTP requests.

In the back end, FSPS employs the CPU-FPGA co-designed framework. On the host side, FSPS

features a web server, a graph loader, a query parser, and a scheduler. The FPGA card is PCIe

attached to the host, and the scheduler will schedule the task on the host and FPGA and coordinate

data transfer between them.

FSPS supports property graphs [19] in which each vertex and edge can have arbitrary properties

(i.e. any number of key-value pairs). We store the query and the topological structure of the data

graph (together with the label information) in-memory (in compressed sparse row format) for fast

access and the properties in the data graph on disk using a local key-value store in RocksDB3.

FSPS can also build an additional inverted index of user-defined properties in the key-value store.

As an interesting further work, we will investigate more complex index structures such as a B-tree.

Upon receiving a query, FSPS will first parse the query (by the query parser), send it to the

1https://d3js.org/
2https://www.layui.com/
3https://rocksdb.org/
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scheduler, and finally execute it on FPGA. The CPU can access the graph data (either from the

main memory or the disk) and send the data to FPGA via PCIe bus when needed. The backend

of FSPS is implemented in C++, except the webserver, which is implemented in Python with the

help of the flask4 library.

In the following, we will discuss in detail how subgraph and path queries are executed on FPGA,

respectively.

4.2.1 Subgraph Queries

We adopt the subgraph matching algorithm in [24] for fast and efficient subgraph queries on

FPGA.

Host Implementation. When the user submits a subgraph query Q = (q, G), the host first builds

an auxiliary data structure upon q and G called candidate search tree (CST), which serves as the

complete search space of the query. Limited by on-chip resources on FPGAs, CST is often too

large to be fully loaded into FPGA’s BRAM, and it dramatically decreases overall performance

to access CST from DRAM rather than BRAM. Hence, the CST is recursively partitioned and

offloaded to FPGA one by one. The partition strategy in [24] guarantees there is no overlap in

the search space between the partitioned CST, and each partitioned CST can be completely loaded

into BRAM. After finishing the CST partition, the host can share a small portion of matching tasks

to improve the throughput as a whole further.

FPGA Implementation. Once a partitioned CST has been loaded into BRAM. We start the

computation on FPGA. In the typical backtracking algorithms, one partial result is expanded at

a time by matching the next vertex to a candidate vertex following the matching order. This

sequential design cannot be pipelined because of data dependencies among iterations. To solve

this, we decompose the matching process into three steps as follows: 1) Generator expands partial

results by matching the next vertex in the matching order; 2) Validator verifies whether a new

partial result is valid; 3) Synchronizer collects results. Different from the typical algorithms, our

4https://flask.palletsprojects.com/
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method processes thousands of partial results at a time in these steps so that each step can fully

utilize the pipeline mechanism of FPGA. Each round, we process those partial results that map

most query vertices and pre-allocate enough space, which prevents the overflow of partial results

buffer in BRAM. Two extra optimisations, namely task parallelism and generator separation, are

employed to further improve the efficiency. The interested reader can refer to the original paper

of [24] for more details.

4.2.2 Path Queries

We adopt the FPGA-based k-hop constrained s-t simple path enumeration algorithm in [25] for

path queries. Given a source vertex s, a target vertex t, a hop constraint k, and an optional edge

label set C, the algorithm can enumerate all the paths between s and t whose length is no more

than k and the edge label is in C. Note that when C = ∅, we do not consider the edge label

constraint.

Host Implementation. When user submits the query Q, the host parses Q to extract and store s,

t, k, C, and G in main memory. To reduce the data graph G’s size and search space, it first starts

a preprocessing on the host using two (k− 1)-hop breadth-fist search (BFS) starting form s and t,

respectively. This can generate two tables, denoted as sds and sdt, of the shortest distances of each

visited vertex to s and t. For each visited vertex, we add it to a new graph G′ with its neighbours

if and only if the sum of its shortest path to s and t is no more than k. It has been proved in [25]

that processing on G′ is enough to get all results. When the host preprocessing is finished, the

scheduler will transfer s, t, k, G′ and sdt to FPGA (to the DRAM) through the PCIe bus.

FPGA Implementation. Once the data is transferred to FPGA. We can start the computation

on FPGA. In general, we adopt the BFS-based paradigm to utilize the pipeline mechanism of

FPGA fully. The whole process on FPGA can be concluded as an expansion-and-verification

framework, which can be dissected into three steps: 1) Expand the intermediate paths with one-

hop successor vertices; 2) Verify if each expanded path is a valid path; 3) Write back the valid

paths to the intermediate path set. The algorithm terminates when the intermediate path set is
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Figure 4.3: The LDBC queries

empty. To reduce the data transfer between DRAM and BRAM, we cache necessary data as much

as possible on BRAM to improve the system latency. Furthermore, as discovered in [25], the

longer path tends to have stronger pruning power in length check, which indicates it will produce

fewer valid intermediate paths to save memory. Hence, by regarding the given intermediate path

set S as a stack, we always fetch/write a batch of paths from/to its top, which ensures that the

longest paths are always processed first. Finally data separation is applied to further improve the

parallelism level. Please refer to [25] for the details.

4.3 Performance Evaluation

Following existing works [18, 24, 63, 64], we adopt the LDBC social network benchmark (SNB)

[65] to evaluate the performance of FSPS. SNB provides a data generator that generates a syn-

thetic social network together with a set of queries. We use two datasets DG10 and DG60 in

our experiments. DG10 has 29.99 million vertices and 176.48 million edges. DG60 has 187.11

million vertices and 1.25 billion edges. These datasets are generated by simulating a real social

network akin to Facebook with a duration of 3 years.

We compare FSPS with the most popular graph database system Neo4j [8]. We deploy two servers

as follows: 1) a server equipped with an 8-core Intel Xeon E5-2620 v4 CPU (2.1GHz) with 250G

memory, 2TB hard disk, and an Alveo U200 Data Center Accelerator Card with 64GB off-chip

DRAM, 35MB on-chip BRAM, communicating with the host through PCIe gen3× 16; 2) a server

equipped with two 20-core Intel Xeon CPU E5-2698 v4 (2.20GHz) with 400GB memory, and 2TB
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hard disk. Since part of the FSPS algorithm needs to be run on FPGAs card for acceleration, Neo4j

is run on a better server (Server 2) for the fairness of the experiment. Therefore, we run FSPS on

Server 1 (300MHz on the FPGA card), and Neo4j on Server 2. We allow 1 hour time limit.

Overtime and out of memory queries are marked as OT and OOM, respectively. For each test, OT

and OOM indicate a test case running out of the time limit and out of memory, respectively.
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Figure 4.4: DG10
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Figure 4.5: DG60

For subgraph queries, we use four representative subgraph patterns selected from the complex

workload of LDBC-SNB as shown in Figure 4.3. For path queries, we vary the length constraint

k from 2 to 5 (denoted as P2 to P5, respectively), and set the edge label constraint to ∅. For each

k, we randomly generate 10 query pairs {s, t}, and report the average time.

The results for the data graphs DG10 and DG60 are demonstrated in Figures 4.4 and 4.5, respec-

tively. FSPS significantly outperforms Neo4j on both subgraph and path queries in the DG10

dataset, achieving a 100% completion rate, whereas Neo4j only completes 56% of queries. In

addition, in the DG60 dataset, FSPS achieves a 75% completion rate where Neo4j only completes
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Step 1: Load Graph Step 2: Add Query Step3: Result Display

d. Pop-window For Add Ver tices f. Result Displayc. Draw Patterna. Load Graph
e. Path Formb. New Graph

Figure 4.6: Basic processing pipeline (part one)

Step 1: Load Graph Step 2: Add Query Step3: Result Display

d. Pop-window For Add Ver tices f. Result Displayc. Draw Patterna. Load Graph
e. Path Formb. New Graph

Figure 4.7: Basic processing pipeline (part two)

25% of queries. For DG10, FSPS achieves an average speedup of 13 times on subgraph queries

(up to 105 times on query Q1) and an average speedup of 1180 times on path queries (up to 2133

times on query P3) compared with Neo4j. For DG60, Neo4j is only able to complete Q4 among

the four subgraph queries. FSPS achieves a 58 times speedup on subgraph query Q4, and an

average speedup of 689 times on path queries (up to 1095 times on query P2).

4.4 Demonstration Overview

The demonstration mainly presents 1) the basic processing pipeline of FSPS; 2) LDBC queries;

and 3) real-life applications.
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4.4.1 Processing Pipeline

In this section, we guide the user to experience the whole processing pipeline of FSPS. The basic

pipeline is shown in Figure 4.6 and 4.7, which includes the following three steps.

1. Load/Import graph. The first step is to load or import the data graph. Users are able to import

graphs to FSPS for CSV files and create optional indices on selected properties. Once graphs

have been imported, they can be selected as the data graph to run queries as shown in Figure

4.6 steps 1.a and 1.b.

2. Draw patterns/paths. The next step is to enter subgraph or path queries. One can draw the

pattern through our user interface. Query information such as the vertex/edge label in subgraph

query and hop constraint in path query can be entered in pop-up windows as demonstrated in

Figure 4.7 step 2.c and step 2.d. For path queries, the user can enter the source, target and

constraint k in the form as shown in Figure 4.7 step 2.e.

3. Display results. FSPS will display the results at the final step. FSPS supports results display

in graph view (which renders the results into a new graph) and table view as shown in Figure

4.7 step 3. Users can also check the meta-data returned or download the results for future use.

4.4.2 LDBC Queries

In this scenario, we will pre-load an LDBC dataset on the server and allow the attendee to specify

one of the benchmark queries. The query will be executed using both FSPS and Neo4j. The

performance metrics will be delivered back to the scene and demonstrated to the attendee to show

the performance advantages of FSPS.

4.4.3 Real-life Applications

In this scenario, we use two real-life graphs, weibo and DBLP, to demonstrate how FSPS can be

applied in real-life applications.
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Friend recommendation in the social network. Friend recommendation in social networks. In the

first application, we demonstrate how subgraph queries can be applied to provide friend recom-

mendations in social networks. The data in real life is extensive, such as Facebook generating 4

petabytes daily. CPU-based subgraph matching algorithms can lead to long execution times when

processing large amounts of graph data. Therefore, we can use FPGA to accelerate the subgraph

matching, which can be a shorter latency to give users a better experience. We use the Weibo

dataset obtained from [66]. The dataset is crawled from China’s biggest social media platform,

Weibo, similar to Twitter. It models a social network where each vertex represents a user, and

the edge between two users represents the following relationship. To find possible friends that the

user may know but has not followed yet, we use a pattern graph that is a 4-clique with one missing

edge from the given user to the potential friend. Intuitively, if three persons ‘A’, ‘B’ and ‘C’ know

each other, and both ‘B’ and ‘C’ knows ‘D’, it is very likely that ‘A’ also knows ‘D’.

Finding connections in co-author network. In this application, we show how path queries can help

researchers find paths to reach out other researchers. To do so, we extract authors who published

papers from the last 5 years in top-tier database and data mining conferences, including SIGMOD,

SIGKDD, VLDB, ICDE, CIKM and ICDM. The vertices represent the authors, and the edges

represent co-authorship. The attendees can specify the length constraint k (e.g. k = 3), and the

name of the author he/she wants to collaborate with. By given so, FSPS can enumerate all paths

within k hops between the two authors. For example, if one wants to collaborate with Jiawei Han,

he/she can network through the paths from him/her to Jiawei Han to reach out to him. This can

also be used when assigning reviewers to a paper. If the author of a paper has many paths to a

reviewer, this potentially means they have close cooperation. Thus, we may not want to assign this

paper to the reviewer.

4.5 Conclusion

We developed the first FPGA-based prototype system for subgraph and path queries in this work.

FSPS employs a CPU-FPGA co-designed framework, fully pipelined execution on FPGA, and

reduced data transfer from FPGA’s external memory.
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Chapter 5

Discovering Hierarchy of Bipartite

Graphs with Cohesive Subgraphs

My main contribution to this work [66] is the design of the bipartite hierarchy construction algo-

rithms (e.g., HC-TD and HC-BU). The code implementation of HC-TD and HC-BU algorithms

and the efficiency experiments are also conducted by me. In addition, I have obtained the permis-

sion from Dr. Kai Wang, Prof. Wenjie Zhang, Prof. Xuemin Lin and Prof. Ying Zhang to use this

work in my thesis. My contribution in this work includes Section 5.4, 5.5 and 5.6.

5.1 Introduction

Bipartite graphs are naturally used to model relationships between two different types of entities

such as customer-product [67], user-item [68], and author-paper [69]. Driven by numerous appli-

cations including fraud detection [70,71], bioinformatics analysis [72,73], and network visualiza-

tion [32,74], cohesive subgraph models (e.g., (α, β)-core [53,54,70,75], k-bitruss [35,37,38], and

biclique [72]) have been widely studied in bipartite graphs. Most graph databases do not have spe-

cialized operators for bipartite graph models such as PatMat [51], Neo4j [19], etc. In the previous

work, we implemented the FSPS graph database system. In the future work, we can investigate
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the application and feasibility of adding the bipartite graph model to the graph database. In this

work, we focus on discovering the hierarchy of bipartite graphs based on cohesive subgraphs.

Applications. The following applications can be directly benefited by discovering the hierarchy

of bipartite graphs.

• Bipartite network visualization. One of the most natural applications of our work is bipartite

network visualization. By visualizing the hierarchy of bipartite networks/graphs, we can reveal

the relationships of vertices (and the dense regions) in bipartite networks. We are also able to

generate insights for network analysis from multiple perspectives. For instance, in user-movie

networks, we can analyze the behaviours of users (or the attractiveness of movies) at different

levels of granularity. In team-project networks, we can obtain the hierarchy of teams and the

participation level of projects for management purposes.

• Supporting efficient community search. In bipartite graphs, given a query vertex q, the set of ver-

tices in the connected component of the (α, β)-core containing q are considered in the community

of q [53, 70, 76]. These vertices are closely related to q, and searching such communities can sup-

port many real-world applications (e.g., recommendation [53]). Note that the existing study [70]

propose the bicore index to support retrieval of the vertex set of an arbitrary (α, β)-core in opti-

mal time. However, a further BFS search is needed to obtain the community containing a query

vertex. Since the bipartite hierarchy organizes the vertices in (α, β)-cores hierarchically by con-

sidering the connectivity, it can support solving the problem more efficiently with the same space

cost as the bicore index (i.e., O(m), where m is the number of edges in a given bipartite graph

G). As evaluated in our experiments, the bipartite-hierarchy-based query algorithm significantly

outperforms the bicore-index-based query algorithm by up to three orders of magnitude.

A new method for finding the hierarchy of bipartite graphs is worth exploring. In bipartite graphs,

(α, β)-core is a well-studied cohesive subgraph model that ensures the degree of each upper

(lower) vertex is at least α (β) in the subgraph [53, 54, 70, 75]. In this work, we are the first

to discover the hierarchy of bipartite graphs based on (α, β)-cores and their connectivity. Specif-

ically, given a bipartite graph G, we aim to build the bipartite hierarchy that consists of an upper

hierarchy for the upper vertices and a lower hierarchy for the lower vertices according to the (α,

41



CHAPTER 5. DISCOVERING HIERARCHY OF BIPARTITE GRAPHS WITH COHESIVE
SUBGRAPHS

β)-cores containing the vertices. The intuition of using the (α, β)-core model is that it is not only

vertex-centric (that considers two vertex layers separately) but also has two parameters α and β

(that provides fine-grained analysis of bipartite graphs in two-dimensions).

Challenges and our contributions. We summarize the principal contributions and technical chal-

lenges as follows.

• A systematical study of the hierarchy discovering problem in bipartite graphs. By analyzing

the drawbacks of existing studies and the special characteristic of bipartite graphs, we propose the

bipartite hierarchy model, which is the first to reveal the hierarchy of bipartite graphs based on

(α, β)-cores and graph connectivity. The bipartite hierarchy has a two-dimensional structure to

analyze bipartite graphs with different granularity levels. Notably, it only has a linear space usage

and can clearly depict the hierarchical tree structure of bipartite graphs. By utilizing the nested

property of (α, β)-core and exploring possible cost-sharing, we also propose efficient algorithms

to construct the bipartite hierarchy.

• Efficient algorithms for maintaining the bipartite hierarchy on dynamic bipartite graphs. In real-

world scenarios, graphs are usually dynamically changing. For instance, new purchase records are

growing on online shopping platforms, and we need dynamic bipartite graphs to model such user-

item networks. Consequently, it is essential to maintain the bipartite hierarchy on dynamic bipar-

tite graphs rather than recomputing it from scratch. Although existing works proposed algorithms

on maintaining the index for extracting the (α, β)-core [76], the connectivity and the hierarchy

of (α, β)-cores are not considered. In this work, we propose algorithms to maintain the bipartite

hierarchy incrementally regarding the edge insertion/deletion cases. The proposed algorithms can

effectively identify the affected regions to limit the computation scope and achieve high efficiency.

• Comprehensive experimental evaluations on 10 real-world graphs. We conduct comprehensive

empirical studies on 10 real-world bipartite graphs. The effectiveness of our bipartite hierarchy

model is demonstrated by case studies. We also evaluate the performance of the hierarchy con-

struction algorithms via different experimental settings. Experimental results validate both the

effectiveness and efficiency of our proposed techniques.
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5.2 Related Work

This section reviews two closely related areas: hierarchical decomposition of unipartite graphs

and cohesive subgraph models on bipartite graphs.

Hierarchical decomposition of unipartite graphs. On unipartite graphs, graph hierarchy decom-

position is conducted based on cohesive subgraph models such as k-core [26, 77–81] and k-truss

[82–84]. Based on k-core, [27, 58, 80, 85–88] study the core decomposition problem. In [27, 58],

the authors propose an in-memory algorithm for core decomposition with linear time complex-

ity. The problem is also studied in distributed environments [80, 87], graph streams [85], multi-

thread frameworks [86], and semi-external settings [88]. In addition, Liu et al. [79] propose ef-

ficient algorithm for computing CoreCube decomposition in multi-layer graphs. [89] study the

attributed community search problem using k-core in attributed graphs. Considering both co-

hesiveness and connectivity, the forest k-cores (i.e., the k-core hierarchy) is proposed in [26].

In addition, Lin et al. [81] study maintenance algorithms for the k-core hierarchy on dynamic

graphs. [28, 29, 38, 83, 90, 91] study the truss decomposition problem.

Cohesive subgraph models on bipartite graphs. On bipartite graphs, several existing works [38,

53, 54, 75, 76] study the (α, β)-core model and propose efficient algorithms to find (α, β)-cores.

Specifically, Ding et al. [53] propose an online algorithm to find the (α, β)-core by given α and

β. In [76], the authors present index-based algorithms to find the vertex set of an (α, β)-core

in optimal time. Wang et al. [38] study the problem of (α, β)-community search on weighted

bipartite graphs. However, the connectivity and the hierarchy of (α, β)-cores are not considered

in the works mentioned above.

By extending k-truss to bipartite graphs, [35, 38] study the k-bitruss model, which is the maximal

subgraph where each edge is contained in at least k butteries. [35] present peeling algorithms to

find the dense subgraphs based on k-bitruss/k-tip (i.e., the bitruss/tip decomposition). Here, k-tip

is the maximal subgraph where each vertex is contained in at least k butteries. The parallel tip

decomposition algorithm is also recently studied in [92]. Wang et al. [38] propose a novel online

index and a new bitruss decomposition algorithm. [72, 93–96] study the biclique enumeration

problem. [93] study the problem of enumeration of maximal bicliques from a large graph by using
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MapReduce. [94, 95] study the problem of maintenance for maximal bicliques in bipartite graph

streams. Zhang et al. [72] propose an algorithm that generates all maximal bicliques for diverse

biological bipartite graphs. In [96], the authors explore an algorithm for implementing pivot-

based enumeration pruning. Since the above works study different cohesive subgraph models, the

algorithms in these works cannot be used to solve our problem here.

5.3 Problem Definition

In this section, we formally introduce the notations and concepts for defining the bipartite hierar-

chy. Mathematical notations used throughout this paper are summarized in Table 5.1.

Table 5.1: The summary of notations

Notation Definition
G a bipartite graph

V (G)/E(G) the vertex/edge set of G
U(G), L(G) the upper layer and lower layer of G

size(G) the size of G = |E|
u, v, w, x, q a vertex in a bipartite graph

(u, v), e an edge in a bipartite graph
Rα,β the (α, β)-core of G
Cα,β an (α, β)-component

N(u, G) the set of neighbors of u in G
n, m the number of vertices and edges in G (m > n)
I the bipartite hierarchy of G

IU /IL the upper/lower hierarchy of I
IU

α /IL
β an upper/lower tree

p a tree node
sa(u, α) α-offset of a vertex u
sb(v, β) β-offset of a vertex v

We consider an unweighted and undirected bipartite graph G(V =(U, L), E). Here U(G) denotes

the set of upper layer vertices, L(G) denotes the set of lower layer vertices, U(G)∩L(G) = ∅. In

addition, V (G) = U(G) ∪L(G) denotes the total vertex set, and E(G) ⊆ U(G)×L(G) denotes

the total edge set. An edge e between two vertices u, v ∈ G is denoted as (u, v) or (v, u). The

set of neighbors of a vertex u ∈ G is denoted as N(u, G) = {v ∈ V (G) | (u, v) ∈ E(G)}, and

the degree of u is denoted as deg(u, G) = |N(u, G)|. Note that G is omitted when the context

is clear. We use n and m to denote the number of vertices and edges in G, respectively, and we
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assume each vertex has at least one incident edge.

Before formally defining the bipartite hierarchy, we introduce the following critical concepts.

Definition 8 ((α, β)-core ). Given a bipartite graph G and degree constraints α and β, a subgraph

Rα,β is the (α, β)-core of G if (1) deg(u, Rα,β) ≥ α for each u ∈ U(Rα,β) and deg(v, Rα,β) ≥ β

for each v ∈ L(Rα,β); (2) Rα,β is maximal, i.e., any supergraph G′ ⊃ Rα,β is not an (α, β)-core

. We use αmax (or βmax) to denote the maximal α (or β) value where the (α, 1)-core (or (1, β)-

core) is not empty in G, respectively. Given an α (or β) value, we also use βmax(α) (or αmax(β))

to denote the maximal integer where the (α, βmax(α))-core (or (αmax(β), β)-core) is not empty,

respectively.

In the definition of (α, β)-core , it does not require graph connectivity, which is an important

characteristic when adopting the core-based models in real-world scenarios. By further applying

the connectivity constraint, we introduce the definition of (α, β)-component as follows.

Definition 9 ((α, β)-component). Given a bipartite graph G and the (α, β)-core Rα,β , a subgraph

Cα,β is a (α, β)-component if (1) Cα,β ⊆ Rα,β and Cα,β is connected; (2) Cα,β is maximal, i.e.,

any supergraph G′ ⊃ Cα,β is not a (α, β)-component. For a vertex u, we use Cα,β(u) to denote

the (α, β)-component containing u.

By the above definitions, when fixing α (β), if an upper vertex u (or a lower vertex v) belongs to

an (α, β)-component with a larger β (α), it is usually contained in a group of vertices with more

connections. To measure such properties, we introduce the concept of α-/β-offsets.

Definition 10 (α-/β-offset). Given a vertex u ∈ V (G) and α ∈ [1, deg(u)], the α-offset denoted

as sa(u, α) is the maximal β value where u can be contained in an (α, β)-component. Similarly,

given a vertex v ∈ V (G) and β ∈ [1, deg(v)], the β-offset sb(v, β) of v is the maximal α value

where v can be contained in an (α, β)-component. The maximal α-offset (β-offset) value for α (β)

is denoted as βmax(α) (αmax(β)).

The hierarchy of a bipartite graph can be defined as follows according to 1) the disjointedness of

subgraphs based on the concept of (α, β)-component; 2) the containment relationships based on

the concept of α-/β-offsets.
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Definition 11 (bipartite hierarchy). Given a bipartite graph G, its bipartite hierarchy I consists

of the upper hierarchy IU and the lower hierarchy IL (i.e., I = IU ∪ IL). IU and IL contain

αmax and βmax trees, respectively.

For each α ∈ [1, αmax], the upper tree IU
α ∈ IU organizes all the upper vertices with non-zero

α-offsets. For each tree node p in the i-th level of IU
α , p is corresponding to an (α, i)-component

(denoted by Cα,i(p)) with a unique upper vertex set in IU
α (i.e., the subtree rooted by p contains

the set of upper vertices in Cα,i(p)). In the tree node p, the set of upper vertices in U(Cα,i(p))

with their α-offsets equal to i are stored (denoted by V (p)). For a tree node p′ on the i′-th level of

IU
α (i′ > i), it is a child of p if (1) U(Cα,i′(p′)) ⊂ U(Cα,i(p)); (2) there is no other tree node p′′

on the i′′-th level which is corresponding to Cα,i′′(p′′) satisfying U(Cα,i′(p′)) ⊂ U(Cα,i′′(p′′)) ⊂

U(Cα,i(p)).

For each β ∈ [1, βmax], the lower tree IL
β ∈ IL organizes all the lower vertices with non-zero

β-offsets symmetrically.

Note that for each vertex, we also record the addresses of the tree nodes containing it to quickly

obtain its locations in the hierarchy.

u0 u1 u2 u3 u4 u5

v1 v2 v3 v4 v5 v6

u6 u7

v0
Figure 5.1: A bipartite graph G

Example 5. Consider the bipartite graph G in Figure 5.1. The bipartite hierarchy I of G is shown

in Figure 5.2. I contains three upper trees and four lower trees. For instance, IU
1 contains three

tree nodes, one in the second level and two in the fourth level. The tree node in the second level

corresponds to a (1, 2)-component, which has two children in the fourth level. The upper vertices
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Figure 5.2: The bipartite hierarchy of G

in these components are contained in the tree nodes. The location array (i.e., loc) records the

address of the tree node containing each vertex in different trees. For example, loc[u0][1] records

the address of the tree node containing u0 in IU
1 .

Theorem 1. Given a bipartite graph G, it needs O(m) space to store the bipartite hierarchy of

G.

Proof. Firstly, since each upper/lower vertex v only appears in each upper/lower tree once and v

can be contained in at most deg(v) trees, the number of vertices in the hierarchy (and the location

array) is bounded by O(
∑

v∈V (G) deg(v)) = O(m). Accordingly, there are at most O(m) non-

empty tree nodes (i.e., the tree nodes that contain at least one vertex). Based on the structure of

the bipartite hierarchy, each empty tree node links at least two non-empty tree nodes together to

combine their corresponding connected components as one. Thus, there exist at most O(m − 1)
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empty tree nodes. The number of links between two tree nodes is also bounded by O(m) due to

the tree structure. In total, it needs O(m) space to store the bipartite hierarchy.

5.4 Hierarchy Construction

In this section, we present algorithms for building the bipartite hierarchy.

5.4.1 A top-down approach

Algorithm 2: The HC-TD Algorithm
Input: G: a bipartite graph

Output: I = IU ∪ IL: the bipartite hierarchy of G

1 initialize αmax trees in IU and initialize βmax trees in IL;

2 initialize an array loc to record the locations of vertices in I;

3 for α← 1 to αmax do

4 for β ← 1 to βmax(α) do

5 retrieve the (α, β)-core Rα,β ;

6 if β > 1∧ upper vertices in each component of Rα,β are unchanged compared with Rα,β−1

then

7 move tree nodes in β-1 level of IU
α to β level;

8 continue;

9 foreach (α, β)-component Cα,β ⊆ Rα,β do

10 S ← upper vertices with α-offset = β in Cα,β ;

11 make a tree node p and set V (p)← S;

12 put p in the β-th level of IU
α and link p with its parent in IU

α ;

13 foreach upper vertex u ∈ IU
α do

14 loc[u][α]← the address of the tree node containing u in IU
α ;

15 build the lower hierarchy IL similarly as Lines 3 - 14;

16 return I

Since the (α, β)-components in each (α, β)-core can be easily obtained using breath-first-search,

it is straightforward to build each upper tree IU
α (or each lower tree IL

β ) in a top-down manner by
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following the peeling paradigm in prior works [53,70]. Algorithm 2 shows the details of the index

construction algorithm HC-TD. For each α ∈ [1, αmax], HC-TD builds IU
α from the root node

(Line 3). Specifically, for each β ∈ [1, βmax(α)], it first retrieves the (α, β)-core Rα,β (Line 5).

Note that the (α, β)-core can be obtained by peeling the (α − 1, β)-core (or (α, β − 1)-core) in

the former iteration rather than computing it from scratch. If β > 1 and the upper vertices in each

connected component of Rα,β are unchanged compared with Rα,β−1, we just move tree nodes in

the β-1 level of IU
α to the β level. Otherwise, we obtain each (α, β)-component Cα,β from the (α,

β)-core easily using breadth-first search. For each Cα,β , we obtain the set of upper vertices S with

α-offset = β to build the tree node p in the β level of IU
α . Then, we link p with its parent according

to the containment relationships between the (α, β)-components they correspond to. After that,

for each upper vertex u ∈ IU
α , we record the address of the tree node it belongs to. The lower

hierarchy IL can be built in a similar way. Note that Algorithm 2 builds the bipartite hierarchy in

O((αmax + βmax) · n ·m) time. This is because there are (αmax + βmax) trees in the hierarchy.

For each tree, it has at most O(n) tree nodes and building each of them needs O(m) time using

BFS.

5.4.2 A bottom-up approach

Although the algorithm HC-TD is easy to implement, it is inefficient when handling large-scale

bipartite graphs since it needs to compute the vertex set of each tree node separately. As (α, β)-

cores are nested naturally w.r.t. α and β, we propose the HC-BU algorithm that can utilize such

nested structure information to accelerate the construction process.

Build one tree. We first show how to build an upper tree IU
α in the upper hierarchy using HC-BU.

The following lemma follows directly from the definition of (α, β)-core .

Lemma 1. Given α ∈ [1, αmax], β ∈ [2, βmax(α)], and an (α, β)-component C1, there must exist

an (α, β − 1)-component C2 where C1 ⊆ C2.

Since each tree node in an upper tree corresponds to an (α, β)-component, the above lemma depicts

the nested relationships among the tree nodes in one tree. According to this lemma, we can follow
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a bottom-up manner to first build the tree nodes in the deepest tree level and then incrementally

build the tree nodes in higher tree levels based on them. To build the tree nodes in a given tree

level, we still face the following two challenges: 1) for one vertex in the level, how to identify

the tree node it should belong to; and 2) for one tree node, how to know which tree nodes in the

deeper level are its children. To address the above issues, we have the following observations.

Lemma 2. Given an upper tree IU
α , for two vertices in the β level of IU

α , they are contained by

the same tree node if they belong to the same connected component in the (α, β)-core . For a tree

node in the β level and one of its children in the β′ level (β′ > β) of IU
α , the vertices in these two

tree nodes must belong to the same connected component in the (α, β)-core .

Proof. This lemma directly follows from the structure of the bipartite hierarchy.

Based on the above lemma, the vertex sets of tree nodes (in one tree level) can be obtained via

retrieving the connected components of (α, β)-cores. Since we follow a bottom-up manner to

build the tree nodes, we can maintain the connected components in constant amortized time with

the union-find data structure, which is widely used in the literature [97–99]. Specifically, when

building the β level of the upper tree IU
α , we can only process each vertex with α-offset = β and

check which connected component it should belong to with the union-find structure.

Build the hierarchy. Utilizing the above approach to build one tree, we show the details of the

algorithm to build the hierarchy in Algorithm 3. For each α ∈ [1, αmax], HC-BU puts the vertices

in (α, 1)-core into different sets S1, S2, ..., Sβmax(α) according to their α-offsets (Line 4). Then, it

builds IU
α in a bottom-up manner and starts from the βmax(α) level (Lines 5 - 9). In the βmax(α)

level, HC-BU computes the set E of connected components from the vertices in Sβmax(α) and

their incident edges (using the union-find structure). For each connected component C ∈ E , HC-

BU makes a tree node p with the upper vertices in C (Line 9). Then, to build the βmax(α) − 1

level, we can maintain the connected components in E using the incoming vertices in Sβmax(α)−1.

For each connected component C ∈ E , HC-BU makes a tree node p with the upper vertices in

Sβmax(α)−1 ∩C. In addition, HC-BU links p with its children node according to the vertices in the

connected component. Note that we skip creating the tree nodes in one level if the upper vertices
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in each connected component of E are unchanged compared with the previous level. Following

this manner, we can also build the other levels of IU
α . Finally, we record the address of the tree

node where each upper vertex in IU
α belongs to. The lower hierarchy IL can be built in a similar

fashion.

Algorithm 3: The HC-BU Algorithm
Input: G: a bipartite graph

Output: I = IU ∪ IL: the bipartite hierarchy of G

1 initialize αmax trees in IU and initialize βmax trees in IL;

2 initialize an array loc to record the locations of vertices in I;

3 for α← 1 to αmax do

4 put vertices in (α, 1)-core into different sets S1, S2, ..., Sβmax(α) according to their offsets;

5 for β ← βmax(α) to 1 do

6 if β = βmax(α) then

7 compute the connected components from Sβ and put them into E ;

8 foreach component C ∈ E do

9 make a tree node p with the upper vertices in C on the β-th level of IU
α ;

10 else

11 compute the connected components from Sβ ∪ E and put them into E ;

12 if the upper vertices in each connected component of E are unchanged then

13 continue;

14 foreach connected component C ∈ E do

15 make a tree node p with the upper vertices in Sβ ∩ C on the β-th level of IU
α ;

16 link p with its children according to C;

17 foreach upper vertex u ∈ IU
α do

18 loc[u][α]← the address of the tree node containing u in IU
α ;

19 build the lower hierarchy IL similarly as Lines 3 - 18;

20 return I

Lemma 3. Given a bipartite graph G, Algorithm 2 uses O(m +
∑αmax

α=1 size((α, 1)-core) +∑βmax

β=1 size((1, β)-core)) time to build the bipartite hierarchy.

Proof. Firstly, it needs O(m) time in total to retrieve each (α, 1)-core (from α = 1 to α = αmax)

and each (1, β)-core (from β = 1 to β = βmax) incrementally. Then, when building each upper tree
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IU
α (or lower tree IL

β ), it needs O(size((α, 1)-core)) (or O(size((1, β)-core)) time if we consider

that the union-find operations run in constant time.

Example 6. Consider the bipartite graph in Figure 5.1. We show how to build IU
1 in Figure 5.2

using HC-BU. We first put vertices of (1, 1)-core into different sets based on their α-offsets. In

this case, S2 = {v3}, S3 = {v0, v4, v5}, S4= {u0-u7, v1, v2, v6}. Then, when β = 4, we obtain E

containing two (1, 4)-components and create two tree nodes that contain the upper vertices in S4.

After that, when β = 3, we add the vertices in S3 and their incident edges into E . We observe that

the upper vertices in the (1, 3)-components are unchanged compared with the (1, 4)-components.

Thus, we move to the next level. When β = 2, S2 = {v3} and E now has only one (1, 2)-component.

Then, we create a tree node and link the tree nodes in the fourth level as its children. When β = 1,

S1 is empty, and we do not need to create any tree nodes in the first level. Finally, for each vertex

in the upper tree IU
1 , we record the address of the tree node it belongs to.

Algorithm 4: Community Search
Input: I, q, α, β

Output: R

1 p = loc[q][α]

2 while p ̸= null and p.level ≤ β do

3 p = p.parent

4 roots = p.childs

5 foreach child ∈ roost do

6 R = R ∪ child.vertices

7 roots = roots ∪ child.childs

8 p = null, roots = ∅

9 foreach v ∈ N(q) do

10 if loc[v][β].level ≥ α then

11 p = loc[v][beta]

12 repeat lines 2 -3 and set p.level ≤ α

13 repeat lines 4 - 7

14 returnR
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5.5 Support Efficient Community Search

In bipartite graphs, given a query vertex q and parameters α, β, the group of vertices in the con-

nected component of the (α, β)-core containing q is considered in the community of q [70]. In [70],

the authors only propose an index to support the retrieval of the (α, β)-core without considering

the connectivity. Thus, a further BFS is needed to search the community of q. Note that this com-

munity of q can be efficiently obtained via the bipartite hierarchy using the following algorithm.

Here, we introduce the community search algorithm as shown In Algorithm 4. Suppose q is an

upper vertex. We first run the following steps to find the upper vertices in the community (lines 1

- 7).

• Step 1. In line 1, we find the tree node p containing q in the upper tree IU
α using the location

array (i.e., loc[q][α]).

• Step 2. In lines 2 - 3, we retrieve the ancestor node p′ of p that stays in the β level of IU
α . If

it does not exist, we assign p′ as the first ancestor node of p below the β level.

• Step 3. We traverse the subtree rooted by p′ and retrieve all the vertices in the subtree, which

are the upper vertices in the community (Lines 4 - 7).

To find the lower vertices in the community, in lines 9 - 11, we first identify a neighbor of q that

stays in the α′ level of IL
β (α′ > α). Then, we run a similar approach as Step 2 and Step 3 (Lines

12 - 13). Note that the time complexity of the above algorithm is O(|IU
α [β]| + |IL

β [α]|). Here

|IU
α [β]| denotes the total size of the subtrees (including the tree nodes and vertices in the tree

nodes) in the β level of IU
α . The space complexity of the algorithm is O(m).

Example 7. Consider the bipartite graph in Figure 5.1. We show how to find the community of

u0 using the bipartite hierarchy in Figure 5.2 by given parameters α = 2, β = 2. We first find the

tree node p containing u0 in the fourth level of IU
2 . Then, we retrieve the ancestor node p′ of p in

the second level since β = 2. After that, we traverse the subtree rooted by p′ and retrieve all the

upper vertices in the subtree (i.e., u0, u1, u2, u3, u4, u5, u6, and u7). To find the lower vertices in

the community, we first get v0, which is the neighbor of u0 and is located in the third level of IL
2 .
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Then, we find the tree node p′′ in the second level of IL
2 through v0, and traverse the subtree rooted

by p′′. After that, we can get the lower vertices in the community, which are v0, v1, v2, v3, v4, v5,

and v6.

Table 5.2: Summary of Datasets

Dataset |E(G)| Type of E |U(G)| Type of U |L(G)| Type of L
RL 233,286 Membership 168,337 Artist 18,421 Record
YG 293,360 Membership 94,238 User 30,087 Group
GH 440,237 Membership 56,519 User 120,867 Project
TM 1,366,466 Membership 901,130 Athlete 34,461 Team
IM 2,715,604 Association 685,568 Person 186,414 Work
WC 3,795,796 Inclusion 1,853,493 Article 182,947 Category
FG 8,545,307 Membership 395,979 User 103,631 Group
PA 12,282,059 Authorship 1,953,085 Author 5,624,219 Publication
ML 25,000,095 Rating 162,541 User 59,047 Movie
DUI 101,798,955 Tag 833,081 User 33,778,221 URL

5.6 Experiments

In this section, we first evaluate the bipartite hierarchy for some real applications. Then, we

evaluate the algorithms for building and maintaining the bipartite hierarchy.

5.6.1 Experimental setting

Algorithms. Our empirical studies are conducted against the following designs:

The hierarchy construction algorithms. 1) the top-down hierarchy construction algorithm HC-TD

in Section 5.4.1, and 2) the bottom-up hierarchy construction algorithm HC-BU in Section 5.4.2.

We also report the size of the bipartite hierarchy.

The algorithms for searching (α, β)-core -based communities. 1) the online peeling algorithm Qo

in [53] that finds an (α, β)-core in linear time, 2) the query algorithm Qv based on the bicore index

Iv proposed in [70] that can optimally retrieve the vertex set of an (α, β)-core , and 3) the query

algorithm Qh based on our bipartite hierarchy in Section 5.5. Note that for the algorithms Qo and
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Qv, we need to further conduct a BFS search to retrieve the community of a query vertex after

finding the (α, β)-core .

We implement the algorithms with C++, and all the experiments are run on a Linux server with

Intel Xeon E5-2698 processor and 512GB main memory. We terminate an algorithm if the running

time is more than 105 seconds.
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Figure 5.3: Retrieving the (α, β)-communities, varying α and β

Datasets. We use 10 real-world datasets in our experiments, which are Record labels (RL),

YouTube (YG), Github (GH), Dbpedia Team (TM), IMDB (IM), Wikipedia categories

(WC), Flickr (FG), DBLP (PA), MovieLens (ML) and Delicious-ui (DUI). All the used

datasets can be found in KONECT 1.

The summary of datasets is shown in Table 5.2. U and L are vertex layers, E denotes the edge set.

We also show the types of edges and vertices in the table.

1http://konect.cc/
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Figure 5.4: Part of the bipartite hierarchy for IMDB

5.6.2 Application on network visualization

Here, we visualize a part of the bipartite hierarchy of IMDB in Figure 5.4, which shows two upper

trees and two lower trees with a clearly branching and hierarchy structure. IU
5 , IU

10, IL
5 , and

IL
10 contains 95, 57, 694, and 245 tree nodes, respectively. Due to the short of space, we omit

the tree nodes that (1) do not have any children and directly link to the root; (2) or locate in the

middle of a chain. We show the tree nodes with different colors and shapes, where the color

denotes the density of its corresponding (α, β)-component computed with the equation d(G) =

|E(G)|/
√
|U(G)||L(G)| [100], and the shape denotes the size of its (α, β)-component. The tree

level of each tree node is also shown on the left of the tree. We can observe that in the same tree,

with the increasing of tree level, the density of the component is generally increased, and the size

of the component is decreased. In addition, IU
5 has more tree nodes than IU

10 and the deepest tree

level of IU
5 is greater than IU

10. However, at the same level, the component of IU
10 is denser than

IU
5 . Similar observations can also be made in lower trees. In this case study, we validate that

our bipartite hierarchy can clearly show the hierarchy of a bipartite network at different levels of
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granularity and can be used to find the dense regions.
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Figure 5.5: Performance on searching communities

5.6.3 Application on efficient community search

Given a query vertex q and parameters α, β, we aim to search the set of vertices in the (α, β)-

component of q. In Figure 5.5, we evaluate the performance of community search algorithms

on all the datasets by setting α = β = 0.5δ. Here, δ is the maximal value where a (δ, δ)-core

exists in a bipartite graph. We can see that, based on the bipartite hierarchy, the query algorithm

Qh significantly outperforms the online algorithm Qo and the bicore-index-based algorithm Qv

by several orders of magnitude. This is because Qh does not need a further BFS to obtain the

connected components of the query vertex. We also vary the parameters α and β to evaluate the

performance of these algorithms in Figure 5.3. We can see that when α and β become larger,

Qh can be much faster than Qo and Qv. This is because with α and β increases, the size of the

community is decreased, and the vertices that need to be retrieved in the bipartite hierarchy is

decreased.

5.6.4 Evaluations of the bipartite hierarchy

Evaluating the hierarchy construction time and size. Here, we evaluate the construction time

and size of the hierarchy.

1) Hierarchy construction time. In Figure 5.6, we evaluate the index construction algorithms HC-

TD and HC-BU on all the datasets. We can see that the bottom-up approach HC-BU significantly
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outperforms the top-down approach HC-TD on all the datasets. This is because HC-BU can utilize

the nested structure of the (α, β)-core model to share some construction costs. Note that HC-TD

cannot build the hierarchy on large datasets FG, ML and DUI within the given time limit.

2) The size of hierarchy. As shown in Figure 5.7, we evaluate the size of the bipartite hierarchy by

comparing it with the graph size (i.e., |G|). We can see that the size of the bipartite hierarchy is

only 1.4×-13.7× to the graph size, which is very space-efficient in practice.

5.7 Conclusion

In this work, we discover the hierarchy of bipartite graphs based on the (α, β)-core model. We

propose the bipartite hierarchy model and devise efficient algorithms for constructing the hierarchy

algorithms. We conduct extensive experiments to validate the effectiveness and efficiency of the

proposed techniques.
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Chapter 6

Conclusion and Future Directions

This chapter will summarise our work and several possible directions for future work. Specifically,

in Section 6.1 we will summarize the significant contribution of this thesis. And in Section 6.2,

we will propose several possible directions for future work.

6.1 Conclusions

In this thesis, we are mainly working on improving the usability and efficiency of the graph

database. We designed SQL2Cypher system to automatically convert RDBMS to graph database

to enhance the availability of graph database. FSPS improves the efficiency of graph database

queries by FPGA acceleration. Since several graphs databases currently do not support cohesive

subgraph mining, such as PatMat [51], Neo4j [19], and so on. Therefore, we explore this aspect of

the graph database and try to implement the bipartite graph model in the graph database. Different

models and algorithms can increase the usability of the graph database. The challenges we address

in the thesis: (1) Automatic migration of relational databases to graph databases and support for

query language translation, (2) Store graph data and support graph database query language and

(3) Explore new bipartite graph models and design the construction and maintenance algorithms.

59



CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we mainly optimize the availability and operation of the graph database system. To

improve the usability, in the first work , we propose a system called SQL2Cypher that can convert

the relational database system to a graph database system. The system will detect whether the table

can be converted into an edge with the properties to save disk space and adapt relational databases

to graph databases. In addition, Our system performs data similarity checks when migrating data

to save storage space. To translate the SQL queries to Cypher queries with relationships, we

store the relationships of migrated tables as a graph structure. We also provide a user-friendly and

interactive interface for the ease of users. To improve the efficiency of graph database operation, in

the second work, we propose a system called SQL2Cypher that can convert the relational database

system to a graph database system. The system will detect whether the table can be converted into

a property edge to save disk space and adapt relational databases to graph databases. In addition,

Our system performs data similarity checks when migrating data to save storage space. To translate

the SQL queries to Cypher queries with relationships, we store the relationships of migrated tables

as a graph structure. We also provide a user-friendly and interactive interface for the ease of users.

Lastly, in order to adapt the graph database to a wider range of problems, we explored the model

of cohesive subgraphs. In this work, we discover the hierarchy of bipartite graphs based on the

(α, β)-core model. We propose the bipartite hierarchy model and devise efficient algorithms for

building the hierarchy. In addition, we also propose hierarchy maintenance algorithms to handle

the cases when edges are inserted/deleted dynamically. We conduct extensive experiments to

validate the model’s effectiveness and the algorithms’ efficiency in real-world graphs..

6.2 Directions for future work

In this section, we will propose several possible directions for future work. SQL2Cypher: Au-

tomated Data and Query Migration from RDBMS to GDBMS. There are many relational

databases and graph databases that we do not support yet to support more conversions between

relational and graph databases in the future. For relational databases, currently SQL2Cypher sup-

ports MySQL, PostgreSQL and Microsoft SQL. For graph databases, we currently support Neo4j

and PatMat. We may also need to convert the graph database to the relational database in real life.
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So in the future, we can add this function to our system. In addition, we can use machine learning

to train and identify schema in relational databases, which will allow our system to adapt to more

databases.

FSPS: Accelerating Subgraph and Path Queries Using FPGA. Currently, FSPS supports the

two most commonly used algorithms, both subgraph matching and path query. For the subgraph

pattern matching, the user only can draw the patterns with properties now. This query approach

is not a formal way of searching, and there is no way to do the batch search. In future work, we

can support Cypher query language for our system. In addition, it would be interesting to support

more algorithms for our system, such as k-core community search, bipartite graph algorithms (e.g.,

(α, β)-core ) and k-truss. In addition, instead of adding algorithms, we can explore to support the

distributed framework for our system. Furthermore, We can design FSPS as a distributed database,

which can effectively improve the query performance of the system.

Discovering Hierarchy of Bipartite Graphs with Cohesive Subgraphs. With the popularity of

distributed frameworks in recent years, many graph algorithms are using distributed frameworks

for graph processing, such as subgraph matching [47,101]. For bipartite hierarchy, every bipartite

hierarchy can be processed in parallel. It would be interesting to see how to construct the bipartite

hierarchy in a distributed framework. In addition, using FPGA to accelerate bipartite hierarchy

construction might be an interesting issue to be investigated.
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