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Abstract

The goal of this thesis is to improve the existing wavelet transform with the aid of machine
learning techniques, so as to enhance coding e�ciency of wavelet-based image compression
frameworks, such as JPEG 2000 [1].

In this thesis, we first propose to augment the conventional base wavelet transform with
two additional learned lifting steps – a high-to-low step followed by a low-to-high step.
The high-to-low step suppresses aliasing in the low-pass band by using the detail bands
at the same resolution, while the low-to-high step aims to further remove redundancy
from detail bands by using the corresponding low-pass band. These two additional steps
reduce redundancy (notably aliasing information) amongst the wavelet subbands, and also
improve the visual quality of reconstructed images at reduced resolutions.

To train these two networks in an end-to-end fashion, we develop a backward annealing ap-
proach to overcome the non-di�erentiability of the quantization and cost functions during
back-propagation. Importantly, the two additional networks share a common architecture,
named a proposal-opacity topology, which is inspired and guided by a specific theoretical
argument related to geometric flow. This particular network topology is compact and
with limited non-linearities, allowing a fully scalable system; one pair of trained network
parameters are applied for all levels of decomposition and for all bit-rates of interest. By
employing the additional lifting networks within the JPEG 2000 image coding standard,
we can achieve up to 17.4% average BD bit-rate saving over a wide range of bit-rates,
while retaining the quality and resolution scalability features of JPEG 2000.

Built upon the success of the high-to-low and low-to-high steps, we then study more
broadly the extension of neural networks to all lifting steps that correspond to the base
wavelet transform. The purpose of this comprehensive study is to understand what is the
most e�ective way to develop learned wavelet-like transforms for highly scalable and ac-
cessible image compression. Specifically, we examine the impact of the number of learned
lifting steps, the number of layers and the number of channels in each learned lifting net-
work, and kernel support in each layer. To facilitate the study, we develop a generic train-
ing methodology that is simultaneously appropriate to all lifting structures considered.
Experimental results ultimately suggest that to improve the existing wavelet transform,
it is more profitable to augment a larger wavelet transform with more diverse high-to-low
and low-to-high steps, rather than developing deep fully learned lifting structures.
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Chapter 1

Introduction

1.1 Problem Statement

The wavelet transform has been successfully employed in a variety of codecs and open

image compression standards; examples include JPEG 2000 [13] [1], the BBC’s VC2 codec,

and JPEG-XS [14]. The wavelet transform provides a balance between energy compaction

and sparsity preservation, by analyzing the image with a hierarchical family of compact

support operators, realized through successive filtering and down-sampling. Importantly,

the wavelet transform naturally produces a multi-resolution representation of the image,

which enables reconstructions at dyadically-spaced image resolutions, a feature known as

resolution scalability.

Although the wavelet transform provides excellent energy compaction for horizontal and

vertical edges, slanted features are poorly characterized by the separable wavelet filters,

which leads to significant redundancy between all subbands and visually disturbing arti-

facts in the reconstructed images along diagonal edges. Solutions have been explored to

improve directional sensitivity of the wavelet transform, which can be broadly categorized

into traditional approaches and machine-learning based methods.

In the traditional approaches, oriented transforms [15–21] employing directional filter
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banks are proposed to capture geometric structures within an image. However, when

such schemes are employed for image compression, the orientation information needs to

be explicitly coded and communicated in order to correctly inverse the respective trans-

form.

In the last decade, researchers experimented with machine-learning based approaches to

improve coding e�ciency in image compression applications, with very promising results.

For wavelet-based image compression, which is the topic of this thesis, examples include

[22–26]. These methods inherit the multi-scale representation from the wavelet transform,

which provides resolution scalability; however, none of them explore quality scalability or

region-of-interest accessibility. Additionally these works do not investigate ways to directly

train neural networks for rate-distortion objectives; instead, alternative training objectives,

such as energy compaction of the transformed coe�cients or prediction residuals, are used

as proxies for coding e�ciency.

In contrast, some researchers experimented with image compression designs that employ

neural networks only; these designs usually adopt an end-to-end optimization that explic-

itly targets rate-distortion objectives [8, 27–31]. Even though these end-to-end schemes

achieve significantly better compression results, they lack resolution scalability, quality

scalability and region-of-interest accessibility of wavelet-based compression frameworks.

They also have significantly higher computational complexity and huge receptive field in

the image domain. Additionally, network structures and trained parameters are mostly

dependent on the target compression bit-rates.

As a result, in this thesis, we aim to develop low-complexity learning-based wavelet-like

compression schemes, which inherit quality scalability, resolution scalability and random

region-of-interest accessibility from the conventional wavelet transform. In these proposed

schemes, our target is to achieve high coding e�ciency and scalability by applying only

one set of trained networks to all levels of decomposition and to all bit-rates of interest

over a wide range. In addition, we also aim to take advantage of end-to-end optimization

to jointly train all networks for optimized rate-distortion performance.
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1.2 Our Contributions

The contributions of this thesis are carried out in two stages. In the first stage, we only

consider augmenting the conventional base wavelet transform with two additional learned

lifting steps. This first stage makes the following contributions:

• The disclosure of the role of geometric flow in untangling redundancy (notably alias-

ing information) between successive levels of the wavelet transform. We also demon-

strate how this specific theoretical argument on geometric flow is connected with

super resolution and optimized reconstruction problems.

• The development of three structures for reducing redundancy in the wavelet trans-

form, named low-to-high, high-to-low and hybrid approaches.

• The development of a proposal-opacity network topology, which is inspired and

guided by the underlying hypothesis about geometric flow. This structure involves

a collection of purely linear filters, and so comes with fairly low computational com-

plexity and a relatively small region of support in the image domain.

• The development of the end-to-end optimization framework with a backward anneal-

ing approach to manage discontinuities in quantization and cost functions during

training, so as to jointly optimize all networks for rate-distortion performance.

Built upon the success of the first stage, we then study more broadly the incorporation of

neural networks to all lifting steps that correspond to the base wavelet transform in the

second stage. The contributions of this second stage are:

• A comprehensive study on what can be achieved by learning-based wavelet-like trans-

forms, with respect to the depth of lifting structures, the diversity of lifting networks

and region of support in the image domain.

• The development of a particular training schedule, which utilizes pre-defined oracle

opacities to initialize and to progressively train all proposal-opacity lifting networks
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in the end-to-end optimization framework.

• The recommendations on how to strategically deploy neural networks for improving

wavelet-based image compression systems, especially for practical applications.

1.3 Outline of This Thesis

The rest of this thesis is arranged as follows. Chapter 2 to Chapter 6 are mostly literature

survey, while Chapter 7 to Chapter 13 represent contributions of this thesis.

Chapter 2 introduces the basic concepts of image compression, especially the perspective

that every image compression system can be understood as vector quantization.

Chapter 3 reviews the classic feedforward compression structure, which simplifies the com-

pressor of vector quantization into three elements – transformation, quantization and

source coding. Our emphasis is on transformation, especially on the discrete wavelet

transform, which we intend to improve in this thesis.

Chapter 4 reviews predictive feedback compression structures, which present benefits as

well as principle weaknesses over the classic feedforward compression structure.

Chapter 5 reviews post-processing and inverse transform optimization (or in other words

optimized reconstruction) problems. This review provides another perspective to view the

work in this thesis.

Chapter 6 reviews existing autoencoders with di�erent neural network architectures; these

autoencoders do not present desirable features, such as quality scalability, resolution scal-

ability and region-of-interest accessibility, which otherwise exist in this thesis. We also

review existing end-to-end training strategies, whose weaknesses motivate the proposed

learning strategy in this thesis.

Chapter 7 reveals a specific theoretical argument related to the opportunity presented by
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geometric flow to remove redundancy between successive levels of the wavelet decomposi-

tion.

Chapter 8 introduces three general structures: low-to-high, high-to-low and hybrid struc-

tures to augment and enhance the conventional wavelet transform.

Chapter 9 provides insights on how the underlying theory about geometric flow drives the

proposal-opacity network topology that we eventually select.

Chapter 10 introduces the proposed end-to-end learning strategy with a backward anneal-

ing approach to overcome the non-di�erentiability of the quantization and cost functions

during back-propagation. This particular learning strategy has advantages over existing

end-to-end training approaches.

Chapter 11 discusses the experimental results on augmenting the conventional wavelet

transform with additional lifting networks.

Chapter 12 studies more broadly the extension of neural networks to all lifting steps that

correspond to the base wavelet transform. The main contribution of this chapter is the

development of an oracle-opacity training schedule.

Chapter 13 provides the experimental results for the performance of learning-based wavelet-

like transforms, with respect to the depth of lifting structures, the diversity of lifting

networks and region of support in image domain.

Chapter 14 concludes this thesis and highlights future directions.
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Chapter 2

Review: Basic Concepts of Image

Compression

2.1 Digital Images

A grayscale image is a two-dimensional collection of samples (or pixels), which can be

represented as

x © x[n1, n2], n1 œ [0, N1), n2 œ [0, N2) (2.1)

where n1 and n2 denote the horizontal and vertical coordinates/indices of each pixel, within

finite extents N1 and N2 respectively. The pixel value x[n1, n2] reflects the intensity, or

can be understood as the luminance, of the image at the coordinates [n1, n2]. This value

is often a B-bit signed or unsigned integer as

x[n1, n2] œ
Ó

0, 1, · · · , 2B ≠ 1
Ô

for unsigned images, and (2.2)

x[n1, n2] œ
Ó

≠2B≠1
, ≠2B≠1 + 1, · · · , 2B≠1 ≠ 1

Ô
for signed images; (2.3)

therefore, the image x requires N1N2B bits to represent all pixel values without any

compression. For natural images, B = 8 is the most commonly encountered representation;

larger bit-depth, e.g. 12-bit or 16-bit, is commonly adopted for high dynamic range (HDR)
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imagery, including professional and consumer imagery. In many cases, these B-bit integer

values are often uniformly scaled into the range [0, 1] (unsigned) or [≠1
2 ,

1
2 ] (signed) to

form a floating point representation of images.

A colour image, on the other hand, is a collection of M image components as

xm[n1, n2], m = 1, 2, · · · , M (2.4)

The typical color images have three values at each pixel location, corresponding to red,

green and blue primary color components; these images are known as RGB images. In this

thesis, we restrict our attention to grayscale images having only one image component,

as we can always develop and apply a compression system to each image component

separately. Moreover, it helps to avoid confusing our proposed spatial transforms with

color dependent questions, such as the optimal choice of color transforms, etc.

2.2 Image Compression As Vector Quantization

As we discussed in Section 2.1, the image x would require N1N2B bits to represent all

pixel values if no compression was involved. Since these N1N2B bits are considered to be

redundant, the primary purpose of image compression is to minimize the number of bits

ÎcÎ, i.e. the length of the compressed bit-stream c, that are needed to code the image x;

in the context of compression, ÎcÎ should be smaller than N1N2B, i.e., ÎcÎ < N1N2B.

In general, image compression can be categorized into lossless compression and lossy com-

pression. Using Fig. 2.1 as guidance, lossless image compression requires the decompressor

M≠1 to be the perfect inverse of the compressor M ; i.e., M≠1 = M
≠1. Therefore, no dis-

tortion is introduced to the reconstruction; i.e., x̂ © x. This perfect reconstruction is often

demanded in scenarios where reconstruction errors cannot be tolerated, such as medical

applications for diagnosis. However, it also imposes restrictions on the capability of the

compression system to achieve higher compression performance for other applications with

only limited storage space.

7



CHAPTER 2. REVIEW: BASIC CONCEPTS OF IMAGE COMPRESSION

Figure 2.1: The global mapping operation of compressing the image x.

For lossy image compression, which is the topic of this thesis, the compressor M is not

invertible and the decompressor M≠1 is only an approximate inverse of M ; i.e., M≠1 ¥

M
≠1. Therefore, the distortion D (x, x̂) must be present in the reconstruction. By allowing

some level of distortion, we expect that the image x can be represented with even fewer

bits compared with lossless compression. In fact, the amount of distortion introduced and

the number of bits required for coding in lossy compression are closely related and are

bounded by the rate-distortion theory; we shall see this more concretely in Section 3.4.

Essentially, the compressor M can be understood as an enormous look-up table with

2N1N2B entries, which maps the image x into the bit-stream c. If we assume the length of

this compressed bit-stream ÎcÎ is fixed, then the decompressor M≠1 can also be regarded

as another enormous look-up table with 2ÎcÎ entries, mapping the bit-stream c into the

reconstructed image x̂. The optimal bit-stream c can be constructed by selecting the bit-

stream whose corresponding reconstructed image best approximates the original image x

with minimum distortion; that is, to find

arg min
c

D (x, x̂) = arg min
c

D

1
x, M≠1(c)

2
(2.5)

Equation (2.5) is essentially the core concept of Vector Quantization (VQ); this conveys

an important message that conceptually every compression system can be viewed as a

vector quantizer. However, the size of the look-up table associated with the decompressor

M≠1 grows exponentially with the increase of the image size N1N2; this makes vector

quantization unrealistic for practical image compression applications.

Therefore, in practice, it is necessary to simplify the global mapping operations M and

M≠1 by decomposing them into elements that are interrelated. This motivates the classic

feedforward image compression structure as described in Chapter 3.

8



Chapter 3

Review: Classic Feedforward

Compression Structure

The classic feedforward structure for image compression is illustrated in Fig. 3.1. In this

structure, the compressor M is composed of three elements: transform, quantization and

coding; each of these elements has the ability to exploit statistical redundancy within the

input image x or within the outputs of the previous stage, so as to minimize the length of

the bit-stream ÎcÎ to achieve compression. Subsequently, the decompressor M≠1 employs

inverse transform, dequantization and decoding as the corresponding inverse elements to

reconstruct the original image with some level of distortion. This classic structure is the

most commonly encountered image compression structure, and is essentially the structure

that we employ in this thesis.

3.1 Transform

The purpose of the transform is to decorrelate the statistical dependencies that exist in

the original image x; this is achieved by mapping the original image samples x into a

new set of coe�cients y using some operator T . The resulting transform coe�cients y

9



CHAPTER 3. REVIEW: CLASSIC FEEDFORWARD COMPRESSION STRUCTURE

Figure 3.1: The classic feedforward image compression structure.

exhibit considerably less redundancies – in the ideal case, they could even be statistically

independent – therefore can be represented and compressed more e�ciently.

The transform T employed in this classic feedforward compression structure has two impor-

tant properties. First, it is always invertible, therefore its inverse transform T
≠1 employed

at the decompressor does not introduce any distortion; this is in contrast to the autoen-

coders in Chapter 6, in which the learning-based transforms are usually non-invertible and

so do not have the ability to accurately represent the image x without any loss. Secondly,

the transform T is usually linear; that means the synthesis vectors of the transform can

be generally understood as a set of basis vectors. Since the number of non-zero trans-

form coe�cients should be limited for the purpose of image compression, this implies that

the image x needs to be approximated well using only a small number of basis vectors.

Additionally, this approximation should be well matched to the statistics of the image x.

Apart from invertibility and linearity, there are many other considerations taken into ac-

count when designing the transform T within this classic compression structure. From

the analysis (compressor) perspective, the transform design needs to consider sparsity and

energy compaction of the basis representation; a good set of basis vectors has the ability to

compact the energy of the image x into only a small set of significant coe�cients, so that

the other coe�cients can be quantized to zero. The importance of this is revealed by recog-

nizing that every non-zero quantized sample will consume significantly more than 1 coded

bit with simple scalar quantization (Section 3.2), since the sign at least is usually uni-

10



3.1. TRANSFORM

formly distributed. From the synthesis (decompressor) aspect, the transform design also

needs to consider the way that quantization errors expand through the inverse transform

T
≠1 during reconstruction. These considerations essentially impose certain constraints on

the design of the transform T or equivalently the inverse transform T
≠1 within this classic

compression structure; this is in contrast to the autoencoders in Chapter 6, where the rela-

tionship between the transform T and the inverse transform T
≠1 is usually unconstrained,

although still subject to a coding e�cient objective that takes distortion into account.

Since this thesis focuses primarily on improving the existing wavelet transform, we find it

necessary to review some transforms that have been widely adopted in the context of image

compression, along with their respective weaknesses and benefits. Two representative

transforms are explicitly addressed here: the Discrete Cosine Transform (DCT) [32] that

is the basis of the JPEG image compression standard [2] and most video coding standards,

and the Discrete Wavelet Transform (DWT) [33] that has been employed in the JPEG

2000 image compression standard [1].

3.1.1 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a real-valued orthonormal transform, whose

basis vectors are unit sampled cosine functions oscillating at di�erent frequencies [32].

Specifically, the basis vectors si of the N -point one-dimensional DCT are defined as

si,p = ki cos
3

2fifi

3
p + 1

2

44
; fi = i

2N
(3.1)

where ki is the normalization scalar, defined as in (3.2), to ensure ÎsiÎ = 1 while fi denotes

the frequency of each cosine function si,p.

ki =

Y
_]

_[

Ò
1
N

if i = 0
Ò

2
N

if i ”= 0
(3.2)

The basis vectors of the two-dimensional DCT, therefore, can be defined as the separable

extension of the one-dimensional DCT as

(si1,i2)
p1,p2

= ki1ki2 cos
3

2fifi1

3
p1 + 1

2

44
cos

3
2fifi2

3
p2 + 1

2

44
(3.3)
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CHAPTER 3. REVIEW: CLASSIC FEEDFORWARD COMPRESSION STRUCTURE

The DCT has many desirable features, particularly for image compression applications.

A key attribute of the DCT is its ability to approximately diagonalize the covariance

matrix of the source signal as N becomes large. This means that the DCT is a robust

approximation to the optimal transform [34] – the Karhunen-Loeve transform (KLT) ,

which perfectly decorrelates the source signal [35]; decorrelation is a necessary condition for

statistical independence, and so is usually taken as an objective for good linear transforms.

The advantage of the DCT is that the DCT does not require adaptation to the statistics

of the source signal, unlike the KLT; this is also the main reason why the KLT is not

widely employed in practical image compression standards, despite being the optimal

decorrelation transform.

Another important attribute of the DCT is its energy compaction property; it compacts

most of the source signal energy into lower frequency coe�cients, whereas higher frequency

coe�cients are small and can be quantized to nearly zero. This means that only a small

number of quantized DCT coe�cients needs to be coded compared to the original image

samples, leading to higher coding e�ciency. This feature is present in the Discrete Fourier

Transform (DFT) as well, which also asymptotically converges to the KLT with increasing

block size for a wide-sense stationary (WSS) random process. However, for small block

sizes, the DCT converges faster and so presents better energy compaction than the DFT

due to the lack of boundary transients.

Moreover, the DCT and the DFT have other things in common, as they both employ

unit sampled sinusoids to map the source signal from the spatial domain to the frequency

domain for decorrelation. The similarities lead to another desirable feature of the DCT; it

can be e�ciently computed with fast algorithms, e.g. the Fast Fourier Transform (FFT)

algorithms that have been well developed for the DFT. In practice, these fast algorithms

are usually block-based; the most commonly used block size is 8 x 8, which has been

adopted by the JPEG image compression standard [2].

This block-based implementation, however, results in two principle weaknesses when the

DCT is employed for image compression: 1) the loss of the opportunity to exploit statistical

redundancy between di�erent blocks, if they are coded independently; and 2) severe block
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3.1. TRANSFORM

Figure 3.2: Severe block artifacts in the reconstructed image when the DCT is employed
for image compression at low bit-rate (0.044 bpp).

artifacts in the reconstructed image, especially at low bit-rates, as seen in Fig. 3.2. The

first issue is addressed to some extent in predictive coding methods; examples can be found

in [36–38]. However, these methods cannot modify the visual structure of the quantization

errors in the DCT; the errors are still expanded into the reconstructed image through the

DCT basis functions, which are block-like and so cause block artifacts.

3.1.2 Discrete Wavelet Transform

3.1.2.1 Wavelets and Multi-resolution Analysis

The main limitation of the DCT is the block-based implementation, which means only

samples within each independent block are decorrelated. However, there is no fundamental

reason for us to believe that the neighbouring blocks are completely uncorrelated; in fact,

neighbouring samples are highly correlated in natural images.

The wavelet transform, in contrast, does not su�er from this limitation; instead, it is

implemented as a sliding window on the entire image, which e�ectively avoids blocking

artifacts in the reconstructed image. More importantly, the wavelet transform serves as
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a powerful tool to analyse the source image with varying features over di�erent scales;

this is known as multi-resolution analysis. This multi-resolution analysis is of particular

interest for image compression, as it enables reconstructions at dyadically-spaced image

resolutions, a feature known as resolution scalability.

One way to understand the multi-resolution analysis property of wavelets is to suppose

that we start with a continuous signal x
0(t) at a certain resolution V0 of the Hilbert Space

L2(R), which can be characterized by the discrete sequence y
0
0[n] as

x
0(t) =

ÿ

nœZ
y

0
0[n]Ï(t ≠ n) =

ÿ

nœZ
y

0
0[n]Ïn(t) (3.4)

The symbol Ïn represents the basis function that spans the sub-space V0; the function

Ï(t) is also known as the scaling function.

Suppose the space V0 can be further decomposed into another two orthogonally comple-

mentary sub-spaces, V1 (the approximation space) and W1 (the detail space), such that

W1 ‹ V1 and W1 ü V1 = V0 (3.5)

Then the signal x
0(t) in (3.4) can be decomposed accordingly into low-pass sequence y

1
0[n]

and high-pass sequence y
1
1[n] as

x
0(t) =

ÿ

nœZ
y

0
0[n]Ïn(t)

=
ÿ

nœZ
y

1
0[n]Ï1

n(t) +
ÿ

nœZ
y

1
1[n]Â1

n(t) (3.6)

where Ï
1
n and Â

1
n are the basis functions of the sub-space V1 and W1, respectively.

If we continue recursively decomposing the low-pass sequence y
1
0, y

2
0 and so forth for D

levels, eventually the signal x0(t) can be spanned using the basis functions
Ó

Â
d
n

Ô

d,nœZ
when D becomes infinitely large, as seen in (3.7).

x
0(t) =

ÿ

nœZ
y

D

0 [n]ÏD

n +
Dÿ

d=1

ÿ

nœZ
y

d

1 [n]Âd

n

¥
Dÿ

d=1

ÿ

nœZ
y

d

1 [n]Âd

n, when D æ Œ (3.7)
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This reveals the core idea of the wavelet transform; that is to find the wavelet basis

functions
Ó

Â
d
n

Ô

d,nœZ
that span all sub-spaces of L2(R) as a multi-resolution hierarchy,

and are all translated and dilated versions of a single mother wavelet Â(t). This mother

wavelet Â(t) is also known as the wavelet function.

3.1.2.2 Wavelets from Subband Transform

In practice, the wavelet basis is usually constructed using subband transforms. To see

the intimate connection between subband transforms and wavelet transforms, suppose the

signal x
0(t) in (3.4) is decomposed into the low-pass sequence y

1
0[n] and the high-pass

sequence y
1
1[n] using a two-channel subband transform with analysis low-pass and high-

pass filters, h0 and h1. Then x
0(t) can be reconstructed using the synthesis low-pass and

high-pass filters, g0 and g1, of the same subband transform as

x
0(t) =

ÿ

nœZ
y

0
0[n]Ïn(t)

=
ÿ

nœZ

Q

a
ÿ

iœZ
y

1
0[i]g0[n ≠ 2i] +

ÿ

jœZ
y

1
1[j]g1[n ≠ 2j]

R

b Ïn(t)

=
ÿ

iœZ
y

1
0[i]

Q

a
ÿ

nœZ
g0[n]Ïn(t ≠ 2i)

R

b +
ÿ

jœZ
y

1
1[j]

Q

a
ÿ

nœZ
g1[n]Ïn(t ≠ 2j)

R

b

=
ÿ

iœZ
y

1
0[i]Ï1

i (t) +
ÿ

jœZ
y

1
1[j]Â1

j (t) (3.8)

We can see that the subband decomposition of x
0(t) in (3.8) yields exactly the same equa-

tion as the wavelet decomposition in (3.6). This reveals the fact that subband transforms

can serve as a vehicle for constructing the wavelet basis.

If we continue recursively decomposing the low-pass sequence y
1
0, y

2
0 and so forth for D

levels using this subband analysis operation, a dyadic tree-structured subband transform

results, as seen in Fig. 3.3. This tree-structured subband transform yields exactly the same

decomposition of x
0(t) as derived in (3.7); it essentially constructs the wavelet function

Â(t) through infinite convolution of the subband filters g1[n] and g0[n], whose translates
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and dilates span L2(R). For this reason, this subband transform is often known as the

Discrete Wavelet Transform (DWT).

Figure 3.3: Dyadic tree-structured subband transform (i.e. the DWT) with analysis and
synthesis operations for D levels.

Although subband transforms and wavelet transforms are often used interchangeably in

the literature, it is important to highlight the fact that not every subband transform can

be regarded as a wavelet transform. One important constraint is that infinite convolution

of the subband filters must converge. This strict constraint on convergence reveals another

important property of the wavelet transform, known as self-similarity. Of course there are

other conditions for a subband transform to be a wavelet transform; interested readers

can refer to [39–41] for more details.

3.1.2.3 Self-similar Property of the Wavelet Transform

To understand the self-similar property of the wavelet transform, we first restrict our at-

tention to the continuous domain. As we have elaborated in Section 3.1.2.1, the underlying

continuous basis functions of the wavelet transform are indeed scaled, and so are exactly

self-similar in the hypothetical sub-spaces
Ó

Vd

Ô

dœZ
of the Hilbert Space L2(R).

Subsequently, as we descend through multiple scales in the discrete domain in Section 3.1.2.2,
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the samples of the discrete basis functions of the DWT asymptotically converge to the sam-

plings of the underlying continuous wavelet or scaling functions of the wavelet transform.

This implies that the starting basis at the finest resolution becomes asymptotically ir-

relevant, because the resulting di�erence in the continuous wavelet basis functions only

a�ects the high frequency components, which gradually disappear at lower resolutions. In

other words, the hypothetical multi-scale model in the continuous domain as well as its

self-similar property become valid in the discrete domain below the finest resolution.

This self-similar property is very useful, because in many cases natural images also exhibit

a self-similar property across resolutions; this is known as a fractal property of natural

images [42]. More importantly, this thesis is underpinned by the self-similar property of

the wavelet transform, as it opens the opportunity for us to construct a fully scalable

system, which only employs one set of networks (transforms) for all levels of the wavelet

decomposition.

3.1.2.4 The Lifting Scheme

In contrast to the dyadic tree-structured implementation of the wavelet transform as de-

scribed in Section 3.1.2.2, Wim Sweldens introduced an alternative implementation of

the wavelet transform, called the lifting scheme. The key idea of the lifting scheme is

to factorize the poly-phase matrix of the wavelet (or subband) filters into a sequence of

elementary convolution steps, known as lifting steps [43–45]. This factorization e�ectively

reduces the number of arithmetic operations by nearly a factor of two, leading to a fast

implementation of the wavelet transform [46].

Figure 3.4: The structure of a typical lifting scheme of the wavelet transform.
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Fig. 3.4 illustrates the structure of a typical lifting scheme. The input signal x[n] is first

split into two sequences: even and odd samples, x[2n] and x[2n + 1]. The even samples

x[2n] are used to predict the odd samples x[2n + 1]; this step is known as the predict

step. Then the odd samples x[2n + 1], along with its prediction from x[2n], are used to

update the even samples x[2n]; this step is known as the update step. The predict and

update steps alternate to produce the low-pass and high-pass subband, L1 and H1; the

total number of lifting steps varies for di�erent wavelet transforms. Of course, the same

process can be recursively applied to the low-pass bands L1, L2 and so forth, to produce

a multi-resolution wavelet representation of the input signal x in a cost-e�cient way.

Apart from its low implementation cost, the lifting scheme also allows us to include (or

employ) adaptive and non-linear elements in the wavelet transform, whose inverse trans-

form can be easily found by inverting the lifting steps. This is of particular importance

to this thesis, because we essentially utilize this property of the lifting scheme to design

and implement our proposed lifting-based networks, as seen in Section 12.1. Interested

readers can refer to [46] for more detailed explanations about other advantages of the

lifting scheme.

3.1.2.5 The two-dimensional Discrete Wavelet Transform (2D-DWT)

Since the wavelet transform is separable, the 2D-DWT can be implemented by decompos-

ing the input image x[k] first vertically and then horizontally, using the low-pass and the

high-pass filters, h0 and h1, as illustrated in Fig 3.5(a). The subband y0,0[n] is regarded

as the LL subband as it captures low frequency along both the horizontal and the ver-

tical directions. The subband y0,1[n] is identified as the HL subband as it captures the

horizontally-aligned high frequency components and the vertically-aligned low frequency

components. Similarly, y1,0[n] and y1,1[n] are denoted as the LH and the HH subband,

respectively. By further decomposing the LL bands, a two-dimensional multi-resolution

wavelet analysis system results as illustrated in Fig. 3.5(b). To implement the 2D-DWT

e�ciently, the lifting scheme discussed in Section 3.1.2.4 is also applicable here; it is also
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the preferred implementation in modern wavelet-based image compression standards, such

as JPEG 2000 [1].

Fig 3.6 illustrates an example of the 2D-DWT decomposition of a real image. We can

observe that the LL band represents a lower resolution of the image. The HL bands

mainly capture the vertical edges within the original image at di�erent scales, while the

LH and the HH bands capture the horizontal and the diagonal edges at each resolution

respectively.

(a) (b)

Figure 3.5: The 2D-DWT analysis system.

Figure 3.6: An example of the 2D-DWT decomposition of a real image.

19



CHAPTER 3. REVIEW: CLASSIC FEEDFORWARD COMPRESSION STRUCTURE

3.1.2.6 Limitations of the Wavelet Transform

Although the wavelet transform provides excellent energy compaction for horizontal and

vertical edges, slanted features are poorly characterized by the separable wavelet filters;

that means these slanted edges are less sparse, spreading out and appearing in each sub-

band, as exemplified in Fig. 3.7(a). More importantly, this poor directional sensitivity

of the wavelet transform creates visually disturbing artifacts in the reconstructed images

along directional edges, as illustrated in Fig. 3.7(b).

(a) (b)

Figure 3.7: Limits of the wavelet transform: (a) illustrates the slanted edges which are
less sparse and appear in each subband; (b) illustrates the visually disturbing artifacts in
the reconstructed image (at 0.1 bpp) along diagonal edges.

3.1.2.7 Existing Methods to Improve the Wavelet Transform

Since this thesis focuses primarily on improving the existing wavelet transform with the

aid of neural networks, we find it useful to review some existing approaches that have been

explored to overcome the limits of the wavelet transform; broadly, these methods can be

categorized into traditional approaches and machine-learning based methods.

In the traditional approaches, oriented transforms are proposed to capture geometric struc-

tures within an image; examples include the Curvelet Transform [15, 16], the Ridgelet
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Transform [17], the Contourlet Transform [18], the Bandelet Transform [19], directional

wavelet transforms [20, 21], directional complex wavelet transform (CWT) [47–49] and

dual-tree complex wavelet transform (DT-CWT) [50–52]. These methods involve con-

structing filters banks that are orientated at a variety of directions to capture smooth

contours in images, so as to better characterize slanted edges. This is very important

because heavily compressed images can only be represented by a relatively small number

of non-zero coe�cients; therefore, to capture oriented features accurately, the synthesis

basis functions must also be able to exhibit similar orientations.

Furthermore, e�orts are also invested to apply additional operations to the conventional

wavelet transform, which e�ectively orient the wavelet basis functions to the direction

of local geometric regularity. For example, Mehrseresht and Taubman [53] propose to

employ a in-band shifting technique to each existing lifting step of the wavelet transform;

this shifting operation essentially aligns the geometric features along the vertical and

horizontal directions, so that each lifting step can be adapted to local image features.

Similarly, Ding et al. [54] propose to incorporate directionally spatial prediction into the

conventional lifting steps of the wavelet transform; each lifting step is applied at the

direction which exhibits the strongest correlation, instead of only at horizontal and vertical

directions, to improve directional sensitivity of the wavelet transform. Interested readers

can refer to [55–58] for more related works.

However, when the aforementioned schemes are employed for image compression, they all

encounter the same problem – orientation information needs to be explicitly coded and

communicated in order to correctly inverse the respective transform.

In the last decade, researchers experimented with machine learning based approaches to

improve wavelet-based image compression; examples include [22–26]. In [22], Ma et al.

propose a neural network for context modeling in their JPEG2000-inspired arithmetic

coder, which they identify as Pixel Convolutional Neural Network (PixelCNN); they also

propose a post-processing step to enhance reconstructed image quality. In a later work

[23], they propose an iWave transform; this transform replaces the predict step of the

conventional wavelet transform with a CNN while keeping the update step as a simple
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averaging operation. The iWave transform improves energy compaction compared to the

CDF 9/7-based wavelet transform of the JPEG2000 standard. In [24], Dardouri et al.

propose to replace both the predict and update steps of the conventional wavelet transform

with a Fully Connected Neural Network. This work is further extended in [25]; however,

performance improvements over JPEG2000 could be obtained only for the SSIM metric and

the uncommon PieAPP metric. In [26], Li et al. propose the reversible autoencoder (Rev-

AE), which is a lifting based wavelet-like codec with theoretical guarantees on transform

reversibility and robustness to reconstruction quantization errors; their proposed approach

shows competitive results compared to JPEG2000.

These wavelet-like learning-based methods naturally inherit the multi-scale representation

from the wavelet transform, which provides resolution scalability; however, none of them

explore quality scalability or region-of-interest accessibility. Additionally, these works

do not investigate ways to directly train the networks for rate-distortion objectives, as

seen in Section 6.1; instead, alternative training objectives, such as energy compaction

of the transformed coe�cients or prediction residuals, are used as proxies for coding ef-

ficiency. These are in contrast to the autoencoders in Chapter 6, which directly target

rate-distortion objectives but do not preserve important features such as multi-resolution

analysis. These are also in contrast to this thesis, in which two proposed networks are end-

to-end trained for the rate-distortion objective while still preserving resolution scalability,

quality scalability and region-of-interest accessibility.

3.2 Quantization

Returning to the simplified model of the compression system in Fig. 2.1, as we have

already mentioned, the transform is normally regarded as an invertible operator and so

does not introduce any loss. The sole source of distortion in this classic compression

structure is quantization. The purpose of quantization is to map the transform coe�cients

y = y[n1, n2] into a finite collection of symbols q = q[n1, n2], which can be coded more

e�ectively; these symbols are known as quantization indices.

22



3.2. QUANTIZATION

The simplest form of quantization is scalar quantization, which associates a quantization

index q[n1, n2] independently to each transform coe�cient y[n1, n2] according to

q[n1, n2] = i if y[n1, n2] œ �i (3.9)

where �i refers to a quantization interval and the collection of {�i}i
covers the entire range

of the transform coe�cients y, as exemplified in Fig. 3.8. If the quantization intervals are

constant, i.e., �i = � for all i, � is then commonly known as the quantization step size. As

we can see, quantization is essentially a many-to-one mapping and in general not invertible;

the inverse quantization operator (the dequantizer Q≠1) is only an approximation of Q
≠1,

therefore distortion is introduced.

Figure 3.8: The simple scalar quantizer with four quantization indices.

There are many ways for the dequantizer Q≠1 to reconstruct the transform coe�cients

y[n1, n2] from the quantization indices q[n1, n2]. The simplest way is to utilize midpoint

reconstruction; that is to select the reconstructed values ŷ[n1, n2] as the midpoints of the

quantization intervals �i, as highlighted in Fig. 3.8.

The scalar quantizer and midpoint reconstruction are fairly straight-forward and are the

most commonly used quantization and dequantization techniques in many modern image

compression standards, such as the JPEG 2000 standard. Additionally, they also align

with the idea of simplifying the global mapping operations M and M≠1 in Chapter 2.

Of course, there is a wealth of literature on developing more sophisticated quantization

techniques; as our research is not devoted to improving forms of quantization, we will not

review them any further here. Interested readers can refer to vector quantization [59–61],

trellis coded quantization [62–64] and machine-learning based quantization [65–67] for

more details.

23



CHAPTER 3. REVIEW: CLASSIC FEEDFORWARD COMPRESSION STRUCTURE

3.3 Coding

Although the transform is designed to exploit statistical redundancies amongst the orig-

inal image samples, in reality, it is hard to arrange for the transform coe�cients to be

statistically independent. More importantly, even if the coe�cients are statistically inde-

pendent, it is unlikely for them to be uniformly distributed. This is because the marginal

distribution of the transform coe�cients is expected to be highly skewed toward small

amplitudes, as we have elaborated in Section 3.1. As a result, the outputs of quantization

are also highly skewed toward the index whose quantization interval includes zero. There-

fore, the purpose of source coding is to exploit this highly skewed distribution as well as

the remaining statistical redundancy amongst the outputs of the quantization step, so as

to minimize the average number of bits that are required to represent the quantization

indices. Theoretically, this required average number of bits cannot be infinitely small; in-

stead, it has a lower bound, which is associated with a quantity called entropy, according

to Shannon’s noiseless source coding theorem [68].

Suppose we have a random variable X, the entropy of which is defined as

H(X) = ≠
ÿ

xœAX

PX(x) log2 PX(x)

= E [≠ log2 PX(X)] (3.10)

where PX denotes the probability mass function of the random variable X, while x is

an outcome amongst the set of all possible outcomes AX of the random process X. The

essence of Shannon’s noiseless source coding theorem is that the average number of bits

required to code the outcomes of X must be no less than the entropy of X.

Three types of entropy are commonly encountered in the context of compression: joint

entropy, marginal entropy and conditional entropy. To see the relationship of these

three terms, assume we have a random vector X having m elements (random variables)

X0, X1, · · · , Xm≠1. Following the concept in (3.10), the entropy of this random vector X

24



3.3. CODING

can be defined as

H(X) = E [≠ log2 PX(X)]

= E

Ë
≠ log2

1
PX0(X0) · · · PXm≠1|Xm≠2,··· ,X0(Xm≠1, · · · , X0)

2È

= H(X0) + H(X1|X0) + · · · + H(Xm≠1|Xm≠2, · · · , X0)

Æ
m≠1ÿ

n=0
H(Xn) (3.11)

where H(X) = H(X0, · · · , Xm≠1) is often referred as the joint entropy of X0, X1, · · · , Xm≠1,

while H(Xn) is the marginal entropy of each random variable Xn. The entropy H(Xm≠1

|Xm≠2, · · · , X0) is the conditional entropy of Xm≠1 given the other random variables

Xm≠2, · · · , X0. As revealed in (3.11), conditional entropy is smaller than marginal entropy.

Therefore, most of the source coding techniques employ conditional coding techniques that

use a limited set of previously coded symbols to form a context, such that the coding of

a symbol depends on its context. It is su�cient to note here that highly e�cient coding

techniques exist, such as adaptive arithmetic coding, that are able to nearly achieve the

relevant entropy lower bound, by using appropriate contexts.

Since in this thesis, we are interested in learning additional transforms (or lifting steps)

to the existing wavelet transform with the aid of machine learning, we need an entropy

model for the bit-stream c during training. It is worthwhile to mention here that we

utilize marginal entropy as the model during training, while the actual coding techniques

employed for performance evaluation use conditional arithmetic coding. This means that

statistical dependencies between quantized sample values are ignored during training, but

they are utilised during the actual compression process. Although it is possible to take

coding contexts into account also during training, this is a relatively minor refinement that

can significantly increase the complexity of the already very expensive training process.

Interested readers can refer to Chapter 6, in which some examples of coding contexts during

training are briefly mentioned; they can also refer to [69–72] for more related works.
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3.4 Rate-distortion Optimization

Although we explain the transform, quantization and coding as separate elements in the

classic feedforward compression structure, in practice, they are closely related; this leads

to the concept of rate-distortion optimization [73].

As we have explained before, in the classic compression structure, the transform is de-

termined using some essential principles whereas quantization is solely responsible for

introducing distortion. Therefore, there is only a small set of quantization parameters to

be optimised – usually just one quantization step size for each type of subbands produced

by the transform. These quantization step sizes essentially determine the level of distor-

tion and the bit-rate required for the entropy coding of the corresponding quantization

indices. In consequence, the purpose of rate-distortion optimization is to simultaneously

adjust these quantization step sizes to minimize the distortion D subject to certain coded

length L, or to minimize the coded length L subject to a certain level of distortion D.

Specifically, this objective can be expressed using the Lagrange formulation; that is

J = D + ⁄L (3.12)

where ⁄ is the Lagrange multiplier that trades o� distortion D and coded length L. In

the literature, equation (3.12) is known as the standard rate-distortion objective; the

optimization process that targets this objective is called rate-distortion optimization.

In contrast, in machine-learning based compression, which is the topic of this thesis, the

transform is not fixed and so requires learning. This learning process involves a huge

number of parameters, which cannot be tuned independently due to their complicated

interdependencies with quantization and entropy coding, unlike that in the classic com-

pression framework. As a result, we need to understand and anticipate the quantization

process, the entropy coding process as well as the rate-distortion optimization process

which must be included in any lossy compression framework, so as to robustly train the

transform.

This means that machine-learning based approaches usually require an end-to-end opti-
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mization of the entire compression system, directly targeting rate-distortion objectives to

achieve optimized coding e�ciency. As we shall see in Chapter 6, this is essentially the

case of the autoencoders. In this thesis, the proposed neural networks, which serve as

secondary transforms in addition to the existing wavelet transform, are also optimized

in an end-to-end framework, targeting the standard rate-distortion objective augmented

with an extra aliasing constraint term; see Chapter 10 for more details.

3.5 Summary of The Classic Feedforward Compression Struc-

ture

We conclude this chapter by discussing the advantages and the weaknesses of the classic

feedforward compression system. The purpose of this discussion is to motivate the intro-

duction of predictive feedback compression structures in Chapter 4. More importantly, we

would like to use this discussion to motivate the innovations in this thesis.

One major advantage of feedforward compression structures is that they can be used to

construct highly scalable compressed representations of an image. In a scalable com-

pression system, the bit-stream can be partially discarded to obtain reconstructions of

the original image at di�erent bit-rates and/or at di�erent resolutions. Perhaps the best

example of a highly scalable feedforward compression system is the JPEG 2000 image

compression system [1], which generates a set of dyadically-spaced multi-resolution repre-

sentations of the compressed image using the DWT (Section 3.1.2); each of these scales

can be reconstructed from the compressed bit-stream, producing a smaller version of the

original image, a feature known as resolution scalability. Moreover, at a given scale,

the JPEG 2000 format also enables reconstructions at di�erent distortion-rate operating

points, a feature known as quality scalability. Apart from scalability, the JPEG 2000 image

compression standard also provides region-of-interest accessibility, which means that any

region of interest within the original image can be decompressed independently from the

bit-stream, with no need for reconstructing the entire image.
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The principle weakness of the classic feedforward system is that it is di�cult to adapt

the basis vectors of the transform to local geometric features, such as orientations of the

input image, without communicating any side information to the decompressor, as we have

mentioned in Section 3.1.2.7. This is because if a transform itself is dependent on features

within the data that is being transformed, then it cannot be linear and its invertibility

becomes very di�cult to ensure.

One solution to avoid this di�culty is to use quantized values that have already been

encoded and so are available at the decoder, to modify the way in which later sample

values are transformed. This suggests some kind of feedback strategy, which is the topic

of Chapter 4. However, such approaches tend to be incompatible with scalability, since

in a scalable compression system the encoder cannot generally anticipate the quantized

values that will be available to a decoder, which may be reconstructing a reduced quality

and/or resolution version of the image from a subset of the original compressed content.

Another solution to overcome the di�culty of feedforward structures is to directly build

a feedforward system which is capable of exploiting local geometric features without com-

municating any side information. As we shall see in Chapter 8, this is essentially the

target of the hand-tuned algorithm proposed in our previous work [74]. Motivated by the

limitations of this non-learning based solution in [74], we ultimately decide to use ma-

chine learning as a tool in this thesis to exploit local geometric features within the original

image; strategic deployment of neural networks is the main content of Chapter 9.
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Chapter 4

Review: Predictive Feedback

Compression Structures

As we have explained in Section 3.5, the challenge for a classic feedforward system is to

adapt the basis vectors of the transform to local geometric features, such as orientations.

One possible solution to address this is to introduce some form of predictive feedback.

The idea of predictive feedback is to exploit the statistical redundancy between the adja-

cent image samples by predicting a current image sample from previously reconstructed

samples. Ultimately, only prediction errors (or residuals) need to be quantized. Since

these prediction residuals are generally close to zero, the corresponding quantization in-

dices should be highly skewed toward the index whose quantization interval contains zero,

yielding a low coded bit-rate.

4.1 Di�erentiable Pulse Code Module (DPCM)

The basic predictive feedback structure is illustrated in Fig. 4.1. A scalar quantizer is

employed in this structure to map its input array to quantization indices q[n] = q[n1, n2]

in a raster scan order. Instead of taking the original image samples x[n] = x[n1, n2] as the
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input, this scalar quantizer quantizes prediction residuals e[n] = x[n]≠p[n]; the prediction

p[n] is obtained by applying some function on some or even all previously reconstructed

samples x̂[n1, n2 ≠ i], for any i > 0. The simplest way of constructing p[n] is to utilize the

most recently reconstructed sample x̂[n1, n2 ≠ 1], i.e. p[n1, n2] = x̂[n1, n2 ≠ 1]; this kind of

prediction is known as Di�erentiable Pulse Code Module (DPCM).

Figure 4.1: The Di�erential Pulse Code Modulation (DPCM) structure for image com-
pression.

4.2 Hybrid Transform-Predictive Structure

Another popular form of predictive feedback structure is the hybrid transform-predictive

structure, as depicted in Fig. 4.2(a). This structure essentially applies the predictive

feedback loop on the transform coe�cients y[n] instead of the original image samples; it has

the benefit to further exploit redundancies that have not been captured by the transform

T . Alternatively, the predictive feedback path can also include both the transform and
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the quantizer inside the loop, as shown in Fig. 4.2(b).

(a)

(b)

Figure 4.2: Two commonly used hybrid transform-predictive feedback structure for image
compression.

These hybrid transform-predictive structures have been utilized in some modern image
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and video compression standards. For example, the lossless mode of the JPEG image

compression standard [2] o�ers seven di�erent predictors, which are weighted combina-

tions of the reconstructed neighbours around the current transform coe�cient, as seen

in Fig. 4.3(a). Similarly, the latest video coding standard HEVC (High E�ciency Video

Coding) [3, 75] utilizes neighbouring reconstructed samples to predict the current coding

block with 33 angular intra prediction modes, the DC mode and the planar mode, as

illustrated in Fig. 4.3(b). Other examples can be found in CCITT H.261/2/3 [76–78],

H.264/AVC [79], AVS (Audio and Video Coding Standard in China) [80] as well as the

ISO/IEC standards developed by the Motion Picture Experts Group (MPEG) [81,82].

(a) (b)

Figure 4.3: Examples of transform-predictive coding algorithms employed in modern image
and video standards. (a) illustrates the lossless mode in the JPEG image compression
standards [2], which supports the following predictors: X = A, X = B, X = C, X =
A + B ≠ C, X = A + (C ≠ B)/2, X = (A + C)/2, X = C + (A ≠ B)/2; A, B and
C are previously reconstructed DCT coe�cients. (b) shows the intra angular prediction
employed in HEVC standard [3].
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4.3 Relationship Between Predictive Feedback and Classic

Feedforward Structures

As we have seen, the fundamental di�erence between the predictive feedback and the classic

feedforward structure is the recursive prediction path from the reconstructed image. This

feedback loop certainly breaks some of the constraints that otherwise exist in the classic

feedforward structure, in return for some benefits. For example, there is no limit on the

type of predictors that can be employed in predictive feedback structures. The predictors

can be linear or non-linear, which leverage the ability of the system to explore complex

features such as orientations in the original image.

However, there are also weaknesses associated with predictive feedback structures. The

principle weakness is the di�culty for them to be employed in highly scalable systems. As

we have seen in Fig. 4.1 and Fig. 4.2, predictive feedback structures require the compressor

to replicate some or even all previously reconstructed samples at the decompressor. In

other words, certain elements of the decompressor, e.g the dequantizer and/or the inverse

transform, must be embedded inside the compressor. However, in highly scalable systems,

the bit-stream can be decompressed in many ways that may not be the same as that in

the compressor. This makes it rather di�cult for the compressor in predictive feedback

structures to replicate all the possible decompressions of the bit-stream.

Moreover, since the predictive feedback path is recursive, the support of the reconstruction

system is notionally infinite. This means that the recursive nature of the reconstruction

system leads to a dependence of later sample values on all previously coded samples,

which naturally interferes with region-of-interest accessibility. Meanwhile, as quantization

errors are incorporated inside the feedback loop and they are often unstructured, the

performance of predictive feedback structures can be inferior to feedforward structures,

under the condition that quantization errors are larger than prediction residuals.
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Chapter 5

Review: Post-processing and

Inverse Transform Optimization

As we have discussed in Chapter 3 and Chapter 4, both the classic feedforward and

predictive feedback structures employ scalar quantization and midpoint reconstruction in

the spirit of simplifying the compressor M and the decompressor M≠1 in Fig. 2.1. This

simple midpoint reconstruction, assigning a pre-determined fixed reconstruction value to

each quantization index, is far from optimal. Therefore, it presents a source of significant

potential for improvement, which essentially motivates the ideas of post-processing and

inverse transform optimization (or optimized reconstructions in other words).

These optimized reconstructions can be generally understood as resolving the inverse prob-

lem [83]; that is, to use observed measurements to infer the information to an observation

system. In the context of image processing, the observed measurements are degraded im-

ages due to additive noise, blurriness, down-sampling or distortion that is introduced by

quantization, while the signal to be recovered is the original image.

The broad theme behind the inverse problem is to understand three things: 1) the re-

lationship between the observations and the signal to be recovered, i.e. the observation

model; 2) the characteristic of the errors (noise) in the observations, i.e. the noise model;
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3) the prior statistical model of the signal that is to be recovered. As we shall see, these

three questions are all explicitly or implicitly addressed in the optimized reconstruction

algorithms discussed in this chapter.

There is a wealth of literature on developing optimized reconstruction algorithms. In this

chapter, we choose to briefly review three representative works: projection onto convex

sets (POCS), graph-based regularization and super resolution; as we shall see, POCS and

graph-based regularization are conceptually connected to super resolution problems. The

purpose of this brief overview is to provide another perspective to understand the work in

this thesis. Furthermore, the idea of optimized reconstructions serves as a bridge for us

to introduce the concepts of the autoencoders in Chapter 6.

5.1 Projection Onto Convex Sets (POCS)

Projection onto convex sets (POCS) is an iterative approach proposed by Youla and Webb

to incorporate prior knowledge about the solution into the restoration process of the signal,

given only partial data [84]. Specifically, suppose the original signal x is defined in the

Hilbert Space L2(R), and is known a priori to belong to the non-empty intersection C0 of

m well-defined closed convex sets C1, C2, · · · , Cm, such that

x œ C0
m‹

i=1
Ci (5.1)

These pre-defined convex sets Ci, i = 1, 2, · · · , m can be understood as prior knowledge or

constraints for reconstructing x. The intersection convex C0 is the space that all feasible

solutions of restoration should be located to satisfy the prior constraints.

To find a solution of reconstruction inside the intersection C0, the POCS approach re-

cursively projects any arbitrary signal x
n onto the closed convex sets C1, C2, · · · , Cm, so

that

x
(n+1) = PmPm≠1 · · · P2P1x

(n) (5.2)
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where x
(0) can be an arbitrary starting point while n is the number of iterations. The

symbol Pi denotes the projection operator onto the convex set Ci for i = 1, 2, · · · , m.

Although these iterative projections are not trivial tasks, it is still in general easier than

finding only one projector P0 that projects x
(0) onto C0 in one step [85].

It can be proved that the sequence
Ó

x
(n)

Ô

n
must converge to a point within C0 in a

limited number of iterations [84]; a simple example of this convergence is depicted in

Fig. 5.1. It is worthwhile to point out that this convergence is not unique and is dependent

on the starting point x
(0); di�erent starting points may lead to substantially di�erent

reconstructions. Therefore, in practice, a reasonable estimate of the original signal x, for

instance Wiener estimate [86], is often in place to facilitate the rationale of the convergence.

Figure 5.1: A simple example showing the convergence of the POCS method.

As we can see, when applying the POCS method to reconstruct/invert compressed images,

the observation model of POCS is the transform that relates the original image and the

observed quantized transform coe�cients, such as the DCT. The noise model of POCS is

characterized by the quantization intervals, where the original image samples should be.

The simplest prior model that can be used for POCS is the smoothness of the original
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image; this indicates the reason why many algorithms employ smoothness constraint sets

(SCS) as prior information for POCS-based reconstructions. For example, Zakhor et

al. [87] employ SCS to iteratively restore a compressed image to its original artifact-free

form. Subsequently, Yang et al. [88–90] propose to recover compressed images using SCS;

they propose a new family of directional SCS derived from linear modelling of image

edge structures, so as to reduce blocking and ringing reconstruction artifacts. Interested

readers can refer to [91–95] for more sophisticated prior models developed for POCS-based

reconstructions.

5.2 Graph-based Regularization

With the development of graph signal processing [96, 97] in the last decade, graph-based

regularization, especially graph Laplacian regularization, has also shown its great potential

in a wide range of image reconstruction applications, such as image denoising [98, 99],

deblurring [100], bit-depth enhancement [101] and dequantization of JPEG images [102–

106].

Figure 5.2: A digital image can be described by an underlying graph G(V, E , W).

Specifically, graph signal processing assumes that a digital image is highly structured and

can be described by an underlying graph G(V, E , W), in which the pixels are viewed as

vertices (or graph nodes) V connected through edges E with weights W, as depicted in

Fig. 5.2. The weight Wi,j of the edge models the correlation, or can be understood as
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a�nity, between adjacent (or neighbouring) pixels xi and xj . Given the edge weights

W, the adjacency matrix A and the diagonal degree matrix D of a graph G(V, E , W) are

defined as

Ai,j = Wi,j (5.3)

Di,i =
ÿ

j

Ai,j (5.4)

A combinatorial or unnormalized graph Laplacian L can then be defined in relation to A

and D as

L = D ≠ A (5.5)

Subsequently, the graph Laplacian regularizer is defined using L to describe the squared

variance of the signal x with respect to the graph G as

x
T

Lx =
ÿ

i,j

(xi ≠ xj)2
Wi,j (5.6)

From (5.6) we can see that the graph Laplacian regularizer essentially detects the level of

smoothness for each connected pixel pair (xi, xj); if the image x is heavily distorted due

to quantization or even loses some compressed blocks during transmission, the regularizer

x
T

Lx becomes huge under a fixed pre-defined graph G. If we incorporate this regularizer

inside the cost function of the inverse problem as

minimize g(x) + –
2
x

T
Lx (5.7)

where g(x) is an application-dependent term while – specifies the amount of regularization,

then the additional graph Laplacian regularizer is forced to be small, so as to minimize the

global cost function. This essentially encourages the reconstructed images to be smooth.

For this reason, the graph Laplacian regularization and its variants are of particular in-

terest in dequantizing JPEG images to reduce block artifacts; interested readers can refer

to [102–106] for more details.

As we can see, in these graph-based reconstructions, the prior model of the original image is

determined by the graph G(V, E , W) with weights W. The noise model can be understood

38



5.3. SUPER RESOLUTION

as the external weights between the graph nodes and the observed compressed image

samples. The observation model is still the transform that relates the original image and

the quantized transform coe�cients, similar to POCS-based reconstructions.

5.3 Super Resolution

As exemplified in Section 5.1 and Section 5.2, optimized reconstruction algorithms essen-

tially attempt to restore transform coe�cients that have been quantized to zero in the

bit-stream. Theoretically, most of the coe�cients that are quantized away are located at

high-resolution levels; in other words, at low bit-rates, the information that we first lose

due to compression is at high resolutions. This means that even if the observed com-

pressed images are at full-resolution, the essence of any reconstruction technique is to try

to restore high-resolution information using low-resolution observations. This is exactly

the concept of super resolution – reconstructing a high-resolution image given a single or

multiple low-resolution images.

Figure 5.3: The core concept of Multi-frame Super Resolution.

The principle of the classic Multi-frame Super Resolution is as follows. If multiple low-

resolution images with sub-pixel misalignment of the same scene are available, then the
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reconstruction of a high-resolution image can be achieved by fusing the complementary

information observed in these low-resolution images with some algorithms, as illustrated

in Fig. 5.3. The observation model for super resolution normally involves a disciplined

down-sampling process to model the imaging system of a camera [107, 108]. The noise

model employed for super resolution is usually the Gaussian imaging noise; in the context

of compression, this becomes the quantization noise model. In the literature, there is a

pile of prior models that have been developed for super resolution; examples include Gibbs

prior [109], Markov random field prior [110], Gaussian prior [111] and Huber-Markov Gibbs

prior [112]. This infers the reason why machine learning has become extremely popular

for super resolution nowadays [4,113–115], because the learning process essentially avoids

incorporating any explicit prior statistical model of the high-resolution image; instead, the

prior model is implicitly embedded inside the network weights.

Amongst all existing methods that have been developed for Multi-frame Super Resolution,

there is one particular super-resolution algorithm intimately connected to this thesis; that

is the frequency domain approach first proposed by Tsai and Huang [116]. This approach

makes explicit usage of aliasing information that exists in each low-resolution image to

reconstruct the high-resolution image. In [116], Tsai and Huang prove that given multiple

aliased views of the same underlying continuous image, where each view is obtained with

a di�erent shift, the minimum mean squared error best estimate of the original scene can

be found using Wiener filtering.

For the purpose of this thesis, we only have one aliased view, i.e. the low-pass LL band

of the same underlying continuous image that is to be reconstructed; therefore, we lose

most of the prior knowledge presented in [116] for reconstruction. However, as we shall

see in Chapter 7, geometric regularity along oriented edges serves as another form of prior

knowledge, which can be e�ectively used to identify multiple shifted copies of the same

feature within the low-resolution image, so as to recover a higher resolution image. This

reveals the intimate connection between this thesis and super resolution problems.

Moreover, it is worthwhile to mention that the existing Single-image Super Resolution

algorithms may have potentially exploited this geometric regularity as prior knowledge for
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reconstruction in one way or another. As exemplified in Fig. 5.4, some first-layer filters

trained in [4] are clearly exploiting local orientations.

Figure 5.4: The first-layer filters trained in [4] with an upscaling factor of 3.

5.4 Connection of This Thesis with Optimized Reconstruc-

tions and Super Resolution

The learned neural network structures employed in this thesis can be understood as in-

troducing an optimised reconstruction step, more specifically, a super resolution step, into

the synthesis process of the wavelet transform.

Using Fig. 5.5 as guidance, even if all the encoded detail wavelet subband samples wind

up being quantized to zero in this thesis, the proposed low-to-high network TL2H still

has the ability to partially restore the original detail samples using the coded low-pass

residuals LL
Õ

d. Subsequently, the proposed high-to-low network TH2L is then able to at

least partially reconstruct the original coded low-pass image LLÕ
d

at resolution d of the

wavelet transform, using the restored detail samples ÁHL
Õ

d, ÁLH
Õ

d and ÁHH
Õ

d. Eventually,

the restored low-pass and high-pass subbands are synthesized to reconstruct the coded

low-pass image LLÕ
d≠1 at the next higher resolution d ≠ 1.

This means that the combination of the high-to-low and the low-to-high structures in

this thesis essentially introduces an optimal reconstruction into the synthesis process of

the wavelet transform. Moreover, in this extreme case, we essentially synthesize a high-
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Figure 5.5: The learned neural network structures, T A

H2L
and T A

L2H
in this thesis, can be

understood as introducing an optimised reconstruction step, or a super resolution step,
into the synthesis process of the wavelet transform.

resolution image LLÕ
d≠1 using the observation of a low-resolution image LL

Õ

d. Therefore,

this combination of the high-to-low and the low-to-high structures can also be viewed as

introducing a super resolution step into the synthesis process of the wavelet transform.
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Chapter 6

Review: Autoencoders

Built upon the existence of optimized reconstruction algorithms in Chapter 5, it is natural

to consider also optimizing the analysis system according to the optimized synthesis sys-

tem; this is known as analysis-by-synthesis [117], which has been widely adopted in many

speech-coding applications in the literature [118–120]. The autoencoders introduced in this

chapter can be understood from this perspective; the synthesis system of an autoencoder

produces essentially an optimized reconstruction for the original image using learnable

parameters, while the analysis system is also learned simultaneously in accordance with

the synthesis system to achieve high coding e�ciency.

6.1 Basic Concepts

Fig. 6.1 illustrates the general compression architecture of an autocoder. It learns a latent

representation y of the input image x through one or more hidden layers, which can also be

understood as the analysis transform T of the image x with learnable parameters „a, i.e.

y = T (x; „a). The latent representation y usually has reduced dimensions compared with

the input image x, and so can be quantized e�ectively to produce the integer-valued latents

q = Q(y) = Q(T (x; „a)). The quantizer Q employed in an autoencoder is often the uni-
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form scalar quantizer with quantization step size � = 1; this is su�cient, because we can

always modify the analysis transform to include a rescaling or incorporate non-linearities

into the analysis transform to make the quantizer non-uniform. The integer-valued latents

q are eventually coded and decoded for the synthesis T ≠1 of the reconstructed image x̂ with

learnable parameters „s; that is, x̂ = T ≠1(q; „s) = T ≠1(Q(T (x; „a)); „s). To achieve op-

timized coding e�ciency, the analysis and the synthesis parameters „a and „s are usually

end-to-end optimized for the rate-distortion objective

J(„a, „s) = E

Ë
Îx ≠ x̂Î2

2
È

+ ⁄E [≠ log2 PV(q; „a)]

= E

5...x ≠ T ≠1(Q(T (x; „a)); „s)
...

2

2

6
+ ⁄E [≠ log2 PV (Q(T (x; „a)); „a)] (6.1)

where the first term denotes the distortion between the original image x and the recon-

structed image x̂ = T ≠1(Q(T (x; „a)); „s), while the second term represents the average

coded length for coding the integer-valued latents q = Q(T (x; „a)) that are drawn from

the random variable V with probability mass function PV(„a).

Figure 6.1: The general compression architecture of autoencoders.
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As we have seen, autoencoders break the classic feedforward struture discussed in Chap-

ter 3 in many aspects. The main di�erence is that the transforms (or the networks)

in these autoencoders are not invertible. There are two reasons behind this: 1) these

networks usually involve reduction of dimensions for the purpose of compression, which

means that there must be some image sample sequences that cannot be represented ex-

actly, even without any quantization errors; 2) the operators employed in these networks

usually involve non-linearities, whose invertibility are hard to prove.

As a result, these autoencoders do not generally preserve some of the important features

enjoyed by classic feedforward compression systems, as discussed in Section 3.5; they are

simply unstructured machines that target rate-distortion objectives to achieve optimized

coding e�ciency only. This is in contrast to other wavelet-like machine-learning based

methods discussed in Section 3.1.2.7, as well as the method presented in this thesis.

For the purpose of this thesis, since we primarily focus on improving the wavelet transform

with the aid of neural networks, we first review the existing neural network architectures

that have been successfully employed for image compression; these networks can be broadly

categorized into Fully Connected Networks (Section 6.2.1), Convolutional Neural Networks

(Section 6.2.2), Recurrent Neural Networks (Section 6.2.3) and Generative Adversarial

Neural Networks (Section 6.2.4).

Moreover, since learned compression systems usually require end-to-end training, most of

the machine-learning optimization techniques, e.g. gradient decent, rely on di�erentiability

for back-propagation [121]. However, both the distortion and the average coded length in

(6.1) depend on the quantizer Q, whose derivative is either zero or infinity everywhere.

Therefore, we also review the existing techniques that have been developed to overcome

the discontinuity imposed by the quantizer in the context of the autoencoders; this is the

main purpose of Section 6.3.

As we shall see through Section 6.2.1 to Section 6.2.4, autoencoders were initially under-

performing conventional non-learning based techniques, such as JPEG and JPEG 2000.

Subsequently, with enormous explosion in computational complexity, the development of
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extremely elaborated learning-based coding schemes and sophisticated training methodol-

ogy, the performance of autoencoders is now comparable with the existing state-of-the-art

compression standards, such as HEVC and AVC/H.264. However, as we have mentioned,

these autoencoders sacrifice most of the properties that are desirable for practical appli-

cations, as discussed in Section 3.5.

6.2 Di�erent Neural Network Architectures

6.2.1 Fully Connected Neural Networks (FCNNs)

As inferred by the name, Fully Connected Neural Networks (FCNNs) consist of a series of

fully connected layers that connect every neuron in one layer to every neuron in another

adjacent layer, as seen in Fig. 6.2; for historical reasons, FCNNs are also known as Multi-

layer Perceptrons (MLPs). Specifically, the output of the j
th neuron at a certain hidden

layer can be represented as the weighted combination of all neurons ok from the previous

layer, subjected to an activation function f(x) as

oj = f (netj) = f

A
ÿ

k

Êkjok + bkj

B

(6.2)

where netj denotes the inputs to the j
th neuron. wkj and bkj are the weights and the

bias between the k
th neuron at the previous layer and the j

th neuron at the current layer.

The activation function f(x) can often be understood as a type of switch, which decides

whether or not a certain neuron should be activated [122]. This activation function needs

to involve non-linearities, such as the sigmoid function, the Rectified Linear Unit (ReLU),

the tanh function and etc.

Since early theoretical analysis had demonstrated the potential of FCNNs (or MLPs) to

approximate any continuous function with an arbitrary precision [123], researchers started

to experiment with FCNN-based image compression. These experiments are amongst the

very first attempts of using neural networks as a tool for image compression. Although

the explored FCNN structures were very naive and the performance was no where near
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Figure 6.2: The general structure of fully connected neural networks.

any modern image compression standard, important properties of neural networks were

revealed and studied at this stage, such as generalization-capacity trade-o� (known as

overfitting behaviour nowadays).

Specifically, Cottrell et al. [124] first proposed to train an FCNN with only one hidden

layer of 16 neurons to compress each 8 x 8 non-overlapped block of the input image

sequentially. Although this simple structure has the ability to compress and reconstruct

the input image with seemingly low normalized mean squared error, it is hard to adapt to

variable compression ratios as the number of neurons in the hidden layer are fixed.

Instead of processing each image block sequentially as in [124], Sonehara et al. proposed

to use parallel sub-FCNNs to concurrently process a batch of overlapped image patches

[5], as illustrated in Fig. 6.3. The authors, for the first time, discovered the overfitting

issue encountered by learning-based image compression schemes. They found that each

sub-FCNN in [5] was tuned to a specific image pattern, and could only work when the

untrained image patches were substantially similar to patches found in the training set.

This severe overfitting issue was reflected in the average Signal-to-Noise (SNR) of the

unlearned compressed images, which was significantly lower (around 10 dB) than that of
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the learned images.

Figure 6.3: The sub-FCNNs employed in [5].

In contrast to the single-hidden-layer FCNN employed in [124] and [5], Namphol et al. pro-

posed a multipatch hierarchical FCNN structure as illustrated in Fig. 6.4, which had the

ability to further exploit the correlation between hidden layers and between di�erent im-

ages using a nested training algorithm [6]. More importantly, the authors mathematically

addressed the overfitting issue encountered in [5]. They proved that the generalization

ability and the capacity of the network were inversely related, and a trade-o� could be

found by employing a proper size of the input image patch; generalization represented the

ability of a network to achieve significant coding gain for unlearned images, while capacity

described the ability of a network to capture global features and improve coding e�ciency

for training images.

Other variants of FCNNs are also explored for the purpose of image compression; examples

include [125–129]. As we have mentioned before, these early-phase explorations are very

primitive with only limited coding performance. Later on, the focus of the work shifted

from improving FCNNs themselves into developing more sophisticated network structures,

such as convolutional neural networks, recurrent neural networks and generative adver-

sarial networks. FCNNs then are often used as an element within or in conjunction with
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these more advanced network structures.

Figure 6.4: The multipatch hierarchical FCNN proposed in [6].

6.2.2 Convolutional Neural Networks (CNNs)

The introduction of convolutional neural networks (CNNs) led the development of learning-

based image compression into a new era, with numerous advantages over the FCNN/MLP-

based image compression.

First, if the source content is stationary, then shift-invariant processing is the only pro-

cessing that makes sense. Since neural network layers are all just linear operators with

non-linear point-wise activation functions, a shift-invariant neural network then necessar-

ily involves a linear operator that is shift invariant – and that is by definition convolution.

Therefore, CNNs are and have always been the sensible choice for processing stationary

random processes rather than FCNNs/MLPs. Moreover, if the source content is not sta-

tionary, CNNs also require less trainable parameters due to the weight-sharing nature of

convolutional operations, reducing the risk of overfitting compared with FCNNs/MLPs.

In addition, by cascading multiple convolutional operations CNNs can adapt better, ex-

posing more higher-order features within the source images than FCNNs/MLPs. For

example, [130–133] explicitly visualize the learned feature maps from convolutional lay-

ers, demonstrating the capability of CNNs to extract and analyse edges, curved shapes
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or even faces and objects, when the source image propagates toward deeper convolutional

layers. This also explains why CNNs have been successfully employed in many high-level

computer vision tasks, such as classification and object detection [134–139].

For the purpose of compression, CNN-based compression is comparable with many existing

non-learning based image compression standards, such as the JPEG and the JPEG 2000

standards; however, FCNN/MLP-based compression that we mentioned in Section 6.2.1

can hardly achieve this performance.

In terms of the network structure, the so-called convolutional layer is at the heart of CNNs,

which employs filtering to exploit the correlation between neighbouring image samples.

Each layer consists of a bank of learned filters to produce a set of two-dimensional feature

maps from the original image, or from the output feature maps from the previous layer;

the outputs from each filter are subjected to a simple non-linearity, such as the RELU

activiation function – a half rectifier that truncates negative values to 0. By cascading

many convolutional layers as seen in Fig. 6.5, hierarchical statistical redundancy within

the source image can be exploited [140].

Figure 6.5: An example of cascading multiple (in this case two) convolutional layers as
employed in typical CNNs, in which NxN denotes the size of the input image patch or
each feature map. C@ represents the number of kernels employed in each convolutional
layer.
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To reduce the spatial size while retaining the dominant features that are rotational and

positional invariant, a pooling layer is often placed between the adjacent convolutional

layers for down-sampling as seen in Fig. 6.6. The two commonly used pooling/down-

sampling approaches are maximum pooling and average pooling; maximum pooling selects

the largest value within each receptive field (the area that the CNN kernel covers) for

down-sampling, whereas average pooling returns the averaged value as output.

Figure 6.6: A typical CNN structure with convolutional layers and pooling layers.

To experiment with CNN-based lossy image compression schemes, Ballè et al. first intro-

duced an end-to-end optimized CNN for image compression with uniform scalar quanti-

zation [11,27], in which generalized divisive normalization (GDN) with optimized param-

eters [141] was employed to reduce mutual information between the transformed channels

from pooling layers. The authors demonstrated that this CNN-based scheme outperformed

the JPEG and the JPEG 2000 standards under both PSNR and MS-SSIM metrics, along

with more perceptually appealing reconstructed images. Subsequently, they developed an

additional scale hyperprior in [28] to further exploit spatial dependencies in the latent rep-

resentation, which approximated the performance of HEVC in terms of PSNR. Similarly,

Theis et al. [29] proposed to employ Gaussian scale mixtures to model the probability den-

sity function of quantization indices and to estimate their entropy; the entropy was then

used to estimate bit-rates and drive the backpropagation-based training. Other works that

focus on improving entropy estimation of CNN-based compression systems can be found

in [142–149].
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Many researchers managed to improve other aspects of CNN-based compression systems.

For example, [150] proposed a hierarchical distortion loss function to protect both pixel-

level fidelity for region of interest and improved structural similarity for the reconstructed

image. Liu et al. [151] proposed to utilize the combination of a perception loss and

an additional adversarial loss to improve the subjective reconstruction quality. Other

modifications to the loss function can be found in [152, 153]. Moreover, other artifact

removal techniques were also explored to improve reconstruction quality of CNN-based

compression systems; examples include a U-Net-like deblocking network [154] and a multi-

scale reshu�ing network [155]. In addition, e�orts were also invested to incorporate pre-

processing or side information to improve the performance of CNNs; examples can be found

in [156,157], which proposed to utilize the wavelet decomposition as pre-steps in addition

to deep CNNs, whereas Ayzik et al. [158] considered using side information containing

synthetic images to obtain high-quality reconstructed images.

6.2.3 Recurrent Neural Networks (RNNs)

In contrast to the CNN architectures, another class of neural networks, named Recur-

rent Neural Networks (RNNs), are developed explicitly for the purpose of learning long-

dependencies amongst source image samples [159,160]. The typical RNN structure allows

the outputs ot≠1 of the hidden unit Ht≠1 to be connected/combined with the inputs xt

to the next hidden unit Ht, as illustrated in Fig. 6.7; the hidden units Ht can consist

of one or multiple hidden layers (either fully connected layers or convolutional layers),

each of which has its own weights, bias and activation functions. Thanks to the feed-

back loops adopted by the RNNs, the transformed information from previous executions

can be propagated and a�ect the context of the inputs to the current unit, exploiting

long-dependencies between input image samples or patches.

Although conceptually RNNs are capable of exposing long-dependencies, theoretical anal-

ysis has shown that this particular ability of RNNs actually fades away as time t in-

creases [161] [162]. The reason for this is because the errors back-propagated through
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Figure 6.7: The typical RNN structure with hidden units Ht connected with themselves
via a feedback loop.

RNNs often vanish or explode exponentially when the network structure goes deeper; see

more mathematical explanations in [162].

To resolve the vanishing/exploding gradient issue, Long Short-Term Memory (LSTM)

units are proposed, which can be used in hidden layers of a RNN, in order to maintain

a constant error flow during back-propagation [7, 163]. Fig. 6.8 illustrates the typical

diagram of a LSTM block; it is composed of an input gate, a forget gate, an output gate

and a self-connected cell in the middle. The input gate controls the new information that

the neural network is going to store in the cell state, while the forget gate determines

the old information that the network is going to throw away from the cell state. The

self-connected cell has two functions – updating the old cell state with the new cell state,

while trapping the error signal to maintain a constant error flow for back-propagation [7].

In the end, the output gate decides which part of the cell state should be outputted.

There are other works developed to improve the performance of RNNs; representative

examples include adding peephole connections [164] to LSTM blocks, as well as Gate

Recurrent Unit (GRU) which simplifies the LSTM by combining the input and the forget

gates into a single update gate [165].

Inspired by the successful deployment of RNNs in many high-level computer vision and

speech tasks [166–168], researchers also started to experiment with image compression

tasks using RNNs. Toderici et al. [30] first introduced an RNN architecture for compressing

32 x 32 thumbnail images in a variable rate compression scheme. This work was further

extended in [8], in which a general RNN-based framework for compressing full resolution
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Figure 6.8: The diagram of the peephole LSTM, which is used in the hidden layers of a
RNN [7].

images was proposed. Specifically, each iteration in [8] consisted of an encoding network,

a binarizer and a decoding network as seen in Fig. 6.9; only the encoding and the decoding

networks were RNNs. The residuals between the input and the reconstructed image from

the decoding network were fed again as inputs to the encoding network at the next iteration

for further compression. In this way, this scheme supported variable bit-rate compression

in a progressive manner, with demonstrated improvement over the JPEG compression

standard.

Figure 6.9: A single iteration of the proposed RNN structure in [8].
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The work was further improved in [9], in which deep RNNs were combined with an addi-

tional tiled network to achieve quality-sensitive bit-rate adaptation, so as to improve both

PSNR and qualitative performance. The proposed network first divided input images into

tiles, each of which was preliminarily predicted using a CNN-based spatial context pre-

dictor as seen in Fig. 6.10(a). Prediction residuals were then encoded progressively using

a deep RNN, so that the sum of iteration outputs Pi approximated the original image, as

illustrated in Fig. 6.10(b). The authors demonstrated that by introducing this spatially

adaptive tiled network, significantly better rate-distortion performance and reconstruction

quality could be obtained in comparison to [8] and the JPEG standard. Similar work can

also be found in [169], which proposed to embed convolutional and generative divisive nor-

malization layers to achieve bit-rate adaptation of the RNN-base compression framework.

(a) (b)

Figure 6.10: The proposed spatially adaptive RNN-based compression scheme in [9]. (a)
illustrates the context prediction network, which uses convolutional networks to extract
features from the context tiles and generate a prediction for the target tile. (b) shows
the residual encoder with deep RNN structure; Ri denotes the residuals from the context
predictor as the input to each hidden RNN unit while Pi is the output of each iteration.

There are many other works focusing on improving other aspects of RNN-based com-

pression. For example, Lin et al. [170] proposed to utilize two hyperprior networks to

better estimate entropy parameters for improved compression performance; the authors
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also employed a block-based LSTM recurrent network to further exploit redundancy be-

tween adjacent image patches. Similarly, Johnston et al. [31] also developed a spatial

contextual entropy model to improve entropy estimations in a RNN-based compression

scheme. Other methods on improving entropy models within RNN-based compressions

can be found in [171, 172]. Interested readers can also refer to [173–175] for more RNN-

related works.

6.2.4 Generative Adversarial Neural Networks (GANs)

As we have discussed, the autoencoders in Section 6.2.1, Section 6.2.2 and Section 6.2.3

are usually trained with reference-based distortion metrics, such as mean squared error

(MSE), which poorly reflects the perceptual fidelity of natural images. One way to address

this issue is to utilize another learned machine that acts as a non-reference-based distortion

measurement, whose goal is to discriminate images with good reconstruction quality from

those with bad quality; this leads to the concept of Generative Adversarial Networks

(GANs). As we shall see, GANs are traditionally utilized to generate realistic images from

random noise. However, for the purpose of image compression, GANs are often used as a

learnable replacement for simple objective distortion metrics such as MSE in autoencoders,

so as to improve perceptual quality of the reconstructed images.

The concept of GAN was first introduced by Goodfellow et al. in [176], in which two

network models, called generator and discriminator, are jointly optimized to minimize

an adversarial loss. Specifically, the main role of the generator is to learn the function

G(z, ◊G) with trainable parameters ◊G, which can transform unstructured noise input

z ≥ pz(z) into realistic samples to fool the discriminator. In contrast, the discriminator

inspects its input x and returns an estimation D(x, ◊D) with trainable parameters ◊D; this

estimation D(x, ◊D) determines whether the input samples x are real images (following the

distribution of real data pdata) or fake images produced by the generator. The generator

G and the discriminator D are optimized simultaneously using back-propagation during
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Figure 6.11: The typical GAN structure with the generator and the discriminator models.

training for the adversarial loss J as

min
G

max
D

J (◊D, ◊G) = Ex≥pdata(x) [log D (x, ◊D)] + Ez≥pz(z) [(log(1 ≠ D(G(z, ◊G)))] (6.3)

An the end of training, an equilibrium point should be achieved, i.e. the samples produced

by the generator G are indistinguishable from the real data by the discriminator D. An

illustration of the typical GAN structure can be found in Fig. 6.11.

There are many variations of the GAN structure in the literature; examples include cGAN

[177], InfoGAN [178], CoGAN [179], cycleGAN [180] and WGAN [181]. As these variants

are barely used for compression purposes, we will not discuss them any further here.

In the context of image compression applications, GANs are often utilized to enhance

visual quality of reconstructed images especially at very low bit-rate, which also improves

coding e�ciency. Rippel and Bourdev [10] were the first to introduce the adversarial loss

within a pyramidal autoencoder for real-time image compression. Fig. 6.12 illustrates the

proposed GAN-based compression scheme in [10]. The encoder-decoder pipeline is consid-

ered as the generator model in GAN, which compresses the input image via a pyramidal

feature extraction module as seen in Fig. 6.12(b), and then reconstructs it to calculate

the reconstruction loss. The discriminator, on the other hand, has a multiscale archi-
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(a)

(b)

(c)

Figure 6.12: (a) illustrates the general GAN-based compression scheme proposed in [10].
(b) is the insight of the feature extraction module, which analyses the input using a
pyramidal decomposition and then aligns feature maps across di�erent scales to discover
the joint structure. (c) represents the proposed discriminator structure used in adversarial
training; scalar outputs at di�erent scales are accumulated and averaged to attain the
final value provided to the objective sigmoid function, in order to discriminate between
the target and the reconstructed images.
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tecture as seen in Fig. 6.12(c), which utilizes an averaged scalar decision to discriminate

between the target/original and the reconstructed images. The authors demonstrate that

this adversarial architecture significantly improves the perceptual quality of reconstructed

images over the JPEG, the JPEG 2000 and the WebP standards, along with much smaller

compression file sizes.

Similarly, Agustsson et al. also proposed a GAN-based scheme with a multiscale discrim-

inator for extremely low bit-rate image compression [182]. The authors explicitly show

that the proposed GAN structure is capable of synthesizing more textures for homoge-

neous regions in decoded images with the aid of a semantic label map, yielding more

visually appealing reconstructions. On the other hand, the GAN-based view synthesis is

also explored in the context of Light Field (LF) image compression [183]; by incorporat-

ing a unsupervised perceptual learning model with the proposed LF-GAN, the contents

of an arbitrary positioned sub-aperture image can be reliably generated, along with the

state-of-the-art compression performance. Similar work can be found in [184]. Interested

readers can also refer to [185–187] for more GAN-related compression approaches.

6.3 Existing Training Strategies

As we have introduced in Section 6.1, autoencoders are often optimized in an end-to-end

fashion for the rate-distortion objective (6.1) in the context of image compression. Most of

the machine-learning optimization techniques, e.g. gradient decent, rely on di�erentiability

for back-propagation [121]. However, both the distortion and the average coded length in

(6.1) depend on the quantizer, whose derivative is either zero or infinity everywhere. In

the literature, many approaches have been proposed to resolve this issue, which can be

broadly categorized into additive noise approaches, straight-through-estimator (STE) and

soft-to-hard annealing.
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6.3.1 Additive Noise Approaches

Ballè et al. first proposed to replace the quantizer with an additive uniform noise source

[11]; similar work can also be found in [188]. Specifically, a uniform scalar quantizer with

quantization step size � = 1 operating on the transform coe�cient yi can be denoted as

qi = round(yi) (6.4)

Then the probability mass of the n
th quantization bin can be calculated as

Pqi(n) = (pyi ú rect) (n), for all n œ Z (6.5)

where rect(t) is a uniform distribution on the interval [≠1
2 ,

1
2 ] and the symbol ú denotes

the convolution operation.

Suppose we add independent uniformly distributed noise �yi ≥ rect to the transform

coe�cient yi, forming ỹi = yi +�yi. It can be proven that the probability density function

of ỹi, i.e.

pỹi = pyi ú rect (6.6)

is identical to Pqi at all integer locations, yielding a continuous relaxation of the uniform

scalar quantizer as seen in Fig. 6.13.

Figure 6.13: The additive noise approach proposed in [11]. We can see that pỹi is a
continuous relaxation of Pqi across all quantization bins.

However, these additive noise models have the forward-backward discrepancy, because the

forward-pass uses realizations of the noise model while the backward-pass employs the
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probability distribution (statistical model) of the noise. Moreover, these approaches also

su�er from train-test discrepancy that the forward-pass with additive noise is di�erent

from the actual quantization that takes place in the real testing phase.

6.3.2 Straight-through-estimator (STE)

Another approach is to use a straight-through estimator (STE) [189,190] to overcome the

discontinuity of the quantization operation. The idea of STE is to include the discontinuous

quantization operation directly in the forward path of the network, but replace it with the

identify during back-propagation. With enough diversity of content, this approach, which

essentially draws a straight line through the quantization step function for the purpose of

back propagation, should lead to more accurate modelling than additive noise approaches.

Figure 6.14: The core concept of the STE, which essentially draws a straight line through
the quantization step function for the purpose of back propagation. The forward pass still
adopts the non-di�erentiable quantization step function.

As illustrated in Fig. 6.14, the STE approach essentially avoids the train-test discrepancy,

as the forward-pass of the STE retains the same non-di�erentiable quantization behaviour

as in the testing phase; therefore, it has been proven to have a major benefit in performance

over the additive noise approaches. However, the STE approach still su�ers from the

forward-backward mismatch, which has a fundamental impact on the convergence of the

learning system.
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6.3.3 Soft-to-hard Annealing

In contrast, soft-to-hard annealing approaches are proposed to develop a continuous re-

laxation of quantization for both the forward- and the backward-pass during training

[191,192]. As illustrated in Fig. 6.15, the derivative of the continuous relaxation function

is well defined everywhere, and so suitable for the purpose of back-propagation. Since

the forward- and the backward-pass share the same behaviour during training, there is

no forward-backward mismatch in soft-to-hard annealing approaches. In addition, soft-to-

hard annealing approaches utilize some cooling parameters to gradually anneal this contin-

uous relaxation toward the actual non-di�erentiable quantization step function throughout

training to reduce the train-test discrepancy. However, the neural networks in these an-

nealing methods do not have early access to the real quantized data that is actually used

during testing, which might present adverse impact on the performance of the learning

system.

Figure 6.15: The illustration of soft-to-hard annealing approaches, in which both the
forward- and the backward-pass of back-propagation employ a continuous relaxation func-
tion (green dashed curves). This continuous relaxation gets gradually annealed toward
the actual quantization function throughout training, as seen in the yellow dashed curves,
to reduce the train-test discrepancy.
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Chapter 7

Contribution: The Significance of

Geometric Flow

This chapter highlights the generic problems and opportunities associated with reducing

residual redundancy in the wavelet transform, especially with the aid of geometric flow in

the two-dimensional (2D) scenario; the significance of geometric flow underpins this thesis.

Although deterministic redundancy, i.e. oversampling, is avoided in the wavelet represen-

tation, statistical redundancy, especially the aliasing-related residual redundancy, is still

inevitably presented amongst the wavelet subbands. This is because the wavelet trans-

form imposes strong conditions on the critically sampled filter banks, which prevents the

redundancy from being eliminated between di�erent subbands. Specifically, the analysis

and synthesis filters h0 and g0 of a two-channel critically sampled filter bank must satisfy

the following constraint in the Fourier domain:

ĥ0(Ê)ĝ0(Ê) + ĥ0(fi ≠ Ê)ĝ0(fi ≠ Ê) = 1 (7.1)

which means in particular that ĥ0(fi ≠ Ê)ĝ0(fi ≠ Ê) = 1
2 at Ê = fi

2 . Since finite support

filters must have continuous transfer functions, the low-pass analysis filter h0 must have

a significant response to frequencies Ê >
fi

2 , which corresponds to aliasing in the low-pass

subband. This aliasing content is both visually disturbing and a form of redundancy.
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Similarly the high-pass analysis filter h1, which is in mirror symmetry with g0, necessarily

has a significant response to frequencies Ê <
fi

2 . This pollution of the high-pass subband

with low frequency content is another form of information redundancy between the two

subbands.

The goal of this thesis is to reduce this redundant content between the low- and high-pass

subbands in the wavelet transform. There are many possible ways to achieve this. One can

attempt to improve the subband filters themselves, but no amount of improvement in the

filters can escape from the implications of (7.1), which indicates that h0 cannot be designed

to avoid aliasing. If h0 does manage to roll o� close to 0 by fi

2 , then g0 would require a

huge gain around the half-band frequency fi

2 , greatly amplifying quantization errors. The

same is true for the high-pass analysis and synthesis filters h1 and g1. Although designs

involving longer filters can have smaller transition bands around fi

2 , this comes at the cost

of a loss of sparsity – innovative features such as edges in the space domain produce more

non-zero subband samples, which adversely impact coding e�ciency.

More generally, additional operators could be introduced to untangle the redundant in-

formation amongst the wavelet coe�cients, which is the main focus of this thesis. Let

AL(x) and AH(x) denote the analysis of signal x into the low-pass band yL = AL(x) and

the high-pass (detail) subband yH = AH(x) respectively, within one level of a Discrete

Wavelet Transform (DWT). For a 2D DWT following the Mallat decomposition structure,

yH stands for the collection of all three detail subbands, denoted as HL, LH and HH, but

most of the material in this chapter is most easily presented in 1D in the first instance.

In particular, suppose an operator T A

H2L
can be found to estimate the aliased component

ỹL of yL using yH , written as ỹL = T A

H2L
(yH), then the non-aliased component ȳL can be

separated from yL as ȳL = yL ≠ ỹL. Since ȳL is at least approximately free from aliasing,

now all of the aliasing information ỹH inside yH arises from the content in ȳL. This

means that ȳL can then be used to discover the aliasing contribution within yH , written

as ỹH = T W

L2H
(ȳL). In fact, the operator T W

L2H
can simply be an LSI filter, because ỹH

should ideally be equal to AH(I(ȳL)), where I stands for the ideal interpolator. We have

chosen to use the superscript W for this second operator, to emphasize the fact that it
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could potentially be obtained as a conventional Wiener filter.

In this scenario, the development of the operator T A

H2L
is the one that presents the greatest

challenge; it cannot simply be an LSI filter. If it were, then the transformation steps

ȳL = yL ≠ T A

H2L
(yH), followed by ȳH = yH ≠ T W

L2H
(ȳL) could be seen as augmenting

the original wavelet transform with two additional LSI lifting steps, so that the complete

transform is equivalent to choosing a di�erent set of subband analysis and synthesis filters,

which we have already ruled out as a viable solution. As we shall see, the operator T A

H2L

should at least be adaptive to local geometric structure, and we use the superscript A here

to highlight both its role in untangling aliasing and the need for local adaptivity.

From a di�erent perspective, suppose an operator T A

L2H
can be developed to discover the

aliased part ỹH of yH using yL, written as ỹH = T A

L2H
(yL). Then the “cleaned” high-pass

band ȳH = yH ≠ ỹH can be used to untangle the aliasing information ỹL in yL using an

operator T W

H2L
. In this converse scenario, the operator T W

H2L
becomes conceptually simple,

potentially being a Wiener filter, whereas T A

L2H
cannot be LSI.

The two perspectives demonstrate that at least one of these two operators T A

L2H
and T A

H2L

is di�cult to develop, depending on which we choose to perform first. Although these two

approaches may seem equally plausible considering only one level of DWT decomposition,

the di�erence appears with multiple levels of decomposition. This will be further discussed

in Chapter 8.

For the moment, considering only one level of decomposition, we first examine the funda-

mental di�culties and opportunities to untangle the aliasing in the high-pass band using

the low-pass band, i.e. the operator T A

L2H
. Although there is no general deterministic way

to construct T A

L2H
to untangle the aliasing, prior statistical signal models can be used to

derive a posterior distribution for the aliasing component, from which an estimate can

be formed. This is essentially the basis of super resolution algorithms, for which the key

challenge is to estimate original high frequency components that appear as aliasing in a

low-resolution source image, as discussed previously in Section 5.3.
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Estimating the aliasing component of a signal is much easier to do in the image domain

than in one dimension, since geometric flow in images provides a strong form of prior

knowledge. Specifically, we expect that edges in the underlying spatially continuous image

are smooth along their contours, so that the innovative aspects of an edge, namely its

profile, change only slowly along the edge, i.e. along the geometric flow. This geometric

regularity provides an opportunity to untangle aliasing in the 2D-DWT.

We can see this more concretely by considering a continuous and consistently oriented

signal f(s1, s2), such that the edge profile is exactly the same along an orientation with

slope – as shown in Fig. 7.1(a). This 2D continuous signal f(s1, s2) can be understood as

an ensemble of multiple shifted copies of the prototype 1D signal f(s1). That is f(s1, s2) ©

fs2(s1) = f(s1 ≠–·s2), where fs2 represents the horizontal cross-section of f at the vertical

position s2 as highlighted in Fig. 7.1(a). In this thesis, the 2D underlying continuous signal

f is a Nyquist band-limited image, whose samples correspond to the discrete image x. To

model the discrete wavelet transformation of x, f is then subjected to the continuous

analogues of the wavelet analysis low-pass filter hL and high-pass filter hH , producing the

low- and high-pass images fL and fH respectively.

The cross-section fL,s2 of fL and its discrete counterpart xL,n2 can be written in the

horizontal Fourier domain as

f̂L,s2(Ê) = ĥL(Ê)f̂(Ê)e≠j–s2Ê

= ĥL(Ê)x̂(Ê)e≠j–n2Ê = x̂L,n2(Ê) (7.2)

The discrete wavelet low-pass subband yL,n2 is just a sub-sampled version of xL,n2 ; con-

sidering only one level of decomposition, yL,n2 can be written as

ŷL,n2(Ê) = 1
2 x̂L,n2(Ê/2) + 1

2 x̂L,n2(Ê/2 ≠ fi)

= 1
2 ĥL(Ê/2)x̂(Ê/2)e≠j–n2Ê/2

+ 1
2 ĥL(Ê/2 ≠ fi)x̂(Ê/2 ≠ fi)e≠j–n2(Ê/2≠fi) (7.3)

which reveals its aliased and non-aliased components; an illustration of this can be found

in Fig. 7.1(b).
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Averaging the inverse shifted signals over a vertical neighborhood N2 yields

ȳL(Ê) = 2
ÎN2Î

ÿ

N2

ŷL,n2(Ê)ej–n2Ê/2

= ĥL(Ê/2)x̂(Ê/2) + 2
ÎN2Î

ÿ

N2

ĥL(Ê/2 ≠ fi)x̂(Ê/2 ≠ fi)ej–n2fi (7.4)

The last term above averages aliasing components and can be expected to be small, so

long as – is not an integer and the averaging neighbourhood is su�ciently large. As a

result, ȳL(Ê) ¥ ĥL(Ê/2)x̂(Ê/2). Once aliasing components are e�ectively untangled, ȳL

can then be employed to estimate the aliasing contribution ỹH within the wavelet high-

pass subband yH , using an LSI filter as we have elaborated before. This entire process,

starting from yL to untangle ỹH , provides a viable solution for constructing T A

L2H
.

Moreover, ȳL can be combined with yL to recover an estimate of the original image fL.

This demonstrates the connection between untangling aliasing from a low-pass subband

and the well studied problem of super resolution. More generally, the simple averaging pro-

cess suggested above can be replaced by a Wiener filter. As we have explicitly addressed in

Section 5.3, [116] proves that given multiple aliased views of the same underlying continu-

ous image, where each view is obtained with a di�erent shift, the minimum mean squared

error best estimate of the original scene can indeed be found using Wiener filtering.

That is, the problem of untangling aliasing can in fact be solved using a filter-based

strategy, so long as we can identify multiple copies of the same underlying feature, with

known shifts between each copy – i.e. known geometric flow. Since geometric flow is a local

property within an image, the untangling of aliasing requires either an adaptive filtering

solution or a bank of filters with an adaptive strategy for combining their responses, so

the overall operator T A

L2H
cannot be LSI and will generally need to be non-linear. As we

shall see in Chapter 9, this is essentially the structure that we have found to work best.

Although this discussion has been limited to the case in which we start from the low-pass

subband1, the dual problem, in which the first step uses the high-pass subband to discover

and clean the redundant aliasing information, has exactly the same properties.

1We have done this to help clarify the connection with super resolution, which is always
understood as starting from a low-resolution image.
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(a)

(b)

(c)

Figure 7.1: (a) shows the orientated image feature along with its geometric flow as high-
lighted in red, while (b) illustrates di�erent phases of the non-aliased and aliased compo-
nents after DWT filtering and down-sampling by a factor of 2. (c) demonstrates di�erent
phases of aliased components after compensation (inverse shift), which are eventually can-
celled out over an averaging neighbourhood.
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Chapter 8

Contribution: Structures to

Augment The Existing Wavelet

Transform For Reducing

Redundancy

This chapter summarizes three generic architectures which can exploit geometric flow and

untangle aliasing content within the wavelet subbands; we refer to these as low-to-high,

high-to-low and hybrid approaches.

8.1 Low-to-high Approach

The low-to-high approach aims to suppress redundant information within the detail bands

HL, LH and HH with the aid of the low-pass (LL) band from the same decomposition level,

as illustrated in Fig. 8.1. We do this using an operator T A

L2H
, which can be understood as

forming a prediction of HL, LH and HH from the LL band. More specifically, we expect

this operator to be able to exploit local geometric flow to predict the aliased components

69



CHAPTER 8. CONTRIBUTION: STRUCTURES TO AUGMENT THE EXISTING
WAVELET TRANSFORM FOR REDUCING REDUNDANCY

within HL, LH and HH, as explained before. Conceptually, if the operator T A

L2H
completely

removes redundancy within the detail bands, then further cleaning aliasing ÂyLL in the LL

band can be achieved simply using a linear operator T W

H2L
as explained in Chapter 7.

Figure 8.1: The architecture of the low-to-high approach, which can be viewed as ad-
ditional lifting steps to the wavelet transform. The symbols yLL, yHL, yLH and yHH

represent the LL, HL, LH and HH bands of the wavelet transform. The symbols yLL,
yHL, yLH and yHH denote the less redundant (“cleaned”) LL, HL, LH and HH bands.
The dashed lines indicate that the operator T W

H2L
is only optional.

In our previous work [74], we proposed a simple yet e�ective, hand-tuned solution for

the operator T A

L2H
, which explicitly targets the discovery of local geometric flow in the

low-pass band to untangle aliasing within the detail bands. This is certainly not the only

way to design T A

L2H
, and redundant information might be exploited in a more general way.

The purpose of [74] is to demonstrate that an algorithm designed exclusively to exploit

geometric flow, without statistical modeling or learning, is capable of untangling redun-

dant information within the detail subbands. Moreover, since [74] successfully exploits

local orientations in a critically sampled subband transform without any need to commu-

nicate side information, it provides an example method for addressing the key challenge

of designing a feedforward system that is adaptive to local geometric features, as outlined

in Section 3.5.

Unfortunately, this approach does not extend well to coarser levels in the wavelet decom-

position. The reason for this can be understood with the aid of Fig. 8.2. We see the
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8.1. LOW-TO-HIGH APPROACH

LL band at the first level of decomposition (yLL,1) cannot be regarded as samples of a

continuous Nyquist band-limited image, as it contains the aliasing component ÂyLL,1 due

to down-sampling. This aliasing component then accumulates through the DWT hierar-

chy, and forms part of the LL band at the next level of decomposition (yLL,2). Given

the increasing amount of aliasing presented in yLL,2, it becomes harder to discover local

properties such as geometric flow, reducing the e�ectiveness with which redundancy can

be suppressed within the detail bands yHL,2, yLH,2 and yHH,2.

Figure 8.2: The illustration of extending the low-to-high approach to coarser levels, where
yLL,d, yHL,d, yLH,d and yHH,d represent the low- and high-pass bands at the d

th level
of decomposition. The symbols ÂyLL,d, ÂyHL,d, ÂyLH,d and ÂyHH,d denote the redundant
(aliasing) information within the low- and high-pass bands at level d. The symbols yHL,d,
yLH,d and yHH,d stand for the less redundant detail bands after applying the operator
T A

L2H
. The dashed lines indicate that the operator T W

H2L
is only optional.

71



CHAPTER 8. CONTRIBUTION: STRUCTURES TO AUGMENT THE EXISTING
WAVELET TRANSFORM FOR REDUCING REDUNDANCY

8.2 High-to-low Approach

In the light of this fundamental di�culty, we choose not to pursue the development of

more sophisticated low-to-high approaches. Instead, we propose to adopt a high-to-low

approach, which uses the high-pass subbands yHL,d, yLH,d and yHH,d to remove redundant

aliasing ÂyLL,d from the LL band yLL,d at each level d, before proceeding to the next level in

the decomposition. We do this using an operator T A

H2L
as seen in Fig. 8.3. Similar to T A

L2H
,

we expect the operator T A

H2L
to also be capable of adaptively exploiting local geometric

features from the detail bands to predict aliasing within the LL band. Conceptually,

if the operator T A

H2L
successfully targets aliasing untangling within the LL band, then

further reducing redundancy within the detail bands could be achieved simply using a

linear operator T W

L2H
as explained in Chapter 7.

Figure 8.3: The architecture of the high-to-low approach, which can be viewed as ad-
ditional lifting steps to the wavelet transform. The symbols yLL, yHL, yLH and yHH

represent the LL, HL, LH and HH bands of the wavelet transform. The symbols yLL,
yHL, yLH and yHH denote the less redundant (“cleaned”) LL, HL, LH and HH bands.
The dashed lines indicate that the operator T W

L2H
is only optional.

Contrary to the low-to-high approach, the high-to-low approach is expected to be more

successful at untangling redundancy within the LL band; the accumulation of aliasing is

then e�ectively avoided through the DWT hierarchy, which makes the method applicable

to multiple levels of decomposition as seen in Fig. 8.4. Moreover, by e�ectively cleaning
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aliasing within the LL band at each level, reconstructed images at di�erent scales indeed

turn out to have significantly higher visual quality than the original LL bands obtained

from the wavelet transform.

To develop the operator T A

H2L
, preliminary experiments have been conducted for the high-

to-low method using the hand-tuned solution presented in [74], which was not very suc-

cessful. This is because it is more di�cult to discover local geometric flow from the detail

bands than from the low-pass band, at least without the aid of strong prior statistical

models. For this reason, it seems appropriate to adopt machine learning as a tool for

the methods presented in this section. More details concerning the proposed neural net-

work structures themselves are presented in Chapter 9, but here we focus on architectural

aspects.

Figure 8.4: The illustration of extending the high-to-low approach to coarser levels, where
yLL,d, yHL,d, yLH,d and yHH,d represent the low- and high-pass bands at the d

th level
of decomposition. The symbols ÂyLL,d, ÂyHL,d, ÂyLH,d and ÂyHH,d denote the redundant
(aliasing) information within the low- and high-pass bands at level d. The symbol yLL,d

stands for the less redundant (“cleaned”) LL band at level d after applying the operator
T A

H2L
. The dashed lines indicate that the operator T W

L2H
is only optional.
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8.3 Hybrid Approach

Building on the high-to-low approach, we introduce a third hybrid architecture to further

improve coding e�ciency [193]. Rather than employing a linear low-to-high operator T W

L2H

as described in the high-to-low approach, the hybrid architecture adopts an adaptive low-

to-high operator T A

L2H
after implementing T A

H2L
as seen in Fig. 8.5. Although conceptually

T W

L2H
is su�cient to suppress redundancy within the detail bands, it is strictly true only

if the first operator T A

H2L
pre-cleans all aliasing from the LL band. By introducing an

adaptive low-to-high operator, the hybrid approach can maintain the benefits of coding

e�ciency even if T A

H2L
fails to clean aliasing from the low-pass band in the first place.

Figure 8.5: The architecture of the hybrid method, which can be viewed as additional
lifting steps (predict and update steps) to the wavelet transform. The symbols yLL, yHL,
yLH and yHH represent the LL, HL, LH and HH bands of the wavelet transform. The
symbols yLL, yHL, yLH and yHH denote the less redundant (“cleaned”) LL, HL, LH and
HH bands.

8.4 Encoding Systems

In terms of the encoding system, it can be implemented in either open-loop or closed-loop

fashion. The di�erence between the two approaches rests in how quantization errors are

treated and propagated in the synthesis step. The details of each encoding approach are
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given below.

8.4.1 Closed-loop Encoding System

The closed-loop encoding approach is conceptually appealing in the context of non-linear

operators; it avoids the propagation of quantization errors, which otherwise are expanded

in an uncontrollable way through non-linearities in the networks. To achieve this, the

closed-loop encoding system essentially embeds the decoder inside the encoder, so that

the transform is designed at the decoder with quantized data.

In our scenario, the low-to-high and the high-to-low architectures can be developed respec-

tively in the closed-loop encoding framework as seen in Fig. 8.6. In both cases, adding

additional Wiener filters T W

L2H
and T W

H2L
is infeasible, as it creates cyclic dependencies

between the adaptive operators T A

L2H
and T A

H2L
; this prevents us from finding a determin-

istic process for determining the quantized subband samples. For this same reason, the

closed-loop encoding system is incompatible with the hybrid architecture. Considering

these fundamental di�culties, we choose to focus on developing the open-loop encoding

system as presented in the following section.

8.4.2 Open-loop Encoding System

In the so-called “open-loop” approach, the transform is designed at the encoder without

any quantization, whereas the decoder receives quantized samples to invert the operation.

In this scenario, the hybrid architecture is feasible, as illustrated in Fig. 8.7, which is of

particular interest due to its ability to adaptively remove redundancy within both the

T A

H2L
and T A

L2H
steps.

The main challenge for open-loop encoding is that quantization errors propagate through

multiple adaptive operators that necessarily entail non-linear elements, in addition to the

linear wavelet synthesis operators themselves. This introduces the potential for quanti-

zation errors to be amplified, in ways that are strongly data dependent and so harder to
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bound. Ultimately, this will require careful modelling during the training of our neural

network based operators. Nonetheless, it turns out that it is possible to develop open-loop

hybrid architectures that achieve significant gains in coding e�ciency across a wide range

of bit-rates, in a completely scalable setting.

(a)

(b)

Figure 8.6: The proposed closed-loop encoding framework for the low-to-high and high-to-
low systems, respectively. The symbols QLL, QHL, QLH and QHH represent the quantizer
for the LL, HL, LH and HH bands respectively. The symbols y

Õ
LL

, y
Õ
HL

, y
Õ
LH

and y
Õ
HH

denote the quantized low- and high-pass bands.
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Figure 8.7: The proposed open-loop encoding system for the hybrid architecture. The
symbols QLL, QHL, QLH and QHH represent the quantizer for the LL, HL, LH and HH
bands respectively. The symbols yLL, yHL, yLH and yHH represent the LL, HL, LH and
HH bands of the wavelet transform. The symbols yLL, yHL, yLH and yHH denote the
less redundant (“cleaned”) LL, HL, LH and HH bands.
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Chapter 9

Contribution: Neural Network

Architectures

In Chapter 7, we have mathematically elaborated the opportunity that exists to exploit

the residual redundancy from the existing wavelet transform, i.e. a simple linear solution

is su�cient to untangle the redundant (notably aliasing) information within regions with

consistent geometric flow. The purpose of this chapter is to give insight on how this un-

derlying hypothesis drives the structure of the neural networks that we select. Eventually,

we find that the best solution does indeed involve banks of optimized linear filters con-

trolled dynamically by an opacity network. This confirms our underlying hypothesis that

the solution to our problem (redundancy exploitation) can be a linear filter if the local

orientation is known a priori.

In a preliminary exploration phase, we explore the merits of di�erent structures. This

exploration phase does not involve end-to-end training for the full rate-distortion op-

timization problem. Instead, we measure the energy compaction potential of di�erent

structures, and we explore robustness to quantization error propagation by considering

just one level of decomposition in isolation. Later, after identifying the most suitable

structures, we develop a comprehensive end-to-end training strategy that is capable of
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modelling the complex interactions between quantization and adaptive processing steps

across the decomposition hierarchy; this is the subject of Chapter 10.

9.1 Benefits of Proposal-opacity Structures

Our exploration phase starts with a focus only on the adaptive high-to-low operator T A

H2L
.

This is because T A

H2L
is the most critical element to avoid propagation of aliasing through

the DWT hierarchy, and opens the opportunity for the transform architecture to be ex-

tended to multiple levels of the wavelet decomposition. This is surely not the only way

to approach the problem, but the initial explorations involving only T A

H2L
turn out to be

very insightful.

We begin by considering a fairly straightforward high-to-low network structure in [12].

This structure is composed from three sub-networks involving conventional convolution

and Leaky ReLU operators, as seen in Fig. 9.1. Variations on this structure were also

explored, involving concatenation of the HL, LH and HH source channels ahead of the

first convolutional layer.

Figure 9.1: The initial high-to-low network structure proposed in [12], where N x K x K

denotes N filters (or channels) with kernel support K x K.
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To evaluate the potential of these high-to-low network structures without building a com-

plete end-to-end optimization system, our primary training objective is aliasing suppres-

sion within the LL bands. This objective is chosen for two reasons: 1) removal of aliasing

is necessary to ensure that the approach can be e�ectively applied also at lower levels in

the DWT hierarchy, as elaborated in Fig. 8.4; and 2) aliasing suppression will also help

to reduce redundant information from the subbands that are derived from the “cleaned”

LL band. This naturally leads to higher energy compaction, which can be employed as an

evaluation criterion when assessing the performance of these high-to-low networks.

Figure 9.2: The proposed structure to construct the aliasing model Âyt

LL,d
for the LL band

at each level d.

To be more specific, the idea of developing our training objective is to construct a model

Âyt

LL,d
for the aliasing in the LL band at each level of decomposition d, by subtracting yLL,d

from y
t

LL,d
as seen in Fig. 9.2. The accent ¯ is used to indicate the subband free of aliasing,

while the superscript t denotes the training target. The subband y
t

LL,d
is obtained by low-

pass filtering y
t

LL,d≠1 and then subjecting it to the low-pass wavelet analysis operator AL,

while yLL,d is derived from the “cleaned” LL band yLL,d≠1 after applying the high-to-low

80



9.1. BENEFITS OF PROPOSAL-OPACITY STRUCTURES

operator T A

H2L
. The low-pass filter (LPF) employed here has a windowed sinc impulse

response with bandwidth 0.7fi.

The objective can be either the l2-norm
...ÂyLL,d ≠ Âyt

LL,d

...
2

2
or the l1-norm

...ÂyLL,d ≠ Âyt

LL,d

...
1
,

where ÂyLL,d is the aliasing predicted by the high-to-low operator (network) T A

H2L
. The

di�erence between these two objective metrics will not be explicitly addressed, as we have

empirically verified that their impacts on the performance of di�erent high-to-low networks

are neglectable.

For the experimental results, Adam algorithm [194] with 75 image batches comprising 16

patches of size 256 x 256 from DIV2K image dataset1 are employed, while other images

in DIV2K dataset that are not included in the training are used for testing. To evaluate

the performance of di�erent high-to-low network structures, we consider two objective

measurements: 1) energy compaction, that is the ratio of the energy of the original detail

bands obtained through LeGall 5/3 wavelet transform to the detail bands yHL,d, yLH,d

and yHH,d decomposed from the “cleaned” LL band yLL,d≠1; and 2) visual enhancement

of the “cleaned” LL band (yLL,d) at di�erent resolutions d.

Table 9.1(a) provides numerical results to illustrate the averaged energy compaction of

the initial high-to-low network structure shown in Fig. 9.1 across all images in the testing

set. In the experiment, we employ 5 levels of the LeGall 5/3 bi-orthogonal DWT, applying

the proposed neural network prediction strategy for all the levels. As we see, the energy

compaction of the detail subbands at all the levels a�ected by the operator T A

H2L
can be

reduced considerably; those levels not a�ected by T A

H2L
are identified by a “–” in Table 9.1.

The visual enhancement of the “cleaned” LL band obtained from this simple structure can

be found in Fig. 9.4(b). Variations on this network structure are not explicitly shown here,

as they empirically show similar potential to the initial one in Fig. 9.1.

Although this initial network structure appears to work, the underlying theory presented

in Chapter 7 suggests that it should be possible to develop a linear solution to untangle

redundant (aliasing) information within regions where local geometric flow is consistent.

1https://data.vision.ee.ethz.ch/cvl/DIV2K/
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Table 9.1: Energy Compaction

(a) Energy compaction of the initial network structure

proposed in [12] as seen in Fig. 9.1.

LL HL LH HH
level 1 99.7% – – –
level 2 99.9% 91.2% 88.9% 76.7%
level 3 99.9% 96.4% 93.5% 83.4%
level 4 100.5% 97.5% 94.8% 85.1%
level 5 100.8% 102.4% 96.6% 93.3%

(b) Energy compaction of the proposal-opacity net-

work structure with linear proposals as seen in

Fig. 9.3.

LL HL LH HH
level 1 99.5% – – –
level 2 99.6% 88.4% 85.8% 68.2%
level 3 99.0% 94.8% 91.2% 74.7%
level 4 98.4% 90.4% 86.4% 69.8%
level 5 99.1% 86.9% 87.9% 65.1%

(c) Energy compaction of the proposal-opacity net-

work structure with non-linear proposals as seen in

Fig. 9.5.

LL HL LH HH
level 1 99.4% – – –
level 2 99.3% 85.3% 83.7% 64.4%
level 3 99.0% 90.4% 87.1% 67.2%
level 4 98.7% 90.6% 85.2% 67.8%
level 5 99.5% 89.0% 88.0% 65.9%

This reasoning suggests that we would do well to decompose the high-to-low network in two

aspects: a bank of learned linear filters, each capable of responding to di�erent geometric

features; and a separate feature detector network, which is necessarily non-linear.

Specifically, we explore a proposal-opacity structure, as shown in Fig. 9.3, where the

non-linear opacity network (N = 8) is understood as analysing local scene geometry to

produce opacities (or likelihoods) in the range 0 to 1 that are used to blend linearly

generated proposals for the aliasing prediction term. The structure of the opacity network

is inspired by [195], employing residual blocks that have been demonstrated to be useful

in feature detection, while the proposals are chosen to have the same region of support as
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the opacity network. Since the proposals are completely linear, if our training objective is

the l2-norm
...ÂyLL,d ≠ Âyt

LL,d

...
2

2
, the proposal system amounts to a linear least mean-squared

error (LLMSE) best estimator conditioned on the opacities, so it is e�ectively a bank of

Wiener filters.

Figure 9.3: The proposed proposal-opacity structure for the high-to-low network T A

H2L

with linear proposals; N x K x K denotes N filters (or channels) with kernel support K

x K.

By comparing the energy compaction in Table 9.1(a) and (b), it can be seen that the

proposal-opacity network structure indeed achieves considerably higher energy compaction

for all the relevant detail bands across all levels. Moreover, this proposal-opacity struc-

ture does produce more visually meaningful LL bands at di�erent resolutions with less

83



CHAPTER 9. CONTRIBUTION: NEURAL NETWORK ARCHITECTURES

“staircases” around edges, compared with that of the LeGall 5/3 wavelet transform and

the initial structure in Fig. 9.1; see examples in Fig. 9.4(a)(b)(c).

(a) the original LL band, with lots of aliasing

(“staircases”) along edges.

(b) the initial structure proposed in [12], with much

less aliasing

(c) proposal-opacity structure with linear proposals

and sigmoid activation

(d) proposal-opacity structure with non-linear pro-

posal network and sigmoid activation

(e) proposal-opacity structure with linear proposals

and log-like activatiom

Figure 9.4: Visual quality of the “cleaned” LL bands at the third finest resolution from
di�erent network structures. We are specifically looking for aliasing suppression – less
staircase-like artifacts around edges.
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9.2 Su�ciency of Linear Proposal Structures

It is worth considering whether the proposal-opacity structure can be improved by in-

troducing non-linearities into the proposal network as well. Specifically, we choose the

proposal network (N = 8) to be substantially similar to the opacity network, as depicted

in Fig. 9.5, whereas ReLU and linear activation functions alternate to ensure zero-mean

outputs. By comparing the prediction e�ectiveness in Table 9.1(b) and (c) and the visual

quality of the LL bands in Fig. 9.4(c) and (d), the linear proposal structure seems to have

comparable performance to the non-linear one for the high-to-low operator T A

H2L
.

Figure 9.5: The proposed proposal-opacity structure for the high-to-low network T A

H2L

with non-linear proposals, where N x K x K denotes N filters (or channels) with kernel
support K x K.
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To gain further insight into the benefits of the linear versus the non-linear proposal struc-

tures, we construct a complete hybrid architecture by extending the proposal-opacity

concept to the low-to-high network T A

L2H
with linear or non-linear proposals (N = 8), as

seen in Fig. 9.7(a) and Fig. 9.7(b). As a result, the open-loop coding e�ciency can now

be explored instead of using energy compaction as a proxy, to understand the potential of

di�erent network structures.

In this open-loop setting, both T A

H2L
and T A

L2H
are trained with full-quality data, i.e.

without incorporating any quantization errors during training. T A

H2L
explicitly targets

the aliasing model Âyt

LL,d
during training, as described in Section 9.1. T A

L2H
is trained to

minimize the prediction residuals of the detail bands at each level d; that is either l1-norm

ÎyHL,d ≠ ÂyHL,dÎ1 or l2-norm ÎyHL,d ≠ ÂyHL,dÎ2
2, as exemplified in Fig. 9.6. Although the

objective metric used to train T A

L2H
can be either l1-norm or l2-norm, we have empirically

verified that l1-norm training results in higher open-loop coding e�ciency. For simplicity,

T A

H2L
is trained first, after which T A

L2H
is trained while keeping T A

H2L
fixed.

Figure 9.6: The idea to generate the training objective for the low-to-high network T A

L2H
.

We use HL band as an example here; the same methodology can be adopted for the LH
and HH band.

From Fig. 9.9 we can see that by applying T A

H2L
and T A

L2H
to only the finest resolution in
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the open-loop setting, the linear proposal structure is actually better than the non-linear

one in terms of rate-distortion performance. This empirically confirms that a classic set of

Wiener filters attenuated by corresponding opacities (or likelihoods) is competitive with

and even superior to a fully non-linear solution, which reinforces the theoretical arguments

presented in Chapter 7.

(a)

Figure 9.7: The low-to-high network structure with linear proposals, where N x K x K

denotes N filters (or channels) with kernel support K x K.
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(b)

Figure 9.7: The low-to-high network structure with nonlinear proposals, where N x K x
K denotes N filters (or channels) with kernel support K x K.

9.3 Appropriate Activation Functions

In this section, we consider the opacity network more carefully. Following the underly-

ing theory elaborated in Chapter 7, we expect the opacity network to model geometric

features in the scene, which should be invariant to absolute image intensity and contrast.

Unfortunately, the conventional sigmoid function shown in Fig. 9.3, Fig. 9.5 and Fig. 9.7

does not have this property. We expect to do better, therefore, by replacing the sigmoid

function with a log-like activation function.

In particular, we evolve the proposal-opacity structure as seen in Fig. 9.8. The log-like
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9.3. APPROPRIATE ACTIVATION FUNCTIONS

(a)

Figure 9.8: The high-to-low network structure with linear proposals and log-like activation
function, where N x K x K denotes N filters (or channels) with kernel support K x K.

function that we adopt is

y =

Y
__]

__[

log (x + o�set), x > ≠o�set/2

log (o�set/2), otherwise

where o�set = 0.01 is chosen to define the derivative of the function at the origin. This

log-like activation function is followed by a linear convolution layer, which is expected to

choose the dominant geometric feature. In the end, tanh and ReLU are concatenated

to cap the opacities within the range [0, 1]. Interestingly, we see the structure with the
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log-like activation function does perform better than that with the sigmoid function in

the open-loop encoding system, even with fewer channels (N = 4). Meanwhile, the visual

quality of the “cleaned” LL band is still maintained; see Fig. 9.4 and Fig. 9.9 for more

details.

(b)

Figure 9.8: The low-to-high network structure with linear proposals and log-like activation
function, where N x K x K denotes N filters (or channels) with kernel support K x K.
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9.3. APPROPRIATE ACTIVATION FUNCTIONS

(a) image 846 from DIV2K

(b) image 821 from DIV2K

Figure 9.9: The rate-distortion performance under the primitive open-loop setting for
di�erent proposal-opacity network structures: linear proposals with sigmoid as the activa-
tion function as shown in Fig. 9.3 and Fig. 9.7(a); linear proposals with log-like activation
function as shown in Fig. 9.8; and non-linear proposals as shown in Fig. 9.5 and Fig. 9.7(b).
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Chapter 10

Contribution: End-to-end

Learning Strategy with Backward

Annealing

In this chapter, we introduce the learning strategy to jointly train the high-to-low and

low-to-high networks for multiple levels of the DWT decomposition, along with the extra

distortion gains introduced by these inference machines in addition to the base wavelet

transform. The entire end-to-end optimization framework is depicted in Fig. 10.1. In-

terestingly, we eventually discover that a single pair of jointly trained high-to-low and

low-to-high networks can be employed at all levels in the DWT decomposition hierarchy –

that is, there is no need to learn and store separate network weights for each decomposition

level.

In Chapter 9, aliasing suppression was our sole training objective in the initial exploration,

since propagation of aliasing from high to low levels in the hierarchy would destroy the

properties required for successful deployment of the approach at lower levels. As explained

earlier, aliasing removal should be a reasonable proxy training objective when a single

level of the hierarchy is considered in isolation. Now that we are embarking on an en-to-

92



Figure 10.1: The proposed end-to-end optimization framework. Ga,— and Gs,— denote the
extra analysis and synthesis gains introduced by the neural networks in addition to the
base wavelet transform for subband B—. By evolving Ga,— and Gs,— during training, we
e�ectively optimize the quantization step size of the quantizer Q— and the dequantizer
Q

≠1
—

for subband B—. Moreover, qi,— represents the quantization indices qi within subband
B—, while T— represents the look-up table that we use to map the quantization indices qi,—

to the corresponding coded length l̂i,— for subband B—.

end learning strategy for T A

H2L
and T A

L2H
, taking all levels of the hierarchy into account

together, it is possible to replace our training objective with one that focuses exclusively on

rate-distortion performance. As we shall see, however, the aliasing suppression objective

is quite compatible with end-to-end rate-distortion optimization. To expose this fact, we

retain an aliasing suppression term as one part of the training objective, which can be

selectively included to explore the role it plays in our final solution.

To be more specific, our objective is to minimize:

J(„) = Îx ≠ x̂(„)Î2
¸ ˚˙ ˝

D

+⁄1
ÿ

—

ÿ

iœB—

li,—

¸ ˚˙ ˝
L

+⁄2
ÿ

d

...ÂyLL,d(„) ≠ Âyt

LL,d

...
2

2
¸ ˚˙ ˝

aliasing constraint term

(10.1)
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where

li,— = log2
1

PV— (qi,— ; „) = log2
1

Prob(V— = qi,— ; „) (10.2)

In (10.1), the total distortion term D represents the sum of squared errors between the

input image x and its reconstructed counterpart x̂; „ represents the vector of all network

weights. The total coded length term L is the sum of all coded lengths li,— , resulting from

the coding of quantization indices qi,— for all subbands B—. We write V— for the random

variable from which the quantization indices qi,— are drawn; then, the coded length li,— is

modelled by (10.2). The LL band aliasing constraint term in (10.1) measures the sum of

squared errors between ÂyLL,d and Âyt

LL,d
across all levels of decomposition d, as described

in Section 9.1 and depicted in Fig. 9.2. The Lagrange multiplier ⁄1 controls the trade-o�

between distortion D and coded length L, while the other Lagrange multiplier ⁄2 controls

the level of emphasis on visual quality of reconstructed images at di�erent scales.

Eventually, we discover that constraining the aliasing term only at the finest resolution is

su�cient for all intermediate resolutions to look good; this makes sense considering that

we use the same set of network weights at all levels. In the training phase, we explore

three settings of ⁄2: 1) ⁄2 = 0 to target rate-distortion performance alone; 2) ⁄2 = 1

to encourage enhanced visual quality of LL bands within the rate-distortion optimization

framework; and 3) ⁄2 decreasing progressively from 1 to 0 through the training regime,

so as to steer the training toward solutions that with visually appealing LL bands, while

ultimately targeting rate-distortion performance alone.

To train this end-to-end optimized system for the objective in (10.1), most of the machine-

learning optimization techniques, e.g. gradient descent, rely on di�erentiability for back-

propagation. However, both the total distortion D and the total coded length L depend on

the quantizer, whose derivative is either zero or infinity everywhere. For this reason, addi-

tive noise approaches, the straight-through estimator and soft-to-hard annealing methods

have been developed in the literature, each of which has its own weakness and benefit as

discussed in Section 6.3.

To take advantage of these existing methods, we propose a backward annealing approach,
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which essentially interpolates the discontinuous function using a sliding Gaussian to form

a continuous relaxation of the non-di�erentiable step function in the backward pass,

whereas the forward pass retains its original discontinuous quantization behavior, as seen

in Fig. 10.2. In this way, our method avoids the train-test discrepancy, which however

exists in additive noise approaches. By gradually reducing the standard deviation ‡ of the

sliding Gaussian during training, the fitness of the continuous relaxation to the true dis-

continuous operator can be easily annealed. This means that we can gradually eliminate

the forward-backward discrepancy while still provide the networks an accurate visibility to

real quantized data early on during training; this is in contrast to the STE and soft-to-hard

annealing approaches.

Figure 10.2: The proposed backward annealing approach for back-propagation, which
interpolates the discontinuous step function Q— (solid black lines) using a sliding Gaussian
(red solid curves) to form a di�erentiable relaxation ÂQ— (green or yellow dashed curves).

Specifically, assume we wish to develop a di�erentiable approximation function ÂQ— for

the quantizer Q— of subband B—, which is a uniform scalar quantizer with deadzone as
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employed in any JPEG 2000 compression framework:

qi,— = Q—(y—) =

Y
_]

_[

sign(y—)
Í |y— |

�—
+ ›

Î
,

|y— |
�—

+ › > 0

0, otherwise
(10.3)

where �— denotes the quantization step size of subband B— while › controls the width of

the deadzone. In this thesis, › is set to be 0, which results in a zero-bin width of 2�—.

Using Fig. 10.2 as guidance, we propose to convolve the discontinuous quantization func-

tion Q— with a sliding Gaussian function N (t; µ, ‡
2)|µ=0. This convolution relaxes the

non-di�erentiable quantization function Q—, producing the continuous relaxation counter-

part ÂQ—, which is more suitable for back-propagation; more concretely, we have

ÂQ—(y—) =
⁄ +Œ

≠Œ
Q—(t)N (y— ≠ t; 0, ‡

2)dt

=
≠1ÿ

qi=≠M

qi

⁄
qi�

(qi≠1)�
N (y— ≠ t; 0, ‡

2)dt

+
Mÿ

qi=1
qi

⁄ (qi+1)�

qi�
N (y— ≠ t; 0, ‡

2)dt

+
ÿ

qi=0
qi

⁄ (qi+1)�

(qi≠1)�
N (y— ≠ t; 0, ‡

2)dt (10.4)

In practice, we limit the integration to the interval ±3‡, since a normal distribution

decays to approximately zero at the endpoints of this interval. With a relatively big ‡,

our approach draws a straight line through the quantization step function for the purpose

of back-propagation, as exemplified in yellow dashed curve in Fig. 10.2; this is essentially

the concept of the STE. By decreasing the value of ‡ along with the learning rate during

training, the method ensures a smooth transition from the STE to soft-to-hard annealing

with a controllable “cooling” coe�cient ‡; an example is given as the green dashed curve

seen in Fig. 10.2.

Now we move on to the calculation of the coded length li,— in (10.1). Conceptually, if

we knew the statistical distribution PV— , then li,— can be calculated directly using (10.2).

The challenge is that PV— is data-dependent, and depends weakly on the choice of the

weights in the high-to-low and the low-to high networks. This weak dependency allows
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us, in practice, to estimate and update each PV— periodically using a histogram. This

histogram, containing the number of occurrence and so the probability of each qi,— , can

then be converted to the coded length l̂i,— as an estimate of li,— . All the coded lengths

l̂i,— for all i œ B— eventually form a look-up table T— for each subband B—, as depicted

in Fig. 10.1. In terms of the back-propagation, each look-up table T— together with its

respective quantizer Q— can be treated like one discontinuous operator, which maps each

input y— to its coded length l̂i,— ; this discontinuous operator can be treated exactly the

same way as described in Fig. 10.2.

It is important to highlight the fact that this periodic update of the histograms, and so

the look-up tables {T—}—, does not introduce instability into the training. Essentially, the

training process with periodic update alternates between two steps, each of which reduces

the following modified version of the cost function in (10.1):

J
Õ(„, {T—}—) = Îx ≠ x̂(„)Î2 + ⁄1

ÿ

—

ÿ

iœB—

l̂i,— + ⁄2
ÿ

d

...ÂyLL,d(„) ≠ Âyt

LL,d

...
2

2
(10.5)

where

l̂i,— = T—(qi,—) (10.6)

in which „ represents the vector of all network weights; we remind the reader that we use

the same set of weights for all levels of decomposition.

This modified cost function involves jointly optimizing the look-up tables {T—}— and the

weights „, which proceeds in alternating steps. At any given point during training, we

have Step 1 that optimizes the network weights „, assuming fixed look-up tables {T—}—.

In Step 2, we adjust the look-up tables {T—}— using histograms, given the set of network

weights „. Each step progressively reduces the same finite bounded objective in (10.5),

therefore the entire system must converge. Although the global objective in (10.5) that we

minimize is not exactly the same as (10.1), the di�erence gradually reduces as the periodic

update progresses.
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Chapter 11

Experimental Results: Part I

To explore the merits of our method, we develop a sequence of experiments to test the

significance of the aliasing suppression term in (10.1). In addition, we explore our method

with di�erent base wavelet transforms – the LeGall 5/3 and the CDF 9/7 bi-orthogonal

wavelet transforms. To put these results in context, we also compare them with some

existing works. Note that the source code of our method, along with all training and

testing datasets, are available on GitHub1.

11.1 Experimental Settings

11.1.1 Training Phase

We employ 5 levels of the DWT decomposition during training, and aim to jointly train

only a single pair of the high-to-low and low-to-high networks, which can be progressively

applied to all levels of decomposition, as well as a wide range of compression ratio. This

goal is explicitly chosen, because it is more sensible for practical applications to employ a

method which only uses one set of weights for all levels. This is especially important for

1https://github.com/xinyue-li3/hybrid-lifting-structure/
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scalable codecs, where the number of levels received at the decoder may not be the same

as the encoder.

Now we begin by discussing the initialization of our training process. As explained in

Chapter 10, there are two alternating update steps during training to minimize the mod-

ified objective (10.5). To start with Step 1, we first find the initial look-up tables {T—}—

using the weights of the high-to-low and the low-to-high networks „ as trained in the

exploration phase in Chapter 9. Then the network weights „ can be optimized in Step

2 given the initial lookup tables {T—}—, employing the training strategy with backward

annealing in Chapter 10. Step 1 and Step 2 alternate periodically (in this thesis every

200 epochs), so that (10.5) gradually converges to (10.1).

Our initial choices of parameters are based upon the base wavelet transform that we are

attempting to improve during the learning process. This base wavelet transform has extra

distortion gains Ga,— = Gs,— = 1.0 as depicted in Fig. 10.1; therefore, we start from this

point. In addition, this base wavelet transform also involves di�erent quantization step

sizes �— for each subband B— as seen in (10.3); we initialize these {�—}— in a way which

typically results in a compression bit-rate around 1.0 bpp for training images. This bit-rate

1.0 bpp also corresponds to a particular rate-distortion slope ⁄1 as seen in (10.1); therefore,

this becomes the starting point of our ⁄1 during training. Subsequently, we allow Ga,—

and Gs,— to evolve during training while keeping �— and ⁄1 fixed. If the change in Ga,—

and Gs,— are not too substantial, then we expect the compression bit-rate to still wind up

in the vicinity of 1.0 bpp at the end of training.

In this thesis, Keras with TensorFlow backend and the Adam algorithm [194] are employed

for training, with 75 image batches comprising 16 patches of size 256 x 256 from the DIV2K

image dataset2. In total 1200 epochs are used for training in this paper, while periodic

update of the look-up tables {T—}— occurs every 200 epochs, as mentioned before. Within

each 200 epochs, we progressively reduce the controllable “cooling” coe�cient ‡ for back-

propagation as explained in Chapter 10. This ‡ is empirically initialized as �
2 and decays

2https://data.vision.ee.ethz.ch/cvl/DIV2K/
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steadily until the change in the solution is negligible; in our case, this end point yields

‡ ¥ �
10 . The learning rate is empirically set to 0.0001 and decays exponentially with

decay_steps = 20 and decay_rate = 0.96. This might not be the optimal training schedule

for ‡, but it turns out that other more natural training schedules are hard to realize within

the TensorFlow backend.

11.1.2 Testing Phase

We choose four datasets categorized into three classes during testing, in order to demon-

strate the merits of our method in di�erent scenarios. Note that none of these images are

used during training.

Category 1: All images within this class have highly structured features, i.e. edges

are either consistently oriented or significantly distinct from background textures. Two

datasets are included in this class: a) Tecnick Sampling Dataset3, from which 20 images

are chosen with size 480 x 480; b) DIV2K Dataset4, from which 30 images are chosen

with size 1024 x 2048. We name these two dataset as Tecnick-Cat1 and DIV2K-Cat1,

respectively.

Category 2: All images in this category come with reasonably clear edges, while back-

ground textures are more complicated than those in Category 1. The dataset employed in

this class is DIV2K dataset, from which another 70 images of size 1024 x 2048 are chosen;

it is denoted by DIV2K-Cat2.

Category 3: All images in this category are considered to be “hard-to-code”, with one or

more following properties: nearly no clear orientations; majority of the image is excessively

blurred; and/or most orientations are horizontal or vertical, which are well handled by the

wavelet transform. The dataset employed is Challenges on Learned Image Compression

3https://testimages.org/
4https://data.vision.ee.ethz.ch/cvl/DIV2K/
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2019 test set5, from which 15 images of size 1024 x 2048 are chosen; this is denoted as

CLIC2019-Cat3.

Moreover, the Kodak dataset6, which is commonly used as the benchmark for image

compression, is also tested here to serve two purposes: 1) to demonstrate the e�ectiveness

of our method in an entire dataset, which is not explicitly chosen nor altered; 2) to put

our results in context with other existing works, even if the source codes are unavailable

or hard to reproduce the inferences given their codes.

It is worthwhile pointing out that all images within all datasets are converted to grayscale

before any training or testing. The reason for this is to avoid confusing our spatial trans-

forms with color dependent questions, such as the optimal choice of color transform and

the dependence of the wavelet transform on di�erent color components.

11.2 Methods Explored

We first explore the following variations of our method:

• the e�ectiveness of replacing the adaptive operator T A

L2H
with the linear T W

L2H
in the

hybrid architecture; As suggested in Chapter 8, T W

L2H
might be su�cient.

• three variations of the aliasing constraint parameter in (10.1): ⁄2 = 0, ⁄2 = 1 and

⁄2 decreasing gradually from 1 to 0 throughout training; although ⁄2 is not directly

coupled with coding e�ciency, it is driven by visual considerations as explained in

Chapter 10.

• two di�erent base wavelet transforms: the LeGall 5/3 [196] and the CDF 9/7 bi-

orthogonal wavelet transforms [197], as they come with di�erent levels of complexity

and spatial supports.

5http://clic.compression.cc/2019/challenge/
6http://www.cs.albany.edu/ xypan/research/snr/Kodak.html
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To put these results in context, they are also compared with some other existing works

from the following categories: i) non-learning based compression standards; ii) learning-

based, wavelet-like lossy image compression frameworks; and iii) variants of end-to-end

optimized, non-wavelet-like lossy image compression with neural networks.

11.3 Evaluation Metrics

We consider evaluating the performance of all methods presented within this section both

quantitatively and qualitatively. In terms of quantitative measurements, three widely used

metrics are employed – Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM),

Multi-Scale Structural Similarity (MS-SSIM). All these metrics are measured and averaged

for each dataset, from which Bjøntegaard (BD) rate savings (in %) are obtained.

With regard to qualitative assessment, we provide examples for both the “cleaned” LL

bands at di�erent scales and the full reconstructed images in this thesis. We remind the

readers that the quality of the “cleaned” LL bands is dependent on ⁄2 in (10.1), which

controls the amount of aliasing as explained in Chapter 10.

11.4 Results and Discussions

11.4.1 Significance of the adaptive operator

We first empirically study the value of employing an adaptive low-to-high operator T A

L2H

rather than the linear operator T W

L2H
in the hybrid architecture. As explained in Chapter 8,

T W

L2H
is conceptually su�cient to suppress redundancy within the detail bands, only if

T A

H2L
is completely successful in cleaning all aliasing from the LL band; however, we do

not expect it to be su�cient in practice.

To study this, the adaptive high-to-low and low-to-high networks (T A

H2L
and T A

L2H
) are set

as seen in Section 9.3, while the operator T W

L2H
is simply a linear filter that has the same
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region of support as T A

L2H
. T A

H2L
is jointly trained with either T A

L2H
or T W

L2H
to improve the

LeGall 5/3 wavelet transform, targeting the standard rate-distortion objective for MSE

by setting ⁄2 = 0 in (10.1). Further studies on di�erent ⁄2 and base wavelet transforms

are provided shortly.

Table 11.1: Comparison between the adaptive operator T A

L2H
and the linear operator T W

L2H
.

The table shows BD-rate improvements for PSNR, SSIM and MS-SSIM metrics over the
LeGall 5/3 wavelet transform for each dataset. Results are obtained with bit-rates between
0.1bpp to 1.0bpp.

BD-rate for PSNR BD-rate for SSIM BD-rate for MS-SSIM
T A

H2L
+ T A

L2H
T A

H2L
+ T W

L2H
T A

H2L
+ T A

L2H
T A

H2L
+ T W

L2H
T A

H2L
+ T A

L2H
T A

H2L
+ T W

L2H

LeGall 5/3

Tecknick-Cat1 ≠17.4% ≠8.2% ≠15.5% ≠5.8% ≠13.6% ≠4.7%
DIV2K-Cat1 ≠14.4% ≠7.3% ≠13.8% ≠5.0% ≠13.1% ≠4.5%
DIV2K-Cat2 ≠12.5% ≠6.0% ≠12.8% ≠5.6% ≠12.8% ≠5.9%
CLIC2019-Cat3 ≠7.3% ≠3.4% ≠7.5% ≠2.7% ≠8.9% ≠4.0%

The BD rate savings (in %) and the rate-distortion curves for average PSNR, SSIM and

MS-SSIM over the range of bit-rates from 0.1bpp to 1.0bpp across all four datasets are

provided in Table. 11.1; the complete rate-distortion curves can be found in Fig 11.1. It

can be observed consistently that both T A

L2H
and T W

L2H
are capable of improving coding

e�ciency of the conventional LeGall 5/3 wavelet transform, regardless the amount of

distinct edges presented in images, so long as the adaptive high-to-low operator T A

H2L

is employed. More importantly, T A

L2H
performs significantly better than T W

L2H
across all

datasets, achieving up to 17.4% average BD rate saving over the LeGall 5/3 wavelet

transform, while T W

L2H
only reaches up to 8.2% average BD bit-rate saving.

This observation aligns with the underlying theory presented in Chapter 8; by introducing

an adaptive low-to-high operator, the hybrid approach can maintain the benefits of coding

e�ciency even if T A

H2L
is unable to fully clean aliasing from the low-pass band.

11.4.2 Role of the aliasing constraint term

We now examine the role that the aliasing constraint term, ⁄2
q

d

...ÂyLL,d(„) ≠ Âyt

LL,d

...
2

2
,

plays in our training objective function seen in (10.1). Specifically, we explore three
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(a) Tecnick-Cat1

(b) DIV2K-Cat1

(c) DIV2K-Cat2

(d) CLIC2019-Cat3

Figure 11.1: Comparisons of the average PSNR, SSIM and MS-SSIM improvement across
each dataset to illustrate the importance of the adaptive low-to-high operator T A

L2H
over

the simple linear operator T W

L2H
; the proposed method is trained to improve the LeGall

5/3 wavelet transform with ⁄2 = 0. The Bjøntegaard (BD) rate savings are displayed in
% next to the legend.
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settings of the aliasing constraint parameter: ⁄2 = 0, ⁄2 = 1 and ⁄2 decreasing from 1

to 0 during training; details have been given under (10.1) in Chapter 10. The operators

employed here are the adaptive networks T A

H2L
and T A

L2H
as depicted in Section 9.3, whose

benefit has been verified. The two operators are jointly trained to improve the LeGall

5/3 wavelet transform at this stage; extension to larger wavelet transforms will be given

shortly.

Since ⁄2 explicitly conditions the visual quality of the “cleaned” LL band at each level of

decomposition, we now add this additional qualitative assessment into consideration when

evaluating the performance of all methods in this section. Using the examples in Fig. 11.2

as guidance, we can observe that forcing aliasing suppression, i.e. ⁄2 = 1 during training,

does indeed ensure higher visual quality of the “cleaned” LL bands across multiple levels

of decomposition. Moreover, we observe that employing ⁄2 = 1 or annealing ⁄2 from 1 to

0 produces substantially similar results.

In addition, we provide the BD bit-rate saving (in %) under average PSNR, SSIM and

MS-SSIM over the range of bit-rates from 0.1bpp to 1.0bpp for di�erent ⁄2 settings across

all datasets in Table. 11.2; the complete rate-distortion curves can be found in Fig 11.3.

We can first see that, although the two networks T A

H2L
and T A

L2H
are jointly optimized to

minimize MSE during training, they also work surprisingly well under the SSIM and the

MS-SSIM metrics for all datasets. Not surprisingly, we observe the highest BD bit-rate

saving when ⁄1 = 0. However, the loss in coding e�ciency associated with ⁄2 = 1 and

annealing ⁄2 is not significant, in exchange for clear benefits obtained in visual quality at

reduced resolutions.

It is also worthwhile to point out that the performance of our method does vary for

di�erent types of images. For Tecnick-Cat1 and DIV2K-Cat1 datasets that have consistent

orientations or distinct edges, our method has the highest performance, achieving 17.4%

average BD bit-rate saving over the LeGall 5/3 wavelet transform over the range of bit-

rates from 0.1bpp to 1.0bpp. For DIV2K-Cat2 dataset with richer textures, the proposed

method also manages to reach 12.8% average BD bit-rate saving over the range of bit-rate

from 0.1bpp to 1.0bpp. Surprisingly, for images in CLIC2019-Cat3 dataset, which come
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Table 11.2: Comparison between di�erent aliasing constraint parameters ⁄2 in (10.1)
during training. The table shows BD-rate improvements for PSNR, SSIM and MS-SSIM
metrics over the LeGall 5/3 and the CDF 9/7 wavelet transform. Results are obtained
with bit-rates between 0.1bpp to 1.0bpp.

BD-rate for PSNR BD-rate for SSIM BD-rate for MS-SSIM
⁄2 = 0 ⁄2 = 1 anneal ⁄2 ⁄2 = 0 ⁄2 = 1 anneal ⁄2 ⁄2 = 0 ⁄2 = 1 anneal ⁄2

LeGall 5/3

Tecknick-Cat1 ≠17.4% ≠13.8% ≠13.6% ≠15.5% ≠12.5% ≠12.3% ≠13.6% ≠10.3% ≠10.1%
DIV2K-Cat1 ≠14.4% ≠10.6% ≠10.6% ≠13.8% ≠10.8% ≠10.9% ≠13.1% ≠8.9% ≠9.0%
DIV2K-Cat2 ≠12.5% ≠9.8% ≠9.8% ≠12.8% ≠10.6% ≠10.5% ≠12.8% ≠9.8% ≠9.8%
CLIC2019-Cat3 ≠7.3% ≠5.8% ≠5.7% ≠7.5% ≠5.8% ≠5.9% ≠8.9% ≠5.7% ≠5.8%

CDF 9/7

Tecknick-Cat1 ≠11.4% ≠9.8% ≠9.7% ≠11.5% ≠10.6% ≠10.5% ≠9.0% ≠7.9% ≠7.9%
DIV2K-Cat1 ≠9.7% ≠6.3% ≠6.3% ≠10.1% ≠8.4% ≠8.3% ≠7.6% ≠5.3% ≠5.3%
DIV2K-Cat2 ≠7.6% ≠6.0% ≠6.0% ≠7.5% ≠6.7% ≠6.7% ≠5.9% ≠4.9% ≠5.0%
CLIC2019-Cat3 ≠4.2% ≠3.4% ≠3.3% ≠4.1% ≠3.5% ≠3.4% ≠1.7% ≠0.8% ≠0.7%

with hardly any clear orientations and edges, our method is still capable of achieving

8.94% average BD bit-rate saving. These observations again align with our underlying

assumption in Chapter 7, that orientation is the key factor to reduce redundancy (notably

aliasing) from the wavelet subbands to improve coding e�ciency.

In the end, we also inspect the perceptual quality of full reconstructed images at di�erent

bit-rates from various images. Some examples are given in Fig. 11.4. We see that the pro-

posed method produces significantly better reconstructed images, with less ringing around

edges and more recovered textures than the conventional LeGall 5/3 wavelet transform at

similar bit-rates.

11.4.3 Extension to larger wavelet transform

Although the structures of our neural networks have been developed in the first instance

for the LeGall 5/3 wavelet transform, exactly the same network structures turn out to be

also e�ective with the CDF 9/7 wavelet transform.

Specifically, we jointly train the two adaptive operators T A

H2L
and T A

L2H
to improve the

CDF 9/7 wavelet transform, with all three settings of the aliasing constraint parameter ⁄2.

Similar as before, we evaluate the performance of the proposed method both quantitatively

and qualitatively.
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Examples of the visual quality of the “cleaned” LL bands are shown in Fig. 11.5. Although

the CDF 9/7 wavelet transform already produces less aliased LL bands, our method still

manages to reduce the remaining aliasing and produce more visually appealing LL bands.

From Fig. 11.7 we also see that the visual quality of the reconstructed images from our

method is significantly better than that from the CDF 9/7 wavelet transform, with much

less ringing around edges.

Regarding the quantitative performance, our method can still achieve up to 11.5% average

BD bit-saving for PSNR over the range of bit-rate from 0.1bpp to 1.0bpp, as seen in

Table. 11.2. The story is fairly consistent for the SSIM and MS-SSIM metrics as well; the

complete rate-distortion curves can be found in Fig. 11.6. All these results align with our

previous conclusions with the LeGall 5/3 wavelet transform.

11.4.4 Comparison with existing works

To put our method in context, we compare the variations of the proposed approach with

some existing works. These well-known works are: i) the JPEG2000 (with the LeGall 5/3

and the CDF 9/7 wavelets) and the WebP compression standards, which do not involve any

machine learning; ii) iWave [23] and Dardouri [25], which are machine-learning optimized

lifting schemes for wavelet-like lossy image compression; iii) Theis [29], Toderici [8] and

Johnston [31], which are variants of the end-to-end optimized, non-wavelet-like learned

lossy image compression systems.

For the sake of this comparison, we prefer to avoid including methods that employ a

dedicated post-processing step on reconstructed data to reduce artifacts like in [22], or very

sophisticated context modelling for entropy coding, such as [28] [198]. Moreover, to the

best of our knowledge, all the end-to-end optimized image compression systems, including

Theis [29], Toderici [8] and Johnston [31], lack important attributes of our method, such

as resolution scalability, quality scalability and accessibility to region-of-interest. The

resolution scalability feature, however, is found in iWave [23] and Dardouri [25], making

comparisons with these methods particularly interesting. At the same time, these wavelet-
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like methods do not explicitly consider the visual quality of the LL bands at di�erent

resolutions, and they do not propose an end-to-end training strategy to directly optimize

their methods for rate-distortion objective.

Fig. 11.8 provides the average PSNR and MS-SSIM results using the commonly tested

Kodak dataset. The proposed method appears to be very competitive with other existing

methods. Interestingly, the PSNR performance of iWave [23] is very close to our method,

further confirming that wavelet-like compression schemes can be competitive with end-to-

end optimized non-wavelet-like methods. For the other wavelet-like method Dardouri [25],

we are unable to execute their inference procedure available to us. However, we observe

from [25] that they are unable to present competitive PSNR and MS-SSIM results with

respective to JPEG2000.

11.4.5 Computational Complexity

Finally, we evaluate computational complexity as well as region of support 7 associated

with our method, in comparison with other existing works. From Table 11.3 we can see,

our method comes with the fewest number of parameters and relatively small region of

support.

Table 11.3: Comparisons of computational complexity and region of support

Number of Parameters Region of Support

Our method 33K 37 x 37
JPEG2000 [1] - 9 x 7 or 5 x 3

WebP - -
iWave [23] 97K ¥ 21 x 21

Dardouri [25] 167K ¥ 253 x 125
Toderici [8] 5.4M ¥ 250 x 250
Theis [29] 3.3M ¥ 43 x 43

Johnston [31] 9.9M ¥ 300 x 300

7Here region of support refers to the total receptive field of all networks involved in a
certain approach.
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(a) LeGall 5/3, finest resolution (b) ⁄2=0

(c) ⁄2=1, less staircases/aliasing (d) anneal ⁄2

(e) LeGall 5/3, 2
nd

finest level (f) ⁄2=0

(g) ⁄2=1, less staircases/aliasing (h) anneal ⁄2

Figure 11.2: Continue to the next page...
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(i) LeGall 5/3, 3
rd

finest resolution (j) ⁄2=0

(k) ⁄2=1, less staircases/aliasing (l) anneal ⁄2

Figure 11.2: Visual quality of the “cleaned” LL bands at di�erent scales from various
images, obtained using di�erent ⁄2 strategies during training, and optimized for the LeGall
5/3 wavelet transform. Note that by reducing aliasing, we produce smoother edges with
less “staircase” artifacts; red boxes lead to areas of significant di�erence.
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(a) Tecnick-Cat1

(b) DIV2K-Cat1

(c) DIV2K-Cat2

(d) CLIC2019-Cat3

Figure 11.3: Comparisons of the average PSNR, SSIM and MS-SSIM improvements over
the LeGall 5/3 wavelet transform across each dataset; the proposed method is trained to
improve the LeGall 5/3 wavelet transform with various aliasing constraint parameters ⁄2
during training. BD bit-rate savings (in %) are given next to the corresponding legends.

111



CHAPTER 11. EXPERIMENTAL RESULTS: PART I

(a) the original image, cropped

from image 28 of DIV2K-Cat2

dataset

(b) LeGall 5/3 at 0.199bpp,

PSNR=29.53dB, SSIM=0.841,

MS-SSIM=0.9585

(c) Proposed with ⁄2=0,0.197bpp,

PSNR=30.09dB,SSIM=0.854,

MS-SSIM=0.9631

(d) the original image, cropped

from image 9 of Tecnick-Cat1

dataset

(e) LeGall 5/3 at 0.298bpp,

PSNR=26.97dB, SSIM=0.862,

MS-SSIM=0.9694

(f) Proposed with ⁄2=0,0.295bpp,

PSNR=28.19dB,SSIM=0.875,

MS-SSIM=0.9718

(g) the original image, cropped

from image 28 of DIV2K-Cat1

dataset

(h) LeGall 5/3 at 0.197bpp,

PSNR=29.27dB, SSIM=0.831,

MS-SSIM=0.9526

(i) Proposed with ⁄2=0,0.196bpp,

PSNR=30.39dB,SSIM=0.850,

MS-SSIM=0.9592

Figure 11.4: Examples of reconstructed images; red boxes lead to areas of significant
di�erence. The proposed method is trained to improve the conventional LeGall 5/3 wavelet
transform with ⁄2 = 0.

112



11.4. RESULTS AND DISCUSSIONS

(a) CDF 9/7, finest resolution (b) ⁄2=0

(c) ⁄2=1, less staircases/aliasing (d) anneal ⁄2

(e) CDF 9/7, 2
nd

finest resolution (f) ⁄2=0

(g) ⁄2=1, less staircases/aliasing (h) anneal ⁄2

Figure 11.5: Continue to the next page...
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(i) CDF 9/7, 3
rd

finest resolution (j) ⁄2=0

(k) ⁄2=1, less staircases/aliasing (l) anneal ⁄2

Figure 11.5: Visual quality of the “cleaned” LL bands at di�erent scales from various
images, obtained using di�erent ⁄2 during training and optimized for the CDF 9/7 wavelet
transform. Note that by reducing aliasing, we produce smoother edges with less visible
“staircase” artifacts; red boxes lead to areas of significant di�erence.
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(a) Tecnick-Cat1

(b) DIV2K-Cat1

(c) DIV2K-Cat2

(d) CLIC2019-Cat3

Figure 11.6: Comparisons of the average PSNR, SSIM and MS-SSIM improvements over
the CDF 9/7 wavelet transform across each dataset, with various aliasing constraint pa-
rameters ⁄2 in (10.1) during training. BD bit-rate savings (in %) are given next to the
corresponding legends.
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(a) the original image, cropped

from image 28 of DIV2K-Cat2

dataset

(b) CDF 9/7, bit-rate=0.196bpp,

PSNR=29.91dB, SSIM=0.845,

MS-SSIM=0.9614

(c) Proposed with ⁄2 = 0, bit-

rate=0.197bpp, PSNR=30.63dB,

SSIM=0.859, MS-SSIM=0.9652

(d) the original image, cropped

from image 9 of Tecnick-Cat1

dataset

(e) CDF 9/7, bit-rate=0.295bpp,

PSNR=27.36dB, SSIM=0.854,

MS-SSIM=0.9681

(f) Proposed with ⁄2 = 0, bit-

rate=0.295bpp, PSNR=28.41dB,

SSIM=0.870, MS-SSIM=0.9711

(g) the original image, cropped

from image 28 of DIV2K-Cat1

dataset

(h) CDF 9/7, bit-rate=0.199bpp,

PSNR=30.13dB, SSIM=0.841,

MS-SSIM=0.9573

(i) Proposed with ⁄2 = 0, bit-

rate=0.198bpp, PSNR=30.84dB,

SSIM=0.856, MS-SSIM=0.9614

Figure 11.7: Examples of di�erent reconstructed images, using the proposed method
trained with ⁄2 = 0 and the CDF 9/7 wavelet transform; red boxes lead to areas of
significant di�erence.
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(a) PSNR/dB

(b) MS-SSIM/dB

Figure 11.8: Comparisons of the average PSNR and MS-SSIM improvements between our
methods and other existing works for the Kodak Dataset. MS-SSIM are calculated in dB
as: ≠10 log10(1≠MS-SSIM). The results of other works are taken from the original papers
without any reproduction.
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Chapter 12

Contribution: Further Studies On

Extensions of Neural Networks To

The Existing Wavelet Transform

From Chapter 8 to Chapter 11, we have explored the merits of augmenting the existing

base wavelet transform with two additional lifting steps T A

H2L
and T A

L2H
. Through this

exploration, we have discovered that the proposal-opacity network architecture and the

end-to-end optimization framework with backward annealing are particularly useful.

In this chapter, we leverage these two discoveries to bear upon a more comprehensive

analysis on what can really be achieved by learning-based wavelet-like transforms in a

critically sampled highly scalable compression system. In this more comprehensive anal-

ysis, we consider the merit of replacing all the fixed lifting steps that correspond to the

base wavelet transform with neural networks. Since these lifting networks generally exhibit

substantially larger region of support as well as higher computational complexity than the

corresponding fixed lifting filters in the base wavelet transform, it is important to study

whether or not the benefit in coding performance can be justified by the negative impacts

on complexity and region of support.
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Moreover, we also study the relationship between the depth of lifting structures (i.e. the

number of learned lifting steps) and coding performance. Ultimately, all learned lifting

steps in this thesis are employed in a critically sampled highly scalable compression system,

in which only one trained model is applied to all levels of decomposition and for all bit-

rates of interest. Therefore, it is not clear whether or not employing deep fully learned

lifting structures would be beneficial in this context.

Furthermore, we study the impact of diversity (i.e. the number of channels in each lifting

network) on coding performance, noting that the network diversity can be increased with-

out incurring any cost to region of support. In the end, since compact region of support is

one of the fundamental features of the base wavelet transform, and this depends on both

the support of network kernels and the number of layers, we also examine whether or not

similar coding performance can be achieved using lifting networks with smaller kernels

and fewer layers.

Through this comprehensive study, we discover that developing a good training schedule

becomes crucial, especially for the success of the work in this chapter. This arises because

gradient descent, which underlies most of machine-learning based approaches (including

the work in this chapter), can easily get stuck in local optima well before encountering a

good solution when initialized with random conditions. To address this issue, we propose

an oracle-opacity training schedule to progressively train all learned lifting steps in a

disciplined way, as seen in Section 12.3.2; this is also a major contribution of this chapter.

The rest of this chapter is arranged as follows. We first introduce the lifting structures

that we choose to investigate in Section 12.1. Subsequently, we explain how the proposal-

opacity network architecture is leveraged and extended to all lifting steps that correspond

to the base wavelet transform in Section 12.2. In the end, we give details on how to create

oracle opacities for the proposed training schedule in Section 12.3.3.
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12.1 Investigated Lifting Structures

This section introduces the lifting structures that we investigate in this chapter. These

structures help us study more broadly the application of neural networks to all lifting steps

that correspond to the existing base wavelet transform.

From our previous work in Chapter 8, the explored lifting structure is a mixture of fixed

and learned lifting steps, as illustrated in Fig. 12.1; the fixed lifting steps correspond

to the existing base wavelet transform, while the learned lifting steps correspond to the

high-to-low and the low-to-high networks, TH2L and TL2H in the figure, which serve as

additional lifting steps to exploit residual redundancy between successive levels of the base

wavelet transform. Despite the success of this earlier work, the question remains whether

Figure 12.1: The lifting structure employed in our earlier work from Chapter 8, in which
the base wavelet transform does not involve any learning; it is simply the conventional
wavelet transform that has been commonly utilized in image compression applications, i.e.
either the LeGall 5/3 or the CDF 9/7 bi-orthogonal wavelet transform. The high-to-low
and low-to-high operators, T A

H2L
and T A

L2H
, serve as additional lifting steps to augment

the base wavelet transform; these two additional steps employ neural networks and are
considered to be adaptive to local scene geometry.

neural networks can be beneficially employed in the lifting steps that correspond to the

base wavelet transform as well. One possible way to address this question is to replace

the base wavelet transform with an arbitrary sequence of learned lifting steps. However,
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training of these learned lifting steps becomes very di�cult. In fact, as we shall see in

Section 13.4.1, these learned steps can easily wind up exhibiting worse coding e�ciency

than the base wavelet transform.

To address this, we adopt the following approach in this chapter: the base wavelet trans-

form is first factorized into a sequence of two-dimensional lifting steps as seen in Fig. 12.2,

each of which can then be replaced individually with a learnable equivalent. To be more

specific, the input image x (or the low-pass band yLL,d≠1 at level d ≠ 1 of the wavelet

decomposition) is first split into four cosets yee,d, yoe,d, yeo,d and yoo,d as

yee,d[n1, n2] =

Y
__]

__[

x[2n1, 2n2], d = 1

yLL,d≠1[2n1, 2n2], d > 1

yoe,d[n1, n2] =

Y
__]

__[

x[2n1 + 1, 2n2], d = 1

yLL,d≠1[2n1 + 1, 2n2], d > 1

yeo,d[n1, n2] =

Y
__]

__[

x[2n1, 2n2 + 1], d = 1

yLL,d≠1[2n1, 2n2 + 1], d > 1

yoo,d[n1, n2] =

Y
__]

__[

x[2n1 + 1, 2n2 + 1], d = 1

yLL,d≠1[2n1 + 1, 2n2 + 1], d > 1
(12.1)

The cosets with even rows yee,d and yeo,d are then employed to predict the cosets with odd

rows yoe,d and yoo,d respectively, using the vertical-predict operator PV . Subsequently,

yoe,d and yoo,d, along with their predictions from yee,d and yeo,d, are utilized to update

yee,d and yeo,d respectively, employing the vertical-update operator UV . Similarly, the

horizontal-predict and the horizontal-update operators PH and UH can be applied to

predict and then update the cosets with odd and even columns, as shown in Fig. 12.2.

The results are the wavelet low-pass band yLL,d and the detail bands yHL,d, yLH,d and

yHH,d at level d of the two-dimensional decomposition.

In the conventional LeGall 5/3 wavelet transform, PV , UV , PH and UH are simply one-
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Figure 12.2: The factorization of the base wavelet transform shown in Fig 12.1 into a
sequence of two-dimensional lifting steps; the operators PV , UV , PH and UH represent
the vertical-predict, the vertical-update, the horizontal-predict and the horizontal-update
operators, respectively. K denotes the scaling factor; in the LeGall 5/3 wavelet transform,
K = 0.5.

dimensional fixed separable lifting filters with transfer functions as

P(z) = ≠1
2(1 + z) (12.2)

U(z) = 1
4(1 + z

≠1) (12.3)

and so

PV (z1, z2) = P(z1), PH(z1, z2) = P(z2) (12.4)

UV (z1, z2) = U(z1), UH(z1, z2) = U(z2) (12.5)

In this chapter, we replace each of the operators PV , UV , PH and UH individually with

a learnable two-dimensional network. In addition, as we shall see in Section 12.2, we

also choose a particular network architecture; it allows the more expressive learned lifting

networks to discover the existing base wavelet transform as one possible solution, which

already works well in terms of coding e�ciency for compression. Moreover, when we put

these learned lifting steps together with the two additional TH2L and TL2H as shown in
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Fig. 12.2, the resulting lifting structure can also be capable of discovering the solution

presented in our previous work in Chapter 8 and Chapter 11.

Figure 12.3: Fusing the last update operator UH in Fig. 12.2 with the high-to-low network
T A

H2L
. The symbol K denotes the scaling factor; in the LeGall 5/3 wavelet transform,

K = 0.5.

Furthermore, it is worthwhile to point out that the replacement of each individual lifting

step in Fig. 12.2 with neural network comes with a cost. This is because each lifting

network generally has a substantially larger region of support as well as higher compu-

tational complexity than the corresponding fixed lifting filter. More importantly, since

each lifting network usually involves non-linearities, quantization errors can expand in

an uncontrollable way through these non-linearities during synthesis. This is particularly

important for the work in this chapter, because we aim to employ only one set of trained

lifting networks for all levels of the wavelet decomposition and for all bit-rates of interest

over a wide range, leading to a highly scalable compression system that preserves quality

scalability, resolution scalability and region-of-interest accessibility.

As a result, it is natural to consider minimizing the number of learned lifting steps in
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(a)

(b)

Figure 12.4: Progressively dropping the two additional lifting networks T A

H2L
and T A

L2H

shown in Fig 12.3. These two lifting structures allow us to study whether T A

H2L
and T A

L2H

can be absorbed into the previous learned lifting steps or not.
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Fig. 12.2, so as to reduce the potential influence of non-linearities introduced by learned

lifting networks in the synthesis path. This can be addressed by fusing the last update

operator UH with T A

H2L
as shown in Fig. 12.3, so that the total number of learned lifting

steps can be reduced by one. In addition, we also consider progressively dropping the

two additional steps T A

H2L
and T A

L2H
, resulting in other two structures as illustrated in

Fig. 12.4. These two lifting structures allow us to study whether T A

H2L
and T A

L2H
can be

absorbed into the previous learned lifting steps or not.

12.2 Proposal-opacity Network Architecture

12.2.1 Significance of the proposal-opacity topology

As we have mentioned in Section. 12.1, the underlying principle behind the development

of our previous work in Chapter 8 is that residual redundancy between successive levels

of the wavelet transform can be substantially removed by the introduction of additional

lifting networks. A major form of this residual redundancy comes as aliasing information in

the wavelet transform. Although we could build deep neural networks to exploit aliasing

information amongst the wavelet subbands, deep networks also come with penalties in

terms of computational complexity, region of support and robustness of a highly scalable

compression system, as we have explained in Section 12.1.

In fact, our previous discussion in Chapter 7 has shown that if we know local orientations

(i.e. geometric flow) a priori, then the solution to eliminating aliasing information from

both the low- and high-pass subbands of the wavelet transform can be simply a linear filter.

However, since geometric flow is a local property that is hard to accurately determine

within an image, in reality, the untangling of aliasing from the wavelet subbands requires

either an adaptive filtering solution or a bank of filters with an adaptive strategy for

combining their responses.

Actually, after exploring various neural network architectures in Chapter 9, the best inves-
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tigated network indeed turns out to be structured in terms of proposals and opacities; the

proposals essentially form a bank of linear filters (or can be understood as candidate lifting

steps) while the opacities provide a data-dependent blending of these linear proposals, as

depicted in Fig. 12.5. We refer to this particular multiplicative architecture as a proposal-

opacity topology. As we shall see in Section 12.2.3, this is also the network architecture

that we decide to leverage in this chapter when studying the extension of neural networks

to all the lifting steps PV , UV , PH and UH within the base wavelet transform.

Figure 12.5: The proposal-opacity neural network topology proposed previously in Chap-
ter 9. The symbol K x K denotes the filter support while N represents the number of
filters (or equivalently the number of channels in the proposal/opacity branch).
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Furthermore, this proposal-opacity network topology also o�ers the benefit that it can

easily replicate the fixed lifting filters in the base wavelet transform. For instance, if the

N filters in the proposal branch are all fixed as the one in (12.2), then the proposal-opacity

network always produces the fixed lifting filter in (12.2) regardless of the outcomes of the

opacity branch. This additional benefit is important for developing learned networks for

PV , UV , PH and UH , as we expect the learned lifting networks to be still capable of

discovering the base wavelet transform as one possible solution during training, as we

have discussed in Section 12.1.

12.2.2 Particular properties of the opacity branch

Since the opacity branch in Fig. 12.5 can be generally understood as analysing local scene

geometry to produce opacities (or likelihoods) that are used to blend linearly generated

proposals, it is reasonable to constrain the outcomes of the opacity branch within the

range from 0 to 1. Moreover, an important pre-requisite for the opacity branch is that it

is capable of producing opacity maps that are invariant to absolute image intensity and

contrast.

One way to preserve these properties is to adopt a log-like activation function after a

succession of convolutional layers (no bias) with ReLU , as shown in Fig. 12.6(a); the

employed log-like function is defined as

y =

Y
__]

__[

log (x + o�set) x > ≠o�set/2

log (o�set/2) otherwise
(12.6)

where o�set = 0.01 is chosen to define the derivative of the function at the origin for back-

propagation. To explain Fig. 12.6(a) further, the log-like operator e�ectively converts

intensity scaling factors into additive o�sets. The following linear layer is expected to

behave like an competitive operator, which can e�ectively remove these additive o�sets.

The final non-linearities tanh and ReLU are only placed to ensure that the outcomes of

the opacity branch are within the range 0 to 1.
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Another way to explicitly force this intensity-contrast independence of the opacity branch

is to use a normalization block as shown in Fig. 12.6(b). The normalization function

employed here is defined as

y = xi + o�set
q

N

i=1(xi + o�set)
, o�set = 0.01 (12.7)

which is also capable of removing arbitrary intensity scaling factors from the input data.

Since Fig. 12.6(a) and (b) both preserve desirable properties for the opacity branch, it is

natural to consider which one is more preferable. In our previous work in Chapter 9, we

chose to utilize Fig. 12.6(a), because the two additional networks T A

H2L
and T A

L2H
merely

modify the behaviour of the base wavelet transform. Therefore, it is not fundamentally

problematic if all opacities turn out to be zero. However, utilizing such an approach may

not be appropriate when replacing all the lifting steps with neural networks in the base

wavelet transform. This is because at least one of the proposals needs to be in play in this

scenario, which means the opacity branch should not deliver likelihoods that are all close

to zero. As a result, we employ the approach in Fig. 12.6(b) when developing all the lifting

networks PV , UV , PH , UH , T A

H2L
and T A

L2H
in this chapter, as seen in Section 12.2.3.

12.2.3 Proposed lifting networks

Leveraging the proposal-opacity network topology in Section 12.2.1 and the general opacity

architecture in Fig. 12.6(b), we construct the learned networks for the lifting steps PV ,

UV , PH and UH , as depicted in Fig. 12.7. The architecture of the opacity branch is heavily

inspired by our previous development in Chapter 9, employing residual blocks that have

been demonstrated to be useful in feature detection for the non-linear opacity branch.

The linear proposal branch is chosen to have the same region of support as the opacity

branch. We utilize this common network architecture for all four lifting networks PV , UV ,

PH and UH in this chapter, except that the input to each network is di�erent according

to Fig. 12.2. For the sake of simplicity, the high-to-low and the low-to-high networks T A

H2L

and T A

L2H
also evolve from those in Chapter 9 into Fig. 12.8, employing Fig. 12.6(b) instead
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(a) (b)

Figure 12.6: (a) depicts the log-like activation function after a succession of convolutional
layers (no bias) with ReLU ; this is the opacity architecture that we adopt in our previous
work in Chapter 9. (b) illustrates the normalization block that we employ in this chapter
to force the intensity-contrast independence of the opacity branch shown in Fig. 12.5.

of Fig. 12.6(a) to force the intensity-contrast independence for the opacity branches in this

chapter.

Similar to our previous work in Chapter 11, we aim to employ only one set of learned

lifting networks for all levels of the wavelet decomposition. This is goal is explicitly chosen

because it essentially provides the learned lifting networks with an incentive to produce a

compression system that naturally has a multi-scale, self-similar interpretation of images.

More importantly, it is more sensible for practical applications to employ a method which

only uses one trained model for all levels. This is especially important for scalable codecs,

where the number of levels received at the decoder may not be the same as the encoder.
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Figure 12.7: The common proposal-opacity network architecture that is utilised for all the
lifting steps PV , UV , PH and UH within the base wavelet transform seen in Fig. 12.2. The
notation conv N x K x K represents the convolutional layer with N channels (or filters)
and kernel support K x K. The linear proposal branch is chosen to have the same region
of support as the opacity branch.
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(a)

Figure 12.8: The high-to-low network T A

H2L
employed in this chapter; the residual blocks

have the same structure as in Fig. 12.7. The notation conv N x K x K represents the
convolutional layer with N channels (or filters) and kernel support K x K. The linear
proposal branch is chosen to have the same region of support as the corresponding opacity
branch.
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(b)

Figure 12.8: The low-to-high network T A

L2H
employed in this chapter; the residual blocks

have the same structure as in Fig. 12.7. The notation conv N x K x K represents the
convolutional layer with N channels (or filters) and kernel support K x K. The linear
proposal branch is chosen to have the same region of support as the corresponding opacity
branch.
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12.3 End-to-end Optimization Framework and Oracle-opacity

Training Schedule

12.3.1 End-to-end learning strategy with a backward annealing approach

Now we have explained the lifting structures to investigate and the architectures of all

learned lifting networks. The challenge that we immediately encounter is how to jointly

train all learned lifting steps across multiple levels of decomposition for rate-distortion

objectives, so as to optimize coding e�ciency for compression.

In our previous work in Chapter 10, we consider selectively including an aliasing suppres-

sion term as part of the rate-distortion training objective, which is given by

J(„) = Îx ≠ x̂(„)Î2
¸ ˚˙ ˝

D

+⁄1
ÿ

—

ÿ

iœB—

li,—

¸ ˚˙ ˝
L

+⁄2
ÿ

d

...ÂyLL,d(„) ≠ Âyt

LL,d

...
2

2
¸ ˚˙ ˝

aliasing constraint term

(12.8)

where

li,— = log2
1

PV— (qi,— ; „) = log2
1

Prob(V— = qi,— ; „) (12.9)

In (12.8), the total distortion term D represents the sum of squared errors between the

input image x and its reconstructed counterpart x̂; „ represents the vector of all network

weights. The total coded length term L is the sum of all coded lengths li,— , resulting from

the coding of quantization indices qi,— for all subbands B—. We write V— for the random

variable from which the quantization indices qi,— are drawn; then, the coded length li,— is

modelled by (12.9). The LL band aliasing constraint term in (12.8) measures the sum of

squared errors between ÂyLL,d and Âyt

LL,d
at level d of the wavelet decomposition; ÂyLL,d is

the aliasing prediction from the high-to-low network T A

H2L
, while Âyt

LL,d
denotes the target

aliasing model constructed in Section 9.1.

The Lagrange multiplier ⁄1 controls the trade-o� between distortion D and coded length

L, while the other Lagrange multiplier ⁄2 controls the level of emphasis on visual quality of

reconstructed images at di�erent scales. In Chapter 11, we have demonstrated that ⁄2 can
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have a beneficial impact on perceptual quality of intermediate low-resolution images across

di�erent scales, without significant loss in coding e�ciency. To simplify the experimental

conditions of this chapter, which focus exclusively on coding e�ciency, we stick to the case

where ⁄2 = 0.

As recognised by existing works in the literature, end-to-end learning targeting the objec-

tive in (12.8) requires a good strategy to model the quantization and the entropy coding

processes, which are both discontinuous. For this purpose, we choose to adopt the end-to-

end optimization framework developed in Chapter 10 for the work in this chapter. This

particular end-to-end optimization framework employs a backward annealing approach,

which has certain advantages over additive noise approaches [11,188], the straight-through

estimator [189,190] and soft-to-hard annealing approaches [191,192], as we have elaborated

in Chapter 10.

12.3.2 Oracle-opacity training schedule

As we just explained in Section 12.3.1, the end-to-end optimization framework with back-

ward annealing is su�cient to model the discontinuous quantization and entropy coding

processes. However, this optimization framework itself does not necessarily guarantee the

convergence to a good solution, because it ultimately relies on stochastic gradient descent.

As a result, developing a good training schedule becomes crucial; this is particularly im-

portant for the work in this chapter for two reasons.

The first reason is because the lifting structure in Fig. 12.2 becomes unstructured once we

replace all the fixed lifting steps within the base wavelet transform with neural networks.

If we employ random initialization as in Chapter 11 for all learned lifting networks in

this chapter, we essentially forfeit the base wavelet transform that otherwise exits in our

previous work in Chapter 9, which serves as a stable starting point for training. As a

result, instead of improving upon the conventional fixed wavelet transform, we can easily

wind up with coding performance that is below the conventional fixed wavelet transform,

regardless of the employed network architectures, as we shall see in Section 13.4.1.
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The second issue, which highlights the importance of a good training schedule for the

work in this chapter, arises from the multiplicative proposal-opacity topology shown in

Fig. 12.5. When optimizing this architecture, it is very easy for the optimizer to fall inside

a local optima that stochastic gradient descent cannot escape from, and even random

initialization does not necessarily solve the problem. To understand this, suppose all the

linear filters in the proposal branch correspond to the fixed lifting filter in either (12.2)

or (12.3), then the opacity branch that is randomly initialized may not learn anything

useful, because the fixed lifting filter is already close to a local optimum for compression.

Similarly, if one of the opacities is close to zero during the optimization procedure, then the

corresponding proposal can hardly learn anything useful as well. This essentially means

that the proposal and the opacity branches are so interdependent that each one ultimately

establishes the gradient experienced by the other one during back-propagation.

To address these obstacles, we propose an oracle-opacity training schedule, which consists

of three steps as summarised in Table 12.1. Each step within this particular training

schedule is trained using the end-to-end optimization framework with backward annealing

as developed in Chapter 10, directly targeting the rate-distortion objective in (12.8).

Table 12.1: The Proposed Oracle-opacity Training Schedule

Proposals Opacities

Step 1: freeze opacities to train proposals
• one proposal: frozen as the corresponding fixed

lifting filter (as in either (12.2) or (12.3)) oracle opacities: frozen
(obtained o�-line)• the rest N ≠ 1 proposals: stay trainable

Step 2: freeze proposals to train opacities frozen as trained in Step 1 trainable from scratch

Step 3: free all proposals and opacities trainable, starting from Step 2 trainable, starting from Step 2

To be more specific, Step 1 employs a distinct set of N opacities that are likely to be useful

in order to train N sensible and diverse proposals. These N distinct opacities are frozen

throughout training in this step, and are not compatible with any inference machine; we

can imagine them to be received externally by some means as part of the compression

system. This is completely impossible in practice, because the decoder cannot receive the

external knowledge to recover these N distinct opacities from the inference machine. For

this reason, we refer to these opacities as oracle opacities. Moreover, in Step 1 we freeze
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one of the filters in the proposal branch as the corresponding fixed lifting filter (either

(12.2) or (12.3)) in the base wavelet transform, whereas the rest N ≠ 1 proposals stay

trainable in this step. In this way, the lifting network is at least capable of discovering

the corresponding fixed lifting filter as one possible solution, which already works well in

terms of coding e�ciency. Subsequently, in Step 2 the proposals are frozen to train the

corresponding opacities from scratch. In Step 3, we free both the proposal and the opacity

branches for training, starting from the weights found in Step 2.

In practice, we first utilize this oracle-opacity training schedule to jointly learn all four

lifting networks PV , UV , PH and UH for the lifting structure shown in Fig. 12.4(b).

This means that all the proposal branches of these networks are jointly learned in Step

1, followed by the joint optimization of all the opacity branches in Step 2. In Step 3 we

free all four lifting networks PV , UV , PH and UH for training. Since the lifting structure

in Fig. 12.4(a) adds the new element T A

H2L
to the configuration in Fig. 12.4(b), we then

freeze the already trained networks PV , UV , PH and UH , and only train T A

H2L
using the

proposed oracle-opacity training schedule. Afterwards, we free all five lifting networks PV ,

UV , PH , UH and T A

H2L
for training. The same methodology is adopted for training the

lifting structure in Fig. 12.3; we only first train T A

L2H
and then free all lifting networks for

training. In order to make fair comparisons in Chapter 13, we also apply the proposed

oracle-opacity training schedule to learn the two additional lifting networks in Fig. 12.1;

we choose to learn T A

H2L
first and then train the additional T A

L2H
.

12.3.3 Proposed method to create oracle opacities

As we have seen in Section 12.3.2, oracle opacities are at the heart of the proposed training

schedule in Table 12.1. Since we have revealed the importance of local geometric flow to

eliminating redundancy in the wavelet transform in Chapter 7, we expect the pre-defined

oracle opacities to explicitly carry orientation information, which can then serve as useful

prior knowledge to train the corresponding proposals.

In this chapter, the oracle opacities are derived from the original image as shown in
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(a) (b)

Figure 12.9: (a) illustrates the proposed method to create oracle opacities. (b) exemplifies
the orientations of one Gaussian filter and four oriented DoG filters. The notation conv N

x K x K represents the convolutional layer with N channels (or filters) and kernel support
K x K.

Fig. 12.9(a), using a Gaussian filter and a collection of oriented derivative of Gaussian

(DoG) filters, as exemplified in Fig. 12.9(b); the results consist of one non-oriented opacity

and N ≠ 1 oriented oracle opacities. The non-oriented oracle opacity always corresponds

to the frozen proposal in Step 1 of the proposed training schedule seen in Table 12.1;

this is because it is reasonable to utilize the fixed lifting filter when there is no specific

geometric flow. Since the oracle opacities need to be dyadically down-sampled at di�erent

levels of decomposition as seen in Fig. 12.9(a), it is important to choose an appropriate

standard deviation ‡d for the Gaussian and the DoG filters at each resolution d. In

this chapter, ‡d increases exponentially as the decomposition level d goes deeper; that is

‡d = 2d≠1
, d = 1, 2, 3, · · · , where d = 1 denotes the finest level of decomposition.

As explained in Section 12.3.2, these pre-defined opacities are oracle values that in general

the true opacity branch may not discover from the data available. However, surprisingly

the true opacity branch turns out to be able to discover opacities whose utility is compa-

rable with and even slightly superior to the utility of oracle opacities, as we shall see in

Section 13.4.1. This indicates that these oracle opacities can indeed serve as a reasonable

starting point to train the corresponding proposals.
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Chapter 13

Experimental Results: Part II

In this chapter, we first empirically demonstrate the significance and the rationale of the

oracle-opacity training schedule proposed in Section 12.3.2. Employing this particular

training schedule, we then develop a sequence of experiments to study di�erent aspects

(depth, diversity and region of support) of the investigated lifting structures shown in

Fig. 12.1, Fig. 12.3, Fig. 12.4(a) and Fig. 12.4(b). Ultimately, these experiments give

us guidance on how to strategically deploy neural networks to enhance the base wavelet

transform for compression, balancing coding performance with computational complexity

and spatial support. Note that the source code of the work in this thesis, along with all

the training and testing datasets, are available on GitHub1.

13.1 Experimental Settings

13.1.1 Training Phase

In this chapter, Keras with TensorFlow backend and the Adam algorithm [194] are em-

ployed for training, with 75 image batches comprising 16 patches of size 256 x 256 from the

1https://github.com/xinyue-li3/learned-wavelet-like-transforms/
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DIV2K image dataset2. We employ 5 levels of the wavelet decomposition during training,

and aim to jointly train only one set of learned lifting networks, which can be applied

to all levels of decomposition as well as a wide range of bit-rates. This goal is explicitly

chosen for the reasons elaborated in Section 12.2.3.

As explained in Section 12.3.2, the proposed oracle-opacity training schedule is utilized to

jointly learn lifting networks to minimize the objective in (12.8) with ⁄2 = 0; the training

progresses from the lifting structure shown in Fig. 12.4(b) to the one seen in Fig. 12.3. This

particular training schedule consists of three steps as summarized in Table 12.1, and each

step is trained using the end-to-end optimization framework with backward annealing, as

developed in Chapter 10. In this chapter, the end-to-end optimization framework with

backward annealing is initialized the same way as in Chapter 11, so that each step of the

oracle-opacity training schedule requires 1200 epochs to complete.

13.1.2 Testing Phase

In this chapter, four categorized datasets are used during testing, in order to demonstrate

the merits of di�erent lifting structures in various scenarios. These four datasets are

identical to those in Chapter 11, each of which contains di�erent amount of distinct edges;

we refer to them as Tecnick-Cat1, DIV2K-Cat1, DIV2K-Cat2 and CLIC2019-Cat3. Note

that none of these images are used during training.

13.2 Methods Explored

To study the relationship between the depth of lifting structures (i.e., the number of

learned lifting steps) and coding performance, we explore the following variations:

• Hybrid(5/3)-5c: the hybrid lifting structure with two learned steps shown in Fig. 12.1,

using the LeGall 5/3 bi-orthogonal base wavelet transform, and N = 5 for T A

H2L
and

2https://data.vision.ee.ethz.ch/cvl/DIV2K/
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T A

L2H
networks seen in Fig. 12.8.

• Hybrid(9/7)-5c: the hybrid lifting structure with two learned steps shown in Fig. 12.1,

using the CDF 9/7 bi-orthogonal base wavelet transform, and N = 5 for T A

H2L
and

T A

L2H
networks seen in Fig. 12.8.

• Custom-4S-5c: the lifting structure with four learned lifting steps as depicted in

Fig. 12.4(b), using N = 5 for all lifting networks PV , UV , PH and UH seen in

Fig. 12.7.

• Custom-4MS-5c: the lifting structure with four modified learned lifting steps as

depicted in Fig. 12.4(a), using N = 5 for all lifting networks PV , UV , PH , UH and

T A

H2L
seen in Fig. 12.7 and Fig. 12.8(a).

• Custom-5S-5c: the lifting structure with five learned lifting steps as depicted in

Fig. 12.3, using N = 5 for all lifting networks PV , UV , PH , UH , T A

H2L
and T A

L2H

seen in Fig. 12.7 and Fig. 12.8.

To study the merits of increasing the diversity of learned lifting steps (i.e., the number of

channels N in each learned lifting network), we employ N = 9 instead of N = 5 for all

above-mentioned lifting structures. The resulting variations are referred to as Hybrid(5/3)-

9c, Hybrid(9/7)-9c, Custom-4S-9c, Custom-4MS-9c and Custom-5S-9c.

To study the impacts of spatial support of learned lifting steps on coding e�ciency, we

explore the following variation:

• Hybrid(9/7)-9c-compact: the hybrid lifting structure shown in Fig. 12.1, using the

CDF 9/7 bi-orthogonal base wavelet transform and N = 9 for T A

H2L
and T A

L2H

networks, setting all convolutional kernels in Fig. 12.8 to be 3 x 3 and removing

the last residual block.
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13.3 Evaluation Metrics

Identical to Chapter 11, we consider evaluating the performance of all lifting structures

both quantitatively and qualitatively. In terms of quantitative measurements, three widely

used metrics are employed – Peak Signal-to-Noise Ratio (PSNR), Structural Similarity

(SSIM), Multi-Scale Structural Similarity (MS-SSIM). All these metrics are measured

and averaged for each dataset, from which Bjøntegaard (BD) rate savings (in %) are

obtained. With regard to qualitative assessment, we provide examples for both the LL

bands produced by each lifting structure at di�erent scales and the full reconstructed

images in this chapter.

13.4 Results and Discussions

13.4.1 Significance and rationale of the proposed oracle-opacity training

schedule

We first empirically study the significance and the rationale of the oracle-opacity training

schedule proposed in Section 12.3.2. For the sake of simplicity, we focus only on learning

the lifting structure Custom-4S-5c in this section. Further studies on other investigated

lifting structures are provided shortly.

In our earlier work, the two additional lifting networks T A

H2L
and T A

L2H
are randomly

initialized and pre-trained, targeting the aliasing model Âyt

LL,d
for the LL band and energy

compaction for the detail bands, as seen in Chapter 9. The pre-trained network weights

are then utilized as the starting point for the end-to-end optimization with backward

annealing, as seen in Chapter 11. However, as we can see in Fig. 13.2, if we adopt the

same approach to learn the lifting networks within the base wavelet transform, they can

easily wind up exhibiting much worse coding performance than the conventional wavelet

transforms across all four datasets for average PSNR, SSIM and MS-SSIM over the range

of bit-rates from 0.1bpp to 1.0bpp. We believe that this remarkable result is in large
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part due to the multiplicative structure within our proposal-opacity network architecture

shown in Section 12.2. This observation reinforces the need for a robust training schedule,

when studying more broadly the application of neural networks to all lifting steps within

the base wavelet transform, as explained in Section 12.3.2.

Figure 13.1: The envelope of the rate-distortion objective in (12.8) with ⁄2 = 0 for learning
the lifting structure Custom-4S-5c throughout Step 1 and Step 2 of the proposed oracle-
opacity training schedule.

As we have elaborated in Section 12.3.3, the proposed training schedule employs pre-

defined oracle opacities, which can be understood as external knowledge that is received

o�-line as part of the compression system. These oracle opacities are incompatible with

any inference machine; however, they are expected to be useful as guidance to train the

corresponding proposals in Step 1 of the proposed training schedule. One fundamental

question then arises as to whether or not the true opacity branch is capable of discovering

opacities that are as useful as, or even more useful than these pre-defined oracle opacities,

using the actual data available in Stage 2 of the proposed training schedule.

To address this question, we plot the envelope of the rate-distortion objective in (12.8) with

⁄2 = 0 throughout Step 1 and Step 2 of the proposed training schedule, when learning the
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lifting structure Custom-4S-5c. Fig. 13.1 demonstrates that the rate-distortion value J in

(12.8) continuously decreases until reaching a steady point at the end of Step 1. At the

beginning of Step 2, the rate-distortion cost function J rises suddenly; this is expected as

we are training the true opacity branches from scratch while freezing the proposals. The

cost function J then decreases quickly as the networks learn the true opacities.

We can see surprisingly that the true opacity branches are indeed capable of discovering

opacities whose utility is comparable with and even superior to the utility of oracle opac-

ities, producing a slightly lower rate-distortion value at the end of Step 2 compared with

that of Step 1. This observation strongly reinforces the appropriateness of the proposed

oracle-opacity training schedule.

13.4.2 Impacts of increasing the depth of lifting structures

Now we examine the relationship between the depth of lifting structures (i.e., the number

of learned lifting steps) and coding performance. As we have mentioned in Section 12.1,

each lifting network generally has a substantially larger region of support as well as higher

computational complexity than the corresponding fixed lifting steps in the base wavelet

transform. Therefore, it is important to study whether or not the benefit in coding per-

formance can be justified by the negative impacts on complexity and spatial support.

Specifically, we examine the performance of the following lifting structures: Hybrid(5/3)-

5c, Hybrid(9/7)-5c, Custom-4S-5c, Custom-4MS-5c and Custom-5S-5c. To make fair com-

parisons, we utilize the proposed oracle-opacity training schedule to learn all these lifting

structures, as explained in Section 12.3.2. The BD-rate savings (in %) for average PSNR,

SSIM and MS-SSIM over the range of bit-rates from 0.1bpp to 1.0bpp across all four

datasets are provided in Table 13.1; the complete rate-distortion curves can be found in

Fig. 13.3.

The overall observation is that all the investigated lifting structures with learnable steps

(N = 5) are capable of improving coding e�ciency of the conventional LeGall 5/3 and CDF
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(a) Tecnick-Cat1

(b) DIV2K-Cat1

(c) DIV2K-Cat2

(d) CLIC2019-Cat3

Figure 13.2: Comparisons of the average PSNR, SSIM and MS-SSIM improvements over
the LeGall 5/3 and the CDF 9/7 wavelet transforms across each dataset, using pre-training
with random initialization followed by end-to-end optimization with backward annealing
as in Chapter 11 versus the proposed oracle-opacity training schedule in Chapter 12. We
focus only on learning the lifting structure Custom-4S-5c in this comparison.
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9/7 wavelet transforms, regardless of the amount of distinct edges presented in images.

Although all these lifting structures are optimized to minimize MSE during training, they

also work surprisingly well under the SSIM and the MS-SSIM metrics for all datasets. It

is also worthwhile to point out that all the investigated lifting structures exhibit higher

coding e�ciency for datasets that have consistent or distinct edges, such as Tecnick-Cat1

and DIV2K-Cat1 datasets. This reinforces our underlying assumption about geometric

flow in Chapter 7, and also aligns with our previous discoveries in Chapter 11.

More interestingly, we can see that increasing the number of learned lifting steps does

not lead to significantly higher coding e�ciency in terms of PSNR, SSIM and MS-SSIM,

whereas computational complexity and region of support increase dramatically as demon-

strated in Table 13.4. In addition, employing more learned lifting steps does not actually

improve the visual quality of LL bands across di�erent scales, as seen in Fig. 13.6(a)(b)(c),

Fig. 13.7(a)(b)(c) and Fig. 13.8(a)(b)(c). Similarly, perceptual quality of the reconstructed

images at full resolution is not significantly improved by using more learned lifting steps,

as illustrated in Fig. 13.9(d)(e)(f), Fig. 13.10(d)(e)(f) and Fig. 13.11(d)(e)(f).

These observations suggest that to improve the conventional wavelet transform with neu-

ral networks, it may not be worthwhile to develop deep fully learned lifting structures.

Instead, it appears to be more profitable to augment a larger base wavelet transform with

two additional learned lifting steps T A

H2L
and T A

L2H
, as shown in Fig. 12.1; this approach

represents competitive coding performance across various evaluation metrics for di�erent

types of images, while exhibiting much lower computational complexity and more com-

pact region of support. This is particularly valuable for practical applications, in which

computational complexity and spatial support are considered to be very important.

13.4.3 Merits of increasing the diversity of learned lifting networks

Now we move on to study the merits of increasing the diversity (i.e., the number of channels

N) of learned lifting networks seen in Fig. 12.7 and Fig. 12.8. It is worthwhile to point out

that increasing the diversity of learned lifting networks does not incur any cost to region
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Table 13.1: Impacts of increasing the depth of lifting structures on coding e�ciency. The
table shows BD-rate improvements for PSNR, SSIM and MS-SSIM metrics over the LeGall
5/3 and the CDF 9/7 wavelet transform. Results are obtained with bit-rates between
0.1bpp to 1.0bpp.

BD-rate for PSNR
Hybrid
(5/3)-5c

Hybrid
(9/7)-5c

Custom
-4S-5c

Custom
-4MS-5c

Custom
-5S-5c

LeGall 5/3

Tecknick-Cat1 ≠17.4% ≠21.9% ≠17.3% ≠18.4% ≠20.3%
DIV2K-Cat1 ≠14.4% ≠19.6% ≠17.1% ≠18.3% ≠19.7%
DIV2K-Cat2 ≠12.5% ≠15.9% ≠13.4% ≠14.2% ≠15.6%
CLIC2019-Cat3 ≠7.3% ≠10.8% ≠8.2% ≠8.7% ≠9.8%

CDF 9/7

Tecknick-Cat1 ≠6.5% ≠11.4% ≠6.3% ≠7.5% ≠9.5%
DIV2K-Cat1 ≠3.8% ≠9.7% ≠7.0% ≠8.2% ≠9.9%
DIV2K-Cat2 ≠3.8% ≠7.5% ≠4.9% ≠5.7% ≠7.2%
CLIC2019-Cat3 ≠0.5% ≠4.2% ≠1.5% ≠1.8% ≠3.2%

BD-rate for SSIM
Hybrid
(5/3)-5c

Hybrid
(9/7)-5c

Custom
-4S-5c

Custom
-4MS-5c

Custom
-5S-5c

LeGall 5/3

Tecknick-Cat1 ≠15.5% ≠16.9% ≠15.8% ≠16.7% ≠18.6%
DIV2K-Cat1 ≠13.8% ≠15.7% ≠15.1% ≠16.4% ≠18.4%
DIV2K-Cat2 ≠12.8% ≠13.8% ≠13.6% ≠14.3% ≠16.1%
CLIC2019-Cat3 ≠7.5% ≠8.2% ≠7.8% ≠8.1% ≠9.5%

CDF 9/7

Tecknick-Cat1 ≠10.0% ≠11.5% ≠10.2% ≠11.1% ≠13.2%
DIV2K-Cat1 ≠8.2% ≠10.1% ≠9.5% ≠10.9% ≠12.9%
DIV2K-Cat2 ≠6.3% ≠7.5% ≠7.2% ≠7.9% ≠9.8%
CLIC2019-Cat3 ≠3.3% ≠4.1% ≠3.6% ≠4.0% ≠5.4%

BD-rate for MS-SSIM
Hybrid
(5/3)-5c

Hybrid
(9/7)-5c

Custom
-4S-5c

Custom
-4MS-5c

Custom
-5S-5c

LeGall 5/3

Tecknick-Cat1 ≠13.6% ≠17.2% ≠15.1% ≠16.3% ≠18.8%
DIV2K-Cat1 ≠13.1% ≠16.8% ≠14.5% ≠15.9% ≠18.5%
DIV2K-Cat2 ≠12.7% ≠15.0% ≠13.8% ≠14.6% ≠17.2%
CLIC2019-Cat3 ≠8.9% ≠11.0% ≠8.9% ≠9.5% ≠12.5%

CDF 9/7

Tecknick-Cat1 ≠5.1% ≠9.0% ≠6.7% ≠8.0% ≠10.6%
DIV2K-Cat1 ≠9.9% ≠7.5% ≠5.1% ≠6.6% ≠9.5%
DIV2K-Cat2 ≠3.4% ≠5.9% ≠4.7% ≠5.5% ≠8.3%
CLIC2019-Cat3 0.6% ≠1.7% 0.5% ≠0.2% ≠3.4%
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Table 13.2: Merits of increasing the diversity of lifting structures (i.e., the number of
channels N in each learned lifting network) on coding e�ciency. The table shows BD-rate
improvements for PSNR, SSIM and MS-SSIM metrics over the LeGall 5/3 and the CDF
9/7 wavelet transform. Results are obtained with bit-rates between 0.1bpp to 1.0bpp.

BD-rate for PSNR
Hybrid
(5/3)-9c

Hybrid
(9/7)-9c

Custom
-4S-9c

Custom
-4MS-9c

Custom
-5S-9c

LeGall 5/3

Tecknick-Cat1 ≠20.7% ≠24.0% ≠20.2% ≠20.9% ≠22.4%
DIV2K-Cat1 ≠18.2% ≠22.2% ≠19.8% ≠20.7% ≠22.0%
DIV2K-Cat2 ≠15.4% ≠17.8% ≠15.6% ≠16.2% ≠17.4%
CLIC2019-Cat3 ≠8.9% ≠12.2% ≠9.0% ≠9.5% ≠10.6%

CDF 9/7

Tecknick-Cat1 ≠10.1% ≠13.7% ≠9.5% ≠10.2% ≠11.9%
DIV2K-Cat1 ≠8.1% ≠12.6% ≠10.0% ≠10.9% ≠12.4%
DIV2K-Cat2 ≠7.0% ≠9.7% ≠7.3% ≠7.9% ≠9.2%
CLIC2019-Cat3 ≠2.2% ≠5.7% ≠2.3% ≠2.9% ≠4.0%

BD-rate for SSIM
Hybrid
(5/3)-9c

Hybrid
(9/7)-9c

Custom
-4S-9c

Custom
-4MS-9c

Custom
-5S-9c

LeGall 5/3

Tecknick-Cat1 ≠19.8% ≠19.9% ≠19.7% ≠20.3% ≠21.8%
DIV2K-Cat1 ≠17.9% ≠18.9% ≠19.2% ≠20.2% ≠21.9%
DIV2K-Cat2 ≠16.1% ≠16.4% ≠16.3% ≠16.8% ≠18.3%
CLIC2019-Cat3 ≠9.0% ≠10.1% ≠8.7% ≠9.1% ≠10.4%

CDF 9/7

Tecknick-Cat1 ≠14.5% ≠14.5% ≠14.4% ≠15.0% ≠16.6%
DIV2K-Cat1 ≠12.5% ≠13.4% ≠13.9% ≠14.9% ≠16.7%
DIV2K-Cat2 ≠9.8% ≠10.1% ≠10.1% ≠10.5% ≠12.1%
CLIC2019-Cat3 ≠4.9% ≠6.0% ≠4.6% ≠5.0% ≠6.4%

BD-rate for MS-SSIM
Hybrid
(5/3)-9c

Hybrid
(9/7)-9c

Custom
-4S-9c

Custom
-4MS-9c

Custom
-5S-9c

LeGall 5/3

Tecknick-Cat1 ≠17.6% ≠19.6% ≠18.8% ≠19.8% ≠21.9%
DIV2K-Cat1 ≠16.5% ≠19.0% ≠17.9% ≠19.4% ≠21.7%
DIV2K-Cat2 ≠15.7% ≠17.1% ≠16.3% ≠17.2% ≠19.5%
CLIC2019-Cat3 ≠10.0% ≠12.3% ≠9.4% ≠10.7% ≠13.5%

CDF 9/7

Tecknick-Cat1 ≠9.5% ≠11.5% ≠10.7% ≠11.8% ≠14.1%
DIV2K-Cat1 ≠7.2% ≠10.0% ≠8.9% ≠10.5% ≠13.0%
DIV2K-Cat2 ≠6.7% ≠8.2% ≠7.4% ≠8.3% ≠10.8%
CLIC2019-Cat3 ≠0.7% ≠3.1% ≠0.1% ≠1.5% ≠4.5%
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(a) Tecnick-Cat1

(b) DIV2K-Cat1

(c) DIV2K-Cat2

(d) CLIC2019-Cat3

Figure 13.3: Comparisons of the average PSNR, SSIM and MS-SSIM improvements over
the LeGall 5/3 and the CDF 9/7 wavelet transforms across each dataset, using lifting
structures with di�erent numbers of learned lifting steps – Hybrid(5/3)-5c, Hybrid(9/7)-
5c, Custom-4S-5c, Custom-4MS-5c and Custom-5S-5c.
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(a) Tecnick-Cat1

(b) DIV2K-Cat1

(c) DIV2K-Cat2

(d) CLIC2019-Cat3

Figure 13.4: Comparisons of the average PSNR, SSIM and MS-SSIM improvements over
the LeGall 5/3 and the CDF 9/7 wavelet transforms across each dataset, using lifting struc-
tures with more channels N in each learned lifting step – Hybrid(5/3)-9c, Hybrid(9/7)-9c,
Custom-4S-9c, Custom-4MS-9c and Custom-5S-9c.
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of support, but does increase computational complexity.

In this section, we proceed exactly the same as in Section 13.4.2, but employing N = 9

instead of N = 5 for all learned networks. These lifting networks are all trained using the

proposed oracle-opacity training schedule, as explained in Section 12.3.2. The BD-rate

savings (in %) in average PNSR, SSIM and MS-SSIM over the range of bit-rates from

0.1bpp to 1.0bpp is provided in Table 13.2; the complete rate-distortion curves can be

found in Fig. 13.4.

Table 13.1 and Table 13.2 reveal that increasing the diversity of learned lifting networks

further improves coding e�ciency of the corresponding lifting structures, at the cost of

additional computational complexity as seen in Table 13.4. More interestingly, we observe

that the hybrid lifting structure Hybrid(9/7)-9c exhibits the highest coding e�ciency,

especially for PSNR metric, amongst other configurations with more learned lifting steps.

This configuration also produces better visual quality of LL bands across di�erent scales as

compared in Fig. 13.6(d)(e), Fig. 13.7(d)(e) and Fig. 13.8(d)(e), as well as comparable full

reconstructed images as compared in Fig. 13.9(g)(h), Fig. 13.10(g)(h) and Fig. 13.11(g)(h).

This observation aligns with the conclusion in Section 13.4.2 that it is more profitable to

employ learned T A

H2L
and T A

L2H
steps to improve the conventional base wavelet transform,

rather than developing deep fully learned lifting structures. Moreover, if we can a�ord

additional computational complexity and are only interested in coding e�ciency, we can

choose to increase the diversity of T A

H2L
and T A

L2H
networks for higher coding e�ciency.

13.4.4 Study on spatial support of learned lifting steps

Compact region of support is one of the fundamental features of the conventional wavelet

transform. This feature, however, is damaged by augmenting or replacing the fixed lifting

steps that correspond to the base wavelet transform with neural networks, which generally

have substantially larger spatial supports. Therefore, it is important to study whether

similar coding performance can be achieved using lifting networks with more compact
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region of support or not.

To study this, we start with the hybrid lifting structure Hybrid(9/7)-9c, whose superiority

over other configurations has been demonstrated in Section 13.4.3. Specifically, we set

all convolutional kernels in T A

H2L
and T A

L2H
to be 3 x 3, and remove the last residual

block shown in Fig. 12.8. The resulting lifting structure Hybrid(9/7)-9c-compact then has

significantly smaller region of support (23 x 23 instead of 37 x 37), together with lower

computational complexity than Hybrid(9/7)-9c, as demonstrated in Table 13.4.

To evaluate the performance of this configuration, the BD-rate savings (in %) in average

PNSR, SSIM and MS-SSIM over the range of bit-rates from 0.1bpp to 1.0bpp is provided

in Table 13.3; the complete rate-distortion curves can be found in Fig. 13.5. We can

see that competitive (even slightly superior) coding performance can be achieved using

more diverse T A

H2L
and T A

L2H
networks with smaller region of support. This configuration

also produces slightly enhanced full reconstructed images as compared in Fig. 13.9(g)(i),

Fig. 13.10(g)(i) and Fig. 13.11(g)(i), while maintaining visual quality of LL bands across

di�erent resolutions as illustrated in Fig. 13.6(d)(f), Fig. 13.7(d)(f) and Fig. 13.8(d)(f).

These observations reinforce the statement in Section 12.1 that it is important for a highly

scalable compression system to have limited number of non-linearities; otherwise, quanti-

zation errors can expand in an uncontrollable way during synthesis.
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Table 13.3: Study on spatial support of learned lifting steps on coding e�ciency. The table
shows BD-rate improvements for PSNR, SSIM and MS-SSIM metrics over the LeGall 5/3
and the CDF 9/7 wavelet transform, with bit-rates between 0.1bpp to 1.0bpp.

BD-rate for PSNR
Hybrid
(9/7)-9c

Hybrid
(9/7)-9c-compact

LeGall 5/3

Tecknick-Cat1 ≠24.0% ≠25.6%
DIV2K-Cat1 ≠22.2% ≠24.0%
DIV2K-Cat2 ≠17.9% ≠19.4%
CLIC2019-Cat3 ≠12.2% ≠12.8%

CDF 9/7

Tecknick-Cat1 ≠13.7% ≠15.5%
DIV2K-Cat1 ≠12.6% ≠14.6%
DIV2K-Cat2 ≠9.7% ≠11.4%
CLIC2019-Cat3 ≠5.7% ≠6.4%

BD-rate for SSIM
Hybrid
(9/7)-9c

Hybrid
(9/7)-9c-compact

LeGall 5/3

Tecknick-Cat1 ≠19.9% ≠22.5%
DIV2K-Cat1 ≠18.9% ≠21.5%
DIV2K-Cat2 ≠16.4% ≠18.3%
CLIC2019-Cat3 ≠10.1% ≠10.9%

CDF 9/7

Tecknick-Cat1 ≠14.5% ≠17.3%
DIV2K-Cat1 ≠13.5% ≠16.2%
DIV2K-Cat2 ≠10.1% ≠12.2%
CLIC2019-Cat3 ≠6.0% ≠6.9%

BD-rate for MS-SSIM
Hybrid
(9/7)-9c

Hybrid
(9/7)-9c-compact

LeGall 5/3

Tecknick-Cat1 ≠19.5% ≠21.9%
DIV2K-Cat1 ≠19.0% ≠21.5%
DIV2K-Cat2 ≠17.1% ≠18.8%
CLIC2019-Cat3 ≠12.3% ≠13.1%

CDF 9/7

Tecknick-Cat1 ≠11.5% ≠14.1%
DIV2K-Cat1 ≠10.0% ≠12.7%
DIV2K-Cat2 ≠8.2% ≠10.0%
CLIC2019-Cat3 ≠3.1% ≠4.1%
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(a) Tecnick-Cat1

(b) DIV2K-Cat1

(c) DIV2K-Cat2

(d) CLIC2019-Cat3

Figure 13.5: Comparisons of the average PSNR, SSIM and MS-SSIM improvements over
the LeGall 5/3 and the CDF 9/7 wavelet transforms across each dataset, using lifting
structures with di�erent regions of support – Hybrid(9/7)-9c and Hybrid(9/7)-9c-compact.
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(a) Hybrid(5/3)-5c (b) Hybrid(9/7)-5c

(c) Custom-5S-5c (d) Hybrid(9/7)-9c

(e) Custom-5S-9c (f) Hybrid(9/7)-9c-compact

Figure 13.6: Visual quality of the LL bands at the finest resolution obtained from di�erent
lifting structures with various numbers of learned steps and diversities.
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(a) Hybrid(5/3)-5c (b) Hybrid(9/7)-5c

(c) Custom-5S-5c (d) Hybrid(9/7)-9c

(e) Custom-5S-9c (f) Hybrid(9/7)-9c-compact

Figure 13.7: Visual quality of the LL bands at the 2nd finest resolution obtained from
di�erent lifting structures with various numbers of learned steps and diversities.
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(a) Hybrid(5/3)-5c (b) Hybrid(9/7)-5c

(c) Custom-5S-5c (d) Hybrid(9/7)-9c

(e) Custom-5S-9c (f) Hybrid(9/7)-9c-compact

Figure 13.8: Visual quality of the LL bands at the 3rd finest resolution obtained from
di�erent lifting structures with various numbers of learned steps and diversities.
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(a) the original image, cropped

from image 28 of DIV2K-Cat1

dataset

(b) LeGall 5/3 at 0.197bpp,

PSNR=29.27dB,SSIM=0.831,MS-

SSIM=0.9526

(c) CDF 9/7 at 0.199bpp,

PSNR=30.13dB,SSIM=0.841,MS-

SSIM=0.9573

(d) Hybrid(5/3)-5c at 0.196bpp,

PSNR=30.39dB,SSIM=0.850,MS-

SSIM=0.959

(e) Hybrid(9/7)-5c at 0.198bpp,

PSNR=30.84dB,SSIM=0.856,MS-

SSIM=0.962

(f) Custom-5S-5c at 0.196bpp,

PSNR=30.76dB,SSIM=0.871,MS-

SSIM=0.963

(g) Hybrid(9/7)-9c at 0.196bpp,

PSNR=30.96dB,SSIM=0.856,MS-

SSIM=0.962

(h) Custom-5S-9c at 0.198bpp,

PSNR=30.96dB,SSIM=0.876,MS-

SSIM=0.965

(i) Hybrid(9/7)-9c-compact,

0.199bpp,PSNR=31.13dB,

SSIM=0.864,MS-SSIM=0.966

Figure 13.9: Examples of reconstructed images, obtained from di�erent lifting structures
with various numbers of learned steps and diversities. We compare these results with two
conventional wavelet transforms: the LeGall 5/3 and the CDF 9/7 wavelet transforms.
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(a) the original image, cropped

from image 28 of DIV2K-Cat2

dataset

(b) LeGall 5/3 at 0.199bpp,

PSNR=29.53dB,SSIM=0.841,MS-

SSIM=0.9585

(c) CDF 9/7 at 0.196bpp,

PSNR=29.91dB,SSIM=0.845,MS-

SSIM=0.9614

(d) Hybrid(5/3)-5c at 0.197bpp,

PSNR=30.09dB,SSIM=0.854,MS-

SSIM=0.963

(e) Hybrid(9/7)-5c at 0.197bpp,

PSNR=30.63dB,SSIM=0.859,MS-

SSIM=0.965

(f) Custom-5S-5c at 0.199bpp,

PSNR=30.6dB,SSIM=0.872,MS-

SSIM=0.9662

(g) Hybrid(9/7)-9c at 0.197bpp,

PSNR=30.8dB, SSIM=0.863,MS-

SSIM=0.967

(h) Custom-5S-9c at 0.197bpp,

PSNR=30.8dB,SSIM=0.877,MS-

SSIM=0.967

(i) Hybrid(9/7)-9c-compact,

0.197bpp,PSNR=30.8dB,

SSIM=0.867,MS-SSIM=0.968

Figure 13.10: Examples of reconstructed images, obtained from di�erent lifting structures
with various numbers of learned steps and diversities. We compare these results with two
conventional wavelet transforms: the LeGall 5/3 and the CDF 9/7 wavelet transforms.
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(a) the original image, cropped

from image 9 of Tecnick-Cat1

dataset

(b) LeGall 5/3 at 0.298bpp,

PSNR=26.97dB,SSIM=0.862,MS-

SSIM=0.9694

(c) CDF 9/7 at 0.295bpp,

PSNR=27.36dB,SSIM=0.854,MS-

SSIM=0.9681

(d) Hybrid(5/3)-5c at 0.295bpp,

PSNR=28.19dB,SSIM=0.875,MS-

SSIM=0.972

(e) Hybrid(9/7)-5c at 0.295bpp,

PSNR=28.41dB,SSIM=0.870,MS-

SSIM=0.971

(f) Custom-5S-5c at 0.298bpp,

PSNR=28.31dB,SSIM=0.894,MS-

SSIM=0.975

(g) Hybrid(9/7)-9c at 0.298bpp,

PSNR=28.8dB,SSIM=0.878,MS-

SSIM=0.973

(h) Custom-5S-9c at 0.299bpp,

PSNR=28.8dB,SSIM=0.899,MS-

SSIM=0.973

(i) Hybrid(9/7)-9c-compact,

0.297bpp,PSNR=29.1dB,

SSIM=0.881,MS-SSIM=0.973

Figure 13.11: Examples of reconstructed images, obtained from di�erent lifting structures
with various numbers of learned steps and diversities. We compare these results with two
conventional wavelet transforms: the LeGall 5/3 and the CDF 9/7 wavelet transforms.
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13.4.5 Computational Complexity

Finally, we evaluate the computational complexity as well as the region of support 3 as-

sociated with di�erent lifting structures that are investigated in this chapter. We can

see that the hybrid lifting structure Hybrid(9/7)-9c-compact provides the lowest compu-

tational complexity and the most compact region of support. As we have demonstrated

in Section 13.4.2, Section 13.4.3 and Section 13.4.4, this configuration also exhibits the

highest coding performance and produces the best visual quality, for full-resolution re-

constructed images and LL bands, amongst all the investigated structures, including the

conventional wavelet transform. Ultimately, this is our recommended approach to enhance

the conventional wavelet transform.

Table 13.4: Comparisons of computational complexity and region of support

Number of Parameters Region of Support

Hybrid(5/3 or 9/7)-5c 35K 37 x 37
Hybrid(5/3 or 9/7)-9c 63K 37 x 37

Hybrid(9/7)-9c-compact 35K 23 x 23
Custom-4S-5c 38K 81 x 81

Custom-4MS-5c 55K 101 x 101
Custom-5S-5c 73K 117 x 117
Custom-4S-9c 69K 81 x 81

Custom-4MS-9c 98K 101 x 101
Custom-5S-9c 133K 117 x 117

3Here region of support refers to the total receptive field of all networks involved in a
certain approach.
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Chapter 14

Conclusion and Future Directions

14.1 Conclusion on augmenting the conventional wavelet

transform

In this thesis, we first propose two networks, the high-to-low and low-to-high networks, as

additional lifting steps to augment the conventional wavelet transforms, improving coding

e�ciency and visual quality of LL bands across multiple levels of decomposition. The

high-to-low network serves to clean aliasing and perhaps other redundancies from the low-

pass band produced at each successive level of the decomposition, while the low-to-high

network aims to further reduce redundancy amongst the detail bands.

The proposal of the high-to-low and low-to-high networks is inspired and guided by a

specific theoretical argument related to the opportunity presented by geometric flow and

connected to super resolution. Specifically, this argument reveals the role that geometric

flow can play in untangling redundant information from the low- and the high-pass sub-

bands. Following the ablation study of di�erent network structures, we eventually find

that the best investigated network topology does indeed involve banks of optimized lin-

ear filters controlled dynamically by an opacity network, as suggested by the underlying

theory.
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More importantly, the high-to-low and low-to-high networks driven by our hypothesis are

compact and with limited non-linearities, allowing high coding e�ciency and scalability

over a wide range of bit-rates and multiple resolutions in a critically sampled self-similar

compression system. This means that all coded wavelet coe�cients have a relatively

small region of influence in the image domain, and there is no need to learn and store

separate network weights for each decomposition level and for each bit-rate of interest.

In addition, since the structure involves a collection of purely linear filters, these two

additional networks come with fairly low computational complexity.

Apart from the networks themselves, we also propose a backward annealing approach to

manage the discontinuities in quantization and cost functions during training, so as to

jointly train the proposed networks in an end-to-end optimization framework. By employ-

ing this backward annealing approach and selectively including the aliasing suppression

term in the training objective, we demonstrate that augmenting the conventional wavelet

transform with the high-to-low and low-to-high networks achieves up to 17.4% average BD

rate saving over the LeGall 5/3 wavelet transform in a wide range of bit-rates. Moreover,

the high-to-low and low-to-high networks also manage to reduce aliasing at intermedi-

ate resolutions, producing a more visually appealing multi-scale wavelet representation.

Overall, the coding e�ciency of the proposed hybrid lifting scheme appears to be very

competitive with other related works, meanwhile o�ering other desirable features like res-

olution and quality scalability and region-of-interest accessibility.

14.2 Conclusion on extensions of neural networks to the

base wavelet transform

Built upon the success of the high-to-low and low-to-high networks, we then bear upon a

more comprehensive analysis on what can really be achieved by learning-based wavelet-

like transforms in a critically sampled self-similar highly scalable compression system.

In this comprehensive study, we first consider extending neural networks to all lifting

steps that correspond to the base wavelet transform. Rather than replacing the base
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wavelet transform with an arbitrary sequence of learned lifting steps, we take a more

disciplined approach in this thesis, which factorizes the base wavelet transform in the way

that each fixed two-dimensional lifting step can be replaced individually with a learnable

equivalent. By leveraging the proposed proposal-opacity network topology, the factorized

lifting networks have the advantage to discover the conventional wavelet transform as one

possible solution during training, which already works well in terms of coding e�ciency

for compression.

Subsequently, we study the relationship between the depth of lifting structures (i.e. the

number of learned lifting steps) and coding performance, considering computational com-

plexity and region of support as well. Furthermore, we analyse the merits of increasing

the diversity (i.e. the number of channels in each lifting network) on coding performance,

noting that this does not incur any cost to spatial support. In the end, we also study

whether or not similar coding performance can be achieved using more compact region of

support for learned lifting networks.

Through this comprehensive study, we discover that developing a good training schedule

becomes crucial, especially when we extend neural networks to all lifting steps within

the base wavelet transform. To facilitate the convergence to a good solution, we propose

an oracle-opacity training schedule in addition to the end-to-end optimization framework

with backward annealing. This particular training schedule utilizes oracle opacities that

are derived externally from source images, so as to initialize and progressively train the

multiplicative proposal-opacity lifting networks for optimized rate-distortion performance.

Employing the proposed oracle-opacity training strategy, experimental results suggest that

to improve the conventional wavelet transform, it is more profitable to augment a larger

base wavelet transform with two additional lifting networks T A

H2L
and T A

L2H
, rather than

developing deep fully learnable lifting structures with more lifting steps. If we can a�ord

additional computational complexity and are only interested in coding performance, we

recommend to only increase the diversity of T A

H2L
and T A

L2H
networks for higher coding

e�ciency. In the scenario where computational complexity is restricted, we recommend to

employ more diverse T A

H2L
and T A

L2H
networks but with more compact region of support;
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this can lead to comparable or even slightly better coding performance.

14.3 Future directions

There are many possibilities to improve upon the work in this thesis. We restrict our

attention to grayscale images having only one image component in this work; however, it

is possible to incorporate learned color transforms with our methods to deal with color

images. Moreover, for the work in this thesis, we utilize marginal entropy as the model

during training, while the actual coding techniques employed for performance evaluation

use conditional arithmetic coding, as mentioned in Section 3.3. Therefore, we can also con-

sider incorporating collections of rich context models with our approach, so that statistical

dependencies between quantized sample values can be taken into account during the train-

ing process as well. In addition, we can also investigate learned post-processing strategies

to further enhance coding performance as well as reconstruction quality of the work in

this thesis. It is worthwhile to point out that all of these additional features increases

computational complexities and may have an adverse impact on important attributes of

the proposed compression scheme, such as quality scalability, resolution scalability and

region of interest accessibility, therefore may not be valuable for practical applications.

Furthermore, there are many possibilities to extend the work in this thesis for other signal

processing applications. For instance, the proposed method can be utilized for scalable

wavelet-based video compression applications, so as to reduce disturbing visual artifacts

caused by excessive levels of aliasing from the spatial subband transform. Since the work

in this thesis is closely related to inverse image processing problems, we can consider

extending the concept of the proposal-opacity topology to denoising, demosaicing and

deblurring applications as well.
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