
Automated proof-producing abstraction of C code

Author:
Greenaway, David

Publication Date:
2014

DOI:
https://doi.org/10.26190/unsworks/17396

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/54260 in https://
unsworks.unsw.edu.au on 2024-04-23

http://dx.doi.org/https://doi.org/10.26190/unsworks/17396
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/54260
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Automated proof-producing
abstraction of C code

David Greenaway

School of Computer Science and Engineering

University of New South Wales

Sydney, Australia

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

August 2014

ii

Abstract

Before software can be formally reasoned about, it must first be represented in some form
of logic. There are two approaches to carrying out this translation: the first is to generate
an idealised representation of the program, convenient for reasoning about. The second,
safer approach is to perform a precise, conservative translation, at the cost of burdening
verification efforts with low-level implementation details.

In this thesis, we present methods for bridging the gap between these two approaches.
In particular, we describe algorithms for automatically abstracting low-level C code se-
mantics into a higher level representation. These translations include simplifying program
control flow, converting finite machine arithmetic into idealised integers, and translat-
ing the byte-level C memory model to a split heap model. The generated abstractions
are easier to reason about than the input representations, which in turn increases the
productivity of formal verification techniques. Critically, we guarantee soundness by au-
tomatically generating proofs that our abstractions are correct. Previous work carrying
out such transformations has either done so using unverified translations, or required
significant manual proof engineering effort.

Our algorithms are implemented in a new tool named AutoCorres, built on the Isa-
belle/HOL interactive theorem prover. We demonstrate the effectiveness of our abstractions
in a number of case studies, and show the scalability of AutoCorres by translating real-
world programs consisting of tens of thousands of lines of code. While our work focuses
on a subset of the C programming language, we believe most of our algorithms are also
applicable to other imperative languages, such as Java or C#.

iii

iv

Publication List

This thesis is partly based on work described in the following publications:

• D. Greenaway, J. Andronick and G. Klein. ‘Bridging the Gap: Automatic
Verified Abstraction of C’. In: Proceedings of the 3rd International Conference
on Interactive Theorem Proving. Volume 7406. LNCS. 2012, pages 99–115. doi:
10.1007/978-3-642-32347-8_8.

• D. Greenaway, J. Lim, J. Andronick and G. Klein. ‘Don’t Sweat the Small Stuff:
Formal Verification of C Code Without the Pain’. In: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 2014,
pages 429–439. doi: 10.1145/2594291.2594296.

v

http://dx.doi.org/10.1007/978-3-642-32347-8_8
http://dx.doi.org/10.1145/2594291.2594296

vi

Acknowledgements

I owe many thanks to my wonderful supervisors Gerwin Klein, June Andronick, and
Kevin Elphinstone, for their wise advice, the hours willingly spent poring over my poorly
written drafts, and their timely words of encouragement.

I would also like to thank all the people—past and present—in the NICTA Trustworthy
Systems group. You ensured that my PhD was never a lonely experience, but provided
a constant source of laughter, ideas, and high quality coffee beans. I am particularly
indebted to Andrew Boyton (a constant encouragement); Matthew Fernandez, Corey
Lewis, and Rohan Ben Jacob Rao (my willing lab rats); Peter Gammie and Toby Murray
(for their wise counsel); Japheth Lim (a partner in crime); Thomas Sewell (my oracle for
all things Isabelle); and the countless other people who have helped bounce ideas and
point me in the right direction.

I would also like to thank Lars Noschinski and Christine Rizkallah for their valuable
feedback and boundless patience while using early versions of AutoCorres.

Finally, I would like to thank Hui Yee Greenaway—not only for her long hours of
wading through the terrible prose in this thesis—but for her love, encouragement and
support; and Zoë Greenaway, for reminding me of what is actually important.

vii

viii

Contents

1 Introduction 1
1.1 From source code to logic 1
1.2 Thesis objectives and contributions 3

• Summary of thesis contributions
1.3 Document overview 5

2 Related work 9
2.1 C verification 9

• Automatic verification of C
• Semi-automatic verification of C
• Interactive verification of C

2.2 Abstraction of low-level semantics 14
2.3 Summary 16

3 Background 17
3.1 The C programming language 17

• Features of C
• Undefined and implementation-defined behaviour

3.2 The Isabelle/HOL theorem prover 22
• Interacting with Isabelle
• Isabelle’s meta-logic
• Notation

3.3 The Simpl language 26
3.4 Translating C into Isabelle/HOL 30

• Translation overview
• Converting C types to Isabelle/HOL types
• Generation of state types
• Generation of Simpl

3.5 Summary 36

4 From deep to shallow embeddings 37
4.1 Reasoning in deep and shallow embeddings 37
4.2 Cock et al.’s monadic framework 39

• Introducing the state monad

x contents

• The state monad
• Reasoning about the state monad
• Modelling abrupt termination
• Reasoning about the exception monad

4.3 Monadic loops 48
• Reasoning about the while-loop combinator

4.4 Converting Simpl to a monadic representation 58
• Proving conversion
• Function calls and recursion

4.5 Structural simplifications of monadic programs 69
• Peephole optimisations
• Exception elimination

4.6 Related work 75
4.7 Conclusion 75
4.8 Summary 76

5 Local variable lifting 77
5.1 Lifting local variables out of the program’s state 77

• Analysing existing local variable usage
• Utilising monadic return values
• Generating an L2 specification
• Proving correspondence between L1 and L2
• Proving the L2 specification

5.2 Further program optimisations 94
5.3 Type strengthening 95
5.4 Polishing and final theorem 100
5.5 Conclusion 102
5.6 Summary 103

6 Word abstraction 105
6.1 Reasoning about word arithmetic 105
6.2 Word abstraction 107
6.3 Performing the abstraction 108

• High-level overview
• Implementation in Isabelle/HOL

6.4 Word abstraction examples 114
• Maximum of two integers
• Absolute value
• Primality testing

6.5 Extending the rule set 122

contents xi

6.6 Related work 123
6.7 Conclusion 124
6.8 Summary 124

7 Heap abstraction 125
7.1 Byte-level versus typed heap reasoning 125

• Norrish and Tuch byte-level heap implementation
• Working with a byte-level heap

7.2 Lifting the heap 131
• Annotating the heap
• Lifting the heap
• Limitations of the heap lifting approach

7.3 Automated state abstraction 138
• Generating the abstract state type
• Ingredients for generating the abstract program
• Heap abstraction ruleset
• Example: swap
• Example: Unsuccessfully abstracting a type-unsafe function

7.4 Abstracting C structures 149
• Example: Suzuki’s challenge
• Example: in-place reversal of a linked list

7.5 Mixing low-level and high-level code 153
• Example: memset

7.6 Related work 158
7.7 Conclusion 159
7.8 Summary 160

8 Evaluation and experience 161
8.1 High-level reasoning with AutoCorres 162

• In-place list reversal
• Schorr-Waite algorithm

8.2 Automatic abstraction in the large 168
• Summary and statistics of projects using AutoCorres

8.3 Conclusion 174
8.4 Summary 175

9 Conclusion 177
9.1 Summary 177
9.2 Thesis contributions 178
9.3 Applicability to other languages 179

xii contents

9.4 Trusting the C-to-Isabelle Parser 179
9.5 The Simpl language as an input 181
9.6 Output stability 182
9.7 Future work 183

• Improving performance
• Implementing abstract interpretation
• Data structure abstractions
• An extended C subset

9.8 Final words 186

A Appendices 189
A.1 Big-step semantics of Simpl 189
A.2 Termination of Simpl programs 191

1 Introduction

Before we can formally verify a computer program, we need three key ingredients.
First, we need a program to verify. While this may seem obvious, many practitioners of

formal verification often overlook this first ingredient, reasoning instead about high-level
models of their programs. Real guarantees about the behaviour of software can only ever
be achieved, however, by analysing a concrete implementation.

Second, we need a reasoning tool. In the early days of formal verification, a sharp
pencil and a clean sheet of paper were the reasoning tools of choice. In modern times, it
is more common to use specially developed software—such as interactive theorem provers,
SMT solvers, or custom-designed analysis tools—to assist with the tedious and error-prone
proofs that emerge during verification.

Finally, before we can start formal verification, we need a method to translate the pro-
gram we wish to verify into the logic of our reasoning tool. For industrial programming
languages such as C, Java, or C#, the rigorous approach to carrying out this translation
will involve poring over the language’s specification—typically a long, dry book written
in semi-formal English prose—and then attempting to faithfully encode the program
being analysed into a mathematical representation.

This third oft-neglected step must be carried out by every tool claiming to perform
formal verification. As we shall see below, some tools carry out the step implicitly,
never actually revealing the internal mathematical representation to a human; other
tools are more explicit about how this process takes place, providing the user with the
mathematical interpretation as a starting point for their work.

There are two broad approaches as to how the translation from source code to logic
takes place: the first is to create logical representations that are convenient to reason
about; the second is to create logical representations that are safe.

2 introduction

For example, given the simple C program which calculates the maximum of two num-
bers

int max(int a, int b) {

if (a <= b)

return b;

return a;

}

One possible convenient representation of this program in logic is

max a b ≡
if a ≤ b then b else a

Such a logical representation strips away all the clutter of C’s syntax, leaving just its
distilled high-level semantics. Both humans and mechanised reasoning tools benefit from
clear representations such as this: humans are able to concentrate on the high-level
details of the program without distraction, while machines also benefit from not having
to wade through gritty details of the language.

While reasoning about such a representation of the input C program is a pleasant
experience, the risk is that the generated logical representation doesn’t match the realities
of the concrete program. There are two main ways that such a translation could go wrong.
The first is by using mathematical abstractions that don’t match reality. A particularly
egregious example would be using infinite integers to model 32-bit machine words;
while this would provide a significant productivity boost to verification engineers, any
‘theorems’ proven about the program would cease to be true the moment an integer
overflow inadvertently occurred.

The second way that convenient translations can go wrong is more subtle: even when
the abstractions used to represent the program are sound, convenient translations are still
hard to generate correctly. Control flow must be analysed; the liveness of local variables
must be calculated; arithmetic must be scrutinized for overflow and underflow; heap
operations must be safely abstracted, and so on. The risk is that if any one of these
phases goes wrong—perhaps the tool has a slight implementation error, or was a little
optimistic in what it considered a safe abstraction—the generated logical representation
may end up bearing no relation to the input program. Any proof on such a model will
have no guarantee of actually holding in reality.

The alternative approach to translation—generating safe representations—attempts to
be more conservative. Instead of trying to be clever in the translation process, the source
language is painstakingly modelled to ensure its semantics are precisely captured. The
translation from source code to logic is now straightforward, each concept in the source
language being directly translated into the equivalent concept in the target logic.

Figure 1.1 gives an example of the max function above translated using Norrish’s
C-to-Isabelle parser 1 [84, 85], which we use in this work. Norrish’s C-to-Isabelle parser
aims to be conservative. This conservatism is clearly visible in its output, with the

1The name C-to-Isabelle parser is a little misleading, as it not only parses C, but also translates it into
Isabelle/HOL. The tool would perhaps be better called a C-to-Isabelle translator. In this work, we nevertheless
continue to use the name of the tool.

thesis objectives and contributions 3

int max(int a, int b) {

if (a <= b)

return b;

return a;

}

max a b ≡
if a ≤ b then b else a

TRY
IF ⦃ ‘a ≤s ‘b⦄ THEN

‘ret__int ∶== ‘b;;
‘global_exn_var ∶== Return;;
THROW

ELSE
SKIP

FI;;
‘ret__int ∶== ‘a;;
‘global_exn_var ∶== Return;;
THROW;;
GUARD DontReach ∅

SKIP
CATCH

SKIP
END

Figure 1.1: The C max function, its conservative translation into Isabelle/HOL
using Norrish’s C-to-Isabelle parser [85], and an idealised logical representation
of the function. (Clockwise from top-left.)

high-level structure of the program lost in an abundance of intricate detail. For example,
the C return statement is logically encoded as exceptional control flow; a check to
ensure that the function returns a value, instead of dropping off the bottom of the
function, is explicitly encoded; the finite word arithmetic implemented by the machine
is precisely modelled.

But this conservatism comes at a cost. The tool’s output is a mess to look at. As
we shall see in later chapters, it’s also a mess to work with. But it is, at the very
least, a safe mess.

1.2 Thesis objectives and contributions

The goal of this thesis is to present a way to bridge the gap between safe translations and
convenient translations. Our process of achieving this is as follows:

• We start by importing programs written in a subset of the C programming lan-
guage [55] into the Isabelle/HOL interactive theorem prover [83] using Norrish’s
conservative C-to-Isabelle parser [84, 85];

• Next, we automatically abstract the low-level representation of C generated by
Norrish’s parser into a higher level representation. Our abstraction process (i) con-
verts from a deeply embedded representation to a shallowly embedded monadic
representation; (ii) simplifies control flow of the program; (iii) soundly abstracts
arithmetic on machine words into arithmetic on unbounded integers and naturals;
(iv) soundly abstracts the C byte-level heap into a Burstall-Bornat style split-heap;
and (v) selects an appropriate type for the final version of the specification. Our

4 introduction

generated specification is designed with manual reasoning in mind, but is also
suitable for automated reasoning,

• Critically, our abstraction process also generates an LCF-style proof of correctness. In
particular, we automatically prove that the original low-level input is a refinement
of our generated abstract specification. This means that neither our abstraction
algorithms nor their implementation need to be trusted by the end user.

• Finally, the user is presented with both a higher level representation of their input
program and an Isabelle/HOL theorem providing a formal connection between the
output higher level specification and the low-level input program.

The challenge of our work is discovering how we can automatically generate provably
correct abstractions of low-level imperative programs that are suitable for human reason-
ing, while simultaneously remaining general enough that any reasonable property—such
as partial correctness, total correctness, full functional verification, and so on—can be
proven about the result.

The algorithms and formalisms described in this work have been implemented
in a new tool named AutoCorres [48], which is implemented in Standard ML and the
Isabelle/HOL interactive theorem prover. Using AutoCorres, we can automatically abstract
the output of Norrish’s C-to-Isabelle parser shown in Figure 1.1 into its representation,
also shown in Figure 1.1, automatically generating a proof of correctness in Isabelle/HOL
showing that the translation is correct. While AutoCorres only supports a subset of the
C language (described in Section 3.4), it is capable of successfully translating several
large real-world programs, including an operating system kernel, various graph checking
algorithms, a memory allocator, and a real-time operating system.

While our work focuses on the C programming language, we believe that many of
the algorithms and formalisms presented in this document are also applicable to other
imperative programming languages, such as C#, Java, or SPARK Ada.

1.2.1 Summary of thesis contributions

In summary, the primary contributions of this thesis are as follows:

• We demonstrate how deeply embedded representations of real-world impera-
tive programs may be automatically and verifiably translated into convenient,
human-readable, shallowly embedded monadic representations (Chapter 4 and
Chapter 5);

• We offer practical optimisations that can be applied to such representations, such
as peephole optimisations (Section 4.5.1), exception elimination (Section 4.5.2),
flow-sensitive optimisations (Section 5.2), and type strengthening (Section 5.3).
These optimisations are designed in such a way that the final output specification
remains readable by humans;

• We develop logical frameworks and algorithms to automatically and verifiably
rewrite programs using word-based arithmetic into programs that instead operate

document overview 5

on unbounded arithmetic (Chapter 6). We additionally provide case studies show-
ing how the abstracted programs significantly simplify reasoning about programs
that use arithmetic (Section 6.4);

• We develop logical frameworks and algorithms to automatically and verifiably
rewrite programs using a byte-level heap into programs that instead operate on a
Burstall-Bornat style split-heap (Chapter 7). We additionally show how functions
abstracted in such a way can interact soundly with functions that need to operate
on a byte-level heap (Section 7.5); and finally,

• We evaluate the above-described methods by implementing them in a tool Auto-
Corres, and showing that existing high-level proofs can be applied to the output
of AutoCorres with minimal effort (Chapter 8). Additionally, we provide both a
qualitative and quantitative analysis of AutoCorres’ use in larger projects, both
internal and external to our research group (Section 8.2).

AutoCorres is written in the Standard ML programming language, and interacts
with Isabelle/HOL through its ML API. While the ML source code of AutoCorres is
not verified, all stages of AutoCorres generate a proof in Isabelle/HOL showing that its
conversion is correct.

All of the code described in this document is freely available at [48], under an
open-source license. This includes the full, machine-checked proofs of the theorems
listed this document, the implementation of AutoCorres, and the larger examples and
case-studies presented in this thesis.

1.3 Document overview

The remainder of this document describes our specification abstraction techniques, and
their implementation in the AutoCorres tool. In particular:

Related work In Chapter 2 we describe existing work that attempts to ease C verifica-
tion and other approaches to automatically abstracting low-level program semantics into
higher level representations.

Background In Chapter 3 we present the work that AutoCorres builds upon. In partic-
ular, we give a brief introduction to the C programming language [55] and some of the
difficulties it presents. We introduce the Isabelle/HOL interactive theorem prover [83],
which incorporates an LCF-style proof kernel that we use to ensure our reasoning is
sound. Finally, we describe Norrish’s C-to-Isabelle parser [84, 85], which translates C into
the Isabelle/HOL-based Simpl language [92, 93].

Deep to shallow embeddings Chapter 4 presents a monadic framework developed by
Cock et al. [30] that allows shallowly embedded imperative programs to be modelled
in Isabelle/HOL. We extend Cock et al.’s work to add support for modelling (poten-
tially non-terminating) imperative-style loops, and present rules to ease reasoning about
such loops.

6 introduction

ANSI C

Simpl

Monadic Conversion (§4.4)

Translation

Exception Elimination (§4.5)

Flow-Sensitive Optimisations (§5.2)

Local Variable Liing (§5.1)

Type Strengthening (§5.3)

Word Abstraction (§6)

Heap Abstraction (§7)

L1

HA

WA

Output

L1

L2

L2

JavaSPARK Ada

Figure 1.2: Overview of the transformations carried out by AutoCorres, and
the locations of their descriptions in this document. Dashed lines indicate
translations that need to be trusted, while solid lines indicate transformations
that generate proofs of correctness in Isabelle/HOL.

document overview 7

We show how the deeply embedded Simpl language (generated by the C-to-Isabelle
parser) can be automatically and provably translated into a monadic representation. We
show how this new monadic representation facilitates simplification of the program’s
representation and, in particular, show how we can significantly simplify the control flow
of programs to avoid using exceptions in most cases.

Local variable lifting In Chapter 5 we show how local variables (previously modelled
as being stored in the programs state), can be soundly lifted to monadic bound variables.
This new representation allows us to carry out further simplifications of the resulting
specification that take into account the values of local variables.

We next present a technique called type strengthening which converts program spec-
ifications into a more specialised type, allowing simple programs to be encoded using
simple representations. We finally present some examples of reasoning about C programs
using the output of AutoCorres.

Word abstraction In Chapter 6 we look at the finite machine-word arithmetic used in
the C programming language, and the problems it presents to reasoning. We present a
method of automatically and verifiably abstracting signed word arithmetic into arithmetic
on unbounded integers, without limiting the end-user’s reasoning ability or placing any
additional burden on them. We also introduce a method of automatically and verifiably
abstracting unsigned arithmetic into arithmetic on unbounded natural numbers; this
second abstraction, however, can only be applied if the program being abstracted does
not rely on unsigned overflow and the user is willing to prove this.

Additionally, we present some case studies showing how the word abstraction process
simplifies reasoning about programs that carry out arithmetic, and also show how the
word abstraction process can be extended by the user allowing word-based programming
idioms to be abstracted into high-level equivalents.

Heap abstraction In Chapter 7 we describe the difficulties that the byte-level heap
representation used by Norrish’s C-to-Isabelle parser introduces when trying to reason
about programs that access the heap. We go on to describe an existing framework by
Tuch et al. [100, 103] that provides mechanisms allowing high-level reasoning on a
byte-level heap.

We next implement a simplified version of Tuch et al.’s reasoning framework that
is suitable for mechanised reasoning, and then go on to show how we can use this
framework to automatically and verifiably rewrite program specifications to operate on
an abstract Burstall-Bornat style heap instead of the byte-level heap. Finally, we show
how we can soundly combine byte-level reasoning with abstract heap-level reasoning,
and present examples of reasoning about our translations.

Evaluation and experience In Chapter 8 we evaluate our algorithms as implemented
in the AutoCorres tool. We evaluate AutoCorres in three main ways: (i) we show
how existing highly abstract proofs about imperative algorithms can be applied to the
output of AutoCorres with minimal effort. In particular, we port an abstract proof of
the Schorr-Waite algorithm [70] to apply to a concrete C implementation with minimal
effort; (ii) we next give a qualitative description of how AutoCorres is being used in
larger projects, describing the problems it is being used to solve and the challenges that

8 introduction

still remain; finally (iii) we quantitatively evaluate AutoCorres by looking at project
statistics for some of the larger projects that AutoCorres is being used in.

Conclusion In Chapter 9 we conclude by looking at how AutoCorres helps reduce the
burden of reasoning about low-level C, and finally describe some of the problems that
still remain to be addressed.

Figure 1.2 depicts the phases carried out by AutoCorres from the initial input C
source code to the final output specification, which are described in detail in the
following chapters.

2 Related work

Our work looks at how low-level representations of C code can be automatically and
verifiably abstracted into higher level representations that are suitable for general reason-
ing. In this chapter, we look at existing work that attempts to solve similar problems.
We focus primarily on existing work that attempts to verify C programs and work that
attempts to abstract low-level logical representations of computer programs into higher
level logical representations.

2.1 C verification

Formal verification of programs written in the C programming language has been the
focus of a great deal of research attention. We can broadly categorise existing tools into
three classes: fully automatic or push-button verification tools, which attempt to prove
properties about C programs with little-to-no human interaction; semi-automatic verifica-
tion tools, which require annotations to be added to the source, but will automatically
prove them to hold; and interactive verification approaches, which allow source code to
be reasoned about in an interactive theorem prover, requiring the most effort but also
offering the greatest flexibility.

Our categorisation is by no means perfect: some of the fully automatic approaches
require annotations or hints to the provers [12]; some of the semi-automatic approaches
allow difficult subgoals to be exported to interactive theorem provers [17]; while interac-
tive theorem provers have access to powerful automated solvers. Nevertheless, we feel
that our breakdown is broadly in line with the philosophies behind the tools.

2.1.1 Automatic verification of C

The easiest to use class of tools for formal verification of C code are push-button
verification tools. The promise is that these tools can be used by developers who have

10 related work

little or no knowledge about how they work, but still be able to provide a guarantee to
the user about their program.

CEGAR The C verification tools Blast [52], MAGIC [28] and SLAM2 [6] use counter-
example guided abstraction refinement (CEGAR) [29] to prove various properties about
C code. The CEGAR approach begins by constructing a very simple abstract model of
the input C program, and attempting to verify properties about it using either an SMT
solver or model checker. As counter-examples are found in the overly simplistic model, it
is incrementally refined until either a legitimate counter-example is found or the desired
property has been proven.

While CEGAR can prove quite sophisticated properties of C in theory [7], in practice
it is only successfully used at scale in specific domains, such as ensuring that APIs are
called in the correct order, avoiding buffer overflows, or avoiding undefined behaviour.
Deeper properties such as full functional correctness for larger programs—a problem
our work is particularly concerned with—are beyond the reach of such tools at this
time.1 Further, the abstractions generated by CEGAR-based tools are not suitable for
generalised reasoning, nor human reasoning. Generalised reasoning is limited because
each abstraction is automatically constructed for the purposes of verifying a single
property and then thrown away. Human reasoning is limited because CEGAR-generated
abstractions are designed to be passed to automated reasoning tools, such as an SMT
solvers or model checkers; humans would find the generated abstractions inscrutable. In
contrast, the goal of our work is to generate a single abstraction that is not only suitable
for general reasoning, but also suitable for human reasoning.

Shape analysis and separation logic A second class of automatic verification tools use
shape-analysis and separation logic [89] to automatically detect data structures used
within a C program, infer invariants about these structures, and verify that these inferred
invariants are correct. Such tools include include Smallfoot [10], SpaceInvader [40], and
Abductor [26]. More recently, Appel’s VeriSmall tool [4] has implemented the algorithms
used by the Smallfoot tool in the Coq theorem prover, and verified the algorithm against
the semantics of the CompCert C compiler [67].

These tools have been successful at a scale, verifying programs with over three million
lines of code in a few hours [26]. The properties they are capable of verifying, however,
are limited to basic properties about memory safety and other undefined behaviour in
C. In the presence of complex logic, control flow, or data-structures, the tools give up
analysis on the current function, simply moving onto the next.

Abstract interpretation A third class of tools use abstract interpretation [33] to automat-
ically verify properties about C programs, where the program is analysed by abstracting
concrete values into an abstract domain. Carefully chosen abstract domains allow certain
classes of safety properties to be verified about the program. The ASTRÉE system [35],
for instance, is able to verify the absence of undefined behaviour in C code. It has
been successfully used to verify this property in large, safety-critical software [12], albeit

1The primary limitations are that these deeper properties require either detailed abstractions, which the
tools cannot automatically produce in a reasonable number of iterations; or generate abstractions too large for
the theorem provers backing the tools to handle.

c verification 11

with program-specific abstract domains being manually specified. The Frama-C frame-
work [98], described in further detail below, similarly has a value analysis phase based
on abstract interpretation which is used to discharge simple proof obligations.

Neither ASTRÉE nor Frama-C have verified implementations at this time. Blazy
et al. [14] developed a value analysis framework, verified in Coq with respect to the
CompCert C semantics [67]; it is able to produce competitive results when compared to
the unverified Frama-C framework while providing guarantees of soundness.

While abstract interpretation-based tools have the benefit of being both simple to
apply and scalable, this comes at the cost of being limited in the class of properties they
are able to verify—like the previous classes of tools described, they remain unsuitable for
verifying deeper properties, such as full functional correctness, which our own work is
interested in tackling.

The goal of these three classes of C verification tools is quite different from our own:
they are capable of verifying large software projects with little user intervention, at the
cost of only being able to verify specialised or domain-specific properties about these
C programs. This makes the tools practical for large-scale engineering problems faced
by industry today, but less useful for pervasive verification problems, such as proving
full functional correctness. Our own work is concerned with allowing the end-user to
prove any property about the input C program; this includes deeper properties such
as proving full functional correctness, which are well beyond the scope of automated
verification tools.

2.1.2 Semi-automatic verification of C

A second category of C verification tools are what we describe as semi-automated ver-
ification tools. With these, a user typically writes preconditions and postconditions for
function entry and exit points, and also annotates loops in the program with invariants
and measures. The tools will then analyse the C code and attempt to prove (or disprove)
the user’s annotations.

VCC One such tool is the VCC tool [31], which parses the user’s annotations and
attempts to automatically discharge generated proof obligations using the powerful Z3
SMT solver [71] on the backend. The increased automation comes at the cost of reduced
expressiveness in annotations, and requires explicit ghost state to guide the reasoner.

VCC’s internal implementation has some similarities to our own work. In an attempt
to simplify the proof obligations sent to the SMT solver, the VCC tool abstracts C
word-based arithmetic and the C heap in ways that are similar to our own abstractions
described in Chapter 6 and Chapter 7 [32]. We defer an in-depth discussion of the
similarities and differences of the two approaches until Chapter 6 and Chapter 7, but
observe that one major point of difference is that the VCC algorithms have only a
pen-and-paper proof of correctness, while our own work generates a formal proof of
correctness in Isabelle/HOL for every translation.

While our own work’s focus is on interactive reasoning, we believe our approach
is complementary to that of VCC: one could imagine our tool being used to gener-

12 related work

ate a verified abstract model of a C program, which automated reasoners could then
reason about.

Frama-C The Caduceus framework [43], and its successor the Frama-C framework [98]
with the Jessie plugin [72] also supports deductive verification of C. In particular, an-
notated C code is translated into the functional language named Why [44]. The Why
platform then generates verification conditions, which the user can choose to discharge
in one of a variety of verification tools, including both automated theorem provers
(such as CVC3 [9], Simplify [39], and Z3 [71]) and interactive theorem provers (such as
Coq [11] and Isabelle/HOL [83]). The framework has been used, for instance, to verify se-
curity properties of smartcard implementations [3]. Like VCC, the Frama-C framework’s
transformations need to be trusted, whereas our own work produces machine-checked
proofs of correctness. While the final verification conditions generated by Frama-C can
be verified in a theorem prover, the actual process of generating these conditions by
Frama-C is unverified. That is, there is no formal guarantee that being able to solve the
generated verification condition implies the input program is correct.

More recent work by Herms, Marché and Monate [53], carried out in parallel with
our own, resolves this latter problem by developing and formally verifying a verification
condition generator (VCG). In particular, Herms et al. developed a formal language
similar to that used by Why in the Coq theorem prover. Next, a VCG for this language
was developed in Coq and proven to be both sound and complete. Verification engineers
can prove programs in this language by first annotating them with preconditions, post-
conditions and loop invariants; invoking the VCG; and then discharging the resulting
verification conditions using an external tool. The most significant difference between
Herms et al.’s work and our own is that AutoCorres generates human-readable abstract
representations of the input source files, while Herms et al.’s tool only generates verifica-
tion conditions. While verification engineers reasoning about the output of AutoCorres
are able to use our VCG to verify properties about their programs, they also have the
option to use more sophisticated techniques, such as proving refinement from a higher
level specification, proving non-interference properties, and so on.

2.1.3 Interactive verification of C

A third approach to C verification involves importing C code into a logical representation
that is then manually reasoned about by a human using an interactive theorem prover.
This approach requires skilled users and greater time investment, but is able to verify
deeper properties about the system, such as in the two landmark verifications of the
CompCert optimising C compiler [67] and of the seL4 microkernel [57, 82]. The ability
to verify deep properties comes from the flexibility provided by the approach: the
verification engineer has complete freedom in style and form of properties as well as
semantic depth. They can, for instance, reason simultaneously about a program with a
VCG [110], prove refinement to a higher level specification [30], or prove more complex
properties such as non-interference [74], which are beyond the abilities of existing
automatic or semi-automatic C verification tools.

In this section, we look at some of the existing C verification frameworks that focus
on interactive verification, as well as describing the larger seL4 verification project which

c verification 13

internally carried out a manual abstraction step in order to achieve the same goals as
our own work.

Direct reasoning on C semantics Various other formal semantics of C have been devel-
oped, with varying levels of completeness [15, 42, 51, 61, 88]. Two in particular are of
interest to us, having both been developed specifically with interactive theorem proving
in mind: the CompCert C compiler and the Verisoft C0 compiler.

The CompCert C compiler is a verified C compiler written in the Coq theorem
prover [67]. In particular, the proof has a semantics of both the C language and the
compiler’s target machine code, and has been shown to generate code with observation-
ally-equivalent semantics to that of the input C program [13].

Some early work has taken place using CompCert’s C semantics to verify C programs.
Dodds and Appel [41], for instance, developed tactics to simplify reasoning about C
expressions in CompCert’s semantics. Appel also used the Verifiable C semantics—a
subset of C connecting to the CompCert backend—to verify an implementation of the
SHA-256 cryptographic hash function; the proof made heavy use of symbolic execution
of the Verifiable C semantics, and internally used separation logic to specify function
behaviours [5]. Both of these proofs reason directly about the low-level semantics gener-
ated by their respective parsers, using tools to automate some of the more tedious proof
obligations. Our aim is to abstract the low-level C semantics, eliminating the need for
such tools.

The Verisoft project [2] aimed to carry out a ‘full stack’ proof of correctness, verifying
a processor, compiler, and operating system, and linking the proofs together to form an
end-to-end guarantee of correctness. One aspect of the project was a C-like compiler,
which compiled a subset of the C programming language named C0 [65, 66]. Various
programs were verified in Isabelle/HOL using the C0 semantics, including string libraries,
linked list libraries and a simple text-based email client. The proofs of correctness
took place directly on the C0 semantics, using a Hoare-logic specification language and
verification condition generators to generate proof obligations. These were, when possible,
discharged using external model checking tools [37]. Like the CompCert framework, the
Verisoft project reasons directly on their low-level C semantics instead of a more abstract
representation of it as is done in our work.

The seL4 proof methodology The seL4 project used the Isabelle/HOL theorem prover
to show that the 10,000 line C implementation of a small operating system kernel
was a refinement of a high-level abstract specification [57, 82]. This refinement theo-
rem was originally used to prove that the C implementation of seL4 only exhibited
behaviours that were present in its formal specification. Subsequent work used the proof
to show further properties about the kernel’s C implementation—such as integrity and
non-interference—simply by reasoning about the abstract specification [74, 96].

The C implementation of seL4 was imported into Isabelle/HOL using the same
C-to-Isabelle parser used in our own work, which we discuss further in Section 3.4. The
abstract specification of seL4 was hand-written directly in Isabelle/HOL. The proof of
refinement between the output of the C-to-Isabelle parser and the abstract specification
took place in two phases, using a hand-written intermediate specification named the
executable specification as a stepping stone [30, 110].

The proof of refinement between the C implementation and the executable specifica-

14 related work

tion is the most closely related to our own work. Winwood et al. described the details
of this step in [110]. While some basic tools were developed to automate the refinement
between the output of Norrish’s C-to-Isabelle parser and the executable specification, for
the most part the proof was a manual effort, requiring approximately 3 person-years of
effort, excluding the time required to build logical frameworks and tools [57].

Our own work was initially undertaken as a method to automate the low-level
seL4 refinement proof, and hence has the same goal as this part of the proof; that is,
abstracting low-level C semantics into a high-level logical representation. Unlike the
manual proof in seL4, however, our work automates both the creation of the executable
specification and the proof of refinement between the output of the C-to-Isabelle parser
and the generated specification.

2.2 Abstraction of low-level semantics

In this section, we look at work that has investigated the problem of taking low-level
representations of programming languages and abstracting them into higher level repre-
sentations for the purposes of further reasoning. Two areas in particular that relate
closely to our own work are verified assembly decompilation and Yin et al.’s Echo
Framework [111], which we describe below.

Assembly decompilation Myreen et al. [76–78] investigated the problem of abstracting
the low-level semantics of real-world ARM machine code programs into functional
representations in the HOL4 theorem prover. Individual instructions are decoded into
logic and chained with surrounding instructions to form functional blocks. Assembly
instructions forming loops are converted into tail-recursive functions in HOL4, which do
not require termination proofs.

Similarly, Li [68] uses the HOL4 theorem prover to decompile of a small subset of
the ARM instruction set, in the context of compilation verification. Like our own work,
Li used a monadic representation for the intermediate representation of the programs,
using tail-recursive functions of HOL4 to model loops.

Both Myreen et al. and Li’s work share commonalities with our own translations
from low-level semantics into shallow embeddings. At a high-level, our work concerns
not only in the initial conversion from low-level semantics into logic, but also further
abstractions such as the heap abstraction and word abstraction phases described in
Chapter 6 and Chapter 7, respectively. We further discuss the differences in Chapter 4.

Reverse synthesis Yin et al. [111] developed a technique termed reverse synthesis to
carry out high-level reasoning about SPARK Ada programs in the PVS theorem prover.
Their technique involved (i) annotating the program implementation with preconditions,
postconditions and loop invariants; (ii) verifying that the implementation satisfies the
annotations; (iii) mechanically extracting the annotations to form a specification in an
interactive theorem prover; and finally (iv) using the theorem prover to show that the
extracted specification satisfies the properties of a high-level specification of the program.
To simplify the annotation proofs, Yin et al. additionally carried out semantics-preserving

abstraction of low-level semantics 15

transformations on their input program, such as reversing loop unrolling optimisations
or replacing iteration with recursion.

While the goals of our work are similar to that of Yin et al.’s, our work differs by
removing the need for hand-written annotations before the program can be imported
into a theorem prover. Our work also has an end-to-end proof, while Yin et al.’s frame-
work carried out program transformations and specification extraction using programs
that needed to be explicitly trusted, while each step in our work generates a proof of
correctness in Isabelle/HOL.

Conversions between language and logic We are aware of two other projects that inves-
tigate how deeply embedded representations of programming languages can be verifiably
translated into shallowly embedded logical representations, or vice versa.

The CakeML project [62] is a verified compiler for a subset of the Standard ML
programming language, translating ML programs into x86-64 machine code. One aspect
of the project developed tools allowing shallowly embedded HOL terms to be verifiably
translated into a deeply embedded representation of ML code [79], which in turn can
then be compiled into executable machine code; in effect, this allows programs to be
written in HOL, compiled to machine code, and then executed in a trustworthy manner.

Similar work carried out in parallel to our own work by Myreen [75] similarly
showed how deeply embedded representations of Lisp programs could be verifiably
translated into shallowly embedded HOL representations, and vice versa.

Both of these works which convert between deeply embedded and shallowly em-
bedded representations of programming languages have similarities to our own work
described in Chapter 4. The most significant difference between these works and our
own is that we focus on converting imperative languages, which raises difficulties not
present in functional programs; these include the representation of local variables, the
representation of the heap, and the translation of imperative-style loops. Further, our
own work carries out further abstractions that are more specific to the C programming
language, such as heap abstraction and word abstraction, described in Chapter 7 and
Chapter 6, respectively.

In summary, existing C verification frameworks typically focus on either providing a
convenient translation of C into logic or a conservative, trustworthy translation. Our goal
is to combine the two.

In the next chapter, we present the existing work our own work builds upon, includ-
ing a description of the C programming language, the Isabelle/HOL theorem prover, and
the conservative C-to-Isabelle parser we use in our work.

16 related work

Chapter Summary

• Existing C verification frameworks typically focus on either providing
a convenient translation of C into logic, or a conservative translation.
Convenient frameworks automatically abstract low-level languages into
higher level representations without providing guarantees of correctness.
Conservative frameworks provide high-assurance reasoning directly on
low-level program representations. Our work aims to combine the two.

• Existing work on automatic abstraction of program semantics exists in the
context of assembly code verification [68, 78]. While there are similarities
to our own work, particularly in our initial transformations, our broader
aim is to carry out higher level abstractions such as simplifying control
flow, abstracting word arithmetic, and abstracting the model of the heap.
This is not a concern of current assembly abstraction frameworks.

• Abstraction of program semantics has also taken place in the context of
SPARK Ada verification [111]. While promising, this work requires every
function to be manually annotated before it can be applied. Addition-
ally, the produced output is not ideal for general human reasoning. Our
work aims to automatically provide an output suitable for general, human
reasoning, while also providing an end-to-end proof of its correctness.

3 Background

The goal of this thesis is to simplify reasoning about C code by automatically abstracting
low-level logical representations of C into a higher-level representation. In this chapter,
we lay the foundations of our work by introducing the existing research being built upon.
In particular, we describe the following four works:

• The C programming language: Section 3.1 gives a description of the C programming
language, along with some of its quirks, such as undefined- and implementation-
defined behaviour;

• Isabelle/HOL: Section 3.2 gives an introduction to the Isabelle/HOL interactive
theorem prover, including notation used in the rest of this document;

• The Simpl language: Section 3.3 gives a description of Schirmer’s Simpl language,
which allows imperative programs to be modelled in Isabelle/HOL, and is the
input language to our own work; finally

• C-to-Isabelle parser: Section 3.4 introduces Norrish’s C-to-Isabelle parser, which
conservatively translates C into Norrish’s Simpl language enabling formal reasoning
about C.

Together, these four works form the conservative, low-level input to our own work
described in the following chapters.

3.1 The C programming language

It may seem a little strange that in 2014 we are still talking about the C programming
language [55], an imperative general-purpose programming language initially developed
in the late 1960s.

18 background

When the language was originally developed by Dennis Ritchie between 1969 and
1973 [90], C was distinctive for several reasons: (i) it had a (for the time) strong
static type system; (ii) the language was relatively portable—that is, code written for
a particular system could be recompiled and used on a different type of system with
relative ease; and (iii) the operations provided by the language were grounded in those
provided by real machines, allowing the language to be compiled into efficient code. It is
clear why these advantages helped the C language to boom in popularity in the 1970s and
1980s, becoming the language of choice in both application and systems programming.

In 2014, however, it would seem that C has been thoroughly superseded by newer
languages such as C++, Java, C#, and so on. These newer languages, despite having
obvious roots in C, add significant programmer conveniences such as object-oriented
programming primitives, stronger type systems (which are able to provide certain correct-
ness guarantees, unlike the type system of C), increased portability, automatic memory
management, and so on.

Despite the C language’s decreased popularity as a general-purpose application pro-
gramming language, C has remained the language of choice in areas such as embedded
systems, systems-level programming, real-time programming and safety-critical program-
ming. One reason for this is simply due to existing legacy code: because a large amount
of code already exists written in C, it is easiest to continue using C. The C program-
ming language also has benefits for certain new projects; such benefits arise from a
combination of important properties:

Small language size The C language’s syntax is relatively small, making it easier to
develop tools for the language.1 For instance, C has multiple formal models of the
language [15, 42, 51, 84, 88], verified compilers [67], model checking tools [6, 52], and
formal analysis tools [85, 98]. In contrast, the C++ programming language, which is both
larger in scope and more difficult to parse [109, p. 147], has far fewer tools despite its
similar popularity to C. While some formal models of the language exist [106], they only
cover a small subset of the language.

Small language runtime The C language has a small language runtime, which is partic-
ularly important in safety- and security-critical contexts. Language runtimes form part
of the trusted-computing base; that is, every program written in a particular language
implicitly needs to trust the runtime for its correctness. In the context of safety- and
security-critical programs, a smaller language runtime means less code that needs to be
verified, audited and/or implicitly trusted.

In C, the only strictly necessary runtime requirement of a minimal C program is a
functioning stack. The majority of the C standard library, such as memcpy and memset,
can not only be written in C itself but will typically only need to be trusted if used.2

1For instance, it was common for obscure embedded platforms to ship with a C compiler but not a C++
compiler, because the former was far easier to develop than the latter. With the development of several open
source multi-architecture C++ compilers however, it has become easier for vendors to ship both a C and C++
compiler in recent years.

2A notable exception to this is that some C compilers will emits calls to library functions as part of their
compilation process. For instance, gcc will emit calls to memcpy and memset instead of emitting code to copy or
zero large structures. Such internally emitted calls can typically be disabled during compilation if explicitly
requested.

the c programming language 19

In contrast, even simple implementations of languages such as Java and C# require
garbage collectors (typically consisting of thousands of lines of code), support for stack
unwinding (for exceptions), object introspection libraries (for language reflection) and a
substantial amount of standard library code.

Predictability Compiled C programs are typically more predictable in their memory
usage and timing characteristics than programs developed in more modern languages.
This predictability of C is primarily due to its lack of automatic memory management.

Code with predictable timing characteristics is particularly important in real-time
systems, where a calculation that arrives too late is often as bad as an incorrect calcula-
tion; while code with predictable memory usage is required in safety-critical systems to
ensure that the system will not run out of memory at an inopportune moment.

Modern languages such as Java and C# typically carry out implicit memory alloca-
tions, which may lead to seemingly innocent statements triggering out-of-memory ex-
ceptions. They also implement automatic memory management using garbage collectors,
which may introduce undesirable latencies during time-critical parts of a program.

By forcing the programmer to explicitly deal with all memory allocation and realloca-
tion issues, C remains a more predictable language.

Efficiency C types and operations are well-grounded in those provided by real ma-
chines. The standard types in C such as int, unsigned long and pointers map directly
to CPU registers, while operations on these types typically map to single CPU instruc-
tions. These efficiencies are important in domains where performance is critical, such as
in operating system development or language runtime implementations.

In some sense, it is the spartan nature of the C language that makes it suitable
for real-time and safety-critical domains: by offering few programmer conveniences or
abstractions over the hardware, it is possible for programmers to know precisely what is
going on behind the scenes.

3.1.1 Features of C

For the most part, the C programming language is relatively conventional: it has standard
control-flow primitives, such as if/else conditionals, while and for loops, the goto

statement, and so on. We will not attempt to provide a full description of the C language,
but instead refer interested readers to Kernighan and Ritchie’s guide of the language [56].
Briefly, some of the features of the language include:

• Functions, along with support for recursion and mutual recursion. Higher-order
functions may be crudely emulated using function pointers;

• A statically checked but weakly enforced type system, where the programmer may
freely override the type-system using type-casts;

• Pointers, which allow references to objects in the language. Pointers are typically
implemented by storing the memory address of the object they reference. C sup-
ports arithmetic on pointers (such as addition, subtraction, and comparison); has
a NULL pointer, used to indicate the absence of an object; and supports casting
pointers to and from integers, which in turn allows low-level access to memory;

20 background

int sum(int n) {

int result = 0;

while (n > 0) {

result += n;

n--;

}

return result;

}

(a) Sum of numbers

#include <stdio.h>

int main(void)

{

printf("Hello, world!\n");

return 0;

}

(b) Hello world

struct node {

struct node *next;

long data;

};

long add_list(struct node *head) {

long r = 0;

while (head != NULL) {

r += head->data;

head = head->next;

}

return r;

}

(c) Linked list

Figure 3.1: Three simple C programs. sum returns the sum of numbers from 1
to n; main writes the string Hello, world! to output; while add_list adds the
values in a linked list.

the c programming language 21

• Manual memory management, where heap memory is allocated with a library
function malloc and later released by an explicit call to the library function
free. Memory required for local variables and statically declared variables are
automatically managed by the compiler;

• Finite-length signed and unsigned integer types, typically implemented with ma-
chine words for efficiency;

• Finite-precision floating point types, typically implemented with machine words if
available, or emulated by libraries included with the C compiler;

• Compound/aggregate types, such as arrays, structs (containing multiple named
types), and unions (containing multiple named types, of which only one is valid at
any time);

• Support for multi-threading, including atomic types, thread-local storage and
memory ordering operations; and

• A standard library, supporting basic I/O, string manipulation, memory manage-
ment, etc.

Three simple programs that show some of these language features are shown in
Figure 3.1. The first is a function that sums the numbers from 1 to n; the second prints
the string Hello, world! to output; while the third iterates over a linked list, summing
the values stored in the nodes.

Notable language features that are not part of the C language include automatic
memory management (such as garbage collection or reference counting); array bounds
checking; a native string type (which is instead implemented using arrays of bytes);
object-oriented abstractions, such as classes or inheritance; and exceptional control flow.

While our work supports reasoning about a large subset of the C programming
language, we do not support the entire specification; Section 3.4 describes in detail that
subset of C that our work supports.

3.1.2 Undefined and implementation-defined behaviour

The C standard specifies that certain operations that can be performed by a C program
will result in undefined behaviour, where the compiler is free to exhibit any behaviour it
chooses. Examples of actions which lead to undefined behaviour include:

• Division by zero (C11, 6.5.5/5);

• Out-of-bounds array accesses (C11, 6.5.3.2/4);

• Executing a signed arithmetic operation that either overflows or underflows (C11,
6.5/5);

• Expressions that attempt to modify the same variable more than once, such as
(i = 1) + (i = 2) (C11, 6.5/2);

• Program execution reaching the end of a non-void function without a value being
returned, and then the return value being subsequently used (C11, 6.9.1/12);

• Reading from an uninitialised local variable (C11, 6.3.2.1/2); and

22 background

• Attempting to access a pointer to an object which is now out of scope (C11,
6.2.4/2).

While the phrase “the compiler is free to exhibit any behaviour it chooses” perhaps
sounds a little vague, the C standard unfortunately doesn’t commit the C compiler to
anything more. In practice, typical behaviours are the program crashing, or silently
producing incorrect results;3 the compiler is well within its rights to set the user’s
keyboard on fire, however. It is the programmer’s responsibility to ensure that actions
with undefined behaviour do not occur.

The C language also defines certain operations which have implementation-defined
behaviour. These operations may differ between compilers and platforms, but will be pre-
cisely defined for each particular compiler running on a particular platform.4 Examples
of implementation-defined behaviours include:

• The size and range of types such as char, int and long (C11, 5.2.4.2.1);

• Whether a right-shift operation on a negative value such as (-1 >> 1) will sign-
extend or not (C11, 6.5.7);

• If the char type is signed or unsigned (C11, 6.2.5);

• What happens when a large unsigned integer is cast to a smaller signed integer
(such as (signed short)65537) (C11, 6.3.1.3);

• The result of casting a pointer to an integer, or vice versa (C11, 6.3.2.3).

In our work, the implementation-defined details of C are modelled to match the
GNU C Compiler [99] for the 32-bit ARMv6 architecture.5 Our work for most the part
is independent of these assumptions, though some assumptions—such as a char having
8-bits and signed integers having a two’s complement representation—are baked rather
deeply into our tool’s concrete implementation.

3.2 The Isabelle/HOL interactive theorem prover

Formal program verification typically consists of long, tedious proofs. Not only are
these proofs time consuming to construct, but they also face the problem that even a
trivial mistake may lead to an incorrect conclusion. For this reason, modern program
verification projects tend to use theorem provers, which can both assist humans to
produce proofs and verify that such proofs are correct.

3Modern compilers will assume that actions leading to undefined behaviour cannot occur, and use these
assumptions to optimise code. This often leads to faster code, but also causes subtle and seemingly innocuous
bugs that lead to very surprising behaviour [105].

4 Such implementation-defined behaviours will ideally—but, unfortunately, not necessarily—be specified in
the compiler’s documentation.

5 In particular, the char, short, int and long types are defined to be 8-bit, 16-bit, 32-bit and 32-bits,
respectively; the char type is considered to be unsigned unless explicitly marked signed; and all integer types
are represented as two’s complement.

the isabelle/hol theorem prover 23

In this work, we use the Isabelle/HOL [83] theorem prover. Isabelle is a generic
interactive theorem prover that supports multiple logics; Isabelle/HOL is the version of
Isabelle instantiated to use higher-order logic (HOL).

Isabelle uses an LCF-style proof kernel [46, 47] to ensure correctness. In particular,
Isabelle has a small trusted core which is responsible for keeping track of proven facts
and determining if new logical inferences are valid. More complicated procedures can be
written to simplify or automate proof generation, but they can only generate new facts
by appealing to the primitive interface of the proof kernel. This kernel-based approach
allows users to extend Isabelle without needing to worry that defects in such extensions
will lead to unsoundness.6 While the proof kernel must still be trusted, the amount of
faith that must be placed in it is minimised because it is both small and conservatively
constructed.

3.2.1 Interacting with Isabelle

Users typically interact with Isabelle using the Isabelle/jEdit user interface [107], pictured
in Figure 3.2. The top panel consists of a text editor where proof commands are written
by the user. The bottom panel displays the state of Isabelle at the location of the cursor,
which is typically where the user is actively writing their current proof.

A typical Isabelle/HOL proof begins with the keyword lemma, followed by the pred-
icate that the user wishes to prove. There are two main styles of proof in Isabelle:
apply-style proofs,7 which are a backward-reasoning style of proof; and Isar proofs [108],
which are a forward-reasoning style of proof with a focus on readability. Isar proofs have
the advantage of being somewhat human-readable, at the cost of being more verbose
than their apply-style equivalents. An example of each style is given in Figure 3.3.

Isabelle, written in the Standard ML programming language, also offers an ML
API for interfacing with its proof kernel. This means that users can write their own
tactics and extensions by interfacing with the proof kernel. The API allows users to
programmatically create new definitions, state theorems and proceed to prove them,
analyse existing proof statements, and so on.

The AutoCorres tool described in this paper uses both an extensive library of
hand-written proofs and also a large amount of ML that interacts with Isabelle di-
rectly. Hand-written definitions and theorems provide a foundation that is then used by
AutoCorres’ ML code-base to automatically carry out larger proofs.

3.2.2 Isabelle’s meta-logic

As mentioned earlier, Isabelle is an interactive theorem prover designed to support
multiple types of logic, of which HOL is just one. To support several such logics, Isabelle
implements a meta-logic, which describes what logical inferences are valid. For example,
in English, we might write the statement

6This doesn’t, of course, prevent the user from proving useless theorems—but any such useless theorem will
at least be true.

7The name apply-style comes from the keyword apply that is used at the beginning of each proof step.

24 background

Figure 3.2: A screenshot of the Isabelle/jEdit IDE [107], version 2013-2 running
on MacOS X. Proof commands are written in the top panel, while the output of
the Isabelle theorem prover is shown in the bottom panel. The output currently
shown is the state of Isabelle at the point of the cursor, highlighted yellow in
the image.

If P ⟶ Q is true, and P is also true, then Q is true.

Here, the English words “if ”, ”then”, and “is true” are meta-logical, while the mathematical
terms P, Q, and P ⟶ Q are logical. In Isabelle, this statement would instead be
written as

⟦ P ⟶ Q; P ⟧ ⟹ Q

Here, the arrow “ ⟹ ” is a meta-implication operator that separates the premises of the
statement from its conclusion. The brackets “ ⟦ ” and “ ⟧ ” simply group the assumptions
on the left-hand side of the meta-implication operator.

Isabelle additionally implements a meta-universal quantifier (or the meta-forall) oper-
ator, which states a theorem is true for any value of the named variable. For example,
the following rule describes mathematical induction over the natural numbers:

⟦ P 0; ⋀n. P n ⟹ P (n + 1) ⟧ ⟹ P n

That is, if a property P is true for the natural 0; and if the property P being true for n
implies that it is also true for (n + 1); then the property is true for all values of n.

Here, the symbol “⋀” is the meta-forall quantifier, stating that the assumption must
hold for all values of n.

the isabelle/hol theorem prover 25

lemma "¬ prime (6::nat)"

apply (clarsimp simp: prime_nat_def)

apply (rule exI [where x=3])

apply clarsimp

done

(a) Apply-style proof

lemma "¬ prime (6::nat)"

proof (clarsimp simp: prime_nat_def)

obtain x :: nat where "x = 3" and "x dvd 6"

by auto

thus "∃m :: nat. m dvd 6 ∧ m ≠ Suc 0 ∧ m ≠ 6"

by fastforce

qed

(b) Isar proof

Figure 3.3: Two Isabelle/HOL proofs that the number 6 is not prime, using (a)
apply-style reasoning and (b) Isar reasoning.

In this document, we typically use the more standard notation

P 0 ∀n. P n ⟶ P (n + 1)
P x

to describe such statements. The main exception is when we are displaying literal output
from Isabelle, in which case we will use Isabelle’s default meta-logic notation.

3.2.3 Notation

Isabelle/HOL mostly uses standard mathematical notation. In this section, we describe
notation used in Isabelle/HOL that departs from such standards, or notation that is
simply less commonly known.

Functions and types The type of a term is written using the notation a ∶∶ T , which
states that term a has type T . Type variables, which may be instantiated to concrete types,
are given the notation ′t. In Isabelle/HOL, every type has at least one element in it; users
defining new types must prove that they are non-empty before Isabelle will accept the
definition. The constant named undefined is defined for every type, and represents a
arbitrary (but fixed) element of the type.

Functions in Isabelle/HOL have types of the form f ∶∶ ′a ⇒ ′b ⇒ ′c, stating that
function f accepts two parameters having type ′a and ′b respectively, and returns a value
of type ′c. The function id is the identify function with definition (λx. x). Finally, the
notation f (a ∶= b) is used to represent function update, with the definition

f (a ∶= b) ≡ λx. if x = a then b else f x

Finally, Isabelle/HOL has a type ′a itself which can be generated from expressions of
the form TYPE(′a) for every type ′a. This allows users of Isabelle/HOL to write functions
that accept a type as a parameter; we will see this used in Chapter 7.

26 background

Sets For most the part, Isabelle/HOL uses standard mathematical set notation. ∅ repre-
sents the empty set; {n. n < 10} represents the set of naturals less than 10; while UNIV
represents the universal set, containing all elements of the associated type. Sets have
types of the form ′a set, where ′a is the type of the elements in the set.

Lists Lists in Isabelle/HOL are represented using the notation [1, 2, 3, …]. The empty
list is []; elements are added to the front of the list using x⋅xs; and lists are appended
using xs @ ys. The function hd ∶∶ ′a list ⇒ ′a returns the first element of a list, while
tl ∶∶ ′a list ⇒ ′a list returns the remainder; hd [] returns undefined.

The option type Isabelle/HOL has an option type, denoted ′a option, that can either have
the value Some x or the value None, where x has type ′a. The function the ∶∶ ′a option ⇒
′a is defined such that the (Some x) = x. The option type is useful for data that may not
be present, and is also used to represent partial functions in Isabelle/HOL. For example,
the function f ∶∶ ′a ⇒ ′b option is a function that takes an argument of type ′a and
optionally returns a value of type ′b.

The unit type Isabelle has a unit type, consisting of only a single element (), known as
the unity. The type has the property ∀v. v = ().

Tuples Tuples combine two or more elements into one type, and use the standard
mathematical syntax (a, b) ∶∶ ′a × ′b. The functions fst and snd access the first and
second elements in a tuple respectively. In particular:

fst (a, b) = a
snd (a, b) = b

Records Isabelle/HOL supports records, which are analogous to tuples where each
element is given a name. A record with fields x, y, and z is constructed with the notation
⦇ x = 1, y = 2, z = 3 ⦈. Field x of record r may be accessed with x r, and updated with
the notation r⦇ x ∶= 1 ⦈. Each field of a record ′r additionally has an update function with
the name of the form F _update and type (′a ⇒ ′a) ⇒ ′r ⇒ ′r, where the first argument
is a function that takes the old value of the field and returns a new value.

Other notation used in this document will be described as it appears.

3.3 Simpl: Modelling imperative programs in Isabelle/HOL

Before we can formally reason about imperative programs in Isabelle/HOL, we must first
represent them in our logic. Whatever representation we use needs to be able to correctly
model various behaviours commonly seen in imperative programs such as:

• Loops, including nested loops;

• Function calls, including recursive and mutually recursive function calls;

• Reading and writing objects in memory;

the simpl language 27

• Faults, such as when programs divide by zero or access invalid memory; and

• Non-determinism, frequently required to model program interactions with hard-
ware and the outside world.

Schirmer’s Simpl language [92, 93] is a small, generic language that allows imperative
programs using such features to be modelled in Isabelle/HOL. The language has a large
library of theorems proven about it, and also comes with a number of tools, such as a
verification condition generator, that assist with reasoning about Simpl programs. The
language was designed with the aim of being able to model programs written in a
variety of languages, such as C, Java or Ada. In particular, the language allows standard
imperative language primitives such as function calls, while loops, and memory to be
modelled in Isabelle/HOL.

Simpl uses deeply embedded statements and shallowly embedded expressions; that
is, statements (such as while loops and if statements) are encoded structurally, while
expressions (such as x + 2 > 4) are encoded directly using Isabelle expressions and
types. Simpl’s deeply embedded statements simplifies modelling and reasoning about
non-terminating and recursive programs,8 while also allowing meta-reasoning about
the Simpl language itself. The use of shallowly embedded expressions allows the user
flexibility in determining how variables and types should be modelled.

Simpl program and execution states

Simpl programs have two important states that are tracked during execution: a program
state, which represents the memory of the program; and an execution state, which
represents what mode of execution the program is in.

Simpl does not dictate the type of the program state, instead leaving the choice to
the user. Simpl’s execution states, however, are fixed, and defined as follows:

datatype (′s, ′f) xstate =
Normal ′s

| Abrupt ′s
| Fault ′f
| Stuck

The two standard execution states of Simpl are Normal s, which indicates that the
program is executing in normal imperative mode; and Abrupt s, which indicates that the
program is currently propagating an exception and will thus not execute any instructions
until the exception is caught. Both the Normal and Abrupt execution states have a
parameter s which represents the current program state.

Simpl also includes two error execution states: Fault f indicates that the program has
irrecoverably failed with a failure code f . Stuck indicates that program execution has
reached a point where there are no successor instructions to execute; this might happen,
for example, when the program attempts to call a function that does not exist.

8 In particular, every Isabelle function must have a proof of termination before its definition will be admitted
by Isabelle; deeply embedded representations of functions can side-step this issue. We return to this problem of
termination in Section 4.3 when we attempt to convert the deeply embedded Simpl programs into shallowly
embedded monadic representations.

28 background

Simpl statements

The Simpl language consists of 11 different commands, representing various language
constructs such as loops, conditional branches, and updates to the program’s state. Each
command has the type

(′s, ′p, ′f) com

where ′s is the type of the state, ′p is the type used to represent the names of functions,
and ′f is the type of faults.

The statements in the Simpl language are as follows:

Basic m Update the program’s state from s to m s. This is used to write to a
program variable or modify the program’s heap, for instance.

In the common case where m is a function that updates a local
variable a to the value b, we use the notation ‘a ∶== b.

Skip This command is a ‘no-op’, making no changes to the program state.
It is typically used as a placeholder in locations where a statement is
syntactically necessary but not desired, such as in the else clause of an
if statement. It is semantically equivalent to Basic (λx. x).

Guard z C c Assert that the current program state s is in the set C, and then execute
c. If s ∉ C, the program enters the execution state Fault z, representing
irrecoverable failure.

Guards are typically used to ensure that the program satisfies cer-
tain correctness conditions. For example, before dereferencing a pointer
p, we may wish to assert that p is non-NULL. If the pointer is NULL,
then the program is considered to have failed. The fault parameter z is
used to indicate the reason for the failure; for instance, a guard for a
divide-by-zero error may use a different fault parameter to a guard for a
NULL-pointer dereference to allow the different fault types to be reasoned
about individually.

Spec r Non-deterministically select a new state s′ based on the current state s
such that (s, s′) ∈ r. If there is no state s′ satisfying the relation, the
program enters the Stuck execution state. Such non-determinism is used
to model interactions with hardware, uninitialised memory, or to allow
execution of under-specified procedures.

c1;; c2 Execute c1 followed by c2. The second half will not be executed if the
program state is Abrupt, Fault or Stuck.

Cond e c1 c2 An if-then-else construct. Determine if the current program state s ∈ e.
If so, execute c1; otherwise, execute c2.

While e c A simple while loop. While ever the current program state s ∈ e, execute
the loop’s body c. If the loop never terminates, the While statement will
have no successor states.

Throw Update the program’s execution state from Normal s to Abrupt s. The
latter represents abrupt execution, and is used to model exceptions, break

the simpl language 29

Table 3.1: Concrete syntax used for Simpl programs

Simpl Command Syntax

Basic m BASIC m
Guard z C c GUARD z C c
Spec r SPEC r
Cond e c1 c2 IF e THEN c1 ELSE c2 FI
While e c WHILE e DO c OD
Throw THROW
Catch c1 c2 TRY c1 CATCH c2 END
Call p CALL p
DynCom cs DYNCOM cs

and continue statements in loops, return statements in the middle of a
function, etc.

Catch c1 c2 An exception-handling construct. Execute c1. If the resulting program
mode is Abrupt s, the program mode is changed to Normal s and c2 is
executed. Otherwise, c2 is simply skipped.

Call p Call the procedure labelled p. When executing Simpl programs, an exe-
cution context Γ ∶∶ ′p ⇒ (′s, ′p, ′f) com option is provided which maps
procedure labels to their bodies. When a Call p command is executed,
Γ p is evaluated. If Γ p = Some b, then the execution continues by
evaluating b. If Γ p = None, however, the program enters the Stuck
execution state.

DynCom cs Execute dynamically generated Simpl code. In particular, the parameter
cs ∶∶ ′s ⇒ (′s, ′p, ′f) com is a function that takes the current program
state and returns a program body. When a DynCom command is exe-
cuted, the current program state is passed to the function cs and then
the resulting body is executed.

DynCom was designed by Schirmer to allow programs that dynam-
ically load and execute code to be modelled in the Simpl language. In
this work, however, our use of DynCom is far more modest, using it
simply as a building block for modelling C function calls.

When listing larger Simpl blocks, we use the additional syntax for control flow
statements, such as

IF e THEN c1 ELSE c2 FI

for Cond e c1 c2, and so on. The full table of syntax is shown in Table 3.1.

Reasoning about Simpl programs

When reasoning about Simpl in this document, we use Schirmer’s formal big-step
semantics. The notation

Γ ⊢ ⟨C, s⟩ ⇒ t

30 background

is used to state that the program C, starting from execution state s has at least one path
reaching the execution state t. The variable Γ maps function names to function bodies,
and is used for making function calls in Simpl. The formal big-step semantics of each of
the Simpl statements described above are provided in Appendix A.1.

We additionally use Schirmer’s notation

Γ ⊢ C ↓ s

to specify that all paths of the program C starting in execution state s will eventu-
ally terminate. The formal definition of termination of Simpl programs is provided in
Appendix A.2.

3.4 Translating C into Isabelle/HOL

While Schirmer’s Simpl language provides a way to allow imperative programs to be
modelled in Isabelle/HOL, if we want to reason about concrete C programs we still need
to somehow translate them into Simpl.

Our work uses Norrish’s C-to-Isabelle parser [85, 103] which parses C code and
conservatively translates it into the deeply embedded Simpl language described above.
Norrish’s work attempts to carry out a conservative translation from C to Simpl; that is, it
attempts to precisely model C at the cost of generating an output that will potentially be
harder to reason about.

Because the C-to-Isabelle parser generates a conservative representation in Isa-
belle/HOL, recent work by Sewell and Myreen [95] has successfully used SMT solvers to
show that the binary output of the gcc compiler matches the model generated by the
C-to-Isabelle parser for a number of large programs. Such work could be used to allow
us to reason about the output of Norrish’s C-to-Isabelle parser and compile our programs
using gcc without needing to trust either tool—the final proof links the formal Isabelle
model of C to the generated assembly.

Norrish’s parser supports a large subset of C, including:

• Loops, including for, while and do loops, break and continue;

• Well-formed switch statements that do not use fall-through (i.e., each non-empty
case in a switch statement must end with either a break or return statement);

• Function calls, including recursive and mutually recursive calls;

• Word types and word arithmetic, which are accurately modelled;

• Some aggregate types, including structures and arrays, but excluding unions and
bitfields; and

• Pointers, including pointer arithmetic and casts between pointer types.

The C-to-Isabelle parser does not support the full C standard, with notable exclusions
including:

• goto statements;

translating c into isabelle/hol 31

int max(int a, int b) {

if (a <= b)

return b;

return a;

}

max_body ≡
TRY

IF ⦃ ‘a ≤s ‘b⦄ THEN
‘ret__int ∶== ‘b;;
‘global_exn_var ∶== Return;;
THROW

ELSE
SKIP

FI;;
‘ret__int ∶== ‘a;;
‘global_exn_var ∶== Return;;
THROW;;
GUARD DontReach ∅

SKIP
CATCH

SKIP
END

Figure 3.4: A simple max function and its translation into Isabelle/HOL’s Simpl
language by Norrish’s C-to-Isabelle parser.

• Expressions with side-effects;

• References to local variables;

• Concurrency;

• Signals and signal handling;

• Floating point types or arithmetic; and

• Very limited support for function pointers, only supporting functions that have no
arguments and a void return type.

Despite these limitations, the C-to-Isabelle parser is still very useful, having been
used to formally verify a full operating system microkernel [57], non-trivial graph algo-
rithms [86], a real-time operating system [80], as well as many other projects described
further in Section 8.2.

The C-to-Isabelle parser models word arithmetic to match a two’s-complement 32-bit
system. The memory model used by the C-to-Isabelle parser is configurable, though our
work exclusively uses Tuch’s instantiation [102, 103], which models memory as a function
from 32-bit addresses to 8-bit bytes, and explicitly defines how each object in the system
is encoded and decoded to and from bytes. Full details are provided in Chapter 7.

As mentioned earlier, in our work the implementation-defined details of C, such
as struct layout in memory, sizes of enums, the sign of the char type, and so on are
modelled to match the GNU C Compiler [99] for the 32-bit ARMv6 architecture.

3.4.1 Translation overview

The translation from C to Isabelle/HOL takes place in several stages:

32 background

1. The input C file is run through an external C preprocessor, which expands
#includes and macros, and carries out other preprocessing directives;

2. The resulting C file is then parsed by Norrish’s parser;

3. Isabelle/HOL types are generated for each struct used in the program;

4. Local and global variables are analysed to generate two new types: a globals record,
which tracks global variables, and a ′a myvars record, which tracks local variables;

5. Each individual function is translated into its equivalent Simpl representation;
and finally,

6. Basic proofs are carried out on the generated functions, stating what variables the
function modifies.

Figure 3.4 shows an example of a simple max function written in C and its corre-
sponding representation generated by Norrish’s C-to-Isabelle parser in Isabelle/HOL.

In the next sections, we look at three of the steps which are particularly relevant for
the rest of this document: the generation of the struct types, generation of the globals
and ′a myvars records, and the conversion from C to Simpl.

3.4.2 Converting C types to Isabelle/HOL types

Before the C-to-Isabelle parser can emit function bodies for C functions, it must first
declare appropriate Isabelle/HOL types for the program. Each basic C type, such as
int, unsigned short, or signed char is mapped onto an Isabelle/HOL word type. Isa-
belle/HOL word types support an arbitrary number of bits, so word32 represents a 32-bit
word, word8 an 8-bit word, word7139 a 7139-bit word, and so on. We have also extended
Isabelle/HOL to support signed word types; sword32 represents a signed 32-bit word, for
instance. We use the convention of suffixing unsigned word operations with “w” and
signed word operations with “s”; so a +w b denotes unsigned addition, while a +s b
denotes signed addition.9

Pointers in Isabelle/HOL are modelled using a custom pointer datatype, defined as

datatype ′a ptr = Ptr word32

That is, a pointer is simply a word32 representing the address being pointed to. The
pointer type ′a ptr has a phantom type parameter ′a which is used to track the type of the

9 As the signed word type models a two’s-complement system, almost all operations on the unsigned word
and signed word types are identical; the main point of difference are the signed division and signed modulo
operations, which differ from their unsigned counterparts. For instance, the division of the unsigned value −1
is 231 − 1, while the division of the signed value −1 by 2 is simply 0.

translating c into isabelle/hol 33

Table 3.2: C types and their corresponding Isabelle/HOL types.

C type Isabelle type

signed char sword8
unsigned short word16
signed int sword32
unsigned int * word32 ptr
unsigned int ** word32 ptr ptr
struct node node_C

pointer; so a word32 ptr points to a word32, while a sword8 ptr ptr points to a sword8 ptr.
The function ptr_val ∶∶ ′a ptr ⇒ word32 retrieves the value of a pointer, where

ptr_val (Ptr a) = a

and the function ptr_coerce ∶∶ ′a ptr ⇒ ′b ptr allows a pointer to be coerced into a
pointer of a different type, where

ptr_coerce (Ptr p ∶∶ ′a ptr) = (Ptr p ∶∶ ′b ptr)

The C-to-Isabelle parser constructs an Isabelle/HOL record for each C struct de-
clared in the input program, with the generated record having fields that match those of
the C struct. For example, the C structure

struct node {

int data;

struct node *next;

};

would have the corresponding Isabelle/HOL record

record node_C =
next_C ∶∶ node_C ⇒ node_C ptr
data_C ∶∶ node_C ⇒ sword32

Here, the structure named node has been converted into a record of the same name
suffixed with “_C”. Each field of the structure has also been converted into a field of
the record with the corresponding type, again suffixed with “_C”. For each structure
the C-to-Isabelle parser defines an Isabelle/HOL record for, it additionally generates
definitions stating how the record can be encoded and decoded to and from raw bytes,
along with proofs showing the consistency of these operations.

Table 3.2 provides a list of example C types and the equivalent Isabelle/HOL types
they are translated into by the C-to-Isabelle parser.

3.4.3 Generation of state types

When converting a program from C into Isabelle/HOL, the C-to-Isabelle parser will
generate an Isabelle/HOL record to track the global state of a program (such as global

34 background

variables and the contents of memory), and a record to track the local state of the
program (such as local variables, function arguments and return values). These types are
named globals and ′a myvars, respectively, and are described in detail below.

Generating the globals record

The globals record, which represents all global program state, contains: (i) a field for each
global variable in the program; (ii) a field named t_hrs_′ that represents the system’s
heap, discussed further in Chapter 7; and (iii) fields phantom_machine_state_′ for
machine state and ghost′state_′ for ghost state, used to model hardware and other parts
of the program not directly visible in the source code respectively.10

For example, the globals record for a simple program with three global variables, int
x, unsigned short y, and int *z would be as follows:

record globals =
t_hrs_′ ∶∶ (word32 ⇒ word8) × (word32 ⇒ typ_tag)
phantom_machine_state_′ ∶∶ unit
ghost′state_′ ∶∶ unit
x_′ ∶∶ sword32
y_′ ∶∶ word16
z_′ ∶∶ sword32 ptr

Here, each global variable g in the program is given an associated field with a name of
the form g_′.

Generating the locals record

The C-to-Isabelle parser additionally generates a record ′a myvars which tracks the values
of local variables. Each local variable l in the program is given a field named l_′ in the
record. As Simpl provides no mechanism to pass parameters into functions or return
values out of functions, the ′a myvars record also contains fields to track these parameters
and return values. Parameters, like local variables, take the form p_′ where p is the name
of the parameter; while return values take the form ret__T_′, where T is the name of
the type being returned.

The C-to-Isabelle parser uses Simpl exceptions to model abrupt termination com-
mands, such as break, continue, and return statements. To help model these, the
′a myvars record contains a field global_exn_var_′ used to store the reason for the cur-
rent Simpl exception, which will contain one of the values Break, Return, or Continue.

Finally, the ′a myvars record contains a field globals with type ′a that contains
the current global state of the program. In our work, we always instantiate ′a to the
globals type described above. That is, local variable data is stored in a record of type
globals myvars while global variable data is stored in a record of type globals which is
stored inside the field globals of the globals myvars record.

10We don’t discuss ghost state or phantom machine state further in this document. Interested readers can
refer to examples such as Daum et al.’s work [36], where it is used to model the current state of the CPU’s MMU,
for instance.

translating c into isabelle/hol 35

For example, the globals myvars record for the max program in Figure 3.4 is as
follows:

record globals myvars =
globals ∶∶ globals
global_exn_var_′ ∶∶ c_exntype
ret__int_′ ∶∶ sword32
a_′ ∶∶ sword32
b_′ ∶∶ sword32

If the program contained other functions, additional fields in this record would be
present for the local variables in those functions, parameters of those functions, and
return types of those functions.

Each function executes with its own copy of the globals myvars record.11 This allows
functions that share local variable names or recursive function calls to be modelled
without problems. If two functions have the same local variable name with different
types, name mangling is used to give them unique names in the globals myvars record.

Simpl notation

For both local variables and global variables, Simpl representations of programs often
use the notation ‘x to represent the term x_′ s. In the former notation, the state variable
s is implicit. For example, the condition of the max program in Figure 3.4

Cond ⦃ ‘a ≤s ‘b⦄ …

would be written long-hand as

Cond {s. a_′ s ≤s b_′ s} …

In this document, we continue to use Schirmer’s notation for Simpl code fragments, but
avoid using it elsewhere.

3.4.4 Generation of Simpl

Once Isabelle/HOL types for the input program have been generated, the C-to-Isabelle
parser is finally able to emit Isabelle/HOL Simpl definitions for each input C function.

Figure 3.4 shows an example of the function max parsed into Simpl. At the entry of
the function, the values of parameters a and b are assumed to have been setup by the
caller. The variable ret__int is used to track the return value of the function, which is
then made available to the caller.

As mentioned previously, exceptions are used to model the return statement. In
particular, the C return statement is translated into a sequence of Simpl commands that:
(i) write the return value to the variable ret__int; (ii) set the variable global_exn_var

11 In particular, function calls are modelled by the C-to-Isabelle parser as saving a copy of the current local
variables and restoring them when the called function returns; this is analogous to the way the C compiler
allocates a new stack frame for each function call.

36 background

to the value Return, indicating that the reason for the exception is a return statement;
and finally (iii) uses the Simpl Throw statement to raise an exception. The exception is
caught at the outside of the function body, where normal execution resumes. The variable
global_exn_var is used by the C-to-Isabelle parser when there may be multiple reasons
for an exception: such as a return statement inside a loop body that also contains a
break statement. In this case, the exception triggered by the break statement needs to
be caught at the end of the loop’s body, while the exception triggered by the return

statement needs to propagate to the end of the function body: the global_exn_var
variable distinguishes between the different cases.

To ensure that the C program doesn’t exhibit undefined behaviour (described in
Section 3.1.2), the C-to-Isabelle parser emits Simpl Guard statements that ensure oper-
ations are safe. The translated max program has a single Guard statement that ensures
that control flow doesn’t drop off the end of the function without returning a value.
The C-to-Isabelle parser will also emit Guard statements that ensure signed arithmetic
operations don’t overflow, that division operations do not divide by zero, that pointer
dereferences are safe, and so on.

As can be seen in Figure 3.4, the final result of the C-to-Isabelle parser is rather
verbose; much of this is due to the C-to-Isabelle parser’s attempts to keep the output a
literal translation of the input C, minimising any cleverness. In the rest of this document,
we will look at how the resulting code can be drastically simplified, while simultaneously
generating proofs that our simplified version formally corresponds to this original Simpl.

Chapter Summary

• The C language, despite its age, still remains in use in safety-critical,
security-critical, and real-time programs today. This is in large part be-
cause of C’s small size, predictability and efficiency. The goal of our work
is to verify C programs.

• The Isabelle/HOL interactive theorem prover allows general mathemati-
cal reasoning, both by human users and by programs using its ML
API. Isabelle/HOL’s design—which uses a small LCF-style proof ker-
nel internally—ensures that extensions to Isabelle/HOL are unable to
introduce unsoundness.

• Schirmer’s Simpl language is designed to allow imperative programs to be
easily modelled and reasoned about in Isabelle/HOL. Simpl has deeply
embedded statements, and shallowly embedded expressions.

• Norrish’s C-to-Isabelle parser converts C into Simpl, allowing C code to be
reasoned about using Isabelle/HOL. Norrish’s parser generates a conserva-
tive representation of C, at the cost of its output being harder to reason
about. Our work uses the output of the C-to-Isabelle parser as its starting
point.

4 From deep to shallow embeddings

In this chapter, we describe the differences between programs represented in logic using
a deep embedding and those using a shallow embedding. In the context of program
verification, we argue that shallowly embedded representations are easier to reason about.
Unfortunately, Norrish’s conservative C-to-Isabelle parser generates deeply embedded
representations of C.

The goal of this chapter is to develop techniques to automatically and verifiably
translate the deeply-embedded Simpl programs generated by the C-to-Isabelle parser
into a shallowly embedded representation. Section 4.2 describes Cock et al.’s existing
monadic framework, which we use as our foundation for producing shallowly embedded
program representations. Cock et al.’s framework does not support loops, however, so
in Section 4.3 we formalise a new monadic while-loop combinator, allowing us to model
imperative loops. We additionally develop rules to ease manual reasoning about our
while-loop combinator.

With a suitable target representation now available, we next perform an automatic,
proof-producing conversion from Schirmer’s Simpl language into Cock et al.’s monadic
framework. This conversion is described in Section 4.4. Finally, Section 4.5 describes pro-
gram simplifications our new monadic representation enables us to carry out, significantly
easing reasoning.

This chapter is based on the published work by Greenaway et al. [49], Bridging the
gap: automatic verified abstraction of C in ITP 2012.

4.1 Reasoning in deep and shallow embeddings

Before we can begin to formally reason about a program, we must first translate it
into the logic of our theorem prover. During this process, a decision must be made
as to what logical representation we should use for our program. One choice to be

38 from deep to shallow embeddings

made when selecting a representation is whether we use a deep embedding or a shallow
embedding [19]. In a deep embedding, the structure of the program is encoded into
the logic, while in a shallow embedding the semantics of the program are encoded into
the logic.

To better understand the differences between the two, consider the following equa-
tion:

2 + 2 = 4

Is the left-hand side equal to the right-hand side? The obvious answer is ‘yes’: the
left-hand side has a semantic value of 4, and the right-hand side also has a semantic
value of 4. So, clearly, the two sides are equal.

But we could instead argue that the two sides are not equal: the left-hand side is
three characters long, while the right-hand side is only one character long. 3 ≠ 1, so
clearly the two sides are not equal.1

In our first argument, we are concerned about the semantics, not the structure of
the two sides: we are treating the expression as shallowly embedded. In our second
argument, we are concerned about the structure of the two sides: the expression is deeply
embedded.

While having a deep embedding for program statements is sufficient for reasoning
about program behaviour, in practice it is frustrating. Because two semantically equiva-
lent program fragments are only considered equal if they are structurally identical, many
standard mechanisms in theorem provers cannot be used. For instance, term rewriting—
which allows sub-terms of a program to be replaced with simpler, semantically equivalent
alternatives—cannot be used on a deeply embedded representation of a program. While
tools can be developed to alleviate some of this burden [110], much of the inbuilt reason-
ing support available in provers such as Isabelle/HOL remains unavailable. In contrast,
when reasoning about a shallowly embedded representation of a program, users can
freely switch back and forth among different semantically equivalent representations,
using the most convenient representation at any point in time.

In some scenarios, a verification engineer may need to reason about a program’s
structure, however, in which case deeply embedded program representations become
necessary. For instance, if we wanted to reason about the timing characteristics of assem-
bly implementations of the above equations, then we would need to know the precise
representation of the program. Such information is lost when switching to a shallow
embedding. Alternatively, we might want to carry out meta-reasoning about a language,
such as showing that programs written in a particular subset of the language satisfy a
given property. Such reasoning would also require a deeply embedded representation of
the language so that we can quantify over all possible programs in our proofs.

In this work, our aim is to reason about the semantics of programs written in C,
and not their structure, so we would like to use a shallowly embedded representation if
possible. Norrish’s C-to-Isabelle parser, which is the starting point for our work, converts

1Typically a deep embedding would not use the representations “2 + 2” or “4”, but instead something closer
to “Add (Const 2) (Const 2)” and “Const 4” respectively, which more explicitly shows that we are encoding
the expression’s abstract syntax tree in our logic.

cock et al.'s monadic framework 39

C into the Simpl language, which uses deeply embedded statements and shallowly em-
bedded expressions.2 In order to present a shallow embedding to the user we must find
a suitable representation for low-level imperative programs and transform Simpl into this
new representation.

4.2 Cock et al.’s monadic framework

Our goal is to represent imperative programs encoded in Schirmer’s deeply-embedded
Simpl language into a shallowly-embedded representation that eases reasoning. But which
representation is best suited to such reasoning?

Any representation we choose must be at least as expressive as Simpl, being able
to represent programs that read and write global state, contain loops that potentially
do not terminate, raise and catch exceptions, contain non-determinism, and that may
irrecoverably fail.

In this section we introduce state monads and describe how they can be used to
model imperative programs in a functional language such as Isabelle/HOL. We next
describe Cock et al.’s [30] existing formalisation of state monads in Isabelle/HOL, along
with some existing tools that can assist reasoning about them.

4.2.1 Introducing the state monad

A common approach in functional programming languages is to use state monads
to model imperative-style programs [104]; we use this same approach to model such
functions in Isabelle.

To understand monads, we start by considering a naïve method of representing
imperative programs that perform a sequence of calculations inside a functional let block:

let x = b ∗ b − 4 ∗ a ∗ c;
y = − b + sqrt x;
z = 2 ∗ a

in y div z

In this program fragment, we carry out a calculation on input variables a, b and c. The
temporary variables x, y, z are bound variables, holding intermediate calculations. The
final value of the expression is the term y div z.

The let syntax above is nothing particularly magical, but is simply syntactic sugar for
the equivalent lambda expression:

(λx. (λy. (λz. y div z) (2 ∗ a)) (− b + sqrt x)) (b ∗ b − 4 ∗ a ∗ c)

Imperative programs often need to model global state, where variables are read and
written to memory. While our previous model doesn’t let us model such state, we can

2That is, expressions such as 2+2 and 4 are encoded semantically and hence would be considered equivalent,
but statements such as Skip and (Skip;; Skip) are encoded structurally and hence would be considered different,
despite being semantically equivalent.

40 from deep to shallow embeddings

easily extend it by adding an additional state variable to each line that tracks the current
global state. We additionally modify the program so that the variables a, b, and c are
written out of this state, and the final value is written back to the variable a:

let (x, s) = (b_′ s ∗ b_′ s − 4 ∗ a_′ s ∗ c_′ s, s);
(y, s) = (− b_′ s + sqrt x, s);
(z, s) = (2 ∗ a_′ s, s)

in ((), s⦇ a_′ ∶= y div z ⦈)

In this example, each line now calculates two values: a return value, which is bound to
a temporary variable; and a new global state, which by convention we always bind to
the variable s.3 We hit a slight snag with the final line of the program: we want every
statement in our program to calculate both a return value and a new state, but the final
line doesn’t have any useful return value—it simply updates the state. Our solution is to
simply make it return the element unity element (written “()”) of type unit, which we
use to indicate that the return value is not significant.

Another aspect of imperative programs that we may wish to model is the concept
of irrecoverable failure. For example, the argument to sqrt should not be negative, nor
should the argument to the final divide operation be zero. If either occurs, we consider
the program to have failed. To model this idea of irrecoverable failure, we can yet again
tweak our program representation to maintain a failure flag, like so:

let (x, s, f) = (b_′ s ∗ b_′ s − 4 ∗ a_′ s ∗ c_′ s, s, False);
(y, s, f) = (− b_′ s + sqrt x, s, f ∨ x < 0);
(z, s, f) = (2 ∗ a_′ s, s, f)

in ((), s⦇ a_′ ∶= y div z ⦈, f ∨ z = 0)

Each statement now generates three values: a return value, the updated state, and a
failure flag. The failure flag is set to True if either the current statement fails, or if any
previous statement has already failed. We can reason about program failure by inspecting
the final value of this failure flag.

From here we could attempt to model non-determinism (for instance, by having a set
of states generated by each statement, instead of just a single state), or abrupt termination
(perhaps by adding a flag indicating if we are executing normally or not), but already
everything has become rather unwieldy. Let’s take a step back.

The alternative monadic approach to modelling imperative programs would be to
modify statements to be functions that accept the current program state, and generate a
return value and modified state. For example, our earlier example—before we attempted
to model failure—could be represented as follows:

let (x, s) = (λs. (b_′ s ∗ b_′ s − 4 ∗ a_′ s ∗ c_′ s, s)) s;
(y, s) = (λs. (− b_′ s + sqrt x, s)) s;
(z, s) = (λs. (2 ∗ a_′ s, s)) s

in ((), s⦇ a_′ ∶= y div z ⦈)

While this doesn’t initially look like we have gained much, by moving to this higher-order

3We reuse the same bound variable name s through the function. Each time we reuse the name, the previous
value of s is shadowed. A semantically equivalent approach would be to use unique names such as s, s′, s″, and
so on.

cock et al.'s monadic framework 41

representation of states, we are able to factor out the ‘glue’ holding the statements
together into its own function that accepts individual statements as arguments. This glue
function is traditionally called bind and has the notation f >>= g . For our previous
example, an appropriate bind function is as follows:

a >>= b ≡
λs. b (fst (a s)) (snd (a s))

With this, we can rewrite our function as follows:

(λs. (b_′ s ∗ b_′ s − 4 ∗ a_′ s ∗ c_′ s, s))
>>= (λx. (λs. (− b_′ s + sqrt x, s))

>>= (λy. (λs. (2 ∗ a_′ s, s))
>>= (λz s. ((), s⦇ a_′ ∶= y div z ⦈))))

Next, we introduce two monadic functions, defined as follows:

gets f ≡ λs. (f s, s)

modify f ≡ λs. ((), f s)

The function gets calculates a value based on the current state, while modify updates the
state to a new value. More precisely, the term gets (λs. a_′ s + 2) is a function that takes
the current state, and returns a bound value a + 2 and a new state (which is defined to
be the same as the input state). The modify function is similar, but instead of returning
a useful bound variable (in particular, it simply returns the unit element ()), it instead
returns a modified state.

After rewriting our example to use the new functions, we now have:

gets (λs. b_′ s ∗ b_′ s − 4 ∗ a_′ s ∗ c_′ s)
>>= (λx. gets (λs. − b_′ s + sqrt x)

>>= (λy. gets (λs. 2 ∗ a_′ s)
>>= (λz. modify (λs. s⦇ a_′ ∶= y div z ⦈))))

Finally, adding some syntactic sugar to the bind function, we arrive at:

do x ← gets (λs. b_′ s ∗ b_′ s − 4 ∗ a_′ s ∗ c_′ s);
y ← gets (λs. − b_′ s + sqrt x);
z ← gets (λs. 2 ∗ a_′ s);
modify (λs. s⦇ a_′ ∶= y div z ⦈)

od

By hiding the plumbing behind definitions such as the bind operator, gets, and
modify, we are able to increase the sophistication of our model without further compli-
cating its representation. If we wanted to introduce the failure flag back into our model,
we would need to update the definitions of bind, gets, and modify, but our program
would be unchanged. We could similarly add support for exceptions (by making the bind
operator ignore its right-hand side if an exception is currently active), or add support for
non-determinism (by tweaking the bind operator to deal with sets).

In the following sections, we will describe an existing monadic formalisation by Cock
et al. [30] that supports modelling global state, failure and non-determinism. We will
later describe an extension of this monadic framework that adds support for raising and
catching exceptions.

42 from deep to shallow embeddings

4.2.2 The state monad

In AutoCorres we primarily use two monads: a state monad, which tracks global state
and additionally has support for non-determinism and failure; and an exception monad,
which adds support for raising and catching exceptions.

We utilise the existing monadic framework of Cock, Klein, and Sewell [30], which
provides definitions and theorems for the basic primitives for both the state and excep-
tion monad, as well as providing a verification-condition generator (VCG), which assists
with Hoare-style reasoning on monadic programs.

Each monadic statement in Cock et al.’s state monad has the type

′state ⇒ (′ret × ′state) set × bool

which we abbreviate as (′state, ′ret) monad.
Such functions accept a single input state s ∶∶ ′state and return a tuple. The first half

of this tuple contains the results of the execution: a set of pairs containing a return value
and new state. The result is a set, so that functions may generate more than one state or
return value to represent non-determinism. The second half of the tuple is the failure
flag indicating whether any execution of the monad failed. If the flag is True then at
least one failure has occurred, while False indicates that all executions have succeeded.
Instead of using Isabelle’s standard names fst and snd, we name the first element of this
tuple results and the second element failed:

results (a, b) = a

failed (a, b) = b

The function return a, as the name suggests, simply returns the value a without
modifying the state. It is defined as follows:

return a ≡ λs. ({(a, s)}, False)

The function accepts the current state s, and returns a single result consisting of the
unmodified state s and a value a.

The monadic bind operator for the state monad is defined as follows:

f >>= g ≡
λs. ({(r′′, s′′). ∃(r′, s′) ∈ results (f s). (r′′, s′′) ∈ results (g r′ s′)},

failed (f s) ∨ (∃(r′, s′) ∈ results (f s). failed (g r′ s′)))

While this definition is rather lacking in aesthetic beauty, there is nothing particularly
deep going on in it. To obtain the results of (f >>= g) s, we simply consider every possi-
ble result (r′, s′) of f s, pass it into the function g , and then collate the results. Similarly,
(f >>= g) s fails if either f s fails, or if g r′ s′ fails for some output (r′, s′) of f s.

With these two definitions in place, Cock et al. prove that the three standard monad
laws (left identity, right identity and associativity of bind) all hold:

(return x >>= f) = (f x) ReturnBind

(f >>= return) = (f) BindReturn

((f >>= g) >>= h) = (f >>= (λx. g x >>= h)) BindAssoc

cock et al.'s monadic framework 43

State Monad Simpl Definition

skip Skip λs. ({((), s)}, False)
modify m Basic m λs. ({((), f s)}, False)
condition c L R Cond c L R λs. if P s then L s else R s
spec r Spec r λs. ({()} × {s′. (s, s′) ∈ R}, ∄s′. (s, s′) ∈ R)
select S — λs. (A × {s}, False)
guard P Guard z C Skip λs. (if P s then {((), s)} else ∅, ¬ P s)
fail Guard z ∅ Skip λs. (∅, True)
return v — λs. ({(a, s)}, False)
gets f — λs. ({(f s, s)}, False)

Table 4.1: Monadic functions and their equivalent in the Simpl language.

The simple state monad is sufficient to allow us to define monadic equivalents
for the simpler statements in the Simpl language. These are shown in Table 4.1, and
include functions to update the global state (modify), conditionally execute instructions
(condition) and to model non-determinism (spec and select). One minor difference
between Simpl and our monadic representations is that Simpl uses sets for its conditions
and guards (s ∈ C), while we use predicates (P s), which we find more natural to
work with.

Cock et al. also introduce a new monadic command fail representing uncondi-
tional program failure, which we will find useful in later sections. The fail statement
has no direct equivalent in Simpl, but could be modelled by Guard z ∅ Skip, which
unconditionally enters the state Fault z.

4.2.3 Reasoning about the state monad

Being able to specify imperative functions in a monadic style is of no use if we don’t
have any way to reason about their behaviours. To assist with reasoning about monadic
programs, Cock et al. developed a framework allowing Hoare triples to be written about
monadic programs, along with tools to assist with reasoning about these specifications.

First, a predicate named valid is defined as follows:

⦃ P ⦄ f ⦃Q ⦄ ≡
∀s. P s ⟶ (∀(r′, s′) ∈ results (f s). Q r′ s′)

Intuitively, this states that if the precondition P holds on a state s, then the postcondition
Q will also hold on all results of executing f on s. P has the type ′s ⇒ bool, taking the
initial program state. Q has the type ′r ⇒ ′s ⇒ bool, taking both the return value of the
monad f and the resulting state.

The definition allows us to write Hoare triples that reason about the return value of
the monad, such as

⦃ λs. True⦄ return (2 + 2) ⦃ λrv s. rv = 4⦄

which declares that the return value of the monadic statement return (2 + 2) is 4.
Additionally, we can write Hoare triples that refer to both the input state and the final

44 from deep to shallow embeddings

state of a monadic program. For instance, in a program whose global state consists solely
of a single natural number, we could write

⦃ λs. s = 3⦄ modify (λs. s + 2) ⦃ λrv s. s = 5⦄

This statement declares that, assuming the state starts with the value 3, if we execute
modify (λs. s + 2), then the final value of the state will be 5.

Frequently, we want to know not only that a given monad fulfils a given postcondi-
tion, but also that it does so without failing. We have extended Cock et al.’s Hoare logic
framework, introducing a second predicate validNF (where the suffix “NF” indicates “no
failure”). Our definition is similar to Cock et al.’s valid definition, but ensures that the
failure flag is clear at the end of execution:

 P f Q ≡
⦃ P ⦄ f ⦃Q ⦄ ∧ (∀s. P s ⟶ ¬ failed (f s))

The difference between the notations “⦃ P ⦄ f ⦃Q ⦄” and “ P f Q” can be remem-
bered as follows: the hollow brackets give hollow guarantees about failure, while the solid
brackets give solid guarantees.

In practice, the main differences that appear when reasoning about the two are as
follows:

• In the valid framework, guard statements may be assumed correct, while in
validNF they must be proven to hold;

• In the valid framework, it can be assumed that fail statements are unreachable,
while in the validNF framework, they must be proven to be unreachable;

• In the validNF framework, the user has an additional obligation to show that every
executed spec statement has at least one output.

Thus, the following statement with an invalid guard is true for valid:

⦃ λs. True⦄ guard (λs. 2 + 2 = 5) ⦃ λrv s. True⦄

but is not true for validNF:

¬ (λs. True guard (λs. 2 + 2 = 5) λrv s. True)

To actually reason about such Hoare triples, Cock et al. also developed a calcu-
lus that allows the weakest precondition to be calculated for a given postcondition.4
The calculation takes place using an Isabelle tactic named ‘wp’ developed by Cock et
al. The tactic will apply a set of syntax-directed rules, typically leaving the user to
prove a single implication that the Hoare triple’s precondition implies the calculated
weakest-precondition.

4 In practice, the user-extensible calculus makes no guarantee that the calculated “weakest” precondition is
in fact the weakest, but simply that it is sufficient to prove the given postcondition. If the user adds custom rules
that do not strictly generate the weakest precondition, but just a ‘weakish’ one, the framework may generate
goals which cannot be proven, but no unsoundness will be introduced.

cock et al.'s monadic framework 45

⦃ P ()⦄ skip ⦃ P ⦄
SkipWp

⦃ P x ⦄ return x ⦃ P ⦄
ReturnWp

⦃ λs. P (f s) s ⦄ gets f ⦃ P ⦄
GetsWp

⦃ λs. P () (f s)⦄ modify f ⦃ P ⦄
ModifyWp

⦃ λs. ∀x ∈ S. Q x s ⦄ select S ⦃Q ⦄

SelectWp

⦃Q ⦄ A ⦃ P ⦄ ⦃R ⦄ B ⦃ P ⦄
⦃ λs. if C s then Q s else R s ⦄ condition C A B ⦃ P ⦄

ConditionWp

⦃ λx. True⦄ fail ⦃Q ⦄

FailWp
⦃ λs. ∀t. (s, t) ∈ f ⟶ P () t ⦄ spec f ⦃ P ⦄

SpecWp

∀x. ⦃B x ⦄ g x ⦃C ⦄ ⦃A⦄ f ⦃B⦄
⦃A⦄ f >>= g ⦃C ⦄

BindWp

⦃Q ⦄ a ⦃R ⦄ ∀s. P s ⟶ Q s
⦃ P ⦄ a ⦃R ⦄

WeakenPre

Table 4.2: A sample of backwards reasoning rules used to reason about Hoare-
style valid triples.

A representative subset of the rules are shown in Table 4.2. We have developed an
analogous set of rules for our own validNF predicate, which are shown in Table 4.3.

For example, starting with the goal from earlier:

⦃ λs. s = 3⦄ modify (λs. s + 2) ⦃ λrv s. s = 5⦄

running the wp tactic automatically invokes the rules WeakenPre and ModifyWp,
resulting in the subgoal:

1. ⋀s. s = 3 ⟹ s + 2 = 5

which is solved automatically by Isabelle/HOL’s simplifier.
One final predicate, named validEX, allows us to state that there exists at least one

path that satisfies a given postcondition. validEX is defined as follows:

⦃ P ⦄ f ∃⦃Q ⦄ ≡
∀s. P s ⟶ (∃(rv, s′) ∈ results (f s). Q rv s′)

In the absence of non-determinism, valid and validEX are equivalent. When non-
determinism is present, however, we can use validEX as a building block to show that a
set of final states can actually be reached.

4.2.4 Modelling abrupt termination

Programs written in the imperative languages frequently use abrupt termination, where
the control flow of the program transfers abruptly to a different location in the program.
The most recognisable form of abrupt termination is in languages that feature exceptions,
such as Java or C#. When an exception is thrown, execution transfers to the first handler

46 from deep to shallow embeddings

 P () skip P
SkipNf

 P x return x P
ReturnNf

 λs. P (f s) s gets f P
GetsNf

 λs. P () (f s) modify f P
ModifyNf

 λs. ∀x ∈ S. Q x s select S Q

SelectNf

Q A P R B P
 λs. if C s then Q s else R s condition C A B P

ConditionNf

 λs. False fail Q
FailNf

 λs. (∀t. (s, t) ∈ f ⟶ P () t) ∧ (∃t. (s, t) ∈ f) spec f P
SpecNf

∀x. B x g x C A f B
A f >>= g C

BindNf

Q a R ∀s. P s ⟶ Q s
 P a R
WeakenPreNf

Table 4.3: A sample of weakest precondition rules used to reason about Hoare-
style validNF triples.

able to process the exception. While the C programming language doesn’t have excep-
tions, it has return, continue and break statements which transfer control flow to the
end of the function, end of the loop body, and outside the loop body, respectively.5

The Simpl language allows such constructs to be modelled using its Throw and
Catch statements. For example C’s return statement may be modelled in Simpl by
wrapping the function body with a Catch command, and then replacing instances of
the return statement with Throw. When the Throw is encountered, control flow will be
transferred to the handler of the outer Catch statement.

Simpl’s Throw/Catch mechanisms cannot be easily modelled in Cock et al.’s state
monad presented above. We can instead use an extension to the state monad, also
developed by Cock et al., that adds support for modelling exceptions. This new monad,
named the exception monad, is built using the standard state monad by using a return
type of the form ′e + ′r. This is Isabelle/HOL’s sum type, which can either have the
‘right’ value Inr (r ∶∶ ′r), used to represent the monad returning normally with the value r;
or the ‘left’ value Inl (e ∶∶ ′e), used to represent the monad returning abruptly with the
exception value e. We give these two values the notation Norm r and Exc e respectively.

To model functions in this new exception monad, Cock et al. defined a new set of
monadic primitives, including a new return function and bind function. In our work, we
use the convention of naming function using the exception monad with the suffix “E”.
For example, the exception monad equivalent of return is named returnE.

5C also includes the goto statement and the ill-conceived setjmp and longjmp functions. These statements
cannot be readily modelled in Simpl, and thus are not supported by Norrish’s C-to-Isabelle parser, nor in our
own work.

cock et al.'s monadic framework 47

Cock et al. define returnE and the corresponding function throwE as follows:

returnE r ≡ return (Norm r)

throwE e ≡ return (Exc e)

The definition of the exception monad’s bind function is similarly built upon the
state monad’s bind function. To evaluate f >>=𝖤 g , we first execute f . If the result is
an exception (i.e., Exc e), we skip g and simply propagate the exceptional value. We
can similarly introduce an exception-handler operator catchE f g , which performs the
symmetric operation: if the result of f is an exception, we execute g . Otherwise, we
propagate the return value on. The two operations are defined as:

f >>=𝖤 g ≡
do x ← f ; case x of Exc x ⇒ throwE x ∣ Norm x ⇒ g x od

catchE f g ≡
do x ← f ; case x of Exc x ⇒ g x ∣ Norm x ⇒ returnE x od

Functions defined to use the standard state monad can be lifted into the exception
monad. We simply take the return value r of the monad and indicate that the value is
non-exceptional by transforming it into Norm r:

liftE f ≡
do r ← f ; return (Norm r) od

Using liftE, we can simply define exception-monad versions of our monadic operators
by lifting the standard state monad definition. For instance, modifyE is defined in terms
of modify as follows:

modifyE m ≡ liftE (modify m)

Table 4.4 shows the full list of operations.

4.2.5 Reasoning about the exception monad

Now that we have monadic functions allowing us to model imperative functions that use
exceptions, we finally need a way to be able to reason about such programs. Cock et al.
extend their Hoare-logic framework to allow reasoning about exception monads like so:

⦃ P ⦄ f ⦃Q ⦄, ⦃E ⦄ ≡
⦃ P ⦄ f ⦃ λv s. case v of Exc e ⇒ E e s ∣ Norm r ⇒ Q r s ⦄

 P f Q, E ≡
 P f λv s. case v of Exc e ⇒ E e s ∣ Norm r ⇒ Q r s

Intuitively, ⦃P ⦄ f ⦃Q ⦄, ⦃E ⦄ states that, assuming the precondition P is true when f
is executed, then (i) if the result of f is non-exceptional with value r and state s, then
Q r s will hold; or (ii) if the result of f is the exception with value e and state s, then
E e s will hold. The predicate P f Q, E is analogous, but also requires that no
execution path fails. We continue to call these predicates Hoare triples, wilfully ignoring
the increasing inaccuracy of the name.

48 from deep to shallow embeddings

Exception Monad Simpl Definition

returnE v — return (Norm v)
throwE e Throw return (Exc e)
getsE f — liftE (gets g)
skipE Skip liftE skip

modifyE m Basic m liftE (modify m)
specE r Spec r liftE (spec r)
guardE P Guard z {s. P s} Skip liftE (guard P)
failE Guard z ∅ Skip λs. (∅, True)
L >>=𝖤 R L;; R (see definition on Page 47)
catchE L R Catch L R (see definition on Page 47)
conditionE c L R Cond {s. c s} L R λs. if P s then L s else R s
whileLoopE C B i While e c (see definition on Page 51)

Table 4.4: Exception monad functions and their closest equivalent in the Simpl
language.

For example, the following predicate states that the following simple program never
returns normally (i.e., only the exception postcondition is evaluated) and also doesn’t
modify global state (i.e., the initial state matches the final state, because the modifyE
statement is never reached):

 λs. s = s0
do throwE 42;

modifyE (λs. s + 1)
od

 λrv s. False, λrv s. rv = 42 ∧ s = s0

The goal can be proven simply by running Cock et al.’s wp tactic instantiated with a set of
rules for the exception monad, analogous to state monad rules described in Section 4.2.3.

4.3 Extending Cock et al.’s monadic framework with

imperative-style loops

While Cock et al.’s monadic framework contains most of the features we need to model
imperative languages in Isabelle/HOL, there is one notable omission: a mechanism for
modelling while loops.

This was not a problem in the context of Cock et al.’s work, as they used recursion
to model loops in their imperative programs. In the context of AutoCorres—where
our desire is to automatically translate Simpl language programs into monadic form—
attempting to model loops using recursion would present two main problems:

1. Isabelle/HOL is a logic of total functions. In particular, before a recursive function
can be defined in Isabelle/HOL, it must first be shown to terminate. While in

monadic loops 49

simple cases Isabelle/HOL’s function package [60] can automatically prove termi-
nation [22], in more complex cases the user must manually prove termination
themselves.

This presents a difficulty, as we have no way to automatically prove termination
for non-trivial loops, and hence would struggle to automatically translate while

loops into a recursive form. Even if we could automatically prove termination,
we would still have a problem that some loops only terminate under certain
circumstances: a simple loop that traverses a linked list will only terminate if the
list doesn’t loop back on itself.

2. Ignoring the above problems, modelling loops using recursion requires us to
significantly modify the layout of programs that we are representing, with each
loop in the program needing to be extracted into its own function. While this
isn’t a technical problem per se, end-users would find it more difficult to see the
connection between the input C program and the output of our tool.

Instead, we define a new monadic while-loop combinator for both the state monad
and exception monad to model imperative while loops. The simpler state monad
whileLoop combinator has the type

(′r ⇒ ′s ⇒ bool) ⇒ (′r ⇒ (′s, ′r) monad) ⇒ ′r ⇒ (′s, ′r) monad

In particular, whileLoop C B i constructs a loop from a condition C, a body B, and an
initial loop iterator value i. While ever the condition C remains true, the loop body will
be executed, passing in the current loop iterator value as an argument. The return value
from executing one iteration of the loop body will become the loop iterator’s value in
the next loop iteration. When the loop condition finally becomes false, the final value of
the loop iterator will be used as the whileLoop’s return value. The loop iterator allows us
to bind variables in one iteration of the loop, and use them both in the next iteration
of the loop and after the loop completes. Multiple variables may be passed through the
loop iterator by packing them into a tuple.

For example, the following program demonstrates a simple loop. The program’s global
state consists of a single natural number. The loop has a single variable r passed through
its loop iterator, which is initialised to zero:

whileLoop (λr s. r < 10)
(λr. do modify (λs. s ∗ 2);

return (r + 1)
od) 0

The loop body will execute 10 times, with each iteration doubling the program’s global
state and increasing the loop iterator r by 1. Once r reaches 10, the loop’s condition will
become false and the loop will terminate.

Our formal definition of whileLoop requires two components. The first compo-
nent is an inductively defined set whileLoop_results, which describes the possible
execution paths through the loop. The second component is an inductively defined
predicate whileLoop_terminates, which determines if the loop will terminate for a given
input state.

50 from deep to shallow embeddings

We say that the set whileLoop_results C B contains an element (a, b) if there is an
execution path through the loop body B with condition C, that starts from state a and
terminates in state b. Both a and b have the type (′r × ′s) option; Some (r, s) represents
the monad’s state having value s and the loop iterator having the value r, while None
represents a state where the loop’s body B has failed.

Formally, whileLoop_results is inductively defined by the following 3 rules:

¬ C r s
(Some (r, s), Some (r, s)) ∈ whileLoop_results C B

C r s (r′, s′) ∈ results (B r s)
(Some (r′, s′), z) ∈ whileLoop_results C B
(Some (r, s), z) ∈ whileLoop_results C B

C r s failed (B r s)
(Some (r, s), None) ∈ whileLoop_results C B

The rules declare that (i) there is a path through the loop from a state to itself if the
loop’s condition C is false; (ii) if there is a valid path (y, z), and starting the loop in
state x will lead to state y, then (x, z) is also a path through the loop; and finally (iii) if
a particular state x causes the loop’s body B to fail, then we say there is a path from x to
the failure state None.

While we can use the whileLoop_results set to determine what results are produced
in a finite number of steps, we are also interested in knowing whether there are infinite
traces through the loop—that is, whether the loop may have non-terminating paths
through it. We introduce an inductively defined predicate whileLoop_terminates C B r s
to determine if every execution through the loop with body B and condition C starting
from state s and iterator r terminates. The predicate whileLoop_terminates is defined
inductively using the following two rules:

¬ C r s
whileLoop_terminates C B r s

C r s
∀(r′, s′) ∈ results (B r s). whileLoop_terminates C B r′ s′

whileLoop_terminates C B r s

That is, any state where the condition C r s is false terminates. States where the condition
C r s is true terminate if all paths leading from that state also terminate.

With these two definitions in place, we can finally define the while-loop combinator
whileLoop:

whileLoop C B r ≡
λs. ({(r′, s′). (Some (r, s), Some (r′, s′)) ∈ whileLoop_results C B},

(Some (r, s), None) ∈ whileLoop_results C B ∨
¬ whileLoop_terminates C B r s)

The combinator returns the set of all results that can be reached in a finite number of
loop iterations from the input state, as calculated by whileLoop_results. Additionally,
we say that the loop fails if any computation inside the loop fails or if there are any
non-terminating paths through the loop.

monadic loops 51

We also create an instance of the while-loop combinator for the exception monad by
using the loop iterator to determine if an exception has been raised, and modifying the
loop’s condition to detect this as follows:

whileLoopE C B r ≡
whileLoop (λr s. case r of Exc a ⇒ False ∣ Norm v ⇒ C v s)

(λr s. case r of Norm v ⇒ B v s) (Norm r)

In both these definitions, non-termination is indicated by setting the failure flag.
Hypothetically, if we separately tracked non-termination and failure in our monad, we
could reason about monadic failure and non-termination of the loop independently. As
it is, we cannot distinguish between the two. Our reason for mapping non-termination
onto the failure flag is pragmatic: using the above definition allows us to reuse large parts
of Cock et al.’s existing monadic formalisation, and hence also reuse the large library of
existing proofs and tools associated with it. In our experience, we have found that we
typically want to prove both total correctness and termination about generated functions,
so that inability to distinguish between the two types of errors isn’t problematic in
practice.

4.3.1 Reasoning about the while-loop combinator

So far, we have mostly omitted proofs about the monadic functions defined above. This is
because the theorems developed thus far can be proven simply by unfolding the relevant
definitions and simplifying the results. The while-loop combinator is different, however,
as it is defined in terms of the inductive set whileLoop_results and inductive predicate
whileLoop_terminates. Reasoning about the while-loop combinator using these raw
definitions is tedious, as all but the most simple proofs requires at least three inductive
steps: one for each of the two references to whileLoop_results in the definition, and
another for the whileLoop_terminates reference.

In this section, we develop some basic rules to assist with manual reasoning about
the while-loop combinator, and then develop further rules that can be used to carry out
Hoare-style reasoning with the while-loop combinator. We have also created versions
of these rules that apply to the exception while-loop combinator whileLoopE, but for
brevity we omit these rules and proofs.

Basic reasoning

Perhaps the most basic operation that can be carried out on a while-loop is unrolling the
loop by one step. We can show that this is the case as follows:

Lemma 4.1 (Unroll whileLoop) A while-loop may be unrolled into a single execution
of its body, followed by the remainder of the loop:

whileLoop C B r =
condition (C r) (B r >>= whileLoop C B) (return r)

52 from deep to shallow embeddings

Proof The proof proceeds by unfolding the definition of whileLoop, considering the
two possible cases of C r s, and then using the definitions of whileLoop_results and
bindE to show the equality holds.

The rule WhileLoopUnroll lets us reason about loops with a fixed, small number of
iterations, but can not be used for reasoning about loops with an unknown number of
iterations. In order to generalise such reasoning, the traditional approach is to develop
an invariant for the loop, which states what is true about every execution of the loop.
If we can prove that (i) the invariant holds initially; and (ii) the invariant continues to
hold each loop iteration; we can then assume that the invariant holds when the loop
terminates. We formalise this idea for our while-loop combinator as follows:

Theorem 4.2 (WhileLoopWp) Assuming that (i) whenever a loop’s body B executes on
a state satisfying invariant I and loop condition C, it maintains I; and (ii) the invariant I
holds when the loop is entered into; then it will also hold when the loop finishes:

∀r. ⦃ λs. I r s ∧ C r s ⦄ B r ⦃ I ⦄
⦃ I r ⦄ whileLoop C B r ⦃ λr s. ¬ C r s ∧ I r s ⦄

Proof We start by unfolding the definitions of valid and whileLoop. The proof proceeds
by induction by using the rules of the whileLoop_results definition.

The above rule provides a basic mechanism for Hoare-style reasoning about loops
when failure and termination need not be considered. One minor complication with the
rule is that it can not be automatically applied by Cock et al.’s VCG “wp” tactic described
earlier in Section 4.2.3, because the rule requires an invariant I to be manually specified.
If the user wished to use the wp tactic on a program containing a loop, they would have
to: (i) run the tactic wp to calculate the weakest precondition up to the point of the loop;
(ii) manually apply the above rule with a specified invariant I; and (iii) continue to run
wp on the resulting Hoare triples produced by the rule.

We can simplify this by introducing a new constant whileLoop_inv defined as
follows:

whileLoop_inv C B r I R ≡ whileLoop C B r

This simple definition contains two dummy parameters: an invariant parameter I and
a termination relation R.6 A user can manually annotate the loop with these additional
parameters by using Isabelle/HOL’s term rewriting features to convert whileLoop state-
ments to whileLoop_inv statements with an appropriate instantiation of I and R. Once

6We will ignore this second parameter for the moment, and return to it below when we wish to reason
about loop termination.

monadic loops 53

the loops have been annotated, automated tactics such as wp can then run over the
commands uninterrupted using the rule

∀r. ⦃ λs. I r s ∧ C r s ⦄ B r ⦃ I ⦄
∀r s. I r s ⟶ ¬ C r s ⟶ Q r s

⦃ I r ⦄ whileLoop_inv C B r I M ⦃Q ⦄

The definition of whileLoop_inv does not require the annotations I or R to be correct—
or even make any sense. The user must still prove that the loop maintains the invariant,
and that the invariant is strong enough to prove whatever property is of interest. The
whileLoop_inv parameters simply provide hints to automated tools as to what invariant
should be used.

Hoare-style reasoning about termination and non-failure

The rules defined thus far have allowed us to reason about partial correctness, but have
ignored the issue of both termination and program failure. In this section we develop
rules allowing us to reason about these.

We start by introducing a rule that will allow us to prove properties about the
predicate whileLoop_terminates C B r s (used in the definition of whileLoop) using
termination relations and invariants, instead of being forced to resort to induction.

Theorem 4.3 To show that a while-loop with condition C and body B terminates, it is
sufficient to show that: (i) there exists a well-founded relation R on the loop’s state/itera-
tor; (ii) there also exists an invariant I that holds on the initial state/iterator of the loop;
(iii) every loop iteration maintains the invariant I; and (iv) each loop iteration modifies
the state/iterator pair such that the old and new pairs are in the relation R.

wf R I r s
∀r s. ⦃ λs′. I r s′ ∧ C r s′ ∧ s′ = s ⦄ B r ⦃ λr′ s′. I r′ s′ ∧ ((r′, s′), (r, s)) ∈ R ⦄

whileLoop_terminates C B r s

Proof Conceptually, a relation R is well-founded only if every path consisting solely of
steps in R terminates after a finite number of such steps. We use Isabelle/HOL’s in-built
definition of wf, which allows us to carry out an induction proof on over the relation
R when R is well-founded. As we know from our assumptions that each step of the
loop both maintains the invariant I and obeys the relation R, every path through the
loop must reach a final state in a finite number of steps. Hence, the loop will always
terminate.

With the above termination rule in hand, we can now proceed to create a total
correctness version of the Hoare rule Theorem 4.2:

Theorem 4.4 (WhileLoopNf) Given a while-loop with body B and condition C, then
if (i) an invariant I holds on the initial state; (ii) at each loop iteration, the invariant
continues to hold; (iii) at each loop iteration, the current iterator/state of the loop
decreases with respect to a well-founded relation R; and (iv) while ever the invariant

54 from deep to shallow embeddings

holds, the loop’s body will not fail; then the postcondition (λr s. I r s ∧ ¬ C r s) will
hold, and the loop as a whole will not fail:

wf R
∀r0 s0. λs. I r0 s ∧ C r0 s ∧ s = s0 B r0 λr s. I r s ∧ ((r, s), (r0, s0)) ∈ R

 I r whileLoop C B r λr s. ¬ C r s ∧ I r s

Proof We need to prove three items: (i) the resulting states of the whileLoop satisfy
I r s and ¬ C r s; (ii) the whileLoop does not fail because of non-termination; and
(iii) the whileLoop does not fail because of failure of the body B.

We can prove the first item using Theorem 4.2, and the second with Theorem 4.3. The
third item is shown by inducting over the whileLoop_results definitions; in particular,
we show that—because the invariant I always holds after each step, and that the invariant
I implies non-failure after each step—a failure state can never be reached. Thus, the loop
as a whole also will not fail.

As we did with our previous while-loop rule, we rewrite this above rule into a
format more convenient for automated reasoning by allowing the user to annotate the
while-loop in advance with a custom invariant I and termination relation R using the
whileLoop_inv constant:

∀r0 s0. λs. I r0 s ∧ C r0 s ∧ s = s0 B r0 λr s. I r s ∧ ((r, s), (r0, s0)) ∈ R

wf R ∀r s. I r s ⟶ ¬ C r s ⟶ Q r s
 I r whileLoop_inv C B r I R Q

Stronger rules for loop reasoning

The rules developed in the previous section allow us to carry out Hoare-style reasoning
with our monadic while-loop combinator, but are still insufficient for general reasoning.
Two problems remain:

• While the rules allow us to show non-failure of a particular loop, we can not use
them in their current form to prove that failure actually will occur; and

• While the rules provide an upper bound on the possible states resulting from a
particular loop, they don’t provide a lower bound—that is, the rules allow us to
state what results can’t be produced, but not what states will be produced.

The second problem is a result of non-determinism: a loop might have one result,
zero results, or an infinite number of results. The rules we have developed so far declare
that if a result is produced, then it obeys an invariant I, but are not able to make any
claim about the number of results.

These two constraints may not seem particularly limiting at first, but become a
problem when we start wanting to carry out equational reasoning, such as performing

monadic loops 55

program simplifications. For example, without the ability to reason about the presence of
loop failure, we cannot simplify infinite loops into monadic failure, like so:7

whileLoop (λ_ _. True) (λ_. skip) r = fail

In fact, any non-trivial equality statement involving the monadic while-combinator
requires us to reason about precisely the set of results that could be returned. For
example, the following function mult_by_add calculates the product m × n using only
addition:

mult_by_add m n ≡
do (m, r) ← whileLoop (λ(m, r) s. 0 < m)

(λ(m, r). return (m − 1, r + n)) (m, 0);
return r

od

Using the rules already defined, we can prove the Hoare triple:

 λs. True mult_by_add m n λrv s. rv = m ∗ n

but would be unable to prove the stronger rule:

mult_by_add m n = return (m ∗ n)

This latter rule, if we could prove it, would allow us to avoid having to reason about the
function mult_by_add at all, but instead let us use Isabelle/HOL’s simplifier to rewrite
instances of the function call into a simple multiply operation.

We would like, then, to develop a stronger rule than those presented thus far, to
enable us to carry out proofs such as those above without needing to constantly fall back
to the base definitions of whileLoop. The following rule fulfils such a need, allowing us
to show that an arbitrary loop of the form whileLoop C B r0 s0 is equal to a particular
value Q:

Theorem 4.5 (WhileLoopRule) A loop whileLoop C B r0 s0 is equal to an arbitrary
value Q if: (i) all states that can arise from the loop are in results Q; (ii) all states in
results Q can be produced by the loop; (iii) if failed Q, then the loop also fails; (iv) if
¬ failed Q, then the loop does not fail:

⦃ λs. s = s0 ⦄ whileLoop C B r0 ⦃ λr s. (r, s) ∈ results Q ⦄

∀rQ sQ. (rQ, sQ) ∈ results Q ⟶ ⦃ λs. s = s0 ⦄ whileLoop C B r0 ∃⦃ λr s. r = rQ ∧ s = sQ ⦄
failed Q ⟶ failed (whileLoop C B r0 s0)

¬ failed Q ⟶ λs. s = s0 whileLoop C B r0 λ_ _. True
whileLoop C B r0 s0 = Q

Proof The result follows from unfolding the definitions of valid, validNF and validEX.

7 Such infinite loops may appear in C programs to indicate program errors, such as when an assertion failure
occurs. Simplifying these to fail statements better captures the programmer’s intent than just leaving the loop
as is.

56 from deep to shallow embeddings

If we know in advance that the loop will not fail (i.e., ¬ failed Q), we can simplify
the above rule to:

 λs. s = s0 whileLoop C B r0 λr s. (r, s) ∈ results Q

∀rQ sQ. (rQ, sQ) ∈ results Q ⟶ ⦃ λs. s = s0 ⦄ whileLoop C B r0 ∃⦃ λr s. r = rQ ∧ s = sQ ⦄
¬ failed Q

whileLoop C B r0 s0 = Q

which combines the first and fourth assumptions into a single goal. As discharging these
two subgoals frequently requires similar reasoning, this can help reduce proof effort.

While WhileLoopRule may at first appear to be simply rearranging the equation
whileLoop C B r s = Q into a slightly different representation, the individual subgoals
are easier to tackle. In particular, the first and last subgoals can be discharged using
the WhileLoopWp and WhileLoopNf theorems already presented. The remaining two
subgoals can be discharged using the two theorems below:

Theorem 4.6 (WhileLoopExs) If a loop whileLoop C B r executes from a state satis-
fying precondition P, then there will exist at least one state from the loop satisfying
the postcondition Q, if (i) there exists an invariant I satisfied by the states meeting the
precondition; (ii) there exists a well-founded relation R; (iii) each time the loop body
is executed, at least one execution satisfies the invariant and decreases R; and finally
(iv) I r s ∧ ¬ C r s implies the postcondition Q r s:

∀s. P s ⟶ I r s
∀r s0. ⦃ λs. I r s ∧ C r s ∧ s = s0 ⦄ B r ∃⦃ λr′ s′. I r′ s′ ∧ ((r′, s′), (r, s0)) ∈ R ⦄

wf R ∀r s. I r s ⟶ ¬ C r s ⟶ Q r s
⦃ P ⦄ whileLoop C B r ∃⦃Q ⦄

Proof At a high level, we show that the postcondition Q can be satisfied by proving
that there exists a finite-length path through it. The invariant I defines the path to be
taken, and by insisting that every step along the path is in the well-founded relation R,
we can be certain the path is finite.

The proof takes place simply by unfolding the definition of validEX and valid, and
then inducting over the relation R. We show that from the initial state, there is always at
least one state satisfying the invariant I until the loop exits.

Theorem 4.7 (WhileLoopFail) A loop whileLoop C B r s is guaranteed to fail if (i) the
loop executes at least once; (ii) there exists an invariant I satisfied by the starting state
of the loop; and (iii) each time the loop body executes, there exists an execution that
either fails or continues to satisfy the loop invariant:

I r s C r s
∀r. ⦃ λs. I r s ∧ C r s ∧ ¬ failed (B r s)⦄ B r ∃⦃ λr′ s′. C r′ s′ ∧ I r′ s′⦄

failed (whileLoop C B r s)

Proof The loop can fail for two reasons: either there exists an execution which fails,
or there exists an execution which is non-terminating. In the first case, the invariant I

monadic loops 57

defines a path leading to the failing execution;8 we must prove that there is an execution
satisfying I until we reach a state where failed (B r s) holds. In the second case, I defines
an infinite path; we must show that there is always an execution through the loop’s body
that remains on the path.

The proof of the theorem falls out by unfolding the definition of whileLoop and
inducting over the definition of whileLoop_terminates.

With these rules in place, we are now in a position where we can prove the examples
given at the beginning of this section without too much effort:

Example 4.1 To prove that an infinite loop is equal to the monadic fail command:

whileLoop (λ_ _. True) (λ_. skip) r = fail

we use WhileLoopRule, which, after unfolding the definition of fail and simplifying,
gives us the two proof obligations:

1. ∀s. ⦃ λs0. s0 = s ⦄ whileLoop (λ_ _. True) (λ_. skip) () ⦃ λ_ _. False⦄

2. ∀s. failed (whileLoop (λ_ _. True) (λ_. skip) () s)

The first is discharged using WhileLoopWp using the invariant (λ_ _. True), while the
second is discharged using WhileLoopFail, again with the invariant (λ_ _. True).

Example 4.2 We can prove that the mult_by_add function defined above equals the
simpler expression:

mult_by_add m n = return (m ∗ n)

Because we are not expecting either side of the equation to fail, we used the
non-failure variant of the WhileLoopRule, resulting in the following subgoals after
simplifying:

1. ∀s0. λs. s = s0
whileLoop (λ(m, r) s. 0 < m)

(λ(m, r). return (m − 1, r + n)) (m, 0)
 λ(m, r) s. m = 0 ∧ r = m ∗ n ∧ s = s0

2. ∀s0. ⦃ λs. s = s0 ⦄
whileLoop (λ(m, r) s. 0 < m)

(λ(m, r). return (m − 1, r + n)) (m, 0)
∃⦃ λ(m, r) s. m = 0 ∧ r = m ∗ n ∧ s = s0 ⦄

These two subgoals are discharged using the rules WhileLoopNf and WhileLoopExs,
respectively. Because the body of the loop is fully deterministic, the proofs are the same:
each uses an invariant I of (λ(m, r) s. s = s0 ∧ r + m0 ∗ n0 = m0 ∗ n0), where x0
represents the initial value of x, and a termination relation ensuring that the value of
the loop’s variable m decreases. Once these rules are applied, the remaining subgoals are
discharged using simple arithmetic.

8We don’t need to prove that the failing execution occurs in a finite number of steps; if there was
an infinite path to the failing execution, the loop would fail because of non-termination, hence proving
failed (whileLoop C B r s).

58 from deep to shallow embeddings

Example 4.3 We can also use WhileLoopRule to prove properties about loops that have
non-terminating paths but nevertheless still produce results. For instance, consider the
following loop:

whileLoop (λ(cont, n) s. cont)
(λ(cont, n). do cont ← select {True, False};

return (cont, n + 1)
od) (True, 0)

The loop begins with the variable n, a natural number, set to zero. Each loop iteration
we increase the value n, and non-deterministically update the boolean variable cont. If
cont is true, we continue executing the loop for another iteration. Only when cont
becomes false do we exit the loop, returning the current value of n.

The loop is capable of returning any positive value of n—the non-deterministic
choice simply has to return true n times. The loop also contains a single non-terminating
path, when the non-deterministic choice never elects to exit the loop. Thus, we would
expect that the loop is equivalent to:

(({False} × {n. 0 < n}) × {s}, True)

That is, the set of results that consists of cont set to False, n as a positive natural, and
the state s unchanged. Additionally, the failure flag is set.

We can use WhileLoopRule once again to prove this. Applying the rule and sim-
plifying the result, we are left with three subgoals to prove: (i) that every result of the
loop has cont set to false, n strictly positive and the state unchanged; (ii) that for every
positive value n, there exists a path through the loop that reaches n with cont set to false
and the state unchanged; and (iii) the loop fails.

We show the first condition by using WhileLoopWp with the invariant:

I = (λ(cont, n) s. s = s0 ∧ (¬ cont ⟶ 0 < n))

The second goal is shown by using WhileLoopNf with the invariant:

I = (λ(cont, n) s. n ≤ nt ∧ cont ≠ (n = nt) ∧ s = s0)

and a termination measure of (nt − n), where nt represents the target value of n that we
are trying to prove exists.

Finally, the third goal is shown simply using WhileLoopFail with the invariant
I = (λ_ _. True), as the loop has an obvious non-terminating path through it.

4.4 Converting Simpl to a monadic representation

Now that we have a suitable representation for modelling imperative programs in Isa-
belle/HOL, we can proceed to transform the deeply embedded Simpl language into this
new shallowly embedded monadic representation, while also generating a proof showing
our translation is correct. We name the output of this initial translation stage L1.

converting simpl to a monadic representation 59

TRY
IF ⦃ ‘a ≤s ‘b⦄ THEN

‘ret_int ∶== ‘b;;
‘exn_var ∶== Return;;
THROW

ELSE
SKIP

FI;;
‘ret_int ∶== ‘a;;
‘exn_var ∶== Return;;
THROW;;
GUARD DontReach ∅

SKIP
CATCH

SKIP
END

catchE

(do conditionE (λs. a_′ s ≤s b_′ s)
(do modifyE (λs. s⦇ ret_int_′ ∶= b_′ s ⦈);

modifyE (λs. s⦇ exn_var_′ ∶= Return ⦈);
throwE ()

od)
skipE;

modifyE (λs. s⦇ ret_int_′ ∶= a_′ s ⦈);
modifyE (λs. s⦇ exn_var_′ ∶= Return ⦈);
throwE ();
guardE (λs. s ∈ ∅)

od)
(λ_. skipE)

Figure 4.1: A simple max function represented in Simpl (left-hand side) and its
corresponding L1 monadic representation (right-hand side).

The conversion process is conceptually easy: Simpl constructs are simply substituted
with their monadic equivalents shown in Table 4.4. For example, the Simpl statement
Basic f , which updates the state s to the value f s, is translated to modifyE f . Similarly,
the Simpl statement Cond c L R is translated to condition (λs. s ∈ c) L′ R′, where L′
and R′ are the appropriate translations of the Simpl statements L and R, respectively. In
this second case, we also convert the Simpl condition c ∶∶ ′state set to the predicate form
(λs. s ∈ c) ∶∶ ′state ⇒ bool, which we find more intuitive. Figure 4.1 shows an example C
program ‘max’ represented in Simpl, and its equivalent L1 monadic representation.

Because Simpl programs generated by Norrish’s C-to-Isabelle parser keep all data (in-
cluding local variables) exclusively in the program’s state, our translated program doesn’t
use the monadic framework’s bound variables, but sets them all to be Isabelle/HOL’s unit
element “()”.9

Function calls

Perhaps the most fiddly part of the conversion from Simpl to L1 is handling function
calls. Simpl’s Call dest_fn statement transfers control flow from the current function to
the beginning of function dest_fn without taking any further action. When modelling C
programs, however, we also need to ensure that (i) local variables in the calling function’s
scope are preserved; (ii) the calling function is able to pass function parameters to
dest_fn; and (iii) the calling function is able to receive a return value from the function
dest_fn.

To handle these requirements, Norrish’s C-to-Isabelle parser doesn’t use the Simpl

9We will revisit this decision in Chapter 5, when we modify our monadic programs to use the monadic
bound variables to keep track of local variables, instead of storing them in the program’s state.

60 from deep to shallow embeddings

call setup dest_fn teardown return_xf ≡
DYNCOM

(λs. TRY
BASIC setup;;
CALL dest_fn

CATCH
BASIC (teardown s);;
THROW

END;;
DYNCOM

(λt. BASIC (teardown s);;
return_xf s t))

callL1 setup dest_fn teardown return_xf ≡
do s ← getsE (λs. s);

catchE

(do modifyE setup;
dest_fn

od)
(λ_. failE);

t ← getsE (λs. s);
modifyE (teardown s);
modifyE (return_xf t)

od

Figure 4.2: The definition of Norrish’s call wrapper (left), and our callL1 monadic
equivalent (right).

Call statement directly, but rather the following wrapper around it. The definition is
shown in Figure 4.2.

The call wrapper performs the following steps:

1. The DynCom statement saves a copy of the currently executing function’s state
into the bound variable s;

2. The function setup ∶∶ ′s ⇒ ′s is called, which copies function parameters from local
variables in the caller’s scope to variables in dest_fn’s scope;

3. The destination function dest_fn is called;

4. The function teardown ∶∶ ′s ⇒ ′s ⇒ ′s merges the global state from the output of
dest_fn with the saved local variable state s from the calling function; and finally

5. The function return_xf ∶∶ ′s ⇒ ′s ⇒ ′s copies the return value of dest_fn into a
variable of the current function’s scope.

The call wrapper additionally has support for handling exceptions that cross function
boundaries, but this support is not required in our context of C verification.

Instead of attempting to expand out the rather complicated semantics of Norrish’s call
wrapper at this point in AutoCorres, we instead just create an analogous callL1 function.
The definition is shown in Figure 4.2.

Each step in the callL1 statement carries out the monadic equivalent of its Simpl
counterpart. Unlike Norrish’s call wrapper, our callL1 statement fails if an exception
crosses a function boundary.10 This definition of callL1 simply models the complexity of
Norrish’s call wrapper, making no attempt to improve it. In Section 5.1.3, we look at how
we can eliminate the complexity altogether.

10 In practice, C programs modelled in Simpl will not raise exceptions that span function boundaries, so the
difference is inconsequential.

converting simpl to a monadic representation 61

4.4.1 Proving conversion

Our goal is not simply to carry out a conversion from Simpl to L1, but also to generate a
proof showing that our conversion is sound.

The proof we generate is a refinement proof; that is, the input Simpl program is a
refinement of the output monadic program (or alternatively, the output monadic program
is an abstraction of the input Simpl program). Informally, a concrete program C is a
refinement of an abstract program A if C exhibits a subset of the behaviours of A. Once
we have shown refinement between A and C we can, for instance, prove that C exhibits
particular behaviours simply by reasoning on the (hopefully) simpler abstract program A.

In order to prove refinement, we start by declaring a predicate corresL1 stating that
the two programs correspond to each other, defined as follows:

corresL1 Γ A C ≡
∀s. ¬ failed (A s) ⟶

(∀t. Γ ⊢ ⟨C, Normal s⟩ ⇒ t ⟶
(case t of

Normal s′ ⇒ (Norm (), s′) ∈ results (A s)
∣ Abrupt s′ ⇒ (Exc (), s′) ∈ results (A s)
∣ _ ⇒ False)) ∧

Γ ⊢ C ↓ Normal s

The definition reads as follows: Given a Simpl context Γ mapping function names to
function bodies, a monadic program A and a Simpl program C, then, assuming that the
monadic program A does not fail: (i) for each normal execution of the Simpl program
there is an equivalent normal execution of the monadic program; (ii) similarly, for
each execution of the Simpl program that results in an exception, there is an equivalent
monadic execution also raising an exception; and finally, (iii) every execution of the
Simpl program terminates.

The final termination condition (i.e., that we guarantee the concrete program termi-
nates) may initially seem surprising. Notice, however, that these conditions must only
hold if A does not fail, while our definition of whileLoopE ensures that loops with non-
terminating executions will raise the failure flag. Consequently, proving termination of C
is reduced to proving non-failure of A.

The definition of corresL1 is useful because it allows us to reason about our concrete
Simpl program using the L1 representation. For example, we can prove Hoare triples on
a Simpl program by lifting the reasoning to L1, as follows:

Theorem 4.8 Given a concrete Simpl program C and a corresponding L1 program A,
then if we prove a Hoare triple on A, the result also holds on executions of the concrete
program C as follows:

corresL1 Γ A C P A λrv. Q, λrv. E P s
Γ ⊢ ⟨C, Normal s⟩ ⇒ Normal t ⟶ Q t

Proof Straightforward from the definitions of corresL1 and validNF.

62 from deep to shallow embeddings

The key part of the above theorem is that we must prove non-failure of our abstract
program A. Without proving non-failure, we have no guarantees that C is actually a
refinement of A.

The corresL1 predicate also allows us to prove termination and fault freedom of the
concrete Simpl program by reasoning on the L1 program alone:

Theorem 4.9 Given a concrete Simpl program C and a corresponding L1 program A, if
we can show that A does not fail, then the concrete program C also: (i) will not fault;
(ii) will not get stuck; and (iii) will terminate:

corresL1 Γ A C
 λ_. True A λ_ _. True
Γ ⊢ ⟨C, Normal s⟩ ⇏ Fault f

corresL1 Γ A C
 λ_. True A λ_ _. True
Γ ⊢ ⟨C, Normal s⟩ ⇏ Stuck

corresL1 Γ A C
 λ_. True A λ_ _. True

Γ ⊢ C ↓ Normal s

Proof Again, straightforward from the definitions of corresL1 and validNF.

Proving correspondence between Simpl and L1

To actually prove correspondence between concrete Simpl programs and their monadic
equivalents, we craft a set of rules that can be applied both compositionally and au-
tomatically. Leaf statements, such as Skip, Basic f or Spec r can be directly shown to
correspond to their monadic counterparts. For example, we can use the following rule to
show that a Simpl statement Basic f corresponds to an L1 statement modify f :

corresL1 Γ (modifyE m) (Basic m)

Compound statements, such as Simpl’s Seq or Cond statements, simply require
us to prove that the sub-terms of the statements also correspond. For example, the
following rule states that the Simpl program Cond c L′ R′ corresponds to the L1 program
condition (λs. s ∈ c) L R if L′ corresponds to L and R′ corresponds to R:

corresL1 Γ L L′ corresL1 Γ R R′
corresL1 Γ (conditionE (λs. s ∈ c) L R) (Cond c L′ R′)

Assuming we ensure that our L1 abstraction is structurally equivalent to the Simpl
input program, a proof of correspondence can be generated by simply applying a set
of rules in a syntax-directed fashion. Table 4.5 shows the full list of rules for proving
correspondence between Simpl programs and their L1 equivalents.

4.4.2 Function calls and recursion

Function calls present a minor difficulty when converting larger programs. Two difficul-
ties arise: the first is that we cannot define a function f in Isabelle until the functions
f calls have first been defined. The second difficulty is that we typically cannot prove a

converting simpl to a monadic representation 63

corresL1 Γ skipE Skip
L1CorresSkip

corresL1 Γ (modifyE m) (Basic m)
L1CorresModify

corresL1 Γ (throwE ()) Throw
L1CorresThrow

corresL1 Γ (specE x) (Spec x)
L1CorresSpec

corresL1 Γ B B′
corresL1 Γ (do guardE (λs. s ∈ G); B od) (Guard f G B′)

L1CorresGuard

corresL1 Γ L L′ corresL1 Γ R R′
corresL1 Γ (L >>=𝖤 (λ_. R)) (L′;; R′)

L1CorresSeq

corresL1 Γ L L′ corresL1 Γ R R′
corresL1 Γ (catchE L (λ_. R)) (Catch L′ R′)

L1CorresCatch

corresL1 Γ L L′ corresL1 Γ R R′
corresL1 Γ (conditionE (λs. s ∈ c) L R) (Cond c L′ R′)

L1CorresCond

Γ X′ = Some Z′ corresL1 Γ Z Z′
corresL1 Γ Z (Call X′)

L1CorresCall

corresL1 Γ f (Call f ′)
corresL1 Γ (callL1 setup f teardown ret_xf)

(call setup f ′ teardown (λ_ t. Basic (ret_xf t)))
L1CorresCallWrap

corresL1 Γ B B′
corresL1 Γ (whileLoopE (λ_ s. s ∈ c) (λ_. B) ()) (While c B′)

L1CorresWhile

corresL1 Γ failE X
L1CorresFail

Table 4.5: Selection of rules, compositionally proving corresL1 in the Simpl to L1
translation.

64 from deep to shallow embeddings

property about a function f until we know that the same property also holds for each
function f calls.

For example, when proving the predicate corresL1, function calls from f to g can only
be proved by first showing that g is itself a valid abstraction of the concrete version of
the function being called:

Γ X′ = Some Z′ corresL1 Γ Z Z′
corresL1 Γ Z (Call X′)

For simple C programs, neither the problem of how to define functions or how to
prove properties about functions are particularly difficult to solve: for both problems, we
can simply topologically sort the entire program’s callgraph and define or prove functions
one by one, ensuring that every function is translated before its callers. By the time we
reach the calling function, we will have the appropriate definition or proof about the
callee, allowing the proof of the current function to succeed.

This simple approach of translating callees before their callers falls apart when we
consider functions with recursion—especially functions that are mutually recursive. For
instance, if function f calls function g , and function g calls function f , which should we
translate first?

Even ignoring the difficulty of what order we should carry out our proofs or defi-
nitions in, recursive functions also reintroduce a problem we hit in Section 4.3 when
determining how loops should be modelled in our monadic language: Isabelle is a logic
of total functions, and will not let us define recursive functions until we first prove
that they terminate. Proving termination is an undecidable problem in the general case
and—even if we could automatically prove termination—we would still like to model
C functions that don’t necessarily terminate. A program that recursively iterates over a
linked list is one such example: if the list terminates, so does the recursion; but if the list
loops back on itself, then the recursion will continue forever.

Two potential solutions to defining and reasoning about recursive functions are as
follows:

• One approach would be to model recursive functions using Krauss’ function
package [60], which provides mechanisms to allow potentially non-terminating
recursive functions to be described and partially defined. The definitions of such
functions are conditional definitions; that is, every function has a domain consisting
of the set of terminating inputs. A function’s definition for a particular input may
be expanded only if the user first proves that the input is in the function’s domain.

Having such a conditional function definition would complicate automated
reasoning on the function. In particular, our tool AutoCorres needs to carry out
automated simplifications, induction and refinement proofs on generated functions.
Having only a conditional functional definition would be a significant burden on
engineering such proof procedures.

• Alternatively, we could give up on the idea of modelling recursive C functions
using recursion in Isabelle, and convert recursive functions into non-recursive
functions by explicitly rewriting each function to use a loop (using the monadic
while-loop combinator) and an additional stack.

converting simpl to a monadic representation 65

This approach has the advantage that AutoCorres only has to deal with recur-
sion once; after that, the program just consists of standard loops. This comes at the
cost, however, that the control flow of the function will be extensively contorted:
local variables of a function must be saved to the faux stack in one iteration of the
loop and restored from it later. Reasoning about the function would require ex-
tensive reasoning about the introduced stack, significantly complicating any proof.
This problem gets worse when we consider mutual recursion, as we would have
to combine multiple mutually recursive functions into a single loop body for the
loop/stack conversion to take place; reasoning about the result would be unpleasant
at best.

Neither of these solutions is particularly satisfactory. We instead introduce a simpler
solution, described below.

Defining recursive functions

Our solution to representing recursive C functions in Isabelle is to introduce an addi-
tional parameter to every recursive function which we call a measure. When the function
is initially called, the measure parameter is set to a natural m′. Each time the function
recursively calls itself, it decrements the measure; if the measure reaches zero, the call to
the function is defined as fail. So long as the initial measure value m′ is larger than the
depth of recursion, the function will return with the correct value.

Using such a measure parameter is a common technique in other interactive theorem
provers such as ACL2 (where it is known as a clock), and in the context of Isabelle/HOL
has the advantage that Krauss’ function package is easily able to prove termination
of the function: each recursive call simply decrements the measure parameter until it
reaches zero. Because the function package proves termination for all inputs, we get an
unconditional definition of the function, thus simplifying proofs.

Krauss’ function package supports defining mutually recursive functions by providing
the definitions of all the functions simultaneously. This allows AutoCorres to handle
mutually recursive functions similarly to simple recursive functions: each call made from
one of the mutually recursive functions to another decreases the measure. Like the simple
recursion case, the function package is able to easily prove termination for the set of
mutually recursive functions. Figure 4.3 gives an example of a pair of mutually recursive
functions in C, and their hand-written monadic representation in Isabelle/HOL using
this technique.

To simplify the implementation of AutoCorres we add such a measure parameter m′
to every function translated, even if the function doesn’t recurse. This avoids AutoCorres
internally needing to treat functions with measure parameters differently from those
without.11 The measure parameter will remain through the various stages of AutoCorres.

11Additionally, some functions that are recursive in the input Simpl may not be recursive in later phases of
AutoCorres. This may occur, for instance, if AutoCorres proves that the recursive call cannot occur during
function optimisations. Because of this, AutoCorres already has to handle non-recursive functions with a
measure parameter.

66 from deep to shallow embeddings

int is_even(unsigned n)

{

if (n == 0)

return 1;

return is_odd(n - 1);

}

is_even′ m′ n ≡
condition (λ_. m′ = 0)

fail
(condition (λ_. n = 0)

(return 1)
(is_odd′ (m′ − 1) (n −w 1)))

int is_odd(unsigned n)

{

if (n == 0)

return 0;

return is_even(n - 1);

}

is_odd′ m′ n ≡
condition (λ_. m′ = 0)

fail
(condition (λ_. n = 0)

(return 0)
(is_even′ (m′ − 1) (n −w 1)))

int test_odd(void)

{

return is_odd(42);

}

test_odd′ ≡
is_odd′ (2 + 1) 0x2A

Figure 4.3: A pair of mutually recursive functions and a hand-written monadic
definition of them in Isabelle. A measure parameter m’ is initially set to 232 + 1
and decremented each time a recursive call takes place, allowing termination to
be proven easily.

Unnecessary measure parameters will be removed in the last phase of AutoCorres,
described in Section 5.4.

Automated proofs about recursive functions

The measure parameter not only allows termination to be automatically proven, but also
has the benefit of simplifying automated proofs. In particular, the decreasing measure
parameter allows AutoCorres to prove properties on recursive functions by inducting
over the measure parameter of the functions. To prove an arbitrary property on such a
definition, is suffices to show:

• The property is true when the measure m′ equals zero. This corresponds to the
monadic program fail, which trivially satisfies most properties of interest to us.

• Assuming that the property is true for (m′ − 1), AutoCorres must next prove that
it remains true for m′. As our properties of interest tend to be compositional (that
is, a rule is true for a function f if it is true for the body of f , and all functions
that f calls), the recursive calls become no harder to reason about than a simple
call to an unrelated function.

For example, to prove the correspondence theorem corresL1 for the functions
is_even, is_odd and is_42_odd shown in Figure 4.3, we would prove the following
theorems:

converting simpl to a monadic representation 67

corresL1 Γ (is_evenL1 0) is_evenC corresL1 Γ (is_oddL1 0) is_oddC

corresL1 Γ (is_evenL1 (m′ − 1)) is_evenC

corresL1 Γ (is_oddL1 (m′ − 1)) is_oddC
corresL1 Γ (is_evenL1 m′) is_evenC

corresL1 Γ (is_evenL1 (m′ − 1)) is_evenC

corresL1 Γ (is_oddL1 (m′ − 1)) is_oddC
corresL1 Γ (is_oddL1 m′) is_oddC

∀m′. corresL1 Γ (is_evenL1 m′) is_evenC

∀m′. corresL1 Γ (is_oddL1 m′) is_oddC
corresL1 Γ test_oddL1 test_oddC

Here is_evenC represents the Simpl representation of the function is_even, while
is_evenL1 represents the L1 version of the function.

The first two theorems are the recursion base cases; we assume that the measure m′

is zero, and show that the correspondence property holds. Because (is_evenL1 0) and
(is_oddL1 0) are both equivalent to fail, we can use the rule L1CorresFail to show that
the result holds.

The next two theorems are the inductive case; we assume that the property holds for
(m′ − 1), and must then prove it for m′. As recursive calls use a measure of (m′ − 1),
to prove these rules we can simply use the standard L1CorresCall rule to handle the
recursive call.

The final rule proves correspondence for is_42_odd, which is just a standard C
function. We assume that both is_even and is_odd correspond for any measure m′ to
prove the property.

Once all the intermediate theorems have been proven independently, AutoCorres
can then stitch them together using simple induction over the natural, forming our final
correspondence theorems:

∀m′. corresL1 Γ (is_evenL1 m′) is_evenC

∀m′. corresL1 Γ (is_oddL1 m′) is_oddC

corresL1 Γ test_oddL1 test_oddC

Choice of measure values

One final detail needs to be discussed: when calling into a recursive function f , what
initial measure value m′ should AutoCorres use? We could just fix the value—perhaps
232 + 1, or some other ‘sufficiently large’ constant—and simply hope for the best.

We can, however, give the user a little more flexibility by allowing her to choose
the measure herself. Instead of fixing a measure value, for every recursive function f ,
AutoCorres declares the existence of a fixed function fm of type ′state ⇒ nat. Each time
a call to a recursive function takes place, the generated function will pass the current
state into fm and use the value returned from the function as the initial measure. The
user can then, after AutoCorres has run, define the declared function fm to return a
suitable value. In our is_even example above, for example, a suitable definition for a
measure function would be to use the input parameter n, as we know that the function
will never recurse more than n times.

68 from deep to shallow embeddings

Recursive measures compared to well-founded relations

Our choice to use measure parameters for recursive functions was to allow AutoCorres to
automatically carry out proofs on the Isabelle functions it defined. In particular, almost
every proof AutoCorres internally carries out on a recursive function requires inductive
reasoning, and the addition of a measure parameter simplifies the implementation of
such proof methods.

An alternative method of defining recursive functions that allows us to automatically
prove properties such as termination would be to use well-founded relations, similar to
those used in our whileLoop proof rules. For example, a monadic representation of a
recursive factorial function using well-founded relations would be as follows:

factorial n ≡
do s0 ← gets (λs. s);

condition (λs. n = 0)
(return 1)
(do guard (λs. ((n − 1, s), (n, s0)) ∈ Rfact ∧ wf Rfact);

ret ← factorial (n − 1);
return (n ∗ ret)

od)
od

This function definition uses a constant Rfact that is declared but not defined. The user
would be later responsible for providing a definition for this constant, consisting of a
well-founded relation that shows that the function terminates.

The function factorial itself is defined as follows:

1. When the function is first entered, a copy of the current state is bound to the
variable s0;

2. If the function is in its base case (i.e., it has been called with n = 0), then it simply
returns 1 to the caller;

3. Otherwise, a recursive call needs to take place. The function has a guard that
ensures that the state and parameters passed to the recursive factorial call are
‘smaller’ with respect to Rfact than the input state and parameters. The guard also
ensures that the relation Rfact is well-founded; this allows us to assume this fact
when reasoning about recursive calls, despite the fact that Rfact will not be defined
by the user until after AutoCorres has finished.

If both of the conditions of the guard are satisfied, then the recursive call takes
place. Otherwise, the function simply fails.

4. Finally, once the recursive call returns, the function performs its factorial calcula-
tion, and returns this result.

In this case of this function, a valid definition of Rfact would be any relation such that

((n′, s′), (n, s)) ∈ Rfact ⟷ n′ < n

which simply declares that the parameter n to the function decreases.
Importantly, functions defined using well-founded relations in such a manner can

automatically be proven to terminate. The proof proceeds as follows: if Rfact is not

structural simplifications of monadic programs 69

well-founded, the guard statement in the function body will always fail, and no recursive
calls will ever take place. Otherwise, Rfact is well-founded, and the guard above recursive
call ensures that each recursive invocation of the function is ‘smaller’ with respect to
Rfact, and hence the function will eventually terminate.

Defining functions using well-founded relations offers two primary benefits over the
use of measures:

1. There exist functions that always terminate, but for which no measure value
will be large enough. For example, imagine a function that when first called
non-deterministically selects a positive natural number n, and then subsequently
calls itself recursively n times with a single parameter that simply decreases until it
reaches zero. While such a function will always terminate, no matter what measure
value is chosen for this function there will always be an execution where the
non-deterministically chosen parameter is larger, and hence termination cannot be
proven. In contrast, it is not hard to construct a well-founded relation that can be
used to prove termination for such a function.

2. Frequently, well-founded relations are easier to specify than measure values. For
example, a function with arguments that always decrease in lexicographical order
is trivial to specify using a well-founded relation, but harder with a measure.

In the context of C verification, functions where measures are insufficiently powerful
to prove termination are unlikely to occur in practice: such functions exploit infinite
non-determinism, which is not typically present in C programs.12 The second argument—
that well-founded relations can be easier for end users to specify—we find to be a more
compelling argument, and may motivate changes to future versions of our tool to prefer
them over measures.

4.5 Structural simplifications of monadic programs

The Simpl output generated by the C-to-Isabelle parser is, by design, as literal a con-
version of C as possible. This frequently leads to specifications that are more complex
than strictly necessary. This complexity ranges from the trivial, such as unnecessary skipE
commands (perhaps generated from a stray semicolon in the C code, left behind after
the C preprocessor stripped away debugging statements); to deeper complexity, such
as exceptional control flow being used to model abrupt termination, as in the case of
return and continue statements.

In this section, we look at two approaches that we can use to simplify the L1 represen-
tation of our C programs: peephole optimisations, which carry out localised simplifications
to L1 specifications, and exception elimination, which performs a slightly deeper analysis
of individual functions in an attempt to reduce their use of exceptional control flow.

12We say ‘typically’ because one could imagine such infinite non-determinism to appear in a concrete C
program that interacts with an abstractly-modelled hardware device, the latter of which may exhibit infinite
non-determinism.

70 from deep to shallow embeddings

no_throw A
catchE A E = A
CatchNoThrow

no_return A
A >>=𝖤 B = A
BindAlwaysThrow

catchE (throwE a) E = E a
CatchThrow

no_throw A
catchE (A >>=𝖤 B) C = do x ← A; catchE (B x) C od

BindNoThrow

catchE (conditionE c L R) E =
conditionE c (catchE L E) (catchE R E)

CatchCond

catchE (conditionE C L R >>=𝖤 B) E =
conditionE C (catchE (L >>=𝖤 B) E) (catchE (R >>=𝖤 B) E)

CatchCondBind

Table 4.6: Rules used by AutoCorres in the exception elimination phase.

4.5.1 Peephole optimisations

As the L1 specification is a shallow embedding, we are able to use Isabelle’s rewrite engine
to apply a series of peephole optimisations consisting of 23 rewrite rules, removing
significant amounts of unnecessary code from the L1 programs. The rules are shown in
Figure 4.4.

The rules fall roughly into four categories:

• Code normalisation rules convert L1 programs into a canonical form, helping other
rules in the set to match;

• Dead code elimination rules remove unreachable or unnecessary code. This in-
cludes stripping unnecessary skipE statements; removing guardE statements that
are always true; removing code after throwE statements; and pruning branches of
condition statements where the condition is True or False.

• Failure propagation rules propagate fail statements higher up the code. If a code-
path will inevitably reach a fail statement, the code leading up to the statement
can be stripped away; and

• Simple loop elimination rules rewrite loops that will never execute, infinite loops,
and loops with failing bodies into simpler representations.

Even though the rules are simple, they produce a significant reduction in the size of
program representations. The results in Table 5.8 on page 102 show that these rules alone
reduced average term sizes by 22% on a larger project.

4.5.2 Exception elimination

Statements in C that cause abrupt termination, such as return, continue or break,
are modelled in Simpl with exceptions, as described in Section 3.3. While exceptions

structural simplifications of monadic programs 71

Code normalisation

f >>=𝖤 (λ_. g) >>=𝖤 (λ_. h) =
f >>=𝖤 (λ_. g >>=𝖤 (λ_. h))

do A; skipE od = A
do skipE; A od = A

guardE (λ_. False) = failE
guardE (λ_. True) = skipE

Dead code elimination

conditionE (λ_. True) A B = A
conditionE (λ_. False) A B = B

conditionE C A A = A

do throwE (); X od = throwE ()
do failE; X od = failE

Failure propagation

do skipE; failE od = failE
do modifyE M; failE od = failE
do specE S; failE od = failE

do guardE G; failE od = failE
do initE I; failE od = failE
do failE; failE od = failE

catchE failE (λ_. A) = failE

conditionE C failE A = do guardE (λs. ¬ C s); A od

conditionE C A failE = do guardE C; A od

do conditionE C L R; failE od =
conditionE C (do L; failE od) (do R; failE od)

Simple loop elimination

whileLoopE (λ_ _. False) (λ_. B) () = skipE
whileLoopE (λ_. C) (λ_. failE) () = guardE (λs. ¬ C s)
whileLoopE (λ_. C) (λ_. skipE) () = guardE (λs. ¬ C s)

Figure 4.4: The set of L1 peephole optimisation rules.

72 from deep to shallow embeddings

accurately model the behaviour of abrupt termination, their presence complicates reason-
ing about the final program: each block of code now has two exit paths that must be
considered when reasoning about the program.

Fortunately, most function bodies can be rewritten to avoid the use of exceptional
control flow by analysing where exceptions are actually used. For our analysis, we require
two predicates to be defined. The first, no_throw, indicates that a given monadic code
block will never raise an exception. The second no_return, indicates that a given monadic
code block will never return normally. The predicates are defined as follows:

no_throw f ≡
⦃ λs. True⦄ f ⦃ λrv s. True⦄, ⦃ λrv s. False⦄

no_return f ≡
⦃ λs. True⦄ f ⦃ λrv s. False⦄, ⦃ λrv s. True⦄

For example, the following code block:

do conditionE c
(throwE e1)
(modifyE f);

throwE e2
od

satisfies the predicate no_return, because it always results in an exception being thrown.
The failE statement satisfies both the no_throw statement and the no_return statement,
as it neither raises an exception, nor does it ever return. These two predicates can
be automatically proved on code blocks using a set of syntax-directed rules, listed in
Table 4.7.

With the ability to determine the exception behaviour of blocks of code, we can
now rewrite monadic code blocks to reduce their use of exceptional code flow; Table 4.6
shows the set of rewrite rules we use. For example, CatchNoThrow eliminates exception
handlers surrounding code that never raises exceptions. Analogously, BindAlwaysThrow
removes code trailing a block that always raises an exception.

Not all rules in this set can be applied blindly. In particular, the rules CatchCond and
CatchCondBind duplicate blocks of code, which may trigger exponential growth in the
size of our output programs in pathological cases. For CatchCond, which duplicates the
exception handler, knowledge of our problem domain saves us: inputs originating from
C only have trivial exception handlers automatically generated by Norrish’s C-to-Isabelle
parser, and hence duplicating them is of no concern.

The rule CatchCondBind, however, also duplicates its tail B, which may be arbitrarily
large. While we can soundly apply the rule at any opportunity, we use the following
heuristics to determine when applying the rule is likely to result in a simpler output
program: (i) if neither branch of the condition throws an exception, then the rule Bind-
NoThrow is applied; (ii) if both branches throw an exception, then BindAlwaysThrow is
applied; (iii) if one branch always throws an exception, then the rule CatchCondBind is
applied followed by BindAlwaysThrow on that branch, resulting in only a single instance
of B in the output; finally (iv) if the body B is trivial, such as a returnE or throwE

statement, we apply CatchCondBind and duplicate B under the assumption that the

structural simplifications of monadic programs 73

No throw rules

no_throw skipE no_throw (modifyE m) no_throw (guardE g)

no_throw failE no_throw (initE a) no_throw (specE a)

no_throw L no_throw R
no_throw (do L; R od)

no_throw L no_throw R
no_throw (conditionE C L R)

no_throw B
no_throw (whileLoopE (λ_. C) (λ_. B) ())

no_throw L
no_throw (catchE L (λ_. R))

no_throw R
no_throw (catchE L (λ_. R))

No return rules

no_return (throwE ()) no_return failE

no_return L
no_return (do L; R od)

no_return R
no_return (do L; R od)

no_return L no_return R
no_return (catchE L (λ_. R))

no_return L no_return R
no_return (conditionE C L R)

Table 4.7: Rules for proving the predicates no_throw and no_return on monadic
program fragments.

74 from deep to shallow embeddings

Before exception elimination

catchE

(do conditionE (λs. a_′ s ≤s b_′ s)
(do modifyE (λs. s⦇ ret_int_′ ∶= b_′ s ⦈);

modifyE (λs. s⦇ exn_var_′ ∶= Return ⦈);
throwE ()

od)
skipE;

modifyE (λs. s⦇ ret_int_′ ∶= a_′ s ⦈);
modifyE (λs. s⦇ exn_var_′ ∶= Return ⦈);
throwE ();
guardE (λs. s ∈ ∅)

od)
(λ_. skipE)

After exception elimination

do initE ret_int_′_update;
conditionE (λs. a_′ s ≤s b_′ s)

(do modifyE (λs. s⦇ ret_int_′ ∶= b_′ s ⦈);
modifyE (λs. s⦇ exn_var_′ ∶= Return ⦈)

od)
(do modifyE (λs. s⦇ ret_int_′ ∶= a_′ s ⦈);

modifyE (λs. s⦇ exn_var_′ ∶= Return ⦈)
od)

od

Figure 4.5: An implementation of the max function converted to L1 before and
after exception elimination takes place.

rewritten specification will still be simpler than the original. Otherwise, we leave the
specification unchanged and let the user reason about the exception rather than generate
a larger output specification.

Using these rules, all exceptions can be eliminated other than those in nested condi-
tion blocks described above, or those caused by break or return statements inside loop
bodies.13 Figure 4.5 shows the C max function (shown previously in Figure 4.1) before and
after exception elimination optimisations have been applied. In this case, all exceptional
control flow could be eliminated.

More generally, applying this transformation to the seL4 microkernel [57], 96% of
functions could be rewritten to eliminate exceptional control flow. Of the remaining 4%,
10 could not be rewritten due to nested condition blocks, 13 because of either return or
break statements inside a loop, and one function for both reasons independently.

13You could imagine rewriting such programs to avoid exceptional control flow by introducing an auxiliary
variable indicating if the loop should be exited at the next iteration. Once you add in appropriate abstractions
for reasoning about this variable, you will find that you have simply re-invented the exception monad, and not
actually simplified the program.

related work 75

4.6 Related work

Both Myreen et al. [76–78] and Li [68] have investigated the problem of automatically
and verifiably translating deeply embedded representations of assembly language into
shallowly embedded representations. Myreen et al. translate assembly into a representa-
tion consisting of let blocks, while Li targets a monadic representation closer to our own.
Both Myreen et al. and Li model loops using tail-recursive functions, where termination
need not be proven. The initial translation steps in this thesis are similar to those in
Myreen et al. and Li’s work, but the longer-term goals of the two projects are quite
different—our program-level peephole optimisations and control flow simplifications
don’t have a direct equivalent in the context of assembly verification.

In work that attempts to model imperative programs using a monadic representation,
the most common approach of modelling loops is simply to use recursion. This approach
was taken in Bulwahn et al.’s [21] formalisation of monads in the Imperative HOL project,
for instance. Isabelle/HOL has a (non-monadic) while combinator, along with a variety of
rules to assist reasoning about it. This while combinator, however, would be unwieldy to
use to model programs that have both non-determinism and non-terminating paths. In
particular, the while combinator is only defined for terminating computations; in contrast,
our own while-loop combinator still correctly calculates the results of terminating paths,
even if non-terminating paths are also present.

Lammich and Tuerk [64] published work in parallel to our own, also formalising a
monadic while-loop. Their motivations are similar to our own, though we need to handle
additional complexities (such as failure and non-determinism) that Lammich and Tuerk
did not face. Lammich and Tuerk additionally require two monadic loop constructs—one
for partial correctness and one for total correctness. In contrast, we use the failure flag of
our monad to indicate non-termination, allowing the same while-loop combinator to be
used in both scenarios.

4.7 Conclusion

In this chapter we have shown how we can both automatically and verifiably transform
programs represented in Schirmer’s Simpl language into a monadic representation. This
new representation allows us to easily apply peephole optimisations which simplify the
structure of the program. Such optimisations—while not impossible to carry out—would
be harder to implement if we attempted to carry them out directly on the deeply
embedded Simpl language.

Observant readers may have noticed that we have not yet actually reasoned about
any real C program. This is primarily because our L1 representation of programs—while
easier to work with than the Simpl representation—is still unsatisfactory. In the next
chapter, we look at how we can carry out further transformations in order to produce a
representation of our program that we are actually willing to work with.

76 from deep to shallow embeddings

Chapter Summary

• When reasoning about the semantics of imperative programs, a shallow
embedding is typically a more convenient representation than a deep
embedding. Norrish’s C-to-Isabelle parser generates a deeply embedded
representation of C, however.

• We use Cock et al.’s existing formalisation of monads to model im-
perative programs. The formalisation supports modelling global state,
non-determinism, failure, and exceptions. It does not support modelling
loops, however.

• We extended Cock et al.’s formalisation with a new while-loop combinator,
which allows imperative loops to be modelled. We additionally developed
reasoning rules to ease manual reasoning about the combinator.

• We developed rules that allow Simpl programs to be automatically
translated into their equivalent monadic representation. Our automatic
translation uses these rules to generate a proof in Isabelle/HOL that our
translation is correct.

• Finally, we developed optimisations that apply to our generated monadic
output. These include peephole optimisations, which simplify control flow,
and exception elimination rules, which remove the use of exceptions from
programs where possible.

5 Local variable lifting

In the previous chapter, we saw how we can convert the deeply embedded Simpl language
into a shallowly embedded monadic representation named L1. The L1 representation
has a few benefits: for instance, it allows us to easily carry out simplifications to the
program structure, such as eliminating exceptional control flow in many circumstances
and carrying out other peephole optimisations. For end-users, the L1 representation is
still deeply unsatisfying, however. Even the most basic reasoning about local variables
remains needlessly complex.

In this chapter, we look at how we can improve our monadic representation of
programs. We translate the L1 representation into a new representation, named L2, where
local variables are no longer modelled as part of the program’s global state, but instead
modelled as monadic bound variables. As in the previous chapter, our goal is to not only
transform the program specification into local lifted form, but also generate a proof of
correctness that our transformation is correct.

The rest of this chapter is organised as follows: the next section describes how Auto-
Corres generates and proves correctness of local lifted form from L1 inputs. Section 5.2
looks at simplifications we can carry out on L2 specifications, that help to reduce their
size and complexity. Section 5.3 considers how AutoCorres can further simplify L2 pro-
grams by using a simpler monad (or no monad at all) when possible. Finally, Section 5.4
describes how the various transformations are brought together for the end-user of
AutoCorres.

This chapter is based on the published work by Greenaway et al. [49], Bridging the
gap: automatic verified abstraction of C in ITP 2012.

5.1 Lifting local variables out of the program’s state

Like the original Simpl embedding, our L1 translation represents local variables as part
of the state: each time a local variable is read it is extracted from the state, and each

78 local variable lifting

do modifyE (a_′_update (λ_. 3));
conditionE (λs. 5 ≤w a_′ s)

(modifyE (b_′_update (λ_. 5)))
(modifyE (c_′_update (λ_. 4)));

modifyE (λs. s⦇ ret__int_′ ∶= a_′ s ⦈)
od

(a) Locals in state

do a ← returnE 3;
(b, c) ← conditionE (λs. 5 ≤w a)

(returnE (5, c))
(returnE (b, 4));

returnE a
od

(b) Local lifted form

Figure 5.1: Two program listings. The first stores local variables in the state,
while the second uses bound variables. The shaded region does not affect the
final return value; this is obvious in the second representation, but requires
analysis of the shaded region to prove in the first representation.

time a local variable is written the state is modified. While this representation is easy to
generate, it complicates reasoning about variable usage. An example of this is shown in
Figure 5.1(a): the variable a is set to the value 3 at the top of the function and then later
returned unmodified at the end of the function. However, to prove that the function
returns the value 3, the user must first prove that the shaded part of the program
preserves a’s value.

A better approach to representing local variables is to use the bound variables feature
provided by Cock et al.’s monadic framework that we have thus far ignored. To achieve
this, we remove local variables from the state type and instead model them as bound
Isabelle/HOL variables. We name this representation lifted local form and the output of
this translation L2. The representation is analogous to static single assignment (SSA) form
used by many compilers as an intermediate representation [73], where each variable is
assigned precisely once.

Figure 5.1(b) shows the same program in lifted local form. The function returns the
variable a, which is bound to the value 3 in the first line of the function. As variables
cannot change once bound, the user can trivially determine that the function returns 3
without inspecting the shaded area.

Two complications arise in representing programs in local lifted form. The first is
that variables bound inside the bodies of conditionE and catchE blocks are not available
to statements after the block. To overcome this, we modify the bodies of such blocks
to return a tuple of all variables assigned in the bodies and subsequently referenced, as
demonstrated in Figure 5.1(b). Statements following the block can then use the names
returned in this tuple.

A second, similar complication arises from loops, where local variables bound in one
iteration not only need to be accessible after the loop, but also accessible by statements in
the next iteration of the loop. We solve this by passing all required local variables between
successive iterations of the loop as well as the result of the loop in the iterator of the
whileLoopE combinator. The function loop in Figure 5.2 shows such an example, where
variables a and c are required between loop iterations and after the loop, respectively,
and hence are passed through the loop iterator.

The actual process we use to lift local variables from the program’s state into monadic
bound variables takes place in three stages:

lifting local variables out of the program's state 79

unsigned loop(unsigned a,

unsigned b, unsigned c)

{

unsigned d;

while (a < b) {

d = 1;

c = a + b + d;

a += 1;

}

return c;

}

do (a, c) ←
whileLoop (λ(a, c) s. a <w b)

(λ(a, c).
do d ← return 1;

c ← return (a +w b +w d);
a ← return (a +w 1);
return (a, c)

od) (a, c);
return c

od

Figure 5.2: A while loop in C translated into lifted local form. Variables that
are live between loop iterations are passed through the loop iterator; in this
example, c and a.

1. The program is analysed to determine how local variables are used in the body
of each function, such as which local variables need to be bound to monadic
variables, and which local variables can simply be discarded;

2. A new L2 monadic specification is generated from the existing L1 monadic specifi-
cation, using the information gathered from the previous step. The algorithm that
carries out this step—while well tested—is unproven; so finally,

3. A formal proof is constructed showing that the existing L1 specification is a
refinement of the newly generated L2 specification.

We cover each of these stages in turn below.

5.1.1 Analysing existing local variable usage

Our first step in generating the local lifted form of a program is to analyse the program
to determine how local variables are used within the function. Functions are broken
down into blocks, which are simply L1 monadic statements. For example, the program
fragment

do modifyE (…);
skipE;
failE

od

contains five monadic blocks. This can be more readily seen if we strip away the do/od
syntax, like so:

modifyE (…)›
1

>>=𝖤 (λ_. skipE”
2

>>=𝖤 (λ_. failE“
3

)

‘
4

)

’
5

The leaf statements modifyE, skipE, failE form a block each. The bindE statement
skipE >>=𝖤 (λ_. failE) forms another block, while the combination of the modifyE
statement and the inner bindE forms the fifth block.

80 local variable lifting

do modifyE (λs. s⦇ a_′ ∶= 1 ⦈);
modifyE (λs. s⦇ b_′ ∶= 2 ⦈);
modifyE (λs. s⦇ c_′ ∶= a_′ s +s b_′ s ⦈);
modifyE (λs. s⦇ d_′ ∶= a_′ s ⦈);
modifyE (λs. s⦇ c_′ ∶= 4 ⦈);
modifyE (λs. s⦇ e_′ ∶= c_′ s ⦈)

od

Read: {𝚊, 𝚋}, Write: {𝚌}, Live Entry: {𝚊, 𝚋}, Live Exit: {𝚊}.
(a) Linear program control flow

do whileLoopE (λ_ s. a_′ s <w b_′ s)
(λ_. do modifyE (λs. s⦇ d_′ ∶= 1 ⦈);

modifyE (λs. s⦇ c_′ ∶= a_′ s +w b_′ s +w d_′ s ⦈);
modifyE (λs. s⦇ a_′ ∶= a_′ s +w 1 ⦈)

od) ();
modifyE (λs. s⦇ ret__unsigned_′ ∶= c_′ s ⦈)

od

Read: {𝚊, 𝚋, 𝚍}, Write: {𝚊, 𝚌, 𝚍}, Live Entry: {𝚊, 𝚋}, Live Exit: {𝚊, 𝚋, 𝚌}.
(b) Non-linear program control flow

Figure 5.3: Two examples of local variable usage analysis. Each example shows
the set of variables read, the set of variables written, the set of variables that are
live entering into the block, and the set of variables that are live at the end of
the block.

For each block, we calculate four pieces of information:

• The write set of the block. This is the set of local variables that are potentially
written to by the block;

• The read set of the block. This is the set of local variables potentially read from
inside the block;

• The entry live set of the block. This is the set of local variables that, at the begin-
ning of the block, contain a value that will possibly be read from (either in the
current block, or any future block); and finally,

• The exit live set of the block. This is the set of local variables that, at the end of
the block, contain a value that will possibly be read from by another block.

Figure 5.3 gives two examples. In the first example, we consider the shaded block,
a modifyE statement. The block writes to the variable c and reads from the variables a
and b; these form the block’s write and read sets, respectively. Variables a and b are live
entering into the block, but the only variable live at the end of the block is the variable
a: the variable b is never read from again, so is no longer live. The variable c, although
read again, is unconditionally written to first so, while c becomes live again in the future,
it is not live at the end of the shaded block.

In the second example, we consider the body of a loop. The body reads from the
variables a, b and d and writes to the variables a, c and d; these form the block’s read

lifting local variables out of the program's state 81

and write sets respectively. The block uses values of a and b that originate from outside
the scope of the loop’s body, so these form the loop’s entry live set. Finally, the variables
a, b and c are live exiting the loop’s body: a and b will be required if the loop carries
out another iteration (and also just to carry out the loop’s condition test), while c is
required if the loop happens to finish. Because we don’t know which path will be taken,
we consider all three variables live.

To calculate the write set, read set, and live sets for each program block, AutoCorres
first parses the expressions inside each program statement, and then uses this infor-
mation to carry out a standard live variable analysis algorithm used by compilers. The
implementation of these algorithms is not proven correct; an incorrect analysis will
either result in the correspondence proofs described below failing (if the sets are missing
live variables), or generated abstractions being unnecessarily verbose (if the sets have
extraneous variables).

5.1.2 Utilising monadic return values

In monadic program representations, each program block returns a value. In our L1
program representation, the return value of every block was simply Isabelle’s unit type.
In our L2 program representation, each program block will return local variables that
are both modified and still live at the end of the block. These return values can then
be bound to a monadic variable and used later in the function. For example, the L1
statement

modifyE (λs. s⦇ a_′ ∶= b_′ s +s 1 ⦈)

updates the local variable a; this could be converted to an L2 statement that returns the
variable a, like so:

returnE (b +s 1)

While it appears that the write to variable a has been lost in the translation, if we
place the line in the context of a larger program, we see how the return value of the
returnE statement can be bound to a variable a, as so: 1

do a ← returnE (b +s 1);
…

od

Finally, as a minor implementation detail, we observe that the monadic getsE func-
tion is a generalisation of the returnE function:

returnE a = getsE (λs. a)

To avoid having to write rules in AutoCorres for handling both the returnE and getsE
monadic functions, AutoCorres internally only ever uses getsE. During the final polish
phase of AutoCorres described in Section 5.4, calls to getsE that do not depend on the

1We could have chosen any name for the bound variable; we choose the name a to match the input C
source to help the end-user understand how the L2 output corresponds to her input program.

82 local variable lifting

state are converted back into returnE calls. In the rest of this document we use the
returnE v notation in our examples, but only show formal rules for getsE (λs. v), which
is what is used in our actual implementation.

Coercing return values of monadic blocks

By default, the return value of a monadic block translated from L1 to L2 will simply be
that of the last statement in the block. For example, a simple L2 translation of the L1
program fragment

do modifyE (λs. s⦇ a_′ ∶= 1 ⦈);
modifyE (λs. s⦇ b_′ ∶= 2 ⦈);
modifyE (λs. s⦇ c_′ ∶= 3 ⦈)

od

will become
do a ← returnE 1;

b ← returnE 2;
returnE 3

od

Here, the return value of the block is the local variable c.
While AutoCorres often has some flexibility as to what variables a larger monadic

block may return, in many circumstances a precise set of variables is required. For
example, when converting the L1 condition statement

conditionE (…)
(modifyE (λs. s⦇ a_′ ∶= 1 ⦈))
(modifyE (λs. s⦇ b_′ ∶= 1 ⦈))

a translation of the true-branch of the condition will by default return a new value for
the variable a, while the false-branch will return a new value for the variable b. If we
naïvely attempt to merge these two translations back into a new conditionE statement,
then it would be unclear precisely what variable the conditionE would be returning.2

Instead, while converting from L1 to L2, we must at certain times coerce the return
value of monadic blocks to return a different set of variables. In the example above, we
would coerce both branches to return a tuple containing both the variables a and b, as
follows:

conditionE (…)
(do a ← returnE 1;

returnE (a, b)
od)

(do b ← returnE 2;
returnE (a, b)

od)

Now the true-branch of the condition statement returns the new value of a and the
existing value of b, while the false-branch returns the opposite. The block as a whole
returns both a and b.

2Not to mention that if the types of a and b were different, such a statement wouldn’t even be type correct.

lifting local variables out of the program's state 83

do a ← do (a, b) ← conditionE (…)
(returnE …)
(returnE …);

returnE a
od;

modifyE (λs. s⦇G_′ ∶= a ⦈)
od

(a) Precise coercion

do (a, b) ← conditionE (…)
(returnE …)
(returnE …);

modifyE (λs. s⦇G_′ ∶= a ⦈)
od

(b) Liberal coercion

Figure 5.4: Precise versus liberal coercion. In example (a) the left-hand side of
the outer bind is coerced into returning precisely the set of variables required by
the right-hand side, {𝚊}. In example (b), the left-hand side returns a superset
of the required variables, {𝚊, 𝚋}; this avoids the extraneous returnE statement.

Coercion of blocks takes two possible forms: precise coercion, where a precise set of
variables must be returned; and liberal coercion, where at least the given set of variables
must be returned.

Liberal coercion is useful in situations where a block requires some variables from
the previous block, but is able to disregard unnecessary values. By being liberal in the
set of values accepted, unnecessary returnE statements may be avoided. For example, in
Figure 5.4 the right-hand side requires access to the variable a; by allowing a superset
of the required variables to be returned, we can avoid emitting an extraneous returnE

statement, resulting in a simpler output.
AutoCorres carries out all of these coercions automatically during the translation

from L1 to L2. Liberal coercion is used wherever possible in an effort to reduce the
output complexity of the L2 output, while precise coercion is used wherever a strict set
of variables is required.

5.1.3 Generating an L2 specification

Once local variable usage has been analysed for the input L1 program, each program
block in the input is converted to an equivalent L2 block. We start by describing how
simple leaf statements such as modifyE are converted, and then move on to describe how
compound statements such as conditionE are translated.

In this section, we use the informal notation P ▶ Q to state that program P is
translated into Q.

Translating simple statements

skipE and failE Simple parameterless statements such as skipE and failE that do not
access local variables can be easily translated into an L2 output command. failE is
converted unchanged, while skipE is rewritten into its definition getsE (λs. ()) in order

84 local variable lifting

to reduce the number of monadic primitives AutoCorres must handle in later phases. In
both cases the statements return the unit type.

skipE ▶ getsE (λs. ())

failE ▶ failE

guardE guardE statements that read local variables from the program’s state are rewrit-
ten to use bound variables instead. Additionally, accesses to fields inside the globals
record are lifted to direct accesses of the state. For instance, a simple guardE statement is
converted as follows:

guardE (λs. G_′ (globals s) <w a_′ s)

▶ guardE (λs. G_′ s <w a)

initE The initE statement, which updates the value of a variable to a non-deterministi-
cally chosen value, is translated into a unknownE statement, which non-deterministically
selects a value to be returned, defined as follows:

unknownE ≡ selectE UNIV

For example, the L1 statement that initialises the local variable a is translated as
follows:

initE a_′_update ▶ unknownE

The translated statement returns the new (non-deterministically chosen) value for the
local variable.

modifyE modifyE statements in the L1 specification may either update a local variable
or the global state. In the first case, our L2 translation should return the new value of
the local variable, while in the second case our L2 translation should continue to modify
the state.

AutoCorres parses the statement to determine which type of update a particular L1
modifyE statement is carrying out. If it is only updating a local variable, AutoCorres
translates the statement into a getsE statement, where the new value of the local variable
is returned. If the program’s global state is being updated, AutoCorres instead emits a
modifyE statement, stripping away the unnecessary call to globals_update.

For example, the following L1 statement, which updates the local variable a, is
converted as follows:

modifyE (λs. s⦇ a_′ ∶= a_′ s +s 1 ⦈)

▶ getsE (λs. a +s 1)

In this example, the getsE statement returns the new value of the variable a. In contrast,
the following L1 statement, which writes to the global variable G, is converted as follows:

modifyE (λs. globals_update (λs′. s′⦇G_′ ∶= a_′ s ⦈) s)

▶ modifyE (λs. s⦇G_′ ∶= a ⦈)

lifting local variables out of the program's state 85

In this example the L2 output continues to have a modifyE statement that updates the
global state.

callL1 The callL1 statement has quite complex semantics, inherited from the C-to-
Isabelle parser in order to deal with saving and restoring the local variable state when
crossing function boundaries. Recall from Section 4.4 that a statement of the form

callL1 setup dest_fn teardown return_xf

carries out the following steps: (i) a copy of the currently executing function’s state is
saved; (ii) the function setup ∶∶ ′s ⇒ ′s is called, which copies function parameters from
local variables in the caller’s scope to variables in dest_fn’s scope; (iii) dest_fn is executed;
(iv) the function teardown ∶∶ ′s ⇒ ′s ⇒ ′s merges the global state from the output of
dest_fn with the saved local variable state from the calling function; and finally (v) the
function return_xf ∶∶ ′s ⇒ ′s ⇒ ′s copies the return value of dest_fn into a variable of
the current function’s scope.

Because almost all of the complexity of callL1 stems from saving, restoring and merg-
ing local variable state, in our output L2 representation we can avoid jumping through
so many hoops: calling the function dest_fn will not affect locally bound variables, so we
don’t need setup or teardown. Additionally, L2 functions use their monadic result as their
return value, so we no longer need return_xf to extract return values from the state.

In fact, we could almost replace callL1 statements with a direct monadic call to
the destination function. For reasons we will describe shortly, we instead replace callL1
statements with a callL2 statement, defined as follows:

callL2 x ≡ catchE x (λ_. failE)

The monadic statement callL2 f starts by executing function f . If the function returns
normally, callL2 f will simply return the result of f . If the function raises an exception,
however, callL2 f will fail.

Having a special function to deal with exceptions at first appears unnecessary: the C-
to-Isabelle parser only uses exceptions to model abrupt termination of C statements such
as return, continue and break; such ‘exceptions’ will never be thrown across function
boundaries, hence it would seem like dealing with such exceptions is unnecessary.

Our reason for catching these never-occurring exceptions in the callL2 constant is
that AutoCorres can locally reason that they don’t occur, instead of having to analyse the
entire function being called. The (strictly unnecessary) callL2 predicate will eventually be
optimised away during the type strengthening process described in Section 5.3, meaning
that the end-user of AutoCorres will never actually see it.

For example, a C function call of the form:

int target_fn(int d, int e, int f);

r = target_fn(a, b, c);

is translated as follows:

callL1 (λs. s⦇ d_′ ∶= a_′ s, e_′ ∶= b_′ s, f_′ ∶= c_′ s ⦈)
(target_fnL1 m′) (λs0 s. s0⦇ globals ∶= globals s ⦈)
(λs0 s. s0⦇ r_′ ∶= ret__int_′ s ⦈)

▶ callL2 (target_fnL2 m′ a b c)

86 local variable lifting

where target_fnL1 and target_fnL2 are the L1 and L2 translations of the function
target_fn respectively, and m′ is the recursive measure parameter described in Sec-
tion 4.4.2.

Translating compound statements

To convert compound L1 statements to L2, AutoCorres uses a recursive process where
child blocks of the L1 statement are first translated and joined together. When carrying
out such translations, AutoCorres must ensure that child blocks return appropriate sets
of variables.

Whenever a parent block recursively translates a child block, the parent specifies
three pieces of information:

1. A set of required return variables R, that the child block must return. When
translating the child block, the block will be coerced to ensure that this set of
variables is returned;

2. A flag indicating if the child block may use liberal coercion; that is, whether the
parent requires a precise set of variables to be returned, or if additional variables
may also be returned; and finally

3. A set of required thrown variables E, which specifies which variables all exception-
triggering throwE statements in the block must throw.

The required return and required thrown sets of variables are determined based on
the previously calculated liveness and variable modification information. When starting
translation of a function, the required return set R is simply the variable containing the
return value of the function (such as ret__int_′), while the required thrown set E is the
empty set.

In the following descriptions, we use the notation Mx to denote the set of variables
modified by the block x, and Lx to denote the set of variables live entering block x. Addi-
tionally, the notation Rx and Ex denotes the set of required-return and required-thrown
variables, respectively, when translating block x

A >>=𝖤 B A bindE statement simply executes the left-hand side A followed by the
right-hand side B. A is translated with RA = LB ∩ MA (i.e., the left-hand side must
return any variables that it modifies and remain live entering B), while RB = R. As the
right-hand block B can freely ignore any extraneous variables returned by A, AutoCorres
allows liberal coercion when translating A.

Prior to starting the L2 conversion, AutoCorres rewrites bindE statements to be in
right-associative form, using the standard monadic rule BindAssoc:

((f >>=𝖤 g) >>=𝖤 h) = (f >>=𝖤 (λx. g x >>=𝖤 h))

Such bind statements, when in right-associative form, allow the inner-most statement to
have direct access to all variables bound by previous statements. This reduces the number
of additional coercions that need to take place, significantly simplifying the output L2
specification. Figure 5.5 shows an example of the difference this makes in practice. The
input L1 specification is in left-associative form. The L2 output labelled (b) shows a direct

lifting local variables out of the program's state 87

modifyE (λs. s⦇ a_′ ∶= 1 ⦈) >>=𝖤
(λ_. modifyE (λs. s⦇ b_′ ∶= 2 ⦈)) >>=𝖤
(λ_. modifyE (λs. s⦇ c_′ ∶= a_′ s +w b_′ s ⦈))

(a) Input L1 specification

do
(a, b) ← do

a ← returnE 1;
b ← returnE 2;
returnE (a, b)

od;
returnE (a +s b)

od
(b) L2 from left-associative form

do
a ← returnE 1;
b ← returnE 2;
returnE (a +s b)

od
(c) L2 from right-associative form

Figure 5.5: A simple L1 input and two possible corresponding L2 outputs. The
left L2 output is a direct translation of the L1 input, while the second is the
resulting translation after first converting the L1 input into right-associative
form.

translation from left-associative form; a coercion needs to be inserted after the second
returnE statement so that the final line is able to access the bound variable a. In contrast,
the L2 output labelled (c) is generated after applying the rewrite rule BindAssoc to the
input L1 specification; the coercion has been avoided.

conditionE c A B The conditionE statement evaluates an expression and then executes
one of two branches. The type of conditionE requires that the left-hand side and right-
hand side return the same set of variables. Thus when translating the child blocks,
RA = RB = R ∩ (MA ∪ MB). That is, both blocks must return variables required by
the parent block that are modified on either side of the condition. An example of this
translation is shown in Figure 5.6.

conditionE (λs. a_′ s <w b_′ s)
(modifyE (λs. s⦇ a_′ ∶= 1 ⦈))
(modifyE (λs. s⦇ b_′ ∶= 1 ⦈))

▶

conditionE (λs. a <w b)
(do a ← returnE 1;

returnE (a, b)
od)

(do b ← returnE 2;
returnE (a, b)

od)

Figure 5.6: An example of converting a conditionE block from L1 to L2.

whileLoopE c B The whileLoopE executes the body of the loop while ever the loop
condition remains true.

The whileLoopE combinator has a loop iterator that allows variables bound in the
loop body to be passed into the next iteration of the loop or returned out of the loop.
When converting an L1 loop into an L2 loop, we use RB = (R ∪ LB) ∩ MB, which also
becomes the set of variables placed into the loop iterator. That is, variables modified in

88 local variable lifting

Table 5.1: Summary of the set of required-return and required-thrown variable
parameters when recursively translating a program from L1 to L2.

Statement RA RB EA EB

conditionE c A B R ∩ (MA ∪ MB) R ∩ (MA ∪ MB) E E
A >>=𝖤 B LB ∩ MA R E E
catchE A B R R LB ∩ MA E
whileLoopE c B i — (R ∪ LB) ∩ MB — E

the loop body that are either live between loop iterations or required by our parent block
are recorded in the loop iterator. An example of this translation is shown in Figure 5.7.

whileLoopE (λ_ s. a_′ s <w b_′ s)
(λ_. do

modifyE (λs. s⦇ a_′ ∶= a_′ s +w 1 ⦈);
modifyE (λs. s⦇ b_′ ∶= b_′ s −w 1 ⦈)

od) ()

▶

whileLoopE (λ(a, b) s. a <w b)
(λ(a, b).

do
a ← returnE (a +s 1);
b ← returnE (b −s 1);
returnE (a, b)

od) (a, b)

Figure 5.7: An example of converting a whileLoopE block from L1 to L2.

catchE A B The catchE and associated throwE statements allow execution to transfer
from a point in the body of the catchE directly to the handler. Variables bound in the
body of the catchE block do not remain in scope in the handler; instead, AutoCorres
must ensure that all variables required by the handler are passed into the handler by
modifying throwE statements inside the body to pass the variables into the handler.

The return value of the blocks A and B is RA = RB = R; that is, we simply return the
set of variables required by our parent block. The set of variables that must be thrown in
block A is EA = (LB ∩ MA); that is, any variable live entering into the exception handler
B that is modified by block A. An example of this translation is shown in Figure 5.8.

catchE

(do
modifyE (λs. s⦇ a_′ ∶= a_′ s +w 1 ⦈);
… ;
throwE ();
… ;
modifyE (λs. s⦇ b_′ ∶= a_′ s +w 1 ⦈)

od)
(λ_. modifyE (λs. s⦇ b_′ ∶= a_′ s −w 1 ⦈))

▶

catchE

(do
a ← returnE (a +s 1);
… ;
throwE a;
… ;
returnE (a, b +s 1)

od)
(λa. do

b ← returnE (a −s 1);
returnE (a, b)

od)

Figure 5.8: An example of converting a catchE block from L1 to L2.

Table 5.1 gives a summary of the calculated needed-returns and needed-throw values

lifting local variables out of the program's state 89

used in the recursive process. Once every statement has been recursively translated using
the process described above, AutoCorres will have a version of the input L1 specification
with the local variables lifted out of the state into bound variables.

5.1.4 Proving correspondence between L1 and L2

In the previous section, we described how AutoCorres translates an input L1 specification
into L2 form. The process described is well tested, having been applied to several large
projects, such as those described in Section 8.2. Such testing, however, does not provide
any formal guarantee of correctness.

For the soundness proof of the translation from L1 to L2 we use a refinement
property corresL2 defined as follows:

corresL2 st rx ex P A C ≡
∀s. P s ∧ ¬ failed (A (st s)) ⟶

(∀(r, t) ∈ results (C s).
case r of

Exc () ⇒ (Exc (ex t), st t) ∈ results (A (st s))
∣ Norm () ⇒ (Norm (rx t), st t) ∈ results (A (st s))) ∧

¬ failed (C s)

The predicate has several parameters: st is a state translation function, converting the
L1 state type to the L2 state type by stripping away local variable data; P is a precondition
used to ensure that input bound variables in the L2 program match their L1 values; and
A and C are the abstract L2 and concrete L1 programs, respectively. The values rx and ex
are a return extraction function and an exception extraction function. They are required
because the L2 monads return or throw values, while the corresponding L1 monads store
these values in their state. The return extraction function rx extracts a value out of the
L1 state to compare with the return value of the L2 monad, while ex is used to compare
an exception’s payload with the corresponding L1 state.

The corresL2 definition can be read as: for all states matching the precondition P,
assuming that A executing from state st s does not fail, then the following holds:

1. For each normal execution of C there is an equivalent execution of A whose return
value will match the value extracted using rx from C’s state;

2. Similarly, every exceptional execution of C will have an equivalent execution of A
with an exception value that matches the value extracted using ex from C’s state;
and finally,

3. The execution of C will not fail.

The first two conditions ensure that executions in L2 match those of L1 with lo-
cals bound accordingly. The last condition allows us to later reduce non-failure of L1
programs to non-failure of L2 programs.

90 local variable lifting

maxL1 m′ ≡
do initE ret__int_′_update;

conditionE (λs. a_′ s ≤s b_′ s)
(do modifyE (λs. s⦇ ret__int_′ ∶= b_′ s ⦈);

modifyE (global_exn_var_′_update (λ_. Return))
od)

(do modifyE (λs. s⦇ ret__int_′ ∶= a_′ s ⦈);
modifyE (global_exn_var_′_update (λ_. Return))

od)
od

(a) Function max at end of L1

maxL2 m′ a b ≡
do ret ← unknownE;

ret ← conditionE (λs. a ≤s b)
(do ret ← getsE (λs. b);

global_exn_var ← getsE (λ_. Return);
getsE (λs. ret)

od)
(do ret ← getsE (λs. a);

global_exn_var ← getsE (λ_. Return);
getsE (λs. ret)

od);
returnE ret

od
(b) Function max translated to L2

Figure 5.9: The max function shown at the end of the L1 phase and at the end of
the L2 phase, after optimisations have been carried out.

As a concrete example, Figure 5.9 shows our example max function after local variable
lifting has taken place. The generated corresL2 predicate for max is:

corresL2 globals ret__int_′ (λs. ())
(λs. a_′ s = a ∧ b_′ s = b) (maxL2 m a b) (maxL1 m)

In this example the state translation function globals strips away local variables
from the L1 state; the return extraction function rx ensures the value returned by maxL2
matches the variable ret__int_′ of maxL1, while the exception extraction function ex
is unused and simply returns unit, as no exceptions are thrown by the max function.3
The remainder of the predicate states that, assuming the inputs a and b to our maxL2
function match those of the L1 state, then the return value of our maxL2 function will
match the L1 state variable ret__int_′ after executing maxL1.

3The original Simpl function used exceptional control flow to represent the abrupt termination of the return
statement, but in this case could be optimised away by the exception elimination optimisations described in
Section 4.5.2. The only remains of the exceptions are the updates to the phoney global_exn_var variable used
by the C-to-Isabelle parser to track the reason for the (now eliminated) throw.

lifting local variables out of the program's state 91

corresL2 st rx ex P skipE (getsE (λs. ()))
L2CorresSkip

corresL2 st rx ex P failE failE
L2CorresFail

∀s. P s ⟶ G′ s = G (st s)
L2corres st rx ex P

(guardE G) (guardE G′)
L2CorresGuard

∀s. P s ⟶ st s = st (m s)
∀s. P s ⟶ rx (m s) = f (st s)
L2corres st rx ex P

(getsE f) (modifyE m)
L2CorresGets

∀s. P s ⟶ m (st s) = st (m′ s)
L2corres st rx ex P

(modifyE m) (modifyE m′)
L2CorresModify

∀s. P s ⟶ ex s = v
L2corres st rx ex P

(throwE v) (throwE ())
L2CorresThrow

∀s a. st s = st (M a s)
corresL2 st rx ex P unknownE (initE M)

L2CorresInit

Table 5.2: Basic rules used to prove refinement between the L1 and L2 specifica-
tions.

The remainder of this section will look at how we generate and automatically prove
equivalence of an initial L2 specification from an L1 specification.

5.1.5 Proving the L2 specification

We prove the corresL2 predicate by using a syntax-directed set of rules. Table 5.2 shows
the rules used to prove refinement of leaf statements between L1 and L2, while Table 5.3
shows the compound rules used.

For each L2 and corresponding L1 statement, the proofs are carried out using the
same general method:

1. The appropriate rule is selected for the L1/L2 statements based on their syntax,
and the rule is instantiated with the corresponding L1 and L2 statements being
proven.

2. The variable st is instantiated with the state translation function that strips local
variables out of the state variable, leaving just the global state such as the global
variables and the heap.

3. The variable rx in the chosen rule is then instantiated with a function that
extracts variables returned by the L2 specification from the concrete state. For
example, if an L2 statement returned the variables (a, b), then rx would be
instantiated to (λs. (a_′ s, b_′ s)). If the L2 statement doesn’t return any variables,
rx is simply instantiated to (λs. ()).

4. Similarly, the variable ex is instantiated with a function that extracts thrown
variables out of the state. Even though most L2 statements do not actually throw
an exception, ex is still instantiated with the appropriate extraction function as if

92 local variable lifting

corresL2 st rx ex P A A′
∀r. corresL2 st rx′ ex (P′ r) (B r) B′

⦃R ⦄ A′ ⦃ λ_ s. P′ (rx s) s ⦄, ⦃ λ_ _. True⦄
∀s. R s ⟶ P s

corresL2 st rx′ ex R (A >>=𝖤 B) (A′ >>=𝖤 (λ_. B′))
L2CorresBind

corresL2 st rx ex P A A′
∀r. corresL2 st rx ex′ (P′ r) (B r) B′

⦃Q ⦄ A′ ⦃ λ_ _. True⦄, ⦃ λ_ s. P′ (ex s) s ⦄
∀s. Q s ⟶ P s

corresL2 st rx ex′ Q (catchE A B) (catchE A′ (λ_. B′))
L2CorresCatch

corresL2 st rx ex P A A′ corresL2 st rx ex P′ B B′
∀s. R s ⟶ P s ∀s. R s ⟶ P′ s

∀s. R s ⟶ c′ s = c (st s)
corresL2 st rx ex R (conditionE c A B) (conditionE c′ A′ B′)

L2CorresCond

∀r. corresL2 st rx ex (Q r) (B r) B′
⦃ λs. I (rx s) s ⦄ B′ ⦃ λ_ s. I (rx s) s ⦄, ⦃ λ_ _. True⦄

∀s. I (rx s) s ⟶ c′ s = c (rx s) (st s)
∀s r. I r s ⟶ Q r s ∀s. I r s ⟶ rx s = r ∀s. P r s ⟶ I r s

corresL2 st rx ex (P r) (whileLoopE c B r) (whileLoopE (λ_. c′) (λ_. B′) ())
L2CorresWhile

∀m. corresL2 st rx′ ex′ P′ (f m) (f ′ m)
∀s r. st (return_xf s (teardown r s)) = st s

∀s r. rx (return_xf s (teardown r s)) = rx′ s
∀s. st (setup s) = st s ∀s. P s ⟶ P′ (setup s)

corresL2 st rx ex P (callL2 (f m))
(callL1 setup (f ′ m) teardown return_xf)

L2CorresCall

Table 5.3: Compound rules used to prove refinement between the L1 and L2
specifications.

lifting local variables out of the program's state 93

the statement could throw an exception. This is because every statement in the
left-hand side of a catchE block must have an identical exception type in order
to be type correct.

5. The precondition P of the rule is instantiated to ensure that, for each local
variable read by the current statement, the L2 bound variables match the L1
variables in the state. For example, if the L2 statement being proven was

getsE (λs. a + b + c)

which reads the set of variables {𝚊, 𝚋, 𝚌}, then the variable P would be instanti-
ated with the predicate

λs. a = a_′ s ∧ b = b_′s ∧ c = c_′ s

6. In the case of while loops, an invariant I is generated stating that local vari-
ables that are live between loop iterations in the L2 specification match their L1
equivalents.

7. If the rule is a compound rule (i.e., it contains child blocks of code), a proof is
recursively produced for the child blocks. Any corresL2 assumptions in the rule
are instantiated with these proofs.

8. Finally, any remaining side-conditions are automatically discharged, as explained be-
low.

The majority of these steps are to set up the proofs that ensure that the bound
variables of the L2 specification correspond to the local variables in the L1 state.

In the final step of the above process, AutoCorres discharges any side-conditions
arising from the use of the corresL2 ruleset. The rules L2CorresSkip and L2CorresFail
do not have any side-conditions to be discharged, so apply without further effort. Rules
that read from the state, such as L2CorresGuard and L2CorresModify have a side con-
dition that ensures that the value of the expression does not change when abstracting
from L1 to L2. Rules that return a value, such as L2CorresGets and L2CorresThrow,
have a side-condition that ensures that the variables returned by the L2 statement
match those in the L1 state, using extraction functions rx or ex. These side-conditions
can be discharged using Isabelle/HOL’s simplifier.

The compound rules L2CorresBind, L2CorresCatch and L2CorresWhile have an
additional side-condition showing that a Hoare triple holds. This side-condition is a
preservation condition, where we must show that the child blocks preserve the values of
variables that are required by later blocks. For instance, in the code fragment

do modifyE (λs. s⦇ a_′ ∶= 1 ⦈);
modifyE (λs. s⦇ b_′ ∶= c_′ s ⦈)

od

the right-hand side of the bind depends on the value of c. When the left-hand side
is translated into L2 format it will return a new value of a, but will not return a new
value of c because it (purportedly) didn’t change its value. The preservation condition

94 local variable lifting

is required to prove that this actually is the case. For instance, in this example the
preservation side-condition would be

⦃ λs. c_′ s = c ⦄ modifyE (λs. s⦇ a_′ ∶= 1 ⦈) ⦃ λrv s. c_′ s = c ⦄, ⦃ λrv s. True⦄

Such preservation conditions are automatically discharged using a simple syntax-
directed ruleset.

Finally, the rule L2CorresCall has some additional side conditions that show
that (i) setting up the callee f ’s scope doesn’t affect the L2 state; (ii) tearing down
or extracting the return value out of the callee f ’s scope doesn’t affect the L2 state;
(iii) the extraction function rx still returns the same set of variables as the callee f
after shuffling the state through return_xf and teardown; and finally (iv) if the L1 state
satisfies the precondition P, then running setup will cause the state to now satisfy the
callee’s precondition P′. At a high level, all of these side-conditions ensure that the
parameters setup, teardown and return_xf generated by the C-to-Isabelle parser are well-
behaved—only changing local variables in a way reflected in the L2 specification’s use
of bound variables—and hence can be thrown away in the generated L2 specifications.
Each of these side-conditions can be discharged by Isabelle/HOL’s simplifier.

At the end of the process described above, AutoCorres will have produced a
corresL2 theorem stating that the original L1 input specification is a refinement of
the generated L2 output specification, assuming that arguments to the generated L2
function match the corresponding local variables in the L1 state.

Both the generation of the L2 specification and its proof are completely automatic,
and hidden from the end-user. In the hypothetical case that the generated L2 trans-
lation is incorrect, the proof process will fail with an internal error. In this case, the
end-user is responsible for approaching the desk of the AutoCorres authors and bit-
terly complaining. The end-user will have some comfort, however, in knowing that if
AutoCorres completes the translation, then it is correct.

5.2 Further program optimisations

A significant benefit of lifted local form is that it allows us to easily determine how
local variables are used, and carry out simplifications based on this. Such simplifications
include

• Removing code that writes to a local variable never subsequently read from:

(getsE g >>=𝖤 (λ_. f)) = f

• Similarly, removing code that initialises local variables to non-deterministically
chosen values using unknownE when we can prove that the value won’t be
read from:

(unknownE >>=𝖤 (λ_. f)) = f

• Using assumptions from guardE, conditionE and whileLoopE statements to sim-
plify later expressions; and

type strengthening 95

maxL2 m′ a b ≡
do ret ← unknownE;

ret ← conditionE (λs. a ≤s b)
(do ret ← getsE (λs. b);

global_exn_var ← getsE (λ_. Return);
getsE (λs. ret)

od)
(do ret ← getsE (λs. a);

global_exn_var ← getsE (λ_. Return);
getsE (λs. ret)

od);
returnE ret

od
(a) Function max translated to L2

maxL2 m′ a b ≡
conditionE (λs. a ≤s b)

(getsE (λs. b))
(getsE (λs. a))

(b) Function max after flow-sensitive
optimisations

Figure 5.10: The max function shown after translation to L2, and after flow-
sensitive optimisations have taken place.

• Collapsing variables that are only used once into the locations where they
are used.

By allowing constant-valued expressions to be folded into the location they are used,
we are also able to discharge many more guardE statements not previously provable.
AutoCorres additionally repeats the peephole optimisations carried out at the end of
the Simpl-to-L1 conversion, described in Section 4.5.1, as many of the flow-sensitive
optimisations enable new uses of the L1 peephole optimisations, and vice versa.

Figure 5.10 shows the max function after flow-sensitive optimisations. The redundant
unknownE statement and variable global_exn_var are discarded. The two getsE terms
in each branch of the conditionE are also collapsed into a single statement. Finally, the
last, unnecessary returnE statement is discarded. The result is a much simpler program.

5.3 Type strengthening

So far, all of our generated programs have been written using Cock et al.’s exception
monad. Section 4.2.1 outlined some of the motivations for using this monad, including
our aim to model C code that reads and writes to global state, has abrupt termination,
uses non-determinism, or could possibly fail.

For the majority of the code we translate, many of these features are not required.
For example, Section 4.5.2 describes how the majority of exception usage can be

96 local variable lifting

eliminated from specifications. The use of non-determinism is mostly limited to setting
up uninitialised variables, many of which are eliminated using the simplifications in
Section 5.2 above. Further, many functions do not modify the state of the system at all,
either only reading the global state or having results that depend entirely on their input
parameters. In these cases, the exception monad is far more expressive than required.
Less expressive monads constrain program by type, giving the user ‘free’ theorems.
For instance, users can avoid having to reason that a particular function preserves a
program-wide invariant if that function doesn’t accept the program state as a parameter.

We therefore specialise the type of individual functions to contain only the features
they require. The types we use are as follows, in decreasing strength:

Pure functional These are standard Isabelle functions, where the function returns a
deterministic output depending only on its input parameters (and read-only access to
the state which, if necessary, will be passed in as an additional parameter).

In these cases, monadic bind statements can be replaced with a simple func-
tional let construct and monadic conditionE statements with a simple if statement.
Our example max function falls into this category.

Option monad The C standard is littered with restrictions that result in guardE state-
ments that cannot be automatically discharged. Unfortunately, even a single such guardE
statement will prevent a function from being translated into a pure Isabelle function, as
we must consider failed executions.

We can, however, use the option monad, where every computation either results in
a single value a (represented as Some a), or failure (represented as None). Any inter-
mediate failure results in failure of the entire computation. The option monad defines
monadic functions returno, failo, getso, and so on, analogous to their exception monad
counterparts returnE, failE, and getsE. The full definitions are shown in Table 5.4.

Functions that may potentially fail but are deterministic, have simple control flow,
and only read from global state can be transformed into the option monad. Callers of
such functions will translate a result of None into failure.

State monad Functions that need to modify global state or use non-determinism but
do not use exceptional control flow are translated into a state monad, without support
for exceptions.

Type strengthening takes place using a series of rewrite rules that attempt to
strengthen individual parts of the program starting at the leaves, and then combine
partial results to strengthen larger parts of the program. The rules used are shown in
Table 5.5 and Table 5.6.

Program fragments using the strengthened types can be embedded in our exception
monad using a lifting function for the type, also shown in Table 5.5 and Table 5.6. For
example, the option monad is embedded in the exception monad using the lifting
function gets_theE, defined as follows:

gets_theE f ≡
do v ← getsE f ;

guardE (λ_. v ≠ None);
returnE (the v)

od

type strengthening 97

(f >>=𝗈 g) ≡
λs. case f s of None ⇒ None ∣ Some x ⇒ g x s

returno x ≡ λs. Some x

failo ≡ λs. None

getso f ≡ λs. Some (f s)

conditiono c L R ≡ λs. if c s then L s else R s

guardo G ≡ λs. if G s then Some () else None

Table 5.4: Definitions of the basic option monad primitives.

Pure functional

returnE

Lifting Function

f = returnE f ′
callL2 f = returnE f ′

Call Rule

(do a ← returnE A; returnE (B a) od) =
returnE (let a = A in B a)

TsPureBind

conditionE (λ_. c) (returnE A) (returnE B) =
returnE (if c then A else B)

TsPureCond

Option monad

gets_theE
Lifting Function

f = gets_theE f ′
callL2 f = gets_theE f ′

Call Rule

getsE a = gets_theE (getso a)
TsOptGets

guardE G = gets_theE (guardo G)
TsOptGuard

failE = gets_theE failo
TsOptFail

gets_theE X >>=𝖤 (λs. gets_theE (Y s)) =
gets_theE (X >>=𝗈 Y)

TsOptBind

conditionE C (gets_theE L) (gets_theE R) =
gets_theE (conditiono C L R)

TsOptCond

whileLoopE C (λx. gets_theE (B x)) i = gets_theE (whileo C B i)
TsOptWhile

Table 5.5: Type strengthening rules used to convert specifications from the
exception monad to pure functional types and the option monad.

98 local variable lifting

State monad

liftE

Lifting Function

f = liftE f ′
callL2 f = liftE f ′

Call Rule

getsE a = liftE (gets a)
TsStGets

modifyE m = liftE (modify m)
TsStModify

unknownE = liftE unknown
TsStUnknown

guardE G = liftE (guard G)
TsStGuard

failE = liftE fail
TsStFail

liftE A >>=𝖤 (λr. liftE (B r)) = liftE (A >>= B)
TsStSeq

conditionE c (liftE A) (liftE B) =
liftE (condition c A B)

TsStCond

whileLoopE c (λr. liftE (B r)) i =
liftE (whileLoop c B i)

TsStWhile

catchE (liftE A) B = liftE A
TsStCatch

catchE A (λr. liftE (B r)) = liftE (catch A B)
TsStCatchConv

Table 5.6: Type strengthening rules used to convert specifications from the
exception monad to a plain non-deterministic state monad where possible.

maxL2 m′ a b ≡
conditionE (λs. a ≤s b)

(returnE b)
(returnE a)

(a) Exception Monad

maxL2 m′ a b ≡
liftE (condition (λs. a ≤s b)

(return b)
(return a))

(b) State Monad

maxL2 m′ a b ≡
gets_theE (conditiono (λs. a ≤s b) (returno b) (returno a))

(c) Option Monad

maxL2 m′ a b ≡
returnE (if a ≤s b then b else a)

(d) Pure Functional

Figure 5.11: The max function represented in four different types.

type strengthening 99

This function converts a None result of the option monad into a failure result in the
exception monad, and converts a Some x result into a monadic return value. A call to
a function f in the option monad will be converted to gets_theE f .

For each target type, the actual rewriting process proceeds as follows:

1. We start by applying the set of type-strengthening rewrite rules for the target
type to the body of the function being strengthened. Figure 5.11 shows the maxL2
function in its original form, and rewritten with each set of rules.

2. Once no more rules in the current set can be applied, we check if the rewritten
function takes the form f = L f ′, where f is the old definition of the function, L
is the lifting function for the type we are attempting to strengthen to, and f ′ is
the body of the function in its type-strengthened form. If the rewritten function
has this form, then type-strengthening has succeeded; if not, then the function
cannot be automatically strengthened to the current type, and we try another.

3. Given the function is now in the form f = L f ′, we define a new constant for
the function with a definition of just f ′. We additionally instantiate the calling
theorem of the target type to generate a theorem of the form

callL2 f = L f ′

which allows functions calls to f to be be rewritten as L f ′.

For example, Figure 5.11(a) shows the maxL2 function in its original exception
monad type, while Figure 5.11(b–d) show the function rewritten using the three different
sets of type strengthening rules. All three rewritten equations for maxL2 have the form
f = L f ′ where L is the lifting function liftE, gets_theE or returnE. We can now define
a new function maxTS containing just the body of the pure functional version of maxL2,
giving us the function definition

maxTS m′ a b ≡
if a ≤s b then b else a

Additionally, we can derive a calling theorem for this rule allowing calls to maxL2 to be
rewritten to maxTS:

callL2 (maxL2 m′ a b) = returnE (maxTS m′ a b)

To determine which type we can strengthen each function to, we attempt to apply
each set of strengthening rules in order from strongest type to weakest type. If a
particular function can be converted to the type, then we are finished. Otherwise, we
continue to try alternative, more expressive representations. The final translation to the
state monad is ‘best-effort’: it will convert as much of each function as possible, but
will resort to using the rule TsStCatchConv, embedding fragments of the function that
couldn’t be strengthened out of the exception monad in the function using the catch
constant.

Functions are converted in topological order based on their call-graph. If a function
f calls a second function g , f will need a type at least as expressive as g . Mutually

100 local variable lifting

Table 5.7: Number of functions in the seL4 microkernel translated into each
type. Percentages do not add up to 100% due to rounding.

Type Count Percent

Pure function 151 28.2%
Option monad 51 9.6%
State monad 309 57.8%
Exception monad 24 4.5%

Total 535

recursive functions are converted by attempting to convert each function in the group
individually, and then selecting the weakest type required by any of the functions.

AutoCorres performs type strengthening as its very last abstraction step. With the
exception of some final polishing simplifications described below, carrying out type
strengthening last prevents intermediate phases of AutoCorres from needing to support
a variety of different input types, focusing instead on just the exception monad. In
particular, the word abstraction and heap abstraction phases of AutoCorres that will
be described in Chapter 6 and Chapter 7 occur before type strengthening. An image
depicting the order that translations are carried out is shown in Figure 1.2, on page 6.

Type strengthening is effective in practice. Table 5.7 shows statistics of type strength-
ening used on the seL4 microkernel source code, with almost 96% of functions being
strengthened into another type. The remaining 4% are functions that could not be
rewritten to avoid using exceptions in the exception elimination optimisations described
in Section 4.5.2.

5.4 Polishing and final theorem

Our final translation we term polishing, where transformations that make the specifica-
tion easier to read for humans at the cost of being harder to perform further automatic
transformations on are carried out. Examples of such transformations include adding
syntax annotations to improve the on-screen display of output specifications, simplifying
condition statements (for instance, translating condition c A skip to the equivalent, but
shorter, statement when c A), and other minor transformations that improve readability
of the output.

In this final stage, we also remove the recursive measure parameters added to every
function in Section 4.4.2 when we can prove they are not necessary (i.e., if there is no
reference to them in the function’s body).

The final output of the max function after the polish phase is simply

max′ a b ≡ if a ≤s b then b else a

polishing and final theorem 101

Other than the type of the arguments, this precisely matches the definition of Isa-
belle/HOL’s built-in max definition:4

max a b = (if a ≤ b then b else a)

In this final phase, AutoCorres also collects the theorems that show refinement
between the various intermediate phases of AutoCorres, and combines them to form a
final theorem linking the input Simpl to the output.

The final theorem is a predicate ccorres, defined as follows:

ccorres st Γ rx P A C ≡
∀s. P s ∧ ¬ failed (A (st s)) ⟶

(∀t. Γ ⊢ ⟨C, Normal s⟩ ⇒ t ⟶
(∃s′. t = Normal s′ ∧

(Norm (rx s′), st s′) ∈ results (A (st s)))) ∧
Γ ⊢ C ↓ Normal s

This predicate is the combination of the corresL1 and corresL2 predicates, and states
that for all Simpl states matching the precondition P, assuming that the program A
executing from state st s does not fail, then the following holds:

1. For each normal execution of C there is an equivalent execution of A whose
return value will match the value extracted using rx from C’s state;

2. The execution of C will not fail, terminate abruptly (i.e., finish in an exceptional
state), or get stuck; and

3. The execution of C will terminate.

The ccorres predicate is proven automatically by piecing together intermediate
theorems generated in each phase and using the rule CCorresChain, defined as follows:

corresL1 Γ AL1 AC

corresL2 stL2 rxL2 exL2 PL2 AL2 AL1

ATS = callL2 AL2

ccorres stL2 Γ rxL2 PL2 ATS AC

The corresL1 and corresL2 assumptions are discharged from the theorems originating
from the Simpl-to-L1 and L1-to-L2 phases of AutoCorres, respectively; while the final as-
sumption ATS = callL2 AL2 is the theorem generated from the type strengthening phase.

We don’t consider the generated ccorres predicate a useful theorem in and of itself,
but rather it merely presents a starting point for the real verification work the user

4We return to this example again in Chapter 6, where we use word abstraction to further transform the max
function so that it precisely matches Isabelle/HOL’s max function, including the type.

102 local variable lifting

Table 5.8: Lines of specification and average term size after each translation
phase of the seL4 source [81]. Both the absolute number and the number relative
to the original Simpl input are provided. The Heap Abstraction translation refers
to the phase described in Chapter 7, while Word Abstraction refers to the phase
described in Chapter 6.

Specification
Lines of Spec Avg. Term Size

Absolute Relative Absolute Relative

Simpl 20 654 100.0% 304 100.0%
Shallow Embedding 36 955 178.9% 327 107.6%
Control-Flow Peephole 26 075 126.2% 255 83.9%
Exception Elimination 24 712 119.6% 248 81.6%
Lifted Local Vars 25 017 121.1% 202 66.4%
Flow-Sensitive Opts. 13 570 65.7% 145 47.7%
Heap Abstraction 12 846 62.2% 118 38.8%
Word Abstraction 12 743 61.7% 118 38.8%
Type Strengthening 12 674 61.4% 115 37.8%
Polish 11 609 56.2% 109 35.9%

needs to carry out. For example, a Hoare-style proof on a Simpl function can be lifted
to a proof on the output of AutoCorres, using the rule

ccorres st G rx P′ A C
 P A Q, λrv s. True

∀s. P (st s) ⟶ P′ s
G, Θ ⊢t/F {s. P (st s)} C {s. Q (rx s) (st s)}, E

Here, a total-correctness proof using Schirmer’s Simpl framework [91, 93] can be
lifted into a monadic Hoare-based proof using the generated ccorres predicate from
AutoCorres.

The generated ccorres predicate can also be used as a stepping stone towards many
other goals, such as refinement to an even higher-level specification [81, 86], showing
equivalence between two programs, or as a starting point for further automated analysis.
We explore such uses in Chapter 8, but for the moment just point out that such
reasoning can be carried out.

5.5 Conclusion

In this chapter, we have presented a method of automatically translating the suboptimal
L1 monadic program representation we generated in the last chapter into much simpler
forms. Lifting local variables out of the program’s global state, modelling them instead
using monadic bound variables, both simplifies reasoning and enables our further
flow-sensitive optimisations and type strengthening steps.

conclusion 103

After carrying out these steps, our program representations become significantly
simpler than their original Simpl equivalents. Table 5.8 shows the different phases of
AutoCorres running on the seL4 microkernel’s source code [81], and the effect the
phases have on the size of the program’s logical representation. Two metrics are given.
The first is lines of specification, which is the number of lines generated when displaying
the term using Isabelle/HOL’s pretty printer. The second is average term size, which is
the average number of nodes in each function’s abstract syntax tree when parsed by
Isabelle/HOL. While neither metric is a perfect measure for specification complexity,
the values in the table match our intuition that the output of AutoCorres is simpler
than its Simpl input.

There are still two major frustrations that arise when attempting to reason about
larger programs, however. Reasoning about programs that carry out word arithmetic
still remains problematic, as does reasoning about programs that interact with the
system heap. In the next two chapters, we look at how we can address these issues,
further easing program verification.

Chapter Summary

• The L1 monadic representation of programs that we generated in the
previous chapter models local variables as being stored in the program’s
global state. Such a representation is clumsy to reason about.

• We lift local variables out of the program’s state, modelling them as
monadic bound variables. We call this new monadic representation L2.
The transformation is automatic and generates a proof in Isabelle/HOL
of its correctness.

• The new L2 representation enables further program simplifications, where
values of local variables that are known earlier in a function can be
used to simplify expressions later in the function. This optimisation
significantly reduces the size of our program representations.

• Finally, we carry out type strengthening on programs, where Cock et al.’s
complex exception monad is replaced with a simpler type where possible,
such as a standard state monad, an option monad, or simply just a pure
Isabelle/HOL function.

104 local variable lifting

6 Word abstraction

In the previous chapters, we demonstrated how programs can be transformed from
deeply embedded Simpl representations to more convenient monadic representations.
While these transformations ease reasoning, certain aspects of verifying real C pro-
grams remain difficult. One of those problems is the difficulty of reasoning about C
programs that carry out word-based arithmetic. In this chapter we look at how we can
automatically and verifiably abstract such programs into representations that operate on
unbounded integers and naturals.

We start in Section 6.1 by describing the difficulties associated with reasoning about
word types in C. An informal description of our proposed approach of abstracting
finite word-based types into unbounded numbers (and an argument as to why this is
sound) can be found in Section 6.2.

In Section 6.3 we develop a formal definition of what it means for such an ab-
straction to be correct, and also present a user-extensible set of rules that allows us to
automatically abstract L2 programs while simultaneously generating a proof of correct-
ness. We conclude by providing a number of smaller case studies in Section 6.4 and
Section 6.5.

This chapter is based on the published work by Greenaway et al. [50], Don’t sweat
the small stuff: formal verification of C code without the pain in PLDI 2014.

6.1 Reasoning about word arithmetic

As a low-level language, C makes little attempt to hide details of hardware arithmetic
from the programmer. For instance, on a 32-bit system, the range of the signed int

datatype is −231 to 231 − 1, while the range of unsigned int is 0 to 232 − 1. An
overflow occurs when the result of a calculation falls out of this range.

The C standard [55] dictates different behaviours for signed and unsigned datatypes
when overflow occurs. For unsigned datatypes, the result of the operation is simply

106 word abstraction

Incorrect Equation Counter-example

s = s + 1 − 1 s = 231 − 1 (undefined behaviour)
s = −(−s) s = −231 (undefined behaviour)
u + 1 > u u = 232 − 1 (incorrect result)
2 × u = 4 ⟶ u = 2 u = 231 + 2 (incorrect result)
−u = u ⟶ u = 0 u = 231 (incorrect result)

Table 6.1: Examples of incorrect mathematical reasoning in C. Variable s is a
32-bit signed int, while u is a 32-bit unsigned int.

calculated modulo M + 1, where M is the maximum value that can be represented
in the type. For example, for a 32-bit type, 231 × 2 = 0. Signed arithmetic has stricter
rules. The C standard states that it is undefined behaviour for a program to perform
signed arithmetic that overflows: the compiler is free to assume that such behaviour
will never occur and, if it does occur, is free to exhibit any behaviour it desires.1 In
modern C compilers, this is not merely an academic issue: for instance, gcc-4.7 will
happily optimise the signed expression s + 1 > s to true [105].

In the context of program verification, this means that a program specification must
precisely model unsigned overflow, and ensure that signed arithmetic operations will
not overflow. Norrish’s C parser ensures this by translating variables to Isabelle/HOL’s
finite word types; unsigned int’s are translated into the unsigned word32 type, while
int’s are translated into the signed sword32 type. Additionally, for signed operations,
the C parser emits guard statements to check that the result does not overflow. For
example, the signed C expression a + b is translated into:

do guard (λs. INT_MIN ≤ sint a + sint b);
guard (λs. sint a + sint b ≤ INT_MAX);
return (a +s b)

od

Here, the function sint of type sword32 ⇒ int converts the finite 32-bit signed word
type into the unbounded Isabelle/HOL integer type. The analogous function unat
similarly converts unsigned words into natural numbers, and is used for unsigned
expressions. We use the suffix “s” to indicate that the operation is being carried out on
signed words (for example, +s), and use the suffix “w” for unsigned word arithmetic.

While this approach allows C arithmetic to be correctly modelled, actually reasoning
about it remains burdensome. Table 6.1 lists some ‘obvious’ mathematical identities that
are simply not true when reasoning about C programs. Further, while Isabelle/HOL
contains extensive libraries of theorems about natural numbers and integers, these
theorems cannot be used when verifying C programs. Large verification projects also

1The rationale for preventing programs from triggering signed overflow is to allow C programs to correctly
run on old or specialised hardware, such as one’s-complement CPUs, CPUs that trap on signed overflow, or
CPUs that use saturating arithmetic (such as many audio DSPs).

word abstraction 107

experience the burden of word-proofs: approximately 25% of the 30 000 lines of proof
library developed in the seL4 project [57] were dedicated to word arithmetic theorems.2

We are not the only ones to observe the burden of word proofs. Noschinski et
al. [86] note that in the verification of graph algorithms, a large amount of their
non-algorithmic reasoning went to discharging simple word proofs. They go on to say
“[t]his was somewhat surprising, because the only arithmetic operations occurring in
the program are equality and increment against a fixed upper bound”.

It is clear that we need a better approach to reasoning about word arithmetic.

6.2 Word abstraction

Ideally, we would like to abstract word32 and sword32 data types into unbounded
natural numbers and integers, respectively. This would avoid the corner cases described
above, and also allow Isabelle/HOL’s existing proof libraries to be freely used in pro-
gram proofs. The question is: how can this be done in a sound manner? We can’t
simply pretend that the underlying hardware can perform arithmetic on arbitrarily large
numbers, nor can we ignore C’s requirement that signed arithmetic never overflows—or
can we?

We observe that verification engineers must already prove that signed arithmetic
doesn’t fall out of the range −231 to 231 − 1, because the C standard demands it. The C
parser already inserts corresponding proof obligations. We can thus abstract sword32
types into int types, utilising the existing guard statements to know that the abstract
values will always remain in the range of representable values at the concrete level.

Unsigned arithmetic is slightly more difficult; the Simpl program will not contain
any guards to ensure that overflow doesn’t occur, and more importantly, the source
C program may actually rely on overflow to occur. Despite this, for many functions
unsigned overflow is not expected and—if the program verifier is willing to prove that
it does not occur by having additional guard statements in their abstracted output—we
can abstract unsigned arithmetic to natural numbers. We allow the user to select
whether to use word abstraction or not on a per-function basis.

An example where such abstraction makes sense is in a binary search that calculates
the middle element of an array:

unsigned int m = (l + r) / 2;

A typical verification condition that arises is showing that the selected element remains
between the elements l and r:

l <w r ⟶ l ≤w (l +w r) divw 2 ∧ (l +w r) divw 2 <w r

If the terms l, m and r were of type nat, this theorem is solved automatically using
Isabelle/HOL’s built-in auto tactic. On the original word32 type, however, an additional

2 Such theorems included reasoning about when word arithmetic does and doesn’t overflow, how operations
on words correspond to their unbounded and integer equivalents, how multiple smaller word values can be
packed and unpacked into a single larger word value, on so on.

108 word abstraction

precondition unat l + unat r < 2 is required and the proof term must be manually
lifted into the naturals before it can finally be solved using existing theorems in Isa-
belle/HOL’s library.3 If we could convert the latter rule to the former rule, verification
of programs containing word-based arithmetic would be greatly simplified.

6.3 Performing the abstraction

Our implementation of word abstraction converts local variables and arguments of
functions, but does not attempt to modify values stored in memory or global variables.
Instead, expressions of type nat and int are cast back to their machine-word equivalents
when written to memory, and vice versa. This means that the program’s state remains
unmodified, and the abstraction process only has to adjust expressions in the program.

We generate a refinement theorem showing that the input program C refines our
word-abstracted program A:

corresWA P rx ex A C ≡
∀s. P s ∧ ¬ failed (A s) ⟶

(∀(r, t) ∈ results (C s).
case r of

Exc v ⇒ (Exc (ex v), t) ∈ results (A s)
∣ Norm e ⇒ (Norm (rx e), t) ∈ results (A s)) ∧

¬ failed (C s)

The precondition P states under which conditions our corresWA assertion will hold.
The theorem states that, assuming the abstract program doesn’t fail, then (i) if C
returns a value, then A will return the same value abstracted through the function
rx; (ii) similarly, if C raises an exception, then A will also raise the same exception,
abstracted through ex; (iii) finally, if A doesn’t fail, then neither will C.

Our algorithm also needs to translate expressions from using concrete values to
their corresponding abstract values. We use a predicate abs_varWA with the following
definition:

abs_varWA P a f a′ ≡ P ⟶ a = f a′

This states that, assuming the precondition P is true, then the abstract value a corre-
sponds to the concrete value a′ abstracted using the function f . We use the convention
that a primed version of a variable (such as a′) represents the concrete version of a
variable a.

Our algorithm for generating an abstracted version of the program is in the form
of a set of syntax-directed rules. These translation rules can be applied in any setting,
but in our context of Isabelle/HOL, we use them by (i) first proving the translation
rules correct, and then (ii) using Isabelle/HOL’s resolution engine to apply these rules.

3A challenge to solve this seemingly trivial goal was issued to three experienced verification engineers,
with 10 minutes being the median time required to discharge the goal. The human effort for the nat version is
effectively zero.

performing the abstraction 109

By carrying out these two steps in Isabelle/HOL, we simultaneously obtain both the
abstracted program and an LCF-style proof of correctness that the abstraction is sound.

The next section describes the high-level approach of using Isabelle’s resolution
engine to simultaneously carry out both proofs and calculations in order to abstract
our input specifications. The following sections go into further depth, filling in some of
the missing details that come up when actually attempting to carry out such proofs in
Isabelle/HOL.

6.3.1 High-level overview

We begin the process of abstracting a concrete program by generating a schematic
lemma of the form:

corresWA ?P1 rx ex ?A1 C
corresWA ?P1 rx ex ?A1 C

The variable C is set to to the program we want to abstract, while rx and ex are set to
an appropriate abstraction function for the return and exception values of the program
respectively. The abstract program A1 and the precondition P1 are left unspecified
(or schematic) and are given the notation ?A1 and ?P1 respectively. As our algorithm
proceeds, these values will be incrementally instantiated.

For our midpoint example above, for instance, we start with the tautology:

corresWA ?P1 unat id ?A1 (returnE ((l +w r) divw 2))
corresWA ?P1 unat id ?A1 (returnE ((l +w r) divw 2))

Our goal is to discharge the assumption, leaving only the conclusion. We find a rule
from our ruleset that pattern-matches the concrete program. Table 6.2, Table 6.3, and
Table 6.4 show a representative sample of the word abstraction rules used. In this
example, we wish to abstract the returnE expression in our concrete program, using the
rule AbsStmtReturn. This instantiates A1 to returnE ?A2, where ?A2 is a new schematic
variable. Similarly, ?P1 is instantiated to (λs. ?P2):

abs_varWA ?P2 ?A2 unat ((l +w r) divw 2)
corresWA (λs. ?P2) unat id (returnE ?A2) (returnE ((l +w r) divw 2))

After applying the rule, we are now no longer abstracting program statements,
but an expression inside the program, so we are now required to solve a predi-
cate abs_varWA. We again find a rule that matches this new proposition; in this case,
AbsExprDiv:

abs_varWA ?P3 ?A3 unat (l +w r)
abs_varWA ?P4 ?A4 unat 2

corresWA (λs. ?P3 ∧ ?P4) unat id (returnE (?A3 div ?A4)) (returnE ((l +w r) divw 2))

Applying the rule leaves us with two new assumptions to discharge. Solving the first
will instantiate ?A3, the left-hand side of the division, while discharging the second will

110 word abstraction

Statements

∀s. abs_varWA (P s) a rx a′
corresWA P rx ex (returnE a) (returnE a′)

AbsStmtReturn

∀s. abs_varWA (P s) (a s) rx (a′ s)
corresWA P rx ex (getsE a) (getsE a′)

AbsStmtGets

∀s. abs_varWA (P s) (a s) id (a′ s)
corresWA P rx ex (modifyE a) (modifyE a′)

AbsStmtModify

∀s. abs_varWA (P s) (G s) id (G′ s)
corresWA (λ_. True) rx ex (guardE (λs. P s ∧ G s)) (guardE G′)

AbsStmtGuard

introduce_typ_abs_fn rx1
corresWA P rx1 ex L L′

∀a a′. abs_exprWA a rx1 a′ ⟶ corresWA (Q a) rx2 ex (R a) (R′ a′)
corresWA P rx2 ex

(do v ← L; guardE (Q v); R v od) (L′ >>=𝖤 R′)
AbsStmtBind

introduce_typ_abs_fn ex1
corresWA P rx ex1 L L′

∀a a′. abs_exprWA a ex1 a′ ⟶ corresWA (Q a) rx ex2 (R a) (R′ a′)
corresWA P rx ex2 (catchE L (λv. do guardE (Q v); R v od)) (catchE L′ R′)

AbsStmtCatch

corresWA PL rx ex L L′ corresWA PR rx ex R R′
∀s. abs_varWA (PC s) (C s) id (C′ s)

corresWA PC rx ex
(conditionE C (do guardE PL; L od) (do guardE PR; R od))
(conditionE C′ L′ R′)

AbsStmtCond

abs_varWA Pr r rx r′
∀r r′ s. abs_exprWA r rx r′ ⟶ abs_varWA (Pc r s) (C r s) id (C′ r′ s)

∀r r′. abs_exprWA r rx r′ ⟶ corresWA (Pb r) rx ex (B r) (B′ r′)
corresWA (λs. Pr ∧ Pc r s) rx ex

(whileLoopE C
(λr. do guardE (Pb r); r′ ← B r; guardE (Pc r′); returnE r′ od) r)

(whileLoopE C′ B′ r′)
AbsStmtWhile

Table 6.2: A selection of word abstraction rules for decomposing statements and
expressions.

performing the abstraction 111

Signed arithmetic expressions

abs_varWA P a sint a′
abs_varWA Q b sint b′

abs_varWA (P ∧ Q) (a = b) id (a′ = b′)
AbsExprEq

abs_varWA P a sint a′
abs_varWA Q b sint b′

abs_varWA (P ∧ Q) (a < b) id (a′ <s b′)
AbsExprLe

introduce_typ_abs_fn sint
abs_varWA P a sint a′ abs_varWA Q b sint b′

abs_varWA (P ∧ Q ∧ INT_MIN ≤ a + b
∧ a + b ≤ INT_MAX)

(a + b) sint (a′ +s b′)
AbsExprSum

introduce_typ_abs_fn sint
abs_varWA P a sint a′ abs_varWA Q b sint b′

abs_varWA (P ∧ Q ∧ INT_MIN ≤ a sdiv b
∧ a sdiv b ≤ INT_MAX)

(a sdiv b) sint (a′ divs b′)
AbsExprDiv

abs_varWA P a sint a′
abs_varWA (P ∧ − a ≤ INT_MAX) (− a) sint (− a′)

AbsExprNegate

Unsigned arithmetic expressions

introduce_typ_abs_fn unat
abs_varWA P a unat a′
abs_varWA Q b unat b′

abs_varWA (P ∧ Q) (a = b) id (a′ = b′)
AbsExprUEq

introduce_typ_abs_fn unat
abs_varWA P a unat a′
abs_varWA Q b unat b′

abs_varWA (P ∧ Q) (a ≤ b) id (a′ ≤w b′)
AbsExprULt

abs_varWA P a unat a′
abs_varWA Q b unat b′

abs_varWA (P ∧ Q ∧ a + b ≤ UINT_MAX) (a + b) unat (a′ +w b′)
AbsExprUAdd

abs_varWA P a unat a′
abs_varWA Q b unat b′

abs_varWA (P ∧ Q) (a div b) unat (a′ divw b′)
AbsExprUDiv

Table 6.3: A selection of word abstraction rules for abstracting expression from
signed words to integers and unsigned words to naturals.

112 word abstraction

Expression decomposition

abs_varWA True (f b) f b
AbsExprTrivial

abs_exprWA a f a′
abs_varWA True a f a′

AbsExprFromAbsVar

∀v. abs_varWA P (a v) id (a′ v)
abs_varWA P a id a′

AbsExprLambda

abs_varWA Q b id b′
abs_varWA P a id a′

abs_varWA (P ∧ Q) (f (a b)) f (a′ $ b′)
AbsExprFunApp

Table 6.4: A selection of word abstraction rules for decomposing statements and
expressions.

instantiate ?A4, the right-hand side. We continue this process of discharging assump-
tions and creating new ones, using the rules AbsExprSum and AbsExprTrivial, until we
have no remaining assumptions and are left with just the conclusion:

corresWA (λs. unat l + unat r ≤ UINT_MAX) unat id
(returnE ((unat l + unat r) div 2))
(returnE ((l +w r) divw 2))

The values unat l and unat r correspond to the abstract versions of our concrete
program’s input parameters. To convert this theorem into an abstract function, we
replace unat l and unat r with fresh variables. Additionally, the theorem only holds
under the precondition that unat l + unat r ≤ UINT_MAX; we prepend a guardE
statement ensuring that this holds. The generated abstraction thus becomes:

do guardE (λs. l + r ≤ UINT_MAX);
returnE (l + r div 2)

od

where the fresh variables l and r are unbounded integers.
The next sections look into some of the low-level details of this approach, and how

they are implemented in Isabelle/HOL.

6.3.2 Implementation in Isabelle/HOL

The previous section gave a high-level description of the resolution-based approach
AutoCorres uses to abstract programs. One problem left unresolved is how we establish
a formal connection between low-level concrete variables and their abstract equivalents.
For example, if we wish to abstract the word-typed expression a′ +w b′ = c′ to its
integer-typed equivalent a + b = c, we need to have formal connections between
a′ and a; b′ and b; and so on. Furthermore, during the resolution-based abstraction
algorithm, we need to keep track of such existing connections, as well as introduce new
abstract variables as we encounter new concrete variables.

performing the abstraction 113

We begin to address this by using a predicate abs_exprWA, defined as follows:

abs_exprWA a f a′ ≡ a = f a′

This predicate states that the value a is the abstract version of the variable a′, using the
abstraction function f .

For each variable in the input concrete program, we generate a corresponding
abstract variable and add a abs_exprWA assumption to the current goal. For example,
the premise of the midpoint example above would start as4

abs_exprWA l unat l′ abs_exprWA r unat r′
corresWA ?P1 unat id ?A1 (returnE ((l′ +w r′) divw 2))

Our aim is to reduce the goal to True by breaking it into smaller, simpler parts; during
this process, the schematic variables P1 and A1 will be instantiated. The two abs_exprWA

terms can be used to discharge side conditions in the rules we apply to the goal. For
example, the rule AbsExprFromAbsVar

abs_exprWA a f a′
abs_varWA True a f a′

states that an expression consisting only of a single variable can be translated into the
abstract version of that variable.

During the process of abstraction, we will come across new concrete variables that
need to be abstracted. In this case, new abs_exprWA predicates can be introduced into
our set of assumptions. The rule AbsStmtBind is an example where this occurs:

introduce_typ_abs_fn rx1
corresWA P rx1 ex L L′

∀a a′. abs_exprWA a rx1 a′ ⟶ corresWA (Q a) rx2 ex (R a) (R′ a′)
corresWA P rx2 ex

(do v ← L; guardE (Q v); R v od) (L′ >>=𝖤 R′)

The rule above abstracts the monadic bind operator by first abstracting the left-hand
side (i.e., the first statement), then abstracting the right-hand side (i.e., the second
statement), and then finally combining the results. Any precondition generated while
abstracting the right-hand side is checked by the guardE statement emitted on the
abstract side.5

The left-hand side of the bind operator introduces a new bound variable that is
passed into the right-hand side. When we abstract the right-hand side, we introduce
a new variable a corresponding to the concrete variable a′, and also introduce a new
assumption abs_exprWA a rx1 a′ that can be used when abstracting the right-hand side.

4We no longer show both the premise and the under-construction conclusion as we did for our earlier
examples, but simply the premise. The under-construction conclusion remains in the background however,
tracked by Isabelle/HOL.

5Frequently, this will simply be guardE (λs. True), and will be optimised away in a later phase of AutoCorres.

114 word abstraction

The type chosen to abstract a′ into (and hence the function chosen for rx1)
is determined by the predicate introduce_typ_abs_fn. This predicate has a trivial
definition:

introduce_typ_abs_fn f ≡ True

but its presence allows us to control what variables are abstracted into. For example, if
we only want to abstract word32 types and not their signed equivalent, we can include
the rule introduce_typ_abs_fn unat in the ruleset used for abstraction, where unat
converts word32 types to nat. If we also wanted to abstract signed values, then we also
include the rule introduce_typ_abs_fn sint where sint converts sword32 types to int.

6.4 Word abstraction examples

This section provides some simple examples of word abstraction. We start with a
few trivial examples demonstrating how word abstraction works in practice on smaller
expressions. We move on to a large example of a primality testing function, and provide
a brief comparison of performing the proof with and without using word abstraction.

6.4.1 Maximum of two integers

Our first example is a simple max function, which takes two input integers and returns
the maximum of the two. Figure 6.1 shows the C source code to the function, as
well as the intermediate states of AutoCorres before word abstraction has taken place
(maxL2) and after word abstraction (maxWA). While the two monadic versions look
almost identical, the significant differences exist in the types of the two functions:
maxL2 has variables and a return type of sword32, while maxWA has variables and a
return type of int.

After the remaining stages of AutoCorres (including type-strengthening previously
described in Section 5.3), the final version of our max program is as follows:

max′ a b ≡
if a ≤ b then b else a

This final definition is identical (in both type and body) to the built-in max definition
of Isabelle.

6.4.2 Absolute value

Our second example is a simple absolute value function written in C, shown in Fig-
ure 6.2. While this function is seemingly trivial, a source of trouble arises from the
fact that the signed integer value −231 doesn’t have an equivalent positive value; that
is, −(−231) ≠ 231, as the value 231 cannot be represented as a 32-bit signed value. The
C standard does not attempt to specify what a C program will do if it attempts to

word abstraction examples 115

int max(int a, int b) {

if (a <= b)

return b;

return a;

}

maxL2 a b ≡
conditionE (λs. a ≤s b)

(returnE b)
(returnE a)

maxWA a b ≡
conditionE (λs. a ≤ b)

(returnE b)
(returnE a)

Figure 6.1: An implementation of a function max in ANSI C, returning the
maximum of the two input parameters. Also shown are the intermediate states
of AutoCorres before (maxL2) and after (maxWA) word abstraction of the max
function.

carry out such an operation, leaving it as an undefined behaviour. To ensure that such
undefined behaviour does not occur, Norrish’s C-to-Isabelle parser places the guard
− sint x ≤ INT_MAX prior to the unary minus operation.

When AutoCorres abstracts the expression −x from the type sword32 to int using
the rule AbsExprNegate, a new guard must be emitted for the conversion to be sound.
This results in the body of the conditional have the following intermediate value:

conditionE (λs. x < 0)
(do guardE (λs. − x ≤ INT_MAX);

guardE (λs. − x ≤ INT_MAX);
returnE (− x)

od)
(returnE x)

Here, the first guardE statement is the original translated from absL2, while the sec-
ond is generated when translating the expression −x. The flow-sensitive optimisations
described in Chapter 5 remove the redundant guard, leaving the user with just a single
guard, similar to the input program.6

6.4.3 Primality testing

In this example, we use AutoCorres’ word abstraction to verify the correctness of a C
function is_prime. The function takes a single unsigned integer and determines if it
is a prime number or not. We start by proving a simple O(n)-time implementation of
the algorithm, and then extend the program and proof to work using a more efficient
O(

√
n) algorithm.

Our initial linear time C implementation is_prime_linear is shown in Figure 6.3.
The output of AutoCorres with unsigned word abstraction enabled is shown in Fig-
ure 6.4. Word abstraction transforms the word32 types into natural numbers. The only

6 In fact, every expression translated by word abstraction results in a guard being generated; most of
them, however, are simply guardE (λs. True), and thus are easily removed by the peephole and flow-sensitive
optimisations discussed in Chapter 5.

116 word abstraction

int abs(int x) {

if (x < 0)

return -x;

return x;

}

absL2 x ≡
conditionE (λs. x <s 0)

(do guardE (λs. − sint x ≤ INT_MAX);
returnE (− x)

od)
(returnE x)

absWA x ≡
conditionE (λs. x < 0)

(do guardE (λs. − x ≤ INT_MAX);
returnE (− x)

od)
(returnE x)

Figure 6.2: An implementation of the absolute value function abs in ANSI C.
Also shown are the intermediate states of AutoCorres before (absL2) and after
(absWA) word abstraction of the abs function.

/* Determine if the input number 'n' is prime. */

unsigned is_prime_linear(unsigned n)

{

/* Numbers less than 2 are not prime. */

if (n < 2)

return 0;

/* Find the first non-trivial factor of 'n'. */

for (unsigned i = 2; i < n; i++) {

if (n % i == 0)

return 0;

}

/* No factors. */

return 1;

}

Figure 6.3: A linear time implementation of a prime checking function in C.

change in the program’s structure is a single new guard introduced above the expression
i +w 1 at the end of the loop body. This guard ensures that the loop counter i does not
overflow, which would make AutoCorres’ abstraction from word32’s to natural numbers
unsound.

Verifying is_prime_linear with word abstraction

To verify the correctness of is_prime_linear, we wish to prove the property:

 λs. n ≤ UINT_MAX is_prime_linear′ n λr s. (r ≠ 0) = prime n

That is, assuming that we pass is_prime_linear′ an input integer n no larger than
UINT_MAX, then the function will return a non-zero value if and only if n is prime,
where the function prime is the function from Isabelle/HOL’s standard library.

The proof of correctness takes place in the following steps:

word abstraction examples 117

Lemmas for O(n)-time is_prime_linear

partial_prime p (n + 1) =
(partial_prime p n ∧ (1 < n ∧ n + 1 < p ⟶ ¬ n dvd p))

PartialPrimeSuc

prime (a ∗ b) =
(a = 1 ∧ prime b ∨ prime a ∧ b = 1)

PrimeOfProduct

(n mod i ≠ 0) =
(¬ i dvd n)

ModZeroToDvd

(x dvd x + 1) =
(x = 1)

DivideSelfPlusOne

Lemmas for O(
√

n)-time is_prime

p < n ∗ n
partial_prime p n =

prime p
PartialPrimeSqr

UINT_MAX = SQRT_UINT_MAX ∗ SQRT_UINT_MAX − 1
UintMaxFactor

prime p
(r dvd p) =

(r = 1 ∨ r = p)
PrimeDvd

i ∗ i < j ∗ j = (i < j)
SqrLessMono

b ≠ 0
a ∗ a ≤ b ∗ b − 1 = (a < b)

PartialPrimeSqr

Table 6.5:Helper lemmas required for the correctness proof of is_prime_linear
and is_prime to be discharged automatically. The theories all hold on the type
nat.

118 word abstraction

is_prime_linear′ n ≡
condition (λs. n < 2)

(return 0)
(catch

(do whileLoopE (λi s. i < n)
(λi. do guardE (λs. 0 < i);

whenE (n mod i = 0) (throwE 0);
guardE (λa. i + 1 ≤ UINT_MAX);
returnE (i + 1)

od) 2;
throwE 1

od)
return)

Figure 6.4: The output of AutoCorres with word abstraction enabled for the
is_prime_linear function in Figure 6.3.

1. We show that the result is correct for n = 0 and n = 1 using simple term
rewriting;

2. We show that the result is correct for n ≥ 2 by annotating the loop body with an
invariant and with a termination measure; finally

3. We execute the VCG over the body of the function, resulting in four proof
obligations: (i) that the loop invariant holds entering the loop; (ii) that the
loop invariant holds between loop iterations; (iii) that the loop measure de-
creases each loop iteration; and (iv) that the loop invariant implies the calculated
postcondition for the loop.

The first step, showing correctness when n = 0 or n = 1, is trivially proven by
using the monadic VCG wp and Isabelle’s simplifier.

To prove the general case, we annotate the loop with the measure n − i and with
the loop invariant:

1 < i ∧ 1 < n ∧ i ≤ n ∧ partial_prime n i

Here, the predicate partial_prime is defined as:

partial_prime n k ≡ 1 < n ∧ (∀i ∈ {2..<min n k}. ¬ i dvd n)

This states that the number n has no non-trivial factors less than k. The notation
{a..<b} refers to the set of integers between a and b, including a but excluding b.

We can use partial_prime to show that a number is prime: once its second argu-
ment k is “big enough”, we know that n has no non-trivial factors, and hence is prime.
An easy choice for k that arises from the definition of prime is simply to choose n:7

n ≤ k
partial_prime n k = prime n

7We tighten the bound of k below when improving our algorithm.

word abstraction examples 119

With the introduction of some helper lemmas describing basic facts about prime
numbers and the partial_prime predicate, all of the goals above can be discharged
automatically using Isabelle’s built-in auto tactic. The helper lemmas required are
shown in Table 6.5.

Verifying is_prime_linear without word abstraction

How much effort does word abstraction save on such a proof? Attempting to carry out
the proof directly on the word32 type, we very quickly run into problems. For instance,
if we attempt to use a definition of prime for the word32 type similar to that of the
natural type:

prime p = (1 < p ∧ (∀m. m dvd p ⟶ m = 1 ∨ m = p))

which uses the corresponding definition of dvd:

b dvd a = (∃k. a = b ∗ k)

we can then prove the rather inconvenient fact that primes do not exist:

{x. prime x} = ∅

What went wrong? The proof above stems from our use of the word32 type and our
definition of dvd above. According to this definition, the number 3 divides everything
(i.e., ∀n. 3 dvd n). This is because

3 ∗w 0xAAAAAAAB = 1

due to overflow; and hence every number n can be factored into the expression of
the form

(3 ∗w n) ∗w 0xAAAAAAAB

Hence, no number is prime.8
To work around these issues, we could attempt to redefine dvd on the word32 type

to a definition that ignores results involving overflow. We would then need to derive
for our new dvd function the large library of results already available for the original
dvd in the Isabelle library. Even so, our troubles would not be over. For example, even
using our new dvd function, the rule DivideSelfPlusOne:

x dvd x + 1 = (x = 1)

is false when x = 2 −w 1, as x +w 1 = 0, and 2 −w 1 dvd 0.

8 In fact, every number in the word32 type can be factored in a large number of ways; every odd number
n has an inverse modulo 232, termed n−1. Every such inverse can be used to factor every other number m
such that m = (m × n) × n−1.

120 word abstraction

Attempting to reason directly with the word32 type is hard work.9 An alternative
route would be to lift all our reasoning to the naturals. For instance, our loop invariant
would become:

1 < unat i ∧ 1 < unat n ∧ unat i ≤ unat n ∧ partial_prime (unat n) (unat i)

Performing our high-level reasoning over the natural numbers avoids the pathological
overflow cases described above, but still forces us to deal with tens of mundane over-
flow cases, such as when we want to show unat (i +w 1) = unat i + 1 (which is only
true if i + 1 < 232). Such proof obligations can be discharged by having the appropriate
invariants so that we can show that i + 1 does not overflow.

Once we lift all our reasoning from the word32 to the naturals, we are effectively
just performing the word abstraction process by hand: automatic word abstraction saves
the user the burden of having to do it herself.

Improving the algorithm

The algorithm used by is_prime_linear requires O(n) time to determine if an input
n is prime. We can easily improve the run-time to O(

√
n) by observing that if n has

a non-trivial factor a, then it will have a factor b ≤
√

n. We can formalise this by
improving the bound on the partial_prime theorem above:

p < n ∗ n
partial_prime p n = prime p

We prove this by showing that every composite n has two non-trivial factors a1 and a2,
where a1 × a2 = n. Without loss of generality, assume a1 ≤ a2. Then, by monotonicity
of multiplication, a1 × a1 ≤ a1 × a2 = n. Thus, if there is no number n such that
n × n ≤ p divides p, then p must be a prime.

With this in mind, we can change the main loop of our program from:

/* Find the first non-trivial factor of 'n'. */

for (unsigned i = 2; i < n; i++) {

if (n % i == 0)

return 0;

}

to:
/* Find the first non-trivial factor of 'n' less than sqrt(n). */

for (unsigned i = 2; i < SQRT_UINT_MAX && i * i <= n; i++) {

if (n % i == 0)

return 0;

}

where SQRT_UINT_MAX is 65536.

9This example was not specifically cooked up to trip up the word-based proof—our experience shows
these issues crop up regularly for any non-trivial arithmetic results that are required in the process of program
verification.

word abstraction examples 121

is_prime′ n ≡
condition (λs. n < 2)

(return 0)
(catch

(do whileLoopE (λi s. i < SQRT_UINT_MAX ∧ i ∗ i ≤ n)
(λi. do guardE (λs. 0 < i);

whenE (n mod i = 0) (throwE 0);
i ← returnE (i + 1);
guardE (λs. i < SQRT_UINT_MAX ⟶ i ∗ i ≤ UINT_MAX);
returnE i

od) 2;
throwE 1

od)
return)

Figure 6.5: The output of AutoCorres from an O(
√

n)-time implementation of
the is_prime function.

The primary difference between the two loops is the exit condition, which has been
modified from i < n (i.e., try all potential factors up to n) to i * i <= n (i.e., try all
potential factors up to and including

√
n).

We also need to add an additional check i < SQRT_UINT_MAX to ensure that i * i

doesn’t overflow; such a situation would occur when the input n satisfies 65 5352 < n <
65 5362. Without the overflow check, the condition i * i <= n will never be satisfied
for such an input n, causing the loop to continue until finally n = i and the check n %

i == 0 succeeds. For primes in the range 65 5352 < n < 65 5362, such as 4 294 836 241,
this will cause the function to incorrectly state that the input is composite.

Running the new program through AutoCorres produces the output shown in
Figure 6.5. The output is similar to the version of is_prime_linear′. The two differences
are that the loop condition differs from the original, reflecting the change of the C
code; and a new guard has been added at the end of the loop to ensure that the
arithmetic in the loop does not overflow.10

To prove this adjusted version, we first update the invariant of the loop to:

1 < i ∧ i ≤ n ∧ i ≤ SQRT_UINT_MAX ∧
i ∗ i ≤ SQRT_UINT_MAX ∗ SQRT_UINT_MAX ∧
partial_prime n i

and the loop’s measure to (λ(r, s). (n + 1) ∗ (n + 1) − r ∗ r). The measure is not as
tight as it could be, but this form matches the proof obligations generated by the VCG,
making the verification conditions easier to discharge.

Once the loop has been annotated with an invariant and measure, we perform the
same steps as previously: prove the theorem true for n = 1 and n = 2, run the VCG,
and then use Isabelle’s inbuilt solvers to discharge the goal. As in the previous case,

10Such a guard would have also been added prior to the loop, to ensure that the very first check did not
overflow. The guard condition 2 < SQRT_UINT_MAX ⟶ 2 ∗ 2 ≤ UINT_MAX is proven to always hold by
AutoCorres’ simplification phase, and hence the guard is removed.

122 word abstraction

some helper lemmas need to be added to the automated tactics; these are shown in the
second half of Table 6.5. Once added, the proof obligations are solved by Isabelle’s auto

tactic without further effort.

6.5 Extending the rule set

AutoCorres has approximately 40 rules built-in to process all C statements and ex-
pressions, and uses an additional 11 for each type that needs to be abstracted (e.g.,
signed words and unsigned words). While typically these rules need not be modified
(or even understood) by users of AutoCorres, the rule sets can be extended if the user
wishes to abstract code-specific idioms that are sound at the concrete level but become
unprovable after abstraction.

For instance, the function:
int sum_overflows(unsigned a, unsigned b) {

return a + b < a;

}

determines if the unsigned addition of a and b overflows; this is done by performing
the (potentially overflowing) addition, and then comparing the result to ensure it is
larger than the inputs.

If we carry out AutoCorres’ unsigned word abstraction, the result of the statement
after simplifications occur is:

do guard (λs. a + b ≤ UINT_MAX);
return 0

od

After abstraction, instead of the expression being a check for overflow, the user must
now prove that the overflow cannot occurs. As a further insult, after the abstraction has
taken place AutoCorres’ simplification routines determine that the expression a + b <
a over the naturals is always false, so simplifies the entire expression to 0 (i.e., false).
The test has become useless.

By extending the word abstraction ruleset with the following rule, the user can still
continue to use unsigned word abstraction:

abs_varWA P x unat x′ abs_varWA Q y unat y′
abs_varWA (P ∧ Q) (UINT_MAX < x + y) id (x′ +w y′ <w x′)

This rule states that expressions of the form a + b < a should be abstracted into
the overflow check UINT_MAX < x + y. After running word abstraction with this
added rule, the function is abstracted into:

return (if UINT_MAX < a + b then 1 else 0)

which captures the original intent of the concrete code.

related work 123

6.6 Related work

The detailed model of word arithmetic used by the Norrish’s C-to-Isabelle parser (and
in turn our own work) stems from Dawson [38], which is now part of the Isabelle/HOL
standard proof library. Dawson’s work accurately models operations such as addition,
multiplication, division and so on for unsigned words. Our own work has extended
Dawson’s to add support for signed operations, in particular signed division and signed
modulo, which produce different results to their unsigned counterparts.

Carrying out word proofs has long been a burden for users of interactive theo-
rem provers, and many approaches have been taken to simplify or automate them.
Böhme et al. [24], for instance, exported proofs to the powerful Z3 SMT solver, replay-
ing the proofs in HOL4 and Isabelle/HOL. Isabelle/HOL includes a tactic developed
by Thomas Sewell named word_bitwise, that converts word proofs into a boolean
circuit representation, which can often be more easily solved using Isabelle/HOL’s in-
built automation. Perhaps closest to our own is further work by Dawson [38], who
developed the Isabelle/HOL tactics unat_arith and uint_arith that attempts to lift
Isabelle/HOL subgoals from unsigned word arithmetic to unbounded arithmetic on
integers and naturals. Like our own work, after lifting the user is required to show that
intermediate calculations don’t exceed the allowable range of the input types. While
these different techniques attempt to either simplify or solve word proofs, our own
work attempts to avoid them altogether by rewriting the input specification to operate
directly on unbounded types. This has the added advantage that program preconditions,
postconditions and invariants can also be written using such unbounded types.

Other C verification frameworks have different approaches to reasoning about
integers. VCC [32], for instance, gives the user the option to either model word arith-
metic directly as unbounded integers and naturals, with guards ensuring that results
of arithmetic do not overflow; or to model word arithmetic as bit-vectors, which al-
low overflowing operations to be accurately modelled and verified, but at the expense
of increasing the difficulty of verification by the underlying automatic provers. VCC
simply emits these definitions with no formal link to the underlying machine words.
This would, for example, complicate the process of creating a formal link down to the
compiler assembly. Similarly, Moy’s translation of C into the Frama-C framework with
the Jessie plugin [72] emits unbounded integer operations with checks for overflow.

In the other direction, the verified C compiler CompCert [67] represents integer
values as n-bit machine words, similar to that used by Norrish’s C-to-Isabelle parser.
This representation of machine words is more convenient for proving correspondence
between the input C semantics and the generated machine code, but comes at the cost
of complicating user reasoning, as discussed previously in this chapter.

In contrast to both of these approaches, AutoCorres begins with an accurate model
of word arithmetic and then abstracts the specification into the unbounded model,
simultaneously generating a proof of correctness. This provides a formally verified link
between the low-level machine model and a model of arithmetic more convenient for
users to work with.

124 word abstraction

6.7 Conclusion

This chapter has shown how monadic specifications using word-based arithmetic can
be provably abstracted into higher-level specifications using unbounded integers and
naturals.

Word abstraction is effective: for example, AutoCorres’ output of the max function in
Figure 6.1 precisely matches Isabelle’s built-in definition of max on the nats. AutoCorres
additionally reduced the burden of proving the arithmetical is_prime function: instead
of needing to manually lift word values into naturals, AutoCorres did this for us. More
complex usages of word arithmetic invariably cause the abstracted program to also
be more complex, as the user becomes obliged to prove that the arithmetic does not
overflow. In our experience, however, the abstracted version tends to be far simpler to
reason about than the original input program.

Chapter Summary

• The numeric types in low-level languages such as C are finite; on a 32-bit
system, for instance, the range of a signed int is −231 to 231 − 1, while
the range of a unsigned int is 0 to 232 − 1.

• Reasoning about finite numeric types is hard for two primary reasons:
(i) the finite types overflow, meaning that basic mathematical ‘truths’
such as x < x + 1 or (2 × x = 4) ⟶ (x = 2) do not hold; and
(ii) users are required to prove that signed types do not overflow on
every arithmetic operation.

• We abstract programs using signed arithmetic into programs that operate
on unbounded integers. This can be done soundly by exploiting the
fact the users must already prove that signed operations do not exceed
their maximum range. Our program abstraction process simultaneously
generates both an abstract program and a proof of its correctness.

• Similarly, we are able to abstract programs using unsigned arithmetic
into programs that operate on unbounded naturals, if the user’s program
does not rely on unsigned overflow and they are willing to prove this.

• The word abstraction ruleset can be extended by the user to allow par-
ticular idioms used in low-level code abstracted to a suitable high-level
representation.

• Word abstraction simplifies reasoning both because (i) reasoning on
integers and naturals is more intuitive; and (ii) Isabelle/HOL has a large
library of theorems and tactics available for reasoning about integers and
natural numbers, but far fewer for finite words.

7 Heap abstraction

We have thus far neglected to think about how we can ease formal verification of C
programs that need to access the system’s memory. Norrish’s C-to-Isabelle parser uses
a byte-level model of memory which, while being a conservative choice, significantly
complicates reasoning.

In this chapter we look at how we can automatically abstract C programs that use a
byte-level model of memory into programs that operate on a Burstall-Bornat split heap
model. Like previous chapters, our tool also generates a proof in Isabelle/HOL showing
that our translation is correct.

Section 7.1 describes in detail how Norrish’s C-to-Isabelle parser models system
memory, and the difficulties that arise when attempting to directly reason about it. In
Section 7.2 we next describe our implementation of an existing reasoning framework
developed by Tuch et al. [103] used to facilitate manual reasoning about byte-level
heaps. Not content with such manual reasoning, in Section 7.3 we show how we can
use our reimplementation of Tuch et al.’s logic to implement automatic abstraction of
C programs, translating programs to operate on a more abstract heap. The remainder
of the chapter looks at additional technical details—such as dealing with C structs

and interacting with functions that need to reason about a byte-level heap—and present
some simple case studies.

This chapter is based on the published work by Greenaway et al. [50], Don’t sweat
the small stuff: formal verification of C code without the pain in PLDI 2014.

7.1 Byte-level versus typed heap reasoning

When reasoning about non-trivial C programs, a question that quickly arises is how
the system’s memory or heap should be formally modelled. One common approach

126 heap abstraction

when modelling higher-level languages such as Java [87] is to represent the contents of
memory locations as a datatype:

datatype value = Int int | Float float | IntPtr addr | ⋯

The heap can then be modelled as a function of type addr ⇒ value that converts a
pointer address to its object value.

One difficulty presented by this heap model is that of inter-type aliasing. That is, if
we have a pointer p to an int and a pointer q to a float, then when we write to the
pointer p we must prove that p ≠ q in order to know that the float at q is unchanged.
In larger programs, dealing with these side conditions becomes a non-trivial burden, as
documented, for instance, by Burstall [23] and Bornat [18].

The solution to the problem of inter-type aliasing developed by Burstall and Bornat
is to use a split heap model of memory. In this model, each different type has its own
function that maps pointers to their logical values:

record state =
heap_int ∶∶ word32 ⇒ int
heap_float ∶∶ word32 ⇒ float
heap_intptr ∶∶ word32 ⇒ addr
⋯

The split heap model avoids the inter-type aliasing problem because updates to an int

pointer p only modify the heap_int function, making it clear that other types contained
in the other heaps are unaffected.

Both of these models of the heap are, in some sense, unsatisfactory for C programs
that frequently perform byte-level accesses to memory. For instance, functions such as
memcpy and memcmp access the heap in a byte-level manner, while other C programs
reinterpret the same memory region as different types, such as by casting pointers, in
unions, or after malloc and free operations.

When modelling C programs that carry out such low-level memory operations, a
better model of memory may be to simply represent it as a function from addresses to
individual bytes. So, on a 32-bit system, the heap would be represented by a function of
type word32 ⇒ word8.

On the surface, this simple approach has many benefits: it is easy to understand,
faithful to how the hardware functions at a low level, and allows low-level C code that
interacts with memory at a low level (such as memcpy, memset, casting pointers between
types, etc.) to be reasoned about. While not perfect (for example, there is no way to
represent unmapped or invalid addresses), if we are unable to reason about this simple
model, we are going to struggle with anything more sophisticated.

byte-level versus typed heap reasoning 127

void swap(unsigned *a, unsigned *b)

{

unsigned t = *a;

*a = *b;

*b = t;

}

TRY
GUARD C_Guard ⦃ c_guard ‘a⦄

‘t ∶== h_val (hrs_mem ‘t_hrs) ‘a;;
GUARD C_Guard ⦃ c_guard ‘a⦄

GUARD C_Guard ⦃ c_guard ‘b⦄
‘globals ∶==
t_hrs_′_update

(hrs_mem_update
(heap_update ‘a (h_val (hrs_mem ‘t_hrs) ‘b)));;

GUARD C_Guard ⦃ c_guard ‘b⦄
‘globals ∶==
t_hrs_′_update (hrs_mem_update (heap_update ‘b ‘t))

CATCH
SKIP

END

Figure 7.1: An implementation of the swap function and its translation into
Simpl by Norrish’s C-to-Isabelle parser.

7.1.1 Norrish and Tuch byte-level heap implementation

In order to be able to support low-level reasoning about C programs, Norrish’s C-to-
Isabelle parser uses this byte-level model of the system heap; 1 that is, each time a C
program writes to a pointer, the logical object being written is first encoded into a list
of word8s before being written out to the heap. Similarly, each time a pointer is read
from, a list of word8s are read from the heap. The list is then decoded back into a
logical object.

Figure 7.1 shows an implementation of a swap function and its translation into
Simpl by Norrish’s C-to-Isabelle parser using this byte-level model of the heap. The
syntax used by the C-to-Isabelle parser to represent reads and writes to global memory
is taken from Tuch [100]. While the syntax used may appear rather opaque at first
glance, it is fundamentally using the simple byte-based heap model described in the
previous section.

The globals record generated by the C-to-Isabelle parser contains a field named
t_hrs_′, used to track the current state of the heap:

1Strictly speaking, the memory model used by Norrish’s C-to-Isabelle parser is pluggable, but every
implementation that the author is aware of currently uses some variant of a byte-level memory model.

128 heap abstraction

hrs_mem

t_hrs_'

word word

hrs_htd

h_val

globals

word ⇒ word

a_' b_'

word ⇒ typ_tag

heap_update

'a

Figure 7.2: The structure of the global state used prior to heap abstraction. The
globals record consists of all of the global variables used in the program (such
as a_’ and b_’ in this figure), as well as a heap field t_hrs_′. The heap field
contains two subcomponents: hrs_mem, which stores the raw bytes in memory,
and hrs_htd, which stores the type tags for each byte. The functions h_val and
heap_update decode and encode raw bytes into logical objects, respectively.

record globals =
t_hrs_′ ∶∶ (word32 ⇒ word8) × (word32 ⇒ typ_tag)
x_′ ∶∶ word32
y_′ ∶∶ word16
z_′ ∶∶ word32
⋯

This t_hrs_′ field consists of two parts: the first component has type word32 ⇒ word8,
and stores the raw bytes of the heap. It is accessed with the function hrs_mem. The
second half of type word32 ⇒ typ_tag is a type tag mapping, which stores a type tag for
each byte in the heap, and is accessed with the function hrs_htd. We will return to the
hrs_htd field later in Section 7.2. Each of the three functions t_hrs_′, hrs_mem, and
hrs_htd have associated functions that update their values: the t_hrs_′ field is updated
with the function t_hrs_′_update, while the two components of t_hrs_′ are updated
with hrs_mem_update and hrs_htd_update, respectively.

To actually decode the bytes from the heap into logical objects, the C-to-Isabelle
parser emits calls to a function h_val. The function has type

h_val ∶∶ (word32 ⇒ word8) ⇒ ′a ptr ⇒ ′a

The expression h_val h p takes a heap h ∶∶ word32 ⇒ word8 and a pointer p ∶∶ ′a ptr,
and decodes the bytes at the location of the pointer, producing an object of type ′a.

Conversely, the function heap_update encodes logical objects back into lists of
bytes. This function has type

heap_update ∶∶ ′a ptr ⇒ ′a ⇒ (word32 ⇒ word8) ⇒ word32 ⇒ word8

The expression heap_update p v h updates the heap h at location p ∶∶ ′a ptr, writing
the byte-encoded value of v ∶∶ ′a.

byte-level versus typed heap reasoning 129

To help explain the various components of Tuch et al.’s heap model, Figure 7.2 de-
picts how the different fields and functions fit together. We further give some examples
below showing how the pieces fit together in practice.

To access a pointer a ∶∶ word32 ptr, we would use the expression

gets (λs. h_val (hrs_mem (t_hrs_′ s)) a)

Here, the call to t_hrs_′ extracts the heap from the global state, hrs_mem fetches the
raw byte component of the heap, and finally h_val decodes the bytes at pointer a into
a word32 object. Similarly, to write the value v to pointer a ∶∶ word32 ptr, we would
use the line

modify (t_hrs_′_update (hrs_mem_update (heap_update a v)))

Here, the sequence of updates is simply the reverse of the sequence of accessors used
in the previous example.

C programs cannot freely read and write to arbitrary pointers, but instead have
certain restrictions on what constitutes a valid pointer. For instance, valid accesses must
not read or write to the address NULL, and must also be correctly aligned. To ensure
that pointer accesses are valid, Norrish’s C-to-Isabelle parser inserts guard statements of
the form Guard (λs. c_guard p) prior to each pointer p being dereferenced to ensure
that the pointer is valid. c_guard is defined as follows:

c_guard (p ∶∶ ′a ptr) ≡ ptr_aligned p ∧ c_null_guard p

ptr_aligned (p ∶∶ ′a ptr) ≡ align_of TYPE(′a) dvd unat (ptr_val p)

c_null_guard (p ∶∶ ′a ptr) ≡ 0 ∉ {ptr_val p ..+ size_of TYPE(′a)}

In these definitions, the pointer p has type ′a ptr. Each object of type ′a has
a corresponding size in bytes size_of TYPE(′a) and each type has an alignment
align_of TYPE(′a). For example, for the word32 type, size_of TYPE(word32) = 4 and
align_of TYPE(word32) = 4. In the above definitions, the function ptr_val of type
′a ptr ⇒ word32 converts pointers into their raw word32 values, while unat converts
word types into natural numbers.

The predicate ptr_aligned ensures that a pointer p referencing an object of type ′a
is correctly aligned for that type. Similarly, the predicate c_null_guard ensures that a
pointer p is not NULL and does not reference an object that would overlap the NULL

address by wrapping around the end of memory.
Figure 7.3 shows AutoCorres’ attempt to abstract the swap program shown in

Figure 7.1. Although AutoCorres has abstracted the Simpl to some extent—such as
converting to a monadic form and simplifying the program’s control flow structure—the
model of the heap remains the same as the original Simpl. AutoCorres has blindly trans-
lated all Simpl statements modifying global memory straight into its output without any
further modifications.

130 heap abstraction

do guard (λs. c_guard a);
t ← gets (λs. h_val (hrs_mem (t_hrs_′ s)) a);
guard (λs. c_guard b);
modify

(λs. t_hrs_′_update
(hrs_mem_update

(heap_update a (h_val (hrs_mem (t_hrs_′ s)) b)))
s);

modify (t_hrs_′_update (hrs_mem_update (heap_update b t)))
od

Figure 7.3: The swap function as translated by AutoCorres without any changes
to the heap model taking place.

7.1.2 Working with a byte-level heap

While the byte-level heap model is conceptually simple, it is unfortunately rather
difficult to work with. For example, we may wish to prove a Hoare triple stating that if
two pointers are passed into the function, their values will be swapped.

Our first attempt is to write the Hoare triple as follows:

 λs. h_val (hrs_mem (t_hrs_′ s)) a = va ∧
h_val (hrs_mem (t_hrs_′ s)) b = vb

swap′ a b
 λrv s. h_val (hrs_mem (t_hrs_′ s)) a = vb ∧

h_val (hrs_mem (t_hrs_′ s)) b = va

To simplify Tuch’s notation a little, we introduce two definitions, read_bytes and
write_bytes, which represent reading and writing objects into the heap at a given
location, defined as follows:

read_bytes p s ≡ h_val (hrs_mem s) p

write_bytes p v s ≡ hrs_mem_update (heap_update p v) s

This makes our goal a little clearer:

 λs. read_bytes a (t_hrs_′ s) = va ∧
read_bytes b (t_hrs_′ s) = vb

swap′ a b
 λrv s. read_bytes a (t_hrs_′ s) = vb ∧

read_bytes b (t_hrs_′ s) = va

This Hoare triple reads as follows: If the word32 at pointer a ∶∶ word32 ptr contains the
value va, and the word32 at b contains the value vb; then after running swap′ a b, the
word32 values at a and b will now be swapped.

This statement is not correct as written, however. For the postcondition to hold, the
precondition must be strengthened to ensure that: (i) the pointers a and b are aligned
to a 4-byte boundary; (ii) the pointers a and b are not NULL; (iii) the pointers a and b
do not reference objects that wrap around the end of the address space; and (iv) the

lifting the heap 131

pointers a and b do not reference objects that partially overlap (though if the pointers
are equal, the function remains correct). The first three of these additional conditions
are required by the C standard, while the fourth is required for the postcondition
to hold.2

Taking these additional preconditions into account, the correct Hoare triple for this
function is

 λs. read_bytes a (t_hrs_′ s) = va ∧
read_bytes b (t_hrs_′ s) = vb ∧
c_guard a ∧ c_guard b ∧
(a ≠ b ⟶ {ptr_val a ..+ size_of TYPE(word32)} ∩

{ptr_val b ..+ size_of TYPE(word32)} = ∅)
swap′ a b

 λrv s. read_bytes a (t_hrs_′ s) = vb ∧
read_bytes b (t_hrs_′ s) = va

Here, the two c_guard preconditions ensure that the pointers are correctly aligned and
non-NULL, while the final precondition ensures that the two regions of memory don’t
partially overlap. With this strengthened precondition, this Hoare triple can now be
proven correct, with a little manual reasoning showing that updating parts of the heap
disjoint to a read don’t affect that read.

If even this simple function requires such an involved specification, we are going
to struggle verifying anything with significantly more complexity. A better approach is
needed.

7.2 Lifting the heap

In the previous section, we saw that reasoning using a simple byte-level memory
model—while possible—is rather a tedious process. We would ideally like to allow the
end-user of AutoCorres to reason using a high-level memory model, abstracting over
details such as unaligned pointers or partially overlapping objects. As with previous
AutoCorres phases, we would also like the abstract model we generate to be provably
sound; that is, a correctness result on the abstract heap model should imply that the
byte-level program is also correct.

Tuch et al.’s heap lifting framework [103] provides some key ideas that we can
use to carry out a sound abstraction. In particular, Tuch et al.’s framework provides
powerful reasoning tools that can be manually applied by users to perform high-level
reasoning about a byte-level model of the heap. Because AutoCorres builds upon the
same memory model used by Tuch et al., users are already able to use Tuch et al.’s
manual reasoning framework on AutoCorres’ output. Our goal, however, is not to

2Low-level language aficionados will observe that in this simple example not all the preconditions are
strictly required: for instance, when swapping word32 values, if the pointers a and b are both aligned, then
they can’t wrap around the edge of memory, nor can they partially overlap. However, in more complex
examples—such as swapping larger structs—all of these preconditions are required.

132 heap abstraction

unsigned *allocate_word32(void)

{

unsigned *result = malloc(sizeof(unsigned));

if (result != NULL) {

/* Tag the bytes at "*result" as a "word32". */

/** AUXUPD: "(True, ptr_retyp \<acute>result)" */

}

return result;

}

allocate_word32′ ≡
do ret′ ← malloc′ (of_nat (size_of TYPE(word32)));

retval ← return (ptr_coerce ret′);
when (retval ≠ NULL)

(modify (t_hrs_′_update (hrs_htd_update (ptr_retyp retval))));
return retval

od

Figure 7.4: An example source code type annotation. If the return value of
malloc is non-NULL, it is tagged using a AUXUPD annotation. In particular, the
memory at pointer value result is tagged to be of type unsigned *; this choice
of tag is determined by the type of the pointer result. The notation “\<acute>”
in the AUXUPD annotation is the raw Isabelle notation for ‘result; that is, the
value of the result local variable.

provide users with powerful reasoning tools for dealing with a byte-level heap—instead,
we want to avoid exposing them to the low-level byte model at all.

To achieve this goal, we implement a simplification of Tuch et al.’s logic, more suit-
able for mechanised reasoning. We then use this simplified framework to automatically
abstract the C-to-Isabelle parser’s byte-level heap into an more abstract representation.
The end result is that the user can carry out sound reasoning on a split-heap, without
having to understand any of the machinery that was used to produce it.

In the rest of this section, we describe our implementation of a simplified version
of Tuch et al.’s framework, and then move on to describe how this framework is used
by AutoCorres.

7.2.1 Annotating the heap

In Tuch et al.’s heap lifting model, the user is required to tag bytes in the heap,
specifying what type each byte should be interpreted as.3 These tags take the form of
ghost state annotations, and are added to the C source code in the form of specially
parsed comments. Each address in memory can be marked as either the first byte of
a C type, such as an int or struct node; the footprint of an earlier type, where the

3These type tags act as a commitment; that is, the user commits that they will only access these bytes as
the type they have specified. Users may change type tags (and hence, their commitment) freely, but at any
point in time each byte will only have one possible interpretation.

lifting the heap 133

address simply continues a previous type; or untyped memory. We introduce a datatype
heap_typ_contents representing each of these possibilities:

datatype heap_typ_contents =
HeapType typ_uinfo

| HeapFootprint
| HeapEmpty

The HeapType constructor of this datatype takes a parameter of type typ_uinfo, which
is a deeply embedded description of an Isabelle/HOL type. Such Isabelle/HOL types are
converted into typ_uinfo types using the function

typ_uinfo_t ∶∶ ′a itself ⇒ typ_uinfo

The function typ_uinfo_t has overloaded definitions—that is, one definition for each
Isabelle type that has a corresponding C type—which give information about the C
encoding of the Isabelle type. The typ_uinfo returned by typ_uinfo_t is used as the tag
for the HeapType constructor. For example, the first byte of a word32 object on the
heap would have the tag

HeapType (typ_uinfo_t TYPE(word32))

These type annotations are stored in the hrs_htd component of the t_hrs_′ field of
the global state, previously depicted in Figure 7.2. The type of the hrs_htd component
is somewhat involved:

hrs_htd (t_hrs_′ s) ∶∶ word32 ⇒ bool × (nat ⇒ (typ_uinfo × bool) option)

The hrs_htd component is a function that, for each byte in the heap, defines a heap
type descriptor for that byte. Each such descriptor consists of a tuple of two components:
the first half is a bool that is true if the input memory address is mapped. The second
half of the tuple is a type slice. The type slice states what types the current byte can be
validy interpreted as,4 and whether the address is the first byte of that type or merely
the footprint of a previous byte.

For example, in the following heap diagram, the two bytes starting from ad-
dress 0xa010 are tagged as signed shorts (abbreviated w16), while the other bytes
are untagged:

heap values

type tags

abc36f5a

w16

a0
0f

a0
10

a0
11

a0
12

▴

The corresponding hrs_htd function for these four addresses would be as follows:

4 Individual bytes in Tuch et al.’s framework may have multiple different interpretations due to the nesting
of C structs.

134 heap abstraction

hrs_htd (t_hrs_′ s) p =

⎧{{{
⎨{{{⎩

(False, λn. None) p = 0xa00f

(True, (λn. None)(0 ∶= Some (typ_uinfo_t TYPE(word16), True))) p = 0xa010

(True, (λn. None)(0 ∶= Some (typ_uinfo_t TYPE(word16), False))) p = 0xa011

(False, λn. None) p = 0xa012

Much of the complexity within the hrs_htd function stems from Tuch et al.’s
original reasoning framework, which used these constructs to implement a separation
logic directly on the bytes of the heap. We do not need this complexity for our
purposes, so simply define a function

heap_type_tag ∶∶ (word32 ⇒ bool × (nat ⇒ (typ_uinfo × bool) option))
⇒ word32 ⇒ heap_typ_contents

that translates Tuch et al.’s type tag to our simpler heap_typ_contents datatype.5 When
we combine the function heap_type_tag with the hrs_htd function, we end up with a
function that maps from heap addresses to heap_typ_contents:

heap_type_tag (hrs_htd (t_hrs_′ s)) ∶∶ word32 ⇒ heap_typ_contents

For instance, the heap in the previous example has the following definition using
heap_typ_contents:

heap_type_tag (hrs_htd (t_hrs_′ s)) p =

⎧{{{
⎨{{{⎩

HeapEmpty p = 0xa00f

HeapType (typ_uinfo_t TYPE(word16)) p = 0xa010

HeapFootprint p = 0xa011

HeapEmpty p = 0xa012

Annotating the source code

A few questions remain, however. How do we add type annotations to our program?
How can we specify the type of memory allocated by malloc? What do we do if we
want to ‘recycle’ bytes as another type?

The type annotations are controlled directly in the C code using specially-formatted
comments, which are then parsed by the C-to-Isabelle parser. These comments take
the form:

/** AUXUPD: "(g, f)" */

5 If multiple types exist for a particular byte in the original hrs_htd component of the heap, heap_type_tag
simply selects the outer-most type.

lifting the heap 135

Here, g is an expression that will be translated into a Simpl Guard statement,6 while f
is an expression that takes the existing hrs_htd component of the state and updates the
type tag of one or more bytes to a new value.

Such type annotations are required only after addresses in memory change the
type they should be interpreted as. In a standard C program, this will typically only
occur after calls to functions such as malloc and free, when memory is reinterpreted
through a pointer cast, or when accessing different members of a union. Figure 7.4
shows an example of such an annotation, both in the source code and the output of
AutoCorres with heap abstraction disabled.

7.2.2 Lifting the heap

Tuch et al. defines a class of functions heap_lift that projects the byte-level heap of
type word32 ⇒ word8 into a partial object-level heap, having type ′a ptr ⇒ ′a option.
Our simplified definition of Tuch’s heap lifting function is as follows:

heap_lift s (p ∶∶ ′a ptr) ≡
if type_tag_valid s p ∧ c_guard p
then Some (read_bytes p s) else None

The predicate type_tag_valid in this definition determines if the heap in state s at
location p is correctly tagged for the type of pointer p. It is defined as follows:

type_tag_valid s (p ∶∶ ′a ptr) ≡
((heap_type_tag (hrs_htd s) (ptr_val p))

= HeapType (typ_uinfo_t TYPE(′a))) ∧
(∀y. (y ∈ {ptr_val p +w 1 ..+ size_of TYPE(′a) − 1})

⟶ heap_type_tag (hrs_htd s) y = HeapFootprint)

In the lifted heap, a particular address contains a valid object if and only if (i) the
entire range of addresses occupied by the object are correctly tagged; (ii) the pointer
being accessed is correctly aligned; and (iii) the pointer is not NULL and does not wrap
around the end of the address space. If any of these conditions fail to hold, the address
resolves to None. Figure 7.5 depicts this projection.

We can derive simplified versions of reasoning Tuch et al.’s rules using our own
simplified definitions. For instance, our definition of the projected heap immediately
gives rise to Tuch et al.’s rule:

heap_lift s p = Some v
c_guard p

That is, if a heap location value is non-None on the lifted heap, then the pointer is
valid on the concrete heap.

6We don’t use the guard parameter g in our work, but it could be used, for instance, to assert that the
previous type was a particular value.

136 heap abstraction

f300

f301

f302

f303

f304

f305

f306

heap values

type tags
word heap

word heap

f2ff 44

47

e2

9d

a4

48

59

21

w8

w16

▴

w8

w16

▴

44

a4

e247

misaligned

Figure 7.5: The heap lifting function.

Moreover, the user can reason that objects in the projected heap cannot partially
overlap other objects of the same type:

heap_lift s (a ∶∶ ′a ptr) = Some va
heap_lift s (b ∶∶ ′a ptr) = Some vb

a = b ∨ {ptr_val a ..+ size_of TYPE(′a)} ∩
{ptr_val b ..+ size_of TYPE(′a)} = ∅

nor can objects of different types overlap at all:

heap_lift s (a ∶∶ ′a ptr) = Some va
heap_lift s (b ∶∶ ′b ptr) = Some vb

typ_uinfo_t TYPE(′a) ≠ typ_uinfo_t TYPE(′b)
{ptr_val a ..+ size_of TYPE(′a)} ∩
{ptr_val b ..+ size_of TYPE(′b)} = ∅

The proof for both of these rules stem from the observation that for two objects to
partially overlap, one object would have to be incorrectly tagged. Because only correctly
tagged objects are present in the lifted heap, the objects cannot overlap.

With these properties in hand, we can finally derive one of the main theorems
from Tuch et al.’s work, which shows that writes to valid addresses are equivalent to
functional updates on the projected heap:

heap_lift s p = Some v′
heap_lift (write_bytes p v s) = (heap_lift s)(p ∶= Some v)

With our definition heap_lift and this rule, we can (i) lift the byte-level heap—
containing the bytes of every type of object—into multiple abstract heaps, one for
each different type; (ii) read objects from the heap by accessing the appropriate heap;
and finally (iii) write objects to the heap by carrying out functional updates.

Reasoning at the level of lifted heaps greatly simplifies proofs interacting with the

lifting the heap 137

heap. The correctness statement of our swap function becomes:

 λs. heap_lift (t_hrs_′ s) a = Some va ∧
heap_lift (t_hrs_′ s) b = Some vb

swap′ a b
 λrv s. heap_lift (t_hrs_′ s) a = Some vb ∧

heap_lift (t_hrs_′ s) b = Some va

This result is proved by unfolding the definition of swap′, executing a VCG, and
running Isabelle/HOL’s auto tactic with the above rules.

7.2.3 Limitations of the heap lifting approach

Tuch et al.’s original heap lifting framework relies heavily on Isabelle/HOL’s simplifier to
automatically apply recursive conditional rewrite rules, so that low-level C operations
are rewritten into high-level heap updates.7

As programs become more complex, so does application of the lifting predicates.
For instance, consider Suzuki’s challenge [97] to prove that the following fragment
returns 4 under the assumption that the four pointers w, x, y and z are distinct:

w->next = x; x->next = y; y->next = z; x->next = z;

w->data = 1; x->data = 2; y->data = 3; z->data = 4;

return w->next->next->data;

In this fragment of code, Isabelle/HOL times out while attempting to apply the heap lift-
ing rules described above. The primary problem is the deep nesting of write operations,
preventing Isabelle’s simplifier from identifying which rewrite rules to apply, because
their recursive preconditions become too large and too deep. Basically, at even a moder-
ately large scale, the prover becomes overloaded simply applying heap abstraction rules,
and never proceeds to reasoning about the actual semantics of the program.

Tuch’s framework also suffers the problem that it is awkward to state what doesn’t
change during a function’s execution. For instance, in our swap example we might
like to say that the two input pointers are swapped in memory, and nothing else
changes. The difficulty of writing this statement using Tuch’s framework arises because
of Isabelle/HOL’s limited ability to quantify over types. While we can say that lifted
heaps of a particular type remain unchanged, it is harder to say that lifted heaps of all
types remain unchanged without imposing side conditions on the user that must be
manually discharged.8

Ad hoc heap lifting is also unsatisfactory on a more fundamental usability level:
while C programs need byte-level access to memory on occasion, most C functions are
type-safe. Ideally, for the majority of type-safe code, we should present the user with a
specification that operates directly on the lifted heap instead of requiring the user to
manually appeal to heap abstraction predicates.

7Our simplified implementation of Tuch et al.’s framework suffers the same problem.
8Tuch tackled the problem of writing specifications which deal with specifying what doesn’t change on the

heap when a function executes by using a separation logic implementation on top of his framework [100].
While this solves the problem, it is rather a heavy-weight solution. Ideally there would be a simpler solution
for a trivial function such as swap.

138 heap abstraction

7.3 Automated state abstraction

The approach we propose in this chapter to simplify reasoning about pointer programs
is to add an abstraction step to AutoCorres where we automatically translate the
program to use a split-heap model instead of a byte-level heap model. We call this
process heap abstraction. This involves taking the globals record generated by the
C-to-Isabelle parser to represent the program’s global state, and generating a new record
lifted_globals that contains a separate heap for each type used in the program. We
finally rewrite the input program specification to operate on this new abstract state
type. Reasoning on such an abstracted state removes the need to invoke lifting rewrite
rules, instead using standard Isabelle/HOL mechanisms such as functional updates to
reason about the heap.

Because heap abstraction hides the byte-level view of the heap, low-level reasoning
on heap abstracted functions is no longer possible. To ensure that users still have the
flexibility to reason about functions that deliberately violate type-safety, such as memset

or memcpy, we also introduce mechanisms that allow heap-abstracted functions to call
into byte-level functions, and vice versa. Using these mechanisms, we can allow the user
to opt-out of heap abstraction on a per-function basis.

This section introduces the refinement framework and rules used to carry out the
abstraction. The following sections provide examples using the resulting translation, and
demonstrate how heap abstraction can interact with type-unsafe code.

7.3.1 Generating the abstract state type

We start the process of heap abstraction by generating an appropriate abstract state
type for our program. This is done by analysing the source program to determine
which types the program accesses on the heap, i.e., which pointer types are used as
arguments to the h_val and heap_update functions described earlier. For each heap
type ′a required, we place two functions into the lifted_globals record: an is_valid_x
function of type ′a ptr ⇒ bool and a heap_x function of type ′a ptr ⇒ ′a, where x

is the name of the type ′a. The former function determines if a particular address
contains a valid value (that is, ∃x. heap_lift s p = Some x), while the latter function
contains the logical value of each address (the (heap_lift s p)). For example, in a
program that uses unsigned long pointers and struct node pointers, the generated
lifted_globals record would contain the following fields:

record lifted_globals =
is_valid_w32 ∶∶ word32 ptr ⇒ bool
heap_w32 ∶∶ word32 ptr ⇒ word32
is_valid_node_C ∶∶ node_C ptr ⇒ bool
heap_node_C ∶∶ node_C ptr ⇒ node_C
⋯

While splitting data and validity information initially appears more complex than
simply having a partial function ′a ptr ⇒ ′a option, we have found that this approach
allows a clearer separation between what data is contained at an address, and which

automated state abstraction 139

addresses are valid. Further, while the data at a particular address frequently changes,
the validity of an address rarely changes. Splitting the two dimensions makes it clear
that changes to one are independent of the other.

7.3.2 Ingredients for generating the abstract program

Once we have a new abstract state for our program to use, we next translate the actual
program to use this generated state. Informally, when abstracting a program from the
byte-level heap to an object-level heap, three primary cases must be handled:

Heap reads: Operations on the concrete specification that access the heap, such as
h_val, need to be abstracted into an access of the equivalent abstract function. One
difficulty is that for many concrete operations, the abstract equivalent is only sound
given certain side conditions: a h_val is only equivalent to a functional access if the
pointer being read from is valid. To resolve this, when translating an expression we
emit suitable guard statements prior to each translated expression.

Heap writes: Operations that modify the heap are handled similarly to heap reads. A
heap_update operation becomes a functional update on the appropriate heap, again
with guards emitted to deal with the side condition that the pointer being written to
is valid.

Guard statements: c_guard assertions in the concrete specification are abstracted into
accesses of the appropriate is_valid_x function.

We describe how each of these three cases are formally abstracted in the next
section.

Formalising heap abstraction

To generate the actual abstract program, we use a syntax-directed system of rules to
convert statements and expressions in our concrete program to their abstract equiva-
lents, similar to that used in Chapter 6. That is, we simultaneously generate both the
abstract version of the program and a proof that the abstraction is correct.

The top-level statement we use to both generate and prove the abstraction is a
refinement predicate, similar to that used in previous chapters. The predicate for heap
abstraction is called corresHA, and is defined as follows:

corresHA st A C ≡
∀s. ¬ failed (A (st s)) ⟶

(∀(r, t) ∈ results (C s).
case r of

Exc r ⇒ (Exc r, st t) ∈ results (A (st s))
∣ Norm r ⇒ (Norm r, st t) ∈ results (A (st s))) ∧

¬ failed (C s)

Informally, the corresHA predicate declares that a monadic program C is a refine-
ment of an abstract program A if the following holds (and assuming that A executing

140 heap abstraction

hrs_htd

t_hrs_'

word word

hrs_mem

globals

word ⇒ word

a_' b_'

word ⇒ typ_tag

word word

lied_globals

a_' b_'

is_valid_w32

heap_w32

is_valid_node

heap_node

node ptr ⇒ bool

node ptr ⇒ node

word ptr ⇒ bool

word ptr ⇒ word

id

heap_li

Figure 7.6: Translation from the default C-to-Isabelle parser global state to a
lifted global state. Each object type used in the C sources is given functions
of the form heap_x and is_valid_x . The former maps a pointer to a high-level
object, while the latter maps a pointer to a boolean indicating if the address
contains a valid object. Global variables (in this example, a_′ and b_′) are
mapped unchanged into the new state type.

from the state st s does not fail): (i) for each normal execution of C, there is an equiv-
alent execution of A which has a corresponding abstract state; (ii) for each exceptional
execution of C, A similarly has a corresponding abstract execution; and (iii) under the
assumption that A has not failed, neither will C.

The first of these conditions states that program A produces a superset of states of
program C. Thus, if a property holds for all states in program A, then we can reason
that it also holds on program C. The second condition allows us to reason that program
C will never fail by proving that program A never fails. With these two conditions,
we can typically prove useful properties about our original concrete program without
needing to ever reason on it directly, as we will demonstrate in Chapter 8.

The state translation parameter st of the above predicate needs to convert the
byte-level state globals into our newly generated type lifted_globals. Internally it does
this by using the heap_lift function described earlier. For example, in a program that
uses unsigned int pointers and struct node pointers, and has two global variables a

and b, the generated state translation function st would be:
st s ≡

⦇ is_valid_w32 = λp. ∃x. heap_lift (t_hrs_′ s) p = Some x,
heap_w32 = λp. the (heap_lift (t_hrs_′ s) p),
is_valid_node_C = λp. ∃x. heap_lift (t_hrs_′ s) p = Some x,
heap_node_C = λp. the (heap_lift (t_hrs_′ s) p),
a_′ = a_′ s,
b_′ = b_′ s ⦈

The is_valid_x and heap_x functions are derived from the t_hrs_′ component of the
original heap, while the global variables a_′ and b_′ are copied from the globals record
into the lifted_globals record unchanged. This is depicted in Figure 7.6.

automated state abstraction 141

During the abstraction process, we also need to abstract expressions and state-modi-
fication statements. To achieve this, we define two new predicates. The first predicate
abs_exprHA states that a particular abstract expression corresponds to a concrete expres-
sion, while the second predicate abs_modifiesHA asserts that an abstract state-modifying
statement corresponds to a concrete equivalent:

abs_exprHA st P a c ≡
∀s. P (st s) ⟶ c s = a (st s)

abs_modifiesHA st P a c ≡
∀s. P (st s) ⟶ st (c s) = a (st s)

Both functions take a state translation function st and a precondition P on the abstract
state st s. The first function, abs_exprHA, states that the expression a, when given an
abstract state st s, matches the concrete expression c given a concrete state s. The
second function, abs_modifiesHA, states that abstracting a state and then running a on
the result is the same as running c on the original state and then abstracting the result.

The first function abs_exprHA is used to declare that two expressions (that possibly
read the global state) are equal; while abs_modifiesHA declares that two functions that
return a new state are equivalent with respect to st. The first is useful for values that
are not expected to change after abstraction, such as the result of numeric calculations,
while the second is useful for statements that modify the state, such as writing to a
pointer.

For example, we can write that the following expressions that model the C expres-
sion *p + 1 are equal (under the precondition that p is valid):

abs_exprHA st (λs. is_valid_w32 s p)
(λs. heap_w32 s (p ∶∶ word32 ptr) +w 1)
(λs. read_bytes p (t_hrs_′ s) +w 1)

Additionally, we can write that the following state modification statements that model
the C statement *p = 42 result in equivalent states (again, under the precondition that
p is valid):

abs_modifiesHA st (λs. is_valid_w32 s p)
(heap_w32_update (λh. h(p ∶= 0x2A)))
(t_hrs_′_update (write_bytes p 0x2A))

Writing program-agnostic rules

AutoCorres does not know in advance what heap types a given program will use, nor
the exact format of the globals type, the lifted_globals type or the state translation
function st. In fact, even the constants t_hrs_′ and t_hrs_′_update don’t exist until
the C-to-Isabelle parser has run to completion. This means that we cannot write static
theorems referencing these constants. Any rule that we use for heap abstraction must

142 heap abstraction

read_write_valid r w ≡
(∀f s. r (w f s) = f (r s)) ∧
(∀s f . f (r s) = r s ⟶ w f s = s) ∧
(∀f f ′ s. f (r s) = f ′ (r s) ⟶ w f s = w f ′ s) ∧
(∀f g s. w f (w g s) = w (λx. f (g x)) s)

valid_implies_cguard st vr ≡
∀s p. vr (st s) p ⟶ c_guard p

heap_decode_bytes st vr hr t_hrsr ≡
∀s p. vr (st s) p ⟶

hr (st s) p = h_val (hrs_mem (t_hrsr s)) p

heap_encode_bytes st vr hw t_hrsw ≡
∀s p x. vr (st s) p ⟶

st (t_hrsw (hrs_mem_update (heap_update p x)) s) =
hw (λf . f (p ∶= x)) (st s)

write_preserves_valid vr hw ≡
∀p f s. vr s p ⟶ vr (hw f s) p

Table 7.1: Formal definitions of the predicates used in the valid_heap definition.

therefore be agnostic of these details. To help achieve this, we introduce a predicate
valid_heap, defined as follows:9

valid_heap st hr hw vr vw t_hrsr t_hrsw ≡
read_write_valid hr hw ∧
read_write_valid vr vw ∧
read_write_valid t_hrsr t_hrsw ∧
valid_implies_cguard st vr ∧
heap_decode_bytes st vr hr t_hrsr ∧
heap_encode_bytes st vr hw t_hrsw ∧
write_preserves_valid vr hw

The predicate takes seven parameters: st is the state translation function; t_hrsr and
t_hrsw correspond to the yet-to-be-defined t_hrs_′ reader function and the equivalent
t_hrs_′_update writer function, respectively. hr and hw are the heap_x reader and
writer functions for a particular type, while vr and vw are the corresponding is_valid_x
reader and writer functions for that type.

Informally, the valid_heap predicate states that (i) the pairs of readers and writ-
ers have ‘sensible’ semantics; (ii) if is_valid_x is true for a particular address, then
c_guard also holds for that address; (iii) hr contains correctly decoded objects for valid
addresses; (iv) hw writes correctly encoded objects for valid addresses; and (v) writing
data to the heap does not affect the validity of pointers.

The formal definition of the predicates used in the definition of valid_heap are
shown in Table 7.1. The predicates are as follows:

9 Isabelle/HOL users will observe that Isabelle’s locales feature [8] could be used here; from a proof
mechanisation perspective, we found that simply having an explicit assumption was easier to implement.

automated state abstraction 143

• read_write_valid r w takes a field reader r ∶∶ ′r ⇒ ′a, which extracts a field
of type ′a from a record of type ′r, and a field writer w, which is given a
function that updates the field’s existing value, and returns a new record. The
read_write_valid predicate states that: (i) reading from a just-written field re-
turns that same value; (ii) writing an existing value to a field causes the record
to be unchanged; and (iii) writing the same field value to the same original
record will result in the same new record.

• valid_implies_cguard states that an abstract address is only valid if the concrete
pointer satisfies the c_guard predicate.

• heap_decode_bytes and heap_encode_bytes together state that reads and writes
to valid abstract addresses correspond to the appropriate h_val and heap_update
operations on the concrete heap.

• write_preserves_valid states that heap updates do not affect the value read out of
the is_valid_x functions.

When we write our heap abstraction rules, we assume that the valid_heap predicate
is true, which in turn lets us assume key properties required of functions associated
with it. After AutoCorres has generated the lifted_globals type (along with its associated
is_valid_x and heap_x functions and state translation function st), it will then proceed
to show that the valid_heap predicate holds for each type. Once proven, the entire set
of heap abstraction rules can be used.

For example, the following rule states that a c_guard statement on the concrete
heap can be abstracted into a check of the is_valid_x predicate (i.e., vr) on the
abstract heap:

valid_heap st hr hw vr vw t_hrsr t_hrsw
corresHA st (guardE (λs. vr s p)) (guardE (λs. c_guard p))

When AutoCorres’ heap abstraction phase begins, it will instantiate this rule once for
each generated heap, using the automatically proven valid_heap predicates. From our
example heap containing the types unsigned long and struct node, this will result in
the two rules:

corresHA st
(guardE (λs. is_valid_w32 s p))
(guardE (λs. c_guard (p ∶∶ word32 ptr)))

corresHA st
(guardE (λs. is_valid_node_C s p))
(guardE (λs. c_guard (p ∶∶ node_C ptr)))

The first abstracts c_guard assertions of word32 pointers into is_valid_w32 checks,
while the second does the same for the node_C type.

7.3.3 Heap abstraction ruleset

As described previously, AutoCorres uses a syntax-directed set of rules to carry out
the conversion from a byte-level heap to an abstract object-level heap. The rules used

144 heap abstraction

Statement abstraction

abs_modifiesHA st P m m′
corresHA st (do guardE P; modifyE m od) (modifyE m′)

HeapAbsModify

abs_exprHA st P e e′
corresHA st (do guardE P; getsE e od) (getsE e′)

HeapAbsGets

abs_exprHA st P e e′
corresHA st (guardE (λs. P s ∧ e s)) (guardE e′)

HeapAbsGuard

∀r. corresHA st (B r) (B′ r)
∀r. abs_exprHA st (P r) (c r) (c′ r)

corresHA st
(do guardE (P i);

whileLoopE c (λr. do v ← B r; guardE (P v); returnE v od) i
od)

(whileLoopE c′ B′ i)
HeapAbsWhile

corresHA st L L′ corresHA st R R′ abs_exprHA st P c c′
corresHA st (do guardE P; conditionE c L R od) (conditionE c′ L′ R′)

HeapAbsCond

corresHA st L L′ ∀r. corresHA st (R r) (R′ r)
corresHA st (L >>=𝖤 R) (L′ >>=𝖤 R′)

HeapAbsBind

corresHA st L L′ ∀r. corresHA st (R r) (R′ r)
corresHA st (catchE L R) (catchE L′ R′)

HeapAbsCatch

corresHA st (throwE a) (throwE a)
HeapAbsThrow

Table 7.2: Syntax-directed rules used for heap abstraction of program statements.

automated state abstraction 145

Expression and state modification abstraction

abs_exprHA st (λ_. True) (λs. c) (λs. c)
HeapAbsConstant

valid_heap st hr hw vr vw t_hrsr t_hrsw
abs_exprHA st P e e′

abs_exprHA st (λs. P s ∧ vr s (e s))
(λs. hr s (e s)) (λs. h_val (hrs_mem (t_hrsr s)) (e′ s))

HeapAbsExpr

valid_heap st hr hw vr vw t_hrsr t_hrsw
abs_exprHA st Pb b b′ abs_exprHA st Pc c c′

abs_modifiesHA st (λs. Pb s ∧ Pc s ∧ vr s (b s)) (λs. hw (λx. x(b s ∶= c s)) s)
(λs. t_hrsw (hrs_mem_update (heap_update (b′ s) (c′ s))) s)

HeapAbsModifies

valid_heap st hr hw vr vw t_hrsr t_hrsw
abs_exprHA st P f f ′

abs_exprHA st (λs. P s ∧ vr s (f s))
(λs. True) (λs. c_guard (f ′ s))

HeapAbsGuard

abs_exprHA st P b b′ abs_exprHA st Q a a′
abs_exprHA st (λs. P s ∧ Q s) (λs. a s (b s)) (λs. a′ s $ b′ s)

HeapAbsFunApp

Table 7.3: Syntax-directed rules used for heap abstraction of state updates and
expressions.

146 heap abstraction

to abstract byte-level heaps into their abstract equivalents are shown in Table 7.2 and
Table 7.3.

The first table lists rules required to abstract statements. These rules do not signifi-
cantly change the program structure, but simply convert the expressions inside getsE
statements, the conditions of condition and whileLoopE statements and so on, to their
abstract equivalents using abs_exprHA and abs_modifiesHA.

The predicates abs_exprHA and abs_modifiesHA both contain a precondition. For
most statements, this precondition is checked by emitting a guardE statement prior
to the statement being abstracted (such as in HeapAbsModify or HeapAbsGets). In
the case of the condition of whileLoopE, the precondition must be checked every time
the loop condition is evaluated; hence, a guardE statement is emitted both before
the loop is first executed, and also at the end of the loop’s inner body, as shown in
HeapAbsWhile.

Usually, the guard statements emitted during heap abstraction will be redundant,
either because the expression being abstracted does not access the heap (and hence the
precondition is (λs. True)), or because it has already been checked by a previous guard
statement originally emitted by the C-to-Isabelle parser. In both cases, the flow-sensitive
optimisations described in Section 5.2 will remove such redundant guards after heap
abstraction is complete.

Table 7.3 shows rules for abstracting expressions. The rule HeapAbsConstant al-
lows expressions that do not access the global state to be copied into the abstract
output unmodified. The rules HeapAbsExpr, HeapAbsModify and HeapAbsGuard con-
vert expressions, state-modification statements and c_guard expressions to their abstract
equivalents.

The rule HeapAbsFunApp breaks compound expressions into component parts. For
example, if an expression of the form a b does not match any other rule, the rule
HeapAbsFunApp will separately attempt to abstract a and b. These sub-expressions
may contain concrete accesses to the byte-level heap, which can then be abstracted.
Isabelle/HOL’s resolution engine performs higher-order unification, which means a
pattern such as ?a ?b can unify an infinite number of ways with any other term. We use
Lammich’s trick [63] to tame Isabelle’s resolution engine by making function application
explicit by converting the term a b to a $ b (where the operator $ is a constant
indicating function application), before attempting to apply the rule HeapAbsFunApp.

7.3.4 Example: swap

Figure 7.7 shows our example swap program after heap abstraction has been applied.
Here we introduced the notation s[p] for accessing the heap in state s at pointer p;
and s[p ∶= v] for writing the value v in state s at pointer p. The particular heap being
read/modified is determined by the type of the pointer p.

As expected, the h_val and heap_update functions on the concrete heap are con-
verted to functional accesses and updates, while the c_guard checks of pointers have
been abstracted into checks on the is_valid_w32 function.

automated state abstraction 147

do guard (λs. is_valid_w32 s a);
t ← gets (λs. s[a]);
guard (λs. is_valid_w32 s b);
modify (λs. s[a ∶= s[b]]);
modify (λs. s[b ∶= t])

od

Figure 7.7: The swap function translated by AutoCorres with heap abstraction
enabled.

Our correctness statement for swap can now be stated as follows:

 λs. is_valid_w32 s a ∧ s[a] = va ∧
is_valid_w32 s b ∧ s[b] = vb

swap′ a b
 λrv s. s[a] = vb ∧ s[b] = va

This goal is automatically discharged by applying a VCG and running Isabelle/HOL’s
built-in auto tactic, without needing to appeal to further rules. Having eliminated the
need for complex conditional rewrites, Isabelle/HOL is now able to work directly on
simpler data types with all the power of its built-in automation.

We can also write a stronger version of the rule that is more precise about the
effects of the function:

∀s0. λs. is_valid_w32 s a ∧ is_valid_w32 s b ∧ s = s0
swap′ a b

 λrv s. rv = () ∧ s = s0[a ∶= s0[b]][b ∶= s0[a]]

This rule states not only that the values of a and b are swapped, but that these are the
only changes to the state that are made. This rule, like the previous, is solved simply by
applying a VCG and the built-in auto tactic.

7.3.5 Example: Unsuccessfully abstracting a type-unsafe function

Heap abstraction only produces a valid abstraction if the function being abstracted is
type-safe. In particular, the source program must use source annotations to commit
to each byte only being accessed as a single type, as described earlier in Section 7.2.1.
Section 7.5 looks at how we can reason about programs that mix calls among functions
using abstract object-level heaps and functions using their original byte-level heaps, but
for now it is instructive to observe what happens if we attempt to abstract a type-unsafe
function.

The C function shown in Figure 7.8 takes a pointer to an unsigned integer u, and
then uses a type-unsafe cast to update the first byte of the value at *u to the value
1. Finally, it returns the new value of *u. On a little-endian machine,10 running the
program with an input of 1000 (0x3e8) will cause the program to return 769 (0x301).

10A little-endian machine stores in memory the least-significant byte of an integer value first; so the integer
value 0x11223344 will be stored in memory as “44 33 22 11”.

148 heap abstraction

unsigned int type_unsafe(unsigned int *u)

{

unsigned char *c = (unsigned char *)u;

*c = 1;

return *u;

}

type_unsafe′ u ≡
do c ← return (ptr_coerce u);

guard (λs. is_valid_w8 s c);
modify (λs. s[c ∶= 1]);
guard (λs. is_valid_w32 s u);
gets (λs. s[u])

od

Figure 7.8: A type-unsafe program and its (apparently) incorrect abstraction
generated by AutoCorres’ heap abstraction.

Abstracting the program using AutoCorres with heap abstraction enabled results in
the output shown at the bottom of Figure 7.8. AutoCorres has separated the read of the
unsigned int pointer and the write to the unsigned char pointer into two separate
heaps. The abstracted function hence (incorrectly) returns the initial value of *u.

We can go on and confirm our intuition that the abstract output of AutoCorres is
incorrect by proving the following theorem:

 λs. is_valid_w32 s p ∧
is_valid_w8 s (ptr_coerce p ∶∶ word8 ptr) ∧ s[p] = v

type_unsafe′ p
 λrv s. rv = v

The Hoare triple states that, assuming that p is a valid word32 pointer and also a
valid word8 pointer, then the function will return the initial (unchanged) value of
heap_w32 p. This clearly does not match our observation of running the C code, so
something has clearly gone wrong. How did we arrive at this unsound reasoning?

The first observation we can make is that the Hoare triple above really is correct
if we consider the function type_unsafe′ in isolation from its origin C code; that is,
the abstract function type_unsafe′ really does have the behaviour described in the
Hoare triple above. The problem isn’t in our reasoning about type_unsafe′, but that
this function doesn’t match our concrete C program.

The second observation we make is that no concrete state s, when abstracted
through the generated state translation function st, satisfies the precondition of our
Hoare triple above. In particular, there does not exist an abstract state st s such that
is_valid_w32 and is_valid_w8 hold on the same address. We can prove this with the
theorem:

∄s. is_valid_w32 (st s) (p ∶∶ word32 ptr) ∧
is_valid_w8 (st s) (ptr_coerce p ∶∶ word8 ptr)

This is because each byte has a single type tag associated with it. On the abstract level,
an object can only be valid if its associated bytes are correctly tagged. For a single
address to be both a valid word8 and a valid word32, it would need to be tagged with

abstracting c structures 149

two different types. We can’t make the precondition of the Hoare triple any weaker;
if either the is_valid_w32 or is_valid_w8 clauses are removed, one of the two guard
statements in the function body will fail.

So how do these observations explain our apparently unsound abstraction? Recall
that the definition of corresHA starts with the implication:

∀s. ¬ failed (A (st s)) ⟶ …

That is, refinement only holds for states which, when abstracted, run to completion
without failure. In the case of type_unsafe′, every abstracted state will have to fail one
of the two guards in the function’s body and hence, refinement doesn’t hold.

In Section 5.4, we looked at how the abstractions of AutoCorres can be formally
linked to the original concrete C programs. Carrying out this process on type_unsafe′
would have revealed that the generated abstract specification always leads to failure for
states that came from our original Simpl program, and hence the generated abstract
program is of little use.

7.4 Abstracting C structures

C structures are used in most non-trivial C programs, allowing new compound types to
be formed by combining several simpler types. When the C-to-Isabelle parser translates
a C structure, it generates (i) an Isabelle record representing the structure; (ii) a deeply
embedded encoding of the byte layout of the C structure; and (iii) a deeply embedded
encoding of how the byte layout of the structure corresponds to the Isabelle record.

For example, given the C structure:

struct node {

struct node *next;

int data;

};

the C-to-Isabelle parser would generate the following record:

record node_C =
next_C ∶∶ node_C ptr
data_C ∶∶ sword32

The deeply embedded encodings of the byte layout of the structure and its corre-
spondence to the generated record were developed by Tuch et al., and described in
detail in [100].

When the C-to-Isabelle parser translates field accesses such as p->data into Simpl, it
generates pointer/offset expressions, such as:

p +p int (field_offset TYPE(node_C) [′′data′′])

Here, the function field_offset decodes the structure layout information of the node_C
type and returns the number of bytes between the beginning of the node structure and

150 heap abstraction

Structure abstraction

valid_field st fn fr fw hr hw vr vw t_hrsr t_hrsw
abs_exprHA st P e e′

abs_exprHA st (λs. P s ∧ vr s (e s)) (λs. fr (hr s (e s)))
(λs. h_val (hrs_mem (t_hrsr s)) (Ptr &(e′ s→fn)))

HeapAbsFieldRead

valid_field st fn fr fw hr hw vr vw t_hrsr t_hrsw
abs_exprHA st P a a′ abs_exprHA st Q b b′

abs_modifiesHA st (λs. P s ∧ Q s ∧ vr s (a s))
(λs. hw (λold. old(a s ∶= fw (b s) (old (a s)))) s)
(λs. t_hrsw (hrs_mem_update (heap_update (Ptr &(a′ s→fn)) (b′ s))) s)

HeapAbsFieldWrite

valid_field st fn fr fw hr hw vr vw t_hrsr t_hrsw
abs_exprHA st P a a′

abs_exprHA st (λs. P s ∧ vr s (a s))
(λs. True) (λs. c_guard (Ptr &(a′ s→fn)))

HeapAbsFieldGuard

Table 7.4: Rules used by AutoCorres to abstract reads and writes to fields of
structures.

the data field. In this example, the offset is 4. We use the notation &(p→[′′data′′]) as
a shorthand for the above expression.

The last argument of field_offset takes a list of strings representing field names. For
instance, p->a.b.c would be represented as:

&(p→[′′a′′, ′′b′′, ′′c′′])

Our goal when abstracting programs that use structures is to convert these point-
er/offset expressions into record accesses. For instance, expressions such as:

h_val (hrs_mem (t_hrs_′ s)) (Ptr &((p ∶∶ node_C ptr)→[′′data_C′′]))

should become a simple access to the generated node_C heap:

data_C (heap_node_C s p)

where heap_node_C s p returns a node_C record, and data_C accesses the data field
of the record. We use the notation s[p]→data to represent an access of the field data
on the heap associated with pointer p in state s, and the notation s[p→data ∶= v] to
denote an update of field data at pointer p in state s to the new value v.

To carry out the conversion, AutoCorres uses the deeply embedded structure infor-
mation generated by the C-to-Isabelle parser to form a theorem that links the byte-level
structure representation to the desired abstract representation. The theorem generated

abstracting c structures 151

by AutoCorres is a predicate named valid_field, with the following (mildly daunting)
definition:

valid_field st fn fr fw hr hw vr vw t_hrsr t_hrsrw ≡
(∀s p. vr (st s) p ⟶

h_val (hrs_mem (t_hrsr s)) (Ptr &(p→fn)) =
fr (hr (st s) p)) ∧

(∀s p val.
vr (st s) p ⟶

st (t_hrsrw (hrs_mem_update (heap_update (Ptr &(p→fn)) val)) s) =
hw (λold. old(p ∶= fw val (old p))) (st s)) ∧

(∀s p. vr (st s) p ⟶ c_guard p) ∧
(∀p. c_guard p ⟶ c_guard (Ptr &(p→fn)))

The arguments fn, fr and fw refer to a field’s name, field reader and field writer, re-
spectively. In our example above, these would be ′′data′′, data_C and data_C_update.
The arguments hr, hw, vr and vw refer to the heap_x reader/writer and is_valid_x read-
er/writer for the structure (heap_node_C, heap_node_C_update, is_valid_node_C and
is_valid_node_C_update in this example). Finally, the arguments st, t_hrsr and t_hrsw
match those of valid_heap, referring to the state translation function and the reader
and writer of the C-to-Isabelle parser’s t_hrs_′ constant.

The valid_field predicate states four facts about the field:

• Assuming a heap location is valid, then accessing the bytes at offset fn on the
concrete heap is equivalent to accessing fr of the abstract record;

• Similarly, writing to the bytes at offset fn on the concrete heap is equivalent to
writing to the field fw of the abstract record;

• If the is_valid_x function vr is true at pointer p, then c_guard p also holds for
that pointer; and finally,

• If c_guard p holds for a pointer p, then it will also hold for the pointer into the
struct Ptr &(p→fn).

Each of these items can be proved automatically for each field of every struct by
AutoCorres, using information generated by the C-to-Isabelle parser about structures
and structure layouts.

To actually carry out the abstraction, AutoCorres uses the rules listed in Table 7.4.
While the shear amount of syntax in the rules makes them intimidating, nothing
conceptually difficult is going on. HeapAbsFieldRead converts a read of a structure
field into a read of the abstract record’s field; HeapAbsFieldWrite does the equivalent
operations for writes to structure fields; while HeapAbsFieldGuard converts a c_guard
statement of a pointer directly accessing a structure’s field into a check that the struc-
ture itself is valid. All of these rules can be simply derived from the definition of
valid_field.

152 heap abstraction

int suzuki(struct node *w, struct node *x,

struct node *y, struct node *z)

{

w->next = x; x->next = y; y->next = z; x->next = z;

w->data = 1; x->data = 2; y->data = 3; z->data = 4;

return w->next->next->data;

}

suzuki′ w x y z ≡
do guard (λs. is_valid_node_C s w);

modify (λs. s[w→next ∶= x]);
guard (λs. is_valid_node_C s x);
modify (λs. s[x→next ∶= y]);
guard (λs. is_valid_node_C s y);
modify (λs. s[y→next ∶= z]);
modify (λs. s[x→next ∶= z]);
modify (λs. s[w→data ∶= 1]);
modify (λs. s[x→data ∶= 2]);
modify (λs. s[y→data ∶= 3]);
guard (λs. is_valid_node_C s z);
modify (λs. s[z→data ∶= 4]);
guard (λs. is_valid_node_C s s[w]→next);
guard (λs. is_valid_node_C s s[s[w]→next]→next);
gets (λs. s[s[s[w]→next]→next]→data)

od

Figure 7.9: Suzuki’s challenge, an example of deep nesting of pointer updates
taken from Suzuki [97], along with AutoCorres’ abstraction of the function.

7.4.1 Example: Suzuki’s challenge

In Section 7.2.3, we described some limitations of Tuch’s heap lifting approach in solving
Suzuki’s challenge [97]. In this example, we revisit the challenge using AutoCorres’ heap
abstraction.

The function and AutoCorres’ abstraction is shown in Figure 7.9. While the output
of AutoCorres appears long, each modify statement corresponds directly to a heap
update in the source program.

We can prove that the function suzuki returns the value 4 with the Hoare triple:

 λs. distinct [w, x, y, z] ∧
(∀p ∈ {w, x, y, z}. is_valid_node_C s p)

suzuki′ w x y z
 λrv s. rv = 4

That is, assuming that the pointers w, x, y and z are distinct and all valid, the return
value of the function is 4. The proof proceeds by unfolding the definition of suzuki′,
running the VCG, and then running Isabelle/HOL’s auto tactic. The simplicity of
discharging this goal is an encouraging indication that we have solved one of the
scalability problems of Tuch’s approach.

mixing low-level and high-level code 153

struct node *reverse(struct node *list) {

struct node *rev = NULL;

while (list) {

struct node *next = list->next;

list->next = rev; rev = list; list = next;

}

return rev;

}

Figure 7.10: A C implementation of a function that reverses a linked list in-place.

7.4.2 Example: in-place reversal of a linked list

Proving correctness of an in-place list reversal function is generally considered the hello
world of pointer program verification. Such a function takes a singly linked list as an
input, reverses the order of the nodes without allocating memory, and then returns
a pointer to the beginning of the (now-reversed) list. A C implementation of such a
program is shown in Figure 7.10.

Heap abstraction converts the program from using a byte-level heap, where the
code construct list->next is represented as a pointer/offset pair, into an object-level
heap consisting of node_C records. The two reverse functions—with heap abstraction
disabled and with heap abstraction enabled—are shown in Figure 7.11.

We describe a full proof of the function’s correctness in Section 8.1.1, but simply
note here that heap abstraction allows us to specify the correctness result relatively eas-
ily:

 λs. list s p xs reverse′ p λrv s. list s rv (rev xs)

This Hoare triple states that, assuming the linked list xs is at location p, then the
function will finally return a pointer to the reversed linked list rev xs. This result
requires around 90 lines of proof: 70 lines of that are generic theorems about linked
lists, while 18 lines are required for the actual proof of the function reverse′.

While the in-place linked list reverse program has been verified several times in
various contexts [18, 23, 43, 70, 89, 91], attempting to carry out such reasoning directly
on a byte-level heap would require a heroic effort. The only work we are aware of
that has attempted such a feat is Tuch [100] who—not content to simply show that
such a feat was possible—carried out the byte-level proof twice. The first was using
the heap lifting framework describe in this chapter, while the second proof utilised a
separation logic framework defined on the byte level heap. In both cases, non-trivial
reasoning machinery was required to carry out the proof. In contrast, our work allows
high-level reasoning on byte-level heaps without requiring the user to interact with
such machinery.

7.5 Mixing low-level and high-level code

One of our original motivations for using the C programming language was its ability
to interact with the heap at a low-level. Heap abstracted code, however, requires that

154 heap abstraction

Byte-level heap

reverse_byte_heap′ list ≡
do (list, rev) ←

whileLoop (λ(list, rev) a. list ≠ NULL)
(λ(list, rev).

do guard (λs. c_guard list);
next ←
gets (λs. h_val (hrs_mem (t_hrs_′ s))

(Ptr &(list→[′′next_C′′])));
modify

(t_hrs_′_update
(hrs_mem_update

(heap_update (Ptr &(list→[′′next_C′′]))
rev)));

return (next, list)
od) (list, NULL);

return rev
od

Abstracted heap

reverse′ list ≡
do (list, rev) ←

whileLoop (λ(list, rev) a. list ≠ NULL)
(λ(list, rev).

do guard (λs. is_valid_node_C s list);
next ← gets (λs. s[list]→next);
modify (λs. s[list→next ∶= rev]);
return (next, list)

od) (list, NULL);
return rev

od

Figure 7.11: The reverse program listed Figure 7.10, translated using a byte-level
heap (top) and with our abstracted heap (bottom).

mixing low-level and high-level code 155

memory is firmly tagged to being accessed only as a single type, which prevents
type-unsafe functions such as memcpy from being used.

Our solution is to allow the user to indicate which functions should be abstracted
and which should remain in the low-level memory model. The former has the bene-
fits of simplified reasoning with heap abstraction, while the latter allows type-unsafe
operations to be reasoned about.

Calls that take place from abstracted code into low-level code use the function
exec_concrete M, where M is the low-level function to be executed. exec_concrete
non-deterministically selects a low-level state corresponding to the current high-level
state, executes the monad M, and then translates the resulting low-level state back into
an abstracted state. It is defined as follows:

exec_concrete st M ≡
λs. ({(r, t). ∃s′ t′. s = st s′ ∧ t = st t′ ∧ (r, t′) ∈ results (M s′)},

∃s′. s = st s′ ∧ failed (M s′))

While the existentials in the definitions above may initially appear to be difficult
to reason about, we can prove the following Hoare triple to reason about calls to
exec_concrete, which avoids the existentials altogether:

 λs. P (st s) M λr s. Q r (st s)
 P exec_concrete st M Q

Functions that are marked to not use heap abstraction may need to call functions
that are heap abstracted. We thus also create an analogous function exec_abstract
allowing such calls from a function using a byte-level heap to a function using an
abstracted heap. exec_abstract is defined as follows:

exec_abstract st M ≡
λs′. ({(r′, t′). ∃t. t = st t′ ∧ (r′, t) ∈ results (M (st s′))},

∃s. s = st s′ ∧ failed (M (st s′)))

The exec_abstract function abstracts the input state, executes the monad M on the
abstract state, and then non-deterministically selects a concrete state corresponding to
the output abstract states. We can use the following rule to reason about Hoare triples
using exec_abstract:

 P M λr s. ∀t. st t = s ⟶ Q r t
 λs. P (st s) exec_abstract st M Q

The universal quantifier in the assumption’s postcondition makes this rule less
convenient to use than the Hoare-rule for exec_concrete. In our experience calls to
exec_abstract are far less common than exec_concrete, however, because low-level type-
unsafe operations that cannot be abstracted tend to be constrained to leaf functions.

7.5.1 Example: memset

The canonical example of a necessarily type-unsafe function in C is memset, shown in
Figure 7.12. The function sets n bytes to the value c, starting from the pointer dest. The

156 heap abstraction

void* memset(void *dest, int c, unsigned n)

{

unsigned char *d = dest;

while (n > 0) {

*d = c;

d++;

n--;

}

return dest;

}

void zero_node(struct node *node)

{

memset(node, 0, sizeof(struct node));

}

Figure 7.12: An implementation of the C type-unsafe function memset, which
sets n bytes from the pointer dest to the value c; and a function zero_node

that calls memset to zero out a struct node.

memset′ dest c n ≡
do whileLoop (λ(d, n) a. 0 < n)

(λ(d, n).
do guard (λs. c_guard d);

modify (t_hrs_′_update
(hrs_mem_update (heap_update d (scast c))));

return (d +p 1, n − 1)
od) (ptr_coerce dest, n);

return dest
od

zero_node′ node ≡
do exec_concrete st (memset′ (ptr_coerce node) 0 (size_of TYPE(node_C)));

skip
od

Figure 7.13: The output of AutoCorres on the memset and zero_node functions.
Heap abstraction is disabled on memset, so the C-to-Isabelle parser’s byte-level
heap remains in use on the function, while the call to memset in zero_node is
wrapped in the exec_concrete function.

mixing low-level and high-level code 157

function is typically called with c set to 0 to zero out memory at a specified location.
Figure 7.12 additionally shows a function zero_node that uses memset to zero an input
struct node * object.

If we attempted to use heap abstraction on the function memset, AutoCorres would
generate an output specification where memset zeroed the heap_w8 heap, but left all
other heaps untouched. We would not be able to reason about calls to memset that
attempted to modify any type other than word8. We thus mark memset as being
unsuitable for heap abstraction when invoking AutoCorres; this gives the generated
function shown in Figure 7.13.

We proceed to show the following Hoare triple about memset:

∀s0. λs. s = s0 ∧ n < 2 ∧ 0 ∉ {ptr_val p ..+ n}
memset′ p c n

 λrv s. s = t_hrs_′_update
(hrs_mem_update

(heap_update_list (ptr_val p) (replicate n (scast c))))
s0

The function heap_update_list p l s in the postcondition updates the byte-level heap
s (with type word32 ⇒ word8), writing the list of bytes l to location p. The function
replicate n c produces a list of length n containing the element c repeated. The pre-
condition assumes that the size of memory n being zeroed is less than 232 and that
NULL does not fall in the address range being zeroed. If so, calling memset will result
in n bytes starting from location p to be updated to the value c; the final state s will
otherwise be unchanged. The proof proceeds by unfolding the definition of memset′,
annotating the function’s loop with an appropriate invariant, applying the VCG and
then carrying out reasoning to show that several individual writes to bytes in memory
are equivalent to a single larger heap_update_list call.

Despite the fact that our proof of memset takes place on the byte-level heap, we can
still carry out a proof of zero_node′ using an abstracted heap. We start by proving a
lemma that writing a list of zeroed bytes to a pointer location p is equivalent to writing
a struct node to that same location:

heap_update_list p [0, 0, 0, 0, 0, 0, 0, 0] =
heap_update (Ptr p) ⦇ next_C = NULL, data_C = 0 ⦈

This proof proceeds by appealing to the generated theorems about the layout of struct
node in memory. These theorems are automatically generated by the C-to-Isabelle parser
during its initial conversion from C to Isabelle/HOL.

With a byte-level proof about memset in hand, we can proceed to carry out a high-
level proof on zero_node′. Our final theorem about the function is the Hoare triple:

∀s0. λs. is_valid_node_C s p ∧ s = s0
zero_node′ p

 λrv s. s = s0[p ∶= ⦇ next_C = NULL, data_C = 0 ⦈]

This states that, assuming that p is a pointer to any valid node_C object then, after
zero_node′ executes, p will now point to a zeroed node_C while the rest of the state
will remain unchanged.

158 heap abstraction

The proof takes place by unfolding the definition of zero_node′, and then running
the VCG (which includes our memset′ rule proven above) over the result. Three
subgoals remain:

1. ⋀s0 s. is_valid_node_C (st s) p ⟹ size_of TYPE(node_C) < 2

2. ⋀s0 s. is_valid_node_C (st s) p ⟹
0 ∉ {ptr_val (ptr_coerce p) ..+ size_of TYPE(node_C)}

3. ⋀s0 s rv.
is_valid_node_C (st s) p ⟹
st (t_hrs_′_update

(hrs_mem_update
(heap_update_list (ptr_val (ptr_coerce p))

(replicate (size_of TYPE(node_C)) (scast 0))))
s) =

(st s)[p ∶= ⦇ next_C = NULL, data_C = 0 ⦈]

The first two subgoals originate from the precondition of memset′. The first subgoal
states that the size of a node_C object is less than 232, which is trivially solved by the
simplifier. The second states that NULL does not fall in the set of addresses occupied by
the target node_C; this is proven by observing that the node_C pointed to by p is valid,
and our state translation function ensures that the abstract heap only contains valid
object if they are non-NULL on the concrete heap. Finally, the third subgoal requires
us to show that writing zero bytes to the concrete heap is equivalent to writing a
zero-node_C on the abstract heap, and is discharged by using our helper lemma above
and appealing to the definition of st.

The proof all up requires approximately 100 lines: the bulk of the proof is 77 lines
for the byte-level memset correctness proof, 13 lines are required to prove the encoding
of the empty node_C is equivalent to eight zero bytes, and 11 lines are required for the
final zero_node proof.

7.6 Related work

Our work is heavily inspired by that of Tuch et al. [100–103], who developed the
heap lifting framework that our own work is based on. Tuch et al.’s framework allows
higher-level reasoning on a byte-level heap by providing users with mechanisms to man-
ually interpret low-level operations as operations on a Burstall-Bornat style heap. Our
contribution is to automate this process; instead of providing the user with tools for
higher-level reasoning, we rewrite the program being reasoned on to directly operate
on a Burstall-Bornat style heap. Additionally, we developed a new, simplified implemen-
tation of Tuch et al.’s heap lifting framework more suitable for mechanised reasoning.
Our work uses this framework internally so that a formal connection between the input
byte-level specification and the output high-level specification exists.

Tuch et al.’s original framework supports reasoning about programs that dereference
pointers to fields of structures. Our simplified version of Tuch et al.’s work and method
of program rewriting cannot deal with this particular case at this time. The end-user,

conclusion 159

however, always has the ability to disable heap abstraction and reason using Tuch et
al.’s manual framework directly. Tuch et al.’s original framework additionally implements
separation logic on the byte-level heap, which our own implementation does not. We
feel that the better approach is to separate the concerns: apply heap abstraction first,
and then apply reasoning using separation logic on the abstract heap. For instance,
instantiating Klein et al.’s separation algebra [58] on AutoCorres’ output can be carried
out with relatively little effort.

Other work that models the C heap at the byte level includes the verified CompCert
C semantics [67], and Ellison and Roşu’s C semantics [42]. This latter work defines a
highly complete and validated C semantics with a memory model that is essentially
a map to blocks of bytes.11 To our knowledge, no mechanisms for higher-level heap
reasoning have yet been developed for these models, though we believe our work could
be applied to enable Burstall-Bornat style reasoning.

Gast [45] developed a framework for reasoning about byte-level heaps by allowing
the memory layout (and in particular, how objects overlap) to be cleanly specified in
the logic. Using this framework, Gast was able to verify a C implementation of the
challenging Schorr-Waite algorithm. Again, the goal of our work is not to provide
users with powerful frameworks for low-level reasoning but to abstract specifications,
avoiding the need for such frameworks. Like Tuch et al.’s framework, Gast’s framework
could be directly applied in the limited cases where heap abstraction cannot be used,
such as when reasoning about type-unsafe code.

Existing C verification frameworks that provide the user with an abstract view of
the system heap tend to do so axiomatically. Moy’s translation of C into the Frama-C
framework with the Jessie plugin, for instance [72], provides an axiomatic typed-heap
memory model with limited support for pointer casts. The SMT-based VCC tool [31],
originally with an untyped memory model, also supports a typed semantics, but the
abstraction is justified by a pen and paper argument only. In contrast, our work
provides a formal link down to the C byte-level heap; additionally, this link allows us
to mix high-level reasoning and byte-level reasoning on demand.

To summarise, the key differentiator of our heap abstraction work is that (i) it
allows reasoning at both a typed-heap model and byte level; (ii) that the lifting
is automatic; (iii) the tool supports any C Standard retyping/casting operations, as
long as the final pointer dereference is type-safe; and (iv) it provides an LCF-style
foundational proof.

7.7 Conclusion

The heap abstraction process described in this chapter allows users to carry out high-
level reasoning about programs that were initially modelled using a byte-level heap.

11This is closer to the C standard than our base byte-level model generated by Norrish’s C-to-Isabelle
parser, but verification relying on the standard alone is insufficient since it is routinely violated on purpose in
systems code [57].

160 heap abstraction

Heap abstraction occurs automatically, and can take place on type-safe portions of the
user’s program, without sacrificing the ability for users to drop back into the underlying
byte-level model where necessary.

In this chapter we presented some simple examples demonstrating how heap abstrac-
tion simplifies reasoning. In the next chapter we show some more substantial examples,
looking at how all of the abstraction steps we have described so far in this document
can be combined to carry out high-level reasoning about non-trivial algorithms.

Chapter Summary

• Conservative translations of C programs represent memory using a byte-
level model. Such byte-level models of memory are difficult to reason
about, due to inter-type aliasing, the potential for partially overlapping
objects, alignment constraints imposed by C, and so on.

• We implemented a simplified version of Tuch et al.’s heap lifting frame-
work, which allows users to manually translate low-level heap operations
into higher-level equivalents.

• Using our simplification of Tuch et al.’s model, we then developed tech-
niques to automatically and verifiably abstract program specifications
to operate on a Burstall-Bornat style heap. Our work retains a formal
connection down to the original byte-level heap, and also allows mixing
low-level reasoning and high-level reasoning on a per-function basis.

8 Evaluation and experience

For AutoCorres to be practical in real-world problems, it not only needs to
generate useful abstractions of low-level C code, but must also be scalable to problems
of the size actually seen in industry. All of the examples we have presented thus far
have been relatively simple, making it hard to establish if we have achieved either of
these two goals. In this chapter, we attempt to address these issues.

To evaluate how well AutoCorres abstracts C code, we take an existing high-level
proof [70] of the Schorr-Waite graph marking algorithm and determine the difficulty
of porting the high-level proof to a concrete C implementation with the help of
AutoCorres. We find that the original high-level proof—written over a decade ago by
unrelated authors—ports relatively easily to the output of AutoCorres, suggesting that
reasoning at a relatively abstract level about concrete C code is possible. The details
and results are in Section 8.1.

Additionally, we present a bigger picture overview of areas were AutoCorres is
currently being used by others in larger proof projects, including an external evaluation
of the tool. While much of work using AutoCorres is still in its early stages, initial
results suggest that AutoCorres is able to scale to tens of thousands of lines of code,
as required by real-world projects. We also show that AutoCorres is able to handle a
sufficiently large subset of C to allow even complex programs, such as operating system
kernels, to be processed. These results are presented in Section 8.2.

This chapter is based on the published work by Greenaway et al. [50], Don’t sweat
the small stuff: formal verification of C code without the pain in PLDI 2014. The work of
porting Mehta and Nipkow’s high-level proofs to C implementations was carried out by
Japheth Lim, under the supervision of the author.

162 evaluation and experience

8.1 High-level reasoning with AutoCorres

The Schorr-Waite algorithm, Richard Bornat famously argued, is “the first mountain
that any formalism for pointer aliasing should climb.” [18]. His advice has not gone un-
heeded, with many papers demonstrating new program verification techniques on
the algorithm: Hubert and Marché, for instance, previously verified a concrete C
implementation using the Caduceus verification condition generator and the Coq
theorem prover [54]. Earlier still, Mehta and Nipkow [70] verified the algorithm
on a simple high-level imperative language in Isabelle/HOL, producing a readable
machine-checked proof.

From our perspective, the latter proof is interesting because it verifies the Schorr-
Waite algorithm on an idealised imperative language: the heap uses a Burstall-Bornat
split heap memory model [18]; there is no concept of invalid pointers, such as un-
aligned pointers or unmapped memory; and the address space is infinite. All of these
assumptions fail to hold on a low-level language such as C. A useful benchmark, then,
is to determine if we can

1. Implement Mehta and Nipkow’s version of the algorithm in plain C;

2. Use AutoCorres to automatically abstract the program; and then

3. Apply Mehta and Nipkow’s existing proofs—written nearly a decade before
AutoCorres was even conceived, and carried out on a very abstract heap—to
the result.

We do not expect Mehta and Nipkow’s proof to apply unchanged, but the goal is for
any changes to be minimal.

In the next sections, we start by describing how Mehta and Nipkow’s much sim-
pler list reversal proof could be ported to a C implementation, in order to explain
our approach, and then move on to describe how the more complex Schorr-Waite
algorithm could be ported to C. The proof porting process was not carried out by
the primary author of this work, but by an undergraduate student, Japheth Lim,
under supervision.

8.1.1 In-place list reversal

As mentioned in Section 7.4.2, in-place linked list reversal has somewhat become the
hello world of pointer aliasing programs. The list reversal function takes a singly linked
list, destructively modifies it so that the order of the nodes is reversed, and returns
a pointer to the head of the new list. The goal is to prove that the list returned by
the function truly is the reverse of the input list. Mehta and Nipkow also used this
example as an introductory exercise in their work [70], so it serves as a good example
for demonstrating the differences between their program representations and those of
AutoCorres.

high-level reasoning with autocorres 163

To carry out their proof, Mehta and Nipkow developed a simple while language,
including while-loops and conditionals. References in the language use the type

datatype ′a ref = Null | Ref nat

That is, an ′a ref can be either Null, representing a null pointer; or Ref addr, represent-
ing a pointer to a valid object. The type variable ′a is a phantom type variable, used
simply to indicate the type of the pointer.

The language doesn’t explicitly model a heap; instead, a heap is simulated by having
global variables of type

′a ref ⇒ ′a

which map pointers to values. Such heaps are modified by assigning a new value to the
variable, typically with only a single address updated. There is one such heap variable
for each record field and type in the program.

For in-place list reversal, Mehta and Nipkow’s algorithm and proof statement is as
follows:

{List next p Ps}
q ∶= Null;
WHILE p ≠ Null INV {… } DO

t ∶= p;
p ∶= next (addr p);
next ∶= next(t → q);
q ∶= t

OD
{List next q (rev Ps)}

The theorem states that if the pointer p points to a linked list in the heap next
containing the elements Ps then, at the end of the function, p will point to a linked
list containing elements of the list Ps reversed. While not a complete specification of
the function—it fails to mention what happens to nodes outside of the input list, for
example—it does provide us with at least some confidence that the function successfully
reverses the list.

The predicate List next p Ps in this theorem has type

(′a ⇒ ′a ref) ⇒ ′a ref ⇒ ′a list ⇒ bool

and indicates that there is a valid linked list in the heap next starting from address p.
The list Ps contains the pointers of every node in the linked list, and has a definition
equivalent to

List h p [] = (p = Null)
List h p (x⋅xs) = (p = Ref x ∧ List h (h x) xs)

Mehta and Nipkow’s proof proceeds by first building a library of theorems about
the behaviour of the List predicate, providing an invariant for the while loop, running
a VCG on the statement, and finally discharging the goals using standard Isabelle/HOL
tactics. The bulk of the work required to verify the reverse function is in developing
the library of list theorems, with just a few lines of proof required to verify the reverse
function itself.

164 evaluation and experience

struct node *reverse(struct node *list) {

struct node *rev = NULL;

while (list) {

struct node *next = list->next;

list->next = rev; rev = list; list = next;

}

return rev;

}

reverse′ list ≡
do (list, rev) ←

whileLoop (λ(list, rev) a. list ≠ NULL)
(λ(list, rev).

do guard (λs. is_valid_node_C s list);
next ← gets (λs. s[list]→next);
modify (λs. s[list→next ∶= rev]);
return (next, list)

od) (list, NULL);
return rev

od

Figure 8.1: ANSI C implementation of in-place linked list reversal, and its
translation into Isabelle/HOL by AutoCorres.

Porting the list reversal proof to AutoCorres

Our C implementation of Mehta and Nipkow’s list reversal algorithm, together with
the corresponding output of AutoCorres, is shown in Figure 8.1. To port Mehta and
Nipkow’s proof so that it applies to the output of AutoCorres, we had to resolve the
following three differences:

• The original proof uses the ′a ref datatype to distinguish between the null pointer
(Null) and pointers to valid objects (Ref addr), while C uses the NULL sentinel
value. For example, the above List predicate would need to be modified to

List h p [] = (p = NULL)
List h p (x⋅xs) = (p ≠ NULL ∧ p = x ∧ List h (h p) xs)

which explicitly checks that the constant NULL does not appear mid-list, in-
stead of exploiting the type system to ensure its absence. This seemingly trivial
difference in the types of pointers necessitated tweaks in the majority of the
list definitions and proof statements; despite this, once the base definitions were
updated we could use the original proof scripts mostly unchanged.

• In Mehta and Nipkow’s language model there is no concept of an invalid heap
address. In contrast, the output of AutoCorres contains guard statements to
ensure that each pointer access is valid. We further modified the definition of
List shown above to additionally assert that all elements in the list are valid
pointers; this was enough to automatically discharge the guards in the final proof.

high-level reasoning with autocorres 165

{R = reachable (relS {l, r}) {root} ∧ (∀x. ¬ m x) ∧ iR = r ∧ iL = l}
t ∶= root; p ∶= Null;
WHILE p ≠ Null ∨ t ≠ Null ∧ ¬ t^.m INV {… } DO

IF t = Null ∨ t^.m THEN
IF p^.c THEN

q ∶= t; t ∶= p; p ∶= p^.r; t^.r ∶= q
ELSE

q ∶= t; t ∶= p^.r; p^.r ∶= p^.l; p^.l ∶= q; p^.c ∶= True
FI

ELSE
q ∶= p; p ∶= t; t ∶= t^.l; p^.l ∶= q; p^.m ∶= True; p^.c ∶= False

FI
OD

{(∀x. (x ∈ R) = m x) ∧ r = iR ∧ l = iL}

Figure 8.2: Mehta and Nipkow’s correctness statement of the Schorr-Waite
algorithm, reproduced from [70].

• The original proof shows partial correctness, while AutoCorres requires total cor-
rectness for its automatically generated refinement theorem to hold. We extended
Mehta and Nipkow’s proof to include a termination argument; in particular, we
showed that the size of the list yet to be reversed decreases each loop iteration.

With these adjustments, we completed the same main proof of correctness using
the same loop invariant as Mehta and Nipkow. Overall, only minor effort was required
to obtain a C-level correctness guarantee from a high-level algorithmic proof. While in
this case it may have been easier to prove the algorithm from scratch, this approach
used to modify the Mehta and Nipkow proofs can be carried over to the much more
complex Schorr-Waite algorithm proof, described below.

8.1.2 Schorr-Waite algorithm

The Schorr-Waite algorithm [94] enumerates all nodes in a graph. While such a
problem can be trivially solved using a stack linear in the size of the graph, the
Schorr-Waite algorithm requires only two bits of storage per node. The algorithm
achieves this by reversing the pointers that link nodes in the graph so that the algo-
rithm is able to backtrack, and then later restoring the pointers so that the input graph
is back in its original form by the end of the algorithm. Because of its low memory
requirements, the Schorr-Waite algorithm was originally proposed as the core element
of a mark-and-sweep garbage collector; graph nodes not reached by the algorithm are
no longer live, so can be reallocated. For brevity, we do not attempt to describe the
algorithm in detail, but instead refer interested readers to one of the many descriptions
available [54, 70, 94].

We based our C implementation, shown in Figure 8.3, directly on the high-level
imperative implementation of Mehta and Nipkow, reproduced in Figure 8.2. Each graph

166 evaluation and experience

struct node {

struct node *l, *r;

unsigned m, c;

};

void schorr_waite(struct node *root) {

struct node *t = root, *p = NULL, *q;

while (p != NULL || (t != NULL && !t->m)) {

if (t == NULL || t->m) {

if (p->c) {

q = t; t = p; p = p->r; t->r = q;

} else {

q = t; t = p->r; p->r = p->l;

p->l = q; p->c = 1;

}

} else {

q = p; p = t; t = t->l; p->l = q;

p->m = 1; p->c = 0;

}

}

}

Figure 8.3: Our implementation of the Schorr-Waite algorithm in C, based on
Mehta and Nipkow’s high-level implementation.

node contains two pointers l and r pointing to the left and right child, respectively.
Additionally, each graph node contains two bits which are required by the algorithm.
The marked bit m is set when a node has been visited by the algorithm. When the
algorithm completes, all nodes reachable from the root will have their marked bit set.
The child bit c is used to track which children of the current node have already been
visited.

Mehta and Nipkow’s proof states that, assuming (i) R is the set of nodes reachable
from the root of the graph root, and (ii) No nodes in memory are already marked;
then, after the algorithm finishes (i) Every node will be marked if and only if it is
in the set R; and (ii) The pointers of all nodes will match what they started as (that
is, the heap r will equal its initial value iR, and the heap l will also match its initial
value iL).

The implementation uses the same while-language as in the previous example, but
with the additional syntax a^.f for accessing the heap f at location a and a ∶= f ^.v for
updating the heap f at location a to value v.

Porting the Schorr-Waite proof to AutoCorres

After translating our C implementation of Schorr-Waite using AutoCorres, we reused
Mehta and Nipkow’s existing proof script to verify the algorithm. This reuse presented
the same set of differences as in the list reversal problem:

• Again, replacing the ′a ref type with the NULL sentinel used by C caused no
significant semantic changes to the proof, but did require updates to the base
definitions.

high-level reasoning with autocorres 167

Table 8.1: A comparison of the lines of proof required for our work, for Mehta
and Nipkow’s proof [70] in Isabelle/HOL (M/N), and Hubert and Marché’s
proof [54] in Coq (H/M).

Component This Work M/N H/M

List definitions 64 62 ∼ 900
Partial correctness 528 489 ∼ 1 400
Fault freedom 44 —
Termination 160 — ∼ 900
Miscellaneous 11 26 —

Total 807 577 3317

• Since Mehta and Nipkow’s language model has no concept of invalid addresses, it
is not possible to construct an invalid graph, as every possible state of memory
forms a valid input graph. There is no such luxury when using C, so we needed
to add a new precondition that all nodes in the set of reachable addresses R are
valid. We additionally needed to introduce a new loop invariant to the main loop
that asserts this fact.

• Again, Mehta and Nipkow’s proof is a partial correctness result, while we required
total correctness. We modified the proof to include a new termination argument,
requiring around 160 lines of new proof script. In particular, we annotated the
main loop body with the measure used in Bornat’s proof of the Schorr-Waite
algorithm [18], and showed that it decreases.

Overall, while we needed to make several changes to the base definitions of Mehta
and Nipkow’s proof script before we could apply it to the output of AutoCorres, most
of these changes were simple; the main body of the original proof could be used
relatively unmodified. Table 8.1 shows the number of lines required for our modified
proof and for Mehta and Nipkow’s original. The list definitions shared 48 lines (76%)
while the main body of the proof shared 335 lines (66%). Of the remaining lines, the
majority of changes were differences in syntax between the two verification frameworks,
and due to minor differences in the output of the VCG tools.

Table 8.1 also includes numbers from Hubert and Marché’s earlier Coq proof of
the Schorr-Waite algorithm in C [54], which has a C implementation semantically
equivalent to our own. Lines of proof script are not directly comparable between the
two provers: Isabelle/HOL tends to provide more automation than Coq (often resulting
in smaller proof scripts); however, Mehta and Nipkow’s proof was intended to be
highly readable (leading to a longer, more verbose proof script). Generously assuming
Isabelle to be twice as concise as Coq, the size reduction compared to the previous C
verification is striking.

Overall, in both the linked list reversal program and Schorr-Waite implementation,
we were able to apply an existing proof of an abstract algorithm almost directly to
our automatically produced abstraction of a low-level C implementation. Even without
taking into account the fact that we proved stronger statements than the original,
the size increase was moderate at most, and more importantly, the proof complexity

168 evaluation and experience

Abstract
Specification

Executable
Specification

Manual Refinement

Manual Refinement

C Simpl

②

①

Figure 8.4: The structure of the seL4 re-
finement proof. The proof is split into two
phases: a proof of refinement between the
C and the executable specification; and a
proof between the executable specification
and the abstract specification.

Abstract
Specification

Manual Refinement

AutoCorres

C Simpl

AutoCorres
Output

Figure 8.5: An alternative proof design for
the seL4 proof using AutoCorres. The ex-
ecutable specification is replaced with the
output of AutoCorres, and the first man-
ual refinement proof eliminated.

remained similar to the original with unchanged or only minimally adjusted invariants.
This strongly suggests that C verification can be performed from first principles at a
comfortable level of abstraction.

8.2 Automatic abstraction in the large

While the examples shown in this document are relatively small, AutoCorres is designed
to scale to non-trivial applications. In this section, we describe several past and ongoing
verification projects using AutoCorres.

seL4 Microkernel The seL4 microkernel [57, 81, 82] is a formally verified operating
system kernel. The proof shows that the C implementation of the kernel is a refinement
of a hand-written high-level functional specification, named the abstract specification.
While AutoCorres is not used in the seL4 proof at this stage, seL4 provided the
inspiration for the tool, and hence also acts as a benchmark for testing the scalability
and output of AutoCorres.

In particular, the seL4 refinement proof is broken into two main pieces: the first
piece shows that the C implementation of seL4, translated by Norrish’s C-to-Isabelle
parser, is a refinement of an intermediate representation known as the executable
specification. The second part of the proof shows that this executable specification is a
refinement of the original high-level abstract specification. The executable specification
acts as a ‘stepping stone’ between the concrete C code and the abstract specification,
allowing low-level refinements involving details of C to be reasoned about separately
from the higher-level refinements involving details about data structures and algorithms.
The two pieces of the proof are then combined to formally link the C code to the
abstract specification. The structure of the proof is depicted in Figure 8.4.

automatic abstraction in the large 169

Both the low-level proof (i.e., the proof that links the C code to the executable
specification) and the high-level proof (i.e., the proof that links the executable specifi-
cation to the abstract specification) are manually written Isabelle/HOL proofs. While
the high-level proof required some level of creativity to initially craft, the low-level
proof that connects the C to the executable specification was far more mechani-
cal in nature. Despite this, the low-level proof still required three person-years of
effort to carry out.

AutoCorres was developed with the goal of automating the low-level phase of the
proof chain in future projects. It automatically generates an intermediate executable
specification directly from the C code, along with a formal proof that the C imple-
mentation refines this generated specification. While the high-level proof of refinement
would remain a manual step (taking place between the output of AutoCorres and
the abstract specification), by automating the low-level proof, the total effort would
be significantly reduced.

To be practical for a future project similar to seL4, AutoCorres needs to be able
to scale up to the size of seL4, and also be able to handle all of the complexities of
C present in the seL4 source code. Our results in Table 8.2 and Table 8.3 show that
AutoCorres has indeed been able to meet this requirement.

eChronos Real Time Operating System eChronos [80] is a high-assurance real-time
operating system for small microcontrollers without memory protection. It consists of
around 600 lines of C code, and provides system primitives such as threads, mutexes,
signals and interrupt handling.

Like the seL4 microkernel, eChronos has a high-level abstract specification written
in Isabelle/HOL that describes the desired behaviour of the operating system. Also like
seL4, the goal is to show that the C implementation of eChronos implements this high-
level specification. The proof is structured using AutoCorres as the starting point, as
described in the previous section and depicted in Figure 8.5. In particular, AutoCorres
is used to abstract the C implementation of eChronos; this output is then manually
shown to be a refinement of the original hand-written abstract specification.

At the time of writing, the proof is still in its early days with only around 40%
of the functions in eChronos having been formally proven to be refinements of their
abstract equivalents. Experience so far suggests that directly carrying out a proof of
refinement between the output of AutoCorres and a high-level specification is feasible.
Statistics about the output of AutoCorres when applied to the eChronos source code
are presented in Table 8.2 and Table 8.3.

Graph Algorithm Verification Noschinski, Rizkallah and Mehlhorn [86] have used
an early version of AutoCorres 1 to formally verify checkers for the widely used LEDA
graph algorithms library [69].

In particular, untrusted C programs built using the LEDA libraries process a graph
to determine whether it satisfies a particular property, such as if the graph is connected

1Noschinski et al. used a version of AutoCorres prior to heap abstraction or word abstraction being
implemented.

170 evaluation and experience

or if the graph is planar. Once such an untrusted program has determined an answer,
it also emits a certificate which provides evidence that the answer is correct. This
certificate is then read by a second checker program, which performs the simpler task
of ensuring that the certificate is valid, and hence the original program’s answer was
correct. This allows a high degree of confidence to be placed in the answer of the first
program’s answer by formally verifying the much simpler checker.

In their work, Noschinski et al. compared three methods of verifying the checker:
(i) using a hand-written implementation of the checker in Simpl, based on the algo-
rithms used in the C code, but not formally linked to it; (ii) using the output of
AutoCorres; and (iii) an approach taken by previous work [1], which used the auto-
matic code verifier VCC [31] to generate verification conditions that were then imported
into Isabelle/HOL using HOL-Boogie [16], where they could then be solved.

Noschinski et al. observed that when verifying the graph algorithms using an
early version of AutoCorres, the “effort for the verification of the C-version of the
connectedness checker was about the same as in the VCC approach”. Each approach
had both advantages and disadvantages:

• VCC, based on the automatic theorem prover Z3, was better at solving low-level
proof obligations about the C code without any user interaction. For instance,
proof obligations showing that certain word arithmetic operations didn’t overflow
could be automatically discharged, while these had to be manually reasoned about
using AutoCorres;

• The VCC approach required that certain details about the algorithms, such as the
definitions of graphs and paths, were formalised in both Isabelle/HOL and VCC’s
weaker logic. As the algorithms being verified became more sophisticated, the
burden of using VCC grew; and

• VCC—a large, complex program—requires a greater degree of trust to be placed
in it to believe its results. In comparison, AutoCorres, developed in Isabelle/HOL,
need not be trusted as its results are verified by the Isabelle/HOL kernel. Using
both VCC and Isabelle/HOL additionally required an awkward step of importing
VCC proof obligations into Isabelle/HOL, which could be avoided by committing
to just a single reasoning platform.

Noschinski et al. additionally noted that reasoning about AutoCorres’ output re-
quired more effort than reasoning on the hand-written abstract algorithm; this is not
unexpected, as AutoCorres is lifting from a concrete C implementation. The biggest
difficulties reported by the authors were in word proofs and having to manually abstract
datatypes in the heap to abstract equivalents. Our hope is that our subsequent word
abstraction and heap abstraction additions to AutoCorres (described in Chapter 6 and
Chapter 7, respectively) will reduce this effort in future verification projects.

CapDL System Initialiser Complex safety- or security-critical systems frequently re-
quire several interconnected components to function. Bootstrapping a system from its
initial state to a correctly configured system—which requires allocating resources to
processes, setting up communication channels, setting up process address spaces and so

automatic abstraction in the large 171

on—is a non-trivial task. Further, if a mistake is made in this configuration, it has the
ability to undermine the security or safety of the system.

The CapDL SysInit tool [20] is a C program that runs on seL4 that solves the
problem of boot-time system configuration. The tool is given a specification of a
system—including details such as the number of components, the resources required
by each component, and how components should be able to communicate among
themselves—and initialises the seL4 system to match the specification. CapDL SysInit is
unique in that it has a high-level specification formally proven to set up the specified
system correctly. The proof has additionally been formally connected to the seL4
microkernel proof, which gives a final proof statement that both (i) the CapDL SysInit
tool invokes the seL4 microkernel in the correct manner, so that (ii) the final kernel
state matches the system initially requested by the user.

At the time of writing, there is no formal connection between the abstract spec-
ification of CapDL SysInit and its C implementation. AutoCorres is currently being
evaluated in this project as the first step in a refinement proof between the C and the
abstract specifications, similar to the structure of the eChronos proof described above.
The hope is that AutoCorres will save a significant amount of human effort by automat-
ing the low-level aspects of the refinement proof. Statistics on the output of the CapDL
System Initialiser produced by AutoCorres are shown in Table 8.2 and Table 8.3.

Piccolo Microkernel The Piccolo kernel is a prototype separation kernel designed for
static systems with memory protection, developed internally at NICTA by Greenaway. It
provides threads, synchronisation primitives, address spaces and inter-process communi-
cation. As with the seL4 kernel C implementation, AutoCorres can successfully process
all of the low-level C code required by the kernel’s implementation.

AutoCorres is currently being used to show that the Piccolo in-kernel memory man-
ager is correct. For these proofs, the output of AutoCorres is being directly reasoned
about; in particular, the output of the abstract heap-model provided by AutoCorres is
being combined with an existing separation logic toolkit available on Isabelle/HOL [58,
59], with the goal of producing proof statements that can be readily composed with
other proofs about the Piccolo kernel.

Student Usability Study The University of New South Wales runs a course named
COMP4161 -- Advanced Topics in Program Verification. The course trains students in the
use of the Isabelle/HOL interactive theorem prover, starting at basic lambda calculus
and moving to training students to think about topics in software verification, such
as Hoare-logic, loop invariants, etc. Students in the course are a mix of late-year
undergraduate and early-year postgraduate students in computing degrees. The course is
typically quite small, with only 8 students enrolled in 2013.

We asked students in the course to participate in a usability experiment to deter-
mine if AutoCorres improved productivity of C verification.2 In particular, the final

2All participants gave informed consent to take part in this investigation, and the investigation was carried
out with ethics approval from the University of New South Wales’ Human Research Ethics Advisory Panel
(approval HREA 08/2013/47).

172 evaluation and experience

exam of the course involved two questions that asked students to reason about C code.
For one question, students reasoned using the output of Norrish’s C-to-Isabelle parser
directly, while for the other question, students used the output of AutoCorres.

The experiment was run as a 2 × 2 cross-over study. The class of 8 students was
randomly divided into two equal-sized groups, which we name A/B and B/A:

• Group A/B was required to solve question (1) using AutoCorres, and question (2)
using Norrish’s C-to-Isabelle parser directly;

• Group B/A was required to solve question (1) using Norrish’s C-to-Isabelle parser,
and question (2) using AutoCorres.

That is, each of the two groups each solved one question using AutoCorres and one
question using the C parser, with group B/A using the opposite tool of group A/B

for each question.
Each student’s assignment was marked, with marks given for correctly specifying

a precondition, postcondition, and loop invariant for the program, as well as marks
for successfully discharging the proof obligations generated by each tool’s VCG. Our
hypothesis was that questions completed using AutoCorres would, on average, score
higher than those completed directly using Norrish’s C-to-Isabelle parser.

A paired-samples, two-tailed t-test was conducted to compare the student’s exam
marks using the output of AutoCorres and using the output of the C-to-Isabelle parser
directly. There was not a significant difference in exam marks for the question where
students used AutoCorres (M = 28.9, SD = 9.22) and where the students used the
C-to-Isabelle parser directly (M = 23.5, SD = 13.9); t(7) = 1.93, p = 0.095. The 95%
confidence interval for the effect of using AutoCorres on the final assignment mark
is between −1.2 and 12.0.

We believe the negative result of the experiment is due to the small sample size
(n = 8), limiting the power of our test. For more conclusive results, we would need
to complete the study with a larger sample size. We are, however, encouraged by the
anecdotal observation that every student performed equal or better in their AutoCorres
exam question than in their C-to-Isabelle parser exam question.

8.2.1 Summary and statistics of projects using AutoCorres

In summary, AutoCorres is being actively used or trialled in these projects in the
following ways:

• The eChronos and CapDL SysInit tool use AutoCorres as a stepping stone in a
larger, manual proof of refinement between an abstract program specification and
the concrete C implementation. The end goal of these proofs are to show full
functional correctness;

• The LEDA graph checkers similarly use AutoCorres’ output as a starting point
of a refinement proof to a more abstract version of the program. In the LEDA
graph proofs, full functional correctness is not the goal, but simply showing that
the program satisfies certain properties;

automatic abstraction in the large 173

Table 8.2: Comparison of the specification sizes generated by Norrish’s C-to-
Isabelle parser [85] and AutoCorres of 5 large C programs.

Program LoC Functions
Lines of Spec Average Term Size

Norrish AutoCorres Norrish AutoCorres

seL4 kernel 10 121 551 20 576 11 928 318 112
CapDL SysInit 2 079 163 3 353 2 183 184 72
Piccolo kernel 936 56 1 748 1 198 372 182
eChronos 563 40 715 537 180 108
Schorr-Waite 19 1 120 57 766 311

• The Piccolo kernel is using the output of AutoCorres directly in order to prove
properties about certain functions in the kernel; and finally,

• The seL4 project acts as a benchmark, both in terms of the scalability of Auto-
Corres and ensuring that AutoCorres supports a sufficient breadth of the C
standard so that it can be used by real projects.

While there is clear interest in using the tool from independent verification projects,
most of the projects above are still in their early stages; this is unsurprising, given
the relatively young age of the AutoCorres tool. Unfortunately, more conclusive results
about the effectiveness of AutoCorres on reducing effort in large-scale projects will only
be available when these longer-running projects are completed.

In the meantime, we present some statistics about some of the above projects.
Table 8.2 shows information from the projects we have access to, including the number
of functions in the project and the lines of C code. We additionally provide the
metrics lines of specification and term size for both the output of Norrish’s C-to-Isabelle
parser and AutoCorres. Since both tools directly emit terms in Isabelle/HOL’s internal
representation, we estimate the former number by using Isabelle/HOL’s pretty printer
for the generated definitions. The term size metric measures the number of nodes in the
abstract syntax tree of a specification. While neither measurement is a perfect metric
for specification complexity, the numbers reinforce our intuition that the output of
AutoCorres is significantly simpler than that of the C parser with lines of specification
ranging from 25% to 53% smaller and the term sizes ranging from 40% to 61% smaller.

Table 8.3 presents the time taken by Norrish’s C-to-Isabelle parser and AutoCorres
to carry out their respective translations. While AutoCorres has a longer running time
than the C parser, for both tools this cost tends to be a one-off, where the results of
the translation are saved and reused. Further, AutoCorres translates functions in parallel,
so real time is significantly less than CPU time. We discuss in Section 9.7.1 possible
approaches that could be used to further reduce the running time.

174 evaluation and experience

Table 8.3: Comparison of the time required by Norrish’s C-to-Isabelle parser [85]
and AutoCorres of 5 large C programs. Measurements are recorded on a 16-core
3.3GHz Intel Xeon E5-2643, with 128GiB of RAM. Measurements are the average
of 5 runs. Memory usage values are peak memory usage across the run of both
the C-to-Isabelle parser and AutoCorres; 1G = 230 bytes.

Program LoC Functions
CPU Time

Mem Usage
Norrish AutoCorres

seL4 kernel 10 121 551 39.2min 70.1min 5.59G
CapDL SysInit 2 079 163 3.0min 23.3min 2.82G
Piccolo kernel 936 56 48.1 s 388.2 s 2.35G
eChronos 563 40 15.0 s 67.8 s 2.24G
Schorr-Waite 19 1 3.8 s 15.1 s 2.23G

8.3 Conclusion

In this chapter, we have demonstrated in two case studies how the verification of low-
level C code can now proceed at the same level of abstraction as previous verifications
of idealised algorithms; further, the resulting proof scripts were significantly smaller
than existing work that carried out similar proofs on the same C program.

We have also given an overview of how AutoCorres has been used and continues to
be actively used in larger proof projects. Only once these project reach a more mature
stage will we be able to gain a better understanding of the benefits and challenges
provided by AutoCorres, but we are encouraged by the initial results.

conclusion 175

Chapter Summary

• The goal of the tool AutoCorres is to both generate useful abstractions,
and to be able to scale to real-world program sizes and features.

• To show that AutoCorres generates useful abstractions, we ported an
existing proof of the Schorr-Waite algorithm [70] to AutoCorres. The
original proof reasoned about the algorithm implemented in a very
abstract language; our port to AutoCorres allowed us to prove the
same property about a concrete C program, with minimal changes to
reasoning.

• To show that AutoCorres is able to scale to real-world programs, we
showed timing and output statistics of AutoCorres on the 10,000 line
seL4 microkernel.

• AutoCorres is additionally being actively used in several other C projects,
including a real-time operating system, a graph library, a system ini-
tialiser, and a memory allocator. This suggests that AutoCorres is flexible
enough to support many real-world use-cases.

176 evaluation and experience

9 Conclusion

In this thesis, we have presented a technique called specification abstraction, where
a conservative, low-level representation of a program is automatically and verifiably
abstracted into a higher-level representation. These automated abstractions reduce cog-
nitive complexity for verification engineers, and hence provide a boost in human
productivity. The simpler representations also assist with mechanical reasoning, allowing
automated reasoning tools to operate on a semantically distilled representation of the
program.

An alternative approach commonly used to simplify program verification is to
build more sophisticated reasoning tools—perhaps building a better VCG with more
automation, for instance. In contrast, our specification abstraction approach is agnostic
about the kind of verification to be conducted. It is easy to use a separation logic
on top of our output, connect it to a VCG, use it as an intermediate step in a larger
refinement proof, or use it as a base-level model for proving more complex properties,
such as non-interference in the style of Murray et al [74]. Such flexibility is not just
a theoretical nicety, but is being actively utilised, as demonstrated by the variety of
ongoing projects using our work described in Section 8.2.

Finally, the algorithms described in this thesis are not simply theoretical but have
been implemented and evaluated in a new tool named AutoCorres. AutoCorres is
available under an open-source BSD-style license [48], and is actively being used on C
verification projects both internal and external to the author’s research group.

In the remainder of this chapter, we provide a summary of contributions made by
this thesis, briefly describe how our work is applicable to other programming languages,
and finally describe research challenges related to our work that remain open.

178 conclusion

9.2 Thesis contributions

In this thesis we have developed formalisations and algorithms for automatically carry-
ing out a variety of program abstractions. Importantly, we also automatically generate
proofs that our translations are correct in Isabelle/HOL, providing the end-user with
a formal connection between the low-level input program and our higher-level output
specification.

In particular, in this thesis we have demonstrated the following verified transforma-
tions:

• Converting from a deeply embedded representation of an imperative program to
a shallowly embedded monadic representation (Chapter 4);

• Lifting local variables from being modelled as part of the program’s state to being
represented in monadic bound variables (Chapter 5);

• Carrying out various optimisations to simplify program representations, includ-
ing peephole optimisations (Section 4.5.1), exception elimination (Section 4.5.2),
flow-sensitive optimisations (Section 5.2), and type strengthening (Section 5.3);

• Rewriting programs using word-based arithmetic, transforming them into pro-
grams that operate directly on unbounded integers and naturals (Chapter 6); and

• Rewriting programs that operate directly on a byte-level model of the heap,
transforming them into programs operating on a Burstall-Bornat split-heap model
(Chapter 7), without sacrificing the ability to carry out byte-level reasoning where
necessary (Section 7.5).

We have implemented the algorithms described in this work in the tool AutoCorres,
and have evaluated it using simple case studies (in each of the chapters of this thesis),
and also by carrying out the following more significant evaluations:

• We have shown that pre-existing highly abstract proofs—such as a proof of an in-
place linked list reversal function and a proof of the Schorr-Waite algorithm—can
be ported to the output of AutoCorres with minimal effort (Section 8.1);

• We have demonstrated that AutoCorres is scalable to real-world project sizes
by providing translation statistics on a number of larger projects (Section 8.2.1);
and, finally,

• We have shown that AutoCorres’ output is sufficiently flexible to be used in a
variety of contexts, as demonstrated by the variety of ongoing projects where it is
currently being used (Section 8.2).

While AutoCorres is still a relatively young tool—and hence has had little time to be
used in larger completed projects—we are encouraged by initial evaluations and its
uptake in ongoing projects.

applicability to other languages 179

9.3 Applicability to other languages

While our focus has been on the C programming language, we believe that many of
the algorithms and rules in this thesis would be applicable for carrying out specification
abstraction of other imperative languages, such as Java, C# or SPARK Ada.

In particular, the conversion from a deeply embedded representation to a shallowly
embedded monadic representation would apply to every language, albeit with many of
the implementation details differing. Similarly, local variable lifting, exception elimina-
tion, type strengthening and the optimisation passes would all be applicable to other
imperative languages, though additional language-specific rules would be required for
these phases to be fully effective.

Heap abstraction would thankfully no longer be required on higher-level languages
such as Java and C#. The design and type-systems of these languages already imply
that changes to an object of one type cannot affect another, nor can objects partially
overlap.

The problem of finite word arithmetic, however, would still remain. Java and C#
do not share C’s concept of undefined behaviour when it comes to word arithmetic,
instead defining signed overflow and underflow as the standard two’s-complement
result.1 As discussed in Chapter 6, reasoning about arithmetic operations that may
overflow is far more complex than reasoning about their unbounded counterparts.
If users (i) do not rely on signed overflow, and (ii) are willing to prove this, then
we could carry out word abstraction to translate finite word-based operations into
unbounded integer operations, in much the same way that our work optionally abstracts
unsigned arithmetic operations in C.

What is perhaps most striking is that the output of AutoCorres in our larger case
studies in Section 8.1 is relatively programming language-agnostic—a user unfamiliar
with AutoCorres would struggle to guess the underlying language the specifications
were generated from. This suggests that, with sufficient tool support, reasoning about
programs written in C should not be significantly harder than reasoning about equiva-
lent programs written in higher-level languages such as Java or C#.

9.4 Trusting the C-to-Isabelle Parser

Our work uses the output of Norrish’s C-to-Isabelle parser as its starting point. Our
reasons for basing our own work on Norrish’s C-to-Isabelle parser were pragmatic:
Norrish’s translation tool was mature, well tested, and targeted Isabelle/HOL directly.

Despite the tool’s maturity and test framework, Norrish’s C-to-Isabelle parser still
consists of around 12 000 lines of unverified ML code and 13 500 lines of Isabelle
code. Much of this code needs to be trusted. If the parser mistranslates a C con-
struct, then any proof about the behaviour of the resulting Simpl is invalid. Similarly,

1That is, INT_MAX + 1 = INT_MIN and -INT_MIN = INT_MIN.

180 conclusion

ANSI C Simpl

AutoCorres
C-to-Isabelle

Parser

Monadic

ARM Binary

Binary Translation
Validation

C Compiler

Figure 9.1: The connections between Norrish’s C-to-Isabelle parser, Sewell et al.’s
translation validation [95] and AutoCorres. Solid lines indicate formal connec-
tions between artefacts, while dashed lines indicate informal translations. Blue
boxes indicate artefacts represented in Isabelle/HOL.

while AutoCorres produces a proof that its own abstraction is correct, this proof still
fundamentally needs to assume that the underlying Simpl is correct.

In general, if we want to formally reason about C, there is no way to avoid placing
at least some level of trust in whatever method we use to import C into our reasoning
tool: at very least we must trust that our tool’s formal interpretation of the informal
C standard is correct. The goal then is to reduce the amount of trust that needs to be
placed in such tools, by eliminating cleverness and attempting to implement as literal
an implementation of the C standard as possible. Norrish’s C-to-Isabelle parser was
designed with this goal in mind: providing a literal translation of the C standard for
the subset of C supported.

An alternative method of reducing the trust that needs to be placed in the C
semantics is to establish a formal connection to the compiled binary code. One method
is to develop a verified C compiler, such as the verified CompCert compiler [67].
Such a compiler can provide guarantees that the formal semantics of the C code
match those of the generated binary, and hence proofs about the C code will also
apply to the binary. Curiously, even using a verified compiler, verification engineers
still have no guarantee that they are reasoning about the correct semantics of their
C program—simply that any misinterpretation made by the compiler authors will be
similarly reflected in the final binary.2 In practice, such differences won’t tend to matter
if the verified compiler’s toolchain is used end-to-end.

While Norrish’s C-to-Isabelle parser isn’t associated with a verified compiler, Sewell,
Myreen and Klein [95] have shown that it is possible to automatically prove correspon-
dence between the output of Norrish’s parser and the binary output of the unverified
GNU C Compiler (GCC). The process works as follows: (i) a C program is translated

2This is not an entirely theoretical issue: the CompCert semantics defines the result of signed overflow [27],
while the C standard leaves it undefined. This means it is quite possible to prove a program correct using the
CompCert semantics, only to have it crash when compiled with GCC—even under the assumption that GCC
is entirely bug free.

the simpl language as an input 181

into Simpl using Norrish’s C-to-Isabelle parser; (ii) the Simpl output is then translated
into a graph language which represents programs as a control flow graph, similar to
that used internally by a compiler; (iii) the compiled code generated by GCC is also
translated into the graph language; and (iv) finally, the two graphs (i.e., the Simpl and
the output of GCC) are automatically proven to be equivalent using SMT solvers. If
the proof of equivalence succeeds, users can be confident that the semantics generated
by Norrish’s C-to-Isabelle parser match the semantics of the code generated by GCC.
In this case, users no longer need to trust the implementations of either GCC or Nor-
rish’s C-to-Isabelle parser; instead, trust is placed in the (much simpler) translation
from assembly to the graph language. Again, there is still no guarantee that the veri-
fication engineer has the correct semantics of their C program, simply that Norrish’s
C-to-Isabelle parser and GCC agree.

When Sewell et al.’s work is connected to our own, we end up in the scenario
depicted in Figure 9.1, where the output of AutoCorres is formally connected to the
final binary. While Norrish’s C-to-Isabelle parser does not support all of the C language,
and Sewell et al.’s work still has limitations on the optimisation level of GCC;3 when
the entire toolchain can be successfully used, the user can have high confidence that
theorems proven about their program in Isabelle/HOL apply to their concrete binary.

9.5 The Simpl language as an input

In the scenario described in the previous section and shown in Figure 9.1—i.e., the
output of the C-to-Isabelle parser is used as an input to other tools, but never directly
reasoned about by verification engineers—the Simpl language becomes northing more
than a rendezvous point for the three tools: the C-to-Isabelle parser generates Simpl,
while AutoCorres and Sewell et al.’s work consume it.

A natural question to ask would be: “is the Simpl generated by Norrish’s C-to-
Isabelle parser the best choice for such a rendezvous point?” Two areas where we feel
Simpl presents unnecessary difficulties for both AutoCorres and Sewell et al.’s work are
as follows:

Shallowly embedded expressions Simpl is a language with deeply embedded state-
ments and shallowly embedded expressions. This latter design decision was made
to ease reasoning about Simpl programs. As discussed in Chapter 4, reasoning about
shallowly embeddings of programs tends to be easier for verification engineers than rea-
soning about deep embeddings. At the time that both Simpl and Norrish’s C-to-Isabelle
parser were developed, there was an expectation that the output of the parser would be
directly reasoned about by verification engineers. Thus, using a shallow embedding for
expressions was the pragmatic decision.

If we treat Simpl as nothing more than a rendezvous point for several automatic
tools, the benefits of using shallow embeddings for expressions disappear, while many

3Sewell et al.’s work is ongoing at time of writing, attempting to address these limitations.

182 conclusion

disadvantages remain. In particular, functions written in Isabelle cannot parse shallowly
embedded terms; instead, we must write the different phases of AutoCorres in ML
simply to analyse the terms. While verifying Isabelle functions (i.e., functions written di-
rectly in Isabelle’s logic) is relatively easy, verifying ML implementations is much harder.
This makes it difficult provide any guarantees about the correctness or completeness of
functions in AutoCorres. In our work, we resort to generating certificates showing that
each individual output generated by AutoCorres is correct after the fact.

In contrast, if expressions were deeply embedded, a standard Isabelle function could
be written to analyse and translate it into other forms. Proofs about this function could
be carried out to show both its correctness and completeness once and for all.

A C-specific representation While the Simpl language attempts to provide all the
features required by an imperative languages such as C, in practice there remain
mismatches between the features provided by Simpl and those required by C. One such
example are the behaviour of C function calls (including stacking of local variables and
extraction of return values), which have a non-trivial translation from C to Simpl, as
described in Section 4.4.

In a world where verification engineers no longer need to reason directly about the
output of Norrish’s C-to-Isabelle parser, we could simply have the parser generate a
deeply embedded C-specific abstract syntax tree (AST) of the input C program. Similar
parsers exist, as described in Section 2.1.3 and Section 9.7.4, albeit not for Isabelle/HOL.
By having a C-specific representation of the language, the mismatch between the
input C language and the output logical language could be eliminated. While such a
representation would be more difficult to manually work with, automated tools such
as AutoCorres could alleviate the problem by presenting the end-user with a simpler
representation.

9.6 Output stability

Our experience in verifying large software systems suggests that the process of pro-
gram verification is not simply a matter of (i) writing a piece of software; and then
(ii) proving it correct. Rather, it is an iterative process, where software is continuously
tweaked and modified during the verification process in response to feedback from
verification engineers. Perhaps the most obvious example of this is when software must
be modified to fix bugs revealed during verification; but software may also be modi-
fied mid-verification simply to ease verification, such as by simplifying some aspect of
the code or tightening a program invariant. Even once verification of a program has
completed, software may continue to change when new features are added, or existing
features are modified.

In the context of changing input programs, one aspect that is important for tools
like AutoCorres is output stability. That is, will small changes to the input program
result in small changes to the output specification? For completely automated verifica-
tion tools that simply state ‘correct’ or ‘incorrect’, output stability is not a particularly
pressing concern; but for tools like AutoCorres that generate an artefact that will be

future work 183

manually reasoned about, it would be unacceptable if each time a small change was
made to the input program, the entire proof on AutoCorres’ output needed to be
restarted.

While we don’t have firm numbers about the stability of AutoCorres’ output, our
experience suggests that—with the exception of the type strengthening process, dis-
cussed below—the output of AutoCorres tends to be stable, with small changes to
input programs typically resulting in small changes to output programs. As most of the
translation phases carried out by AutoCorres only depend on information within each
individual function, if a single function is modified—while that individual function may
be translated differently by AutoCorres—other functions will be unaffected.

The primary exception to this is the type strengthening phase of AutoCorres, de-
scribed in Section 5.3. In particular, type strengthening attempts to determine the
strongest type a function may be represented as. For example, if a function does not
write to the heap, AutoCorres will represent that function using the stronger option
monad type, instead of the weaker state monad type. One limitation of type strength-
ening is that a function cannot be represented in a type stronger than that of the
functions it calls; that is, if a function f calls a second function g , then f ’s type cannot
be stronger than g ’s.

A problem arises if a function is modified by the user in such a way that it can
no longer be represented in its current type. For example, a function f previously
represented by AutoCorres using the option monad might be modified in such a way
that it now writes to the heap, so that AutoCorres can only represent it using the
state monad. Not only will the type of f change—requiring changes in all proofs about
f—but also the type of any functions calling f , any functions calling those functions,
and so on.

One method we have implemented to somewhat mitigate this problem is to in-
troduce type pinning, where the user may request that certain functions always be
translated to a particular type. While a function cannot be pinned to a type stronger
than what is necessary to represent it—that is, a function that modifies the heap funda-
mentally cannot be represented using the option monad, for example—when developers
can foresee that a function will eventually be modified and require a weaker type than
it currently does, type pinning can reduce the maintenance burden later down the line.

9.7 Future work

In this section, we present potential areas of improvement and research that stem from
the work presented in this thesis.

9.7.1 Improving performance

AutoCorres is designed to scale to large projects. In its current state, it is able to
process 10,000-line C projects in a few hours of CPU time. This cost tends to be a
one-off: a verification engineer runs AutoCorres on an input C file once, and then

184 conclusion

carries out verification on the result. None the less, it would be ideal if AutoCorres
could carry out these translations faster; this would allow AutoCorres to scale to larger
projects, and also improve engineer productivity when changes to C code are required.

Perhaps the greatest bottleneck in the existing code is the flow-sensitive optimisa-
tion phase, which we estimate requires around two-thirds of the translation time. We
discuss the reasons for the lacklustre performance and provide alternative solutions
below. The remaining bottlenecks arise primarily from our requirement that we validate
all of our translations using the Isabelle/HOL proof kernel.

One possible approach to speed up our implementation is to use proof by reflection.
In this approach, we (i) prove that the implementation of AutoCorres is correct in a
theorem prover; (ii) translate the implementation to an executable format; and then
(iii) use this proven version of AutoCorres to carry out our abstraction algorithms, rely-
ing on the correctness of our implementation instead of generating an explicit LCF-style
proof of each program we translate. This process needn’t be done for the entire Auto-
Corres implementation, but can be selectively used for particularly problematic phases
in AutoCorres.

One theoretical objection to this approach is that the strict LCF-style proof that
is currently generated by AutoCorres—which connects the input C to the output
specification—is no longer available. An increased level of trust must be placed in
the code that compiles AutoCorres, and there are limited opportunities for external
proof-replay.

An alternative approach to improving performance that retains a strict LCF-style
proof is to create two versions of each procedure in AutoCorres: an informal quick
and dirty version that quickly calculates the results of each AutoCorres phase without
attempting to generate proofs, and a strict mode that generates a full proof. The quick
and dirty phase could carry out the specification abstraction process quickly, spawning
new threads of execution responsible for double-checking the results using strict proof
checking. These new threads could run in the background and could also be arbitrarily
parallelised.4

Maintaining two versions of each procedure in AutoCorres and ensuring they re-
main synchronised would be a huge maintenance burden. A potential solution is to
automatically generate the quick and dirty implementation. For the phases of Auto-
Corres that use sets of rules to carry out calculations (such as word abstraction, heap
abstraction, type strengthening, and so on), the informal procedures could be generated
automatically from the rules. For the phases of AutoCorres that rely on judgements
from Isabelle/HOL’s simplifier to progress (such as the peephole optimisations), again
the set of rules used by the simplifier could be compiled into a procedure to informally
determine the judgements ahead of time. For the remainder of the AutoCorres phases,
proofs are already carried out asynchronously, or could be adjusted to do so with
relatively little effort.

4 In particular, we desire an end-to-end proof to be checked by n threads. The quick and dirty thread
generates n − 1 ‘stepping stones’. Then, the ith thread checks that the proof from the ith to the (i + 1)th is
correct. Once all n threads have finished, the proofs are joined together to form a single end-to-end proof.

future work 185

9.7.2 Implementing abstract interpretation

The current flow-sensitive optimisations described in Section 5.2, while relatively effec-
tive, still leave much to be desired. There are two main limitations in the current
implementation.

The first limitation is that facts about the current function are gathered from guard,
condition, and whileLoop statements, which are then unceremoniously passed into
Isabelle/HOL’s simplifier where they can ideally be used to simplify later statements. In
the current implementation, the number of facts given to the simplifier grows linearly
with the function size,5 significantly slowing down the flow-sensitive optimisation phase
of AutoCorres, particularly in larger functions.

The second problem is that the current implementation of flow-sensitive optimi-
sation frequently ‘forgets’ facts it learnt earlier in the function. For example, after
each condition block, AutoCorres throws away learnt information to avoid a poten-
tial exponential-blowup in the number of facts it tracks. Additionally, AutoCorres is
incapable of using facts learnt in one iteration of a whileLoop’s body in the next
iteration.

Abstract interpretation [34] is a well-known solution to both of these problems,
where variables in a function are interpreted in an abstract domain. For instance, we
may decide to keep track of the maximum and minimum possible values of each
variable, but nothing more. By carefully choosing an appropriate abstract domain,
sound analysis of functions can be carried out without an explosion in the number
of facts being stored. Additionally, the widening and narrowing procedures of abstract
interpretation allow loops to be better analysed, with the possible output values of the
loop soundly calculated. Cachera and Pichardie [25] have shown that it is possible to
carry out abstract interpretation from within an interactive theorem prover for a simple
language. Extending this to support the complexities of C would be a practical exercise
towards improving the quality of our specification abstraction. For example, abstract
interpretation could be used to carry out a range analysis of word-based variables to
automatically eliminate guards generated from the use of word arithmetic which can be
shown to always be true.

9.7.3 Data structure abstractions

Currently AutoCorres is capable of soundly abstracting the system heap from using a
byte-level model to a Burstall-Bornat style model. The next question is, could we go
further and abstract entire data structures, such as lists or trees?

One tractable approach to this problem would be to craft a set of APIs in C
for data structure manipulation. For instance, we could introduce an API function
list_concat to add an item to a list, and an API macro LIST_FORALL to enumerate a
list. Large C projects such as the Linux kernel already use such an internal API as a
matter of good engineering practice.

5For a function of length n, u�(n) facts will be generated, each of which will be used u�(n) times by the
simplifier. This results in u�(n2) units of work being given to the simplifier, which itself has a non-trivial time
complexity.

186 conclusion

Next, we detect these data structures on the heap as well as the calls to their associ-
ated API functions, abstracting them into their logical equivalents. For instance, a call
to list_append(a, b) would be translated into the logically equivalent Isabelle/HOL
list append operation a @ b.

For programs that heavily manipulate data structures in memory, having a small li-
brary of data structures that can be automatically abstracted into their logical equivalent
operations would significantly ease reasoning.

9.7.4 An extended C subset

Our work uses Norrish’s C-to-Isabelle parser [84, 85] as its starting point. Norrish’s
parser has the advantage that it supports a sufficiently large subset of C to allow
real-world projects to be verified, such as the seL4 microkernel [57, 81, 82]. Also, as
previously discussed in Section 9.5, Sewell, Myreen and Klein [95] have also proven
semantic equivalence between the output of Norrish’s C parser and the binary output of
the GNU C Compiler [99]. This latter work reduces the amount of trust that must be
placed in both Norrish’s C parser and the GNU C Compiler.

Other C semantics have also been developed that are both trustworthy and cover
a greater subset of the C standard than Norrish’s semantics. The first is the verified
CompCert C compiler [67], which has a formal proof in the Coq interactive theorem
prover that the C semantics match the semantics of the binary code generated by the
compiler. The second is the extensive C semantics developed by Ellison and Roşu [42],
which, although not formally connected to a C compiler, have been extensively tested
and shown to empirically match the GNU C Compiler.

While it would require significant engineering effort, it would be possible to mod-
ify AutoCorres to work on Isabelle/HOL translations of these two models of C. An
alternative approach would be to reimplement the algorithms and logical frameworks
described in this work to use the CompCert C semantics and operate in the logic of
the Coq interactive theorem prover. If completed, the end result would be a formal link
between the output of a AutoCorres-like tool and the binary output generated by the
CompCert compiler.

Porting our algorithms would not be without its challenges. The early phases of
AutoCorres—such as converting from the deeply embedded Simpl language to a shal-
lowly embedded monadic representation—are highly specific to Norrish’s C-to-Isabelle
parser. Similarly, the heap abstraction phase of AutoCorres would need to take into ac-
count the different models of a byte-level heap used by these projects. For many of the
phases of AutoCorres, however, our existing work could be used relatively unchanged.

9.8 Final words

In this thesis, we have described a technique called specification abstraction, which
allows high-level reasoning to take place on conservative, low-level models of pro-
gramming languages without sacrificing soundness. It is our hope that future formal

final words 187

verification tools increasingly use verified specification abstraction—either explicitly
exposed to the user, or simply as an internal transformation—to ensure that they are
able to provide strong guarantees about software correctness.

188 conclusion

A Appendices

A.1 Big-step semantics of Simpl

The following rules describe the big-step semantics of Schirmer’s Simpl language [92,
93], which is generated by Norrish’s C-to-Isabelle parser and is the starting point of
our work.

Basic control flow

Γ ⊢ ⟨Skip, Normal s⟩ ⇒ Normal s Γ ⊢ ⟨Basic f , Normal s⟩ ⇒ Normal (f s)

Γ ⊢ ⟨c1, Normal s⟩ ⇒ s′ Γ ⊢ ⟨c2, s′⟩ ⇒ t
Γ ⊢ ⟨c1;; c2, Normal s⟩ ⇒ t

s ∈ b Γ ⊢ ⟨c1, Normal s⟩ ⇒ t
Γ ⊢ ⟨Cond b c1 c2, Normal s⟩ ⇒ t

s ∉ b Γ ⊢ ⟨c2, Normal s⟩ ⇒ t
Γ ⊢ ⟨Cond b c1 c2, Normal s⟩ ⇒ t

s ∈ b
Γ ⊢ ⟨c, Normal s⟩ ⇒ s′
Γ ⊢ ⟨While b c, s′⟩ ⇒ t

Γ ⊢ ⟨While b c, Normal s⟩ ⇒ t
s ∉ b

Γ ⊢ ⟨While b c, Normal s⟩ ⇒ Normal s

Γ p = Some body
Γ ⊢ ⟨body, Normal s⟩ ⇒ t
Γ ⊢ ⟨Call p, Normal s⟩ ⇒ t

Γ p = None

Γ ⊢ ⟨Call p, Normal body⟩ ⇒ Stuck

190 appendices

Exceptional control flow

Γ ⊢ ⟨Throw, Normal s⟩ ⇒ Abrupt s Γ ⊢ ⟨c, Abrupt s⟩ ⇒ Abrupt s

Γ ⊢ ⟨c1, Normal s⟩ ⇒ t
∄s. t = Abrupt s

Γ ⊢ ⟨Catch c1 c2, Normal s⟩ ⇒ t

Γ ⊢ ⟨c1, Normal s⟩ ⇒ Abrupt s′
Γ ⊢ ⟨c2, Normal s′⟩ ⇒ t

Γ ⊢ ⟨Catch c1 c2, Normal s⟩ ⇒ t

Guards

s ∈ g Γ ⊢ ⟨c, Normal s⟩ ⇒ t
Γ ⊢ ⟨Guard f g c, Normal s⟩ ⇒ t

s ∉ g
Γ ⊢ ⟨Guard f g c, Normal s⟩ ⇒ Fault f

Γ ⊢ ⟨c, Fault f ⟩ ⇒ Fault f

Non-determinism and dynamic execution

(s, t) ∈ r
Γ ⊢ ⟨Spec r, Normal s⟩ ⇒ Normal t

∀t. (s, t) ∉ r
Γ ⊢ ⟨Spec r, Normal s⟩ ⇒ Stuck

Γ ⊢ ⟨c, Stuck⟩ ⇒ Stuck

Γ ⊢ ⟨c s, Normal s⟩ ⇒ t
Γ ⊢ ⟨DynCom c, Normal s⟩ ⇒ t

termination of simpl programs 191

A.2 Termination of Simpl programs

The following rules describe the termination semantics of Schirmer’s Simpl lan-
guage [92, 93].

Basic control flow

Γ ⊢ Skip ↓ Normal s Γ ⊢ Basic f ↓ Normal s

Γ ⊢ c1 ↓ Normal s
∀s′. Γ ⊢ ⟨c1, Normal s⟩ ⇒ s′ ⟶ Γ ⊢ c2 ↓ s′

Γ ⊢ c1;; c2 ↓ Normal s

s ∈ b Γ ⊢ c1 ↓ Normal s
Γ ⊢ Cond b c1 c2 ↓ Normal s

s ∉ b Γ ⊢ c2 ↓ Normal s
Γ ⊢ Cond b c1 c2 ↓ Normal s

s ∈ b Γ ⊢ c ↓ Normal s
∀s′. Γ ⊢ ⟨c, Normal s⟩ ⇒ s′ ⟶ Γ ⊢ While b c ↓ s′

Γ ⊢ While b c ↓ Normal s

s ∉ b
Γ ⊢ While b c ↓ Normal s

Γ p = Some body
Γ ⊢ body ↓ Normal s
Γ ⊢ Call p ↓ Normal s

Γ p = None

Γ ⊢ Call p ↓ Normal s

Exceptional control flow

Γ ⊢ Throw ↓ Normal s Γ ⊢ c ↓ Abrupt s

Γ ⊢ c1 ↓ Normal s
∀s′. Γ ⊢ ⟨c1, Normal s⟩ ⇒ Abrupt s′ ⟶ Γ ⊢ c2 ↓ Normal s′

Γ ⊢ Catch c1 c2 ↓ Normal s

Guards

s ∈ g Γ ⊢ c ↓ Normal s
Γ ⊢ Guard f g c ↓ Normal s

s ∉ g
Γ ⊢ Guard f g c ↓ Normal s Γ ⊢ c ↓ Fault f

Non-determinism and dynamic execution

Γ ⊢ Spec r ↓ Normal s Γ ⊢ c ↓ Stuck

Γ ⊢ c s ↓ Normal s
Γ ⊢ DynCom c ↓ Normal s

192 appendices

Bibliography

[1] E. Alkassar, S. Böhme, K. Mehlhorn and C. Rizkallah. ‘A Framework for
the Verification of Certifying Computations’. In: Journal of Automated Reasoning
52.3 (2014), pages 241–273. doi: 10.1007/s10817-013-9289-2.

[2] E. Alkassar, M. Hillebrand, D. Leinenbach, N. Schirmer, A. Starostin
and A. Tsyban. ‘Balancing the Load — Leveraging a Semantics Stack for
Systems Verification’. In: Journal of Automated Reasoning: Special Issue on
Operating System Verification 42, Numbers 2–4 (2009), pages 389–454. doi:
10.1007/s10817-009-9123-z.

[3] J. Andronick, B. Chetali and C. Paulin-Mohring. ‘Formal Verification of
Security Properties of Smart Card Embedded Source Code’. In: Proceedings of
the International Symposium on Formal Methods (FM). Volume 3582. LNCS. 2005,
pages 302–317. doi: 10.1007/11526841_21.

[4] A. W. Appel. ‘VeriSmall: Verified Smallfoot Shape Analysis’. In: Proceedings of
the 1st International Conference on Certified Programs and Proofs. Volume 7086.
LNCS. 2011, pages 231–246. doi: 10.1007/978-3-642-25379-9_18.

[5] A. W. Appel. Verification of a Cryptographic Primitive: SHA-256. Accessed July
2014. 2014. url: http://www.cs.princeton.edu/~appel/papers/verif-

sha.pdf.

[6] T. Ball, E. Bounimova, R. Kumar and V. Levin. ‘SLAM2: Static driver
verification with under 4% false alarms’. In: Proceedings of the 2010 Con-
ference on Formal Methods in Computer-Aided Design. 2010, pages 35–42.
isbn: 978-1-4577-0734-6.

[7] T. Ball, A. Podelski and S. K. Rajamani. ‘Relative completeness of abstraction
refinement for software model checking’. In: Tools and Algorithms for the
Construction and Analysis of Systems. 2002, pages 158–172. doi: 10.1007/3-540-
46002-0_12.

http://dx.doi.org/10.1007/s10817-013-9289-2
http://dx.doi.org/10.1007/s10817-009-9123-z
http://dx.doi.org/10.1007/11526841_21
http://dx.doi.org/10.1007/978-3-642-25379-9_18
http://www.cs.princeton.edu/~appel/papers/verif-sha.pdf
http://www.cs.princeton.edu/~appel/papers/verif-sha.pdf
http://dx.doi.org/10.1007/3-540-46002-0_12
http://dx.doi.org/10.1007/3-540-46002-0_12

194 bibliography

[8] C. Ballarin. ‘Locales and Locale Expressions in Isabelle/Isar’. In: Types for
Proofs and Programs. Volume 3085. LNCS. 2004, pages 34–50. doi: 10.1007/978-
3-540-24849-1_3.

[9] C. Barrett and C. Tinelli. ‘CVC3’. In: Computer Aided Verification. Vol-
ume 4590. LNCS. 2007, pages 298–302. doi: 10.1007/978- 3- 540- 73368-
3_34.

[10] J. Berdine, C. Calcagno and P. W. O’Hearn. ‘Smallfoot: Modular automatic
assertion checking with separation logic’. In: Proceedings of the 4th International
Conference on Formal Methods for Components and Objects. 2005, pages 115–137.
doi: 10.1007/11804192_6.

[11] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Devel-
opment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2004. doi: 10.1007/978-3-662-
07964-5.

[12] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux and X. Rival. ‘A static analyzer for large safety-critical software’.
In: SIGPLAN Notices. Volume 38. 5. ACM. 2003, pages 196–207. doi: 10.1145/
781131.781153.

[13] S. Blazy, Z. Dargaye and X. Leroy. ‘Formal Verification of a C Compiler
Front-End’. In: Proceedings of the 14th International Symposium on Formal
Methods (FM). Volume 4085. LNCS. 2006, pages 460–475. doi: 10.1007/

11813040_31.

[14] S. Blazy, V. Laporte, A. Maroneze and D. Pichardie. ‘Formal Verification
of a C Value Analysis Based on Abstract Interpretation’. In: Static Analysis.
Volume 7935. LNCS. 2013, pages 324–344. doi: 10.1007/978-3-642-38856-
9_18.

[15] S. Blazy and X. Leroy. ‘Mechanized Semantics for the C-light Subset of the
C Language’. In: Journal of Automated Reasoning 43.3 (2009), pages 263–288.
doi: 10.1007/s10817-009-9148-3.

[16] S. Böhme, K. R. M. Leino and B. Wolff. ‘HOL-Boogie — An Interactive
Prover for the Boogie Program-Verifier’. In: Proceedings of the 21st International
Conference on Theorem Proving in Higher Order Logics. Volume 5170. LNCS.
2008, pages 150–166. doi: 10.1007/978-3-540-71067-7_15.

[17] S. Böhme, M. Moskal, W. Schulte and B. Wolff. ‘HOL-Boogie — An Inter-
active Prover-Backend for the Verifying C Compiler’. In: Journal of Automated
Reasoning 44.1–2 (2010), pages 111–144. doi: 10.1007/s10817-009-9142-9.

[18] R. Bornat. ‘Proving pointer programs in Hoare Logic’. In: Proceedings of the 5th
Mathematics of Program Construction. Volume 1837. LNCS. 2000, pages 102–126.
doi: 10.1007/10722010_8.

http://dx.doi.org/10.1007/978-3-540-24849-1_3
http://dx.doi.org/10.1007/978-3-540-24849-1_3
http://dx.doi.org/10.1007/978-3-540-73368-3_34
http://dx.doi.org/10.1007/978-3-540-73368-3_34
http://dx.doi.org/10.1007/11804192_6
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1007/11813040_31
http://dx.doi.org/10.1007/11813040_31
http://dx.doi.org/10.1007/978-3-642-38856-9_18
http://dx.doi.org/10.1007/978-3-642-38856-9_18
http://dx.doi.org/10.1007/s10817-009-9148-3
http://dx.doi.org/10.1007/978-3-540-71067-7_15
http://dx.doi.org/10.1007/s10817-009-9142-9
http://dx.doi.org/10.1007/10722010_8

bibliography 195

[19] R. J. Boulton, A. Gordon, M. J. C. Gordon, J. Harrison, J. Herbert and
J. V. Tassel. ‘Experience with Embedding Hardware Description Languages
in HOL’. In: Proceedings of the IFIP TC10/WG 10.2 International Conference
on Theorem Provers in Circuit Design: Theory, Practice and Experience. 1992,
pages 129–156. isbn: 0-444-89686-4.

[20] A. Boyton, J. Andronick, C. Bannister, M. Fernandez, X. Gao, D.
Greenaway, G. Klein, C. Lewis and T. Sewell. ‘Formally Verified Sys-
tem Initialisation’. In: Proceedings of the 15th International Conference on Formal
Engineering Methods. 2013, pages 70–85. doi: 10.1007/978-3-642-41202-8_6.

[21] L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök and J. Matthews. ‘Impera-
tive Functional Programming with Isabelle/HOL’. In: Theorem Proving in Higher
Order Logics. Volume 5170. LNCS. 2008, pages 134–149. doi: 10.1007/978-3-
540-71067-7_14.

[22] L. Bulwahn, A. Krauss and T. Nipkow. ‘Finding Lexicographic Orders for
Termination Proofs in Isabelle/HOL’. In: Theorem Proving in Higher Order Logics.
Volume 4732. LNCS. 2007, pages 38–53. doi: 10.1007/978-3-540-74591-4_5.

[23] R. Burstall. ‘Some techniques for proving correctness of programs which alter
data structures’. In: Machine Intelligence 7. 1972, pages 23–50.

[24] S. Böhme, A. C. J. Fox, T. Sewell and T. Weber. ‘Reconstruction of Z3’s
Bit-Vector Proofs in HOL4 and Isabelle/HOL’. In: Certified Programs and Proofs.
Volume 7086. LNCS. 2011, pages 183–198. doi: 10.1007/978-3-642-25379-9_15.

[25] D. Cachera and D. Pichardie. ‘A Certified Denotational Abstract Interpreter’.
English. In: Interactive Theorem Proving. Volume 6172. LNCS. 2010, pages 9–24.
doi: 10.1007/978-3-642-14052-5_3.

[26] C. Calcagno, D. Distefano, P. W. O’Hearn and H. Yang. ‘Compositional
Shape Analysis by Means of Bi-Abduction’. In: Journal of the ACM 58.6 (2011),
26:1–26:66. doi: 10.1145/2049697.2049700.

[27] B. Campbell. ‘An Executable Semantics for CompCert C’. English. In: Interna-
tional Conference on Certified Programs and Proofs. Volume 7679. LNCS. 2012,
pages 60–75. doi: 10.1007/978-3-642-35308-6_8.

[28] S. Chaki, E. M. Clarke, A. Groce, S. Jha and H. Veith. ‘Modular verification
of software components in C’. In: IEEE Transactions on Software Engineering
30.6 (2004), pages 388–402. doi: 10.1109/TSE.2004.22.

[29] E. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. ‘Counterexample-guided
abstraction refinement for symbolic model checking’. In: Journal of the ACM
50.5 (2003), pages 752–794. doi: 10.1145/876638.876643.

[30] D. Cock, G. Klein and T. Sewell. ‘Secure Microkernels, State Monads and
Scalable Refinement’. In: Proceedings of the 21st International Conference on
Theorem Proving in Higher Order Logics. 2008, pages 167–182. doi: 10.1007/978-
3-540-71067-7_16.

http://dx.doi.org/10.1007/978-3-642-41202-8_6
http://dx.doi.org/10.1007/978-3-540-71067-7_14
http://dx.doi.org/10.1007/978-3-540-71067-7_14
http://dx.doi.org/10.1007/978-3-540-74591-4_5
http://dx.doi.org/10.1007/978-3-642-25379-9_15
http://dx.doi.org/10.1007/978-3-642-14052-5_3
http://dx.doi.org/10.1145/2049697.2049700
http://dx.doi.org/10.1007/978-3-642-35308-6_8
http://dx.doi.org/10.1109/TSE.2004.22
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/978-3-540-71067-7_16
http://dx.doi.org/10.1007/978-3-540-71067-7_16

196 bibliography

[31] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T.
Santen, W. Schulte and S. Tobies. ‘VCC: A Practical System for Verifying
Concurrent C’. In: Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics. Volume 5674. LNCS. 2009, pages 23–42. doi:
10.1007/978-3-642-03359-9_2.

[32] E. Cohen, M. Moskal, S. Tobies and W. Schulte. ‘A precise yet efficient
memory model for C’. In: Proceedings of the 4th Systems Software Verification.
Volume 254. Electronic Notes in Theoretical Computer Science. 2009, pages 85–
103. doi: 10.1016/j.entcs.2009.09.061.

[33] P. Cousot and R. Cousot. ‘Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints’.
In: Proceedings of the 4th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 1977, pages 238–252. doi: 10.1145/512950.512973.

[34] P. Cousot and R. Cousot. ‘Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints’.
In: Proceedings of the 4th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 1977, pages 238–252. doi: 10.1145/512950.512973.

[35] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux
and X. Rival. ‘The ASTRÉE analyzer’. In: Programming Languages and Systems.
Volume 3444. LNCS. 2005, pages 21–30. doi: 10.1007/978-3-540-31987-0_3.

[36] M. Daum, N. Billing and G. Klein. ‘Concerned with the Unprivileged: User
Programs in Kernel Refinement’. In: Formal Aspects of Computing (2014). To
appear, pages 1–25. doi: 10.1007/s00165-014-0296-9.

[37] M. Daum, S. Maus, N. Schirmer and M. N. Seghir. ‘Integration of a software
model checker into Isabelle’. In: Proceedings of the 12th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning. 2005, pages 381–
395. doi: 10.1007/11591191_27.

[38] J. Dawson. ‘Isabelle Theories for Machine Words’. In: Electronic Notes in
Theoretical Computer Science 250.1 (2009). Proceedings of the Seventh Interna-
tional Workshop on Automated Verification of Critical Systems (AVoCS 2007),
pages 55–70. doi: 10.1016/j.entcs.2009.08.005.

[39] D. Detlefs, G. Nelson and J. B. Saxe. ‘Simplify: A Theorem Prover for
Program Checking’. In: Journal of the ACM 52.3 (2005), pages 365–473. doi:
10.1145/1066100.1066102.

[40] D. Distefano, P. W. O’Hearn and H. Yang. ‘A local shape analysis based on
separation logic’. In: Proceedings of the 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). 2006,
pages 287–302. doi: 10.1007/11691372_19.

http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1016/j.entcs.2009.09.061
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1007/978-3-540-31987-0_3
http://dx.doi.org/10.1007/s00165-014-0296-9
http://dx.doi.org/10.1007/11591191_27
http://dx.doi.org/10.1016/j.entcs.2009.08.005
http://dx.doi.org/10.1145/1066100.1066102
http://dx.doi.org/10.1007/11691372_19

bibliography 197

[41] J. Dodds and A. W. Appel. ‘Mostly Sound Type System Improves a Founda-
tional Program Verifier’. In: International Conference on Certified Programs and
Proofs. Volume 8307. LNCS. 2013, pages 17–32. doi: 10.1007/978-3-319-03545-
1_2.

[42] C. Ellison and G. Roşu. ‘An Executable Formal Semantics of C with Ap-
plications’. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. 2012, pages 533–544. doi: 10.1145/

2103621.2103719.

[43] J.-C. Filliâtre and C. Marché. ‘Multi-prover Verification of C Programs’. In:
Formal Methods and Software Engineering. Volume 3308. LNCS. 2004, pages 15–
29. doi: 10.1007/978-3-540-30482-1_10.

[44] J.-C. Filliâtre and A. Paskevich. ‘Why3 — Where Programs Meet Provers’.
English. In: Programming Languages and Systems. Volume 7792. LNCS. 2013,
pages 125–128. doi: 10.1007/978-3-642-37036-6_8. url: http://dx.doi.org/
10.1007/978-3-642-37036-6_8.

[45] H. Gast. ‘Reasoning about Memory Layouts’. In: Proceedings of the 16th
International Symposium on Formal Methods (FM). Volume 5850. LNCS. 2009,
pages 628–643. doi: 10.1007/978-3-642-05089-3_40.

[46] M. J. C. Gordon, R. Milner and C. P. Wadsworth. Edinburgh LCF.
Volume 78. LNCS. Springer, 1979. doi: 10.1007/3-540-09724-4.

[47] M. Gordon, R. Milner, L. Morris, M. Newey and C. Wadsworth. ‘A
Metalanguage for Interactive Proof in LCF’. In: Proceedings of the 5th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 1978,
pages 119–130. doi: 10.1145/512760.512773.

[48] D. Greenaway. AutoCorres tool. Accessed August 2014. 2014. doi: 10.5281/
zenodo.13342. url: http://ssrg.nicta.com.au/projects/TS/autocorres/.

[49] D. Greenaway, J. Andronick and G. Klein. ‘Bridging the Gap: Automatic
Verified Abstraction of C’. In: Proceedings of the 3rd International Conference
on Interactive Theorem Proving. Volume 7406. LNCS. 2012, pages 99–115. doi:
10.1007/978-3-642-32347-8_8.

[50] D. Greenaway, J. Lim, J. Andronick and G. Klein. ‘Don’t Sweat the Small
Stuff: Formal Verification of C Code Without the Pain’. In: Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 2014, pages 429–439. doi: 10.1145/2594291.2594296.

[51] Y. Gurevich and J. K. Huggins. ‘The Semantics of the C Programming
Language’. In: Computer Science Logic. Volume 702. LNCS. 1993, pages 274–308.
doi: 10.1007/3-540-56992-8_17.

[52] T. A. Henzinger, R. Jhala, R. Majumdar and G. Sutre. ‘Software Verification
with Blast’. In: Proceedings of the 10th SPIN Workshop on Model Checking Software.
Volume 2648. LNCS. 2003, pages 235–239. doi: 10.1007/3-540-44829-2_17.

http://dx.doi.org/10.1007/978-3-319-03545-1_2
http://dx.doi.org/10.1007/978-3-319-03545-1_2
http://dx.doi.org/10.1145/2103621.2103719
http://dx.doi.org/10.1145/2103621.2103719
http://dx.doi.org/10.1007/978-3-540-30482-1_10
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1007/978-3-642-05089-3_40
http://dx.doi.org/10.1007/3-540-09724-4
http://dx.doi.org/10.1145/512760.512773
http://dx.doi.org/10.5281/zenodo.13342
http://dx.doi.org/10.5281/zenodo.13342
http://ssrg.nicta.com.au/projects/TS/autocorres/
http://dx.doi.org/10.1007/978-3-642-32347-8_8
http://dx.doi.org/10.1145/2594291.2594296
http://dx.doi.org/10.1007/3-540-56992-8_17
http://dx.doi.org/10.1007/3-540-44829-2_17

198 bibliography

[53] P. Herms, C. Marché and B. Monate. ‘A Certified Multi-prover Verifica-
tion Condition Generator’. In: Verified Software: Theories, Tools, Experiments.
Volume 7152. LNCS. 2012, pages 2–17. doi: 10.1007/978-3-642-27705-4_2.

[54] T. Hubert and C. Marché. ‘A case study of C source code verification:
the Schorr-Waite algorithm’. In: Proceedings of the 3rd IEEE International
Conference on Software Engineering and Formal Methods. 2005, pages 190–199.
doi: 10.1109/SEFM.2005.1.

[55] ISO. ISO/IEC 9899:2011 Information technology — Programming languages — C.
“The C11 Standard”. International Organization for Standardization, 2011.

[56] B. W. Kernighan and D. M. Ritchie. The C programming language. Volume 2.
Prentice-Hall, 1988. isbn: 0-13-110370-9.

[57] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch and S. Winwood. ‘seL4: Formal Verification of an OS Kernel’.
In: ACM Symposium on Operating Systems Principles. 2009, pages 207–220.
doi: 10.1145/1629575.1629596.

[58] G. Klein, R. Kolanski and A. Boyton. ‘Mechanised Separation Algebra’. In:
Interactive Theorem Proving (ITP). 2012, pages 332–337. doi: 10.1007/978-3-642-
32347-8_22.

[59] G. Klein, R. Kolanski and A. Boyton. ‘Separation Algebra’. In: Archive
of Formal Proofs (2012). Formal proof development. issn: 2150-914x. url:
http://afp.sf.net/entries/Separation_Algebra.shtml.

[60] A. Krauss. ‘Partial and Nested Recursive Function Definitions in Higher-order
Logic’. In: Journal of Automated Reasoning 44.4 (2010), pages 303–336. doi:
10.1007/s10817-009-9157-2.

[61] R. Krebbers, X. Leroy and F. Wiedijk. ‘Formal C Semantics: CompCert and
the C Standard’. In: International Conference on Interactive Theorem Proving.
Volume 8558. LNCS. 2014, pages 543–548. doi: 10.1007/978-3-319-08970-
6_36.

[62] R. Kumar, M. O. Myreen, M. Norrish and S. Owens. ‘CakeML: A Verified
Implementation of ML’. In: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 2014, pages 179–191. doi: 10.1145/2535838.2535841.

[63] P. Lammich. ‘Automatic Data Refinement’. In: Proceedings of the 4th International
Conference on Interactive Theorem Proving. Volume 7998. LNCS. 2013, pages 84–
99. doi: 10.1007/978-3-642-39634-2_9.

[64] P. Lammich and T. Tuerk. ‘Applying Data Refinement for Monadic Programs
to Hopcroft’s Algorithm’. In: Interactive Theorem Proving. Volume 7406. LNCS.
2012, pages 166–182. doi: 10.1007/978-3-642-32347-8_12.

http://dx.doi.org/10.1007/978-3-642-27705-4_2
http://dx.doi.org/10.1109/SEFM.2005.1
http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1007/978-3-642-32347-8_22
http://dx.doi.org/10.1007/978-3-642-32347-8_22
http://afp.sf.net/entries/Separation_Algebra.shtml
http://dx.doi.org/10.1007/s10817-009-9157-2
http://dx.doi.org/10.1007/978-3-319-08970-6_36
http://dx.doi.org/10.1007/978-3-319-08970-6_36
http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1007/978-3-642-39634-2_9
http://dx.doi.org/10.1007/978-3-642-32347-8_12

bibliography 199

[65] D. Leinenbach, W. Paul and E. Petrova. ‘Towards the Formal Verification
of a C0 Compiler: Code Generation and Implementation Correctness’. In:
Proceedings of the 3rd IEEE International Conference on Software Engineering and
Formal Methods. 2005, pages 2–12. doi: 10.1109/SEFM.2005.51.

[66] D. Leinenbach and E. Petrova. ‘Pervasive Compiler Verification—From
Verified Programs to Verified Systems’. In: Proceedings of the 3rd Systems Software
Verification. Volume 217. Electronic Notes in Theoretical Computer Science.
2008, pages 23–40. doi: 10.1016/j.entcs.2008.06.040.

[67] X. Leroy. ‘Formal verification of a realistic compiler’. In: Communications of the
ACM 52.7 (2009), pages 107–115. doi: 10.1145/1538788.1538814.

[68] G. Li. ‘Validated Compilation through Logic’. In: Proceedings of the 17th In-
ternational Symposium on Formal Methods (FM). Volume 6664. LNCS. 2011,
pages 169–183. doi: 10.1007/978-3-642-21437-0_15.

[69] K. Mehlhorn and S. Näher. ‘LEDA: A Platform for Combinational and
Geometric Computing’. In: Communications of the ACM 38.1 (1994), pages 96–
102. doi: 10.1145/204865.204889.

[70] F. Mehta and T. Nipkow. ‘Proving Pointer Programs in Higher-Order Logic’.
In: Proceedings of the 19th International Conference on Automated Deduction.
Volume 2741. LNCS. 2003, pages 121–135.

[71] L. M. de Moura and N. Bjørner. ‘Z3: An Efficient SMT Solver’. In: In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Volume 4963. LNCS. 2008, pages 337–340.
doi: 10.1007/978-3-540-78800-3_24.

[72] Y. Moy. ‘Automatic Modular Static Safety Checking for C Programs’. PhD thesis.
Université Paris-Sud, 2009.

[73] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997, page 1004. isbn: 978-1-55860-320-2.

[74] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao and G. Klein. ‘seL4: from General Purpose to a Proof of
Information Flow Enforcement’. In: IEEE Symposium on Security and Privacy.
2013, pages 415–429. doi: 10.1109/SP.2013.35.

[75] M. O. Myreen. ‘Functional Programs: Conversions between Deep and Shallow
Embeddings’. English. In: Proceedings of the 3rd International Conference on
Interactive Theorem Proving. Volume 7406. LNCS. 2012, pages 412–417. doi:
10.1007/978-3-642-32347-8_29.

[76] M. O. Myreen, A. C. J. Fox and M. J. C. Gordon. ‘Hoare Logic for ARM
Machine Code’. In: International Symposium on Fundamentals of Software
Engineering. Volume 4767. LNCS. 2007, pages 272–286. doi: 10.1007/978-3-
540-75698-9_18.

http://dx.doi.org/10.1109/SEFM.2005.51
http://dx.doi.org/10.1016/j.entcs.2008.06.040
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1007/978-3-642-21437-0_15
http://dx.doi.org/10.1145/204865.204889
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/SP.2013.35
http://dx.doi.org/10.1007/978-3-642-32347-8_29
http://dx.doi.org/10.1007/978-3-540-75698-9_18
http://dx.doi.org/10.1007/978-3-540-75698-9_18

200 bibliography

[77] M. O. Myreen, M. J. C. Gordon and K. Slind. ‘Machine-code Verification
for Multiple Architectures: An Application of Decompilation into Logic’. In:
Proceedings of the 2008 Conference on Formal Methods in Computer-Aided Design.
2008. isbn: 978-1-4244-2735-2.

[78] M. O. Myreen, M. J. C. Gordon and K. Slind. ‘Decompilation into logic
– Improved’. In: Proceedings of the 2012 Conference on Formal Methods in
Computer-Aided Design. 2012, pages 78–81. isbn: 978-1-4673-4832-4.

[79] M. O. Myreen and S. Owens. ‘Proof-producing Synthesis of ML from
Higher-order Logic’. In: SIGPLAN Notices 47.9 (2012), pages 115–126. doi:
10.1145/2398856.2364545.

[80] NICTA Australia. The eChronos Real-Time Operating System. Accessed July
2014. 2014. url: http://ssrg.nicta.com.au/projects/TS/echronos/.

[81] NICTA Australia, Trustworthy Systems Team. seL4 Microkernel. Accessed
July 2014. 2014. doi: 10.5281/zenodo.11247. url: http://sel4.systems/.

[82] NICTA Australia, Trustworthy Systems Team. seL4 Proofs v1.03. Accessed
August 2014. 2014. doi: 10.5281/zenodo.11248. url: http://sel4.systems/.

[83] T. Nipkow, L. Paulson and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283. LNCS. Springer, 2002. doi: 10.1007/3-540-
45949-9.

[84] M. Norrish. ‘C formalised in HOL’. PhD thesis. University of Cambridge
Computer Laboratory, 1998.

[85] M. Norrish. C-to-Isabelle Parser, version 1.13.0. Accessed July 2014. 2013.
url: http://ertos.nicta.com.au/software/c-parser/.

[86] L. Noschinski, C. Rizkallah and K. Mehlhorn. ‘Verification of Certifying
Computations through AutoCorres and Simpl’. In: NASA Formal Methods.
Volume 8430. LNCS. 2014, pages 46–61. doi: 10.1007/978-3-319-06200-6_4.

[87] D. von Oheimb and T. Nipkow. ‘Machine-Checking the Java Specification:
Proving Type-Safety’. In: Formal Syntax and Semantics of Java. Volume 1523.
LNCS. 1999, pages 119–156. doi: 10.1007/3-540-48737-9_4.

[88] N. S. Papaspyrou. ‘Denotational semantics of ANSI C’. In: Computer Standards
and Interfaces 23.3 (2001), pages 169–185. doi: 10.1016/S0920-5489(01)00059-
9.

[89] J. C. Reynolds. ‘Separation logic: A logic for shared mutable data structures’.
In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science.
IEEE. 2002, pages 55–74. doi: 10.1109/LICS.2002.1029817.

[90] D. M. Ritchie. ‘The Development of the C Language’. In: The Second ACM
SIGPLAN Conference on History of Programming Languages. HOPL-II. 1993,
pages 201–208. doi: 10.1145/154766.155580.

http://dx.doi.org/10.1145/2398856.2364545
http://ssrg.nicta.com.au/projects/TS/echronos/
http://dx.doi.org/10.5281/zenodo.11247
http://sel4.systems/
http://dx.doi.org/10.5281/zenodo.11248
http://sel4.systems/
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://ertos.nicta.com.au/software/c-parser/
http://dx.doi.org/10.1007/978-3-319-06200-6_4
http://dx.doi.org/10.1007/3-540-48737-9_4
http://dx.doi.org/10.1016/S0920-5489(01)00059-9
http://dx.doi.org/10.1016/S0920-5489(01)00059-9
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1145/154766.155580

bibliography 201

[91] N. Schirmer. ‘A Verification Environment for Sequential Imperative Programs
in Isabelle/HOL’. In: Logic for Programming, Artificial Intelligence, and Reasoning.
Volume 3452. LNCS. 2005, pages 398–414. doi: 10.1007/978-3-540-32275-
7_26.

[92] N. Schirmer. ‘Verification of Sequential Imperative Programs in Isabelle/HOL’.
PhD thesis. Technische Universität München, 2006.

[93] N. Schirmer. ‘A Sequential Imperative Programming Language Syntax, Seman-
tics, Hoare Logics and Verification Environment’. In: Archive of Formal Proofs
(2008). Formal proof development. issn: 2150-914X. url: http://afp.sf.net/
entries/Simpl.shtml.

[94] H. Schorr and W. M. Waite. ‘An efficient machine-independent procedure for
garbage collection in various list structures’. In: Communications of the ACM
10.8 (1967), pages 501–506. doi: 10.1145/363534.363554.

[95] T. Sewell, M. Myreen and G. Klein. ‘Translation Validation for a Verified OS
Kernel’. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation. 2013, pages 471–481. doi: 10.1145/2499370.2462183.

[96] T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick and G. Klein.
‘seL4 Enforces Integrity’. In: Proceedings of the 2nd International Conference
on Interactive Theorem Proving. Volume 6898. LNCS. 2011, pages 325–340.
doi: 10.1007/978-3-642-22863-6_24.

[97] N. Suzuki. Automatic Verification of Programs with Complex Data Structures.
Outstanding Dissertations in the Computer Sciences Series. Garland Publishing,
1980. isbn: 978-0-824-04425-1.

[98] The Frama-C platform. Accessed July 2014. 2008. url: http://www.frama-
c.cea.fr/.

[99] The GNU Compiler Collection. url: http://gcc.gnu.org/.

[100] H. Tuch. ‘Formal Memory Models for Verifying C Systems Code’. PhD thesis.
UNSW, 2008.

[101] H. Tuch. ‘Structured Types and Separation Logic’. In: Proceedings of the 3rd
Systems Software Verification. Volume 217. Electronic Notes in Theoretical
Computer Science. 2008, pages 41–59.

[102] H. Tuch. ‘Formal verification of C systems code: Structured types, separation
logic and theorem proving’. In: Journal of Automated Reasoning: Special Issue on
Operating System Verification 42.2–4 (2009), pages 125–187.

[103] H. Tuch, G. Klein and M. Norrish. ‘Types, Bytes, and Separation Logic’.
In: Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 2007, pages 97–108.

http://dx.doi.org/10.1007/978-3-540-32275-7_26
http://dx.doi.org/10.1007/978-3-540-32275-7_26
http://afp.sf.net/entries/Simpl.shtml
http://afp.sf.net/entries/Simpl.shtml
http://dx.doi.org/10.1145/363534.363554
http://dx.doi.org/10.1145/2499370.2462183
http://dx.doi.org/10.1007/978-3-642-22863-6_24
http://www.frama-c.cea.fr/
http://www.frama-c.cea.fr/
http://gcc.gnu.org/

202 bibliography

[104] P. Wadler. ‘Monads for functional programming’. In: Advanced Functional
Programming. Volume 925. LNCS. 1995, pages 24–52. doi: 10.1007/3-540-
59451-5_2.

[105] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich and M. F. Kaashoek.
‘Undefined behavior: what happened to my code?’ In: Proceedings of the 3rd
Asia-Pacific Workshop on Systems (APSys). 2012, 9:1–9:7. doi: 10.1145/2349896.
2349905.

[106] D. Wasserrab, T. Nipkow, G. Snelting and F. Tip. ‘An operational semantics
and type safety proof for multiple inheritance in C++’. In: SIGPLAN Notices.
Volume 41. 10. ACM. 2006, pages 345–362. doi: 10.1145/1167473.1167503.

[107] M. Wenzel. ‘Isabelle/jEdit — A Prover IDE within the PIDE Framework’. In:
Intelligent Computer Mathematics. Volume 7362. LNCS. 2012, pages 468–471.
doi: 10.1007/978-3-642-31374-5_38.

[108] M. Wenzel. ‘Isabelle/Isar—a versatile environment for human-readable formal
proof documents’. PhD thesis. Technische Universität München, 2002.

[109] E. D. Willink. ‘Meta-Compilation for C++’. PhD thesis. University of Surrey,
United Kingdom, 2001.

[110] S. Winwood, G. Klein, T. Sewell, J. Andronick, D. Cock and M. Norrish.
‘Mind the Gap: A Verification Framework for Low-Level C’. In: Proceedings of
the 22nd International Conference on Theorem Proving in Higher Order Logics.
Volume 5674. LNCS. 2009, pages 500–515. doi: 10.1007/978-3-642-03359-
9_34.

[111] X. Yin, J. C. Knight, E. A. Nguyen and W. Weimer. ‘Formal Verification by
Reverse Synthesis’. In: Computer Safety, Reliability and Security. Volume 5219.
LNCS. 2008, pages 305–319. doi: 10.1007/978-3-540-87698-4_26.

http://dx.doi.org/10.1007/3-540-59451-5_2
http://dx.doi.org/10.1007/3-540-59451-5_2
http://dx.doi.org/10.1145/2349896.2349905
http://dx.doi.org/10.1145/2349896.2349905
http://dx.doi.org/10.1145/1167473.1167503
http://dx.doi.org/10.1007/978-3-642-31374-5_38
http://dx.doi.org/10.1007/978-3-642-03359-9_34
http://dx.doi.org/10.1007/978-3-642-03359-9_34
http://dx.doi.org/10.1007/978-3-540-87698-4_26

	Title page: Automated proof-producing abstraction of C code
	Abstract
	Publication List
	Acknowledgements
	Contents

	Chapter 1: Introduction
	Chapter 2: Related work
	Chapter 3: Background
	Chapter 4: From deep to shallow embeddings
	Chapter 5: Local variable lifting
	Chapter 6: Word abstraction
	Chapter 7: Heap abstraction
	Chapter 8: Evaluation and experience
	Chapter 9: Conclusion
	Appendices

