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Abstract

This thesis presents a framework aimed at signi�cantly reducing the cost of proving

functional correctness for low-level operating systems components, designed around

a new programming language, Cogent. This language is total, polymorphic, higher-

order, and purely functional, including features such as algebraic data types and type

inference. Crucially, Cogent is equipped with a uniqueness type system, which elim-

inates the need for a trusted runtime or garbage collector, and allows us to assign

two semantics to the language: one imperative, suitable for e�cient C code genera-

tion; and one functional, suitable for equational reasoning and veri�cation. We prove

that the functional semantics is a valid abstraction of the imperative semantics for all

well-typed programs. Cogent is designed to easily interoperate with existing C code,

to enable Cogent software to interact with existing C systems, and also to provide an

escape hatch of sorts, for when the restrictions of Cogent's type system are too oner-

ous. This interoperability extends to Cogent's veri�cation framework, which composes

with existing C veri�cation frameworks to enable whole systems to be veri�ed.

Cogent's veri�cation framework is based on certifying compilation: For a well-

typed Cogent program, the compiler produces C code, a high-level representation

of its semantics in Isabelle/HOL, and a proof that the C code correctly re�nes this

embedding. Thus one can reason about the full semantics of real-world systems code

productively and equationally, while retaining the interoperability and leanness of C.

The compiler certi�cate is a series of language-level proofs and per-program translation

validation phases, combined into one coherent top-level theorem in Isabelle/HOL.

To evaluate the e�ectiveness of this framework, two realistic �le systems were im-

plemented as a case study, and key operations for one �le system were formally veri�ed

on top of Cogent speci�cations. These studies demonstrate that veri�cation e�ort is

drastically reduced for proving higher-level properties of �le system implementations,

by reasoning about the generated formal speci�cation from Cogent, rather than low-

level C code.
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Notes on Typography

Even before the completion of this thesis, I have been asked for information about how

I typeset it. The basics are as follows: I am using LATEX with a custom version of the

unswthesis class. The text font is Concrete Roman, and the mathematics font is Euler.

The only boldface font used is for diagrams and mathematics (for language keywords

etc.) and it is the boldface sans-serif Computer Modern. Initials are provided by the

lettrine package and ornaments provided by pgfornament with the vectorian set.

Quotes are typeset with epigraph.

All diagrams are typeset with tikz. For Cogent code snippets in Chapter 2, I have

a customised fork of the Cogent parser which then \pretty" prints the Cogent code as

a series of TEX commands in the algorithm2e package. I have a custom environment

that shells out to this parser for Cogent snippets.

For all mathematical �gures in Chapters 3 and 4, I have a Agda library to gener-

ate TEX code, which uses mix-�x syntax to allow me to typeset inference rules and

grammars using Agda syntax. The Agda terms are also given phantom types to enable

me to \type-check" my de�nitions before exporting to TEX. The rules themselves are

typeset with the mathpartir package.

I have occasionally opted to present theorems dually, in formal notation on the

right, and in English text on the left. The text on the left corresponds line by line to

the formalism on the right. I hope this makes the theorems easier to grasp, but I'm

not certain that it does.
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Chapter 1

Introduction

Every now and then I feel a

temptation to design a programming

language but then I just lie down

until it goes away.

L. Peter Deutsch

C
omplete, formal, end-to-end veri�cation of low-level software systems, such

as operating systems, drivers and �le systems, has been traditionally con-

sidered prohibitively expensive and too di�cult for realistic software devel-

opment. This prejudice is not grounded in reality: projects such as the seL4 micro-

kernel [75] have demonstrated that such veri�cation is actually cheaper than exist-

ing methods for high-assurance software engineering certi�cation, and o�ers a much

greater degree of trustworthiness [73].

The veri�cation of seL4 is a very signi�cant milestone, but a microkernel alone is

not a su�cient platform to support most applications. In the Linux kernel code base,

device drivers and �le systems form the largest fraction of the code, and �le systems

have the highest density of faults [104]. Each �le system is approximately the same

size as the seL4 microkernel, and a typical Linux distribution includes dozens of �le

systems. Replicating the �25 person years required to write and verify seL4 for each of

the many �le system drivers in use would be completely impractical, so new methods

are needed. The �10,000 lines of the seL4 microkernel are dwarfed by the 15 million

lines of code in the Linux 3.10 kernel tree.

The aim of the Trustworthy Systems project, of which this project is a key com-

ponent [74], is to reduce the cost of veri�cation to be competitive with traditional

1



2 1. Introduction

widely-used methods of software engineering, at least for the development of these

operating systems components like device drivers and �le systems, thus creating a

platform on which large scale systems can be guaranteed to be free of faults [56, 55].

Klein et al. [73] estimate that implementation and veri�cation of seL4 was about �ve

times more expensive than traditional software development practices without high-

assurance certi�cation. As we have previously stated [74], a factor of �ve e�ort reduc-

tion is not necessarily an unachievable goal, but even an e�ort reduction of a smaller

constant factor could make veri�cation an attractive option for software development

where some degree of assurance is desired.

1.1 Automating Refinement-based Verification

In recent years, a number of large-scale software veri�cation projects have been carried

out. In addition to the aforementioned seL4 microkernel [75], these breakthroughs

include veri�ed compilers for C [81] and ML [79], veri�ed theorem provers Milawa [30]

and Candle [78], a veri�ed conference system [70], a crash-resistant �le system [18],

the concurrency veri�cation in CertiKOS [50], the veri�ed cryptographic routines of

OpenSSL HMAC [12], the veri�ed distributed system Ironeet [54] and many more |

not to mention the mechanisation of large mathematical proofs such as that of the Four

Colour Theorem [46], the Kepler Conjecture [51, 52], or the Odd Order Theorem [47].

1.1.1 The seL4 Microkernel

Existing approaches to functional correctness veri�cation, including that of seL4, typ-

ically rely on a hierarchy of speci�cations, of varying levels of abstraction, and a

manual proof of re�nement [31] between each speci�cation in the hierarchy. At the

top of the hierarchy, the speci�cations are abstract, small, and obviously capture func-

tional correctness for the system. The bottom of the hierarchy consists of a concrete,

deterministic representation of an implementation in terms of a low level language

or machine model. The re�nement proofs guarantee that any functional correctness

property proved about a higher level speci�cation also applies to all lower levels.

In the case of seL4, the re�nement hierarchy is comprised of three layers: a C im-

plementation, an executable speci�cation, and a smaller abstract speci�cation, with

re�nement proofs between each layer (see Figure 1.1). The executable speci�cation is

the output of a straightforward syntactic translation from a Haskell prototype [33].

The C code is given semantics in terms of the SIMPL language [121], and re�nement is
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Figure 1.1: The re�nement hierarchy in the seL4 veri�cation

proven from the monadic executable speci�cation to this SIMPL representation or em-

bedding [23, 76]. All of the speci�cations and proofs are written in the Isabelle/HOL

theorem prover [94]. Sewell, Myreen, and Klein [122] used an SMT solver to auto-

matically relate a SIMPL embedding (interpreted as an automaton) directly to the

machine-code output of the C compiler, thus verifying the kernel all the way down to

the binary level.

In terms of performance, seL4 rates well, performing comparably with the best-

performing L4 microkernels on inter-process communication benchmarks. If we were

to evaluate the possible automation of some or all of these proof stages, we must

consider the performance cost in doing so. For example, it may be possible to compile

the abstract speci�cation directly to C code and prove re�nement automatically, but

this would result in a highly ine�cient kernel: The abstract speci�cation does not

contain enough information to produce an e�cient implementation, and signi�cant

creativity was required to prove re�nement from the abstract speci�cation to the

executable speci�cation.

The proof engineers for seL4 report that the re�nement proof below the executable

speci�cation, however, was very straightforward, as was writing the C implementation

after the Haskell code had already been written. These areas are prime candidates

for automation: saving the user from manually writing 55 thousand lines of proof
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and 8.7 thousand lines of C code would be a substantial improvement. Furthermore,

the Haskell speci�cation is written in a fairly low-level way, and it may be possible

increase the abstraction of the executable speci�cation, while still having e�cient

implementation, thus reducing proof e�ort even further.

1.1.2 AutoCorres

AutoCorres [49] is a tool embedded within Isabelle which automates some of this

lower level re�nement proof and speci�cation. It works by generating higher-order

logic (HOL) abstractions of imported SIMPL code, and automatically proving that

the SIMPL code is a re�nement of the generated abstractions.

This abstraction is in terms of a non-deterministic state monad. The use of this

monad for re�nement speci�cations was �rst described by Cock, Klein, and Sewell

[23]. In the AutoCorres-produced abstraction, a computation returning type α would

be represented using the following HOL type:

Initial State

Possible Result

Final State

Non-determinism

Unde�ned Behaviour?

state⇒ (α� state) set� bool

Here, state represents all the global state of the C program, including any global

variables and a memory model for the heap. Local, stack-allocated variables are rep-

resented as local bindings within the monadic computation, and are not part of the

state. Given an input state, the computation will produce a set of possible results (a

return value and �nal state), as well as a ag to indicate if unde�ned behaviour is

possible.

One of the major abstractions that AutoCorres provides is in the heap memory

model. After importing C code into SIMPL, the heap is represented simply as a large

collection of bytes [128], and interpreting data on the heap must be done more or less

by hand when writing re�nement proofs. In AutoCorres, however, values on the heap

are typed, and the memory model consists of a collection of heaps, one for each type.

AutoCorres also provides some other abstractions, such as the translation of po-

tentially overowing machine-word arithmetic into arithmetic on convenient integers

(where possible), as well as conveniences such as heuristics to prove the absence of

unde�ned behaviour.
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These abstractions, while undoubtedly useful for manual veri�cation, are still sig-

ni�cantly lower-level than even the executable speci�cation of seL4. This is because the

C language is too underspeci�ed, in the sense of unde�ned behaviour, and overpow-

ered, in the sense of omnipresent e�ects and type coercions, to allow for substantial

abstractions that dramatically reduce veri�cation e�ort. For the cost reduction we

seek, we shall have to abandon C in favour of a language that operates on a higher

level of abstraction.

1.1.3 CakeML

CakeML [79] is a veri�ed compiler and language runtime for a signi�cant subset of the

language Standard ML [93]. Compared to C, Standard ML is certainly more high-level,

supporting algebraic data types, �rst-class functions and functional programming, as

well as a robust module system.

CakeML also inherits refs from Standard ML, which are mutable cells that are

stored on the heap. While the destructive update a�orded by refs can be useful for the

e�cient implementation of many algorithms, the addition of mutable state complicates

both re�nement proofs and executable speci�cations, as described in the next section.

A signi�cant bene�t of CakeML is that it ensures memory and type safety; two key

properties that would have to be manually established for any C veri�cation. Unfortu-

nately, CakeML ensures this by including a language runtime with a garbage collector.

While the garbage collector is veri�ed, it makes performance more unpredictable in

both time and space. This trade-o� is acceptable for CakeML's intended use case

of theorem prover implementation, but it renders CakeML unsuitable for low-level

systems code running on hardware with potentially limited resources.

1.2 Pure Functions, Efficiently

A purely functional language is a language where functions which perform side-e�ects

such as mutating shared data or which depend on state outside of their input are

disallowed. The default speci�cation language for all widely used interactive proof

assistants, including Isabelle/HOL, is some variant of the λ-calculus [21], itself a (or

the) purely functional language. In the case of Isabelle/HOL, System F is used [45,

113], with some extensions such as type classes. This is no historical accident | purely

functional programming enables simple equational reasoning about programs and

straightforward composition of larger programs from smaller components [63]. This is
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also why seL4 was prototyped [33] in Haskell [85], a purely functional language.1

Without mutation or other side-e�ects, a program can be represented as a pure,

mathematical function, and reasoned about equationally in much the same way as

in high-school algebra. With mutation, our assertions about variables become state-

dependent, in that the value of a variable depends on some global state at that par-

ticular point in time. Thus, if our language allows mutation, we must turn to program

logics such as that of Hoare [57] or Floyd [40] in order to prove properties about

programs.

While these early program logics are not overly complex, verifying complex soft-

ware with this approach proves quite cumbersome, due to the possibility of aliasing.

Aliasing is when two or more variables refer to the same mutable cell. Thus, updating

the value of one variable will a�ect the other variable also. This so-called \spooky

action at a distance" means that, when specifying an algorithm that mutates memory,

it is not su�cient to state how variables might be changed by the program. One must

additionally, and tediously, specify inertia or frame conditions for every unrelated

variable, stating that those variables remain unchanged after the program has exe-

cuted. This problem, called the frame problem, was originally identi�ed by McCarthy

and Hayes [90]. While more sophisticated logics such as separation logic [112] can alle-

viate this problem, ultimately a purely functional language is preferable for us, as they

avoid the problems posed by mutation entirely, and integrate better with interactive

proof assistants.

Typically, purely functional languages such as Haskell model updates without mu-

tation by instead allocating a new data structure, and sharing any unchanged parts

with the old data structure. If tree data structures are used, the time overhead for

this approach is usually O(logn) where n is the size of the structure being updated.

Once the old structure is no longer used, a garbage collector will eventually free up

the memory it occupies.

For systems programming, this kind of purely functional update is unsuitable for

two reasons. Firstly, any performance overhead, even a logarithmic one, can represent

severe practical performance degradation if the update occurs, for example, in a tight

loop. Secondly, as with CakeML, frequent allocation combined with a garbage collector

causes unpredictable runtimes and space usage, which is not ideal in a low-level systems

context.

1Haskell is purely functional only modulo certain \benign" e�ects like non-termination
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1.2.1 Type Systems for Memory Management

As the context of systems programming precludes automatic dynamic memory man-

agement, we must track the lifetime of allocated memory in the static semantics of

the language to ensure memory safety.

While specialised static analyses for allocation are also a well-studied problem [116],

a number of static approaches integrate the analysis into the type system: Linear

types, the types analogue of Girard's Linear Logic [44], were �rst developed by Lafont

[80] and Holmstr�om [60], and popularised by Wadler [132]. Subsequently, their utility

for memory management was realised in systems languages such as ATS [17] and

Vault [32]. A�ne types, a close cousin of linear types, were also used in the general-

purpose Alms programming language [127]. Another approach, region typing, initially

developed by Tofte and Talpin [126] for the ML Kit, was later applied to systems

programming in the languages Cyclone [66] and Discus [82].

The increasingly popular systems language Rust [118] combines both region and

a�ne types to form the basis of its \borrow checker"2, and linear types extensions

have been proposed for other popular languages such as Haskell [13] and Swift [125].

1.2.2 Linear and Uniqueness Types

Linear types are a type of substructural type system [133], which places restrictions

on the use of variables. While we give a formal de�nition in Chapter 3, the intuition is

that variables of linear type must be used exactly once. Such a syntactic restriction, if

applied globally, ensures a very useful dynamic property: throughout the lifetime of an

object, objects of linear type have exactly one usable reference to them at a time. Type

systems that ensure this uniqueness property are appropriately called uniqueness type

systems.

As observed by Wadler [132], and implemented in the language Clean [10], this

uniqueness property means that destructive update by mutation becomes a mere im-

plementation detail behind a purely functional semantics, as any program that can

observe the destructive update would have to share a reference to the old value, which

is disallowed by the type system. For example, the following program can be compiled

into a single allocation with a destructive update, even though the update appears to

2Despite the separate name, this checker is not distinct from Rust's type checker.
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return a new value:
let x1 = alloc ()

x2 = update x1

in x2

If we attempted to retain x1 as well as x2, this would allow the destructive update to x1

to be observed. The linear type discipline, however, ensures that x1 is no longer usable

after x2 is created, as it was already used as a parameter to update. For example, the

following program is rejected under a linear type system:

let x1 = alloc ()

x2 = update x1

in (x1, x2) (using x1 twice)

By similar reasoning, we are unable to use a variable after it has been freed, rejecting

a whole class of common memory safety errors:

let x1 = alloc ()

= free x1

in update x1 (using x1 twice)

All of the errors seen so far result from a variable being used more than once, but

linear type systems also require that variables of linear type are not discarded without

being used.

let x1 = alloc ()

x2 = alloc ()

in x1 (x2 never used)

This prevents the leaking of memory, as in order to discard a variable, a programmer

must explicitly invoke a free function or some other cleanup routine.

Thus, by requiring code that \owns" a reference to an object to take responsibility

for disposal of that object, uniqueness type systems enforce statically the manual

memory management discipline that systems programmers previously only enforced

by convention, eliminating the need for a garbage collector.

Even better, the aforementioned elimination of aliasing allows us to give well-typed

programs two equivalent semantic interpretations: A high-level, abstract and purely

functional semantics, suitable for reasoning, and a low-level imperative semantics using

destructive update, suitable for generating e�cient systems code.

The syntactic requirements of linear types are very restrictive, however, and con-

siderable research has aimed at improving the usability of linear type systems [99, 127,
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132]. In particular, constructs to make values of linear type temporarily shareable,

sometimes called observers or borrows, are widely employed in many programming

languages which use linear and a�ne types. However, even with these features, data

structures that make extensive use of shared pointers are di�cult or impossible to en-

code in such a typing discipline. In the case of Rust, which does not present a purely

functional semantics, programmers must nonetheless make use of escape hatches from

the restrictions of their type system, even though the language compiler performs de-

tailed lifetime analysis based on region types. Speci�cally, Rust allows blocks of code

to be marked unsafe, within which the a�ne type system rules are suspended.

1.3 A New Language

When we survey the landscape of pre-existing programming languages, we come to

the unfortunate conclusion that none of them are suited to our particular needs:

C | As AutoCorres demonstrates, there is a limit to the amount of abstraction

that can be applied to C code, and that is still substantially lower-level than an

executable speci�cation.

Rust | While e�orts are underway to assign a formal semantics to Rust [68],

with an axiomatic semantics for veri�cation [69], this project does not aim to

certify compilation of Rust programs.3 Even with certi�ed compilation, Rust

programs are still imperative and stateful, complicating formal reasoning.

ML | As previously mentioned, ML programs are not purely functional, and

fundamentally depend on garbage collection, even when region-based memory

management is used [126].

Habit|While the High-Assurance Systems Programming project (HASP) and

their language Habit appears similar in goals to our project [1], McCreight,

Chevalier, and Tolmach [91] show the correctness of a garbage collector for Habit,

which suggests that HASP di�ers from our own project in the details. While a

full formalisation of Habit's semantics for veri�cation was one of the priorities

of the project, the project was never completed, and the language was never

formalised.

3At least, not at the time of writing.
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Clean | While Clean uses uniqueness types to present a purely functional

semantics for destructive update, the language still makes use of garbage collec-

tion and lazy evaluation, like Haskell, rendering it unsuitable for our intended

domain of systems programming.

While there are far too many languages to list here, there are no pre-existing usable

languages which possess all three desiderata for our language: a complete formalisation,

a purely functional semantics, and no garbage collection.

If, then, we are to make a new language, what kind of language should it be?

There are signi�cantly more constraints on our design than would be conventionally

encountered when developing a programming language.

Because we must produce a formal proof that the compilation process is correct, the

compiler is not free to make large, cross-cutting optimisations or other transformations

in the compilation process. Each transformation made by the compiler must be veri�ed,

which drastically increases their cost in terms of development e�ort. Therefore, our

language must be as simple as possible, in order to reduce this di�culty.

As we intend our language to be used as an executable speci�cation for further

manual veri�cation, it must correspond closely to the object language of a proof as-

sistant, in our case HOL functions in Isabelle. This means that language features that

are not easily expressible in HOL cannot easily be included in our language, as they

would have to be translated into something that the user can reason about in HOL.

To ease veri�cation, we should aim to make our language as high level as possible

without sacri�cing e�ciency.

Lastly, as our intended domain is systems programming, the compiler must gen-

erate code that is reasonably e�cient, and does not depend on any support from

a run-time system. In particular, features such as lazy evaluation, dynamic memory

management, dynamic types and closures are mostly precluded by this restriction.

As no system exists in isolation, we would like programs written in this language to

interface with existing C code, including the seL4 microkernel.

This language need not be general purpose, but must be expressive enough to

model the executable speci�cation of operating system components like �le systems,

although some components of the system, such as complex data structures, could be

implemented as separate C libraries.



1. Introduction 11

HOL Embedding
(pure functions)

Cogent Embedding
(uniqueness types)

Update Semantics

Value Semantics

C Code
(imported to Isabelle)

v
refines

v
refines

Cogent Code
compiler

compiler

compiler

compiler

compiler

Figure 1.2: A simpli�ed view of the Cogent re�nement framework.

1.3.1 Cogent

This thesis presents the language Cogent, a purely functional language intended for

systems programming. As explained above, it uses uniqueness types to eliminate the

need for garbage collection, and to compile to e�cient code with destructive updates.

Cogent also features a certifying compiler, which, given a Cogent program, will

generate C code, a direct embedding of the Cogent program in Isabelle/HOL, and a

proof that the C code (imported into Isabelle) is a re�nement of the Cogent embedding.

Central to this re�nement proof is the semantic duality of Cogent: In addition to a

purely functional value semantics, Cogent programs can also be assigned an equivalent

imperative update semantics which involves mutable state. A birds-eye view of this

framework is presented diagrammatically in Figure 1.2. This means that engineers

can write Cogent code, and then reason about it simply and equationally in Isabelle

in terms of straightforward HOL embeddings, con�dent in the knowledge that the

re�nement proof guarantees that any functional correctness property proven about

their HOL embeddings applies also to the generated C code.

The compilation target is C, because C is the language in which most existing

systems code is written, including seL4, and because with the advent of tools like

CompCert [81]4 and the aforementioned gcc translation validation [122], large subsets

4Mind the potential logical gap between the SIMPL-based C semantics used here [128] and that of

CompCert.
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of C now have a formalised semantics and an existing formal veri�cation infrastructure.

Cogent is, however, a heavily restricted language. In addition to the restrictions

imposed by the uniqueness type system, we also require Cogent functions to be total.

This means that Cogent functions must be de�ned for all their inputs, and cannot loop

in�nitely or crash. Aside from being helpful to reduce bugs, this restriction greatly

simpli�es the Isabelle embeddings we generate.

We enforce totality using a crude but e�ective mechanism: Cogent features no

recursion, and all branching must be total. But, even in the restricted target domains

of Cogent, some iteration is required. This is where the foreign function interface (FFI)

of Cogent comes in: The programmer provides abstract data types (ADTs) in C, and

higher-order iterator functions for them. These C functions and iterator functions can

be used seamlessly from within Cogent. It is also possible to compose the generated

Cogent re�nement certi�cate with manually-written re�nement proofs for this C code,

without any room for unsoundness. This FFI can also be used to interface with existing

systems, such as Linux or seL4, which are written in C.

Cogent is restricted, but it is by no means a toy language. With Amani [2], we

used Cogent to successfully implement two e�cient full-scale Linux �le systems [4]

| the standard Linux ext2 and the BilbyFs ash �le system [72] | and proved two

core functional correctness properties of BilbyFs. These case studies demonstrate the

suitability of Cogent for both systems programming and veri�cation, con�rming our

initial hypothesis [72] that a language-based approach would dramatically reduce the

cost of verifying correctness for practical �le system implementations. In addition,

these case studies are bene�cial in their own right because, as previously mentioned,

�le systems constitute the second largest proportion of operating system code, and

have among the highest density of faults [104].

1.4 Summary of Contributions

This thesis is the synthesis of a number of research contributions and technical devel-

opments. Where possible, citations to the relevant publications where these contribu-

tions were �rst presented will be provided. All of these contributions, except where

otherwise noted, were made by the author.

1. The Cogent language itself, including its design and compiler. A tutorial on

Cogent is presented in Chapter 2.

2. An evaluation, conducted by Amani [2], of Cogent-implemented systems com-
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pared to systems implemented directly in C, in terms of performance and e�ort.

This was originally presented at ASPLOS in 2016 [4] and is repeated here in

Chapter 2.

3. The formalisation of the Cogent type system in Chapter 3, drawing from the

version of the type system originally presented at ICFP in 2016 [97].

4. A sound type inference algorithm for Cogent, including support for polymor-

phism, subtyping, and uniqueness types, also in Chapter 3.

5. A formalisation of the dual dynamic semantics of Cogent, and the machine-

checked formal proof that connects the two for any well-typed program. This

result builds on earlier work for linear type systems [59], extended to account for

a fully edged language and heap-allocated objects. This was originally presented

at ICFP in 2016 [97] and is expanded upon in Chapter 4.

6. A characterisation of the requirements placed on foreign functions to maintain

this re�nement result, also presented at ICFP in 2016 [97] and in Chapter 4.

7. The overall translation validation framework that generates the certi�cate of

re�nement from the HOL embedding through the Cogent formalisation and down

to C. This involves a number of intermediate translation validation phases, which

were summarised at ICFP in 2016 [97] and are signi�cantly expanded upon in

Chapter 5. One of the phases connecting Cogent's update semantics to C was a

collaborative e�ort with a number of others, and is separately published at ITP

in 2016 [114].

8. An evaluation, conducted along with Amani [2], of the e�ort involved in the

veri�cation of high-level properties on top of the Cogent framework, presented

at ASPLOS in 2016 [4] and repeated in Chapter 5.

9. A proposal for a data description language extension to Cogent, intended to

address some of the performance and language shortcomings observed in the ex-

isting case studies. This was �rst proposed at ISoLA 2018 [98] and is summarised

as part of future work in Chapter 6.





Chapter 2

Programming in Cogent

Like dreams, statistics are a form of

wish ful�lment.

Jean Baudrillard

D
esigning a programming language like Cogent is a delicate balancing act

between competing and often contradictory interests. From a systems pro-

gramming perspective, it must o�er good performance, interfacing with ex-

isting C code, and predictable execution times. From a veri�cation perspective, it must

be high-level, easy to reason about, and abstract away from as many cumbersome de-

tails as possible. These goals are often very much in tension, and it falls to the poor

programming language designer to strike a balance that hopefully satis�es both sides.

In this chapter, we focus on Cogent as a programming language, and not as a ver-

i�cation framework. We discuss how Cogent is used for veri�cation in Chapter 5. In-

stead, here, we will introduce the Cogent language itself [97], the Cogent-implemented

�le systems used as a case study for the language [4], and an evaluation of how Cogent

�le systems perform relative to their C counterparts.

These case studies show that Cogent is a highly usable language for systems pro-

gramming, o�ering competitive performance with native C implementations, and also

reveal a number of avenues for future improvement of the language, which we revisit

in Chapter 6.

Before presenting the case studies, however, we shall give a sense of the experience

of programming in Cogent by way of a short tutorial, explaining the features of the

language, its design philosophy, and its concrete syntax.

15
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2.1 A Cogent Tutorial

As Cogent is a functional language, it inherits the syntactic style of earlier functional

languages such as Haskell and ML.

Functions and constants are given a top-level type signature and a de�ning equa-

tion, as in the following example:

1 add : (U32, U32) → U32

2 add (x , y) = x + y

Arithmetic operations (e.g. +) may be used on any numeric type (e.g. U8), however

they must be used on the same numeric type. The type checker inserts no implicit

coercions between numeric types. As we don't support closures, partial application via

currying is also not common, so it is typical for multi-parameter functions to take a

tuple (a.k.a. product type) of their arguments.

We also allow if and (non-recursive) let expressions with the usual semantics.

Comments are preceded with a double-dash (--), as in Haskell.

1 -- detects overow

2 add 0 : (U32, U32) → U32

3 add 0 (x , y) =

4 let out = x + y

5 in if out < x k out < y then 0 else out

We also support pattern matching, however the syntax is a good deal more lightweight

than in Haskell or ML, because pattern matching is used in Cogent for error-handling

situations that would make use of exceptions in Haskell or ML. Also unlike those

languages, our patterns must also be exhaustive. Omitting a case is not just a warning

but a compile error. To match on an expression, a series of vertically-aligned pipe

characters (|) are placed after the expression, one for each case. This is the only

alignment-sensitive part of the language syntax. In this document, we use a single

vertical rule to make the matches both clearer to read and more aesthetically pleasing.
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1 -- detects overow

2 add 00 : (U32, U32) → U32

3 add 00 (x , y) =

4 let out = x + y

5 in out < x k out < y

6 True → 0

7 False ⇒ out

After each pattern, one of three symbols (⇒, → and ;) may be used to indicate the

corresponding expression to the pattern. Each symbol conveys optimisation informa-

tion to the underlying C compiler, to determine the likelihood of each branch. We use⇒ to indicate that the branch is likely to be taken, and ; to indicate that the branch

is unlikely to be taken. The intermediate symbol→ passes no particular likelihood to

the compiler.

Patterns may take the form of a literal value (True, 32, etc.), which only accepts

values that are equal to the literal; a variable (e.g. x ), which matches against any value

and binds it to that variable name in the subsequent case; or a wildcard (written ),

which accepts any value without binding it to a particular variable names. There are

also special patterns for variant and record types, described in subsequent sections.

2.1.1 Variant Types

Known in other languages as a tagged union or a sum type, a variant type describes

values that may be one of several types, disambiguated by a tag or constructor. For

example, a value of type hFailure U16 | Success U8i may contain either an eight-bit or

sixteen-bit unsigned integer, depending on which constructor (Success or Failure) is

used.

Using the unit type (written ()), the type with a single trivial inhabitant (also

written ()), we can also use variant types to construct the familiar Option or Maybe

types from ML or Haskell:

type Option a = hNone () | Some ai

Here we have used the syntax for type synonyms in Cogent. While Option U8 is easier

for humans to write, the Cogent type system makes absolutely no distinction between

Option U8 and hNone () | Some U8i.

A variant type may include any number of constructors:
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type CarState = hDrive U32 | Neutral () | Reverse U32i

Variant types are deconstructed via pattern matching, and constructed by simply

typing a constructor name followed by its parameter. Constructor names are required

to begin with a capital letter, so that they can be disambiguated from variables and

functions.

To ease implementation, compatibility with Isabelle, and to avoid costly back-

tracking, we require that the pattern for a constructor's argument be irrefutable. An

irrefutable pattern will always successfully match against any well-typed value. The

same restriction is placed on those patterns that occur on the left hand side of a let

binding or top-level function de�nition.

1 accelerate : (CarState , U32) → CarState

2 accelerate (st , δ) =

3 st

4 Drive vel → Drive (vel + δ)

5 Neutral () → Drive δ

6 Reverse vel → Reverse (vel + δ)

While the above example type-checks, the type can be frustratingly imprecise. For

example, if we were to match on the result of a call to the accelerate function, we

would be required to handle the case for the Neutral constructor, despite the fact that

this case would never be executed. One simple way to solve this problem is to have a

version of CarState without the Neutral constructor:

type CarState 0 = hDrive U32 | Reverse U32i

We can then use this to give the above function a more precise type:

accelerate : (CarState , U32) → CarState 0

While this would type-check, the representation of CarState 0 is completely inde-

pendent of CarState . This means that, even though a trivial injection exists from

CarState 0 to CarState , any function that makes use of CarState cannot accept a

CarState 0 without a potentially expensive copy.

We address this problem by allowing the programmer to specify that certain con-

structors of a variant type are statically known not to be present, using the take

keyword:
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accelerate : (CarState , U32) → CarState take Neutral

Unlike CarState 0, the type CarState take Neutral has the same run-time represen-

tation as CarState , and thus can be trivially coerced into the broader type. Indeed,

the type checker will automatically perform such coercions via subtyping.

Such additional static information also becomes useful when default cases are used

in pattern matching, for example:

1 bounce : CarState → CarState take Drive

2 bounce -- \x = x" can be omitted here.

3 Drive vel → Reverse vel

4 st → st

Note that the local variable st here is of type CarState take Drive because the Drive

constructor has already been matched.

2.1.2 Abstract Types and Functions

By omitting the implementations of functions and type de�nitions, we declare them to

be abstract. Abstract types and functions are de�ned outside of Cogent. Typically, an

implementation is provided in C. The Cogent compiler includes powerful infrastructure

for compiling C implementations along with Cogent code, including the embedding of

Cogent types and expressions inside C code using quasi-quotation.

1 type Bu�er

2 poke : (Bu�er , U32, U8) → Bu�er

Outwardly, the interface of this Bu�er type seems purely functional, however Cogent

assumes by default that all abstract types are linear. This means that any variable of

type Bu�er , or any compound type such as a variant that could potentially contain

a Bu�er , must be used exactly once. This scheme of uniqueness types ensures that

there is only one active reference to a given Bu�er object at any given time. Therefore,

the C implementation of poke is free to destructively update the provided Bu�er

without contradicting the purely functional semantics of Cogent.
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1 hello : Bu�er → Bu�er

2 hello buf = -- shadowing is often used to indicate update

3 let buf = poke (buf , 0, ‘H’)

4 and buf = poke (buf , 1, ‘e’)

5 and buf = poke (buf , 2, ‘l’)

6 and buf = poke (buf , 3, ‘l’)

7 and buf = poke (buf , 4, ‘o’)

8 in buf

In the above example, while it would appear that many intermediate bu�ers are cre-

ated, the real implementation is merely a series of destructive updates to the same

bu�er.

2.1.3 Suspending Uniqueness

Uniqueness types can become a hindrance, however, when reading from a data struc-

ture, such as in this proposed type for a peek function:

peek : (Bu�er , U32) → hErr () | Ok U8i

This function's type states that it will consume the Bu�er and return the byte at the

index speci�ed. This means that the only way a C program could validly implement

this signature while maintaining the invariants of the Cogent type system would be if

it deallocated the bu�er it received.

We could consider allowing peek to return the bu�er as well as a result:

peek 0 : (Bu�er , U32) → hErr Bu�er | Ok (U8, Bu�er)i

But, in addition to being frightfully inconvenient to use, this makes the type less

expressive: Because it says that a new Bu�er will be returned, this type allows peek 0

to freely modify the bu�er. As mutable state complicates veri�cation, it would be

better if we could declare in the type that peek 0 does not modify the bu�er it is given.

We do this by using the ! type operator. This operator converts any linear, writable

type to a read-only type that can be freely shared or discarded. A function that takes

a value of type Bu�er ! is free to read from the bu�er, but is unable to write to it.

peek 00 : (Bu�er !, U32) → hErr () | Ok U8i
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A value of type Bu�er can be temporarily converted to a Bu�er ! using the expression-

level ! construct. By placing a ! followed by a variable name after any let binding,

match scrutinee or if condition, the variable will be made temporarily read-only for

the duration of that expression.

For example, a function that writes a character to the address speci�ed at the

beginning of a bu�er combines both read-only and writable uses of the same bu�er:

1 writeChar : (U8, Bu�er) → hErr Bu�er | Ok Bu�eri

2 writeChar (c, buf ) =

3 peek 00 (buf , 0) !buf

4 Ok i ⇒ Ok (poke (buf , upcast i , c)) -- upcast to convert U8 to U32

5 Err () ; Err buf

Here the use of the ! post-�x on line 3 allows the buf variable to be used both in a

read-only way as an argument to peek 00 and in a writable way as an argument to poke

on line 4.

To ensure that read-only references are never simultaneously live with writable

references, we require that any such !-annotated expression must not contain any use

of the ! operator in its type. For example, the following program would be rejected:

1 -- Rejected by type checker

2 bad : Bu�er → (Bu�er , Bu�er !)

3 bad (c, buf ) = let x = buf !buf in (buf , x )

While the multiple uses of buf are considered valid as buf is of shareable type during

the binding for x , the type checker will reject this program because the type of x

would be Bu�er !, which contains the ! type operator.

This restriction is necessary in order to be able to reason equationally about Cogent

programs. If the above program were accepted by the type checker, a subsequent write

to the bu�er buf would also be visible through x in the update semantics but not

in our equational value semantics. Thus, we must disallow this program in order to

preserve the re�nement theorem connecting the two semantics.

2.1.4 Higher-order Functions

To ensure that all shallow embeddings can be automatically shown to terminate, Co-

gent does not include any form of recursion or any built-in looping construct. This is
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a severe restriction, but the vast majority of loops present in the low-level domains

targeted by Cogent are traversals of data structures, which in Cogent typically take

the form of abstract types.

Therefore, iteration in Cogent is accomplished through the use of abstract higher-

order functions, providing basic functional traversal combinators such as map and

fold for abstract types. For example, the Bu�er type described above could have a

map function like:

map : (U8 → U8, Bu�er) → Bu�er

Here our map function is able to destructively overwrite the bu�er with the results of

the function applied to each byte.

Note that while Cogent does support higher-order functions (functions that accept

functions as arguments or return functions), it does not support nested lambda ab-

stractions or closures, as these can require allocation if they capture variables. Thus,

to invoke this map function, a separate top-level function must be de�ned for its

argument.

1 incrementByte : U8 → U8

2 incrementByte x = x + 1

3 incrementBuf : Bu�er → Bu�er

4 incrementBuf buf = map (incrementByte, buf )

2.1.5 Polymorphism

Cogent also supports parametric polymorphism, allowing functions that operate iden-

tically over any type to be de�ned generically in terms of a type variable. For example,

we can de�ne an abstract polymorphic function to fold over each byte in a bu�er:

foldBuf : 8a. (Bu�er !, (U8, a) → a, a) → a

Seeing as C does not support polymorphism, our compiler will generate multiple spe-

cialised C implementations from a polymorphic C template, one for each concrete

instantiation used in the Cogent code.

Polymorphic functions can be instantiated to concrete types using square brackets.

This type application syntax is not always necessary | the type checker can often

infer the omitted types.
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1 sumBuf : Bu�er ! → U32

2 sumBuf buf = foldBuf[U32] (buf , sumHelper, 0)

3 sumHelper : (U8, U32) → U32

4 sumHelper (x , y) = (upcast x ) + y

Note that polymorphic functions are not �rst class | we only allow polymorphic

de�nitions on the top-level, as with ML. This enables us to implement polymorphism

via monomorphisation, which has minimal performance impact at run-time.

Variables of polymorphic type are by default treated as linear | they must be

used exactly once | this allows the polymorphic type variable to be instantiated to

any type, shareable or not. Additional constraints can be placed on the type variable,

to restrict the possible instantiations to those that can be shared:

1 dup : 8a. (Share a) ⇒ a → (a, a)

2 dup a = (a , a)

In addition to Share constraints, we also allow Drop constraints, which require instan-

tiations to be discardable without being used; and Escape constraints, which require

instantiations to be safe to return from a !-annotated expression. Multiple constraints

can be combined with a comma-separated list:

1 dupOrDrop : 8a. (Drop a, Share a) ⇒ (Bool , a) → hDrop () | Dup (a, a)i

2 dupOrDrop (b, a) = if b then Dup (a , a) else Drop

Abstract types may be given type parameters also, such as in the Array type given

below. As with abstract functions, this will correspond to a family of automatically

generated C types for each concrete type used in the Cogent code.

The type-level ! operator can also be applied to type variables, as shown in the

abstract fold function below, for abstract arrays:

1 type Array a

2 fold : ((Array a)!, (a!, b) → b, b) → b
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2.1.6 Records

In addition to simple tuples, Cogent also supports record types with named �elds. It

supports both boxed (stored on the heap) and unboxed (stored on the stack) variants.

Structs and Record Notation

The unboxed records, also called structs, are morally similar to tuples | indeed,

tuples are compiled identically to unboxed records internally. Unboxed records can be

constructed using a struct literal, as follows:

1 makeRec : Bu�er → ]{a : U8, b : Bu�er }

2 makeRec buf = ]{a = 42, b = buf }

Here the sharp sign (]) indicates that the record is unboxed. These structs can be

deconstructed with pattern matching analogously.

1 getBuf : ]{a : U8, b : Bu�er } → Bu�er

2 getBuf ]{a = , b = buf } = buf

We also support �eld punning, and any unused non-linear �eld can be simply omitted

from the pattern:

1 getBuf : ]{a : U8, b : Bu�er } → Bu�er

2 getBuf ]{b} = b -- Equivalent to above

For read-only or unboxed records that contain no linear values, it is also permitted to

use a more conventional �eld-access notation:

1 addNamed : ]{a : U32, b : U32} → U32

2 addNamed r = r .a + r .b

Unboxed records that contain linear �elds are linear | they cannot be shared, nor

can they be discarded without �rst matching on the record to extract the linear value.

If an unboxed record contains no linear values, it can be shared or discarded freely.
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Boxed Records

As Cogent has no in-built notion of heap allocation, boxed records, which are stored

on the heap, must be allocated by an externally de�ned constructor function. As the

record is stored on the heap, it is treated as linear, and must be explicitly freed, much

like an abstract type.

1 type Heap

2 type Rec = {buf : Bu�er , num : U32}

3 allocRecord : Heap → hFailure Heap | Success (Heap, Rec take (buf, num))i

4 freeRecord : (Heap, Rec take (..)) → Heap -- (..) means all �elds

We de�ne an abstract Heap type to represent the allocator state, and use a variant

type to model possible allocation failure. The Heap parameter is needed as Cogent has

a deterministic, equational semantics, so the behaviour of a function cannot depend

on any implicit global state, including the state of available memory. If allocation

succeeds, the desired record type is returned. Similarly with variants, the take key-

word is used to indicate that a �eld is not initialised or unavailable. These �elds can

subsequently be supplied using a record assignment expression:

1 example : Heap → Heap

2 example h =

3 allocRecord h

4 Failure h → h

5 Success (h , r) → let r 0 = r {num = 42} in freeRecord (h , r 0)

While this assignment expression appears to return a new record r 0 of type Rec take

buf; because r is linear, it cannot be used again, so Cogent can compile this expression

into an e�cient destructive update of the record.

Note also that while freeRecord expects a record of type Rec take (..), we supply

r 0, of type Rec take buf. Cogent resolves this by implicitly discarding the �eld num

from r 0 via subtyping. Because this �eld has the non-linear, freely discardable type

U32, we know this implicit discarding of data is safe. Similarly, a record assignment

expression can only assign to a �eld that is either unavailable or of a discardable type.

Symmetrically, pattern matching on a linear, non-shareable �eld makes the �eld

unavailable in the resulting record, to prevent aliasing of a unique pointer:
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1 getBuffer : Rec → (Rec take buf, Bu�er)

2 getBuffer (r {buf}) = (r , buf )

A linear, boxed record can be made temporarily non-linear using the ! operator, just

as with abstract types. This also applies the ! operator transitively to the record's

�elds.

1 getBuffer : Rec → U32

2 getBuffer r =

3 let ret = bufSize r .buf + r .num !r

4 in ret

2.1.7 Combined Example

Figure 2.1 contains an example of a complete Cogent program. Assuming an abstract

List data structure with a reduce function (Lines 13-14) which aggregates the List

content using a given aggregation function and identity element, the function average

computes the average of a list of 32-bit unsigned integers. It accomplishes this by stor-

ing the running total and count in a heap-allocated data structure called a Bag . Line

2 de�nes the Bag as a heap-allocated record containing two 32-bit unsigned integers.

Lines 3 and 4 introduce allocation and free functions for Bags. The newBag function

returns a variant, indicating that either a bag and a new heap will be returned in

the case of Success, or, in the case of allocation Failure, no new bag will be returned.

The addToBag function (lines 5-8) demonstrates the use of pattern-matching to de-

structure the heap-allocated record to gain access to its �elds, and update it with new

values for each. The averageBag function (lines 9-12) returns, if possible, the average

of the numbers added to the Bag . The input type Bag ! indicates that the input is a

read-only, freely shareable view of a Bag . This view of the Bag is made on line 19 with

the ! notation. Lastly, lines 15-23 de�ne the overall average function, which creates a

Bag with newBag, pattern matches on the result, and, if allocation was successful,

adds every number in the given list to it, and then returns their average.

2.2 Systems Programming in Cogent

Together with Amani [2], we conducted a case study into the implementation and veri-

�cation of software systems written in Cogent [4]. Two �le systems were implemented.
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1 type Heap

2 type Bag = {count : U32, sum : U32}

3 newBag : Heap → hFailure Heap | Success (Bag , Heap)i

4 freeBag : (Heap, Bag) → Heap

5 addToBag : (U32, Bag) → Bag

6 addToBag (x , b {count = c, sum = s}) =

7 b {count = c + 1, sum = s + x }

8

9 averageBag : Bag ! → hEmptyBag | Success U32i

10 averageBag (b {count, sum}) =

11 if count == 0 then EmptyBag else Success (sum / count)

12

13 type List a

14 reduce : 8a b. (List a!, (a!, b) → b, b) → b

15 average : (Heap, List U32!) → (Heap, U32)

16 average (h , ls) =

17 newBag h

18 Success (bag , h 0) → let bag 0 = reduce (ls , addToBag, bag)

19 in averageBag bag 0 !bag 0

20 Success n → (freeBag (h 0, bag 0), n)

21 EmptyBag → (freeBag (h 0, bag 0), 0)

22

23 Failure h 0 → (h 0, 0)

Figure 2.1: A full example of a Cogent program.
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The �rst is an almost feature-complete implementation of the ext2 revision 1 �le sys-

tem, passing the POSIX File System Test Suite [96] for all implemented features. Its

performance is comparable to the implementation of ext2 that is included as part of

the Linux Kernel. The second is a ash �le system BilbyFs, designed from the ground

up to be easy to verify [72].

The Cogent implementations of ext2 and BilbyFs share a common C library of

abstract data types that includes �xed-length arrays for words and structures, simple

iterators for implementing loops, and Cogent stubs for accessing a range of Linux APIs

such as the bu�er cache and its native red-black tree implementation. The interfaces

exposed by this library are carefully designed to ensure compatibility with Cogent's

uniqueness type system.

The ext2 implementation demonstrates Cogent's ability to enable re-engineering

of existing �le systems, and thus its potential to provide an incremental upgrade

path to increase the reliability of existing systems code. BilbyFs, on the other hand,

provides a glimpse of how to design and engineer new �le systems that are not only

performant, but amenable to being veri�ed as correct against a high-level speci�cation

of �le system correctness.

2.2.1 Experience with Cogent

In order to shed light on Cogent's usability as a systems programming language, we

briey describe the experience of developing the ext2 and BilbyFs implementations.

In both cases, a manually-written C implementation was used as a starting point: In

the case of ext2, this was Linux's ext2fs implementation; for BilbyFs, it was our

own implementation of the �le system that was used to prototype its design [72]. The

two �le systems were written by separate developers, but in the case of BilbyFs, the

same developer wrote both the C and Cogent implementations. Both developers were

already familiar with functional programming.

Naturally, Cogent itself evolved in the process | at the time of the initial imple-

mentations, the language had uniqueness types, but no polymorphism nor higher-order

functions. The developers jointly wrote the shared C library, and the ext2 developer

spent considerable time assisting with Cogent tool-chain design and development. Un-

fortunately, this makes it infeasible to give accurate e�ort estimates for how long each

�le system would have taken to write had the language and tool-chain been stable, as

they are now. Having to adopt Cogent's functional style was not a major barrier for

either developer; indeed one reported that Cogent's use of let-expressions for sequenc-
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Original C Cogent Generated C

ext2 4, 077 2, 789 12, 066

BilbyFs 4, 021 4, 643 18, 182

(Generated line counts include C library.)

Table 2.1: Implementation source lines of code, measured with sloccount.

ing and pattern matching for error handling aided his understanding of the potential

control paths of his code. While both had to get used to the uniqueness type system,

both reported that this happened quite quickly and that the type system generally

did not impose much of a burden when writing ordinary Cogent code. Both developers

noted the usefulness of Cogent's uniqueness types for tracking memory allocation and

catching memory leaks. Uniqueness types were reported to cause some friction when

having to design the shared C library interfaces to respect the constraints of the type

system.

Both developers reported that the strong type system provided by Cogent de-

creased the time they usually would have spent debugging, which is to be expected.

Of course, logic bugs which cannot be captured by the static semantics could remain in

Cogent code. Such bugs are harder to debug than in a comparable C implementation,

because of the lack of debugging tool support for Cogent. The developers, however,

found comparatively few bugs in the Cogent code; the vast majority of bugs were in

the C code that accompanies it.

Table 2.1 shows the source code sizes of the two systems. For the original ext2

system (i.e. the Linux code) we exclude code that implements features that the Cogent

implementation does not support. We can see that for the ext2 system, the Cogent

implementation is about two-thirds the size of C.

BilbyFs' Cogent implementation is larger than ext2's, relative to their respective

original C implementations. This is because BilbyFs makes heavier use of the various

abstract data types available in the C library, some of which present fairly verbose

client interfaces in their current implementation.

The blowout in size of the generated C code is mostly a result of normalisation steps

applied by the Cogent compiler, which we discuss in detail in Chapter 5. Most of this

is easily optimised away by the C compiler. However, we found that gcc's optimiser

does an unsatisfactory job of optimising operations on large structs, resulting in some

unnecessary copy operations left in the code. This could be addressed by producing

more optimised Cogent output for such cases. We discuss future work to improve the

generated C code from Cogent in Chapter 6.
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Figure 2.2: IOZone throughput for 4KiB writes
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Figure 2.3: IOZone throughput for random 4KiB writes to a RAM disk

2.2.2 Performance

Because both �le systems were implemented in both C and Cogent, benchmarking

both versions gives us an idea of the overheads introduced by programming in Cogent

rather than directly in C. Where performance overheads are found, pro�ling these

�le systems can indicate which areas of Cogent code generation need improvement to

reduce the gap between Cogent and hand-written C.

In Amani et al. [4], we conducted a series of existing �le system benchmarks on

both �le systems. The evaluation platform for the ext2 �le system was a four-core Intel

Core i7-6700, running at 3.1 GHz, with a Samsung HD501JL 7200RPM 500GiB SATA

hard disk, running Linux kernel 4.3.0-1 from the Debian 8.0 distribution. To reduce

the run-to-run variability, we disabled all but one core. For the BilbyFs evaluations,

we used a Mirabox with 1GiB NAND ash, a Marvell Armada 370 single-core 1.2GHz

ARMv7 processor and 1GiB of DDR3 memory, running Linux 3.17 from the Debian

6a distribution.
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IOZone Benchmarks

We use the IOZone �le system microbenchmarks [65] to evaluate basic performance.

We use the default settings for an automated run, except that we include the cost

of flush at the end of each write for ext2. We do not include flush for BilbyFs, as

doing so completely hides the overhead of the Cogent implementation.

Figure 2.2 shows the throughput of the various �le system implementations for

random-access and sequential writes. Higher throughput indicates better performance.

BilbyFs shows a �5% and �10% throughput degradation respectively in the worst

case for the Cogent version. The CPU load is around 20% compared to 15% with

the C version. This is mostly the e�ect of redundant memory copy operations in

the generated C code when passing structs on the stack. Since these benchmarks were

conducted, we have made some improvements to Cogent's code generator that reduces

this overhead. We discuss further improvements in Chapter 6.

Because ext2 uses magnetic media, rather than ash memory, we expect signif-

icantly lower throughput. Surprisingly, Cogent appears to perform better than the

Linux ext2 implementation on this benchmark. CPU usage for Cogent and native

Linux are the same at around 10%. After some investigation, we discovered that, be-

cause the Cogent implementation is slightly slower, disk I/O operations hit the disk

more often, instead of being merged in the Linux I/O queue. We speculate that the

on-disk �rmware does a better job of scheduling disk writes than the Linux CFQ I/O

scheduler.

Figure 2.3 shows write performance for ext2 on a RAM disk, without physical

media. Without physical I/O, Cogent is slightly slower than native Linux, as expected.

This con�rms that the performance di�erences observed in Figure 2.2 are indeed the

result of disk artefacts. The �8% error bars (showing standard deviation on ten runs)

are because of CPU contention with other system activity; they are larger for Cogent

because its slightly longer running time gives more opportunity for such contention.

Macrobenchmarks

For a macrobenchmark that exposes present limitations of Cogent, we ran the bench-

mark suite postmark [71], a benchmark that emulates a busy mail server by creating

and deleting many small �les. For ext2 tests, we con�gure the benchmark to start

with 50,000 �les of size 10,000 bytes each, and run on a RAM disk so that I/O latency

will not mask Cogent overheads. For BilbyFs, we used a RAM disk that emulates the

ash memory interface. Because BilbyFs is a lot faster to create �les than ext2, we
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Total Time Creation Read Rate

sec �les/sec KiB/sec

C ext2 10 5, 025 248

Cogent ext2 21 2, 393 118

C BilbyFs 6 33, 375 431

Cogent BilbyFs 10 20, 025 259

(CPU Usage is 100% in all cases)

Table 2.2: Postmark run summary

increased the initial number of �les in the benchmark to 200,000. For both of these

benchmarks, we used the same Intel Core i7 machine that was used for the ext2

IOZone benchmarks.

Table 2.2 shows the results, where each of the values is the mode of ten runs.

We can see signi�cant degradation of the Cogent implementations, a factor around

two for ext2 on the RAM disk, and 1.5 times for BilbyFs. Pro�ling Cogent ext2

performance shows that most of the time is spent converting in-bu�er directory entries

to an algebraic data type in Cogent. In Chapter 6, we investigate a way to eliminate

this marshalling code and have Cogent code work on the in-bu�er entries directly.

Another bottleneck observed in BilbyFs is in a function that summarises information

about newly created �les for the log. The same function is a bottleneck in both C and

Cogent versions, but the Cogent version takes about three times as long, once again

due to marshalling between various representations of data types.

In addition to these overheads, the Cogent compiler presently relies very heavily

on the optimiser in the C compiler. In general, Cogent tends to create larger structs,

which is not optimised as well as the idiomatic style of C used in the hand-written

implementations. Further work is needed to generate code that is more in line with

the C compiler's optimisation capabilities.

In many ways, Cogent appears entirely typical for a functional language in the ML

family: higher-order functions, pattern matching, algebraic data types, and so on. But,

unlike these languages, Cogent should be characterised not by what it has, but what

it has not. By carefully restricting the language to only support features that can be

straightforwardly compiled to e�cient code with a certi�cate of compilation correct-

ness, we make those programs that can be expressed in Cogent more veri�able. Of

course, it is possible to take this too far, reducing the expressiveness of the language
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to the point where no realistic programs are accepted. Our case study �le systems,

however, show that Cogent is able to express real-world system implementations, re-

lying on a single shared library of common data types and abstractions in C. As this

library is shared between systems, the cost of its veri�cation could be amortised over

each system which uses it. These case studies demonstrate that Cogent's restrictions,

which give it a signi�cant advantage in veri�ability and generated code e�ciency, do

not overly impede its expressiveness for systems programming.





Chapter 3

Static Semantics

It is no use trying to sum people up.

One must follow hints, not exactly

what is said, nor yet entirely what is

done.

John Greenleaf Whittier

C
ogent makes use of a number of novel or uncommon static semantics fea-

tures, being a structurally typed language with uniqueness types and a

foreign function interface. This chapter outlines the typing rules, the algo-

rithm for type inference and type checking, and the relationship between the algorithm

and the typing rules.

Uniqueness types by themselves do not overly complicate the type-checking pro-

cess (see Walker [133] for a simple algorithmic typing presentation of linear lambda

calculi), but from the perspective of a compiler implementation, there are a number

of additional confounding features particular to Cogent.

The introduction of parametric polymorphism, even in the restricted sense of

prenex rank-1 polymorphism sec. ML [93], means that straightforward type check-

ing algorithms require explicit type applications for all polymorphic functions, which

is both verbose and cumbersome for the Cogent programmer.

If we turn to more sophisticated techniques to handle polymorphism, the pres-

ence of subtyping in the language renders many of the existing complete inference

approaches (such as the W algorithm of Damas and Milner [29]) useless, and the

undecidability of type inference for System F� [107] is a discouraging result.

Many languages with advanced type systems (i.a. dependent type systems), aban-

don completeness entirely, relying on so-called bidirectional techniques to accomplish

35
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local type inference [108]. That is, they require a type signature to be ascribed to each

top-level binding, but then infer types for all expressions, patterns, and specialisations.

While a complete algorithm may be possible for our particular avour of subtyp-

ing (perhaps Dolan and Mycroft [35] can provide inspiration), it is not immediately

apparent how a sound and complete reconstruction algorithm could be devised that

supports simultaneously uniqueness types, subtyping, and the various non-injective

type operators used for records and pointer types in Cogent. On the other hand, if we

are to abandon completeness, it is equally unclear at the outset where completeness

ought to be sacri�ced and annotations required.

3.1 Constraint-Based Type Inference

Those from the French school of type inference, such as [110], advocate for the decom-

position of the type inference problem into two parts, each with their own soundness

and completeness conditions:

1. The generation of a type constraint in the form of a set of equations (or in-

equalities) between types. Here types may involve placeholder variables called

unknowns or uni�cation variables. This phase of type inference is given as a

relation of the form Γ ` e : τ ; C, where given as input a context Γ , a term

e, and a type τ that may involve unknowns, the constraint C is generated. The

soundness condition of this phase can be stated directly: If an assignment S to

all unknowns can be devised that satis�es C, then the term e really will have

the type S(τ).

Γ ` e : τ ; C S(C)

S(Γ) ` e : S(τ)

The completeness condition ensures that we generate solvable constraints for

well-typed expressions, and can be thought of as the opposite direction to sound-

ness: If a program e can be given a type under some assignment S, and the type

checker produces a constraint C, then S satis�es C.

Γ ` e : τ ; C S(Γ) ` e : S(τ)

S(C)

In reality, this completeness condition is slightly complicated by the fact that

the constraint C may involve uni�cation variables that do not occur in Γ or τ,

but this problem can be addressed by elaborating the input expression with type

signatures, as seen in Section 3.4.
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2. The solving of the generated constraints, i.e. the devising of an assignment S to

all unknowns in a given constraint C such that S(C) holds. The soundness and

completeness conditions of this phase are comparatively straightforward: The

solver is sound i� any assignment it produces is a satisfying assignment, and it

is complete i� it will produce an assignment for any satis�able constraint.

The advantage of the constraint-based method for our purpose is precisely this de-

composition, as it naturally allows us to formulate the constraint generation phase

completely independently of completeness concerns, merely producing the necessary

constraints on unknowns for sound type reconstruction. This constraint generation

can be proven both sound and complete, even for an overall-incomplete type inference

algorithm | the incompleteness can be compartmentalised entirely into the solver.

This means we do not need to make any decision a priori about where signatures

should be required, and can formalise a type system that merely generates the neces-

sary constraints and attempts to solve them. Signatures must be added in the cases

where the solver is unable to solve the constraints. Furthermore, this gives rise to a

development methodology whereby the solver can be incrementally improved, making

more and more type signatures redundant as more and more constraints can be solved.

The well-known HM(X) system of Odersky, Sulzmann, and Wehr [100] is a classic

example of a constraint-based system for ML-style languages, parameterised by the

speci�c solver and constraint infrastructure (the X in the name). A clear presentation

of HM(X) can be found in Pottier and R�emy [110]. The OutsideIn(X) system [131],

originally designed for GHC Haskell, extends HM(X) with local assumptions, neces-

sary for type inference in the presence of generalised algebraic data types.

3.2 Substructural Type Systems

For Cogent, existing constraint-based systems are simultaneously too rich, as they

support local polymorphic bindings which Cogent disallows; and somewhat de�cient,

as they assume that the theory includes a structural context. That is, they accept the

following structural laws implicitly:

Γ1Γ2 ` e : τ

Γ2Γ1 ` e : τ
Exchange

Γ1 ` e : τ

Γ1Γ2 ` e : τ
Weakening

Γ1Γ1Γ2 ` e : τ

Γ1Γ2 ` e : τ
Contraction

These laws, which respectively state that we may swap, drop, or duplicate assumptions

whenever necessary, allow the typing context to be treated as a set. Indeed, in many
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expressions e ::= x | `

| e1 o e2 (primops)

| e1 e2 | f [⇀τi] (applications)

| let x = e1 in e2
| if e1 then e2 else e3
| e :: τ (type signatures)

| � � �

types τ, ρ ::= a (type variables)

| α (unknowns)

| τ1 → τ2 (functions)

| T | � � �

prim. types T ::= U8 | U16 | U32 | U64 (integral types)

| Bool

operators o ::= + | � | 6= | ∧ | � � �

literals ` ::= True | False | N

constraints C ::= C1 ∧ C2 (conjunction)

| ` 2 τ (integer bounds)

| τ1 h τ2 (equality)

| τ1 v τ2 (subtyping)

| τ Share | τ Drop (contract/weaken)

| > | ?

contexts Γ ::= x : τ

alg. contexts G ::= x :hni τ

axiom sets A ::= ai Drop, bj Share

polytypes π ::= 8⇀a. C⇒ τ

type vars a, b, c

unknowns α,β, γ

variables x, y, z

usage counts m,n⇀Harpoons indicate a list of zero or more.

Overlines indicate a set, i.e. order is not important.

(Continued in Figures 3.7, 3.11, and 3.14)

Figure 3.1: Syntax of the basic fragment of Cogent
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such calculi the rule for variables is presented as

(x : τ) 2 Γ

Γ ` x : τ
Var

where theWeakening rule is implicitly used to discard unneeded assumptions, rather

than the more precise version of the rule:

x : τ ` x : τ
Var

As Cogent makes use of a substructural type system, speci�cally uniqueness types,

we must be substantially more precise when dealing with contexts. We do not accept

the rules of Contraction and Weakening universally. Admitting Contraction

for any type would allow multiple references to a mutable object to be accessible

at one time, thus breaking the semantic correspondence Cogent enjoys. Admitting

Weakening for any type would allow resources to be discarded without being properly

disposed.1 Rather than a set, a context is now amultiset, where each assumption about

a variable is viewed as a one-use permission to type that variable.

Of course, not all types bene�t from such linearity restrictions. For example, it

would be most inconvenient if one was forced to use a variable of type Bool exactly

once. Thus, it becomes bene�cial to allow contraction and weakening for some types,

but not others.

To cleanly accomplish this, we move the manipulation of contexts out of the struc-

tural rules; instead reifying them as the explicit relations given in Figure 3.2. We de�ne

a context-splitting operation, used for typing the branches of the abstract syntax tree,

which, given assumptions A about the linearity of polymorphic type variables, splits

a context Γ into two sub-contexts Γ1 and Γ2. Each assumption from Γ must be put into

either Γ1 or Γ2. An assumption may only be distributed into both sub-contexts if it is

shareable, i.e. it contains no unique references. We also de�ne a weakening relation,

used for typing the leaves of the abstract syntax tree, which, under assumptions A,

weakens a context Γ into a smaller context Γ 0, where each discarded assumption must

have a discardable type. The speci�cs of what makes a type shareable or discard-

able are encapsulated by the Share and Drop judgements respectively, de�nitions of

which are provided later in Figure 3.6. The fragment of Cogent de�ned in Figure 3.1

contains only primitive types, however, which are all freely shareable and discardable.

1Although it is possible to statically insert destructor code as linear variables go out of scope,

giving an a�ne type system, this complicates implementation and is omitted for now.
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A ` Γ ; Γ1 � Γ2

A ` Γ ; Γ1 � Γ2

A ` x : τ, Γ ; x : τ, Γ1 � Γ2
L

A ` Γ ; Γ1 � Γ2

A ` x : τ, Γ ; Γ1 � x : τ, Γ2
R

A ` ε ; ε� ε

A ` Γ ; Γ1 � Γ2 A ` τ Share

A ` x : τ, Γ ; x : τ, Γ1 � x : τ, Γ2
C

A ` Γ
weak; Γ 0

A ` Γ
weak; Γ 0

A ` x : τ, Γ
weak; x : τ, Γ 0

K
A ` Γ

weak; Γ 0 A ` τ Drop

A ` x : τ, Γ
weak; Γ 0

D

A ` ε
weak; ε

Figure 3.2: Context relations

A; Γ ` e : τ

A ` Γ
weak; x : τ

A; Γ ` x : τ
Var

A; Γ ` e : τ

A; Γ ` e :: τ : τ
Sig

A ` Γ ; Γ1 � Γ2
A; Γ1 ` e1 : τ1 → τ2 A; Γ2 ` e2 : τ1

A; Γ ` e1 e2 : τ2
App

A ` Γ
weak; ε typeOf(f) = 8⇀ai. C⇒ τ

A ` C
h⇀τi/⇀aii

A; Γ ` f [⇀τi] : τ h⇀τi/⇀aii TApp

A ` Γ ; Γ1 � Γ2
A; Γ1 ` e1 : τ1 A; x : τ2, Γ2 ` e2 : τ2

A; Γ ` let x = e1 in e2 : τ2
Let

A ` Γ ; Γ1 � Γ2 A; Γ1 ` e1 : Bool

A; Γ2 ` e2 : τ A; Γ2 ` e3 : τ

A; Γ ` if e1 then e2 else e3 : τ
If

A ` Γ ; Γ1 � Γ2
T 6= Bool o 2 {+,−,�,�, . . . }

A; Γ1 ` e1 : T A; Γ2 ` e2 : T

A; Γ ` e1 o e2 : T
IOp

A ` Γ ; Γ1 � Γ2
T 6= Bool o 2 {=, 6=, <,>,�,�}

A; Γ1 ` e1 : T A; Γ2 ` e2 : T

A; Γ ` e1 o e2 : Bool
COp

A ` Γ ; Γ1 � Γ2 o 2 {∧,∨}

A; Γ1 ` e1 : Bool A; Γ2 ` e2 : Bool

A; Γ ` e1 o e2 : Bool
BOp

A ` Γ
weak; ε ` 2 N ` < |T |

A; Γ ` ` : T
ILit

A ` Γ
weak; ε ` 2 {True, False}

A; Γ ` ` : Bool
BLit

(Continued in Figures 3.8, 3.13, and 3.15)

Figure 3.3: Some non-algorithmic typing rules
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Figure 3.3 contains the typing rules for this elementary fragment of Cogent: just

variables (Var), literals (ILit and BLit), binary operators (IOp, BOp and COp),

conditionals (If), and local monomorphic bindings (Let). For simplicity, Cogent does

not currently include lambda abstractions or local polymorphism. Thus, all function

de�nitions or polymorphic de�nitions must occur on the top-level. We assume the

existence of a global environment typeOf(�) that includes the complete types of all top-

level de�nitions so far. The rule TApp allows these top-level polymorphic de�nitions

to be used and instantiated.

3.3 Elements of Constraint Generation

This fragment of Cogent is nothing unusual, and yet the typing rules do not correspond

to a tractable type-checking algorithm, for two reasons:

1. Each time the context is split, the decision about where to put each assumption

cannot be made prima facie without �rst examining the sub-expressions to

determine which variables are used.

2. The exact type assigned to integer literals (ILit) is overloaded, and therefore

non-deterministic. Such literals can be assigned any integral type that contains

the literal value.

Figure 3.4 outlines the rules for constraint generation for the same fragment of Co-

gent. Unlike the typing rules, these constraint generation rules have an algorithmic

interpretation, where everything to the left of the ; symbol can be viewed as an

input, and everything to the right an output.

To make our context-splitting algorithmic, we avoid the a priori splitting relations

used in the typing rules, instead borrowing a trick from Walker [133] and making the

context an output as well as an input to the constraint generation process. As Cogent

combines linear and non-linear types, we do not remove assumptions from the context

when they are used as Walker does. Instead, we keep a count of the uses of each

assumption, incrementing it whenever it is used. The assumption x :hni τ signi�es that

the variable x is of type τ, and has already been used n times. If an assumption x :hni τ

is used and n > 0, an additional Share constraint is emitted (see rule CG-Var2).

Similarly, when values go out of scope unused, a Drop constraint is emitted for their

type (see rule CG-Let). Contexts which include these usage annotations are called

algorithmic contexts and they are denoted by G rather than Γ .
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G ` e : τ ; G 0 | C

x :h0i ρ,G ` x : τ ; x :h1i ρ,G | ρ v τ
CG-Var1

n > 0

x :hni ρ,G ` x : τ ; x :hn+1i ρ,G | ρ v τ∧ ρ Share
CG-Var2

G1 ` e : τ
0 ; G2 | C

G1 ` e :: τ
0 : τ ; G2 | C∧ τ 0 v τ

CG-Sig

α fresh

G1 ` e1 : α→ τ ; G2 | C1 G2 ` e2 : α ; G3 | C2

G1 ` e1 e2 : τ ; G3 | C1 ∧ C2
CG-App

α fresh

G1 ` e1 : α ; G2 | C1 x :h0i α,G2 ` e2 : τ ; x :hni α,G3 | C2
if n = 0 then C3 = α Drop else C3 = >

G1 ` let x = e1 in e2 : τ ; G3 | C1 ∧ C2 ∧ C3
CG-Let

` 2 {True, False}

G ` ` : τ ; G | τ h Bool
CG-BLit

` 2 N

G ` ` : τ ; G | ` 2 τ
CG-ILit⇀

βj fresh typeOf(f) = 8⇀ai ⇀bj. C⇒ ρ C 0 = C
h⇀τi/⇀aii

�⇀
βj/⇀

bj

�

G ` f [⇀τi] : τ ; G | ρ
h⇀τi/⇀aii

�⇀
βj/⇀

bj

�
v τ∧ C 0

CG-TApp

G1 ` e1 : Bool ; G2 | C1 G2 ` e2 : τ ; G3 | C2
G2 ` e3 : τ ; G 0

3 | C3 G3 1 G 0
3 ; G4 | C4

G1 ` if e1 then e2 else e3 : τ ; G4 | C1 ∧ C2 ∧ C3 ∧ C4
CG-If

o 2 {+,−,�,�, . . . }

G1 ` e1 : τ ; G2 | C1 G2 ` e2 : τ ; G3 | C2

G1 ` e1 o e2 : τ ; G3 | 0 2 τ∧ C1 ∧ C2
CG-IOp

α fresh o 2 {=, 6=, <,>,�,�}

G1 ` e1 : α ; G2 | C1 G2 ` e2 : α ; G3 | C2

G1 ` e1 o e2 : τ ; G3 | 0 2 α∧ τ h Bool∧ C1 ∧ C2
CG-COp

o 2 {∧,∨}

G1 ` e1 : τ ; G2 | C1 G2 ` e2 : τ ; G3 | C2

G1 ` e1 o e2 : τ ; G3 | τ h Bool∧ C1 ∧ C2
CG-BOp

(Continued in Figures 3.10, 3.13, and 3.7)

Figure 3.4: Some elementary constraint generation rules
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G1 1 G 0
1 ; G2 | C

G = xi :hnii τi G 0 = xi :hn 0

ii
τi mi = max (ni, n

0
i)

for each i, if ni = n
0
i then Ci = > else Ci = τi Drop

G 1 G 0 ; xi :hmii τi |
V
i Ci

Combine

Figure 3.5: Algorithmic context join

A ` C

C 2 A

A ` C
Asm

A ` C1 A ` C2

A ` C1 ∧ C2
Conj

` < |T |

A ` ` 2 T
Int

A ` >
Top

A ` τ h τ
Refl

A ` τ h ρ

A ` τ v ρ
Equal

A ` ρ1 v τ1 A ` τ2 v ρ2

A ` (τ1 → τ2) v (ρ1 → ρ2)
Fun

A ` τ1 → τ2 Share
Fun-S

A ` τ1 → τ2 Drop
Fun-D

A ` T Share
Prim-S

A ` T Drop
Prim-D

(Continued in Figures 3.9, 3.12, and 3.16)

Figure 3.6: Constraint semantics

Our constraint generation relation takes a context G, expression e and type τ,

and produces an output context G 0 and a constraint C that must be true for e to

have the type τ. The semantics of constraints (i.e. the proof rules to show that a con-

straint holds) are given in Figure 3.6. After constraint generation, all types, contexts

and constraints may include unknowns, or uni�cation variables. Devising a satisfying

assignment to each unknown is the job of the solver. See Section 3.10 for discussion

of the solver, and Section 3.8 for discussion of constraint generation soundness and

completeness properties.

The constraints include a subtyping constraint τ v τ 0, however as we have not yet

introduced any types (such as records and variants) where subtyping applies, these

constraints can be interpreted for basic types as equality constraints, denoted τ h τ 0.

For conditionals (i.a. CG-If), we require the two output contexts for each branch

to be compatible, in the sense that all linear values used in one branch are also used in

the other. To express this, we de�ne a context join relation in Figure 3.5 which merges

two contexts G1 and G
0
1, producing a context G2 and a constraint C. The generated
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constraint enforces that all assumptions used in one branch but not the other have a

discardable type. The only assumptions left unused in G2 are those that are unused

in both G1 and G
0
1.

To nail down our integer types, and to eliminate the non-determinism we saw

in the original typing rules, we also introduce a constraint n 2 τ that states that

the number n must be contained within the type τ. The solver is free to choose the

smallest integral type that simultaneously satis�es all such constraints.

3.4 Elaboration

When a polymorphic function is supplied with type parameters (CG-TApp), our con-

straint generation allows some or all of the type parameters to be omitted, instead

relying on inference to elaborate the expression. Strictly speaking, to make this con-

straint generation rule compatible with the typing rule TApp, the expressions them-

selves would have to be elaborated with explicit types, but, in keeping with existing

type inference literature [29], we omit the elaboration from the constraint generation

rules.

The completed constraint generation relation, called the elaboration relation, in-

cludes an additional output expression. Written G ` e : τ ; G 0 | C | e 0, the rules are

analogous to the constraint generation rules, where the additional expression e 0 is the

same as e except with type annotations added:

Each type application expression is expanded to be fully saturated with type

parameters.

Every sub-expression is annotated with an explicit type signature. This type

signature may include uni�cation variables, later substituted by the assignment

determined by the solver.

Because every expression is annotated with a signature, every uni�cation variable that

occurs in the generated constraint will also occur in the elaborated expression.

3.5 Variant Types

3.5.1 Adding Subtyping

Variants in Cogent are an anonymous n-ary sum type consisting of a set of constructor

names paired with types. The syntax for variants is given in Figure 3.7. Users may
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expressions e ::= � � � | K e (variant constructor)

| case e1 of K x. e2 else y. e3 (pattern matching)

| case e1 of K x. e2 (irrefutable match)

types τ, ρ ::= � � � | hKu τi (variant types)

| hKu τ |αi (incomplete variant)

constraints C ::= � � � | τ Exhausted (exhaustiveness check)

usage tags u ::= � (unused)

| � (used)

constructors K

Figure 3.7: Syntax for variants

construct a value of variant type by invoking a constructor, as in

K 42 : hK� U8, J� Booli

We also tag each constructor with a usage tag, either � or �, for use in exhaustivity

checking for pattern matching. These usage tags are how we represent the type-level

take annotations on variant types seen in Chapter 2 in our core language. A constructor

is marked with � if it is statically known that this constructor is not the one actually

used to construct the value. In this way, we can ensure exhaustivity by only permitting

irrefutable patterns when every other constructor is marked with �.

Unfortunately, this necessitates the addition of subtyping to the type system. Take

this simple example:

if (condition) then

K 42 : hK� U8, J� Booli

else

J True : hK� U8, J� Booli

: hK� U8, J� Booli

Note that the types for the two branches of the conditional di�er only in the static

knowledge we have of the constructor. The two types have the same run-time represen-

tation, so it is safe to discard information in order to type the expression. Fortunately,
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A; Γ ` e : τ

� � �

A; Γ ` e : τ 0 A ` τ 0 v τ

A; Γ ` e : τ
Sub

A; Γ ` e : τ

A; Γ ` K e : hK� τ, K�i τii
VCon

A ` Γ ; Γ1 � Γ2 A; Γ1 ` e1 : hK
� ρ, Ku

i τii

A; x : ρ, Γ2 ` e2 : τ A;y : hK� ρ, Ku
i τii, Γ2 ` e3 : τ

A; Γ ` case e1 of K x. e2 else y. e3 : τ
Case

A ` Γ ; Γ1 � Γ2 A; Γ1 ` e1 : hK
� ρ, K�i τii

A; x : ρ, Γ2 ` e2 : τ

A; Γ ` case e1 of K x. e2 : τ
Irref

Figure 3.8: Typing Rules for variants

this subtyping is fairly well behaved, forming a complete lattice for each variant type:

hK� U8, J� Booli

hK� U8, J� Booli

77

hK� U8, J� Booli

gg

hK� U8, J� Booli

gg 77

Non-algorithmic typing rules for all expressions dealing with variants are given in

Figure 3.8.

Pattern matching on variants is accomplished in our core language with two prim-

itive forms (case expressions). The �rst is for a refutable match (i.e. when the pattern

in question is not statically known to match the value), and it includes a default al-

ternative in case the match fails. The second is for irrefutable matches, and is only

well-typed when the pattern match can be shown statically to succeed.

Typically, a long chain of patterns is desugared into a nested chain of refutable case

expressions, with a �nal irrefutable match when the chain of patterns is exhaustive:
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τ ↪→ τ

hK� τ, Ku
i ρii take K ↪→ hK� τ, Ku

i ρii

A ` C

� � �

A ` hK�i τii Exhausted
Exhaust

A `
V
i τi v ρi A `

V
j τj v ρj

A ` hK�i τi, K
u
j τji v hK�i ρi, K

u
j ρji

VarSub

A `
V
i τi Share

A ` hK�i τi, K
�
j ρji Share

VarShare
A `

V
i τi Drop

A ` hK�i τi, K
�
j ρji Drop

VarDrop

Figure 3.9: Constraint semantics for variants

case x of

K1 a→ . . .

K2 b→ . . .

K3 c→ . . .

becomes

case x of

K1 a→ . . .

x 0 → case x 0 of

K2 b→ . . .

x 00 → case x 00 of

K3 c→ . . .

3.5.2 Type Inference

Algorithmic type inference for variants is signi�cantly more involved than the non-

algorithmic version, for two reasons:

1. If a constructor is directly invoked or used in a pattern, this indicates only that

the type in question contains said constructor. Indeed, any expression involving

variant types could, with no modi�cations, involve wider variant types with any

number of additional �-marked constructors.

2. Without knowing all of the concrete types involved, it is impossible to check

that an irrefutable pattern match is valid; i.e. we cannot tell without knowing

the full type of the scrutinee whether or not patterns are exhaustive.

To solve the �rst problem | incomplete knowledge of variant types | we extend

types with a new type of unknown, written hKui τi |αi, which indicates a variant type
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G ` e : τ ; G 0 | C

� � �

α,β fresh G1 ` e1 : α ; G2 | C

G1 ` K e : τ ; G2 | C∧ hK� α |βi v τ
CG-VCon

α,β fresh G1 ` e1 : hK
� β |αi ; G2 | C1

x :h0i β,G2 ` e2 : τ ; x :hni β,G3 | C2
y :h0i hK

� β |αi, G2 ` e3 : τ ; y :hmi hK
� β |αi, G 0

3 | C3
G3 1 G 0

3 ; G4 | C4
if n = 0 then C5 = β Drop else C5 = >

if m = 0 then C6 = hK� β |αi Drop else C6 = >

G1 ` case e1 of K x. e2 else y. e3 : τ ; G4 |
V
i21...6 Ci

CG-Case

α,β fresh G1 ` e1 : hK
� β |αi ; G2 | C1

x :h0i β,G2 ` e2 : τ ; x :hni β,G3 | C2 C3 = hK� β |αi Exhausted

if n = 0 then C4 = β Drop else C4 = >

G1 ` case e1 of K x. e2 : τ ; G3 |
V
i21...4 Ci

CG-Irref

Figure 3.10: Constraint generation for variants
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types τ, ρ ::= � � � | A ⇀τ s (abstract types)

| a! (observer types)

| bang(τ) (observation operator)

constraints C ::= � � � | τ Escape (escape analysis)

expressions e ::= � � � | let! (yi) x = e1 in e2 (observation)

sigils s ::= w (writable)

| r (read-only)

| u (unboxed)

| α (unknown sigil)

Figure 3.11: Syntax for abstract and observer types

containing at least the constructors Ki and zero or more unknown alternatives, denoted

by the uni�cation variable α. This is similar to languages with row polymorphism [43]

where type variables can be used to specify incomplete variants or records, except that

in Cogent, all such \row" uni�cation variables are eliminated by constraint solving.

The rules that generate these constraints are provided in Figure 3.10.

For the second problem, we introduce another constraint form for pattern match-

ing, written τ Exhausted. This is true whenever τ is a variant type where all possible

constructors have been matched. Using an irrefutable case statement emits a con-

straint on the type of the scrutinee, \hK� β |αi Exhausted" (see Figure 3.10), indicat-

ing that after the �nal constructor has been matched, there should be no further valid

alternatives.

3.6 Abstract and Observer Types

An abstract type is a type whose full de�nition must be provided in imported C code.

Values of abstract type must be constructed (and, if necessary, destroyed) by imported

C functions, and all operations on them must also be de�ned in C. Nevertheless, they

must be explicitly declared when used in Cogent code. An abstract type declaration

consists of a type name and a series of parameters, without any de�nition provided.

In our core type system, an abstract type is represented as A ⇀τ s, where A is the

type name, ⇀τ is the list of type parameters, and s is a sigil, which determines which

constraints are satis�ed by the abstract type. There are three forms of sigil:

Read-only sigils ( r), indicating that the value is represented as a pointer that

can be freely shared or dropped, as the value cannot be written to during the
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lifetime of this pointer.

Writable sigils (w), indicating that the value is represented as a pointer, and

must be linear, as the value may be destructively updated.

Unboxed sigils ( u), indicating that the value is not represented as a pointer at

all,2 and may be freely shared or dropped.

Note that, according to the constraint semantics given in Figure 3.12, an abstract type

can only satisfy the Share and Drop constraints if the sigil is not writable. Thus

these writable abstract types are the the �rst of the types we have introduced to be

linear.

3.6.1 Observation and Escape Analysis

In our core language, the expression-level ! construct that allows linear values to

be temporarily shared within a limited scope is desugared into the syntactic form

let! (yi) x = e1 in e2. This form is similar to a let expression, except that the vari-

ables yi : ρi are temporarily retyped during the typing of e1 as yi : bang(ρi), where

bang(�) is a type operator that changes all linear writable sigils in a type to shareable

read-only ones. The typing rules and algorithmic constraint generation rules for let!

expressions are given in Figure 3.13.

We provide normalisation rules for this type operator, starting in Figure 3.12:

Written τ ↪→ τ 0, these rules describe how types may be rewritten by the constraint

solver to eliminate the type operators operators, after any uni�cation variables have

already been eliminated by substitution.3 The Norm rule in Figure 3.12 tells us that

any constraint C involving a type τ (written C[τ]) can be rewritten according to the

type normalisation rules. Semantically, it is unimportant whether types are normalised

completely, including inside sub-terms (deep normal form), or whether types are

normalised only on top-level terms occurring in constraints (head normal form). In

our implementation, however, we opt for head normal form to make error messages

(much!) friendlier and to improve type checker e�ciency.

To handle polymorphic type variables, which may be instantiated to types con-

taining writable sigils, we introduce another kind of polymorphic type variable, writ-

ten a!, which becomes bang(τ) under the substitution [τ/a]. Furthermore, we de�ne

2Or, as a pointer to which no writable pointer will ever exist.
3In our Cogent implementation, we additionally use the normalisation mechanism to support type

synonyms.
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τ ↪→ τ

bang(hKu
i ρii) ↪→ hKu

i bang(ρi)i

bang(τ→ ρ) ↪→ τ→ ρ

bang(A ⇀τi w) ↪→ A
⇀
bang(τi) r

bang(A ⇀τi r) ↪→ A
⇀
bang(τi) r

bang(A ⇀τi u) ↪→ A
⇀
bang(τi) u

bang(a) ↪→ a!

bang(a!) ↪→ a!

bang(T) ↪→ T

A ` C

� � �

A ` C[τ] τ ↪→ ρ

A ` C[ρ]
Norm

s 6= w

A `
V
i τi Drop

A ` A ⇀τi s Drop
AbsDrop

s 6= w

A `
V
i τi Share

A ` A ⇀τi s Share
AbsShare

s 6= r

A `
V
i τi Escape

A ` A ⇀τi s Escape
AbsEsc

A ` τ→ ρ Escape
FunEsc

A ` T Escape
PrimEsc

A `
V
i ρi Escape

A ` hKu
i ρii Escape

SumEsc

A ` a! Drop
ObsDrop

A ` a! Share
ObsShare

Figure 3.12: Constraint semantics for abstract and observer types
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A; Γ ` e : τ

� � �

A ` Γ ; Γ1 � Γ2
A;yi : bang(ρi), Γ1 ` e1 : τ

0 A ` τ 0 Escape A; x : τ 0, yi : ρi, Γ2 ` e2 : τ

A;yi : ρi, Γ ` let! (yi) x = e1 in e2 : τ
Let!

G ` e : τ ; G 0 | C

� � �

α fresh yi :h0i bang(ρi), G1 ` e1 : α ; yi :hnii bang(ρi), G2 | C1
x :h0i α, yi :h0i ρi, G2 ` e2 : τ ; x :hni α, yi :hmii ρi, G3 | C2

C3 =
V
i if ni = 0 then bang(ρi) Drop else >

C4 =
V
i if mi = 0 then ρi Drop else >

C5 = if n = 0 then α Drop else > C6 = α Escape

yi :h0i ρi, G1 ` let! (yi) x = e1 in e2 : τ ; yi :hmii ρi, G3 |
V
k21...6 Ck

CG-Let!

Figure 3.13: Typing and constraint generation rules for let!

bang(a) 7→ a!. This way, we can guarantee that bang(τ) is always non-linear regard-

less of τ, as no writable sigils will remain in the type. This technique is originally

due to Odersky [99].

Theorem 3.1 (bang non linear). For all types τ and assumptions A, if no uni�-

cation variables occur in τ we have A ` bang(τ) Share and A ` bang(τ) Drop.

Proof. By structural induction on τ.

The dynamic uniqueness property, introduced informally in Chapter 2 and formally

in Chapter 4, can be stated as:

No writable pointer can be aliased by any other pointer. A read-only

pointer may be aliased by any number of other read-only pointers.

We prove in Chapter 4 that this property is maintained as a dynamic invariant as a

consequence of the static semantics (making writable pointers linear). A na��ve imple-

mentation of the let! feature, however, can easily lead to this invariant being violated:

let! (x) y = x in (x, y)
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types τ, ρ ::= � � � | {fui : τi} s (record types)

| {fui : τi |α} s (record unknowns)

constraints C ::= � � � | s 6= r (sigil constraint)

expressions e ::= � � � | ]{fi = ei} (unboxed allocation)

| take x {f = y} = e1 in e2 (record patterns)

| put e1.f = e2 (record updates)

| e1.f (record �eld read)

�eld names f

Figure 3.14: Syntax for records

In this example, the freely shareable read-only pointer x is bound to y, and thus

aliases the writable pointer x in the returned tuple. Therefore, to maintain the invari-

ant, we must prevent the read-only pointers available in a let! from escaping their

scope. The �rst formulation to include a let! feature is that of Wadler [132], which

imposes a type-based safety check on the type of the binding in a let!, essentially

requiring that the type of the binding and the type of the temporarily non-linear vari-

ables have no components in common. We adopt a slightly di�erent approach which

originated from Odersky [99], although it di�ers in presentation.

We introduce a new type constraint,4 written τ Escape, that states that τ can be

safely bound by a let! expression. Crucially, it does not hold if any r sigils appear

in the type. This means that read-only pointers cannot be bound in a let! expression,

but writable, linear pointers and unboxed values can be bound without a type error.

Figure 3.12 contains full de�nitions for this Escape judgement.

Both methods, our own and that of Wadler [132], are sound, type-based over-

approximations of escape analysis. Fruitful avenues for further research may be to

incorporate more sophisticated analysis techniques to improve the exibility and pre-

dictability of this feature. One possible method may be the use of region types [126]

to track the provenance of pointer variables more precisely, which Rust uses to great

e�ect in its similar type system.

3.7 Record Types

Lastly, we must formalise the type checking process for record types or products. The

syntax for record types is given in Figure 3.14. A record, written {fui : τi} s, consists

4Or judgement, depending on if we are examining the algorithmic or non-algorithmic typing rules.
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A; Γ ` e : τ

� � �

A; Γ ` e : {f�i : τi, f
� : τ} s

A; Γ ` e.f : τ
Member

A; Γ ` ei : τi

A; Γ ` ]{fi = ei} : {f
�
i : τi} u

Struct

A ` Γ ; Γ1 � Γ2
A; Γ1 ` e1 : {f

u
i : τi, f

� : τ} s

s 6= r A; Γ2 ` e2 : τ

A; Γ ` put e1.f = e2 : {f
u
i : τi, f

� : τ} s
Put

A ` Γ ; Γ1 � Γ2
A; Γ1 ` e1 : {f

u
i : τi, f

� : ρ} s s 6= r

A; x : {fui : τi, f
� : ρ} s, y : ρ, Γ2 ` e2 : τ

A; Γ ` take x {f = y} = e1 in e2 : τ
Take

A; Γ ` ei : τi

A ` Γ
weak; ε

A; Γ ` ε
Empty

A ` Γ ; Γ1 � Γ2 A; Γ ` e : τ A; Γ ` ei : τi

A; Γ ` e : τ, ei : τi
Cons

Figure 3.15: Typing rules for records

of one or more �elds (fi). Due to the additional properties maintained by our type

system, record types in Cogent are structured slightly di�erently to more traditional

programming languages. Suppose we wish to access a particular �eld f of a record r.

An expression like r.f would problematic, as this uses the variable r, so any non-f

�elds in r would need to satisfy Drop. If this were the only way to access the �elds of

a record, any record with two linear �elds would be unusable.

If instead we imagine a pattern-matching expression that reintroduces the record

as a new variable name, like so:

let r 0 {f = x} = r in � � �

Then this violates the uniqueness property that our type system purports to maintain,

as the �eld f could be accessed from the resultant record r 0 as well as by the new

variable x. To solve this problem, any �eld that is extracted via pattern matching

is marked as unavailable in the type of the resultant record, by changing the usage

tag associated with each of the extracted �elds to be �. This pattern matching is

desugared into one or more take expressions, written take x {f = y} = e1 in e2. Note

that the typing rules in Figure 3.15 requires that the �eld being taken is available

(tagged with �), and ensures that the �eld is no longer available in e2 (tagged with �).

Conversely, record assignment expressions are desugared into put expressions, of the

form put e1.f = e2. The typing rule for this expression ensures that the �eld being
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τ ↪→ τ

� � �

bang({fui : τi} w) ↪→ {fui : bang(τi)} r

bang({fui : τi} r) ↪→ {fui : bang(τi)} r

bang({fui : τi} u) ↪→ {fui : bang(τi)} u

A ` C

� � �

s = w∨ s = u

A ` s 6= r
Sigil

A `
V
i τi Drop A `

V
i τi v ρi A `

V
j τj v ρj

A ` {f�i : τi, f
u
j : τj} s v {f�i : ρi, f

u
j : ρj} s

RecSub

s 6= w A `
V
i τi Share

A ` {f�i : τi, f
�
j : τj} s Share

RecShare
s 6= w A `

V
i τi Drop

A ` {f�i : τi, f
�
j : τj} s Drop

RecDrop

s 6= r A `
V
i τi Escape

A ` {f�i : τi, f
�
j : τj} s Escape

RecEscape

Figure 3.16: Constraint semantics for records

overwritten has already been extracted (�), and makes the �eld available again in the

resultant record (�).

Like abstract types, records may be stored on the heap and passed around by

reference, in which case we must track uniqueness of each pointer to the record. For

this reason, record types are tagged with a sigil s, which, much as with abstract types,

allows records to be declared unboxed u, where they are typically represented on the

stack or as a at structure; read-only r, where they are stored on the heap and

passed by a read-only, shareable pointer; or writable w, where they are stored on the

heap and passed by a writable, linear pointer. As can be seen in Figure 3.16, the bang

operator interacts with these sigils in much the same way as with abstract types. The

Share, Drop, and Escape constraints place the same constraints on the sigils as with

abstract types, with the added requirement that the type of each available �eld also

satis�es the constraint in question.

If we wish to put a new value into a �eld that is marked as available (�) in the

original record, the typing rules seem to indicate that we would have to take the
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�eld out, discard it, and put in a new value. To avoid having to explicitly take out

every �eld we wish to discard, we allow �elds that satisfy Drop to be automatically

discarded from a record via subtyping | almost a dual of the subtyping relation used

for variants:

{f�1 : U8, f
�
2 : Bool, f

�
3 : Buf w}

{f�1 : U8, f
�
2 : Bool, f

�
3 : Buf w}

Bool Drop
55

{f�1 : U8, f
�
2 : Bool, f

�
3 : Buf w}

U8 Drop
ii

{f�1 : U8, f
�
2 : Bool, f

�
3 : Buf w}

U8 Drop

ii

Bool Drop

55

3.7.1 Type Inference

The constraint generation rules for records are presented in Figure 3.7. As with variant

types, we introduce incomplete record types, where uni�cation variables temporarily

stand for as-yet undetermined �elds in the record.

We also allow uni�cation variables to be used in place of sigils, and add constraints

on these sigils for take and put expressions, as they are valid for unboxed and writable

records but not for read-only ones. This way, we can express that we expect the �eld

f to be present in the given record type as a simple subtyping constraint, leaving the

rest of the record and the sigil as unknowns in the constraint generation rules for take

and put.

3.8 Constraint Generation Theorems

The above sections have cumulatively introduced the complete constraint generation

and typing relations. We now wish to state the theorems that connect these two

relations.

As mentioned in Section 3.1, there are two main desirable theorems for constraint

generation: soundness, which states that our generated constraints, if satis�able, are

su�cient to ensure a typing judgement; and completeness, which states that a well

typed expression should produce satis�able constraints. In addition to these two theo-

rems, we also must prove a totality condition, that states the constraint generator will

always generate a constraint for any closed expression, satis�able or not. Without this

result, our constraint generator could trivially satisfy the soundness and completeness

properties by never generating constraints at all.
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G ` e : τ ; G 0 | C

� � �

α,β fresh G ` e : {f� : τ |α} β ; G 0 | C1 C2 = {f� : τ |α} β Drop

G ` e.f : τ ; G 0 | C1 ∧ C2
CG-Member

α,β, γ fresh G1 ` e1 : {f
� : β |α} γ ; G2 | C1

x :h0i {f
� : β |α} γ, y :h0i β,G2 ` e2 : τ ; x :hni {f

� : β |α} γ, y :hmi β,G3 | C2
C3 = if n = 0 then {f� : β |α} γ Drop else >

C4 = if m = 0 then β Drop else > C5 = γ 6= r

G1 ` take x {f = y} = e1 in e2 : τ ; G3 |
V
k21...5 Ck

CG-Take

α,β, γ fresh G1 ` e1 : {f
� : β |α} γ ; G2 | C1

G2 ` e2 : β ; G3 | C2 C3 = {f� : β |α} γ v τ C4 = γ 6= r

G1 ` put e1.f = e2 : τ ; G3 | C1 ∧ C2 ∧ C3 ∧ C4
CG-Put

αi fresh G ` ei : αi ; G 0 | C

G ` ]{fi = ei} : τ ; G 0 | C∧ {f�i : αi} u v τ
CG-Struct

G ` ei : τi ; G 0 | C

G ` ε ; G | >
CG-Empty

G1 ` e : τ ; G2 | C1 G2 ` ei : τi ; G3 | C2

G1 ` e : τ, ei : τi ; G3 | C1 ∧ C2
CG-Cons

Figure 3.17: Constraint generation rules for records
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Unlike the other theorems presented in this thesis, most of these results have not yet

been machine formalised. This is because, as we will see in Chapter 5, we separately

synthesise a proof of well-typedness for use in our re�nement framework, so these

results are not a vital part of our machine-checked re�nement certi�cate, but rather

simply desirable properties of our type checking algorithm. Work is currently underway

to develop a machine-checked proof of these properties, however, and connect these

proofs to the same Cogent formalisation in Isabelle/HOL used for our re�nement

certi�cate.

3.8.1 Soundness

Theorem 3.2 (Soundness of generation).

If we generate a constraint for a closed term, and ε ` e : τ ; G 0 | C | e 0

there is an assignment where the constraint holds, ∧ A ` S(C)

then the term is well-typed under that assignment. ⇒ A; ε ` S(e 0) : S(τ)

Proof. The proof proceeds by induction, but �rst the goal must be generalised to open

expressions using an arbitrary input context G. De�ne G|x to be the non-algorithmic

context which contains just the typing assumptions from G for the variables x. If we

algorithmically generate a constraint for an expression e from the algorithmic context

G, then the non-algorithmic context for typing e is just G|FV(e), where FV(e) is all

variables occurring free in e. Then, for a compound expression containing two sub-

expressions, we may prove a lemma like the following, to establish the context splitting

judgement used in the non-algorithmic typing rules:

Lemma 3.1 (Splitting for subcontexts).

If a term is made of two sub-terms FV(e) = FV(e1) [ FV(e2)

and we run constraint generation ∧ G1 ` e1 : τ ; G2 | C1

on both sub-terms in order, and the ∧ G2 ` e2 : ρ ; G3 | C2

second constraint is satis�able, then ∧ A ` S(C2)

the typing context for the term splits into the contexts for the two sub-terms.⇒ A ` S(G1|FV(e)) ; S(G1|FV(e1))� S(G2|FV(e2))

Note that we only need the second constraint C2 to be satis�able, as the constraint

generator will only emit the Share constraints necessary to establish the correct

context splitting judgement when running over the second expression e2, as that is

where additional uses of the variables would be observed. With such lemmas (and
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similar for let etc.), we can inductively prove the more general version of our goal,

stated as follows.

Lemma 3.2 (Soundness of generation for open terms).

If under an algorithmic context G,

we generate a constraint for an open term, G ` e : τ ; G 0 | C | e 0

and the constraint is satis�able, then the ∧ A ` S(C)

term is well-typed under the typing context derived for that term from G.⇒ A;S(G|FV(e 0)) ` S(e
0) : S(τ)

Our overall theorem is an obvious corollary of Lemma 3.2, where the context G = ε

and FV(e 0) = ε.

3.8.2 Completeness

Theorem 3.3 (Completeness of generation).

If we generate a constraint for a closed term, and ε ` e : τ ; G 0 | C | e 0

that term is well typed under an assignment, then ∧ A; ε ` S(e 0) : S(τ)

the constraint is satis�able under that assignment. ⇒ A ` S(C)

Proof. First, we must generalise our goal to account for open terms, to enable rule

induction on the constraint generation:

Lemma 3.3 (Completeness of generation for open terms).

If under an algorithmic context G,

we generate a constraint for a term G ` e : τ ; G 0 | C | e 0

which is well typed under an assignment S, ∧ A;S(G|FV(e 0)) ` S(e
0) : S(τ)

then the constraint is satis�able under S. ⇒ A ` S(C)

Observe that because our elaborated expression e 0 contains a type signature for each

sub-expression in e, in order for the expression S(e 0) to be well typed, the assign-

ment S must contain a substitution for each uni�cation variable in C. In each rule

induction case, the validity of the constraints can be established by inversion on the

well-typedness assumption.

3.8.3 Totality

Theorem 3.4 (Totality of constraint generation).

The constraint generator will produce a constraint for any closed term.

FV(e) = ; ⇒ 9G 0 C. ε ` e : τ ; G 0 | C
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Proof. Seeing as the constraint generator is de�ned for all expressions, only placing

preconditions on the input context, this proof proceeds entirely straightforwardly by

induction on the expression e, after a suitable generalisation to open terms, where the

precondition on the input context is made explicit.

Lemma 3.4 (Totality of constraint generation on open terms).

If all variables in the input term occur in the context G, then

the constraint generator will produce a constraint for that term under G.

FV(e) � {x | 9τ n. x :hni τ 2 G} ⇒ 9G 0 C. G ` e : τ ; G 0 | C

The proof of the top-level theorem is a simple instantiation of this lemma where G = ε

and e is closed.

3.9 Polymorphism

Because of the restricted polymorphism in Cogent, we may consider each polymorphic

type variable in a particular top-level de�nition as a distinct skolem type with no

dependencies on other variables. This means they can be treated just as concrete

types in uni�cation, and are global throughout constraints. Thus, constraints need

not contain binders for polymorphic type variables, and any requirements on type

variables to satisfy constraints can be expressed on the top-level: the assumptions A

for the constraint semantics and typing rules.

We prove that instantiating polymorphic type variables does not make well-typed

terms ill-typed, nor does it make satis�able type constraints unsatis�able. These the-

orems are useful for showing type preservation in Chapter 4, and for the correctness

of the monomorphisation phase of our re�nement framework described in Chapter 5.

To clarify notation, an assignment or uni�er, written as S, is a substitution ap-

plied to uni�cation variables such as {α := U8}, and is generated by the constraint

solver. The substitutions described in this section, written as σ, are applied to poly-

morphic type variables, such as
�
U16/a

�
, and are introduced when type applications

are used (TApp) and when the program is monomorphised in the Cogent compilation

validation framework (see Chapter 5).

Theorem 3.5 (Instantiating Type Variables in Constraints).

Given a constraint that holds under assumptions A, A ` C

and a substitution to type variables that satis�es A, ∧ ε `
V
Ci2A σ(Ci)

then the substituted constraint also holds. ⇒ ε ` σ(C)
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Simplify
(rigid/rigid)

Unify
(equalities)

Join/Meet
(subtyping)

Equate
(subtyping)

Figure 3.18: Solver data ow

Proof. Straightforward rule induction on the assumption A ` C. Wherever the rule

Asm is used, we refer to the second assumption to justify the validity of the substituted

constraint. Whenever observer type variables (a!) are substituted, we make use of

Theorem 3.1.

Theorem 3.6 (Instantiating Type Variables | instantiation).

Given a term typed under requirements A, A; Γ ` e : τ

and a substitution to type variables that satis�es A, ∧ ε `
V
Ci2A σ(Ci)

then the substituted term is also well-typed. ⇒ ε;σ(Γ) ` σ(e) : σ(τ)

Proof. Rule induction, using Theorem 3.5.

3.10 Constraint Solver

Having generated a complete set of constraints to model a typing problem, we now turn

our attention to the solving of these constraints. The solver's task is, given constraint

C and a set of axioms about type variables A, to determine an assignment S to all

uni�cation variables in C such that C is satis�ed. We need the solver to be sound, in

that it should not ever successfully solve an unsatis�able set of constraints, but we do

not require completeness | that the solver will always �nd a solution if one exists.

Figure 3.18 outlines the basic ow of data through the various phases of the solver.

The solver consists of several phases, each of which transform the set of constraints to

be solved in some way. Broadly, there are four phases in the solver, each operating on

a set of constraints:

The simplify phase breaks down rigid/rigid subtyping and equality constraints

into smaller equisatis�able constraints. A subtyping constraint τ1 v τ2 is consid-

ered rigid/rigid if neither τ1 nor τ2 are uni�cation variables, or type operators

applied to uni�cation variables (mutatis mutandis for equality constraints).

The simpli�er also eliminates all satis�able constraints that do not contain any

uni�cation variables, such as Share or Drop constraints on concrete types.
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The unify phase solves any ex/rigid equality constraints | i.e. those con-

straints of the form α h τ (or τ h α) where τ is not a uni�cation variable |

by substituting away the uni�cation variable α. The combination of the �rst

two phases is approximately equivalent to the standard �rst order uni�cation of

Robinson [115], extended for row variables [43].

The join/meet phase examines systems of ex/rigid subtyping constraints and,

by using the lattice structure of our subtyping system, generates a new set of

constraints such that the same uni�cation variable does not occur on the left

(resp. right) hand side of multiple ex/rigid subtyping constraints.

The equate phase locates ex/rigid subtyping constraints of the form α v τ

(or τ v α) where α does not occur on the left (resp. right) side of any other

subtyping constraint. Such constraints can be safely replaced with an equality

α h τ and therefore soluble by the unify phase.

We run the solver to a �xed point | that is, we only move to the next phase if the

current phase does not change the set of constraints in any way. If the constraint

set is altered at any point, then we return to the �rst phase. If the constraint set is

satis�able, we will ideally be left with a set of constraints that is a subset of the given

axioms A when the algorithm �nishes.

Crucially for soundness of this algorithm, all phases but the unify phase produce

output constraints that imply the input constraint under any assignment. That is,

if the output is satis�able under some assignment, then the input is also satis�able

under the same assignment. And, as the unify phase only substitutes for equality

constraints, the output still directly implies the input under such a substitution.

In this presentation of the algorithm, unsatis�able constraints are simply left over

after solving, however in the real implementation, constraints that are clearly unsat-

is�able lead to informative error messages.

3.10.1 The Simplify Phase

Constraints on totally rigid terms (that is, terms that do not contain any uni�ca-

tion variables) do not provide any useful information for the solver to reduce any

other constraint. Therefore, if they are satis�able, they can be discarded. Moreover,

constraints on rigid terms that contain uni�cation variables inside, for example a sub-

typing constraint like (α → U8) v (U16 → β), are not immediately useful to reduce
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any constraints, but the equisatis�able constraints that directly concern the uni�cation

variables U16 v α and U8 v β could lead to solutions for α and β.

Therefore, the simpli�er's task is to break down constraints on rigid terms into

constraints directly on the uni�cation variables (if any) that occur inside. Figure 3.19

outlines the rules for basic constraints, whereas Figure 3.20 outlines the rules for equal-

ity and subtyping constraints. The simpli�cation relation
simp
↪→ maps a single constraint

to a set of constraints. It may be applied to any applicable constraint in the input

set. If any constraint is simpli�ed, then the phase runs again (see Figure 3.18), so this

simpli�cation is applied as much as possible to all constraints.

As can be seen in Figure 3.20, subtyping constraints are converted to equality

constraints if they involve unordered types. An unordered type is simply a type for

which subtyping does not apply, such as a primitive type, an abstract type, or a type

variable. For such types, subtyping is equivalent to equality.

For equality and subtyping constraints which involve unknown rows of variant

alternatives or record �elds, we separate those constructors or �elds that the two types

have in common into a separate constraint. This simpli�es the uni�cation mechanism

used in the next phase for row uni�cation variables.

Lemma 3.5 (Soundness of simpli�er).

If a constraint simpli�es to a set of constraints, C
simp
↪→ C 0

then the conjunction of the set is equivalent ⇒ A ` S(C)⇔ A ` S(
V
C 0)

under any assignment to uni�cation variables.

Proof. Proceeds by cases on the simpli�cation relation. All cases are discharged rela-

tively straightforwardly from the de�nition of the constraint semantics in Figures 3.6,

3.9, 3.12 and 3.16.

3.10.2 The Unify Phase

After the simpli�cation phase has completed, all rigid/rigid equality constraints ought

to be eliminated, and constraints involving row variables will have common alternatives

or �elds removed. Thus, we only need to concern ourselves with constraints are of the

following forms:

A ex/rigid equality constraint such as α h τ. Here, the type checker replaces α

with τ if α does not occur in τ, just as in standard �rst-order uni�cation [115],

and adds the assignment α := τ to the output assignment S of the solver.
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C
simp
↪→ C

τ ↪→ τ 0

C[τ]
simp
↪→ C[τ 0]

` < |T |

` 2 T
simp
↪→ ε

C1 ∧ C2
simp
↪→ C1, C2

>
simp
↪→ ε

w 6= r
simp
↪→ ε

u 6= r
simp
↪→ ε

τ h τ
simp
↪→ ε

T Drop
simp
↪→ ε

T Share
simp
↪→ ε

T Escape
simp
↪→ ε

τ→ ρ Drop
simp
↪→ ε

τ→ ρ Share
simp
↪→ ε

τ→ ρ Escape
simp
↪→ ε

a! Drop
simp
↪→ ε

a! Share
simp
↪→ ε

hK�

i τi, K
�

j τji Share
simp
↪→ τi Share

hK�

i τi, K
�

j τji Drop
simp
↪→ τi Drop

hK�

i τi, K
�

j τji Escape
simp
↪→ τi Escape

A ⇀τi r Drop
simp
↪→ τi Drop

A ⇀τi r Share
simp
↪→ τi Share

A ⇀τi w Escape
simp
↪→ τi Escape

A ⇀τi u Drop
simp
↪→ τi Drop

A ⇀τi u Share
simp
↪→ τi Share

A ⇀τi u Escape
simp
↪→ τi Escape

{f�i : τi, f
�

j : τj} r Share
simp
↪→ τi Share

{f�i : τi, f
�

j : τj} r Drop
simp
↪→ τi Drop

{f�i : τi, f
�

j : τj} w Escape
simp
↪→ τi Escape

{f�i : τi, f
�

j : τj} u Share
simp
↪→ τi Share

{f�i : τi, f
�

j : τj} u Drop
simp
↪→ τi Drop

{f�i : τi, f
�

j : τj} u Escape
simp
↪→ τi Escape

hK�

j τji Exhausted
simp
↪→ ε

Figure 3.19: Basic simpli�cation rules of constraint solving.
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C
simp
↪→ C

� � �

τ unordered

τ v ρ
simp
↪→ τ h ρ

τ unordered

ρ v τ
simp
↪→ ρ h τ

τ1 → τ2 v ρ1 → ρ2
simp
↪→ ρ1 v τ1, τ2 v ρ2

τ1 → τ2 h ρ1 → ρ2
simp
↪→ ρ1 h τ1, τ2 h ρ2

A ⇀τi s h A ⇀ρi s simp
↪→ τi h ρi

hK�

i τi, K
u
j τji v hK�

i ρi, K
u
j ρji

simp
↪→ τi v ρi, τj v ρj

{f�i : τi, f
u
j : τj} s v {f�i : ρi, f

u
j : ρj} s

simp
↪→ τi v ρi, τj v ρj, τi Drop

hKu
i τi, K

u
j τj |αi v hKu

i ρi, K
u
k ρj |βi

simp
↪→ hKu

i τii v hKu
i ρii,

hKu
j τj |αi v hKu

k ρj |βi

{fui : τi, f
u
j : τj |α} s v {fui : ρi, f

u
k : ρk |β} s 0

simp
↪→ {fui : τi} s v {fui : ρi} s

0,

{fuj : τj |α} s v {fuk : ρk |β} s 0

hKu
i τi |αi v hKu

i ρi, K
u
j ρji

simp
↪→ hKu

i τii v hKu
i ρii,

hε |αi v hKu
j ρji

{fui : τi |α} s v {fui : ρi, f
u
j : ρj} s

0
simp
↪→ {fui : τi} s v {fui : ρi} s

0,

{ε |α} s v {fuj : ρj |β} s
0

hKu
i τi, K

u
j τji v hKu

i ρi |βi
simp
↪→ hKu

i τii v hKu
i ρii,

hKu
j τj |αi v hε |βi

{fui : τi, f
u
j : τj |α} s v {fui : ρi |β} s

0
simp
↪→ {fui : τi} s v {fui : ρi} s

0,

{fuj : τj |α} s v {ε |β} s 0

hKu
j τii h hKu

j ρii
simp
↪→ τi h ρi

{fui : τi} s h {fui : ρi} s
simp
↪→ τi h ρi

hKu
i τi, K

u
j τj |αi h hKu

i ρi, K
u
k ρj |βi

simp
↪→ hKu

i τii h hKu
i ρii,

hKu
j τj |αi h hKu

k ρj |βi

{fui : τi, f
u
j : τj |α} s h {fui : ρi, f

u
k : ρk |β} s 0

simp
↪→ {fui : τi} s h {fui : ρi} s

0,

{fuj : τj |α} s h {fuk : ρk |β} s 0

hKu
i τi |αi h hKu

i ρi, K
u
j ρji

simp
↪→ hKu

i τii h hKu
i ρii,

hε |αi h hKu
j ρji

{fui : τi |α} s h {fui : ρi, f
u
j : ρj} s

0
simp
↪→ {fui : τi} s h {fui : ρi} s

0,

{ε |α} s h {fuj : ρj |β} s
0

hKu
i τi, K

u
j τji h hKu

i ρi |βi
simp
↪→ hKu

i τii h hKu
i ρii,

hKu
j τj |αi h hε |βi

{fui : τi, f
u
j : τj |α} s h {fui : ρi |β} s

0
simp
↪→ {fui : τi} s h {fui : ρi} s

0,

{fuj : τj |α} s h {ε |β} s 0

Figure 3.20: Simpli�cation rules for equality and subtyping.
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An equality constraint involving an incomplete variant or record on one side only,

such as hε |αi h hKui τii or {ε |α} h {fi :u τi}. Note that we know that the side

involving the row variable must have no concrete �elds or alternatives speci�ed

as the previous phase eliminates any common components of the two types.

If concrete �elds or alternatives occur on the incomplete side, that indicates

that the constraint is unsatis�able. Thus, it is safe to simply apply the row

substitution α := Kui τi or α := fi :u τi to the constraint set, adding it to the

output assignment S.

An equality constraint involving incomplete variants or records on both sides,

such as hKui τi |αi h hKuj τj |βi where α 6= β, and similarly for record types. We

know that Ki and Kj have no constructors in common from the previous phase

so, as the two variables di�er, it su�ces to introduce a fresh row variable γ and

apply the substitutions α := Kuj τj | γ and β := Kui τi | γ, adding them to S.

Here we use γ to denote alternatives not yet determined, common to both α and

β. The same technique applies for record types and their �elds.

Any equality or subtyping constraint on records where one of the sigils is un-

known, e.g. {� � � } α v {� � � } w. Here, the unknown sigil is simply substituted for

the sigil on the opposite type i.e. α := w in this example.

By symmetry, the above cases with the left and right hand sides swapped.

To guarantee soundness for this phase, we merely need to ensure that an unsatis�able

constraint set is never transformed into a satis�able one. Seeing as the only transfor-

mation made by the assign phase is to instantiate a uni�cation variable to a concrete

type via substitution, this is shown straightforwardly:

Lemma 3.6 (Soundness of unify phase).

If a substitution is applied to a constraint set, C 0 = C[x := τ]

and the result is satis�able under some assignment, ∧ A ` S(
V
C 0)

then adding the substitution to that assignment gives ∧ S 0 = S [ {x := τ}

a satisfying assignment for the original constraints. ⇒ A ` S 0(
V
C)

Proof. Seeing as applying an assignment S(C) is de�nitionally identical to applying

each substitution in S to to C, adding the substitution x := τ to the satisfying assign-

ment S of the result constraint set C 0 and applying it to the original constraint set C

is de�nitionally identical to substituting x := τ in C and applying S.
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3.10.3 The Join/Meet Phase

After the �rst two phases have been executed, all rigid/rigid subtyping constraints

have been eliminated, as have equality constraints. What remains is predominantly

subtyping constraints which can be viewed as a graph, where the nodes in the graph

are types, and the edges are the subtyping constraints between them.

This graph will consist of clusters of uni�cation variables, with rigid terms at the

boundaries of those clusters. Figure 3.21 shows an example of such a cluster.

The join/meet phase works on those cases where the same uni�cation variable is

constrained above or below by two or more rigid types. For example, the �rst join/meet

phase in Figure 3.21 operates on the two constraints τ2 v α2 and τ3 v α2. Because of

the lattice structure of our subtyping system, any two types have a least upper bound

τ2 t τ3. Seeing as α2 is constrained to be a supertype of both τ2 and τ3 if and only if

it is a supertype of τ2 t τ3, these two subtyping constraints can be replaced with one,

thereby overall reducing the complexity of the overall constraint set, and reducing the

number of ex/rigid constraints concerning each uni�cation variable. Once the number

of constraints bounding each variable below is reduced to one, the subtyping constraint

is safely replaced with an equality constraint by the subsequent equate phase, which

can then be solved by substitution in the unify phase. Figure 3.21 demonstrates the

interaction between these phases, illustrating the constraint set after each run of the

equate and join/meet phases.

Just as two constraints that bound a variable below can be replaced with the least

upper bound of the two rigid subtypes, two constraints that bound a variable above

are replaced with the greatest lower bound of the two rigid supertypes. Figure 3.22

shows all rules for computing the greatest lower bound (read left to right), whereas

Figure 3.23 shows all rules for computing the least upper bound.

We de�ne the join/meet phase as a relation C1, C2
j/m
↪→ C. Given two constraints

that bound the same uni�cation variable above, i.e. α v τ1 and α v τ2, we compute the

greatest lower bound τ1uτ2, and emit the three constraints: τ1uτ2 v τ1, τ1uτ2 v τ2,

and α v τ1 u τ2. Similarly, if the variable is bound below, we compute the least upper

bound. Note that now α is constrained by fewer subtyping constraints, making it more

amenable to the subsequent equate phase.
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α2

α3

τ4

τ2

τ1

τ3

j/m
↪→ α2

α3

τ4

τ2

τ1

τ3

τ2 t τ3

equate
↪→ α3

τ4

τ1 τ2 t τ3

j/m

Legend

α

τ

Uni�cation vars

Rigid types

Discharged by simp. τ4

τ1 t τ2 t τ3

equate←↩ α3

τ1 t τ2 t τ3

τ4

τ1 τ2 t τ3

Figure 3.21: Example of the interaction of the join/meet and equate phases.
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Meet-Fun:

β1 → β2
w

wτ1 → τ2

ρ1 → ρ2

(β1, β2 fresh)

Meet-Var:

hKu
i βi, K

�

j βj, K
�

k βki
w

whKu
i τi, K

�

j τj, K
�

k τki

hKu
i ρi, K

�

j ρj, K
�

k ρki

(βi, βj, βk fresh)

Meet-Rec:

{fui : βi, f
�

j : βj, f
�

k : βk} γ
w

w{fui : τi, f
�

j : τj, f
�

k : τk} s

{fui : ρi, f
�

j : ρj, f
�

k : ρk} s
0

(βi, βj, βk, γ fresh)

Meet-Rec-U:

{fui : βi, f
�

j : βj, f
�

k : βk, f
u
m : βm} γ

w

w{fui : τi, f
�

j : τj, f
�

k : τk |α} s

{fui : ρi, f
�

j : ρj, f
�

k : ρk, f
u
m : ρm} s 0

(βi, βj, βk, βm, γ fresh)

Meet-Rec-UU:

{fui : βi, f
�

j : βj, f
�

k : βk, f
u
m : βm, f

u
n : βn |α} γ

w

w{fui : τi, f
�

j : τj, f
�

k : τk, f
u
n : τn |α1} s

{fui : ρi, f
�

j : ρj, f
�

k : ρk, f
u
m : ρm |α2} s

0

(βi, βj, βk, βm, βn, α, γ fresh)

Meet-Var-U:

hKu
i βi, K

�

j βj, K
�

k βk, K
u
m βmi

w

whKu
i τi, K

�

j τj, K
�

k τk |αi

hKu
i ρi, K

�

j ρj, K
�

k ρk, K
u
m ρmi

(βi, βj, βk, βm fresh)

Meet-Var-UU:

hKu
i βi, K

�

j βj, K
�

k βk, K
u
m βm, Ku

n βn |αi
w

whKu
i τi, K

�

j τj, K
�

k τk, K
u
n τn |α1i

hKu
i ρi, K

�

j ρj, K
�

k ρk, K
u
m ρm |α2i

(βi, βj, βk, βm, α fresh)

Figure 3.22: Meet rules of constraint solving.
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Join-Fun:

β1 → β2
v

vτ1 → τ2

ρ1 → ρ2

(β1, β2 fresh)

Join-Var:

hKu
i βi, K

�

j βj, K
�

k βki
v

vhKu
i τi, K

�

j τj, K
�

k τki

hKu
i ρi, K

�

j ρj, K
�

k ρki

(βi, βj, βk fresh)

Join-Rec:

{fui : βi, f
�

j : βj, f
�

k : βk} γ
v

v{fui : τi, f
�

j : τj, f
�

k : τk} s

{fui : ρi, f
�

j : ρj, f
�

k : ρk} s
0

(βi, βj, βk, γ fresh)

Join-Rec-U:

{fui : βi, f
�

j : βj, f
�

k : βk, f
u
m : βm} γ

v

v{fui : τi, f
�

j : τj, f
�

k : τk |α} s

{fui : ρi, f
�

j : ρj, f
�

k : ρk, f
u
m : ρm} s 0

(βi, βj, βk, βm, γ fresh)

Join-Rec-UU:

{fui : βi, f
�

j : βj, f
�

k : βk, f
u
m : βm, f

u
n : βn |α} γ

v

v{fui : τi, f
�

j : τj, f
�

k : τk, f
u
n : τn |α1} s

{fui : ρi, f
�

j : ρj, f
�

k : ρk, f
u
m : ρm |α2} s

0

(βi, βj, βk, βm, βn, α, γ fresh)

Join-Var-U:

hKu
i βi, K

�

j βj, K
�

k βk, K
u
m βmi

v

vhKu
i τi, K

�

j τj, K
�

k τk |αi

hKu
i ρi, K

�

j ρj, K
�

k ρk, K
u
m ρmi

(βi, βj, βk, βm fresh)

Join-Var-UU:

hKu
i βi, K

�

j βj, K
�

k βk, K
u
m βm, Ku

n βn |αi
v

vhKu
i τi, K

�

j τj, K
�

k τk, K
u
n τn |α1i

hKu
i ρi, K

�

j ρj, K
�

k ρk, K
u
m ρm |α2i

(βi, βj, βk, βm, α fresh)

Figure 3.23: Join rules of constraint solving
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Lemma 3.7 (Soundness of join/meet phase).

Given two input constraints, if our join/meet phase

produces a new set of constraints from those inputs, C1, C2
j/m
↪→ C

then the conjunction of the new constraints implies ⇒ A ` S(
V
C)

the conjunction of the two input constraints under ⇒ A ` S(C1 ∧ C2)

any assignment to uni�cation variables.

Proof. Proceeds by cases on the constraints. All cases are discharged from the de�ni-

tion of the constraint semantics for records and variants (see Figures 3.9 and 3.16).

While the join/meet phase will break down all pairs of ex/rigid subtyping constraints

concerning unadorned uni�cation variables, it is occasionally possible that a ex/rigid

constraint will be encountered where the uni�cation variable has a type operator ap-

plied, for example bang(α) v τ. Currently, the join/meet phase does not deal with

these constraints, and the subsequent equate phase takes care to avoid converting

subtyping to equality in the presence of such ex-modulo-operator constraints. These

constraints are therefore the main source of incompleteness in our solving algorithm.

Improving the completeness of the solver, and therefore requiring fewer typing anno-

tations, is the subject of future investigation and research.

3.10.4 The Equate Phase

After the join/meet phase has been completed, ex/rigid subtyping constraints gen-

erally should concern unique uni�cation variables that are not mentioned in the same

position in any other ex/rigid constraint. The equate phase is therefore responsible

for locating ex/rigid constraints of the form α v τ or τ v α, where is it safe to

replace the constraint with an equality α ' τ without making the set of constraints

unsatis�able. After such a replacement is made, the unify phase will ultimately per-

form a substitution across the constraint set and add the substitution to the result

assignment S.

At the time of writing, the solver uses a very simple criteria to determine if a con-

straint can be safely replaced. Essentially, the solver will check all other constraints in

the set, to determine if there are any constraints that could potentially become impos-

sible to solve after replacement. A good over-approximation of this is if a constraint

mentions the uni�cation variable in the same position relative to the subtyping re-

lation. For example, the presence of another constraint α v ρ would mean that the

constraint α v τ could not be converted into an equality, as α must be a subtype of
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both τ and ρ, and it is not necessarily true that τ v ρ, so we cannot necessarily say

that α is equal to τ.

If a uni�cation variable is mentioned on both sides of the subtyping operator in two

di�erent constraints, it is only safe to replace one of these subtyping constraints with

equality. For example, suppose that τ v ρ but τ 6= ρ, and we are given two constraints

about the same uni�cation variable: τ v α and α v ρ. It is only safe to replace one

of these constraints with equality, as replacing both would imply that τ h ρ which is

not satis�able. Therefore, our solver arbitrarily chooses to replace constraints where

the variable appears on the left-hand side �rst, and only replace constraints with the

variable on the right-hand side if no other candidates are available.

Seeing as the previous phase will have eliminated most potentially-unsafe ex/rigid

constraints, this means that ex/ex constraints (i.e. constraints between two uni�ca-

tion variables) are the main thing that can potentially block a constraint from being

replaced. Another instance is the cases where the uni�cation variable exists in the same

position modulo some type operators, because these constraints are not eliminated by

the join/meet phase, as mentioned in the previous section.

Thus, each instance of the equate phase will typically replace subtyping constraints

on the outer edges of the constraint graph, where concrete types constrain uni�-

cation variables. After the equalities are converted into substitutions by the unify

phase, ex/ex constraints which mention the substituted variables are converted

into ex/rigid constraints, themselves amenable to the previous phases (as seen in

Figure 3.21); and ex-modulo-operator constraints into rigid/rigid constraints that

can be eliminated by the simpli�er.

This phase also converts inequalities on row uni�cation variables to equalities, for

example in variants or records. A nearly identical strategy is used: Any constraint

which mentions an incomplete variant type on one side, for example hε |αi v τ will

be converted into an equality hε |αi h τ so long as no other inequality exists which

constrains the row variable α on the same side.

If all constraints are not fully solved after picking all of the low hanging fruit |

that is, all substitutions that are obviously safe have been made | the solver will

currently report any left over constraints as errors. It may be possible to use certain

search-based solving techniques to eliminate more di�cult constraints, however this

is currently left for future work. For now, the presence of such left-over constraints

indicates to the programmer that type signatures must be added to help the inference

algorithm along.
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All of these safety considerations and restrictions are a completeness concern.

While our algorithm is incomplete overall, we still would like the algorithm to suc-

cessfully infer types in a large number of practical use cases, and therefore we wish

to avoid the solver transforming a satis�able constraint set into an unsatis�able one

whenever possible. Soundness, on the other hand, is shown straightforwardly:

Lemma 3.8 (Soundness of equate phase).

After running the equate phase on some constraints C
equate
↪→ C 0

the conjunction of the new constraints implies ⇒ A ` S(
V
C 0)

the conjunction of the input constraints ⇒ A ` S(
V
C)

under any assignment to uni�cation variables.

Proof. If a set of constraints are satis�able after a subtyping constraint has been

replaced with an equality constraint, then the original set of constraints are satis�able

due to the reexivity of subtyping.

3.10.5 The Solver Overall

With each phase of the solver de�ned and their respective soundness conditions proven,

we can now turn our attention to the composition of all these phases. As demonstrated

in Figure 3.18, the solver is run until a �xed point. In other words, the phases con-

tinuously transform the constraint set until it is not transformed anymore by any

phase.

This process will take as input a constraint set C; and produce as outputs a set of

leftover constraints C 0 and a result assignment S. We shall write the solver relation

as C
solv
↪→ C 0;S.

Theorem 3.7 (Soundness of Solver).

If the solver is run on a constraint set, and the C
solv
↪→ C 0;S0

leftover constraints are satis�able under an assignment, ∧ A ` S 0(
V
C 0)

then combining it with the output assignment produces ∧ S = S0 [ S
0

a satisfying assignment for the original constraints. ⇒ A ` S(
V
C)

Proof. A mere composition of Lemmas 3.5, 3.6, 3.7 and 3.8.

It is not proven here that the solver terminates, and termination is a necessary con-

dition to show completeness. As completeness is not our concern, however, we have

not investigated a proof of this property in great detail, but we believe that a similar
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justi�cation may be used as for the termination argument used for the �rst-order uni�-

cation algorithm of Robinson [115], where the number of available uni�cation variables

is shown to decrease after each substitution [84, 87].

3.11 Type Inference Results

Having de�ned both the constraint generator and the solver, and proved crucial sound-

ness results, it is now possible to describe formally the behaviour of the entire type

inference process.

Theorem 3.8 (Soundness of Type Inference).

If we generate a constraint for an closed term, ε ` e : τ ; G 0 | C

then we run the solver on that constraint, ∧ C
solv
↪→ C 0;S

and the solver is successful, then ∧ C 0 � A

that term is well typed under the solver's assignment. ⇒ A; ε ` e : S(τ)

Proof. Note that if C 0 � A then A `
V
C 0. Furthermore, if A `

V
C 0 and C

solv
↪→ C 0;S,

then by Theorem 3.7 (where S 0 is the empty assignment), we can conclude that A `

S(C). Then, by Theorem 3.2, we have that A; ε ` e : S(τ) as required.

While no other top-level results (such as completeness) can be proven, the theorems

proven about each individual phase give us additional con�dence that our algorithm

is robust enough to be a workable foundation for future Cogent type system research.

Testing on our implementation has identi�ed cases in the implemented �le systems

where the type inference makes many user-provided signatures obsolete. With further

work, we hope to make our inference system su�ciently robust that explicit type

signatures become increasingly rare in Cogent code.

Well-typedness is a key assumption of our overall re�nement theorem, ensuring the

dynamic uniqueness property necessary to justify our compilation of pure functions

to imperative C. Thus, the type system presented here is a vital component of our

veri�cation framework.

Our type inference algorithm, on the other hand, is not strictly necessary to es-

tablish the re�nement theorems needed to certify compilation. It is, nonetheless, an

important part of Cogent itself. Without type inference, developers would have to
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painstakingly annotate types throughout their programs. This is not just a theoretical

tedium: Prior to the introduction of type inference, Cogent users had to do precisely

that, reporting it as the single greatest usability problem they observed in Cogent

programming. Our algorithm therefore ameliorates this usability problem, improving

the experience of Cogent users, and thereby reducing the e�ort required to develop

software in Cogent.





Chapter 4

Dynamic Semantics

Everyone, left to his own devices,

forms an idea about what goes on in

language which is very far from the

truth.

Ferdinand de Saussure

I
t has long been understood that linear and uniqueness type systems can

be used to provide a purely functional interface to mutable state and side-

e�ects [132]. This intuition follows from the uniqueness property men-

tioned in Chapter 2, that each live mutable object is referenced by exactly one variable

at a time: If a function has a reference to a mutable object, no other references must

exist. Therefore, destructive update is indistinguishable from the traditional purely

functional copy-update idiom, as no aliases exist to observe the change.

Despite this result, many languages with uniqueness types, such as Rust [118] or

Vault [32], only make use of such type systems to reduce or eliminate the need for run-

time memory management, and to facilitate informal reasoning about the provenance

of pointers. The functional language Clean [10] makes use of uniqueness types to

abstract over e�ects, but it still has need for a garbage collector, and it does not

prove, on paper nor in a machine-checked proof script, the semantic coincidence that

results from the type system.

The proof of this semantic coincidence is more than just a curiosity for Cogent,

as it forms a key part of the compiler certi�cate used to show re�nement from an

Isabelle/HOL shallow embedding of the Cogent code all the way to an e�cient C

implementation, the details of which are discussed in Chapter 5.

Hofmann [59] �rst formalised this intuition by providing both a set-theoretic de-

77
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notational semantics and a compilation to C for a functional language, and demon-

strating that these two semantics coincide in a pen-and-paper proof. The language in

question, however, was extremely minimal, and did not involve heap-allocated objects

or pointers, merely mutable stack-allocated integers.

In this respect, the machine-checked proof of semantic coincidence for Cogent rep-

resents a signi�cant advancement in the state of the art, as Cogent is a higher-order

language with full support for compound types and heap-allocated objects, necessitat-

ing a more intricate formulation of the uniqueness property, outlined in Section 4.2.

Cogent also integrates with C code called via the foreign function interface, which

necessitates a formal treatment of the boundary between these languages. Speci�cally,

we must characterise the obligations the C code must meet in order to maintain our

uniqueness invariant (see Section 4.2.3).

Each of the theorems presented in this chapter are formalised and machine-checked

in Isabelle/HOL, as they form a vital part of our overall re�nement certi�cate. Each

theorem includes the corresponding name (written in typewriter typeface) of the

equivalent theorem in Isabelle/HOL formalisation of Cogent [24].

4.1 A Tale of Two Semantics

As previously mentioned, we assign two dynamic semantics to Cogent terms. The �rst

is the functional value semantics, which is suitable for equational reasoning, and can

be easily connected to an Isabelle/HOL shallow embedding. The second, the update

semantics, is more imperative in avour, where values may take the form of pointers

to a mutable store.

Figure 4.1 describes the syntax of values and their environments for our two dy-

namic semantics. Both semantics de�nitions are parameterised by a set of abstract

values, av and au respectively, which denote values of abstract types de�ned in C.

They are also parameterised by functional abstractions of any C foreign functions

used in the Cogent code, manually written and supplied by the programmer. For an

abstract function f, the value semantics abstraction JfKv must be a pure function, and

the update semantics abstraction JfKu must be a re�nement of JfKv which respects the

invariants of our type system. The exact proof obligations placed on these functions are

outlined in Section 4.2.3. The Cogent re�nement framework described in Chapter 5

is additionally parameterised by re�nement proofs between these purely functional

abstractions and their C implementation. If full end-to-end veri�cation of all compo-

nents of the system is desired, the user must additionally prove this re�nement, and
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compose this proof with our framework.

4.1.1 Value Semantics

The rules for the value semantics are given in Figure 4.2. Speci�ed as a big-step eval-

uation relation V ` e V v, these rules describe the evaluation of an expression e to

a single result value v with the environment V containing the values of all variables

in scope. In many ways, these semantics are entirely typical of a λ-calculus or other

purely functional language: all values are self-contained, there is no notion of sharing

or references. Therefore, other than the values of all available variables, there is no

need for any context to evaluate an expression. The rules can be viewed as an evalu-

ation algorithm, as they are entirely syntax-directed | exactly one rule speci�es the

evaluation for each form of expression. Syntactic constructs which only exist to aid

the uniqueness type system have no impact on the dynamic semantics. For example,

the let! construct behaves identically to let.

Just as in Chapter 3, where we assumed the existence of a global type environment

for top-level de�nitions called typeOf(�), we include a global de�nition environment

defnOf(�) that, given a function name, provides either:

1. a transparent de�nition, written Λ⇀a. λx. e, which denotes a Cogent function

returning e, parametric for type variables ⇀a and a single value argument x; or

2. a black box (�), which indicates that the function's de�nition is abstract, i.e.

provided externally in C.

The rule VTApp describes how non-abstract functions are evaluated to function val-

ues. As functions must be de�ned on the top-level, our function values hhλx. eii consist

only of an unevaluated expression parameterised by a value, evaluated when the func-

tion is applied, thereby supplying the argument value. There is no need to de�ne

closures or environment capture, as top-level functions cannot capture local bindings.

Abstract function values, written hhabs. f | ⇀τii, are passed indirectly, as a pair of the

function name and a list of the types used to instantiate type variables. When an ab-

stract function value hhabs. f | ⇀τii is applied to an argument, the user-supplied purely

functional abstraction of the C semantics JfKv is invoked|merely a mathematical

function from the argument value to the output value.
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Value Semantics

value semantics values v ::= ` (literals)

| hhλx. eii (function values)

| hhabs. f | ⇀τii (abstract functions)

| K v (variant values)

| {f 7→ v} (records)

| av (abstract values)

environments V ::= x 7→ v

abstract values av
abstract function semantics J�Kv : f→ v→ v

Update Semantics

update semantics values u ::= ` (literals)

| hhλx. eii (function values)

| hhabs. f | ⇀τii (abstract functions)

| K u (variant values)

| {f 7→ u} (records)

| au (abstract values)

| p (pointers)

environments U ::= x 7→ u

abstract values au
pointers p

sets of pointers r,w

mutable stores µ : p9 u

abstract function semantics J�Ku : f→ µ� u→ µ� u

primop semantics JoK : v� v→ v

function defn. env. defnOf(�) : f→ D

function defn. D ::= � (abstract functions)

| Λ⇀a. λx. e (function de�nitions)

Figure 4.1: Syntax for both dynamic semantics interpretations.
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V ` e V v

x 7→ v 2 V

V ` x V v
VVar

V ` ` V `
VLit

V ` e1 V v1 V ` e2 V v2

V ` e1 o e2 V v1 JoK v2
VOp

V ` e V True V ` e1 V v

V ` if e then e1 else e2 V v
VIf-T

V ` e V False V ` e2 V v

V ` if e then e1 else e2 V v
VIf-F

V ` e1 V hhλx. eii

V ` e2 V v x 7→ v ` e V v 0

V ` e1 e2 V v 0
VApp

V ` e1 V hhabs. f | τii

V ` e2 V v v 0 = JfKv v

V ` e1 e2 V v 0
VApp-A

defnOf(f) = Λ⇀ai. λx. e
V ` f [⇀τi] V hhλx. e

h⇀τi/⇀aiiiiVTApp
defnOf(f) = �

V ` f [⇀τi] V hhabs. f | ⇀τiiiVTApp-A
V ` e1 V v 0 x 7→ v 0, V ` e2 V v

V ` let x = e1 in e2 V v
VLet

V ` e1 V v 0 x 7→ v 0, V ` e2 V v

V ` let! (y) x = e1 in e2 V v
VLet!

V ` e V {f 7→ v, fi 7→ vi}

V ` e.f V v
VMember

for each i, V ` ei V vi

V ` ]{fi = ei} V {fi 7→ vi}
VStruct

V ` e1 V {f 7→ v, fi 7→ vi}

x 7→ {f 7→ v, fi 7→ vi}, y 7→ v, V ` e2 V v 0

V ` take x {f = y} = e1 in e2 V v 0
VTake

V ` e1 V {f 7→ v, fi 7→ vi} V ` e2 V v 0

V ` put e1.f = e2 V {f 7→ v 0, fi 7→ vi}
VPut

V ` e V v

V ` K e V K v
VCon

V ` e V K v 0 x 7→ v 0, V ` e 0 V v

V ` case e of K x. e 0 V v
VIrref

V ` e V K v 0 x 7→ v 0, V ` e1 V v

V ` case e of K x. e1 else y. e2 V v
VCase-M

V ` e V K 0 v 0 K 6= K 0

y 7→ K 0 v 0, V ` e2 V v

V ` case e of K x. e1 else y. e2 V v
VCase-N

Figure 4.2: The value semantics evaluation rules.
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U ` e | µ U u | µ

x 7→ u 2 U

U ` x | µ U u | µ
UVar

U ` ` | µ U ` | µ
ULit

U ` e1 | µ1 U u1 | µ2
U ` e2 | µ2 U u2 | µ3

U ` e1 o e2 | µ1 U u1 JoK u2 | µ3
UOp

U ` e | µ1 U True | µ2
U ` e1 | µ2 U u | µ3

U ` if e then e1 else e2 | µ1 U u | µ3
UIf-T

U ` e | µ1 U False | µ2
U ` e2 | µ2 U u | µ3

U ` if e then e1 else e2 | µ1 U u | µ3
UIf-F

U ` e1 | µ1 U hhλx. eii | µ2
U ` e2 | µ2 U u | µ3

x 7→ u ` e | µ3 U u 0 | µ4

U ` e1 e2 | µ1 U u 0 | µ4
UApp

U ` e1 | µ1 U hhabs. f | τii | µ2
U ` e2 | µ2 U u | µ3
(u 0, µ4) = JfKu (u, µ3)

U ` e1 e2 | µ1 U u 0 | µ4
UApp-A

defnOf(f) = Λ⇀ai. λx. e
U ` f [⇀τi] | µ U hhλx. e

�⇀τi/⇀ai

�
ii | µ

UTApp
defnOf(f) = �

U ` f [⇀τi] | µ U hhabs. f | ⇀τiii | µUTApp-A
U ` e1 | µ1 U u 0 | µ2

x 7→ u 0, U ` e2 | µ2 U u | µ3

U ` let x = e1 in e2 | µ1 U u | µ3
ULet

U ` e1 | µ1 U u 0 | µ2
x 7→ u 0, U ` e2 | µ2 U u | µ3

U ` let! (y) x = e1 in e2 | µ1 U u | µ3
ULet!

U ` e1 | µ1 U {f 7→ u, fi 7→ ui} | µ2
x 7→ {f 7→ u, fi 7→ ui}, y 7→ u,U ` e2 | µ2 U u 0 | µ3

U ` take x {f = y} = e1 in e2 | µ1 U u 0 | µ3
UTake

U ` e1 | µ1 U {f 7→ u, fi 7→ ui} | µ2 U ` e2 | µ2 U u 0 | µ3

U ` put e1.f = e2 | µ1 U {f 7→ u 0, fi 7→ ui} | µ3
UPut

U ` e | µ1 U {f 7→ u, fi 7→ ui} | µ2

U ` e.f | µ1 U u | µ2
UMem

U ` ei | µ1 U

?
ui | µ2

U ` ]{fi = ei} | µ1 U {fi 7→ ui} | µ2
UStruct

U ` e | µ1 U u | µ2

U ` K e | µ1 U K u | µ2
UCon

U ` e | µ1 U K u 0 | µ2
x 7→ u 0, U ` e 0 | µ2 U u | µ3

U ` case e of K x. e 0 | µ1 U u | µ2
UIrref

U ` e | µ1 U K u 0 | µ2 x 7→ u 0, U ` e1 | µ2 U u | µ3

U ` case e of K x. e1 else y. e2 | µ1 U u | µ3
UCase-M

U ` e | µ1 U K 0 u 0 | µ2 K 6= K 0

y 7→ K 0 u 0, U ` e2 | µ2 U u | µ3

U ` case e of K x. e1 else y. e2 | µ1 U u | µ3
UCase-N

(Continued in Figure 4.4)

U ` e | µ U

?
u | µ

U ` ε | µ U

?
ε | µ

UNil
U ` e0 | µ1 U u0 | µ2 U ` ei | µ2 U

?
ui | µ3

U ` e0 ei | µ1 U

?
u0 ui | µ3

UCons

Figure 4.3: The straightforward update semantics evaluation rules.
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U ` e | µ U u | µ

U ` e1 | µ1 U p | µ2 µ2(p) = {f 7→ u, fi 7→ ui}

x 7→ p, y 7→ u,U ` e2 | µ2 U u 0 | µ3

U ` take x {f = y} = e1 in e2 | µ1 U u 0 | µ3
UTake-B

U ` e1 | µ1 U p | µ2 µ2(p) = {f 7→ u, fi 7→ ui} U ` e2 | µ2 U u 0 | µ3

U ` put e1.f = e2 | µ1 U p | µ3(p := {f 7→ u 0, fi 7→ ui})
UPut-B

U ` e | µ1 U p | µ2 µ2(p) = {f 7→ u, fi 7→ ui}

U ` e.f | µ1 U u | µ2
UMem-B

Figure 4.4: The update semantics evaluation rules concerning pointers.

4.1.2 Update Semantics

Similarly to the value semantics, the update semantics is speci�ed as a big-step evalu-

ation relation, however unlike the value semantics, a mutable store is included as an

input to and output of an expression's evaluation, and values may be represented as

pointers to locations in that mutable store. Written U ` e | µ U u | µ 0, this evaluation

relation speci�es that, given an environment U of values that may contain pointers

into a mutable store µ, the evaluation of the expression e will result in the value u

and a �nal store µ 0. Figure 4.3 outlines the straightforward rules for this evaluation

relation. The majority of these are very similar to their value-semantics equivalents,

save that they thread the mutable store through the evaluation.

The mutable store is speci�ed as a partial mapping from pointers (written p)

to values. The exact content of pointer values is left abstract: our semantics merely

requires that they be enumerable and comparable. In Chapter 5, we instantiate p to

a concrete set to prove re�nement to the C implementation.

Like in the value semantics, the semantics of foreign functions are provided exter-

nally, this time permitting modi�cations to the mutable store in addition to returning

a value. Rules for variants and other primitive types are all analogous to the value

semantics, however di�erences arise when it comes to record types. Unlike the value

semantics, the update semantics distinguishes between boxed and unboxed records.

For unboxed records, which are stack-allocated and passed by value, the rules for

take, put etc. resemble their value-semantics counterparts. Boxed records, however,
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are represented as a pointer | the rule for take must consult the heap, and the rule

for put mutates the heap, destructively updating the record. These rules that involve

the mutable heap are speci�ed in Figure 4.4.

4.2 Refinement and Type Preservation

To show that the update semantics re�nes the value semantics, the typical approach

from data re�nement, originally due to de Roever and Engelhardt [31], is to de�ne a

forward simulation or re�nement relation R between values in the value semantics

and states in the update semantics, and show that any update semantics evaluation

has a corresponding value semantics evaluation that preserves this relation. When each

semantics is viewed as a binary relation from initial states to �nal states (outputs), this

requirement can be succinctly expressed as a commutative diagram. For example, with

respect to an externally de�ned abstract function f, we would require that the user-

provided value semantics JfKv is indeed an abstraction of the user-provided update

semantics JfKu:

R; JfKu � JfKv;R

(where ; is forward composition of relations)

� �

� �

value

R

update

R�

Assuming that the relation holds initially, we can conclude from such a proof that

any execution in our update semantics interpretation has a corresponding execution

in our value semantics interpretation, and thus any functional correctness property we

prove about all our value semantics executions applies also to our update semantics

executions.

The relation R must relate value semantics values (v) to update semantics states

(u� µ). A plausible de�nition would be as an abstraction function, which eliminates

pointers from each update semantics value u in the state by following all pointers from

the value u in the store µ, collapsing the pointer graph structure into a self-contained

value v in the value semantics.

Such a relation, however, is not preserved by evaluation in the presence of alias-

ing of mutable data, as a destructive update (such as a put) to a location in the

store aliased by two variables would a�ect the value of both variables in the update

semantics, but only one of them in the value semantics. Therefore, the re�nement re-

lation must additionally encode the uniqueness property ensured by our type system,
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which rules out not just direct aliasing, where two separate variables refer to the same

data structure on the heap, but also internal aliasing, where a single data structure

contains two or more aliasing pointers.

The rules in Figure 4.5 de�ne our re�nement relation, extended to take into ac-

count the type system and aliasing of pointers. Written u | µ : v : τ [ r � w ] , this

judgement states that:

1. Transitively following all the pointers from u in the store µ results in the self-

contained value v,

2. Both u and v have the type τ,

3. The set r contains all read-only pointers (according to the type τ) transitively

accessible from u,

4. The set w contains all writable pointers transitively accessible from u, and

5. The value u contains no internal aliasing of any of the writable pointers in w,

whether by read-only or writable pointers.

We call the sets r and w the footprint of the value u. By annotating the relation in this

way, we can insert the required non-aliasing constraints into the rules for compound

values such as records. Read-only pointers may alias other read-only pointers, but

writable pointers may not alias any other pointer, whether read-only or writable.

Because our relation relates both update semantics and value semantics to types,

we can derive a value-typing relation for either semantics by creatively erasing part

of the rules. Erasing all the update semantics parts (highlighted like this ) leaves

a value-typing relation de�nition for the value semantics, and erasing all the value

semantics parts (highlighted like this) gives a state-typing relation de�nition for the

update semantics. As we ultimately prove preservation for this re�nement relation

across evaluation, the same erasure strategy can be applied to the proofs to produce

a typing preservation proof for either semantics | a key component of type safety.

Polymorphism

As mentioned in Chapter 2, we implement parametric polymorphism by specialising

code to avoid paying the performance penalties of other approaches such as boxing.

This means that polymorphism in Cogent is restricted to predicative rank-1 quan-

ti�ers, in the style of ML. This allows us to specify dynamic objects, such as our
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u | µ : v : τ [ r � w ]

` < |T |

` | µ : ` : T [ ; � ; ]
RLit

ε; x : τ ` e : τ 0

hhλx. eii | µ : hhλx. eii : τ→ τ 0 [ ; � ; ]
RFun

typeOf(f) = 8⇀ai. C⇒ τ

hhabs. f | ⇀τiii | µ : hhabs. f | ⇀τiii : τ �⇀τi/⇀ai

�
[ ; � ; ]

RAFun

u | µ : v : τ [ r � w ]

K u | µ : K v : hK� τ, Ku
i τii [ r � w ]

RVariant

µ(p) = au

au | µ :A av :A A ⇀τi r [ r � ; ]

p | µ : av : A ⇀τi r [ {p} [ r � ; ]
RAbsR

µ(p) = au

au | µ :A av :A A ⇀τi w [ r � w ]

p | µ : av : A ⇀τi w [ r � {p} [w ]
RAbsW

au | µ :A av :A A ⇀τi u [ r � w ]

au | µ : av : A ⇀τi u [ r � w ]
RAbsU

u = {fi 7→ ui, fk 7→ uk} v = {fi 7→ vi, fk 7→ vk}

for each i, ui | µ : vi : τi [ ri � wi ]

for each fj 2 fi where i 6= j, wi \ (rj [wj) = ;

u | µ : v : {f�i : τi, f
�

k : τk} u [
S
i ri �

S
iwi ]

RRecU

µ(p) = {fi 7→ ui, fk 7→ uk} v = {fi 7→ vi, fk 7→ vk}

for each i, ui | µ : vi : τi [ ri � ; ]

p | µ : v : {f�i : τi, f
�

k : τk} r [ {p} [
S
i ri � ; ]

RRecR

µ(p) = {fi 7→ ui, fk 7→ uk} v = {fi 7→ vi, fk 7→ vk}

for each i, ui | µ : vi : τi [ ri � wi ]

for each fj 2 fi where i 6= j, wi \ (rj [wj) = ;

p | µ : v : {f�i : τi, f
�

k : τk} w [
S
i ri � {p} [

S
iwi ]

RRecW

au | µ :A av :A A ⇀τi s [ r � w ]

(abstract types are user-provided)

U | µ : V : Γ [ r � w ]

for each xi : τi 2 Γ,

xi 7→ ui 2 U xi 7→ vi 2 V ui | µ : vi : τi [ ri � wi ]

for each xj 2 xi where i 6= j, wi \ (rj [wj) = ;

U | µ : V : Γ [ r � w ]
REnv

Figure 4.5: The value typing and update/value re�nement rules.
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values and their typing and re�nement relations, in terms of simple monomorphic

types, without type variables. Thus, to evaluate a polymorphic program, each type

variable must �rst be instantiated to a monomorphic type. Theorem 3.6 shows that

any valid instantiation of a well-typed polymorphic program is well-typed, which im-

plies the monomorphic specialisation case when all variables are instantiated. Thus,

our results about our re�nement relation can safely assume the well-typedness of the

monomorphic specialisation of the program which is being evaluated.

Environments

Figure 4.5 also de�nes the re�nement relation for environments and type contexts,

written U | µ : V : Γ [ r � w ] . Just as our original re�nement relation enforces our

uniqueness constraint inside a single value, the re�nement relation for environments

requires that the values of all variables in Γ meet the uniqueness constraints, such that

no available variable will contain an alias of a writable pointer in any other available

variable.

Because this relation is only concerned with available variables, we can show

that the context-splitting relation (given in Figure 3.2), which partitions the available

variables into two sub-contexts, also neatly bifurcates the associated pointer sets r and

w, such that the same environment viewed through either of the sub-contexts does

not alias the other sub-context's writable pointers:

Lemma 4.1 (Splitting contexts splits footprints | u v matches split).

If an environment corresponds to a context, U | µ : V : Γ [ r � w ]

and that context is split in two, then ∧ ε ` Γ ; Γ1 � Γ2

the heap footprint may also be split into ⇒ 9r1 w1 r2 w2.

two sub-footprints, where each sub-footprint ∧ r = r1 [ r2 ∧w = w1 [w2

does not contain any aliases to writable ∧ r1 \ (w2 [ r2) = ;

pointers in the other footprint, and where ∧ r2 \ (w1 [ r1) = ;

the re�nement relation holds for each ∧ U | µ : V : Γ1 [ r1 � w1 ]

sub-footprint and sub-context respectively. ∧ U | µ : V : Γ2 [ r2 � w2 ]

Abstract Values

Because the representation of abstract values is de�ned externally to Cogent, the cor-

responding re�nement relation au | µ :A av :A A ⇀τi s [ r � w ] is de�ned externally

also.
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To ensure that our uniqueness invariant is maintained, certain constraints are

placed on the pointer sets r and w in the user-supplied de�nition, depending on the

sigil s:

If the sigil s is r, then the set w must be empty. This is because abstract,

read-only values are assumed to be shareable in Cogent's type system (see Fig-

ure 3.12), and therefore must not contain any writable pointers.

If the sigil s is u, then both sets must be empty. Abstract, unboxed values meet

the Share, Drop and Escape constraints. Therefore, w must be empty to

avoid violating uniqueness directly, and r must be empty to prevent uniqueness

violations in let! expressions.

If the sigil s is w, then no constraints are placed on either set, as the type is

considered linear.

These pointer sets need not include all pointers contained within the data structure,

but merely those pointers to Cogent values that are accessible via the interface ex-

posed to Cogent. This allows data structures that rely on sharing, or would otherwise

violate the uniqueness property of the type system, to be safely imported and used

by Cogent functions. Similarly, the requirements of the frame relation here only ap-

ply to those pointers accessible from the Cogent side. Thus, during the execution of

an imported C function, the uniqueness and framing conditions need not be adhered

to | only the interface with Cogent needs to satisfy these constraints. The exact

requirements of the Cogent interface are summarised in Section 4.2.3.

4.2.1 Framing

If the inputs to a Cogent program have a footprint [ r �w ], then it is reasonable to

require that no live objects in the store other than those referenced inw (its frame) will

be modi�ed or a�ected by the evaluation of the program. In this way, two subprograms

that a�ect di�erent parts of the store may be evaluated independently. We formalise

this requirement as a framing relation, which states exactly how evaluation may a�ect

the mutable store.

Definition 4.1 (Framing Relation). Given an input set of writable pointers wi to a

store µi, and an output set of writable pointers wo to a store µo, the framing relation

wi | µi frame wo | µo ensures three properties for any pointer p:
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Inertia : Any value outside the frame is una�ected, i.e. if p /2 wi [ wo then

µi(p) = µo(p).

Leak freedom : Any value removed from the frame must be freed, i.e. if p 2 wi

and p /2 wo, then µo(p) = ?.

Fresh allocation : Any value added to the frame must not overwrite anything

else, i.e. if p /2 wi and p 2 wo then µi(p) = ?.

If a program's evaluation meets the requirements speci�ed in the framing relation, we

can directly prove that our re�nement relation is una�ected by any updates to the

store outside the footprint:

Lemma 4.2 (Unrelated updates | upd val rel frame).

Assuming two unrelated pointer sets, where w \w1 = ;

one set is part of a value's footprint, and the ∧ u | µ : v : τ [ r � w ]

other is the frame of a computation; then the ∧ w1 | µ frame w2 | µ 0

re�nement relation is re-established for the ⇒ u | µ 0 : v : τ [ r � w ]

resultant store of that computation.

This result also generalises smoothly to our re�nement relation for environments and

contexts:

Lemma 4.3 (Unrelated updates for environments | upd val rel frame env).

Assuming two unrelated pointer sets, where w \w1 = ;

one set is part of an environment's footprint, ∧ U | µ : V : Γ [ r � w ]

and the other is the frame of a computation; ∧ w1 | µ frame w2 | µ 0

then the re�nement relation is re-established ⇒ U | µ 0 : V : Γ [ r � w ]

for the resultant store of that computation.

The frame relation allows us to address the well known frame problem in veri�cation

and logic. Using these results along with Lemma 4.1, we can show (in the proof of

Theorem 4.1) that evaluating one sub-expression does not a�ect any part of the store

other than those mentioned in the heap footprint for the corresponding sub-context,

and therefore that the re�nement relation is preserved for the evaluation of subsequent

sub-expressions.
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4.2.2 Proving Refinement

To prove our desired re�nement statement, we must show that every evaluation in the

update semantics has a corresponding evaluation in the value semantics that preserves

our re�nement relation. We decompose this into two main theorems: one to show

general preservation of the re�nement relation, and one to show upward-propagation

of evaluation.

As previously mentioned, the preservation theorem can, with the right kind of

selective vision, be viewed as a type preservation theorem for either semantics. Viewed

in its entirety, it states that our re�nement relation is preserved by any pair of evalu-

ations for a well typed expression:

Theorem 4.1 (Preservation of Re�nement/Typing Relation | correspondence).

For a well-typed expression which evaluates A; Γ ` e : τ

in the value semantics from environment V, ∧ V ` e V v

and in the update semantics from U: ∧ U ` µ | e U u | µ 0

If V and U correspond with some footprint, ∧ U | µ : V : Γ [ r � w ]

then there exists another footprint ⇒ 9 r 0 � r. 9 w 0.

which results from the initial footprint, w | µ frame w 0 | µ 0

such that the result values correspond. ∧ u | µ : v : τ [ r 0 � w 0 ]

Proof. By rule induction on the update semantics evaluation. For expressions which

involve more than one sub-expression, we use Lemma 4.1 to establish that each sub-

expression has a non-overlapping footprint. Then, from the inductive hypothesis, we

know that the frame relation holds for each of these footprints. Then we use Lemma 4.2

and Lemma 4.3 to demonstrate that the evaluation of the �rst expression still preserves

the re�nement relation for the unrelated second expression.

To obtain this inductive hypothesis, we must additionally prove for each case

that the frame relation holds for each evaluation. This is relatively simple, as the

constraints of the frame relation are all straightforward consequences of our uniqueness

type system.

Because it assumes the existence of an evaluation on both the update and value

semantics levels, this preservation theorem is not su�cient to show re�nement by

itself. We still need to show that the value semantics evaluates whenever the update

semantics does. This is where our upward propagation theorem comes in, proven by

straightforward rule induction:
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Theorem 4.2 (Upward evaluation propagation | val executes from upd executes).

For a well-typed expression e which evaluates A; Γ ` e : τ

in the update semantics from U, if U has a ∧ U ` µ | e U u | µ 0

corresponding value semantics environment, ∧ U | µ : V : Γ [ r � w ]

then e also evaluates in the value semantics. ⇒ 9v. V ` e V v

With this result, the overall re�nement of the value semantics to the update semantics

is a simple corollary:

Theorem 4.3 (Value → Update re�nement).

If a typed expression e, under environment A; Γ ` e : τ

U, evaluates to u in the update semantics, ∧ U ` µ | e U u | µ 0

and U corresponds to environment V, then ∧ U | µ : V : Γ [ r � w ]

e evaluates to some v under V in the value ⇒ 9v. V ` e V v

semantics, and there exists a footprint that ∧ 9 r 0 � r. 9 w 0.

results from the original footprint such that w | µ frame w 0 | µ 0

u corresponds to v. ∧ u | µ : v : τ [ r 0 � w 0 ]

This theorem forms an essential component of our overall compiler certi�cate, the

construction of which is outlined in Chapter 5.

4.2.3 Foreign Functions

Each of the above theorems makes certain assumptions about the semantics given to

abstract functions, J�Ku and J�Kv. Speci�cally, we must assume that the two semantics

are coherent, in that they evaluate in analogous ways; that they respect the con-

straints of the frame relation to maintain our memory invariants; and that they do

not introduce any observable aliasing, which would violate the uniqueness constraint

of our type system.

These three properties are ensured by an assumption similar in format to the two

lemmas used for the proof of re�nement, Theorems 4.1 and 4.2. Speci�cally, we assume

for a foreign function f of type τ→ ρ that, given input values u and v that correspond,

i.e. u | µ : v : τ [ r � w ] ,

1. If the update semantics evaluates, i.e. JfKu(µ, u) = (µ 0, u 0) , then the value se-

mantics evaluates, i.e. JfKv(v) = v 0;

2. Their results correspond, i.e. u 0 | µ 0 : v 0 : ρ [ r 0 � w 0 ] for some r 0 � r and

w 0 ; and
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3. The frame relation holds, i.e. w | µ frame w 0 | µ 0 .

These assumptions directly satisfy any obligations about foreign functions that arise

in the proofs of Theorems 4.1 and 4.2, thus providing all the necessary ingredients to

prove re�nement in the presence of foreign functions.

The re�nement theorem between our two semantic interpretations, vital to our overall

framework, is only possible because Cogent is a signi�cantly restricted language, disal-

lowing aliasing of writable pointers. This semantic shift re�nement has been proven

in a mechanical theorem prover, de�nitively con�rming the intuition of Wadler [132],

and extending existing pen-and-paper theoretical work [59] to apply to real-world

languages with heap-allocated objects and pointers.



Chapter 5

Refinement Framework

Translation is the art of failure.

Umberto Eco

T
he re�nement proof from value to update semantics presented in Chapter 4

is only one piece, albeit a crucial one, of the overall re�nement chain from

the Isabelle embedding of the Cogent code down to the generated C.

Both below and above this semantic shift, specialised tactics in Isabelle/HOL gen-

erate numerous re�nement proofs, which mirror each transformation made by the

Cogent compiler. These re�nement proofs are combined into a proof of a top-level

re�nement theorem that connects the semantics of the C code with a higher-order

logic (HOL) embedding of the Cogent code. The proof structure of this re�nement

framework is outlined in Figure 5.1, and involves a number of di�erent embeddings:

shallow embeddings, where the program is represented as a semantically equivalent

HOL term, and also deep embeddings, where the program is represented as an abstract

syntax tree in HOL.

As shallow embeddings have a direct semantic interpretation in HOL, they are

easier to reason about concretely: that is, individual shallowly embedded programs

are mere mathematical functions, and are therefore amenable to veri�cation using

standard theorem prover de�nitions and tactics. This is why the more abstract em-

beddings at the top of the chain are all shallow, as these embeddings are used for

further functional correctness veri�cation, connecting to a higher level abstract speci-

�cation written speci�cally for the program under examination.

On the other hand, shallow embeddings make it very di�cult to prove results for

all programs, such as the re�nement theorem between update and value semantics

93
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in Chapter 4. In such situations, deep embeddings are preferred, where the program

terms are represented as an abstract syntax tree, and separate evaluation relation(s) are

de�ned to provide semantics, such as those in Chapter 4. This allows us to perform

induction on program terms, exhaustively verifying a property for every program.

Furthermore, this decoupling of term structure and semantics allows us to de�ne

multiple semantic interpretations for the same set of terms. We need both of these

advantages to prove theorems like Theorem 4.3, which justify the semantic shift from

value semantics to update semantics. The embeddings in the middle of the re�nement

chain are all therefore deep, as this is where Theorem 4.3 is used.

The lower-level embeddings closer to C code are also shallowly-embedded. This is

because the Cogent veri�cation framework builds on two existing mature veri�cation

tools for C software in Isabelle/HOL: The C→SIMPL Parser used in the seL4 project,

and the automatic C abstraction tool AutoCorres [49, 48]. As both of these are designed

for manual veri�cation of speci�c C programs, they choose to represent C code using

shallow embeddings, suitable for human consumption. The C Parser imports C code

into the Isabelle-embedded language SIMPL [121] extended with the memory model

of Tuch, Klein, and Norrish [128]; while AutoCorres abstracts this SIMPL code into

HOL terms involving the non-deterministic state monad �rst described in Cock,

Klein, and Sewell [23].

Each of the re�nement proofs presented in Figure 5.1 is established via translation

validation [109]. That is, rather than a priori veri�cation of phases of the compiler,

specialised Isabelle tactics and proof generators are used to establish a re�nement

proof a posteriori, relating the input and output of each compiler phase after the

compiler has executed. For the most part, this is because these re�nement stages

involve shallow embeddings, which do not allow the kind of term inspection needed

to directly model a compiler phase and prove it correct. It also has the advantage of

allowing us some exibility in implementation, as the post-hoc generated re�nement

proof is not dependent on the exact implementation of the compiler.

This approach is not without its drawbacks, however. Chief among these is the

lack of a completeness guarantee: While we know that the compiler acted correctly

if Isabelle validates the generated re�nement proof, there is no way to establish any

formal guarantee that Isabelle will always validate the generated proof if the compiler

acts correctly. In a veri�ed compiler, proofs need only to be checked once, thus indi-

cating that the compiler is trustworthy; but with translation validation, proofs must

be checked after each compilation due to this lack of certainty about completeness.
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5.1 Refinement and Forward Simulation

As mentioned in Chapter 4, each of our re�nement proofs is based on the forward

simulation technique for data re�nement, an idea independently discovered by many

people but crystallised by de Roever and Engelhardt [31]. This technique involves

de�ning a re�nement relation R that connects abstract states (for example in the

HOL embedding) to corresponding concrete states (for example in the C code). Then,

assuming R holds for initial states, we must prove that every possible concrete evalu-

ation can be matched by a corresponding abstract execution, resulting in �nal states

for which R is re-established:

R; habstracti � hconcretei;R

(where ; is forward composition of relations)

� �

� �

abstract

R

concrete

R�

These relation preservation proofs only imply re�nement given the assumption that

the relation R holds initially. A similar assumption is made for the veri�cation of

seL4 [75]. Bridging this remaining gap in the veri�cation chain must be made on a

case-by-case basis, and is the subject of further research.

5.2 Well-typedness Proof

The re�nement theorems concerning the monomorphic deep embedding, such as our

semantic shift re�nement relation in Chapter 4, assume that the Cogent program is

well-typed. Therefore, it is necessary to prove in Isabelle/HOL that the generated

monomorphic deep embedding is well-typed.

Speci�cally, the compiler will generate Isabelle/HOL de�nitions of the defnOf(�)

and typeOf(�) environments (described in Chapter 3) for the monomorphised version

of the Cogent program, and then prove the following theorem via a custom Isabelle

tactic:

Generated Theorem 5.1 (Typing). Let f be the name of a monomorphic Cogent

function, where defnOf(f) = λx. e and typeOf(f) = τ→ ρ. Then, x : τ ` e : ρ.

Because these typing rules are not algorithmic, we require additional information from

the Cogent compiler to produce an e�cient deterministic algorithm that synthesises

a proof of this theorem. There are a number of sources of non-determinism in these

typing rules:
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1. The use of the context-splitting relation in the typing rules means that a na��ve al-

gorithm for proof synthesis could necessitate traversing over every sub-expression

to determine which variables are used in each split. The compiler eliminates the

need for this by emitting a table of hints that informs the proof-synthesis tac-

tic on how each context is split, indicating which variables are used in each

sub-expression.

2. As the subsumption rule of subtyping is not syntax-directed, it could potentially

be used at any point in the typing derivation. To eliminate non-determinism

resulting from such potential upcasts, the compiler includes special promote

syntax nodes in the generated deep embedding, which indicate precisely where

in the syntax tree subsumption has been used.

3. Integer literals are overloaded in the Cogent syntax, which can make their typing

ambiguous. The compiler resolves this simply by annotating all literals with their

precise inferred type in the generated deep embedding.

Armed with this additional information from the compiler, our proof synthesis tactic

proceeds by merely applying each of the non-algorithmic typing rules from Chapter 3

as introduction rules. The choice of which rule to apply, and which instantiations of

schematic variables to use, is now entirely unambiguous.

Because HOL is a proof-irrelevant logic, once we prove the top-level typing theo-

rem for a function, we lose access to the typing lemmas for each of the sub-expressions

that make up the function's body. As theorems do not contain any information or struc-

ture beyond their truth, we cannot precisely extract these lemmas from the theorem.

As we will see in Section 5.3.1, our synthesised re�nement proof from the monomor-

phic deep embedding to the AutoCorres embedding needs access to all of these typing

lemmas. For this reason, our tactic remembers each intermediate typing derivation in a

tree structure as it proves the top-level typing theorem. This tree structurally matches

the derivation tree for the typing theorem itself: each node contains the intermediate

theorem for that part of the typing derivation.

5.3 Refinement Phases

The only synthesised proof artefacts in our framework aside from the proof of well-

typedness are the six re�nement theorems presented in Figure 5.1. While they are

all re�nement theorems proven by translation validation, the exact structure of the

theorem and the mechanism used to prove them di�ers in each case.
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Each of the generated embeddings correspond to the parts of the program written

in Cogent. As mentioned in Chapter 2, many functions in Cogent software are foreign,

i.e. written externally in C. Each of the re�nement certi�cates presented here assume

similar re�nement statements for each of the foreign functions. Therefore, to fully

verify Cogent software, a proof engineer must provide manually-written abstractions of

C code, and manually prove the re�nement theorems that are automatically generated

for Cogent code. As demonstrated in Chapter 2, these foreign functions tend to be

reusable library functions. Thus, the cost in terms of veri�cation e�ort these functions

can be amortised by re-using these manually-veri�ed libraries in multiple systems.

5.3.1 SIMPL and AutoCorres

As previously mentioned, we assign a formal semantics to C code using the C→SIMPL

parser also used in the veri�cation of seL4 and other projects. SIMPL is an impera-

tive language embedded in Isabelle/HOL with straightforward semantics designed by

Schirmer [121], intended for use with program logics such as Hoare Logic for software

veri�cation. The language semantics is parameterised by a type used to model all mu-

table state used in the program. The C→SIMPL parser instantiates this parameter

with a generated Isabelle record type containing a �eld for each local variable in the

program, along with a special �eld for the C heap using the memory model of Tuch,

Klein, and Norrish [128].

While we could, in principle, work with the SIMPL code directly, its memory model

treats the heap essentially as a large collection of bytes: It does not make use of any of

the information from C's type system to automatically abstract heap data structures.

This is, in part, due to the nature of manually-written C code, where programmers

often subvert the type system using potentially unsafe casts, reinterpreting memory

based on dynamic information. Because our code is automatically generated, and does

not rely on dynamically reinterpreting memory, we can abstract away from the bits and

bytes of the C heap to a higher-level, typed representation | this is where AutoCorres

comes in.

As mentioned in Chapter 1, AutoCorres [49, 48] is a tool intended to reduce the

cost of manually verifying C programs in Isabelle/HOL. It works by automatically

abstracting the SIMPL interpretation of the C code into a shallow embedding using

the non-deterministic state monad of Cock, Klein, and Sewell [23]. In this monad,

computations are represented using the following HOL type:
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Initial State

Possible Result

Final State

Non-determinism

Unde�ned Behaviour?

state⇒ (α� state) set� bool

Here, state represents all the global state of the C program, including any global

variables, and a set of typed heaps, one for each C type used on the heap in the C

program. A typed heap for a particular type τ is modelled as a function τ ptr⇒ τ.

Given an input state, the computation will produce a set called results, consisting

of the possible return value and �nal state pairs, as well as a ag called failed, which

indicates when unde�ned behaviour is possible.

In the generated embedding, each access to a typed heap is protected by a guard

that ensures that the given pointer is valid, to ensure that the heap function is de�ned

for that particular input. Proving that these guards always hold is therefore essential

for showing that the program is free of unde�ned behaviour. When proving re�nement

from Cogent code, we discharge these obligations by appealing to a globally-invariant

state relation that implies the validity of all pointers in scope.

Figure 5.3 shows a very simple Cogent program that negates the boolean interpre-

tation of an unsigned integer inside a boxed record. To simplify code generation to C,

the Cogent compiler �rst transforms the program into A-normal form, an interme-

diate representation �rst developed by Sabry and Felleisen [120]. This form ensures

that a unique variable binding is made for each step of the computation, making it

easier to convert an expression-oriented language like Cogent to a statement-oriented

language like C. This A-normal form also simpli�es the re�nement tactic used to con-

nect the AutoCorres-abstracted C code to the Cogent deep embedding, described in

the next section. As shown in Figure 5.3, the monadic embedding of the C code has a

strong resemblance to the A-normal form of the Cogent program. Figure 5.2 describes

the notation used in HOL for the monadic embedding, inspired by the do-notation of

Haskell [85]. Because AutoCorres is designed for human-guided veri�cation, it includes

a number of context-sensitive rules to simplify the resulting monadic embedding. For

example, it includes features which can simplify reasoning about machine words into

reasoning about natural numbers, if it can prove that no overow occurs. Because we

are using AutoCorres as part of an automated framework, most of these abstraction

and simpli�cation features are disabled to give highly predictable output. The only

signi�cant feature used is the abstraction to the typed heap model.

As can be seen in Figure 5.1, AutoCorres synthesises a re�nement proof, showing
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do � � � ; � � � od sequence of statements

x← P monadic binding

condition c P1 P2 run P1 if c is true, else run P2
return v monadic return

gets f return the part of the state given by f

modify h update the state using function h

guard g program fails if g is false

P >>= Q monadic bind (desugared)

Figure 5.2: The monadic embedding do-notation.

that the monadic embedding is a true abstraction of the imported SIMPL code. While

this re�nement proof forms a part of our overall compiler certi�cate, this proof is

entirely internal to AutoCorres, and the SIMPL embedding is not exposed. Therefore,

our combined re�nement theorem, documented in Section 5.3.6, treats the AutoCorres-

generated monadic shallow embedding as the most concrete representation in our

overall re�nement statement.

5.3.2 AutoCorres and Cogent

While AutoCorres provides some much-needed abstraction on top of C code, the

monadic embedding still resembles the generated C code far more than the Cogent

code from which it was generated. We still need a technique to validate the code

generation phase of the compiler, and synthesise a re�nement proof to connect the

semantics of Cogent to this monadic embedding.

The C code generation phase of the compiler proceeds relatively straightforwardly,

and does not perform global optimisations or code transformations. Transformations

such as the aforementioned A-normalisation occur in earlier compiler phases and are

veri�ed at a higher level in the overall re�nement certi�cate. As all terms are in A-

normal form at this stage, nested sub-expressions are replaced with explicit variable

bindings. The re�nement framework consists of a series of compositional rules designed

to prove re�nement in a syntax-directed way, one for each A-normal expression.

Refinement Relations

While our high level view of re�nement from de Roever and Engelhardt [31] de�nes just

a single re�nement relation R that relates abstract and concrete states, three relations

must be de�ned when proving re�nement from the Cogent deep embedding (with
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bnot : {f� : U8} w→ {f� : U8} w

bnot x =

take x 0 {f = y} = x

in if y == 0

then put x 0.f := 1

else put x 0.f := 0

bnotA : {f� : U8} w→ {f� : U8} w

bnotA x =

take x 0 {f = y} = x

in let ι1 = 0

in let ι2 = y == ι1
in if ι2

then let ι3 = 1

in let x 00 = put x 0.f := ι3
in x 00

else let ι4 = 0

in let x 00 = put x 0.f := ι4
in x 00

bnotC : rec1 ptr⇒ (rec1 ptr) nd monad

bnotC x = do

guard (λσ. is-valid σ x);

y← gets (λσ. σ[x].f);

ι1 ← return 0;

ι2 ← return (c-bool (y = ι1));

ιresult ← condition (ι2 6= 0)

(do ι3 ← return 1;

guard (λσ. is-valid σ x);

modify (λσ. σ[x].f := ι3);

return x od)

(do ι4 ← return 0;

guard (λσ. is-valid σ x);

modify (λσ. σ[x].f := ι4);

return x od);

return ιresult od

A-normalisation

C Code
Codegen

SIMPL
Parser

AutoCorres

Figure 5.3: An example program, its A-normalisation, and monadic embedding.
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representations δ ::= T (primitives)

| Fun (functions)

| Abstract A (abstract types)

| {f : δ} (records)

| hK δi (variants)

| Ptr δ (boxed types)

erase(�) : τ→ δ

erase(T) = T

erase(τ→ ρ) = Fun

erase(A τi u) = Abstract A

erase(A τi r) = Ptr (Abstract A)

erase(A τi w) = Ptr (Abstract A)

erase({fui : τi} u) = {fi : erase(τi)}

erase({fui : τi} r) = Ptr {fi : erase(τi)}

erase({fui : τi} w) = Ptr {fi : erase(τi)}

erase(hKui τii) = hKi erase(τi)i

Figure 5.4: Partial type erasure to determine C representation

the update semantics) to the AutoCorres monadic embedding. The Cogent compiler

generates each of these relations after obtaining the monadic shallow embedding and

the de�nitions of its typed heaps from AutoCorres:

1. A value relation, written Rval, that relates Cogent update-semantics values (de-

�ned in Figure 4.1) to monadic C values. Because AutoCorres generates separate

Isabelle types for each C type, this value relation is de�ned for each generated

type using Isabelle's ad-hoc overloading features. Morally, this relation asserts

the equality of the two values. For example, the record type in the example in

Figure 5.3 would cause the following de�nitions to be generated:

(`, vc :: 8 word) 2 Rval ⇔ (` = vc)

({f 7→ u}, vc :: rec1) 2 Rval ⇔ (u, vc.f) 2 Rval

(p, vc :: rec1 ptr) 2 Rval ⇔ (p = vc)

Note that the de�nition for the C structure type rec1 depends on the de�nition

for 8-bit words. The compiler always outputs these de�nitions in dependency

order to ensure that this does not pose a problem.

2. A type relation, written Rtype, which allows us to determine which AutoCorres
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heap to select for a given Cogent type. As with the value relation, the type

relation is de�ned using ad-hoc overloading. It does not relate Cogent types

directly to AutoCorres-generated types, but rather a Cogent representation,

as de�ned in Figure 5.4. A representation, written as δ, is a partially-erased

Cogent type, which contains all the necessary information to determine which

C type is used to represent it. Therefore, the usage tags on taken �elds and

constructors, type parameters in abstract values, the read-only status of sigils,

and other superuous information is discarded. The function erase(�) describes

how to convert a type to its representation.

The reasoning behind the decision to relate representations instead of Cogent

types to C types is quite subtle: Unlike in C, for a Cogent value to be well-typed,

all accessible pointers in the value must be valid (i.e. de�ned in the store µ) and

the values those pointers reference must also, in turn, be well-typed. For taken

�elds of a record, however, no typing obligations are required for those values,

as they may include invalid pointers (see the update semantics erasure of the

rules in Figure 4.5). In C, however, taken �elds must still be well-typed, and

values can be well-typed even if they contain invalid pointers. Therefore, it is

impossible to determine from a Cogent value alone what C type it corresponds

to, making the overloading used for these relations ambiguous.

To remedy this, we additionally include the representation of a value's type

inside each update-semantics value u in our formalisation, although this detail

is not shown in Figure 4.1. This means that we can determine which C type

corresponds to a Cogent value simply by extracting the relevant representation,

without requiring recursive descent into the heap or unnecessary restrictions on

taken �elds.

3. A state relation, written R, which relates a Cogent store µ to a collection of

AutoCorres heaps σ. We de�ne (µ, σ) 2 R if and only if for all pointers p in

the domain of µ, there exists a value v in the appropriate heap of σ (selected by

Rtype) at location p such that (µ(p), v) 2 Rval.

The state relation cannot be overloaded in the same way as Rval and Rtype,

because it relates the heaps for every type simultaneously. We introduce an

intermediate state relation, Rheap, which relates a particular typed heap with a

portion of the Cogent store. Like the other relations, this intermediate relation

can make use of type-based overloading. We de�ne Rheap for each C type τC
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that appears on the heap as follows:

(µ, στC) 2 Rheap ⇔ 8p. µ(p) = u∧ (repr(u), τC) 2 Rtype⇒ is-valid στC p∧ (u, στC [p]) 2 Rval

where repr gives the representation for a value, and is-valid σ p is true i� the

pointer p points to a valid object in the heap σ. The state relation R over all

typed heaps is de�ned to be merely the conjunction of every Rheap for each C

type used in the program:

(µ, σ) 2 R ⇔ (µ, στ1) 2 Rheap ∧ (µ, στ2) 2 Rheap ∧ � � �

Correspondence

We de�ne re�nement generically between a monadic C computation P and a Cogent

expression e, evaluated under the update semantics. We denote re�nement with a

predicate corres, similar to the re�nement calculus of Cock, Klein, and Sewell [23].

The state relation R changes for each Cogent program, so we parameterise corres by

an arbitrary state relation R. It is additionally parameterised by the typing context Γ

and the environment U, as well as by the initial update semantics store µ and typed

heaps σ:

Definition 5.1 (Cogent→C correspondence).

corres R e P U Γ µ σ = (9r w. U | µ : Γ [ r � w ])∧ (µ, σ) 2 R⇒ ¬failed (P σ)

∧ 8(vC, σ
0) 2 results (P σ).

9µ 0 u. U ` µ | e U u | µ 0

∧ (µ 0, σ 0) 2 R∧ (u, vC) 2 Rval

This de�nition states that, for well-typed stores µ where the state relation R holds

initially, the monadic embedding of the C program P will not exhibit any unde�ned

behaviour and, moreover, for all executions of P there must exist a corresponding

execution under the update semantics of the expression e such that the �nal states

are related by the state relation R, and the returned values are related by the value

relation Rval.

AutoCorres proves that if failed is false for a given program, then the C code is type

and memory-safe, and is free of unde�ned behaviour [49]. We prove non-failure as a

side-condition of the re�nement statement, essentially using Cogent's type system to
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(x 7→ u) 2 U (u, vC) 2 Rval

corres R x (return vC) U Γ µ σ
C-Var

` Γ ; Γ1 � Γ2 Γ1 ` e1 : τ corres R e1 P1 U Γ1 µ σ

8u vC µ
0 σ 0. (u, vC) 2 Rval ⇒ corres R e2 (Q vC) (x 7→ u,U) (x : τ, Γ2) µ

0 σ 0

corres R (let x = e1 in e2) (P >>= Q) U Γ µ σ
C-Let

` Γ ; Γ1 � Γ2 Γ1 ` x : Bool (x 7→ `) 2 U (` = True)⇔ (c 6= 0)

corres R e1 P1 U Γ2 µ σ corres R e2 P2 U Γ2 µ σ

corres R (if x then e1 else e2) (condition c P1 P2) U Γ µ σ
C-If

Figure 5.5: Some example corres rules

guarantee C memory safety during execution. The corres predicate can compose with

itself sequentially: it both assumes and shows the relationR, and the additional typing

assumptions are preserved thanks to update-semantics type preservation corollary of

Theorem 4.1.

Figure 5.5 shows some of the simpler corres rules used by our Isabelle tactic to au-

tomatically prove re�nement. The ruleC-Var for variables, relating them to a monadic

return operation; the rule C-Let for let bindings, relating them to the monadic bind

operator >>=; and the rule C-If for conditional expressions, relating them to the

condition operation from Figure 5.2. Note that in the rule C-If, we can assume that

the condition expression x is a variable, as the Cogent code is already in A-normal

form. In our Isabelle formalisation, we have de�ned many corres rules which validate

the entire Cogent language, however they all follow the same basic format as the rules

presented in Figure 5.5. The assumptions for these rules fall into three main groups:

1. Each rule for compound expressions includes well-typedness assumptions about

some sub-expressions. Theorem 4.1, used to discharge value-typing assumptions

in the corres de�nition, also has well-typedness assumptions. Our automated

tactic therefore needs access to all of the typing derivations used to construct

the overall typing theorem for a program. A mere top-level well-typedness the-

orem is not su�cient to discharge these obligations. This is why we store each

intermediate typing theorem as a tree in Isabelle/ML, as previously mentioned

in Section 5.2.

2. Expressions which interact with the heap, such as take and put for boxed records,
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must maintain the relation R between the Cogent store and the AutoCorres

typed heaps. Because the de�nitions of the typed heaps and the de�nition of is-

valid are not provided until after we import the C program, we de�ne these rules

generically, parameterised by these AutoCorres-provided de�nitions. Then, after

importing the C program, our framework automatically generates and proves

specialised versions of the rule for the speci�c program at hand. This speciali-

sation technique is documented in detail by Rizkallah et al. [114].

3. Expressions such as take and let which are not made into leaves of the syntax

tree by A-normalisation typically have recursive corres assumptions for each

sub-expression, resolved by recursively applying our tactic. Because each rule

is de�ned for exactly one A-normal Cogent expression, these proofs are syntax-

directed and can be resolved by recursive descent without ambiguity or back-

tracking.

Cogent is a total language and does not permit recursion, so we have, in principle,

a well-ordering on function calls in any program. Therefore, our tactic proceeds by

starting at the leaves of the call graph, proving corres theorems bottom-up until

re�nement is proven for the entire program.1

Generated Theorem 5.2 (Update Semantics v Monadic Embedding). Let f be the

name of a monomorphic and A-normal Cogent function, where defnOf(f) = λx. e

and typeOf(f) = τ→ ρ. Let P be the monadic shallow embedding derived from the

generated C code for f. Then, for any corresponding arguments u and vC of the

appropriate type, we have:

8µ σ. (u, vC) 2 Rval ⇒ corres R e (P vC) (x 7→ u) (x : τ) µ σ

This picture is complicated somewhat by the presence of higher order functions in Co-

gent, which are commonly used for loops and iteration. When higher order functions

are involved, the call graph is no longer so clear, as it cannot be strictly determined

syntactically. Our framework supports second-order functions by �rst proving cor-

res for all argument functions (e.g. the loop body) before establishing corres for the

second-order function (e.g. the loop combinator). We could straightforwardly extend

this framework to any higher-order functions, but second-order functions were su�-

cient to cover our case-study �le system implementations [4].

1There are options to achieve this in the presence of recursion. Primitive or structural recursion a

la Coquand and Paulin [26] is one such option.
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5.3.3 Monomorphisation

The next re�nement step that is established by translation validation is monomor-

phisation. The monomorphisation proof shows that the supplied polymorphic Cogent

program is an abstraction of the monomorphised equivalent produced by the compiler.

At this point, we can operate freely in value semantics without concern for mutable

state, as the semantic shift occurs on the monomorphic deep embedding, justi�ed by

Theorem 4.3.

The Cogent compiler converts polymorphic programs into monomorphic ones by

generating monomorphic specialisations of polymorphic functions based on each type

argument used in the program, a la Harper and Morrisett [53]. Inside our framework,

the compiler generates a renaming function θ that, for a polymorphic function name

fp and types ⇀τ, yields a specialised monomorphic function name fm. Just as we as-

sume that foreign functions are correctly implemented in C, we also assume that their

behaviour remains consistent under θ. We write two main Isabelle/HOL functions to

simulate this compiler monomorphisation phase, each de�ned in terms of an arbitrary

renaming function θ:

1. An expression monomorphisation function, Mθ(�), which applies θ to any type

applications in the expression.

2. A value monomorphisation function,Mv
θ(�) which applies the expression monomor-

phisation functionMθ to each expression inside a value (i.e. in a function value).

Then, we generate a proof which shows that the monomorphised program the Isabelle

function produces is identical to that produced by the compiler. If the programs are

not structurally identical, this indicates a bug in the compiler.

Generated Theorem 5.3 (Monomorphisation). Let θ be the generated renaming

function and f be a polymorphic function where defnOf(f) = λx. e. Let fm be

a monomorphised version of f generated by the compiler. Then, defnOf(fm) =

λx. Mθ(e).

Then, it remains to prove that the monomorphic program is a re�nement of the poly-

morphic one:

Theorem 5.1 (Monomorphisation Re�nement). Let f be a (polymorphic) Cogent

function and defnOf(f) = λx. e. Let v be an appropriately-typed argument for f.

Let θ be any renaming function. Then for any v 0, if (x 7→Mv
θ v) ` Mθ e V Mv

θ v
0,

then (x 7→ v) ` e V v 0.
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Proof. This is proven once and for all by rule induction over the value semantics

relation, with appropriate assumptions being made about foreign functions. Typing

assumptions are discharged via Theorem 3.6.

5.3.4 A Normal and Deep Embeddings

Above the semantic shift and monomorphisation stages of our re�nement chain, we

no longer have any use for deep embeddings. As we are now in the value semantics,

shallow embeddings are preferred, as Isabelle's simpli�er can work wonders on pure

HOL terms. Therefore, as with Section 5.3.1, we must connect a shallow embedding

to a deep embedding. However, this time the deep embedding is the bottom of the

re�nement, and the shallow embedding is comprised of simple pure functions, rather

than procedures in a state monad.

This shallow embedding is still in A-normal form and is produced by the compiler:

For each Cogent type, the compiler generates a corresponding Isabelle/HOL type

de�nition, and for each Cogent function, a corresponding Isabelle/HOL constant de�-

nition. We erase usage tags, sigils and other type system features used for uniqueness

type checking, converting the Cogent program to a simple pure term in the fragment

of System F [45, 113] supported by Isabelle. As we have already made use of the type

system to justify our semantic shift, we no longer need these type system features in

the value semantics.

In addition to these de�nitions, we automatically prove a theorem that each gener-

ated HOL function re�nes to its corresponding deeply embedded polymorphic Cogent

term under the value semantics. Re�nement is formally de�ned here by the predicate

scorres, which relates a shallowly embedded expression s to a deeply embedded one e

when evaluated under the environment V:

Definition 5.2 (Shallow→Deep correspondence).

scorres s e V = 8v. V ` e V v⇒ (s, v) 2 RS

Here, RS is a value relation, much like the value relation Rval for corres re�nement,

connecting HOL and Cogent values. Just as with the corres re�nement, the relation

RS is de�ned incrementally, using Isabelle's ad-hoc overloading mechanism. The au-

tomated tactic for scorres theorems is substantially simpler than the tactic for corres,

as scorres rules do not require well-typedness, nor do they involve any mutable state

or the state relation R. The tactic proceeds simply by applying specially-crafted intro-
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record α T =

f :: α

definition

bnot :: (8 word) T ⇒ (8 word) T

where

bnot x =

let (x 0, y) = takef x

in if (y = 0)

then x 0 (| f = 1 |)

else x 0 (| f = 0 |)

Figure 5.6: Neat embedding of the program from Figure 5.3.

duction rules one by one, which correspond exactly to each form of A-normal Cogent

syntax.

The program-speci�c re�nement theorem produced by our tactic is:

Generated Theorem 5.4 (Shallow to Deep re�nement). Let f be the name of

an A-normal Cogent function where defnOf(f) = λx. e and let s be the shallow

embedding of f. Then, for any (vs, v) 2 RS , we have scorres (s vs) e (x 7→ v). The

de�nition of RS ensures that vs and v are of matching types.

5.3.5 Desugared and Neat Embeddings

Figure 5.6 depicts the top-level neat embedding for the example presented previously

in Figure 5.3. As can be seen, the Isabelle de�nitions use the same names and structure

as the original Cogent program, making it easy for the user to reason about. In addition

to the neat embedding, the compiler also produces a desugared shallow embedding,

which does not resemble the input program as closely. For example, pattern matching

is split into a series of binary case expressions. Lastly, the compiler also produces an A-

normal shallow embedding, which resembles the A-normal intermediate representation

of the code, as seen in Figure 5.3.

Because we are now on the level of purely functional shallow embeddings, the proofs

connecting the neat embedding to desugared embedding, and the desugared embed-

ding to the A-normal equivalent, are signi�cantly stronger than re�nement | Instead,

we prove equality. In Isabelle/HOL, equality is de�ned based on αβη-equivalence,

which means that this notion of equality admits the principle of functional extension-

ality.
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Generated Theorem 5.5 (Neat and A-Normal equality). Let sD be the desugared

shallow embedding and sA be the A-normal shallow embedding of a Cogent func-

tion. Then sD
αβη
= sA.

Generated Theorem 5.6 (Neat and Desugared equality). Let sN be the neat shal-

low embedding and sD be the desugared shallow embedding of a Cogent function.

Then sN
αβη
= sD.

The proofs of these theorems are simple to generate. Since we can now use equational

reasoning with Isabelle's powerful rewriter, we just unfold de�nitions on both sides,

apply extensionality, and the rest of the proof is automatic given the right congruence

rules and equality theorems for functions lower in the call graph.

5.3.6 Combined Predicate for Full Refinement

To show that the top-level neat shallow embedding is a valid abstraction of the C code,

the individual re�nement certi�cates presented in the previous sections (Generated

Theorems 5.2, 5.3, 5.4, 5.5 and 5.6) are not su�cient. We must also show that the

individual re�nement relations for each of these stages compose together, producing

an overall proof of re�nement across the entire chain.

We de�ne our combined predicate correspondence connecting a top-level shallow

embedding s, a monomorphic deep embedding e of type τ, and a AutoCorres-produced

monadic embedding P. It is also parameterised by the C state relationR, the monomor-

phisation renaming function θ, the update and value semantics environments U and

V for the deeply embedded expression e, as well as its typing context Γ , the Cogent

store µ and the AutoCorres state σ.

Definition 5.3 (Correspondence).

correspondence θ R s e τ P U V Γ µ σ =

(9r w. U | µ : V : Γ [ r � w ])∧ (µ, σ) 2 R⇒ ¬failed (P σ)∧ 8(vC, σ
0) 2 results (P σ).

9µ 0 u v. U ` e | µ ⇓u u | µ 0

∧ V ` e ⇓v Mv
θ v

∧ (µ 0, σ 0) 2 R∧ (u, vC) 2 Rval

∧ (9r w. u | µ 0 :Mv
θ v : τ [ r � w ])

∧ (s, v) 2 RS
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Observe that this de�nition is essentially the combination of our semantic shift preser-

vation theorem (i.e. Theorem 4.1) with the re�nement predicates corres (De�ni-

tion 5.1) and scorres (De�nition 5.2).

Intuitively, our top-level theorem states that for related input values, all programs

in the re�nement chain evaluate to related output values, propagating up the chain

according to the intuitive forward-simulation method of de Roever and Engelhardt

[31]. This can of course be used to deduce that there exist intermediate programs

through which the C code and its shallow embedding are directly related. The user

does not need to care what those intermediate programs are.

Generated Theorem 5.7 (Overall Re�nement). For a Cogent function f, let

defnOf(f) = λx. e and s be the shallow embedding of f. Let fm be the monomor-

phised version of f according to renaming function θ, where typeOf(fm) = τ→ ρ,

and P is the monadic embedding of the generated C for fm.

Then, we can show that for related input values vS, v, u and vC for the pure

shallow embedding, value semantics, update semantics and monadic embedding

respectively, our correspondence predicate holds:

8µ σ. (vS, v) 2 RS

∧ (9r w. u | µ :Mv
θ v : τ [ r � w ])

∧ (u, vC) 2 Rval⇒ correspondence θ R (s vS) (Mθ e) ρ (P vC) (x 7→ u) (x 7→ v) (x : τ) µ σ

The automatic proof of this theorem is straightforward, merely unfolding the de�ni-

tions of corres and scorres in Generated Theorems 5.2 and 5.4, applying Generated

Theorem 5.3 to establish the equivalence of the de�nition of fm with Mθ e, and

applying Theorem 4.3 to connect the value and update semantics.

Generated Theorems 5.6 and 5.5 show equality, not mere re�nement, and thus

they implicitly apply to our overall theorem, extending it to cover these high-level

embeddings.

As previously mentioned, this theorem assumes that abstract foreign functions

adhere to their speci�cation and their behaviour is unchanged when monomorphised.

5.4 Connecting to Abstract Specifications

Generated Theorem 5.7 shows that, assuming the the re�nement relation holds ini-

tially, that the C functions are appropriately veri�ed, and that our SIMPL C semantics
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accurately capture the semantics of the executed code, any functional correctness prop-

erty we prove about the neat shallow embedding applies just as well to our C imple-

mentation. We stipulate functional correctness properties here, as other properties,

such as security or timing properties, are not necessarily preserved by re�nement.

To prove functional correctness, we must �rst de�ne a functional correctness spec-

i�cation. This speci�cation can take a variety of forms, but must essentially capture

the externally observable correctness requirements of the program, without concern

for implementation details or performance. Typically, this speci�cation is highly non-

deterministic, to allow for abstraction from operational details of the program. For

example, the seL4 re�nement proof contains a number of layers of speci�cation, where

non-determinism increases in each layer up the re�nement chain [75]. The Cogent �le

system veri�cation of Amani et al. [4] speci�es each �le system operation as a program

in a set monad to model this non-determinism.

While they establish a similar property, the manually-written functional correct-

ness proofs for these Cogent �le system implementations were signi�cantly easier than

the corresponding proofs for seL4. Both proofs involved establishing and maintaining

a data invariant about the state of the system, but the data invariant for seL4 in-

cluded a number of properties that are simply not necessary in Cogent, such as the

alignment of objects in memory, the validity of pointers, and the absence of aliasing

between heap objects. All of these properties are ensured automatically by Cogent's

type system, and justi�ed by Generated Theorem 5.7.

When proving that the �le system correctly maintains its invariants to show func-

tional correctness, proof engineers can reason about a signi�cantly simpler embedding

with Cogent than they would with, say, a C program. Because our neat shallow em-

bedding consists only of pure functions, our speci�cations and embeddings need not

deal with any mutable state. Unlike in seL4, there is no need to resort to cumbersome

machinery like separation logic [112] to show that data invariants are maintained: each

function can be reasoned about by simply unfolding its de�nition, and separation be-

tween objects x and y follows trivially from x and y being separate variables.

5.5 Evaluation

Our decision to write the Cogent compiler tool-chain in Haskell but the re�nement

framework and proof tactics in Isabelle/ML allows the Cogent tool-chain to be used

outside the theorem prover, while still allowing our re�nement framework to build on

the existing C and AutoCorres framework available in Isabelle/HOL.
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On the other hand, this choice leads to some complexity in designing the interface

between these components. This is illustrated by the well-typedness proof in Sec-

tion 5.2, where the Cogent compiler generates a certi�cate tree with the necessary

type derivation hints. Initially, a na��ve format consisting of the entire derivation tree

was used, resulting in gigabyte-sized certi�cates. Various compression techniques re-

duced this to a reasonable size (a few megabytes), but these certi�cates still take some

time to process. It would be possible to avoid these certi�cates entirely by duplicating

the entire type inference algorithm presented in Chapter 3 in Isabelle/ML, but this

would increase the code maintenance burden signi�cantly.

The use of pre-existing mature tools to give C code a semantics in Isabelle/HOL,

namely the C→SIMPL parser and AutoCorres, is a pragmatic choice aimed at reducing

the e�ort required to build our re�nement framework, ensuring that our C semantics

lines up with other large-scale C veri�cation projects, and enabling integration with

the seL4 veri�cation speci�cally. Unfortunately, however, these tools are particularly

time-consuming when processing Cogent-generated C code. For the �le system imple-

mentations of Amani et al. [4], these tools take anywhere from 12 to 32 CPU hours

to generate the monadic embedding of the generated C code. While the time taken to

establish our re�nement certi�cate does not endanger the trustworthiness of Cogent

software, it does make our automatic veri�cation framework less useful as a debugging

tool. As discussed in Chapter 6, future work involves integrating robust speci�cation-

based testing tools to Cogent, to improve turn-around time for debugging and to allow

veri�cation to be attempted only after developers are con�dent that the code is indeed

correct.

Klein et al. [75] report that approximately one third of the overall veri�cation

e�ort for seL4 went into the second re�nement step, connecting the intermediate ex-

ecutable speci�cation to the C code. This estimation is not including the e�ort that

went into developing re-usable libraries and frameworks. Our Generated Theorem 5.7

encompasses this step and more, because, as previously discussed, our intermediate ex-

ecutable speci�cation (the neat embedding) is signi�cantly more high-level. Therefore,

we can con�dently predict that, where Cogent can be used to implement a system,

our re�nement framework will reduce the e�ort of verifying that system by at least

a third, relative to existing C veri�cation techniques. Because our neat embedding

is higher-level than the intermediate executable speci�cation of seL4, the savings are

possibly even greater.

In the course of their veri�cation of two �le system operations, Amani et al. [4]
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found six defects in their already-tested �le system implementations. The e�ort for

verifying the complete �le system component chain for these operations was roughly

9.25 person months, and produced roughly 13,000 lines of proof for the 1,350 lines

of Cogent code. This compares favourably with traditional C-level veri�cation as for

instance in seL4, which spent 12 person years with 200,000 lines of proof for 8,700

source lines of C code. Roughly 1.65 person months per 100 C source lines in seL4

are reduced to �0.69 person months per 100 Cogent source lines with our framework.

In future, we plan to implement a data-description language as an extension to Co-

gent (see Chapter 6), which will automate the functional correctness veri�cation of

approximately 850 lines of deserialisation and serialisation code in these �le system

implementations. These 850 lines of Cogent code required �4000 lines of proof to ver-

ify, taking approximately 4.5 person months. With this added automation, the cost of

veri�cation can be reduced even further.

Functional programmers have long recognised, and advocated for, the bene�ts af-

forded by reasoning over pure functions. For the �rst time, our re�nement framework

allows these bene�ts to be enjoyed by proof engineers verifying low-level operating

system components, without enlarging the trusted computing base. Building on the

key re�nement theorem given to us by our uniqueness type system (Theorem 4.3),

our re�nement framework makes use of multiple translation validation techniques to

establish a long re�nement chain. This allows engineers to reason about Cogent code

on a high level in Isabelle/HOL and have con�dence that their reasoning applies just

as well to the C implementation we generate.

Cogent not only allows non-experts in formal veri�cation to write provably-safe

code, it is also a key step towards lowering the e�ort and complexity for the full me-

chanical veri�cation of operating system components against high-level formal speci-

�cations.



Chapter 6

Conclusions and Future Work

\Begin at the beginning," the King

said, very gravely, \and go on till

you come to the end: then stop."

Lewis Carroll, Alice in Wonderland

O
ur work has already shown promising results, both in terms of perfor-

mance (see Chapter 2) and veri�cation (Chapter 5), however the �le sys-

tem implementations and veri�cation conducted as a case-study [2, 4] bring

several opportunities into focus for future improvements to our framework.

While the performance of the �le systems is comparable to C in terms of I/O mi-

crobenchmarks, macrobenchmarks show that the Cogent implementations have some

signi�cant performance overheads. Adding various optimisation passes to the Cogent

compiler would improve performance, but presents a substantial veri�cation challenge.

We discuss compiler optimisations in Section 6.1. Certain performance issues result-

ing from expensive marshalling and unmarshalling of operating system data structures

can also be resolved by our proposed data description language extension to Cogent,

described in Section 6.3.

With regards to veri�cation, our overall re�nement certi�cate could be extended

in a number of ways, to eliminate assumptions in our framework, and to enable more

automatic veri�cation of more properties and more code. A natural future extension

would be to extend the certi�cate down below C to the binary itself, eliminating one of

the main assumptions of our framework. We discuss binary veri�cation in Section 6.2.

The certi�cate can also be extended upward to allow certi�ed code to be written at

an even higher level, reducing the e�ort required to connect Cogent to a high-level

115
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speci�cation. One method to accomplish this would be to increase the speci�cation

power of our type system, to enable more domain-speci�c and high-level properties to

be automatically checked at compile time. We discuss options for type system exten-

sion in Section 6.4. The data description language extension described in Section 6.3

also serves as a highly abstract speci�cation of serialisation and deserialisation code

in particular.

Our framework could also be extended outward, removing limitations of the lan-

guage to enable more kinds of code to be written and veri�ed with Cogent. One of the

most glaring limitations of Cogent is the intentional absence of recursion, to ensure

that all Cogent programs terminate. We discuss relaxing or removing this limitation in

Section 6.5. Another clear avenue for extension is support for concurrency, discussed

in Section 6.6.

Lastly, Section 6.7 introduces our plan to improve the development methodology

of Cogent, reducing turn-around time for debugging by integrating property-based

testing with veri�cation.

6.1 Optimisations

Currently, the Cogent compiler relies primarily on the underlying C compiler for op-

timisations. Generated code displays patterns which are uncommon in handwritten

code and therefore might not be picked up by the C optimiser, even if they are trivial

to optimise. For example, due to the A-normal representation used by the Cogent

compiler, the generated C code is already quite close to single static assignment (SSA)

form used internally by C compilers gcc and clang, however these compilers do not

always recognise this and optimise accordingly. Generating a compiler's SSA represen-

tation directly, such as LLVM IR, may eliminate these problems, and projects to verify

subsets of LLVM IR exist for us to target [135], however this would imply signi�cant

changes to our veri�cation infrastructure.

If we were to add optimisation passes to the Cogent compiler itself, we would

of course have to verify such optimisations, or at least establish the soundness of any

code transformation via translation validation. Adding signi�cant optimisations to the

Cogent-to-C stage of our framework would complicate the syntax-directed correspon-

dence approach described in Chapter 5. Cogent-to-Cogent optimisations, however, are

straightforward | the ease of proving A-normalisation correctness over the shallow

embedding via rewriting suggests that this is the right approach in our context. Many

optimisations are described as equational rewrites for functional languages (e.g. stream
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Figure 6.1: The binary veri�cation framework of Sewell, Myreen, and Klein [122]

fusion [27]). In particular, some of the source-to-source optimisations discussed by

Chlipala [20] seem promising for Cogent.

6.2 Binary Verification

Extending our re�nement down to the binary level is an obvious next step, ensuring

that the code that executes on hardware faithfully implements the semantics of our

generated C and therefore of the Cogent code itself.

Our generated C code can be compiled with the veri�ed C compiler CompCert [81],

but, as previously mentioned, CompCert uses a di�erent C semantics to our C→SIMPL

parser, and as CompCert is implemented in Coq and our parser in Isabelle, connecting

the two would require either the Cogent framework (including AutoCorres) to be re-

implemented in Coq or the CompCert C semantics to be re-implemented in Isabelle,

both of which would require a large investment of engineering e�ort. A similar e�ort

would be required if we were to target the Coq formalisation of LLVM IR [135].

A more directly useful means of binary assurance for us would be the binary

veri�cation framework of Sewell, Myreen, and Klein [122], which establishes re�nement

via translation validation from the SIMPL C semantics to an imported ARMv6 binary

using the Cambridge ARM model [41]. As shown in Figure 6.1, this framework works

by simulating both the SIMPL code and the binary, represented as state machines,

and generating re�nement obligations for each execution step that are discharged by
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an automatic SMT solver. It has been successfully applied to the seL4 microkernel

compiled with the gcc compiler with local optimisations enabled (-O2).

Preliminary testing on binaries produced from Cogent-generated C code indicate

that the large structs that Cogent sometimes generates triggers an edge case that

causes this re�nement tool to fail. Such incompleteness notwithstanding, Cogent code

also depends heavily on the C compiler's optimiser for performance. Establishing re-

�nement with this tool in the presence of heavy code optimisations remains a signi�-

cant challenge.

While this framework allows us to remove the C compiler and C→SIMPL parser

from our trusted computing base, the set of software and hardware for which we must

assume correctness, it also adds an SMT solver and the Cambridge ARM model. While

still complex pieces of software, these components are smaller than an optimising

C compiler and our C→SIMPL parser. The risks to trustworthiness can be further

ameliorated here by using multiple di�erent SMT solver implementations.

6.3 Data Description Language

As mentioned in Chapter 5, the exact structure used to represent states is a parame-

ter to the de�nition of SIMPL, and therefore our C→SIMPL parser is free to choose

a structure that mirrors the C code closely. Typically, the state structure is an Is-

abelle/HOL record with �elds for each of the stack-allocated local variables used in

the code, along with a �eld for the heap, represented using the memory model of Tuch,

Klein, and Norrish [128]. A consequence of this representation is that, while the heap

memory model used allows for pointer arithmetic, unions, and type-casting of heap

memory, the view of the stack is signi�cantly abstracted. With this state de�nition,

it is not well-de�ned to take a pointer to a stack-allocated variable, nor to reinterpret

stack memory as a di�erent type. C code that performs such operations is rejected by

the parser.

To accommodate these restrictions, the Cogent compiler chooses very straightfor-

ward memory layouts to represent algebraic data types. For record (product) types,

each �eld is laid out in memory as a C struct. For variant types, a special value called

the tag, which indicates the constructor used for the variant, is stored in a struct

along with several sub-structures for the constructor parameters, only one of which

will contain meaningful data.

Other components of the system that are implemented directly in C have signi�-

cantly more freedom in how they lay out data. The Linux kernel, for example, typically
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chooses much more exotic data representations, using techniques such as:

Bitfields| Several boolean ags are very often represented using the individ-

ual bits of a machine word.

Type tags | The value of one part of a data structure can determine how

to interpret/typecast another part of a data structure, for example with tagged

unions or tagged void pointers.

Container pattern|Kernel-de�ned structures are often nested within component-

speci�c structures at o�set zero. This means that a component-speci�c object

can be safely cast to the more general kernel-de�ned type for use within the

kernel, and then cast back to the component-speci�c type when returned to the

component by the kernel.

Padding and Alignment | Often, blank space is left in the object intention-

ally to account for architecture-speci�c alignment considerations.

Dynamically sized objects | Kernel data types often contain values that

determine the size of other objects. For example, an array is often paired with

its length as an integer.

Seeing as none of these techniques can currently be used by the Cogent compiler when

laying out types in memory, C types such as these are typically modelled as abstract

types in Cogent. Conversion functions between these data structures and Cogent data

types must be manually written in C and painstakingly veri�ed in Isabelle/HOL. These

functions are very tedious to write, frustratingly error prone, and have a negative

impact on performance. The bulk of the signi�cant performance overheads observed

in the �le system macro-benchmarks presented in Chapter 2 can be attributed to this

code.

Therefore, we aim to extend the compiler and veri�cation framework of Cogent

to better support these kinds of memory layouts, transparently representing them as

algebraic data types.

To this end, we are in the process of designing a data description language, called

Dargent, that describes how a Cogent algebraic data type may be laid out in memory,

down to the bit level. An initial proposal paper on Dargent was published at ISoLA

in 2018 [98]. Data descriptions in this language will inuence the de�nition of the

re�nement relation to C code generated by the compiler. Eventually, we hope to make
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sizes s ::= nB | nb | nB+mb

layout expressions l ::= s (block of memory)

| L (another layout)

| l at s (o�set operator)

| record {fi : li} (records)

| variant (l) {Ki (ni) : `i} (variants)

declarations d ::= layout L = l

layout names L

numbers n,m 2 N

Figure 6.2: The grammar of our Dargent prototype.

this language exible enough to accommodate any conventional representation of an

algebraic data type in memory.

When fully realised, our framework will allow the programmer to write code as

normal, manipulating ordinary algebraic data types, and after compilation the gen-

erated C code will manipulate kernel data structures directly, without copying and

synchronisation at run-time. This will improve performance by eliminating redundant

work, dramatically simplify the process of integrating C and Cogent code, and make it

possible to verify more code with Cogent, rather than using cumbersome C veri�cation

frameworks.

There are numerous data description languages and calculi which allow for auto-

matic synthesis of serialisation and deserialisation code [37, 38, 8, 89, 134, 9], some of

which integrate with functional languages [39, 83]. These languages, unlike Dargent,

focus entirely on parsing and pretty printing, and often for �le formats rather than

in-memory data structures. By contrast, Dargent is primarily intended for transpar-

ent data re�nement, where marshalling code is avoided entirely by accessing the data

directly in its bespoke format.

Figure 6.2 gives a grammar for the syntax of Dargent descriptions, which are made

of one or more layout declarations, which give names to particular layout expressions.

Each such expression describes how to lay out a data type in memory. Primitive types

such as integer types, pointers, and booleans are laid out as a contiguous block of

memory of a particular size. For example, a layout consisting of a single four byte

block would only be appropriate to describe Cogent types that occupy four contiguous

bytes of memory, such as U32 or pointer types.

layout FourBytes = 4B



6. Conclusions and Future Work 121

layout Example =

record

{ y : 2B at 0b

, x : 8b at 2B

, z : Nested at 3B

}

layout Nested =

variant (1b at 2b)

{ A(1) : 32b at 1B

, B(0) : 16b at 24b

}

{
x : U8 , y : U16 , z :

�
A X | B U16

� }

y x
A

B

if=1

if = 0

0B 1B 2B 3B 4B 5B 6B 7B 8B

Figure 6.3: A Cogent type laid out according to a Dargent speci�cation.

Layouts for record types use the record construct, which contains sub-expressions for

the memory layout of each �eld. Seeing as we can specify memory blocks down to

individual bits, we can naturally represent records of boolean values as a bit�eld:

layout Bit�eld = record {x : 1b, y : 1b at 1b, z : 1b at 2b}

Here the at operator is used to place each �eld at a di�erent bit o�set, so that they do

not overlap. If two record �elds reserve overlapping blocks, the description is rejected

by the compiler.

Layouts for variant types use the variant construct, which �rstly requires a layout

expression for the tag data, which encodes the constructor in the variant which is

being used. Then, for each constructor in the variant, a speci�c tag value is given as

well as a layout expression for any additional data provided in the variant type for

that constructor.

Figure 6.3 gives an illustrative example of a Dargent description in our current

prototype. We describe a memory layout for a Cogent record type containing two

numbers and a variant, {x : U8, y : U16, z : hA X | B U16i}, where X is a boxed abstract

type. As can be seen from the ordering of the �elds y and x, �elds may be placed

in any order and at any location. This allows us to accommodate data layouts where

certain parts of the data type must appear at particular o�sets, such as with the

previously-mentioned container pattern. It also makes it possible to leave unreserved

space in between �elds, accommodating data layouts which do this to respect padding

or alignment constraints in the architecture.

The variant �eld z is represented according to the Nested description, o�set by
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three bytes. That Nested description reserves the third bit of the �rst byte (the fourth

byte of the original object) to determine which of the two constructors A and B is

active. If the bit is 1, the constructor A is active, with the additional X pointer payload

stored at a one-byte o�set (the �fth to eighth bytes of the original object). If the bit is

0, the constructor B is active, with the U16 payload stored at a three byte o�set (the

seventh and eighth byte of the original object).

A Cogent type τ represented on the heap using a particular Dargent layout L1

will result in di�erent C code than the same type τ represented using a di�erent

layout L2. While they are identical on the abstract level, on the concrete level they

are not interchangeable. Therefore, we must extend the Cogent type system such that

identical types represented di�erently are distinguished, by tagging types with their

representation.

Seeing as our Dargent descriptions only apply to objects allocated on the heap,

and all Cogent types represented on the heap have boxed sigils (i.e. w or r), the

natural place to add these tags is on the sigils themselves. We will add an additional

representation parameter l to the sigil. For example, a writable record type might be

written written {f :� U32, g :� U8} (w L), associating the layout L to the type. The type

checker is then responsible for ensuring two properties:

1. That the layout is well-formed, i.e. that it does not reserve overlapping blocks

of memory, and that it does not reference any unknown layout declarations.

2. That the type can actually be represented according to the layout description.

For example, a 32-bit word U32 or a pointer on a 32-bit architecture could both

be represented by our earlier description FourBytes , but a U64 value could not.

These descriptions would then be used to generate the correspondence relation for

each boxed type used in the program, forming the basis of the re�nement proof from

Cogent to C.

For unboxed types, we are still constrained by the restrictions on stack memory

layouts from our C→SIMPL parser. Therefore, data types with the unboxed sigil,

which are stack allocated, do not carry an associated layout and are represented using

the simple layouts described earlier.

This extension already represents a dramatic overhaul of the C code generation and

therefore of the re�nement process described in Chapter 5. Once we have developed

an initial proof of concept, we plan to extend Dargent in a number of ways, including

tighter integration with C compilers to inform data layouts, speci�cation of constraints



6. Conclusions and Future Work 123

and automatic generation of data validation procedures, support for endianness an-

notations and error checking protocols to enable parsing wire formats, support for

dynamically-sized data by enriching Cogent's type system (see Section 6.4), and al-

lowing functions to be de�ned parametrically on layouts to cleanly separate concrete

layout concerns from abstract logic. Full details on these planned extensions are doc-

umented in our separate proposal [98].

6.4 Richer Type System

While Cogent already automates at least a third of a typical functional correctness

re�nement theorem to C, as described in Chapter 5, proving full functional correctness

still requires a signi�cant amount of manual proof e�ort. Enriching the Cogent type

system is a natural avenue to further reduce this e�ort. The more properties we can

encode in the type system and check automatically, the less will have to be manually

established by a proof engineer in post-hoc veri�cation.

Dependent types in the spirit of Martin-L�of [86], such as those implemented in

Agda [95], Idris [15], and ATS [17] o�er nearly unlimited speci�cation power, and

computational type theories such as those in NuPRL [25] lift even the restriction

of decidable type checking, but such theories still require manual (albeit often tool-

assisted) proof e�ort to show that the given programs meet the speci�cations in their

types.

The subset of dependent types where such re�nement theorems are automatically

established are called re�nement types [42]. These type systems allow types to be

annotated with re�nements, assertions that denote a subset of the annotated type.

These predicates can range from basic data invariants to full speci�cations of functional

correctness. For example, a function to give the midpoint of two natural numbers might

be de�ned with a full speci�cation like:

midpoint : {a : N}→ {b : N | a � b}→ {x : N | x = a+ 1
2(b− a)}

Or an over-approximation of the speci�cation that may be easier to automatically

verify:

midpoint : {a : N}→ {b : N | a � b}→ {x : N | a � x � b}

During type checking, veri�cation conditions, i.e. independent logical propositions

that must hold in order for the re�nements to hold, are gathered and dispatched to

an external automated theorem prover such as an SMT solver. Tools such as Liquid-

Haskell [130] are successful examples of this technique being applied to languages in
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wide use. The veri�cation power of this approach is demonstrated by the language

F? [124], which has been successfully used to verify cryptographic algorithms with

re�nement types [111]. Automated theorem provers have been used to great e�ect to

solve veri�cation conditions in imperative languages too, such as in Dafny [119] and

in Whiley [105], as well as in the VCC tool for C programs [28].

Adding a feature such as re�nement types to Cogent has the potential to drastically

reduce veri�cation e�ort, depending on the expressive power of the re�nements, as well

as potentially reducing debugging turn-around time, as SMT push-button veri�cation

is faster than manual proof in an interactive theorem prover, although less powerful.

Of course, relying exclusively on such automated theorem provers increases the size

of our trusted computing base, as we must now assume the correctness of the SMT

solver to have con�dence in the theorems they prove. Furthermore, SMT solvers can be

unreliable, failing to prove theorems that could be easily shown to hold by hand. Both

of these problems could be remedied by formalising our veri�cation condition generator

in an interactive proof assistant such as Isabelle/HOL, and requiring the user to supply

proofs of each condition in an interactive proof script. Note that such proof scripts

may themselves invoke SMT solvers [14], but their certi�cates are replayed in the proof

system of Isabelle/HOL and therefore do not add to the size of the trusted computing

base. The proof assistants Coq [64] and PVS [103] support variants of re�nement types

where, rather than relying on an SMT solver, veri�cation conditions can be deferred

for manual proof after the program structure is de�ned [123, 117], which may provide

inspiration for the formalisation of a veri�cation condition generator for Cogent.

Another potential complication is from the integration of re�nement and unique-

ness types. More generally, the combination of dependent and linear types is a fraught

research landscape, with earlier attempts [16, 77, 129] strictly bifurcating the context

of intuitionistic variables, on which types may depend, and linear variables, which

may not be used in a dependent type. Such a restriction is much too onerous for

Cogent, where we would often wish to specify re�nements that use linear variables.

Fortunately, recent work from McBride [88] and Atkey [7] o�ers a means to unite linear

and dependent types in a more satisfactory way, by distinguishing between use of a

variable in the context of a computation and use in the context of a speci�cation.

6.5 Recursion and Non-termination

A signi�cant amount of the code in our case studies that must still be implemented

in C consists of higher order functions for iteration over data structures which are
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abstract on the Cogent side. Moving this code into Cogent, by extending Cogent to

support recursion, promises to reduce veri�cation e�ort by reducing the amount of C

code that must be veri�ed.

To be able to reason equationally about Cogent shallow embeddings in Isabelle,

however, we must still ensure totality. Thus, general recursion is still not an option for

Cogent. Existing total functional languages such as Agda [95] include a termination

checker, where only structural recursion on inductive types (and productive corecur-

sion on coinductive types) is permitted. It is possible to convert such recursions into

code in terms of eliminators, corresponding to the induction principle of a type [26].

Certain processes such as drivers, and indeed operating systems themselves, are

also not supposed to terminate, but rather to run continuously while the machine

is on, responding to events from running software or hardware. At the moment, such

processes are implemented in Cogent with a C shell, which awaits events in a loop and

executes a Cogent function whenever an event occurs. These are clearly better speci�ed

as productive corecursive programs. Extending Cogent to support corecursion will

likely be ultimately needed in order to support moving these particular C loops into

Cogent. Fortunately, Isabelle also supports corecursive shallow embeddings, providing

us with a direct translation target.

6.6 Concurrency

So far, Cogent has only been used to implement individual processes running on

a system, such as a speci�c �le system server or hardware driver, where sequential

semantics have been su�cient. Extending Cogent to support a whole systems, however,

necessitates a semantics that models multiple concurrently executing processes which

may interact with each other. Adding support for concurrency to Cogent presents a

number of interesting research opportunities. There are many type systems based on

linear logic and linear types that are intended to describe concurrent systems, such as

session types [34], which could be cleanly integrated into Cogent's existing linear type

system.

Verifying a concurrent Cogent would also necessitate a veri�ed concurrent seman-

tics for each level in our re�nement chain, including for C. There is a concurrent version

of SIMPL used for the veri�cation of the eChronos real-time operating system [5] called

COMPLX [3]. It is intended for veri�cation of very low-level, potentially racy code that

interacts with shared memory, where concurrency abstractions are not needed. There-

fore its veri�cation condition generator is based on the foundational Owicki/Gries
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method [102] rather than more modern techniques such as rely/guarantee [67] or con-

current separation logic [101]. In contrast, the kind of concurrent systems described by

session types and more generally process algebras [58, 92, 11] are usually signi�cantly

higher level, relying on abstractions such as message passing. Formally connecting

these two in our re�nement certi�cate is therefore a very signi�cant challenge.

6.7 Testing Frameworks

Property-based testing, in the style of QuickCheck [22], is a promising technique for

reducing the cost of veri�cation. Similar to formal veri�cation, property-based testing

uses a speci�cation of the desired properties of a unit under test. From this speci-

�cation it automatically generates test cases to search for counter-examples. Hughes

[62] and Arts et al. [6] show that property-based testing is e�ective for detecting bugs

and �nding inconsistencies in speci�cations. In their work on secure information ow,

Hritcu et al. [61] observe that property-based testing is especially valuable in the con-

text of formal veri�cation, as it can eliminate the wasted e�ort of trying to prove a

faulty or ill-speci�ed system correct.

Furthermore, as we have previously argued [19], the costs and downsides of using

property-based testing apply to a much lesser degree in the context of veri�cation.

Design considerations such as modularity and reduced coupling, essential for property-

based testing, are also essential for veri�cation.

When maintaining already-veri�ed systems, a proof might require signi�cant changes

whenever the code changes, e.g. when optimising algorithms, whereas property-based

testing only requires developer input when the speci�cation changes. Therefore, test-

ing can provide quick feedback on the likely correctness of the change, reducing code

maintenance cost. Furthermore, all veri�cation projects depend on some assumptions

such as correctness of hardware or external software. Some of these assumptions can

be tested to increase our con�dence in the correctness of the overall system.

In large scale veri�cation projects such as seL4, the proof engineers and systems

engineers are usually in separate teams. Property-based testing provides a way for

systems programmers, who may not be well versed in formal methods, to use and

manipulate speci�cations in the form of tests.

For all these reasons, we intend to implement a property-based testing framework

for Cogent. We describe the design of our prototype testing framework in our paper

at PLOS 2017 [19], as well as the challenges we expect to face. In this proposal, we

describe property-based testing for re�nement properties much like the properties used
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to verify functional correctness. This allows the same set of properties to be used for

both veri�cation and testing.

Even without all of the above-mentioned extensions, Cogent has achieved its stated

goal: To reduce the cost of formally verifying functional correctness of low-level oper-

ating systems components. It achieves this by allowing users to write code at a high

level of abstraction, in the native language of interactive proof assistants | purely

functional programming.

So as not to compromise on e�ciency, Cogent uses a uniqueness type system, allow-

ing purely functional code to be compiled to e�cient destructive updates, eliminating

the need for a garbage collector, and ensuring memory safety. To make this type sys-

tem usable without verbose type annotations, we include a powerful type inference

algorithm in the Cogent compiler.

To ensure the validity of functional correctness theorems proven about Cogent

code, the compiler generates a certi�cate to show that all functional correctness prop-

erties proven about the Cogent code also apply to the generated C implementation.

This generation process relies on a number of key theorems, including the vital proof

that the imperative interpretation of Cogent is a re�nement of the functional inter-

pretation.

To interact with existing systems and to enable greater expressivity, we include a

foreign function interface that allows the programmer to mix Cogent code with C code.

It is possible to verify C code and compose these proofs with the proofs generated by

the Cogent framework.

Our two case study �le systems serve to validate our approach, with key operations

of one �le system veri�ed for functional correctness. The results from these studies

con�rm our hypothesis: the language ensures a greater degree of reliability by default

compared to C programming, veri�cation e�ort is reduced by at least one third, and

the performance of the generated code is, while slower, still comparable to native C

implementations, and acceptable for realistic �le system implementations.

As outlined in this chapter, there are many opportunities for improvement in many

aspects. Nonetheless, Cogent as it is now is already a signi�cant milestone, bringing

the grand goal of a�ordable, veri�ed, high-assurance software one step closer to reality.



I
f you will permit some vain ponti�cation on the last page of my thesis,

I would like to reect on this undertaking, and on the dramatic e�ect it

has had on my thinking. My once-co-supervisor Toby Murray said that

all graduate students enter into a valley of despair where they no longer believe in

the value of their work. Certainly I am no counter-example. I do not even know if I

successfully found my way out of it.

I think that this process of self-doubt is universal because it is fundamentally the

experience of education. Before we know a thing, we cannot know what it means, we

only have an impression, a signi�er. This impression may purport to be revolutionary,

exciting, or simply interesting. But, once we truly learn the thing, the impression

always seems like a lie. By learning, we have seen through the signi�er and to the

signi�ed: Now we know the full detail of the thing, all of its darker sides and well-

hidden skeletons. The experience of education, then, is one of disillusionment. If we

are perennially disappointed by the failure of our interest to meet our expectation,

then surely all education leads to doubt and to despair.

How, then, does one escape from the trap? What meaning or motive can I �nd in

this work I have done? To quote from my favourite novel [36]:

The more I reread this list the more I am convinced it is the result of chance and

contains no message. But these incomplete pages have accompanied me through

all the life that has been left me to live since then; I have often consulted them

like an oracle. . .

Even at the height of my self-doubt, when I no longer believe what I have written and

I no longer positively appraise my own work, this thesis still means one thing to me:

I did this. This has been my life for some years. And, throughout that time, I have

learned | I have been educated. My doubt is what tells me so.

I think most people who have written a signi�cant body of work will be the �rst to

criticise it. They know the most about it, and in knowing it, they have lost the ability

to evaluate it. I can't speak for the value of my work. It is too tied up with my own

self-worth that I will never be sure of it.

It is cold in the scriptorium, my thumb aches. I leave this manuscript, I do not

know for whom; I no longer know what it is about: stat rosa pristina nomine,

nomina nuda tenemus.
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