
Qualitative and semi-quantitative modelling and simulation of
the software engineering processes

Author:
Zhang, He

Publication Date:
2008

DOI:
https://doi.org/10.26190/unsworks/17948

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/43092 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/17948
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/43092
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Qualitative & Semi-Quantitative
Modelling and Simulation of

the Software Engineering Processes

by

He Zhang

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

School of Computer Science and Engineering
Faculty of Engineering

2008

University of New South Wales

Faculty of Engineering

School of Computer Science and Engineering

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Qualitative & Semi-Quantitative

Modelling and Simulation of the

Software Engineering Processes

by

He Zhang

Supervised by:

Prof. Ross D. Jeffery

&

Prof. Barbara A. Kitchenham

Sydney, New South Wales, Australia

September, 2008

Abstract

Software process modelling has been identified as a vehicle for understanding de-
velopment processes, controlling development costs and duration, and achieving
product quality. In recent years, software process simulation has become one of
the essential techniques for effectively investigating and managing software de-
velopment processes.

Until now, most research has focused on the quantitative aspects of process
simulation and modelling. Nevertheless, purely quantitative process modelling
requires a very detailed understanding and accurate measurement of the software
process, which relies on reliable and precise history data. When such data are
lacking or the quality is dubious, quantitative models impose constraints that
restrict the model’s value. Unfortunately, these data are not readily available in
most cases, especially in organisations at low process maturity levels. In addi-
tion, software development is a highly complex, human-centred endeavour, which
involves many uncertain factors in the course of the development process. Given
this inherent uncertainty and contingent characteristics, quantitative modelling
employs statistical techniques, but even with these its capability and applied con-
ditions limit its performance on large-scale problems.

As an alternative to quantitative approaches, qualitative modelling can cope with
a lack of complete knowledge, and predict qualitative process behaviours. Fur-
thermore, semi-quantitative modelling offers the capability of handling process
uncertainty with limited knowledge, and achieves a tradeoff between quantitative
and qualitative approaches. Most previous research has omitted these approaches
and consequently the associated methods and application of them are far from
fully developed.

The main contributions of this research lies in the pioneering work on the models,
methods, and applications of qualitative and semi-quantitative software process
modelling and simulation in software engineering, and their relationship with

i

ii

conventional quantitative modelling approaches.

This dissertation produces its novelty from two areas of research. Firstly, it ex-
plores methods and techniques to qualitatively and semi-quantitatively modelling
and simulating software processes in different domains and at different granular-
ities. Secondly, some specific applications of these modelling approaches are also
developed for aspects of software engineering practice. Moreover, a proposed
framework integrates these approaches with typical quantitative paradigms to
guide the adoption of process simulation modelling in software organisations. As
a part of this dissertation, a comprehensive software process simulation modelling
state-of-the-art is reported by way of a systematic literature review.

Acknowledgements

This study would not have been possible without the encouragement and con-
stant support of my supervisors, Professor Ross Jeffery and Professor Barbara
Kitchenham. I am deeply grateful to them for their inspiration, ideas, guidance,
and constructive comments.

I wish to express my warm and sincere thanks to the staff of Empirical Soft-
ware Engineering at National ICT Australia and the School of Computer Science
and Engineering. I appreciate the friendship, support, and collaboration of my
colleagues within ESE group. In particular, I am very grateful to Ming Huo, Dr.
Liming, and Dr. Jacky Keung. Associate Professor Dietmar Pfahl has also sup-
ported this work through his reviews and suggestions, particularly with regard
to process simulation in software engineering.

I also wish to thank my parents for their absolute support over my life.

iii

Contents

Contents iv

List of Figures x

List of Tables xiii

List of Publications xv

List of Abbreviations xix

1 Introduction 1
1.1 Background . 1
1.2 Research Questions . 3
1.3 Approach & Scope . 4
1.4 Research Contributions . 5
1.5 Thesis Outline . 7

I BACKGROUND 9

2 Software Engineering Process 11
2.1 Software Process . 11

2.1.1 Activities in Software Process 11
2.1.2 Macro- & Micro-Process Research 13
2.1.3 Process Engineering & Engineering Process 14

2.2 Software Process Improvement . 14
2.2.1 Process Improvement Process 15
2.2.2 Process Improvement Frameworks 16

2.3 Software Process Modelling . 17
2.3.1 Model Dimensions . 17
2.3.2 Prescriptive Reference Models 18

iv

v

2.3.3 Analytic Summary Models 19
2.3.4 Explanatory Structural Models 20
2.3.5 Descriptive Enactment Models 20

2.4 Software Process Simulation . 21
2.4.1 Important Simulation Models 24

2.5 Summary . 25

3 Software Process Simulation Modelling 27
3.1 State-of-the-Art: A Systematic Review 27

3.1.1 Background . 27
3.1.2 Systematic Literature Review 28
3.1.3 Methods . 28
3.1.4 Results . 33

3.2 Why Simulation? . 36
3.2.1 Purposes . 36
3.2.2 Benefits . 37

3.3 What to Simulate? . 38
3.3.1 Problem Domains . 38
3.3.2 Model Scopes . 38
3.3.3 Output Variables . 40

3.4 How to Simulate? . 40
3.4.1 Simulation Paradigms . 40
3.4.2 Continuous vs. Discrete Simulation 41
3.4.3 Quantitative vs. Qualitative Simulation 44
3.4.4 Emerging Simulation Paradigms 45
3.4.5 Simulation Tools . 46

3.5 Trends & Directions . 47
3.5.1 New Paradigms . 47
3.5.2 Finer Granularity . 49
3.5.3 Hybrid Modelling . 51
3.5.4 Possible Directions . 52

3.6 Design of Research . 53
3.6.1 Purposes, Domains, Scopes & Outputs 53
3.6.2 Selection of Software Processes 54

3.7 Summary . 55

II FOUNDATION 57

4 Qualitative Modelling & Simulation 59
4.1 Incomplete Knowledge Representation 60

4.1.1 Quantity . 60

vi CONTENTS

4.1.2 Continuous Change . 61
4.2 Modelling & Simulation Framework 62
4.3 Qualitative Model Representation 63

4.3.1 Abstract Structure Diagram 63
4.3.2 Qualitative Differential Equation 64
4.3.3 Quantity Space & Qualitative Value 65
4.3.4 Qualitative Constraints . 66
4.3.5 Region Transitions . 69

4.4 Qualitative Simulation . 70
4.4.1 QSIM: Algorithm & Tool 70
4.4.2 Outputs . 71

4.5 Summary . 74

5 Semi-Quantitative Modelling & Simulation 75
5.1 Semi-Quantitative Extension . 75
5.2 Interval Constraints . 76

5.2.1 Value Ranges . 76
5.2.2 Envelope Functions . 77

5.3 Semi-Quantitative Propagation . 78
5.3.1 Q2: QSIM Extension . 78
5.3.2 Outputs . 79

5.4 Advanced Techniques . 80
5.5 Summary . 80

III INNOVATION I: MODELLING 81

6 Modelling Software Staffing Process 83
6.1 Background . 84

6.1.1 Software Staffing Process & Brooks’ Law 84
6.1.2 Related Models . 84

6.2 Qualitative Modelling . 85
6.2.1 Qualitative Assumptions . 85
6.2.2 Qualitative Abstract Structure 87
6.2.3 Qualitative Differential Equations 88

6.3 Semi-Quantitative Constraints . 91
6.3.1 Parameter Intervals . 91
6.3.2 Envelope Functions . 91

6.4 Case Study: Brooks’ Law . 92
6.4.1 Qualitative Simulation . 92
6.4.2 Semi-Quantitative Simulation 96

6.5 Model Comparison & Discussion 101

vii

6.5.1 Comparison with Outputs of Related Models 102
6.5.2 Comparison with Empirical Evidence 103
6.5.3 Discussion . 104

6.6 Summary . 106

7 Modelling Incremental Development Process 109
7.1 Background . 110

7.1.1 Incremental Development Processes 110
7.1.2 Conceptual Software Quality Model 110
7.1.3 Related Models . 111

7.2 Qualitative Modelling . 113
7.2.1 Modelling Implementation Process 113
7.2.2 Modelling Test-and-Fix Process 114

7.3 Semi-Quantitative Constraints . 118
7.3.1 Quantifying Implementation Process 118
7.3.2 Quantifying Test-and-Fix Process 119

7.4 Case Study: Incremental Development 120
7.4.1 Qualitative Simulation . 120
7.4.2 Semi-Quantitative Simulation 121

7.5 Summary . 124

8 Quantitative vs. Qualitative/SemiQ Process Simulation 127
8.1 Reference Model Selection . 127
8.2 Model Conversion . 128

8.2.1 Causal Loop Diagram . 128
8.2.2 Level & Rate . 129
8.2.3 Delay . 130

8.3 Reference System Dynamics Model 133
8.3.1 Software Evolution Process 133
8.3.2 A Simplified Model of Software Evolution 134

8.4 Corresponding Qualitative & SemiQ Models 137
8.4.1 Qualitative Model . 137
8.4.2 Semi-Quantitative Model 139

8.5 Simulation Results Comparison . 140
8.5.1 Qualitative Simulation . 140
8.5.2 Single-Point Value Simulation 142
8.5.3 Value-Range Simulation . 143

8.6 Summary . 145

IV INNOVATION II: ADOPTION 147

9 SQSIM-Based Software Project Management 149

viii CONTENTS

9.1 Motivation: Software Project Success 149
9.2 Managing Software Project Semi-Quantitatively 151
9.3 A SQSIM-Based Approach for Planning & Control 153

9.3.1 Planning & Control . 153
9.3.2 Phase 1: Project Planning 153
9.3.3 Phase 2: Project Control 156

9.4 Illustrative Example . 157
9.4.1 Baseline Project . 158
9.4.2 Planning Phase . 158
9.4.3 Control Phase . 161

9.5 Related Considerations . 162
9.6 Summary . 164

10 Adopting Process Simulation in Software Organisations 165
10.1 Motivation . 165
10.2 Scope: SPSM & CMMI . 167

10.2.1 Software Process Simulation Modelling 167
10.2.2 Process Maturity Model: CMMI 168
10.2.3 Interaction between SPSM & CMMI 171

10.3 Adoption Framework (version 1.0) 173
10.3.1 Framework Overview . 173
10.3.2 Starting at ML1 . 174
10.3.3 Transitioning from ML1 to ML2 175
10.3.4 Transitioning from ML2 to ML3 176
10.3.5 Transitioning from ML3 to ML4 177
10.3.6 Transitioning from ML4 to ML5 178

10.4 Related Considerations . 179
10.5 Summary . 181

11 Discussion & Conclusion 183
11.1 Research Achievements . 183
11.2 Discussion . 185

11.2.1 Potentials . 185
11.2.2 Alternatives . 186

11.3 Limitations & Future Work . 187
11.3.1 Limitations . 187
11.3.2 Future Work . 188

Bibliography 191

A Supplements for Systematic Literature Review 203
A.1 List of Primary Studies (Stage 1) 203

ix

A.2 Study Quality Assessment . 211
A.2.1 Assessment Criteria . 211
A.2.2 Assessment Results (Stage 1) 211

B Model Implementations 213
B.1 Software Staffing Process Models 213
B.2 Incremental Development Process Models 219
B.3 Software Evolution Process Models 225

C Data Extraction Form 229

List of Figures

1.1 Software project resolution from SGI’s Chaos Reports 2
1.2 Work flow of thesis research . 4
1.3 Dimensions of process modeling . 6

2.1 Basic entities and their interactions of process 12
2.2 Relationship between software quality and the development process . . 15
2.3 Major steps and relations involved in process improvement 16

3.1 Relationships between study categories 32
3.2 Summary of study category distribution 35
3.3 Study distribution by simulation paradigms 41

4.1 Qualitative modelling and simulation framework 62
4.2 Typical notations of abstract structure diagram 64
4.3 Qualitative bathtub example model . 64
4.4 Quantity spaces of bathtub example 66
4.5 Arithmetic operations of qualitative addition and multiplication . . . 67
4.6 Constraints of bathtub example . 69
4.7 QDE of bathtub example . 70
4.8 Behaviour tree from qualitative simulation for bathtub example 72
4.9 Qualitative behaviors of bathtub example 73
4.10 Phase view for bathtub example . 74

5.1 Steps in semi-quantitative (qualitative & quantitative) modelling and
simulation . 76

5.2 Example of envelope functions . 77
5.3 QDE of semi-quantitative bathtub example model 78
5.4 Behaviour tree from semi-quantitative simulation for bathtub example 79
5.5 Semi-quantitative behaviour of bathtub example 79

6.1 Qualitative abstract structure of staffing process 87

x

xi

6.2 Formal constraints for normal development QDE 89
6.3 Formal constraints for assimilation process QDE 90
6.4 QDEs and transitions during simulation 90
6.5 Monotonic envelope functions . 92
6.6 Examples of possible behaviours . 93
6.7 Phase view of RSD vs. SR . 96
6.8 Phase view of project schedules . 97
6.9 Envelope functions of required experienced developers for training . . 99
6.10 Possible behaviour trees for EXAMPLE project 99
6.11 Behaviour 1 for Scenario 1 of EXAMPLE project 100
6.12 Behaviours of RND and RSD in Scenario 2 101
6.13 Project durations of scenarios . 102
6.14 Effort ratio vs. elapsed time ratio . 104
6.15 Behavior 80 of 112 . 105

7.1 Waterfall vs. incremental development 110
7.2 “Tank-pipe” software quality model of incremental development 111
7.3 Qualitative model of implementation process in one increment 115
7.4 Qualitative model of test-and-fix process in one increment 117
7.5 Model transitions and iterations . 118
7.6 Refinement of implementation process model 119
7.7 Refinement of test-and-fix process model 120
7.8 Part of behavior tree from qualitative simulation 121
7.9 Behavior 26 of 72 . 121
7.10 Semi-quantitative behaviours of baseline project’s test-and-fix process 123
7.11 Simulated defect levels for the baseline project 124

8.1 General structures of level and rate . 129
8.2 Exponential delay curves . 130
8.3 First-order exponential delay in SD . 131
8.4 Implementation of first-order delay in ASD 132
8.5 Implemented constraints of first-order delay in QSIM 132
8.6 Third-order exponential delay in SD 132
8.7 Implementation of third-order delay in ASD 133
8.8 The reference SD model of software evolution 135
8.9 Simulation of implemented requirements over time 136
8.10 The SD model of software evolution for policy investigation 137
8.11 Sensitivity of policy change for reference model 138
8.12 Qualitative model of software evolution 139
8.13 Semi-quantitative model of software evolution 140
8.14 Behaviors of qualitative simulation . 141
8.15 Behavior of semi-quantitative simulation with single-point values . . . 143

xii LIST OF FIGURES

8.16 Semi-quantitative evolution model with policy factors 144

9.1 Project success: point or cube? . 150
9.2 Behaviour tree for one scenario of test-fix process 152
9.3 Project planning and control with Semi-Quantitative Simulation . . . 154
9.4 Comparing simulation result vs. predefined success criteria 156
9.5 Project completion cube through iterations 160
9.6 Behaviour tree of Iteration 3 . 161

10.1 Capability profile for maturity levels 170
10.2 Distribution of Specific Practices across maturity levels 171
10.3 Interaction between SPSM & CMMI 172
10.4 Framework (v. 1.0) of adopting SPSM in CMMI organisations 174

A.1 Average study quality per source and year 211

List of Tables

2.1 Software process modeling approaches 22
2.2 Typical software process models . 23
2.3 Process models on different levels . 23

3.1 Selected sources of the systematic review 30
3.2 Questions for identifying study categories 32
3.3 Attributes collected during data extraction 34
3.4 Sources identified as primary studies 35
3.5 Number of countries involved in ProSim series 35
3.6 SPSM purposes, levels, and model scopes 37
3.7 Modelling problem domains vs. model scopes 39
3.8 Summary of simulation outputs . 40
3.9 Summary of simulation tools . 47
3.10 Paradigms applied in simulation models over years 48
3.11 Paradigms applied in primary studies over years 49
3.12 Simulation paradigms in support of different granularity research . . . 51
3.13 Granularity level of simulation studies over years 51
3.14 Software processes and supporting purpose levels 54
3.15 Domain and scope of the software processes for research 55
3.16 Software processes and corresponding output variables 55

4.1 Typical qualitative constraints . 67
4.2 Symbols used in qualitative behaviour trees 72

5.1 Acronyms in qualitative and semi-quantitative simulation 75

6.1 Staffing process in relation to research design 83
6.2 Assumptions of staffing process model 86
6.3 Type 2 variables . 94
6.4 Type 3 variables . 94
6.5 Major attributes of EXAMPLE project 98

xiii

xiv LIST OF TABLES

6.6 Value ranges for quantitative quantifying 98
6.7 Simulated project completion . 101

7.1 Incremental development in relation to research design 109
7.2 Summary of related software testing process models 112
7.3 Value ranges for active error retirement ratio 119
7.4 Characteristics of the baseline project 122
7.5 Simulated defect levels for the baseline project 123
7.6 Value ranges of RAEG for 3 increments 124

8.1 Evolution process in relation to research design 127
8.2 First-order exponential delay . 131
8.3 Third-order exponential delay . 132
8.4 Value range comparison . 144

9.1 Project success criteria . 158
9.2 Project element-effect matrix . 159
9.3 Control metric table example . 162
9.4 Element-effect matrix of test-and-fix process model 163

10.1 Summary of selected paradigms for Framework v1.0 169
10.2 CMMI Staged Representation . 170

A.1 Study quality assessment checklist . 212

List of Publications

[1] He Zhang, Barbara Kitchenham, and Dietmar Pfahl. Software Process Sim-
ulation Modeling: Facts, Trends, and Directions. Proceedings of 15th Asia-
Pacific Software Engineering Conference (APSEC’08), Beijing, China, 2008.
IEEE Computer Society.

(cf. Chapter 3: summarises the ‘facts’, discovers the ‘trends’, and recommends the
‘directions’ of SPSM research based on a systematic literature review of ProSim
publications from 1998 to 2007.)

[2] He Zhang, Barbara Kitchenham, and Dietmar Pfahl. Software Process Simulation
over Decade: Trends Discovery from A Systematic Review. Proceedings of 2nd
International Symposium on Empirical Software Engineering and Measurement
(ESEM’08), Kaiserslautern, Germany, 2008. ACM.

(cf. Chapter 3: reports the trends of software process simulation over the past ten
years derived from the results of systematic review.)

[3] He Zhang, Barbara Kitchenham, and Dietmar Pfahl. Reflections on 10 Years
of Software Process Simulation Modelling: A Systematic Review. Proceedings
of International Conference on Software Process (ICSP’08), pp.345-356, Leipzig,
Germany, 2008. Springer-Verlag.

(cf. Chapter 3: reports the process and the primary results from the systematic
literature review.)

[4] He Zhang, Ross Jeffery and Liming Zhu. Hybrid Modelling of Test-and-Fix Pro-
cesses in Incremental Development. Proceedings of International Conference on
Software Process (ICSP’08), pp.333-344, Leipzig, Germany, 2008. Springer-Verlag.

(cf. Chapter 3: presents a horizontal integration scheme to build a hybrid software
process simulation model.)

[5] Ming Huo, He Zhang, and Ross Jeffery. Detection of Consistent Patterns from
Process Enactment Data. Proceedings of International Conference on Software
Process (ICSP’08), pp.174-185, Leipzig, Germany, 2008. Springer-Verlag.

(cf. Chapter 2: reports the enhancement for the systematic Approach to Process
Enactment Analysis and the extended use in detecting Consistency from Process
Enactment Data.)

xv

xvi LIST OF PUBLICATIONS

[6] He Zhang, Ross Jeffery, and Liming Zhu. Investigating Test-and-Fix Processes of
Incremental Development Using Hybrid Process Simulation. Proceedings of 6th
Workshop on Software Quality (WoSQ’08), Leipzig, Germany, 2008. ACM.

(cf. Chapter 3: reports a new hybrid software process model and its use to inves-
tigate the test-and-fix process of incremental development.)

[7] He Zhang, Jacky Keung, Barbara Kitchenham, and Ross Jeffery, Semi-Quantitative
Modeling for Managing Software Development Processes. Proceedings of 19th Aus-
tralian Software Engineering Conference (ASWEC’08), pp.66-75, Perth, Australia,
2008. IEEE Computer Society.

(cf. Chapter 7 and 9: presents an enhanced semi-quantitative model of incremental
development, and discusses its use in support of process/project management.)

[8] He Zhang, Barbara Kitchenham, and Ross Jeffery, A SemiQ Model of Test-and-
Fix Process of Incremental Development. Proceedings of International Workshop
on Software Productivity Analysis and Cost Estimation (SPACE’07), pp.23-29,
Nagoya, Japan, 2007. IPSJ/SIGSE.

(cf. Chapter 7: presents the initial version of semi-quantitative process model
focusing test-and-fix process in incremental development.)

[9] Barbara Kitchenham, Hiyam Al-Kilidar, Muhammad Ali Babar, Mike Berry, Karl
Cox, Jacky Keung, Felicia Kurniawati, Mark Staples, He Zhang, and Liming Zhu.
Evaluating Guidelines for Empirical Software Engineering Studies. Journal of
Empirical Software Engineering, vol.13(1):97-121, 2007.

(the enhanced version of ISESE’06 paper.)

[10] He Zhang, Barbara Kitchenham, and Ross Jeffery. Achieving Software Project
Success: A Semi-Quantitative Approach. Proceedings of International Conference
on Software Process (ICSP’07), pp.332-343, Minneapolis, MN, 2007. Springer-
Verlag.

(cf. Chapter 9: presents an integrated approach for software project management,
i.e. planning and control, based on semi-quantitative modelling and simulation.)

[11] He Zhang, Barbara Kitchenham, and Ross Jeffery. A Framework for Adopting
Software Process Simulation in CMMI Organisations. Proceedings of International
Conference on Software Process (ICSP’07), pp.320-331, Minneapolis, MN, 2007.
Springer-Verlag.

(cf. Chapter 10: argues software process improvement framework in support of the
adoption of process simulation, and presents the primary adoption framework.)

[12] He Zhang, Barbara Kitchenham, and Ross Jeffery. Planning Software Project Suc-
cess with Semi-Quantitative Reasoning. Proceedings of 18th Australian Software
Engineering Conference (ASWEC’07), pp.369-378, Melbourne, Australia, 2007.
IEEE Computer Society.

(cf. Chapter 9: presents an innovative approach for software project planning
using semi-quantitative reasoning.)

xvii

[13] Ming Huo, He Zhang, and Ross Jeffery. A Systematic Approach to Process Enact-
ment Analysis as Input to Software Process Improvement or Tailoring. Proceedings
of 13th Asian-Pacific Software Engineering Conference (APSEC’06), Bangalore,
India, 2006. pp.401-408, IEEE Computer Society.

(cf. Chapter 2: presents a systematic approach to process enactment analysis that
attempts to bridge the gap between descriptive enactment models (DEMs) and
prescriptive reference models (PRMs).)

[14] Barbara Kitchenham, Hiyam Al-Kilidar, Muhammad Ali Babar, Mike Berry, Karl
Cox, Jacky Keung, Felicia Kurniawati, Mark Staples, He Zhang, and Liming Zhu.
Evaluating Guidelines for Empirical Software Engineering Studies. Proceedings of
International Symposium on Empirical Software Engineering (ISESE’06), pp.38-
47, Rio de Janeiro, Brazil, 2006. ACM.

(suggests the guidelines for reporting the results of empirical research, especially
for controlled experiments, and evaluating the empirical reports in software engi-
neering from the perspectives of researchers, practitioners, and reviewers.)

[15] Ming Huo, He Zhang, and Ross Jeffery. An Exploratory Study of Process Enact-
ment as Input to Software Process Improvement. Proceedings of 4th Workshop on
Software Quality (WoSQ’06), pp.39-44, Shanghai, China, 2006. ACM.

(cf. Chapter 2: reports the initial version of a software process recovery method
based on mining project enactment data in support of software process improve-
ment.)

[16] He Zhang and Barbara Kitchenham. Semi-Quantitative Simulation Modelling
of Software Engineering Process. Proceedings of International Software Process
Workshop/International Workshop on Software Process Simulation and Modelling
(SPW/ProSim’06), pp.242-253, Shanghai, China, 2006. Springer-Verlag.

(cf. Chapter 6: introduces semi-quantitative approach to model and simulate soft-
ware processes, and presents the first semi-quantitative software process model.)

[17] He Zhang, Ming Huo, Barbara Kitchenham, and Ross Jeffery. Qualitative Sim-
ulation Model for Software Engineering Process. Proceedings of 17th Australian
Software Engineering Conference (ASWEC’06), pp.391-400, Sydney, Australia,
2006. IEEE Computer Society.

(cf. Chapter 6: presents the first structural qualitative software process model for
simulation and its use for revisiting Brooks’ Law.)

List of Abbreviations

Abbreviation Description

ACD Activity Cycle Diagram
ABS Agent-Based Simulation
APM Agile Process Models
ASD Abstract Structure Diagram
ASM Analytic Summary Model
BBNs Bayesian Belief Nets
BPE Business Process Engineering
CL Capability Level of CMMI

CLD Causal Loop Diagram
CMM Capability Maturity Model
CMMI Capability Maturity Model Integration
DEM Descriptive Enactment Model
DES Discrete-Event Simulation
DEVS Discrete-Event System Specification
DTS Discrete Time Simulation
EBSE Evidence Based Software Engineering
ESE Empirical Software Engineering
ESM Explanatory Structural Model
GG General Goal of CMMI

GSD Global Software Development
ICSP International Conference on Software Process
ISO International Standardisation Organisation
KBS Knowledge-Based Simulation
KPI Key Performance Indicator
LPM Life-cycle Process Model
MAS Multi-Agent System
ML Maturity Level of CMMI

ODE Ordinary Differential Equation
PA Process Area of CMMI

PEA Process Enactment Analysis
PMBoK Project Management Body of Knowledge

xix

xx LIST OF ABBREVIATIONS

Abbreviation Description

PRM Prescriptive Reference Model
ProSim International Workshop on Software Process Simula-

tion and Modeling
Q2 Semi-quantitative extension to QSIM implemented by

UTexas
Q3 Step-sized refinement to Q2 implemented by UTexas
QDE Qualitative Differential Equation
QR Qualitative Reasoning
QSIM Qualitative Simulation
QSIM QSIM algorithm and reasoner implemented by

UTexas
RM Regression Model
RPG Role-Playing Game
SBS State-Based Simulation
SD System Dynamics
SE Software Engineering
SEI Software Engineering Institute
SemiQ Semi-Quantitative (Modelling)
SG Specific Goal of CMMI

SLR Systematic Literature Review
SP Specific Practice of CMMI

SPE Software Process Engineering
SPI Software Process Improvement
SPM Software Process Modelling
SPSM Software Process Simulation Modelling
SPW Software Process Workshop
SQR Semi-Quantitative Reasoning
SQSIM Semi-Quantitative Simulation
TQM Total Quality Management

Chapter 1

Introduction

As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality.

- Albert Einstein (1879-1955)

1.1 Background

Software is a large and complex artifact produced by humans and for humans.
Unfortunately, the development of software is yet far from being well understood
by humans. The current state of software engineering still makes most software
development managers risk bearers. Much had been written about the ‘software
crisis’ yet the crisis remains: “Software is a place where dreams are planted and
nightmares harvested, where terrible demons compete with magical panaceas, a
world of werewolves and silver bullets.” [Cox90]

The 2006 Chaos Report by the Standish Group [SGI06] (as shown in Fig-
ure 1.1-a) reported that 35% of software projects in 2006 could be categorised
as successful, meaning they were completed on time, on budget and met user
requirements; 19% of projects were outright failures; and 46% of projects were
described as challenged, meaning they had cost or time overruns or did not fully
meet the user’s needs. It illustrates that, though there have been many techni-
cal advances in software engineering, there are still critical obstacles to the real
success of the majority of recent software projects.

However, compared with the report in 1998 [SGI98] (shown in Figure 1.1-
b), some positive progress is displayed. The success rate of software project has
been increased by 9% in the past 8 years. Meanwhile, the failure rate has been
decreased by one third (9%). The report concludes three reasons for the im-
provement: ‘better project management ’, ‘iterative development ’, and ‘the emerg-

1

2 CHAPTER 1. INTRODUCTION

(a) 2006 (b) 1998

Figure 1.1: Software project resolution from SGI’s Chaos Reports

ing web infrastructure’, in which the first two reasons are highly relevant to the
development of software process.

Moreover, by looking at Figure 1.1 again, there is no significant change over
all those years in the percentage of projects with time or budget overrun. It
remains at 46%. These challenges to a large extent can be attributed to the
inability or immaturity of software project and process management in organisa-
tions. Therefore, improving software process research and practice is an impor-
tant contribution to the success of software projects, and is a key challenge for
the software engineering community.

Software process modelling is one of the important research domains for sup-
porting software process management and improvement. State-of-the-art soft-
ware process modelling strongly focuses on quantitative ‘black-box ’ and ‘white-
box ’ modelling, while few studies aim at qualitative and semi-quantitative mod-
elling, as the important but overlooked counterpart of quantitative approaches.
Uncertainty permeates software development processes, yet is often absent in
most quantitative software process models.

Qualitative and semi-quantitative process models are capable of modelling
the absence and incompleteness of numeric information. However, most qualita-
tive process models so far lack the power of dynamic simulation. Furthermore,
until now there has been no software process model developed by applying semi-
quantitative concepts and paradigm. This thesis presents the initial and explo-
rative work for white-box modelling and simulation of software processes using
qualitative and semi-quantitative approaches.

1.2. RESEARCH QUESTIONS 3

1.2 Research Questions

Research Premises

Two statements constitute the premises for this research: the existence of com-
plexity and uncertainty in the software development process, as well as the power
of qualitative and semi-quantitative approaches in analysing complex systems
with incomplete knowledge.

Our initial observation is that software is extremely complex, i.e. “software
systems are perhaps the most intricate of man’s handiworks” [Bro95], as is the
software development process, in which “human interactions are complicated and
never very crisp and clean in their effects, but they matter more and other aspect
of the work” [DL99]. Currently, software engineering is fraught with uncertainty,
which is often used to explain the known symptoms of the software crisis, includ-
ing unexpected slips in development schedule as well as unpredictable overrun
on budget (cf. Section 1.1). Software development and its artifacts are typically
determined by a large and complex collection of certain and uncertain factors of
diverse types. This complexity and uncertainty are not only ubiquitous, they are
also intrinsic.

Despite the pervasiveness of human involvement and related software un-
certainty, surprisingly few attempts have been made to model this uncertainty
explicitly. This thesis aims to remedy this situation by using the proposed mod-
elling and simulation approaches.

Qualitative and semi-quantitative modelling approaches were born with the
explicit representation of incomplete knowledge in modelling causal systems,
which enables them to handle both complexity and uncertainty directly and in-
tuitively. Their capability offers the possibility for coping with these difficulties
in the software processes.

Research Questions

This research intends to validate the capability of the proposed qualitative and
semi-quantitative modelling approaches in coping with the dynamic complexity
and uncertainty of software development by investigating the following research
questions:

RQ1 Feasibility: Are qualitative and semi-quantitative methods applicable in
modelling and simulation of the software processes?

RQ2 Adaptability: Are Qualitative and semi-quantitative approaches able to
model and simulate a variety of domains and scopes of the software process?

RQ3 Uniqueness: Can qualitative and semi-quantitative approaches provide
a unique values to modelling and simulating software process? Can they

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Work flow of thesis research

offer a set of methods, artifacts, and tools distinct from the conventional
approaches?

RQ4 Practicability: Based on qualitative and semi-quantitative approaches,
is it possible to develop any novel methodology or applications supporting
diverse aspects of software engineering practice?

The sequence of these four research questions is progressive, which implies
the answer to every single question is also the premise for the next one. They
must be tested in the given order.

1.3 Approach & Scope

Research Approach

In the course of the research related to this thesis, the following research steps
have been conducted in sequence: 1) systematic literature review, 2) explorative
case studies, 3) validation, and 4) methodology development. The flow of work
is summarised in Figure 1.2.

A systematic literature review was carried out to summarise the uses of SPSM
for coping with the dynamic complexity of software development, to discover the
facts, trends, and directions of SPSM research, and to identify the needs of this
research. The guidelines for conducting the following steps in this research were
also derived from the review.

Explorative case studies were applied by developing the process models for
simulation in order to test the feasibility and adaptability of the proposed mod-
elling approaches in software process research, and gain new insights into the
investigated software processes.

Here, validation is twofold, for models and approach. First, the process mod-
els were validated by comparison with typical quantitative models, which had
been calibrated with real cases, through the designed experiments. Moreover,

1.4. RESEARCH CONTRIBUTIONS 5

these qualitative and semi-quantitative process models were further used to vali-
date the approaches’ usefulness (in a variety of domains and scopes) in modelling
software processes.

Based on the results of the modelling practice, a methodology in support of
software project management and a guidance framework for adopting SPSM were
developed in methodology development. They demonstrate the uniqueness and
practicability of the proposed modelling approaches.

Research Scope

The research objects of this work are software development processes (defined
in Chapter 2). This research focuses on ‘white-box ’ modelling methods. Its
advantage over black-box modelling is that changes in the model as a result of
model analysis can be directly transferred to the real world. This is due to the
fact that the model structure is visible and represents entities in the real world.

The methodological scope of this research can be defined in a multi-dimension
view of process modelling, including time dependency, model semantics, and prob-
ability relevance. Figure 1.3 shows the methodological scope of this research and
its relation with other approaches. The modelling approaches related to this
research fall into the shadow area, i.e. the continuous qualitative and semi-
quantitative process modelling. The dashed-line boxes indicate possible future
research areas.

1.4 Research Contributions

Despite the relatively young age of software process simulation modelling (SPSM)
since Abdel-Hamid and others’ pioneering work [AHM91] in late 1980s, there
have been a number of research outcomes yielded in this field during the past
two decades. Nonetheless, most of these existing studies are purely quantita-
tive based, and the research based on the qualitative and semi-quantitative ap-
proaches, as the counterpart of quantitative approaches, was seldom found. From
this point of view, this thesis is the first comprehensive endeavour in this direc-
tion.

The main contribution of this PhD research lies in the exploration of mod-
elling and simulation of software processes using qualitative/semi-quantitative
approaches for different problem domains and process scales, as well as the devel-
opment and application of QSIM/SQSIM-based frameworks for supporting the
paradigm adoption in software engineering practice.

The research achievements resulting from the work can be expected in the
following aspects:

• Systematic literature review of the work in software process simulation mod-

6 CHAPTER 1. INTRODUCTION

Figure 1.3: Dimensions of process modeling

1.5. THESIS OUTLINE 7

elling, especially the work done in the recent 10 years. The results can be
used not only as the guideline for designing this research, but also as the
reflection of progress and state-of-the-art of SPSM research.

• Development of a range of qualitative and semi-quantitative software pro-
cess models, differing in domain, scope, and granularity, for simulation;
acquisition of new insights in the processes modelled using the proposed
modelling and simulation approaches.

• Comparison between the typical purely quantitative modelling approach
and qualitative/semi-quantitative approaches; development of the equiva-
lent model conversion scheme.

• Framework for software project and process management based on the fea-
tures and outcomes offered by qualitative and/or semi-quantitative mod-
elling.

• Identification of the usefulness and unique uses of qualitative and semi-
quantitative approaches in SPSM for supporting software process improve-
ment.

1.5 Thesis Outline

The body of this research is presented in four parts in this thesis. Part I in-
troduces a variety of aspects and current state of software process research, with
emphasis on the process simulation modelling; Part II provides a concise intro-
duction to qualitative/semi-quantitative modelling and simulation approaches as
the fundamental paradigms applied in this thesis; Part III models and investi-
gates a set of typical software processes differing in domains and scope; Part IV
addresses the creative thinking in adopting the proposed approaches in software
engineering practice. Each part is further composed of two or three chapters with
the details as follows:

Chapter 2 provides the essential but important concepts related to this re-
search, i.e. software engineering process, software process improvement,
and especially software process modelling and simulation.

Chapter 3 describes a systematic literature review of software process simula-
tion modelling (SPSM), which presents the state-of-the-art of SPSM during
the period from 1998 to 2007. The results from the review are used to frame
a solid and up-to-date overview of SPSM research, and further to support
the design of this research. The underlying trends and directions are also
discussed and suggested.

8 CHAPTER 1. INTRODUCTION

Chapter 4 presents a concise introduction to qualitative modelling and simula-
tion, including its concepts, methods, notations, mechanism, and tool, as
the fundamental paradigm in support of this research.

Chapter 5 extends Chapter 4 with the inclusion of incomplete quantitative
knowledge and constraints for modelling and simulation research.

Chapter 6 models a typical software staffing process of a generic software de-
velopment project, and further uses it to revisit Brooks’ Law.

Chapter 7 investigates incremental development processes at a lower phase
level. The qualitative and semi-quantitative models developed present a
more complicated simulation structure with multiple transitions and itera-
tions.

Chapter 8 enhances qualitative and semi-quantitative simulation by introduc-
ing classic delays originated in system dynamics, and provides a compre-
hensive comparison between the qualitative/semi-quantitative simulation
and the conventional continuous approach. The models constructed for
the comparison also reveal the capability of the proposed approaches in
reflecting a long-term software evolution process at a high level.

Chapter 9 develops a pragmatic software project management approach based
on the proposed approaches, as well as provides a set of managerial methods,
tools and considerations derived from semi-quantitative simulation.

Chapter 10 argues the interactions between process simulation and process im-
provement, and proposes an initial version framework by integrating four
typical process simulation paradigms (including qualitative/semi-quantitative
simulation) and CMMI program for supporting the adoption of process sim-
ulation in a particular software organisation.

Chapter 11 summarises the capabilities and possibilities of qualitative/semi-
quantitative modelling and simulation in software process research, and
briefly discusses its alternative approaches. It ends at highlighting the con-
tributions and suggesting future research work.

Part I

BACKGROUND

9

Chapter 2

Software Engineering Process

The research object in this thesis is software engineering process, which is the
concentration of this chapter. Here, it starts with defining what a software pro-
cess means, and next review the two most important themes in software process
research: process improvement and process modelling. Software process simula-
tion, as an effective research method and tool of software process modelling, is
briefly introduced at the end.

2.1 Software Process

Software engineering process (also called software process) consists of a set of
logically ordered tasks or activities in order to deliver or to maintain a software
product [CKO92]. These activities involve the development of software from
scratch, and enhancement of existing systems by configuring and integrating off-
the-shell software or system components.

Software processes are important in software engineering practice not only
because they impose consistency and structure on a set of development activ-
ities, but for enabling us to capture our experiences and pass them along to
others [PA06]. In the layered framework of software engineering [Pre05], software
process is the glue that holds the technology layers and quality focus together,
and enables rational and timely development of software.

2.1.1 Activities in Software Process

In [FP97], Fenton and Pfleeger distinguish three classes of entities in software
development: process, product, and resource entities.

• Process: collection of software-related activities.

11

12 CHAPTER 2. SOFTWARE ENGINEERING PROCESS

Figure 2.1: Basic entities and their interactions of process

• Product: any artifacts, deliverables or documents that result from a pro-
cess activity.

• Resource: entities required by a process activity, e.g. tools, roles, and
actors.

The relationships among the process entities are shown in Figure 2.1 (based
on [Pfa01]). These three classes also correspond to the entities abstracted in
the three dimensions of software development identified in the latest TRISO-
Model [Li05, Li07], i.e. actors (SE Human), activities (SE Process), and artifacts
(SE Technology).

Although there are a variety of software processes, some ‘fundamental ’ activ-
ities are common to all software processes [Som07]:

1. Software specification The functionality of the software and constrains
on its operation must be defined.

2. Software design and implementation The software to meet the speci-
fication must be produced.

3. Software validation The software must be validated to ensure that it
does what the customer wants.

4. Software evolution The software must evolve to meet changing customer
needs.

When looking into these ’fundamental ’ activities, five generic types of pro-
cess activities can be identified as the ‘atom’ process activities composing them.
These ‘atom’ activities are applicable to the vast majority of software projects,
regardless of their size or complexity [Pre05]:

2.1. SOFTWARE PROCESS 13

• Communication involves heavy communication and collaboration with
the customer (or other stakeholders) and encompasses requirements gath-
ering and other related activities.

• Planning establishes a plan for the software engineering work that de-
scribes the technical tasks to be conducted, the likely risks, the required
resources, the work products to be produced, and a work schedule.

• Modelling encompasses the creation of models that allows the developer
and the customer to better understand software requirements and design.

• Construction combines the activities concerned with building software,
i.e. specification, design, and code generation.

• Evaluation covers the checking activities, i.e. validation, verification, and
testing.

• Deployment delivers software to the customer who evaluates the released
product and provides feedback.

Though the details of the software processes will be quite different in each
case in software development, these processes can be decomposed into the ‘fun-
damental ’ process activities, and further into the ‘atom’ activities that remain
the same.

2.1.2 Macro- & Micro-Process Research

Osterweil identified two complementary types of software process definition, which
can be characterised as macro-process, focused on phenomenological observations
of external behaviours of processes, and micro-process, focused on the internal
details and workings of processes [Ost05].

At macro-process level, the research is characterised as investigations of the
external behaviours of processes. Much work in this direction emphasises the
determination of appropriate measures of such external effects as product quality,
personnel productivity, and process efficiency. Some noticeable examples include
process capability determination and software cost estimation.

On the contrary, micro-process research focuses on investigation of the precise
specification of the details of software process in order to infer how those details
affect the external behaviours of the processes. The research at this level aims
to provide detailed, accurate, low-level definition of processes, and reasoning
capabilities that predict and explain the high level phenomena discovered by
macro-process research [Ost05]. Some examples of work in this direction include
the research on the identification of languages and semantic features in support
of precise process definition.

14 CHAPTER 2. SOFTWARE ENGINEERING PROCESS

Macro-process and micro-process denote two granularity levels of software
processes. Note that macro-process and micro-process are relative concepts. For
example, a software process, e.g. an iterative development, may consist of many
phases. They can be sequentially or concurrently executed. If the macro-process
research investigates the overall performance of the project, the corresponding
micro-process research could be the investigation of each phase (its inputs, out-
puts, and constraints) and the relationships between them. Nevertheless, if every
single phase is our research focus and viewed as ‘macro-process’, then the rela-
tive ‘micro-process’ zooms in to the detailed tasks and activities performed in the
phase.

A natural complementarity between these two approaches is becoming an
increasingly focused thread of software process research. The systematic integra-
tion of macro- and micro-process research may be carried out with the former
investigating gross external effects of process behaviours, and the latter identify-
ing the causes of these observed effects by examination of the internal structure
and details of the process itself [Ost05]. They are tangent and have much to offer
each other.

2.1.3 Process Engineering & Engineering Process

The term, process engineering, originated in the chemical industry and implies
the design of a series of unit operations, actions, or activities that produce a
desired product or end result. In software engineering domain, process engi-
neering employs engineering technology in support of definition, development,
measurement, modelling, assessment, improvement, and reuse of procedures and
responsibilities in conjunction with personnel and technology capabilities with
the intent to successful delivery of quality software product.

In [RV95], software processes are composed of two top subsets of processes:
engineering processes and non-engineering processes. They roughly correspond
to software process engineering (SPE) and business process engineering (BPE)
separately. The following sections in this chapter address the two most important
aspects of software process engineering, i.e. software process improvement (SPI)
and software process modelling (SPM), which are the fundamental concepts re-
lated to the research reported in this thesis. Examples of the latter (BPE) include
workflow research and enterprise framework modelling [ES05]. The relationship
between these two categories of processes is discussed in [Jef06].

2.2 Software Process Improvement

The existence of a software process is no guarantee that software will be deliv-
ered in budget and on time, or that it will meet the customer’s needs and exhibit
the technical specification. Process improvement means understanding existing

2.2. SOFTWARE PROCESS IMPROVEMENT 15

Figure 2.2: Relationship between software quality and the development process

processes and changing these processes to increase product quality and/or reduce
costs and development time [Som07]. The relationship between the software de-
velopment process and the resulting product, as presented by Wallmuller [Wal94],
is shown in Figure 2.2. Product quality goals determine setting the goals for the
development process; the achieved process quality eventually improves the quality
of the resulting software, and increases project success rate.

2.2.1 Process Improvement Process

Software Process Improvement (SPI) is a process itself, including a set of cyclical
activities. It is systematic approach to improving software processes in order
to improve software products. It borrows basic principles from Total Quality
Management (TQM), e.g. the ‘plan-do-check-act ’ cycle and the emphasis on long-
term commitment to customer quality by the entire development organisation.
It normally involves three principal stages [Som07]:

1. Process measurement Attributes of current project or the product are mea-
sured according to the goals of organisation involved in process improve-
ment.

2. Process assessment The current process is analysed, and process weakness
and bottlenecks are identified. Process models that describe the process
are usually developed during this stage.

3. Process change Changes to the process that have been identified during
analysis are introduced.

The steps of process improvement and the relationship between the software
process and the methods applied for measurement, assessment and improvement
are shown in Figure 2.3, which is revised based on [Pre05].

16 CHAPTER 2. SOFTWARE ENGINEERING PROCESS

Figure 2.3: Major steps and relations involved in process improvement

2.2.2 Process Improvement Frameworks

Many so-called SPI frameworks have been proposed over the last two decades,
such as the Capability Maturity Model (CMM) [PCCW93] & Capability Maturity
Model Integration (CMMI) [SEI02b, SEI02a] from Software Engineering Institute
(SEI), SPICE (ISO/IEC 15504), BOOTSTRAP [HMK+94], Six Sigma [HS00], and
ISO-9001:2000.

CMMI integrates quality recommendations for systems engineering, software
engineering, and integrated product and process development. While ISO stan-
dards are shaped for any manufacturing enterprise, CMMI is specially designed
for technology companies, especially those that deal in some form or fashion
with the design and development of software. More discussion on CMMI and its
relationship with process simulation modelling is included in Chapter 10.

Unlike ISO and CMMI, Six Sigma is not published or regulated by a central
body. It is a process improvement approach based on statistical analysis and
geared towards shaping process to reflect the voice of the customer. This ap-
proach measures quality by measuring a company’s ability to meet the needs
of its customers through process refinement and improvement. Therefore, it is
highly customer-focused and highly data-centric.

2.3. SOFTWARE PROCESS MODELLING 17

2.3 Software Process Modelling

A model is an abstraction of a real world object or system. Modelling a system
means capturing and abstracting the system’s components, relationships and be-
haviours, according to the model’s objective(s). The modelling activity normally
has the following phases: identification, definition, analysis, simulation, and val-
idation.

Software process modelling is an active aspect of software engineering research
and practice that has grown since the early 1980s. The objectives and goals of
software process modelling and simulation can be concluded as three levels, i.e.
cognitive level, tactical level, and strategic level, that are detailed in the next
chapter.

The result of process modelling is a process model. A software process model
consists of a set of elements or entities and their relationships with a well-defined
goal for representing and analysing the processes utilised in developing software.
The elements of a software process include activities, products, and roles. The
relationships among elements determine the process behaviours over time. Soft-
ware process models must have the capability of representation, comprehensive
analysis, and forecasting [CKO92].

2.3.1 Model Dimensions

The diversity of software processes is large. It reflects that modelling software
process is a complicated task. Depending on the modelling purposes and ap-
proaches, the process can be viewed in different dimensions. For the objective
of research, software process models may be considered as static or dynamic,
qualitative or quantitative, black-box or white-box, descriptive or prescriptive.

Static models refer to the number of elements of a system, and the level of
detail in which these elements are described. These models consist of a set of
entities and associated attributes, described in terms of variables and relations
defined on these. However, static models are not able to capture and represent
any sort of change over time of the system modelled. They are snapshots of the
essential characteristics of a part of the real world at a certain point of time.
In dynamic models, however, time plays an explicit and special role, i.e. the
variables have a time index. They employ the concepts of static models but
go beyond them by describing behaviour of elements or changes in the complex
interactions and by allowing modelers to observe process performance over time.

The decision whether a model is qualitative or quantitative depends on the
scales on which the variables contained in the model are defined [FP97], as well as
the representation and completeness of knowledge. This thesis introduces semi-
quantitative modelling of software process to achieve tradeoff between traditional
quantitative and qualitative approaches, and emphasises on the qualitative and

18 CHAPTER 2. SOFTWARE ENGINEERING PROCESS

semi-quantitative modelling approaches in software process research.
A black-box view implies that the model transforms observable inputs into ob-

servable outputs, whereas the values of internal variables and specific functions
implied by the model’s components (modules) are unobservable [Kle08]. On the
contrary, white-box methods explicitly define the functions and relationships in-
side the model, where its internal structure is observable to modeler.

Software process models can also be distinguished by two modelling purposes:
descriptive and prescriptive process modelling [BKHV97]. Descriptive modelling
captures the current software development practices and organisational issues, i.e.
process enactment. Prescriptive modelling specifies how software development
practices and related organisational issues should be.

The combinations of the above dimensions present a diversity of software
process models. The following subsections identify and detail four major types
of software process models, which relate strongly to the research reported in this
thesis.

2.3.2 Prescriptive Reference Models

Prescriptive Reference Models (PRMs) are static and generic models that can be
grouped into life cycle process models and agile process models. These models
are not definitive descriptions of any specific software processes. Rather, they
are abstractions of the process that can be used to explain different approaches
to software development.

Life-Cycle Process Models

Life-cycle process models (LPMs) prescribe software development processes in
stages or phases. Typically these stages are distinguished by the activities per-
formed during each stage. A stage is usually demarcated by entry criteria, which
must be satisfied before activities of the stage undertaken, and exit criteria, which
must be satisfied to complete the stage.

The life-cycle production process model first appeared in the 1950’s as a
result of its use in developing air defence software systems, but was not popu-
larised until the 1970’s when it became known as the “waterfall model” [Roy70].
This model describes the software development structured by a cascade of phases
(i.e. 1- requirements definition, 2- system & software design, 3- implementation
& unit testing, 4- integration & system testing, and 5- operation & mainte-
nance [Som07]), in which the outputs of one phase constitutes the inputs of the
next phase. The inability of the waterfall model to describe relationships among
activities necessary to ensuring successful project outcomes led to the develop-
ment of alternative models.

The evolutionary model is characterised by a prototype that is evolved into a

2.3. SOFTWARE PROCESS MODELLING 19

product. The incremental model is featured by the development and delivery of
functional increments until the product is completed for final release. The spiral
model [Boe86] creates a risk-driven approach to software process. It represents a
process that iterates through stages of planning, risk analysis, engineering, and
evaluation. The spiral representation reflects the product functionality being
increased with each iteration.

Rational Unified Process (RUP), an iterative software development process
defined in [JBR99], combines the elements of all of these models. It seeks to
provide quality software within time constraints and budget limitations. The
object-oriented approach is used within RUP iterations and each iteration results
in a prototype.

Agile Process Models

Since 1990s, many small-to-medium enterprises (SMEs) emerged to meet rapid
changed market demand in software industry. However, the conventional life
cycle process models imply a uniform and ordered sequence of phases in software
development but lack sufficient detail to support process enactment, which is
unrealistic due to the quick rhythm in change.

The overall goal of agile development is to satisfy the customer by “early and
continuous delivery of valuable software”. Agile processes are not conventional
prescriptive processes; they do not describe what to do in every circumstance. In-
stead, agile process models (APMs) simply offers frameworks and sets of practices
that emphasise maneuverability and adaptability. By building flexibility into the
development process, agile methods can enable customers to add or change re-
quirements late in the development cycle. Agile Methods contain a collection of
agile process models. Some best known examples of agile process models include
Dynamic System Development Method (DSDM) [Sta97], eXtreme Programming
(XP) [Bec00], Crystal [Coc02], Scrum [SB01], etc.

2.3.3 Analytic Summary Models

Analytic Summary Models (ASMs) consist of relationships defined with mathe-
matical formulae among selected model variables [Kel88]. These models normally
focus on high level quantitative relationships between input and output param-
eters of the software development process. These models are considered to be
a ‘black box ’ because the details of processes are not explicitly presented in the
models. The input variables deal with the manageable aspects of the modelled
process, such as estimated project size, product requirements, personnel skills and
experience, given development environment, etc. The typical output variables, on
the other hand, can be observed from external of the process, including required
workforce, elapsed time, project expenditure, and expected product quality. Of-

20 CHAPTER 2. SOFTWARE ENGINEERING PROCESS

ten these models contain empirically based relationships that can estimate the
impact and predict the effect on dependent variables included.

Most of existing ASMs are static and work as black-boxes, and a large ma-
jority of them are quantitative. They are developed based on empirical data, but
often need to be further calibrated by the real process they are applied in.

In practice, summary models can support management decision making re-
garding the issues relating project planning, in particular software cost estima-
tion. Some well-known examples in this category include the regression mod-
els (RMs) and analogy models of cost estimation, such as SLIM [Put80], CO-

COMO [Boe81] & COCOMO II [BAB+00], and ANGEL [SS97]. However, these
models are not meant to provide the manager with dynamic and in-progress
feedback.

2.3.4 Explanatory Structural Models

Explanatory Structural Models (ESMs) capture the interrelations, dependencies,
and structure of software development at a deeper level than ASMs. So if ASMs
consider the software process as a black box, the ESMs consider the process as
white box, in the other words, “several black boxes making up a system”.

Depending on the analysis requirement, ESMs can be static or dynamic. One
example of the static structural models is Bayesian Belief Nets (BBNs), which
is based on Bayesian probability theory. Fenton et al. have modelled a variety
of processes and aspects of software development by using BBNs, such as risk
assessment, resource planning, and quality prediction [FMN+04, FNM+07].

A dynamic example of an ESM is the system dynamics model (SDM) de-
veloped by Abdel-Hamid and Madnick [AHM91]. This model consists of seven
sectors that capture the rich relationships among workforce, productivity, qual-
ity, and activities completed. Each sector is devoted to specific high level pro-
cess blocks of software development, quality assurance, testing, and manage-
ment. Some continuous work using dynamic structural modelling which has been
based on Abdel-Hamid and Madnick’s pioneer work includes [Mad94], [Tve96],
[Rus98], [Hou00], and [Pfa01].

ESMs can be quantitative or qualitative as well. However, most of previous
models emphasise the quantitative aspect of this modelling approach. One major
contribution of this thesis is to provide a comprehensive exploration of the use of
qualitative dynamic models using qualitative simulation (QSIM).

2.3.5 Descriptive Enactment Models

Process models, as defined in [CKO92], provides operational guidance regarding
the critical sequence of process steps, information flows, entity flows, and organ-
isational policies and responsibilities. Thus, these models possess the capability

2.4. SOFTWARE PROCESS SIMULATION 21

to check the integrity of the process, as well as support process improvement. As
‘process models’, in the broad sense, include the previously mentioned models (i.e.
PRM, ASM, and ESM). Here, the term, Descriptive Enactment Model (DEM) is
used to refer to a fine-grained process model.

These models are distinct from ASMs and ESMs because they delve into
the details of the process used to develop software. For this reason, operational
modelling corresponds to the micro-process research.

Many tools, methods, and languages have been developed for descriptive mod-
elling of software process, such as Little-JIL [WCL+00], Adele [EVL+03].

On the other hand, DEMs can be dynamic and able to be integrated with dy-
namic ESMs. One example of dynamic DEMs is discrete-event simulation (DES)
model, which were comprehensively reflected by the work reported in [Raf96]
and [Mar02] .

Table 2.1 concludes and highlights the advantages and limitations of these four
process modelling approaches. Table 2.2 identifies the characteristics of these
process models in model dimensions.

Table 2.3 reflects specific type of process model in support of the research
on different software process levels. The ASMs and ESMs correspond to macro-
process research in software engineering process domain. On the contrary, most
of PRMs and DEMs emphasise micro-process research. The interpretation and
integration between these models can offer more insights into the software pro-
cesses investigated. For instance, our work reported in [HZJ06] and [HZJ08]
attempts to bridge the gap between PRM and real process enactment (DEM) by
conducting process enactment analysis (PEA).

The selection of process models depends primarily on the requirements of
the prospective model user (e.g. describing a current or planned process, or
predicting process outcomes), the process requiring modelling (e.g. micro- or
macro-process), and the information available about the process (i.e. descriptive
information or quantitative information).

2.4 Software Process Simulation

A simulation model can be a static or dynamic model that is meant to be solved by
means of experimentation. Monte Carlo Simulation is a typical static simulation
method. However, most process simulation models are dynamic and executable,
which means model’s behaviours vary over time. A simulation model is the
only method to study new, non-existent complex dynamic systems for which
analytic or static models provide at best a low fidelity model with corresponding
low accuracy [Car03]. Accordingly, a good simulation model provides not only
numerical measures of system performance, but insights into system behaviours.

22 CHAPTER 2. SOFTWARE ENGINEERING PROCESS

Table 2.1: Software process modeling approaches

Advantages Limitations

P
R

M
s

•Provide high level process guidance •Lack operational detail
•Used for reference process models •Do not support prediction & eval-

uation
•Tailorable for specific process •Do not support sensitivity analysis
•Easy for understanding & commu-
nication

A
S

M
s

•Provide system level focus •Difficult to understanding
•Good for sensitivity analysis •Tie to mathematical & statistical

theories employed
•Rely on empirical data •Difficult to handle change
•Efficient reuse •Do not support operational guid-

ance
•Capture the effects of selective re-
lationships

•Do not support handling excep-
tional circumstances

•Support external validation &
benchmarking

E
S

M
s

•Provide high level focus on struc-
ture

•Difficult to handle exceptional cir-
cumstances

•Capture causal-loops relationships •Do not provide operational guid-
ance

•Capture chain-effected interdepen-
dencies

•May overlook specific process is-
sues

•Can be based on empirical data •May contain subjective assump-
tions

•Built by accumulation of analyz-
able formulae

•Time-consuming model develop-
ment

•Portions or relations can be reused
•Support external validation &
benchmarking
•Good for in-depth understanding

D
E

M
s

•Provide operation level focus •Only single process focused
•Detail process & provide opera-
tional guidance

•Require detailed process knowl-
edge

•Support process definition and
management

•Difficult for reuse

•Support multiple levels of abstrac-
tion

•May contain subjective inputs

•Make use of analytical formulae &
empirical data

•May overlook system level KPIs

•Support handling exceptional cir-
cumstances

2.4. SOFTWARE PROCESS SIMULATION 23

Table 2.2: Typical software process models

Example
St

at
ic

Dyn
am

ic

Qua
lit

at
ive

Qua
nt

ita
tiv

e

Blac
k-b

ox

W
hit

e-b
ox

PRMs l l l l LPMs APMs
ASMs l l l RMs
ESMs l l l l l BBNs SD QSIM
DEMs l l l l l DES PEA

Table 2.3: Process models on different levels

Macro-process Micro-process
Static ASMs ESMs PRMs DEMs
Dynamic ESMs DEMs

However, simulation is often time-consuming, and is composed of the following
steps [Car03, BCNN05]:

1. Initiation: problem formulation, setting of objectives, and definition of
model scope;

2. Model development: model conceptualisation, assumptions documenta-
tion, and data collection & analysis;

3. Verification & validation

4. Experimentation, analysis & reporting: experimental design, produc-
tion runs & analysis, and documentation & reporting.

Software process simulation has become an increasingly active thread in soft-
ware process modelling research. Basically, the simulation can be conducted at
two process research levels, i.e. macro-process and micro-process levels (shown in
Table 2.3). The important examples of dynamic models at these two granularity
levels are ESMs and DEMs respectively.

System dynamics (SD) models are the most constructed dynamic ESMs. They
use the widely applied continuous simulation paradigm which captures higher
level project or product considerations and shows how feedback loops connect a
variety of business characteristics.

As the common approach to build a dynamic DEM, discrete event simulation
is the modelling of systems in which the state variable changes only at a discrete

24 CHAPTER 2. SOFTWARE ENGINEERING PROCESS

set of points (events) in time. This approach is excellent at capturing well-defined
process tasks, incorporating, queueing and scheduling considerations.

Moreover, the systematic review [ZKP08a] (cf. Chapter 3) identified 10 sim-
ulation modelling paradigms (including SD, DES, etc.) in support of software
process research during the period from 1998 to 2007. Most of them are detailed
in Chapter 3.

2.4.1 Important Simulation Models

Process simulation methods were introduced to software engineering by Abdel-
Hamid’s [AHM91] and others’ pioneering efforts in the late 1980s. Their model
captures the managerial aspects of a waterfall software life-cycle and was re-
garded as the starting point for other subsequent models of either the entire
development process or parts of it. In the last two decades since then, software
process simulation modelling (SPSM) has been emerging as an effective tool to
help investigate and improve software processes in software engineering practice.
Primarily most innovative research into SPSM models appeared in PhD theses
which are summarised chronologically below.

Madachy developed a dynamic simulation model of inspection-based software
life-cycles process to support quantitative process evaluation and risk assess-
ment [Mad94]. His SD model serves to examine the effects of inspection practices
on cost, schedule, and quality throughout the project life-cycle by interrelating
flows of tasks, errors and personnel in each development phase.

Tvedt developed a SD model of an incremental life-cycle and investigated
the impact of inspections on the production cost, the development time, and the
number of defects in the delivered system [Tve96].

Raffo developed a DES model based on ISPW-6 process example [KFF+91],
to quantitatively evaluate the performance of alternative software processes and
process changes in terms of quality, cost and schedule [Raf96].

Rus described the use of process simulation to support software project plan-
ning with given quality requirements [Rus98]. The modelling effort focused on
software reliability, but is applicable to achieving tradeoff between software qual-
ity, project cost, and delivery time. The SD model was integrated into a decision
support system.

Houston developed an SD model in supporting management of particular
risks to software projects [Hou00]. This model identifies the significant software
development risk factors, and experiments upon their effects to software projects
using stochastic simulation.

Pfahl designed an SD-based framework for Integrated Measurement, Mod-
elling, and Simulation (IMMoS). This framework supports both strategic and
project management in software organisations by providing guidance on devel-
oping and using quantitative process simulation models as a source for learning

2.5. SUMMARY 25

and improvement [Pfa01].
Martin developed a hybrid simulation model of the software development pro-

cess that combines the two major paradigms: SD and DES. This model allows the
investigation of the impact of changes to process within the context of different
assumptions about the project environment [Mar02].

The 1998 ProSim workshop∗ was the first major research event concentrating on
SPSM. The state-of-the-art of SPSM after this event is systematically reported
in Chapter 3.

2.5 Summary

This chapter introduces the modelling object in this thesis, i.e. software engi-
neering process, as well as explains the fundamental concepts to my research, e.g.
software process improvement, software process modelling and simulation.

The process simulation models mentioned in this chapter only consider the
quantitative aspect of dynamic process modelling. None of them consider the
possibility of the qualitative alternatives.

The next chapter introduces the software process simulation modelling (SPSM)
with reference to a comprehensive systematic literature review of SPSM over the
decade from 1998 to 2007.

∗International Workshop on Software Process Simulation Modelling

Chapter 3

Software Process Simulation

Modelling

Chapter 2 provides a concise introduction to software process and process mod-
elling. Software Process Simulation Modelling (SPSM) has become an increas-
ingly active research area in software process domain since it was introduced into
the software engineering domain by the pioneering work summarised in [AHM91].
In the last two decades, the number of publications in this area has been grow-
ing. This approach provides effective tools to help evaluate and manage process
changes made to software projects and organisations.

This chapter serves as an introduction to SPSM. First, it describes the state-
of-the-art of SPSM based on the results of a well-defined and constrained sec-
ondary study, a systematic review∗. Next, the outputs of the systematic review
is further used to frame the introduction to SPSM, i.e. the answers to the ‘why ’,
‘what ’ and ‘how ’ questions. The important trends and directions are also discov-
ered based on the review results. Finally, the results are used for design of the
research reported in the chapters in Part III of this thesis.

3.1 State-of-the-Art: A Systematic Review

3.1.1 Background

As a major research event of SPSM, the ProSim workshop series has taken place
since 1998, and focuses on the state-of-the-art theories and applications of SPSM
research in addressing real-world problems. After that, during the last ten years,
the related research community and the number of publications has been growing.

∗This systematic review has been partially reported in [ZKP08a], [ZKP08b] and [ZKP08c].

27

28 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

In ProSim’98, Kellner, Madachy, and Raffo (KMR) discussed a variety of
aspects of software process simulation in their widely-cited paper, “Software pro-
cess simulation modelling: Why? What? How?” [KMR99], such as the rea-
sons for undertaking simulations of software process models, and simulation ap-
proaches/paradigms. However, after almost 10-years (1998-2007) progress in soft-
ware process simulation, it is appropriate to review and update the status of
SPSM research, to summarise the 10-year progress, best evidence, and propose
the possible directions of our future research activities in this domain.

From this point, this chapter reports the preliminary results of a systematic
literature review of papers published in the proceedings and journals associated
with ProSim since 1998. The review reported here is part of a larger study and
presents only a subset of the research questions and research literature addressed
by the larger study. As an anniversary review of the previous work, this chapter
also includes part of the latest continuation and enhancement to the topics in the
KMR’s paper.

3.1.2 Systematic Literature Review

In 2004, Kitchenham et al. [KDJ04, DKJ05] suggested software engineering re-
searchers should adopt “Evidence-Based Software Engineering” (EBSE). EBSE
aims to apply an evidence-based approach, which was initially developed in
medicine and is being adopted in many domains, to software engineering research
and practice. In this context, evidence is defined as a synthesis of best quality
scientific studies on a specific topic or research question. The main method of
synthesis is a Systematic Literature Review (SLR).

In contrast to an ad-hoc literature review, a systematic literature review (also
known as systematic review) is a methodologically rigorous review of research
results. It is a means of identifying, evaluating and interpreting all available
research relevant to a particular research questions, or topic area, or phenomenon
of interest [Kit07]. A systematic review is a form of secondary study, the identified
individual studies contributing to a systematic review are called primary studies.

An SLR involves several discrete activities, which can be grouped into three
main phases: 1) planning the review, 2) conducting the review, and 3) reporting
the review. A pilot review is recommended for the reviews including multiple
research questions or a large set of primary studies.

3.1.3 Methods

This study follows Kitchenham’s methodological guidelines for systematic re-
views [Kit04, Kit07], as adapted for PhD candidates. The primary objective of
this research is to provide insights about the evolution of SPSM research dur-
ing the last 10 years. This chapter reports the review process and includes the

3.1. STATE-OF-THE-ART: A SYSTEMATIC REVIEW 29

preliminary results from the current stage. Three researchers, from three differ-
ent software engineering research organisations, were involved in this research,
including one principal reviewer, one secondary reviewer, plus another researcher
acting as the expert panel.

Research Questions

The systematic review is intended to answer the following research questions.
This chapter addresses the review and answers to question 1 to 5, which are
highly related to the objective of this chapter, i.e. introduction of SPSM and
research design of this thesis research.

Q1. What are the purposes or motivations for SPSM in the last decade’s prac-
tice? Q1 can be split into two sub-questions: Q1.1 How are the purposes
identified by KMR supported by SPSM practice in the last ten years? Q1.2
Are any updates required?

Q2. Which simulation paradigms have been applied in the last decade, and how
popular are they in SPSM? Are there any new techniques emerging during
this period?

Q3. Which simulation tools are available for SPSM and have been in use in the
last decade? And how popular are they?

Q4. On model level, what are problem domains and model scopes focused on by
software process simulation models?

Q5. On parameter level, what are the output variables considered when devel-
oping simulation models of software process?

Search Process

As the review of 10-years’ efforts in SPSM, the time frame of sources for this
study is constrained to the period from 01/01/1998 to 31/12/2007. Because the
ProSim workshop series (which continued as a special track of ICSP since 2007)
are regarded as the most important forum of SPSM, the sources related to ProSim
(including ProSim workshop, simulation track of ICSP, and special issues of JSS
and SPIP) are the primary data sources for this study. The corresponding sources
and search strategy are summarised in Table 3.1.

Manual search was carried out in the ProSim conference proceedings and
special issues of the journals published within the proposed time frame during
the review. There are over 200 candidate papers. When there are a large number
of research questions and a large set of potential primary studies, Kitchenham
recommends undertaking a pilot review after the planning phase [Kit07]. The
purposes of a pilot systematic review is “to assess and refine review protocol, and

30 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

Table 3.1: Selected sources of the systematic review

Source Acronym Period Search method
Proceedings of ProSim Workshop ProSim ’98 - ’06 Manual
Proceedings of ICSP Conference ICSP ’07 Manual
Journal of Systems & Software JSS ’99 - ’01 Manual
Journal of Software Process: SPIP ’00 - ’08 Manual
Improvement & Practice

further to secure the quality of the systematic review”. The pilot review chose
the papers published in the special issues (SPIP) of ProSim Workshop 2005 and
2006 (10 latest journal papers available at the start of the pilot review), which
reflect the current state and progress of SPSM.

Inclusion and Exclusion Criteria

There are two major steps in primary study selection: an initial selection and a
final selection. The theme for this systematic review, “software process simulation
modelling” contains two keywords: ‘software process’ and ‘simulation modelling ’.
Therefore, as the inclusion criteria, the primary studies identified must employ
simulation paradigm(s) for software process research; in the other words, the
process model or modelling in the publications can be used for simulation studies.

From the candidate studies retrieved by data sources (Table 3.1), an initial
selection was obtained by reviewing the title, abstract, and keywords of the pub-
lications. When an exclusion decision could not be made, the paper’s structure,
conclusion, and reference were also checked. Unless studies could be excluded
based on the above criteria, full copies of the papers were obtained and included
in the initial selection.

Next, a final selection that satisfied the selection criteria was obtained from
the initially selected papers. The following articles were excluded from the pri-
mary studies:

1. Editorials, position papers and keynotes;

2. Abstracts, posters and slides alone;

3. Proposals or uncompleted work.

In addition, the review only included the most recent and comprehensive ver-
sions of duplicated papers or continued studies. For instance, some SPSM papers
published in the ProSim workshop series were selected for publication in special
issues of journals. To avoid duplicate aggregation, the journal articles were only

3.1. STATE-OF-THE-ART: A SYSTEMATIC REVIEW 31

selected and reviewed as they normally enhanced the proceedings papers with
more details. However, to track any trends over time, the first publication date
and source of the original research paper was recorded during data extraction.
The selection process was performed by the principal researcher.

Study Classification

Initially two broad categories of publications were identified by briefly reviewing
the most recent papers published in SPW/ProSim 2006 and ICSP 2007 (16 papers
on the special tracks of process simulation, the most recent papers by “planning
the review” phase). One category includes the specific process simulation models
or simulators, and their applications; the other discusses the methodology and
guidelines for process simulation modeling. Both categories are relevant to most
research questions (except Q5). Furthermore, based on the results of the pilot
review, the study classification was refined as four categories as follows:

A. Software process simulation models or simulators;

B. Process simulation modelling paradigms, methodologies, and environments;

C. Applications, guidelines, and solutions for adopting process simulation in soft-
ware engineering practice;

D. Experience reports of SPSM research and practice.

These four types of studies focus on different aspects of software process simu-
lation research, and may give answers to the different research questions and from
different points of view. Figure 3.1 shows the relationships between these study
categories and their roles in process modelling and simulation adoption. Category
B studies introduce and provide effective paradigms, methods and tools for con-
structing process simulation models or simulators (Category A studies). These
simulation models can be further adopted in software industry by following the
practical solutions or guidelines (Category C studies) in given organisation’s con-
text. The experience (Category D studies) collected from modelling and adoption
can be used as feedback to improve SPSM research and practice.

Table 3.2 defines the concrete criteria (questions) to facilitate the effective
identification of each study category. The categorisation was not a mutually
exclusive one, i.e. it is possible that a specific study falls into more than one
category. For example, one case could be that the author(s) introduced a novel
simulation paradigm to software process research (Category B), and then de-
scribed a simulation model for a specific problem domain by using this paradigm
as an example (Category A). These studies were allowed to be mapped to mul-
tiple categories.

32 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

Figure 3.1: Relationships between study categories

Table 3.2: Questions for identifying study categories

Category Question for identification
A (a) Is a new process simulation model or simulator presented in

the study?
(b) Is a specific process simulation model or simulator applied in
a new software engineering domain or practical context?

B (a) Compared with previous studies, is a new simulation modelling
paradigm introduced into SPSM?
(b) Is a new process simulation environment or tool developed and
described?
(c) Is a methodology or framework proposed or developed for im-
proving SPSM?
(d) Are any factors associated to the modelling of SPSM research
discussed in the study?

C (a) Is a new application or solution based on SPSM introduced to
software engineering practice?
(b) Is a guideline of directing SPSM being adapted into one specific
problem or context proposed or developed?

D (a) Does the study report any experience (qualitative or quanti-
tative) of applying SPSM in industry?
(b) Does the study report best practices or lessons learnt in SPSM
research?
(c) Is a process simulation model or simulator built or calibrated
with empirical data?

3.1. STATE-OF-THE-ART: A SYSTEMATIC REVIEW 33

Data Extraction

The major attributes to be collected for each study through the review are listed
in Table 3.3. They are grouped by the study categories. The ‘Q’ column indicates
which research question(s) is the attribute collected for answering.

The quality of a primary study is assessed according to a question checklist,
which specifies 20 questions to study categories. To maintain the emphasis of this
chapter, the detail of quality assessment is not included here, but can be found
in Appendix A.

3.1.4 Results

Primary Studies

In total, 209 papers have been published in the ProSim sources, including the
workshop and conference (ICSP) proceedings and the special issues of JSS/SPIP.
They form a comprehensive body of knowledge of software process simulation and
modelling. Unfortunately, because the electronic proceedings were not available
for ProSim’98 - ’00, nine papers could not be evaluated in the current stage of
review. Although the author(s) for each missing paper were contacted individ-
ually to request the electronic version, only three of them had responded to us.
Hence, there are around 4.3% (9 out of 209) papers missing from the review at
the current stage. Nevertheless, the low proportion will not influence the review
results significantly, particularly for the recent state of SPSM.

By carefully reviewing their titles, abstracts, keywords, conclusions and ref-
erences, 96 articles were selected from the publications in ProSim sources and
identified as the primary studies. The total number of papers per year and
source are summarised in Table 3.4. The full list of primary studies and their
corresponding categories are included in Appendix A.

Data extraction was performed by two researchers: the principal and sec-
ondary reviewer. The former was responsible for reviewing all primary studies,
extracting data, and assessing study quality. The other reviewer selected approx-
imately one third of the papers and performed a secondary review for validation
of the extraction and assessment. When the disagreement could not be resolved,
the final decision was made by the principal researcher.

Table 3.5 summarises per year the number of different countries the first au-
thors came from. Contributions to ProSim were mainly from 13 countries. The
ProSim workshop became more international since 2000, when the first authors
from 7 countries were involved in ProSim 2000. After that, the number of par-
ticipating countries varied between 4 and 6.

The results also indicate that USA is the leading country of SPSM research
in terms of ProSim publications, where 41 (49%) studies were originated. It is
followed by Germany (18%) and UK (17%).

34 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

Table 3.3: Attributes collected during data extraction

Q Attribute Description
Common Attributes
1 Purpose category The specific purpose for the simulation model or

modelling. It can be one of purposes identified by
KMR, or any new ones.

2 Modelling Paradigm The paradigm used to build the simulation model.
It can be one of identified by KMR, or some other
approaches.

Attributes for Category A
4 Problem domain The specific problem domain in software engineer-

ing, e.g. open-source, evolution.
5 Model complexity Including single-module model or integrate model,

the number of modules and levels of the simulation
model.

3 Simulation tool The simulation tools used in executing the process
model.

5 Model scope Including the process phase(s) of life-cycle, and time
span.

5 Output variables The information produced through simulation an-
swers the questions specified with the purpose of
the model.

Attributes for Category B
4/6 Study’s theme The emphasised and discussed aspects of SPSM in

the study.
Attributes for Category C
4/6 Focused questions The specific questions related to SPSM raised in the

study.
4/6 Proposed solution The corresponding answers given in the study.
6 Application effects The expected effects caused by the solution.
Attributes for Category D
6 Experience source Where does the experience come from: Industry,

government, education/academia, or somewhere
else.

6 Outcome of applying
SPSM

The result of the application experience, i.e. posi-
tive, negative, or mixed.

1/6 Supported arguments The arguments supported by the experience report.

3.1. STATE-OF-THE-ART: A SYSTEMATIC REVIEW 35

Table 3.4: Sources identified as primary studies

’98 ’99 2000 ’02 ’03 ’04 ’05 ’06 ’07 Total
Proc. 15 13 21 0 32 27 24 8 8 148
missing 2 1 6 0 0 0 0 0 0 9
JSS 11 0 12 0 0 0 0 0 0 23
SPIP 0 10 0 7 5 7 7 2 2 40
selected 13 9 14 7 16 10 13 6 8 96

Table 3.5: Number of countries involved in ProSim series

’98 ’99 2000 ’02 ’03 ’04 ’05 ’06 ’07 Total
Number
of country

3 3 7 5 5 5 6 4 6 13

Figure 3.2: Summary of study category distribution

Classification

Four study categories were identified in the pilot review. By reviewing the full
papers, all primary studies were classified into at least one category (A, B, C,
and D), as defined in Section 3.1.3. Figure 3.2 shows the distribution of studies
per category and year.

Most primary studies were identified as Category A, for both the decade (58%)
and each year separately. In total, there have been 61 software process simulation
models (simulators) developed and published in ProSim series during the last 10

36 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

years. Only 18 primary studies (19%) were identified as Category C, while 29%
of primary studies were of Category B and 23% of Category D. 22 studies were
classified into two categories, and 3 studies were identified as combinations of
three categories.

Most studies (17 papers) of Category B discussed methods of constructing
process simulation model more correctly, effectively and efficiently. Some papers
introduced novel simulation paradigms (8 studies) and simulation environments
(8 studies). 6 studies dealt with the strategic questions, or presented perspectives
of SPSM. KMR’s paper [KMR99] is the best known example among them.

The low proportion of Category C study implies that modelers may need to
pay more attention to the methodologies and guidelines needed to support the
application and adoption of process simulation modelling in software practice.

3.2 Why Simulation?

3.2.1 Purposes

In the first ProSim Workshop (1998), Kellner, Madachy, and Raffo presented
a wide variety of reasons for undertaking simulations of software process mod-
els [KMR99]. Primarily, process simulation is an aid to decision making. They
further identified six categories of purposes: 1) strategic management; 2) plan-
ning; 3) control and operational management; 4) process improvement and tech-
nology adoption; 5) understanding; 6) training and learning.

During the process of the review, the difficulty in clearly handling the purpose
identification was gradually perceived in terms of the definitions addressed by
KMR. They have two major shortcomings: 1) ambiguity to some extent exists
among their 6 purposes; 2) since the examples given in KMR’s paper were mainly
derived from the publications in ProSim’98 and literature prior to the event, the
scope of their purposes is limited; 3) their research and arguments were not based
on a systematic and rigorous review methodology, like the systematic literature
review.

For instance, in terms of their categorisation, ‘planning ’ is different from
‘strategic management ’. But the latter usually consists of the former at the or-
ganisational level or on a long-term scale. As another example, process simulation
can help predict software size in open source development. However, according
to the definition in PMBoK [PMI04], ‘planning ’ is the process that contains the
activities of ‘define scope’, ‘develop management plan’, ‘identify and schedule
activities and resources’, which are not the cases in open-source development.
Therefore, ‘planning ’ needs to be refined as ‘prediction and planning ’ to fit such
change.

To clearly present the purposes for SPSM research identified from the primary
studies, they were grouped at three levels:

3.2. WHY SIMULATION? 37

Table 3.6: SPSM purposes, levels, and model scopes

Sc
op

e

si
ng

le
ph

as
e

m
ul

ti
-p

ha
se

pr
oj

ec
t

m
ul

ti
-p

ro
je

ct

pr
od

uc
t

ev
ol

ut
io

n

lo
ng

-t
er

m
or

g.

Purposes Cognitive Tactical Strategic
Understanding l

Communication l

Process investigation l

Training & learning l

Prediction & planning l l

Control & operational mgmt l l

Risk management l l

Process improvement l l

Technology adoption l l

Tradeoff analysis & optimising l l

1. Cognitive level

2. Tactical level

3. Strategic level

They can be further detailed as 10 purposes. Table 3.6 shows the their as-
cription and relationship with model scope (see Section 3.3). The cognitive level
contains the purposes of 1) understanding, 2) communication, 3) process investi-
gation, 4) training and learning. On the tactical and strategic levels purposes
are similar. They are 5) prediction and planning, 6) control and operational man-
agement, 7) risk management, 8) process improvement, 9) technology adoption,
10) tradeoff analysis and optimising. They differ in scope and impact between
the two levels.

3.2.2 Benefits

Software process simulation has several advantages over the other methods of
modelling and analysing software development processes, such as:

• Dynamic simulations model the structure and behaviour of the develop-
ment process in varying levels of degree using flows and/or discrete events.
As a result, a simulation can address the dynamic and human factors of
development processes.

38 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

• Feedback loops enable a dynamic simulation to model the nonlinear be-
haviours exhibited in a development process.

• Though a simulation uses calculations, it does not require that an un-
derlying complicated mathematical model of the system has been identi-
fied. Therefore, it avoids factor independence required in regression analy-
sis [Boe81].

3.3 What to Simulate?

Many aspects of what to simulate are inter-related and driven based on the model
purposes and key questions described in Section 3.2. This section reflects three
aspects of what to simulate derived from the systematic literature review, in terms
of 1) problem domains, 2) model scopes, and 3) output variables, which are later
used for the research design of this thesis work in Section 3.6.

3.3.1 Problem Domains

Problem domain is the primary aspect to answer what to simulate. It identifies
the problem(s) in software engineering that the simulation model investigates. It
further determines the model’s structure, input parameters, and output variables.
The systematic review extracted 19 problem domains from Category A studies
(shown in the leftmost column of Table 3.7). ‘Generic development ’ models the
normal development process of software project. Among other domains, ‘software
evolution’ has been the most frequently modelled area.

3.3.2 Model Scopes

Model scope specifies the boundary of a simulation model in two dimensions:
time span and organisational breadth. To more properly review and classify the
model scopes of the published simulation models, the scopes were extended from
5 (defined by KMR) to 7:

• single phase (e.g. some or all of design or testing phase)

• multi-phase (more than one single phase in project life cycle)

• project (single software project life cycle)

• multi-project (program life cycle, including multiple, successive or con-
current projects)

• product (software product life cycle, including development, deployment,
and maintenance.)

3.3. WHAT TO SIMULATE? 39

Table 3.7: Modelling problem domains vs. model scopes

Domain Sc
op

e

si
n

gl
e

p
h

as
e

m
u

lt
i-

p
h

as
e

p
ro

je
ct

m
ul

ti
-p

ro
je

ct

pr
od

uc
t

ev
ol

u
ti

on

lo
ng

-t
er

m
or

g.

un
kn

ow
n

or
n/

a

T
ot

al

generic development 9 1 10
software evolution 1 7 8
software process improvement 1 1 1 3 6
incremental development 1 2 1 1 5
requirement 2 1 1 1 5
open-source development 1 1 2 4
global development 1 3 4
software economics 1 1 1 3
software product-line 1 1 2
agile process 1 1 2
quality assurance 1 1 2
acquisition/outsourcing 1 1 2
software engineering education 2 2
software test 1 1
software design 1 1
software services 1 1
productivity analysis 1 1
risk management 1 1
software reliability 1 1
subtotals 7 4 19 1 2 8 2 9

• evolution (long-term product evolution, including successive releases of
software product, i.e. software product line)

• long-term organisation (strategic considerations or planning spanning
releases of multiple products over a substantial time span)

Table 3.7 shows the relations between modelled domains and scope extracted
from Category A studies. Notice that the number in the ‘subtotal’ row is not
always the exact sum of the column. This is because some studies modelled
multiple domains, e.g. a combination of global development and evolution.

‘project ’ is the most frequently modelled study scope, particularly for ‘generic
development ’. ‘evolution’ is the next most studied process scope.

40 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

Table 3.8: Summary of simulation outputs

Output Description Number
of studies

Percentage

Time Project schedule or elapsed time 20 35.7%
Effort Effort or cost 16 28.6%
Quality Product quality or defect level 11 19.6%
Size Requirement size or functionality 11 19.6%
Resource Resource or staffing level 7 12.5%
Plan Project or development plan (e.g.

task allocation)
3 5.4%

ROI Return on investment or
cost/benefit analysis

2 3.6%

Productivity Development productivity 1 1.8%
Market share Product market share 1 1.8%
Index Nominal index 1 1.8%
Behaviour Behaviour patterns 1 1.8%
Flow Process flow 1 1.8%

3.3.3 Output Variables

The systematic review identified 12 model variable as simulation outputs from
the Category A studies (shown in Table 3.8). The third column indicates the
number of studies including the leftmost output variable, and the fourth column
shows the corresponding percentage in Category A studies (divided by 56, the
number of Category A studies). Note that there are simulation studies with
multiple outputs.

In terms of Table 3.8, it is evident that time, effort, quality, and size are most
common drivers for simulation study. There are 62.5% studies (35 out of 56)
including any one of them or their combination as model outputs.

3.4 How to Simulate?

3.4.1 Simulation Paradigms

The diversity and complexity of software processes and the richness of research
question (concluded into simulation purposes in Section 3.2) determine the dif-
ferent capabilities of simulation paradigms needed.

Overall, 10 simulation modelling paradigms were found in the current stage
of the review. Figure 3.3 shows the paradigms with the applied study num-
ber more than one. System dynamics (SD, 49%) and Discrete-event simulation
(DES, 31%) are the most widely used techniques in SPSM. Other paradigms

3.4. HOW TO SIMULATE? 41

Figure 3.3: Study distribution by simulation paradigms

include state-based simulation (SBS), qualitative(or semi-quantitative) simula-
tion (QSIM), knowledge(rule)-based simulation (KBS), role-playing game (RPG),
agent-based simulation (ABS), and discrete-time simulation (DTS). However,
only SD, DES, SBS and KBS were discussed by KMR.

QSIM and ABS are paradigms that are relatively new to software process
research and will be further described in Section 3.4.3 and Section 3.4.4. As a
special case, DTS is classified as one type of SBS by some studies. In addition,
three games (role-playing simulators) were developed with focus on training and
learning purposes.

During the last decade, hybrid simulation has been one of the most frequent
research themes in the ProSim community. Most of these studies (10 papers) pre-
senting the hybrid simulation focus on the combination of continuous (SD) and
discrete-event (DES) simulations. Considering the importance in the findings of
this review and relevance of these paradigms to this thesis, the following subsec-
tions briefly introduce process simulation paradigms with emphasis on SD, DES,
QSIM, ABS, and RPG. The descriptions of Other paradigms identified in the
review can be found in the corresponding primary studies listed in Appendix A.

3.4.2 Continuous vs. Discrete Simulation

In the first ProSim workshop, KMR identified 8 software process modelling ap-
proaches and languages [KMR99], 6 of them are relevant to dynamic simulation,
but they can be grouped into four simulation paradigms:

• System dynamics

• Discrete-event simulation, including queueing models.

• State-based simulation, including Petri-net models.

42 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

• Knowledge-based simulation, including rule-based languages.

They can be further classified into continuous and discrete simulation ap-
proaches. System dynamics and discrete-event simulation are the most typical
paradigms for each category.

System Dynamics

System dynamics (SD), introduced by Forrester’s pioneer work [For69], is used
for modelling complex dynamic systems with continuous changes. SD is capa-
ble to “deal with the time-dependent behaviour of managed systems with the aim
of describing the system and understanding, through qualitative and quantitative
models, how information feedback governs its behaviour, and designing robust
information feedback structures and control policies through simulation and opti-
misation” [Coy96].

These models are formulated using continuous quantities interconnected in
causal-effect relationships and feedback loops. The quantities are expressed as
levels (or stocks), which are the current values of variables that have resulted
from the accumulated difference between inflows and outflows and represent the
dynamic system’s current state, and rates (or flows), which are considered as
control variables that represent the activity in dynamic system and determine
the levels. The directed information links between rates and levels represent the
feedback loops. These levels are affected by the flow rates, and the flow rates
may be affected by the levels as well.

SD models are quantitative. The basic mathematical representation of an SD
model is a system of coupled, nonlinear, first-order differential equations,

x′(t) = f(x(t), p) (3.1)

where x is a vector of levels, p is a set of parameters, and f is a nonlinear
vector valued function. State variables of the modelled systems are represented
by the levels.

The construction of an SD model can be implemented in five distinct stages [Coy96]:
1) problem recognition, 2) problem understanding and system description (draw-
ing causal-loop diagram), 3) qualitative analysis, 4) simulation modelling (devel-
oping and testing model), and 5) policy testing and design. Causal Loop Diagram
(CLD) is an indispensable tool facilitating the Stage 1 to 3 in SD modelling.

System dynamics has been successfully adopted and continuously centred
in SPSM research for the past two decades, since Abdel-Hamid and Madnick’s
pioneer work [AHM91]. The power of modelling a software development process
using SD lies in its ability to take into account a number of product and process
factors that affect reliability, cycle time, and cost to determine the global impact

3.4. HOW TO SIMULATE? 43

of their interactions. Most of important process simulation models discussed in
Section 2.4.1 were SD based as well.

Though ‘qualitative analysis’ is one important step during the SD modelling,
the simulation model is solely used for quantitative study. More detail of SD mod-
elling approach is also included in Chapter 8 for the comparison with qualitative
and semi-quantitative simulation modelling.

Discrete Event Simulation

Discrete-event simulation (DES), also called discrete-event system specification
(DEVS), is concerned with the modelling of discrete system that can be rep-
resented by a series of events. The state variables of a discrete system change
only at discrete set of points in time [BCNN05]. The simulation of the system
describes each discrete event, moving from one to the next in the right order
as time progresses. Activity Cycle Diagram (ACD), an essential part of DES,
provides the means of describing the logic of a simulation model and represents
the interactions among system objects (entities) [Pid04].

One typical discrete system is a queueing system that is described by its
calling population, the nature of the arrivals, the service mechanism, the system
capability, and the queueing discipline. The state of the system is the number of
units in the system and the status of the server (busy or idle). An event is a set
of circumstances that causes an instantaneous change in the state of the system.

The measurement of time in a simulation corresponds to appropriate units
of time in the real system. The simulation clock indicates the time of the next
event to be performed. A simulation, starting at time zero, performs all events
in the order in which they occur, and runs until either there are no more events
to perform, or the clock time exceeds the given duration, or some interrupt is
triggered.

In software development, developers are represented as servers in a DES
model. They perform development activities, e.g. coding, inspection, testing,
and reworking, in given delay. The common entities are the artifacts in devel-
opment processes, such as documents, function points or modules, defects. Some
DES models of software processes include [Raf96], [HRD+01], [Pad02], [CGC06],
and [AEPR08].

Comparison between SD and DES

These two classic and popular process simulation are different from each other in
the many aspects, such as:

View of System DES tends to focus more on individual elements than SD. The
results from DES are sometimes difficult to interpret as a whole due to the
high degree of interaction between entities. It is therefore corresponding to

44 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

the micro-process research and not the most appropriate for constructing
complex models. SD on the contrary tends to portray the system as a whole.
Its feedback structure can be used to study the interaction of control policies
and the dynamic behaviour of the system. Thus, it is more appropriate for
the macro-process research than DES.

Loop Structure A discrete system more often has an open-loop structure than
a continuous system or system dynamic approach, which tends to have a
closed-loop structure. In an open-loop system, the output arises from the
input but often has no effect on the input.

Time Span It is probably the most distinctive difference between these two ap-
proaches. In DES, time may advance in large jumps until the next event. Its
span between events is not the important concern of the model. In contrast,
time is considered as a specific variable of direct interest in SD modelling.
It is divided into many equally small steps in computer simulation, where
the system state is evaluated.

Precision In DES modelling, each entity in the system is monitored during sim-
ulation. All decision rules are sampled from the predefined distributions.
The entities are moved from one queue to another. In SD modelling, ap-
proximation is usually used instead of the exact numbers of entities. The
average value of the variables (levels and rates) is sufficient.

Deterministic DES is a typical method employed in non-deterministic or stochas-
tic models, in other words, containing one or more random variables. Though
Monte Carlo method can be applied in continuous simulation, for every sin-
gle run of simulation, most SD simulation is deterministic.

In addition, Mak investigated the possibility of combining DES and SD sim-
ulation modelling, and developed a set of rules for converting an ACD into a SD
representation [Mak92].

In the real world, “few systems are wholly discrete or continuous, but since
one type of change predominates for most systems, it will usually be possible to
classify a system as being either discrete or continuous” [LK00]. The selection of
continuous or discrete modelling approach is determined by the nature of problem
and the purpose of simulation study. Recently, hybrid simulation modelling has
become an active attempt to combine the advantages of both (Section 3.5.3).

3.4.3 Quantitative vs. Qualitative Simulation

System dynamics and discrete-event simulation are both quantitative modelling
and simulation approaches. Here, qualitative simulation (QSIM) acts as the
counter-part of quantitative continuous simulation, e.g. system dynamics.

3.4. HOW TO SIMULATE? 45

Qualitative simulation modelling reflects the systems in the real world at
an abstract level. Fewer assumptions are required than for purely quantitative
approaches. The outputs generated by qualitative simulation are all the possible
behaviours of the system, whose states are described by qualitative landmarks,
instead of numeric values.

Some initial ideas regarding the application of qualitative modelling to soft-
ware engineering were discussed by Suarez et al. [SAGO02]. However, their at-
tempt was limited in qualitative assignment of model variables, instead of model
construction. Neither conceptual nor executable qualitative model was reported
in their paper. Almost simultaneously, the first example of QSIM use was de-
veloped by Ramil and Smith [RS02]. They investigated the software evolution
processes by simulating the qualitative version of previous discrete-time models.
Compared with Suarez et al.’s work, Ramil and Smith constructed a series of
executable QSIM models of evolution processes. Nevertheless, these models were
simply converted from a set of mathematical analytic equations, rather than dy-
namic structural (causal) models. Thus, their work did not completely present
the capability and characteristics of qualitative modelling and simulation.

As an extension of qualitative simulation, semi-quantitative simulation (SQSIM)
focuses on the use of bounding intervals to represent partial quantitative knowl-
edge. This paradigm provides a seamless transition between purely qualitative
and quantitative approaches (cf. Chapter 8).

Part II (Chapter 4 and 5) introduce the basic mechanisms and notations of
qualitative and semi-quantitative simulation respectively with more detail and a
simple example as the foundation of my research.

3.4.4 Emerging Simulation Paradigms

Besides QSIM/SQSIM, agent-based simulation (ABS) and role-playing game (RPG)
are dominant in the emerging simulation paradigms in SPSM during the last 10
years (Figure 3.3).

Agent-Based Simulation

An agent-based simulation (ABS) model is regarded as a multi-agent system
(MAS), which is a system composed of multiple interacting intelligent agents.
Multi-agent systems can be used to solve problems which are difficult or impos-
sible for an individual agent or monolithic system to solve.

Here, agents are autonomous computer programs, capable of independent
action in environments that are typically dynamic and unpredictable. These
agents in a MAS have several important characteristics [Woo02]: 1) autonomy :
the agents are at least partially autonomous, and able to interact with each other;
2) localisation: no agent has a full global view of the system, or they have only

46 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

local knowledge about their surroundings; 3) decentralisation: there is no one
controlling agent (or the system is effectively reduced to a monolithic system);
and 4) adaptability : agents are responsible for maintaining their own state.

In an ABS, the overall behaviour of the system is an emergent property of
the individual, independent interactions of the agents. It seems a promising ap-
proach to many problems involving simulation of complex systems of interacting
entities [DHK+07].

In SPSM, software developers are normally represented by agents in an ABS
model. They walk randomly around the software processes, executing the tasks
and changing the code as they go. Till now, this modelling approach exhibits its
capability of simulating long-term, large scale, and interaction-enriched software
process, such as open source development [SCR06], agile processes [YP06] and
software evolution [SCR06, SC06].

Role-Playing Games

A role-playing game (RPG) is different from the simulation models developed
by using the other modelling approaches. The ‘story ’ or ‘scenarios’ have to be
predefined prior to simulation. However, the results of simulation highly depend
on the interactions, the player’s decisions, on the fly.

Often RPG simulator requires the support of other simulation paradigm(s),
such as SD. However, it enriches the model’s graphic user interface (GUI) and
allows a conventional simulator to support game-like interactions between (hu-
man) player and model. RPG is good at supporting cognitive level purposes of
SPSM, particularly training and learning.

Some typical examples of RPG include Navarro and Hoek’s SimSE game [NH05]
and Barros et al.’s Incredible Manager [BDVW06], which were both based on SD
modelling mechanism.

3.4.5 Simulation Tools

With respect to the simulation models/simulators presented in Category A stud-
ies, 13 tools were explicitly identified. Their application numbers are shown in
Table 3.9. Because some authors did not explicitly mention the simulation tools
in their papers, the total application number (38) is less than the number of
Category A studies (56).

Due to a large number of SD models developed and published, VensimTM

(from Ventana Systems, Inc.) is the most popular tool for continuous simula-
tion. The review recognised 6 tools that offer the capability of building both
continuous and discrete simulation model. Four of them (SmallTalk, DEVSim++,
DSOL, and DEVSJava) are implemented as simulation formalism frameworks us-
ing object-oriented languages as the modelling languages, which provide more

3.5. TRENDS & DIRECTIONS 47

Table 3.9: Summary of simulation tools

Tool SD DES SBS QSIM KBS ABS DTS Number
of studies

Vensim l 12
Extend l l 11
iThink l 3
QSIM m l 2
NetLogo l 1
RePast l 1
DSOL m l 1
SmallTalk l l 1
DEVSim++ m l l 1
DEVSJava m l 1
QNAP2 l l 1
PML l 1
SESAM l 1

l: fully support m: partially (but not inherently) support

flexibility in model development. Because of the excellence of the graphic mod-
elling workbench, ExtendTM (from ImagineThat, Inc.) has been the first choice
by the discrete-event and hybrid modelers in SPSM.

Note that no tools listed in Table 3.9 fully support SBS. It is because all three
models published (Table 3.10) did not explicitly mention the tools they used.

3.5 Trends & Directions

Trend means “the general movement over time of a statistically detectable change”
(Merriam-Webster dictionary). This section first attempts to detect the impor-
tant ‘movement ’ or ‘change’ derived from the review results over the decade.

3.5.1 New Paradigms

In 1998, there were only three simulation paradigms employed by the Category A
studies (models) published in the first ProSim workshop (see Table 3.10). They
were system dynamics (SD), discrete-event simulation (DES), and knowledge-
base simulation (KBS). As the seminal paper in ProSim community, KMR dis-
cussed four types of simulation in [KMR99] then. However, the systematic review
found ten simulation paradigms from the last 10 years’ publications.

Trend 1 System dynamics and discrete-event simulation form the main stream
of SPSM paradigms.

48 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

Table 3.10: Paradigms applied in simulation models over years

1998 ’99 2000 ’02 ’03 ’04 ’05 ’06 ’07 Total
SD 4 5 7 1 4 3 5 2 1 32
DES 1 2 3 1 2 2 4 1 2 18
SBS 1 1 1 3
KBS 1 1 1 3
QSIM 1 1 2
RPG 1 1 2
ABS 1 2 3
DTS 1 1
Stigmergy 1 1
Hybrid 1 1 2 1 1 3 1 10

Table 3.10 shows the number of Category A studies per paradigm and per
year. Note that some studies employed more than one paradigm in their sim-
ulation research. The bottom line indicates the number of hybrid models each
year, which integrate two or more techniques above it. Any approach or their
combination at the top two rows (SD and DES) had one or more applications in
building a majority of simulation models each year.

Trend 2 New simulation paradigms continue to be introduced into SPSM re-
search.

Table 3.11 presents a more comprehensive view of all primary studies, includ-
ing Category A, B, C, and D studies. Unlike Table 3.10, the study numbers are
replaced with the solid dots, which make it clear which paradigms were applied
each year.

The four rows at the top of Table 3.11 are the paradigms discussed in KMR’s
paper in 1998, which are separated from others by a solid line. It helps the new
emerging paradigms to be easily observed. The new simulation approaches were
introduced to SPSM research since 2000, and their application became dominant
at 2004. As the bottom line of Table 3.11 concludes, the annual number of active
simulation approaches in ProSim community is stable between 4 and 5.

Trend 3 Most of newly introduced simulation paradigms emphasise the purely
quantitative software process research.

According to Table 3.10 and Table 3.11, there are no studies introducing and
employing the modelling paradigm supporting qualitative or semi-quantitative
simulation in recent years, except the studies using QSIM/SQSIM (including my
work published in ProSim/ICSP relevant to this thesis).

3.5. TRENDS & DIRECTIONS 49

Table 3.11: Paradigms applied in primary studies over years

1998 ’99 2000 ’02 ’03 ’04 ’05 ’06 ’07
SD l l l l l l l l l

DES l l l l l l l l l

SBS l l l l

KBS l l l

QSIM l l l l

RPG l l l

ABS l l

DTS l

Stigmergy l

Emergent l

Number 4 2 5 5 4 5 5 4 4

3.5.2 Finer Granularity

As two complementary types of software process, macro-process and micro-process
research (Section 2.1.2), identified by Osterweil [Ost05], are applicable to SPSM
research as well. Based on the nature of each modelling paradigm and their
corresponding level, they can be mapped to two of the four categories of soft-
ware process models discussed in Section 2.3, i.e. dynamic explanatory structural
model (ESM), and dynamic descriptive enactment model (DEM). However, the
systematic review reflects that there are three different granularity levels that
process simulation model can focus on: namely system level, process level, and
entity level. They are supported by different simulation paradigms.

At system level, a software process is modelled as an overall system. The
behaviour of the process modelled is described by a set of external parameters that
continuously vary over time. This granularity corresponds to the macro-process
research. The conventional continuous simulation supports the modelling on this
level.

Software processes are modelled and observed with more details on process

level, where the executed tasks with the resources required and their sequen-
tial relationships, rather than causal relationships alone on system level, can be
tracked during simulation. The modelling on this level is supported by traditional
discrete (event) simulation.

Trend 4 Continuous modelling gradually lost its dominant position in SPSM
research in comparison with discrete approaches during the decade.

When revisiting the top two rows of Table 3.10, both SD and DES supported
simulation studies of software process each year. Although the total number of

50 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

SD models is larger than any others’ (including DES), it is not difficult to observe
a decreasing trend of SD application in the time frame, by absolute number or
percentage. The studies using SD dominated in the early years (prior to 2000).
Recently, the number of published studies using SD has decreased and approached
the number of studies using DES. It implies that simulation research has become
more interested in micro-process modelling.

Process simulation models focusing on process level are based on the conven-
tional life-cycle or sequential process modelling. However, software development,
like other sectors of society, requires synergistic collaboration among many di-
verse contributors, such as the careful coordination among designers, program-
mers, testers, managers, and so on [Ost07]. For instance, agile process models
simply offer a framework and set of practices, rather than describe what to do
next. The real process executed often depends on the practitioners’ on-the-spot
adjustments [SB01]. Moreover, as a human activity, software development’s per-
formance is influenced to a large extent by team coordination, which means “the
articulation of the individual actions accomplished by each of the agents in such
as way that the whole ends up being a coherent and high-performance opera-
tion” [Woo02]. It is difficult to simulate the team effects by process level mod-
elling through aggregating individuals. This becomes an issue when modelling
a process with many participants, such as an open source developer community.
For example, as a typical modelling paradigm on process level, DES is able to
model entities individually. However, it does not allow entities to be autonomous
agents with (individual) emergent behaviours.

Accordingly, the modelling and simulation on this entity level require char-
acteristics quite different from the technology on process level. Normally, the
simulation on entity level consumes more resource to track all entities and their
relationships individually than the approaches using aggregation alone. Thanks
to the advance in computer and electronic engineering, this approach has recently
become affordable.

Table 3.12 indicates each simulation paradigm found from the review with
their inherent supporting research granularity level(s). Here, RPG is a special
case, which usually need to be combined with other approach(es) to construct a
simulator. Thus, its supporting granularity level often depends on its companion.

Trend 5 Most of newly introduced simulation approaches enhanced the research
capability on micro-process level.

All newly introduced paradigms are listed at the right side of the vertical
line (between KBS and QSIM) in Table 3.12 (compared with the four paradigms
discussed by KMR at leftmost). If we extend the scope of micro-process by
covering entity level, then most of the new paradigms are capable of the process
or entity level research, which correspond to the refined micro-processes.

3.5. TRENDS & DIRECTIONS 51

Table 3.12: Simulation paradigms in support of different granularity research

SD DES SBS KBS QSIM RPG ABS DTS Stig Emrg

System l l m

Process l l l m l

Entity m l l l

l - inherently support m - condition applied

Table 3.13: Granularity level of simulation studies over years

1998 ’99 2000 ’02 ’03 ’04 ’05 ’06 ’07 Total
System 4 5 7 2 4 3 5 3 1 34
Process 2 2 4 3 3 3 4 1 3 25
Entity 2 2 4

Trend 6 In recent years, micro-processes have been attracting more simulation
research.

In terms of the mapping in Table 3.12, Table 3.13 records the number of pub-
lished studies on each granularity level over years. Some hybrid simulation models
are counted into more than one level. When applying the extended concept of
micro-process, we found since 2004 the number of micro-process simulation mod-
els has been no less than macro-process models. It is also an enhanced statement
of Trend 4.

3.5.3 Hybrid Modelling

Similar to the interaction between macro-process and micro-process (Chapter 2),
process modelling research on the three granularity levels are not mutually ex-
clusive, and sometimes combined together.

Hybrid modelling employs more than one simulation paradigms in developing
a process simulation model. The systematic review concludes that hybrid process
simulation models have attracted interest as a possibility to avoid the limitations
of applying single modelling method, and more realistically capture complex real
world software processes.

Trend 7 System dynamics and discrete-event simulation are the most common
combination for constructing hybrid simulation models.

The bottom line of Table 3.10 shows the number of hybrid simulation models
published per year. All these ten hybrid models were at least based on the com-

52 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

bination of SD and DES, or even more.

Generally speaking, there are two broad approaches for developing a hybrid pro-
cess model: vertical integration , which primarily implements discrete mod-
elling at the lower process level, then continuously calculates the process factors
and incorporates the feedback loops at system level; and horizontal integra-

tion , in which the sub-processes or phases within a large scale and/or complex
software process may be modelled using different approaches respectively and
sequentially, and the data flow has to be converted at the interface between them
for process transition.

Trend 8 Hybrid simulation modelling emphasised on vertical integration.

All the studies published in ProSim series conferences have tried to construct
the hybrid models using vertical integration of continuous (SD) and discrete
(DES) approaches, such as the recent work published in [CBK06] and [SWR07].
On the other side, there have been no attempts on horizontal integration until
the recent work reported in [ZJZ08].

3.5.4 Possible Directions

According to Merriam-Webster dictionary, there are two meanings of ‘direction’
relevant to what is applied in this subsection: “the line or course on which some-
thing is moving or is aimed to move or along which something is pointing or
facing”, as well as “assistance in pointing out the proper route”. It is impossible
to point out the exact ‘line or course’ that SPSM is moving towards in the future.
Instead, this subsection here tries to point out what SPSM faces, and present the
consideration threads of the ‘proper routes’ raised from the abovementioned facts
(answers to “why? what? and how?”) and trends derived from the review.

Direction 1 More recent modern software development processes need to be
further investigated in SPSM research.

Some examples in this direction include agile processes, open-source de-
velopment, and global development. These modern software processes are
quite distinct from the traditional processes discussed by KMR.

Direction 2 More new simulation paradigms need to be experimented and in-
troduced into SPSM community.

The recent changes of software processes require the simulation modelling
capable of coping with higher complexity, scalability, uncertainty, and agility
in the process, especially for modelling and simulating lower granularity
level processes, e.g. process and entity levels.

3.6. DESIGN OF RESEARCH 53

Direction 3 More attempts are needed to effectively tackle the uncertainty of
software process in practice.

The lack of complete knowledge or data of software processes is one of
the most common problems obstructing the effective use and adoption of
SPSM in practice. However, most purely quantitative simulation modelling
approaches rely on the traditional probability based methods and require
very specific and precise assumptions. On the other hand, few studies focus
on the intuitive and novel approaches for modelling the uncertainty involved
(Trend 3).

Direction 4 Hybrid simulation models should address more than SD and DES
in vertical integration.

The interest in micro-process and the increasing use of different simulation
paradigms for micro-processes suggest the need for different hybrid models
to integrate macro- and micro-processes including entity level models, to
cater for new paradigms capable of modelling modern software processes.
The integration is not limited by the combination of SD and DES, contin-
uous and discrete, or system and process levels.

Direction 5 Process simulation models should become more reusable, which
makes them easier to build.

Simulation modelling is often time-consuming and requires expertise and
experience, especially building the model from scratch. However, the review
found that model reuse was often omitted by many SPSM studies. Most
Category A studies developed one-off models for simulating the specific
software processes.

3.6 Design of Research

The systematic review produces rich evidence to support the design of this re-
search. In order to effectively answer the research questions raised in Chap-
ter 1, particularly for the feasibility and adaptability of qualitative and semi-
quantitative approaches in software process research, the design of research needs
to answer “why and what to model and simulate?” by considering the dominant
facts derived from this review.

3.6.1 Purposes, Domains, Scopes & Outputs

As the first consideration, the research of this thesis should be able to test the
modelling and simulation for supporting the three levels of motivations (why?)
identified in the systematic review (cf. Section 3.2).

54 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

Table 3.14: Software processes and supporting purpose levels

staffing
process

incremental
process

evolution
process

Cognitive level l

Tactical level l

Strategic level l

According to Section 3.3, the most common characteristics (what?) of SPSM
research are extracted. Here, the top 4 (most investigated) items from problem
domains (cf. Table 3.7), model scopes (cf. Table 3.7), and output variables (cf.
Table 3.8) are chosen as the options for research design:

• Purposes: cognitive level, tactical level, and strategic level.

• Domains: generic development, software evolution, software process im-
provement, and incremental development.

• Scopes: project, single phase, evolution, and multi-phase.

• Outputs: time, effort, quality, and size

These common features are dominant in the number of studies from the oth-
ers. Their combinations were used in development of the most process simulation
models ever, and are the top considerations when constructing typical software
process models for simulation. The successful development of the process models
using the proposed modelling approaches and investigation of these aspects of
the modelled processes can be used as the rigorous and convictive evidence for
answering the research questions.

3.6.2 Selection of Software Processes

The examples used to demonstrate qualitative and semi-quantitative modelling
in this thesis (Part III) were selected to span various domains and levels of gran-
ularity. The results of the SLR confirm that the chosen examples i.e. software
staffing process (Chapter 6), incremental development process (Chapter 7), and
software evolution process (Chapter 8) provide good coverage of different purpose
levels, domains, scopes, and output variables.

The supporting research purpose levels of these nominated software processes
are indicated in Table 3.14. Table 3.15 maps these software processes into the cells
in the matrix of problem domain and model scope. Note that software process
improvement is not included in the matrix, but the discussion on this topic (in

3.7. SUMMARY 55

Table 3.15: Domain and scope of the software processes for research

single
phase

multi-
phase

project evolution

generic development staffing
process

software evolution evolution
process

incremental development incremental
process

incremental
process

Table 3.16: Software processes and corresponding output variables

staffing
process

incremental
process

evolution
process

Time l

Effort l

Quality l

Size l

relation of SPSM) is included later in this thesis (Chapter 10). Table 3.16 shows
the output variables related to each process for investigation.

Although there are only three software processes selected for modelling and
simulation in this thesis, they cover the most investigated aspects of software
process for simulation study. Therefore, the successful modelling and simulating
these processes (using the proposed qualitative and semi-quantitative approaches)
with the predefined focuses can provide strong evidence for answering the research
questions of this thesis, i.e. feasibility and adaptability. Furthermore, the findings
from the studies may also answer the research question of uniqueness.

3.7 Summary

This chapter presents the state-of-the-art of simulation modelling research in
software process domain. The first systematic literature review conducted in
SPSM intends to provide insights about the evolution of SPSM research from
1998 to 2007. This chapter presents the preliminary results of the current stage
of the review that is exclusively focusing on a core set of publication sources.
More than 200 relevant publications were analysed in order to find answers to the
research questions, including the purposes and paradigms of SPSM, the studies’

56 CHAPTER 3. SOFTWARE PROCESS SIMULATION MODELLING

domains, scopes and outputs, and other predominant research issues.
The results from this systematic review are also used to serve as the intro-

duction to SPSM research (by answering the ‘why ’, ‘what ’, and ‘how ’ questions),
and to provide a solid state-of-the-art. They further provide the evidence for
supporting the research design in this thesis. The important aspects this chapter
achieves can be highlighted as follows:

1. Categories for classifying software process simulation models are proposed
to better capture the diversity of published models.

2. Purposes for driving SPSM research as originally suggested by the seminal
publication in ProSim’98 have been restructured and updated.

3. Facts of SPSM, including paradigms, domains, scopes, outputs and tools,
over the ten years have been summarised and reported in a ‘snap-shot ’
style.

4. Important and dominant simulation modelling paradigms relevant to the
review and this thesis are introduced and compared.

5. Underlying trends over the time frame are analysed and discovered.

6. New insights about SPSM research on modelling granularity and model
integration are first presented.

7. Potential research directions for SPSM community are suggested.

8. Typical characteristics of SPSM research are derived from the facts of the
review, and provide evidence in support of the research design in this thesis.

In addition, the outcomes produced from this chapter can help both insiders’
and outsiders’ observation and understanding of SPSM research. The study cate-
gorisation can be used for future systematic review and meta-analysis with more
specific focuses. Moreover, the decoded trends and suggested directions may help
practitioners and modelers in SPSM arena (not limited to ProSim community)
realistically and effectively capturing complex real-world software processes.

Some limitations still exist in the current study and need further improvement:
1) the study categorisation was mainly determined by the principal reviewer’s
judgement based on the author’s knowledge in SPSM , which needs other re-
searchers’ further examination; 2) the missing papers may influence the integrity
of this review and need to be included in the near future; 3) the impact of study
quality needs to be considered in data analysis, especially for the inclusion of low
quality studies.

In next part, the technical foundations of this thesis, qualitative & semi-quantitative
modelling and simulation, are introduced and described in greater detail.

Part II

FOUNDATION

57

Chapter 4

Qualitative Modelling &

Simulation

Qualitative simulation predicts the set of possible behaviours consistent with a
qualitative differential equation (QDE) model of the world. Its value comes from
the ability to express natural types of incomplete knowledge of the world, and
the ability to derive a provably complete set of possible behaviours in spite of the
incompleteness of the model [Kui01].

Qualitative modelling and simulation are key inference methods for problem-
solvers for major tasks of model-based reasoning: monitoring, diagnosis, design,
planning, and explanation. Although the qualitative simulation (reasoning) field
has addressed diverse problem areas and developed a variety of theories and sys-
tems, there are a number of prominent features that are typical for many of
the approaches. Some of the most important ones include ontologies, causal-
ity, compositional modelling, inference of behaviour, and qualitativeness [BS03].
Among these works, Kuipers et al.’s work [Kui94] is a comprehensive treatment
of qualitative simulation, and a seamless framework to integrate qualitative and
semi-quantitative simulation. Therefore, in this thesis, it is selected as the major
fundamental modelling and simulation theories used in software process research.

This chapter aims to provide an initial description of the fundamental mecha-
nism of qualitative modelling and simulation, and its model representation, which
are used in other parts of this thesis. Thus, the detailed algorithm implemen-
tation and some advanced topics, such as higher-order derivatives and global
dynamical constraints, are omitted here.

59

60 CHAPTER 4. QUALITATIVE MODELLING & SIMULATION

4.1 Incomplete Knowledge Representation

A quantity is a real-valued attribute of a physical object. However, human knowl-
edge is finite, so our knowledge of real numbers describing the physical world
must be incomplete. There are many ways to represent incomplete knowledge in
a description of a quantity and its value.

4.1.1 Quantity

Interval Arithmetic In interval arithmetic, incomplete knowledge of the real value
of a quantity x is expressed as a closed interval [bl, bu] representing the knowl-
edge that bl ≤ x ≤ bu. The theory shows that many functions defined on real
numbers have natural extensions to the domain of interval values. Interval arith-
metic is used to express semi-quantitative annotations on qualitative behaviour
predictions (cf. Chapter 5).

Nominal, Ordinal, Interval, Ratio Statisticians distinguish among different types
of knowledge that can be embodied in real-valued data according to the operations
that can legitimately be applied to that data.

• Nominal data can only be compared for equality or inequality.

• Ordinal data can be compared for order as well as equality.

• Interval data can be subtracted to determine the difference between values.
Conversely, a difference can be added to one value to get another.

• Ratio data can be added, subtracted, multiplied, or divided.

This classification implies that different descriptions and inference methods
require different kinds of data. For example, the median can be computed from
ordinal data, but the arithmetic mean requires interval data, and the geometric
mean requires ratio data.

Qualitative simulation is based primarily on ordinal knowledge of real-valued
quantities, because human perception and memory seem to be particularly sen-
sitive to ordinal relationships, especially with “landmark” values.

Landmark Values Landmark values are the “natural joints” that break a con-
tinuous set of values into qualitatively distinct regions. A landmark value is a
symbolic name for a particular real number, whose numerical value may or may
not be known. It serves as a precise boundary for a qualitative region. The qual-
itative properties of a value in the set depend primarily on its ordinal relations
with the landmarks.

4.1. INCOMPLETE KNOWLEDGE REPRESENTATION 61

For example, a natural set of qualitative regions for the temperature of water is
defined by the following landmarks: absolute zero . . . freezing . . . boiling . . .∞.
For a model with constant (though possibly unknown) pressure, the qualitatively
distinct values for temperature of water are the landmark values and the open
intervals between them.

Fuzzy Values ‘Fuzzy ’ values are qualitative descriptions without precise bound-
aries. For example, when describing values of a continuous scalar quantity such
as the amount of water in a tank, there are no meaningful landmark values rep-
resenting the boundaries between low and normal, or between normal and high.
Linguistic terms such as these refer to fuzzy sets of numbers. More discussion
between fuzzy sets and qualitative/semi-quantitative modelling can be found in
Chapter 11.

4.1.2 Continuous Change

Discrete State Graphs The changing world is often described in discrete terms,
such as events, actions, states, and state-transitions. A variety of representations
have been developed for describing action and change in discrete terms, including
finite-state causal graphs, situation calculus, and temporal logic. Discrete state
graphs are useful at a level of abstraction where the continuity of change and the
continuous dynamics of behaviour are not critical. Because they do not exploit
the properties of continuity, they have difficulty reasoning about variables with
values moving towards limits, dynamic phenomena involving a balance of forces,
or the effect of perturbations on feedback systems.

Qualitative modelling and simulation provides a level of description between
discrete state graphs and the continuous world: continuous change is described
symbolically, but in a way that obeys the constraints of continuity.

Differential Equations The physicist uses the language of differential equations
for describing a system and drawing inferences about it. A differential equation
represents the structure of the system by selecting certain continuous variables
that characterise the state of the system, and certain mathematical constraints
on the values those variables can take on. One important use of a differential
equation description is to predict the behaviour of the system over time: a set
of continuous functions of time that describe the way the variables evolve over
time starting from a given initial state. Its strength comes from the expressive
power to state models that capture the dynamic character of the world, and the
inferential power to derive predictions from those models.

The qualitative model representation (described in Section 4.3) is closely re-
lated to differential equation as a language for describing aspects of the world.

62 CHAPTER 4. QUALITATIVE MODELLING & SIMULATION

Figure 4.1: Qualitative modelling and simulation framework

4.2 Modelling & Simulation Framework

A model is a finite (small) description of an infinitely complex reality, constructed
for the purpose of answering particular questions. The process of reasoning with
models breaks down into two major subproblems [Kui94]:

1. Out of all the possible ways of describing the world, select an appropriate
model or combination of models to answer a particular question.

2. Given a model, simulate it or otherwise analyse it to make explicit some
facts about the world that are implicit in that description of the world (e.g.
its predicted behaviours).

Qualitative modelling and simulation address both of these problems. The
model-building problem is the more open-ended of them, while given the model’s
representation, the model-simulation problem is more tightly constrained (a more
technical progress). The whole procedure breaks into four important steps (as
shown in Figure 4.1).

1. Model building requires modelling assumptions that specify which aspects
of the world are negligible and which should be included in the model,
and the closed-world assumption to transform a collection of fragments

4.3. QUALITATIVE MODEL REPRESENTATION 63

into a model. These assumptions are defined qualitatively to reflect the
incomplete knowledge of continuous quantities.

2. The QSIM graphic representation (qualitative abstract structure) for QDEs
(see Section 4.3.2) is used to formally define the qualitative assumptions.
It is then converted into pseudo code description of QSIM algorithm for
qualitative simulation.

3. Given QDE models and initial state, the qualitative reasoning algorithm
(QSIM applied in this thesis) simulate with the steady-state assumption and
across region transitions. Simulation generates all behaviours consistent
with the QDE models that are covered by the qualitative prediction.

4. The quantitative and semi-quantitative information can be unified with the
behaviours predicted by qualitative simulation to produce stronger, more
precise predictions without losing guarantee that all behaviours are covered
(cf. Chapter 5).

The qualitative modelling and simulation framework in Figure 4.1 provides
two benefits over traditional engineering approaches to modelling and simulation.
First, the representations are designed to express states of incomplete knowledge
that are common in human knowledge but are hard to express using traditional
methods. Second, the inference methods are designed to be essentially deductive,
so that assumptions are explicit and guarantees are provided that every step is
sound.

4.3 Qualitative Model Representation

4.3.1 Abstract Structure Diagram

An abstract structure diagram (ASD) reflects the assumptions for qualitative
modelling within a graphic format. It explicitly visualises the structure of quali-
tative model, and bridges the qualitative assumptions (described in natural lan-
guage) abstracted from physical scenario and the formal QDE model for qual-
itative simulation. The basic graphic notations used for building an ASD are
summarised in Figure 4.2. Each of them exclusively corresponds to one type
of qualitative constraint in QDE. In the plot (d), y is monotonically increasing
function of x.

Example: Bathtub

To explore the basic concepts and results of qualitative and semi-quantitative
modelling and simulation, a simple example exhibiting first-order (differential)
dynamic behaviour is needed and used continuously in this chapter and next

64 CHAPTER 4. QUALITATIVE MODELLING & SIMULATION

(a) x + y = z (b) x ∗ y = z (c) dx
dt

= y (d) y = M+(x)

Figure 4.2: Typical notations of abstract structure diagram

(a) A simple bathtub (b) Abstract structure

Figure 4.3: Qualitative bathtub example model

chapter. The structure of a bathtub example is simple but clear, and its be-
haviours are easily deduced. Nonetheless, it is enough to motivate the basic
features of qualitative modelling and simulation.

A simplified view of a bathtub (Figure 4.3-a) consists of a tank with two flows.
The inflow and outflow represent the flows of water into and out of the bathtub.
The bathtub’s behaviour is determined by the amount of water in it, and the
difference between inflow and outflow (i.e. netflow). The outflow is determined
by the pressure (amount) of water. The corresponding abstract structure diagram
is shown in Figure 4.3-b.

4.3.2 Qualitative Differential Equation

A real world system is normally modelled as a set of ordinary differential equa-
tions (ODEs). Qualitative modelling makes explicit and precise the abstraction
relationship between the qualitative partial knowledge representations and the
theory of differential equations. Accordingly, qualitative models can be called
qualitative differential equations or QDEs. If a mechanism can be described by
an ODE meeting certain restrictions, there is a corresponding but weaker QDE
describing the same mechanism. ‘Weaker ’ here means that any behaviour that
satisfies the ODE must satisfy the QDE, but not necessarily vice versa.

There are two fundamental improvements in expressive power as abstracted
from ordinary to qualitative differential equations.

4.3. QUALITATIVE MODEL REPRESENTATION 65

1. A functional relationship between two variables may be incompletely known,
specified only as being in the class of monotonically increasing (or decreas-
ing) functions.

2. The real number line in which variables take their values is described in
terms of a finite set of qualitatively significant ‘landmark values’ and the
intervals between them.

A QDE is a tuple of four elements,

QDE = 〈V,Q,C, T 〉 (4.1)

where each of them will be defined below.

• V is a set of variables, each of which is a ‘reasonable’ function related to
time.

• Q is a set of quantity spaces, one for each variable in V .

• C is a set of constraints applying to the variables in V , each variable must
appear in some constraint(s).

• T is a set of transitions, which are rules defining the boundary of the domain
of applicability of the QDE.

In qualitative modelling, QDE is represented in Common Lisp format, which
enables the execution by QSIM reasoning engine.

The remaining of this section introduces the basic concepts of qualitative
modelling and simulation: quantity space, qualitative constraint, and region tran-
sition, which are used as the elements in building a QDE.

4.3.3 Quantity Space & Qualitative Value

A quantity space defines a low-resolution qualitative description for incompletely
known quantities. It only consists of a few qualitatively important landmark
values. Formally speaking, a quantity space is a finite, totally ordered set of
symbols, the landmark values, l1 < l2 < · · · < lk.

Each landmark (lk) is a symbolic name, representing a particular value in <
whose actual quantitative value is often unknown. A quantity space normally
contains the typical landmarks, i.e. −∞, 0, 1, and +∞. Time is also represented
by the qualitative variable, say time, that has the quantity space t0 < t1 < · · · <
tn <∞.

The quantity space representing the range for a reasonable function f(t) must
include a landmark value corresponding to each critical value of f(t), for example
the value of f(t) when f ′(t) = 0. New landmarks may need to be introduced

66 CHAPTER 4. QUALITATIVE MODELLING & SIMULATION

(quantity-spaces
(amount (0 FULL inf))
(outflow (0 inf))
(inflow (0 INFL inf))
(netflow (minf 0 inf)))

Figure 4.4: Quantity spaces of bathtub example

during simulation if critical points are discovered that do not have corresponding
landmarks in the predefined quantity space of a QDE.

A qualitative variable v, and its quantity space l1 < l2 < · · · < lk, define
a symbolic language, a finite set of meaningful distinctions, for describing the
values of a reasonable function f(t). At any time, the qualitative value of f(t)
is described in terms of its ordinal relationships with landmarks in its quantity
space, and its direction of change.

The qualitative value of f(t) with respect to the quantity space l1 < l2 <

· · · < lk, is the pair 〈qmag, qdir〉, defined as

qmag =

{
lj if f(t) = lj , a landmark value,

(lj , lj+1) if f(t) ∈ (lj , lj+1).
(4.2)

qdir =


inc if f ′(t) > 0,

std if f ′(t) = 0,

dec if f ′(t) < 0.

(4.3)

where ‘qmag ’ and ‘qdir ’ stand for qualitative magnitude and qualitative direc-
tion respectively.

Figure 4.4 shows the quantity spaces of the bathtub example, where minf

and inf present −∞ and +∞ separately. FULL and INFL are the preset quali-
tative landmarks when the actual numeric values are unavailable in qualitative
modelling.

4.3.4 Qualitative Constraints

The state of a system at a time t is described in terms of the values of some
set of variables x, y, . . ., each of which is a reasonable function of time. The
relationships among these variables are expressed by qualitative constraints. The
QDEs that make up a model include combinations of these constraints including
auxiliary variables when needed.

Table 4.1 lists the typical constraints used for building QDEs. Most of the con-
straints (add, mult, minus, d/dt, and constant) are straightforward equiva-

4.3. QUALITATIVE MODEL REPRESENTATION 67

Table 4.1: Typical qualitative constraints

Quantitative relations Qualitative constraints
x(t) + y(t) = z(t) (add x y z)
x(t) ∗ y(t) = z(t) (mult x y z)
y(t) = −x(t) (minus x y)
d
dtx(t) = y(t) (d/dt x y)
d
dtx(t) = 0 (constant x)

y(t) = f(x(t)), ḟ > 0 (M+ x y)

y(t) = f(x(t)), ḟ < 0 (M- x y)

add [+] [0] [−] [?]
[+] [+] [+] [?] [?]
[0] [+] [0] [−] [?]
[−] [?] [−] [−] [?]
[?] [?] [?] [?] [?]

mult [+] [0] [−] [?]
[+] [+] [0] [−] [?]
[0] [0] [0] [0] [0]
[−] [−] [0] [+] [?]
[?] [?] [0] [?] [?]

Figure 4.5: Arithmetic operations of qualitative addition and multiplication

lents to their quantitative counterparts. The functional constraints M+, S+ (and
their negative versions M−, S−) will be explained later.

Qualitative Addition & Multiplication

Addition over the real numbers is a function that takes two values and returns
a third. This is not possible, however, to define addition over the signs in the
same way, since the sum of the qualitative values [+] and [−] is ambiguous, so
addition function cannot be single-valued. To represent addition as a function,
it must be defined over the extended signs. Here the sign [?] is used to represent
the ambiguity among [+]/[0]/[−].

Figure 4.5 gives the definitions of the qualitative addition and multiplication
functions, for which the add and mult constraints hold over the signs.

Monotonic Functions

The qualitative monotonic constraint

((M+ x y) (x0 y0) ... (xi yi) ...)

represents the assertion that y = f(x) for some f ∈M+, and that f(xi) = yi

for each corresponding value pair (xi, yi). This constraint implies the following
conditions, which are easily evaluated on qualitative descriptions of values of x
and y.

68 CHAPTER 4. QUALITATIVE MODELLING & SIMULATION

1. [ẋ] = [ẏ], unless x or y is at the endpoint of its range. That is, the directions
of change of x and y must be the same in the interior of the range [a, b]
of the monotonic function f , since the definition of f ∈ M+ requires only
that f ′ > 0 on the open interval (a, b).

2. If (xi, yi) is a pair of corresponding values, then [x]xi = [y]yi . That is,
the two values must be on the same side of the landmarks in each pair of
corresponding values.

Similarly, the other monotonic constraint

((M- x y) (x0 y0) ... (xi yi) ...)

implies that [ẋ] = −[ẏ] and [x]xi = −[y]yi for every pair of corresponding
values (xi, yi).

Multivariate Constraints

While the basic qualitative constraints have fix numbers of arguments, there are
several useful constraints that have arbitrary numbers of arguments. This section
only introduces three often used multivariate constraints.

Multivariate Monotonic Function Constraint

(((M s1 ... sn) x1 ... xn y) (a1 ... an a0) ...)

This constraint generalises the definition of monotonic function constraint to
handle functions of several variables,

y = f(x1, . . . xn) (4.4)

where ∂f
∂xi

= si, and qualitative values for x1, . . . xn refers to y, and a0 stands
for a landmark of y. It provides generality required in a variety of contexts.

Sum Constraint

((SUM x1 ... xn y) (a1 ... an a0) ...)

This constraint represents the relation x1 + · · ·+ xn = y with corresponding
values (a1, . . . an, a0)

4.3. QUALITATIVE MODEL REPRESENTATION 69

(constraints
((M+ amount outflow) (0 0) (inf inf))
((add netflow outflow inflow))
((d/dt amount netflow))
((constant inflow)))

Figure 4.6: Constraints of bathtub example

Signed-Sum Constraint

(((SSUM s1 ... sn) x1 ... xn y) (a1 ... an a0) ...)

This constraint is more specified than the monotonic functions, since the
arguments combine strictly additively:

s̄1x1 + · · ·+ s̄nxn = y,where s̄i =


+1 if si = [+]

0 if si = [0]

−1 if si = [−]

(4.5)

SSUM constraint helps the modeler avoid irrelevant and under-constrained in-
termediate variables that are required if only the basic constraints are available
(more discussion in [Kui94]).

The relations among the elements of example model now can be defined with the
above qualitative constraints. Figure 4.6 is the code clip of constraints applied
for bathtub example, where (0 0) means that outflow = 0 iff amount = 0 (im-
plies monotonic function must pass through (0, 0), and (inf inf) constrains the
monotonic function to eliminate the possibility of horizontal or vertical asymp-
tote.

4.3.5 Region Transitions

The transitions associated with a QDE define the limits of the region of applica-
bility of the QDE, and optionally specify a transition to a new QDE if that limit
is reached. A transition can be defined as a rule of the form

(condition→ transition function) (4.6)

where

• The condition is a pattern of the form (〈variable〉〈qmag, qdir〉), or a boolean
combination of such patterns. It becomes true at a state when the values
of the specified variables match the corresponding description.

70 CHAPTER 4. QUALITATIVE MODELLING & SIMULATION

(define-QDE Bathtub
(quantity-spaces

(amount (0 FULL inf))
(outflow (0 inf))
(inflow (0 INFL inf))
(netflow (minf 0 inf)))

(constraints
((M+ amount outflow) (0 0) (inf inf))
((add netflow outflow inflow))
((d/dt amount netflow))
((constant inflow)))

(transitions
((amount (FULL inc)) -> t)))

Figure 4.7: QDE of bathtub example

• The transition function is applied to the current state if the condition be-
comes true. It returns a new qualitative state, perhaps defined with respect
to a new QDE, from which simulation can resume.

The transition function is responsible for establishing the correspondence be-
tween the pre- and post-transition states. It can be used to represent known
transitions between QDEs or as an escape to a model-defined process. If no
transition function is provided, simulation stops along the current behaviour.

Figure 4.7 shows the complete QDE of bathtub example, which includes the
transitions section. It constrains the simulation to be terminated (denoted by
t) when amount reaches FULL and its direction is increasing (inc).

4.4 Qualitative Simulation

Qualitative simulation starts with a QDE and a qualitative description of an ini-
tial state. Given a qualitative description of a state (called a qstate), it predicts
the qualitative state descriptions that can possibly be direct successors of the
current state description. Repeating this process produces a sequence of qualita-
tive state descriptions, in which the paths starting from the root are the possible
qualitative behaviours. The graph of qualitative states is pruned according to
criteria derived from the theory of ordinary differential equations, in order to
preserve the guarantee that all possible behaviours are predicted.

4.4.1 QSIM: Algorithm & Tool

The availability of algorithms and tools to construct and simulate QDE models
is limited. QPE is a reasoning engine implements Qualitative Process Theory

4.4. QUALITATIVE SIMULATION 71

(QPT). QSIM [Kui94] is the implementation of the constraint-based approach.
Both of them require programming skills in LISP. After them, easy-to-use learn-
ing environments for qualitative modelling and simulation have been developed,
notably Betty’s Brain [BSB01] and Vmodel [BF04]. Since these packages were
implemented for teaching, some essential features of qualitative simulation are
missing. Recently Garp3 [BSBL05], implemented in Prolog, has been developed
to provide a seamless workbench for building, simulating, and inspecting quali-
tative models. Here, QSIM was selected as the simulation package to be used in
this thesis because it supports both qualitative and semi-quantitative simulation.

The term QSIM is used in two ways in this thesis. First, it is the abbreviation
of qualitative simulation (QSIM); second, it denotes the reasoning algorithm or
reasoner (simulator) developed by Kuipers et al. [Kui94] for performing qualita-
tive simulation. To differentiate them in this thesis, QSIM is used for the second
meaning.

The QSIM algorithm [QRG, FKRT94] performs qualitative simulation by de-
riving the immediate successors of each qualitative state, and repeating this pro-
cess to grow the behaviours. To start simulation, a set of QDEs is passed to
QSIM, together with initial values for the known variables. QSIM then completes
the initial state by assigning values for the other variables in the model. If there
is more than one possible set of assignments, QSIM will simultaneously gener-
ate several behaviours. In the bathtub model for instance, the water level may
increase, decrease or remain constant, depending on the initial level and inflow
rate.

4.4.2 Outputs

Behaviour Tree

Rather than finding a single behaviour for each model by ODE-based simulators,
QSIM generates a tree consisting of all possible behaviours, branching when there
is more than one possible evolution of the system. A tree of behaviours for the
bathtub model is shown in Figure 4.8. The key to the symbols of the ‘tree’ is
shown in Table 4.2. When QSIM is applied to the bathtub model, with the
bathtub initially part full, it finds three initial states, which reflect whether the
part-full bathtub is emptying (1), filling (3, 4, 5) or in equilibrium (2).

QSIM then finds the possible consequent behaviour(s) of each state. Five
distinct qualitative behaviours for the bathtub are predicted (Figure 4.8). Note
that Behaviour 3 finishes at a transition point (�), whose condition is specified
in transitions section in QDE (Figure 4.7).

72 CHAPTER 4. QUALITATIVE MODELLING & SIMULATION

Figure 4.8: Behaviour tree from qualitative simulation for bathtub example

Table 4.2: Symbols used in qualitative behaviour trees

� Final state
� Transition point
• Intermediate critical time-point
◦ Intermediate time-interval

Variable’s Behaviour Trend

QSIM allows the behaviour trend of each variable to be shown graphically (cf.
Figure 4.9). One possible behaviour is composed by variables’ qualitative trends.
While each variable’s trend depicts its varying direction (increasing, decreasing,
or static) with arrows, and marks the corresponding qualitative value (i.e. land-
marks) at the important time-points of simulation (including final state, transi-
tion points, and critical time-points). The dotted lines connecting the time-points
are simply visual aids and have no significance.

For the bathtub example, QSIM finds five distinct qualitative behaviours over
time (shown in Figure 4.9): 1) an emptying bath reaches equilibrium before
becoming empty (Figure 4.9-a); 2) bathtub’s water level remains constant (b);
3) a filling bath can overflow (c); 4) reach equilibrium before it overflows (d),
or 5) reach equilibrium just as the water reaches the brim (e). Each of them
corresponds to one particular branch of the behaviour tree (Figure 4.8). This set
of behaviours confirms that the bathtub cannot reach the empty state.

Phase-Space View

Apart from the behaviour tree and variable’s behaviour trend, QSIM can generate
a variety of graphic outputs assisting in analysis of the simulated process, such
as phase-space viewer and numeric viewer.

4.4. QUALITATIVE SIMULATION 73

(a)

(b)

(c)

(d)

(e)

Figure 4.9: Qualitative behaviors of bathtub example

The phase-space is a standard mathematical representation for dynamic sys-
tems. It is the Cartesian product of a set of independent state variables that
fully describe the system; for two variables, this corresponds to a phase plane. A
point in the phase space represents a state of the system. Thus, the dynamics
of the system correspond to a trajectory through the phase space. A geometri-
cal representation of the phase space is called a phase portrait. The phase-space
viewer displays the phase portrait of any two variables of a QDE.

Figure 4.10 shows the examination of some of the behaviours using the phase-
space viewer. In each plot, one axis represents amount and the other axis repre-
sents netflow.

While the phase-space viewer is often useful in understanding the relationship
between two variables, and is especially useful for analysing oscillatory systems,

74 CHAPTER 4. QUALITATIVE MODELLING & SIMULATION

Figure 4.10: Phase view for bathtub example

its main use is in conjunction with the non-intersection constraint. Chapter 6
includes its use in analysis of software staffing process.

4.5 Summary

This chapter introduces qualitative process modelling and simulation, presents
the basic concepts of qualitative model presentation and mechanism of simulation
with a simple example. This paradigm is used as the fundamental modelling
theory and simulation technique for software process research in the following
chapters.

In the next chapter, the semi-quantitative simulation is introduced as a pow-
erful extension of qualitative modelling and simulation for bridging traditional
quantitative and qualitative approaches.

Chapter 5

Semi-Quantitative Modelling &

Simulation

Semi-quantitative simulation (also known as semi-quantitative reasoning) is the
task of combining incomplete quantitative and qualitative knowledge. It is an
extension of qualitative simulation, involving quantitative constraints.

The previous chapter and this chapter introduce several acronyms relevant to
qualitative and semi-quantitative simulation. Table 5.1 summarises these abbre-
viations and their representing meanings.

5.1 Semi-Quantitative Extension

Q2 (for Qualitative + Quantitative) is the basic semi-quantitative reasoner im-
plemented as an extension to QSIM. It acts as a global filter on behaviour, infer-
ring bounds on value-denoting terms and refuting behaviours when possible. Q2

uses constraint propagation and interval arithmetic to tighten interval bounds
on value-denoting terms. Figure 5.1 shows the representation used in QSIM+Q2

for qualitative and quantitative information, and the process that generates each
from its predecessors.

QSIM predicts one or more qualitative behaviours from a given QDE and its

Table 5.1: Acronyms in qualitative and semi-quantitative simulation

Modelling Simulation (Reasoning) Algorithm or Tool
Qualitative QSIM (QR) QSIM
Semi-quantitative SemiQ SQSIM (SQR) Q2

75

76 CHAPTER 5. SEMI-QUANTITATIVE MODELLING & SIMULATION

Figure 5.1: Steps in semi-quantitative (qualitative & quantitative) modelling and
simulation

initial state. Each behaviour implies a set of algebraic equations relating value-
and set-denoting terms to each other. Incomplete quantitative knowledge about
values associated with these terms can be propagated across the equations, either
refuting the behaviour or producing a stronger semi-quantitative description.

Similar to QSIM, Q2 does conservative inference, ruling out values or be-
haviours only when they are genuinely inconsistent. This extends QSIM’s guar-
anteed coverage to semi-quantitative simulation.

5.2 Interval Constraints

There are a number of different representations for incomplete knowledge of quan-
tities, including bounding intervals, probability distribution functions, fuzzy set,
and order-of-magnitude relations (some of which were briefly addressed in Sec-
tion 4.1). This chapter focuses on the use of bounding intervals, i.e. value
ranges and envelop functions, to represent partial quantitative knowledge in semi-
quantitative modelling.

5.2.1 Value Ranges

A landmark value is a symbol representing a unique but unknown real number.
The incompletely known value of a landmark value p can be quantified by a closed
value range (i.e. interval):

5.2. INTERVAL CONSTRAINTS 77

Figure 5.2: Example of envelope functions

range(p) = [bl, bu] = {x ∈ <|bl ≤ x ≤ bu} (5.1)

Quantitative knowledge expressed as intervals complements qualitative knowl-
edge expressed as ordinal relations, each description providing information diffi-
cult or impossible to express in the other form. The value ranges for the land-
marks of bathtub model are defined in initial-ranges section in Figure 5.3.

Although value range is simple, this representation offers a number of impor-
tant benefits. Its simplicity means that descriptions of incomplete knowledge of
quantities in the form of bounding intervals are easy to obtain. Furthermore, the
consequence of two interval descriptions of the same quantity is easy to compute
by intersecting the intervals.

5.2.2 Envelope Functions

Describing an unknown monotonic function f ∈ M+ is more complex than de-
scribing a single value. By applying the same philosophy, however, ‘envelope’
functions can be specified to bound the corresponding monotonic functions. In
addition to using envelopes to constrain the values a function f can take on, it
is possible to assert bounds on its derivatives f ′ and f ′′.

Envelopes are numerically computable partial functions fl and fu, with nu-
merically computable partial inverses f−1

l and f−1
u , such that

∀x, fl(x) ≤ f(x) ≤ fu(x) (5.2)

When fl = fu, the envelope functions turn to be an exact function, which
is equivalent to its corresponding ordinary version. Figure 5.2 shows an example
envelopes with bounds of function fl and fu.

The updated QDE of bathtub model is shown in Figure 5.3 with the envelope
function defined in envelopes section.

78 CHAPTER 5. SEMI-QUANTITATIVE MODELLING & SIMULATION

(define-QDE bathtub
(quantity-spaces

(amount (0 FULL inf))
(outflow (0 inf))
(inflow (0 INFL inf))
(netflow (minf 0 inf)))

(constraints
((M+ amount outflow) (0 0) (inf inf))
((add netflow outflow inflow))
((d/dt amount netflow))
((constant inflow)))

(transitions
((amount (FULL inc)) -> t))

(envelopes
((M+ amount outflow) (upper ue)

(u-inv ui)
(lower le)
(l-inv li)))

(initial-ranges
((amount FULL) (80 100))
((inflow INFL) (4 8))
((time t0) (0 0))))

ue, ui, le, li are the names of the envelope functions.

Figure 5.3: QDE of semi-quantitative bathtub example model

5.3 Semi-Quantitative Propagation

5.3.1 Q2: QSIM Extension

Q2 combines interval arithmetic and qualitative behaviour refutation to per-
form the propagation. One well-known limitation of interval-based representation
(value ranges and envelope functions) might be the uncertainty explosion that
results from repeated operations on interval values. Q2 avoids the uncertainty
explosion because there is a fixed set of terms with value ranges, determined by
qualitative behaviour, rather than an indefinitely increasing set of terms as in a
traditional time-stepped quantitative simulation.

Interval propagation in semi-quantitative simulation can be implemented as
Q2 algorithm (cf. [Kui94, FKRT94]). The conclusions derived by Q2 can be
guaranteed, because if Q2 derives a contradiction, then the qualitative behaviour
is inconsistent with the given QDE, initial qualitative state, and its associated
quantitative ranges. Therefore, every real solution to an ODE consistent with
this scenario must be included among the predictions from simulation (using

5.3. SEMI-QUANTITATIVE PROPAGATION 79

Figure 5.4: Behaviour tree from semi-quantitative simulation for bathtub example

Figure 5.5: Semi-quantitative behaviour of bathtub example

QSIM+Q2).

5.3.2 Outputs

By including semi-quantitative information, some qualitative behaviours, gener-
ated by QSIM but inconsistent with quantitative constraints, may be refuted dur-
ing the interval propagation. Note that the variables’ initial values are specified
in the initialisation and transaction functions in QSIM, not in QDE (Figure 5.3).
Given the initial state with amount = 0 (an empty bath), Q2 predicts the be-
haviour tree of bathtub with single branch (Figure 5.4). It indicates the process
reaches an equilibrium as its final state (�).

Figure 5.5 shows the variables’ trends of this behaviour. Unlike the behaviour
trend from qualitative simulation (Figure 4.9), the landmarks in each plot are also
associated with a pair of numeric values, which are generated by Q2, to describe
the estimated value ranges.

Note that the simulation predicts amount will be static at the level of a very
coarse range, [5.15, 56.7]. It might be caused by two reasons: first, there is a large
uncertainty for inflow, say [4, 8]; second, in this case, Q2 is not so efficient as
expected, because no new landmarks are created (at critical time-points) between
start and end points of simulation (Figure 5.4), which implies that the intersecting
algorithm failed to work. To solve the weakness of Q2, some advanced refinements
need to apply.

80 CHAPTER 5. SEMI-QUANTITATIVE MODELLING & SIMULATION

5.4 Advanced Techniques

One important limitation of Q2 is that the qualitative information inferred re-
mains relatively coarse in some cases, such as when no transition point or inter-
mediate critical time-point is created during simulation (e.g. smooth software
evolution process described in Section 8.5.3). The weak quantitative conclusion
in such cases is mainly due to the large grain-size of the qualitative behaviour
with landmark time-points only for initial and final states of the process.

Some recent advances build on QSIM+Q2 to greatly strengthen the semi-
quantitative conclusions that can be drawn from incomplete information.

Q3

Q3 extends Q2 with step-size refinement, adaptively inserting landmarks into
qualitative intervals to decrease the effective step-size and strengthen semi-quantitative
inference. In addition to providing tighter predictions and more refutations, Q3

provides an important new guarantee that the uncertainty in the semi-quantitative
behaviour prediction converges to zero as the uncertainty in initial conditions and
the maximum step-size converge to zero. Along with Q2 soundness guarantee,
this means that semi-quantitative reasoning smoothly spans the gap from purely
qualitative simulation on the one hand to numerical simulation on the other.

Dynamic Envelope

Dynamic envelopes are used by the semi-quantitative simulation program NSIM

to improve on Q2 by providing much tighter bounds over qualitative intervals.
In Q2, behaviour over an interval is only bounded by the rectangle defined by
bounds on landmarks at the endpoints of the interval. Dynamic envelops are
numerically defined solutions to an external system of ODEs that can be derived
from the QDE and Q2 bounds, and proved to bound its solutions. They are
therefore curvilinear, and take advantage of stronger properties of the QDE.

5.5 Summary

Continuing the concise description of qualitative modelling and simulation in
Chapter 4, this chapter introduces its semi-quantitative counterpart as the ex-
tension.

Now we are ready to start the exploitation of qualitative/semi-quantitative
modelling and simulation in software process research, and to yield the major
contribution of this thesis. The next part investigates three distinct but typical
software processes, which are different in purpose, domain, scope, and output iden-
tified in the systematic review (cf. Chapter 3), using the modelling approaches
described in this part.

Part III

INNOVATION I:

MODELLING

81

Chapter 6

Modelling Software Staffing

Process

The systematic review (cf. Chapter 3) reports the state-of-the-art of SPSM re-
search and extracts the most modelled aspects of software process for the design
of this research. This part follows this design and presents the modelling and
simulation of the selected software processes, i.e. software staffing process, incre-
mental development process and software evolution process.

This chapter∗ starts the qualitative and semi-quantitative modelling with a
generic development process in project life cycle. A classic software staffing pro-
cess is modelled and investigated here at macro-process level. As the outcomes,
the qualitative and semi-quantitative simulation models can be used to estimate
the duration (time) and effort (cost) of a middle sized software project with work-
force change. Table 6.1 highlights the related aspects (in bold) to the software
staffing process model in the research design.

The following sections first give a brief review of the related background,
and then present the progressive development of qualitative model and semi-

∗The work included in this chapter has been partially reported in [ZHKJ06] and [ZK06].

Table 6.1: Staffing process in relation to research design

Purpose level Problem domain Model scope Output variable
cognitive level generic development single phase time

tactical level software evolution multi-phase effort
strategic level incremental development project quality

evolution size

83

84 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

quantitative constraints for a software staffing process. The simulation results of
the qualitative process model is further used to revisit the Brooks’ Law. More-
over, an illustrative example of semi-quantitative simulation is presented for the
comparison with quantitative alternative models.

6.1 Background

6.1.1 Software Staffing Process & Brooks’ Law

Software project staffing includes the activities of managing the human resource
in software development [AH89], typically as personnel shortcomings, recruit-
ment, assimilation, and turnover. Since the personnel effort is the most impor-
tant component and major indicator of software cost, people issues, the focus of
software staffing process, has gained recognition as the core of software project
management.

Brooks’ Law, since its publication, might has been the best-known and widely-
endorsed in the literature regarding software staffing process, which states [Bro95]:

“Adding manpower to a late software project makes it later.”

The assertion of Brooks’ Law was based on many studies that have demon-
strated the negative impacts of communication and training overheads on soft-
ware development productivity. In spite of the fact, it has not been formally
tested so far. Though some previous studies (reviewed in the next subsection)
intended to investigate Brooks’ Law, most of them employed only a limited set
of quantitative cases. Later in this chapter, we will investigate this qualitative
statement through the qualitative research vehicle (QSIM) in this thesis, and
further test it in the uncertain scenarios (for values and relations) constrained
semi-quantitatively.

6.1.2 Related Models

A few previous researches have investigated the software staffing process using
quantitative models. Three typical models are reviewed in brief as follows:

AHM’s Model Abdel-Hamid and Madnick (AHM) modelled the basic process of
software human resource management using system dynamics [AHM91]. They
assumed two workforce levels, i.e. new hired workforce and experienced work-
force, and then formulated the assimilation process as a first-order exponential
delay (refer to the explanation in Chapter 8). They then enhanced manpower
assimilation by separating the procedure into four stages with different produc-
tivity levels. They restricted the scope of their model to medium-sized software
projects.

6.2. QUALITATIVE MODELLING 85

Madachy’s Model Madachy developed a software staffing model using system dy-
namics as well [Mad08], which examines the classic Brooks’ Law. He simplified
AHM’s model by focusing on the assimilation procedure. His model was built with
two connected flow chains representing software development and workforce as-
similation. The requirements are transformed into developed software at software
development rate. The new project personnel are transformed into experienced
personnel at personnel allocation rate.

Both of these staffing process models can be used to verify Brooks’ Law [Bro95].
Unlike the study in this chapter, these models used specific numeric values, which
were selected from the literature or historical data of company projects, to quan-
tify the factors in the models. Then they simulated the process with the data
from particular projects or example as inputs.

Stutzke’s Model Stutzke developed a simple model in order to perform a sim-
ilar investigation, with a similar output [Stu94]. He undertook the analysis of
the process and effort of assimilating the new employees, and then tested his
model against an actual project in which the manpower was doubled successfully
and the original schedule achieved. Stutzke believed that the added burden of
communication in a larger project was a second-order effect and did not model
it.

6.2 Qualitative Modelling

This section presents the procedure of modelling software staffing process using
the qualitative modelling approach described in Chapter 4.

6.2.1 Qualitative Assumptions

The qualitative model of software staffing process was developed by following the
qualitative modelling procedure illustrated in Figure 4.1. The ‘physical scenario’
is that of adding new staff to a software project. This section conducts Step 2
through Step 4 to implement the modelling approach. The last step ‘quantitative
behaviours’ will be used in the next section (Section 6.3) within semi-quantitative
simulation as the extension of qualitative simulation.

Both AHM’s and Madachy’s models are quantitative models which consist of
a set of ODEs. Here a qualitative model is created on the base of a minimal set
of assumptions of the software staffing process in a generic software project, and
avoid the quantitative relations which came from the particular types of software
projects and may not fit other projects or organisations in a general context.

The qualitative model is derived from the following basic assumptions, in-
cluding the unstated assumptions in the previous models:

86 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

Table 6.2: Assumptions of staffing process model

Assumption Constraint
1. No changes of requirements SP constant SP

2. Reworking included in SP during project constant SP

3. SP is transformed to product by RSD SC + SR = SP

RSD = d
dt (SC)

4. WFT consists of WFEX and WFNW WFT = WFEX +WFNW

5. RND (REXD+RNWD) is calculated by REXD = PDEX ∗WFEX

multiplying PD by WF RNWD = PDNW ∗WFNW

6. Increasing WFT increases RCO RCO = M+
(
WFT

2
)

7. RSD is difference between RND and RCO RSD = RND −RCO

8. PDNW is less than PDEX initially PDNW < PDEX

9. PDEX is constant on average constant PDEX

10. WFNW are assimilated into WFEX by RAS WFEX = WFET +WFED

RAS = d
dt (PDNW)

1. Software requirements project size (SP) do not change during the project
life-cycle;

2. SP includes the necessary reworking performed in project;

3. SP is transformed from remaining size (SR), which initially equals to project
size, into the completed size (SC) at the software development rate (RSD);

4. Project team, i.e. workforce in total (WFT), consists of experienced work-
force (WFEX) and newly hired workforce (WFNW);

5. Nominal development rate (RND) has linear relationship with workforce
(WF) and their productivity (PD);

6. Adding more people to a project results in a larger communication and
motivation overhead (RCO);

7. RCO is the only negative impact on RND;

8. A new employee’s productivity (PDNW) is initially lower than an experienced
employee’s productivity (PDEX) on average;

9. Average PDEX does not change during project;

10. A new employee must be trained by experienced personnel before reaching
their normal productivity level (PDEX).

6.2. QUALITATIVE MODELLING 87

SP: Project size RCO: Communication overhead rate
SC: Completed size REXD: Experienced employee development rate
SR: Remaining size RNWD: New employee development rate
RSD: Software development rate RND: Nominal development rate
RAS: Assimilation rate PDEX: Experienced employee’s productivity
WFT: Total Workforce PDNW: New hired employee’s productivity
WFEX: Experienced workforce WFED: Experienced workforce for development
WFNW: New hired workforce WFET: Experienced workforce for training

Figure 6.1: Qualitative abstract structure of staffing process

Brooks suggests that communication overhead increases by a factor of (n(n−
1)/2), where n is the project team size [Bro95]. It implies that increasing the size
of project team increases the effort of communication overhead (Assumption 6).

Further, the qualitative abstract structure was created to graphically illustrate
the qualitative constraints of software staffing process.

6.2.2 Qualitative Abstract Structure

Given the proposed assumptions in Section 6.2.1, this step investigates the staffing
process of software development.

Initially, remaining project size (SR) equals the requirements (SP). As time
progresses, SR decreases and will be processed to become completed project size
(SC), which represents progress made in development. The project will be com-

88 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

pleted when SC equals the original requirements, or SR drops to zero.
There are two major differential structures included in this model. The first

one is software development rate (RSD), which indicates the development speed
of software project. It is determined by the two factors: nominal development
rate (RND), and equivalent communication overhead (RCO). RND can be further
decomposed into development rate contributions from the experienced personnel
and new personnel.

The workforce in total (WFT) equals experienced workforce (WFEX) plus the
newly hired workforce (WFNW), each group works at different productivity rates.
Because new employees join the project, a portion of experienced staff (WFET)
have to leave their development tasks for training the new hirees. The experienced
employee development rate (REXD) results only from the experienced workforce for
development (WFED). A monotonically increasing function M+ exists between
the workforce and corresponding development rate. It means that increasing the
manpower in project leads to a higher nominal development rate (RND).

However, to determine the actual development rate (RSD) in project, we also
need to consider the communication overhead (RCO), which causes a drop in the
actual RSD below RND. It is expressed as a nonlinear function of WFT. AHM
quantified the function as (0.06 ∗ n2) [AHM91]. While we can formulate the
relation by the qualitatively accepted Brooks’ assumption (Assumption 6) as
“the communication overhead rate monotonically increases with the square of
total workforce”.

The second differential relation is the assimilation rate (RAS) of new workforce
introduced, which represents how quickly the productivity of new staff increases
to the level equivalent to the experienced staff’s through training.

6.2.3 Qualitative Differential Equations

Two QDEs were developed to convert the qualitative abstract structure model
(Figure 6.1) to formal constraint programs (later input to simulation engine).
One QDE is used to describe the normal software development process, and
the other to represent the interaction and relations in staff assimilation process.
(The complete programmed QDE for staffing process model can be found in
Appendix B.)

Normal Development QDE

Figure 6.2 shows the constraint definitions in the first QDE, which represents the
normal software development process without new employees being hired. All
the constraints are based on the first four assumptions in Section 6.2.1.

6.2. QUALITATIVE MODELLING 89

(constraints
(add Sc Sr Sp)
(constant Sp)
(d/dt Sc Rsd)
(constant WFnw 0)
(constant WFex)
(add WFex WFnw WFt)
(constant PDex)
(Mult PDex WFex Rexd)
(constant Rnwd 0)
(add Rexd Rnwd Rnd)
(M+ WFtl Lcm)
(Mult Rnd Lcm Rcm)
(add Rsd Rcm Rnd))

Figure 6.2: Formal constraints for normal development QDE

Assimilation Process QDE

AHM only formulated the assimilation process as a first-order exponential delay.
In terms of the design of the training program applied, the model of this process
can be refined in three different ways.

Refinement 1 The newly hired staff will be gradually transferred into the ex-
perienced staff pool by the assimilation rate (RAS). In this situation, the
amount of new staff will be reduced to zero when the assimilation process
finishes. The productivity of new employee stays at its initial low level.
As the relationship between experienced workforce for training (WFET) and
newly hired workforce (WFNW) is monotonically positive, the amount of
trainer needed gradually decrease to zero in the course.

Refinement 2 There is an one-off transfer from the newly hired staff to the ex-
perienced staff once the assimilation process finishes. However, the former’s
average productivity is increasing during the procedure, and will be equal
to the latter’s productivity at the end (of assimilation). The amount of
experienced trainers required is constant until the assimilation terminates,
and then all return to normal development process.

Refinement 3 The productivity of the new employee stays at zero during the
orientation period, since they have to “learn the project’s ground rules, the
goals of effort, the plan of work...” and what has been done in the current
project. Their productivity starts to increase after this period until the
end of assimilation, or in other words, they start to be assimilated into the
experienced workforce pool as the first refinement addressed.

90 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

(constraints
(add Sc Sr Sp)
(constant Sp)
(d/dt Sc Rsd)
(constant WFnw)
(constant WFex)
(add WFex WFnw WFt)
(M+ WFnw WFet)
(add WFed WFet WFex)
(constant PDex)
(d/dt PDnw Ras)
(constant Ras)
(Mult PDex WFed Rexd)
(Mult PDnw WFnw Rnwd)
(add Rexd Rnwd Rnd)
(M+ WFt Lcm)
(Mult Rnd Lcm Rcm)
(add Rsd Rcm Rnd))

Figure 6.3: Formal constraints for assimilation process QDE

Figure 6.4: QDEs and transitions during simulation

This chapter selects the second refinement, which is different from AHM’s
model, in development staffing process model. It seems more realistic according
to the author’s experience and allows a well defined transition point for qualita-
tive modelling. Figure 6.3 shows the second QDE coded.

Figure 6.4 illustrates the relations (transitions) between these two QDEs in model
execution. The transition conditions to switching between these two QDEs are
the beginning of assimilation when the new employee’s productivity start to in-
crease, and the end when their productivity reaches the equivalent level of expe-
rienced personnel.

6.3. SEMI-QUANTITATIVE CONSTRAINTS 91

6.3 Semi-Quantitative Constraints

This section extends the qualitative model with semi-quantitative constraints (Q2

equations). Q2 (qualitative+quantitative) equations, including parameter inter-
vals and envelope functions, are the important representations of the incomplete
quantitative knowledge and information in semi-quantitative simulation.

6.3.1 Parameter Intervals

The unit and unit conversion are not considered in the qualitative model because
the landmark values are symbolic names for unknown real values (like algebraic
variables). All quantities are assumed to have appropriate and compatible units
in such circumstance. However, since some quantitative interval bounds are in-
volved in semi-quantitative simulation, the units must be explicitly denoted for
the interval arithmetic (as specified in Table 6.6).

Ratio of Productivity According to AHM’s summary of the literature and inter-
views, the estimate for the productivity of newly hired workforce relative to that
of experienced personnel varies from 0.33 to 0.64. Here, the interval of [0.4, 0.6]
is assumed for the quantitative extension.

Assimilation Delay The range of proposed assimilation delay is quite large in the
literature. It was set at 80 days in [AHM91], whereas 20 days in [MT00]. Al-
though some project attributes in their studies are different, the team size and
project duration are comparable. For EXAMPLE, a prototype project from AHM
selected in the case study (see Section 6.4.2), a moderate range (say [60, 80] days)
is employed for quantifying this parameter.

The value ranges of SP and WF highly depend on the particular project and
organisation. They are specified later in Section 6.4.2.

6.3.2 Envelope Functions

As Figure 6.1 indicates, there are two monotonic functions included in the qual-
itative staffing process model. We need to correspondingly specify two sets of
numerical envelope functions providing bounds on them for Q2 inference.

M+(WFNW, WFET) When more new employees join in the project, more expe-
rienced people have to be assigned to train them. A linear relationship was
reported in the literature. AHM summarised the ratio ranges from 15% to
25%, and set it at 20% in their model [AHM91]. The value of 0.25 was used
in Madachy’s model [MT00]. So the range of [0.15, 0.25] (from AHM) is
applied here to bound this envelope function.

92 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

(envelopes
((M+ WFnw WFet)

(upper (lambda (x) (* x 0.25)))
(u-inv (lambda (y) (* y 4)))
(lower (lambda (x) (* x 0.15)))
(l-inv (lambda (y) (/ y 0.15))))

(M+ WFtl Lcm)
(exact (* 0.0006 (square (x))))
(e-inv (sqrt (/ y 0.0006)))))

Figure 6.5: Monotonic envelope functions

M+(WFTL, LCM) Brooks suggests that communication and motivation overhead
increases by a factor of n(n−1)/2, where n is the project team size [Bro95].
It is widely accepted and implies that increasing the size of software project
team increases the effort of overheads.

AHM specifically formulate this nonlinear relation as (0.06n2) between
workforce in total (WFT) and the percentage of communication and mo-
tivation loss (LCM). It is consistent with Brooks’ assumption. An exact
function (i.e. the upper bound equal to the lower) is imported into the
Q2 equations. Figure 6.5 illustrates these two specified monotonic envelope
functions in envelopes section of the QDE.

6.4 Case Study: Brooks’ Law

With reference to AHM’s model, the assimilation procedure is triggered by the
workforce gap, which presents the difference between the workforce in total and
the workforce sought. When workforce sought is larger than current WFT, new
employees will be hired and injected into the software project. However, work-
force sought usually depends on the project schedule pressure [AHM91], which
is decided by the completed project size (SC) and other outputs from the de-
tailed model of the software development sector. Hence, to simplify the staffing
model and focusing on assimilation impact, the simulation triggers the QDE2

(cf. Figure 6.4) when remaining project size (SR) reaches the size under pressure
(PRS SIZE) in this case.

6.4.1 Qualitative Simulation

Possible behaviours

The qualitative model outputs a number of possible behaviours. They are further
filtered by the constraint that the remaining project size becomes zero when sim-

6.4. CASE STUDY: BROOKS’ LAW 93

(a) Behaviour 57 of 112 (b) Behaviour 48 of 112

Figure 6.6: Examples of possible behaviours

ulation terminates. Finally, 112 behaviours are generated automatically through
simulation (QSIM). The predicted behaviours are divided into two categories:

1. behaviours only passing the first transition point (Ta) when the assimila-
tion procedure is triggered, i.e. project finishes before the assimilation is
complete (the second transition point);

2. behaviours also passing the second transition point (Tb) when the assimila-
tion completes, and then being followed by project closure.

Here, Ta is used to represent the transaction time when new staff are added
in and Tb identifies the time when all new staffs have been assimilated and trans-
ferred to be the experienced workforce. In the Behaviour 48 (shown in Figure 6.6-
b), the first time point with the symbol of parallel ‖ (T1) presents the status at
time Ta and the second ‖ T4 indicates status at time Tb.

Two examples of the above behavior categories are shown in Figure 6.6
a) passing Ta only; and b) passing both Ta and Tb. Furthermore, four types
of variables are identified from the outputs:

1. variables with constant values (SP, RAS, and PDEX);

2. variables change their values only at transition points Ta or Tb (WFT, WFNW,
WFEX, WFED, WFET, RCO, and REXD);

3. variables keep varying their values only between Ta and Tb (RSD, RND, RNWD,
and PDNW);

94 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

Table 6.3: Type 2 variables

initial value value @ Ta Ta to Tb ∗value @ Tb

WFNW 0 ↑> 0 no change ↓ 0
WFEX > 0 ↓ [0, initial] no change ↑>initial
WFT > 0 ↑>initial no change no change

WFED n/a ↑> 0 no change n/a
WFET n/a ↑> 0 no change n/a
RCO > 0 ↑>initial no change no change
REXD > 0 ↓ [0, initial] no change ↑>initial

∗only apply for behaviours passing T2

Table 6.4: Type 3 variables

initial value value @ Ta Ta to Tb value @ Tb

RNWD 0 ↑> 0 ↑ ↓ 0
RND > 0 ? > 0 ↑ no change
RSD > 0 ? ≥ 0 ↑ no change

PDNW 0 ↑> 0 ↑ ↓ 0

4. variables changing values throughout the project (SC and SR).

Because the qualitative modelling is used for continuous and dynamic sim-
ulation, we are only interested in the behaviours of the latter three types of
variables in this subsection (Type 4 variable’s behaviours are discussed in the
following dedicated subsections). According to the model outputs, it is worthy to
examine how these variables change at two transaction points (Ta and Tb), and
in the period between them.

Type 2 variables: There are several variables changing within the simple pat-
tern across the predicted behaviours: they jump from initial values to a
larger value at Ta, then no further changes occur until Tb or project fin-
ishes. Table 6.3 summarises the change patterns of all Type 2 variables
through two transitions.

Type 3 variables: The variables in this category present more complicated and
nonlinear changes in some behaviours. To identify the difference with Type
2 variables, we focus on the value changes at Ta, and between two transi-
tions. Table 6.4 shows the change patterns of all Type 3 variables through
two transitions. The increasing trend is found for this type variables be-
tween Ta and Tb.

6.4. CASE STUDY: BROOKS’ LAW 95

Software Development Rate

As the project duration and development speed are directly determined by soft-
ware development rate (RSD), it can be regarded as the vital variable of the model.
It also exhibits complicated changes among the possible behaviours generated by
this model.

RSD declines sharply in most predicted possible behaviours when new person-
nel are introduced at the transition point (Ta). Then it recovers gradually due
to the increasing productivity of the novices. It may exceed the initial value in
some scenarios where the project finishes after the assimilation period.

The relations between RSD and SR are examined by the phase view (cf. Chap-
ter 4) that is plotted in Figure 6.7. The dashed line arrows indicate the time
progress directions. The changes of RSD are shown on vertical dimension and the
corresponding values of SR presented on horizontal axis. Each dot in the plots
indicates both values of RSD and SR at the same transition time point. The left
most dot in each plot represents the end of project.

There are increasing trends of RSD in all behaviours after first transition (Ta).
The pattern of RSD can be identified as “√−−” shape in most behaviours as
shown in Figure 6.7-a and -b. The immediate drops are found when adding new
staff into project team at PRS SIZE. The final software development rate will
achieve the values below (b) or above (a) the initial rate.

Nonetheless, this qualitative model also outputs some other patterns inconsis-
tent with Brooks’ Law. Figure 6.7 (c) indicates no significant behaviour change of
development rate at PRS SIZE, and (d) shows an immediate increase at PRS SIZE.

Project Completion

We may determine whether the project will be later, as stated by Brooks’ Law,
by comparing the simulated project’s (with assimilation process) closure time
point with the original scenario without new workforce hired. Figure 6.8 shows
the phase views of the comparison: the horizontal axis indicates the value of SC

with new staff introduced, where the vertical represents SC in the original project.
The right most points in each plot represent the end of project. The right plots
(d, e, f) include two transition points during project, whereas the left plots (a,
b, c) have single transition. Instead of one specific result generated from the
quantitative models, this model outputs three states identified by examining in
which scenarios the project achieve the requirement size (ASG SIZE):

1. projects where assimilation finishes later than the original schedule, as Fig-
ure 6.8-a and -d;

2. projects where assimilation finishes earlier than the original schedule, as
Figure 6.8-b and -e;

96 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

Figure 6.7: Phase view of RSD vs. SR

3. projects where duration with assimilation just equals the original schedule,
as Figure 6.8-c and -f.

The first state (a, d) is consistent with Brooks’ Law. The results indicate
that the above three final states are all possible for software project in which the
new workforce are added in. Therefore, only given “adding manpower to a late
project” will not necessarily “make it later”.

6.4.2 Semi-Quantitative Simulation

Baseline Project

To illustrate some results of the semi-quantitative simulation (SQSIM) model,
AHM’s EXAMPLE project is selected as a baseline project. EXAMPLE is a
medium-size project with 64 KDSI, and used COCOMO to calculate the workforce
level. The main attributes of EXAMPLE are summarised in Table 6.5.

Two scenarios designed by AHM to investigate the aggressive manpower ac-
quisition policy are to add new personnel at day 260, when testing starts, and

6.4. CASE STUDY: BROOKS’ LAW 97

Figure 6.8: Phase view of project schedules

98 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

Table 6.5: Major attributes of EXAMPLE project

Attribute Value
Project size 64 KDSI
Man-days 3,795 man-days
Duration 430 days
Initial team size 4 men
Maximum team size [8, 18] men
Average ratio of productivity 0.5
Ratio of experienced mentors to novices 0.2
Average productivity of experienced workforce 36 DSI/man-day

Table 6.6: Value ranges for quantitative quantifying

Parameter Value Range
Project size 64 KDSI
Initial experienced workforce [4, 5] men
Newly hired workforce [3, 4]1/[11, 12]2/[7, 8]3 men
Nominal productivity of experienced personnel 36 DSI/man-day
Ratio of experienced mentors to novices [.15, .25]
Ratio of productivity [.4, .6]
Assimilation delay [60, 80] days

increase the total workforce to 8 and 18 [AHM91]. This subsection replicates
these two scenarios in semi-quantitative simulation, and adds one more medium
scenario for the further comparison:

Scenario 1: adding [3, 4] new developers on day 260;

Scenario 2: adding [11, 12] new developers on day 260;

Scenario 3: adding [7, 8] new developers on day 260.

With reference to the semi-quantitative constraints (Section 6.3) and EXAM-

PLE (Table 6.5) project, the numeric ranges (as shown in Table 6.6) are assigned
for parameters of the semi-quantitative model.

Accordingly, the monotonic envelope function M+(WFET, WFNW) has been
updated with the value ranges of workforce as illustrated in Figure 6.9. The area
of the dashed-line rectangle between two linear equations indicates the possible
value range of the envelope function for each scenario.

6.4. CASE STUDY: BROOKS’ LAW 99

Figure 6.9: Envelope functions of required experienced developers for training

Figure 6.10: Possible behaviour trees for EXAMPLE project

Possible behaviours

In Section 6.4.1 the QSIM staffing process model generates 112 possible be-
haviours, which can be classified into two types.

After the quantitative constraint propagation, Q2 outputs only 9 behaviours
for Scenario 1 and 3 behaviours for Scenario 2 as final solutions (shown in Fig-
ure 6.10). Comparing with the behaviours generated by QSIM, all behaviours
of Scenario 2 plus 3 behaviours of Scenario 1 are Type 1, i.e. passing only one
transition, and other behaviours of Scenario 1 are Type 2, i.e. including two
transitions. (The behaviours of Scenario 3 are a mix of 2 of Type 1 plus 3 of
Type 2.)

Figure 6.11 shows the changes of main variables in Behaviour 1 of Scenario 1.

100 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

Figure 6.11: Behaviour 1 for Scenario 1 of EXAMPLE project

They are similar to the changes in most behaviours except the different numeric
ranges of the landmarks.

Software Development Rate

Because the software project duration and development speed are directly de-
termined by software development rate (RSD), it can be considered as the vital
variable in this model. It also exhibits complicated changes and major differences
among the possible behaviours generated.

Figure 6.12 shows three behaviour patterns of RSD in Scenario 2, which are
similar to those in Scenario 1: when the new hirees are introduced into the project,
1) RND ascends and RSD falls immediately; 2) RND undergoes an instantaneous
increase and RSD starts to increase gradually; 3) both of them jump straightway.

All behaviours indicate that the training overhead is less than the additional
development rate by the new workforce. Pattern 1 implies the communication and
motivation overhead (RCM) is greater than the increase of nominal development
rate (RND). It results in the drop-off of RSD. Whereas, RCM is equal to and less
than the extra RND in Pattern 2 and 3.

It is noticeable that Pattern 2 and 3 generated through Q2 may be inconsistent
with Brooks’ Law, i.e. adding manpower brings no negative impacts on the overall
software development productivity.

Project Completion

The remaining size (SR) and completed size (SC) are the variables changing in
opposite directions over the project, and being decided by software development
rate (RSD). By investigating its behaviours in Figure 6.12, the positive impact of
new staff’s introduction can be easily identified (Pattern 2 and 3), and it must
lead to shrinking of project elapsed time.

6.5. MODEL COMPARISON & DISCUSSION 101

Figure 6.12: Behaviours of RND and RSD in Scenario 2

Table 6.7: Simulated project completion

Scenario Completion Remark
S1 [339, 423] days add [3, 4] developers on day 260
S2 [309, 386] days add [11, 12] developers on day 260
S3 [320, 396] days add [7, 8] developers on day 260

Table 6.7 illustrates the simulated project closure time for each scenario. In-
stead of one single-value result generated from the quantitative model, the semi-
quantitative model outputs all possible value ranges by simulating the project
under the given scenarios. Figure 6.13 shows the envelopes against the original
completion time (430 days). Each rectangle in dashed-line indicates the intro-
duced new workforce and the corresponding possible project duration. Given
these three scenarios, it is guaranteed that the EXAMPLE project can finish ear-
lier.

6.5 Model Comparison & Discussion

Because a qualitative model (with its semi-quantitative constraints) simulates
all possible behaviours and states of a specific system (with incomplete quanti-
tative knowledge), such a model cannot be fully evaluated by particular sets of

102 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

Figure 6.13: Project durations of scenarios

quantitative evidences.
This section conducts the evaluation by comparing the qualitative and semi-

quantitative outputs with the existing calibrated quantitative staffing models,
and further comparing with the empirical evidence.

6.5.1 Comparison with Outputs of Related Models

Stutzke’s model will not be compared with the results of QSIM and SQSIM
modelling, because the models developed in this chapter consider the increasing
effort on communication, which is not included in his study.

Both AHM’s and Madachy’s models show the staffing process and examine
Brooks’ Law under predetermined conditions, since the equations and parameters
must take on quantitative values.

AHM’s model provides detailed insights into what happens under several
assumptions as to how much manpower is added, and when [AHM91]. They
identified that the new personnel always have an immediate negative impact
on software development rate, and concluded that “adding more people to a late
project always makes it more costly, but it does not always cause it to be completed
later”. In particular, adding extra workforce early in the schedule is much safer
than adding them later.

From quantitative aspect, according to AHM’s simulation results, the com-
pletion times of Scenario 1 and 2 are less than, but close to 400 days [AHM91].
They are covered by the possible value ranges generated by the semi-quantitative
model.

6.5. MODEL COMPARISON & DISCUSSION 103

By performing the sensitivity study of his model, Madachy clarified Brooks’
Law qualitatively as “adding manpower to a late software project makes it later
if too much is added too late” [MT00].

According to the simulation outputs in this chapter, two major findings can
be concluded as fellows:

Findings 1 Adding new personnel might bring the immediate negative or pos-
itive impact on software development rate, but it does not always make a
project finish later (cf. Figure 6.12).

Findings 2 Adding a large number of new personnel in a late phase (e.g. testing)
obviously makes project costly, and might contribute more slightly to the
schedule improvement (cf. Figure 6.13).

All the results of previous quantitative models can be obtained by this work.
The quantitative models always assume that project schedule merely depends on
the amount of new manpower and the introduction time. However, they did not
take into consideration the impacts of other factors associated with project and
organisation (see Section 6.5.3 for further discussion).

6.5.2 Comparison with Empirical Evidence

Jeffery investigated the relationships between productivity, effort and elapsed
time that the time-sensitive cost models claimed for software development. He
collected and analysed the data on 47 projects from 4 large organisations in
Australia [Jef87]. The plot of the ratio of the actual effort to estimated effort
against the ratio of actual elapsed time to estimated elapsed time is shown as
Figure 6.14.

The gap between the actual remaining effort and the estimated remaining
effort results in the gap of manpower, which directly leads to workforce sought
(cf. Section 6.4). Project managers may decide to hire new workforce, as they
perceive that more employees are sought to complete the additional workloads.

In Figure 6.14, Quadrant 1 and 2 reflect the scenarios with more actual effort
needed than estimated, whereas Quadrants 1 and 4 cover the cases of elapsed
time expansion. The points in Quadrant 1, which represent more effort and
longer elapsed time, are consistent with the situation that Brooks’ Law claims.
However, Quadrant 2 includes the projects with more effort but less elapsed time,
which is inconsistent to Brooks’ Law.

The points falling in both Quadrant 1 and 2 are consistent with the states
predicted through the above qualitative simulation. We can also find from the
scattergram that when the actual effort exceeded the estimate, most projects
could finish within the actual elapsed time close to the estimate.

104 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

Figure 6.14: Effort ratio vs. elapsed time ratio

6.5.3 Discussion

In Section 6.4.1, it was already found that the project with new employees in-
troduced might be completed earlier, later, or at the estimated schedule through
the qualitative simulation. The three final states are all possible with the basic
qualitative assumptions (shown in Figure 6.8).

Furthermore, given the specific scenarios, the EXAMPLE project with new em-
ployees hired can be completed earlier than the original completion time through
SQSIM. It is inconsistent with Brooks’ Law.

Even though other researchers found Brooks’ Law might be questionable, they
emphasised the causes as being the number of new manpower hired and when,
which are the inputs with the values they can change in the quantitative models.
However, we can identify other factors that may impact the result through qual-
itative simulation. These factors can be located among the variables associated
with the qualitatively constrained monotonic formulae, i.e. M+ or M−.

Communication Overheads (RCO) Even though it is widely accepted that com-
munication overheads account for a second-order effect on added effort, the re-
lationship with workforce may vary between projects, even different tasks. It
can be expressed by the variance of the constant coefficients of the relationship.

6.5. MODEL COMPARISON & DISCUSSION 105

Figure 6.15: Behavior 80 of 112

For instance, when the project hires new staff to conduct the testing tasks, the
communications between them are not so significant as during initial phase of
the development. Hence, the drop of RSD due to RCO may be small.

In the scenario shown as Figure 6.15, though experienced employee develop-
ment rate (REXD) declines sharply at the first transition, the overall software
development rate (RSD) increases significantly at T1. This might be caused by
the situation when many new employees were added in project. They lead to the
increase of RND, but no significant increase in RCO occurs.

Assimilation Rate (RAS) AHM decomposed the assimilation rate (RAS) into “hir-
ing delay” plus “transfer delay”, which assumed to be 40 and 80 days respectively.
Madachy set the delay to be at the average of 20 days. The actual assimilation
rate is decided by multiple factors, which may include the average novice’s com-
petency, the mentor’s teaching skills and programme design, and the tasks being
assigned to the new personnel, and so on. In the qualitative model, one qualita-
tive rate without specific numeric value is involved and all consequent possibilities
and corresponding impacts can be examined through simulation. One quantita-
tive value range instead of a single value was applied in the semi-quantitative
constraint, and then all consequent possibilities and corresponding impacts can
be predicted through the simulation. It can avoid the loss of any possibilities.

New Employee’s Productivity (PDNW) The low productivity of new manpower
was believed to be the vital factor that leads to the immediate decline of the
entire development rate. Its value varies in the quantitative models: it is set
to 0.8 of nominal productivity in Madachy’s model, and AHM separated it into
4 levels from 0.1 to 0.9. In contrast, Assumption 8 in qualitative modelling
(Section 6.2.1) only claims a lower productivity of the new employees than the
experienced employees. In addition, the semi-quantitative constraint assumes this
low productivity of new employees is between [0.4, 0.6] of experienced personnel’s.
In practice, if the project managers weigh the schedule constraint more than

106 CHAPTER 6. MODELLING SOFTWARE STAFFING PROCESS

cost, they can pay more to hire the software professionals with potential higher
productivity. Then they will be absorbed quickly, and more importantly, may
increase quality (fewer defects) and improve the productivity of the original team.

Ratio of Experienced Mentors to Novices Madachy’s model assumed the default
value of 0.25 that indicates one experienced person is needed to train four new
employees until they are fully assimilated. AHM estimated the range from 15%
to 25%, and there are no explicitly proposed formulae in literature. However,
the ratio might be lower if the new team members are internal and transferred
from the similar projects. The qualitative model and semi-quantitative constraint
can allow all these possibilities and simulate their corresponding states without
further details given.

Management Adjustment None of previous models takes into account the man-
agement adjustment, such as the fact that the work must be repartitioned in
practice, a process addressed by Brooks.

The above comparison and discussion reveal a complex structure that is not
limited in the relationship between “when to add new workforce in project” and
“how many new personnel need to be hired”, which were focused by previous
studies.

In terms of the analysis in this chapter, the practical meaning of Brooks’
Law may be that it presents a simplified approximation to the truth of software
staffing process for project managers, and as a rule of thumb to warn them against
blindly making the simplistic response to a late project. However, by applying
appropriate recruitment, training and task assignment strategies, it is possible to
assimilate new staff without encountering schedule problems.

6.6 Summary

Following the research design, this chapter investigates a generic development
project with focus on its related staffing process using qualitative and semi-
quantitative approaches.

1. It develops the first qualitative explanatory structural model of software
development process for simulation study.

2. This model is further extended to be the first semi-quantitative software
process model by applying incomplete quantitative constraints.

3. It is the first study that comprehensively demonstrates the the entire proce-
dure of qualitative/semi-quantitative modelling and simulation of a software
process.

6.6. SUMMARY 107

4. This study initially tests the feasibility and applicability of qualitative/semi-
quantitative simulation in modelling a generic software process with a min-
imum set of assumptions and constraints.

5. The model is further used to revisit Brooks’ Law in a qualitative form,
and provides new insights rather than those through previous quantitative
studies.

6. The model is evaluated by comparing its outputs with the results from the
related quantitative models and empirical evidence.

The next chapter presents the modelling and simulation of another typical
software process, an incremental development process, but at a fine-grained level
by looking into the phases in each iteration.

Chapter 7

Modelling Incremental

Development Process

Chapter 6 describes the first qualitative structural software process model and its
semi-quantitative version, which focus on software staffing process over project
life cycle. Following the design of this research (cf. Section 3.6), this chapter∗

explores the qualitative and semi-quantitative modelling of software process at
a fine-grained scope by looking into the incremental development at phase level.
For this purpose, an incremental development process (one of the most mod-
elled domain in SPSM identified in Chapter 3) is chosen and investigated with
the software quality concern by focusing its test-and-fix phase (sub-process) in
an intermediate increment. Table 7.1 shows the related aspects (in bold) of the
incremental development model in the research design. The items already in-
vestigated in the last chapter (strikethrough) are ignored here to maintain the
emphasis of the modelling and simulation in this chapter.

∗The work included in this chapter has been partially reported in [ZKJ07d] and [ZKKJ08].

Table 7.1: Incremental development in relation to research design

Purpose level Problem domain Model scope Output variable
cognitive level generic development single phase time

tactical level software evolution multi-phase effort
strategic level incremental development project quality

evolution size

109

110 CHAPTER 7. MODELLING INCREMENTAL DEVELOPMENT PROCESS

Figure 7.1: Waterfall vs. incremental development

7.1 Background

7.1.1 Incremental Development Processes

Incremental development is a broad terminology of software development process,
which may cover iterative development, versioned implementation, spiral model,
and so on. The basic idea is to divide the development into several smaller incre-
ments, which are gradually accumulated to become the complete system [Kar01].

The essence of incremental development is illustrated in Figure 7.1 by com-
parison with the traditional waterfall life cycles model. Basically, there are three
phases in one increment, i.e. design (analysis), implementation, and test-and-fix.

This chapter only models the implementation and test-and-fix processes of an
intermediate increment. After the current release is implemented, the progress
enters a test-and-fix process, where this release is thoroughly tested and corrected.
During this period, no new functionality is added into the release. The purpose
of the process is to make sure that each release provides a robust foundation for
its succeeding releases.

7.1.2 Conceptual Software Quality Model

In this study, we assume that any reduction in software defects that remain in
a product improves the quality of that product. Accordingly, the defect level is
used as the indicator of software quality in this chapter.

Boehm described the “software defect introduction and removal model” in [Boe81],
which is analogous to the “tank and pipe” model introduced by Jones [Jon75].
Based on their models, a fundamental conceptual quality model is developed fo-
cusing on test-and-fix process of incremental development, as shown in Figure 7.2.

The graphic model shows that defects conceptually flow into a cascade of
tanks through various defect source and transferring pipes. Be aware that the
quality assurance activities, e.g. walk-through and inspection, are not included

7.1. BACKGROUND 111

Figure 7.2: “Tank-pipe” software quality model of incremental development

in this model at current stage. The figure depicts that defects are drained off
through the defect detection and defect fixing pipes. The residual defects of
current release will be input to next increment. In the following sections of this
chapter, ‘error ’ will be used as the equivalent term to ‘defect ’.

7.1.3 Related Models

The software testing (or test-and-fix) processes have been investigated by re-
searchers using quantitative modelling and simulation. This subsection provides
brief descriptions and comments of these models separately.

AHM’s Model Abdel-Hamid and Madnick (AHM) modelled the basic software
testing process, which is a sector of their integrated software process model using
system dynamics [AHM91]. However, their model is based on the waterfall test-

112 CHAPTER 7. MODELLING INCREMENTAL DEVELOPMENT PROCESS

Table 7.2: Summary of related software testing process models

Process Model type Life cycle Error type Dynamic
AHM’s model test SD waterfall active,

positive
yes

Huff’s model test-fix analytic incremental new, old no
Tvedt’s model test SD incremental unknown yes
Cangussu’s
model

test-fix DTS (con-
trol theory)

n/a single yes

ing process, rather than the incremental testing. They did not differentiate the
newly generated errors and the escaped errors from the test-and-fix process of
the previous increments, which influence the current testing performance. Plus,
their model neglects the switchover phenomenon of error fixing productivity.

Huff’s Model Huff et al. developed the alternative causal model for the test-and-
fix process of incremental development [HSS86]. They quantified the relations by
quantitative equations. Nevertheless, their models did not identify the reproduc-
tion of remaining active errors in the succeeding increments.

Tvedt’s Model Tvedt developed a comprehensive process model of concurrent
incremental development [Tve96]. He considered the impacts on defect creation
from engineer’s capability, technical risk, and interdependency among the con-
current increments, which is not the case of our process. However, the active and
passive errors were not explicitly handled in his model.

Cangussu’s Model Cangussu et al. developed a software test process model based
on concepts and techniques from control theory [CDM02]. Their model reinforces
modelling the continuous feedback during test process, and computes the effort
required and schedule slippage to meet the quality objectives under changing
process environment. As AHM’s model, they did not identify the error cate-
gories, and treated them as the same. In addition, they concentrated on the
control-feedback during one test process alone, and omitted the influence be-
tween implementation and test processes.

The characteristics of the above quantitative models are summarised in Ta-
ble 7.2.

7.2. QUALITATIVE MODELLING 113

7.2 Qualitative Modelling

In the context of incremental development, the primary purpose of the test-and-
fix process model is to examine whether the increment can be completed within
the desired time frame with the required quality. This section presents qualitative
models for the implementation of an intermediate increment and its associated
test-and-fix process.

The qualitative models consist of two interconnected models, which are de-
veloped to model the implementation (error generation) process and test-and-fix
(error detection and correction) process for producing an intermediate release. At
the qualitative modelling stage, this section investigates the incremental develop-
ment processes, and abstract error-related features (assumptions) in qualitative
form from them.

7.2.1 Modelling Implementation Process

One widely used linear model for software implementation is employed as the
basic skeleton of this model, i.e. given workforce (WF), release size (S), and unit
productivity (PD), the elapsed calendar days to complete the release can be cal-
culated by S/ (WF ∗ PD). However, because we are interested in the processes
related to error generation and detection during each increment, more features
related to error generation need to be included in this model. In addition, the
management overheads (including communications, adaptations, staff’s absence,
configuration management, and so on) need to be considered as well when calcu-
lating the elapsed time.

During the implementation phase, there are two basic types of errors gener-
ated: ‘active errors’ and ‘passive errors’. ‘Active errors’ are errors which unless
detected and retired will generate additional errors (active and passive) in sub-
sequent increments. ‘Passive errors’ remain in code until they are detected and
retired but do not give rise to additional errors in subsequent increments.

Active and passive errors are considered in the incremental implementation
process because they impact the number of errors introduced into the incremental
test-and-fix process. If we suppose the system is developed with an incremental
top-down strategy, then in the early releases, most of errors committed are in
the core or high level components and become active. If these errors are not
detected, they tend to propagate through the succeeding increments that build
on one another.

Therefore, the errors generated through each increment arise in two ways. The
first is through the development of the construction of new functionality required
in each increment (increment size, Si); the second is the errors generated by exist-
ing active errors. However, for many undetected active errors, the reproduction
will not continue after producing one or two ‘generations’ of errors [AHM91]. In

114 CHAPTER 7. MODELLING INCREMENTAL DEVELOPMENT PROCESS

this case, they effectively become undetected passive errors.
The qualitative assumptions for modelling the implementation process are

explicitly given below:

1. All resources are focused on one increment, i.e. increments are sequentially
linked with each other, and there are no concurrent increments at any time;

2. The size of current release (Si) does not change during current increment;

3. Current release size (Si) includes the necessary work, e.g. design, coding,
unit testing and rework except system testing and defect fixing in this
release;

4. More old active errors (EAO) from previous releases will reproduce more
active and passive errors (EARp and EPRp) in current implementation;

5. Increasing software development rate (RSD) increases both active and pas-
sive error generation rate (REAG and REPG);

6. Increasing the team size (WF) leads to a larger implementation overheads
(ROh);

7. The average development productivity (PDIm) does not change during cur-
rent implementation;

8. A fraction of remaining active errors (EARt) are retired to become old passive
errors (EPO) in each intermediate release.

Based on the above qualitative assumptions, the qualitative model of imple-
mentation process is given in Figure 7.3, where the asterisk ‘*’ denotes an input
parameter, and the plus ‘+’ indicates an output parameter.

7.2.2 Modelling Test-and-Fix Process

The objective of test-and-fix process is to achieve an “acceptable level of quality”,
meaning that a certain percentage of defects will remain unidentified upon release
of the software [Gal04]. During the incremental development, a small percentage
of defects may escape from the current test-and-fix process, and remain in the
implementation of next increment.

In test-and-fix process, a specific test suite is run and analysed, detected
errors are reported, assigned, and eventually fixed. In practice, the test cases
are usually performed by a stand-alone team to avoid any potential bias. The
work of correcting errors mostly falls to the team who implement the design and
coding.

The test suite contains multiple test cases, which are prepared in advance,
and ready prior to test-and-fix. During the test-and-fix, the black-box testing

7.2. QUALITATIVE MODELLING 115

S(i): Size of increment i EAEs(i): Escaping active errors from increment i
RSD: Software implementation rate EPEs(i): Escaping passive errors from increment i
RND: Nominal development rate EARt: Retired active errors
ROh: Management overhead EAO: Old active errors in increment i
WF(i): Workforce for increment i EPO(i): Old passive errors in increment i
EARp: Reproduced active errors EAN(i): New active errors in increment i
EPRp: Reproduced passive errors EPN(i): New passive errors in increment i
REAG: Active error generation rate EA(i): Active errors in increment i
REPG: Passive error generation rate EP(i): Passive errors in increment i
EAG: Generated active errors PDIm: Implementation productivity
EPG: Generated passive errors ET(i): Total errors in increment i

Figure 7.3: Qualitative model of implementation process in one increment

116 CHAPTER 7. MODELLING INCREMENTAL DEVELOPMENT PROCESS

strategy is applied here, since we assume that unit testing (based on white box
testing) takes place during the implementation process. The time spent detecting
errors depends on the size of test suite (or the number of test cases in queue) of
the current release, instead of the release size (lines of code or function points).
However, the time spent on correcting errors relates to the number of the detected
defects.

Huff et al. argued that the defect fixing rate (productivity) slows as average
length of defect queue drops below a certain number [HSS86]. This switchover
phenomenon normally happens near the end of defect fixing work, when a small
number of defects in the queue for developers. A single multiplier is used here to
reflect the productivity drop.

The qualitative assumptions for modelling the test-and-fix process are sum-
marised as:

1. Test suite (TS) is prepared before test-and-fix starts, and does not change
during the process;

2. Errors (active and passive, old and new) are uniformly distributed across the
test suite for the current release. In the other words, given the implemen-
tation and test suite, completing more test cases produces more detected
errors;

3. Errors generated in current release (EAN and EPN) have a higher probability
of being detected with the same test case than the old errors (EAO and EPO)
remaining from previous releases;

4. The average effort required to correct errors (PDFx) is constant throughout
the process;

5. The team clearing errors is the same team developing current release;

6. Increasing the team size leads to larger test-and-fix overheads (RTOh);

7. All detected errors in current release (EFx(i)) must be cleared before the
next release;

8. There is no new error generated (badfix) during defect correction;

9. The defect fixing rate (RNF) is a multiple of the productivity rate (PDFx),
the work force size (WF) and a multiplier (mf) which decreases after the
switchover.

Here, we focus on the ‘new ’ and ‘old ’ errors in test-and-fix process model
(Figure 7.4), as they are associated with different probabilities (defect hitting
rate) and efforts to detect them, which ultimately influence the performance of
the testing process.

7.2. QUALITATIVE MODELLING 117

TS(i): Test suite for increment i RAOD: Active old error detection rate
RTc: Testing rate by test case RPOD: Passive old error detection rate
mf : Multiplier for fixing switchover EPND: Detected passive new errors
PDFx: Productivity for error fixing EPOD: Detected passive old errors
RTOh: Error fixing overheads EAD(i): Detected active errors in increment i
RNF: Normal error fixing rate EPD(i): Detected passive old errors
RFx: Error fixing rate EPEs(i): Escaping passive errors from increment i
EAND: Detected active new errors EAEs(i): Escaping active errors from increment i
EAOD: Detected active old errors EP(i): Passive errors available in increment i
RPND: Passive new error detection rate EA(i): Active errors available in increment i
RAND: Active new error detection rate EFx(i): Errors fixed in increment i
EPl: Detected errors in pool to be fixed

Figure 7.4: Qualitative model of test-and-fix process in one increment

The model can have multiple exits when performing simulation. This process
is not completed until all detected defects are fixed, or a required percentage of
test cases are passed within a desired period, and so on.

Model Execution

These two models connect each other iteratively to model the entire incremental
development. Four QDEs were coded to represent the above qualitative models:
QDEA for implementation process model, and QDEB, QDEC, and QDED for test-
and-fix process model. Figure 7.5 shows the connections among these QDEs.
This formal representation is required for the further execution of the qualitative
model.

118 CHAPTER 7. MODELLING INCREMENTAL DEVELOPMENT PROCESS

Figure 7.5: Model transitions and iterations

These QDEs are connected with four transitions: Transition 1 (tp1), when
the implementation phase finishes; Transition 2 (tp2), when the accumulated
detected defects reach the threshold that triggers bug fixing; Transition 3 (tp3),
when the average length of defect queue for developers drops to the switchover
point; Transition 4 (tp4), when detected defects are fixed, and the current release
is done, it further ignites the next increment.

7.3 Semi-Quantitative Constraints

This section shows how quantitative constraints can be added to the qualitative
models to obtain the corresponding semi-quantitative models.

7.3.1 Quantifying Implementation Process

As indicated in Figure 7.3, there are six monotonic functions in the qualitative
implementation model. Thus, we need to specify the envelope functions for them
separately.

To simplify the discussion based on the above-mentioned assumptions, linear
relationships are assumed between software development rate and error gener-
ation rate, between residual active errors and retired errors, and between old
active errors and propagated errors (indicated by dashed line in Figure 7.3).
Therefore, some auxiliary parameters need to be introduced with the quantita-
tive constraints: error densities (EDAt and EDPt) in Portion 1, error retirement
rate (RERt) in Portion 2, and error reproducing rates (REAR and REPR) in Por-
tion 3 (Figure 7.6). The discussion on the relation between team size (WF) and
overheads (ROh) can be found in Chapter 6.

Based on the above assumptions, the envelope functions for these mono-
tonic constraints can be converted to the assignment of value ranges. For a
ten-increment project, with reference to [AHM91], active error retirement ratio
can be quantified by the value ranges in Table 7.3.

7.3. SEMI-QUANTITATIVE CONSTRAINTS 119

ED: Normal error density RER: Error reproduction rate
REG: Error generation rate ERp: Reproduced errors
RERt; Error retirement rate

Figure 7.6: Refinement of implementation process model

Table 7.3: Value ranges for active error retirement ratio

Increment 1,2,3 4,5,6 7,8 9 10
RERt [0, 0] [.05, .15] [.2, .4] [.5, .9] [1, 1]

7.3.2 Quantifying Test-and-Fix Process

In the qualitative test-and-fix model (Figure 7.4), four types of errors, the com-
binations of new-old and active-passive error types, are modeled separately. The
new errors and old errors are associated with different hitting rates (Assump-
tion 3, Section 7.2.2) in testing. Nevertheless, the qualitative model provides no
indication of this difference, which needs to be quantified here.

The error detection rate may change across the test cases. Its value highly
depends on the applied testing strategy, the design of the test case, and the port-
folio of test suite. In the context of quantitative constraint, we postulate that the
hitting rates do not change across the testing cases. Then two hitting rates, new
error hitting rate hn and old error hitting rate ho (hn > ho), and corresponding
error detection rates can be used to specify the relations (Figure 7.7). Their value
ranges can be calculated based on history records, such as [.85, 1.0] (hn) and [0,
.1] (ho) of nominal detecting rate.

The estimate of multiplier (mf) is based upon the time period when the
average length of a developer’s error queue falls below one particular value. Huff et
al. argued that typically a developer spends one quarter time waiting for a defect
to arrive, and three quarters handling a single defect in queue [HSS86]. However,
this value is difficult to be directly observed and measured. It is therefore more
sensible to define the range of value, like [.75, .85], for a general context.

120 CHAPTER 7. MODELLING INCREMENTAL DEVELOPMENT PROCESS

EDNTc: Detected new errors per test case END: Detected new errors
EDOTc: Detected old errors per test case EOD: Detected old errors
hn: Hitting rate of new errors ho: Hitting rate of old errors

Figure 7.7: Refinement of test-and-fix process model

7.4 Case Study: Incremental Development

7.4.1 Qualitative Simulation

Given the qualitative assumptions and QDE models, no specific numeric values
are needed to perform qualitative simulation. We can simulate one intermediate
increment by assuming the volume of residual active and passive errors (EAEs,
EPEs) from previous releases qualitatively. The simulation generates 72 possible
qualitative behaviours for this intermediate increment. Figure 7.8 shows part of
the behaviour tree containing Behaviour 1 to 36. One example behaviour (Be-
haviour 26 of 72) depicts the trends and states of four key variables in Figure 7.9.
The difference between the first half of behaviours (Behaviour 1 to 36) and the
second half (Behaviour 37 to 72) is whether the residual active errors from pre-
vious release(s) are partially retired or entirely retired. In terms of the difference
of this qualitative initial condition, the behaviour tree is branched at its root.
The four transition points (‘�’) through each course indicate the landmarks of
one increment process (see Figure 7.5).

Most of the qualitative behaviours observed by simulation represent the com-
plicated relationships in the variable space, including EAEs vs. EAN, EPEs vs. EPN,
EEs (EAEs + EPEs) vs. TS, RFx vs. RTc, etc. For example, the value of EAEs can
be increased due to a low active error retirement rate RERt and/or a high active
error generation rate (REAG) and/or a high active error propagation rate (REAR),

7.4. CASE STUDY: INCREMENTAL DEVELOPMENT 121

Figure 7.8: Part of behavior tree from qualitative simulation

Figure 7.9: Behavior 26 of 72

and so on.

7.4.2 Semi-Quantitative Simulation

Baseline Project

A baseline project is needed in order to assess the performance of the semi-
quantitative model by comparison. When using the qualitative simulation ap-
proach, a set of qualitative behaviours is generated, which are difficult to compare
with one specific project. The baseline project for quantitative comparison is de-
rived from data reported by Tvedt [Tve96]. The characteristics of this project
are given in Table 7.4. The requirements size of the baseline project was 80,000

122 CHAPTER 7. MODELLING INCREMENTAL DEVELOPMENT PROCESS

Table 7.4: Characteristics of the baseline project

Attributes Values
Project size 90,667Loc
Number of increments 3
–Increment 1 26,667Loc
–Increment 2 32,000Loc
–Increment 3 32,000Loc
Project schedule 250days (1year)
Project team size 15 experienced engineers
Estimated budget 3750 man-days

lines of code written in COBOL. As the incremental development is applied in
this project, it causes 10,667 lines of code as the estimated development over-
heads, which results in the total project size of 90,667 lines of code. The project
was scheduled to last one calendar year, with a workforce level of 15 full-time
engineers from start to finish.

Simulation Results

By applying the semi-quantitative incremental development process model (qual-
itative model and quantitative constraints) on the baseline project, the simulation
is able to generate one semi-quantitative behaviour for each increment. The be-
haviours of some key variables are plotted in Figure 7.10.

Comparison with Baseline Project

Tvedt’s model used the project shown in Table 7.4. The variables in test-fix
process are also affected by auxiliary factors from other related sectors, such as
human resource. The semi-quantitative model treats different types of defects
separately, gains more insights into error propagation across increments and al-
lows some ignorance of the impacts from other sectors.

In contrast to this model, Tvedt’s model simulated the incremental devel-
opment with concurrency that allows overlapping between increments. Thus, it
is not possible to compare the elapsed times with it. Here, only the simulated
quality features (shown in Table 7.5) are presented for the brief comparison . The
semi-quantitative model estimated that the project could produce the software
product with no more than 414 defects, which is consistent with the simulation
result generated from Tvedt’s model.

Note that the error value ranges extend significantly during Increment 2. It
is mainly caused by the increased uncertainty of active error generation ratio

7.4. CASE STUDY: INCREMENTAL DEVELOPMENT 123

(a) behaviour of increment 1

(b) behaviour of increment 2

(c) behaviour of increment 3

Figure 7.10: Semi-quantitative behaviours of baseline project’s test-and-fix pro-
cess

Table 7.5: Simulated defect levels for the baseline project

EN EFx EEs Density
Increment 1 [480, 533] [385, 455] [25, 148] ≤5.5/KLoc
Increment 2 [598, 781] [420, 595] [3, 361] ≤6.1/KLoc
Increment 3 [576, 816] [402, 637] [0, 414] ≤4.2/KLoc
Tvedt’s model 279 3.5/KLoc

124 CHAPTER 7. MODELLING INCREMENTAL DEVELOPMENT PROCESS

Figure 7.11: Simulated defect levels for the baseline project

Table 7.6: Value ranges of RAEG for 3 increments

Increment 1 2 3
rRAEG [.95, 1.0] [.2, .9] [0, .25]

(rRAEG†, Table 7.6). As there are only three increments in the baseline project,
it leads to the difficulty in estimating the ratio between RAEG and RPEG, which
might be simply assumed in purely quantitative modelling.

The quantitative constraints that were applied in this semi-quantitative model
are mostly defined based on literature and experience data, which have yet been
completely calibrated with the baseline project. In this example, only the baseline
project information is used to specify the initial state (initial value ranges of input
variables) and control the simulation (transitions and iterations). The simulation
results demonstrate that this approach can produce reasonable prediction ranges
(shadow area in Figure 7.11) when the specific process information is incomplete
or uncertain.

7.5 Summary

This chapter further investigates the qualitative and semi-quantitative approaches
for modelling and simulating software processes, but at a fine-grained level, and

†rRAEG = RAEG / (RAEG + RPEG)

7.5. SUMMARY 125

reports a study of modelling incremental development focusing its test-and-fix
process.

The qualitative and semi-quantitative models of incremental development pro-
cesses discussed in this chapter provides a solid demonstration and possibility in
modelling at a finer-grained (phase) level than higher project life cycle level (in
Chapter 6).

The model structure described in this chapter can be further transformed into
quantitative forms of simulation modelling. For example, given more details of
specific process definition and policy (cf. [ZJZ08]), a hybrid simulation model of
incremental development, which integrates SD and DES paradigms horizontally,
was developed for investigating the possible process change in test-and-fix process
on micro-process level.

The next chapter describes a comparison and conversion from a continu-
ous quantitative modelling approach (system dynamics) to qualitative and semi-
quantitative modelling, and vice versa. It also tests the capability of qualitative
and semi-quantitative approaches in modelling a long-term software evolution
process.

Chapter 8

Quantitative vs.

Qualitative/Semi-Quantitative

Process Simulation

Chapter 6 and 7 explore qualitative/semi-quantitative modelling of software pro-
cesses at project and phase level. This chapter continues to follow the design of
research (cf. Section 3.6), but develops a long-term software evolution process
model for simulation using the approaches. Table 8.1 highlights the outstand-
ing characteristics (in bold), identified in the research design, for specifying the
modelling and simulation study in this chapter.

8.1 Reference Model Selection

In addition to the modelling of software evolution process, this chapter also de-
velops and implements an element level mapping for converting a typical quan-
titative simulation model into an equivalent qualitative model, and moreover,
compares the model structures and outputs of quantitative simulation against its

Table 8.1: Evolution process in relation to research design

Purpose level Problem domain Model scope Output variable
cognitive level generic development single phase time
tactical level software evolution multi-phase effort

strategic level incremental development project quality
evolution size

127

128 CHAPTER 8. QUANTITATIVE VS. QUALITATIVE/SEMIQ PROCESS SIMULATION

counterparts, the qualitative and semi-quantitative models. To achieve this goal,
a typical quantitative software process simulation model has been selected as the
reference model in this study for model conversion and comparison.

The selection of reference model is the first and important step in this study.
Besides the characteristics of this model defined in Table 8.1, the selection criteria
have to include two extra aspects:

Paradigm The reference model should be constructed with a typical quanti-
tative simulation modelling paradigm, which has been widely accepted by
SPSM research. According to the systematic literature review described
in Chapter 3, system dynamics (SD) and discrete-event simulation (DES)
are the two most widely used techniques out of ten simulation paradigms
in SPSM. Both of them are quantitative. On the other hand, qualitative
and semi-quantitative simulation (QSIM/SQSIM) are one type of continu-
ous simulation with the incomplete feature of discrete transition. From the
point of comparability, SD becomes the selected modelling paradigm due
to its wide use in SPSM and continuous characteristic.

Complexity The reference model needs to contain most common elements and
relations of the chosen software evolution process. However, the structure
complexity of the reference model should be clear and simple enough to
ensure the emphasis of this research on model conversion and comparison,
rather construction of a complicated model.

According to the research design and the above criteria of the reference
model, an SD model of software evolution process is the first choice for this
study. There are several candidate models published in the last decade avail-
able in [WL99, CLRW00, KLRW01, WH02, WH04]. Among them, Wernick and
Hall’s model [WH04] consists of a single module, whose structure is simpler than
others’. Moreover, their model is the most recent SD model of evolution process
in the primary studies of the systematic review.

8.2 Model Conversion

In Chapter 3, system dynamics, as a typical continuous quantitative simula-
tion technique, has been briefly introduced. This section presents the elements
of SD modelling, and describes how to convert them for qualitative and semi-
quantitative modelling.

8.2.1 Causal Loop Diagram

In SD several modelling components and tools are used to capture the structure of
systems, including causal loop diagram (CLD), level and rate, and delay. Among

8.2. MODEL CONVERSION 129

(a) System Dynamics (b) Qualitative Modelling

Figure 8.1: General structures of level and rate

them, CLD is well suited to represent interdependencies and feedback processes.
A CLD consists of variables connected by arrows denoting the causal influences
among the variables. Each causal link (arrow) might be assigned a polarity, either
positive (+) or negative (-) to indicate how dependent variable changes when the
independent variable changes. The causal links are quantified in SD, but CLD
does not reflect such quantification.

In qualitative diagramming, i.e. abstract structure diagram (ASD) in QSIM
(cf. Chapter 4), the notations and links are more explicit and clear. Sum and
product relations are explicitly represented by add (or sum) and mult identifiers.
Other basic arithmetic relations, e.g. subtraction and division, can also be de-
rived from them. The complicated or unknown positive (+) and negative (-)
dependencies can be denoted as the monotonic increasing M+ and decreasing M-

functions in qualitative modelling (see Chapter 4). Therefore, a CLD can be con-
verted into the corresponding qualitative diagram, but needs more explicit and
specific qualitative assumptions.

8.2.2 Level & Rate

Level (or stock) and rate (or flow) are the central concepts of system dynamics.
Levels are absorbing inflow rate, and accumulating the difference between the
inflow to a process and its outflow. SD uses a particular diagramming notation
for stocks and flows (Figure 8.1-a). Valves control the flow rates. Clouds represent
the sources and sinks for the flows, which are both outside of the model boundary.

The structure represented in Figure 8.1-a corresponds exactly to the following
integral equation:

Level (t) =
∫ t

t0

[inflow (s)− outflow (s)]ds+ Level (t0) (8.1)

Equivalently, the net rate of level change, its derivative, is the inflow less the
outflow, defining the differential equation:

∂

∂t
(Level) = inflow (t)− outflow (t) (8.2)

Hence, this dynamics of systems can be modelled by differential relation (de-
scribed in Chapter 4) in ASD. Unlike SD diagramming, the rate difference (net

130 CHAPTER 8. QUANTITATIVE VS. QUALITATIVE/SEMIQ PROCESS SIMULATION

(a) first-order delay (b) third-order delay

Figure 8.2: Exponential delay curves

flow) has to be explicitly presented in qualitative diagram. Figure 8.1-b shows
the converted level and rate in qualitative modelling diagram.

8.2.3 Delay

Delay in System Dynamics

Forrester identified two characteristics of a delay [For69]. One is the length of
time expressing the average delay D, which fully determines the “steady-state”
effect of the delay. In steady state the flow rate multiplied by the average delay
gives the quantity in transit in the delay. The other describes its “transient
response”, which tells how the time shape of the outflow is related to the time
shape of the inflow when the inflow rate is changing over time. The delays with
the same average delay time (D) can have quite different transient responses to
changes in input rate (like plot a and b in Figure 8.2).

Exponential delay is the most frequently used delay class in SD. Figure 8.2
shows two common types of exponential delay: first-order delay (a), and third-
order delay (b). Mathematically speaking, an nth-order delay is equivalent to n
cascaded single-order delays, with each single-order delay having a delay time of
D
n [For69].

Since time is treated qualitatively in qualitative simulation, there is no mean-
ing to handle a delay with “qualitative” length. Therefore, QSIM algorithm does
not explicitly consider delay phenomenon, and neither include built-in function
of delay. As semi-quantitative simulation offers the capability of dealing with nu-
meric values in reasoning, the delay function is necessary to maintain the integrity
during model conversion. Unfortunately, in terms of the author’s knowledge so
far, there is no such function built in the available simulation tools or packages.
The objective of this section is to implement the (exponential) ‘delay ’ functions
using QSIM algorithm framework.

8.2. MODEL CONVERSION 131

Figure 8.3: First-order exponential delay in SD

Table 8.2: First-order exponential delay

OUT[i, i+1] = DELAY1 (IN[i, i+1], DEL)
OUT[i, i+1] = LEV[i] / DEL
LEV[i] = LEV[i-1] + (DT)(IN[i-1, i] - OUT[i-1, i])

OUT[i, i+1] the outflow rate between time i and i+1
LEV[i] the level stored for delay at time i
DEL the average delay time
DT the time step between successive evaluations of equation
IN the inflow rate between time i -1 and i

First-Order Delay

First-order and third-order exponential delays are two of the most common delays
used in the SD models of software process. Figure 8.3 is a first-order delay
presented in SD. Given an exogenous inflow rate (IN from other part of system),
a first-order delay consists of a simple level (LEV) and a rate of outflow (OUT)
that depends on the level and on the delay time (DEL).

Table 8.2 shows the mathematical equations of fist-order delay. The outflow
rate (OUT) is equal to the level (LEV) divided by the average delay (DEL).

A first-order delay is composed of four model elements (Figure 8.3): one
level, two rates, and one auxiliary variable (delay). Following the model element
conversion discussed in previous sections, the structure of first-order delay is con-
verted and represented with ASD notations (Figure 8.4-a). A new ASD notation
(Figure 8.4-b), with two inputs (inflow and delay) and one output (outflow), is
created to abstract this structure and avoid the redundant complexity of quali-
tative model. Figure 8.5 shows the corresponding qualitative constraints in QDE
(LISP).

Third-Order Delay

A third-order delay is the equivalent of three first-order delays cascaded on one
after another, so that the output of the first is the input to the second, and the
output of the second is the input to the third. Figure 8.6 illustrates the structure
of a third-order delay in SD format.

132 CHAPTER 8. QUANTITATIVE VS. QUALITATIVE/SEMIQ PROCESS SIMULATION

(a) implementation (b) notation

Figure 8.4: Implementation of first-order delay in ASD

(constraints
(add Rnet Rout Rin)
(constant Del)
(d/dt Lev Rnet)
(mult Rout Del Lev))

Figure 8.5: Implemented constraints of first-order delay in QSIM

Figure 8.6: Third-order exponential delay in SD

Table 8.3 shows the equations for calculating a third-order delay. The outflow
rate (OUT) is equal to the level (LEV) divided by the average delay (DEL).

By using the new ASD notation created for first-order delay (Figure 8.4-b),
the structure of a third-order delay can be represented in Figure 8.7-a. Again,
another new ASD notation (Figure 8.7-b), with two inputs and one output, is

Table 8.3: Third-order exponential delay

OUT[i, i+1] = DELAY3 (IN[i, i+1], DEL)
R1[i, i+1] = LEV1[i] / (1

3DEL)
LEV1[i] = LEV1[i-1] + (DT)(IN[i-1, i] - R1[i-1, i])
R2[i, i+1] = LEV2[i] / (1

3DEL)
LEV2[i] = LEV2[i-1] + (DT)(R1[i-1, i] - R2[i-1, i])
OUT[i, i+1] = LEV3[i] / (1

3DEL)
LEV3[i] = LEV3[i-1] + (DT)(R2[i-1, i] - OUT[i-1, i])
LEV[i] = LEV1[i] + LEV2[i] + LEV3[i]

8.3. REFERENCE SYSTEM DYNAMICS MODEL 133

(a) implementation (b) notation

Figure 8.7: Implementation of third-order delay in ASD

created to abstract this more complicated structure.
Here, the implemented third-order delay also demonstrates how to construct

an nth-order delay by using the basic first-order delay in QDE (based on QSIM

algorithm framework).

8.3 Reference System Dynamics Model

According to the selection criteria identified and discussed in Section 8.1, Wernick
and Hall’s SD model [WH04] of software evolution process (published in ProSim
2004) is chosen as the reference model in this study. This section introduces the
model background, software evolution processes, and replicates this model for
further comparison.

8.3.1 Software Evolution Process

With respect to the results of the systematic review (Chapter 3), software evo-
lution process is one of the most investigated software processes in SPSM. The
insights obtained from previous studies indicated that software evolution could
be systematically studied and exploited using SPSM approaches. They also sug-
gested that to some extent software evolution is a disciplined phenomenon as illus-
trated, for example, by the regularity of functional growth patterns [LR03]. Mod-
els of such patterns permitted the forecasting of future overall system growth and
growth rates. Moreover, the observed patterns of behaviour appearing yielded
common phenomenological interpretations.

Feedback Hypotheses in Software Evolution

Basically, four important feedback structures, identified by previous studies, are
used in model construction of software evolution processes.

Inertia-like (anti-regressive) effect due to system growth The first hypothesis is
that increasing the size of a software system and changes in unanticipated di-
rections will over time reduce the enhancement and modification of that sys-
tem [WH02]. The increasing size and complexity of the software system as its

134 CHAPTER 8. QUANTITATIVE VS. QUALITATIVE/SEMIQ PROCESS SIMULATION

structure is degraded by efforts to make changes unanticipated when the system
architecture was designed. These changes may result in a decay in software ar-
chitecture. Meanwhile, new changes also have to be fitted into an existing system
structure, and as the software grows, there are more existing components into
which each new change needs to be fitted. Thereby, software developers are occu-
pied on tasks specifically intended to maintain the system structure, and to com-
pensate for the software ageing effects, which are referred to as ‘anti-regressive’
activities [KLRW01].

Effects of decreasing knowledge coverage The increasing complexity of a software
system also reduces the developer’s ability to change the system because of a
decrease in coverage of developer’s knowledge of the system components, their
composition and interactions [WH02]. As the software grows, the amount of
knowledge needed to support future changes grows as well, but at a faster rate,
as the implementation of each new component of the software needs to be seen
in the context of all of the existing system [Tur96, Tur02]. If the developer’s
knowledge does not grow at this rate, it may fall behind the knowledge needed
to support further changes.

Generation (progressive effect) of new requirements The release of upgraded soft-
ware with new functionalities enables users to exploit opportunities for novel
or extended system use, which in turn result in demand for further functionali-
ties [CLRW00]. This positive feedback is recognised as ‘progressive’ type of work,
which represents the evolution activities that enhance software functionality by
modification of or addition to the code and/or the documentation [KLRW01].

Correction of fault implementation After the release and adoption of software, a
small proportion of units (requirements) is gradually found not to be implemented
as originally or correctly specified. They are eliminated from the specification,
but may be replaced in the requirements by new or changed equivalents [WL99].
The rate of completion of successful implementation can be reflected by a success
or failure percentage.

Each of these hypothetical drivers of specification change is reflected in (pos-
itive or negative) feedback loops in SD modelling, again calculated as portions of
the successful implementation flow.

8.3.2 A Simplified Model of Software Evolution

Model Description

The reference model (shown in Figure 8.8) was developed using Vensim simulation
environment (from Ventana Systems, Inc.). Although it is a simplified model, it

8.3. REFERENCE SYSTEM DYNAMICS MODEL 135

Figure 8.8: The reference SD model of software evolution

incorporates and reflects three of the typical feedback loops described in the last
subsection that are indicated by the loop numbers in the model. They are feed-
back structures representing the system inertia effect (anti-regressive activities,
Loop 1), the generation of new requirements (progressive activities, Loop 2), and
the correction of faults in previous implementation (Loop 3).

The ‘size’ of software system has been abstracted into a number of arbitrary-
sized ‘units’ (or ‘modules’) of requirements, since it is a more informative reflec-
tion of software evolution, which is more likely driven by changes in functionality
than by low-level thinking with ‘code’ [Tur96]. Plus, it avoids issues related to
specific metric of code size.

The delay used in the reference model is a third-order delay, which fits the
technical software process [WL99]. It represents the time delays caused by some
entity passing through the phases of a process made up of a sequence of sub-
processes, each of which depends for its input on the output of the previous
sub-process.

Model Calibration

The calibration inputs to the reference model are based on actual data for the evo-
lution of the ICL VME mainframe operating system as described in [CLRW00].
To guarantee the replication of the reference model, most of these variable inputs
are kept in this chapter.

Neither Wernick and Hall’s SD model nor Turski’s reference model [Tur02]

136 CHAPTER 8. QUANTITATIVE VS. QUALITATIVE/SEMIQ PROCESS SIMULATION

(a) system size simulated by the reference model (b) system size simulated by the replicated model

Figure 8.9: Simulation of implemented requirements over time

explicitly quantified the linear coefficients for inertia effect due to existing system.
Therefore, during the reconstruction of the reference SD model, it is assumed that
the inertia effect starts at 1 when simulation starts, then decreases as the inverse
cube of the system size (Requirements Implemented).

Note that the replicated reference model in this chapter is based on the
SD flow graphs, inputs, outputs, and relation equations published in [CLRW00,
KLRW01, WH02, WH04] (no full version models published). As result of this
divergence, the output of the replicated model is slightly different from the ref-
erence model. Figure 8.9 shows the overall evolution trends are similar to each
other, and the only difference on simulated system sizes, which can be regarded
as the scaling effect of inertia factor.

To maintain the completeness, the new requirements generated from exoge-
nous events (exogenous requirements) are included in the model. But they were
set to 0 in Wernick and Hall’s study.

Sensitivity to Policy Change

The reference model has been subjected to a further sensitivity analysis to inves-
tigate the effects of changes in policy inputs. Wernick and Hall introduced five
policy factors to the reference model, which are underlined in Figure 8.10. Sen-
sitivity analysis of these factors have therefore been undertaken. Vensim allows
Monte Carlo simulations by varying the values of one or more input variables in
terms of probability distributions. For this study, Wernick and Hall varied each
of the policy input from its default value of 1, using a normal distribution with
a standard deviation of 0.25. For instance, the values greater than 1 of ‘inertia
scaling policy ’ indicates the higher maintainability and evolvability of the system.

A similar sensitivity analysis design was applied to the replicated model. To
simplify the discussion, three of their five policy factors are selected to investigate

8.4. CORRESPONDING QUALITATIVE & SEMIQ MODELS 137

Figure 8.10: The SD model of software evolution for policy investigation

the policy sensitivity of three feedback loops respectively. Figure 8.11 shows the
distributions of simulated system size growth and volume of requirements over
time for 1000 runs for each parameter varied separately. The solid line in each
plot indicates the mean result, and the regions either side of it contain 50%, 75%,
95%, and 100% of the simulated results respectively.

8.4 Corresponding Qualitative & SemiQ Models

8.4.1 Qualitative Model

As the first step of qualitative modelling, the qualitative assumptions need to be
abstracted from the real world system (Chapter 4). However, due to the quan-
titative (SD) reference model available, an inverse procedure has to be followed
here. The SD model should be converted into qualitative model based on the dis-
cussion in Section 8.2. After that, the qualitative assumptions can be extracted
from the corresponding qualitative model.

Figure 8.12 shows the corresponding qualitative model. As mentioned early,
it is not necessary to model and simulate a delay with ‘qualitative’ length. Thus,
the qualitative model does not explicitly include the three delay relations in the
reference model.

Based on the converted qualitative model, the inherent qualitative assump-
tions in the SD reference model can be revealed:

138 CHAPTER 8. QUANTITATIVE VS. QUALITATIVE/SEMIQ PROCESS SIMULATION

(a) Simp by inertia (b) Sreq by inertia

(c) Simp by new requirement (d) Sreq by new requirement

(e) Simp by fault generation (f) Sreq by fault generation

Figure 8.11: Sensitivity of policy change for reference model

8.4. CORRESPONDING QUALITATIVE & SEMIQ MODELS 139

SReq: Requirements to implement SImp: Requirements implemented
RReq: Requirement generation rate RImp: Requirement implementation rate
RNew: New requirement feedback rate RInc: Incorrect implementation rate
RSD: Software development rate RGen: Requirement generation rate
RIn: Requirement input rate RExo: Exogenous requirement rate
REft: Effective effort rate fie: inertia factor
fnew: new requirement feedback factor finc: fault generation factor

Figure 8.12: Qualitative model of software evolution

1. Requirements to implement (SReq) come from exogenous requirements, new
requirements feedback and incorrect requirements feedback ;

2. SReq is transferred to Requirements implemented (SImp) at software develop-
ing rate (RSD);

3. The incorrectly implemented requirements, as a small portion of SImp is
returned to SReq for rework;

4. Increasing existing system size (SImp) incurs more effort needed for ’anti-
regressive activities’, and decreases RSD;

5. The input effort (REft) has linear relationship with RSD;

6. The new requirement feedback (RNew) has linear relationship with RSD;

7. The incorrectly implementation (RInc) has linear relationship with RSD;

8. The development team size does not change (neither recruitment nor turnover)
during the evolution process;

9. There is no exogenous requirements (RExo = 0) during the evolution process.

8.4.2 Semi-Quantitative Model

Figure 8.13 is the graph of qualitative model with more constraints introduced.
To be noticed, the newly introduced notations representing the exponential delays
(Section 8.2.3) are included in semi-quantitative constraints.

140 CHAPTER 8. QUANTITATIVE VS. QUALITATIVE/SEMIQ PROCESS SIMULATION

Ddev: Development delay time Dnew: New requirement feedback delay
Dinc: Incorrect requirement feedback delay

Figure 8.13: Semi-quantitative model of software evolution

One monotonic function (M-, between fie and SImp) is included in the qualita-
tive model. This nonlinear relation needs to be quantified at this stage. Neverthe-
less, the inertia factor was quantified as a multiple of the inverse square [WH02]
or inverse cube [WH04] of existing system size respectively. Therefore, an envelop
function (Equation 8.3) is suitable for this case.

fie =

[(
λ

S3
imp

)
,

(
λ

S2
imp

)]
(8.3)

where λ is suitable constant, and determined from historic data.

8.5 Simulation Results Comparison

8.5.1 Qualitative Simulation

The reference model set the simulation terminated at predefined time point (the
156th month). However, as time is treated qualitatively in the corresponding
model, this termination condition does not work in QSIM. Moreover, the oscil-
lation phenomena are observed in some simulated behaviour patterns. So the
qualitative simulation cannot stop itself on these behaviours until runs out of
memory. In experiment, the simulation was set to halt after generating a ‘large’
number of behaviours, which is sufficient to observe the behaviour patterns.

The qualitative simulation generates a diversity of behaviours of the evolution
process, most of which are the combinations of varying patterns of important
variables. Figure 8.14 shows the typical behaviour patterns of some important
variables in the model.

Requirements Implemented The simulated behaviour of SImp presents growing
trend at all time (Figure 8.14-a), which is also quantitatively reflected in Fig-
ure 8.9 and Figure 8.11-a, c, e. It is because developing software is always greater
than incorrectly implementing.

8.5. SIMULATION RESULTS COMPARISON 141

(a)

(b)

(c)

(d)

(e)

Figure 8.14: Behaviors of qualitative simulation

142 CHAPTER 8. QUANTITATIVE VS. QUALITATIVE/SEMIQ PROCESS SIMULATION

Requirements to Implement The possible changes of SReq are more complicated
than SImp. Overall, it may gradually drop (down to zero), then rebound to a
certain level (Figure 8.14-b). The qualitative simulation reflects the result from
reference model (Figure 8.11-b, d, f).

Requirement implementation rate It is easy to identify the oscillation of RImp

from the simulated possible behaviour (Figure 8.14-c). The evolution process
may reach the equilibrium state after one, two, three oscillations or more, even
keep oscillating for ever, which is one of the main reasons for why the simulation
cannot stop itself. The oscillation phenomenon is to a large degree consistent
with the qualitative behaviours observed by Ramil and Smith’s study in [RS02],
which constructed qualitative simulation model based on analytic model, instead
of continuous casual model in this chapter.

Requirement generation rate Figure 8.14-d reflects the ‘unpredictable’ behaviour
of RReq. It may oscillate cross, over or below zero. Therefore, the quantita-
tive constraints have to be applied for RReq to generate more specific and stable
behaviours.

Other variables, such as RSD, Rinc, Rnew, and fie, keep decreasing from the
start of the simulation. In some cases, they can finally reach an equilibrium state
(Figure 8.14-e).

8.5.2 Single-Point Value Simulation

The comparison between quantitative simulation (system dynamics) and semi-
quantitative simulation can be conducted from two aspects: simulation with
single-point value and value range. Traditionally, purely quantitative simula-
tion always assign a single-point (numeric) value for each input variable during
each run of simulation. In contrast, semi-quantitative simulation treats the value
ranges as the single-point values in quantitative approach. To realise the single-
point value simulation within semi-quantitative approach, the upper and lower
bounds should be set as the same. In the other words, the interval must be zero,
which presents the single-point value within value range format. Therefore, the
input variables of semi-quantitative model are set with the same value as in the
reference model (Section 8.3.2) for comparison.

On the other hand, the envelop function should be also replaced with the
‘exact ’ function to eliminate the uncertainty. Note that the ‘exact ’ function
(Equation 8.4) is used to replace the ‘envelop’ function (Equation 8.3) for com-
parison.

fie =

[(
λ

S3
imp

)
,

(
λ

S3
imp

)]
(8.4)

8.5. SIMULATION RESULTS COMPARISON 143

Figure 8.15: Behavior of semi-quantitative simulation with single-point values

Different from purely quantitative simulation, the semi-quantitative simula-
tion generates nine behaviours, even with single-point settings. Although the
simulation is preset to terminate at the 156th month (as the SD model), Q2 algo-
rithm also includes some behaviours that may terminate in a range covering this
value, such as [29.6, 156] months. It is because SQSIM is based on value range,
rather than single-point value for purely quantitative simulation. Any behaviours
covering this condition are generated by algorithm. For this comparison, we are
only interested in the behaviours exactly terminated at the preset time point.
By removing the ‘invalid ’ behaviours, there are two behaviours consistent to the
reference model that terminates exactly at Month 156. Figure 8.15 depicts the
varying trends of some important variables.

The only difference between these two behaviours is that SReq may finish at
zero or in the rang [0, 50] units when the simulation terminates. The simulation
in Section 8.3.2 predicts that the system size may grows up to 433.75 units at
the 156th month. Both the valid behaviours from SQSIM produce the close value
range, [433, 434] units, for SImp. Moreover, it is interesting that SQSIM presents
other variables (e.g. fie, RSD, RNew and RInc) in its inherent format (value range)
as well. It is possibly caused by the slim deviation between the function and its
inverse version, which are required for describing the envelop functions.

Compared with the simulation result of system dynamics (presented in Fig-
ure 8.9), the graphic result of semi-quantitative simulation only depicts the mono-
tonic trend of SImp, but lacks detailed shape, which depends on the number of
landmark created in the course of simulation. It can be enriched by inserting
more landmarks (like Q3 algorithm).

8.5.3 Value-Range Simulation

In Section 8.3.2, several policy factors are introduced by Wernick and Hall for
sensitivity analysis (Figure 8.10). This section emphasises on the value range
comparison, between the Monte Carlo simulations of these inputs in terms of
probability distributions and semi-quantitative simulations with the correspond-

144 CHAPTER 8. QUANTITATIVE VS. QUALITATIVE/SEMIQ PROCESS SIMULATION

pie: inertia scaling policy factor pnew: new requirement feedback policy factor
pinc: implementation fault feedback policy factor

Figure 8.16: Semi-quantitative evolution model with policy factors

Table 8.4: Value range comparison

SImp by fie SImp by RNew SImp by RInc

SD [270, 601] [434, 434] [424, 443]
SQSIM (Q2) [220, 627] [423, 525] [410, 527]
SQSIM (Q3) [263, 610] [430, 455] [420, 471]

ing value ranges. Therefore, the policy factors needs to be added in the semi-
quantitative model as well. However, their probability distributions are not neces-
sary in this form of simulation. Figure 8.16 shows the updated semi-quantitative
model with the policy factors (pie, pnew, and pinc).

The results of SQSIM are summarised in Table 8.4, compared with SD (the
first row). The value ranges on the second row are the simulated results generated
by normal QSIM+Q2 algorithm. Although they are consistent with SD results
(covering the intervals of SD), it is easy to observe that they remain very coarse.
It is mainly because the evolution behaviours (SImp) are monotonic and smooth,
which, unlike the models described in previous chapter, include no transition
points and few critical time points either. As a result, the landmarks inserted
into qualitative intervals are not sufficient to generate finer ranges to reduce the
uncertainty.

To improve the performance of SQSIM, Q3 algorithm, which extends Q2

with ‘step-size refinement ’ (cf. Chapter 5), is further applied to obtain finer-
grained value ranges. The simulation results (corresponding to the step-size of
10) are listed on the bottom row in Table 8.4. It demonstrates that the accu-
racy of SQSIM can be improved significantly by adaptively introducing additional
landmarks. The remaining difference between these two approaches is probably
caused by 1) the different reasoning mechanism of SQSIM that is based on the be-

8.6. SUMMARY 145

haviour chattering technique instead of single-point calculation used in SD; 2) the
sampling and assumed probability distribution (in quantitative simulation) cause
some missing points; 3) step-size of Q3 has not been completely optimised. Along
with the Q3 and other advanced refinement techniques (e.g. dynamic envelopes),
semi-quantitative simulation can smoothly span the gap from qualitative simula-
tion on the one hand to purely quantitative simulation on the other [Kui94].

Note that one unrealistic phenomenon is observed in the sensitivity analysis
of SD model (Figure 8.11-d). Given some scenarios, the simulated requirements
to implement (SReq) might be less than zero. However, it is difficult to under-
stand the requirements with a negative value, which may further lead to other
variables’ deviation from real world cases. In semi-quantitative modelling, it can
be prevented in advance with one required step of modelling, an explicit quantity
space declaration (Sreq (0 inf)). In contrast, it is difficult for SD modelers to
involve and check such constraints in their modelling stage.

Overall, both qualitative/semi-quantitative simulation and purely quantitative
simulation (system dynamics) compared here have their strength and weakness.
In modelling, compared with causal loop diagramming, the qualitative approach
starts at explicitly stated qualitative assumptions, and then converts them into
more specific and clearer constraints. Thus, it provides a more rigorous ap-
proach. Moreover, a CLD model does not offer simulation capability, but a
QSIM model does. Both CLD and QSIM model can be quantified to become
their quantitative/semi-quantitative counterpart.

In simulation, both of SD and SQSIM can produce similar results with single-
point values. SD can present the variable’s varying trend with more details during
the course. Whereas, the SQSIM approach reflects trends more qualitatively,
because it shares the same plotting mechanism with QSIM. When dealing with
uncertainty, the value range (or discrete values) and its associated probability
distribution is required for any stochastic (quantitative) simulation. In contrast,
semi-quantitative approach handles uncertainty with value range and envelop
function, and can omit their probability. As a result, the quantitative approach
can produce relatively precise numeric result with probability as well. In some
cases, results of semi-quantitative simulation are coarse, and need to be refined.

As SQSIM is extended from QSIM, it provides a more rigorous and robust
mechanism in modelling, and then is able to avoid unrealistic results sometimes
generated in simulation.

8.6 Summary

This chapter first introduced a model conversion scheme between system dy-
namics and qualitative/semi-quantitative modelling based on an element level

146 CHAPTER 8. QUANTITATIVE VS. QUALITATIVE/SEMIQ PROCESS SIMULATION

mapping. By developing the corresponding model of the reference SD model
using this scheme, the characteristics of modelling and simulation become com-
parable between these two approaches. The major contributions of this chapter
are highlighted as the follows:

1. An element level mapping from CLD and equations of system dynamics
to ASD of qualitative/semi-quantitative modelling is established, and vice
versa.

2. A model conversion scheme from a quantitative (SD) model to qualitative/semi-
quantitative model is implemented by using the element level mapping.
From a given qualitative model and quantification, it is possible to covert
and construct its corresponding SD model as well.

3. The nth-order delay is introduced into semi-quantitative modelling and sim-
ulation, and implemented in QSIM algorithm framework.

4. The software evolution processes are revisited by using qualitative and semi-
quantitative modelling and simulation.

5. The modelling procedure and characteristics are compared between system
dynamics and qualitative modelling; and further the comparison of simula-
tion capability and results between system dynamics and qualitative/semi-
quantitative approaches are presented.

Following the predefined research design, this part has tested some of the
research questions stated in Chapter 1, i.e. feasibility, adaptability, and part
of uniqueness of qualitative and semi-quantitative modelling for simulation. The
next part will further investigate their uniqueness and practicability by developing
the pragmatic approach and integrated framework for facilitating their adoption
in real world software practice.

Part IV

INNOVATION II:

ADOPTION

147

Chapter 9

SQSIM-Based Software Project

Management

Part III has explored and tested the feasibility and adaptability of qualitative
and semi-quantitative modelling approaches by developing a range of software
process models. This part provides some initial thinking in the use and adoption
of these approaches in software engineering practice.

Semi-quantitative modelling and simulation has been introduced in Part II
and applied in Part III as a new paradigm for constructing software process
models. In this chapter∗, a novel approach to software project management is
proposed to fit the evolved definition of project success, and applies SQSIM as
the core technique to achieve this goal. An example is also provided to illustrate
the use of this approach in practice.

This chapter first introduces the evolved definition of project success moti-
vating this approach, and then briefly discusses the aspects of software project
management that are able to benefit from the semi-quantitative modelling. The
proposed project planning and control approach is next described in detail. It
is followed by an example application with an SQSIM software process model.
Some considerations related to this approach are discussed as well.

9.1 Motivation: Software Project Success

Historically, the success of software project has meant getting the job done within
the constraints of success metrics, such as time, cost, and quality. By using
this conventional definition, success could be visualised as a single point on a
combination of success factor grid [Ker05]. However, few projects, especially those

∗The work included in this chapter has been partially reported in [ZKJ07c] and [ZKJ07a].

149

150 CHAPTER 9. SQSIM-BASED SOFTWARE PROJECT MANAGEMENT

Figure 9.1: Project success: point or cube?

requiring innovation (like software projects), can achieve such an exact target.
Due to the ever increasing complexity and diversity of innovative projects, the
definition of project success needs to evolve as well.

In software practice, few projects are ever completed without tradeoffs or
changes to time, cost, and quality. Therefore, Kerzner argues in his definitive
text on project management that “project success might still occur without ex-
actly hitting this single point target” [Ker06]. In this regard, the success of con-
temporary projects might be better defined as a box or a hyper-cube of project
success metrics, rather than a single point in multi-dimensions (Figure 9.1), and
the project is evaluated as successful if it finishes at any point inside the box or
cube. The most common metrics for software project success can be extracted
from the results of the systematic review (cf. Section 3.3.3). They may include
schedule, cost, quality (defects), size (functionality), market share, return of in-
vestment (ROI), and so on. Furthermore, there may exist different priorities
among these success factors.

Accordingly, such a contemporary success definition requires project man-
agement methods capable of dealing with uncertainty and contingency in multi-
dimensional space based on a range of values. Most traditional quantitative
techniques, however, usually support single point predictions of project out-
comes, rather than prediction of a range of possible outcomes. In contrast, semi-
quantitative simulation has the inherent capability of reasoning with value ranges
in multiple dimensions, and can facilitate decision-making based on project suc-
cess factors represented as a range of acceptable values in many dimensions. The
following sections explain how semi-quantitative modelling and simulation can
support flexible software project management.

9.2. MANAGING SOFTWARE PROJECT SEMI-QUANTITATIVELY 151

9.2 Managing Software Project Semi-Quantitatively

DeMarco identified two broad categories of solutions for managing software projects:
‘political solutions for political problems’, and ‘technical solutions for technical
problems’ [DeM82]. The thinking and solution for managing software projects
developed in this chapter concerns the latter only.

For the technical problems, most technical solutions are purely quantitative.
This section discusses the possibilities of semi-quantitative modelling and simu-
lation from several aspects in support of the ‘technical solutions’.

Estimation

A process simulation model is a system with inputs and outputs. As an example,
the input and output variables of the incremental development model are denoted
in Figure 7.3 and Figure 7.4 (in Chapter 7). The inputs can be further classified
into direct and indirect types. The values of direct inputs can be quantitatively
and explicitly specified or measured, which enables a manager to allocate, observe
and change their values, such as TS, WFT, EFx, ho, and hn (in Figure 7.4 and
Figure 7.7).

On the other hand, some indirect inputs cannot be directly observed, mea-
sured, or quantified, such as RERt and mf (in Figure 7.4 and Figure 7.6). However,
these are required to produce model outputs. Although some statistical tech-
niques, for example control charts [FC99], may to a certain degree provide the
estimation based on analysis of historical process data, blindly applying single-
point value assignment (especially for the complicated model) may result in the
dramatic uncertainty propagation, and unrealistic outputs.

In contrast, semi-quantitative modelling is capable of handling the estimation
of uncertainty and imprecision intuitively on indirect input parameters.

Planning

Planning is an iterative estimating and refining process. Using a process model,
the planning process consists of assigning values to the input parameters of the
model, and then computing or reasoning about the output parameters as pre-
dicted results for planning.

Most current project planning methods are purely quantitative based and use
a single point target in multi-dimensional space (i.e. cost, quality, delivery date,
etc.) to define project success, which may results in much time consumed in the
iterative process. They handle uncertainty by using statistical techniques, such
as Monte Carlo Simulation. The corresponding distributions, however, have to
be assumed over the range sometimes.

Semi-quantitative modelling can speed up this iterative process by using in-
terval arithmetic and constraint propagation techniques, rather than single-point

152 CHAPTER 9. SQSIM-BASED SOFTWARE PROJECT MANAGEMENT

Figure 9.2: Behaviour tree for one scenario of test-fix process

value calculation. The specific tools or artifacts can be developed to support this
process, such as element-effect matrix (described later in Section 9.3).

By considering multiple uncertain factors, semi-quantitative modelling does
not force you to accept some ‘accurate’ single-point estimates during planning
(actually you can turn value range to single-point by minimising the interval
to zero, cf Chapter 8). Instead, given the intervals of inputs, it produces the
guaranteed value range you can expect.

Tracking and Control

As presented in Part III, the behaviour tree is an important output generated by
semi-quantitative simulation. In contrast with the traditional methods, it depicts
the road map with all possible alternative routes of the process. For example,
Figure 9.2 shows a behaviour tree for one scenario of the test-and-fix process
(discussed in Chapter 7). Each dot point indicates one critical time point during
the process progress. The transition points are denoted by landmarks. All critical
time points and transition points need to be identified and recorded as the check-
points for process tracking, and its artifact, control metric table (described later
in Section 9.3), is then created for observing whether the process is under control.

Decision Making

No decision making is needed if the process lives up to its prediction. However,
progress often diverges from expectations. By using behaviour tree and its artifact
for project control, decisions can be made at check-points when the process is
not on track.

Decision making answers to a series of ‘what if ’ questions, such as “what
if we increase the staffing level, or extend the time period?” Semi-quantitative
modelling can maintain the integrity of the prediction when a manager struggles
to cope with multiple uncertain factors and has to make a tradeoff.

In addition, though the process performance indicators are represented with
value ranges in semi-quantitative modelling, it also helps to extract qualitative

9.3. A SQSIM-BASED APPROACH FOR PLANNING & CONTROL 153

assessment from them for decision making and management, which are useful
and important in many cases.

The next section further details a novel and pragmatic SQSIM-based approach
for the planning and control activities that correspond to the contemporary suc-
cess definition.

9.3 A SQSIM-Based Approach for Planning & Control

9.3.1 Planning & Control

Comprehensive planning and control are two of the most important aspects of any
project [MH86]. Research into the success of information systems (IS) projects
has identified project planning and control as two of the top three important
factors affecting project success [Reh96].

Project Planning In general terms, PMBoK defines project planning as “to
define and mature the project scope, develop management plan, and iden-
tify and schedule the project activities and resources that occur within the
project” [PMI04].

For complex problems such as a software project, planning is essential to
facilitate understanding of the problem and implementation of the solu-
tion. It is also estimated that the planning process of project management
should require approximately 35% of the project manager’s effort over the
life of project [Cla02]. Project planning requires the project manager to
think through the project and remain focused on the final goal, i.e. project
success, which is delivered at the end.

Project Control As defined by PMBoK, project control is “to compare actual
performance with planned performance, analyse variances, assess trends,
and evaluate possible alternatives” [PMI04].

The approach developed and proposed in this section focuses on applying
SQSIM-based methods in support of the technical solutions for the quantitative
aspect of software project management in terms of the contemporary definition of
project success. It consists of two connected phases: project planning and project
control.

9.3.2 Phase 1: Project Planning

The approach proposed here includes an iterative refinement method for software
project planning. However, the desired results may converge rapidly between the
adjoining iterations using SQSIM, when a realistic solution exists. As illustrated
in Figure 9.3, the planning approach consists of five distinct steps: 1) defining

154 CHAPTER 9. SQSIM-BASED SOFTWARE PROJECT MANAGEMENT

Figure 9.3: Project planning and control with Semi-Quantitative Simulation

project success criteria; 2) tailoring and updating process model; 3) creating
project element-effect matrix; 4) simulating and fine tuning; and 5) updating
project plan.

Step 1: defining project success criteria. Unlike the following steps, the first
step of this planning approach emphasises the business aspect instead of
the technical aspect of project planning. In the real life project planning,
a variety of stakeholders may be involved in specifying the project success
criteria, i.e. defining the success cube. The output of this step is the project
success metric list, in other words, the criteria that are required to define
the success for this project, their importance and preference, plus the value

9.3. A SQSIM-BASED APPROACH FOR PLANNING & CONTROL 155

ranges accepted, which are further visualised as project success cube.

Step 2: tailoring and updating process model(s). According to the nature
of planned project and the organisational context, one or more reference
process models are selected from the literature or organisation’s model
repository. This topic is too complicated to be included in this chapter.
The reference models have to be tailored to fit the project’s characteristics,
and to be updated with its specific information.

Step 3: creating element-effect matrix. Not all elements can be changed in
a process model. Only a few tunable elements are identified in this step,
and any value change to these elements and their combination may induce
the changes in the project plan and consequent project performance. These
elements are further prioritised in order of their importance and contribu-
tion to the success factors in element-effect matrix, which also includes their
qualitative impact on success metrics. Table 9.2 gives an example of the
element-effect matrix.

Step 4: simulating and fine tuning. All outputs from the above three steps,
including success criteria, process model(s), and element-effect matrix, are
used as inputs to the semi-quantitative simulation (see below).

Step 5: updating project plan. When the simulation produces an acceptable
prediction of the project outcomes, the project plan will be updated accord-
ing to this result. In contrast, if there is a large deviation from the success
criteria (such as Impossible state illustrated in Figure 9.4), the management
should consider cancelling the project.

Simulation Iteration.

The iteration procedure with semi-quantitative simulation can be regarded as a
planning optimising phase to find a fitted solution (a reasonable project plan)
progressively for the predefined project success criteria. The generated results
converge rapidly if the success criteria are realistic.

The process model selected from Step 2 is coded with the specific element
values (ranges) and initial states of the project, and then is executed by QSIM

and Q2 (or Q3), which generates all possible behaviours and predicts the project
completion states. These states are compared with the success criteria (defined
in Step 1). Either Impossible or Good results cause an exit from the iteration
procedure. Otherwise, if result is Possible, the values of tunable elements need
to be further refined in terms of the element-effect matrix created in Step 3, and
the next iteration is triggered with their updates.

156 CHAPTER 9. SQSIM-BASED SOFTWARE PROJECT MANAGEMENT

Figure 9.4: Comparing simulation result vs. predefined success criteria

Refinement Strategy.

Here, five types of project completion state (shown in Figure 9.4) are presented
for contrasting with the predefined project success criteria. They are used as
guidance to indicate if the simulation iteration needs to continue with further
refinement or stop. The strategies for other states, e.g. Right-Bottom, can be
deduced similarly.

The Included state indicates the predicted project completion falls into the
success cube. As the project success defined in Section 9.1, we can easily identify
that it is a ‘Good’ plan for project success.

The counterpart of Included state is Including state, which covers the success
area with extra space. This state means Possible success, i.e. the project can
finish in success cube or outside. It needs to shrink with further refinement.

Another state is that the project completion area locates at the Left-Bottom

of the success cube, but with overlap. It may be translated to Good for some
metrics, such as cost and schedule. But for some others, such as earned value
and scope (functionality), the overlapping only implies the Possible success, and
then the iteration procedure has to continue. Similar discussion applies to the
Right-Top overlapping state. When the project completion area locates Outside

the success cube (no overlapping existing), the proposed project will be mostly
evaluated as Impossible. If no significant changes are available, the project is
recommended to be cancelled. The refinement strategy can be further extended
and applied to multi-dimension or hyper-cube of project success criteria.

9.3.3 Phase 2: Project Control

You control a project to the extent that you manage to ensure the minimum of
surprises along the way [DeM82]. The best-controlled project is the one that best
lives up to its predictions. The semi-quantitative controlling approach can provide
a flexible way to track and control project progress, and help the project manager
observe whether the project is under control. Following project planning, the
project control approach contains three major steps: 6) creating control metric

9.4. ILLUSTRATIVE EXAMPLE 157

tables; 7) tracking project at check-points; 8) identifying problems and replanning
(see Figure 9.3).

Step 6: creating control metric tables. SQSIM generates behaviour tree and
all possible behaviours for each simulation scenario. The final project state
cube is calculated as the union of the value ranges predicted by the branches.
The behaviour tree serves as the road map for the project (like Figure 9.2).
The distinction from the traditional methods is that it depicts the alter-
native routes, given the existing uncertainty. Figure 9.6 is another simple
behaviour tree with five branches. The transition points are indicated as
landmarks (�) in behaviour tree.

Once reaching a Good solution for project planning, the control metric table
should be created for each measurable variable based on its predictions of
all behaviours. Table 9.3 is an example control table. The transition points
and critical time points need to be identified from the behaviour tree, and
added to project control plan as the check-points.

Step 7: tracking project at check-points. According to the control plan, the
performance indicators are measured and compared at the check-points.
The project can shift between the branches (possible behaviours), and its
progress state can be identified with the corresponding value ranges in con-
trol table. If the progress is consistent with the estimated value ranges,
it indicates the project under control, then the extra branches (inconsis-
tent with actual project state) should be cut out, and the control table
can be updated with the refined value ranges. Correspondingly, the project
completion state is refined and updated with the remaining branches.

Step 8: identifying problems and replanning. When inconsistency is found
against any branch at check-points, it alerts that the project might be out
of control. Under this situation, problems have to be identified, assigned,
and corrected, and replanning needs to be performed.

9.4 Illustrative Example

This section presents a simple application of the SQSIM-based planning and
control approach, and shows how the project management benefits from this
novel approach. To illustrate its value in software practice, this section employs
the software process model focusing on the staffing process, which is described
in Chapter 6. This model is chosen here for two main reasons: first, it models
the software staffing process at a project level, rather than one particular phase
of development (like the test-and-fix process described in Chapter 7); second,
it is a simplified model that ignores some impacts from other project sectors,

158 CHAPTER 9. SQSIM-BASED SOFTWARE PROJECT MANAGEMENT

Table 9.1: Project success criteria

success metric value range
project completion [245, 390] days
total expenditure [2150, 3000] man-days

which avoids the excessive project detail and maintains our focus. For clarity
and ease of understanding, the project success constraints are defined in only two
dimensions in this example.

9.4.1 Baseline Project

Abdel-Hamid and Madnick’s EXAMPLE project [AHM91] is selected as the base-
line project again for the purpose of illustration. This project was first used in
Chapter 6. The main attributes of EXAMPLE project are summarised in Ta-
ble 6.5. As originally planned, the project can be delivered on day 430. In this
example, we set this project in a realistic project scenario.

Considering any contingency issues, such as leave or sickness, the initial
project team size is defined with (the value range of) [4, 5] developers. The
EXAMPLE project proceeded as planned until a request for change (RFC) is
raised by marketing department on day 240. It reports that a major competitor
plans to release a similar software product in the near future, and argues that
their own product must be released at least two months earlier than the original
schedule to remain competitive. After one-week’s analysis and discussion across
the organisation, management approves the RFC with the condition that the new
total expenditure must be no more than 3000 man-days. The project manager is
responsible for making the corresponding changes to the project plan.

9.4.2 Planning Phase

This is a typical project replanning scenario on the fly. First, the project manager
tries to figure out a Good solution using the proposed SQSIM-based planning
approach.

Step 1. The project manager updates the project plan on day 245 (one week
after RFC). The changed project has to be completed two months (40 working
days) earlier than the original schedule. In other words, the current project
closure targets at day 390. The original estimated budget of the project is 2150
man-days. The project success criteria are updated correspondingly (Table 9.1).

9.4. ILLUSTRATIVE EXAMPLE 159

Table 9.2: Project element-effect matrix

element time cost constraint
new workforce [+/-] [+] [0, 12] developers
productivity ratio [-] [-] [.4, .6]
assimilation delay [+] [+] [60, 80] days
remaining size [+] [+]

Step 2. The qualitative process model (shown in Figure 6.1) is chosen in this
case and used for the simulation.

Step 3. By examining the elements of the process model for simulation, four
tunable elements can be identified: new workforce, productivity ratio, assimila-
tion delay, and remaining project size (Table 9.2). The value of new workforce
indicates how many new developers are introduced into the project. The available
manpower resource is up to 12 developers for this project. Chapter 6 explains
the quantitative constraints in detail.

It is noticeable that the first three elements are related to introducing more
developers into the project. The fourth element, i.e. reducing remaining project
size (functionality), is not desired by the clients, so it is ranked at the bottom.
Considering the time for recruiting, the new staff can join the project team in
three weeks, i.e. recruitment delay for 15 days. The project completion is corre-
spondingly refined as [260, 390] days. Because the values of the second and third
elements are highly dependent on the quality of the new staff, it is hard to refine
the value ranges before the assimilation. Therefore, the project manager plans to
start the simulation by adding extra workforce into the project without altering
the uncertainty on the last two elements.

Iteration 1. We initially introduce [3, 4] developers into the project to initiate
the simulation process. The simulation predicts that this project can finish on
day [339, 423], and the completion cube is depicted in Figure 9.5. Comparing the
original completion time and project success cube (in dashed-line), this decision
slightly improves the product release schedule (but only guaranteed for 7 days)
within the acceptable cost performance. However, the delivery date is still behind
the required release date (day 390).

Iteration 2. One positive finding through Iteration 1 is that adding extra work-
force may shorten the project duration. To amplify this positive effect, the project
manager introduces [11, 12] developers in this iteration. It generates 3 possible
behaviours this time, which predict the project may finish on day [309, 386], a

160 CHAPTER 9. SQSIM-BASED SOFTWARE PROJECT MANAGEMENT

Figure 9.5: Project completion cube through iterations

bit earlier than requested release date. However, the completion cube indicates
that the project cost may increase significantly and reach much higher than the
acceptable budget (see Figure 9.5). Although the financial performance looks
terrible this time, it further verifies the positive contribution of extra workforce
to schedule.

Iteration 3. With respect to the impacts identified in Table 9.2, fewer developers
need to be added in this iteration to reduce the possible high expenditure caused
in Iteration 2. The project manager chooses a modest number of developers, say
[7, 8] developers, for this iteration. Five possible behaviours are generated (shown
in Figure 9.6), and indicate the project may finish at day [320, 396], before or
after the new members of staff are fully assimilated.

Both schedule and cost are slightly over the requested success cube. This
means that the solution corresponds to the Right-Top overlapping state in Fig-
ure 9.4. Analysing the impacts of increasing the workforce across iterations, it is
not difficult to find that reducing the number of extra staff (for Iteration 3) will
incur a further delay of the project; and conversely, introducing more developers
will result in a higher cost.

Step 5. After negotiating with the senior management and marketing depart-
ment, they reach the agreement to update the project plan with new time frame
of [320, 396] days and budget of [1700, 3068] man-days. Meanwhile, the manage-
ment gives up the last option (in Table 9.2) of sacrificing software functionality or
quality. Given this update of project success criteria, the project manager plans

9.4. ILLUSTRATIVE EXAMPLE 161

Figure 9.6: Behaviour tree of Iteration 3

to recruit [7, 8] developers into the team with confidence that the projects will
be successfully completed on time.

9.4.3 Control Phase

Figure 9.6 is the project behaviour tree generated for this simplified case by
Iteration 3. It depicts five possible behaviours: three of them, i.e. Behaviour
1/2/4, have one transition only (t1, when new workforce is introduced) before
the project completion; Behaviour 5 ends exactly at the second transition point
(t2, when assimilation ends at); only Behaviour 3 passes two transitions (t1, t2).
The behaviours are distinguished by the variables’ trends (e.g. value going up or
down).

Step 6. Based on the behaviour tree, the control metric table is developed for
each measurable variable to track its changes at check-points. The most im-
portant check-point is transition point t2 that indicates the end of assimilation.
Table 9.3 is an example control metric table for RSD (software development rate)
and SC (completed software size).

Step 7. When the project progresses to t2, the project state is compared to the
controlling tables. Because only Behaviour 3 goes through the second transition
point, if we are aware of the end of assimilation and SC falls into the range of [44,
64] KDSI, we can predict the schedule might reach 396 days. Correspondingly,
the behaviour branch 1, 2, 4, and 5 can be cut out. On the other hand, if the
project closes during the assimilation, it may happen in the time period of [323,
340] days.

Step 8. One unexpected situation might be that the assimilation finishes, but
the project progresses to the outside of (lower than) the range [44, 64] KDSI.
It means the project is out of control. The project manager has to identify and

162 CHAPTER 9. SQSIM-BASED SOFTWARE PROJECT MANAGEMENT

Table 9.3: Control metric table example

No. RSD@t1 RSD@t2 Est. duration
1. [123, 179] [203, 387] [325, 340]
2. [141, 179] [203, 387] [325, 340]
3. [141, 179] [277, 403] [320, 396]
4. [141, 179] [201, 403] [323, 340]
5. [141, 179] [277, 403] [323, 340]

correct the assignable problems immediately. Replanning should be carried out
to update the project end state.

9.5 Related Considerations

Multi-Dimension Simulation

In the EXAMPLE project (in Section 9.4), only two dimensions (project schedule
and cost) are used to define the project success cube. The simplified scenario helps
to explain our approach. However, in the real world, management may consider
more factors simultaneously, and needs to determine the tradeoffs between all of
them for decision making. SQSIM provides this capability of reasoning among
alternative process behaviours in multiple dimensions.

Success Factors

In real software projects, many success factors can be defined at the planning
stage, and can be reasoned about using the multi-dimension capability of SQSIM.
The example uses a simplified 2-D view of project success. However, normally
a variety of stakeholders are involved in the project planning process. Most of
them, including the project manager, development team, project clients, and
senior management, may possess very different perspectives and expectations of
the project outcomes.

For instance, the marketing department (i.e. the internal project client) hopes
to release a new software product earlier than the competitors. On the other
hand, the development team estimates the required project duration in terms
of their own experience. Therefore, both groups have to compromise with each
other on the value ranges in dimension(s) of project success cube, accepting that
delivery is impossible for developers before the lower value, and release is useless
for clients after the higher value.

9.5. RELATED CONSIDERATIONS 163

Table 9.4: Element-effect matrix of test-and-fix process model

element EPEs EAEs EAD EPD EFx t

TS [-] [-] [+] [+] [+] [+]
WFT [N] [N] [N] [N] [N] [-]
PDFx [N] [N] [N] [N] [N] [-]
mf [N] [N] [N] [N] [N] [-]
EP [+] [+] [+] [+] [+] [+]
EA [+] [+] [+] [+] [+] [+]

EDANTc [N] [-] [+] [N] [+] [+]
...
ho [-] [-] [+] [+] [+] [+]
hn [-] [-] [+] [+] [+] [+]

[+]: positive relation; [-]: negative relation; [N]: no explicit relation

Element-Effect Matrix

An element-effect matrix should be developed with the qualitative process model.
With respect to project’s characteristics and organisation’s context, different
projects may contain quite different tunable element set at Step 3, even if they
apply the same reference process model. A manager or estimator will learn from
the matrix and the iterations how a combination of input elements influences the
project performance (outputs), and how sensitive the (software process) model
is to the changes in certain parameters. Table 9.4 gives another example of
element-effect matrix for the test-and-fix process model developed in Chapter 7.

Good Solutions

Our approach is to find one ‘good ’ solution that guarantees the project falls into
the success cube. However, the outcome is not a unique one fitting the predefined
project success, but one of the possible ‘Good’ solutions. Different iterations
may produce slightly different solutions. Project managers have to identify the
tradeoff (solution) among the success factors required by clients and executives,
allowing for the resources available to the project. With regard to the definition
of project success in Section 9.1, there is no difference (better or worse) among
the all possible Good results. Thus, the solution obtained through this approach
can assist in the planning and controlling process by offering both flexibility and
contingency tolerance.

164 CHAPTER 9. SQSIM-BASED SOFTWARE PROJECT MANAGEMENT

9.6 Summary

Based on the explorative modelling of software processes using qualitative and
semi-quantitative approaches in Part III, this part aims to present the consider-
ations on the practical use and adoption of the promising approaches in software
engineering practice.

This chapter focuses the potential but pragmatic use of SQSIM in assisting
of software project management.

1. It first introduces the contemporary definition of project success to software
process research.

2. It then outlines the initial thinking in the unique uses of SQSIM in software
project management different from traditional quantitative approaches.

3. A novel approach for project planning and control using SQSIM is developed
as a solution, which matches a contemporary definition of project success.

4. A simplified illustrative project example is given for demonstrating the
application of this approach and its unique values.

The semi-quantitative approach is presented in this chapter as a powerful
technique for planning and controlling software project with uncertainty. It is
able to depict all possible routes of project progress offering a project manager
the flexibility and confidence to cope with uncertainty and contingency during
the software development, and guaranteeing the integrity of final project states
predicted. In contrast, many traditional approaches deliver only one-point sample
of the set of possible solutions in the success cube. Therefore, the SQSIM-based
approach is able to be an indispensable supplement to contemporary software
project management.

The next chapter discusses the interaction between process simulation and
process improvement, and develops an initial version framework for support-
ing the adoption of SPSM in practice. It further justifies the unique value of
QSIM/SQSIM for the software organisations at low maturity levels.

Chapter 10

Adopting Process Simulation in

Software Organisations

Chapter 9 presents the initial considerations about SQSIM-based software project
management and develops a pragmatic approach for project planning and control.
This chapter, from a different perspective, discusses the relationships between
SPSM and SPI, and focuses on the practical adoption of process simulation in
software organisations. It proposes a primary framework as a general guideline
for the adoption of SPSM, which integrates QSIM/SQSIM and other typical
simulation paradigms.

10.1 Motivation

Process simulation methods were initially introduced to software engineering com-
prehensively by Abdel-Hamid’s [AHM91] and others’ efforts in the late 1980s (cf.
Chapter 2). However, in the author’s experience, especially from the Australian
software industry, these methods are seldom adopted in practice. In terms of
the findings from the systematic review, one possible reason might be the lack
of guidance for supporting the adoption of appropriate modelling and simulation
paradigms within a specific organisation’s context.

As addressed by Kellner et al., “no single modelling approach or tool is the
most natural and convenient one to use in all software process situations” [KMR99].
However, they only took into account the factors of purposes, questions, and de-
sired result variables, and discussed their relations to the capability of simulation
paradigms. Unfortunately, the organisation’s context (precisely process maturity
discussed in this chapter), which is crucial to influence the success of adoption
of process simulation in practice, has been often omitted in most of previous

165

166 CHAPTER 10. ADOPTING PROCESS SIMULATION IN SOFTWARE ORGANISATIONS

research. This chapter∗ aims to stimulate research and trigger debate in this
research direction.

CMM(I)-based process improvement has been discussed for many years in
SPSM community. For instance, Christie argued that CMM-based process im-
provement can benefit from process simulation, and that simulation can help to
tackle different questions on each CMM level [Chr99]. However, he did not dis-
tinguish the different simulation techniques in his discussion. Raffo et al. further
suggested that process simulation serves as an organisation’s strategy for achiev-
ing a higher process capability and moving to higher CMM levels [RVM99]. Nev-
ertheless, it can be asserted that there is no ‘one-size-fits-all ’ simulation solution
for all organisational contexts, in particular organisations at different CMM(I)

maturity levels. The selection of a suitable process simulation paradigm is the
first necessary step to realise the value of simulation for software organisations.
Unfortunately, there is a lack of the generic guidance on how to select the ap-
propriate simulation paradigm(s). With reference to the capability descriptions
of CMM/CMMI maturity levels and the requirements for quantitative simulation
modelling, there exists a significant gap between them at lower maturity levels.

In contrast to most previous discussions focusing on the simulation’s positive
contributions to CMM-based process improvement, the following sections in this
chapter argue that adverse effects can also occur. Primarily, a framework (version
1.0) is proposed to support the selection of appropriate simulation paradigms
by mapping the selected process simulation techniques to their related CMMI

levels. This provides general guidelines for the adoption of process simulation in
software organisations. In addition, our discussion intends to justify the following
propositions:

1. Software organisations that have achieved high levels of process maturity
will find it relatively easy to adopt process simulation as part of their stan-
dard software project and process management processes.

2. Once having achieved high process maturity levels, an organisation can
refine process simulation models used at lower levels by incorporating into
the models more detailed process measurement data.

3. Compared with commonly used quantitative simulation methods, quali-
tative and semi-quantitative process models can be more appropriate for
adoption in software organisations at low process maturity levels.

This chapter first briefly reviews the related concepts of process simulation
and CMMI for defining the framework scope, and describes the interaction be-
tween them. It further explains the primary framework and justifies the mapping

∗The work included in this chapter has been partially reported in [ZKJ07b].

10.2. SCOPE: SPSM & CMMI 167

across the maturity levels . Finally, some associated issues to the current version
framework are discussed.

10.2 Scope: SPSM & CMMI

This chapter presents a framework that links four different process modelling
paradigms to CMMI maturity levels and transition process between maturity
levels. This section justifies the choice of process modelling paradigms selected for
inclusion in the initial version of the framework and provides a brief description of
their scope. It also gives a brief overview of CMMI by explaining the relationships
between process area groups and maturity levels. The interaction between SPSM
and SPI (CMMI) is also discussed.

10.2.1 Software Process Simulation Modelling

Scope of Purposes

With reference to the findings from the systematic review (cf. Chapter 3), the
purposes for undertaking simulations of software process models are grouped into
three levels, which updated and enhanced the reasons given by Kellner, Madachy,
and Raffo [KMR99]. They are repeated here for quick reference: the cognitive

level contains the purposes of 1) understanding, 2) communication, 3) process
investigation, 4) training and learning; the tactical and strategic levels include
the purposes of 5) prediction and planning, 6) control and operational man-
agement, 7) risk management, 8) process improvement, 9) technology adoption,
10) tradeoff analysis and optimising.

Note that the objectives on the cognitive level can benefit from all simulation
paradigms no matter what maturity level the organisation is on. For example,
even a Level 1 organisation can apply a role-playing simulation game (RPG), and
gain insight from it. However, such application is not the case of simulation in
support of the real process execution in a practical situation. Thus, the framework
described in this chapter focuses only on the purposes on the tactical and strategic
levels of purposes.

Simulation Paradigms

The systematic review of ProSim series (1998-2007) publications (cf. Chapter 3)
also identified system dynamics (SD, 49%) and discrete-event simulation (DES,
31%) as the most frequently used process simulation modelling techniques. For
this reason, they are considered for inclusion in the framework (v1.0). Another
reason for selecting these approaches is that they represent two typical simulation
approaches. The former is the widely applied continuous simulation paradigm
which captures higher level project or product considerations and shows how

168 CHAPTER 10. ADOPTING PROCESS SIMULATION IN SOFTWARE ORGANISATIONS

feedback loops connect a variety of business characteristics. In contrast, discrete
simulation is the modelling of systems in which the state variable changes only at
a discrete set of points (events) in time. It is excellent at capturing well-defined
process tasks, incorporating, queueing and scheduling considerations.

However, both techniques are purely quantitative approaches for modelling
and simulating systems. As software organisations at lower ends of CMMI lack the
ability in quantitative management, they are difficult to obtain major benefits
from these approaches (in-depth discussion in Section 10.3). Accordingly, the
framework must include other simulation paradigms, e.g. qualitative simulation
(QSIM) and semi-quantitative simulation (SQSIM), for the requirements of low
CMMI maturity levels.

Qualitative simulation models reflect the systems in the real world at an
abstract level. Fewer assumptions are required than for purely quantitative ap-
proaches. As introduced and demonstrated in Part II and III, the outputs gen-
erated by QSIM are all the possible behaviours of the system, whose states are
described by qualitative landmarks, instead of numeric values.

As an extension of QSIM, SQSIM focuses on the use of bounding intervals
to represent partial quantitative knowledge. This paradigm provides a seamless
transition between purely qualitative and quantitative approaches (cf. Chap-
ter 8). In the previous chapters, these qualitative and semi-quantitative ap-
proaches have been demonstrated by developing qualitative software process mod-
els and bounding with quantitative constraints.

Table 10.1 gives a brief summary of the selected simulation paradigms in
terms of the type of processes they are used to model and information needed to
apply the models.

10.2.2 Process Maturity Model: CMMI

As the successor of CMM, CMMI describes the practices for software process
change, and framework for measuring the compliance of organisations. CMMI

selects only the most important topics for process improvement, and then groups
those topics into ‘areas’. It represents ten years of lessons learnt from many
external and internal consultants, based on applying continuous improvement to
CMM itself [Kas04].

Representation

Unlike its predecessor, CMMI offers two representations, i.e. staged models for
assessing organisational maturity and continuous models for measuring process
capability. The main difference between maturity levels (MLs) and capability
levels (CLs) is the representation they belong to and how they are applied. Ta-
ble 10.2 shows the maturity levels of staged representation [SEI02a, SEI02b].

10.2. SCOPE: SPSM & CMMI 169

Table 10.1: Summary of selected paradigms for Framework v1.0

Paradigm Simulation
type

Process
type

Data requirements Model driver

QSIM Continuous Macro-
process

Qualitative values
of parameters
and relationships
among parameters

Qualitative time,
i.e. landmarks for
describing critical
events

SQSIM Continuous Macro-
process

Numeric ranges for
parameters, and
envelop functions
for relationships

Qualitative time or
quantitative inter-
val for describing
critical events

SD Continuous Macro-
process

Numerical values
for each parameter

Quantitative
& continuously
evolved time
intervals

DES Discrete Micro-
process

Numerical values
(plus probability)
for each parameter

Quantitative
queueing at-
tributes in discrete
time set

Hybrid as per mod-
ules

Macro-
& micro-
process

as per modules as per modules

Here, the staged representation is chosen for the framework for the following
reasons:

1. It provides a recommended path of improvement evolution (as shown in
Figure 10.1, refer to Section 10.3.3) for the entire organisation based on the
last decade’s best practices.

2. It allows comparisons across software organisations by using appraised pro-
cess maturity levels.

3. The single rating can be used as the indicator of the organisation’s over-
all maturity level, and provides an easy mapping to process simulation
paradigms.

4. It provides a smooth migration from CMM to CMMI.

170 CHAPTER 10. ADOPTING PROCESS SIMULATION IN SOFTWARE ORGANISATIONS

Table 10.2: CMMI Staged Representation

Maturity Level Staged Representation
1 Initial
2 Managed
3 Defined
4 Quantitative Managed
5 Optimising

Figure 10.1: Capability profile for maturity levels

Process Areas

CMMI contains 25 process areas (PAs) and 185 specific practices (SPs) grouped
into four categories in terms of their scopes (Figure 10.2). Project Management
process areas consist of project management activities related to planning, mon-
itoring, and controlling project. Process Management process areas provide the
organisation with capability of performing cross-project activities related to defin-
ing, deploying, implementing, monitoring, appraising, measuring, and improving
processes. Engineering process areas cover product development and mainte-
nance activities shared across engineering disciplines. They define the product
development processes rather than discipline-specific processes (e.g. software en-
gineering). Since the Support process areas address processes that are used in
the context of performing other process areas [SEI02a, SEI02b], the first three
process area groups are the main aspects considered in the initial version of the
framework.

10.2. SCOPE: SPSM & CMMI 171

Figure 10.2: Distribution of Specific Practices across maturity levels

Practices

The required component of the CMMI models is the ‘goal ’ that represents a
desirable end state, and indicates that a certain degree of project and process
control has been achieved. A specific goal (SG) is unique to a single process
area; in contrast, a generic goal (GG) may apply across all of the process areas.
Therefore, the proposed framework mainly focuses on specific goals and specific
practices, which represent the ‘expected ’ means of achieving the goal, and their
different emphases at maturity levels. The number of specific practices applied
to each maturity level is calculated and categorised into process area groups
(Figure 10.2). Though the allocated effort varies across the practices, and even
for the same practice performed among different software organisations, in general
speaking, this comparison to a large extent illustrates the emphasis of improved
process areas on each maturity level.

10.2.3 Interaction between SPSM & CMMI

In terms of the findings from the systematic review, software process improvement
(SPI) has been recognised as one of important motivations of SPSM research (cf.
Section 10.2.1). Accordingly, most of previous research solely argued and justified
the function of SPSM in support of SPI [Chr99, RVM99]. On the contrary, the
adverse effects were seldom discussed.

Figure 10.3 depicts the interaction between SPSM and CMMI. At the top of
the diagram, the arrow indicates the support from SPSM to SPI by producing

172 CHAPTER 10. ADOPTING PROCESS SIMULATION IN SOFTWARE ORGANISATIONS

Figure 10.3: Interaction between SPSM & CMMI

process predictions, assessments, and suggestions to process changes through sim-
ulation studies. The arrow at bottom shows that the effects of SPI on SPSM exist
as well. In a CMMI-based SPI framework, the identification of maturity level of a
software organisation can provide the conditions for adopting particular simula-
tion paradigm(s), and targets for performing simulation studies. By appropriately
and progressively introducing and adopting process simulation paradigms in soft-
ware organisations, a positive feedback loop, e.g. from SPSM to SPI and further
to SPSM, can be established in match of the continuous improvement targeted
by SPI programs.

When a software organisation achieves a particular CMMI maturity level, it
can be assessed as capable to adopt particular simulation paradigm(s); on the
other hand, maturity levels are static points during the course of continuous
introduction of new simulations and the improvement of process to the higher
levels supported by their adoption. The purpose of this framework is to help
organisations secure the success of SPSM adoption, maximise the benefits gained
from process simulation, and use the appropriate paradigm(s) needed to achieve
higher maturity levels.

10.3. ADOPTION FRAMEWORK (VERSION 1.0) 173

10.3 Adoption Framework (version 1.0)

According to the introduction of SPSM in Chapter 3, simulation models may be
discrete or continuous, quantitative or qualitative, for macro- or micro-process
research, or mixed. The choice of whether to use a discrete or continuous (or
mixed) simulation model is a function of the characteristics of the system and
the objective of study [BCNN05]. For a software organisation, CMMI provides
an assessment framework for the organisation’s capability (i.e. characteristics of
the system) and the target of process improvements (which is one of important
objectives of study).

As CMMI depicts a progressive path to achieve continuous process improve-
ment, likewise the adoption framework (proposed in this chapter) depends on the
continuing improvement in the organisation’s process capability maturity. The
mapping is implemented by analysing the characteristics of software organisation
and the practices introduced at each maturity level, and comparing with the in-
herent requirements and functions of each simulation paradigm. This section also
provides simulation model of one well-defined software process as an example for
each transition.

10.3.1 Framework Overview

Figure 10.4 shows the adoption framework version 1.0. It depicts the introduc-
tion and adoption of the process simulation paradigm in an organisation is also a
process, rather than a single point action of CMMI appraisal. Hence, one partic-
ular simulation paradigm is normally introduced during the transition between
two adjoining CMMI maturity levels.

As an organisation increases its process capability, it can provide more precise
and reliable process information with richer details both of the process itself and
the metrics used to describe process attributes. Thus, it is able to adopt low
level (micro-process) or more sophisticated process modelling paradigms that
require detailed, quantitative process information. This framework, therefore,
visualises an evolution path from high level (macro-process) abstract to low level
(micro-process) more complex simulation paradigms that mirrors the CMMI im-
provement process, i.e. from macro-process to micro-process, from qualitative to
quantitative, from continuous to discrete and then hybrid (see Section 10.3.6).

At the maturity levels beyond ML1, the framework offers more than one choice
of simulation paradigm to software organisation. To use the framework, imagine
that you stand at one particular position (regarding your maturity level), say
ML2, and look right. Then you can make the relatively mature decision from
the simulation paradigms you can see, i.e. SD, QSIM, and SQSIM for ML2 (see
the following sections for detailed explanation). These simulation paradigms are
recommended to fit your organisation by this framework.

174 CHAPTER 10. ADOPTING PROCESS SIMULATION IN SOFTWARE ORGANISATIONS

Figure 10.4: Framework (v. 1.0) of adopting SPSM in CMMI organisations

10.3.2 Starting at ML1

At the entry level, software processes are performed in a chaotic and unstable
organisational environment. “Maturity level 1 organisations are characterised by
a tendency to over commit, abandon processes in the time crisis.” [SEI02b] Given
a poorly-defined process, significant uncertainty and high risk associated within
such situation, project success and process performance can rarely be predicted
quantitatively. Because of the large variance and contingency of the development
behaviours, in most cases, the organisation is unable to repeat their past success.

Although it is an ad-hoc level and no stable processes are followed in organi-
sation, some qualitative knowledge and models still apply (e.g. Brooks’ Law and
defect amplification across development phases). Qualitative assumptions can
be abstracted from these models, corresponding to general knowledge about the
software development process. A qualitative simulation model can be then
developed based on these qualitative assumptions.

With reference to the demonstration and discussion in Part III, QSIM is able
to simulate the qualitative behaviours of software processes, as well as reason
possible trends of project progress given the incomplete and uncertain process

10.3. ADOPTION FRAMEWORK (VERSION 1.0) 175

information. The simulation results can facilitate the qualitative management
and prediction of development process, which is more realistic in software organ-
isations at ML1.

Example. The software process focusing on staffing level is modelled and sim-
ulated as an example for each transition in this chapter. Brooks’ Law might
be the most well-known statement regarding the software staffing issue. It ar-
gues “adding manpower to a late software project makes it later” [Bro95], and
has a negative impact on software development productivity. The qualitative
simulation model for examining Brooks’ Law was built on ten basic qualitative
assumptions of the software staffing process (cf. Chapter 6), such as “adding more
people to a project results in a larger communication overheads”, and “new em-
ployees’ productivity is initially lower than experienced developer’s productivity”.
This model generates all possible behaviours to describe the software staffing pro-
cess. Even without quantitative information, the simulation results can justify
that under some scenarios adding more people may help the project complete
earlier than the original schedule.

10.3.3 Transitioning from ML1 to ML2

In progressing to ML2, organisations start to apply the generic and specific prac-
tices. As illustrated in Figure 10.2, over 55% specific practices implemented in this
transition concentrate on adopting ‘basic project management ’ methodologies
(process areas). On the other hand, no specific practice of process management
is introduced until achieving ML2. Therefore, the main improvements are ex-
pected on the project or management level, not the process level. For instance,
the estimates of attributes of the work products are established and maintained
(PP-SP1.3†); based on estimation rationale, project effort and the cost for work
products are established (PP-SP1.4); project risks are identified and analysed
(PP-SP2.2); the actual values of the project parameters are monitored against
the project plan (PMC-SP1.1); the project’s progress, performance and issues are
periodically reviewed (PMC-SP1.6), and so on.

However, quantitative project management processes must be adopted pro-
gressively. It takes time not only to accumulate sufficient project history data,
but to specify how measurement data will be obtained, stored, analysed, and
reported (MA-SP1.3/1.4). This implies there might be significant variance, even
inconsistency, in the data collected during this transition. In addition, it can
be noted in Figure 10.1 that all adopted process areas at current maturity level
(for ML2) are targeted at CL2 (capability level 2), other than CL3 required for
all the higher maturity levels. This implies only primary quantitative project
management capability is expected at maturity level 2.

†The code of CMMI specific practice, refer to [SEI02a] and [SEI02b] for detailed description.

176 CHAPTER 10. ADOPTING PROCESS SIMULATION IN SOFTWARE ORGANISATIONS

Obviously, the discrete paradigm is not appropriate for the simulation during
this transition, because of the absence of the specific practices of process man-
agement. In contrast, the continuous paradigms are more suitable for capturing
the project or product characteristics at high (macro-process) level. However, in
light of the lack of complete and reliable history data from ML1, the estimates of
project metrics are highly based on project manager’s personal experience and in-
complete history information. Though quantitative simulation can cope with the
uncertainty with stochastic methods, e.g. Monte Carlo Simulation, unfortunately,
the number of uncertain factors may be too many to handle in this way, and the
statistical distributions may be unknown or unstable at this stage. Thereby,
blindly adopting a purely quantitative simulation within such context may re-
sult in over-optimistic or -pessimistic predictions, and may finally discourage the
implementation of process simulation due to the unreasonable expectations.

As the extension of qualitative simulation, semi-quantitative simulation

provides a seamless transition between qualitative and purely quantitative ap-
proaches. It can be introduced as a lens with a smooth zoom to match the
organisation’s immature but continuously improving quantitative capability dur-
ing this transition. The discipline of semi-quantitative modelling will encourage
project managers to estimate in terms of ranges of values. This effectively avoids
the mistake of being more precise in process simulations than an organisation’s
actual process capability warrants.

Example. The software staffing process model is extended with the quantitative
constraints in Chapter 6. Since the uncertainty is still high at level 2, and only
incomplete historical project data is available, SQSIM assigns envelope functions
to the relations in the model, and value ranges to the inputs and its initial state.
When the stricter quantitative constraints are applied during process progressing,
the simulation may produce fewer but more precise behaviours for the specific
staffing process (cf. the example in Chapter 9). Given the primary and limited
quantitative management capability (between ML1 and ML2), SQSIM is able to
provide the possible behaviours of development process for decision-making while
maintaining the integrity of the final solution.

10.3.4 Transitioning from ML2 to ML3

Once the organisation achieves ML2, projects can be managed and a few suc-
cessful project management practices can be repeated. As over 55% of all CMMI

practices must be implemented successfully here in order to reach ML3 (as shown
in Figure 10.2), the transition to ML3 will produce the most distinct improve-
ments across the maturity levels. The main process areas in this transition are
Engineering (39%) and Project Management (31.5%). The ‘advanced project

management ’ practices (except ‘quantitative project management ’ processes)

10.3. ADOPTION FRAMEWORK (VERSION 1.0) 177

are introduced, such as to establish and maintain the project’s defined process
(IPPD-SP1.1); to define the parameters used to analyse and categorise risks and
control risk management effort (RM-SP1.2), and so on.

System dynamics is suggested to be introduced during this transition for
more precise management based on experience and knowledge. SD is a dynamic
feedback system, sometimes refined as a goal-seeking system. It is possible to
study the interaction of control policies, exogenous events and feedback structures
producing dynamic behaviour, such as rise, drop or oscillation (an example SD
process model included in Chapter 8). SD simulates the software process as a set
of performance indicators. Most of them are active during the whole project or
project phases.

Although as one alternative solution beyond ML2, the SQSIM offers the capa-
bility of purely quantitative continuous simulation (cf. Chapter 8), SD is preferred
here for its wide application (the most popular simulation paradigm applied in
SPSM during the past decade, cf. Chapter 3). However, the SQSIM models
developed in the last transition can be refined and converted into an SD model
by following the model converting scheme discussed in Chapter 8.

Meanwhile, the organisation starts to adopt the ‘basic process manage-

ment ’ practices (for ML3), such as to establish and maintain the description of
the process needs and objectives for the organisation (OPF-SP1.1); to establish
and maintain the organisation’s set of standard processes (OPD-SP1.1); to deploy
organisational process assets across the organisation (OPF-SP1.1), etc. Thus, the
organisation can only partially and locally benefit from discrete-event modelling
prior to ML3 when these practices are well defined and implemented across the
parts or the whole organisation.

Example. Madachy developed an SD model of the software staffing process to
examine the Brooks’ Law [Mad08]. He simplified Abdel-Hamid and Madnick’s
model [AHM91] by focusing on the assimilation procedure. The model was built
using a set of specific numeric values, which were selected from the literature
or historical data of company projects, to represent the relations in the model.
Further, the process was simulated with the data from specific projects as inputs.
His model generates single deterministic behaviour through one simulation, and
the impact of different staffing policies were analysed by comparing the numeric
values describing the project states through multiple runs.

10.3.5 Transitioning from ML3 to ML4

When some software processes become well-defined at ML3, it is appropriate time
to completely introduce discrete-event simulation (Figure 10.4). A ‘defined
process’ clearly states: purpose, inputs, entry criteria, activities, roles, measures,
verification steps, outputs, and exit criteria [SEI02b]. The discrete models, which

178 CHAPTER 10. ADOPTING PROCESS SIMULATION IN SOFTWARE ORGANISATIONS

are often represented as queueing systems, are capable of capturing a well speci-
fied process, which is composed of the above process elements. DES is suitable to
model a queueing system, which is observed by arrival rate, service time, queue
capability and discipline [BCNN05]. The entities will be moved from one queue
to another during simulation.

Discrete-event simulation is a typical method employed in stochastic queue-
ing models. All pre-defined rules, such as arrival rates and service times, will
be sampled from the appropriate distributions. At ML3, the organisation’s mea-
surement repository has been established and maintained (OPD-SP1.4), and the
process asset library has been established and maintained (OPD-SP1.5), and so
on. These practices provide the precondition for applying statistical methods and
tailoring at the process level.

ML4 aims to achieve a ‘quantitatively managed process’. A critical dis-
tinction between a ‘well defined process’ and ‘quantitatively managed process’ is
the predictability of process performance. The latter implies using appropriate
statistical techniques to manage process performance so that the future perfor-
mance can be predicted [SEI02a]. Discrete event modelling tries to answer ‘what
if ’ questions in process changes. The model is run many times with different
input variables, entity allocations and statistical distributions. The results are
collected and examined to support the ‘quantitative project management ’
and improve the ’organisational process performance ’, which contain all
(13) specific practices implemented at ML4.

Example. Antoniol et al. developed three different queueing models, composed
of nodes assessment, technical analysis, enactment and unit testing, to model a
software maintenance process [ADD04]. Stochastic discrete simulation was then
used to compute the required team size (for the different nodes of each model)
under the constraint to complete maintenance activities. In terms of the clearly
defined process (which is required for ML3 and above), several simulations were
carried out by changing team size (servers) for each node until all expected work
packets were processed by the deadline. Project staffing levels were then refined
to reach a compromise between personnel cost and waiting time.

10.3.6 Transitioning from ML4 to ML5

In the initial version framework, four typical simulation paradigms are intro-
duced at ML1 through ML3 separately. ML4, where this transition starts, is
characterised as a quantitatively managed project and process. After previ-
ous transitions along with maturity increase, an ML4 software organisation pos-
sesses the competency to employ and institutionalise the above-mentioned four
simulation paradigms progressively. At ML4, hybrid simulation is proposed

10.4. RELATED CONSIDERATIONS 179

by combining multiple simulations and modelling techniques to help organisation
achieve continuous optimisation.

Hybrid modelling means not only employing the different modelling paradigms
concurrently (which may be implemented prior to ML4), but developing an inte-
grated model with modules created by different paradigms. For example, when
pilot process and new technology are considered to implement process improve-
ment (OID-SP1.3), qualitative or semi-quantitative modelling may be employed
for the specific module due to the limited knowledge about a specific process; a
combination of SD and DES can facilitate the causal analysis of selected defects
and other problems (CAR-SP1.2) on project and process levels, and further help
the evaluation of changes on process performance (CAR-SP2.2).

Hybrid simulation is encouraged during this transition to select quantitative
and/or qualitative modelling, continuous and/or discrete simulation, using ver-
tical or horizontal integration (cf. Chapter 3), to effectively and flexibly capture
and simulate the realistic and complex software processes, and to maximise the
benefits gained from SPSM.

Example. As an example, Raffo and Setamanit develop a hybrid model that
simulates the global software development (GSD) process with the component
of staffing process [RS05, SWR07]. The discrete event and system dynamic
paradigms compliment each other and together enable the construction of mod-
els that capture both the dynamic nature of project variables and the complex
sequences of discrete activities that take place. Their hybrid model was imple-
mented using vertical integration. At a high level, their model has three major
components: DES sub-model, SD sub-model, and Interaction Effect sub-model.
The SD sub-model consists of a global SD sub-model and a site-specific sub-
model, which include human resources (HR) modules. The modules deal with
HR management, which involves hiring, training, assimilation, and transferring
workforce. Whereas the DES sub-models simulate how tasks are allocated and
specific activities are performed on site and global scales.

10.4 Related Considerations

Maturity Assessment

As CMMI is a widely-accepted and easily-accessed SPI program, it is chosen here
as the premier process maturity model in the current version framework. Nev-
ertheless, the framework is not limited to the organisations with official CMMI

appraisal, but also applies to most software organisations, as any of them oper-
ates at one particular CMMI maturity level. The framework provides a general
and approximate guideline for selecting and adopting process simulation. An
organisation can perform self-appraisal, compare the capability characteristics

180 CHAPTER 10. ADOPTING PROCESS SIMULATION IN SOFTWARE ORGANISATIONS

defined at CMMI maturity levels, and then select the most suitable simulation(s)
recommended by the framework at the appropriate maturity level or transition.

Paradigm across Levels

As shown in Figure 10.4, each process simulation paradigm involved in this
framework can also be applied at the maturity levels above its introduction
level/transition. For instance, when a Level 5 organisation plans to adopt a
new technology or a new software process, qualitative simulation may help to
gain insight in the possible implication of the change. As another example, the
success of a contemporary project might be better defined as a cube of metrics
than a single point [Ker06]. Since semi-quantitative approach has the inherent
capability of coping with uncertainty in multi-dimensions, it can facilitate the
decision-making under this condition even for the organisations at higher matu-
rity levels (cf. Chapter 9).

SQSIM and CMMI

Semi-quantitative simulation identifies all possible behaviour consistent with the
process constraints and predicts process performance for each behaviour with
value ranges. Thus, it is able to provide an outcome that is consistent with an
organisation’s current process knowledge. Furthermore, as an organisation’s pro-
cess knowledge increases along with the implementation of CMMI (or other SPI)
program, the SQSIM models can be refined by introducing narrower value ranges
and updated envelope functions to produce more accurate prediction without
significant changes in model structure.

Selection Factors

Besides the consideration of an organisation’s maturity level, selection and adop-
tion of process simulation paradigms are also related to other constraints, such
as expertise with simulation and modelling tools, previous adoption experience.
Process simulation should focus on the needs of an organisation in the context
of its business environment and the needs of an organisation’s current projects.
Transition between paradigms is not mutually exclusive to each other, prior intro-
duced and adopted techniques can be retained, optimised, and further integrated
with the newly introduced paradigm.

Adoption Process

Along with the evolution of process capability, different process simulation paradigms
are introduced into an organisation incrementally and separately. In the staged
representation of CMMI model, each maturity level forms a necessary foundation

10.5. SUMMARY 181

on which to build the next level, so trying to skip maturity levels is usually coun-
terproductive [SEI02b]. Though organisations can introduce specific simulation
paradigms at any time they choose (even before they are ready for advance to
the recommended maturity level by the framework), similarly, skipping the adop-
tion of simulation paradigm(s) at lower maturity level(s) is not recommended in
this framework. For example, some organisations may try to collect the detailed
process data for discrete event simulation, but they are likely to suffer from the
inconsistency in processes and measurement definitions.

At present, the initial version framework includes only four typical process simu-
lation paradigms. However, its structure is open and can adapt other simulation
paradigms, especially for the paradigms identified in the systematic review, and
locate them at appropriate positions in the future.

10.5 Summary

The previous chapters (in Part III and IV) focus on the simulation modelling
and application of QSIM/SQSIM in software engineering research and practice.
The paradigm scope is extended in this chapter for investigating the adoption of
SPSM in a specific organisation, which was seldom discussed in SPSM community
before.

1. This chapter argues the interactions between SPSM and (CMMI-based) SPI.

2. It emphasises the important impact of organisation’s context on the suc-
cess of SPSM adoption, and first reveals the positive relation from process
maturity model to SPSM for supporting adoption in real world.

3. The initial version of a framework has be proposed by analysing the or-
ganisational characteristics on CMMI maturity levels and requirements of
the typical process simulation paradigms, and establishing an appropriate
mapping between them.

4. The inclusion of qualitative and semi-quantitative simulations in the frame-
work presents the unique value of these approaches in SPSM practice, es-
pecially for the organisations at lower maturity levels.

5. The framework provides value especially to software organisations as a pri-
mary guideline for selecting and adopting process simulation by assessing
their own CMMI maturity levels.

Chapter 11

Discussion & Conclusion

The focus of this thesis is on qualitative/semi-quantitative modelling and simula-
tion of software development processes, which are able to support both software
process/project management and process improvement.

As the last chapter of this thesis, the following sections summarise the re-
search achievements of this work, discuss more considerations regarding these
approaches, as well as identify the limitations and propose future research.

11.1 Research Achievements

The major achievement of this research lies in the exploration, development, and
validation of the use and usefulness of qualitative/semi-quantitative modelling
and simulation in software process research and practice. This research produces
value on both theoretical and practical aspects. The specific achievements can
be summarised as follows:

1. Systematic literature review of the work in software process simulation mod-
elling.

a) The first systematic literature review reflecting the progress and state-
of-the-art of SPSM research over ten years (1998-2007);

b) Theoretical updates and enhancements for answering essential ‘why ’,
‘what ’ and ‘how ’ questions in SPSM research;

c) Underlying trends and future directions of SPSM research discovered
from the review results;

d) Guideline and reference derived from the review used as evidence for
the design of research in this thesis.

183

184 CHAPTER 11. DISCUSSION & CONCLUSION

2. Development of a range of qualitative and semi-quantitative software pro-
cess models for simulation.

a) Development of the first use of structural qualitative software process
models for simulation;

b) Introduction of the semi-quantitative modelling concept and paradigm
in software engineering research by developing software process models
for simulation;

c) Demonstrations of qualitative/semi-quantitative modelling and simu-
lation of software processes in specific domains, at different time scales,
and for three levels of purposes;

d) Development and experiment of qualitative and semi-quantitative sim-
ulation models with transitions and iterations at discrete phase level;

e) Acquisition of new insights in software staffing process by revisiting
Brooks’ Law with qualitative assumptions and simulation.

3. Comparison between the typical quantitative continuous modelling approach
and qualitative/semi-quantitative approaches.

a) Comparison between casual-loop diagramming and qualitative mod-
elling, and development of model conversion scheme from CLD to
ASD;

b) Introduction and implementation of first-order and higher-order de-
lays (originated in system dynamics) in QSIM/SQSIM mechanism;

c) Comparison between system dynamics and qualitative/semi-quantitative
simulation from a variety of aspects;

d) Illustration and discussion of the theoretical and structural equivalence
between SD process model and corresponding QSIM/SQSIM process
models.

4. Framework for software project and process management based on semi-
quantitative modelling and simulation.

a) Development of SQSIM based software project planning approach for
securing project success;

b) Development of SQSIM based software project control approach in
support of process management on the fly;

c) Development of methods and tools for supporting software project
management, such as element-effect table, and control metric table.

5. Identification of the usefulness and unique uses of qualitative and semi-
quantitative approaches in SPSM for supporting software process improve-
ment.

11.2. DISCUSSION 185

a) Identification of the bidirectional interaction and effects between SPSM
and SPI;

b) Development of the primary framework for successfully adopting soft-
ware process simulation in CMMI organisations;

c) Justification of the unique values of QSIM/SQSIM for low maturity
software organisations.

11.2 Discussion

11.2.1 Potentials

Apart from the applications of qualitative/semi-quantitative modelling proposed
in Part IV, more potential uses of these approaches in software engineering can
be further developed. Some are briefly discussed below.

Qualitative Modelling The qualitative modelling (from qualitative assumptions
to formal QDEs) presents a basic structure of the process and abstracts its per-
tinent characteristics. It serves as a vehicle to enhance the qualitative under-
standing of a specific process, and further the model is able to accommodate
the qualitative agreement among the stakeholders involved in development. The
qualitative models can also be shared and reused across software organisations,
no matter at what maturity level they are (cf. Chapter 10) . Therefore, qual-
itative modelling can be used to extract and manage common knowledge and
insights of software processes at a high level. It may also contribute to model
reuse of continuous based process simulation, which was identified as one possible
direction in Chapter 3.

Furthermore, qualitative modelling and simulation may provide the possibil-
ity for dynamical evaluation of semantic aspects of process simulation models,
especially for continuous models, in the future.

Quantitative Refinement Because a qualitative model reflects the skeleton of the
problem under investigation, in most cases, there is no need to amend the qual-
itative model significantly during refinement. Instead, managers can focus more
on the quantitative constraints (with their gradually enriched experience), which
improves process prediction and measurement.

Additionally, semi-quantitative constraints provide a means to continuously
refine the qualitative model with the improved knowledge or with the emerging
certainty in the course of process. Different organisations, even different projects,
can develop their own specific quantitative constraints and extensions based on
the same qualitative model.

186 CHAPTER 11. DISCUSSION & CONCLUSION

11.2.2 Alternatives

There are two broad categories of methods dealing with uncertainty: probabilistic
and non-probabilistic [GB91]. Semi-quantitative modelling falls into the latter.
This subsection compares semi-quantitative modelling and simulation with other
typical methods used in handling uncertainty in software engineering.

Monte Carlo Method Monte Carlo simulation is one popular quantitative method
for analysing software process. Although it takes many samples of the value range,
unfortunately, they are still a finite set. Thus, this method cannot guarantee all
possibilities fall into their solution. This problem turns to be more subtle when
more factors change simultaneously, which may result in missing some important
behaviours. Furthermore, the computational cost of using Monte Carlo method
dramatically increases when dealing with a large variable space. In contrast, the
cost of semi-quantitative simulation does not depend on the size of the variable
space. It is a function of the number of distinct qualitative behaviours pre-
dicted [Kui94]. Moreover, semi-quantitative modelling allows for the existence of
many uncertain elements without needing to assume their statistical distribution
over the range.

Statistical Process Control This control technique (SPC), as described by Florac
and Carleton [FC99], provides useful method and tool to improve the controlla-
bility of development process. Graphic tools, e.g. control charts and capability
histograms, are used to analyse the process. The applicability of SPC is inde-
pendent of the life cycle model and development methodology. However, it does
require that a rigorous measurement process be instituted with the development
process. In addition, when the number of parameters that affect the process is
relatively high, the combinations of possible values are even higher and analysis
of all alternatives becomes very difficult, if not impractical.

Fuzzy Logic As another non-probabilistic method, Fuzzy logic provides a typical
set-valued quantitative approach. It describes the real world system with fuzzy
set, which is a fuzzy subset of the universe of discourse [GB91]. It applies a
rough boundary to handle the uncertainty, and the mapping to fuzzy set is in
an arbitrary way, linear or nonlinear. In contrast, semi-quantitative modelling
describes the system boundary with real numeric values, which maintains the
precision while coping with uncertainty.

Each approach possesses its advantages and limitations. The selection depends
on the user’s capability and requirements. Semi-quantitative modelling performs
modelling and simulation by refinement: define a set of possible solution, and
shrink it by cutting out the illegal or illogical behaviours. This approach guar-

11.3. LIMITATIONS & FUTURE WORK 187

antees integrity of the solution. In addition, it produces not only the final states
of project, but all possible process behaviours (routes) consistent with the quan-
titative constraints, i.e. value ranges and envelope functions, which can be used
for in-progress process tracking.

Semi-quantitative modelling still requires the process to be observed and mea-
sured quantitatively. Plus, it does not mean assigning a value rang to every
parameter, nor an envelope to every equation. It provides a manager with an al-
ternative modelling approach and flexibility in managing process. The capability
to apply finer intervals reflects the organisation’s maturity.

11.3 Limitations & Future Work

11.3.1 Limitations

This subsection discusses the limitations from two aspects: the approach and the
supporting tools, as well as the research reported in this thesis.

Approach

Despite of the power of qualitative and semi-quantitative approaches in dealing
with complexity and uncertainty of software processes, currently, some weakness
of theses proposed approaches still remain and limit their use in the following
aspects:

• Ease of use: A QDE has to be defined by Common Lisp formally, which
assumes the modeler possessing the basic knowledge of AI and LISP pro-
gramming language. Thus, it is often time-consuming to program and to
debug a QSIM/SQIM model.

• Interoperability: As the simulation engines, QSIM and Q2 do not allow
the interoperation during the run of simulation, which implies the modeler
cannot make change in the light of the live progress of simulation.

• Development environment: There is no visual integrated development en-
vironment (IDE) available for semi-quantitative simulation, which hinders
the rapid modelling for SQSIM.

• Granularity: Though QSIM/SQSIM offer some features for discrete mod-
elling, such as model transition and iteration (cf. Chapter 7), currently,
their use focuses on continuous process modelling and macro-process re-
search.

• Integratability: Recently, QSIM/SQSIM strongly rely on reasoning tech-
niques and AI programming language (e.g. LISP), which leads to the diffi-
culty in integration with conventional simulation paradigms.

188 CHAPTER 11. DISCUSSION & CONCLUSION

Thesis

Though the research questions addressed in Chapter 1 have been tested through
this thesis, some limitations of this research still remain.

Apart from the above limitations of the proposed approaches, as few qualitative/semi-
quantitative software process models were developed prior to this research, the
diversity of process models using them need to be further enriched. On the other
hand, the QSIM/SQSIM process models are desired to validated directly with
empirical data.

The distinct and unique characteristics of qualitative/semi-quantitative mod-
elling presented in this thesis determines the difference in model evaluation from
conventional quantitative approaches. A systematic and theoretical model eval-
uation method is as yet unavailable.

In addition, considering the novelty of these approaches in software engi-
neering domain, they currently still lack the empirical evidence from practice
for supporting and improving the methodology and framework developed in this
thesis.

11.3.2 Future Work

In spite of the existence of the limitations, qualitative and semi-quantitative
approaches proposed in this thesis offer a number of interesting perspectives and
promising features for modelling and simulating software processes. Possible
future work in this direction can be identified but not limited to:

1. Modelling and investigation of more software processes: This thesis mod-
els three typical but distinct software development processes at different
scopes. In the future, more software processes need to be modelled for iden-
tifying the fitness and appropriateness of qualitative and semi-quantitative
approaches.

2. Experiment using alternative implementation schemes: QSIM and its ex-
tension Q2 are the implementation scheme applied in this research, which
has its advantages and weaknesses. It is worthwhile to investigate the alter-
native implementation schemes fitting the specific needs in software process
research, such as the Garp3 workbench for qualitative modelling and simu-
lation.

3. Integration with conventional quantitative approaches: Developing spe-
cific interfaces for information conversion and execution transition between
QSIM/SQSIM and conventional quantitative approaches for constructing
hybrid/integrated process simulation models.

4. Implementation of discrete process modelling: Qualitative modelling and
simulation offers some basic discrete characteristics. Experimenting and

11.3. LIMITATIONS & FUTURE WORK 189

implementing (partial) discrete or hybrid modelling of software process for
enhancing its adaptability.

5. Development of innovative uses: Developing new uses based on the capa-
bilities offered by qualitative and semi-quantitative approaches, such as the
abstraction and management of software process knowledge for model reuse,
and semantic evaluation of process simulation models.

6. Development of integrated tool kits for management: In order to implement
semi-quantitative simulation based software project/process management
and encourage its use in practice, an integrated tool kits need to be devel-
oped for executing automatic simulation over iterations and generating the
artifacts.

Bibliography

[ADD04] Giuliano Antoniol, Giuseppe A. DiLucca, and Massimiliano DiPenta. Assess-
ing staffing needs for a software maintenance project through queuing simula-
tion. IEEE Transactions on Software Engineering, 30(1), 2004. [cited at p. 178]

[AEPR08] Ahmed Al-Emran, Dietmar Pfahl, and Gunther Ruhe. A method for re-
planning of software releases using discrete-event simulation. Software Pro-
cess: Improvement and Practice, 13(1):19–33, 2008. [cited at p. 43]

[AH89] Tarek K Abdel-Hamid. The dynamics of software project staffing: A sys-
tem dynamics based simulation approach. IEEE Transactions on Software
Engineering, 15(2), 1989. [cited at p. 84]

[AHM91] Tarek K Abdel-Hamid and Stuart E Madnick. Software Project Dynam-
ics: An Integrated Approach. Prentice Hall, Englewood Cliffs, N.J., 1991.
[cited at p. 5, 20, 24, 27, 42, 84, 88, 91, 92, 98, 102, 111, 113, 118, 158, 165, 177]

[BAB+00] Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Brad-
ford K. Clark, Ellis Horowitz, Ray Madachy, Donald Reifer, and Bert
Steece. Software Cost Estimation with COCOMO II. Prentice Hall, 2000.
[cited at p. 20]

[BCNN05] Jerry Banks, John S. Carson, Barry L. Nelson, and David M. Nicol. Discrete-
Event System Simulation. Prentice-Hall, Englewood Cliffs, NJ, 4 edition,
2005. [cited at p. 23, 43, 173, 178]

[BDVW06] Marcio de O. Barros, Alexandre R. Dantas, Gustavo O. Veronese, and Clau-
dia M. L. Werner. Model-driven game development: Experience and model
enhancements in software project management education. Software Process:
Improvement and Practice, 11(4):411–421, 2006. [cited at p. 46]

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change. Addison
Wesley, 2000. [cited at p. 19]

[BF04] Bert Bredeweg and Kenneth D. Forbus. Qualitative modeling in education.
AI Magazine, 24(4):35–46, 2004. [cited at p. 71]

[BKHV97] Ulrike Becker-Kornstaedt, Dirk Hamann, and Martin Verlage. Descriptive
modeling of software processes. In 3rd Conference on Software Process Im-
provement, Barcelona, Spain, 1997. [cited at p. 18]

191

192 BIBLIOGRAPHY

[Boe81] Barry Boehm. Software Engineering Economics. Prentice Hall, Englewood,
Cliffs, NJ, 1981. [cited at p. 20, 38, 110]

[Boe86] Barry Boehm. A spiral model of software development and enhancement.
ACM SIGSOFT Software Engineering Notes, 11(4), 1986. [cited at p. 19]

[Bro95] Frederick P. Brooks. The Mythical Manmonth: Essays on Software Engi-
neering. Addison-Wesley Longman, anniversary edition, 1995. [cited at p. 3,

84, 85, 87, 92, 175]

[BS03] Bert Bredeweg and Peter Struss. Current topics in qualitative reasoning. AI
Magazine, 24(4), 2003. [cited at p. 59]

[BSB01] Gautam Biswas, Daniel Schwartz, and John Bransford. Technology sup-
port for complex problem solving: From sad environments to ai. In Ken-
neth D. Forbus and Paul J. Feltovich, editors, Smart Machines in Educa-
tion: The Coming Revolution in Educational Technology. AAAI Press, 2001.
[cited at p. 71]

[BSBL05] Bert Bredeweg, Paulo Salles, Anders Bouwer, and Jochem Liem. Frame-
work for conceptual qr description of case studies. Technical report, Hu-
man Computer Studies (HCS) laboratory, University of Amsterdam, 2005.
[cited at p. 71]

[Car03] John S. II Carson. Introduction to modeling and simulation. In Winter
Simulation Conference (WSC), pages 7–13, New Orleans, LA, 2003. IEEE
Press. [cited at p. 21, 23]

[CBK06] KeungSik Choi, Doo-Hwan Bae, and TagGon Kim. An approach to a hybrid
software process simulation using the devs formalism. Software Process:
Improvement and Practice, 11(4):373–383, 2006. [cited at p. 52]

[CDM02] Joao W. Cangussu, Raymond A. DeCarlo, and Aditya P. Mathur. A formal
model of the software test process. IEEE Transactions on Software Engi-
neering, 28(8), 2002. [cited at p. 112]

[CGC06] Yu Chen, Gerald C. Gannod, and James S. Collofello. A software product line
process simulator. Software Process: Improvement and Practice, 11(4):385–
409, 2006. [cited at p. 43]

[Chr99] Alan M. Christie. Simulation in support of cmm-based process improvement.
Journal of Systems and Software, 46(2/3), 1999. [cited at p. 166, 171]

[CKO92] Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Communica-
tions of the ACM, 35(9), 1992. [cited at p. 11, 17, 20]

[Cla02] Terry A. Clark. Project Management for Planners: A Practical Guide. Plan-
ners Press, American Planning Association, 2002. [cited at p. 153]

[CLRW00] B.W. Chatters, Manny Lehman, Juan F. Ramil, and Paul Wernick. Mod-
elling a software evolution process: A long-term case study. Software Process:
Improvement and Practice, 5(2-3), 2000. [cited at p. 128, 134, 135, 136]

193

[Coc02] Alistair Cockburn. Agile Software Development. Addison-Wesley, 2002.
[cited at p. 19]

[Cox90] Brad J. Cox. Planning the software industrial revolution. IEEE Software,
7(6):25–33, 1990. [cited at p. 1]

[Coy96] R.G. Coyle. System Dynamics Modelling: A Practical Approach. Chapman
& Hall/CRC, 1996. [cited at p. 42]

[DeM82] Tom DeMarco. Controlling Software Projects: Management, Measurement
and Estimation. Yourdon Press, New York, 1982. [cited at p. 151, 156]

[DHK+07] Paul Davidsson, Johan Holmgren, Hans Kyhlback, Dawit Mengistu, and
Marie Persson. Applications of agent based simulation. In International-
Workshop on Multi-Agent-Based Simulation (MABS’06), pages 15–27, Hako-
date, Japan, 2007. Springer-Verlag. [cited at p. 46]

[DKJ05] T. Dyba, Barbara Kitchenham, and M. Jorgensen. Evidence-based soft-
ware engineering for practitioners. IEEE Software, 22(1):158–165, 2005.
[cited at p. 28]

[DL99] Tom DeMarco and Timothy Lister. Peopleware. Dorset House, 2nd edition,
1999. [cited at p. 3]

[ES05] Jacky Estublier and Sonia Sanlaville. Business processes and workflow coor-
dination of web services. In IEEE International Conference on e-Technology,
e-Commerce, and e-Services (EEE’05), pages 85–88, Hong Kong, China,
2005. IEEE Computer Society. [cited at p. 14]

[EVL+03] Jacky Estublier, Jorge Villalobos, Anh-Tuyet Le, Sonia Sanlaville, and
Germn Vega. An approach and framework for extensible process sup-
port system. In 9th European Workshop on Software Process Technology
(EWSPT’03), Helsinki, Finland, 2003. Springer. [cited at p. 21]

[FC99] William A. Florac and Anita D. Careton. Measuring the Software Pro-
cess: Statistical Process Control for Software Process Improvement. Addison-
Wesley, 1999. [cited at p. 151, 186]

[FKRT94] Adam Farquhar, Benjamin Kuipers, Jeff Rickel, and David Throop. Qsim:
The program and its use. Technical report, Department of Computer Sci-
ences, University of Texas, 1994. [cited at p. 71, 78]

[FMN+04] Norman E. Fenton, William Marsh, Martin Neil, Patrick Cates, Simon Forey,
and Manesh Tailor. Making resource decisions for software projects. In 26th
International Conference on Software Engineering (ICSE’04), pages 397–
406, Edinburgh, UK, 2004. IEEE Computer Society. [cited at p. 20]

[FNM+07] Norman Fenton, Martin Neil, William Marsh, Peter Hearty, Paul Krause,
and Rajat Mishra. Predicting software defects in varying development life-
cycles using bayesian nets. Information & Software Technology, 49:32–43,
2007. [cited at p. 20]

194 BIBLIOGRAPHY

[For69] Jay W. Forrester. Industrial Dynamics. System Dynamics Series. Pegasus
Communications, 1969. [cited at p. 42, 130]

[FP97] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rig-
orous and Practical Approach. PWS, 2nd edition, 1997. [cited at p. 11, 17]

[Gal04] Daniel Galin. Software Quality Assurance: from Theory to Implementation.
Pearson, 2004. [cited at p. 114]

[GB91] Jerzy W. Grzymala-Busse. Managing Uncertainty in Expert Systems. Kluwer
Academic Publishers, 1991. [cited at p. 186]

[HMK+94] Volkmar Haase, Richard Messnarz, Gunter Koch, Hans Jrgen Kugler, and
Paul Decrinis. Bootstrap: Fine-tuning process assessment. IEEE Software,
11(4):25 – 35, 1994. [cited at p. 16]

[Hou00] Daniel Xavier Houston. A Software Project Simulation Model for Risk Man-
agement. PhD thesis, Arizona State University, 2000. [cited at p. 20, 24]

[HRD+01] Martin Host, Bjorn Regnell, Johan Natt och Dag, Josef Nedstam, and Chris-
tian Nyberg. Exploring bottlenecks in market-driven requirements manage-
ment processes with discrete event simulation. Journal of Systems and Soft-
ware, 59(3):323–332, 2001. [cited at p. 43]

[HS00] Mikel Harry and Richard Schroeder. Six Sigma. Random House, 2000.
[cited at p. 16]

[HSS86] Karen E. Huff, Joan V. Sroka, and Dennis D. Struble. Quantitative models
for managing software development processes. Software Engineering Journal,
1(1):17–23, 1986. [cited at p. 112, 116, 119]

[HZJ06] Ming Huo, He Zhang, and Ross Jeffery. A systematic approach to process
enactment analysis as input to software process improvement or tailoring.
In 13th Asia-Pacific Software Engineering Conference (APSEC’06), pages
401–408, Bangalore, 2006. IEEE Computer Society. [cited at p. 21]

[HZJ08] Ming Huo, He Zhang, and Ross Jeffery. Detection of consistent patterns from
process enactment data. In International Conference on Software Process
(ICSP’08), pages 174–185, Leipzig, Germany, 2008. Springer. [cited at p. 21]

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Soft-
ware Development Process. Object Technology Series. Addison-Wesley, 1999.
[cited at p. 19]

[Jef87] Ross D. Jeffery. Time-sensitive cost models in the commercial mis en-
vironment. IEEE Transactions on Software Engineering, SE-13(7), 1987.
[cited at p. 103]

[Jef06] Ross Jeffery. Exploring the business process-software process relationship.
In Software Process Workshop/International Workshop on Software Process
Simulation and Modeling (SPW/ProSim), pages 11–14, Shanghai, China,
2006. Spinger. [cited at p. 14]

195

[Jon75] Capers Jones. Programming defect removal. In GUIDE 40, 1975.
[cited at p. 110]

[Kar01] Even-Andre Karlsson. Incremental development - terminology and guide-
lines. In Shi-Kuo Chang, editor, Handbook of Software Engineering and
Knowledge Engineering, volume 1. World Scientific, 2001. [cited at p. 110]

[Kas04] Tim Kasse. Practical Insight into CMMI. Artech House, 2004. [cited at p. 168]

[KDJ04] Barbara Kitchenham, T. Dyba, and M. Jorgensen. Evidence-based soft-
ware engineering. In 26th International Conference on Software Engineering,
(ICSE’04). IEEE Computer Society, 2004. [cited at p. 28]

[Kel88] Marc I. Kellner. Modeling the software maintenance process: Analytic
summary models. In Conference on Software Maintenance, pages 279–283,
Phenix, AZ, 1988. IEEE Computer Society. [cited at p. 19]

[Ker05] Harold Kerzner. Using the Project Management Maturity Model: Strategic
Planning for Project Management. John Wiley & Sons, 2nd edition, 2005.
[cited at p. 149]

[Ker06] Harold Kerzner. Project Management: A Systems Approach to Plan-
ning, Scheduling, and Controlling. John Wiley & Sons, 9th edition, 2006.
[cited at p. 150, 180]

[KFF+91] Marc I. Kellner, Peter H. Feiler, Anthony Finkelstein, Takuya Katayama,
Leon J. Osterweil, Maria H. Penedo, and H. Dieter Rombach. Ispw-6 software
process example. In 6th International Software Process Workshop (ISPW),
pages 176–186, Hakodate, Hokkaido, Japan, 1991. IEEE Computer Society.
[cited at p. 24]

[Kit04] Barbara Kitchenham. Procedures for undertaking systematic reviews. Tech-
nical report, Computer Science Department, Keele University and National
ICT Australia, 2004. [cited at p. 28]

[Kit07] Barbara Kitchenham. Guidelines for performing systematic literature re-
views in software engineering. Technical report, Software Engineering Group,
School of Computer Science and Mathematics, Keele University, and Depart-
ment of Computer Science, University of Durham, April 2007. [cited at p. 28,

29]

[Kle08] Jack P.C. Kleijnen. Design and Analysis of Simulation Experiments. Inter-
national Series in Operations Research and management Science. Springer
Science+Business Media, 2008. [cited at p. 18]

[KLRW01] Goel Kahen, Manny Lehman, Juan F. Ramil, and Paul Wernick. System
dynamics modeling of software evolution processes for policy investigation:
Approach and example. Journal of Systems and Software, 59(3), 2001.
[cited at p. 128, 134, 136]

[KMR99] Marc I. Kellner, Raymond J. Madachy, and David M. Raffo. Software process
simulation modeling: Why? what? how? Journal of Systems and Software,
46(2/3), 1999. [cited at p. 28, 36, 41, 47, 165, 167]

196 BIBLIOGRAPHY

[Kui94] Benjamin Kuipers. Qualitative Reasoning: Modeling and Simulation with
Incomplete Knowledge. MIT Press, 1994. [cited at p. 59, 62, 69, 71, 78, 145, 186]

[Kui01] Benjamin Kuipers. Qualitative simulation. In R.A Meyers, editor, Encyclo-
pedia of Physical Science and Technology, pages 287–300. Academic Press,
NY, 2001. [cited at p. 59]

[Li05] Mingshu Li. Expanding the horizons of software development processes: A
3-d integrated methodology. In Software Process Workshop (SPW’05), pages
54–67, Beijing, China, 2005. Springer. [cited at p. 12]

[Li07] Mingshu Li. Triso-model: A new approach to integrated software process
assessment and improvement. Software Process: Improvement and Practice,
12(5):387–398, 2007. [cited at p. 12]

[LK00] Averill M. Law and W.David Kelton. Simulation Modelling and Analysis.
McGraw Hill, 3rd edition, 2000. [cited at p. 44]

[LR03] Manny Lehman and Juan F. Ramil. Software evolution - background, theory,
practice. Information Processing Letters, 88, 2003. [cited at p. 133]

[Mad94] Raymond Joseph Madachy. A Software Project Dynamics Model for Process
Cost, Schedule, and Risk Assessment. PhD thesis, University of Southern
California, 1994. [cited at p. 20, 24]

[Mad08] Raymond J. Madachy. Software Process Dynamics. Wiley-IEEE Press, 2008.
[cited at p. 85, 177]

[Mak92] Hing-Yin Mak. System Dynamics and Discrete Event Simulation Modelling.
PhD thesis, University of London, 1992. [cited at p. 44]

[Mar02] Robert Hayne Martin. A Hybrid Model for the Software Development Pro-
cess. PhD thesis, Portland State University, 2002. [cited at p. 21, 25]

[MH86] H.J. McNeil and K.O. Hartley. Project planning and performance. Project
Management Journal, March:36–44, 1986. [cited at p. 153]

[MT00] Ray Madachy and Denton Tarbet. Case studies in software process modeling
with system dynamics. Software Process: Improvement and Practice, 5(2-
3):133–146, 2000. [cited at p. 91, 103]

[NH05] Emily Oh Navarro and Andre van der Hoek. Software process modeling
for an educational software engineering simulation game. Software Process:
Improvement and Practice, 10(3):311–325, 2005. [cited at p. 46]

[Ost05] Leon J. Osterweil. Unifying microprocess and macroprocess research. In
Software Process Workshop (SPW), Beijing, 2005. Springer. [cited at p. 13, 14,

49]

[Ost07] Leon J. Osterweil. What we learn from the study of ubiquitous pro-
cesses. Software Process: Improvement and Practice, 12(5):399–414, 2007.
[cited at p. 50]

197

[PA06] Shari Lawrence Pfleeger and Joanne M. Atlee. Software Engineering: Theory
and Practice. Prentice Hall, 3rd edition, 2006. [cited at p. 11]

[Pad02] Frank Padberg. A discrete simulation model for assessing software project
scheduling policies. Software Process: Improvement and Practice, 7(3-4),
2002. [cited at p. 43]

[PCCW93] M. Paulk, B. Curtis, M. Chrissis, and C. Weber. Capability maturity model
for software (version 1.1). Technical report, Software Engineering Institute
(SEI), 1993. [cited at p. 16]

[Pfa01] Dietmar Pfahl. An Integrated Approach to Simulation-Based Learning in
Support of Strategic and Project Management in Software Organisations.
PhD thesis, University of Kaiserslautern, 2001. [cited at p. 12, 20, 25]

[Pid04] Michael Pidd. Computer Simulation in Management Science. Wiley, 5th
edition, 2004. [cited at p. 43]

[PMI04] PMI. A Guide to the Project Management Body of Knowledge. Project
Management Institute, 3rd edition, 2004. [cited at p. 36, 153]

[Pre05] Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 6th edition, 2005. [cited at p. 11, 12, 15]

[Put80] Lawrence H. Putnam. Software Cost Estimating and Life-Cycle Control:
getting the Software Numbers. Computer Society Press, 1980. [cited at p. 20]

[QRG] UT Qualitative Reasoning Group. Qsim.
http://www.cs.utexas.edu/users/qr/QR-software.html. University of
Texas. [cited at p. 71]

[Raf96] David Mitchell Raffo. Modeling Software Processes Quantitatively and As-
sessing the Impact of Potential Process Changes on Process Performance.
PhD thesis, Carnegie Mellon University, 1996. [cited at p. 21, 24, 43]

[Reh96] H. Rehessar. Project management success factors. Technical Report
CAESAR Technical Report 96/01, University of New South Wales, 1996.
[cited at p. 153]

[Roy70] Winston W. Royce. Managing the development of large software systems:
Concepts and techniques. In IEEE WESCON, pages 1–9, 1970. [cited at p. 18]

[RS02] Juan F. Ramil and Neil Smith. Qualitative simulation of models of soft-
ware evolution. Software Process: Improvement and Practice, 7(3-4), 2002.
[cited at p. 45, 142]

[RS05] David M. Raffo and Siri-on Setamanit. A simulation model for global soft-
ware development project. In International Workshop on Software Process
Simulation and Modeling (ProSim), St. Louis, MO, 2005. [cited at p. 179]

[Rus98] Ioana Rus. Modeling the Impact on Cost and Schedule on Software Qual-
ity Engineering Practices. PhD thesis, Arizona State University, 1998.
[cited at p. 20, 24]

198 BIBLIOGRAPHY

[RV95] H. Dieter Rombach and Martin Verlage. Directions in software process re-
search. Advances in Computers, 41:1–63, 1995. [cited at p. 14]

[RVM99] David M. Raffo, Joseph V. Vandeville, and Robert H. Martin. Software
process simulation to achieve higher cmm levels. Journal of Systems and
Software, 46(2/3), 1999. [cited at p. 166, 171]

[SAGO02] Antonio J. Suarez, Pedro J. Abad, Rafael M. Gasca, and Juan A. Ortega.
Qualitative simulation of human resources subsystem in software develop-
ment projects. In 16th International Workshop on Qualitative Reasoning,
Sitges, Spain, 2002. [cited at p. 45]

[SB01] Ken Schwaber and Mike Beedle. Agile Software Development with SCRUM.
Prentice Hall, 2001. [cited at p. 19, 50]

[SC06] Benjamin Stopford and Steve Counsell. Simulating the structural evolution
of software. In Software Process Workshop/International Workshop on Soft-
ware Process Simulation and Modeling (SPW/ProSim’06), pages 294–301,
Shanghai, China, 2006. Springer-Verlag. [cited at p. 46]

[SCR06] Neil Smith, Andrea Capiluppi, and Juan Fernandez Ramil. Agent-based
simulation of open source evolution. Software Process: Improvement and
Practice, 11(4):423–434, 2006. [cited at p. 46]

[SEI02a] CMMI Product Team SEI. Capability maturity model integration (cmmi-
se/sw/ippd, v1.1), continuous representation. Technical report, Software
Engineering Institute, Carnegie Mellon University, 2002. [cited at p. 16, 168,

170, 175, 178]

[SEI02b] CMMI Product Team SEI. Capability maturity model integration (cmmi-
se/sw/ippd, v1.1), staged representation. Technical report, Software Engi-
neering Institute, Carnegie Mellon University, 2002. [cited at p. 16, 168, 170,

174, 175, 177, 181]

[SGI98] The chaos report 1998. Technical report, Standish Group International,
1998. [cited at p. 1]

[SGI06] The chaos report 2006. Technical report, Standish Group International,
2006. [cited at p. 1]

[Som07] Ian Sommerville. Software Engineering. Addison-Wesley, 8th edition, 2007.
[cited at p. 12, 15, 18]

[SS97] Martin Shepperd and Chris Schofield. Estimating software project effort
using analogies. IEEE Transactions on Software Engineering, 23(11):736–
743, 1997. [cited at p. 20]

[Sta97] Jennifer Stapleton. DSDM Dynamic Systems Development Method: The
Method in Practice. Addison Wesley, 1997. [cited at p. 19]

[Stu94] R. D. Stutzke. A mathematical expression of brooks’s law. In 9th In-
ternational Forum on COCOMO and Cost Modeling, Los Angeles, 1994.
[cited at p. 85]

199

[SWR07] Siri-on Setamanit, Wayne Wakeland, and David Raffo. Using simulation
to evaluate global software development task allocation strategies. Software
Process: Improvement and Practice, 12(5):491–503, 2007. [cited at p. 52, 179]

[Tur96] Wladyslaw M. Turski. The reference model for smooth growth of soft-
ware systems. IEEE Transactions on Software Engineering, 22(8), 1996.
[cited at p. 134, 135]

[Tur02] Wladyslaw M. Turski. The reference model for smooth growth of software
systems revisitied. IEEE Transactions on Software Engineering, 28(8), 2002.
[cited at p. 134, 135]

[Tve96] John Douglas Tvedt. An Extensive Model for Evaluating the Impact of Pro-
cess Improvements on Software Development Cycle Time. PhD thesis, Ari-
zona State University, 1996. [cited at p. 20, 24, 112, 121]

[Wal94] Ernest Wallmuller. Software Quality Assurance: A Practical Approach. Pren-
tice Hall, 1994. [cited at p. 15]

[WCL+00] Alexander Wise, Aaron G. Cass, Barbara Staudt Lerner, Eric K. McCall,
Leon J. Osterweil, and Stanley M. Sutton. Using little-jil to coordinate
agents in software engineering. In Automated Software Engineering Confer-
ence (ASE), Grenoble, France, 2000. [cited at p. 21]

[WH02] Paul Wernick and Tracy Hall. Simulating global software evolution processes
by combining simple models: An initial study. Software Process: Improve-
ment and Practice, 7(3-4), 2002. [cited at p. 128, 133, 134, 136, 140]

[WH04] Paul Wernick and Tracy Hall. A policy investigation model for long-term
software evolution processes. In 5th International Workshop on Software
Process Simulation Modeling (ProSim’04), pages 206–214, Edinburgh, Scot-
land, 2004. [cited at p. 128, 133, 136, 140]

[WL99] Paul Wernick and Manny Lehman. Software process white box modelling
for feast/1. Journal of Systems and Software, 46(2-3), 1999. [cited at p. 128,

134, 135]

[Woo02] Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley &
Sons, 2002. [cited at p. 45, 50]

[YP06] Levent Yilmaz and Jared Phillips. Organization-theoretic perspective for
simulation modeling of agile software processes. In Software Process Work-
shop/International Workshop on Software Process Simulation and Modeling
(SPW/ProSim’06), pages 234–241, Shanghai, China, 2006. Springer-Verlag.
[cited at p. 46]

[ZHKJ06] He Zhang, Ming Huo, Barbara Kitchenham, and Ross Jeffery. Qualitative
simulation model for software engineering process. In 17th Australian Soft-
ware Engineering Conference (ASWEC’06), pages 391–400, Sydney, Aus-
tralia, 2006. IEEE Computer Society. [cited at p. 83]

200 BIBLIOGRAPHY

[ZJZ08] He Zhang, Ross Jeffery, and Liming Zhu. Hybrid modeling of test-and-fix
processes in incremental development. In International Conference on Soft-
ware Process (ICSP’08), pages 333–344, Leipzig, Germany, 2008. Springer.
[cited at p. 52, 125]

[ZK06] He Zhang and Barbara. Kitchenham. Semi-quantitative simulation modeling
of software engineering process. In Software Process Workshop/International
Workshop on Software Process Simulation and Modeling (SPW/ProSim’06),
pages 242–253, Shanghai, China, 2006. Springer. [cited at p. 83]

[ZKJ07a] He Zhang, Barbara Kitchenham, and Ross Jeffery. Achieving software
project success: A semi-quantitative approach. In International Confer-
ence on Software Process (ICSP’07), pages 332–343, Minneapolis, MN, 2007.
Springer. [cited at p. 149]

[ZKJ07b] He Zhang, Barbara Kitchenham, and Ross Jeffery. A framework for adopting
software process simulation in cmmi organizations. In International Confer-
ence on Software Process (ICSP’07), pages 320–331, Minneapolis, MN, 2007.
Springer. [cited at p. 166]

[ZKJ07c] He Zhang, Barbara Kitchenham, and Ross Jeffery. Planning software project
success with semi-quantitative reasoning. In 18th Australian Software En-
gineering Conference (ASWEC’07), pages 369–378, Melbourne, Australia,
2007. IEEE Computer Society. [cited at p. 149]

[ZKJ07d] He Zhang, Barbara Kitchenham, and Ross Jeffery. A semiq model of test-
and-fix process of incremental development. In 1st International Workshop
on Software Productivity Analysis and Cost Estimation (SPACE’07), pages
23–29, Nagoya, Japan, 2007. Information Processing Society (IPS) of Japan.
[cited at p. 109]

[ZKKJ08] He Zhang, Jacky Keung, Barbara Kitchenham, and Ross Jeffery. Semi-
quantitative modeling for managing software development processes. In
19th Australian Software Engineering Conference (ASWEC’08), pages 66–
75, Perth, Australia, 2008. IEEE Computer Society. [cited at p. 109]

[ZKP08a] He Zhang, Barbara Kitchenham, and Dietmar Pfahl. Reflections on 10 years
of software process simulation modeling: A systematic review. In Interna-
tional Conference on Software Process (ICSP’08), pages 345–356, Leipzig,
Germany, 2008. Springer. [cited at p. 24, 27]

[ZKP08b] He Zhang, Barbara Kitchenham, and Dietmar Pfahl. Software process simu-
lation modeling: Facts, trends, and directions. In 15th Asia-Pacific Software
Engineering Conference (APSEC’08), Beijing, China, 2008. IEEE Computer
Society. [cited at p. 27]

[ZKP08c] He Zhang, Barbara Kitchenham, and Dietmar Pfahl. Software process sim-
ulation over decade: Trends discovery from a systematic review. In 2nd
International Symposium on Empirical Software Engineering and Measure-
ment (ESEM’08), Kaiserslautern, Germany, 2008. ACM. [cited at p. 27]

Appendices

201

Appendix A

Supplements for Systematic

Literature Review

A.1 List of Primary Studies (Stage 1)

ProSim 1998

[1] Marc I. Kellner, Raymond J. Madachy, David M. Raffo. Software Process Simu-
lation Modeling: Why? What? How? Journal of Systems and Software, 46(2-3),
1999. - [B∗]

[2] Alan M. Christie. Simulation in Support of CMM-Based Process Improvement.
Journal of Systems and Software, 46(2-3), 1999. - [C]

[3] A. Drappa, J. Ludewig. Quantitative modeling for the interactive simulation of
software projects. Journal of Systems and Software, 46(2-3), 1999. - [A/B]

[4] M. M. Lehman, J. F. Ramil. The impact of feedback in the global software process.
Journal of Systems and Software, 46(2-3), 1999. - [D]

[5] Dietmar Pfahl, Karl Lebsanft. Integration of system dynamics modeling with
descriptive process modeling and goal-oriented measurement. Journal of Systems
and Software, 46(2-3), 1999. - [B/C/D]

[6] Antony Powell, Keith Mander, Duncan Brown. Strategies for lifecycle concurrency
and iteration CA system dynamics approach. Journal of Systems and Software,
46(2-3), 1999. - [A]

[7] David M. Raffo, Joseph V. Vandeville, Robert H. Martin. Software process sim-
ulation to achieve higher CMM levels. Journal of Systems and Software, 46(2-3),
1999. - [D]

[8] Ioana Rus, James Collofello, Peter Lakey. Software process simulation for reliabil-
ity management. Journal of Systems and Software, 46(2-3), 1999. - [A]

∗Indicator of study category, the definition cf. Chapter 3

203

204 APPENDIX A. SUPPLEMENTS FOR SYSTEMATIC LITERATURE REVIEW

[9] Walt Scacchi. Experience with software process simulation and modeling. Journal
of Systems and Software, 46(2-3), 1999. - [D]

[10] Pual Wernick, M. M. Lehman. Software process white box modelling for FEAST/1.
Journal of Systems and Software, 46(2-3), 1999. - [A]

[11] Judson Williford, Andrew Chang. Modeling the FedEx IT division: a system
dynamics approach to strategic IT planning. Journal of Systems and Software,
46(2-3), 1999. - [A/D]

[12] Dundar Kocaoglu, Robert Martin, David Raffo. Moving Toward a Unified Model
for Software Development. 1st International Workshop on Software Process Sim-
ulation and Modeling (ProSim), 1998. - [B]

[13] Ana Martinez-Garcia, Brian Warboys. From RADs to DESs: A Mapping from
Process Models to Discrete Event Simulation. 1st International Workshop on
Software Process Simulation and Modeling (ProSim), 1998. - [B]

ProSim 1999

[14] B. W. Chatters, M. M. Lehman, J. F. Ramil, P. Wernick. Modelling a software
evolution process: a long-term case study. Software Process: Improvement and
Practice, 5(2-3), 2000. - [D]

[15] Alan M. Christie, Mary Jo Staley. Organizational and social simulation of a
software requirements development process. Software Process: Improvement and
Practice, 5(2-3), 2000. - [A]

[16] Peter Henderson, Yvonne Howard. Simulating a process strategy for large scale
software development using systems dynamics. Software Process: Improvement
and Practice, 5(2-3), 2000. - [A]

[17] Ray Madachy, Denton Tarbet. Case studies in software process modeling with
system dynamics. Software Process: Improvement and Practice, 5(2-3), 2000. -
[A/D]

[18] Robert H. Martin, David Raffo. A model of the software development process
using both continuous and discrete models. Software Process: Improvement and
Practice, 5(2-3), 2000. - [A/B]

[19] David Raffo, Warren Harrison, Joseph Vandeville. Coordinating models and met-
rics to manage software projects. Software Process: Improvement and Practice,
5(2-3), 2000. - [C/D]

[20] Stephen T. Roehling, James S. Collofello, Brian G. Hermann, Dwight E. Smith-
Daniels. System dynamics modeling applied to software outsourcing decision sup-
port. Software Process: Improvement and Practice, 5(2-3), 2000. - [A]

[21] Walt Scacchi. Understanding software process redesign using modeling, analysis
and simulation. Software Process: Improvement and Practice, 5(2-3), 2000. - [C]

A.1. LIST OF PRIMARY STUDIES (STAGE 1) 205

[22] Friedrich Stallinger. Software process simulation to support ISO/IEC 15504 based
software process improvement. Software Process: Improvement and Practice, 5(2-
3), 2000. - [A]

ProSim 2000

[23] Paolo Donzelli, Giuseppe Iazeolla. Hybrid simulation modelling of the software
process. Journal of Systems and Software, 59(3), 2001. - [A]

[24] Robert Martin, David Raffo. Application of a hybrid process simulation model to
a software development project. Journal of Systems and Software, 59(3), 2001. -
[A]

[25] Dan X. Houston, Gerald T. Mackulak, James S. Collofello. Stochastic simulation
of risk factor potential effects for software development risk management. Journal
of Systems and Software, 59(3), 2001. - [A]

[26] Dan X. Houston, Susan Ferreira, James S. Collofello, Douglas C. Montgomery,
Gerald T. Mackulak. Behavioral characterization: finding and using the influential
factors in software process simulation models. Journal of Systems and Software,
59(3), 2001. - [D]

[27] G. Kahen, M.M. Lehman, J.F. Ramil, P. Wernick. System dynamics modelling
of software evolution processes for policy investigation: approach and example.
Journal of Systems and Software, 59(3), 2001. - [A]

[28] Dietmar Pfahl, Marco Klemm, Gunther Ruhe. A CBT module with integrated
simulation component for software project management education and training.
Journal of Systems and Software, 59(3), 2001. - [A/D]

[29] Mercedes Ruiz, Isabel Ramos, Miguel Toro. A simplified model of software project
dynamics. Journal of Systems and Software, 59(3), 2001. - [A]

[30] Friedrich Stallinger, Paul Grunbacher. System dynamics modelling and simulation
of collaborative requirements engineering. Journal of Systems and Software, 59(3),
2001. Journal of Systems and Software, 59(3), 2001. - [A]

[31] Martin Host, Bjorn Regnell, Johan Natt och Dag, Josef Nedstam, Christian Ny-
berg. Exploring bottlenecks in market-driven requirements management processes
with discrete event simulation. Journal of Systems and Software, 59(3), 2001. -
[A]

[32] S. James Choi, Walt Scacchi. Modeling and simulation software acquisition process
architectures. Journal of Systems and Software, 59(3), 2001. - [A/B]

[33] Volker Gruhn, Ursula Wellen. Analysing a process landscape by simulation. Jour-
nal of Systems and Software, 59(3), 2001. - [B]

[34] Peter Henderson, Yvonne Margaret Howard, Robert John Walters. A tool for
evaluation of the software development process. Journal of Systems and Software,
59(3), 2001. - [B]

206 APPENDIX A. SUPPLEMENTS FOR SYSTEMATIC LITERATURE REVIEW

[35] Alan M. Christie, David A. Fisher. Simulating the Emergent Behavior of Complex
Software-Intensive Organizations. 3rd International Workshop on Software Process
Simulation and Modeling (ProSim), 2000. - [B]

[36] David Raffo, Marc Kellner. Analyzing Process Improvements Using the Process
Tradeoff Analysis Method. 3rd International Workshop on Software Process Sim-
ulation and Modeling (ProSim), 2000. - [D]

SPIP 2002†

[37] Juan F. Ramil, Neil Smith. Qualitative simulation of models of software evolution.
Software Process: Improvement and Practice, 7(3-4), 2002. - [A]

[38] Paul Wernick, Tracy Hall. Simulating global software evolution processes by com-
bining simple models: an initial study. Software Process: Improvement and Prac-
tice, 7(3-4), 2002. - [A]

[39] Frank Padberg. A discrete simulation model for assessing software project schedul-
ing policies. Software Process: Improvement and Practice, 7(3-4), 2002. - [A]

[40] Eliza Chiang, Tim Menzies. Simulations for very early lifecycle quality evaluations.
Software Process: Improvement and Practice, 7(3-4), 2002. - [A/B/D]

[41] Marcio De Oliveira Barros, Claudia Maria Lima Werner, Guilherme Horta Travas-
sos. A system dynamics metamodel for software process modeling. Software Pro-
cess: Improvement and Practice, 7(3-4), 2002. - [B]

[42] I. P. Antoniades, I. Stamelos, L. Angelis, G. L. Bleris. A novel simulation model
for the development process of open source software projects. Software Process:
Improvement and Practice, 7(3-4), 2002. - [A]

[43] Dietmar Pfahl, Gunther Ruhe. IMMoS: a methodology for integrated measure-
ment, modelling and simulation. Software Process: Improvement and Practice,
7(3-4), 2002. - [B/C]

ProSim 2003

[44] Joao W. Cangussu. A software test process stochastic control model based on
CMM characterization Software Process: Improvement and Practice, 9(2-3), 2004.
- [A]

[45] Tobias Haberlein. Common structures in system dynamics models of software
acquisition projects. Software Process: Improvement and Practice, 9(2-3), 2004. -
[A]

†The ProSim 2002 Workshop was cancelled due to a variety of circumstances including the
apprehension over air travel following the tragedy of September 11, 2001, and the relocation of
the ICSE 2002. However, the selected papers from the submission had been published in the
special issue of SPIP 2002.

A.1. LIST OF PRIMARY STUDIES (STAGE 1) 207

[46] Mercedes Ruiz, Isabel Ramos, Miguel Toro. An integrated framework for simulation-
based software process improvement. Software Process: Improvement and Prac-
tice, 9(2-3), 2004. - [C]

[47] Alejandro Fernandez, Badie Garzaldeen, Ines Grutzner, Jurgen Munch. Guided
support for collaborative modeling, enactment and simulation of software devel-
opment processes. Software Process: Improvement and Practice, 9(2-3), 2004. -
[B]

[48] Wayne W. Wakeland, Robert H. Martin, David Raffo. Using design of experiments,
sensitivity analysis, and hybrid simulation to evaluate changes to a software de-
velopment process: a case study. Software Process: Improvement and Practice,
9(2-3), 2004. - [B]

[49] Ioana Rus, Holger Neu, Jurgen Munch. A Systematic Methodology for Developing
Discrete Event Simulation Models of Software Development Processes. 4th Inter-
national Workshop on Software Process Simulation and Modeling (ProSim), 2003.
- [B]

[50] David Raffo, Greg Spehar, Umanath Nayak. Generalized Simulation Models:
What, Why and How? 4th International Workshop on Software Process Simu-
lation and Modeling (ProSim), 2003. - [C]

[51] Rizwan Ahmed, Tracy Hall, Paul Wernick. A Proposed Framework for Evaluating
Software Process Simulation Models. 4th International Workshop on Software
Process Simulation and Modeling (ProSim), 2003. - [B]

[52] Tomas Berling, Carina Andersson, Martin Host, Christian Nyberg. Adaptation of
a Simulation Model Template for Testing to an Industrial Project. 4th Interna-
tional Workshop on Software Process Simulation and Modeling (ProSim), 2003. -
[A/C]

[53] Susan Ferreira, James Collofello, Dan Shunk, Gerald Mackulak, Philip Wolfe. Uti-
lization of Process Modeling and Simulation in Understanding the Effects of Re-
quirements Volatility in Software Development. 4th International Workshop on
Software Process Simulation and Modeling (ProSim), 2003. - [A]

[54] Dan Houston. A Case Study in Software Enhancements as Six Sigma Process
Improvements: Simulating Productivity Savings. 4th International Workshop on
Software Process Simulation and Modeling (ProSim), 2003. - [A/D]

[55] Peter B. Lakey. A Hybrid Software Process Simulation Model for Project Manage-
ment. 4th International Workshop on Software Process Simulation and Modeling
(ProSim), 2003. - [A/C]

[56] Jurgen Munch, Dieter Rombach, Ioana Rus. Creating an Advanced Software Engi-
neering Laboratory by Combining Empirical Studies with Process Simulation. 4th
International Workshop on Software Process Simulation and Modeling (ProSim),
2003. - [C]

[57] Holger Neu, Thomas Hanne, Jrgen Mnch, Stefan Nickel, Andreas Wirsen. Creating
a Code Inspection Model for Simulation-based Decision Support. 4th International
Workshop on Software Process Simulation and Modeling (ProSim), 2003. - [A]

208 APPENDIX A. SUPPLEMENTS FOR SYSTEMATIC LITERATURE REVIEW

[58] Holger Neu, Ioana Rus. Reuse in Software Process Simulation Modeling. 4th
International Workshop on Software Process Simulation and Modeling (ProSim),
2003. - [B]

[59] Dietmar Pfahl, Gunther Ruhe. Goal-Oriented Measurement plus System Dynam-
ics - A Hybrid and Evolutionary Approach. 4th International Workshop on Soft-
ware Process Simulation and Modeling (ProSim), 2003. - [B/C]

ProSim 2004

[60] Neil Smith, Andrea Capiluppi and Juan F. Ramil. A Study of Open Source Soft-
ware Evolution Data using Qualitative Simulation. Software Process: Improvement
and Practice, 10(3), 2005. - [D]

[61] Wayne Wakeland, Stephen Shervais, David Raffo. Heuristic Optimization as a
V&V Tool for Software Process Simulation Models. Software Process: Improve-
ment and Practice, 10(3), 2005. - [B]

[62] Emily Oh Navarro, Andre van der Hoek. Software Process Modeling for an Edu-
cational Software Engineering Simulation Game. Software Process: Improvement
and Practice, 10(3), 2005. - [A/B]

[63] Thomas Birkholzer, Christoph Dickmann, Research Section Jurgen Vaupel, Laura
Dantas. An Interactive Software Management Simulator based on the CMMI
Framework. Software Process: Improvement and Practice, 10(3), 2005. - [A]

[64] David Raffo, Umanath Nayak, Siri-on Setamanit, Patrick Sullivan, Wayne Wake-
land. Using Software Process Simulation to Assess the Impact of IV&V Activ-
ities. 5th International Workshop on Software Process Simulation and Modeling
(ProSim), 2004. - [D]

[65] Dietmar Pfahl, Michael Stupperrich, Tatyana Krivobokova. PL-SIM: A Generic
Simulation Model for Studying Strategic SPI in the Automotive Industry. 5th
International Workshop on Software Process Simulation and Modeling (ProSim),
2004. - [A/D]

[66] Bjorn Regnell, Bengt Ljungquist, Lena Karlsson. Investigation of Requirements
Selection Quality in Market-Driven Software Process using an Open Source Dis-
crete Event Simulation Framework. 5th International Workshop on Software Pro-
cess Simulation and Modeling (ProSim), 2004. - [A]

[67] Mercedes Ruiz, Isabel Ramos, Miguel Toro. Building Software Process Models
with a Multitier Architecture. 5th International Workshop on Software Process
Simulation and Modeling (ProSim), 2004. - [B]

[68] Paul Wernick, Tracy Hall. A Policy Investigation Model for Long-term Software
Evolution Processes. 5th International Workshop on Software Process Simulation
and Modeling (ProSim), 2004. - [A]

[69] Robert H. Martin. What Makes Software Management Hard? 5th International
Workshop on Software Process Simulation and Modeling (ProSim), 2004. - [A]

A.1. LIST OF PRIMARY STUDIES (STAGE 1) 209

ProSim 2005

[70] Marco Melis, Ivana Turnu, Alessandra Cau, Giulio Concas. Evaluating the Im-
pact of Test-First Programming and Pair Programming through Software Process
Simulation. Software Process: Improvement and Practice, 11(4), 2006. - [A]

[71] Dan Houston. An experience in facilitating process improvement with an integra-
tion problem reporting process simulation. Software Process: Improvement and
Practice, 11(4), 2006. - [A/D]

[72] KeungSik Choi, Doo-Hwan Bae, TagGon Kim. An approach to a hybrid software
process simulation using the DEVS formalism. Software Process: Improvement
and Practice, 11(4), 2006. - [A/B]

[73] Yu Chen, Gerald C. Gannod, James S. Collofello. A software product line process
simulator. Software Process: Improvement and Practice, 11(4), 2006. - [A]

[74] Marcio de O. Barros, Alexandre R. Dantas, Gustavo O. Veronese, Claudia M.
L.Werner. Model-driven game development: experience and model enhancements
in software project management education. Software Process: Improvement and
Practice, 11(4), 2006. - [A/B/D]

[75] Neil Smith, Andrea Capiluppi, Juan Fernandez-Ramil. Agent-based simulation of
open source evolution. Software Process: Improvement and Practice, 11(4), 2006.
- [A]

[76] Gregorio Robles, Juan Julian Merelo, Jesus M. Gonzalez-Barahona. Self-organized
development in libre software projects: a model based on the stigmergy con-
cept. 6th International Workshop on Software Process Simulation and Modeling
(ProSim), 2005. - [A/B]

[77] Charbel Noujeim, Jorg Sandrock, Christof Weinhardt. Economic Analysis of Inte-
grated Software Development and Consulting Companies. 6th International Work-
shop on Software Process Simulation and Modeling (ProSim), 2005. - [A]

[78] Ray Madachy. Software Process and Business Value Modeling. 6th International
Workshop on Software Process Simulation and Modeling (ProSim), 2005. - [C]

[79] David M. Raffo, Tim Menzies. Evaluating the Impact of a New Technology Us-
ing Simulation: The Case for Mining Software Repositories. 6th International
Workshop on Software Process Simulation and Modeling (ProSim), 2005. - [D]

[80] Nuria Hurtado, Mercedes Ruiz, Jesus Torres. Towards Interactive Systems Us-
ability Improvement through Simulation Modeling. 6th International Workshop
on Software Process Simulation and Modeling (ProSim), 2005. - [A]

[81] David Raffo, Umanatha Nayak, Siri-on Setamanit, Wayne Wakeland. Implement-
ing Generalized Simulation Models. 6th International Workshop on Software Pro-
cess Simulation and Modeling (ProSim), 2005. - [C]

[82] Niniek Angkasaputra, Dietmar Pfahl. Towards an Agile Development Process of
Software Process Simulation. 6th International Workshop on Software Process
Simulation and Modeling (ProSim), 2005. - [B]

210 APPENDIX A. SUPPLEMENTS FOR SYSTEMATIC LITERATURE REVIEW

SPW/ProSim 2006

[83] Dietmar Pfahl, Ahmed Al-Emran, Gunther Ruhe. A System Dynamics Simulation
Model for Analyzing the Stability of Software Release Plans. Software Process:
Improvement and Practice, 12(5), 2007. - [A]

[84] Siri-on Setamanit, Wayne Wakeland, David Raffo. Using Simulation to Evalu-
ate Global Software Development Task Allocation Strategies. Software Process:
Improvement and Practice, 12(5), 2007. - [A]

[85] Benjamin Stopford, Steve Counsell. Simulating the Structural Evolution of Soft-
ware. Software Process Workshop/International Workshop on Software Process
Simulation and Modeling (SPW/ProSim), 2006. - [A]

[86] Levent Yilmaz, Jared Phillips. Organization-Theoretic Perspective for Simulation
Modeling of Agile Software Processes. Software Process Workshop/International
Workshop on Software Process Simulation and Modeling (SPW/ProSim), 2006. -
[A]

[87] He Zhang, Barbara Kitchenham. Semi-quantitative Simulation Modeling of Soft-
ware Engineering Process. Software Process Workshop/International Workshop
on Software Process Simulation and Modeling (SPW/ProSim), 2006. - [A/B]

[88] Raymond Madachy. Reusable Model Structures and Behaviors for Software Pro-
cesses. Software Process Workshop/International Workshop on Software Process
Simulation and Modeling (SPW/ProSim), 2006. - [B/C]

ICSP 2007‡

[89] Ahmed Al-Emran, Dietmar Pfahl, Gunther Ruhe. A Method for Re-planning of
Software Releases Using Discrete-event Simulation. Software Process: Improve-
ment and Practice, 13(1), 2008. - [A]

[90] David Raffo, Robert Ferguson, Siri-on Setamanit, Bhuricha Sethanandha. Eval-
uating the Impact of Requirements Analysis Tools Using Simulation. Software
Process: Improvement and Practice, 13(1), 2008. - [D]

[91] Florian Deissenboeck, Markus Pizka. The Economic Impact of Software Process
Variations. International Conference on Software Process, 2007. - [A/D]

[92] Christoph Dickmann, Harald Klein, Thomas Birkholzer, Wolfgang Fietz, Jurgen
Vaupel, Ludger Meyer. Deriving a Valid Process Simulation from Real World
Experiences. International Conference on Software Process, 2007. - [C/D]

[93] Makoto Nonaka, Liming Zhu, Muhammad Ali Babar, Mark Staples. Project De-
lay Variability Simulation in Software Product Line Development. International
Conference on Software Process, 2007. - [A]

[94] Antony Powell, John Murdoch, Nick Tudor. Modeling Risk-Benefit Assumptions
in Technology Substitution. International Conference on Software Process, 2007.
- [A/C]

‡The ProSim Workshop continued as a special track of ICSP since 2007.

A.2. STUDY QUALITY ASSESSMENT 211

[95] He Zhang, Barbara Kitchenham, Ross Jeffery. A Framework for Adopting Software
Process Simulation in CMMI Organizations. International Conference on Software
Process, 2007. - [C]

[96] He Zhang, Barbara Kitchenham, and Ross Jeffery. Achieving Software Project
Success: A Semi-quantitative Approach. International Conference on Software
Process, 2007. - [C]

A.2 Study Quality Assessment

Figure A.1: Average study quality per source and year

A.2.1 Assessment Criteria

The quality of a primary study is assessed with the help of a checklist (Table A.1), which
specifies the questions to each study category separately. For each question, the study’s
quality is evaluated as ‘yes’ (y), ‘partial ’ (p), or ‘no’ (n), which are scored with the
value 1, 0.5, and 0 respectively. The studies were evaluated by the principal researcher
(author), and a selection of approximately 30% was checked by the secondary researcher.
Disagreements were resolved by the principal researcher.

A.2.2 Assessment Results (Stage 1)

The primary studies were assessed for quality using the criteria in Table A.1. The
normalised average quality score per source type (proceedings and journals) and year
is presented in Figure A.1. The study quality of workshop proceedings was stable from
2000 to 2005. In most cases, the quality of journal articles was equal to or better than the
proceedings papers of the same year. Overall, many Category A studies failed to explicitly
address the conditions of model/simulator adoption. For Category B and C studies, the
limitations associated with the paradigm/method/solution were rarely discussed.

212 APPENDIX A. SUPPLEMENTS FOR SYSTEMATIC LITERATURE REVIEW

Table A.1: Study quality assessment checklist

No. Question Score
Common questions (for all categories)
1 Did the study clearly state the aims/research questions? ‘y/p/n’
2 Did the study review the related work for the problem? ‘y/p/n’
3 Did the study discuss related issues, and compare with the

alternatives?
‘y/p/n’

4 Did the study recommend the further continuous research? ‘y/p/n’
Questions for Category A
5 Are the model’s assumptions explained explicitly? ‘y/p/n’
6 Is the model construction fully described? ‘y/p/n’
7 Did the study explain why choosing the applied simulation

paradigm(s)?
‘y/p/n’

8 Are the conditions when the model adoption explained? ‘y/p/n’
9 Did the study avoid any selection bias exist during experi-

ment design?
‘y/p/n’

10 Has the model been trialled on an industry scale problem? ‘y/p/n’
11 Did the study carry out a sensitivity or residual analysis? ‘y/p/n’
12 Are any model evaluation methods applied on the model? ‘y/p/n’
13 Does the study interpret the findings? ‘y/p/n’
Questions for Category B & C
14 Are the scopes of the method/paradigm/solution clearly de-

fined?
‘y/p/n’

15 Are the modelling approach/method/environment clearly
defined?

‘y/p/n’

16 Are the problems that the study addresses defined with ap-
propriate SE examples?

‘y/p/n’

17 Did the study specify the limitations of the argued
paradigm/method/solution?

‘y/p/n’

18 Did the empirical evidence include support the arguments
of the study?

‘y/p/n’

Questions for Category D
19 Can the experience be used for validating and calibrating

simulation model/modelling?
‘y/p/n’

20 Are the best practices or lessons learnt extracted from ex-
perience?

‘y/p/n’

Appendix B

Model Implementations

B.1 Software Staffing Process Models

Software staffing process model for qualitative simulation

(define-QDE normal-software-develop

(text "Software project development with all experienced workforce")

(quantity-spaces

(Sp (0 ASG_SIZE inf) "Sp: project size")

(Sc (0 ASG_SIZE inf) "Sc: complete size")

(Sr (0 PRS_SIZE ASG_SIZE inf) "Sr: remaining size")

(Rsd (0 inf) "Rsd: develop rate")

(mRsd (minf 0) "mRsd: minus dev rate")

(Rnd (0 inf) "Rnd: nominal dev rate")

(WFt (0 INI_EX_WF TOTAL_WF inf) "WFt: totl workforce")

(WFex (0 INI_EX_WF TOTAL_WF inf) "WFex: exp workforce")

(WFnw (0 inf) "WFnw: new workforce")

(PDex (0 NML_EX_PD inf) "PDex: exp productvty")

(PDnw (0 NML_NW_PD NML_EX_PD inf) "PDnw: new productvty")

(Rexd (0 inf) "Rexd: exp dev rate")

(Rnwd (0 inf) "Rnwd: new dev rate")

(Rco (0 inf) "Rco: communictn ovhd"))

(constraints

((add Sc Sr Sp) (0 ASG_SIZE ASG_SIZE) (ASG_SIZE 0 ASG_SIZE))

((constant Sp ASG_SIZE))

((constant WFt))

((constant WFnw))

((constant WFex))

((add WFex WFnw WFt) (0 0 0) (INI_EX_WF 0 INI_EX_WF))

((d/dt Sc Rsd))

213

214 APPENDIX B. MODEL IMPLEMENTATIONS

((d/dt Sr mRsd))

((minus Rsd mRsd))

((add Rsd Rco Rnd))

((add Rexd Rnwd Rnd))

((constant PDex NML_EX_PD))

((Mult PDex WFex Rexd))

((Mult PDnw WFnw Rnwd))

((M+ WFt Rco) (0 0) (inf inf)))

(transitions

((Sr (PRS_SIZE dec)) -> transition-to-assimilating)

((Sr (0 dec)) -> t)))

(define-QDE software-develop-assimilation

(text "Software project development during assimilation")

(quantity-spaces

(Sp (0 ASG_SIZE inf) "Sp: project size")

(Sc (0 ASG_SIZE inf) "Sc: complete size")

(Sr (0 PRS_SIZE ASG_SIZE inf) "Sr: remaine size")

(Rsd (0 inf) "Rsd: develop rate")

(mRsd (minf 0) "mRsd: minus dev rate")

(Rnd (0 inf) "Rnd: nominal dev rate")

(WFt (0 INI_EX_WF TOTAL_WF inf) "WFt: totl workforce")

(WFex (0 INI_EX_WF TOTAL_WF inf) "WFex: exp workforce")

(WFed (0 INI_EX_WF TOTAL_WF inf) "WFed: exp dev wkfr")

(WFet (0 INI_EX_WF inf) "WFet: exp train wkfr")

(WFnw (0 INJ_NW_WF inf) "WFnw: new workforce")

(PDex (0 NML_EX_PD inf) "PDex: exp productvty")

(PDnw (0 NML_NW_PD NML_EX_PD inf) "PDnw: new productvty")

(Rexd (0 inf) "Rexd: exp dev rate")

(Rnwd (0 inf) "Rnwd: new dev rate")

(Ras (0 inf) "Ras: assimilate rate")

(Rco (0 inf) "Rco: communictn ovhd"))

(constraints

((add Sc Sr Sp) (0 ASG_SIZE ASG_SIZE) (ASG_SIZE 0 ASG_SIZE))

((constant Sp ASG_SIZE))

((constant WFt))

((constant WFnw))

((constant WFex))

((add WFex WFnw WFt) (0 0 0) (INI_EX_WF 0 INI_EX_WF) (INI_EX_WF INJ_NW_WF TOTAL_WF))

((add WFed WFet WFex))

((M+ WFnw WFet) (0 0) (inf inf))

((d/dt Sc Rsd))

((d/dt Sr mRsd))

((minus Rsd mRsd))

((add Rsd Rco Rnd))

B.1. SOFTWARE STAFFING PROCESS MODELS 215

((add Rexd Rnwd Rnd))

((constant PDex NML_EX_PD))

((Mult PDex WFed Rexd))

((Mult PDnw WFnw Rnwd))

((d/dt PDnw Ras))

((constant Ras))

((M+ WFt Rco) (0 0) (inf inf)))

(transitions

((PDnw (NML_EX_PD inc)) -> transition-to-experienced)

((Sr (0 dec)) -> t)))

(defun transition-to-assimilating (project-state)

(create-transition-state

:from-state project-state

:to-qde software-develop-assimilation

:assert ’((WFnw (INJ_NW_WF std))

(WFet ((0 INI_EX_WF) std))

(WFed ((0 INI_EX_WF) std))

(PDnw (NML_NW_PD inc))

(WFt (TOTAL_WF std)))

:inherit-qmag ’(Sc Sr WFex)))

(defun transition-to-normal (workforce-state)

(create-transition-state

:from-state workforce-state

:to-qde normal-software-develop

:assert ’((WFnw (0 std))

(WFex (TOTAL_WF std))

(PDnw (0 std)))

:inherit-qmag ’(Sc Sr WFt Rsd Rnd Rco)))

(defun start-dev-project ()

(let* ((sim (make-sim :state-limit *))

(initial-state

(make-new-state

:from-qde normal-software-develop

:sim sim

:assert-values ’((Sp (ASG_SIZE std))

(Sc (0 inc))

(Sr (ASG_SIZE dec))

(WFt (INI_EX_WF std))

(WFex (INI_EX_WF std))

(WFnw (0 std))

(Rco ((0 inf) std))

(PDnw (0 std))

(PDex (NML_EX_PD std)))

216 APPENDIX B. MODEL IMPLEMENTATIONS

:text "Start software development project with experienced staff")))

(qsim initial-state)))

Software staffing process model for semi-quantitative simulation

(define-QDE normal-software-develop

(text "Software project development with all experienced workforce")

(quantity-spaces

(Sp (0 ASG_SIZE inf) "Sp: project size")

(Sc (0 ASG_SIZE inf) "Sc: complete size")

(Sr (0 PRS_SIZE ASG_SIZE inf) "Sr: remaine size")

(Rsd (0 inf) "Rsd: develop rate")

(mRsd (minf 0) "mRsd: minus dev rate")

(Rnd (0 inf) "Rnd: nominal dev rate")

(Rcl (0 inf))

(Rexd (0 inf) "Rexd: exp dev rate")

(Rnwd (0 inf) "Rnwd: new dev rate")

(WFtl (0 inf) "WFtl: totl workforce")

(WFex (0 INI_EX_WF inf) "WFex: exp workforce")

(WFnw (0 inf) "WFnw: new workforce")

(PDex (0 NML_EX_PD inf) "PDex: exp productvty")

(PDnw (0 NML_NW_PD NML_EX_PD inf) "PDnw: new productvty")

(Lcm (0 1 inf) "Lcm: commun & motivt overhd loss")

(Rcm (0 inf) "Rcm: commun & motivt overhd rate"))

(constraints

((add Sc Sr Sp) (0 ASG_SIZE ASG_SIZE) (ASG_SIZE 0 ASG_SIZE))

((constant Sp ASG_SIZE))

((constant WFtl))

((constant WFnw))

((constant WFex))

((add WFex WFnw WFtl) (0 0 0))

((d/dt Sc Rsd))

((d/dt Sr mRsd))

((minus Rsd mRsd))

((Mult PDex WFtl Rcl) (0 0 0))

((Mult Rcl Lcm Rcm))

((add Rsd Rcm Rnd))

((add Rexd Rnwd Rnd))

((constant PDex))

((Mult PDex WFex Rexd) (0 0 0))

((Mult PDnw WFnw Rnwd) (0 0 0))

((M+ WFtl Lcm) (0 0) (inf 1)))

(transitions

((Sr (PRS_SIZE dec)) -> transition-to-assimilating)

((Sr (0 dec)) -> t))

B.1. SOFTWARE STAFFING PROCESS MODELS 217

(initial-ranges

((Sp ASG_SIZE) (64000 64000)) ; DSI

((Sc ASG_SIZE) (64000 64000)) ; DSI

((Sr ASG_SIZE) (64000 64000)) ; DSI

((Sr PRS_SIZE) (25300 25300)) ; DSI (when to inject new workforce)

((WFex INI_EX_WF) (4 5))

((PDex NML_EX_PD) (36 36)) ; DSI/man-day

((PDnw NML_NW_PD) (15 22)) ; DSI/man-day

((PDnw NML_EX_PD) (36 36))) ; DSI/man-day

(envelopes

((M+ WFtl Lcm) (exact (lambda (x) (* 0.0006 (* x x))))

(e-inv (lambda (y) (sqrt (/ y 0.0006)))))))

(defun transition-to-assimilating (project-state)

(create-transition-state

:from-state project-state

:to-qde software-develop-assimilation

:assert ’((WFnw (INJ_NW_WF std))

(PDnw (NML_NW_PD inc))

(PDdf (ORG_DF_PD std))

(Das (ASS_DLY std)))

:inherit-qmag ’(Sp Sc Sr WFex PDex Time)

:inherit-qdir ’(Sp Sc Sr WFex PDex Time)

:text "start assimilation"))

(define-QDE software-develop-assimilation

(text "Software project development during assimilation")

(quantity-spaces

(Sp (0 ASG_SIZE inf) "Sp: project size")

(Sc (0 ASG_SIZE inf) "Sc: complete size")

(Sr (0 PRS_SIZE ASG_SIZE inf) "Sr: remaine size")

(Rsd (0 inf) "Rsd: develop rate")

(mRsd (minf 0) "mRsd: minus dev rate")

(Rnd (0 inf) "Rnd: nominal dev rate")

(Rcl (0 inf))

(Rexd (0 inf) "Rexd: exp dev rate")

(Rnwd (0 inf) "Rnwd: new dev rate")

(WFtl (0 inf) "WFtl: totl workforce")

(WFex (0 INI_EX_WF inf) "WFex: exp workforce")

(WFed (0 inf) "WFed: exp dev wkfr")

(WFet (0 inf) "WFet: exp train wkfr")

(WFnw (0 INJ_NW_WF inf) "WFnw: new workforce")

(PDex (0 NML_EX_PD inf) "PDex: exp productvty")

(PDnw (0 NML_NW_PD NML_EX_PD inf) "PDnw: new productvty")

(PDdf (0 ORG_DF_PD inf))

218 APPENDIX B. MODEL IMPLEMENTATIONS

(Das (0 ASS_DLY inf))

(Ras (0 inf) "Ras: assimilate rate")

(Lcm (0 1 inf) "Lcm: commun & motivt overhd loss")

(Rcm (0 inf) "Rcm: commun & motivt overhd rate"))

(constraints

((add Sc Sr Sp) (0 ASG_SIZE ASG_SIZE) (ASG_SIZE 0 ASG_SIZE))

((constant Sp ASG_SIZE))

((constant WFtl))

((constant WFnw))

((constant WFex))

((add WFex WFnw WFtl) (0 0 0))

((add WFed WFet WFex))

((M+ WFnw WFet) (0 0) (inf inf))

((d/dt Sc Rsd))

((d/dt Sr mRsd))

((minus Rsd mRsd))

((Mult PDex WFtl Rcl) (0 0 0))

((Mult Rcl Lcm Rcm))

((add Rsd Rcm Rnd))

((add Rexd Rnwd Rnd))

((constant PDex))

((constant PDdf))

((constant Das))

((Mult Ras Das PDdf) (0 0 0))

((Mult PDex WFed Rexd) (0 0 0))

((Mult PDnw WFnw Rnwd) (0 0 0))

((d/dt PDnw Ras))

((constant Ras))

((M+ WFtl Lcm) (0 0) (inf 1)))

(transitions

((PDnw (NML_EX_PD inc)) -> transition-to-normal)

((Sr (0 dec)) -> t))

(initial-ranges

((Sp ASG_SIZE) (64000 64000)) ; DSI

((Sc ASG_SIZE) (64000 64000)) ; DSI

((Sr ASG_SIZE) (64000 64000)) ; DSI

((Sr PRS_SIZE) (25300 25300)) ; DSI (when to inject new workforce)

((WFex INI_EX_WF) (4 5))

((WFnw INJ_NW_WF) (7 8))

((PDex NML_EX_PD) (36 36)) ; DSI/man-day

((PDnw NML_NW_PD) (14 22)) ; DSI/man-day

((PDnw NML_EX_PD) (36 36)) ; DSI/man-day

((PDdf ORG_DF_PD) (14 22))

((Das ASS_DLY) (60 80))) ; day

B.2. INCREMENTAL DEVELOPMENT PROCESS MODELS 219

(envelopes

((M+ WFnw WFet) (upper (lambda (x) (truncate (+ (* x 0.25) 0.5))))

(u-inv (lambda (y) (* y 4)))

(lower (lambda (x) (truncate (+ (* x 0.15) 0.5))))

(l-inv (lambda (y) (truncate (/ y 0.15)))))

((M+ WFtl Lcm) (exact (lambda (x) (* 0.0006 (* x x))))

(e-inv (lambda (y) (sqrt (/ y 0.0006)))))))

(defun transition-to-normal (workforce-state)

(create-transition-state

:from-state workforce-state

:to-qde normal-software-develop

:assert ’((WFnw (0 std))

(PDnw (0 std)))

:inherit-qmag ’(Sc Sr WFtl PDex Rsd Rnd Lcm Time)))

(defun start-dev-project ()

(let* ((sim (make-sim :state-limit *

:Q2-constraints t))

(initial-state (make-new-state

:from-qde normal-software-develop

:sim sim

:assert-values

’((Sp (ASG_SIZE std))

(Sc (0 inc))

(Sr (ASG_SIZE dec))

(WFex (INI_EX_WF std))

(WFnw (0 std))

(PDex (NML_EX_PD std))

(PDnw (0 std)))

:text "start software project with experienced staff")))

(qsim initial-state)))

B.2 Incremental Development Process Models

Incremental development process model for semi-quantitative simulation

(define-QDE implementation

(text "Implementation process of one increment")

(quantity-spaces

; normal development --

(S (0 RLS_SIZE inf) "S: release size")

(Rsd (0 inf) "Rsd: development rate")

(Rnd (0 inf) "Rnd: nominal development rate")

(Rioh (0 inf) "Rioh: overheads rate")

(WF (0 ASG_WF inf) "WF: development team size")

220 APPENDIX B. MODEL IMPLEMENTATIONS

(PDim (0 IMP_PD inf) "PDim: avg implement productivity")

; error generation --

(ErDn (0 NML_ED inf) "ErDn: nominal error density")

(Reg (0 ER_GEN_RATE inf) "Reg: error generation rate")

(rERt (0 ACER_RT_RATIO 1) "rERt: active error retired ratio")

(Eg (0 inf) "Eg: error generation rate")

(rEag (0 ACER_GEN_RATIO 1) "rEag: active error generation ratio")

(Eag (0 inf) "Eag: generated active errors")

(Epg (0 inf) "Epg: generated passive errors")

(Eaes (0 ESC_AC_ER inf) "Eaes: escaping active errors")

(Epes (0 ESC_PS_ER inf) "Epes: escaping passive errors")

(Eart (0 inf) "Eart: retired active errors")

(Epo (0 inf) "Epo: old passive errors")

(Eao (0 inf) "Eao: old active errors")

(Eprp (0 inf) "Eprp: reproduced passive errors")

(Earp (0 inf) "Earp: reproduced active errors")

(Epn (0 inf) "Epn: new passive errors")

(Ean (0 inf) "Ean: new active errors")

(Eo (0 inf) "Eo: old errors")

(En (0 inf) "En: new errors")

(Ea (0 inf) "Ea: active errors")

(Ep (0 inf) "Ep: passive errors")

(Et (0 inf) "Et: total errors"))

(constraints

; normal development --

((d/dt S Rsd))

((constant PDim IMP_PD))

((constant WF ASG_WF))

((add Rioh Rsd Rnd) (0 0 0))

((M+ WF Rioh) (0 0))

((Mult PDim WF Rnd) (0 0 0))

; error generation --

((constant ErDn NML_ED))

((mult ErDn Rsd Reg))

((d/dt Eg Reg))

((constant Eaes)) ; input variable from previous release

((constant Epes)) ; input variable from previous release

((constant rERt)) ; value changes between increments

((constant rEag)) ; value changes between increments

((mult Eaes rERt Eart) (0 0 0))

((add Eart Eao Eaes) (0 0 0))

((add Epes Eart Epo) (0 0 0))

((M+ Eao Earp) (0 0))

((M+ Eao Eprp) (0 0))

((add Eag Epg Eg))

((mult Eg rEag Eag))

B.2. INCREMENTAL DEVELOPMENT PROCESS MODELS 221

((add Epg Eprp Epn) (0 0 0))

((add Eag Earp Ean) (0 0 0))

((add Eao Ean Ea) (0 0 0))

((add Epo Epn Ep) (0 0 0))

((add Ean Epn En) (0 0 0))

((add Eao Epo Eo) (0 0 0))

((add En Eo Et) (0 0 0)))

(transitions

((S (RLS_SIZE inc)) -> transition-to-test-and-fix)))

(initial-ranges

((S RSL_SIZE) (26667 26667)) ; inc1:26667, inc2:32000, inc3:32000 (LOC)

((W ASG_WF) (15 15))

((ErDn NML_ERDN) (0.018 0.020)) ; (error/LOC)

((rEag ACER_GEN_RATIO) (0.90 0.95)) ; inc1:[.9 .95], inc2:[.2 .85], inc3:[0 .15]

((rERt ACER_RT_RATIO) (0 0))) ; inc1:[0 0], inc2:[.05 .15], inc3:[.2 1]

(defun transition-to-test-and-fix (implementation-state)

(create-transition-state

:from-state implementation-state

:to-qde test-and-fix

:assert ’((Ts (0 inc))

(PDnfx (NML_FX_PD std))

(Rtc (TEST_RATE std))

(Eand (0 inc))

(Epnd (0 inc))

(Eaod (0 inc))

(Epod (0 inc)))

:inherit-qmag ’(WF Eao Epo Ean Epn Et)

:inherit-qdir ’(WF)

:text "start test-and-fix of increment"))

(define-QDE test-and-fix

(text "Test-and-fix process of one increment")

(quantity-spaces

(Ts (0 TS_SIZE inf) "Ts: test suite size")

(Rtc (0 TEST_RATE inf) "Rtc: testing rate by test case")

(EDtc (0 ER_TC_ED inf) "EDtc: error density in test case")

(Red (0 inf) "Red: error detecting rate (per day)")

(ho (0 OL_ER_HT_RATIO 1) "ho: old error hitting ratio")

(hn (0 NW_ER_HT_RATIO 1) "hn: new error hitting ratio")

(Rnt (0 inf) "Rnt: net rate of error pool")

(Rpd (0 inf) "Rpd: detected passive errors")

(Rad (0 inf) "Rad: detected active errors")

(Rpnd (0 inf) "Rpnd: passive new error detecting rate")

(Rand (0 inf) "Rand: active new error detecting rate")

222 APPENDIX B. MODEL IMPLEMENTATIONS

(Rpod (0 inf) "Rpod: passive old error detecting rate")

(Raod (0 inf) "Raod: active old error detecting rate")

(Epnd (0 inf) "Epnd: detected passive new errors")

(Eand (0 inf) "Eand: detected active new errors")

(Epod (0 inf) "Epod: detected passive old errors")

(Eaod (0 inf) "Eaod: detected active old errors")

(Ead (0 inf) "Ead: detected active errors")

(Epd (0 inf) "Epd: detected passive errors")

(Epnes (0 inf) "Epnes: escaping passive new errors")

(Eanes (0 inf) "Eanes: escaping active new errors")

(Epoes (0 inf) "Epoes: escaping passive old errors")

(Eaoes (0 inf) "Eaoes: escaping active old errors")

(Epes (0 inf) "Epes: escaping passive errors")

(Eaes (0 inf) "Eaes: escaping active errors")

(Epn (0 inf) "Epn: new passive errors")

(Ean (0 inf) "Ean: new active errors")

(Epo (0 inf) "Epo: old passive errors")

(Eao (0 inf) "Eao: old active errors")

(Epl (0 inf) "Epl: detected errors in pool")

(Etd (0 inf) "Etd: detected errors") ;

(Ees (0 inf) "Ees: escaped error from testing")

(Rnf (0 inf) "Rnf: nominal bug-fixing rate")

(WF (0 ASG_WF inf) "WF: development team size")

(PDfx (0 inf) "PDfx: productivity of bug-fixing")

(PDnfx (0 NML_FX_PD inf) "PDfx: nominal productivity of bug-fixing")

(Rfoh (0 inf) "Rfoh: bug-fixing overheads rate")

(mf (0 PD_SW_MLT 1) "mf: multiplier of bug-fixing switchover")

(Rfx (0 inf) "Ref: bug-fixing rate")

(Efx (0 inf) "Efx: fixed errors")

(Et (0 inf) "Et: total errors in increment"))

(constraints

((d/dt Ts Rtc))

((constant Rtc TEST_RATE))

((constant EDtc ER_TC_ED))

((Mult Rtc EDtc Rned))

((Mult Rned h

((d/dt Etd Red))

((constant PDnfx NML_FX_PD))

((constant WF))

((constant Et))

((constant Ean))

((constant Epn))

((constant Eao))

((constant Epo))

((M+ Rtc Rpnd))

((M+ Rtc Rand))

B.2. INCREMENTAL DEVELOPMENT PROCESS MODELS 223

((M+ Rtc Rpod))

((M+ Rtc Raod))

((add Rpnd Rpod Rpd))

((add Rand Raod Rad))

((add Rpd Rad Red))

((d/dt Epnd Rpnd))

((d/dt Eand Rand))

((d/dt Epod Rpod))

((d/dt Eaod Raod))

((add Eand Eanes Ean) (0 0 0))

((add Epnd Epnes Epn) (0 0 0))

((add Eaod Eaoes Eao) (0 0 0))

((add Epod Epoes Epo) (0 0 0))

((add Epnes Epoes Epes) (0 0 0))

((add Eanes Eaoes Eaes) (0 0 0))

((add Eaes Epes Ees) (0 0 0))

((add Eand Eaod Ead))

((add Epnd Epod Epd))

((add Ead Epd Etd) (0 0 0))

((add Ees Etd Et) (0 0 0))

((add Efx Epl Etd))

((constant mf PD_SW_MLT))

((constant Rfoh))

((add Rfx Rnt Red)) ;

((d/dt Epl Rnt))

((d/dt Efx Rfx))

((add Rfx Rfoh Rnf))

((M+ WF Rfoh))

((Mult PDnfx mf PDfx))

((Mult PDfx WF Rnf)))

(transitions

((Ees (0 dec)) -> transition-to-fix-only)

((Ts (TS_SIZE inc)) -> transition-to-fix-only)))

(initial-ranges

((Ts RSL_SIZE) (14 14)) ; test_cases

((W ASG_WF) (15 15))

((hn NW_ER_HT_RATIO) (0.80 0.95))

((ho OL_ER_HT_RATIO) (0.05 0.15))

((mf PD_SW_MLT) (1 1)))

(defun transition-to-fix-only (test-fix-state)

(create-transition-state

:from-state test-fix-state

:to-qde fix-only

:assert ’()

224 APPENDIX B. MODEL IMPLEMENTATIONS

:inherit-qdir ’(WF Rnf PDfx PDnfx Rfoh mf Et Rfx Efx)

:inherit-qmag ’(WF Epl Etd Ees Rnf PDnfx Rfoh mf Et Rfx Efx)))

(define-QDE fix-only

(text "Fix-only process of one increment")

(quantity-spaces

(Epl (0 inf) "Epl: detected errors remaining in pool")

(Etd (0 inf) "Etd: detected errors")

(Ees (0 inf) "Ees: escaped error from testing")

(Rnf (0 inf) "Rnf: nominal bug-fixing rate")

(WF (0 ASG_WF inf) "WF: development team size")

(PDfx (0 inf) "PDfx: productivity of bug-fixing")

(PDnfx (0 NML_FX_PD inf))

(Rfoh (0 inf) "Rfoh: bug-fixing overheads rate")

(mf (0 PD_SW_MLT 1) "mf: multiplier of productivity switchover")

(mRfx (minf 0) "mRfx: minus bug-fixing rate")

(Rfx (0 inf) "Ref: bug-fixing rate")

(Efx (0 inf) "Efx: fixed errors")

(Et (0 inf) "Et: total errors in increment"))

(constraints

((constant PDnfx NML_FX_PD))

((constant WF))

((constant Et))

((constant Etd))

((constant Ees))

((constant mf PD_SW_MLT))

((constant Rfoh))

((d/dt Epl mRfx))

((d/dt Efx Rfx))

((minus Rfx mRfx))

((add Rfx Rfoh Rnf))

((M+ WF Rfoh))

((Mult PDnfx mf PDfx))

((Mult PDfx WF Rnf)))

(transitions

((Epl (0 dec)) -> transition-to-implementation)))

(defun start-simulation ()

(let* ((sim (make-sim :state-limit *))

(initial-state (make-new-state

:from-qde implementation

:sim sim

:assert-values

’((S (0 inc))

(WF (ASG_WF std))

B.3. SOFTWARE EVOLUTION PROCESS MODELS 225

(Rtc (TEST_RATE std))

(rERt (AC_RT_RATE std))

(PDnfx (NML_FX_PD std))

(Eag (0 inc))

(Epg (0 inc))

(Eaes (ESC_AC_ER std))

(Epes (ESC_PS_ER std))

(Rfoh ((0 inf) std)))

:text "start the increment development"))

(qsim initial-state)))

B.3 Software Evolution Process Models

Software evolution process model for qualitative simulation

(define-QDE evolution

(text "Software evolution process")

(quantity-spaces

(Sreq (0 INI_REQ inf) "Sreq: requirements to implement")

(Simp (0 INI_SYS inf) "Simp: requirements implemented")

(Rreq (minf 0 inf) "Rreq: net requirement rate")

(Rimp (0 inf) "Rimp: net implement rate")

(Rsd (0 inf) "Rsd: software develop rate")

(Rin (0 inf) "Rin: requirement input rate")

(Reft (0 RAT_EFT inf) "Reft: effective effort rate")

(Rinc (0 inf) "Rinc: incorrect implement rate")

(Rgen (0 inf) "Rgen: requirement generate rate")

(Rexo (0 inf) "Rexo: exogenous requirement rate")

(Rnew (0 inf) "Rnew: new requirement rate")

(fie (0 FCT_INR 1) "fie: inertia effect factor")

(finc (0 FCT_INC 1) "finc: fault generate factor")

(fnew (0 FCT_NEW 1) "fnew: new feedback factor")

(timer (0 sim_end inf))

(pace (0 time_step inf)))

(constraints

((d/dt Sreq Rreq))

((d/dt Simp Rimp))

((add Rreq Rsd Rin))

((add Rimp Rinc Rsd))

((add Rinc Rgen Rin))

((add Rnew Rexo Rgen))

((constant Rexo 0))

((M- Simp fie))

((mult Reft fie Rsd))

((mult Rsd finc Rinc))

((mult Rsd fnew Rnew))

226 APPENDIX B. MODEL IMPLEMENTATIONS

((constant Reft RAT_EFT))

((constant finc FCT_INC))

((constant fnew FCT_NEW))

((d/dt timer pace))

((constant pace time_step)))

(transitions

((timer (sim_end inc)) -> t))

(defun start-simulation ()

(let* ((sim (make-sim :state-limit *))

(initial-state (make-new-state

:from-qde evolution

:sim sim

:assert-values

’((Sreq (INI_REQ dec))

(Simp (INI_SYS inc))

(Reft (RAT_EFT std))

(fie (1 dec))

(timer (0 inc))

(pace (time_step std)))

:text "start the evolution process")))

(qsim initial-state)))

Software evolution process model for semi-quantitative simulation

(define-QDE evolution

(text "Software evolution process")

(quantity-spaces

(Sreq (0 INI_REQ inf) "Sreq: requirements to implement")

(Simp (0 INI_SYS inf) "Simp: requirements implemented")

(Rreq (minf 0 inf) "Rreq: net requirement rate")

(Rimp (0 inf) "Rimp: net implement rate")

(Rsd (0 inf) "Rsd: software develop rate")

(Rin (0 inf) "Rin: requirement input rate")

(Reft (0 RAT_EFT inf) "Reft: effective effort rate")

(Rinc (0 inf) "Rinc: incorrect implement rate")

(Ddev (0 DEL_DEV inf))

(Dflt (0 DEL_FLT inf))

(Dnew (0 DEL_NEW inf))

(Rgen (0 inf) "Rgen: requirement generate rate")

(Rexo (0 inf) "Rexo: exogenous requirement rate")

(Rnew (0 inf) "Rnew: new requirement rate")

(fie (0 FCT_INR 1) "fie: inertia effect factor")

(finc (0 FCT_INC 1) "finc: fault generate factor")

(fnew (0 FCT_NEW 1) "fnew: new feedback factor")

(timer (0 sim_end inf)))

B.3. SOFTWARE EVOLUTION PROCESS MODELS 227

(constraints

((d/dt Sreq Rreq))

((d/dt Simp Rimp))

((add Rreq Rsd Rin))

((add Rimp Rinc Rsd))

((add Rinc Rgen Rin))

((add Rnew Rexo Rgen))

((constant Rexo 0))

((M- Simp fie))

((mult Reft fie Rsd1))

((d3 Rsd1 Ddev Rsd))

((mult Rsd finc Rinc1))

((d3 Rinc1 Dflt Rinc))

((mult Rsd fnew Rnew1))

((d3 Rnew1 Dnew Rnew))

((constant Reft RAT_EFT))

((constant finc FCT_INC))

((constant fnew FCT_NEW)))

(transitions

((timer (sim_end inc)) -> t))

(initial-ranges

((Sreq INI_REQ) (50 50))

((Simp INI_SYS) (200 200))

((Reft RAT_EFT) (8 8))

((fie FCT_INR) (0.01 0.01))

((finc FCT_INC) (0.12 0.20))

((fnew FCT_NEW) (0.64 0.64))

((timer sim_end) (156 156)))

(envelopes

((M- Simp fie) (exact (lambda (x) (expt (/ 200 x) 3)))

(e-inv (lambda (y) (/ 200 (expt y 1/3)))))))

(defun start-simulation ()

(let* ((sim (make-sim :state-limit *

:Q2-constraints t))

(initial-state (make-new-state

:from-qde evolution

:sim sim

:assert-values

’((Sreq (INI_REQ dec))

(Simp (INI_SYS inc))

(Reft (RAT_EFT std))

(fie (1 dec))

228 APPENDIX B. MODEL IMPLEMENTATIONS

(timer (0 inc)))

:text "start the evolution process")))

(qsim initial-state)))

Appendix C

Data Extraction Form

229

Reflections of 10-Years' Progress on ProSim: A Systematic Review

Data Extraction Form

Reviewer: Study title:

ProSim workshops ICSP JSS SPIPSource: Pub year:First author:

Study category:

A: software process simulation models or simulators

B: process simulation modeling paradigms, methodology, or environment

(go to evaluate the questions in section A)

(go to section B, C)

C: application, methodology, or guidelines for adopting process simulation in SE (go to section B, D)

D: experience reports of software process simulation in practice (go to section B, E)

Section A:

productivityresourcetime quality/defecteffort/cost or
Output variables:
(answer key questions)

training & learning

or

understanding

process imprvmt & technology adoption

control & operational mgmtplanning

N/A

strategic mgmtSimulation

purpose(s):

N/A

multi-site countrysingle sitegeography:

<1 project team 1 project/product team multiple teamsorganization:

<6months 6~12mon 12~24mon >24montime span:

orrequirement design code testif so, phase:portion of life-cycle

developmt project

multiple projects

long-term product evolution

Model scope:

COTS open-source academic one-off developmt plug-ins other N/A(tool type)

orN/A,Extend Stella/iThinkVensimSimulation tool:

orN/Aagent-based qualitativehybrid

game theoryknowledge(rule)-basedstate-based discrete-eventsystem dynamics Modeling paradigm(s):

module num:orsingle module integrated model,Model complexity:

Model #2:

e.g. open-source developmnt, software

product-line, or global developmentProblem domain in SE:

Problem domain in SE:
e.g. open-source developmnt, software

product-line, or global development

Model #1:

(append extra pages if more than two models included in a single study)How many models or simulators are described in this study?

Model complexity: single module integrated model,or module num:

Modeling paradigm(s): system dynamics discrete-event state-based knowledge(rule)-based game theory

hybrid qualitativeagent-based N/A or

Simulation tool: Vensim Extend Stella/iThink N/A, or

(tool type) COTS open-source academic one-off developmt plug-ins other N/A

Model scope: portion of life-cycle

developmt project

multiple projects

long-term product evolution

if so, phase: requirement design code test or

time span: <6months 6~12mon 12~24mon >24mon

organization: <1 project team 1 project/product team multiple teams

geography: single site country:multi-site

N/A

Simulation

purpose(s):
strategic mgmt

N/A

planning control & operational mgmt

process imprvmt & technology adoption

understanding

or

training & learning

Output variables:
(answer key questions)

or

(one study can be classified into one or more categories, e.g. study introduces a new simulation paradigm and developes a simulator)

effort/cost quality/defecttime resource productivity

N/A

N/A

2003

Section B:
Simulation purpose(s): strategic mgmt

planning

control & operational mgmt training & learning

process imprvmt & technology adoption

understanding

or

Modeling paradigm(s): system dynamics (continuous) discrete-event state-based rule-based

game thry knowledge-based hybrid

N/A

agent-based

N/A or

Reflections of 10-Years' Progress on ProSim: A Systematic Review

Data Extraction Form

Section C:

Question focused:

Study for: strategy/perspective simulation paradigm modeling method simulation environmt/tool others

Exp. source: industry government education other

Section D:

Section E:

Effect (expected):

Solution proposed:

Arguments:
(supported by exp.)

Study quality assessment:
Did the study clearly state the aims or research questions? ____________________ yes, explicit & pertinent partial no

nopartial, 1~2yes, >=3

nopartial, 1~2yes, >=3

nopartialyes, highly related

Did the study review the related work for the problem? ________________________________

Did the study discuss related issues, and compare with the alternatives? __________________

Did the study recommend the future continous research? __________________________

A Are model's assumptions explained explicitly (or supplementary meterial given, e.g. webpage)? ________ yes, most partial no

yes, >=2 partial, 1method no

nopartial, briefyes, detailed

yes, fully partial no

yes, both partial, single no

yes, fully partial no

yes, explicit partial, brief no

yes, appropriate partial no

yes, detailed/clear partial, brief no

yes, explicit partial, implicit no

yes no

yes, explicit partial, brief no

yes no

yes, fully partial no

yes, effective partial no

yes, detailed partial, brief noIs model construction fully described (or supplementary meterial given, e.g. webpage)? ________

Are the conditions of model adoption explained? _______________________________

Did the study attempt avoid the selection bias during experiment design? ______________

Has the model been trialed on an industry scale problem? _______________________________

Did the study carry out a sensitivity or residual analysis? ___

(assess quality questions related to identified study category. yes=1.0, partial=0.5, no=0)

Are any model evaluation methods applied on the model? _______________________

Did the study interpret the findings? ___

Did the study explain why choosing the simulation paradigm(s)? __

B Are the scopes of the method/paradigm/solution clearly defined? ________________

Are the modeling approach/method/environment clearly defined? ___________

Are the problems that the study addresses explained with appropriate SE examples? __

Did the study epecify the limitations of the argued paradigm/method/solution? ______

Did the empirical evidence support the arguemtns of the study? __________________________

C

Final comments:

Outcome: success fail mixed

D Is the experience used for validating and calibrating simulation model/modeling? ___________

Are best practices or lessons learnt extracted from experienced? ___________________

	Title Page - Qualitative & Semi-Quantitative Modelling and Simulation of the Software Engineering Processes
	Contents
	List of Figures
	List of Tables
	List of Publications
	List of Abbreviations

	1 Introduction
	1.1 Background
	1.2 Research Questions
	1.3 Approach & Scope
	1.4 Research Contributions
	1.5 Thesis Outline

	PART I - BACKGROUND
	2 Software Engineering Process
	2.1 Software Process
	2.1.1 Activities in Software Process
	2.1.2 Macro- & Micro-Process Research
	2.1.3 Process Engineering & Engineering Process

	2.2 Software Process Improvement
	2.2.1 Process Improvement Process
	2.2.2 Process Improvement Frameworks

	2.3 Software Process Modelling
	2.3.1 Model Dimensions
	2.3.2 Prescriptive Reference Models
	2.3.3 Analytic Summary Models
	2.3.4 Explanatory Structural Models
	2.3.5 Descriptive Enactment Models

	2.4 Software Process Simulation
	2.4.1 Important Simulation Models

	2.5 Summary

	3 Software Process Simulation Modelling
	3.1 State-of-the-Art: A Systematic Review
	3.1.1 Background
	3.1.2 Systematic Literature Review
	3.1.3 Methods
	3.1.4 Results

	3.2 Why Simulation?
	3.2.1 Purposes
	3.2.2 Benefits

	3.3 What to Simulate?
	3.3.1 Problem Domains
	3.3.2 Model Scopes
	3.3.3 Output Variables

	3.4 How to Simulate?
	3.4.1 Simulation Paradigms
	3.4.2 Continuous vs. Discrete Simulation
	3.4.3 Quantitative vs. Qualitative Simulation
	3.4.4 Emerging Simulation Paradigms
	3.4.5 Simulation Tools

	3.5 Trends & Directions
	3.5.1 New Paradigms
	3.5.2 Finer Granularity
	3.5.3 Hybrid Modelling
	3.5.4 Possible Directions

	3.6 Design of Research
	3.6.1 Purposes, Domains, Scopes & Outputs
	3.6.2 Selection of Software Processes

	3.7 Summary

	PART II - FOUNDATION
	4 Qualitative Modelling & Simulation
	4.1 Incomplete Knowledge Representation
	4.1.1 Quantity
	4.1.2 Continuous Change

	4.2 Modelling & Simulation Framework
	4.3 Qualitative Model Representation
	4.3.1 Abstract Structure Diagram
	4.3.2 Qualitative Differential Equation
	4.3.3 Quantity Space & Qualitative Value
	4.3.4 Qualitative Constraints
	4.3.5 Region Transitions

	4.4 Qualitative Simulation
	4.4.1 QSIM: Algorithm & Tool
	4.4.2 Outputs

	4.5 Summary

	5 Semi-Quantitative Modelling & Simulation
	5.1 Semi-Quantitative Extension
	5.2 Interval Constraints
	5.2.1 Value Ranges
	5.2.2 Envelope Functions

	5.3 Semi-Quantitative Propagation
	5.3.1 Q2: QSIM Extension
	5.3.2 Outputs

	5.4 Advanced Techniques
	5.5 Summary

	PART III - INNOVATION I: MODELLING
	6 Modelling Software Staffing Process
	6.1 Background
	6.1.1 Software Staffing Process & Brooks' Law
	6.1.2 Related Models

	6.2 Qualitative Modelling
	6.2.1 Qualitative Assumptions
	6.2.2 Qualitative Abstract Structure
	6.2.3 Qualitative Differential Equations

	6.3 Semi-Quantitative Constraints
	6.3.1 Parameter Intervals
	6.3.2 Envelope Functions

	6.4 Case Study: Brooks' Law
	6.4.1 Qualitative Simulation
	6.4.2 Semi-Quantitative Simulation

	6.5 Model Comparison & Discussion
	6.5.1 Comparison with Outputs of Related Models
	6.5.2 Comparison with Empirical Evidence
	6.5.3 Discussion

	6.6 Summary

	7 Modelling Incremental Development Process
	7.1 Background
	7.1.1 Incremental Development Processes
	7.1.2 Conceptual Software Quality Model
	7.1.3 Related Models

	7.2 Qualitative Modelling
	7.2.1 Modelling Implementation Process
	7.2.2 Modelling Test-and-Fix Process

	7.3 Semi-Quantitative Constraints
	7.3.1 Quantifying Implementation Process
	7.3.2 Quantifying Test-and-Fix Process

	7.4 Case Study: Incremental Development
	7.4.1 Qualitative Simulation
	7.4.2 Semi-Quantitative Simulation

	7.5 Summary

	8 Quantitative vs. Qualitative/SemiQ Process Simulation
	8.1 Reference Model Selection
	8.2 Model Conversion
	8.2.1 Causal Loop Diagram
	8.2.2 Level & Rate
	8.2.3 Delay

	8.3 Reference System Dynamics Model
	8.3.1 Software Evolution Process
	8.3.2 A Simplified Model of Software Evolution

	8.4 Corresponding Qualitative & SemiQ Models
	8.4.1 Qualitative Model
	8.4.2 Semi-Quantitative Model

	8.5 Simulation Results Comparison
	8.5.1 Qualitative Simulation
	8.5.2 Single-Point Value Simulation
	8.5.3 Value-Range Simulation

	8.6 Summary

	PART IV - INNOVATION II: ADOPTION
	9 SQSIM-Based Software Project Management
	9.1 Motivation: Software Project Success
	9.2 Managing Software Project Semi-Quantitatively
	9.3 A SQSIM-Based Approach for Planning & Control
	9.3.1 Planning & Control
	9.3.2 Phase 1: Project Planning
	9.3.3 Phase 2: Project Control

	9.4 Illustrative Example
	9.4.1 Baseline Project
	9.4.2 Planning Phase
	9.4.3 Control Phase

	9.5 Related Considerations
	9.6 Summary

	10 Adopting Process Simulation in Software Organisations
	10.1 Motivation
	10.2 Scope: SPSM & CMMI
	10.2.1 Software Process Simulation Modelling
	10.2.2 Process Maturity Model: CMMI
	10.2.3 Interaction between SPSM & CMMI

	10.3 Adoption Framework (version 1.0)
	10.3.1 Framework Overview
	10.3.2 Starting at ML1
	10.3.3 Transitioning from ML1 to ML2
	10.3.4 Transitioning from ML2 to ML3
	10.3.5 Transitioning from ML3 to ML4
	10.3.6 Transitioning from ML4 to ML5

	10.4 Related Considerations
	10.5 Summary

	11 Discussion & Conclusion
	11.1 Research Achievements
	11.2 Discussion
	11.2.1 Potentials
	11.2.2 Alternatives

	11.3 Limitations & Future Work
	11.3.1 Limitations
	11.3.2 Future Work

	Bibliography
	A Supplements for Systematic Literature Review
	A.1 List of Primary Studies (Stage 1)
	A.2 Study Quality Assessment
	A.2.1 Assessment Criteria
	A.2.2 Assessment Results (Stage 1)

	B Model Implementations
	B.1 Software Staffing Process Models
	B.2 Incremental Development Process Models
	B.3 Software Evolution Process Models

	C Data Extraction Form
	Forms

