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AbstratA fully oupled onstitutive model is presented for a rigorous analysis of deformation, hy-drauli and heat �ows in saturated dual porosity media subjet to thermo-hydro-mehanialloadings inluding those able to ause loal thermal non-equilibrium. The solid phase isassumed to ontain two distint avities: the porous bloks and the �ssure network. Thegoverning equations are derived based on the equations of onservation of mass, momentumand energy. Solution to the governing equations is obtained numerially using the �niteelement approah. The apabilities of the model address two energy appliations: the sta-bility of a borehole in a thermally enhaned oil reovery ontext and the heat extration ofenhaned geothermal systems. Substantial di�erenes, partiularly in the e�etive stressresponse, highlight the major in�uene of the dual porosity model and the importane ofthe loal thermal non-equilibrium assumption to predit the behaviour of fratured media.
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ResuméUn modèle onstitutif omplètement ouplé est présenté pour l'analyse rigoureuse de ladéformation, de l'éoulement de �uides et de transfert de haleur dans les milieux poreuxsaturés à double porosité soumis à des hargements thermo-hydro-méaniques, y om-pris eux induisant un non-équilibre thermique loal. La phase solide ontient deux av-ités distintes: le blo poreux et le réseau des �ssures. Les équations de hamps sontobtenues à partir des équations de onservation de la masse, du mouvement et de l'énergieet sont résolues par une approhe par élément �nis. Le modèle est utilisé pour deux typesd'appliations: la stabilité d'un puits de forage stimulée thermiquement pour la réupéra-tion de pétrole et l'extration de haleur dans un réservoir géothermique fraturé. Lesdi�érenes substantielles, partiulièrement de la ontrainte e�etive, soulignent l'in�uenemajeure de la double porosité et du non-équilibre thermique pour prédire le omportementdes milieux fraturés.
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All that is hurryingsoon will be other with;only what lasts an bringus to the truth.Young one, don't put your trustinto the trials of �ight,into the hot and quik.All things already rest:darkness and morning light,�ower and book.Rainer Maria Rilke (1875-1926), translated by Mithell.
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LIST OF FIGURES LIST OF FIGURES8.13 Relative outlet temperatures of the solid and the �uid phases versus dimen-sionless time. The solid and the �uid phase remain in LTNE until td =20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3728.14 Coneptual representation of the Fenton Hill reservoir, inspired from Zyvoloskiet al. (1981, Figure 3-2). The injetion well is denoted EE-1 and the pro-dution well is denoted GT-2. The extent and the amount of fratureslinking the two wells are not preisely known and are indiated here for theillustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3758.15 Representation of a generi HDR reservoir (not at sale). The permeability
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13 applies to all veloities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39223



LIST OF FIGURES LIST OF FIGURES8.19 Square of the frature spaing threshold B2
T as a funtion of the average�uid veloity at steady state v∞, for a porosity nf = 0.005, a uniform �owpath and an insulated reservoir. All results are for ZR = 230m and thermalproperties from Table 8.4. The hyperboli relationship de�ned by eqn (8.99)is represented by a blue line. It is well aptured by the �nite element (FE)simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3938.20 Saled �uid veloity vetors in the reservoir. Wells (thik horizontal lines)penetrate the reservoir either totally (left) or partially (enter, right). Thereservoir is insulated from the rok formation (left, enter) or exhangesheat with the formation (right). . . . . . . . . . . . . . . . . . . . . . . . . . 3948.21 Same as Fig. 8.19 but for a non-uniform �ow path and heat exhange witha formation of 30m width. The drawdown results orrespond to the tip ofthe prodution well, i.e. x = XW = 60m. A non-linear non-monotoniresponse is obtained from the �nite element (FE) simulations in oppositionwith the power response suggested by eqn (8.99). Heat exhange betweenthe reservoir and the rok formation requires the use of the SUPG method,Remark 8.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3958.22 Fluid temperature ontours for v∞ = 2.0 10−4 m/s, at t = 3.18 years, a-ounting for heat transfer with the rok formation and for a non-uniform�ow �eld. The Galerkin method (left) displays spurious numerial wiggles,whih are partly ured by the SUPG method (right). . . . . . . . . . . . . . 3968.23 Relative temperature outlet TD versus time t along the prodution well at

x=60m. Experimental data pertain to di�erent depths, namely ◦ 2703m, ⋄2673m, × 2626m and 2 in the asing 2660m. Colors are available on theeletroni version. The experimental temperatures at day one result fromthe spatial heterogeneity along the prodution well, see text. (left) Uniform�ow �eld, kf = 8.0 10−15 m2 and nf = 0.005. Optimum spei� inter-phaseheat transfer oe�ient κsf = 33.0mW/m3 .K. (right) Non-uniform �ow�eld, kf = 2.35 10−14 m2 and nf = 0.005. Optimum spei� inter-phaseheat transfer oe�ient κsf = 30.0mW/m3.K. . . . . . . . . . . . . . . . . . 39824
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0 − Tinj) versustime in days. LTE stands for loal thermal equilibrium and is obtained for

κsf = 100W/m3.K. Colors are available on the eletroni version. (left)Fenton Hill hot dry rok reservoir with kf = 8.0 10−15 m2 and nf = 0.005.Field data pertain to ◦ 2703m, ⋄ 2673m, × 2626m and 2 in the asing2660m (Zyvoloski et al., 1981). The optimum spei� solid-to-frature �uidheat transfer oe�ient κsf is equal to 33mW/m3.K. (right) Rosemanoweshot dry rok reservoir with kf = 3.2 10−14 m2, nf = 0.005. Field datapertain to ◦ the asing shoe of the prodution well (≈ 2125m in true vertialdepth) (Kolditz and Clauser, 1998). The optimum spei� solid-to-frature�uid heat transfer oe�ient κsf lies in the range 60 to 120mW/m3.K. Thelate overshooting osillations for the LTE solution are due to an imperfetdamping of the onvetive ontribution (Setion 8.3). . . . . . . . . . . . . 428

8.32 Fenton Hill reservoir, late time (t = 1.9 years) vertial pro�les of the tem-peratures of solid and pore �uid (top-left), the temperature of frature�uid (top-right), the pressure of pore �uid (bottom-left), and the pres-sure of frature �uid (bottom-right) for kf = 8.0 10−15 m2, nf = 0.005,
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IntrodutionContextDual or multi-porosity models attempt at a more aurate marosopi representation ofthe atual properties of rok formations. Indeed various types of strata, roks and porousmedia are naturally fratured. In addition, arti�ial fraturation is often sought to inreasethe in-situ permeability of a given medium. For example, hydrauli fraturation is usedin petroleum engineering and in enhaned geothermal systems (EGS). Other appliationsof the dual porosity theory inlude the removal of pollution in ground surfae water fromagriultural hemials, predition of stress in tight reservoirs, stability of wellbores, onsol-idation of fratured lays, settlements of hasardous waste disposals and in�uene of loggedpores (unonneted porosity).The need for dual or multi porosity models is indued by the observation that thebehaviour of fratured media is radially di�erent from that of a onventional single porousmedium endowed solely with a single intergranular porosity and a single permeability (Baiet al., 1993; Khalili-Naghadeh, 1991; Khalili et al., 1999). Field observations of pressurebuildup and depletion history of reservoir (Maury and Zurdo, 1996; Willson et al., 1999)have enouraged studies to aurately haraterise the behaviour of fratured reservoirs(Warren and Root, 1963; Kazemi, 1969; Zhang and Roegiers, 2005).The role of geomehanis in reservoir engineering has beome inreasingly importantas enhaned oil reovery proesses and enhaned geothermal systems are undertaken anddeeper formations are explored (Lake et al., 1992; Tenzer, 2001). Unfortunately, on-ventional reservoir modeling fails to desribe the stress, �uid pressure and temperatureresponses enountered at greater depth, whih gives rise to inaurate alibration of in-situ well onditions (Chen et al., 1997) and inaurate thermal output evolution (Armsteadand Tester, 1987). In fat, the gap between the purely mehanial point of view and thepurely heat transfer point of view has been progressively �lled in late years (Hayashi et al.,1999). Hydro-mehanial models are extended to aount for thermal ontributions anddi�usion-onvetion models are extended to aount for stress ontributions. Borehole sta-bility problems have motivated the development of more omplex onstitutive models to35



Introdutionaurately alibrate the drilling mud pressure, density and temperature (MTigue, 1990;Zhang and Roegiers, 2005). On the other hand, these onstitutive models an be appliedto the understanding of thermal reovery from arti�ial deep hot dry rok reservoirs.Objetive, method and sopeThe objetive of this study is to investigate thermo-hydro-mehanial oupled behaviourof dual porosity media in order to gain insight into the e�ets of fraturation on wellborestability in tight petroleum reservoirs and on thermal reovery in hot dry rok reservoirs.Partiular attention is given to the mass transfer and to the energy transfer phenomena.A onstitutive model is developed that is su�iently general suh that it is suited toall types of dual porosity media. Among the various onstitutive frameworks, the theoryof mixture appears to be the most appropriate method to implement multi �uid mixturesdue to its di�usion-based approah in that the �uxes of the various speies are onsideredat eah point of spae. A previous poroelasti model (Khalili and Valliappan, 1996) isextended to aount for thermal e�ets within a rational thermodynami framework ofirreversible proesses in whih the Clausius-Duhem inequality is used to motivate andrestrain the onstitutive equations (Loret and Khalili, 2000b; Loret, 2008).From a general point of view, the real needs are: (1) the identi�ation of work onjugatevariables for eah type of phenomena, that is the thermo-poro-elasti law, the generaliseddi�usion law and the generalised transfer law; (2) the introdution of fored onvetionto address onvetion-dominated problems, suh as hot dry rok systems (Willis-Rihardsand Wallroth, 1995); and (3) the introdution of loal thermal non-equilibrium to prop-erly desribe the heat transfer between the phases (Aifantis, 1980b). With a mixture inloal thermal non-equilibrium various deouplings an then be tested, for example, a pureonvetive �ow in the �ssure network oupled to a di�usive �ow in the pore matrix.On the other hand, the identi�ation proedure for the onstitutive mehanial o-e�ients introdues the e�etive stress onept for a solid permeated with several �uids(Khalili and Valliappan, 1996). The key priniple of the e�etive stress onept is that asingle stress entity governs the elasti response of the solid skeleton.ContributionThe model in loal thermal equilibrium is alibrated against analytial results provided forsaturated soils subjet to a range of thermal loadings and drainage onditions.The problem of the wellbore stability of a fratured reservoir is solved using the �nite36



Introdutionelement method in a thermally enhaned oil reovery ontext. This study highlights theimportane of the relative values of the hydrauli and thermal di�usivities. The main on-lusion of this study reveals the importane of the dual porosity onept for the preditionof failure in �ssured reservoirs: ompared with the dual porosity results, the single poros-ity approah under-estimates the failure potential, for both drained and partially-drainedonditions at the wellbore.Fored onvetion is stabilised with the streamline-upwind/Petrov-Galerkin methodthat damps the spurious numerial osillations observed along sharp temperature gradients.The optimum stabilisation parameter is sought for a multi-dimensional transient problem.The onstitutive model is then applied to the problem of thermal reovery from afratured medium in loal thermal non-equilibrium, simpli�ed to a single porosity mixture.The parameter that haraterise thermal non-equilibrium is alibrated with the thermaloutput of Fenton Hill hot dry rok reservoir. The in�uene of loal thermal non-equilibriumon the �uid temperature outlet is haraterised by a double-step urve. For the partiularase of a single porosity model, the thermally indued e�etive stress is found to be tensileand illustrates the dominane of the thermal ontributions over the pressure ontribution.On the other hand, when aounting for the dual porosity approah in loal thermal non-equilibrium, the pressure ontributions beome signi�ant. The thermally indued e�etivestress is found to be less tensile with the dual porosity model ompared with the singleporosity response illustrating the protetive e�et of the pore pressure ontribution; whihinreases for large frature spaings. Furthermore, the mehanism of �uid permeation fromthe fratures towards the porous blok is identi�ed.Throughout the projet, a great deal of time was spent in oding the various aspetsof the onstitutive model, the time marhing sheme, the equation solving routines, thestabilisation methods and routines devoted to input and output data, in a home-madeFORTRAN program.Thesis strutureThe struture of the thesis is as follows:Chapter 1 reviews investigations into non-isothermal �uid-saturated porous media, withemphasis plaed on the desription of dual porosity media. The onstitutive models used todesribe dual porosity media and other investigations that address oupled thermo-hydro-mehanial models are also reviewed. 37



IntrodutionChapter 2 presents the theoretial framework based on the rational thermodynamis ofirreversible proesses. The �eld equations are developed as part of the mixture theory andthe entropy inequality is de�ned to illuminate the restritions that it plaes on the variousonstitutive relations. The onstitutive equations related to thermo-poro-elastiity, thegeneralised di�usion and the generalised transfer are onsidered in turn. Finally, the latterrelations are inserted in the �eld equations to onstitute the fully-oupled omprehensivemodel.The material parameters of the onstitutive model are investigated in Chapter 3. Theinterpretation and the identi�ation of these parameters are gathered from the literaturefor typial soils and roks, and for water.The �nite element disretisation of the problem is proposed in Chapter 4. The weakform and the matrix form of the problem are expressed in detail and the Galerkin approx-imation is used. The time integration and method of equation solving are also presented.The implementation of the model in a home-made FORTRAN ode is part of the projet.The model is evaluated using benhmark appliations in Chapter 5, for a single porositymixture in loal thermal equilibrium with no onvetion. This hapter aims to validate theorret implementation of the thermal ontributions in the fully oupled thermo-hydro-mehanial model.A pure ondution single temperature problem is solved in Chapter 6. The dual porosityapproah is ompared with a single porosity approah to assess the potential for failure ofa wellbore subjet to thermal loading, drained and undrained boundary onditions at thewell and appropriate stress loading.Fored onvetion and its implementation issues are onsidered in Chapter 7. Thestreamline-upwind/ Petrov-Galerkin method is introdued and analysed in our ontext ofsaturated porous media and typial tests are performed to validate the implementationof the method in the �nite element program. For eah ase, the optimum stabilisationparameters are sought.The fully-oupled model with loal thermal non-equilibrium and fored onvetion isapplied to real �eld problems in Chapter 8. The problem involves loally two pressures(pores and fratures) and two temperatures (porous blok and frature �uid). The generalsheme whih allows for distint temperatures of the solid and pore �uid is not required forthe analysis of EGS. The issue of the parameter ontrolling the thermal non-equilibriumis overame by alibrating the simulation results against �eld data. The single porosityapproah and the dual porosity approah are both investigated. Partiular attention is38



Introdutiongiven to the e�ets of pressure ontributions on the thermally indued e�etive stress.NotaTo failitate the reading, some results are intentionally repeated. These repetitions al-low to read the two appliative Chapters 6 and 8, without neessarily reading the Chapters2, 3 and 4 whih establish the model and the �nite element disretisation, nor the Chapters5 and 7 whih present preliminary numerial results.
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Chapter 1Non-isothermal �uid-saturatedporous media: Literature review
The literature review omprises four setions. Setion 1.1 provides a general introdutionto porous media haraterised by multiple porosities and spei�es the de�nition of dualporous media. Setion 1.2 ompares the various averaging models used to implementthe poroelasti onstitutive equations and highlights the bene�ts of using the mixturetheory to model mixtures omposed of various �uids. Setion 1.3 summarises the dualporosity onept and investigates the evolution of poroelasti onstitutive models extendedto porous media with double porosity. In Setion 1.4 onstitutive models for soils usingthermo-hydro-mehanial oupling and other investigations are disussed.1.1 Porous media with multi porosityA porous medium an be de�ned as a material onsisting of a solid matrix with interon-neted voids. Further, a fratured medium is de�ned as a porous material endowed withdi�erent types of voids. This is also sometimes referred to as a multi porosity / multi per-meability porous medium and represents several natural materials suh as marble, granite,sandstone, lay, bones, wood and ie.Let us onsider bone as an example of the diversity of and similarities between multiporosity / multi permeability media. Aording to Cowin (2001), there are three levelsof bone porosity ontaining �uid within ortial bone: the vasular porosity (PV); thelaunar-analiular porosity (PLC); and the ollagen-apatite porosity (PCA). The studyof the movement and the interation of the bone �uid in the PV with that in the PLCis relevant to the understanding of osteoyte nutrition, mehano-sensation and mineralstorage and reovery. Although there are three levels of bone porosity, only two of themare onsidered to be signi�ant with respet to �uid movement; the PV and the PLC.40



1. Literature review 1.1. Porous media with multi porosityThe vasular permeability dominates that of the PLC avity and the pressure in the PLCdominates that of the PV. In general, the elasti properties of bones and �uid-saturatedporous roks are omparable (see Table 1.1) and it has been suggested that the dualporosity poroelasti model is appropriate for the study of bone �uid movement and bone�uid pressure.Parameter Bone Marble Granites SandstonesShear modulus - G [GPa℄ 5 24 15-19 4.2-13Drained Poisson's ratio - ν 0.32 0.25 0.25-0.27 0.12-0.20Undrained Poisson's ratio - νu 0.33 0.27 0.30-0.34 0.28-0.33Drained bulk modulus - K [GPa℄ 12 40 25-35 4.6-13Undrained bulk modulus - Ku [GPa℄ 13 44 41-42 1.3-30Compressibility oe�ient - B 0.40 0.51 0.58-0.85 0.50-0.88Bulk modulus of the solid - Ks [GPa℄ 14 50 45 31-42E�etive stress parameter - ξp 0.14 0.19 0.27-0.47 0.65-0.85Porosity - np 0.05 0.02 0.01-0.02 0.02-0.26Intrinsi permeability - kp [m2℄ ×1020 1.5 10 10-40 20,000-8.0×107Table 1.1: Summary of poroelasti onstants for various porous materials, reprodued fromCowin (2001, p. 23, Chapter 18). Data on bone orresponds to the launar-analiularporosity (PLC). Data on granites represent the range for two granites, and data on sand-stones indiate the range aross six sandstones. Data are from Detournay and Cheng(1993) and Zhang et al. (1998), where details of spei� roks are given.1.1.1 Classi�ation of multi porous mediaTwo omprehensive lassi�ations of porous (fratured) materials have been proposedwithin literature and are summarised below. The �rst lassi�ation is based on the on-netivity type of eah onstituent, whereas the seond lassi�ation refers to the storageapaity of the various avity types.Bear and Bahmat (1991, p. 7) proposed the lassi�ation of porous media with respetto void spae and solid matrix onnetivity (Table 1.2). Most geo-materials an be de�nedas porous media of type PM4, that is porous media in whih both the solid and the voidspae are multiply-onneted. A domain is multiply-onneted if it is bounded from theinside and from the outside by one or more disjoint losed surfaes. In addition to thislassi�ation, fratured porous media are desribed as a portion of spae in whih the voidspae is omposed of two parts: the �ssure inter-onneted network and bloks of porousmedium, where both are onsidered multiply-onneted. In the ase where the fraturewidths are large and the pores in the porous bloks are very small, suggestion is made to41



1. Literature review 1.1. Porous media with multi porosityregard the �uid in the void spae as two apparent phases (Bear and Bahmat, 1991, p.40). Void spaeMSC MC SC
Solidmatrix MSC PM1 PM2MC PM3 PM4 IPSC FBTable 1.2: Classi�ation of porous media with respet to void spae and solid matrixonnetivity, reprodued from Bear and Bahmat (1991). PM = Porous medium, MC =Single multiply-onneted domain only, SC = Ensemble of simply-onneted domain only,MSC = Combination of MC and SC, IP = Isolated pores, FB = Fluidised bed.A lassi�ation of fratured (non-reative) porous media has been proposed by Baiet al. (1993), based on the storage apaity omparison between the frature network andthe pore matrix (Table 1.3). Three types of reservoirs are identi�ed: (1) In the �rst ase,the storage apaity of the porous blok appears to be small ompared with the storageapaity of the frature network. During a pumping test, the high initial rates will delinedrastially after a short period of time beause the �uid has been stored in the fraturesystem. (2) The seond ase illustrates a medium where only a small perentage of the totalporosity is resident in the fratures. It is assumed that the high matrix blok storage wouldontinuously provide the supply to the well through highly permeable frature hannels.(3) The ase where the storage apaity is equally distributed in the two sub-systemsrepresents an average situation.Due to partiular interest for geo-materials and for reservoir problems, in whih dif-fusion of �uid mass takes plae in both the �ssure network and the porous blok, thedisussion in this study is related primarily to porous media of type PM4 aording toBear and Bahmat (1991) and to reservoirs with large storage in the matrix aording tothe lassi�ation of Bai et al. (1993).1.1.2 De�nition of dual porous mediaA medium with double porosity is a porous medium in whih two di�erent porosities anbe observed, typially pores and �ssures. The pores and the �ssures are �lled up with �uidand the purpose of the pores an be onsidered as a storage funtion of the �uid, whereas42



1. Literature review 1.1. Porous media with multi porosityName Porosities Representation Behaviour
1. Reservoir with allstorage in fratures nf >> np

Sharp deline inprodution rate after ashort period of time2. Reservoir with largestorage in the matrix np >> nf

Prodution ratedepending on thedegree of fraturation3. Reservoir with equalstorage nf ≈ np Smooth prodution rate
Table 1.3: Fratured media lassi�ation based on the omparison of the storage apaityof the two sub-systems (Bai et al., 1993). The porosity of the porous blok is denoted npand the porosity of the �ssure network is denoted nf .the �ssures have a transport funtion of the �uid though the medium.Two main hypotheses are made to onsider a dual porosity medium:i: Spatial sale separation, where it is onsidered that the average distane separatingthe pores is small in omparison to the average distane separating the �ssures;ii: Time sale separation, where two time responses an be observed, the �uid of the�ssures is a�eted by external loading before the �uid of the pores, whih beomeaware of the load after a ertain time.A medium with dual porosity an be delineated in two overlapping entities:� The porous blok represents the part of the medium onstituted with interonnetedpores surrounded by the solid grains. As far as �ow is onerned, unonneted poresmay be onsidered as part of the solid matrix and only the inter-onneted poresshould be onsidered.� The �ssure network represents the part of the medium onstituted with interon-neted �ssures. 43



1. Literature review 1.1. Porous media with multi porosityFigure 1.1 illustrates the deomposition of a fratured porous medium in two oexistingsystems of voids: the porous blok and the �ssure network. The leakage (or mass transfer)represents the ability of the �uid to transfer from one type of porosity to the other.

Figure 1.1: Illustration of the deomposition of a dual porous medium in two overlappingsingle porous media; the �ssure network and the porous blok. Mass transfer of �uid,momentum transfer, energy transfer and entropy transfer between the two sub-systems ispermitted.As the permeability of the fratured medium is mostly attributed to the �ssure net-work, while most of the storage is held in the porous blok, the oneptual model shouldbe onstruted so that the �uid in the fratures and the �uid in the porous blok arerepresented by two `apparent phases'. In the next setion, the various types of approahesto poroelasti models are gathered and ompared; and reommendations are sought on theappliation of these models to multi porous media.
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1. Literature review 1.2. Poroelasti onstitutive framework1.2 Poroelasti onstitutive frameworkThe derivation of the laws governing marosopi variables is usually obtained by averagingover volumes or masses ontaining many pores. Four di�erent approahes to the devel-opment of the same basi equations for the theory of poroelastiity are disussed. Eahapproah is rigorous and onsistent with mathematial and physial models for averagingmaterial properties. The di�erene between eah of them lies in the averaging proess.1.2.1 Averaging models1. The e�etive medium approah stems from the �eld of solid mehanis where theaveraging proess involves the determination of e�etive material parameters froma representative volume element (RVE) (Biot, 1941; Nur and Byerlee, 1971; Chris-tensen, 1979; Bear and Bahmat, 1991). This operation leads to values of theseparameters at the enter of the RVE whih are independent of the size of the RVEif the latter satis�es the reommendations of Bear and Bahmat (1991). The RVEis determined so that its length is muh larger than the pore sale, but onsiderablysmaller than the length sale of the marosopi �ow. This approah is disussed atlength by Bear and Bahmat (1991). For example, let u be a real valued funtionon a domain Ω whih desribes any physial quantity with rapid spaial osillations.By using the e�etive medium approah, the loal average of u writes,
〈u〉 (x) =

∫

V (x)
u(y) dy, (1.1)where V (x) is of the same size as the RVE, that is several hundreds or thousands ofpores. The e�etive medium approah suggests that the response of u at the poresale desribes its properties at a larger sale.2. The mixture theory originates from the traditions of �uid mehanis and thermody-namis. The key priniple of this approah (Truesdell and Toupin, 1960) is that eahplae in a �xed spatial frame of referene may be oupied by several di�erent parti-les/phases, one for eah onstituent of the mixture. This di�usion-based approah isan Eulerian approah in that the �uxes of the various speies are onsidered at eahpoint of spae with respet to the initial on�guration. Truesdell (1957) assigned toeah onstituent a density, a body fore density, partial stress, partial internal en-ergy density, partial heat �ux and partial heat density supply. In addition, Truesdell45



1. Literature review 1.2. Poroelasti onstitutive framework(1957) allowed the balane of mass, momentum and energy equations to be writtenfor eah speies of the mixture and postulated the neessary and su�ient losureonditions to satisfy the balanes of mass, momentum and energy for the mixture. Aomprehensive summary of the subjet is provided by Atkin and Craine (1976). Themain di�erene between the mixture approah and the e�etive medium approahlies in the averaging proess; in the mixture theory the averaging is density-weightedon the basis of the density of eah onstituent of the mixture. For example, if amixture is omposed of three speies (referred to as s, p, and f ), the de�nition of thebaryentri veloity v is
ρv =

∑

k=s,p,f

nk ρk vk with ρ =
∑

k=s,p,f

nk ρk (1.2)where eah speies k is endowed with a volume fration nk, an intrinsi density ρkand an absolute veloity vk.Model Averaging ShematiProess Representation1. The e�etivemedium approah Volume averaging. Asmall �nite volume(RVE) desribes thebehaviour at themarosopi sale.
2. The mixturetheory Mass averaging. At a�xed ontinuum point,eah onstituent of themixture is onsidered.

Table 1.4: Illustration of the e�etive porous medium approah and of the mixture theorybased on the averaging proess. The averaging proess is represented by dashed lines. Theillustration of the e�etive porous medium is derived from Cowin (2001).3. The third approah is the homogenisation theory introdued by Burridge and Keller(1981). The basi set of poroelasti equations is derived by using a two-spae method46



1. Literature review 1.2. Poroelasti onstitutive frameworkof homogenisation. To make it simple, the averaging proess used in the homogeni-sation approah allows to `upsale' the di�erential equations. Compared with thee�etive medium approah, the basi idea of homogenisation is somewhat di�erent.Following the explanations of Hornung (1997), a whole family of funtions uǫ is on-sidered where ǫ > 0 is a spatial length sale parameter, the typial size of a pore.Instead of working with only one situation, the spei� problem is imbedded in afamily of problems parameterised by the sale parameter ǫ. In approximate terms,the averaging proess onsists in determining the limit,
u = lim

ǫ→0
uǫ, (1.3)whih is the result of the `upsaling' proedure where the mirosale tends to zero.Slattery (1967) and Whitaker (1967) proposed an alternative homogenisation teh-nique based on volume averaging instead of periodial averaging, whih is appliableto systems in whih the length sale is onstrained by l < R0 < L (Whitaker, 1969),where R0 is the radius of the averaging volume, L is the marosopi length saleand l the mirosopi length sale.4. Finally, the fourth approah is the statistial approah in whih the averaging pro-ess is made over an ensemble of possible void strutures whih are marosopiallyequivalent (Nield and Bejan, 2006). This is only possible if statistial homogeneityis assumed when the statistial information about the ensemble is based on a singlesample. More information on this approah an be found in (Georgiadis and Catton,1987; Adler and Thovert, 1999).At eah ontinuum point, the four approahes lead to the same set of equations (whenno �utuation of the averaged quantities is onsidered) and the di�erene between thee�etive medium approah, the mixture theory, the homogenisation approah and thestatistial approah is the averaging proess. The harateristis of the four approahesare illustrated in Tables 1.4 and 1.5.
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1. Literature review 1.2. Poroelasti onstitutive framework
Model Averaging ShematiProess Representation

3. Thehomogenisationapproah `Upsaling' by lettingthe mirosale tend tozero, with ǫ > 0 being asale parameter. x ∈ Ωis a spatial oordinateand y is the side of thebase ell in a loaloordinate system.
4. The statistialapproah Averaging over apartiular voidstruture from a fratalanalysis (Ledésertet al., 1993; Adler andThovert, 1999).

Table 1.5: Illustration of the homogenisation approah and of the statistial approahbased on the averaging proess. The averaging proess is represented by dashed lines.The illustration of the homogenisation approah is derived from Hornung (1997). Theillustration of the statistial approah is a three-dimensional representation of a fraturenetwork within a granite blok analysed by Ledésert et al. (1993); Adler and Thovert(1999). .
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1. Literature review 1.2. Poroelasti onstitutive framework1.2.2 Reommendation for the mixture theoryThe subtlety of poroelasti behaviour is better understood beause of the various ap-proahes. Aording to Cowin (2001): �The e�etive medium approah provides betterinsight into the nature of the parameters assoiated with the solid phase; the mixture the-ory approah provides the mehanisms for averaging over di�erent �uid phases; and thehomogenisation approah illuminates the wave propagation harateristis of the theory�.Compared with the three other approahes, the mixture theory provides a relativelysimple general framework for developing a model of multi phase / multi porous mixturesompared with the e�etive medium approah (Cowin, 1985); an important example beingthe development of the theory of swelling lays (Gajo and Loret, 2003). The mixture theoryis thus employed in this study as presented in Chapter 2.Bear and Bahmat (1991) proposed to name the various lasses of �eld problems andgave some reommendations on the appropriate model to be used:� Zone 1: The very near �eld. Interest is foused on di�usion proesses within small-sale �ssures and the porous blok. Problems represented by a single well-de�nedfrature surrounded by porous rok are onsidered, see for example (Zhou et al.,2009; Bataillé et al., 2006), and mass transfer between the frature and the rok ispossible.� Zone 2: The near �eld. Transport of �ow is loated in a narrow region ontaininga small number of well-de�ned fratures surrounded by porous rok. The �ssurenetwork needs to be de�ned either in deterministi (not-random) manner or generatedstohastially (based on a real �eld-site). For more information and a lear examplesee the work of Ledésert et al. (1993).� Zone 3: The far �eld. Transport of �ow is onsidered, simultaneously, in two over-lapping ontinua; one omposed of the �ssure network and the other onsisting ofthe porous blok. Exhange of �uid mass between them is taken into aount. Aomprehensive example is reported in Khalili et al. (1999) on onsolidation in �s-sured lays. Bear and Bahmat (1991) reommend using the `two media' approah(Barenblatt et al., 1960) when faing suh onditions in large-sale problems.� Zone 4: The very far �eld. The entire fratured sample is onsidered as an `equivalent'single porous medium, whih aounts for the properties of all sub-systems.In this study, appliations are narrowed down to transport of �ow in large-sale prob-lems. The `two media' approah reommended for the far �eld zone will systematially be49



1. Literature review 1.3. Poroelasti models for dual porosityompared with the `single medium' model ommonly used in the literature.1.3 Poroelasti models for dual porosityThe initial studies of �ow in�ltration/seepage in soils were onduted using single porositymodels or ontinuum onepts (Biot, 1941). Evolution in onstitutive models introduinga dual porosity onept was initiated by Barenblatt et al. (1960) and Warren and Root(1963):� Barenblatt et al. (1960) ompared the results of theoretial and laboratory tests oftransient �ow of liquids in �ssured roks, whih lead to the onlusion that the singlepressure onept assoiated with the single porosity approah was inadequate. Thebasi onepts of media with double porosity was introdued by representing two sub-�ow systems; the pores and the �ssures, whih are endowed with a single pressure ateah point of spae. Mass transfer of �uid between the �ssures and the pores was alsoaounted for. In addition to this important sienti� step forward, the mass transferparameter was intuitively related to the porous blok permeability, the inverse of the�uid visosity, the pressure variation between the pores and the �ssures and on ertainharateristi of the medium through a dimensionless parameter. Barenblatt et al.(1960) have produed the �rst ontribution to dual porous media by oupling thetwo �uid �ows.� Warren and Root (1963) extended Barenblatt's double porosity onept by de�ning a�ssured porous medium as two ompletely overlapping �ow regions, named the �ssurenetwork and the porous blok. In addition, the mass transfer onstitutive law is forthe �rst time fully de�ned through a leakage term via a shape fator. The latter isde�ned in terms of blok dimensions and degree of �ssuring.� Aifantis (1977, 1979, 1980a), inspired by Barenblatt's work, used the mixture theoryto propose a double porosity formulation, taking aount of the oupling betweenthe deformation and the �ows. This formulation is the �rst rationalised model whihinvolves �ow and deformation e�ets to desribe and simulate multi porosity be-haviour. However, the main limitation of this work is that the interation betweenthe pore and �ssure volumetri deformations are negleted.� Alternative solutions to the work of Aifantis were made by Khaled (1980) and Wilsonand Aifantis (1982). An important e�ort has been made to present physial interpre-tation and experimental determination of the model's phenomenologial oe�ients50



1. Literature review 1.3. Poroelasti models for dual porosity(Wilson and Aifantis, 1982). In the experimental determination, two distint ap-proahes are onsidered. In the �rst approah, experiments are onduted on both asale whih exludes the �ssures and a sale whih inludes both the pores and the�ssures. In the seond approah, one set of experiments is onduted over early timesales, and the other over late time sales. A literature survey of the parameter'svalues is also presented.� Valliappan and Khalili-Naghadeh (1990) and Khalili-Naghadeh (1991) tried to larifythe mathematial writing of Aifantis, by modifying the parameters of the model, inorder to obtain their physial interpretation.� Elsworth and Bai (1992) presented a signi�ant deviation from dual porosity modelsby writing the stress-strain relationship for dual porous media based on two over-lapping, but distint, single porous media. The original formulation proposed byElsworth and Bai (1992) is often referred to as `the double e�etive stress laws' or`the separate and overlapping tehnique'. Distint total stresses are alloated toeah sub-domain along with distint e�etive stresses, strains and elastiity matri-es. Eah sub-domain is regarded as an independent material with a `matrix' anda `void spae'. The stress-strain relationship for the mixture is obtained by arguingthat the hanges in total stress within adjaent phases must remain in equilibriumand that the total strain is due to the deformation in eah sub-domain. Moreover,like Aifantis's model the ross-oupling e�ets between the pore and the �ssure �uidsare not aounted for.� The lassi�ation of multi porosity / multi permeability models for deformation-dependent �ow models have been presented by Bai et al. (1993) based on the mixturetheory and Auriault and Boutin (1992, 1993) based on the homogenisation approah.In Bai et al. (1993), speial ases of multi porosity / multi permeability formulationare ompared and reommendations for pratial utilisations are given (Table 1.6).� Auriault and Boutin (1992, 1993) used a homogenisation tehnique for periodi stru-tures, whih delivers a marosopi model from the desription at the pore andfrature levels. The marosopi desription is sensitive to the ratios between thedi�erent sales, where l, l′ and l′′ are harateristi lengths of the pores, the fraturesand the marosopi medium, respetively. Three ases are suessively studied: the�rst ase: (l′/l′′) = O(l/l′)2 exhibits a oupling between the �ows through the poresand the fratures. The seond ase: (l/l′) = O(l/l′′) exhibits memory e�ets. Thethird ase: (l/l′) = O(l/l′′)2 gives a marosopi desription similar to that of a single51



1. Literature review 1.3. Poroelasti models for dual porosityporosity medium. This work allows for the lassi�ation of atual models dependingon harateristi lengths of the pores, the �ssures and the medium. When the poresand the �ssures are lose enough in size, ase 1 appears to be the most appropriate.If the size of the fratures is very large in omparison to the pores size, ase 3 is re-ommended as no seepage from the pores ours. Case 2 is the most omprehensiveas it ontains the two previous models, and desribes the memory e�ets due to theleakage of the pores into the �ssures when the fratures size is large in omparisonto the pore size.� Khalili and Valliappan (1996) presented a rigorous and uni�ed treatment of the theoryof �ow and deformation in a dual porous medium. Using the loading deompositionof Nur and Byerlee (1971), a onstitutive link is established between the matrix andthe pore volumetri deformations. An additional ontribution to Aifantis' work ismade through a link established between the volumetri deformations of the twopore systems. The latter is onsidered essential for the proper modeling of �ow anddeformation in a dual porous medium; whih was experimentally demonstrated byKhalili (2003). Consistently, if the deformation link between the two pore systems isignored, the formulation proposed by Aifantis (1977, 1979, 1980a) is reovered.� Loret and Rizzi (1999) presented a thermodynami analysis of anisotropi dual porousmedia with elasti-plasti solid skeletons. The framework is built so as to addressboth �ssured roks and partially saturated soils as speial ases. The fully oupledmodel is applied to strain loalisation and extends the fat that the onset of strainloalization in the three-phase mixture (�ssured or unsaturated) is oinident withthat of the underlying drained solid to fratured media, that is it is not a�etedby the details of the e�etive stress law and of the plasti strain rates. The mate-rial parameters of dual porous media are identi�ed thanks to the sale separationproperty, harateristi to dual porous media. Relevant remarks are provided on themeasurements of onstitutive moduli for the �uid onstituents, the porous blok andthe �ssured medium (the mixture as a whole).
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1. Literature review 1.3. Poroelasti models for dual porosity

Name Porosities/ Idealised ReommendationPermeabilities RepresentationSingle porosity /Singlepermeability nT = np + nf ,
kT = kp + kf , nomass transfer Suitable fornon-fratured reservoirDual porosity /Singlepermeability np, nf ,
kT = kp + kf ,mass transferpermitted Suitable for tightreservoirDual porosity /Dualpermeability np >> nf ,
kf >> kp, masstransferpermitted Typial for naturallyfratured reservoirsTriple porosity /Triplepermeability np >>
{nf1, nf2},
kf2 >> kf1 >>
kp, multiple masstransferpermitted Typial for enhanedgeothermal systems byhydrauli stimulation

Table 1.6: Classi�ation of multi porosity / multi permeability models and reommenda-tions for pratial appliations from Bai et al. (1993). The porosities are denoted as inTable 1.3. The subsript T refers to a total �uid quantity, that is the sum over all the sub-avity systems. The permeability of the porous blok is denoted kp and the permeabilityof the �ssure network is denoted kf . In the last ase, the subsript f1 refers to naturalfratures and f2 refers to arti�ially enhaned fratures or fault gouges.
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1. Literature review 1.3. Poroelasti models for dual porosity1.3.1 Coupling in dual porous media: two approahesThe e�etive stress enters the poroelasti onstitutive equation of the solid phase and linksa hange of stress to the �uid pressures. The theory of poroelastiity is based on tworuial assumptions as proposed by Terzaghi (1923), Biot (1941) and Nur and Byerlee(1971): i: The strains an be expressed as linear ombinations of the stresses within theelasti range of deformation of the porous solid; ii: The strains are linearly related to porepressure. The e�etive stress de�nition proposed by Biot (1941) for single porous mediawith ompressible matrix is widely aepted by the sienti� ommunity. In the literature,a disrepany of opinion still exists among researh teams, on the extension of the e�etivestress to multi porous media. Two main propositions remain so far: (1) the double e�etivestress laws (Elsworth and Bai, 1992); and (2) an extension of Biot's relationship to dualporosity (Khalili and Valliappan, 1996). The logial path of eah proposal is disussedbelow.1. In the double e�etive stress approah (Elsworth and Bai, 1992; Bai et al., 1995),the e�etive stress law is regarded as an intermediate expression relating the strainand the e�etive stress of a single sub-domain. The mixture is separated into twosub-domains, eah of them ontaining a ontinuum or solid phase; and two e�etivestress laws are developed, one for eah sub-domain. Ultimately, no e�etive stress lawis developed to relate the stress experiened by the solid phase with the pore pressureand the �ssure pressure. As a replaement, the authors usually refer to Terzaghi'se�etive stress, following the advie given by Rie (1977) for inelasti onstitutiveformulations for �ssured rok masses. Finally, the total stresses of eah sub-domainare assumed to be in equilibrium. (For porous media, the phases by themselves arenot in equilibrium. They interat, and equilibrium is obtained by aounting for theadditional momentum supply due to these interations.) The material parametersrequired are the ompressibility of the porous matrix sub-domain, the ompressibilityof the fratured sub-domain and the ompressibility of the solid phase (grains) (Baiet al., 1995). The ompressibility of the frature sub-domain should be obtained byassuming that the other sub-domain is rigid (Elsworth and Bai, 1992), whih maynot be appliable in rok media.2. By using the elasti strain equivalene analysis (Khalili and Valliappan, 1996), thee�etive stress is developed in a marosopi sense satisfying the uniqueness theoremfor stress boundary problems in elasti solids and following the work of Nur andByerlee (1971). The material parameters required are the ompressibility of the54



1. Literature review 1.3. Poroelasti models for dual porosityoverall mixture, the ompressibility of the porous blok (without the �ssures) and theompressibility of the solid phase (grains). All these parameters are easily measurablewithout assuming that the other phases are rigid, provided the frature network is nottoo dense, that is if some part of the mixture ontaining no �ssures an be isolated.This approah has the main advantage of representing the solid domain with justone ontinuum, leading to a single e�etive stress law (Khalili, 2008). Hene, thee�etive stress de�nition is respeted and represents the stress experiened by thesolid phase.The interpretation of the pore volumetri hanges of dual ontinua remains underdisussion (Chen and Teufel, 1997). The �rst approah is based on the mixture theory(Wilson and Aifantis, 1982; Bai et al., 1993) and assumes that all the �uid-�ow equationsin a `mixture' have the same form as that of a single porosity system when the mass trans-fer term is dropped. In this approah, the phenomenologial oe�ients are stated �rstand related to their physial interpretation in a subsequent manner. The seond approah(Valliappan and Khalili-Naghadeh, 1990; Khalili and Valliappan, 1996) follows a di�er-ent route by identifying the ouplings parameters and the phenomenologial oe�ientsthrough stress-dependent rok properties.Far from providing de�nitive proof, this disussion aims to ompare the approaheswith their hypotheses and onsequenes on the material parameters to be used and on thee�etive stress de�nition. From the material parameters point of view, the dual porosityoneptualisation introdued by Valliappan and Khalili-Naghadeh (1990) and formulatedby Khalili and Valliappan (1996) is more realisti than the one proposed by Elsworthand Bai (1992). In the double e�etive stress approah, the de�nition the e�etive stressparameters requires the deformation �elds of pore and frature systems to work in serieswhih may not be appliable in real roks. Furthermore, the resulting de�nitions of thee�etive stresses (Elsworth and Bai, 1992; Bai et al., 1995) ontradits the e�etive stresspriniple. In other words, not one of the e�etive stresses represent the stress emanatingfrom the elasti (mehanial) straining of the solid skeleton.1.3.2 AppliationsSeveral authors have presented omprehensive numerial results and appliations based onthe previous onstitutive models. They mainly illustrate �eld pumping problems, onsoli-dation �eld problems and wellbore modeling:55



1. Literature review 1.3. Poroelasti models for dual porosity� Warren and Root (1963) and Kazemi (1969) were the �rst to illustrate graphiallythe time delay, indued by the leakage of the pores into the fratures, on the pressurepro�le desribing a �eld pumping test. They also disovered that the behaviour of afratured reservoir moves towards that of an equivalent single porosity system overlarge time sales. Warren and Root (1963) developed a tehnique for the analysisof build-up pressure data to evaluate the parameters of the model; whereas Kazemi(1969) foused more on alulating in-situ harateristis of the matrix-frature sys-tem, suh as pore-volume ratio, over-all apaity of the formation and total storageapaity of the porous matrix.Later Bourdet and Gringarten (1980) followed the work of Kazemi and added learexplanations on the three distint periods desribing the harateristi pressure re-sponse of a pumping test of a dual porous media.� Khaled et al. (1984) and Khalili et al. (1999) both studied onsolidation behaviourthrough one-dimensional olumn and two-dimensional half-spae problems. Khaledet al. (1984) used the �nite element method to illustrate the harateristi response ofmedia with double porosity: Larger displaements and larger pressures were preditedfor a dual porosity medium than for an equivalent single porosity medium during earlyonsolidation stages.Khalili et al. (1999) linked learly the in-situ behaviour of the medium with the threedistint periods of the time-settlement urve. It is shown that in omparison withan equivalent single porosity model, the settlement in a double porosity mediumis delayed due to the slow dissipation of the exess pore pressure. The extent ofthe delay on the ultimate settlement, due to double porosity, is studied through aparametri approah of the rate of �uid transfer between the lay matrix and the�ssure network, and through the relative ompressibility of the lay matrix.� Zhang et al. (2003) and Zhang and Roegiers (2005) proposed to apply the modelof Bai et al. (1999) to an inlined wellbore in a dual porosity medium. The �rstreferene foused on the borehole stability analysis through several failure riteriawith a general plane strain method. The omparison between their dual porositymodel and a traditional single porosity one, showed that the former presents a muhsmaller shear and spalling failure area, and a slightly larger fraturing area. In otherwords, borehole drilled in a dual-porosity medium is endowed with a larger stablearea, a muh smaller ollapse area, and a slightly larger fraturing area, than in anon-fratured medium. In (Zhang and Roegiers, 2005) similar results were obtained,in partiular: (1) pore pressure inreases and tensile stress dereases as the frature56



1. Literature review 1.4. Thermo-hydro-mehanial oupled modelssti�ness dereases; and (2) negleting the double porosity e�ets, may lead to anunderestimation of the pore pressure near the wellbore.Khalili et al. (2005) presented the modeling of a fully oupled Oil-Gas �ow in a dualporosity medium, applied to an inlined wellbore response. Two main onludingremarks are disussed: First, the magnitude of the stresses and pore pressures devel-oped at the borehole wall, whih are strongly a�eted by the �uid ompressibilities,are overestimated when assuming that the formation is saturated with a single in-ompressible �uid. Seond, the results obtained from the dual porosity single phasemodel show that the �uid transfer at early times is a�eted by the ompliane of theseondary medium.Few referenes present laboratory experiments to validate the proposed models:� Callari and Federio (2000) presented a omparison of laboratory tests and a onven-tional �nite element model of a double porosity medium. Speial are in inluding thee�ets indued by the experimental devies was taken. It was de�nitively shown thatthe onsolidation proess may be strongly delayed by a partially e�ient drainagesystem. The experimental results of onsolidation tests on large samples of arti�ially�ssured lays show a good agreement with the ompared numerial preditions.� Khalili (2003) investigated the importane of the oupling e�ets on the marosopiresponse in referene to the onsolidation of �ssured lays. The importane of thepressure oupling terms is underlined so as to obtain the orret desription of thepore and �ssure pressures over short time periods. The basi �ndings of the investi-gation were validated through a set of laboratory test data.1.4 Thermo-hydro-mehanial oupled modelsBy drawing the analogy between thermo-elastiity and poro-elastiity, Biot equationswere extended by many workers to inlude thermal e�ets, for example Shi�man (1971),Brownell et al. (1977), Aktan and Ali (1976), Bear and Corapioglu (1981) and MTigue(1986). A more exhaustive literature review on the subjet an be found in Lewis andShre�er (1998).Of ourse, the models are built to suit a spei� range of appliations whih often allowsertain deouplings. Models are aounting for either loal thermal equilibrium, whih areoften hydro-mehanial models extended to inlude thermal e�ets, or loal thermal non-equilibrium between the phases. Some models have also been developed with both a dual57



1. Literature review 1.4. Thermo-hydro-mehanial oupled modelsporosity onept and thermal ontributions. Finally, models introduing onvetion aredisussed.Referenes are restrited to the �eld of geotehnial engineering applied to reservoirproblems and enhaned geothermal systems. The models designed for nulear waste repos-itories are not desribed in this study as they all for elasto-plasti oupled models (Fran-ois, 2008).1.4.1 Models with loal thermal equilibriumIn the models presented below, a single temperature is a�eted to the whole medium andloal thermal equilibrium is expeted to our instantaneously.� MTigue (1986) presented a thermoporoelasti model for �uid saturated porous rokand investigated the heating of a half-spae subjet to instantaneous temperaturehange or instantaneous hange of heat �ux, and for drained and undrained on-ditions. The thermo-mehanial onstitutive behaviour is based on Biot's poro-elastiity theory and an be seen as a diret extension of the isothermal theory ofRie and Cleary (1976) thus allowing for ompressible �uid and solid onstituents,as well as thermal expansion of both phases. Charateristi to the model, the ther-mal expansion of the porous medium is ontrolled by the solid skeleton only and thepresene of unonneted porosity is taken into aount. The di�usion onstitutiveequations are equivalent to unoupled Dary's law and to Fourier's law; and the en-ergy balane equation for the mixture presents a highly redued form of the ompleteenergy balane; onvetive transport and thermo-elasti ouplings are intentionallynegleted. This approah allows the exat solutions of several illustrative problemsto be found. The behaviour of these solutions depends ritially upon the ratio ofhydrauli to thermal di�usivities. The main ontribution is the observation that theoupling between heat transport, �uid �ow and deformation is strongest for thermaland �uid di�usivity of like order.� Bai and Abousleiman (1997) investigated thermo-poro-elasti ouplings with ap-pliation to onsolidation. The development of a fully oupled thermal-hydrauli-mehanial approah is promoted to minimise potential errors while modeling thebehaviour of poro-elasti media under non-isothermal onditions. However, partialouplings are aepted sine engineering-orientated analytial solutions are desired.Several simpli�ations are investigated and reommendations are given: partial de-oupling approximations should be disussed, the in�uene of eah oupling term de-58



1. Literature review 1.4. Thermo-hydro-mehanial oupled modelstermined and the omission of suh term justi�ed on physial and analytial grounds.1.4.2 Models with loal thermal non-equilibriumModels aounting for loal thermal non-equilibrium raise two issues. The orret identi�-ation of the work onjugate variables that will lead to the onstitutive oupled laws needsto be identi�ed. The heat transfer onstitutive law and the evaluation of the heat transferparameter, whih often remains unlear for porous media, requires srutiny.� Bowen and Garia (1970) introdued a thermo-mehanial theory of a mixture inwhih eah onstituent has its own temperature �eld. Besides the multiple temper-ature mixture approah, the theory also ontains the e�ets of non-linear elastiity,non-linear heat ondution, non-linear visosity and di�usion. Bowen and Garia(1970) provided a general framework onsistently ruled by the `Rational Thermo-dynamis' theories. In addition to the �eld equations (the balane of mass, linearmomentum, moment of momentum, energy and the entropy inequality), the methodrequires the introdution of the Massieu funtion for eah speies. The appropriatethermodynami restritions on the onstitutive equations are listed. The methodleads to six relations that are neessary and su�ient in order that the Clausius-Duhem inequality be satis�ed for every admissible thermo-dynami proess. Impor-tantly, the method uses oldness (the inverse of temperature) instead of the usualtemperature as an independent variable.In a subsequent work, Bowen and Chen (1975) speialised their model to a mixtureonsisting of isotropi elasti solid and an elasti �uid, with di�usion and energytransfer between the onstituent. This rather involved model is used to reover severalspeial ases from lassial thermoelastiity to the model of Peker and Deresiewiz(1973). More information on the model presented by Bowen and Chen (1975) is givenAppendix A.� Peker and Deresiewiz (1973) presented a formulation to aount for the e�ets oftemperature on the behaviour of �uid-saturated roks. The model desribes a sin-gle porous media in loal thermal non-equilibrium, in whih eah phase is endowedwith its own temperature. A partial stress-strain approah is adopted to obtain thestress-strain-temperature relations. The model uses the usual (isobari) oe�ientsof thermal expansion for the individual phases; and the unusual thermo-elasti ou-pling oe�ients of thermal expansion; that is the strain in the matrix due to a unit59



1. Literature review 1.4. Thermo-hydro-mehanial oupled modelshange of temperature in the liquid phase and the dilatation of the �uid due to a unithange in solid temperature. The latter oupled oe�ients are usually negleted inmost models but are not inappropriate provided experimental measurements. Ex-perimental work is reported to measure the four thermal expansion oe�ients for akerosene-saturated sandstone. The model is then applied to the propagation of planewaves in soils, whih is outside the sope of this researh. Again, more informationon the model presented by Peker and Deresiewiz (1973) is provided in AppendixB.� Aifantis and Beskos (1980) applied the work of Bowen and Garia (1970) to anal-yse mass and heat transfer with the onept of double temperature. The followinghypotheses are made: the solid skeleton experienes no deformation, the �uid isinompressible and has a onstant veloity, density and porosity. Therefore, the ou-pled �eld equations are the balane of momentum for the �uid, the balane of energyfor the solid and the balane of energy for the �uid. Both onvetion and inter-phaseheat transfer phenomena are aounted for, whereas the variation of internal energyof the �uid with respet to pressure hanges is negleted. This work is the �rst on-ise model whih applies loal thermal non-equilibrium to saturated porous media.� De La Cruz and Spanos (1989) applied the proedure of volume averaging to theproblem of seismi propagation in saturated porous media. The oupling betweentemperature variation and mehanial motion is taken into aount. Eah phase isendowed with its own temperature, whih requires the de�nition of a heat transferparameter. The latter ontributes to equalise the two temperatures and is a funtionof the averaged thermal ondutivity over a mirosopi length sale. The de�nitionof the heat transfer parameter seems appropriate if fored onvetion of heat an benegleted in eah phase.� Hsu (1999) studied transient heat ondution in saturated porous materials with avolumetri average sheme under the assumption of loal thermal non-equilibrium.This model presents only the thermal oupling between the solid phase and the �uidphase, that is no mehanial or hydrauli behaviour is aounted for. However, theauthors disuss two parameters: the tortuosity term and the interfaial heat trans-fer term. Aording to their method, losure modeling is required to identify theseparameters. The loal thermal non-equilibrium behaviour is found to be partiularlysigni�ant when the di�erene in thermal di�usivity of �uid and solid is large. The60



1. Literature review 1.4. Thermo-hydro-mehanial oupled modelslosure parameters are found to be dependent on the geometrial mirosopi pa-rameters and on the thermal material parameters. Note that the model presentedby Hsu (1999) applies only for stagnant heat ondution with no onvetion.� Gajo (2002) proposed a non-linear analysis of non-isothermal wave propagation inlinear elasti �uid-saturated porous media. Following the work of Peker and Dere-siewiz (1973), the model desribes a single porous media in loal thermal non-equilibrium, in whih eah phase is endowed with its own temperature. Furthermore,the �uid temperature is oupled to the thermo-mehanial law based on the propo-sitions of Peker and Deresiewiz (1973). The introdution of a di�erent referenetemperature for the pore �uid is required to aount properly for the onvetion on-tribution; this issue is disussed later in Subsetion 1.4.4. The numerial proedureis validated for a hot �uid injetion problem in a steady seepage �ow, with no on-vetion. The inter-phase heat transfer parameter is dedued from the measurementsmade by Peker and Deresiewiz (1973). Finally, the e�ets of onvetion are inves-tigated and the adiabati property of wave propagation is validated in all ases, thatis if onvetion is aounted for or not, and for a wide range of permeabilities.Other referenes (Wakao and Kaguei, 1982; Zanotti and Carbonell, 1984; Kaviany,1995; Jiang et al., 2006) proposed some relevant disussions on the nature of the heattransfer parameter. A proper study of the heat transfer parameter is provided in Setion3.3.2.1.4.3 Models with dual porosity and thermal ontributionMost onstitutive models aounting for both the dual porosity onept and thermal on-tributions have been developed by using the double e�etive stress framework (Bai andRogiers, 1994; Nair et al., 2002, 2004). However, reently, there has been greater interestin using the e�etive stress approah extended from Biot's theory (Masters et al., 2000;Khalili and Selvadurai, 2003).� Aifantis (1980b) provided further omments on the problem of heat extration fromhot dry roks and onsidered brie�y the idea of two temperatures in the transportof heat through �ssured rok. One temperature is assoiated with the pore �uid- solid skeleton and the seond temperature with the �ssure �uid. In addition, thehypotheses of pure onvetive �ow in the �ssure and pure ondution in the pores aremade. For onveniene, the deformation e�ets and the variation of internal energywith respet to pressure hanges are negleted. Importantly, inter-phase heat transfer61



1. Literature review 1.4. Thermo-hydro-mehanial oupled modelsis introdued. This work ends with two unoupled balane of energy equations andprovides the �rst idea regarding the development of non-isothermal models in �ssuredmedia.� Bai and Rogiers (1994) presented some fully oupled analytial solutions based on aporo-thermo-mehanial formulation for fratured media. This study, whih bringsquite a omplete oupling of the mass balane equations and the balane of mo-mentum equation, displays an unoupled energy equation. Besides the dual porositydistint onept, the main short oming of this model is that the total stress is relatedto both the temperature of the solid-pore system and the temperature of the �ssure�uid. In other words, the thermal expansion of the mixture is ontrolled by the wholemixture rather than by the solid skeleton only. In the end, the problem is reduedto four unknowns (the �uid pressures and the solid and the �uid temperatures) inthe form of a linear poro-thermo-mehanial system. The radial displaement arediretly linked to the four unknowns by assuming that the poro-thermo-mehaniale�et primarily ours in the radial diretion, that it is independent of irumferentialand vertial orientations, and that it vanishes at in�nite boundary. The analytialresponses were sought and applied to the ooling of a geothermal reservoir.� Masters et al. (2000) extended a previous hydro-mehanial dual porosity model(Ghafouri and Lewis, 1996) to aount for thermal e�ets. The model assumes loalthermal equilibrium between the phases and aounts for ondution and onvetionin the theoretial development. The �uid domain is divided in two distint overlap-ping porous media and the �ssure-network is assumed to be non-deformable. Thelatter assumption leads to a very simple e�etive stress law, whih is omparable toTerzaghi's formula. Therefore, the pressure of the �ssure-network is not linked to thebalane of momentum equation, whih is a major drawbak. The onvetive termsare aounted for in the balane of energy through �titious veloities. Finally, thebalane of energy is unoupled with the solid deformation whih is a strong approx-imation. Consistently, two benhmark problems are proposed to validate the model,an isothermal dual porosity problem and a non-isothermal single porosity one. Fromthe latter setup a surprising onlusion is drawn, the pore pressure response is notin�uened by thermal loading when no onvetion is taken into aount.� Khalili and Selvadurai (2003) presented a fully oupled thermo-hydro-mehanialmodel for fully-saturated elasti dual porous media. The model assumes loal ther-mal non-equilibrium and one temperature is assigned to eah phase of the mixture.62



1. Literature review 1.4. Thermo-hydro-mehanial oupled modelsThe �ssured medium is oneptualised by two overlapping single porous media anda onsistent e�etive stress relation is introdued. Hydrauli and thermal di�usionare de�ned for eah phase and the ross-di�usion phenomenon alled thermo-osmosisis aounted for. Three balane of energy equations are introdued whih are fullyoupled with the pressures and the solid deformation. Fored thermal onvetion isaounted for along with inter-phase heat transfer. Finally, the hange of internalenergy due to a hange of �uid volume is introdued in the balane of energy for the�uid phases. This model presents the advantages of being fully oupled; nevertheless,a theoretial framework (thermodynamis of irreversible proesses) should be devel-oped to assure that the Clausius-Duhem inequality is satis�ed for every admissiblethermodynamial proess.� Nair et al. (2002) and Nair et al. (2004) presented a thermo-hydro-mehanial modelextended to dual porosity media. In this work, the thermal equilibrium approahis adopted and both onvetive and ondutive phenomena are inorporated into a�nite element formulation. However, the energy onservation equation is not oupledwith the mass onservation equations for the �uids. Results are presented on thesensitivity of the thermoelasti response in dual porosity media to frature spaing,but based on the double e�etive stress approah (Elsworth and Bai, 1992). Theimpat of the thermal loading, on the overall purely ondutive response, indues aninrease of pore pressure along with an inrease of tensile e�etive stress (Terzaghi'se�etive stress). The magnitude of these inreases are signi�antly higher for thenon-isothermal ase than for the isothermal one. The e�et of the dual porosityparameters are also presented. Note that a diret link between the the fraturespaing and the overall ompliane of the medium is assumed. Hene, a derease offrature spaing indues an inrease of the overall ompliane of the medium, whihindues an inrease in pore pressure in the primary medium. Aside from the useof the separate and overlapping tehniques, this work provides the �rst numerialresults on thermal e�ets in �ssured media.1.4.4 Models with onvetionHeat transport an be performed by ondution, onvetion (fored and free) and by ra-diation. Condution is usually taken into aount in thermo-hydro-mehanial models asthe main transport phenomenon; however, fored onvetion may also be of some interestspei�ally in large permeability �ssure networks allowing a greater �uid veloity. Freeonvetion may also be observed in soils and in the modeling of the earth rust. Neverthe-63



1. Literature review 1.4. Thermo-hydro-mehanial oupled modelsless, free onvetion and radiation are disregarded in this study. Thus, fored onvetionis simply referred to as onvetion.� Bear and Corapioglu (1981) developed a mathematial model for onsolidation ina thermoelasti aquifer due to hot water injetion or pumping whih inludes thee�ets of onvetion. The model aimed at land subsidene owing to temperature andpressure hanges in saturated porous media in thermal equilibrium. The omprehen-sive balane of momentum is obtained with Terzaghi's e�etive stress relation. Thebalane of mass of the �uid is simpli�ed for vertial onsolidation only, that is thestrain ontribution is related to the pressure and the temperature. Heat onvetion isonsistently aounted for in the balane of energy for the mixture. The averaging ofthe model was done over the vertial thikness of an aquifer; to be applied to thermo-onsolidation in the viinity of a single pumping/injetion well in a one-dimensionalproblem along the radial diretion. No numerial alulation is proposed; whereas alear disussion of the various model hypotheses are summarised in the onlusion.� Kurashige (1989) presented a thermoelasti theory of fully-saturated single porousmedia whih aounts for fored onvetion. In addition, the di�erene betweenthe thermal expansibility between the solid phase and the �uid phase is orretlyintrodued within the hange of �uid mass per unit volume. By extending the theoryof Rie and Cleary (1976), a thermoelasti onstitutive law in thermal equilibriumis proposed. Analytial equations of thermal stresses aused by hot or old waterinjetion are sought for various geotehnial materials: two graniti roks and threesandstones. Cold water injetion indues a drop in pore pressure and an inrease intotal radial stress in the viinity of the avity. If onvetion is negleted (materialswith a low hydrauli di�usivity, suh as graniti roks), the high-temperature high-stress region is restrited to the viinity of the loaded-avity for roks having adi�usivity ratio (thermal over hydrauli) lose to one. Conversely when onvetionis aounted for (high hydrauli di�usivity materials, suh as sandstones), the high-stress region penetrates deeper into the semi-in�nite rok.Later, similar onlusions were drawn by Nair et al. (2004) within a sensitivity anal-ysis to study the e�et of heat transport via ondution and onvetion as part of athermo-hydro-mehanial model for single porosity media.� Pao et al. (2001) presented the extension of a three-phase (water, oil and gas) modelto inlude non-isothermal e�ets. Various numerial examples are presented andstudied. Hot water injetion, aounting for ondution and onvetion is analysed64



1. Literature review 1.4. Thermo-hydro-mehanial oupled modelswith a partiular fous on the in�uene of temperature: as the initial �uid visosityredues, the pore pressure drops. Signi�ant di�erenes are observed in the pressureand temperature responses when onvetion is negleted. However, no di�erene anbe seen if the Petrov-Galerkin up-winding sheme is used, whih implies that theoverall Pélet number is quite small and/or that the far-�eld boundary ondition isa �ux-type boundary ondition. No information on the overall Pélet number nor onthe grid Pélet number is given.� Gajo (2002) proposed a non-linear analysis of non-isothermal wave propagation inlinear elasti �uid-saturated porous media. Fored onvetion due to large pore �uiddisplaement is aounted for based on the balane of energy equation, as proposedby MTigue (1986). Thermal fored onvetion is separated from the balane ofenergy equation by the introdution of a seond referene temperature (a new primaryvariable) whih is linked to the onvetion ontribution to within nfρfCf,v. Thisoriginal ontribution is introdued in order to properly aount for heat onvetion;that is the �uid is heated outside of the element and not inside, therefore the referenetemperature of the �uid should be that of the injetion temperature (as if the �uidtemperature was suddenly equal to the injetion temperature). However appealing,this new primary variable is only required if the hypothesis raised by Peker andDeresiewiz (1973) is maintained. Sine the latter hypothesis is disregarded in ourmodel (see Remark 2.13, p. 117), a seond referene temperature is not needed andthe onvetion ontribution remains in the balane of energy equation.
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Chapter 2Field and Constitutive equations
This hapter outlines the development of a fully oupled thermo-hydro-mehanial (THM)model for saturated porous media with dual porosity. The equilibrium of the medium isdesribed by the �eld equations whereas the behaviour of the medium under stress loadingis introdued by the onstitutive equations.Setion 2.1 presents the �eld equations for a multi-speies multi-phase medium. Inmulti-speies media, eah speies an be onsidered separately at a marosopi level.However, as eah speies is part of a mixture, the summation over the speies leads tothe whole mixture equation, whih is written in an equivalent ontinuum manner. Theinteration phenomena in between speies or with the surroundings are better viewed whenonsidering the �eld equations for eah speies. Expressing only the mixture relation isvery muh restritive as the internal interations in between the speies are elusive. For thesake of generality, the system presented here is open to the surroundings. Throughout thissetion, the balane equations are written for both the speies and the mixture as a wholeto bring in the light the interations with other speies and with the surroundings. The�eld equations are reovered by use of the general balane equation. Applying this equationto the appropriate funtions allows us to obtain the onservation of mass, the balane ofmomentum, the balane of energy and the balane of entropy equations. Finally the loalClausius-Duhem inequality is dedued from both the balane of energy and of entropy.The mehanial onstitutive equations desribe the deformation model whih is gov-erned by a thermo-poro-elasti theory through Setion 2.2. Fousing on a double porositymodel, the relations are restrited to a three-phase losed system. A previously presentedhydro-mehanial double porosity model is used as a base to be extended. This seondsetion onentrates the light on the desription of the diret and oupled behaviour ofthe phases. Some restritions and indiations on the onstitutive equations are deduedfrom the Clausius-Duhem inequality obtained in Setion 2.1. Three types of onstitutive66



2. Constitutive model 2.1. General �eld equationsequations are segregated: (1) the thermo-mehanial behaviour equations, (2) the di�u-sion equations, and �nally (3) the transfer equations. Some phases are not involved in allonstitutive equation types due to observation of experiments and de�nitions. In addition,beause some unommon oupled mehanisms are identi�ed, partiular attention is givento foreast their in�uene.Finally, Setion 2.3 introdues the omprehensive �eld equations, whih are obtained byinluding the onstitutive equations of Setion 2.2 in the general �eld equations of Setion2.1. The omprehensive equations are expressed in terms of primary variables to failitatethe �nite element disretisation performed in Chapter 4.2.1 General �eld equationsThe modeling of deformation (thermo-hydro-mehanial ouplings), mass transfer, momen-tum transfer and heat transfer, that generates generalised di�usion in porous media withdouble porosity, will assume a ontinuum mixture framework. For the model to be general,the �eld equations are written in the ontext of an open system: the surroundings mayontribute to the balane equations of mass, momentum, energy and entropy. In additionto these external interation phenomena, internal interations our: other speies mayalso ontribute to the balane equations (Figure 2.1).This thermodynami analysis stays in the ontinuity of Eringen and Ingram (1965)paper on mixtures. They provided a detailed derivation of the �eld balane equationsfor a hemially reating ontinuum in whih eah phases of the mixture was onsideredto interat with the other phases via transfer. But the whole mixture was onsidered asa losed system with respet to the surroundings. Considering the work of Eringen andIngram (1965), this development may appear as an extension. The work of Loret andSimões (2005) is taken as referene, when onsidering the extension of the model to anopen system.Traditionally in ontinuum mehanis, all phases are onsidered equal in importane.By ontrast in the theory of mixture, the solid skeleton is assumed to have a speial rolebeause it is the referene onstituent. Hene, Biot's approah of mixture is preferred tothe onventional approah (Biot, 1977).The aim of this setion is to provide the thermodynami argument that leads to thegeneral �eld equations form of our mixture problem. First, the de�nition of the mass,volume and kinematis desriptor needed for the further understanding are introdued.Then the general loal balane equation is established, for both a single speies of themixture and for the mixture as a whole. Rewriting the general balane equation using67



2. Constitutive model 2.1. General �eld equationsspei� funtion tensors, the balane of mass, of momentum, of energy and of entropyequations (for an open system) are introdued. Finally, the Clausius-Duhem inequality isreovered.2.1.1 De�nitionThe developments presented here are intended to be used for a multi-phase / multi-speiesmixture. A phase may ontain several speies. For example, a �uid phase may ontaintwo types of �uids of di�erent nature, e.g. water and oil. In order to �x the ideas, thede�nition of phases and speies are introdued:� Phases (e.g. solid(s), �uid of the pores (p) and �uid of the �ssures (f)) represent thespeies when viewed as part of the mixture, also referred to as porous medium. In theontext of the theory of mixture, the phases are viewed as independent overlappingontinua. The solid phase is also referred to as the solid skeleton.� Speies an be solid or �uids. All speies are onsidered equal in importane, exeptthe solid skeleton whih plays a partiular role. Within phases, speies di�use. Arossphases, a physial reation ours, also alled transfer, e.g. mass transfer. Masstransfer an be understood as a way for the medium to adapt to physial loadings,by modifying the internal repartition of its speies, see Remark 2.1.Remark 2.1. Let us onsider for example a vertial olumn of saturated porous medium,loaded and drained at the top. The latter will onsolidate by releasing �uid on the drainededge. Consolidation is the onsequene of an internal rearrangement of the �uid. In thease of a medium with double porosity, the onsolidation is delayed beause the internalrepartition ours in three time phases: in the �rst phase the �uid of the �ssures is drainedout, then a mass transfer of �uid takes plae from the pores into the �ssures and �nallythe released �uid is mostly provided by the pores, as presented by (Khalili et al., 1999).Negleting the mass transfer mehanisms in a porous medium with double porosity maylead to an under-estimated time of onsolidation.At eah point of eah phase are de�ned intrinsi quantities, labeled by subsripts, andapparent or partial quantities, labeled by supersripts. Let us onsider a porous mediumof volume V, of surfae S, onsisting of k speies in a region. The set of all speies is noted
K. Thanks to the marosopi approah, at eah point of the medium, the speies k isintrodued along with its intrinsi properties of mass Mk and volume Vk. Eah speies k68



2. Constitutive model 2.1. General �eld equations

Figure 2.1: Sketh of the exhanges that are aounted for in the multi-speies multi-phaseopen system. For illustration, it is assumed that, at any geometrial point, the speiesan be segregated in three phases, eah of them ontaining several speies. (1) Transport :Speies of the �uid phases (the �ssure phase and the pore phase) are transported to, andfrom, the boundary by (hydrauli and thermal) di�usion and by fored onvetion. Inaddition, the oupling of the hydrauli and thermal di�usion indues thermo-osmosis. (2)Transfer : Phases an exhange mass, momentum, energy and entropy. These exhangesare termed transfers. The harateristis of eah exhange depend on both the onernedphases (its density, visosity, hemial potential) and on the nature of the `membranes'that separate the phases. Thus low permeable phases are assoiated to a large transfertime by ontrast with higher permeable phases whih are assoiated to a small transfertime. An in�nite transfer time implies impermeability. (3) Exhanges at the boundary :If in addition, the system is thermodynamially open, supply and/or removal form thesurroundings, of mass, momentum, energy and entropy an take plae at eah geometrialpoint.is endowed with its volume fration nk, its intrinsi density ρk, its partial density ρk (nosummation over the repeated subsript k),
nk =

Vk
V

; ρk =
Mk

Vk
; ρk =

Mk

V
= nkρk, k ∈ K, (2.1)and its absolute veloity vk. For a material point oupying the position x at time t, theabsolute veloity vk is de�ned by,vk =

∂ x
∂ t

, k ∈ K. (2.2)69



2. Constitutive model 2.1. General �eld equationsThroughout, the following approximation is used: The surfae fration is onsideredequal to the volume fration nk.Following Biot's approah, that is the solid skeleton is paid a speial attention andspeies are viewed as �owing through the solid skeleton, the equations of motion are nowintrodued. As a onsequene, the volume onsidered is the volume of the solid skeleton
Vs. The motion of a point x of the solid is desribed by the veloity of the solid vs and bythe assoiated deformation gradient F.The mass �ux per unit urrent area through the solid Mk is de�ned as the di�ereneof veloity between the speies and the solid, and as proportional to the partial density:Mk = ρk (vk − vs) , k ∈ K. (2.3)The mixture as a whole is endowed with its own properties like its baryentri veloityv. Thus, the di�usion veloity with respet to the mass enter of the speies k writes,uk = vk − v, k ∈ K. (2.4)It is worth noting that the di�usion veloity with respet to the mass enter does notdesribe the same �ux as the �ltration veloity with respet to the solid, introdued inDary's law of seepage, nor with the di�usion veloity with respet to the �uid phase,de�ned in Fik's law of di�usion.The total mass density of the mixture ρ is de�ned by,

ρ =
∑

k∈K

ρk. (2.5)The assoiated properties of the mixture as a whole are de�ned by mass averaging, forexample its baryentri veloity v and its baryentri body fore b, are
ρv =

∑

k∈K

ρkvk; ρb =
∑

k∈K

ρkbk; k ∈ K. (2.6)Remark 2.2. An important remark needs to be done on the following unit detail. Certainproperties ψ of the mixture as a whole are measured per unit volume, where as the orre-sponding properties ψk attahed to the speies are measured per unit of mass, for exampleinternal energy, enthalpy, entropy, et. For these funtions, the de�nition of the propertyat the mixture level is not ρψ =
∑

k∈K ρ
kψk but ψ =

∑
k∈K ρ

kψk.70



2. Constitutive model 2.1. General �eld equationsCarrying equation (2.4) into (2.6) brings,
∑

k∈K

ρkuk = 0, k ∈ K. (2.7)Two types of total time derivatives are used in the further analysis, D/D t following themass enter and dk/dt following the partiles of speies k. The total derivative followingthe solid is noted d/dt instead of ds/dt to simplify the notations. The three total timederivatives of a generi tensor �eld ψ(x, t) in the Eulerian frame are,
Dψ

Dt
=

∂ψ

∂t
+∇ψ · v,

dkψ

dt
=

∂ψ

∂t
+∇ψ · vk, k ∈ K, (2.8)

dψ

dt
=

∂ψ

∂t
+∇ψ · vs.where ∇ represents the gradient operator with respet to the oordinates in the deformedon�guration x. ∇ is the same for eah derivative. The underlying idea is that theposition vetors in the atual on�guration will oinide for all the phases, as opposed tothe veloities whih are di�erent for eah phase.2.1.2 General form of the balane equationLet us denote sk a volume soure per unit urrent volume and ik a surfae soure (�ux)per unit urrent area. Considering a single phase medium of a losed system, the rate ofhange of a volume integral of a ontinuously di�erentiable funtion ψk is usually ast asa sum of a total volume soure and a �ux through the surfae dS,

d

dt

∫

V
ψk dV

︸ ︷︷ ︸
rate of change

=

∫

V
sk dV

︸ ︷︷ ︸
Volume source

+

∫

S
ik dS

︸ ︷︷ ︸
flux through the surface

, k ∈ K. (2.9)
Let us now introdue ψ̂k: a volume soure due to both mass transfer between phasesof the mixture and external mass supply (or deposit representing added mass or extratedmass depending on its sign). Considering a multi-phase medium of an open system, aseond volume integral should be added to (2.9), representing the mass transfer betweenphases and/or the mass deposit due to external supply,71



2. Constitutive model 2.1. General �eld equations
d

dt

∫

V
ψk dV =

∫

V
sk dV +

∫

S
ik dS +

∫

V
ψ̂k dV

︸ ︷︷ ︸
external mass supply

, k ∈ K. (2.10)The sum over all the speies of the net rate supply due to mass transfer and externalmass deposit is denoted ψ̂,
∑

k∈K

ψ̂k = ψ̂, k ∈ K. (2.11)The sum of mass transfer representing the mass exhange in between the phases of themixture do not appear in ψ̂. The entity ψ̂ haraterises an open system if not equal tozero, and vanishes in absene of external mass deposit (losed system).In addition, the generalised Reynold's theorem states that the rate of hange of a volumeintegral is equal to the rate of hange as if the volume was moving with the solid veloityto whih should be added the ontribution in terms of �ux of the individual speies,
d

dt

∫

V
ψk dV =

∫

V

dψk

dt
+ ψk div vs dV

︸ ︷︷ ︸
rate of change followingvs

+

∫

V
div

(
ψk

ρk
Mk

)
dV

︸ ︷︷ ︸
flux contribution of species k

, k ∈ K. (2.12)
Substituting equation (2.12) into (2.10) and expressing the result in a loal form for ageneri volume, provides the loal form of the balane equation of a speies k,

dψk

dt
+ ψk divvs + div

(
ψk

ρk
Mk

)
− sk − div ik = ψ̂k, k ∈ K. (2.13)This loal balane equation an be written in a di�erent form, using the rate of volumehange following the partiles k de�ned eq. (2.8),

dkψk

dt
+ ψk divvk − sk − div ik = ψ̂k, k ∈ K. (2.14)Remark 2.3. In ontrast with some other works, e.g. Eringen and Ingram (1965), thegeneri �eld ψk is assumed to be smooth enough so that no moving disontinuity surfae isinterseting the volume V . In onsequene no jump onditions equation is needed.The generi relations (2.13) and (2.14) presented in this setion are applied in turn forthe balane of mass, of momentum, of energy and of entropy.72



2. Constitutive model 2.1. General �eld equations2.1.3 Balane of massConsidering a losed system, the ommonly used balane of mass equation for a ontinuumintrodues the density ρ = ρ (x, t) at the loation x at time t. The mass ontained in adomain V at time t is,
M =

∫

V
ρ dV . (2.15)The onservation of mass of a losed system requires,

DM

Dt
= 0, (2.16)whih an beome by use of the generalised Reynolds theorem eq. (2.12),

∫

V

DM

Dt
+ ρ divv = 0. (2.17)Sine the result must hold for an arbitrary domain V , the integrand must vanish to give,

Dρ

Dt
+ ρ divv = 0. (2.18)To introdue the extension of the equation of ontinuity (balane of mass) to an opensystem, the generi balane equation (2.14) is applied to the density of a body subjetedto mass supply. The obtained balane of mass for the speies k leads to the introdutionof a new generi balane equation in Remark 2.4. Next, di�usion and mass transfer on-tributions are identi�ed in the balane of mass for the speies. Finally, a summation overspeies introdues to the balane of mass for the mixture as a whole.2.1.3.1 The balane of mass for the speiesFollowing the work of Eringen and Ingram (1965), the balane of mass for the speies k isobtained by replaing the following propositions in equation (2.14),

ψk = ρk︸ ︷︷ ︸
partial density

, sk = 0, ik = 0, ψ̂k = ρ̂k = ρ̂ktr + ρ̂kex︸ ︷︷ ︸
rate of mass supply

, k ∈ K. (2.19)The rate of mass supply is of two types: (1) ρ̂ktr represents the mass supply due to masstransfer, ommonly due to physial exhanges in between the phases; and (2) ρ̂kex representsthe mass supply due to external mass deposition in the ase of an open system. The total73



2. Constitutive model 2.1. General �eld equationsrate of mass supply redues to the sum of the mass supply due to external ontributiononly, sine the ontributions due to internal mass transfer sum to zero,
∑

k∈K

ρ̂ktr = 0, ρ̂ =
∑

k∈K

ρ̂kex =
∑

k∈K

ρ̂k, k ∈ K. (2.20)The balane of mass equation for the speies k is obtained by inserting equation (2.19) into(2.14),
dkρk

dt
+ ρkdivvk = ρ̂k, k ∈ K. (2.21)Remark 2.4. The balane equation for a generi funtion ψk an be re-written in thefollowing form, by use of equation (2.14),

dk

dt

(
ρkψk

ρk

)
+ ψkdivvk − sk − div ik = ψ̂k, k ∈ K. (2.22)Let us develop the �rst term,

ρk
dk

dt

(
ψk

ρk

)
+

(
ψk

ρk

)
dkρk

dt
+ ψkdivvk − sk − div ik = ψ̂k, k ∈ K; (2.23)and replae dkρk/dt using equation (2.21),

ρk
dk

dt

(
ψk

ρk

)
+

(
ψk

ρk

)(
ρ̂k − ρkdiv vk

)
+ψkdivvk−sk−div ik = ψ̂k, k ∈ K.(2.24)Rearranging and simplifying leads to the following form of the balane of equation for ageneri funtion ψk,

ρk
dk

dt

(
ψk

ρk

)
− sk − div ik = ψ̂k −

ψk

ρk
ρ̂k, k ∈ K. (2.25)
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2. Constitutive model 2.1. General �eld equations2.1.3.2 Di�usion and mass transferIn order to highlight the fat that the density hange is due to two physial reations,namely (1) di�usion of speies through the solid skeleton and (2) mass transfer (internaland external), the balane of mass for the speies k equation (2.21) may be written withrespet to the solid skeleton veloity by use of equation (2.13),
dρk

dt
+ ρkdivvs = −divMk︸ ︷︷ ︸

(1)

+ ρ̂ktr + ρ̂kex︸ ︷︷ ︸
(2)

, k ∈ K. (2.26)This last relation displays (1) the mass �ux per unit urrent area Mk whih representsthe di�usion term, and (2) the mass transfer whih is deomposed to visualise the internaland the external ontributions.2.1.3.3 Balane of mass for the mixtureUsing the de�nitions of the overall density ρ and of the baryentri veloity v introduedin equations (2.5) and (2.6), the time derivative relations in equation (2.8) and the losurerelation of equation (2.20)1, the sum of equation (2.21) over speies leads to the balane ofmass for the mixture,
Dρ

Dt
+ ρ divv = ρ̂. (2.27)in whih ρ̂ haraterises an open system if not equal to zero. ρ̂ may be negative or positivedepending if the speies is inreasing or dereasing in mass. The balane of mass for themixture is written in the same format as for an equivalent single ontinuum of density ρ,moving along a baryentri veloity v and experiening an external mass supply rate of ρ̂.2.1.4 Balane of momentumThe balane of momentum of a losed system, also alled Newton's law of motion, statesthat in an initial frame of referene, the material rate of hange of the linear momentumof a body is equal to the resultant applied fores. Considering the linear momentum ρ vof a body subjeted to surfae tration σ and body fores per unit volume ρ b, Newton'slaw states that:

d

dt

∫

V
ρ v dV

︸ ︷︷ ︸
linear momentum

=

∫

V
ρ b dV +

∫

S
σ · dS

︸ ︷︷ ︸
applied forces

, (2.28)75



2. Constitutive model 2.1. General �eld equationswhih an be written for a generi volume V,
divσ + ρ

(b− dv
dt

)
= 0. (2.29)In order to extend Newton's law of motion to an open system, the generi equationof balane (2.25) is applied to the linear momentum ρ v of a body subjeted to surfaetration σ, body fores per unit volume ρ b, and a momentum supply. The balane ofmomentum for the speies and for the mixture as a whole are onsidered in turn.2.1.4.1 Balane of momentum for the speiesFollowing the work of Eringen and Ingram (1965), the balane of momentum for the speies

k is obtained by setting,
ψk = ρkvk︸ ︷︷ ︸

linear momentum

, sk = ρkbk︸ ︷︷ ︸
body force

, ik = σ
k

︸ ︷︷ ︸
partial stress

, ψ̂k = ρ̂kṽk + p̂k︸ ︷︷ ︸
total momentum supply

, k ∈ K.(2.30)
� The term p̂k represents the momentum supply to the speies k by the rest of themixture and from external momentum supply. The momentum supply may be de�nedby onstitutive equations. An alternative solution is proposed in Remark 2.6.� The term ρ̂kṽk represents the momentum supply due to mass transfer under theveloity ṽk, for internal mass transfer and external mass supply.� The veloities ṽk, k ∈ K, are the veloities of the masses just before deposit ortransfer. These veloities have to be spei�ed by onstitutive equations.The net momentum supply is only ontributed by the surroundings in the external masssupply,̂
ρ ṽ =

∑

k∈K

ρ̂kṽk + p̂k =
∑

k∈K

êkM; (2.31)where êkM represents the volume rate of momentum. An example of êkM is given in Remark2.20, p. 156. Equation (2.31) learly shows that the total momentum supply vanishes ifonly internal mass transfer takes plae. 76



2. Constitutive model 2.1. General �eld equationsReplaing the previous propositions of equation (2.30) into the balane generi equation(2.25) and hanging sign, brings the balane of momentum for the speies k,
divσk + ρk

(bk −
dkvk
dt

)
= ρ̂k (vk − ṽk)︸ ︷︷ ︸

mass transfer

− p̂k︸︷︷︸
external

supply

, k ∈ K. (2.32)The partial or apparent stresses are linked to the intrinsi stresses σk of the assoiatedphases through the volume frations,
σ
k = nkσk, k ∈ K. (2.33)Remark 2.5. Note that the interation momentum due to both mass transfer (internaland external mass deposit), on the left-hand-side of equation (2.32), that ontributes to thebalane of momentum is not the whole momentum supply. In fat, if the mass suppliedis endowed with the veloity of the targeted speies k, that is ṽk = vk, the �rst termof the interation momentum vanishes, while the momentum of the mass transfered ordeposited itself does not. In general, the interation momentum ρ̂k (vk − ṽk) in the balaneof momentum equation (2.32) due to mass transfer and external mass deposit does notvanish. Two examples are presented:� Loret and Simões (2005) in a three phase model of artiular artilage de�ne the solidphase and two �uid phases. A speies of intra�brillar phase is assumed to movewith the same veloity as the solid. While a speies k in the extra�brillar phase isendowed with its own veloity ṽk = vk,E so as to be able to di�use in water throughthe mixture. Thus upon transfer from the extra�brillar phase to the intra�brillarphase, the veloity of a speies k undergoes the disontinuity vs − vk,E.� Khalili and Selvadurai (2003) in a three phase model of saturated soils with doubleporosity de�ne the solid phase and two �uid phases: one �uid loated in the �ssurenetwork and the seond �uid loated in the porous blok. In both phases, speies areassumed to move with their own intrinsi veloity so as to be able to di�use in waterthrough the mixture within the phase, namely vk,p for the porous blok and vk,f forthe �ssure network. Thus, upon transfer from the porous blok �uid phase to the�ssure network �uid phase, the veloity of the speies k undergoes the disontinuity

vk,p − vk,f . 77



2. Constitutive model 2.1. General �eld equationsRemark 2.6. If the momentum supplies p̂k are not provided by the onstitutive equations,the generalised di�usion equations are postulated �rst, based on the Clausius-Duhem in-equality. The momentum supplies are then elusive, but, if wished, they an be dedued andidenti�ed from the balane of momentum equations.2.1.4.2 Balane of momentum for the mixtureLet us introdue the inner part σI of the total stress σ, whih is obtained by summationof the partial stresses,
σ
I =

∑

k∈K

σ
k. (2.34)The balane of momentum for the mixture is obtained by summing the individualbalanes of momentum (2.32) over all speies and using the losure relation (2.31),

divσI + ρ b−
∑

k∈K

(
ρk

dkvk
dt

+ ρ̂kvk) = −ρ̂ ṽ. (2.35)The balane of momentum for the mixture as a whole, obtained by summation overspeies, an be re-written in the following format,
divσ + ρ

(b− Dv
Dt

)
= ρ̂ (v− ṽ) , (2.36)where v and b are respetively the baryentri veloity and the overall body fore de�nedby equation (2.6), and σ is the Cauhy stress of the mixture,

σ =
∑

k∈K

σ
k − ρk uk ⊗ uk. (2.37)The right-hand-side term of the balane of momentum for the mixture will vanish inthe ase of a losed system (losed from the mass and the momentum point of view). Theproof of equation (2.36) is presented in Demonstration 2.1.Demonstration 2.1. The Proof of equation 2.36 is obtained by modifying the derivativeof (2.6), namely ρ v =

∑
k ρ

k vk, to obtain:78



2. Constitutive model 2.1. General �eld equations
Dρ

D t
v + ρ

D v

D t
=

∑

k∈K

ρk
dkvk

dt
+

dkρk

dt
vk −∇

(
ρk vk

)
· uk by (2.4), (2.8)

ρ̂v − ρ vdiv v + ρ
Dv

Dt
=

∑

k∈K

ρk
dkvk

dt
+ ρ̂kvk − ρkvk div vk −∇

(
ρk vk

)
· uk

by (2.21), (2.27)

⇒ ρ
D v

D t
=

∑

k∈K

ρk
dkvk

dt
+ ρ̂kuk − ρkvk divuk −∇

(
ρk vk

)
· uk

by (2.6), (2.4)

=
∑

k∈K

ρk
dkvk

dt
+ ρ̂kuk −

∑

k∈K

div
(
ρk vk ⊗ uk

)

=
∑

k∈K

ρk
dkvk

dt
+ ρ̂kuk −

∑

k∈K

div
(
ρk uk ⊗ uk

)
by (2.7)Insertion of this relation in the sum of the individual balanes of momentum (2.32) over all thespeies yields,

divσ + ρ

(b− Dv

Dt

)
+
∑

ρ̂k (ṽk − v) + p̂k = 0. (2.38)Use of the losure relation (2.31) yields to equation (2.36).
Remark 2.7. For an open system, the stresses of the mixture may not be symmetri.However in this work, the moment of momentum supplies are assumed to be null, so thatthe Cauhy stress tensors representing the partial stresses of individual speies σ

k and thestress of the mixture σ are symmetri.2.1.5 Balane of energyThe law of onservation of energy governs the motion of a ontinuum. In an isothermalontext, the energy equation is simply the �rst integral of the equation of motion. If thermale�ets beome signi�ant, the equation of energy beomes an independent equation to besatis�ed. 79



2. Constitutive model 2.1. General �eld equationsThe �rst priniple of thermodynamis (also alled balane of energy) an be stated asfollows (Mandel, 1974): Considering a ontinuum of a losed system (no mass, momentumnor energy exhange ours with the surroundings) whih an possibly be in ontat withthree forms of energy, namely (2) kineti energy, (3) energy supplied by surroundings and(4) heat supply; there exists a funtion of state of the ontinuum alled (1) internal energy,suh that:
dU︸︷︷︸
(1)

+ dC︸︷︷︸
(2)

= δWext︸ ︷︷ ︸
(3)

+ δQ︸︷︷︸
(4)

. (2.39)The di�erential in front of the internal energy (1) and the kineti energy (2) is meant toemphasis the fat that these entities are funtions of the state of the body (d being an exatdi�erential), whereas the entities on the right-hand-side are not (δ being an inrement).Expressing the �rst priniple (2.39) in terms of rate gives,
d

dt
(U + C) = δ

δt
Wext +

δ

δt
Q, (2.40)where δWext/δt and δQ/δt are the rate of hange of the energy supplied by the surroundings

Wext and the heat supply Q per unit of time. All forms of energy and work that appearin equation (2.40) are now onsidered in turn:(1) The rate of internal energy is de�ned as a funtion of the internal energy per unit ofmass U and of the internal fore per unit mass Fint, in the form,
dU
dt

=
d

dt

∫

V
ρ U dV −

∫

V
ρ Fint · v dV . (2.41)(2) The rate of kineti energy, ontained in a regular domain V at time t, relates to theaeleration a through,

C =

∫

V

1

2
ρ v2 dV ; and dC

dt
=

∫

V
ρ v · a dV . (2.42)(3) The rate of energy due to external mehanial soures aounts for the external foreper unit mass Fext and for the surfae ontributions,

δWext

δt
=

∫

V
ρ Fext · v dV +

∫

∂V
σ · v · dS. (2.43)80



2. Constitutive model 2.1. General �eld equations(4) The rate of energy due to heat supply from a volume soure r (due for example to:thermal radiation, eletro-hemial reation et...) and from a heat �ux vetor (due forexample to: heat ondution) h is,
δQ
δt

=

∫

V
r dV +

∫

∂V
h · dS. (2.44)The balane of energy extended to an open system is suessively written for the speies

k and for the mixture. Similarly to Eringen and Ingram (1965), the generi balane equa-tion is used as a base to write the balane of energy for the speies. On the other hand,the balane of energy for the mixture as a whole is diretly extended from the energyde�nitions (2.41)-(2.44) to an open system.2.1.5.1 The balane of energy for the speiesThe generi balane equation (2.14) is used to write the balane of energy for the speies.Extending the work of Eringen and Ingram (1965) to an open system and applying thepropositions of Loret and Simões (2005), let us introdue:
ψk = ρkUk︸ ︷︷ ︸

internal energy

+ 1
2ρ

kv2k︸ ︷︷ ︸
kinetic energy

,

sk = rk︸︷︷︸
heat source

+ ρkbk · vk︸ ︷︷ ︸
mechanical source

,ik = −qk︸︷︷︸
heat flux

+ σ
k · vk︸ ︷︷ ︸

mechanical flux

,

ψ̂k = ρ̂k
(
Ũk +

1
2 ṽ2k)︸ ︷︷ ︸

mass supply

+ p̂k · vk︸ ︷︷ ︸
momentum supply

+ ûk︸︷︷︸
energy supply

. (2.45)Remark 2.8. The sign of the heat �uxes used here is opposite to the work of Eringen andIngram (1965). It is the same as Loret and Simões (2005) and Mandel (1974).Several de�nitions are introdued within the term ψ̂k:� The rate of energy due to external mass supply (both internal and external).81



2. Constitutive model 2.1. General �eld equations� Similarly to the balane of momentum equation for the speies, the following de�ni-tion is introdued: just before being transfered or deposit, the masses are endowedwith their own internal energy Ũk.� Finally ûk represents the rate of energy due to energy supply (energy supply to thespeies k by the rest of the mixture for example: by ontat in between speies; andfrom the surroundings).The net power supply Û is de�ned by summing over the speies the term ψ̂k andintrodues the volume rate of energy êkU , namely,
Û =

∑

k∈K

ρ̂k
(
Ũk +

1
2 ṽ2k)+ p̂k · vk + ûk =

∑

k∈K

êkU . (2.46)in whih êkU is de�ned in eq. (2.253). If only internal transfer of mass, momentum andenergy our, the net power supply Û beomes equal to zero. Û haraterises an opensystem when its value is not zero. To obtain the balane of energy for the speies k, theterms of equation (2.45) are introdued into the generi balane equation (2.25),
ρk

dk

dt

(
Uk +

1

2
v2k)− rk − ρkbk · vk + divqk − div

(
σ
k · vk) =

ρ̂k
(
Ũk +

1

2
ṽ2k)+ p̂k · vk + ûk − ρ̂k

(
Uk +

1

2
v2k) , k ∈ K.

(2.47)Next, the balane of momentum equation (2.32) for the speies k is multiplied by vk,
div

(
σ
k · vk)+ ρk

(bk −
dkvk
dt

)
· vk = ρ̂k (vk − ṽk) · vk − p̂k · vk, k ∈ K. (2.48)Remarking the equality,

dk

dt

(
1

2
v2k) =

dk

dt
(vk) · vk, k ∈ K, (2.49)the kineti energy term in eq. (2.47) an be replaed by its expression from (2.48) to obtainthe balane of energy for the speies,

ρk
dkUk

dt
−σ

k : ∇vk+divqk−rk = ρ̂k
(
Ũk − Uk +

1

2
(ṽk − vk)2)

︸ ︷︷ ︸
energy interaction

+ûk, k ∈ K.(2.50)
82



2. Constitutive model 2.1. General �eld equationsRemark 2.9. Similarly to the balane of momentum, the energy supply rate in the balaneof energy is not only due to the energy interation (see Remark 2.5, p. 77).2.1.5.2 The balane of energy for the mixtureThe balane of energy for the mixture is obtained by writing the �rst priniple for an opensystem. This derivation uses as starting point the de�nitions given in equations (2.41) to(2.44). Eah energy ontribution is onsidered in turn and is extended to a multi-phasemedium of an open system:(1) The internal energy U of the body is de�ned in equation (2.41) for a single ontinuum.Writing this equation for a speies k and summing over the speies, leads to:
dU
dt

=
∑

k∈K

[
d

dt

∫

V
ρkUk dV −

∫

V
ρkbk,int · vk dV ]. (2.51)The internal energy U is de�ned as the mass weighted average of internal energies Ukof the speies measured per unit of mass, namely U =

∑
k∈K ρ

kUk. Using the generalisedReynolds theorem presented in equation (2.12) on the �rst integral term allows us to writethe internal energy of the body in the following format:
dU
dt

=

∫

V

[
dU

dt
+ Udivvs +∑

k∈K

(
div (UkMk)− ρkbk,int · vk)] dV . (2.52)(2) The de�nition of the kineti energy has been given in equation (2.42) for a singleontinuum. Considering this de�nition for a speies k and summing over the speies gives:

dC
dt

=
∑

k∈K

∫

V

dck
dt

dV , with ck =
1

2
ρkv2k. (2.53)Replaing ck by using the time derivative equation (2.8) and eq. (2.12) brings,

dC
dt

=
∑

k∈K

∫

V

∂ck
∂t

+ div (ck vk) dV , (2.54)whih after several transformations, using the equation of balane of momentum for themixture (2.35) multiplied by vs and the de�nition of Mk in equation (2.3) leads to:83



2. Constitutive model 2.1. General �eld equations
dC
dt

=

∫

V

[
−σ

I : ∇vs + vs ·
(
ρb+ ρ̂

(v̂− vs
2

))

+
∑

k∈K

Mk ·
dkvk
dt

+
ρ̂k

2

(Mk

ρk

)2
]
dV +

∫

∂V

∑

k∈K

div
(vs · σk

)
· dS (2.55)The kineti energy has been written into this format to allow, later, the introdutionof the free enthalpies Hk in the balane equation of energy for the mixture (2.59). Theproof of eq. (2.55) is presented in Demonstration 2.2.Demonstration 2.2. Proof of equation 2.55:

dC
dt

=
∑

k∈K

∫

V

∂ck
∂t

+ div (ck vk) dV =
∑

k∈K

∫

V

dkck
dt

+ ck div vkdV by (2.12) and (2.8)

=
∑

k∈K

∫

V

ρk vk · d
kvk

dt
+

1

2
ρ̂k v2

k dV by (2.21)

=
∑

k∈K

∫

V

vs ·
(
ρk

dkvk

dt
+ ρ̂k vk − ρ̂k

vs

2

)
+Mk ·

dkvk

dt
+
ρ̂k

2

(
Mk

ρk

2)
dV by (2.20)

=

∫

V

vs ·
(
divσI + ρb+ ρ̂

(
ṽ − vs

2

))
+
∑

k∈K

Mk ·
dkvk

dt
+
ρ̂k

2

(
Mk

ρk

2)
dV by (2.35)

=

∫

V

−σ
I : ∇vs + vs ·

(
ρb+ ρ̂

(
ṽ − vs

2

))
+
∑

k∈K

Mk ·
dkvk

dt
+
ρ̂k

2

(
Mk

ρk

2)
dV

+

∫

∂V

∑

k∈K

(
vs · σk

)
· dS

(3) Adapting the de�nition of the rate of energy due to external mehanial soures ofequation (2.43) to a speies k and summing over the speies, leads to the following relation,for a losed system:
δWext

δt
=
∑

k∈K

∫

V
ρkbk,ext · vk dV +

∑

k∈K

∫

∂V
vk · σk · dS. (2.56)For an open system the latter relation inludes the net power supply Û as de�ned inequation (2.46), 84



2. Constitutive model 2.1. General �eld equations
δWext

δt
=
∑

k∈K

∫

V
ρkbk,ext · vk dV +

∑

k∈K

∫

∂V
vk · σk · dS +

∫

V
Û dV , (2.57)(4) Sine external heat is transmitted by ondution h, the appliation of the lemma ofthe tetrahedron an be used. The latter is obtained in the format h = −q · n̂ where qis the heat �ux and n̂ is the loal outward unit normal vetor to the surfae dS. (Thenotation dA = dS n̂ is used throughout). Hene, the summation over the speies of therate of energy due to heat supply of a speies k is,

δQ
δt

=
∑

k∈K

∫

V
rk dV −

∑

k∈K

∫

∂V
qk · dA. (2.58)The total body fore per unit mass for the speies k is de�ned as the summation of itsinternal and external ontributions bk = bk,int + bk,ext. Rewriting the �rst priniple eq.(2.39), by using equations (2.52) to (2.58), gives the following form of the balane of energyfor the mixture for a generi volume,

dU

dt
+ U div vs − σ

I : ∇vs +∑
k∈K

[−rk + divqk] + ρ̂ vs ·
(ṽ− vs

2

)

+
∑

k∈K

div (Hk Mk) +
∑

k∈K

[Mk ·
(
dkvk
dt

− bk

)
+
ρ̂k

2

(Mk

ρk

)2
]
= Û ,

(2.59)
where the entity Hk may be alled the free enthalpy of the speies k (when the partialstress σk = −pkI is isotropi),

Hk = Uk +
pk

ρk
, (2.60)in whih pk is the partial pressure of the speies k equal to nkpk.2.1.6 Balane of entropyIn ontinuum mehanis, the seond priniple of thermodynamis (also alled the balane ofentropy) leads to the de�nition of the absolute temperature T related to a thermodynamifuntion, the entropy S, so that for a fully reversible transformation of a losed system,the heat supply δQ reeived by the system at the temperature T writes,

1

T

δQ
δt

=
dS

dt
. (2.61)85



2. Constitutive model 2.1. General �eld equationsIf the transformation is onsidered non-reversible, the seond priniple states the followinginequality:
dS

dt
≥
∑ 1

T

δQ
δt
, (2.62)where the right-hand-side term is physially interpreted as a �ux of entropy oming fromthe surroundings. The inequality (2.62) noti�es that the entropy of the system is greaterthan this �ux, whih implies a prodution of entropy inside the system. The di�erene isalled the rate of entropy prodution Γ,

Γ =
dS

dt
−
∑ 1

T

δQ
δt

≥ 0. (2.63)This rate of entropy prodution orresponds to the internal non-reversibilities of thesystem due to di�erent soures suh as mehanial, thermal, physial and hemial soures.For example, the mehanial internal non-reversibilities are internal frition (visosity, dryfrition et).Next, the balane of entropy is written for the speies and for the mixture in a multi-temperature ontext, extended to an open system. A multi-temperature model representsa system in whih eah speies k is endowed with its own temperature Tk, for examplea model presenting three speies displays three temperatures. In addition, eah speies kis endowed with its own entropy Sk. The underlined idea being the introdution of theClausius-Duhem inequality as proposed in Setion 2.1.7. Furthermore, the partiular aseof a uniform temperature system is reovered.2.1.6.1 Balane of entropy for the speiesExtending the work of Eringen and Ingram (1965) and Atkin and Craine (1976), the balaneof entropy for the speies is written using Biot's approah in a multi-temperature ontext.The seond priniple may be obtained by replaing in the general balane equation (2.25),the following propositions,
ψk = ρkSk︸ ︷︷ ︸

entropy

, sk =
rk
Tk

+ ρkγk
︸ ︷︷ ︸
entropy production

, ik = −qk
Tk︸ ︷︷ ︸

heat flux

, ψ̂k = ρ̂k S̃k + ŝk︸ ︷︷ ︸
total entropy supply

. (2.64)Several de�nitions are introdued within the term ψ̂k:86



2. Constitutive model 2.1. General �eld equations� The rate of entropy due to external mass supply (both internal and external).� Similarly to the balane of energy equation for the speies, the following de�nitionis introdued: just before being transfered or deposit, the masses are endowed withtheir own internal entropy S̃k.� ŝk represents the rate of entropy due to entropy supply to the speies k by the restof the mixture and by the surroundingsAt a speies level, the volume rate of entropy is denoted êkS . The net rate of entropysupply, whih haraterises an open system, is denoted Ŝ and is null if only internal transferours,̂
S =

∑

k∈K

ρ̂k S̃k + ŝk =
∑

k∈K

êkS . (2.65)Introduing the propositions of equation (2.64) in the general balane equation (2.25)leads to the balane of entropy for the speies k,
ρkγk = ρk

dkSk
dt

− rk
Tk

+ div
qk
Tk

+ ρ̂k
(
Sk − S̃k

)

︸ ︷︷ ︸
entropy

interaction

−ŝk, k ∈ K. (2.66)whih implies a rate of entropy prodution ρkγk for eah speies k. As already remarkedfor the balane of momentum and of energy, the entropy supply rate is not only due to theentropy interation (see Remark 2.5, p. 77). Using the balane of mass equation (2.21)and the time derivative relation (2.8), the following form of the balane of entropy for thespeies an be obtained,
ρkγk =

d

dt

(
ρkSk

)
+ρkSkdivvs+div (SkMk)−

rk
Tk

+div
qk
Tk

− ρ̂kS̃k− ŝk, k ∈ K.(2.67)In the ase of a medium ontaining k speies, k onditions on the entropy produtionare required for the model. The seond priniple is therefore postulated for eah speies
k,

ρkγk ≥ 0, k ∈ K. (2.68)This way of writing the seond priniple is the most demanding. For example, bothEringen and Ingram (1965) and Atkin and Craine (1976) require an entropy inequality for87



2. Constitutive model 2.1. General �eld equationseah speies. Hene, this statement is the most restritive sine it requires one inequalityper speies. By ontrast, the seond priniple may also be written by using the balane ofentropy for the mixture, whih might appear as less restritive and more general sine asingle inequality stands for the whole mixture.2.1.6.2 Balane of entropy for the mixtureThe summation over the speies of the balane of entropy, equation (2.66), in a multi-temperature ontext is now presented. First, let us introdue the de�nition of the totalentropy S and of the total prodution of entropy Γ,
S =

∑

k∈K

ρkSk, Γ =
∑

k∈K

ρkγk. (2.69)The heat soure and the heat �ux of the mixture are equal to their inner parts,q = qI = ∑
k∈K

qk, r = rI =
∑

k∈K

rk. (2.70)Seondly, by use of (2.8)2 and (2.8)3 the time rate of the average ∑k∈K ρ
kSk withrespet to the solid veloity vs writes,

∑

k∈K

ds

dt

(
ρk Sk

)
=
∑

k∈K

dk

dt

(
ρk Sk

)
− div

(
ρk Sk

)
(vk − vs) (2.71)whih an be rearranged, by using the balane of mass equation (2.21) multiplied by Sk,

∑

k∈K

ρk
dkSk
dt

=
∑

k∈K

d

dt

(
ρk Sk

)
−
∑

k∈K

[
ρ̂k Sk − div (Sk Mk)

] (2.72)By summing the individual balanes of entropy (2.67) over all speies and by using thelosure relation (2.65) and the generalised Reynold's theorem (2.12), the balane of entropyfor the mixture writes,
∫

V
Γ dV =

d

dt

∫

V
S dV −

∫

V

∑

k∈K

rk
Tk

dV +

∫

∂V
div

∑

k∈K

qk

Tk
· dA−

∫

V
Ŝ dV ≥ 0 (2.73)By using the losure relation (2.65) and the previously introdued de�nitions (2.69)-(2.72) the seond priniple for the mixture and for a generi volume beomes,88



2. Constitutive model 2.1. General �eld equations
Γ =

dS

dt
− S divvs + div

∑

k∈K

(
SkMk +

qk
Tk

)

︸ ︷︷ ︸
total heat flux

of entropy

−
∑

k∈K

rk
Tk

︸ ︷︷ ︸
total heat source

of entropy

−Ŝ ≥ 0 (2.74)
Remark 2.10. The total heat �ux and soure of entropy may be written in an equivalentform whih highlights that the �ux of entropy is no longer just the �ux due to the inner partof the total heat �ux vetor, but ontains an additional term due to temperature variationsamong omponents. A similar statement holds for the heat soure of entropy. Considering
T as a referene temperature, the total heat �ux and soure ontribution of entropy write,

div
∑

k∈K

(
SkMk +

qk
Tk

)
= div

[qI
T

+
∑

k∈K

(
SkMk + qk ( 1

Tk
− 1

T

))]

∑

k∈K

rk
Tk

=

[
rI

T
+
∑

k∈K

rk

(
1

Tk
− 1

T

)] (2.75)Note that if the temperature of all omponents are the same T = Tk then equation(2.75) redues to the forms of q and r orresponding to a uniform temperature model.2.1.6.3 A partiular ase: the temperature is uniform over all phasesIn a uniform temperature ontext, the mixture has reahed a thermal equilibrium state andthe temperatures of eah phase are equal, namely T = Tk. Hene, the balane of entropyfor speies beomes,
ρkγk = ρk

dkSk
dt

− rk
T

+ div
qk
T

+ ρ̂k
(
Sk − S̃k

)
− ŝk, k ∈ K. (2.76)Similarly, the seond priniple for the mixture after summation over the speies redues to,

Γ =
dS

dt
− S divvs +∑

k∈K

div (SkMk)−
r

T
+ div

q
T

− Ŝ ≥ 0 (2.77)Note that if Mk beomes equal to zero (i.e. no �uid mass di�usion ours) and thatno external entropy is supplied (Ŝ = 0), then equation (2.77) redues to the equation ofentropy prodution of lassial ontinuum mehanis.89



2. Constitutive model 2.1. General �eld equations2.1.7 Clausius-Duhem inequalityThe Clausius-Duhem (CD) inequality is obtained by inserting the �rst priniple of ther-modynamis (balane of energy) into the seond priniple of thermodynamis (balane ofentropy). Identi�ation and desription of the onstitutive behaviour of a porous mediumunder thermo-hydro-mehanial loading is the major issue of the next Setion 2.2. In gen-eral, the diret behaviour of a single speies has already been learly identi�ed. However,the oupled behaviour of multi-phase multi-speies mixtures is not so lear and the CDinequality is needed to identify the global form of the behaviour equations and to bringsome restritions on the onstitutive equation ouplings.The balane of entropy and of energy an be written either for eah speies or forthe mixture as a whole by summation over the speies. Consequently, both writings arepossible for the CD inequality. Although both writings are orret, they do not providethe same restritions:� A CD inequality for eah speies produes some restritions on the onstitutive equa-tions of eah speies separately. No information is provided on possible interationsor ouplings in between speies.� Whereas a CD inequality for the mixture brings restritive information on the mixtureas a whole and therefore indiations on possible ouplings in between speies.Hene, the writing of a single CD inequality for the mixture as a whole seems moreappropriate, sine the identi�ation and the desription of interations and oupling phe-nomena in between phases is the main objetive of this study. The Clausius-Duhem in-equality is generally, that is to say for a single temperature mixture, obtained by insertingthe balane of energy equation into the balane of entropy equation multiplied by T , theoverall temperature of the mixture:
T
∑

k∈K

ρkγk ≥ 0 (2.78)Sine T is a positive value, the restritions imposed by the inequality (2.78) on theonstitutive equations are onsidered to be unhanged. However, a debate arise whenextending the inequality (2.78) to a multi-temperature mixture. The Clausius-Duheminequality an be written in two di�erent manners: (1) by inserting the balane of energyequation into the balane of entropy equation multiplied by Tk and summing over the90



2. Constitutive model 2.1. General �eld equationsspeies; or (2) by inserting the balane of energy equation into the balane of entropyequation and summing over the speies without multiplying by Tk:(1) ∑

k∈K

Tk ρ
kγk ≥ 0(2) ∑

k∈K

ρkγk ≥ 0 (2.79)The �rst solution (1) steams from the assumption that the rate of entropy produtionis required to be exatly positive on eah speies ρkγk ≥ 0 (Atkin and Craine, 1976) andis more restritive than the seond option (2) whih may also be viewed as more general.This hoie is strongly related to the multi-temperature assumption. In addition, thelatter writing brings some restritions on the energy transfer onstitutive law whih areinteresting for this study. On the ontrary, the former writing leads to the restritionof the entropy transfer onstitutive law whih is not useful to write the omprehensiveenergy equation, see Setion 2.3. In the following, the CD inequality is presented for thegeneral ase of a mutli-phase multi-speies open system. For future use, the CD inequalityis then restrited to a three phase losed system. All CD inequalities are stated in amulti-temperature ontext.2.1.7.1 Clausius-Duhem inequality for an open systemThe writing of the CD inequality for the mixture as a whole, in a detailed form, involvesthe free energies and the free enthalpies,� Where Ek is the free energy per unit of urrent volume of the speies k,
Ek = Uk − Tk Sk, k ∈ K. (2.80)� In addition, let us introdue ρkEk the free energy per unit mass of the speies k,whih sums up to E the free energy of the mixture per unit urrent volume,
ρkEk = ρkUk − Tkρ

kSk and E =
∑

k∈K

ρkEk, k ∈ K; (2.81)
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2. Constitutive model 2.1. General �eld equations� and the free enthalpy (or eletro-hemial potentials), per unit mass of the speies
k,

Gk = Hk − TkSk = Ek +
pk

ρk
, k ∈ K. (2.82)The CD inequality for a multi-temperature mixture is obtained by replaing∑k∈K−rk

+divqk from the �rst priniple for the mixture k (2.59),
∑

k∈K

[−rk + divqk] = −dU

dt
− U divvs + σ

I : ∇vs − ρ̂ vs ·
(ṽ− vs

2

)

−
∑

k∈K

[Mk ·
(
dkvk
dt

− bk

)
+
ρ̂k

2

(Mk

ρk

)2
]

−
∑

k∈K

div (Hk Mk) +
∑

k∈K

êkU ,

(2.83)
into the seond priniple for the mixture (2.74),

∑

k∈K

ρkγk =
∑

k∈K

(
dρkSk
dt

− ρkSk divvs + div (Sk Mk)

)

+
∑

k∈K

1

Tk

[
−rk + divqk − qk∇TkTk

]
−
∑

k∈K

êkS ≥ 0. (2.84)Let dDi\dt represent the sum over the speies of the rate of entropy prodution ρkγk,i,orresponding to the ith physial phenomenon,
dDi

dt
=
∑

k∈K

ρkγk,i ≥ 0, k ∈ K. (2.85)Inserting the de�nitions of the free energy (2.80) and of the hemial potential (2.82),a detailed CD inequality is obtained in whih several substitutions our:� The divergene term of Mk is eliminated by use of equation (2.26),
−divMk =

(
dρk

dt
+ ρkdivvs)− ρ̂k, k ∈ K. (2.86)92



2. Constitutive model 2.1. General �eld equations� To avoid a possible onfusion of notation, Biot's approah to mixtures introduesthe mass ontents whih, unlike the partial densities, are de�ned per unit referenevolume mk, namely for speies,
ρk =

1det F mk, k ∈ K where det F =
V

V0
. (2.87)� The total derivative of the determinant of the deformation gradient F an be replaedby,

d

dt
(det F) = det F div vs. (2.88)� Finally, the following relation is used,

(
dρk

dt
+ ρkdiv vs) =

1det F dmk

dt
, k ∈ K. (2.89)The �nal result of the CD inequality an be separated into three parts assoiated todi�erent physial phenomena:� dD1/dt representing the thermo-mehanial soures,� dD2/dt representing the transfer mehanisms (internal and external), and� dD3/dt desribing the generalised oupled di�usion,Sine the three parts of the CD inequality orrespond to di�erent physial phenomena,it is su�ient to require eah of them to be greater or equal to zero: dD1+dD2+dD3 ≥ 0.In expliit form,

dD1

dt
=

∑

k∈K

1

Tk

(
−d(ρkEk)

dt
+
(
σ
k − ρkEk I

)
: ∇vs − ρkSk

dTk
dt

)

+
∑

k∈K∗

1detFGk

Tk

dmk

dt
≥ 0

dD2

dt
= −

∑

k∈K∗

(
Gk +

1

2
(vk − vs)

2 − 1

2
v2s) 1

Tk
ρ̂k

−
∑

k∈K

êkS +
1

Tk
(êkM · vs − êkU ) > 093



2. Constitutive model 2.1. General �eld equations
dD3

dt
= −

∑

k∈K

qk · 1

Tk

(∇Tk
Tk

)

−
∑

k∈K∗

Mk · 1

Tk

(
Sk ∇Tk +∇Gk +

dkvk
dt

− bk

)
> 0 (2.90)in whih ρ̂k, êkM, êkU and êkS are the volume supply rates of mass, momentum, energy andentropy as de�ned by equations (2.20), (2.31), (2.46) and (2.65) respetively,

ρ̂k = ρ̂ktr + ρ̂kex,

êkM = ρ̂kṽk + p̂k,

êkU = ρ̂k
(
Ũk +

1
2 ṽ2k)+ p̂k · vk + ûk,

êkS = ρ̂k S̃k + ŝk. (2.91)The set of speies in the mixture as a whole is denoted K. The set of all speieswhih di�uses in the solid skeleton is denoted K∗. Not all the speies are partiipatingto all physial phenomena. One possibility is to onsider only the speies that transfer ordi�use, and then the set of summation is K∗.� In (2.90)1 all the speies exept the solid are onerned by the hemial potentialsummation, as only the �uid speies interat with eah other through hemial rea-tions, onsequently the set of summation is K∗.� In (2.90)2, the mass transfer term does not involve the solid phase. Within themixture only the �uid speies transfer and the set of summation is K∗.� Finally in (2.90)3, the generalised di�usion an be splitted into two terms: a thermaldi�usion term where the set of summation is K; and a hydrauli di�usion term, whereonly the �uid speies are onerned and the set of summation is K∗.Note that in the urrent on�guration, the CD inequality features the Eshelby stress,namely σ
E =

(
σ
k − ρkEk I

). The CD inequality an also be written in the refereneon�guration, see Loret and Simões (2005, eq. 6.14).94



2. Constitutive model 2.1. General �eld equations2.1.7.2 The partiular ase of a losed systemIn the next Setion 2.2, the model is restrited to a losed system onstituted by threephases. Eah phase is assumed to ontain one speies. In order to simplify the establish-ment of the onstitutive equations, the speies in the phases are temporarily ignored andeah phase is onsidered as homogeneous.For a losed system and in absene of surfae supply rates, the volume supply rates ofmass, momentum, energy and entropy sum to zero,
∑

k∈K

ρ̂k =
∑

k∈K

ρ̂ktr = 0,
∑

k∈K

êkM = 0,
∑

k∈K

êkU = 0,
∑

k∈K

êkS = 0. (2.92)The CD inequality (2.90) is provided as a basi requirement to help with the onstitutiveequations identi�ation and desription presented in Setion 2.2:� The thermo-mehanial behaviour will be onstruted in order the �rst term dD1to exatly vanish: then the energy dissipation will be due exlusively to transfer ofmatter and energy between phases, di�usion of �uids through the solid skeleton andto ondutive heat1;� On the other hand, the mass, energy and entropy transfer behaviours will be formu-lated by foring the seond term dD2 to be positive;� Similarly, the di�usion onstitutive equations will be de�ned by foring the thirdterm dD3 to be positive.

1However, if the behaviour is thermo-elasto-plasti, energy dissipation ours by thermo-plasti e�etsthat would imply dD1 to be positive 95



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah2.2 Constitutive equations based on a thermodynami ap-proahIn Setion 2.1, the �eld equations of a general open multi-speies multi-phase system havebeen introdued. Reduing to a model for porous media with double porosity and to alosed system, the mixture is now omposed of three phases: the solid skeleton, the pore�uid and the �ssure �uid. Eah phase is onstituted of one speies. Although the �uidsin the pores and in the �ssures are onsidered of same nature, the two �uid phases aresegregated by their physial loation. Furthermore, the mixture is assumed to be fullysaturated. In the further, the subsript k = s orresponds to the solid phase, k = p to thepore �uid and k = f to the �ssure �uid.The presentation below is a rational thermodynami presentation in whih the Clausius-Duhem inequality is used to restrain the onstitutive equations (Loret and Khalili, 2000b;Loret, 2008), as opposed to a manual presentation whih introdues onstitutive equa-tions without a prior identi�ation of the appropriate generalised fores and �uxes (Khaliliand Selvadurai, 2003). Three types of onstitutive equations are required by the thermo-dynami theory. (1) The thermo-mehanial onstitutive equations desribe a reversibleproess, whih is governed by a thermo-poro-elasti theory, and highlight the existene ofa potential. The Clausius-Duhem inequalities assoiated with (2) generalised di�usion and(3) generalised transfer are phrased in terms of thermodynami funtions. The onstitutiveequations of di�usion and transfer are simpli�ed by assuming symmetry properties, alsoalled Onsager's reiproity priniple.In Subsetion 2.2.1 the thermodynami theories used to develop and restrit the dif-fusion and transfer onstitutive equations are reviewed. The di�ulty of identifying theorret fores and �uxes is highlighted with the generalised di�usion part of the CD in-equality (2.90) as example.In Subsetion 2.2.2, the thermo-mehanial onstitutive equations are presented basedon a thermo-poro-elasti potential that highlights diretly a number of symmetry propertiesand that inorporates the identi�ation proedures for the purely mehanial oe�ients(Khalili and Valliappan, 1996). First, the thermo-mehanial behaviour of media withdouble porosity is introdued, in whih two extensions of the lassial porous media theoryare desribed: the e�etive stress relation for a porous medium with double porosity andthe in�uene of the thermal loading on the total stress. For larity, the purely elastimehanial ontributions are written alone through a mehanial seant form. And �nally,the thermal ontributions are added to the mehanial ontributions to obtain the ompletethermo-mehanial seant form. 96



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
Fissure network Porous block

Solid phase

Mass transfer

Energie transfer *
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Diffusion
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Figure 2.2: Sketh of exhanges that are aounted for in the porous medium with doubleporosity of a non-isothermal losed system. At eah geometrial point, porous media withdouble porosity are partitioned in three phases; one solid phase and two �uid phases: the�uid of the porous blok and the �uid of the �ssure network. Within eah �uid phase,hydrauli and thermal oupled di�usion our. Aross �uid phases mass transfer oursdue to a hemial potential di�erene. In between the three phases, energy transfer oursdue to temperature di�erenes, represented by a dashed arrow.
In Subsetion 2.2.3, the generalised di�usion onstitutive equations are introdued,whih involve two types of di�usion mehanisms: the hydrauli di�usion introdued byDary and the thermal di�usion introdued by Fourier. The oupled di�usion behaviourpresents an extension of Dary's law and Fourier's law to aount for the thermo-osmosisand isothermal �ow oupling phenomena. A disussion is proposed to foreast the in�ueneof these unommon oupled mehanisms. Finally, a seant relation satisfying the Clausius-Duhem inequality of di�usion is proposed.In Subsetion 2.2.4, the transfer onstitutive equations gather two physial mehanisms:mass transfer and energy transfer in between the phases. As a rule, transfer phenomenaare assumed to our at a loal geometrial point. The thermo-mehanial properties of�uids are used to aurately depit the hemial potential, whih drives the mass transfer.A law desribing the mass transfer under thermo-hydro-mehanial stress onditions isproposed. This proposal may be seen as an extension of Barenblatt's law of mass transferto mixture in loal thermal non-equilibrium. Finally, a transfer seant relation is proposed.For simpliity, the mass transfer and the energy transfer mehanisms are assumed to beunoupled. The generalised di�usion and transfer phenomena are illustrated in Figure 2.2.97



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah2.2.1 Onsager's reiproity priniple versus `rational' thermodynamisThe sope of this setion is to give a brief overview of the di�erent theories developed inmodern thermodynamis rather than a stane on the best way to proeed. The siene ofthermodynamis di�ers from other branhes of mathematial physis only in its emphasison the e�ets of heating and hange of temperature. Its aims are three: (1) onstrutionof the equilibrium theory, (2) redution of onstitutive equations and (3) appliation. Thedissipation inequality (also alled entropy inequality) along with the axioms of balane,allows to undertake the task of formulating onstitutive equations. Constitutive priniplesare usually too general when onsidering a partiular system, suh as multiphase mixtures.The Clausius-Duhem inequality is therefore used to restrain the onstitutive equationsdesribing a spei�ed material.Lars Onsager (1931) presented a reiproity priniple that systematially assumes sym-metry of a given onstitutive system of equations. Beause of the attrative simpli�ationsand of the easiness of its appliation, this priniple has beome very popular among ther-modynamial users. However, it should be used with are. Onsager's reiproity priniplehas later been very muh ritiised by Truesdell and its followers (Truesdell, 1984), the`rational' thermodynamis authors, due to the fat that no `guide lines' were provided torestrain the onstitutive equations and therefore to provide meaningful restritions.2.2.1.1 The Onsager's reiproity prinipleThe Onsager's reiproity priniple is illustrated by taking the di�usion part of theClausius-Duhem inequality as example. The irreversible generalised di�usion ontributionsof the entropy inequality dD3/dt ≥ 0 are phrased in terms of thermodynami funtions,
−
∑

s,p,f

qk ·
∇Tk
T 2
k

−
∑

p,f

Jk · ∇pk
Tk

≥ 0. (2.93)This expression an be seen as a sum of produts of two fators Xi Yi: The variables
Yi represent the rate of transformation or exhange, so alled �uxes. The variables Xi arealled fores. Close to the equilibrium, the �uxes Yi are de�ned as linear funtions of thefores Xi,

Yi = Lij Xj where Xi = L−1
ij Yj. (2.94)Onsager's reiproity priniple states that the matrix Lij is symmetri and positive,98



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
Xi Yi = LiiXiXi ≥ 0. (2.95)Note that the symmetry simpli�ation introdued by Onsager's reiproity prinipleis not required to satisfy the entropy inequality. The main limitation of the Onsager'sreiproity priniple is that no indiation is given on the hoie of the fores Xi and ofthe �uxes Yi. It is worth noting that the deliate hoie of fores and �uxes in�uenes themeaning of the stated symmetry. This situation emphasises the need for a de�nite hoie,sine without one, the laim of symmetry may be false.2.2.1.2 Rational thermodynamisIn a rational (in a truesdellian perspetive) analysis, there are �ve basi priniples thathave to be satis�ed by onstitutive equations, whether for a single body or for mixtures.They are oneived as `rules to guide us when we ome to set up onstitutive relations inthe �rst plae', (Wang and Truesdell, 1973, p.135). They are brie�y stated below fromTruesdell (1984, p. 230):� 1. Determinism asserts that natural phenomena an be desribed and predited.There exists a set of variables suh that the knowledge of their past and presentvalues determines the present response of the mixture.� 2. Equipresene states that any `quantity present as an independent variable in oneonstitutive relation must be assumed so present in all', Wang and Truesdell (1973,p. 141). Passman et al. in Truesdell (1984, p. 301) �nd the priniple appliableto single bodies and homogeneous mixtures, but they replae it by the Priniple ofphase separation for inhomogeneous mixtures, also alled multiphase mixtures. Thelatter states that the priniple of equipresene applies to individual phases in termsof their own set of independent variables, while interation and exhange terms followthe general priniple of equipresene in terms of all independent variables.� 3. Loal ation implies that the onstitutive response of the speies at a point of spaedepends only of the thermokineti proess in a lose neighborhood of that point.� 4. Material frame-indi�erene requires that the onstitutive equations of the speiesare independent of the observer.� 5. Dissipation requires that some form of the seond priniple be satis�ed for anythermo-kineti proesses. 99



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahThe �rst three priniples are more metaphysial than mathematial. The fourth andthe �fth are of mathematial nature and leads to expliit statements. To these �ve state-ments, Wang and Truesdell (1973, p. 135) add a sixth physial priniple that allows forspeialization, namely,� 6. Material symmetry. There exists a symmetry group, or group of invariane,desribing the properties of the body, whih leaves unhanged the onstitutive equa-tions. The simplest ase is that of a mixture of one solid and several invisid �uids:the mixture inherits the material symmetries of the solid.When exploiting the dissipation inequality, and developing di�usion onstitutive equa-tions, a standard pratie is the use of the Onsager reiproity relations to express the`�uxes' in terms of the `fores' (Groot and Mazur, 1962). Having hosen what the �uxesand the fores are, the �uxes are expressed in terms of the fores via a symmetri semi-de�nite di�usion matrix. Truesdell (1984, p. 365) largely ritiises the onsagerist approah,that laims that the de�nition of the �uxes and the fores is a `self-onsistent postulate'.All attempts so far to apply this theory to heat ondution, visosity and di�usion remainson strong further assumptions ad ho.The dissipation inequality is a powerful tool to develop onstitutive equations and torestrit the number of arguments of the onstitutive funtions. Aside from the statementthat ertain matries are or are not symmetri, many matries are �lled up with unknownoupling oe�ients in the absene of experiments. The hoie of symmetry may thereforebe seen as a temporary solution during the absene of experiments to verify or infer thesepropositions.2.2.1.3 Appliation to the di�usion problemAs an example, the deliate hoie of the fores and the �uxes is applied to our di�usionproblem. Let us work with a porous medium restrited to single porosity and to loalthermal non-equilibrium Ts 6= Tf . The �uid di�usion part of the dissipation inequalitymultiplied by Ts may be written in the following form;
−qs ∇Ts

Ts
− qf TsTf ∇Tf

Tf
− Jf · Ts

Tf
∇pf ≥ 0. (2.96)One needs to hoose to whom the dimensionless temperature ratio Ts/Tf belongs: thefores or the �uxes. This dilemma an be written in a general manner, with the variable

α ∈ [0, 1], 100



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
−qs ∇Ts

Ts
− qf (TsTf )α

︸ ︷︷ ︸
flux

(
Ts
Tf

)1−α ∇Tf
Tf︸ ︷︷ ︸

force

−Jf (Ts
Tf

)α

︸ ︷︷ ︸
flux

(
Ts
Tf

)1−α

∇pf
︸ ︷︷ ︸

force

≥ 0. (2.97)The �uxes: the modi�ed volume �ux and the modi�ed heat �ux may be linearly relatedto the modi�ed gradients fores through a semi-positive de�nite di�usion symmetri matrixL, thanks to Onsager's reiproity priniple,
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, (2.98)
where the symmetri and the semi-positive de�neness holds,

L12 = L21, L13 = L31, L23 = L32,

L11 ≥ 0, L22 ≥ 0, L33 ≥ 0 and det L ≥ 0. (2.99)The latter relation an be re-written by gathering the dimensionless temperature ratio
Ts/Tf in the matrix. Note that with this writing, the onstitutive matrix is non-symmetri:
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(2.100)
Let us highlight here the importane of imposing the symmetry on the onstitutivematrix of equation (2.98) before the rewriting proess. It is important to note that the101



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah�nal onstitutive matrix is non-symmetri in the general ase and that the matrix ofequation (2.100) is symmetri for the partiular ase of α = 0.5 or for Ts = Tf .The repartition on the fores or on the �uxes an be in�uened by experimental data.The phenomenologial oe�ients that are experimentally measured are displayed in thedi�usion matrix D, namely,
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(2.101)
If α = 1, the repartition of the temperature ratio is positioned on the �uxes only, andthe onstitutive relation beomes,
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(2.102)
for instane D12 =

(
Ts
Tf

)−1

L12.On the other hand, if α = 0 the repartition of the temperature ratio is positioned onthe fores only, and the onstitutive relation beomes,
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(2.103)
for instane D12 = L12. 102



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahIt is lear when omparing equations (2.102) and (2.103) that the hoie of the positionof the temperature ratio deeply in�uenes the meaning of the Lij oe�ients. However,the two relations (2.102) and (2.103) are equivalent as long as the identi�ation of the Lijoe�ients with experimental data eq. (2.101) is done in a orret way.2.2.2 Thermo-mehanial onstitutive equationsThe presentation below is a thermodynami presentation based on a thermo-poro-elastipotential that highlights diretly a number of symmetry properties (Loret, 2008). Whilea number of simpli�ations has been done to linearise the equations about a presribedstate, the onstrution may be reonsidered and extended to inlude large perturbationswith respet to an initial state that require a non-linear analysis.This subsetion aims to identify the thermo-mehanial elasti seant relation linkingthe generalised stresses to the generalised strains, via a symmetri tensor. First, thethermo-mehanial part of Clausius-Duhem inequality is rewritten in a more useful way,so that the thermo-mehanial fores, or generalised strains, an be related to the thermo-mehanial �uxes, or generalised stresses. Seondly, the thermo-mehanial behaviour ofsaturated soils with double porosity is desribed. For instane, the e�etive and totalstress relations, the volume hanges relations and the entropy relations are extended tomedia with double porosity. Furthermore, the thermo-mehanial behaviour of �uids isintrodued separately. Last, the thermo-mehanial seant relations are presented. Forlarity, the mehanial seant form simpli�ed to a uniform temperature ontext and theomplete thermo-mehanial seant form are presented in turn.2.2.2.1 The Thermo-mehanial part of Clausius-Duhem inequalityThe Clausius-Duhem inequality is used to restrain the onstitutive equations. In partiular,the thermo-mehanial elasti behaviour is onstruted in order for the thermo-mehanialpart dD1 of the Clausius-Duhem equation (2.90)1 to exatly vanish,
dD1

dt
=

∑

k∈K

1

Tk

(
−d(ρk Ek)

dt
+
(
σ
k − ρkEk I

)
: ∇vs − ρk Sk

dTk
dt

)

+
∑

k∈K∗

1detFGk

Tk

dmk

dt
= 0, (2.104)in whih σ

E =
(
σ
k − ρkEk I

) is the Eshelby stress. The aim is to rewrite equation (2.104)in suh a way that the thermo-mehanial generalised fores and their related �uxes are103



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahdiretly available.The proedure, whih aims at linearising some terms around a referene on�guration,is held in �ve steps (Loret, 2008): (1) the CD1 equality is transposed into the refereneon�guration. In addition, in order to write equation (2.104) in a form similar to anisothermal system, equation (2.104) is multiplied by Ts. (2 and 3) The CD1 equality isexpressed for the solid phase and for the �uid phases, separately. (4) The CD1 equalityfor the mixture is obtained by summation over the speies and is linearised around thereferene state. (5) The CD1 equality for the mixture is transposed bak to the atualon�guration and the generalised fores and their related �uxes are identi�ed.(1) The Clausius-Duhem inequality is written in the referene on�guration. Upon themultipliation of equation (2.104) by detF = V/V0, the entities that ome into piture are,� the mass ontents mk = det F ρk, rather than the mass densities ρk, k ∈ K∗;� the volume ontents vk = det Fnk, rather than the volume frations nk, k ∈ K∗;� the apparent pressures vk pk = det F pk, rather than the apparent pressures nk pk =

pk, k ∈ K∗;� the Kirhho� stresses τ = det F σ, and τ
k = det F σ

k, rather than the Cauhystresses σ and σ
k, k ∈ K.In the theoretial developments, the Proposition 2.1 is adopted.Proposition 2.1. When the urrent on�guration is taken as referene, that is det F isset equal to one, these two families of entities are equal. However, their inrements andrates are not idential.Upon multipliation of equation (2.104) by Ts, the entities that ome into piture are.� the modi�ed free energies Ek, rather than the free energies Ek, k ∈ K∗;� the modi�ed apparent pressures vk p

k
, rather than the apparent pressures vk pk, k ∈

K∗� the modi�ed partial Kirhho� stresses τ k, rather than the partial Kirhho� stresses
τ
k, k ∈ K∗; 104



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah� the modi�ed entropies Sk, rather than the entropies Sk, k ∈ K∗� the modi�ed hemial potentials Gk, rather than the hemial potentials Gk, k ∈ K∗,where for all speies k ∈ K∗,
Ek = Ek

Ts
Tk
, vk p

k
= vk pk

Ts
Tk
, τ

k = τ
k Ts
Tk
, Sk = Sk

Ts
Tk
, Gk = Gk

Ts
Tk
. (2.105)(2) The rate of mehanial entropy prodution of the solid speies, upon multipliation by

Ts det F, is modi�ed to the following relation,
Ts m

s γs,1 = −ms d

dt
(Es) + τ

s : ∇vs −ms Ss
dTs
dt

. (2.106)The proof of equation (2.106) is provided in Demonstration 2.3, page 108. Note thatthe rate of the mehanial entropy prodution of the solid speies does not inlude termsinvolving a hemial potential.(3) The rate of mehanial entropy prodution of the �uid speies k, upon multipliationby Ts det F, takes the form of the following equation,
Ts m

k γk,1 =
d

dt

(
vk p

k

)
+ τ

k : ∇vs − vk
dp

k

dt
, k ∈ K∗. (2.107)The proof of equation (2.107) is provided in Demonstration 2.4, page 109. Note thatthe Kirhho� stress and the modi�ed intrinsi pressure of the �uid k are related, throughthe following relation:

τ
k = −vk p

k
I, k ∈ K∗. (2.108)(4) Finally, upon summation over the solid phase and all �uid phases of the rates of entropyprodution, equation (2.106) and (2.107), respetively, the mehanial part of the rate ofentropy prodution for the mixture multiplied by Ts det F takes the form,

Ts det F dD1
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dt
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, (2.109)105



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahin terms of the modi�ed elasti potential of the mixture Ψ (Remark 2.11) whih disregardsthe ontribution of the �uids energies,
Ψ = Ψ

(
ǫ, p

p
, p

f
, Ts

)
= ms Es −

∑

p,f

vkp
k
, (2.110)with ǫ being the in�nitesimal strain assoiated to the deformation gradient F.Remark 2.11. Potential of the mixture Ψ versus Massieu potential Λ: Note that the abovederivation is quite di�erent from that proposed by Bowen and Garia (1970) who introdueda Massieu funtion for eah speies,

Λk = −ρ
k Ek

Tk
. (2.111)They obtain onstitutive equations for the internal energies and partial stresses. EahMassieu funtion is developped up to the seond order in terms of main variables, whih arethe strains of the speies and their temperatures. An appliation to a porous medium inlud-ing a solid matrix is presented in Bowen and Chen (1975). In ontrast, the present deriva-tion aims at highlighting some spei� symmetries and deouplings of thermo-mehanialproperties as an be observed in equation (2.112).Under the assumption of small deformation, the thermo-mehanial behaviour is on-struted by setting the entropy prodution to zero. In the referene/initial on�guration,the derivation of the potential of the mixture and its onsequenes on the onstitutiveequations are written as follows,





dΨ =


τ

s +
∑

p,f

τ
k


 : dǫ−ms Ss dTs −
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k = p, f ;

(2.112)
where the modi�ed total Kirho� stress is,

τ = τ
s +

∑

k=p,f

τ
k I. (2.113)The total Kirho� stress dedues as, 106



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
τ = τ

s +
∑

k=p,f

τ
k I = τ −

∑

k=p,f

vk (pk − p
k
) I. (2.114)As a �rst approximation, see Demonstration 2.5 on page 109, the latter relation (2.112)2is linearised around the pressure of referene (Proposition 2.2) and around the solid skeletontemperature. Hene, no di�erene between the pressure pk and the modi�ed pressure p

k
ismade.

Proposition 2.2. The referene stress state is assumed to be in thermal, hydrauli andmehanial equilibrium. The impliations on the thermo-mehanial state, on the transferstate and on the di�usion state are, respetively:� The purely mehanial stresses and the pressures are zero. Temperatures are all equalto T0� The hemial potential di�erene and the temperature di�erene between the pore �uidand the �ssure �uid are equal to zero.� The thermal gradient and the pressure gradient are equal to zero in all phases.Hene, the thermo-mehanial part of the CD equation beomes,
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(2.115)where Ψ is the elasti potential of the mixture,
Ψ = ms Es −

∑

p,f

vk pk. (2.116)(5) As the urrent/atual on�guration is taken as referene, if Ψ = det F Ψa, equation(2.115) beomes
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(2.117)107



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahIn order to stay onsistent with the mehanial elasti behaviour analysis and to usethe same primary variables, the omplementary potential Ψc is used in stead of Ψa,
Ψc = Ψa − σ : ǫ. (2.118)Moreover, sine this study is restrited to small deformations only, the following as-sumption is made at this �nal stage of the derivation,det F ≈ 1 ⇒ vk = nk, k = p, f. (2.119)Finally, inserting equations (2.118) and (2.119) into (2.117), allows us to write,




dΨc = −dσ : ǫ− ρs Ss dTs −
∑

p,f

vk dpk,

⇒ ǫ = −∂Ψc

∂σ
, −ρs Ss =

∂Ψc

∂Ts
, −vk =

∂Ψc

∂pk
k = p, f.

(2.120)In equation (2.120), four generalised fores are identi�ed: (σ, pp, pf , Ts), namely thetotal stress, the pore and �ssure �uids pressures and the solid temperature; whih areonjugated with four generalised �uxes (ǫ, vp, vf , ρs Ss), namely the total strain, thevolume ontent of the pore and the �ssure �uid, and the entropy of the solid.Demonstration 2.3. Proof of equation 2.106:
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dt108



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
Demonstration 2.4. Proof of equation 2.107:

Ts m
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= − d

dt

(
mk Ek

)
+mk Ek

d

dt

(
Ts
Tk

)
+ τ

k : ∇vs −mk Sk

dTk
dt

+
d

dt

(
mkGk

)
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dtBy use of Table 2.1, p. 121, the derivative of the hemial potential writes,
dGk = vk dpk − Sk dTk + Ek d
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) and Ek = Gk − vk pk
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)
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k : ∇vs − vk
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dtDemonstration 2.5. Proof of equation 2.115: The temperatures Tk are linearised aroundthe temperature of the solid Ts and the pressures pk around their referene values p0k,namely,
Tk = Ts + (Tk − Ts) and pk = p0k + (pk − p0k). (2.121)The Taylor series of the funtion 1

1− x
whih will be used latter for x = −Tk − Ts

Ts
is,

1

1− x
=

∞∑

n=0

xn for |x| ≤ 1, 109



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
Ts
Tk

− 1 =
1

1 + (Tk−Ts

Ts
)
− 1 =


1− Tk − Ts

Ts︸ ︷︷ ︸
0 (ǫ)

+

(
Tk − Ts
Ts

)2

︸ ︷︷ ︸
0 (ǫ)2

− 0 (ǫ)3


− 1, (2.122)

where the notation 0 (ǫ) denotes terms of �rst-order, 0 (ǫ)2 denotes terms of seond-order,
0 (ǫ)3 denotes terms of third-order. The total Kirhho� stress is linearised to bring intopiture the high-order terms that an be negleted ompared with the �rst-order terms,namely,
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I by (2.108)1
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∑
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I by (2.108)2
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∑
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I by (2.122)

= τ +
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I by (2.121)2

= τ +
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[
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(
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Ts

)
+ 0 (ǫ)2

]
I.At this stage of the linearisation proess, the value of the referene pressures p0k hasa strong in�uene: two ases an be segregated (1) if p0k is not zero, sti�ness indued byinitial pressures will arise in the thermo-mehanial behaviour matrix and will indue theseant matrix to be non-symmetri; (2) on the ontrary if p0k is equal to zero, no sti�nessindued by initial stresses is taken into aount and the behaviour matrix is symmetri.Following Proposition 2.2, the referene state will orrespond to a mehanially andthermally equilibrate state. Therefore the initial stresses and �uid pressures are onsideredto be equal to zero. If this assumption is not veri�ed, the proposed thermo-mehanial modelholds to within the fat that the rigidity indued by initial state is not aounted for. Sine,the initial pressures p0k are assumed to be null, the total Kirhho� stress beomes,

τ = τ + 0 (ǫ)2
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2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah2.2.2.2 Thermo-Mehanial behaviour of porous media with double porosityTo desribe the thermo-mehanial behaviour, the following expressions need to be in-trodued: (a) the total stress for the mixture, (b) the volume ontent variation for eahspeies and () the entropy variation of the solid speies. These expressions are identi�edfor media with double porosity by using a loading deomposition of a planar element (Nurand Byerlee, 1971). All the thermo-mehanial behaviour expressions are expressed asfuntion of the generalised fores previously identi�ed: the total stress σ, the pore �uidpressure pp, the �ssure �uid pressure pf and the temperature of the solid skeleton Ts.Due to the physial struture of porous media with double porosity, mehanialanisotropy is enountered. However, the in�uene of mehanial anisotropy on the globalbehaviour is not in the sope of this study. As a �rst approximation, the mehanialproperties of porous media with double porosity are assumed isotropi.(1) First of all, let us introdue some basi entities. The elasti strain of the solid skeleton
ǫ
e is proportional to the e�etive stress σ̄ and to the drained ompliane tensor CDS,

ǫ
e = CDS : σ̄. (2.123)The e�etive stress onverts a multi-phase, multi-porous medium to a mehaniallyequivalent, single-phase, single-stress state ontinuum. The e�etive stress is expressedas a funtion of the externally applied stresses and of the internal �uid pressures, whihontrol the mehanial e�ets of a hange in stress.The relation linking the total stress σ and the e�etive stress σ̄, for porous mediawith single porosity of pressure pp, has been introdued by Biot (1941). Considering cas the drained ompressibility of the porous medium as a whole and cs as the drainedompressibility of the solid grains, the e�etive stress is de�ned by,
σ̄ = σ +

(
1− cs

c

)
pp I. (2.124)The isotropi part of the total stress is denoted p, and the isotropi part of the e�etivestress is denoted p̄,

p = −tr σ
3
, and p̄ = −tr σ̄

3
. (2.125)In this model, the �ssure network and the porous blok are assumed separable, so thatthe ompressibility of the porous blok cp does not interat with the ompressibility of the�ssures and only represents the ompressibility of the pore spae and of the solid grains.111



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahIf the drained ompressibility of the mixture c an be onsidered large enough in frontof the drained ompressibility of the solid grains cs, equation (2.124) redues to Terzaghi'srelationship. However, this approximation is not suitable for rok materials.In all this development, the assumption of small deformations holds. The strain om-ponents ǫij are related to the vetor of the displaement omponents ui by the followingexpression,
ǫij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

) (2.126)No plastiity nor visosity is aounted for in this model. In onsequene the totalstrain tensor ǫ is equal to the sum of the elasti strain tensor ǫ
e and the thermal straintensor ǫT ,

ǫ = ǫ
e + ǫ

T . (2.127)If ∆Ts = Ts − T 0 is the temperature variation applied to the solid phase and cT isequal to the volumetri thermal expansion of the solid (three times the often reportedlinear thermal expansion oe�ient), then in absene of mehanial loading, the solidundergoes a thermal deformation ǫ
T orresponding to,

ǫ
T = cT ∆Ts I and ǫ− ǫ

T = 0 at σ = 0. (2.128)(2) The thermo-mehanial loading deomposition (Nur and Byerlee, 1971) states thatthe equilibrium of a Representative Planar Element (RPE) loaded under both mehanialstresses and thermal stresses an be separated in two stress states: a mehanial state (M)and a thermal state (Th), as illustrated in Figure 2.3.� (M) The mehanial stresses are represented by the stress tensor omponent σ andthe �uid pressures, pp and pf , respetively for the pore �uid and the �ssure �uid.� (Th) The thermal stresses applied to the mixture are the solid temperature Ts, thepore �uid temperature Tp and the �ssure �uid temperature Tf . The thermal stressstate represents a transient phase, where the mixture has not yet reahed thermalequilibrium.The mehanial state is in turn deomposed based on a Representative Planar Elementin equilibrium, loaded under ompressive stresses (for the solid skeleton) and pressure112



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
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Figure 2.3: Total stress deomposition of a representative �ssured porous element (Nurand Byerlee, 1971). The stress equilibrium is segregated in two parts: (M) a mehanialstress state and (Th) a thermal stress state.stresses (for the �uid phases). In the further development, the mixture is assumed to bein equilibrium during the initial state. This is why the initial stresses, the initial pressuresand the initial strains are onsidered to be zero. However, if the initial state of the systemis in equilibrium but the initial pressures and stress values are not null, the additionalrigidity implied by the initial state is not aounted for within the model.The mehanial loading deomposition an be segregated in four di�erent stress states,as illustrated in Figure 2.4 (Khalili and Valliappan, 1996). These four stress states (I),(II), (III) and (IV) are loaded under the following onditions2,� (I) The external hydrostati stresses are equal to σ(I)applied = −pp and the �uid pres-sures to pp. This �rst state represents long-term stress onditions, where the stressesapplied to the mixture have reahed equilibrium.� (II) The external hydrostati stresses are equal to σ(II)applied = − (pf − pp), the �ssurepressure is equal to (pf − pp) and the pore pressure to zero. This seond stress staterepresents medium-term onditions, where the mixture is not in equilibrium: theapplied load has not been sensed by the pores yet.2Compressive stresses applied to the ontinuum are negative. The ontinuummehanis sign onvention,opposite to the geotehnial sign onvention is used. Note that p, eq. (2.125), is positive when ompressivestresses are applied. 113



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
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Figure 2.4: Mehanial stress deomposition of a representative �ssured porous element.The mehanial stress equilibrium is segregated in four stress states: (I) long-term equi-librium, (II) a medium-term non-equilibrium, (III) a drained isotropi ondition and (IV)a drained deviatori ondition.� (III) The external stresses are equal to σ(III)applied = (−p+ pf ) and the �uid pressuresare equal to zero. This third stress state represents drained isotropi onditions,where the pressures in the medium are zero beause of free drained limit onditions.� (IV) The external stresses are equal to σ(IV)
applied = s = σ + p I and the �uid pressuresare equal to zero. This fourth stress state represents drained deviatori onditions.The drained limit onditions indues zero �uid pressures in both porosities.These deompositions bring up the following equation of a generi tensor ψe,

ψe = ψ(M) + ψ(Th), and ψ(M) = ψ(I) + ψ(II) + ψ(III) + ψ(IV). (2.129)114



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahThe generi tensor ψe is suessively replaed by the strain tensor ǫ, by the volumehange tensor ∆v and by the entropy variation of the solid phase ρs∆Ss.(3) The e�etive and total stress relations are now extended to porous media with doubleporosity. In this development, only the isotropi part is taken into aount, in onsequenethe total stress σ an be replaed by the mean stress p, eq.(2.125), and the total deformation
ǫ by its isotropi part tr ǫ.Let µDS represent the shear modulus of the drained solid (seond Lamé's onstant).For eah stress state, the elasti strain an be expressed as a funtion of the applied stress,and the orresponding stress-state ompressibility, namely,





tr ǫe(I) = cs σ
(I)
applied = cs (−pp) ,tr ǫe(II) = cp σ
(II)
applied = cp − (pf − pp) ,tr ǫe(III) = c σ
(III)
applied = c (−p+ pf ) ,tr ǫe(IV) = 0, dev ǫe =

s
2µDS

(2.130)
Thus replaing equation (2.130) into (2.129)1 for ψe = tr ǫe and rearranging,tr ǫe = −c p+ (cp − cs) pp + (c− cp) pf ,

= −c (p− ξp pp − ξf pf ) , (2.131)
= −c p̄ ;where ξp and ξf are the e�etive stress parameters,

ξp =
cp
c
− cs

c
and ξf = 1− cp

c
. (2.132)Relating equations (2.131)2 with (2.131)3 and sine the variation between the totalstress and the deviatori stress is isotropi, the e�etive stress writes,

σ̄ = σ + ξp pp I+ ξf pf I. (2.133)Remark 2.12. Equation (2.133) an be seen as a generalisation of the formulation intro-dued by Biot (1941) and Nur and Byerlee (1971) for rok mehanis, equation (2.124).115



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahIn order to reover the single porosity expression, one may assume: nf = 0 (no �ssure inthe system) whih implies c = cp. Consequently, ξf = 0 and ξp = 1− cs/c. Biot's formulais suessfully reovered.The expression of the e�etive stress extended to double porosity has been presentedin eq. (2.133). Let us now write the expliit expression of the total stress as a funtion ofboth the total strain and the thermal strain. For a thermo-elasti medium, the stress-strainrelationship writes,
σ̄ = KDS : ǫe,

=
[
CDS

]−1
:
(
ǫ− ǫ

T
)
, (2.134)where KDS is the drained sti�ness tensor. The e�etive stress is expressed as a funtion ofLamé's onstants λDS and µDS , and both the total strain ǫ and the thermal strain ǫ

T , inwhih the thermal strain is desribed as the volumetri thermal expansion cT multiplied bythe solid onstituent temperature variation ∆Ts. The solid onstituent temperature vari-ation oe�ient γT is introdued to highlight the temperature variation ∆Ts ontributionin the e�etive stress de�nition,
σ̄ = λDS

(tr ǫ− tr ǫT ) I+ 2 µDS
(
ǫ− ǫ

T
)
,

= λDS tr ǫ I+ 2 µDS
ǫ−

(
λDS tr ǫT I+ 2 µDS

ǫ
T
)
,

= λDS tr ǫ I+ 2 µDS
ǫ−

(
λDS +

2

3
µDS

)
cT

︸ ︷︷ ︸
γT

∆Ts I. (2.135)
in whih cT represents both the thermal expansion of the mixture and that of the solidphase, see Remark 2.13. By ombining equation (2.135)3 and (2.133), the expliit expres-sion of the total stress is obtained,

σ = λDS tr ǫ I+ 2 µDS
ǫ− ξp pp I− ξf pf I− γT ∆Ts I,

= KDS : ǫ− ξp pp I− ξf pf I− γT ∆Ts I. (2.136)116



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
Note that only the isotropi part of the total stress is onerned by the marosopithermal and hydrauli ontributions, hene,
p = −1

c
tr ǫ+ ξp pp + ξf pf + γT ∆Ts. (2.137)Remark 2.13. The fat that the deformation undergone by the �ssured porous medium isontrolled by the solid phase only is highlighted here in ontrast with the work of Pekerand Deresiewiz (1973), in whih the thermal expansion of the solid skeleton for saturatedmedia is related to a ombination of solid and pore �uid temperatures.To explore this aspet further, the following thought experiment is proposed. Let usonsider an elementary volume of porous medium subjeted to onstituent temperatures Ts,

Tp and Tf , and onstant pressures and stresses (Figure 2.5). The following hypothesis ismade: the solid onstituent is ompletely sealed from the thermal e�ets within the porespae. The energy transfer at the boundaries due to temperature di�erene are not underonern here.
Ts

Tp

Tf

Thermal 

seal

Figure 2.5: Shemati representation of a three phase thermo-elasti porous element, atonstant pressures and stresses, subjeted to onstituent temperature Ts, Tp and Tf .Sine a ontinuous grain path relating the solid extremities is onsidered, the thermalvolumetri hange of the �ssured porous medium (expansion/ontration of the solid skele-ton) is independent of the thermal hange in the pores and in the �ssures. In other words,the volumetri thermal expansion of the solid onstituent cT,s is equal to volumetri ther-mal expansion of the �ssured porous medium cT , as the volumetri thermal expansion ofthe mixture is ruled by the thermal expansion of the solid phase only.The latter relation cT = cT,s is in fat imposed by the thermodynami theory throughthe thermo-poro-elasti potential (2.120) whih does not aount for the �uid temperatures.It is essential to understand that the �uid dilatations do not indue a deformation hangeof the medium, but indue the �uids to di�use out of the porous medium.117



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah(4) The relations desribing the hange in volume ontent are now extended to porousmedia with double porosity. The variation of volume ontent omprise three omponents:the volume ontent variation of the porous medium ∆v, the volume ontent variation ofthe pore voids ∆vp and the volume ontent variation of the �ssure voids ∆vf .Considering the urrent volumes of the porous medium V , of the pore voids Vp, ofthe �ssure voids Vf and the total initial volume V0, the dimensionless volume hangesof the porous medium, the pores and the �ssures are de�ned with respet to the initialon�guration,
∆v =

V − V0
V0

, ∆vp =
Vp − V 0

p

V0
and ∆vf =

Vf − V 0
f

V0
. (2.138)Next, the thermo-mehanial deomposition is used to express the volume hanges asa funtion of the four generalised stresses: the mean stress p, the �uid pressures pp, and pfand the solid temperature variation ∆Ts. Prior to the desription of the volume hanges,the following propositions are assumed:� The volume hange of the porous medium is equal to the isotropi part of the totalstrain, namely ∆v = tr ǫ.� If the pressure applied to a void is the same as the ompression stress applied to thewhole porous medium, the volume hange of this void is proportional to the volumehange of the porous medium by its volume fration.� When no pressure is applied in a void, the volume hange an not be diretly alu-lated, although it is still proportional to the volume hange of the porous medium.In this ase, a question mark replaes the unknown oe�ient.� For purely thermal loading ∆Ts 6= 0, zero stress and pressure variations p = pp =

pf = 03, the deformation should be homogeneous throughout the phases; the on-tribution of eah phase is proportional to its volume fration. In onsequene, thethermal volume hanges of the pores and the �ssures are expressed as a volumetriratio of the thermal strain of the medium.Let the generi tensor of equation (2.129) ψe be equal to ∆v. Hene, the volumeontent hanges extended to porous media with double porosity write,3Reall that the initial state of stresses and pressures is assumed to be zero in the loading deomposition.118



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahtr ǫ = tr ǫe(I)+ tr ǫe(II)+ tr ǫe(III)+ tr ǫe(IV)+ tr ǫT ,
∆vp = np tr ǫe(I)+ ? tr ǫe(II)+ ? tr ǫe(III)+ tr ǫe(IV)+ np tr ǫT ,
∆vf = nf tr ǫe(I)+ nf tr ǫe(II)+ ? tr ǫe(III)+ tr ǫe(IV)+ nf tr ǫT .

(I) (II) (III) (IV) (Th)

(2.139)
Note that no strain is observed during the fourth stress state tr ǫe(IV) = 0. Writingthe previous equations in a more expliit form, requires the introdution of three unknownparameters, namely Ã, B̃ and C̃. The unknown parameters have a tilde aent so as to beeasily spotted in the further development:tr ǫ = cs (−pp)+ cp (pp − pf )+ c (−p+ pf )+ cT ∆Ts,

∆vp = np cs (−pp)+ Ã cp (pp − pf )+ B̃ c (−p+ pf )+ np cT ∆Ts,

∆vf = nf cs (−pp)+ nf cp (pp − pf )+ C̃ c (−p+ pf )+ nf cT ∆Ts.

(I) (II) (III) (Th)

(2.140)
Consequently, if both the thermal and the mehanial stresses are aounted for, theprevious inomplete system an be rearranged to,tr ǫ = c (−p)+ (cp − cs) pp+ (c− cp) pf+ cT∆Ts,

∆vp = B̃ c (−p)+
(
Ã cp − np cs

)
pp+

(
B̃ c− Ã cp

)
pf+ np cT∆Ts,

∆vf = C̃ c (−p)+ nf (cp − cs) pp+
(
C̃ c− nfcp

)
pf+ nf cT∆Ts.

(2.141)(5) The solid entropy relation is now extended to porous media with double porosity. Asentropy is one of the fators that determines the free energy of the system, its expres-sion is required. The expression of the �uid entropies are de�ned separately in Setion2.2.2.3. Note that the temperature variations of the two �uid phases do not appear in themehanial part of the CD equality (2.120).The entropy of the solid onstituent an be de�ned as a funtion of the generalisedstresses: p, pp, pf and ∆Ts if the generi tensor of equation (2.129) ψe is replaed by
ρs∆Ss. In addition, for purely thermal loading ∆Ts 6= 0, zero stress and pressure variations
p = pp = pf = 0, the parameter αTs whih represents the moleular exitation of the solidonstituent due to the temperature variation ontrols the entropy variation,

ρs∆Ss = ? tr ǫe(I)+ ? tr ǫe(II)+ ? tr ǫe(III)+ ? tr ǫe(IV)+ αTs ∆Ts.

(I) (II) (III) (IV) (Th)
(2.142)119



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahAgain, no strain is observed during the fourth stress state tr ǫe(IV) = 0. Writing theprevious equations in a more expliit form, requires the introdution of three unknownparameters, namely D̃, Ẽ and F̃ ,
ρs∆Ss = D̃ (−pp)+ Ẽ (pp − pf )+ F̃ (−p+ pf )+ αTs ∆Ts.

(I) (II) (III) (T )
(2.143)(6) Consequently, if both the thermal stresses and the mehanial stresses are aountedfor in a multi-temperature ontext, the following system an be ast,tr ǫ = c (−p)+ (cp − cs) pp+ (c− cp) pf+ cT∆Ts

∆vp = B̃ c (−p)+
(
Ã cp − np cs

)
pp+

(
B̃ c− Ã cp

)
pf+ np cT∆Ts

∆vf = C̃ c (−p)+ nf (cp − cs) pp+
(
C̃ c− nfcp

)
pf+ nf cT∆Ts

ρs∆Ss = F̃ (−p)+
(
Ẽ − D̃

)
pp+

(
F̃ − Ẽ

)
pf+ αTs∆Ts

(2.144)
This system is said to be omplete as it ontains the same number of generalised strains,trǫ, ∆vp, ∆vf and ρs∆Ss; as generalised stresses, p, pp, pf and ∆Ts.2.2.2.3 The thermo-mehanial properties of �uidsLet us start by introduing and de�ning the thermodynamial potentials: the internal en-ergy, the Helmholtz free energy, the enthalpy and the hemial potential. A �uid aloneis onsidered (in a single temperature ontext), by ontrast with a �uid within a porousmedium (in a multi-temperature ontext). Hene, the non-modi�ed thermodynamis fun-tions are presented. Next, the thermo-mehanial properties for a single �uid speies issuedfrom Mandel (1974, p. 102) and Drumheller (1998, p. 321) are presented along with theexpliit forms of the thermodynamial potentials for latter use. In addition, the variationof the thermodynamial potentials with pressure and temperature is illustrated. Finally,the thermo-mehanial behaviour of �uids within a porous medium with double porosityin a multi-temperature ontext is desribed.(1) The thermodynamial potentials used here, namely the internal energy U , theHelmholtz free energy E, the enthalpy H and the free enthalpy G (also alled the hemialpotential) are measured per unit mass. The knowledge of the internal energy provides thefree energy, the enthalpy and the free enthalpy, see Table 2.1. Expressions for all other120



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahthermodynami energy potentials are derivable via Legendre transforms from an expressionfor U . Measure Variable InrementInternal energy U = U (v, S) dU = −p dv + T dSFree energy E = E (v, T ) = U − T S dE = −p dv − S dTEnthalpy H = H (p, S) = U + p v dH = v dp+ T dSFree enthalpy G = G (p, T ) = H − T S dG = v dp− S dTTable 2.1: Thermodynamial measures of the state. Note that the inrement de�nitionsare arbitrary; therefore the total derivative d(·) may be replaed by the gradient operator
∇(·) or by the partial derivative ∂(·).The internal energy is a thermodynami potential whose natural independent statevariables are strain and entropy. The Helmholtz free energy is spei�ed as a funtion ofstrain and temperature; the enthalpy is expressed in terms of stress and entropy; and thefree enthalpy (or hemial potential) is expressed in terms of stress and temperature. Inthe ase of a �uid, strain is represented by the spei� volume v and stress by the pressure
p. The variables that are held onstant in this proess are termed the natural variablesof that potential. The natural variables are important not only for the above mentionedreason, but also beause if a thermodynami potential an be determined as a funtionof its natural variables, all the thermodynami properties of the system an be found bytaking partial derivatives of that potential with respet to its natural variables and this istrue for no other ombination of variables.An intensive property (also alled a bulk property) of a system is a physial propertyof the system that does not depend on the system size or on the amount of material inthe system. By ontrast, an extensive property of a system does depend on the systemsize or on the amount of material in the system. The volume, the energy, the entropy andthe enthalpy are extensive properties; while pressure, temperature and the spei� energy(measured par unit mass or unit volume) are intensive properties.(2) The thermo-mehanial behaviour of a single �uid is now presented. Let v = 1/ρ bethe spei� volume of the �uid. The properties of liquids subjeted to uniform pressurean often be approximated by the assumption of perfet inompressibility. When suh anassumption is inadequate, the oe�ient of thermal expansion cT and the oe�ient of theisothermal ompressibility cH are introdued,121



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
cT =

1

v

∂v

∂T

∣∣∣∣
p

= −1

ρ

∂ρ

∂T

∣∣∣∣
p

, cH = −1

v

∂v

∂p

∣∣∣∣
T

=
1

ρ

∂ρ

∂p

∣∣∣∣
T

. (2.145)Stability requires that cH must be positive, whereas cT may be positive or negative.For example at maximum density the oe�ient of thermal expansion of water vanishes,and it beomes negative at lower temperatures; it is also negative for ie between absolutezero and about 80K. The inremental variation of the spei� volume for a ompressibleand dilatable �uid is derived,
dv

v
= cT dT − cH dp, (2.146)whih shows that a knowledge of the funtions cT (p, T ) and cH(p, T ) together with thereferene value v0(p0, T0) is equivalent to the knowledge of the thermal equation of stateintegrated from equation (2.146). Sine v is a state funtion, the oe�ients of thermalexpansion cT and of isothermal ompressibility cH are related through,

∂cT
∂p

∣∣∣∣
T

= − ∂cH
∂T

∣∣∣∣
P

. (2.147)The preeding ompatibility relation demonstrates that the assumption cT = ste and
cH = ste is thermodynamially onsistent. In this ase, the spei� volume an be written,

v = v0 exp (−cH (p− p0) + cT (T − T0)) . (2.148)Let L be the latent heat with respet to volume of unit [J/kg] and Cv the heat apaityat onstant volume of unit [J/kg.K]. The di�erential of the entropy S may be written inthe format,
T dS = ρL dv + Cv dT, where ρL = T

∂p

∂T |v
, Cv = T

∂S

∂T |v
, (2.149)and by omparing equation (2.149)2 to equation (2.146), the latent heat is de�ned as,

ρL = T
cT
cH
. (2.150)In equation (2.149) the entropy is expressed as a funtion of the spei� volume v andof the temperature T . However the entropy may be expressed in terms of other variablesone it is known in terms of one ouple, 122



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
T dS = ρL dv + Cv dT = ξ dp+ Cp dT = ζ dv + η dp, (2.151)in whih,
Cp − Cv = T v

c2T
cH
, ξ = −cT v T, ζ =

Cp

cT v
, η =

cH
cT

Cv. (2.152)Note that,
dp

dv
= − 1

cH v
×
{

1 isothermal proess
γ isentropi proess , (2.153)with

γ =
Cp

Cv
= 1 +

v c2T T

cH Cv
(2.154)being the adiabati oe�ient. γ is lose to one for �uids (1 at 4 ◦C, 1.024 for water atroom temperature and 1.08 at 80 ◦C) and metals, about 1.3 to 1.7 for real gases at roomtemperature. It is important to note that the properties de�ned so far in this setion aretangent properties, and not seant properties, sine they are de�ned through di�erentials,and not �nite inrements. For a �uid whih is inompressible (cH = 0) and not dilatable(cT = 0), the previous relations redue to,

ξ = 0, T dS = dU = C dT, and, C = Cv = Cp = C (T ) . (2.155)The detailed expressions of the hemial potential G and of the internal energy U aresought. The expressions of the enthalpy H and the free energy E an be dedued from the
G and U , through their de�nitions in Table 2.1. The index 0 refers to the referene state
(p = p0, T = T0). The omplete thermodynami state is known, to within three arbitraryonstants only: for example v0, S0 and G0, see Remark 2.14. The referene potentialsexpress in terms of the quantities (p0, T0), v0 and (S0, G0),

H0 = G0 + T0 S0, E0 = G0 − p0 v0, U0 = G0 + T0 S0 − p0 v0. (2.156)Remark 2.14. The referene value of the hemial potential G0 may be seen as ontainingsome history of the speies. In pratie, it an be used as a degree of freedom to ensurehemial equilibrium of a speies at interfae between two phases.123



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahThe status of the referene entropy S0 is di�erent. Kestin (1968) disusses at lengththe issue of referene entropy, see Remark 2.15. He dedues from the third law of ther-modynamis that the derivative with respet to temperature of internal energy, free energy,enthalpy and free enthalpy should vanish as the temperature T tends to 0K. The third lawof thermodynamis does not seem to be muh of help at ambient temperature.Remark 2.15. The initial entropy, introdued in equation (2.156) is a priori unknown.Due to the potential nature of the entropy funtion, it is impossible to attribute a numerialvalue to S0, exept a quite arbitrary one.Kestin (1968) de�nes the initial entropy by use of thermodynamis. The third lawof thermodynamis provides an elegant answer to the de�nition of equilibrium funtionssuh as standard entropy beause it asserts that entropy should vanish at absolute zero oftemperature, T = 0K. This statement indues the spei� heat and the thermal expansionoe�ient to be temperature dependent, sine our soil mehanis appliations our on asmall range of temperatures, from 0 ◦C to 100 ◦C, the hypothesis of onstant spei� heatand thermal dilatation an be preserved. Variation of entropy with temperature for watermay be found in, Kestin (1968, p. 472). Note also that in pratie Kestin (1968, p. 484)assumes a zero entropy at 0 ◦C.Regarding the detailed expressions of the thermodynami potentials, three suessiveassumptions are proposed (Loret, 2008):Assumption 1 : The oe�ient of ompressibility cH is onstant, the thermal dilatationoe�ient is a funtion of the temperature only: cT = cT (T ). The integrability onditionof the entropy implies,
Cv(v, T ) = Cv(v0, T ) +

T (v − v0)

cH

dcT (T )

dT
. (2.157)Then,

v = v0 exp [−cH (p− p0) + I(cT (T ))(T, T0)] ,

S − S0 =
cT
cH

(v − v0) +

∫ T

T0

Cv (x)

x
dx, (2.158)

G−G0 = −v − v0
cH

+−S0 (T − T0) +
v0
cH
I(cT (T ))(T, T0)−

∫ T

T0

∫ T

T0

Cv (x)

x
dxdy,124



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
where,

I(cT (T ))(T, T0) =

∫ T

T0

cT (x) dx. (2.159)The omplete knowledge of the entropy and of the hemial potential requires the heatapaity Cv = Cv(v, T ) to be presribed, and the referene values of the spei� volume
v0, the entropy S0 and of the hemial potential G0 to be given, see Remarks 2.14 and2.15.Assumption 2 : If, in addition, the heat apaity Cv is onstant, Cv0 = Cv(v0, T ) =

Cv(v0, T0) then (see Demonstration 2.6 for G−G0)
S − S0 =

cT
cH

(v − v0) + Cv0 ln
T

T0
,

G−G0 = −v − v0
cH

+ (Cv0 − S0) (T − T0) +
v0
cH

I(cT (T ))(T, T0)

−Cv0 T ln
T

T0
,

H −H0 = −(v − v0)

cH
(1− T cT ) + Cv0(T − T0) +

v0
cH

I(cT (T ))(T, T0), (2.160)
E − E0 = −(p− p0)v − (p0 +

1

cH
)(v − v0) + (Cv0 − S0) (T − T0)

+
v0
cH
I(cT (T ))(T, T0)− Cv0T ln

T

T0
,

U − U0 = −(p− p0)v − (p0 +
1− cT T

cH
)(v − v0) +Cv0(T − T0)

+
v0
cH

I(cT (T ))(T, T0).Upon linearization at �rst order about the referene state (p0, T0),
v − v0 = −v0 cH (p− p0) + v0 I(cT (T ))(T, T0),

S − S0 = −cT v0 (p− p0) +
C

′

p0

T0
(T − T0),

G−G0 = v0(p − p0)− S0 (T − T0) , (2.161)
H −H0 = v0 (1− T0 cT )(p− p0) + C

′

p0 (T − T0),125



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
E − E0 = p0 v0 cH(p− p0)− S0 (T − T0)− p0 v0 I(cT (T ))(T, T0),

U − U0 = v0 (p0 cH − cT T0)(p− p0) + C
′

p0 (T − T0)− p0 v0 I(cT (T ))(T, T0).where the seant heat apaity C ′

p0 is de�ned by,
C

′

p0 = Cv0 +
v0 cT
cH

T0
T − T0

I(cT (T ))(T, T0). (2.162)It is worth noting that the linearised hemial potential and free energy show an a�nedependene on the referene entropy. Similarly, the free energy and the internal energyshow an a�ne dependene on the referene pressure. Entropy is inreased by an inreaseof temperature, and by a derease of pressure. Conversely pressure inrease implies aninrease of free energy, free enthalpy and enthalpy. As for the internal energy, the in�ueneof pressure is parameter and referene dependent.Equation (2.153) indues the pressure inrement,
p− p0 =





− 1

cH

v − v0
v0

+
I(cT )(T, T0)

cH (T − T0)
(T − T0)

− 1

cHS=S0

v − v0
v0

+
T0
Cv

I(cT )(T, T0)

cH (T − T0)
(S − S0)

(2.163)to be expressed in terms of volume hange and temperature hange via the isothermal om-pressibility cH , or in terms of volume hange and entropy via the isentropi (or adiabati)ompressibility cHS=S0
,

1

cHS=S0

=
1

cH
+

1

c2H

v0
Cv0

cTT0
I(cT )(T, T0)

T − T0
=

C
′

p0

cH Cv0

. (2.164)Assumption 3 : If in addition, the �uid is inompressible (cH = 0) and not dilatable(cT = 0), then equation (2.155) implies Cp = Cv = Cv0 = C, and,
S − S0 = C ln

T

T0
,

G−G0 = v0(p− p0) + (C − S0) (T − T0)− C T ln
T

T0
,

H −H0 = v0(p− p0) + C (T − T0), (2.165)
E − E0 = (C − S0)(T − T0)− cT ln

T

T0
,

U − U0 = C (T − T0) 126



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahNote that in this limit ase the pressure in�uene survives in the enthalpy and the freeenergy only.Demonstration 2.6. Proof of equation (2.160)2: The inremental of the hemial potential isde�ned as follows: dG = v dp− S dT . Hene,





∂G

∂T
= −S = −S0 −

cT
cH

(v − v0)− Cv0 ln
T

T0
,

∂G

∂p
= v = v0 exp [−cH (p− p0) + I(cT )(T, T0)] .

(2.166)By integrating equation (2.166)2 and onsidering f(T ) as an unknown funtion of the temperature
T , G−G0 beomes,

G−G0 = −v − v0
cH

+ f(T ). (2.167)The previous equality is derived in respet to temperature, whih is also equal to equation (2.166)1,
∂G

∂T
= −cT (T ) v

cH
+
∂f(T )

∂T
=

∂G

∂T
= −S0 −

cT (T )

cH
(v − v0)− Cv0 ln

T

T0
. (2.168)Therefore, the partial derivative of the unknown funtion f(T ) is,

∂f(T )

∂T
= −S0 +

cT (T ) v0
cH

− Cv0 ln
T

T0
, (2.169)and f(T ) an be identi�ed by being integrated to,

f(T )− f0(T ) = (Cv0 − S0) (T − T0) +
v0
cH

I(cT (T ))(T, T0)− Cv0 T ln
T

T0
. (2.170)By replaing the latter relation into (2.167), eq. (2.160)2 is reovered. The other relations of theenthalpy H, the free energy E and of the internal energy U an be dedued from G and from theirde�nitions, see Table 2.1.

(3) The variation of thermal properties and of thermodynamial potentials with temper-ature are now illustrated. Table 2.2 displays some physial properties of water. Its heatapaity is the next largest among liquids after ammonia. Heat apaity of sea water isslightly smaller. The dynami visosity of pure water is equal to 1 × 10−3 Pa.s at 20 ◦C.127



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahThe thermal expansion oe�ient of water substane undergoes a negative jump at 0 ◦C(Figure 2.6). It inreases monotonially between 0 ◦C and 100 ◦C, passing through a nullvalue just below 4 ◦C (Kestin, 1968, p. 264). In the liquid state, it an be approximatedby an a�ne funtion for temperature (unit of onstant 1/K),
cT (T ) = −0.0067 × 10−3 + 0.00819 × 10−3 × (T − 273), T ∈ ]273, 373K[ (2.171)Temperature Density Heat Thermal Bulk Dynamiapaity expansion∗ modulus∗ visosity

T [◦C℄ ρ [kg/m3℄ Cp [kJ/kg.K℄ cT [10−3/K℄ K [GPa℄ µ [10−3 Pa.s℄0 (ie) 916.8 � 0.158 � �0 (liquid) 999.8 4.210 -0.067 1.97 1.7892 � � -0.031 � 1.524 1000.0 � 0.001 � 1.5225 997.1 4.181 0.256 2.21 0.8940 992.3 4.179 0.390 2.28 0.65355 986 4.183 0.493 2.29 0.50475 975 4.194 0.614 2.25 �100 (liquid) 958 4.219 0.752 � 0.282Table 2.2: Some physial properties of pure water, from http://www.engineeringtoolbox.om and ∗ from Kestin (1968, p. 541).
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2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahEntropy [J/kg.K℄K=2.2 GPa linearised K=2.2 GPa nonlinear K=0.022 GPa nonlinear
Pressure[Pa℄ 2
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2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahChemial potential [J/kg.105℄K=2.2 GPa K=2.2 GPa K=0.022 GPalinearised non-linearised non-linearised
Pressure[Pa℄
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2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah-5 MPa < p < 5 MPa -50 MPa < p < 50 MPaEntropy [J/kg.K℄
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2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahinitial temperature, both the entropy and the hemial potential ontour plot shift to theright. In other words, the higher the initial temperature, the later (at higher temperatures)will the zero line be enountered. Entropy [J/kg/◦K℄
T0 = 0 ◦C T0 = 25 ◦C T0 = 50 ◦C
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Temperature [◦C℄ Temperature [◦C℄ Temperature [◦C℄Figure 2.10: Entropy and hemial potential as a funtion of temperature and pressure.Same data as Figure 2.9 exept for the pressure range : -50 MPa < p < 50 MPa; K = 0.022GPa (involving air bubbles) and using the non linear relations. Comparing the in�ueneof the initial temperature.(4) The thermo-mehanial behaviour of �uids within a multi-temperature mixture is nowexamined. Within a dual porosity mixture, the two �uids are assumed to be physiallyseparated, that is to say the pore �uid is in the porous blok and the �ssure �uid is inthe �ssure network. The two �uids do not interat exept through transfer. In addition,eah �uid is endowed with its own modi�ed pressure and modi�ed temperature. Therefore,eah phase of the mixture is saturated with a slightly ompressible �uid and an be ina di�erent state in eah pore type. Consequently, the �uids densities ρk, the hydrauliompressibilities ckH and the thermal expansion oe�ients ckT are assumed di�erent ineah type of void,
ckH =

1

ρk

∂ρk
∂pk

∣∣∣∣
Tk

, ckT = − 1

ρk

∂ρk
∂Tk

∣∣∣∣
pk

, k = p, f. (2.172)132



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahand the relationship relating the density hange of a �uid to a pressure hange and to atemperature hange, ρk = f (pk, Tk) is,
1

ρk

∂ρk
∂t

= ckH
∂pk
∂t

− ckT
∂Tk
∂t

, k = p, f. (2.173)Furthermore, sine the two �uids are assumed to be of the same nature, no menisusis aounted for in the hemial potential di�erential formulas, see Remark 2.16.Remark 2.16. A re�etion on the in�uene of the menisus is now proposed. The menis-us separating the two liquid phases has only a signi�ant ontribution when the two liquidsare of di�erent nature, e.g. water and oil (Loret and Khalili, 2000b,a). In the further de-velopment the �uid phases are assumed to be of same nature and the strain-energy due tothe in�uene of the menisus is negleted.The presene of menisi modi�es the expression of the entropy Sk of the �uid k, whihbeomes Sk+Gm
k . Therefore the hemial potential expression of the �uid k is also modi�ed.Aounting for the in�uene of menisi is reommended if the two �uid phases are ofdi�erent nature, e.g. water and oil or water and air.2.2.2.4 Isothermal Mehanial seant relationTo ease the global understanding, a mixture in loal thermal equilibrium is �rstly onsid-ered. The loal thermal non-equilibrium ase will be addressed in Subsetion 2.2.2.5. Theelasti onstitutive equation for saturated soils with double porosity links the generalisedstresses to the generalised (elasti) strains through a seant formulation (Khalili and Valli-appan, 1996). Let us begin by the evaluation of the shear stress and of the pressure stressontributions.The shear behaviour is aounted for, fully, by the shear modulus µDS of the drainedsolid skeleton. The �uid does not reat to shear stresses. The assoiated relationship is,

ǫ
e = CDS : σ̄ and tr ǫe = − c p̄, dev ǫe = dev σ̄

2 µDS
. (2.174)On the other hand, the �uids of the pores and of the �ssures partiipate to the isotropibehaviour. The omplete mehanial model links the primary variables: total stress, �ssure�uid and pore �uid pressures ∆(σ, pp, pf ); to the dependent variables: ∆(tr ǫe, vp, vf )whih represent, respetively, the strain of the solid skeleton, the volume hanges of theporous blok and the �ssure network. In our developments in this setion, only the isotropi133



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahpart is taken into aount, in onsequene the total stress σ an be replaed by the meanstress −p, eq. (2.125), and the total elasti deformation ǫ
e by its isotropi part tr ǫe.The aim of this analysis is to introdue the link between the generalised stress-straintensor, through a symmetri tensor Ce, the underlying idea being the existene of an elastipotential. In a matrix form,




−tr ǫe
vp

vf



−




−tr ǫe0
vp0

vf0



=




css csp csf

cps cpp cpf

cfs cfp cff




︸ ︷︷ ︸Ce




p− p0

pp − p0p

pf − p0f




(2.175)
The proof of the existene of an elasti potential and the identi�ation of the oe�ients

ckl, k, l = s, p, f proeeds in four steps: (1) First a potential in the form of the di�erentialof the omplementary energy dΨmech
c is introdued. (2) Then, as the omplementaryenergy Ψmech

c is a state funtion, the properties of state funtions and total di�erentialsare resumed. (3) Using the previously introdued properties, the symmetry of the tensorCe is reovered. (4) Finally Ψmech
c is obtained after integration of dΨmech

c . The existene ofthe elasti potential allows the seant elasti relation to be established. All the oe�ients
ckl, k, l = s, p, f are identi�ed.(1) A thermodynami property of the mixture, the omplementary energy Ψmech

c , is intro-dued that desribes the equilibrium state of the mixture. Sine the proessed fores arethe stress and �uid pressures, the potential de�ned as the di�erential of the omplementaryenergy Ψmech
c (σ, pp, pf ) is,

dΨmech
c = −dσ : ǫ

e − vp dpp − vf dpf . (2.176)(2) A summary of the properties of a state funtion and of a total di�erential is nowproposed. In thermodynamis, a state funtion, or state quantity, is a property of asystem that depends only on the urrent state of the system, not on the way in whih thesystem got to that state. A state funtion desribes the equilibrium state of a system, forexample,
dF = A (x, y) dx+B (x, y) dy. (2.177)The state funtion F is also a di�erential. This di�erential is said to be exat (totaldi�erential) if the integrand of dF is path independent. By way of notation, the symbol d(·)134



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahdenotes an exat di�erential, whereas the symbol ∂(·) is reserved for inexat di�erentials,whih annot be integrated without full knowledge of the path.The total di�erential of a funtion of several independent variables, for example
dF (x, y), is said to be an exat di�erential inrement. This statement implies that dF (x, y)is equal to the sum of its partial di�erential with respet to eah variables,

dF =

(
∂F
∂x

)
dx+

(
∂F
∂y

)
dy. (2.178)Hene, A and B must be of the form,

A (x, y) =
∂F
∂x

, and B (x, y) =
∂F
∂y

. (2.179)In three dimensions, a di�erential dF = A (x, y, z) dx+B (x, y, z) dy +C (x, y, z) dz isan exat di�erential in a simply onneted region R of the (x, y, z) oordinate system ifbetween the funtions A, B and C the following relations exist,
(
∂A

∂y

)

x,z

=

(
∂B

∂x

)

y,z

;

(
∂A

∂z

)

x,y

=

(
∂C

∂x

)

y,z

;

(
∂B

∂z

)

x,y

=

(
∂C

∂y

)

x,z

. (2.180)(3) Sine the potential dΨmech
c introdued in equation (2.176) is a total di�erential whihdepends only on state variables (σ, pp, pf ), the expressions of stress, �uid and pore �uidpressures depending on (tr ǫe, ∆vp, ∆vf) must verify the following onditions,

∂σ

∂vp
=
∂pp
∂ǫe

,
∂σ

∂vf
=
∂pf
∂ǫe

, and ∂pp
∂vf

=
∂pf
∂vp

. (2.181)Consequently the proof of the symmetry of Ce is obtained,
csp = cps, csf = cfs and cpf = cfp. (2.182)(4) The determination of Ψmech

c is reovered by integration. For simpliity, the potential
Ψmech

c (σ, pp, pf ) is assumed to be isotropi and quadrati in σ. This hypothesis added tothe property (2.179) justi�es the following behaviour relationship for the elasti strain andfor the volume hanges of the pores and the �ssures,
ǫ
e = −∂Ψ

mech
c

∂σ
, ⇔ tr ǫe = ∂Ψmech

c

∂p
, dev ǫe = −∂Ψ

mech
c

∂s
=

s
2 µDS

(2.183)
vp = −∂Ψ

mech
c

∂pp
, vf = −∂Ψ

mech
c

∂pf
. (2.184)135



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
The total di�erential Ψmech

c an be alulated by using the following integration,
Ψmech

c =

∫
∂Ψmech

c

∂p
dp+

∫
∂Ψmech

c

∂pp
dpp +

∫
∂Ψmech

c

∂pf
dpf +

∫
∂Ψmech

c

∂s
ds (2.185)Consequently the integrand of the potential dΨmech

c an be ast in the following format,
Ψmech

c = −1

2

(
css p

2 + cpp p
2
p + cff p

2
f + 2 csp p pp + 2 csf p pf + 2 cpfpp pf

)

− 1

4µDS
s : s. (2.186)The existene of the potential Ψmech

c has been proved in equation (2.186). Consequentlythe seant relation an now be established. The latter is detailed as follows: rossingequations (2.183), (2.184) with (2.141) for ∆Ts = 0, the seant relation writes,



−tr ǫe
∆ vp

∆ vf



=




c − (cp − cs) − (c− cp)

−B̃ c Ã cp − np cs B̃ c− Ã cp

−C̃ c nf (cp − cs) C̃ c− nf cp







p

pp

pf




(2.187)Applying the symmetry onditions of equation (2.182) allows us to identify the unknownparameters Ã, B̃ and C̃.
Ã =

(cp − cs)

cp
(1− nf ) , B̃ =

(cp − cs)

c
, and C̃ =

(c− cp)

c
. (2.188)Hene, the elasti tensor Ce writes in expliit form,




−tr ǫe
∆ vp

∆ vf



=




c − (cp − cs) − (c− cp)

− (cp − cs) cp (1− nf ) nf (cp − cs)
−cs (1 + np − nf )

− (c− cp) nf (cp − cs) c− cp (1 + nf )







p

pp

pf




(2.189)
Cruially, the seant relation displays a major symmetry.Remark 2.17. A similar relation to (2.189) an be written with (ǫe, pp, pf ) as primaryvariables, namely the Mixed Seant relation.136



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah2.2.2.5 Thermo-Mehanial seant relationThe mehanial elasti seant relation has been de�ned in Subsetion 2.2.2.4. The latterrelation is now extended to a thermo-mehanial seant relation (Loret and Khalili, 2000b),using the thermo-mehanial ontributions of the Clausius-Duhem inequality, previouslyintrodued in Subsetion 2.2.2.1,




dΨc = −dσ : ǫ− ρs Ss dTs −
∑

p,f

vk dpk,

⇒ ǫ = −∂Ψc

∂σ
, −ρs Ss =

∂Ψc

∂Ts
, −vk =

∂Ψc

∂pk
k = p, f ;

(2.190)
whih allowed the onstitutive system to be restrited to a set of four primary variables
∆(σ, pp, pf , Ts) related to four dependent variables ∆(ǫ, vp, vf , ρs Ss). The thermo-mehanial part of the Clausius-Duhem inequality suggests that the �uid temperaturesare not aounted for in the onjugate variables, whih reovers the hypothesis that the�uid temperatures do not in�uene the porous medium thermo-mehanial deformation,see Remark 2.13, p. 117.The aim is now to introdue the link between the generalised stress-strain tensor,through as symmetri tensor C. To do so, the existene of a thermo-elasti potential hasto be proved.




−tr ǫ
vp

vf

ρs Ss




−




−tr ǫ0
vp,0

vf,0

ρs,0 S0
s




=




css csp csf csT

cps cpp cpf cpT

cfs cfp cff cfT

cTs cTp cTf cTT




︸ ︷︷ ︸C



p− p0

pp − p0p

pf − p0f

Ts − T 0
s




(2.191)
The proof of the existene of the thermo-elasti potential and the identi�ation ofthe oe�ient ckl, k, l = s, p, f, T is similar to the mehanial elasti behaviour analy-sis (Subsetion 2.2.2.4) in whih the potential in the form of the omplementary energy

dΨc (σ, pp, pf , Ts) has already been introdued. Using its total di�erential propertiesimplies,
ǫ = −∂Ψc

∂σ
⇔ tr ǫ =

∂Ψc

∂p
, dev ǫ = −∂Ψc

∂s137



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
ρs Ss = −∂Ψc

∂Ts
and vk = −∂Ψc

∂pk
, k = p, f. (2.192)In addition to the relations (2.181), the total di�erential properties of dΨc bring,

∂p

∂ρs Ss
=

∂Ts
∂tr ǫ , ∂pp

∂ρs Ss
=
∂Ts
∂vp

,
∂pf

∂ (ρs Ss)
=
∂Ts
∂vf

. (2.193)In onsequene, the thermo-mehanial tensor linking the generalised stress-strainsdisplays symmetry,
cTs = csT , cTp = cpT , and cTf = cfT (2.194)The total di�erential Ψc an be alulated with the following integration,
Ψc = Ψmech

c (σ, pp, pf ) +

∫
∂Ψc

∂Ts
dTs (2.195)Considering the result of equation (2.186) as equal to Ψmech

c (σ, pp, pf ), the thermalmodi�ation may be added linearly, to the purely mehanial part with respet to thermalhanges,
Ψc (σ, pp, pf , Ts) = Ψmech

c (σ, pp, pf ) +

∫
∂Ψc

∂Ts
dTs (2.196)where,

∫
∂Ψc

∂Ts
dTs = −1

2
cTT ∆T 2

s −∆Ts (cTs p+ cTp pp + cTf pf ) + cste (2.197)Finally, the thermo-elasti potential takes the following form whih proves its existene,
Ψc (σ, pp, pf , Ts) = −1

2

(
css p

2 + cpp p
2
p + cff p

2
f

)
− csp p pp − csf p pf

− cpfpp pf − 1

2
cTT ∆T 2

s −∆Ts (cTs p+ cTp pp + cTf pf )

− 1

4µDS
s : s+ cste. (2.198)138



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahUsing equations (2.144), the following seant relation an be established,



−tr ǫ
∆ vp

∆ vf

∆(ρs Ss)




=




c − (cp − cs) − (c− cp) −cT

−B̃ c Ã cp − np cs B̃ c− Ã cp np cT

−C̃ c nf (cp − cs) C̃ c− nf cp nf cT

−F̃ Ẽ − D̃ F̃ − Ẽ αTs







p

pp

pf

∆ Ts


 (2.199)

Ã, B̃ and C̃ have already been identi�ed in equation (2.188). Using the symmetryproperty of equation (2.193), D̃, Ẽ and F̃ are in turn dedued.
D̃ = cT (1− nf − np) , Ẽ = cT (1− nf ) , and F̃ = cT . (2.200)Hene, the thermo-mehanial elasti seant relation an be ast in the following format,




−tr ǫ
∆ vp

∆ vf

∆(ρs Ss)




=




c − (cp − cs) − (c− cp) −cT

− (cp − cs) [cp (1− nf ) nf (cp − cs) np cT
−cs (1 + np − nf )]

− (c− cp) nf (cp − cs) c− cp (1 + nf ) nf cT

−cT np cT nf cT αTs







p

pp

pf

∆ Ts


(2.201)One again, the seant relation displays symmetry. Equation (2.201) is now rewrittento obtain the mixed seant relation, namely the matrix relating (p, ∆ vp, ∆ vf , ∆(ρs Ss))to (tr ǫ, pp, pf , ∆Ts), as this relation will be needed to write the omprehensive equationsof the balanes of mass for the �uids,




p

∆ vp

∆ vf

∆(ρs Ss)




=




−1/c ξp ξf γT

ξp c22 c23 c24

ξf c32 c33 c34

γT c42 c43 Cs
p/Ts







tr ǫ
pp

pf

∆ Ts




, (2.202)
139



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahin whih,
c22 = [(ξf − nf ) (cp − cs) + cs (ξp − np)] ,

c33 = [(ξf − nf ) (cp − cs) + cs (ξf − nf )] ,

c23 = c32 = − (ξf − nf ) (cp − cs) ,

c42 = c24 = (np − ξp) cT ,

c43 = c34 = (nf − ξf ) cT , (2.203)and where Cs
p is the apparent heat apaity, at onstant strain and �uid pressure, of thesolid phase, per unit initial volume of porous medium, that is to say the heat apaity Cs,ptimes the volume fration ns.Remark 2.18. The atual form of the total seant thermo-elasti matrix depends of thetype of the generalised strains. If the volume ontents are taken as generalised strains,see equation (2.202), the partial seant thermo-elasti matrix displays symmetry (Loret,2008). On the ontrary, the total seant thermo-elasti matrix, namely the matrix relatingthe stresses: (p, ∆ vp, ∆ vf , ∆(ρs Ss), ∆(ρp Sp), ∆ (ρf Sf)) to the strains: (tr ǫ, pp, pf ,

∆ Ts, ∆ Tp, ∆ Tf ), is however non-symmetri,



p

∆ vp

∆ vf

∆(ρs Ss)

∆ (ρp Sp)

∆
(
ρf Sf

)




=




−1/c ξp ξf γT 0 0

ξp c22 c23 c24 0 0

ξf c32 c33 c34 0 0

γT c42 c43 Cs
p/Ts 0 0

0 −np cpT 0 0 Cp
p/Tp 0

0 0 −nf cfT 0 0 Cf
p /Tf







tr ǫ

pp

pf

∆ Ts

∆ Tp

∆ Tf


(2.204)where lines �ve and six are obtained by use of equations (2.151), (2.152) and (2.172) andwhere Cp

p and Cf
p are the apparent heat apaities, at onstant strain and �uid pressure, ofthe pore �uid and the �ssure �uid, per unit initial volume of porous medium, respetively.To obtain a symmetri total seant thermo-elasti matrix, the volume ontent of the�uids, vp and vf must be replaed by their respetive mass ontent, mp/ρp and mf/ρf140



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah(Loret and Khalili, 2000b). Indeed using the de�nitions of �uid mass ontent and �uidvolume ontent,
vk =

Vk
V0

= nk
V

V0
, and mk =

Mk

V0
= ρk v

k (2.205)Their inrements (d(·) = ∆(·)) below relate as under the assumption of small deformations,
dmk

ρk
= d vk + vk (ckH dpk − ckT dTk) ≈ d vk + nk (ckH dpk − ckT dTk) (2.206)Consequently the total seant thermo-elasti matrix displays symmetry,













































p

∆mp

ρp

∆mf

ρf

∆(ρs Ss)

∆ (ρp Sp)

∆
(

ρf Sf

)
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−1/c ξp ξf γT 0 0

ξp c22 c23 c24 [−np cpT ] 0
[+np cpH ]

ξf c32 c33 c34 0 [−nf cfT ]
[+nf cfH ]

γT c42 c43 Cs
p/Ts 0 0

0 −np cpT 0 0 Cp
p/Tp 0

0 0 −nf cfT 0 0 Cf
p /Tf

























































































tr ǫ

pp

pf

∆ Ts

∆ Tp

∆ Tf











































 (2.207)in whih the terms due to the �uid mass ontents mk are highlighted in brakets.2.2.2.6 The volume frationsFor a future use in the omprehensive energy equations (Subsetion 2.3.3), the desriptionof the rate of the volume frations of eah speies is required. The relation between thevolume fration nk and the volume ontent vk of the speies k is,
nk =

vk

det F
where det F =

V

V0
k = p, f. (2.208)Moreover, the mass ontent mk and the volume ontent vk are related by the density ρk,

mk = ρk v
k → nk =

1

det F

mk

ρk
k = p, f. (2.209)141



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahThe rate of volume fration for the �uid speies and for the solid are onsidered inturn. The rate of the volume fration of the �uid k is obtained from equations (2.208) and(2.209),
dnk
dt

= − vkdet F2

d(det F)
dt

+
1det F dvk

dt
,

= − vkdet F d(tr ǫ)
dt

+
1det F dvk

dt
,

= −nk
d(tr ǫ)
dt

+
1det F (

1

ρk

dmk

dt
− mk

ρ2k

dρk
dt

)
,

= −nk
d(tr ǫ)
dt

+
nk
mk

dmk

dt
− nk

1

ρk

dρk
dt

k = p, f. (2.210)By use of the thermo-barotropi �uid relation (2.173), the density rate 1/ρk (dρk/dt)in expressed in terms of �uid pressure and solid temperature,
dnk
dt

= −nk
d(tr ǫ)
dt

+
nk
mk

dmk

dt
− nk

(
ckH

dpk
dt

− ckT
dTk
dt

)
k = p, f. (2.211)Upon insertion of the rate of mass ontent 1/ρk(dmk/dt) from equation (2.207) and ofthe small strain assumption (det F = 1), the rates of volume fration beome,

dnp
dt

= (ξp − np)
d(tr ǫ)
dt

+ c22
dpp
dt

+ c23
dpf
dt

+ c24
dTs
dt

,

dnf
dt

= (ξf − nf )
d(tr ǫ)
dt

+ c32
dpp
dt

+ c33
dpf
dt

+ c34
dTs
dt

. (2.212)in whih the oe�ients c22, c23, c24, c32, c33 and c34 are de�ned in equation (2.203).From the e�etive stress relations (2.133) and (2.134), the thermo-elasti strain writes asa funtion of the total stress, the �uid pressure and the solid temperature,tr ǫ = c (−p+ ξp pp + ξf pf ) + cT (Ts − T0). (2.213)Finally, upon insertion of equation (2.213), the rates of volume fration are expressedin terms of total stress and �uid pressures only,142



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
dnp
dt

= (ξp − np) c
d

dt
(pp − p) + (ξp(ξf − nf )− ξf (ξp − np)) c

d

dt
(pp − pf ),

dnf
dt

= (ξf − nf ) c :
d

dt
(pf − p). (2.214)The rate of volume fration for the solid skeleton is dedued from equation (2.208),

dns
dt

= − vsdet F d(tr ǫ)
dt

+ det F dvs

dt
, (2.215)whih simpli�es under the small strains assumption to,

dns
dt

= −ns
d(tr ǫ)
dt

+
dvs

dt
. (2.216)The volume fration of the solid skeleton is obtained by substituting into the volumefration of the whole porous medium the �uid volume frations. Hene, from equations(2.140) and (2.188),

∆vs = ∆v −∆vp −∆vf ,

= −cs p+ cs np pp + cs nf pf + ns cT (Ts − T0). (2.217)Finally, upon insertion of the volume ontent (2.217) and elimination of the thermo-elasti strain via equation (2.213), the volume fration of the solid is expressed in terms ofthe total stress and �uid pressures only,
dns
dt

= (ns c− cs)
dp

dt
+ (np cs − ns ξp c)

dpp
dt

+ (nf cs − ns ξf c)
dpf
dt

. (2.218)2.2.2.7 Comparison with the literatureThe aim of this setion has been ful�lled; the thermo-mehanial elasti seant relationlinking the generalised stresses to the generalised strains has been identi�ed via a symmetritensor eq. (2.201). The onstitutive formulation developed as part of this study an be143



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahompared to three studies published in the literature. The developments are presented inappendies:- Bowen and Garia (1970) introdued a formulation of a thermo-mehanial theory of amixture through a rational thermodynami approah (Appendix A);- Peker and Deresiewiz (1973) analysed thermal e�ets on wave propagation in liquid-�lled porous media (Appendix B).- MTigue (1986) studied the thermoelasti response of porous roks in thermal equilibrium(Appendix C).2.2.3 Di�usion onstitutive equationsDi�usion is a mode of passive transport that governs partially the motion in a porousmedium of �uid partiles, of ioni partiles, of hemial speies, as well as heat �ux inboth solids and �uid-saturated porous media. In-situ all the diret and indiret di�usionmehanisms our at the same time. However, some of them are usually prevalent uponthe others depending on the appliation. Although the diret di�usion phenomena havebeen well studied and quanti�ed, the magnitude of some oupled mehanisms is still anopen question.This study aims to desribe the reation of fratured porous media under ombinedthermo-hydro-mehanial loadings, therefore the analysis fouses on the hydrauli and heatdi�usion mehanisms only. The relative in�uene of the oupled hydrauli/heat meha-nisms is disussed, in spite of the pauity of in-situ measurements in saturated media.Let us begin by writing the di�usion part of the Clausius-Duhem inequality in a moresimple form, the underlined idea being the identi�ation of the onjugate variables (Loret,2008). The �uid and heat �ux equations are identi�ed by foring the di�usion part of theClausius-Duhem inequality, eq. (2.90)3, to be positive,
dD3

dt
= −

∑

s,p,f

qk · ∇TkT 2
k

−
∑

p,f

Mk · 1

Tk

(
Sk ∇Tk +∇Gk +

dkvk
dt

− bk

)
≥ 0. (2.219)The hemial potential gradient ∇Gk may be deomposed in a hydrauli gradient termand in a thermal gradient term, as if the �uid was a single ontinuum, while no menisusis aounted for as the two �uids are assumed to be of same nature, see Remark 2.16 p.133, 144



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
∇Gk =

∇pk
ρk

− Sk ∇Tk. (2.220)Reall that the volume �ux is de�ned as Jk =Mk/ρk. Replaing equation (2.220) into(2.219), the di�usion part of the Clausius-Duhem inequality may be written,
dD3

dt
= −

∑

s,p,f

qk · ∇TkT 2
k

−
∑

p,f

Jk · ∇Pk

Tk
≥ 0, (2.221)with

∇Pk = ∇pk + ρk

(
dkvk
dt

− bk

)
. (2.222)The hoie of the �uxes, namely the volume �uxes Jk and the heat �uxes qk, is moti-vated by two reasons: (1) to work with the same volume �uxes as introdued in Dary'slaw and (2) to work with the same heat �uxes as used to desribe Fourier's law, andinidentally by Bowen and Chen (1975).Therefore, the di�usion driving fores are the thermal gradient ∇Tk/T 2

k and the pres-sure gradient ∇Pk/Tk.The following onjugate variables are identi�ed:� The volume �ux Jk is onjugated to the hydrauli gradient ∇Pk/Tk� The heat �ux qk is onjugated to the thermal gradient ∇Tk/T 2
kThe sope of this setion is to identify the generalised di�usion seant relation, relat-ing the onjugate variables previously identi�ed through (2.221). To write suh relation,the �uid and heat �ux oupled behaviour equations are presented �rst. Next Dary'slaw and Fourier's law are extended to aount for the oupling phenomena in a multi-temperature ontext. A partiular e�ort is done to relate the introdued parameters withphenomenologial oe�ients and to evaluate the magnitude of the oupled oe�ients.Finally, the generalised di�usion onstitutive seant relation is introdued and simpli�edwith Onsager's reiproity priniple.2.2.3.1 Fluid and heat oupled �ow behaviourThe oupled relations desribing the generalised di�usion behaviour in a porous mediumwith double porosity are now presented. This subsetion inludes a review of the physis of145



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahdiret and oupled �ow proesses through soils and their quanti�ation in pratial form.Relationships of �uid and heat �ows through soils are suessively established: eah �owrate or �ux Ji, of the ith �ow type, may be linearly related to its orresponding drivingfore Xi by the ondutivity oe�ient of the �ow (Mithell, 1993),
Ji = −Lii Xi. (2.223)Spei�ally for the �uid �ow type, Dary's law relates the �uid �ow rate qh to thehydrauli gradient ih through the hydrauli ondutivity Kh,
qh = −Kh ihA. (2.224)in whih A represents the ross setion area normal to the diretion of the �ow. Thehydrauli ondutivity is a property of a type of porosity and its assoiated �uid anddesribes the ease with whih the �uid an move through pore spaes. The hydrauliondutivity Kk may be related to the ratio of the intrinsi permeability kk over the �uiddynami visosity µk,
Kk = ρk g

kk
µk

[m
s

] (2.225)in whih g is the gravity. Conerning the heat �ow, Fourier's law relates the heat �ow rate
qt to the thermal gradient it through the thermal ondutivity Kt [W/m.K℄,

qt = −Kt itA (2.226)Figure 2.11 illustrates the analogy between the two �ow types. As long as the �owrates and gradients are linearly related, the mathematial treatment of eah �ow type isthe same, and solutions for �ow of one type may be used for problems of another type if theproperty values and boundary onditions are properly represented. A well known pratialillustration of this is the orrespondene between the Terzaghi theory of onsolidation andone-dimensional transient heat �ow (Mithell, 1993).In many studies, there are simultaneous �ows of di�erent types, even when only onetype of driving fore is ating. For example, when pore water ontaining a hemial speies�ows under the ation of a hydrauli gradient, there is a onurrent �ow of hemial throughthe soil. This type of hemial transport is sometimes alled onvetion. It has been provedthat a gradient of one type an ause a �ow of another type aording to,146



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahDiret �uid �ow Dary's law
L

HΔ

q
h

qh = Kh
∆H

L
A

Diret heat �ow Fourier's law
L

TΔ

q
t

Hot Cold

qt = Kt
∆T

L
A

Figure 2.11: Two types of diret �ows through a soil mass: diret �uid �ow and diret heat�ow. A represents the ross setion area normal to the diretion of the �ow.
Ji = −

∑

j

Lij Xj (2.227)where Lij are termed oupling oe�ients. Depending on the appliation, they are proper-ties that may or may not be of signi�ant magnitude in any given porous medium. Diretand oupled di�usion phenomena are listed in Table 2.3. The phenomena that are a-ounted for in this model are highlighted in bold letters, namely, hydrauli ondution(Dary's law) and thermal ondution (Fourier's law). Hene two oupling phenomena areprimarily identi�ed:� Thermo-osmosis is a water movement under a temperature gradient. MTigue (1986)and Bear (1972) desribe this water movement as analogous to the Soret e�et, whihis ion di�usion due to a thermal gradient.� Isothermal heat �ow is �ow of heat indued by a pressure gradient, analogous to theDufour e�et, whih is heat �ux under a hemial onentration gradient. It is alsoalled thermal �ltration.In the partiular ase of dual porous media, these oupled di�usion mehanisms ourin eah phase, i.e. no oupling in between phases is aounted for here, as the two �uids are147



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahGradient XFlow J Hydrauli head Temperature Eletrial ChemialonentrationFluid Hydrauli Thermo-osmosis Eletro-osmosis Chemial-osmosisondutionDary's lawHeat Isothermal Thermal Peltier e�et Dufour e�etheat �ow ondutionFourier's lawCurrent Streaming Thermo-eletriity Eletri Di�usion andurrent Seebek e�et ondution membraneOhm's law potentialsIon Streaming Thermal di�usion Eletro-phoresis Di�usionurrent of eletrolyte Fik's lawSoret e�etTable 2.3: Diret and oupled di�usion phenomena from (Mithell, 1993, p. 230). Thephenomena aounted for in this model are highlighted in bold letters.physially separated in the medium (from the di�usion point of view). Fluid interationbetween the two networks is assumed to take plae through transfer, whih is desribed inSubsetion 2.2.4.First, the oupled �uid and heat �ow behaviour equations, for a dual porous medium ina multi-temperature ontext, are de�ned. These expressions may appear as an extensionof Dary's law and Fourier's law. Seond, the latter oupled equations are gathered in aoupled di�usion matrix, for a single �uid. The underlined idea is to fous on the thermo-osmosis oupling oe�ients and on the onsequenes of the Onsager's reiproity priniple.Furthermore, a disussion is proposed on the magnitude of the thermo-osmosis ouplingphenomena for saturated soils.(1) The oupled �uid and heat �ow behaviour equations presented in this setion an beompared with the expressions of heat �uxes and volumes �uxes hidden in the momentumsupplies presented by Bowen and Chen (1975, eq. (2.13)-(2.15)). By omparison with thelatter referene, less ouplings are aounted for here, as the partiular ase of a porousmedium with double porosity is onsidered. In our model, the two �uids are physiallyseparated in the medium. Hene, no oupling in between the �uid phases is taken intoaount from the di�usion point of view. Moreover, the heat �ux of the solid skeleton isassumed to be independent of the �uid thermal gradients.148



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approaha. The extended Dary's law equation desribing the hydrauli �ux behaviour underombined hydrauli and thermal gradients, may be written as follows,
Jk = −Tk

kk
µk

·
(∇Pk

Tk

)
− nk T

2
k Θk ·

(∇Tk
T 2
k

)
, k = p, f ; (2.228)where kk are the intrinsi permeabilities, µk are the visosities of the �uids (temperaturedependent) and Θk are the thermo-osmosis oupling oe�ients. The fator kk/µk of thepressure gradient is expressed in [m2/Pa.s

] and the fator Θk of the temperature gradientis expressed in [m2/s.K
].b. The extended Fourier's law desribing the heat �uxes behaviour, qs and qk, underombined hydrauli and thermal gradients, may be written as follows,qs = −ns T 2

s Λs ·
(∇Ts
T 2
s

)
,qk = −nk T 2

k Φk ·
(∇Pk

Tk

)
− nk T

2
k Λk ·

(∇Tk
T 2
k

)
, k = p, f ; (2.229)where Φk are alled the isothermal heat �ow oe�ients of unit [m2/s.K

]; and Λk are thethermal ondutivities of unit [m.kg/s3.K], for k = s, p, f .Heat �uxes qk are de�ned as �ows of energy per unit of area of the whole medium.The assumption that the surfae frations are equal to the volume frations nk is usedthroughout. Hene, qk = nk Qk are in fat partial heat �uxes ompared with the intrinsiheat �uxes Qk. This explains why the fator nk is used in equation (2.229).Similarly, Jk are de�ned as volume �uxes, per unit urrent area of the whole porousmedium, through the solid skeleton. Jk are partial �uxes and not intrinsi �uxes. Thefator nk is therefore legitimate in equation (2.228). Note that the volume fration term
nk is elusive in the de�nition of the intrinsi permeability, kk, see Setion 3.1.4.. At thermal equilibrium, namely Ts = Tp = Tf = T , Dary's law and Fourier's lawbehaviour equations of a porous medium with double porosity redue to,

Jk = −T kk
µk

· ∇Pk

T
− nk T

2 Θk ·
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T 2

k = p, f, (2.230)149



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
q = qs +

∑

k=p,f

qk,= −
∑

k=p,f

nk T
2 Φk ·

∇Pk

T
− T 2 Λ · ∇T

T 2with Λ = nsΛs +
∑

k=p,f

nkΛk, (2.231)in whih Λ is the thermal ondutivity tensor of the mixture and q is the heat �ux of thewhole medium.(2) In the partiular ase of a single �uid k, the �uxes Y, the volume �ux Jk and the heat�ux qk, may be linearly related to the modi�ed gradients fores X, the modi�ed pressuregradient −∇Pk/Tk and the thermal gradient −∇Tk/T 2
k , through a semi-positive de�nitedi�usion matrix L,Y = −LX, 


Jkqk  = −



Lmm LmQ

LQm LQQ






∇Pk/Tk

∇Tk/T 2
k


 . (2.232)The heat �ux unit is [kg/s3] and the volume �ux unit is [m/s]. Sine preautions havebeen taken to measure the �uxes and the fores in the orret way, Onsager's reiproitypriniple is valid, and leads to the relation,

LmQ = LQm. (2.233)Thus if the di�usion matrix L is semi-positive de�nite, the following onditions are stated,
Lmm > 0, LQQ > 0, Lmm LQQ − L2

mQ ≥ 0. (2.234)Relating equation (2.232) to (2.228) and (2.229) leads to the identi�ation of the oef-�ients of the di�usion matrix,
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2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
Sub-system a Sub-system b
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Figure 2.12: To illustrate the isothermal heat �ow phenomenon, a simple ase is onsidered:a system ontaining only pure �uid is divided into two by a permeable membrane. Thetwo sub-systems (a and b) are homogeneous with themselves, but pressure vary as betweenthe ompartments. The experimental arrangements are suh that the two sub-systems aremaintained at the same temperature (that is, ∇T = 0) by being in intimate ontat with asuitable heat soure or sink and the volume of the entire system remains onstant. Mattermoves from a higher pressure to a lower and every unit whih passes will onvey heatfrom one to the other. Isothermal heat �ow desribes �ow of heat indued by a pressuregradient.(3) Beause of the oupled �ows, the measurements of the oupling oe�ients require anaurate de�nition of the experimental system. Three thought experiments are proposedto identify the oupling oe�ients: i. under isothermal �ow, ii. under thermally insulated�ow and iii. under the assumption of no �ow of matter.i. Isothermal �ow, ∇Tk = 0Following Spanner's work (1964), a virtual experiment is now proposed (Figure 2.12).Two sub-systems are separated by a membrane and subjeted to a pressure di�ereneunder isothermal onditions. The membrane may be onstituted by any porous material,but may also be aerial or inexistent. The experimental arrangements are made suh aseah sub-system is maintained at the same temperature by being in intimate ontat witha suitable heat soure. The �ow of eah sub-system di�uses through the membrane. Therelation (2.232) subjeted to an isothermal �ow (∇Tk = 0) redues to,
{

Jk = −Lmm · ∇Pk/Tk,

qk = −LQm · ∇Pk/Tk,
(2.236)whih an be rearranged into,

qk =
LQm

Lmm
Jk. (2.237)The latter equation indiates that the isothermal heat �ow of a unit quantity of matteris assoiated with the �ow of LQm/Lmm units of heat. In other words, it is to be expeted151



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahthat this quantity of heat has to be supplied experimentally to the �rst sub-system andremoved from the seond (per unit of mass passing) to keep their temperatures onstant.In addition this equation gives the unit of the fration LQm/Lmm, [kg/m.s2] equal to aquantity of energy per unit of mass [J/m3].Spanner (1964, p. 246) who was studying irreversible thermodynamial proesses inplant ells porous media, in an unsaturated ontext, proposed to link the proportionalityoe�ient LQm/Lmm with the latent heat of vaporisation Lvap of unit [m2/s2],
qk = ρk Lvap Jk,

LQm

Lmm
= ρk Lvap. (2.238)At 35 ◦C for a water �uid, Lvap = 2.417106 J/kg, ρw = 994kg/m3, so that LQm/Lmm =

2.403 109 kg/m.s2.Experiments on thermo-osmosis in liquids (water) are reported by Alexander and Wirtz(1950) as well as from Haase and Shönert (1960). These measurements show that thermo-osmosis does not always our from the old to the warm side. The sign of the e�etdepends rather on the type of �uid, on the nature of the membrane, and, �nally, on themean temperature. The measured values of the proportionality oe�ient LQm/Lmm for asystem Water-Cellophane at di�erent mean temperatures (from 10.87 to 57.69 ◦C) variatefrom 2.43 to 0.016 al/mol. However, it has often been reported that thermo-osmotie�ets are not of a signi�ant magnitude in a wide range of saturated soil appliations(MTigue, 1986; Bear and Bahmat, 1991).In onlusion, the magnitude of the oe�ient LQm/Lmm appears hard to estimate.Taking the latent heat of vaporization Lvap in an unsaturated ontext, in whih the mem-brane is hosen to be aerial, seems appropriate. However, in our THM model no phasehange (liquid to vapor) is aounted for, and less energy is required for an inrease intemperature than for a hange of phase. Hene an arbitrary value, proportional to thelatent heat of vaporisation but lower, ould be proposed to perform a parameter analysis.Further experiments should be done to larify this point.ii. Thermally insulated �ow, qk = 0This experiment would provide the thermally insulated hydrauli ondutivity, whih isthe measurement of the hydrauli ondutivity in absene of heat �ux,
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2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahiii. No �ow of matter, Jk = 0This experiment would provide the hydrauli open iruit thermal ondutivity, whihis the measurement of the thermal ondutivity in absene of �ux of matter,
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T 2
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(2.240)
Thus at 35 ◦C, a gradient of temperature of 1K gives rise to a gradient of pressureequal to −78 105 Pa. Note that the signs of the temperature and the pressure gradientsare opposite. One again the use of the latent heat of vaporization brings a non-negligibleoupled phenomenon.2.2.3.2 Generalised di�usion seant matrixThe oupled di�usion behaviours have been previously analysed through empirial lawsand experiments. Let us now introdue the generalised di�usion seant relation linkingthe volume �uxes and the heat �uxes to the thermal and hydrauli gradients by using thegeneral from of the di�usion part of the Clausius-Duhem inequality,
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)
≥ 0, (2.241)in whih, one an identify the onjugate variables: the heat �ux qk with the temperaturegradient ∇Tk/T 2

k , for k = s, p, f ; and the volume �ux Jk with the modi�ed hydrauligradient ∇Pk/Tk, for k = p, f . The di�usion part of the Clausius-Duhem inequality writesin an expanded form,
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= −XT Y = XT LX ≥ 0. (2.242)This setion aims to introdue the link between the generalised di�usion �uxes to thetemperature and hydrauli stress gradients, through the tensor L,153



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
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. (2.243)
Relating the heat and �uid �ow behaviour relations (2.228) and (2.229) to the previousfully oupled di�usion relation (2.243), allows us to simplify the matrix L by aountingfor only the existing ouplings,
L =




Lss 0 0 0 0

0 Lpp 0 Hpp 0

0 0 Lff 0 Hff

0 Gpp 0 Kpp 0

0 0 Gff 0 Kff




.

} Isothermal heat �ux (2.244)
︸ ︷︷ ︸Thermo-osmosisAording to Onsager's reiproity priniple, the matrix L is assumed to be symmetri,

Gpp = Hpp Gff = Hff , (2.245)and semi-positive de�nite, i.e. all prinipal minors have to be non-negative,
Lss ≥ 0, Lpp ≥ 0, Lff ≥ 0, Kpp ≥ 0, and Kff ≥ 0, (2.246)
Lpp −GppK

−1
pp Hpp ≥ 0, Lff −Gff K

−1
ff Hff ≥ 0. (2.247)The seant matrix oe�ients may be related to physial values by identi�ation withthe di�usion oe�ients of equations (2.228) and (2.229). As the matrix L is symmetri,the thermo-osmosis oe�ients are found equal to the isothermal heat �ux oe�ients,namely, 154



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah
Θp = Φp, and Θf = Φf . (2.248)The symmetry property is onserved by onsistent salings of the �uxes and drivinggradients, see Setion 2.2.1. On the other hand, there is no argument why the �uxesthemselves should display a symmetri oupling; while in many ases, symmetry is usedmainly as a starting onvenient assumption, it should in �ne be veri�ed, or disprovedexperimentally. Overall, the generalised di�usion seant matrix is identi�ed,
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(2.249)where Λs, Λp and Λf are the diret thermal ondutivities of the solid, the pore �uid andthe �ssure �uid phase, respetively. kp and kf are the intrinsi permeabilities of the porousblok and the �ssure network; µp and µf are the visosity of the pore �uid and the �ssure�uid; Θp and Θf are the oupled thermo-osmosis oe�ients of the pore �uid and of the�ssure �uid, respetively.Remark 2.19. The di�usion onstitutive behaviour developed by Peker and Deresiewiz(1973) (Appendix B) is reovered for Θp = 0 and Θf = 0, i.e. the thermo-osmosis e�etand the isothermal heat �ux, analogous to the Soret e�et and to the Dufour e�et, areomitted.2.2.4 Transfer onstitutive equationsDi�usion mehanisms take plae within eah phase. It is ruial to highlight the fat thattransfer mehanisms our at a loal geometrial point, when the �ow passes from onephase to the other. In-situ, four transfer mehanisms take plae at the same time: (1)momentum transfer (Remark 2.20), (2) mass transfer, (3) entropy transfer and (4) energytransfer. Transfer mehanisms are said to be diret when they are indued by a fore. On155



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahthe ontrary, transfer mehanisms are said to be indiret when they are indued by anothertransfer mehanism.Remark 2.20. The momentum transfer behaviour an be reovered by substituting Dary'slaw (2.222) into the balane of momentum �eld equation (2.32), namely,
êkM = ρ̂kṽk + p̂k
êkM = ∇ nk · pk I︸ ︷︷ ︸Buoyany term+ ∇Pk · nk I︸ ︷︷ ︸Dary's law+ ρ̂ktr vk︸ ︷︷ ︸mass transfer (2.250)Therefore, the momentum transfer law is not to be given by the transfer CD inequality.This setion aims to identify the onstitutive matrix linking the transfer �uxes to theirorresponding driving fores (Loret, 2008). The establishment of a transfer onstitutiverelation is obtained by foring the transfer part of the Clausius-Duhem equation (2.90)2to be positive. The latter equation (2.90)2 is now presented to visualise eah ontribution,namely (2) mass transfer, (3) entropy transfer (Remark 2.21) and (1)+(4) the momentumand energy transfers,
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≥ 0 (2.251)
where the mass transfer �ux X(2)

k is onjugated with its related fore Y (2)
k de�ned by,
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2 − 1

2
v2s) 1

Tk
(2.252)One may observe that the whole term êkM ·vs− êkU appears in the energy omprehensiveequation. As the momentum �ux êkM is known (Remark 2.20), the global energy �ux X(4)

kis assumed to be onjugated with the related fore Y (4)
k , namely,
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(4)
k = êkM · vs − êkU

Y
(4)
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Tk
(2.253)The hoie of the �uxes, namely the mass transfer ρ̂ktr, the entropy transfer êkS and theglobal energy transfer X(4)

k , is driven by three purposes: (i) so as to take advantage of the156



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahtransfer losure relations, (ii) to reover the same mass transfer �uxes when reduing toa hydro-mehanial model (Barenblatt et al., 1960) and (iii) to reover the same energytransfer �uxes when reduing to a single porosity model (Bowen and Garia, 1970).Remark 2.21. The rate of entropy transfer, ontribution (3), appears to have no workonjugate variable. Hene, no restritions is provided on the entropy transfer onstitutiverelation from the thermodynamis theory. In addition, sine no dissipation ours duringthe entropy transfer, the term (3) sums up to zero as it was presented by the losure relation(2.65),
∑

k = s,p,f

êkS = 0. (2.254)The onstitutive behaviour of êkS for eah phase will not be desribed beause the transferof entropy in between phases does not in�uene the solution of a problem at the boundaries.Any arbitrary behaviour law for êkS ould be imposed, however it would not hange the globalresults. It is important here to highlight that no onstitutive transfer equations is missing.To summarise, the CD transfer inequality allows us to write the onstitutive equationsdesribing (2) the rate of mass transfer and (4) the rate of global energy transfer only. Norestritions on the other transfer onstitutive equation is given by the CD inequality. Dueto a lak of in-situ measurements and as a �rst approximation, no oupling is assumedbetween the mass transfer and the energy transfer onstitutive equations,
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≥ 0. (2.255)For the partiular ase of non-reative media, no mass transfer ours in the solid phase,

ρ̂str = 0. In addition, sine a losed system is onsidered, the �uid mass transfer �uxessatisfy the following losure relation,
∑

k=p,f

ρ̂ktr = 0 ⇔ ρ̂ptr = −ρ̂ftr. (2.256)Hene, only one mass transfer �ux is needed. Remembering that the losure relationsfor êkM (2.31) and for êkU (2.46) sum up to zero for a losed system,
∑

k=s,p,f

X
(4)
k = 0 ⇔ −X(4)

s = X(4)
p +X

(4)
f . (2.257)157



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahSimilarly to the mass transfer �ux, only two global energy transfer �uxes are needed.Consequently, equation (2.255) may be rearranged to let appear the di�erene of the relatedmass transfer fores and the oldness (inverse temperature) variation in between the phases,whih are the driving fores of the transfer mehanisms,
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f
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1

Tf
− 1
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)
≥ 0(2.258)One the proper transfer �uxes and fores have been identi�ed, the behaviour laws arerequired. First, the mass transfer law is extended from the law introdued by Barenblattet al. (1960) for a hydro-mehanial model in loal thermal equilibrium. Seond, the energytransfer law is extended from the law proposed by Bowen and Garia (1970) for a singleporosity model. Finally, the transfer seant onstitutive relation is de�ned for dual porousmedia in loal thermal non-equilibrium.2.2.4.1 Mass transfer behaviourThis subsetion aims to identify the mass transfer behaviour relations of media with doubleporosity, in a thermo-hydro-mehanial ontext. (1) The mass transfer behaviour is wellde�ned for hydro-mehanial models in whih the driving fore is the pressure di�erenebetween the porous blok and the �ssure network. (2) On the other hand, in a thermo-hydro-mehanial ontext the driving fore grows up to Y (2)

p − Y
(2)
f and the mass transferbehaviour needs to be lari�ed.(1) The mass transfer �ux ρ̂k for media with double porosity is well known for hydro-mehanial systems. The mass transfer �ux was �rst introdued by Barenblatt et al.(1960) through a leakage parameter η. The �uid exhange is assumed to be driven by thepressure di�erene between the two types of porosities, namely,

ρ̂ktr = (−1)α ρ0 η (pp − pf ) where {
α = 1 if k = p
α = 2 if k = f

. (2.259)The leakage parameter η ontrols the �ow between porous and �ssured sub-domains. Itis funtion of the pore �uid visosity µp, the porous blok permeability kp and an aperturefator ᾱ. The following relationship has been obtained using a one dimensional analysiswith the assumption that a quasi-steady state exists in the bloks of the porous region,
η = ᾱ

kp
µp

(2.260)158



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahThe aperture fator ᾱ, also alled shape fator, is a parameter whih represents the�ssuration of the medium, its order of magnitude is [1/m2] (Warren and Root, 1963).While the linear transfer funtion (2.259) is easily amenable to omputational imple-mentation and onsistent with a thermodynami analysis, leading to positive dissipation,it is also known to be inaurate at early times. The non-linear Vermeulen sheme hasbeen adopted by Zimmerman et al. (1993) in the analysis of fratured geothermal reser-voirs where, at eah point of the frature ontinuum, a porous blok of spherial shape isattahed: the �uid di�uses in the blok and the net �ow through its boundary is viewedas a soure/sink term for the frature ontinuum. Lu and Connell (2007) have devised anone-dimensional semi-analytial sheme that provides the time ourse of the transferredmass in a gas reservoir. At early times, while the rate of mass transfer in their modeltends to vanish, it tends to a onstant for the linear transfer sheme and to in�nity for theVermeulen sheme. Correspondingly, the mass transferred depends linearly on time in thelinear transfer sheme, but on the square root of time in the shemes of Vermeulen and Luand Connell, albeit with distint saling fators. A simple, aurate while omputationallye�ient, model of transfer that avoids delving with a onvolution produt, is yet to ome.(2) The mass transfer behaviour in a thermo-hydro-mehanial ontext, i.e. the oe�ientrelating the mass transfer �ux ρ̂ptr to its onjugated fore Y (2)
p − Y

(2)
f , is identi�ed byassuming that for a mixture in loal thermal equilibrium, the relation should reduesto the equation (2.259) proposed by Barenblatt et al. (1960). Therefore, the oe�ientdesribing the amount of �uid onerned by the mass transfer �ux is the same as the oneproposed by Barenblatt et al. (1960) and expliitly identi�ed by Warren and Root (1963):

ρ̂ktr = (−1)α T0 ρ
2
0 η

(
Y (2)
p − Y

(2)
f

) where {
α = 1 if k = p
α = 2 if k = f

(2.261)in whih T0 is the initial temperature of the �uids, whih are in loal thermal equilibriumin the initial state. Note that the magnitude of the mass transfer �ux is homogeneous withthe one proposed by Barenblatt et al. (1960).2.2.4.2 Energy transfer behaviourThe energy transfer behaviour previously introdued for (1) a single porosity model isextended to (2) media with double porosity: in both ases the driving fores are oldnessdi�erenes. 159



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah(1) In a single porosity ontext, Bowen and Chen (1975, eq. 6.15) de�ne the rate of energytransfer behaviour as,
êaU =

∑

b=s,p

Γab

(
1

Tb
− 1

T0

)
= Γas

(
1

Ts
− 1

T0

)
+ Γap

(
1

Tp
− 1

T0

)
a = s, p (2.262)In addition, in order to ensure that equation (2.262) is satis�ed for all temperatures,two losure onditions apply (Bowen and Chen, 1975, eq. 6.18 and 6.19),

∑

b=s,p

Γab = 0 → Γas = −Γap a = s, p (2.263)
∑

a=s,p

Γab = 0 → Γsb = −Γpb b = s, p (2.264)Consequently, for a single porous medium,
−êpU = êsU = −Γsp

(
1

Ts
− 1

Tp

) (2.265)In the work of Bowen and Chen (1975), the momentum transfer behaviour relation,eq. [6.22℄, is obtained by a di�erent thermodynami method, namely a systemati linearexpansion. However, the end results are the same.(2) To extend the energy transfer onstitutive relation (2.265) to a medium with doubleporosity, two additional oe�ients of oldness exhange are introdued to the one betweenthe solid and the pore �uid γsp: γsf and γpf , respetively, between the solid and the �ssure�uid and between the two �uid phases,
X

(4)
s = − γsp

(
1

Ts
− 1

Tp

)
− γsf

(
1

Ts
− 1

Tf

)
− 0

(
1

Tf
− 1

Tp

)

X
(4)
p = − γsp

(
1

Tp
− 1

Ts

)
− 0

(
1

Tf
− 1

Ts

)
− γpf

(
1

Tp
− 1

Tf

)

X
(4)
f = − 0

(
1

Tp
− 1

Ts

)
− γsf

(
1

Tf
− 1

Ts

)
− γpf

(
1

Tf
− 1

Tp

)

(2.266)
where the oe�ients of oldness exhange γsp, γsf and γpf are positives and of unit:[W.K/m3℄. Note that eq. (2.266) is in agreement with the losure relation (2.257). A-ording to Bejan (1993, p. 22) and to Kaviany (1995, p. 401), the experimentally measured160



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approahvalues are the oe�ients of volumetri inter-phase heat transfer κi [W/m3.K℄, for i = sp,
sf , pf . These oe�ients an be related to the oe�ients of inter-phase oldness exhange
γi [W.K/m3℄ by,

κsp =
γsp
Ts Tp

, κsf =
γsf
Ts Tf

and κpf =
γpf
Tf Tp

(2.267)Hene, eq. (2.266) an be rearranged with temperature variations as fores instead ofthe oldness variations,
X

(4)
s = − κsp (Tp − Ts) − κsf (Tf − Ts) − 0 (Tp − Tf )

X
(4)
p = − κsp (Ts − Tp) − 0 (Ts − Tf ) − κpf (Tf − Tp)

X
(4)
f = − 0 (Ts − Tp) − κsf (Ts − Tf ) − κpf (Tp − Tf )

(2.268)
This writing reovers well `Newton's law of ooling' whih states that the rate of tem-perature derease of a body immersed in a �uid is at all times proportional to the body-�uidtemperature di�erene.2.2.4.3 Generalised transfer seant matrixThe oupled transfer behaviours have been previously analysed through empirial laws.Let us now introdue the generalised transfer seant matrix relating the transfer rates tothe generalised transfer fores.Reall that the transfer part of the Clausius-Duhem inequality is enfored to be positiveand is unoupled,
−ρ̂ptr

(
Y (2)
p − Y

(2)
f

)
≥ 0 and −X(4)

p

(
1

Tp
− 1

Ts

)
−X

(4)
f

(
1

Tf
− 1

Ts

)
≥ 0 (2.269)The expressions (2.269) may be seen as two salar produts of X and Y that reduesto zero in equilibrium. Close to the equilibrium, Y is a linear funtion of X, through amatrix Ltr,Y = −Ltr X (2.270)Expanding this last expression leads to, 161



2. Constitutive model 2.2. Constitutive equations based on a thermodynami approah



ρ̂ptr

X
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p
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(4)
f




︸ ︷︷ ︸Y = −
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L21 L22 L23

L31 L32 L33




︸ ︷︷ ︸Ltr




Y
(2)
p − Y

(2)
f

Tp
−1 − Ts

−1

Tf
−1 − Ts

−1




︸ ︷︷ ︸X (2.271)
The oe�ients Lij related to the energy transfer mehanisms are identi�ed with equation(2.266),

L22 = γsp + γpf and L33 = γsf + γpf

L21 = 0 and L31 = 0

L23 = −γpf and L32 = −γpf . (2.272)The oe�ients Lij related to the mass transfer mehanism are identi�ed with equation(2.261), extended from Barenblatt's work,
L11 = T0 ρ

2
0 η, and L12 = L13 = 0 (2.273)Hene, the oe�ients of the transfer matrix are identi�ed,




ρ̂ptr

X
(4)
p

X
(4)
f



= −




T0 ρ
2
0 η 0 0

0 γsp + γpf −γpf

0 −γpf γsf + γpf







Y
(2)
p − Y

(2)
f

Tp
−1 − Ts

−1

Tf
−1 − Ts

−1




(2.274)
The restritive onditions are obtained by replaing equation (2.274) into the dissipa-tion inequalities (2.269). The transfer CD inequalities,
T0 ρ

2
0 η
(
Y (2)
p − Y

(2)
f

)2
≥ 0 (2.275)

γsp

(
1

Tp
− 1

Ts

)2

+ γsf

(
1

Tf
− 1

Ts

)2

+ γpf

(
1

Tp
− 1

Tf

)2

≥ 0 (2.276)are satis�ed if the oe�ients η, γsp, γsf and γpf are positive. The rate of mass transferof the �ssure �uid ρ̂ftr an be dedued by use of equation (2.256) and the rate of entropy162



2. Constitutive model 2.3. Comprehensive �eld equationstransfer of the solid X(4)
s an be alulated by using equation (2.257). The transfer matrixrelation an now be rewritten in the global spae, in whih lines 2 and 3 are dedued fromthe others.




ρ̂ptr

ρ̂ftr

X
(4)
s

X
(4)
p

X
(4)
f




= −




T0 ρ
2
0 η −T0 ρ20 η 0 0 0

−T0 ρ20 η T0 ρ
2
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0 0 γsp + γsf −γsp −γsf

0 0 −γsp γsp + γpf −γpf

0 0 −γsf −γpf γsf + γpf







Y
(2)
p

Y
(2)
f

T−1
s

T−1
p

T−1
f


(2.277)Note that the transfer behaviour matrix enjoys symmetry in the global spae. The inter-phase oldness transfer oe�ients γi, for i = sp, sf , pf , are used in this setion to relatethe global energy fores to their related energy �uxes: from the thermodynamial pointof view the γi oe�ients desribe the energy transfer. However, the inter-phase oldnesstransfer oe�ients are not often measured, whereas more values in the literature an befound on the inter-phase heat transfer oe�ients κi, for i = sp, sf , pf . This is why, in thefollowing Setions the γi oe�ients are replaed by the κi, aording to equation (2.267).2.3 Comprehensive �eld equationsThe omprehensive equations are obtained by introduing the onstitutive equations fromSetion 2.2, into the �eld equations from Setion 2.1. The aim, here, is to express the �eldequations in terms of the primary unknowns used later in the �nite element formulation.Eah set of omprehensive �eld equations involves its own main unknown, e.g. the tem-peratures for the energy equations. Aross the board, interation terms appear as well,e.g. the permeabilities may be oupled to pressure variations.The set of omprehensive �eld equations will onsider in turn: 1. the balane ofmomentum of the whole mixture, 2. the balane of mass of the two �uids and 3. thebalane of energy for eah phase:1. A single balane of momentum is required for the mixture as a whole. For eah �uidphase, it is omplemented by a generalised di�usion equation.163



2. Constitutive model 2.3. Comprehensive �eld equations2. The balanes of mass equations are written for the two �uid phases only. These twophases are in turn oupled by a leakage term ontrolling the transfer of �uid betweenthe porous region and the �ssure network. The two �uid phases are endowed withtheir own pressures. The mass of the solid skeleton is assumed to stay onstant as nohemial reation is taken into aount, hene the balane of mass of the solid phaseis not of interest here.3. The three phases are assumed to be in loal thermal non-equilibrium: the temper-atures are a priori distint in the three phases. Consequently, three independentenergy equations are needed, one for eah phase. Moreover energy transfer is a-ounted for through ondution, di�usion and heat exhange.The set of �eld equations is displayed in Table 2.4, together with the primary unknownsthat will be hosen in the �nite element formulation. The �eld equations are oupledthrough thermo-mehanis, di�usion and transfer onstitutive equations. In this table,the unknown attahed to eah �eld equation is the one that would appear if they wereunoupled.Nature of equation Field equation Main unknow1. Balane of momentum divσ = 0 Displaement vetor uof the whole mixture2. Balanes of mass dkρk

dt
+ ρkdiv vk = ρ̂k

Pressure of the pore �uid ppfor the �uids Pressure of the �ssure �uid pf3. Balanes of energy for
dU + dC = δWext + δQ

Temperature of the solid Tsthe solid and the �uids Temperature of the pore �uid TpTemperature of the �ssure �uid TfTable 2.4: Set of �eld equations and list of primary unknownsTable 2.5 presents a shemati summary of the onstitutive equations. Note that nooupling aross the onstitutive equation types is aounted for in this model. The thermo-mehanial set of onstitutive equations enjoys a major symmetry due to the existene ofthermo-elasti potential. The generalised di�usion and the transfer onstitutive equationsdisplay symmetry thanks to Onsager's reiproity priniple.2.3.1 Balane of momentum for the mixtureThe balane of momentum equation illustrates a mehanial equilibrium stress state of arepresentative volume of the medium. In order to express this �eld equation as a funtion164



2. Constitutive model 2.3. Comprehensive �eld equationsVariable Physial phenomenon Work onjugate variableGeneralised strain Coupled thermo-mehanis Generalised stressStrain tr ǫ Thermo-elastiity Total stress tr σof porous mediumFluid volume Hydrauli oupling Fluid pressures pk∗hanges ∆vk∗Entropy hange Entropy exhange Temperature variationof the solid ∆Ss of the solid ∆TsFlux relative to �uids Coupled generalised di�usion Driving gradientFlux of mass Jk∗ Seepage, thermo-osmosis Fluid pressures Pk∗Flux of heat qk Condution, isothermal Temperatures TkHeat �uxNature Unoupled transfer Driving foreRate of mass ρ̂k∗ Mass transfer Di�erene of Y (2)
p − Y

(2)
fRate of energy X(4)

k Energy transfer Coldness di�erenes
T−1
k − T−1

lTable 2.5: Set of onstitutive equations, k∗ = p, f , k = s, p, f and l = p, f , s.of the primary variables, the balane of momentum for the mixture as a whole is spei�edfor a losed system,
divσ + ρ

(b− Dv
Dt

)
= 0 (2.278)and an be further simpli�ed by negleting the inertial ontribution ρDv/Dt (quasi-statianalysis),

divσ + ρ b = 0. (2.279)The total stress (2.136) is then expressed as a funtion of the deformation, the poreand �ssure pressures, and the solid temperature,
σ = λDS tr ǫ I+ 2 µDS

ǫ− ξp pp I− ξf pf I− γT (Ts − T0) I (2.280)165



2. Constitutive model 2.3. Comprehensive �eld equationsBy replaing equation (2.280) into equation (2.279), the balane of momentum is writ-ten as a funtion of the e�etive stress parameters ξp and ξf , the thermal expansion oef-�ient γT , and the Lamé's onstants of the drained solid λDS and µDS,
λDS ∂ǫjj

∂xi
+ 2 µDS ∂ǫij

∂xj
− ξp

∂pp
∂xi

− ξf
∂pf
∂xi

− γT
∂Ts
∂xi

+ ρ bi = 0 (2.281)Furthermore, the small deformation assumption is used to link the deformations to thedisplaements,
ǫij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

) (2.282)In order to replae the deformation terms ǫij by the displaements ui, the two �rstterms of equation (2.281) are modi�ed, using the following expression,
λDS ∂ǫjj

∂xi
+ 2 µDS ∂ǫij

∂xj
=
λDS

2

(
2
∂2ui
∂xi∂xj

)
+ µDS

(
∂2ui
∂xj∂xj

+
∂2uj
∂xi∂xj

) (2.283)Finally the di�erential equation governing the displaements is obtained and expressedas a funtion of the primary variables used later in the �nite element analysis,
µDS ∂2ui

∂xj∂xj
+
(
λDS + µDS

) ∂2uj
∂xi∂xj

− ξp
∂pp
∂xi

− ξf
∂pf
∂xi

− γT
∂Ts
∂xi

+ ρ bi = 0 (2.284)Although the balane of momentum ould have been written for eah speies, thedesription of the balane of momentum for the mixture as a whole is preferred as it bringsin the light the in�uene of the pressure of eah �uid and of the solid temperature on theglobal displaement of the porous medium.2.3.2 Balane of mass equation for the �uidsThe balane of mass equations for the �uids are obtained by substituting the generalisedDary's law and the porosity total derivation with respet to time, in the onservation of�uid mass formula and by using the Lagrangian total derivative onept. Eah balane ofmass equation introdues a mass transfer term, whih is governed by the leakage parameter
Γ. The balane of mass for a speies k may be written in two ways: with respet to thespeies k or with respet to the solid skeleton. The seond alternative is preferred so as166



2. Constitutive model 2.3. Comprehensive �eld equationsto desribe the balane of mass for the �uids with respet to the same referential. Usingthe loal form of the balane equation for the speies k, (2.13), the balane of mass (2.21)beomes,
dρk

dt
+ ρkdivvs + divMk = ρ̂k, k = p, f. (2.285)Replaing the partial density ρk by its de�nition (2.1)3 leads to,

d(nkρk)

dt
+ nkρk div vs + divMk = ρ̂k, k = p, f. (2.286)By use of eq. (2.8)2 and eq. (2.8)3, the previous relation is rearranged to,

nk
dkρk
dt

+ nk(vs − vk) · ∇ρk + ρk
dnk
dt

+ nkρk divvs + divMk = ρ̂k, k = p, f.(2.287)The porosity nk and its total derivative with respet to time are expressed in the followingrelations:
nk =

Vk
V

→ d nk
dt

=
1

V

(
dVk
dt

− nk
dV

dt

) and 1

V

dV

dt
= divvs (2.288)Replaing equation (2.288) into (2.287), the balane of mass writes,

nk
dkρk
dt

+ nk(vs − vk) · ∇ρk +
ρk
V

dVk
dt

+ divMk = ρ̂k, k = p, f. (2.289)In addition, the rate of the �uid density is now replaed by its de�nition, eq. (2.173),and equations (2.8)2 - (2.8)3 are used to obtain,
−divMk = nkρkckH

dpk
dt

− nkρkckT
dTk
dt

+
ρk
V

dVk
dt

− ρ̂k

+nk(vk − vs) · (ρkckH∇pk + ρkckT∇Tk −∇ρk) , k = p, f ; (2.290)in whih the terms on the seond line anel out to zero sine in de�nition of the �uiddensity (2.173) the partial derivative ∂(·) may be replaed by the gradient operator ∇(·).The mass �ux Mk, de�ned in equation (2.3), relates to the volume �ux Jk = nk (vk − vs)by, 167



2. Constitutive model 2.3. Comprehensive �eld equationsMk = ρk Jk, k = p, f. (2.291)The idea is now to replae the mass �ux Mk by the generalised Dary's law formula(2.249). Dividing by the density ρk, the omprehensive balane of mass for eah �uid takesthe form of the following equations:
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+
1
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dVf
dt

+
ρ̂p

ρf(2.292)These equations depend on pore and �ssure volumetri hanges in time, whih are notprimary variables of the numerial model. They have to be replaed by their respetiveexpressions (2.202), funtion of the pores and �ssures pressures, the displaements and thesolid temperature variation,
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− Γ; (2.293)in whih,
app = np cpH + c22 = np cpH + (ξp − np) cs − apf ,

aff = nf cfH + c33 = nf cfH + (ξf − nf ) cs − apf ,

apf = afp = c32 = −(ξf − nf )(cp − cs),

apTs = c24 = (np − ξp) cT ,

apTp = −np cpT = −np cpT ,
afTs

= c34 = (nf − ξf ) cT ,

afTf
= −nf cfT = −nf cfT ;

(2.294)
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2. Constitutive model 2.3. Comprehensive �eld equationswhere the oe�ients c22 to c34 are available in equation (2.203). Due to the linearizationof ρp around ρ0 and when negleting the inertial terms, the mass transfer term Γ is induedby the hemial potential variation saled by the temperatures,
Γ = − ρ̂

p

ρp
= T0 ρp η

(
Y (2)
p − Y

(2)
f

) (2.295)
= T0 ρp η

(
Gp

Tp
− Gf

Tf

) (2.296)The latter relation is highly non-linear due to the form of the hemial potential eq.(2.160). The following approximation on Γ an be introdued after several linearisationaround the referene on�guration, eq. (2.161),
Γ ≈ ρp η (Gp −Gf ) ≈ γpp (pp − pf ) + γpT (Tp − Tf ) ; (2.297)in whih the linearised parameters are de�ned as,
γpp = η, and γpT = −ηρp S0. (2.298)However, the main problem lies in the fat that the thermal ontributions (linearisedor not) depend on the value of the initial entropy S0 whih is not diretly available. Dueto the potential nature of the entropy funtion, it is impossible to attribute a numerialvalue to S0, exept a quite arbitrary one. To assign an arbitrary value to S0, a referenestate needs to be hosen. The hoie of the referene state is disussed in Chapter 8.Equations (2.293) present the �nal expressions of the balane of mass for the pore �uidand the �ssure �uid in terms of expliit primary unknowns.2.3.3 The omprehensive energy equationsThe balane of energy equations desribe an equilibrium between the energy released in asystem (or phase) and the amount of energy absorbed by the system, either by heat supplyor by external work. When writing the balane of energy equation for speies, transferterms are revealed, whereas when writing the balane of energy for the mixture as a whole,they beome elusive. As the aim of this study is to model the thermal transient periodwhih ours before the system reahes thermal equilibrium, it appears natural to onsiderone balane of energy equation for eah phase.169



2. Constitutive model 2.3. Comprehensive �eld equationsIn order to work with a oherent system, the balane of energy equations of eahphase are expressed with respet to the solid skeleton. In addition, the balane of energyequations phrased in terms of spei� internal energies are transformed to internal energiesper unit volume. The starting point is eq. (2.50) for k ∈ K,
ρk

dkUk

dt
− σ

k : ∇vk + divqk − rk = ρ̂k
(
Ũk − Uk +

1

2
(ṽk − vk)

2

)
+ ûk (2.299)
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+ div (Uk Mk) + ρk Uk divvs − σ

k : ∇vk + divqk − rk

= ρ̂k
(
Ũk +

1

2
(ṽk − vk)

2

)
+ ûk

(2.300)There are many di�erent manners to write the balane of energy. One way is to replaediretly the internal energy d(ρkUk) by its formulation as funtion of the primary variables.If this onstitutive relation is not known, as it is the ase for the solid phase, the other wayis to replae the internal energy by another thermodynamial funtion, whih onstitutiverelation is known. In our ase, the onstitutive equation of the entropy is known for boththe solid phase and for the �uid phases, see equations (2.202) and (2.151), respetively.To obtain the �nal form of the balane of energy equation several substitutions areinvolved. The omplete demonstration is provided in Appendix D. A summary of theproedure is provided below. (1) The solid phase and (2) the �uid phases are onsideredin turn.(1) Given the elasti potential in the atual on�guration Ψa, the internal energy of thesolid results from the de�nition of Ψa, equation (2.110),
ρs Us = Ψa + Ts ρ

s Ss +
∑

p,f

nk pk (2.301)and, with help of the elasti potential's derivative, equation (2.117), the rate of internalenergy an be related to the rate of entropy through,
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+
∑

k∈K∗

pk
dnk
dt

(2.302)Therefore, the balane of energy for the solid phase is obtained by inserting (2.302) into(2.300), namely, 170



2. Constitutive model 2.3. Comprehensive �eld equations
Ts

ds (ρs Ss)

dt
+ Ts ρ

s Ss divvs +
∑

k∈K∗

pk
dsnk
dt

+ div qs − rs

− ρ̂
s

2
v2
s + (vs · êsM − êsU )︸ ︷︷ ︸

energy transfer

= 0
(2.303)

Note that the rate of mass transfer of the solid has been kept for ompleteness, even ifit vanishes in the double porosity model.(2) As for the �uid k, insertion of the de�nition of the rate of internal energy from Table(2.1) into equation (2.300), with help of the balane of mass (2.21) and the balane ofmomentum (2.32) yields,
Tk

ds

dt

(
ρk Sk

)
+ Tk ρ

k Sk divvs + Tk div (Sk Mk)− pk
dknk
dt

+ divqk − rk

+ ρ̂k
(
Gk − Ũk −

1

2
(ṽk − vk)

)
− ûk = 0 (2.304)This energy equation may be rewritten in a format whih involves terms of the rates ofentropy prodution assoiated to generalised di�usion, mass transfer and energy transfer,

Tk
ds

dt

(
ρk Sk

)
+ Tk ρ

k Sk divvs + Tk div (Sk Mk)− pk
dsnk
dt

+ divqk︸ ︷︷ ︸
diffusion

−rk

+ ρ̂k
(
Gk +

1

2
(vk − vs)

2 − 1

2
v2
s

)

︸ ︷︷ ︸
mass transfer

+(vs · êkM − êkU )︸ ︷︷ ︸
energy transfer

(2.305)
+Jk ·

(
∇ pk + ρk

(
dkvk

dt
− bk

))

︸ ︷︷ ︸
convection

= 0

Equation (2.305) is written in an omprehensive format, sine the mass transfer �uxes
ρ̂k, the energy transfer �uxes (vs · êkM− êkU ), the heat �uxes qk and the hydrauli �uxes Jkare diretly available from the onstitutive equations. Equation (2.305) an be rearrangedby replaing the term, Tk div (Sk Mk), 171



2. Constitutive model 2.3. Comprehensive �eld equations
Tk

ds

dt

(
ρk Sk

)
+ divqk︸ ︷︷ ︸

diffusion

−rk + (vs · êkM − êkU )︸ ︷︷ ︸
energy transfer

+ ρ̂k (H0)︸ ︷︷ ︸
mass transfer

−Tk Sk
dmk

dt
+ Tk ρ

k Sk divvs − pk
dsnk
dt

(2.306)
+ ρ̂k

(
(Hk −H0) +

1

2
(vk − vs)

2 − 1

2
v2
s

)

︸ ︷︷ ︸
mass transfer

+Mk ·
(
∇Hk +

(
dkvk

dt
− bk

))

︸ ︷︷ ︸
convection

= 0

The �rst order terms are written on the �rst line and the seond order terms are gath-ered on the seond and third lines. All the seond order terms are kept for preaution.Although the onvetion and the mass transfer phenomena are of seond order, their in-�uene might be important. The magnitude of their in�uene will be established later inthis doument. The omprehensive energy equations for the solid, the pore �uid and the�ssure �uid expressed in terms of the primary variables used later in the �nite elementanalysis are now detailed.Remark 2.22. The balane of energy for the mixture in thermal equilibrium Tk = Ts = Tis obtained by summing up the energy equations over the speies and by aounting for thelosure relations (2.20), (2.31), (2.46),
T

dS

dt
+ T S divvs + divq− r +

∑

p,f

ρ̂k
(
Hk +

1

2
(vk − vs)

2

)

−
∑

p,f

T Sk

(
1det F dmk

dt

)
+

∑

p,f

Mk ·
(
∇Hk +

(
dkvk

dt
− bk

))
= 0 (2.307)The omplete demonstration is provided in Appendix D.2.3.3.1 Energy equation of the solid onstituentConsidering that the volume heat soure rs and the rate of mass transfer ρ̂s of the solidskeleton are zero, the omprehensive balane of energy equation for the solid onstituentis obtained by replaing the onstitutive laws into the balane of energy equation,172



2. Constitutive model 2.3. Comprehensive �eld equations
Ts d

s(ρs Ss) pp d
snp pf d

snf Ts ρ
s Ss d(tr ǫ)

aTsTs = ns Cs,p + pp c24 + pf c34 + 0
aTsp = Ts c24 + pp c22 + pf c32 + 0
aTsf = Ts c34 + pp c23 + pf c33 + 0
aTsǫ = Ts K

DS cT + pp (ξp − np) + pf (ξf − nf ) + Ts ρ
s SsTable 2.6: Origins of the oe�ients used in equation (2.309).

−div qs = Ts
d (ρs Ss)

dt
+ Ts ρ

s Ss
d(tr ǫ)
dt

+ pp
dnp
dt

+ pf
dnf
dt

+ (vs · êsM − êsU )(2.308)The useful onstitutive equations are,� the heat �ux di�usion of the solid phase qs, equation (2.249);� the thermo-mehanial rate of entropy of the solid skeleton d(ρs Ss), equation(2.202)4; in whih the inrement ∆(·) is assumed equivalent to the rate d(·) operator;� the rate of volume fration of the �uid phases dnk for k = p, f , equation (2.212);� the rate of energy transfer for the solid skeleton (vs · êsM − êsU ), desribed in equation(2.277)3,Assuming the pore �uid, �ssure �uid and solid temperatures are in loal thermal non-equilibrium, the energy balane for the solid phase an be written as,
∂

∂xi

(
ns Λs

∂Ts
∂xi

)
= aTsTs

∂Ts
∂t

+ aTsp
∂pp
∂t

+ aTsf
∂pf
∂t

+ aTsǫ
∂2ui
∂t∂xi

+κsp (Ts − Tp) + κsf (Ts − Tf ) , (2.309)in whih the oe�ients are issued from di�erent origins, see Table 2.6, in whih theoe�ients c22 to c34 are available in equation (2.203). Equation (2.309) aounts for the�ux of thermal energy due to ondution, the hange in the internal energy of the solidphase due to the solid temperature variation, the pore and the �ssure pressure variations,the volume hange of the solid skeleton, and the transfer of energy between the solid phaseand the pore �uid and between the solid phase and the �ssure �uid.173



2. Constitutive model 2.3. Comprehensive �eld equationsNote that no onvetion is aounted for into the balane of energy of the solid phasedue to the approximation,
∂(·)
∂xj

· vs <<
∂(·)
∂t

indues d(·)
dt

≈ ∂(·)
∂t

(2.310)whih seems realisti sine the veloity of the solid phase is in most ases of interest smaller(due to the small deformations assumption) than the other speies.2.3.3.2 Energy equation of the �uidsConsidering that the volume heat soures of the �uids are zero, rp = rf = 0, and that theinertial terms are negleted, the omprehensive balane of energy for the �uids is obtainedby replaing the appropriate onstitutive equations into,
−divqk = Tk

d

dt

(
ρk Sk

)
− pk

dnk
dt

− Tk ρ
k Sk

(
1

nk

1

ρk

dmk

dt
− d(tr ǫ)

dt

)

+(vs · êkM − êkU ) + ρ̂k Hk +Mk · ∇Hk (2.311)The useful onstitutive equations are,� the heat �ux di�usion of the �uid phases qk for k = p, f , equation (2.249);� the thermo-mehanial rate of entropy of the �uids d(ρkSk) for k = p, f , eq. (2.204);� the rate of volume fration of the �uid phases dnk for k = p, f , equation (2.212);� the rate of mass ontent of the �uid phase dmk/ρk for k = p, f , equation (2.207);� the rate of the global energy transfer for the �uid phases (vs · êkM − êkU
) for k = p,

f , desribed in equation (2.277),The energy balane equation for the pore �uid writes,
∂

∂xi

(
np Tp Θp

(
∂pp
∂xi

− ρp g

)
+ np Λp

∂Tp
∂xi

)
= aTpTp

∂Tp
∂t

+ aTpp
∂pp
∂t

+ aTpf
∂pf
∂t

+aTpǫ
∂2ui
∂t∂xi

+ aTpTs

∂Ts
∂t

+κsp (Tp − Ts) + κpf (Tp − Tf )

+ρ̂p Hp +Mp · ∇Hp (2.312)174



2. Constitutive model 2.3. Comprehensive �eld equationsin whih the oe�ients are issued from di�erent origins (Table 2.7).
Tp d

s(ρp Sp) pp d
snp Tp ρp Sp dsmp/ρp + Tp ρ

p Sp d
s(tr ǫ)

aTpTp = np Cp,p + 0 + TpρpSp np cpT

aTpp = −Tp np cpT - ppc22 - TpρpSp c22- TpρpSp np cpH

aTpf = 0 - ppc23 - TpρpSp c23

aTpǫ = 0 - pp(ξp − np) - TpρpSp ξp + Tp ρ
p Sp

aTpTs = 0 - ppc24 - TpρpSp c24Table 2.7: Origins of the oe�ients used in equation (2.312).Similarly, the energy balane equation for the �ssure �uid writes,
∂

∂xi

(
nf Tf Θf

(
∂pf
∂xi

− ρp g

)
+ nf Λf

∂Tf
∂xi

)
= aTfTf

∂Tf
∂t

+ aTfp
∂pp
∂t

+ aTff
∂pf
∂t

+aTf ǫ
∂2ui
∂t∂xi

+ aTfTs

∂Ts
∂t

+κsf (Tf − Ts) + κpf (Tf − Tp)

+ρ̂f Hf +Mf · ∇Hf (2.313)in whih the oe�ients are issued from di�erent origins (Table 2.8). The oe�ients c22to c34 are available in equation (2.203). Equations (2.312) and (2.313) aount for the �uxof thermal energy due to ondution, the hange in the internal energy of the �uid phasesdue to the solid and the �uid temperature variations, the pore and the �ssure pressurevariations, the volume hange of the solid skeleton, and the transfer of energy between thesolid phase and the �uid and between the two �uid phases.Note that in both equations (2.312) and (2.313), onvetion is aounted for througha term of the form Mk · ∇Hk. The onvetion ontributions with the enthalpy gradientformulation (2.160)3, the spei� volume de�nition (2.146) and onstant thermal expansionoe�ients cTk write,
Mk · ∇Hk = nkρk (vk − vs) ·

(
1− T0 cTk

ρk
∇pk + Ck,p ∇Tk

)
, for k = p, f ;

= bTkk (vk − vs) · ∇pk + bTkTk
(vk − vs) · ∇Tk, for k = p, f ; (2.314)175



2. Constitutive model 2.3. Comprehensive �eld equations
Tf d

s(ρf Sf ) pf d
snf Tf ρf Sf dsmf/ρf + Tf ρ

f Sf d
s(tr ǫ)

aTfTf
= nf Cf,p + 0 + TfρfSf nf cfT

aTfp = 0 - pf c32 - TfρfSf c32

aTff = −Tf nf cfT - pf c33 - TfρfSfc33- TfρfSfnfcfH

aTf ǫ = 0 - pf (ξf − nf ) - TfρfSfξf + Tf ρ
f Sf

aTfTs = 0 - pf c34 - Tfρ
fSfc24Table 2.8: Origins of the oe�ients used in equation (2.313).in whih the onvetive parameters are de�ned as,

bTpp = np(1− cpT T0), bTff = nf (1− cfT T0),

bTpTp = npρp Cp,p, bTfTf
= nfρf Cf,p.

(2.315)The in�uene of the magnitude of these terms will be established latter in this doument(Chapter 8). Moreover, the hange in the internal energy of the �uid phases due to masstransfer is aounted for through ρ̂kHk. The following approximations on ρ̂pHp and ρ̂f Hfan be introdued by use of eq. (2.297) and by several linearisation around the refereneon�guration,
ρ̂p Hp ≈ −ρ0 [γpp (pp − pf ) + γpT (Tp − Tf )]×

[v0(1− T0cTp) (pp − p0) + Cp,p (Tp − T0) +H0] ,

≈ −ρ0 η [(pp − pf )− ρ0 S0 (Tp − Tf )]× [Cp,p (Tp − T0) +H0] ,

≈ γTpp(pp − pf ) + γTpTp (Tp − Tf ) ,

ρ̂f Hf ≈ γTff (pp − pf ) + γTfTf
(Tp − Tf ) . (2.316)Again, the main problem lies in the fat that the hanges in the internal energy of the�uid phases due to mass transfer depend on the value of the initial enthalpy H0 whih isnot diretly available. Hene, the linearised parameters,

γTpp = ηρ0 × [Cp,pT0 −H0] and γTpTp = −ηρ20 S0 × [Cp,pT0 −H0], (2.317)176



2. Constitutive model 2.4. Summary of governing equations
γTff = −ηρ0 × [Cf,pT0 −H0] and γTfTf

= +ηρ20 S0 × [Cf,pT0 −H0], (2.318)require the de�nitions of the arbitrary initial enthalpy H0 and of the arbitrary initialentropy S0.2.4 Summary of governing equationsThe full set of di�erential equations desribing the balane equation, the �uid �ow and theheat transfer through deformable �ssured porous media with double porosity is presentedbelow.The balane of momentum equation for the mixture as a whole, for i = 1, 3

µDS ∂2ui
∂xj∂xj

+
(
λDS + µDS

) ∂2uj
∂xi∂xj

− ξp
∂pp
∂xi

− ξf
∂pf
∂xi

− aǫTs

∂Ts
∂xi

+ ρ bi = 0 (2.319)The balane of mass equations for the �uids
∂

∂xj

(
kp
µp

(
∂pp
∂xj

− ρp g

)
+ np Θp

∂Tp
∂xj

)
= app

∂pp
∂t

+ apf
∂pf
∂t

+ ξp
∂2uj
∂t∂xj

+ apTs

∂Ts
∂t

+apTp

∂Tp
∂t

+ Γ (2.320)
∂

∂xj

(
kf
µf

(
∂pf
∂xj

− ρf g

)
+ nf Θf

∂Tf
∂xj

)
= aff

∂pf
∂t

+ apf
∂pp
∂t

+ ξf
∂2uj
∂t∂xj

+afTs

∂Ts
∂t

+ afTf

∂Tf
∂t

− Γ (2.321)The balane of energy equations for solid and the �uids
∂

∂xj

(
ns Λs

∂Ts
∂xj

)
= aTsTs

∂Ts
∂t

+ aTsp
∂pp
∂t

+ aTsf
∂pf
∂t

+ aTsǫ
∂2uj
∂t∂xj

+κsp (Ts − Tp) + κsf (Ts − Tf ) (2.322)177



2. Constitutive model 2.4. Summary of governing equations
∂

∂xj

(
Tp np Θp

(
∂pp
∂xj

− ρp g

)
+ np Λp

∂Tp
∂xj

)
= aTpTp

∂Tp
∂t

+ aTpp
∂pp
∂t

+ aTpf
∂pf
∂t

+aTpǫ
∂2uj
∂t∂xj

+ aTpTs

∂Ts
∂t

+κsp (Tp − Ts) + κpf (Tp − Tf )

+ρ̂p Hp +Mp · ∇Hp (2.323)
∂

∂xj

(
Tf nf Θf

(
∂pf
∂xj

− ρfg

)
+ nfΛf

∂Tf
∂xj

)
= aTfTf

∂Tf
∂t

+ aTfp
∂pp
∂t

+ aTff
∂pf
∂t

+aTf ǫ
∂2uj
∂t∂xj

+ aTfTs

∂Ts
∂t

+κsf (Tf − Ts) + κpf (Tf − Tp)

+ρ̂f Hf +Mf · ∇Hf (2.324)The aim of this gathering is to visualise the oupling oe�ients whih link the model,e.g. the e�etive stress parameter ξp appears in both the momentum balane equation andin the pore �uid mass balane equation. To ease this summary, the oupling parametersare highlighted in olor.
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2. Constitutive model 2.4. Summary of governing equationssalar part �rst order part
ξp = (cp − cs)/c

ξf = (c− cp)/c

app = np cpH + c22

aff = nf cfH + c33

apf = c32

apTs = c24

apTp = −np cpT
afTs

= c34

afTf
= −nf cfT

aǫTs = γT

aTsTs = ns Cs,p + pp c24 + pf c34 + 0 + 0

aTsp = Ts c24 + pp c22 + pf c32 + 0 + 0

aTsf = Ts c34 + pp c23 + pf c33 + 0 + 0

aTsǫ = Ts γT + pp (ξp − np) + 0 + Ts ρ
s Ss

+ pf (ξf − nf )

aTpTp = np Cp,p + 0 + Tp ρp Sp np cpT + 0

aTpp = −Tp np cpT − pp c22 − Tp ρp Sp (c22 + np cpH) + 0

aTpf = 0 − pp c23 − Tp ρp Sp c23 + 0

aTpǫ = 0 − pp (ξp − np) − Tp ρp Sp ξp + Tp ρ
p Sp

aTpTs = 0 − pp c24 − Tp ρp Sp c24 + 0

aTfTf
= nf Cf,p + 0 + Tf ρf Sf nf cfT + 0

aTfp = 0 − pf c32 − Tf ρf Sf c32 + 0

aTff = −Tf nf cfT − pf c33 − Tf ρf Sf (c33 + nf cfH) + 0

aTf ǫ = 0 − pf (ξf − nf ) − Tf ρf Sf ξf + Tf ρ
f Sf

aTfTs = 0 − pf c34 − Tf ρ
f Sf c24 + 0Table 2.9: Coe�ients of the model
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2. Constitutive model 2.4. Summary of governing equationsNext, the oe�ients are written so as to visualise a salar part and a �rst order part(Table 2.9). This segregation is due to the referene state assumptions. Upon linearizationaround the referene state: T0 6= 0, p0 = 0 and S0 = 0, the oe�ients will redue to the�rst olumn only.Note that the model is non-linear due to the presene of primary variables in theoe�ients: the temperatures Ts, Tp and Tf , the pressures pp and pf , and the entropies Spand Sf .This full set of omprehensive equations is oupled through several oupling oe�ients.Table 2.10 illustrates the ouplings whih our in between the six omprehensive equa-tions. Eah oupling involves its own oupling oe�ient. This table learly shows thenon-symmetry of the model indued by the thermo-hydro-mehanial approah. Only theupper-left area, the hydro-mehanial part, is symmetri.More preisely, six terms appear to be of seond order (upon linearization around thereferene state). They appear in Table 2.10 in a blak olor, namely aTpǫ, aTf ǫ, aTpf , aTfp,
aTpTs and aTfTs . If they an be negleted, the above omprehensive set of equations willbe form-symmetri (symmetri in form but not symmetri in value).Note that in loal thermal equilibrium, the thermo-hydro-mehanial model still dis-plays non symmetry, for example aǫTs 6= aTsǫ. This remark stays valid even if the oe�-ients are linearised around the referene state.Momentum Pore �uid Fiss. �uid Solid bal. Pore �uid Fiss. �uidbalane bal. mass bal. mass energy bal. energy bal. energyMomentum ξp ξf aǫTsbalanePore �uid ξp apf apTs

apTpbal. massFissure �uid ξf apf afTs
afTfbal. massSolid aTsǫ aTsp aTsf κsp κsfbal. energyPore �uid aTpǫ aTpp aTpf aTpTs

, κsp κpfbal. energyFissure �uid aTf ǫ aTfp aTff aTfTs
, κsf κpfbal. energyTable 2.10: Sketh of the repartition of the oupling oe�ients in the model. The modeldisplays non symmetry. The diagonal or diret oe�ients are not represented here.180



2. Constitutive model 2.5. Parameters identi�ation2.5 Parameters identi�ationThe parameters haraterising the thermo-hydro-mehanial model are now gathered foridenti�ation. To eah parameter is assoiated the orresponding unit expressed in theInternational System of Units. Two lists are presented: (1) the basi measurable parametersand (2) the oe�ients of the governing equations (2.319) to (2.324). Reall that,
1 N = 1

kg.m

s2
1 Pa = 1

kg

m.s2
1 J = 1 kg

m2

s2
1W = 1 kg

m2

s3(1) Let us �rst identify the basi measurable parameters:i. λDS and µDS (unit: Pa) are the Lamé's onstant of the drained solid. For an isotropielasti material, they are ompletely de�ned in terms of the drained modulus of elas-tiity E and the drained Poisson's ratio ν.ii. cs, c and cp (unit: 1/Pa) are the the drained ompressibilities of the solid grains,of the �ssured porous medium and of the porous blok, respetively. The drainedompressibility c of the �ssured porous medium an be expressed as a funtion of theelasti drained modulus E and the drained Poisson's ratio ν.iii. cpH and cfH (unit: 1/Pa) are the hydrauli ompressibilities of the pore �uid and ofthe �ssure �uid, respetively.iv. Cs,p, Cp,p and Cf,p (unit: J/m3/K) are the volumetri heat apaities at onstant strainand �uid pressure of the solid phase, the pore �uid and the �ssure �uid, respetively.v. cT (unit: 1/K) is the volumetri thermal expansion oe�ient of the drained skeleton.Similarly, cpT and cfT (unit: 1/K) are the volumetri thermal expansion oe�ients ofthe pore �uid and the �ssure �uid, respetively. These three parameters are measuredat onstant pressure.vi. κsp, κsf and κpf (unit: W/m3/K) are the oe�ients of heat exhange between solid- pore �uid, solid - �ssure �uid and pore �uid - �ssure �uid, respetively.vii. Λs, Λp and Λf (unit: W/m/K) are the thermal ondutivities of the solid, the pore�uid and the �ssure �uid.viii. kp and kf (unit: m2) are the permeabilities of porous medium with respet to theporous blok and to the �ssure network.181



2. Constitutive model 2.5. Parameters identi�ationix. µp and µf (unit: Pa.s) are the dynami visosities of the pore �uid and the �ssure�uid, respetively.x. Θp and Θf (unit: m2/s/K) are oe�ients of thermal oupling for the pore �uid �uxand the �ssure �uid �ux, respetively, due to isothermal heat �ux and thermo-osmosishydrauli �ow.xi. ρs, ρp and ρf (unit: kg/m3) are the densities of the solid skeleton, the pore �uid andthe �ssure �uid, respetively.xii. ns, np and nf are dimensionless porosities of the solid skeleton, the porous �uid andthe �ssure �uid, respetively.(2) All the following oe�ients are related to the basi measurable parameters listed abovethrough relations given in Table 2.9:a. ξp and ξf are the dimensionless tangent e�etive stress parameters, relating the pore�uid and the �ssure �uid pressure to the matrix deformation.b. app and aff (unit: 1/Pa) are the apparent ompressibilities of the pore �uid and the�ssure �uid, respetively.. apf (unit: 1/Pa) is the oupling oe�ient relating the pore �uid to the �ssure �uidvolumetri deformation due to a hange of pressures.d. aǫTs (unit: Pa/K) is the thermal expansion oe�ient providing the oupling betweenthe deformation and the balane of energy. aTsǫ (unit: Pa) is its orresponding oupledoe�ient providing the oupling between the balane of energy and the deformation.Moreover, aTpǫ and aTf ǫ (unit: Pa) are the oe�ients providing the oupling betweenthe balane of energy of the �uid and the deformation.e. aTsTs , aTpTp and aTfTf
(unit: Pa/K) are the apparent heat apaities of the solid phase,the pore �uid phase and the �ssure phase, respetively.f. apTs , apTp (unit: 1/K) provide oupling between the pore �uid �ow model and the energybalane equations of solid and pore �uid, respetively. aTsp, aTpp are their dimensionlessorresponding oupled oe�ients. Moreover, aTfp is the oe�ient providing the ou-pling between the balane of energy of the �ssure �uid and the pore pressure volumetrideformation.g. afTs

, afTf
(unit: 1/K) provide oupling between the �ssure �uid �ow model and theenergy balane equations of solid and �ssure �uid, respetively. aTsf , aTff are their182



2. Constitutive model 2.5. Parameters identi�ationdimensionless orresponding oupled oe�ients. Moreover, aTpf is the oe�ient pro-viding the oupling between the balane of energy of the pore �uid and the �ssurepressure volumetri deformation.h. aTpTs , aTfTs (unit: Pa/K) provide oupling between the energy balane equations ofsolid and balane equation of the �uids, respetively.The full set of omprehensive equations desribing the behaviour of a porous mediumwith double porosity under thermo-hydro-mehanial loading has been presented in thishapter. Eah introdued oe�ient has been related to a measurable physial entity.
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Chapter 3Constitutive parameters:interpretation and identi�ation
This hapter presents the onstitutive parameters previously introdued in Chapter 2. Theaim is to interpret and identify a range of values of these parameters (for soils, roks andwater) by gathering data from the literature. The onstitutive parameters harateristiof dual porous media may be alulated in terms of onstants that are measurable throughexperiments performed at di�erent sales.Setion 3.1 presents intensive parameters. The mehanial parameters suh as theYoung's modulus, the Poisson's ratio and the drained ompressibility are assumed to beinvariant over a range of strains (small deformation assumption). In addition, geometrial(hydrauli) parameters suh as the porosity and the permeability of eah phase are on-sidered intrinsi as they desribe physially the mixture. Sine the measurement of theseparameters in porous media with double porosity is not ommon, a summary of om-prehensive data aquisition is synthesised from the literature. Furthermore, the aperturefator haraterising the degree of �ssuration of the mixture is de�ned.Setion 3.2 outlines extensive parameters whih may depend on temperature and/orpressure hanges. Typially, the thermal expansion oe�ients, the densities, the visosity,the heat apaities and the thermal ondutivities of the �uids and the solid are onsidered.Setion 3.3 desribes the solid-�uid extensive parameters whih may depend on thenature of both the �uid and the solid, and on other onsiderations. The oe�ient ofthermo-osmosis and the oe�ient of inter-phase heat transfer are outlined.Setion 3.4 introdues dimensionless numbers used throughout this work suh as theReynolds number, the Prandlt number, the Pélet number, the Nusselt number and theSparrow number. 184



3. Parameters magnitude 3.1. Intensive parameters3.1 Intensive parametersAn intensive property is a property that a phase has of itself, independently of other things,inluding its thermo-hydro-mehanial ontext. The mehanial and geometrial intensiveparameters are onsidered in turn: (1) First, the Young's modulus and the Poisson's ratioare linked to the Lamé's onstants. (2) Next, the drained ompressibilities used in thede�nition of the e�etive stress parameters and the ompressibilities of the �uid phasesare onsidered. Spei� to porous media with double porosity, (3) the porosities and (4)the permeabilities and most importantly their role are introdued. (5)Finally, the aperturefator is linked to the degree of fraturation of the medium.3.1.1 The Young's modulus, the Poisson's ratio and the Lamé's on-stantsFratures are naturally oriented. Consequently porous media with double porosity displayan anisotropi mehanial behaviour. However, for simpliity mehanial anisotropy is notaounted for in this model and eah mehanial property is haraterised by a uniqueisotropi value.The Young's modulus and the Poisson's ratio are intensive quantities as they are in-dependent of the amount of material under onern and of the amount of stress for smalldeformations. They an be dedued from a uniaxial ompression test. Table 3.1 presentsthe range of values of the drained Young's modulus EDS for di�erent type of soils (Philip-ponnat et al., 2003). Material Young's modulus
EDS [MPa℄Clay 2 to 30Sand 10 to 100Coarse sand 150 to 500Rok 500 to 10 000Table 3.1: Range of values of various drained Young's moduli from Philipponnat et al.(2003).The Poisson's ratio for lay soils and roks typially ranges between 0.125 and 0.5(Franois, 2008; Gerek, 2007). 185



3. Parameters magnitude 3.1. Intensive parametersIn linear isotropi elastiity, the Lamé's onstants are alled the Lamé's �rst parameter,denoted λ and the shear modulus or Lamé's seond parameter µ, respetively. Hooke's lawfor homogeneous isotropi materials is expressed in terms of these parameters,
σ = 2 µ ǫ+ λ tr ǫI. (3.1)The �rst parameter λ has no physial interpretation, but serves to simplify the sti�nessmatrix in Hooke's law. Both parameters onstitute a parametrisation of the elasti modulifor homogeneous isotropi media and are named after Gabriel Lamé. The Lamé's onstantsof the drained solid λDS and µDS are related to the Young's modulus EDS and the Poisson'sratio νDS by the following relations:
λDS =

EDSνDS

(1 + νDS) (1− 2 νDS)
and µDS =

EDS

2 (1 + νDS)
. (3.2)3.1.2 The drained ompressibilitiesThe drained ompressibilities involved in the de�nition of the e�etive stress parametersand the ompressibility of the �uid phases are presented in turn.3.1.2.1 The ompressibilities involved in the e�etive stress parametersWhen de�ning the e�etive stress parameters ξp and ξf in equation (2.132), three di�erentdrained ompressibilities have been introdued: (1) the drained ompressibility oe�ient

c, (2) the drained ompressibility of the solid grains cs and (3) the drained ompressibilityof the porous blok cp. Eah of them is onsidered in turn:1. Depending on strain onditions, the drained ompressibility oe�ient c for anisotropi elasti medium an be related to EDS and νDS, aording to the followingrelationships:- for one dimensional strain ondition: ǫ11 = c σ11,
c =

(
1− 2 νDS

) (
1 + νDS

)

(1− νDS)EDS
; (3.3)- for two dimensional strain ondition: ǫ11 + ǫ22 = c (σ11 + σ22) /2,186



3. Parameters magnitude 3.1. Intensive parameters
c =

2
(
1− 2 νDS

) (
1 + νDS

)

EDS
; (3.4)- for three dimensional strain ondition: ǫ11 + ǫ22 + ǫ33 = c (σ11 + σ22 + σ33) /3,

c =
3
(
1− 2 νDS

)

EDS
=

1

λDS + 2
3µ

DS
. (3.5)2. The drained ompressibility of the solid grains cs is a measurable parameter, whihrepresents the ompressibility of the solid grains, that is the solid matrix with nopores and no �ssures. Its inverse is denoted the bulk modulus of the solid phase

Ks of unit 1/Pa. A large bulk modulus indiates a relative inompressible material.Bulk moduli of various soil minerals are presented in Table 3.2.Mineral Bulk modulus
Ks = 1/cs [GPa℄Kaolinite 46Illite 60Chlorite 127Quartz 38Calite 73Musovite 52Dolomite 94Anhydrite 55Pyrite 143Table 3.2: Bulk moduli of typial soil minerals from Gebrande (1982) and Franois (2008).3. The drained ompressibility of the porous blok cp represents the ompressibility ofthe pores and the solid grains. This parameter is usually not diretly measurable.As an estimation of its value is needed for the numerial analysis, a perentage ofthe drained ompressibility of the �ssured porous medium c is used.Table 3.3 presents the magnitude of the ompressibility ratios cp/c and cs/cp fromprevious hydro-mehanial studies on porous media with double porosity.187



3. Parameters magnitude 3.1. Intensive parametersReferene cp
c

cs
cpPaslay and Cheatham (1963) 0.9 0.1250.8 0.1875Kazemi (1969) 1 0Khalili et al. (1999) 0.9 0Table 3.3: Range of values of ompressibiliy ratios for dual porous media.One way to size the ompressibility parameters onsists in measuring indiretly thee�etive stress parameters. Hene, when knowing ξp and ξf one an dedue c, cp and cs.Reall that the relationships linking the e�etive stress parameters to the ompressibilitiesare,

ξp =
cp
c
− cs

c
and ξf = 1− cp

c
. (3.6)To measure ξp and ξf Wilson and Aifantis (1982) proposed an experimental approahthat takes advantage of the time sale separation property of porous media with doubleporosity. Two measurements are made suessively, (a) for early and (b) late times sale,on one sample only.(a) During the early time sale: one assumes that only the �ssures partiipate in the�ow proess (while at larger times both the �ssures and the pores ontribute). Thusduring a drained test, one presumes for the short time sale that while the �ssure �uid hasommuniated with the atmosphere (pf = 0), no �uid has yet transferred from the porousblok to the �ssure network. Measuring the volume of �uid drained out of a unit volumeof the sample, whih represents only the relative volumetri strain of the �ssure �uid θf ,and the dilatation ∆f , the seond e�etive stress parameter ξf is determined:

ξf =
θf
∆f

. (3.7)(b) During the late time sale: one assumes that all porosity types have ommuniatedwith the atmosphere (pp = pf = 0). Measuring the total volumetri strain ∆ and the totaldilatation θ, the sum of the e�etive stress parameters is obtained:
ξp + ξf =

θ

∆
. (3.8)188



3. Parameters magnitude 3.1. Intensive parameters3.1.2.2 The �uid ompressibilityThe ompressibility ckH of the �uid k is usually presented as the inverse of the bulk mod-ulus. Its unit is 1/Pa. A large bulk modulus indiates a relative inompressible �uid. Inmost geomehanial appliations, one may safely assume that the �uid ompressibilitiesare independent of the temperature and of the pressure variations. Note that �uid om-pressibilities inrease at very high pressures. Bulk moduli of various �uids are presentedin Table 3.4 at atmospheri pressure and 20◦C.Material Bulk modulus
1/ckH [GPa℄Water 2.15Sea water 2.34SAE 30 Oil 1.5Table 3.4: Bulk moduli of various �uids, at atmospheri pressure and 20◦C.3.1.3 The porositiesPorosity is dimensionless as it is a ratio of volume. Porosity is a fration between 0 and 1,although it may also be represented in terms of perent, typially ranging from less than0.01 for igneous roks to more than 0.5 for lays.One of the key points when onsidering media with double porosity is the storage roleof the porous blok. The signi�ane of this storage funtion arises when omparing theporosity magnitude of the porous blok with that of the �ssure network: the porosity ofthe pores np appears to be muh larger than the porosity of the �ssures nf , as illustratedin Table 3.5.Wilson and Aifantis (1982) proposed two types of experiments to measure the porosities

np and nf , whih take advantage of either (a) the length sale separation or (b) the timesale separation harateristis of porous media with double porosity.(a) By using the length sale separation property: Two samples are used; one with a shortrange of investigation so that only the intergranular porosity of the bloks np is measured,and another with a long range of investigation so that the total porosity n = np + nf ismeasured. These methods have the advantage of aounting for the deformation of theporosities, the fratures opening and the volume of the �ssure network.189



3. Parameters magnitude 3.1. Intensive parametersReferene np nfKazemi (1969) 0.05 0.00120.05 0.00280.08 0.0023Kazemi (1976) 0.19 0.010.19 0.01Khalili (1999) 0.54 0.06Table 3.5: Range of values of the porous blok porosity np and of the �ssure networkporosity nf from the literature.(b) By using the time sale separation property: A �uid (for example merury) is in-jeted into full-sized ore samples, beginning at relatively low pressure, with the amountof injeted �uid being reorded for eah inrement of pressure. When the �uid begins topenetrate the porous blok, a sharp inrease in the pressure ours and the porosity ofthe �ssures nf is reorded. Injetion ontinues until a seond sharp inrease of pressureours indiating that the total porosity n = np + nf is �lled. This method has a numberof drawbaks, among them, the fratures may expand to give inorret values of nf . Inaddition, as this method �lls the porosities (pores and �ssures) of the sample from theedges to the enter, the value reorded for nf might inlude a ertain amount of pores.3.1.4 The permeabilitiesThe intrinsi permeability kk is a measure of the ability of the void-system k to transmit�uids. Its usual dimension is the meter square m2. In petroleum engineering, the millidaryunit (md) is more frequently used and is equal to 10−15 meter square. In some researhareas, for example hydrogeology, the permeability is replaed by the hydrauli ondutivity
Kk [m/s℄, whih is a property of a type of porosity and its assoiated �uid that desribesthe ease with whih the �uid an move through pore spaes or fratures. The relationshiplinking the hydrauli ondutivity and the permeability is (de Marsily, 1986, p. 60),

Kk = ρk g
kk
µk
. (3.9)In most hydro-mehanial oupled analyses of dual porous media (Warren and Root,1963; Kazemi, 1969; Khalili et al., 1999; Khalili, 2003), the permeability of the �ssurenetwork used in the model is assumed to be isotropi. This may appear as a strongrestrition as the �ssure network displays a high anisotropy due to its geometrial form.190



3. Parameters magnitude 3.1. Intensive parametersHowever, as the intensity of the �uid transfer is ontrolled by the porous blok permeability,the above approximation does not play a signi�ant role on the auray of the �uid transfermagnitude. In any ase, additional work should be done to larify the in�uene of theanisotropy of the permeability.In addition to the storage role of the porous blok, the ruial point when onsideringmedia with double porosity is the fat that �ssures play a key role in the transport of the�uid. This role is realised by omparing the permeability magnitude of the porous blokwith that of the �ssure network: the permeability of the �ssure network kf appears to bemuh larger than the permeability of the porous blok kp, as illustrated in Table 3.6.Referene kp kf[md℄ [m2℄ [md℄ [m2℄Kazemi (1969) 0.01 1.0 10−17 7 236 7.236 10−120.01 1.0 10−17 18 098 1.8098 10−111.0 1.0 10−15 5 521 5.521 10−12Kazemi et al. (1976) 1.0 1.0 10−15 0.01 1 10−111.0 1.0 10−15 21 000 2.1 10−11Khalili et al. (1999) 104 10−11 107 10−8Khalili (2003) 0.013 1.3 10−17 0.11 1.1 10−16Table 3.6: Range of values of the porous blok permeability kp and of the �ssure networkpermeability kf from the literature.The permeabilities of porous media with double porosity an be either (a) measuredexperimentally or (b) alulated by using empirial formulas. Eah option is brie�y pre-sented.(a) Experimental measurements an be made by using the length sale separation propertyof media with double porosity as suggested by Wilson and Aifantis (1982): Two diretpermeability measurements are made by using Dary's law; one on a sample representativeof the porous blok only and one on a sample representative of the overall equivalentpermeability. Hene, kp and keq are measured. For a model whih assumes that the�ssures are parallel with eah other, equally spaed and make an angle θ with the �owdiretion, the equivalent permeability of the medium keq an be related to kp and kf ,
keq = kp + kf cos2 θ. (3.10)(b) By using empirially derived formulas: On one hand, the porous blok permeabilities

kp an be physially related to the porous blok void ratio e. A usual starting point for191



3. Parameters magnitude 3.1. Intensive parametersthe derivation of suh equation is the law of Poiseuille for �ow through a round apillary(Mithell, 1993, p. 236). Let us denote kp the porous blok permeability, S0 the wettedsurfae per unit volume of partiles, k0 a pore shape fator and T a tortuosity fator forthe porous material without �ssures. The well-known Kozeny-Carman equation for thease of full saturation is reovered,
kp =

1

k0 T 2 S2
0

(
e3

1 + e

)
. (3.11)On the other hand, the �ssure network permeability kf an be related to its aperture

b representing the average distane separating the �ssure walls and to the normal distanefrom one frature to the other d, by using the following relationship,
kf =

b3

12 d
. (3.12)3.1.5 The aperture fatorThe leakage parameter η ontrols fully the transfer of mass between the porous blokand the �ssure network in loal thermal non-equilibrium. The mass transfer law (2.259)desribes well the in-situ behaviour of porous media with double porosity in loal thermalequilibrium and reovers experimental results. For example Kazemi (1969) obtained somesatisfying results on drawdown tests and Khalili et al. (1999) presented some omprehensiveresults for onsolidation of �ssured lays.The leakage parameter η is proportional to the porous blok permeability kp, to anaperture fator ᾱ and to the inverse of the pore �uid visosity µp. Hene, for a onstantvisosity, the higher the value of η the faster the �uid transfers from one porosity type tothe other. The following relationship has been obtained using a one dimensional analysiswith the assumption that a quasi-steady state exists in the bloks of the porous region(Barenblatt et al., 1960),

η = ᾱ
kp
µp
. (3.13)The aperture fator ᾱ (also alled shape fator) represents the �ssuration of themedium, its order of magnitude is 1/m2. It is a funtion of the number of �ssures n andof the average distane separating the �ssures through the oe�ient l [m℄. The followingrelation was �rst introdued by Warren and Root (1963),192



3. Parameters magnitude 3.2. Extensive parameters
ᾱ =

4 n (n+ 2)

l2
. (3.14)Depending on n = 1, 2, 3 the number of normal sets of �ssures and b1, b2, b3 theaverage distane separating the �ssures in the diretions n, l an be ast,

l =
3 b1b2b3

b1b2 + b2b3 + b1b3
, if n = 3,

l =
2 b1b2
b1 + b2

, if n = 2,

l = b1, if n = 1.

(3.15)
The experimental determination of the leakage parameter η is not straightforward andusing the formulation (3.14) introdued by Warren and Root (1963) to alulate η isnot always onvenient. Uldrih and Ershaghi (1979) proposed a method to determine ηexperimentally by using the urve of a drawdown test. To this purpose the time saleseparation harateristi of porous media with double porosity is used. Drawdown urvesare plotted by measuring the wellbore �owing pressure versus logarithm of time. The �owbehaviour is haraterised by two straight lines, one for early times in whih the �ssuresdominate, and one for late times in whih the e�et of �uid transfer from the porousbloks to the �ssures beomes important. By utilizing an approximate solution to the �owequations, as proposed by Warren and Root (1963), η an be experimentally determinedfrom the drawdown graph.In the literature, the order of magnitude of the leakage parameter η variates from

5.3 10−10 1/Pa.s (Kazemi, 1969) to 1.0 10−7 1/Pa.s (Khalili et al., 1999).3.2 Extensive parametersAn extensive property is a property that depends on the surrounding onditions, suh asthe temperature or the pressure. For example, mass is a physial intensive property ofany physial objet, whereas weight is an extensive property that varies depending on thestrength of the gravitational �eld in whih the respetive objet is plaed.The extensive parameters whih depend on temperature variation are onsidered inturn, for eah phase or for the �uid phases only depending on their nature: (1) First,the thermal expansion oe�ients are desribed. Next, (2) the densities and (3) the vis-osities are presented. Furthermore, (4) the spei� heat apaities and (5) the thermalondutibilities are introdued. 193



3. Parameters magnitude 3.2. Extensive parameters3.2.1 The thermal expansion oe�ientsThe volumetri thermal expansion ckT measures the ease with whih matter hanges involume with a hange in temperature, at onstant pressure. Its unit is in 1/K. It is equalto three times the often reported linear thermal expansion oe�ient. (1) Solid and (2)water thermal expansion oe�ients are onsidered in turn:(1) Due to a lak of experimental data for soils, the linear thermal dilatation oe�ientvalue an be approximated to that of pure silia cT = 1.7×10−6 1/K. However, if the exatomposition of the soil is known, one an estimate the global thermal oe�ient by usingTable 3.7. Mineral Linear thermal expansion oe�ient [10−6 1/◦C℄
cT [10−6 1/K℄

⊥ to layering ‖ to layeringMusovite 17.8 3.5Phlogopite 17.8 14Kaolinite 18.6 5.2Dikite 14.9 5.9Halloysite 10.0 6.0Pyrophyllite 10.2 6.9Talk 16.3 3.7Chlorite 9.0 11.1Table 3.7: Linear thermal expansion oe�ients, of typial lay minerals, for a temperaturerange between 25◦C and 100◦C (Horseman and MEwen, 1996).(2) Typial values for liquid water and ie are presented in Table 3.8. Although true forpure water and ie, these values may undergo a signi�ant hange for unsaturated water,for example water with air bubbles. The thermal expansion oe�ient of water substaneundergoes a negative jump at 0◦C. It inreases monotonially between 0◦C and 100◦C,passing through a null value just below 4◦C, (Kestin, 1968, p. 264). In the liquid state, itan be approximated by an a�ne funtion with Tk in Celsius,
ckT (Tk) = −0.067 × 10−3 + 0.00819 × 10−3 × Tk, Tk ∈]0, 100[ ◦C. (3.16)
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3. Parameters magnitude 3.2. Extensive parametersTemperature Thermal expansion
Tk [◦C℄ oe�. ckT [10−3/K℄0 (ie) 0.1580 (liquid) -0.0672 -0.0314 0.00125 0.25640 0.39055 0.49375 0.614100 (liquid) 0.752 Coe�ientof

thermalexpa
nsion

[10−6 /K℄
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Temperature [K℄Table 3.8: Volumetri thermal expansion oe�ient of ie and pure water at atmospheripressure (Kestin, 1968, p. 541).3.2.2 The densitiesDensity is equal to mass per unit volume. The mass is normally measured with an appro-priate sale; the volume may be measured diretly (from the geometry of the objet) orby the displaement of a liquid. A very ommon instrument for the diret measurementof the density of a liquid is the hydrometer. As a rule, inreasing the pressure will alwaysinrease the density of a material and inreasing the temperature generally dereases thedensity, but there are notable exeptions to this generalisation. For example, the densityof water inreases between its melting point at 0 ◦C and 4 ◦C. (1) Solid and (2) waterdensities are onsidered in turn:(1) In ommon geomehanial appliations it is reasonable to onsider the density of thesolid skeleton as onstant, sine the magnitude of the ompressibility oe�ient and ofthe thermal expansion oe�ient are small. Hene, the solid density ρs is assumed to beindependent of the pressure and temperature hanges. Table 3.9 gathers density oe�ientsof various soil types.(2) By ontrast with the solid skeleton density, water density varies signi�antly withtemperature. The formula relating the density hange of a phase k to a temperature anda pressure hange is expressed in equation (2.173). This relation involves two extensiveparameters: the hydrauli ompressibility ckH and the thermal expansion oe�ient of thephase ckT , 195



3. Parameters magnitude 3.2. Extensive parametersMaterial Density
ρs [103 kg/m3℄Clay 1.8 to 2.6Limestone 2.7 to 2.8Sandstone 2.1 to 2.4Granite 2.64 to 2.70Quartz 2.65Marble 2.80Table 3.9: Density oe�ients of various soils (Burger et al., 1985, p. 139).

1

ρk

dkρk
dt

= ckH
dkpk
dt

− ckT
dkTk
dt

. (3.17)The variation density with temperature hange is presented in Table 3.10 for purewater. Aording to Burger et al. (1985), the variation of water density with temperaturein the range of [6◦C, 90◦C℄, an be approximated by the following relation (with Tk in
◦Celsius),

ρk = 1000.4 − 0.0478 × Tk − 3.8810−3 × T 2
k , [kg·m−3]. (3.18)Temperature Density

Tk [◦C℄ ρk [kg/m3℄0 (ie) 916.80 (liquid) 999.84 1000.010 999.720 998.230 995.750 988.170 977.8100 (liquid) 958 Pressure[Pa℄
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Temperature [K℄Table 3.10: (left) Density variation with temperature for pure water, at atmospheri pres-sure, from www.engineeringtoolbox.om. (right) Spei� volume (inverse density) ontourwith pressure and temperature as de�ned in equation (2.158).196



3. Parameters magnitude 3.2. Extensive parameters3.2.3 The dynami visosityThe dynami visosity desribes the internal resistane of a �uid to �ow and may bethought of as a measure of �uid frition. Visosity is independent of pressure (exept atvery high pressure), but is strongly dependent of the temperature variation (Table 3.11).The SI unit for the dynami visosity is Pa.s. The `gs' physial unit for dynami visosityis the poise, 1 P = 0.1 Pa.s. At 20◦C the water visosity is equal to 1.0020 entipoise.Temperature Dynami visosity
Tk [◦C℄ µk [10−3 Pa.s℄0 (liquid) 1.7892 1.524 1.5220 1.00240 0.65355 0.50470 0.404100 (liquid) 0.282Table 3.11: Dynami visosity of pure water, from www.engineeringtoolbox.omAording to Burger et al. (1985), the visosity of water variation, aurate to within2.5% in the range of [0◦C, 370◦C℄, an be approximated by the following relation (with Tkin Kelvin),

µk = 2.414 ∗ 10−5 × 10

(

247.8

Tk − 140

)

[Pa·s]. (3.19)3.2.4 The spei� heat apaitiesHeat apaity is a measurable physial quantity that haraterises the ability of a body tostore heat as it hanges in temperature. Its unit is in J/K. Dividing heat apaity by thebody mass yields a mass-spei� heat apaity J/kg.K, whih is a mass-intensive quantity,meaning it is no longer dependent on amount of material, and is now more dependent onthe type of material, as well as the physial onditions of heating. (1) Solid and (2) watermass-spei� heat apaities are onsidered in turn:(1) Traditionally, the solid skeleton spei� heat apaity is onsidered independent oftemperature (Table 3.12, left). 197



3. Parameters magnitude 3.2. Extensive parameters(2) Table 3.12, right, presents mass-spei� heat apaity variation with temperature forpure water, whih indiates a small dependeny of the oe�ient on the temperaturerange of 0 to 100 ◦C. The spei� heat apaity of water an therefore be approximated bya onstant value.Material Spei� heat apaity
Cs,p [J/kg.K℄Granite 790Marble 880Clay 920Sand 800Sandstone 920Limestone 840

Temperature Spei� heat apaity
Tk [◦C℄ Cp,p [kJ/kg.K℄0 (ie) 4.2180 (liquid) 4.21010 4.19520 4.18230 4.17950 4.18170 4.190100 (liquid) 4.219Table 3.12: (left) Spei� heat apaity of di�erent soils, from www.engineeringtoolbox.om. (right) Spei� heat apaity of pure water at onstant atmospheri pressure(Kestin, 1968, p. 541).

3.2.5 The thermal ondutivitiesThermal ondutivity Λ is the property of a material that indiates its ability to ondutheat. It appears primarily in Fourier's law for heat ondution. SI units are W/m.K andEnglish units are Btu.ft/h.ft2.◦F. To onvert between the two, the relation 1 W/m.K =1.3523 Btu.ft/h.ft2.◦F is used. (1) Solid and (2) water thermal ondutibilities are nowoutlined in turn:(1) The thermal ondutivity of the solid skeleton is assumed to have an isotropi be-haviour in spite of strati�ation of natural soil deposits and of the presene of fratures.Furthermore, it is onsidered independent of the temperature for geotehnial appliations(Table 3.13, left).(2) The variation of thermal ondutivity of water with temperature is small between 0 ◦Cand 100 ◦C (Table 3.13, right) and an safely be approximated by a onstant.As the values for soil minerals are higher than those for water and air, it is evident thatheat �ow must be predominant through the solid in di�usion-dominated �ows. The latterstatement is erroneous for onvetion-dominated mixture.198



3. Parameters magnitude 3.3. Solid-�uid extensive parametersMaterial Thermal ondutivity
Λs [W/m.K℄Granite 1.7 - 4.0Marble 2.7 - 2.9Quartz 5.3 - 5.8Sand, dry 0.35Sand, saturated 2.7Limestone 1.26 - 1.33

Temperature Thermal ondutivity
Tk [◦C℄ Λk [W/m.K℄0 0.55210 0.57820 0.59830 0.61450 0.64170 0.661100 0.676Table 3.13: (left) Thermal ondutivity of di�erent soils, from www.engineeringtoolbox.om. (right) Thermal ondutivity of pure water (Burger et al., 1985, p 137).3.3 Solid-�uid extensive parametersThe solid-�uid extensive oe�ients whih are de�ned and measured for a partiular solid-�uid system are now onsidered. The oe�ients of thermo-osmosis are di�usive oupledphenomena related to Dary's law and Fourier's law. On the other hand, the volumetriinter-phase heat transfer oe�ients ontrol the time di�erene between loal thermal non-equilibrium and loal thermal equilibrium.3.3.1 The oe�ient of thermo-osmosisThermo-osmosis is the onsagerian oupled proess by whih groundwater movement isdriven by a temperature gradient as de�ned in equations (2.228) and (2.232). Its unitis m2/s.K. This thermo-osmosis oe�ient depends strongly on the permeability of themedium under onern and on the visosity of the �uid (and therefore indiretly on itstemperature). However, due to the lak of information, the oe�ient of thermo-osmosisis assumed independent of temperature variation.Aording to Ghassemi and Diek (2002) and Bai (2006), due to the very low permeabil-ity (order of nanodary) of shales (bedded lays), hydrauli transport is not the dominantform of �uid movement into the formation. In fat, hydrauli �uid transport is often sev-eral times smaller than the ontribution of hemial and thermal e�ets. There is evidenethat thermo-osmosis an play a signi�ant role on the di�usion behaviour sine signi�antmass transport through lay membranes due to a temperature gradient has been observedin laboratory experiments. Several thermo-osmosis values are gathered in Table 3.14.Srivastava and Avasthi (1975) showed that, in ompat kaolinite subjeted to a temper-ature gradient of 20 ◦C/m, the �ux of water assoiated with this e�et an reah 10−8m/s199



3. Parameters magnitude 3.3. Solid-�uid extensive parametersReferene Thermo-osmosis oe�ient Material
Θk [m2/s.K℄Dirksen (1969) 10−14 - 3× 10−13 Na-kaoliniteSrivastava and Avasthi (1975) 2.6 × 10−10 kaoliniteReferene Thermo-osmosis oe�ient Permeability
Θk [m2/s.K℄ [m2℄Carnahan (1984) 2.7 × 10−10 15× 10−18Zhou et al. (1998) 6 × 10−11 - 2.7 × 10−10 10−17 - 5×10−17Ghassemi and Diek (2002) 6× 10−11 7.66×10−20Table 3.14: Thermo-osmosis oe�ients for ompat lays-water system from the literature.(0.5 m/year).Based on the experimental results of Srivastava and Avasthi (1975), Carnahan (1984)estimated that thermo-osmoti volume �ow through kaolinite an be 800 times larger thanDarian �ow, that is to say the ratio between the two �uxes ould be as great as 3 ordersof magnitude. Numerial estimates of the magnitudes of the �uxes assoiated with theoupling phenomenon have shown that the thermo-osmosis e�et ould have a signi�antrole in �uid and solute transport only if the thermo-osmosis oe�ient is greater than10−12 m2/s.K (Soler, 2001).Thus, thermo-osmosis is likely to be an important near-�eld mehanism of groundwa-ter movement in low permeability soils, suh as lay repository ontaining heat-emittingwastes.Remark 3.1. Aounting for the thermo-osmosis e�et requires the boundary onditionsin terms of �ux Jk at the interfae of the sample to be true for both Dary's e�et and thethermo-osmosis e�et.3.3.2 The oe�ients of inter-phase heat transferThe oe�ient of inter-phase heat transfer, hi [W/m2.K℄, also known as the partile-to-�uid heat transfer oe�ient, in�uenes greatly the rate at whih a two phase system (forexample solid-�uid or �uid-�uid) will reah thermal equilibrium. The latter oe�ient isindependent of the geometry of the system under onsideration. The higher the oe�ientof inter-phase heat transfer, the faster the thermal equilibrium.200



3. Parameters magnitude 3.3. Solid-�uid extensive parametersThe oe�ient of volumetri or spei� inter-phase heat transfer κi [W/m3.K℄ is pro-portional to the inter-phase heat transfer oe�ient hi and to the spei� surfae Ssp
i[m2/m3℄ of the onsidered two phase system,

κi = hi × Ssp
i , i = sp, sf, pf. (3.20)On one hand, the inter-phase heat transfer oe�ient hi depends on the nature of thesolid, the �uid and on the dominant heat transport phenomenon. On the other hand, thespei� surfae represents the geometrial on�guration of a partiular site,

Ssp
i =

total surfae area of the interstitial voidstotal volume of the medium . (3.21)In hot dry rok appliations, heat transport is di�usion-dominant in the solid and inthe pore �uid phase; onversely heat transport is onvetion-dominant in the �ssure �uidphase. Thus, hsp and hsf should be signi�antly di�erent in magnitude. As in porousmedia with double porosity the porous blok has a muh larger spei� surfae than the�ssure network, namely Ssp
sp >> Ssp

sf , the oe�ient of volumetri inter-phase heat transferof the solid-pore system should be muh larger than the one of the solid-�ssure system,namely κsp >> κsf .Consequently, to obtain the volumetri oe�ient of inter-phase heat transfer κi, boththe spei� surfae Ssp
i and the oe�ients of inter-phase heat transfer hi have to beidenti�ed. (1) Spei� surfae formulas, (2) the solid-pore �uid, (3) the solid-�ssure �uidand (4) the pore �uid-�ssure �uid oe�ients of heat transfer are now onsidered in turn:(1) The spei� surfae area Ssp

i an be measured (Table 3.15) but it is informative toalulate it from empirial formulas. To make this alulation, the interfae solid-�uid isestimated from the size and shapes of the solid grains or the pores or the �ssures.Material Spei� surfae area
Ssp
i [m2/m3℄Sand 1.5× 104Fine sandstone 1.5× 105Montmorillonite (lay) 1.5× 109Table 3.15: Spei� surfae area values for various materials (de Marsily, 1986, p. 22).Aording to Jiang et al. (2006), the spei� surfae of a porous medium an be approx-imated by assuming that the partiles are spherial and that their entire surfae ontributes201



3. Parameters magnitude 3.3. Solid-�uid extensive parametersto the heat transfer. Consider a porous medium with spherial partiles, for example voidsof diameter ds �lled with �uid and of volume fration ns. Then the spei� area is,
Ssp
i =

6 ns
ds

. (3.22)The latter relation is assumed true for oarse material only. If a soil partile is assumedto have a ubed form of length L, the spei� area an be approximated to,
Ssp
i =

6L2

L3
=

6

L
. (3.23)Finally, it an be shown that the spei� surfae area of a plate-shaped soil partileis muh larger than that of a ube-shaped partile. Consider the plate-shaped partile aspart of a retangular box (L×H × 1) ut into many thin slies. For one slie of height b,the spei� area is,

Ssp
i =

2L× 1 + 2b× 1 + 2Lb

Lb× 1
. (3.24)(2) The experimental determination of the oe�ient of inter-phase heat transfer for thesolid-pore system hsp is reviewed by Kaviany (1995, p. 401) for spherial partiles. Wakaoand Kaguei (1982) have ritially examined the experimental results on hsp and haveseleted experiments (steady-state and transient) whih they found reliable. They havefound a orrelation for hsp for spherial partiles; the dimensionless form of it is denotedthe Nusselt number Nud,

Nud =
hsp dp
Λp

= 2 + 1.1Re0.6p Pr1/3p . (3.25)where dp is the pore diameter, Rep = vp dp/νp and Prp = µp cp,p/Λp are the Reynoldsnumber and the Prandlt number assoiated to the pore �uid. Equation (3.25) gives forthe asymptote Re→ 0 the limit Nud = 2 = hspdp/Λp. Note that the measurement of hspbeomes more di�ult and the experimental unertainties beome muh higher as Re→ 0.Peker and Deresiewiz (1973) also measured experimentally the oe�ient of volumet-ri inter-phase heat transfer of a sandstone sample �lled with a ondutive aqueous solution(sodium hloride), in a single porosity ontext. To do so, the �uid of the system was heatedeletrially, while the rok skeleton itself was eletrially insulated. They obtained a value202



3. Parameters magnitude 3.3. Solid-�uid extensive parametersof κsp = 4.309 × 105 W/m3.K. Aording to de Marsily (1986), the spei� surfae forsand materials is equal to 1.5 × 105 m2/m3; thus, the result of Peker and Deresiewiz(1973) leads to an inter-phase heat transfer value of approximatively 2.8 W/m2.K.Jiang et al. (2006) investigated the heat transfer between solid partiles and a �uid inporous media, through experimental and numerial work. The experimental work fousedon a porous medium with an average partile diameter of 0.2 mm. The partile-to-�uid heattransfer oe�ient was obtained from the experimental data with the lumped apaitanemethod and a one-dimensional numerial analysis of the experimental data: hsp = 12.16W/m2.K.(3) Zanotti and Carbonell (1984) proposed a formula to estimate the oe�ient of inter-phase heat transfer for a solid-�ssure system hsf from a apillary tube model. Note thatthe axial ondution in eah phase is assumed negligible ompared with that in the radialdiretion. The overall onvetive heat transfer oe�ient is determined to be,
1

hsf
=
Ri a3
2 Λf

+
R2

0 −R2
i

2Ri

a4
Λs
, (3.26)in whih the dimensionless onstants ai are,

a3 =
1

2
and a4 =

4
(
R0

Ri

)4
ln R0

Ri
− 3

(
R0

Ri

)4
+ 4

(
R0

Ri

)2
− 1

2
[
R0

Ri

2 − 1
]3 , (3.27)

Ri is the internal radius of the apillary where Tf = Ts and R0 is the radius at whih
∂Ts/∂r = 0, r being the diretion perpendiular to the axis of the apillary tube. Notethat the formula of hsf in eq. (3.26) is independent of the �uid veloity.(4) The inter-phase heat transfer oe�ient of the pore-�ssure system hpf an be approx-imated by a ondutive heat transfer phenomenon. Three hypotheses are made:i. Although the rate of thermal hange is very high, the temperature hange at the inter-phase is onsidered smooth. Consequently, an average temperature Tpf = (Tp+Tf )/2is introdued at the loal inter-phase point.ii. Let us assume that the �uid is onduting through a thin `membrane' of a round shapeross setion. The membrane thermal ondutivity is equal to Λpf = (Λp + Λf )/2.203



3. Parameters magnitude 3.4. The Reynolds, Prandtl, Pélet, Nusselt, Sparrow numbersiii. The harateristi length ontrolling this heat transfer phenomenon is the radius R ofthe thin `membrane'.Aording to Bejan (1993, p. 33), the ondutive heat transfer oe�ient, or thermalresistane posed by a su�iently thin `membrane' is,
hpf =

Λp + Λf

2R
=

Λpf

R
. (3.28)As a �rst approximation and in absene of available data, the length of the thin `mem-brane' is assumed equal to a pore radius R ≈ dp/2. The spei� surfae of the pore�uid-�ssure �uid inter-phase may be approximated by the spei� surfae of the solid-�ssure system weighted by the pore �uid volume fration, whih is assumed to be equal tothe pore �uid surfae fration,

Ssp
pf ≈ np S

sp
sf . (3.29)In onlusion, the volumetri inter-phase heat transfer oe�ient of the solid-pore sys-tem should be muh larger than the others and the volumetri inter-phase heat transferoe�ient of the solid-�ssure system should be larger than that of the pore-�ssure system:

κsp >> κsf > κpf .3.4 The Reynolds, Prandtl, Pélet, Nusselt, Sparrow num-bersFive dimensionless numbers are now presented. They are often used as indiators of �owrates or of the dominane of ertain phenomena over others. In any ase, they are veryuseful to orretly desribe a partiular �ow situation through a mixture.3.4.1 The Reynolds numberThe transition from laminar to turbulent �ow is governed by the values of the Reynoldsnumber Re. The dimensionless Reynolds number is de�ned for a ylindrial pipe by,
Re =

V d ρ

µ
, (3.30)where V is the mean veloity of the �uid, d the diameter of the pipe and µ/ρ is the kinemativisosity. In lassial hydraulis, the �ow regime is laminar for Re < 2000 and turbulent204



3. Parameters magnitude 3.4. The Reynolds, Prandtl, Pélet, Nusselt, Sparrow numbersfor Re > 2000. However aording to Kaviany (1995, p. 48), the turbulent �ow limitsare di�erent when onsidering the pore-level measurements of the veloity �utuation.Dybbs and Edwards (1984) have made point measurement of the three dimensional veloitydistributions for �ow through hexagonal paking of spheres and for omplex arrangementsof ylinders. They de�ne a Reynolds number Red that is based on the average pore �uidveloity ūp and on an average harateristi length sale for the pores d̄,
Red =

ūp d̄ ρ

µ
. (3.31)Based on this Reynolds number, they are able to de�ne four distint �ow regimes, presentedhere,1. Red < 1, Dary or reeping-�ow regime: The visous fores dominate over the inertiafores and only the loal (pore-level) geometry in�uenes the �ow.2. 1− 10 < Red < 150, inertial-�ow regime: Steady nonlinear (inertial fores a�eted)laminar �ow begins between Red from 1 to 10. Boundary layers are more pronounedand uniform-veloity regions are present. As Red inreases, the uniform-veloityregions beome larger as the boundary thikness dereases.3. 150 < Red < 300, unsteady laminar-�ow regime: the �ow remains laminar inthis regime and displays an instable wake responsible for the transition from laminarsteady �ows to unsteady �ows.4. 300 < Red, unsteady and haoti-�ow regime: The transition to turbulene has beenfound to take plae over Reynolds numbers as large as 300.3.4.2 The Prandtl numberThe Prandtl number is a dimensionless number approximating the ratio of momentumdi�usivity (kinemati visosity) and thermal di�usivity. It is de�ned as:

Pr =
ν

α
=

visous di�usion ratethermal di�usion rate =
cp µ

Λ
, (3.32)where ν is the kinemati visosity [m2/s℄ and α is the thermal di�usivity [m2/s℄,

α =
Λ

ρ cp
, (3.33)205



3. Parameters magnitude 3.4. The Reynolds, Prandtl, Pélet, Nusselt, Sparrow numbersde�ned from the thermal ondutivity Λ [W/m.K℄, the density ρ [kg/m3℄ and the spei�heat apaity at onstant pressure cp [J/kg.K℄.Typial values for Pr are around 7.07 for water, between 100 and 40,000 for engineoil and around 0.02 for merury, at 20 ◦C (Bejan, 1993, Appendix C). For merury, heatondution is very e�etive ompared with onvetion: thermal di�usivity is dominant.For engine oil, onvetion is very e�etive in transferring energy from an area, omparedto pure ondution: momentum di�usivity is dominant.In heat transfer problems, the Prandtl number ontrols the relative thikness of themomentum and thermal boundary layers. When Pr is low, heat di�uses very quiklyompared with the veloity (momentum); for example, in liquid metals the thikness ofthe thermal boundary layer is muh larger than the veloity boundary layer.3.4.3 The Pélet numberThe Pélet number is a dimensionless number relating the rate of fored onvetion overthermal di�usion for a spei� �uid. It is equivalent to the produt of the Reynolds numberwith the Prandtl number in the ase of thermal di�usion. For thermal di�usion, the Péletnumber is de�ned as:
Pe =

rate of onvetionrate of di�usion = Re× Pr =
LV

α
, (3.34)in whih L is a harateristi length (the average harateristi length sale for the pores d̄),

V is the veloity of the �uid (the average pore veloity ūp) and α is the thermal di�usivity[m2/s℄.Note that the soils under onsideration for waste repositories have extremely low per-meabilities and therefore very small pore diameters, so that the Pélet number shouldbe far below one. On the other hand, hot dry rok reservoirs are endowed with largepermeabilities (after hydrauli stimulation) and should display large Pélet numbers.3.4.4 The Nusselt numberAt a boundary surfae of a solid-�uid system, heat transfer ours when the system is inloal thermal non-equilibrium. The dimensionless Nusselt number is the ratio of onvetiveto ondutive heat transfer aross (normal to) the boundary. If one onsiders that theonvetive and ondutive heat �ows are parallel to eah other and to the surfae normal206



3. Parameters magnitude 3.4. The Reynolds, Prandtl, Pélet, Nusselt, Sparrow numbersof the boundary surfae, and are all perpendiular to the mean �uid �ow in the simplease, the Nusselt number may be de�ned as,
NuL =

Convetive heat transferCondutive heat transfer =
h L

Λf
, (3.35)where L is a harateristi length (the pores diameter dp), Λf is the thermal ondutivityof the �uid and h is the oe�ient of inter-phase heat transfer [W/m2.K℄.A Nusselt number lose to unity, namely onvetion and ondution of similar mag-nitude, is harateristi of laminar �ow. A larger Nusselt number orresponds to moreative onvetion, with turbulent �ow typially in the 100-1000 range. Wakao and Kaguei(1982) related the Nusselt number to the Reynolds number and to the Prandtl number forspherial partiles through,

Nud =
hsp dp
Λp

= 2 + 1.1 Re0.6p Pr1/3p . (3.36)This orrelation is based on experimental results of seleted experiments for bothsteady-state and transient tests.3.4.5 The Sparrow numberThe dimensionless Sparrow number informs on the existene of loal thermal equilibrium(or the absene of), for a porous medium subjeted to rapid heating or ooling (Minkowyzet al., 1999). The Sparrow number for a solid-�uid system (sf subsript) is de�ned as,
Spsf =

Ss
sfhsfL

2

Λsf
, (3.37)in whih Ss

sf is the spei� area [1/m℄, hsf is the oe�ient of inter-phase heat transfer[W/m2.K℄, L is the thikness of the porous layer [m℄, and Λsf is an equivalent thermalondutivity of the solid-�uid system [W/m.K℄; Λsf = nfΛf + (1− nf )Λs.The absene of loal thermal equilibrium is signi�ant for the ratio of the Sparrownumber over the Pélet number Sp/4Pe smaller than unity (Minkowyz et al., 1999; Nieldet al., 2002),
Sp

4Pe

[
nf + (1− nf )

Λs

Λf

]
< 1 ,

Sp

4Pe
< 1 , if Λs

Λf
≈ 1.

(3.38)207



3. Parameters magnitude 3.4. The Reynolds, Prandtl, Pélet, Nusselt, Sparrow numbersNote that the Sparrow number is not yet a widely used tool and is only introdued ina few number of papers.
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Chapter 4Finite element method
The omplete set of expliit �eld equations has been derived in Chapter 2. The relationlinking the primary unknowns to the applied boundary onditions and body loadings isnow developed through a �nite element formulation sheme. The main idea is to forethe residual, implied by the non-linear �rst-order semi-disrete equations, to vanish. Theatual global e�etive di�usion matrix is entral in the implementation but presents anumber of degrees of freedom.Setion 4.1 presents the �nite element method through a simple one-dimensional time-independent boundary value problem. In Setion 4.2, the �eld equations and the primaryunknowns are gathered to form the problem to be solved: the weak formulation is obtainedafter integrating by parts and the Galerkin method is used to obtain the semi-disretisedset of equations. Cruial for the ode implementation, the time integration and the methodof equation solving are presented in Setion 4.3. The e�etive di�usion matrix results fromthe above hoies.The stabilisation of the onvetive terms will be addressed in Chapter 7.4.1 The �nite element methodFinite element methods (FEM) are numerial tehniques used for �nding approximatesolutions of partial di�erential equations as well as of integral equations. The solutionapproah is based either on reduing the di�erential equations to a set of linear equations(steady state problems) or to a semi-disrete system of ordinary di�erential equations(time-dependent problems).The method to obtain the semi-disrete equations of the problem is now analysed.The time disretisation method is detailed later in Setion 4.3. This setion taps on thework of (Hughes, 1987a) and we should refer to him for more detailed explanations. Our209



4. FEM 4.1. The �nite element methodexplanation proeeds in three steps: (1) The variational or weak statement of the problemis expressed. (2) The Galerkin's approximation method is used to disretise the weak formin a �nite dimensional spae. (3) A system of oupled linear algebrai equations is obtainedwithin a generi element.To larify the onept, let us begin with a one dimensional time-independent prob-lem from whih the general method an be extrapolated. The starting point is a partialdi�erential equation for the unknown funtion u = u(x),
∂2u

∂x2
+ f = 0, (4.1)where f is a given smooth, salar funtion de�ned on the interval [0, 1]. The ompleteboundary value problem requires imposing boundary onditions on the funtion u. Thestrong form of the boundary value problem (S) is stated as follows,

(S)





∂2u

∂x2
+ f = 0, on ]0, 1[,

u(1) = g,

−∂u(0)
∂x

= h,

(4.2)
where g and h are onstants. This type of boundary ondition leads to a boundary valueproblem of mixed type, the main unknown u and its derivative being ontrolled at onepoint. In the next step, the original boundary value problem is rephrased in its variationalor weak form.(1) The variational formulation of (S) is the mathematial preparation previous to thespatial disretisation. To do so, two olletions of funtions are introdued. i. The trialfuntions u whih satisfy u(1) = g and have square-integrable derivatives. ii. The vari-ations δu, also alled weighting funtions, whih are required to satisfy the homogeneousounterpart of the g-boundary ondition δu(1) = 0 and to have square-integrable deriva-tives.The variational formulation of the problem (S) is obtained by multiplying the strongform (4.2) by the variation δu and by integrating over the interval [0, 1]. Finally, integratingby parts provides the variational form,

(W)

∫ 1

0

∂ δu

∂x

∂u

∂x
dx =

∫ 1

0
δu f dx+ δu(0)h. (4.3)210



4. FEM 4.1. The �nite element methodThe formulation (W) is often alled virtual work or virtual displaement priniples.The funtions δu represent virtual displaements. The solution of (W) is alled weak orgeneralised solution.(2) The seond step is the Galerkin's approximation method, where the weak form is disre-tised in a �nite dimensional spae. Finite-dimensional approximations of the trial funtions
uh and of the variations δuh are introdued with respet to a mesh of harateristi length
h. The approximated funtions uh and δuh are subsets of the funtions u and δu and areendowed with the same properties.Let us rewrite eq. (4.3) in terms of uh and δuh, to obtain an approximate variationalformulation,

∫ 1

0

∂ δuh

∂x

∂uh

∂x
dx =

∫ 1

0
δuh f dx+ δuh(0)h. (4.4)Furthermore, the funtion uh is onstruted with an `unknown' part vh and a `known' part

gh,
uh = vh + gh, (4.5)so that vh is a funtion belonging to the same olletion of funtions as the approximatedvariations δuh and satis�es vh(1) = 0, and gh is a given funtion whih satis�es gh(1) = g.Substitution of (4.5) into (4.4) leads to the (Bubnov-)Galerkin form of the problem,
(G)

∫ 1

0

∂ δuh

∂x

∂vh

∂x
dx =

∫ 1

0
δuh f dx+ δuh(0)h−

∫ 1

0

∂ δuh

∂x

∂gh

∂x
dx, (4.6)in whih the `known' ontributions are gathered in the right-hand-side. Note that if thefuntions vh do not belong to the olletion of approximated variations δuh, the method isalled a Petrov-Galerkin method whih is in fat more general than the (Bubnov-)Galerkinmethod.(3) The third step leads to system of oupled linear algebrai equations referred to as thematrix problem. The matrix equation requires representations of δuh and vh in terms ofbasis funtions,

δuh =
n∑

A=1

cANA and vh =
n∑

A=1

dANA, for A = 1, 2, . . . , n; (4.7)211



4. FEM 4.1. The �nite element methodin whih NA are shape funtions whih satisfy NA(1) = 0 and cA and dA are onstants ofa generi element. gh is now spei�ed to gh = gNn+1 with Nn+1(1) = 1. Hene, uh writes,
uh =

n∑

A=1

dANA + gNn+1 for A = 1, 2, . . . , n. (4.8)Substitution of δuh and uh in (4.6) by their disretised form (4.7) and (4.8) and fa-torising by cA leads to,
n∑

A=1

cA

n∑

B=1

∫ 1

0

∂ NA

∂x

∂NB

∂x
dx dB −

∫ 1

0

(
NA f − ∂ NA

∂x

∂Nn+1

∂x
g

)
dx = NA(0)h, (4.9)

n∑

A=1

cA

n∑

B=1

F
int
e = F

surf
e , (4.10)where F

int
e is the vetor gathering the elementary internal elasti fores and F

surf
e is thevetor of elementary surfae loading. Eq. (4.9) should hold for all values of cA for A =

1, 2, . . . , n. Sine the cA onstants are arbitrary, it is neessary that the remaining funtionsmust be identially zero for eah A = 1, 2, . . . , n, hene,
n∑

B=1

∫ 1

0

∂ NA

∂x

∂NB

∂x
dx dB =

∫ 1

0
NA f dx+NA(0)h −

∫ 1

0

∂ NA

∂x

∂Nn+1

∂x
g dx. (4.11)Equation (4.11) onstitutes a system of n equations with n unknowns. The latterrelation may be written in a matrix form with a sti�ness matrix K, a displaement vetor

X = [dB ] for B = 1, 2, . . . , n and a fore vetor F being equal to the right-hand-side of(4.11),
(M) KX = F, (4.12)or in a vetorial form where F

int (V, uh) is the vetor gathering the internal elasti foresand F
surf (S, uh) is the vetor of surfae loading; S denotes the olletive loading surfaeand V the total volume,
(M) F

int (V, uh)− F
surf (S, uh) = 0. (4.13)212



4. FEM 4.2. The semi-disrete equationsThe matrix formulation (M) of the �nite dimensional linear problem is obtained whosesolution approximately solves the original boundary value problem (S). The three stepsleading to the matrix problem are shematially,
(S) ≡ (W) ≈ (G) ≡ (M). (4.14)In this perspetive, the approximate funtion uh is usually onsidered equal to theunknown funtion u from the beginning,
F

int (V, u) − F
surf (S, u) = 0. (4.15)Note that in the further development, no approximate solution is expliitly introduedand the approximate solution is denoted in the same manner as the exat solution. Thisnotation may appear as non-rigorous ompared with the work of Hughes (1987a), althoughit enhanes the larity of the writing. The �nite element proedure developed in Setion4.2 generalises the aforementioned formulation, restrited to time-independent problems,to paraboli problems. The main di�erenes are the introdution of an additional matrix,the di�usion matrix D, in the matrix formulation (4.12) and the need for an algorithm tosolve systems of ordinary di�erential equations. The subjet is addressed in Setion 4.3.4.2 The semi-disrete equationsThe �nite element method previously presented is used to disretise the onstitutive modeldeveloped in Chapter 2. The variational or weak formulation is presented in a generalontext and the nodal and the global vetors are de�ned. The semi-disretised system isthen spei�ed with the Galerkin approximation method.4.2.1 The weak formulationIn a spae dimension equal to nsd, at eah point, there are nsd + 5 omprehensive equationsto be satis�ed, namely,� the balane of momentum of the whole mixture, equation (2.319),� the mass balane of the pore �uid, equation (2.320),� the mass balane of the �ssure �uid, equation (2.321),� the energy balane of the solid, equation (2.322),213



4. FEM 4.2. The semi-disrete equations� the energy balane of the pore �uid, equation (2.323) and� the energy balane of the �ssure �uid, equation (2.324).To simplify the variational form, a ontrated and parametrised form of the ompre-hensive equations is introdued,
div σ + ρb = 0,

div Jk + fk = 0, for k = p, f,

div qs + gs = 0,

div qk + gk + gconvk = 0, for k = p, f,

(4.16)
where the left-hand-side funtions are partitioned into two funtion types: the thermo-elasti funtions fk, gs and gk and the onvetive funtion gconvk , whih depends on thesolution, namely on the veloities, and on the gradients of pressure and temperature. (viathe expression of the enthalpy gradient). For example, the pore �uid funtions are,

fp = app ṗp + apf ṗf + ξp∇ · u̇+ apTsṪs + apTp Ṫp + Γ,

Γ =
−ρ̂p
ρp

= T0 ρp η

(
Gp

Tp
− Gf

Tf

)

gp = aTpTp Ṫp + aTpp ṗp + aTpf ṗf + aTpǫ ∇ · u̇+ aTpTs Ṫs + κsp (Tp − Ts)

+κpf (Tp − Tf ) + ρ̂p Hp,

ρ̂p Hp = T0 ρ
2
p η

(
Gp

Tp
− Gf

Tf

)
Hp (4.17)

gconvp = Mp · ∇Hp

= bTpp (vp − vs) · ∇pp + bTpTp (vp − vs) · ∇Tp from eq. (2.314).Multiplying the �eld equations by the variations δu, δp and δT and integrating byparts over the body V , provides the weak form of the problem, thanks to Green's theorem.For k = p, f , the variational formulation of eq. (2.319)-(2.324) is,214



4. FEM 4.2. The semi-disrete equations
∫

V
∇(δu) : σ dV −

∫

V
δu · ρb dV =

∫

∂V
δu · σ · n̂ dS,

∫

V
∇(δp) · Jk dV −

∫

V
δp fk dV =

∫

∂V
δp Jk · n̂ dS,

∫

V
∇(δT ) · qs dV −

∫

V
δT gs dV =

∫

∂V
δT qs · n̂ dS,

∫

V
∇(δT ) · qk dV −

∫

V
δT (gk + gconvk ) dV =

∫

∂V
δT qk · n̂ dS,

(4.18)
where n̂ is the unit outward normal to the boundary ∂V . Boundary data an be given interms of the primary unknowns or in terms of the �uxes that appear in the right-hand-sideof the semi-disretised system.4.2.2 De�nition of the nodal and global unknown vetorsThe nsd + 5 primary unknowns to be alulated at eah node are:� the solid displaement vetor u =

[
ux
uy

],� the pore �uid pressure pp,� the �ssure �uid pressure pf ,� the solid temperature Ts,� the pore �uid temperature Tp and� the �ssure �uid temperature Tf .Consequently, the unknown nodal vetor Xe used in the disretisation is,
[Xe]T =

[
ue pe

p pe
f Te

s Te
p Te

f

]
. (4.19)The size of this vetor depends on the number of nodes hosen for the referene elements(a priori distint for eah type of unknown). For example, if a two-dimensional four-nodereferene element is adopted for all the unknowns, the size of Xe is (nsd + 5)× 4.The global unknown vetor X results by assembling of all the element vetors Xe:

X
T =

[
u pp pf Ts Tp Tf

]
. (4.20)215



4. FEM 4.2. The semi-disrete equations4.2.3 The (Bubnov-)Galerkin methodThe (Bubnov-)Galerkin proedure is adopted as far as the same interpolation funtionsare used for the primary unknows and for the variations.If the interpolation funtions NT are hosen to interpolate the unknown temperature
Tk, and the interpolation funtions MT to interpolate the variation orresponding to thetemperature δT ,

Tk = NT Te
k

δT = MT δT e

} the Bubnov-Galerkin method implies NT = MT . (4.21)The presene of onvetive terms requires modi�ations with respet to the Bubnov-Galerkin method. Indeed the Petrov-Galerkin method deviates from (4.21). De�ningexatly how muh di�erent are the weight funtions MT from the interpolation funtionsis a di�ult task, whih has reeived only partial answer so far. The issue is of importanein this work sine onvetive heat �ow will be shown to ontrol the physial proesses tobe analysed. Chapter 7 is devoted to analyse the Petrov-Galerkin method.4.2.4 The semi-disrete systemBefore writing the semi-disretised system in a vetor form and in a matrix form, some�nite element notations are introdued, namely, Voigt's notation and the shape funtionsassoiated with the referene element.4.2.4.1 Voigt's notationHooke's law uses a symmetri fourth-order sti�ness tensor KDS with 81 omponents
3×3×3×3. Voigt's notation enables this tensor to be simpli�ed to a 6×6 (pseudo-)matrix.Aording to our previous notational onvention, ǫ = [ǫij] is the matrix of strain ompo-nents. However, no need for this matrix form is required by the FEM and onsequentlythe notation ǫ is reserved for the strain vetor. A similar notational on�it ours withrespet to the stress vetor σ.Next, the strain vetor and the stress vetor are de�ned for three types of problems:(1) three-dimensional, (2) plane strain and (3) axi-symmetri assumptions are onsideredin turn.(1) For a three-dimensional problem, the strain and the stress matries are simpli�ed intovetors aording to Voigt's notation: 216



4. FEM 4.2. The semi-disrete equations
ǫ =



ǫxx ǫxy ǫxz
ǫyx ǫyy ǫyz
ǫzx ǫzy ǫzz


 → ǫ

T =
[
ǫxx ǫyy ǫzz 2 ǫyz 2 ǫxz 2 ǫxy

]
; (4.22)

σ =



σxx σxy σxz
σyx σyy σyz
σzx σzy σzz


 → σ

T =
[
σxx σyy σzz σyz σxz σxy

]
; (4.23)and the onstitutive sti�ness tensor beomes a 6× 6 matrix,

KDS =




λDS + 2µDS λDS λDS 0 0 0

λDS λDS + 2µDS λDS 0 0 0

λDS λDS λDS + 2µDS 0 0 0

0 0 0 µDS 0 0

0 0 0 0 µDS 0

0 0 0 0 0 µDS


(4.24)(2) For a plane strain problem, the strain and the stress matries further redue to:

ǫ =



ǫxx ǫxy 0
ǫyx ǫyy 0
0 0 0


 → ǫ

T =
[
ǫxx ǫyy 2 ǫxy

]
; (4.25)

σ =



σxx σxy 0
σyx σyy 0
0 0 σzz


 → σ

T =
[
σxx σyy σxy

]
. (4.26)Note that the stress σzz is generally not zero. However, it is not onsidered as anunknown and it an be realulated by use of equation (4.24). The onstitutive sti�nesstensor beomes,




σxx

σyy

σxy


 =




λDS + 2µDS λDS 0

λDS λDS + 2µDS 0

0 0 µDS







ǫxx

ǫyy

2 ǫxy


 ; (4.27)217



4. FEM 4.2. The semi-disrete equationswhere the strain vetor an be related to the displaement vetor through,



ǫxx

ǫyy

2 ǫxy


 =




∂ux
∂x

∂uy
∂y

∂ux
∂y

+
∂uy
∂x




. (4.28)
(3) For an axi-symmetri analysis, the displaements previously expressed in Cartesianoordinates are now expressed in terms of ylindrial oordinates:� ux = ur = the radial displaement,� uy = uz = the axial displaement and� uz = uθ = the irumferential displaement.The basi hypothesis of axi-symmetry is that all funtions under onsideration are in-dependent of θ. That is, they are funtions of r and z only. In addition, the irumferentialdisplaement is further assumed to be equal to zero uθ = 0 and thus,

ǫrθ = ǫzθ = 0. (4.29)Note that ǫθθ = ur/r is generally not zero. Therefore, if the onstitutive equationsexpress in the format σ = KDS : ǫ, with KDS the isotropi sti�ness given by (4.24), theshear stresses,
σrθ = σzθ = 0. (4.30)vanish as well. Hene, for an axi-symmetri analysis,
ǫ =



ǫrr ǫrz 0
ǫzr ǫzz 0
0 0 ǫθθ


 → ǫ

T =
[
ǫrr ǫzz 2 ǫrz ǫθθ

]
; (4.31)

σ =



σrr σrz 0
σzr σzz 0
0 0 σθθ


 → σ

T =
[
σrr σzz σrz σθθ

]
; (4.32)the isotropi sti�ness tensor KDS takes the form,218



4. FEM 4.2. The semi-disrete equations



σrr

σzz

σrz

σθθ




=




λDS + 2µDS λDS 0 λDS

λDS λDS + 2µDS 0 λDS

0 0 µDS 0

λDS λDS 0 λDS + 2µDS







ǫrr

ǫzz

2 ǫrz

ǫθθ


 (4.33)where the strain vetor an be related to the displaement vetor through,




ǫrr

ǫzz

2 ǫrz

ǫθθ




=




∂ur
∂r

∂uz
∂z

∂ur
∂z

+
∂uz
∂r

ur
r




. (4.34)
Note that the axi-symmetri relations are written in suh a way that they are easilytransformed into the plane strain relations of the previous paragraph (4.27)-(4.28).4.2.4.2 Isoparametri referene elementsThe nsd + 5 primary unknows are interpolated, within the generi element e, in terms ofnodal values through a priori distint interpolation funtions: Nu, Np and NT .� the solid displaement vetor u = Nu ue,� the pore and the �ssure �uid pressures pk = Np p

e
k for k = p, f , and� the phase temperatures Tk = NT Te

k, for k = s, p, f .In this study, two-dimensional four-node isoparametri elements are employed to rep-resent the �ssured porous medium.The shape funtion assoiated to a given node is equal to one at this node and equalto zero at the other nodes. A four node bilinear quadrilateral referene element is hosenand the assoiated shape funtions are de�ned in Table 4.1. The nodal points are labeled219



4. FEM 4.2. The semi-disrete equations
N1

u = 1

4
(1− ζ)(1− η)

N2
u = 1

4
(1 + ζ)(1− η)

N3
u = 1

4
(1 + ζ)(1 + η)

N4
u = 1

4
(1− ζ)(1 + η)

Table 4.1: Shape funtions assoiated to a four node bilinear quadrilateral referene ele-ment. The nodal points are labeled in asending order orresponding to the ounterlok-wise diretion.in asending order orresponding to the ounterlokwise diretion. In the further devel-opment displaement, pressure and temperature shape funtions are onsidered idential,namely,
Nu = Np = NT . (4.35)This approah is satisfatory for hydro-mehanial appliations (Khalili-Naghadeh,1991; Khalili et al., 1999) and for thermo-hydro-mehanial appliations (Chapter 5).Mixed interpolation modes have been proposed in the literature (Elsworth and Bai, 1992;Ghafouri and Lewis, 1996; Bai et al., 1999), typially quadrati interpolation for the dis-plaement and linear interpolation for the �uid pressures. In this work, equal-order in-terpolation for all the unknowns is preferred due its simpliity and ease of omputationalimplementation.4.2.4.3 The vetor form of the semi-disrete systemThe internal ontributions, of a generi element e, omprise the thermo-elasti ontribu-tions denoted by the vetor FTh−El

e and the onvetive ontributions denoted by the vetor
F
conv
e . On the other hand, the surfae loading ontributions are gathered into the vetor

F
surf
e ,

F
Th−El
e + F

conv
e︸ ︷︷ ︸Internal fores − F

surf
e︸︷︷︸Surfae fores . (4.36)220



4. FEM 4.2. The semi-disrete equationsThe Galerkin method implies that the variations δu, δp and δT are interpolated throughthe funtions Nu, Np andNT , respetively. After the spatial disretisation, the elementaryontributions to the variational formulation (4.18) are denoted in a vetor form,



∫

V e

BT
u σ −NT

u ρb dV e

∫

V e

∇NT
p Jp −NT

p fp dV
e

∫

V e

∇NT
p Jf −NT

p ff dV e

∫

V e

∇NT
T qs −NT

T gs dV
e

∫

V e

∇NT
T qp −NT

T

(
gp + gconvp

)
dV e

∫

V e

∇NT
T qf −NT

T

(
gf + gconvf

)
dV e




−




∫

∂V e

NT
u σ · n̂ dSe

∫

∂V e

NT
p Jp · n̂ dSe

∫

∂V e

NT
p Jf · n̂ dSe

∫

∂V e

NT
T qs · n̂ dSe

∫

∂V e

NT
T qp · n̂ dSe

∫

∂V e

NT
T qf · n̂ dSe




, (4.37)
where Bu is the standard strain-displaement matrix (Appendix E). The total stress andthe �uxes are expressed in terms of primary unknowns in eq. (2.280) and eq. (2.249),respetively. The generalised transfer onstitutive relation is outlined in eq. (2.277). Theonstitutive equations are introdued into the �eld equations to form the full set of om-prehensive equations in eq. (2.319) to (2.324).The previous formulation is written in a more detailed form to visualise the primaryunknown vetors in eq. (E.18) to (E.23). A ontrated form is presented below:Elementary ontribution to the balane of momentum for the mixture:

Euu
e ue −Ce

up (ξp p
e
p + ξf p

e
f ) −Ce

uT aǫTs T
e
s − Fe

u. (4.38)Elementary ontribution to the balane of mass for the pore �uid:
− Je

kp p
e
p − Je

Θp
Te

p −Me
pp(app ṗ

e
p + apf ṗ

e
f )−Me

pT (apTs Ṫ
e
s + apTp Ṫ

e
p)

− ξp C
e
pu u̇e −NTT

e
0 ρpηN

T
p


Gp

(
Npp

e
p,NTT

e
p

)

NTTe
p

−
Gf

(
Npp

e
f ,NTT

e
f

)

NTT
e
f




− Fe
pp . (4.39)in whih the hemial potential Gk (Npp

e
k,NTT

e
k) of the �uid k is de�ned in eq. (2.160)2.221



4. FEM 4.2. The semi-disrete equationsElementary ontribution to the balane of mass for the �ssure �uid:
− Je

kf
pe
f − Je

Θf
Te

f −Me
pp(aff ṗe

f + apf ṗe
p)−Me

pT (afTs
Ṫe

s + afTf
Ṫe

f )

− ξf Ce
pu u̇e +NTT

e
0 ρpηN

T
p


Gp

(
Npp

e
p,NTT

e
p

)

NTTe
p

−
Gf

(
Npp

e
f ,NTT

e
f

)

NTT
e
f




− Fe
pf
. (4.40)Elementary ontribution to the balane of energy for the solid phase:

−
[
Qe

Λs
+Me

TT (κsp + κsf )
]
Te

s +Me
TT (κsp T

e
p + κsf Te

f )

−[Me
pT ]

T (aTsp ṗ
e
p + aTsf ṗe

f )− aTsTs M
e
TT Ṫe

s − aTsǫ C
e
Tu u̇e −Fe

Ts
.

(4.41)Elementary ontribution to the balane of energy for the pore �uid:
−

[
Qe

Θp
+ bTpp C

e
Tp,vp

]
pe
p +Me

TT (κsp T
e
s + κpf T

e
f )

−
[
Qe

Λp
+ bTpTp C

e
TT,vp +Me

TT (κsp + κpf )
]
Te

p

− [Me
pT ]

T (aTpp ṗ
e
p + aTpf ṗ

e
f )−Me

TT (aTpTp Ṫ
e
p + aTpTs Ṫ

e
s)− aTpǫ C

e
Tu u̇e

+ NTT
e
0 ρ

2
pηN

T
T


Gp

(
Npp

e
p,NTT

e
p

)

NTTe
p

−
Gf

(
Npp

e
f ,NTT

e
f

)

NTT
e
f


 Hp(Npp

e
p,NTT

e
p)

− Fe
Tp
. (4.42)in whih the enthalpy Hk(Npp

e
k,NTT

e
k) of the �uid k is de�ned in eq. (2.160)3.Elementary ontribution to the balane of energy for the �ssure �uid:

−
[
Qe

Θf
+ bTff C

e
Tp,vf

]
pe
f +Me

TT (κsf Ts
e + κpf Te

p)

−
[
Qe

Λf
+ bTfTf

Ce
TT,vf

+Me
TT (κsf + κpf )

]
Te

f

− [Me
pT ]

T (aTfp ṗ
e
p + aTff ṗe

f )−Me
TT (aTfTf

Ṫe
f + aTfTs Ṫ

e
s)− aTf ǫ C

e
Tu u̇e

− NTT
e
0 ρ

2
pηN

T
T


Gp

(
Npp

e
p,NTT

e
p

)

NTTe
p

−
Gf

(
Npp

e
f ,NTT

e
f

)

NTT
e
f


 Hf (Npp

e
f ,NTT

e
f )

− Fe
Tf
. (4.43)222



4. FEM 4.2. The semi-disrete equations
Note that the terms relative to mass transfer and to the hange in internal energy dueto mass transfer are not linearised at this stage.The �nite element sub-matries of the ompat weak formulation in equations (4.38)to (4.43) are listed below. The three matries involved in the elementary ontribution tothe balane of momentum of the mixture are,

Euu
e =

∫

V e

BT
u Del Bu dV e,

Ce
up =

∫

V e

∇NT
u Np dV

e, Ce
uT =

∫

V e

∇NT
u NT dV e.

(4.44)
Ce

pu =

∫

V e

NT
p [1 1] ∇ ·Nu dV e,

Ce
Tu =

∫

V e

NT
T [1 1] ∇ ·Nu dV

e.

(4.45)Next, the matries desribing the hydrauli ondutivity and the heat ondution,
Je
kk

=

∫

V e

∇NT
p

kk
µk

∇Np dV
e, k = p, f,

Qe
Λk

=

∫

V e

∇NT
T nk Λk ∇NT dV e, k = s, p, f ;

(4.46)while the matries involved in the thermo-osmosis and the isothermal heat �ow ouplingphenomena are,
Je
Θk

=

∫

V e

∇NT
p nk Θk ∇NT dV e, k = p, f,

Qe
Θk

=

∫

V e

∇NT
T Tk nk Θk ∇Np dV

e, k = p, f.

(4.47)Three mass matries are required in the general ase. Note that they redue to onematrix if the pressure and the temperature have the same shape funtions, namely Np =
NT .

Me
pp =

∫

V e

NT
p Np dV

e, Me
TT =

∫

V e

NT
T NT dV e,

Me
pT =

∫

V e

NT
p NT dV e.

(4.48)223



4. FEM 4.2. The semi-disrete equationsThe onvetive matries disretised with the Galerkin method write,
Ce

TT,vp
=

∫

V e

NT
T (vp − vs) · ∇NT dV e,

Ce
TT,vf

=

∫

V e

NT
T (vf − vs) · ∇NT dV e,

Ce
Tp,vp

=

∫

V e

NT
T (vp − vs) · ∇Np dV

e,

Ce
Tp,vf

=

∫

V e

NT
T (vf − vs) · ∇Np dV

e.

(4.49)
Finally, the matries orresponding to the elementary ontributions of eah equationto the external fore vetor

Fe
u =

∫

∂V e

NT
u σ · n̂ dSe +

∫

V e

NT
u ρb dV e,

Fe
pp =

∫

∂V e

NT
p Jp · n̂ dSe −

∫

V e

∇NT
p

kp
µp

ρp g dV e,

Fe
pf

=

∫

∂V e

NT
p Jf · n̂ dSe −

∫

V e

∇NT
p

kf
µf

ρf g dV e,

Fe
Ts

=

∫

∂V e

NT
T qs · n̂ dSe,

Fe
Tp

=

∫

∂V e

NT
T qp · n̂ dSe −

∫

V e

∇NT
T npTpΘp ρp g dV e,

Fe
Tf

=

∫

∂V e

NT
T qf · n̂ dSe −

∫

V e

∇NT
T nfTfΘf ρf g dV e.

(4.50)
are gathered into the elementary load vetor Fe,

[Fe]T =
[
Fe
u Fe

pp Fe
pf

Fe
Ts

Fe
Tp

Fe
Tf

]
. (4.51)4.2.4.4 The matrix form of the semi-disrete systemIf a linearisation of the mass transfer terms is authorised, the semi-disretised systemwrites in a matrix form. For nel elements, the matrix form of the linearised semi-disrete224



4. FEM 4.2. The semi-disrete equationssystem an be expressed as a funtion of the elementary di�usion matrix D
e, the elementarysti�ness matrix K

e and the elementary onvetion matrix C
e
conv, through the assemblingproess denoted by ⋃,

nel⋃

e= 1

[
D
e

(
d
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X
e

)
+K

e
X
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e
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]
= 0, (4.52)in whih, Ke is of the form,

K
e =




Ke
u u Ke

u pp Ke
u pf

Ke
u Ts

0 0

0 Ke
pp pp Ke

pp pf
0 Ke

pp Tp
Ke

pp Tf

0 Ke
pf pp Ke

pf pf
0 Ke

pf Tp
Ke

pf Tf

0 0 0 Ke
Ts Ts

Ke
Ts Tp

Ke
Ts Tf

0 Ke
Tp pp

Ke
Tp pf

Ke
Tp Ts

Ke
Tp Tp

Ke
Tp Tf

0 Ke
Tf pp

Ke
Tf pf

Ke
Tf Ts

Ke
Tf Tp

Ke
Tf Tf




, (4.53)
D
e is de�ned as,
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, (4.54)
and C

e
conv is of the form,
C
e
conv =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 Ce
Tp pp

0 0 Ce
Tp Tp

0

0 0 Ce
Tf pf
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. (4.55)
The �nite element sub-matries of the element sti�ness matrix K

e (4.53), of the elementdi�usion matrix D
e (4.54) and of the element onvetion matrix C

e
conv (4.55) are listed in225



4. FEM 4.3. The time integration methods for equation solvingAppendix E.3. They an be identi�ed by omparison with equations (4.38) to (4.43), forexample: Ke
u u = Ee

uu.The de�nitions of the elementary matries represent the ontributions gathered in theleft-hand-side whih an bear some linearisation, as opposed to the ontributions of theright-hand-side whih an not be linearised nor be represented in a matrix form.4.3 The time integration methods for equation solvingThe time integration method based on the general trapezoidal method is a one-step algo-rithm suitable to �nd the �nite solution of time-independent problems. However, the exatsolution of the transient phase is only estimated. The preditor multi-orretor algorithm isa more aurate algorithm to solve paraboli problems (di�usion) and hyperboli problems(pure onvetion). In ontrast with the general trapezoidal method, the preditor multi-orretor method is suitable to �nd the exat solution of transient phases, suh as problemsin �uid-saturated mixtures whih involve non-linear terms and whose onstituents are notin thermal equilibrium.Reall that the linearised semi-disrete system (4.52) is a paraboli problem whih an bewritten as,
D V+KX+ Cconv X = F. (4.56)where D is the global di�usion matrix, K is the global sti�ness matrix, Cconv is the globalonvetion matrix and F is the global load vetor. In addition, X is the global unknownvetor as de�ned by equation (4.20) and V is the time derivative of X.The system of equations (4.38)-(4.43), assembled over nel elements, may also be writtenas a di�erene between the surfae load vetor Fsurf (S,X), the vetor gathering the internalthermo-elasti fores F int (X,V) and the vetor gathering the onvetive terms Fconv (X,V).The residual implied by this semi-disrete system is fored to vanish:
F

int (X,V) + F
conv (X,V)− F

surf (S,X) = R = O. (4.57)The goal of the equation solving is to �nd the global unknown vetor X. Two methodsare onsidered in turn, the generalised trapezoidal method and the iterative preditororretor method. Heneforth, a time starting from t0 is adopted. At this starting point
t = t0 the unknown vetor is known and is denoted by X0. Between the two alulation226



4. FEM 4.3. The time integration methods for equation solvingsteps n and n + 1, the time-step is de�ned by ∆t = tn+1 − tn and is assumed to beindependent of n for the time being.4.3.1 The generalised trapezoidal methodThe generalised trapezoidal method is a well known one-step algorithm, ommonly use tosolve paraboli problems suh as the heat equation (Hughes, 1987a, p. 459). The exatsolution is found for non-transient in�nite equilibrium problems only.Algorithms belonging to generalised trapezoidal family methods an be represented bythe following set of equations:
D Vn+1 +KXn+1 + Cconv Xn+1 = Fn+1,

Xn+1 = Xn +∆t Vn+α,

Vn+α = (1− α) Vn + α Vn+1,

(4.58)
where Xn and Vn are the approximations to X(tn) and V(tn), respetively, Fn+1 = F(tn+1)and α is a parameter taken to be in the interval [0,1℄. Some well-known numbers of thegeneralised trapezoidal family are identi�ed in Table 4.2.

α Method0 Forward di�erenes; forward Euler
1/2 Trapezoidal rule; midpoint rule; Crank-Niolson1 Bakward di�erenes, bakward EulerTable 4.2: Typial numbers of the generalised trapezoidal methods.To appreiate the omputations entailed by the algorithm, a brief overview of theimplementational onsiderations is presented next. The V-form implementation is analysedhere. The omputational problem is to alulate Xn+1 and Vn+1 given Xn and Vn. Theproedure starts at t0 with X0 and V0 known. Note that V0 is alulated from equation(4.56): D V0 = F0 −KX0 − Cconv X0.The preditor value of Xn+1 is de�ned by,

X̃n+1 = Xn + (1− α) ∆t Vn. (4.59)From equation (4.58), the seond and the third lines are ombined to obtain,227



4. FEM 4.3. The time integration methods for equation solving
Xn+1 = X̃n+1 + α∆t Vn+1. (4.60)Substituting equation (4.60) into (4.58)1 results into the following equation,
(D+ α∆tK+ α∆t Cconv) Vn+1 = Fn+1 −K X̃n+1 − Cconv X̃n+1. (4.61)Equation (4.61) may be solved for Vn+1. Note that the terms on the right-hand-sideare known. One Vn+1 is found, Xn+1 may be alulated thanks to eq. (4.60).Remark 4.1. In the ase of α = 0 the method is said to be expliit. The advantage ofthis partiular ase may be seen from equation (4.61): if D is diagonal, the solution maybe advaned without neessity of equation solving.If α 6= 0, the method is said to be impliit. In these ases, a system of equations withthe oe�ient matrix (D + α ∆t K + α ∆t Cconv) needs to be solved at eah time step toadvane the solution.4.3.2 Preditor multi-orretor algorithms with operator splitMore advaned than the general trapezoidal method, the iterative preditor-orretor orthe preditor multi-orretor method is instrumental to alulate the transient response of atime-dependent problem. With these algorithms, several iterations are needed to obtain theorret unknown vetor response Xn+1. In ontrast with the general trapezoidal method,the preditor multi-orretor response provides the exat solution at eah time step of theproblem, if the time step is small enough.The semi-disretised equations are integrated through a generalised trapezoidal shemede�ned by a salar α ∈ [0, 1]. At step n + 1, the equations are enfored at time tn+α =

tn + α∆t, with ∆t = tn+1 − tn, namely,
Rn+α = F

int (Xn+α,Vn+α) + F
conv (Xn+α,Vn+α)− F

surf (Sn+α,Xn+α) = O. (4.62)First, the system to be solved needs to be identi�ed. To do so, the impliit part needsto be segregated from the expliit one. Seond, the preditor multi-orretor algorithm forthe alulation of the step n+ 1 is presented.228



4. FEM 4.3. The time integration methods for equation solving4.3.2.1 The equation to be solvedBetween the iterations i and i + 1, the system of equations is solved for the step n + 1.Before presenting the algorithm, the set of the equations to be solved is subjeted to anexpliit/impliit partitioning. The iteration i being known is alled expliit, denoted bythe subsript E and the iteration i + 1 being unknown, is alled impliit, denoted by thesubsript I. Note that the notion of expliit/impliit partitioning is more general than theknown/unknown identi�ation: it aounts for the idea of being ative for the impliit partand passive for the expliit part. Ative in the sense that impliit terms ontribute in thealulation of the e�etive di�usion matrix.Two ases arise, when onsidering the onvetive ontributions, whih an be either (1)impliit or (2) expliit. Quite generally, the stability properties of an impliit sheme arestronger than for an expliit sheme.(1) If the onvetive fores are onsidered impliit, one may write,
R
i+1
n+α = F

int
I (Xi+1

n+α,V
i+1
n+α) + F

conv
I (Xi+1

n+α,V
i+1
n+α)− F

surf
E (Sin+α,X

i
n+α) = O. (4.63)The partitioning shown in the above equation is motivated by the following observations:� the dependene of the vetor of external fores on the solution is weak;� the vetor of internal fores and the vetor of onvetive fores depend linearly onthe rate vetor V and on the solution X;� a non-linearity is observed due to temperature-dependent oe�ients.In the above relation, for Z = X and V, Zi+1

n+α is de�ned by,
Z
i+1
n+α = (1− α) Zn + α Z

i+1
n+1. (4.64)The preditor value of Xi

n+α is de�ned by,
i ≥ 0 : X̃

i
n+1 = X

0
n+1 + α∆t Vi

n+1 (= X
i
n+1 for i > 0). (4.65)229



4. FEM 4.3. The time integration methods for equation solvingNote that X̃
i
n+1 is a known value at iteration i. The iterative relation between i and

i+ 1 is de�ned as follows,initialisation 



X
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V
0
n+1 = Vn,for i ≥ 0 




X
i+1
n+1 = Xn +∆tVi+1

n+α = X
0
n+1 + α∆t Vi+1

n+1,

= X̃
i
n+1 + α∆t∆V,
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(4.66)
To simplify the writing, the notation F

int+conv = F
int + F

conv is heneforth adopted,sine they are both impliit. Hene, equation (4.63) is modi�ed and linearised to obtainthe equation to be solved,
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∗ α∆V.(4.67)Note that the Newton diretion ∆V at iteration i ≥ 0, equation (4.67)2, is obtained byinsertion of the time integrator (4.66) in the residual (4.67)1. Finally, when the residual
R
i+1
n+α is fored to vanish, the following equation is solved at eah iteration,

C
∗ (α∆V ) = R

i
n+α, (4.68)in whih the e�etive onvetion-di�usion matrix C

∗ is expressed in terms of the di�usionmatrix D, the sti�ness matrix K and the onvetive matrix Cconv,230



4. FEM 4.3. The time integration methods for equation solving
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α∆t, (4.69)where it has been reognised that the derivatives of F int+conv
I do not depend on the ratevetor V. Note that when the onvetive terms are onsidered impliit, they appear inboth the alulation of the e�etive onvetion-di�usion matrix C

∗ and in the alulationof the residual. Ri
n+α.(2) If the onvetive fores are onsidered expliit, one may write,
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conv is heneforthadopted, sine they are both expliit. This time, equation (4.63) is modi�ed and linearisedto obtain,
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∗ α∆V.(4.71)Finally, when the residual Ri+1
n+α is fored to vanish, the equation to be solved hasthe same form as equation (4.68). However, this time the e�etive di�usion matrix C

∗ isexpressed in terms of the di�usion matrix D and of the sti�ness matrix K and is independentof the onvetive matrix C,
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α∆t. (4.72)The onvetive terms are on�ned to the residual vetor,
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. (4.73)Now that the set of equations to be solved is identi�ed, its numerial implementationis presented through the preditor multi-orretor algorithm.231



4. FEM 4.3. The time integration methods for equation solving4.3.2.2 Algorithm of the preditor multi-orretor methodAlgorithms of the preditor multi-orretor family method an be represented by the fol-lowing equations: at the alulation step n+ 1, the proedure is,
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initialisation,
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orretor,
4. If |left-hand-side| ≤ δX and/or |right-hand-side| ≤ δR then goto 5,Else i = i+ 1 and goto 2,
5. End.

(4.74)

and where δX and δR are toleranes assoiated to the unknown vetor and to the residual,respetively. Iterations are stopped when riteria involving both the unknown and theresidual are satis�ed, whih orresponds to step 4. of the algorithm.Additional information on stability, onvergene and auray an be found in Hughes(1987a) and Belytshko and Hughes (1983).
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Chapter 5Preliminary numerial results
The omplete set of expliit �eld equations, derived in Chapter 2, has been developedthrough a �nite element formulation sheme in Chapter 4. The implementation of thethermo-hydro-mehanial model was added to a previous hydro-mehanial ode. The val-idation of the hydro-mehanial part was performed by Khalili-Naghadeh (1991). The aimof this hapter is to ompare the numerial response with analytial results so as to vali-date the orret implementation of the thermal ontributions in the fully oupled thermo-hydro-mehanial model. The in�uene of onvetion and loal thermal non-equilibriumare disregarded in this work. Their ontributions will be analysed in Chapters 7 and 8.Furthermore, only single porous media are onsidered. The solid phase is endowed withthe subsript s and the �uid phase with the subsript p.In Setion 5.1, analytial solutions of two transient ondution problems are omparedwith numerial responses. The mehanial and the hydrauli ontributions to the balane ofenergy equations are disregarded. Correlatively, the balane of momentum for the mixtureand the balanes of mass of the �uids are not addressed. The numerial model reprodueswell the analytial responses for both the solid phase and the �uid phases, whih validatesthe implementation of Fourier's law.In Setion 5.2, the losed form solutions of a partially oupled thermo-hydro-mehanialmodel proposed by MTigue (1986) are ompared with �nite element responses. A goodmath is obtained between the analytial solutions and the numerial responses for all typesof loading whih validates further the implementation of the thermal ontribution. Further-more, omprehensive information on the di�usion behaviour of thermo-hydro-mehanialmixtures has been observed: the dominane of the hydrauli di�usion on the thermal dif-fusion, haraterised by the di�usivity ratio R, in�uenes signi�antly the pore pressureresponse.In Setion 5.3, an axi-symmetri boundary value problem is analysed in an unoupled233



5. Preliminary results 5.1. Validation of transient ondution testsmehanial ontext. The errors on the displaement, the strain and the stress in the viinityof the inner radius are plotted and a logarithmi optimisation of the mesh is proposed tominimise these errors.Simulations of thermo-hydro-mehanial proesses in Chapter 6 whih involve oupleddi�usion �ows within an axi-symmetri analysis will apitalise upon the lessons learned inthe elementary instanes here.As a onvention, in all the following �gures, the plain urves will represent the numerialresponses, and the dash urves will represent the analytial responses.5.1 Validation of transient ondution testsAnalytial solutions of transient ondution problems are ompared with numerial re-sponses. Two types of thermal loadings are analysed: (1) a onstant thermal �ux and (2)an imposed temperature. Both loading onditions are applied to the same one-dimensionalproblem.5.1.1 A one-dimensional appliationTransient ondution in a one-dimensional homogeneous body k is onsidered alone (un-oupled),
∂2Tk
∂x2

=
1

αT,k

∂Tk
∂t

, (5.1)in whih αT,k is the thermal di�usivity de�ned in eq. (5.3). All numerial tests are doneon a vertial olumn of height H = 3m. Eah one-dimensional sample is omposed of aunique phase k so that nk = 1. The vertial olumn is heated at the bottom (x = 0m)and maintained at initial temperature Tini at the top (x = 3m). The initial temperaturerepartition is assumed to be homogeneous and equal to Tini. Two types of loadings atthe bottom (x = 0m) are srutinised; a onstant heat �ux qk loading and an imposedtemperature T∞. Eah of them is onsidered in turn.In addition, the numerial ode is tested for two materials; a solid and a �uid whihmaterial parameters are presented in Table 5.2. The solid phase is endowed with thesubsript s and the �uid phase with the subsript p.The thermal di�usion harateristi time is reahed when the temperature has `pene-trated' through the transversal dimension of the body. This harateristi time is needed234



5. Preliminary results 5.1. Validation of transient ondution testsParameter Value UnitInitial temperature Tini 288 KImposed temperature T∞ 338 KSolid heat �ux qs 45 W/m2Fluid heat �ux qp 9.166 W/m2Table 5.1: Loading and boundary onditions.to know the time window of the numerial alulation. It is analogous to the onsolidationtime. For an objet of length H, Bejan (1993, p. 146) de�nes the harateristi time whihdistinguishes the early regime from the late regime,
tk,diff =

H2

αT,k
, k = s, p, (5.2)where αT,k is the thermal di�usivity of the phase k,

αT,k =
Λk

ρk Ck,p
, k = s, p. (5.3)Note that the thermal di�usivity of the solid phase is one order of magnitude higherthan that of the �uid phase (Table 5.2). Hene, for the same length H, the harateristitime of the solid phase is smaller than that of the �uid phase. In other words, the solidphase will reah steady state faster than the �uid phase.5.1.2 Constant heat �ux loadingA losed form solution of transient thermal di�usion of an homogeneous phase k is om-pared with the numerial output for the partiular ase of a onstant heat �ux loading.5.1.2.1 Analytial solution for a �nite sampleThe analytial result of a slab with presribed heat �ux qk at its surfae x = H and keptat the initial temperature Tini at x = 0, is given by Carslaw and Jaeger (1959, p. 113),

Tk(x, t) − Tini =
qk x

Λk

−8 qk H

Λkπ2
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(2n + 1)2
exp
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,

(5.4)235



5. Preliminary results 5.1. Validation of transient ondution testsParameter Value UnitSolid spei� heat apaity Cs,p 800 J/kg.KSolid density ρs 2700 kg/m3Solid thermal ondutivity Λs 2.7 W/m.KSolid thermal di�usivity αT,s 1.25 10−6 m2/sCharateristi di�usion time ts,diff 7.2×106 s2.69 monthsFluid spei� heat apaity Cp,p 4182 J/kg.KFluid density ρp 999.8 kg/m3Fluid thermal ondutivity Λp 0.588 W/m.KFluid thermal di�usivity αT,p 1.41 10−7 m2/sCharateristi di�usion time tk,diff 6.4×107 s23.9 monthsTable 5.2: Solid and �uid parameters, representative of granite and water, respetively, at25◦C and atmospheri pressure. The thermal di�usivities are de�ned in eq. (5.3). Theharateristi di�usion times are alulated with eq. (5.2) and H = 3m.for 0 < x < H. Note that no signi�ant hange ours in the alulation of the Taylor seriesafter the summation of 40 terms. This result is restrited to a onstant initial temperaturerepartition over the slab. At the boundaries of time and spae eq. (5.4) redues to,
Tk(x, t)− Tini =

qk x

Λk
for t → ∞,

Tk(x, t)− Tini = 0 for x = 0. (5.5)For the reord, the transition time whih orresponds to the two third of the steady on-dution limit is,
t
2/3
k,diff =

4H2

αT,kπ2
, for Tk(x, t)− Tini =

2

3

qk x

Λk
. (5.6)

5.1.2.2 Numerial resultsThe �rst test is subjeted to a onstant heat �ux loading. The initial temperature ofthe vertial olumn is homogeneous Tk(x, t = 0) = Tini. A onstant heat �ux equal to
q(x = 0, t) = qk is applied on the bottom of a solid olumn. The top temperature isassumed to remain onstant at the initial temperature Tk(x = H, t) = Tini. The height ofthe olumn is equal to H = 3m. 236



5. Preliminary results 5.1. Validation of transient ondution testsThe solid phase and the �uid phase are onsidered in turn. History pro�les of the solidtemperature ompare Carslaw's analytial equation, eq. (5.4), with the numerial response(Figure 5.1). A good math is obtained.The di�usion `penetration' an be represented by the vertial distribution of the solidtemperature in the olumn, (Figure 5.2) and by ontour plots of the whole olumn atdi�erent times (Figure 5.3). Note that for the steady ondution state, the temperaturedistribution is linear through out the olumn. This result was expeted due to equation(5.5)1.
Ts(x = 0m, t) Ts(x = 2m, t)

10
0

10
2

10
4

10
6

10
8

290

300

310

320

330

340

350

Time [s]

S
ol

id
te

m
p
er

at
u
re

[K
]

 

 

Simulation response
Analytical solution

10
0

10
2

10
4

10
6

10
8

290

300

310

320

330

340

350

Time [s]

S
ol

id
te

m
p
er

at
u
re

[K
]

 

 

Simulation response
Analytical solution

Figure 5.1: Solid temperature Ts history at (left) x = 0m and (right) x = 2m. Comparisonbetween Carslaw's analytial solution eq. (5.4) and the �nite element response. The olumnis omposed of an homogeneous solid phase suh as ns = 1 and αT,s = 1.25 ×10−6 m2/s.
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Figure 5.2: Pro�le of the solid temperature in the slab for four di�erent times. A onstantheat �ux is applied at x = 0m and the initial temperature is imposed at x = 3m. Theolumn is omposed of a single solid phase suh as ns = 1 and αT,s = 1.25 ×10−6 m2/s.Transient ondution under onstant heat �ux loading is also plotted for the �uid phase237



5. Preliminary results 5.1. Validation of transient ondution tests(Figure 5.4). The rate of di�usion is di�erent due to a di�erent thermal di�usion value
αT,p. Again a good math between the analytial solution and the �nite element responseis obtained. Contour plots of the solid temperature Ts [K℄
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Figure 5.4: Same as Figure 5.1 for the �uid temperature Tp.5.1.3 Fixed temperature loadingA losed form solution of transient thermal di�usion of an homogeneous phase k is om-pared with the numerial output for the partiular ase of a temperature loading.238



5. Preliminary results 5.1. Validation of transient ondution tests5.1.3.1 Analytial solution for a �nite sampleCarslaw and Jaeger (1959, p. 99-100) proposed an analytial formulation of a �nite slab atinitial temperature Tini, the ends being at onstant temperatures. For a region 0 < x < Hand in the ase in whih the end x = 0m is kept at onstant temperature T1 and the end
x = Hm is kept at T2, the temperature of the phase k wrties,

Tk(x, t)− Ti = v1 + (v2 − v1)
x

H
+

2

π

∞∑

n=1

v2 cosnπ − v1
n

sin
nπx

H
exp

−αT,k n
2π2t

H2

+
2

H

∞∑

n=1

sin
nπx

H
exp

−αT,k n
2π2t

H2

∫ H

0
Tini sin

nπx́

H
dx́, (5.7)where v1 = T1 − Tini and v2 = T2 − Tini. Note that no signi�ant hange ours in thealulation of the Taylor series after the summation of 10 terms. At the boundaries of timeand spae eq. (5.7) redues to,

T (x, t)− Tini = v1 + (v2 − v1)
x

H
for t → ∞, (5.8)

T (x, t)− Tini = v1 for x = 0. (5.9)Similarly to the heat �ux problem, the harateristi time whih orresponds to thetwo third of the steady ondution limit is identi�ed,
t
2/3
k,diff =

H2

απ2
, for T (x, t)− Tini =

2

3

[
v1 + (v2 − v1)

x

H

]
. (5.10)The omparison between the analytial response of the temperature history for a ol-umn subjeted to a onstant heat �ux, with that subjeted to a onstant temperature,based on equations (5.6) and (5.10), reveals that the harateristi time t2/3k,diff for a givenheat �ux is four times larger than that for a �xed temperature. This result should be keptin mind when omparing results of di�erent load types.239



5. Preliminary results 5.1. Validation of transient ondution tests5.1.3.2 Numerial resultsIn the seond test, the �nite slab is subjeted to a onstant temperature loading. Theinitial temperature of the vertial olumn is homogeneous Tk(x, t = 0) = Tini. A onstanttemperature equal to Tk(x = 0, t) = T∞ is applied on the bottom side of a solid olumn(Table 5.1). The top temperature is assumed to remain onstant at the initial temperature
Tk(x = H, t) = Tini. The height of the olumn is equal to H = 3m.The analytial solution given by Carslaw and Jaeger (1959) in equation (5.7) is om-pared with the numerial result in Figure 5.5, for the solid material. The numerial modelreprodues well the analytial response in spite of the Heaviside step funtion used to applytemperature loading (inrease of 2K per 103 s). A good math is also obtained for the�uid phase (not shown).
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Figure 5.5: Solid temperature Ts history at (left) x = 0m and (right) x = 2m. Comparisonbetween Carslaw's analytial solution eq. (5.7) and the �nite element response. The olumnis omposed of an homogeneous solid phase suh as ns = 1 and αT,s = 1.25 ×10−6 m2/s.The minimum mesh size from whih no signi�ant better results are obtained is 2elements per meter. Note that a `heavy' re�nement is neessary for the temperature fun-tion loading between the loading surfae and the observed nodes to avoid the disturbaneindued by the `thermal shok'. Alternatively, the time sheme an be modi�ed with vari-ous time-stepping algorithms to arti�ially damped the disturbane to an aeptable level(Wood and Lewis, 1975).The implementation of the ondution transient law has been validated throughout thissetion; the numerial responses provide a good approximation of the analytial results forboth types of loadings. 240



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading5.2 Thermo-Hydro-Mehanial tests: thermal loadingAnalytial results provided by MTigue (1986) are ompared with numerial responsesso as to validate the orret implementation of the thermal ontributions in the oupledthermo-hydro-mehanial model. This work fouses on thermo-hydro-mehanial testsindued by thermal loading. Two types of thermal loadings are investigated; in addition totwo types of hydrauli boundary onditions. Altogether, four types of tests are performedas presented in Table 5.3.1. Constant temperature 2. Constant heat �uxi. Drained boundary i. Drained boundary1. Constant temperature 2. Constant heat �uxii. Undrained boundary ii. Undrained boundaryTable 5.3: A ombination of four boundary onditions is proposed by MTigue (1986).This analysis is restrited to a partially oupled thermo-hydro-mehanial model in loalthermal equilibrium (Subsetion 5.2.1) and is then applied to a one-dimensional setting(Subsetion 5.2.2). Next, the analytial formulations of the four loading ases (Table 5.3)are reprodued from MTigue (1986). The validity of the �nite element ode is thenveri�ed by omparison with the foregoing analytial solutions. Finally, the importane ofthe di�usivity ratio R is highlighted.5.2.1 A partially oupled THM model in loal thermal equilibriumFirst, it is worth to reiterate that the THM model onsidered heneforth is assumed to bein loal thermal equilibrium, i.e. Ts = Tp = Tf . Equations (2.322), (2.323) and (2.324) areadded to form only one balane of energy equation for the mixture as a whole.Four main di�erenes an be identi�ed between the thermoelasti model proposed byMTigue (1986) and the fully oupled model presented in Subsetion 2.4. These di�erenesare disussed in detail in Appendix C and are summarised below to failitate the globalunderstanding.1. MTigue (1986) proposed a fully oupled thermo-elasti onstitutive law, for a singleporous medium, in thermal equilibrium. Our omprehensive model an easily berestrited to his proposition by assuming nf = 0, see Remark 2.12, p. 115.241



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading2. In addition, the di�usion onstitutive equations presented by MTigue (1986) areunoupled; that is the thermo-osmosis e�et and the thermal �ltration e�et are notaounted for here.3. Moreover, MTigue (1986) simpli�es his model so that the energy equation is unou-pled from the mehanis. Furthermore, he neglets the onvetion terms Mp · ∇Hpand Mf · ∇Hf in the energy equation.4. Finally, MTigue (1986) introdues distintions between two bulk moduli and twoexpansion oe�ients haraterizing the solid. Suh distintions are usually asribedto the presene of unonneted porosity. However, unonneted porosity are dis-regarded in this Chapter. Hene, the two bulk moduli, K ′

s and K
′′

s , and the twoexpansion oe�ients, α′

s and α′′

s , are assumed to be equal.For the sake of omparison, the following arrangements are required to redue themodel presented in Subsetion 2.4 to MTigue's proposition:
1.

nf = 0

c = cp

ρ̂p = 0





single porosity, (5.11)
2.

Θp = 0

Θf = 0



 no thermo-osmosis & isothermal heat �ow e�et,

3.

aTsp = 0

aTsǫ = 0

aTpp = 0





unoupled energy equation. (5.12)
5.2.2 A one-dimensional testAll numerial tests are done on a one-dimensional olumn. Hene, the deformation isrestrited to only one dimension. Suh formulation is suitable for onsidering thermalloading in the x-diretion,

ǫy = ǫz = 0,
∂

∂y
=

∂

∂z
= 0. (5.13)242



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingThe analytial work of MTigue (1986) assumes a semi-in�nite �uid saturated porousmedium, although the �nite element implementation requires a �nite volume. Hene, theheight of the implemented olumn is `large' with respet to the studied area and is referredto as x→ ∞. The atual height of the olumn is obtained by trial and error in suh a waythat the initial values of the various �elds of interest are not disturbed by the loadings.Furthermore, the following boundary ondition for the displaement is assumed valid forall appliations,
lim
x→∞

ux (x, t) = 0. (5.14)The two types of thermal loadings are detailed below:1. Constant temperature loading: Consider a semi-in�nite mixture, initially at an arbi-trary, uniform temperature T0, subjeted to a sudden inrease in temperature at itsboundary. The thermal boundary onditions in time and spae as are,
T (x, 0) = T0,

T (0, t) = Ti ×G1(t),

lim
x→∞

T (x, t) = T∞.

(5.15)
2. Constant heat �ux loading: For a onstant heat �ux q delivered at the boundary ofthe half-spae, the initial and boundary onditions on the temperature �eld are,

T (x, 0) = T0,

∂T

∂x
(0, t) = − q

Λ
×G2(t),

lim
x→∞

T (x, t) = T∞,

(5.16)
in whih G1(t) and G2(t) are Heaviside step funtions, see Remark 5.1.For eah of the two above thermal loadings, two tests with the following hydrauliboundary onditions are performed: 243



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingi. Drained on both sides: Consider a semi-in�nite mixture, of maximum drained path
H/2, the initial and boundary onditions on the pressure �eld are,

pp (x, 0) = 0,

pp (0, t) = 0,

lim
x→∞

pp (x, t) = 0.

(5.17)
ii. Undrained at x = 0m and drained on the semi-in�nite side: Consider a semi-in�nitemixture, of maximum drained path H, the initial and boundary onditions on thepressure �eld are,

pp (x, 0) = 0,

∂pp
∂x

(0, t) = 0,

lim
x→∞

pp (x, t) = 0.

(5.18)
Remark 5.1. The funtion G2(t) is hosen onstant during the test,

G2(t) = 0 t ≤ 0 and G2(t) = 1 t > 0. (5.19)On the ontrary, the funtion G1(t) is hosen to be a step funtion to avoid numerialwiggles, so that,
i. T (0, t) = T0 = 288K 1 < t < 1× 104 s,

ii. T (0, t) = T0 ∗ f(t) 1× 104 s < t < 5× 105 s,

iii. T (0, t) = Ti = 338K 5× 105 s < t.

(5.20)in whih the stages i. and iii. are onstant and the stage ii. represents a linear inrease.The step funtion G1(t) is illustrated in Figure 5.6. Moreover, the time steps in the simu-lations follow a logarithmi pattern from 1 s to 109 s.The mesh used to reprodue the analytial solution with the �nite element method isillustrated in Figure 5.7, left. Note that the height of the olumn is raised to up to 800meters so that the numerial response is no too muh in�uened by the �nite boundary244



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading
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ssFigure 5.6: Sketh of the step funtion G1(t) used for the onstant temperature loading atthe injetion point x = 0m, so that to avoid numerial wiggles.onditions. The numerial response is sought in the �rst 15 meters area, in whih the meshis re�ned in a ontinuous pattern between 0m and 6m. A good math with the analytialurves was obtained with two elements per meter (Setion 5.1). Therefore, 22 elementsand 42 nodes are used to orretly reprodue the semi-in�nite urves.The initial thermo-hydro-mehanial state is illustrated in Figure 5.7, right. The ther-mal equilibrium is �xed at T0 = 288K = 15 ◦C. The pressure equilibrium is �xed to zeropore pressure. The displaement is referred to the on�guration at time t = 0 s.
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5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading. Fixed vertial displaement at the top. Zero lateral displaement on the sides. Zerotration at the bottom.d. Imposed temperature at the top and imposed heat �ux at the bottom. No lateralthermal �ux on the sides.e. Imposed zero pore pressure at the top and zero hydrauli �ux at the bottom. No lateralhydrauli �ux on the sides.
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5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingThe solid, �uid and mixture parameters are presented in Table 5.5. Sine all phasesare in thermal equilibrium, thermal parameters are provided for the mixture as a whole.Parameter Value UnitInitial temperature, T0 288 KImposed temperature, T∞ 288 KHeat �ux1, q 2.55 W/m2Imposed temperature2, Ti 338 KHeight of the implemented olumn, H 800 mTable 5.4: Loading values. 1: The heat �ux is only applied when onsidering a onstantheat �ux loading. 2: The imposed temperature is only applied when onsidering a onstanttemperature loading.Parameter Value UnitHeat apaity, ρ Cp 3.92×106 J/m3.KCondutivity, Λ 1.02 W/m.KSolid expansivity, cT 0.34×10−4 1/KFluid expansivity, cpT 3.0×10−4 1/KDrained bulk modulus, K 0.02 GPaFluid bulk modulus, Kp 2 GPaSolid bulk modulus, Ks 50 GPaShear modulus, µDS (Seond Lamé's onstant) 0.000072 GPaDrained Poisson's ratio, ν 0.498 -Porosity of the porous blok, np 0.71 -Permeability of the porous blok, kp 3.0×10−16 m20.3 millidaryDynami visosity (water), µp 1.5×10−3 Pa.sThermal di�usivity, α∗
T 0.26×10−6 m2/sHydrauli di�usivity, α∗
H 4.0×10−6 m2/s

R = √αH/αT 3.9 -Table 5.5: Material properties of an abyssal red lay (Illite), North Pai� Oean (MTigue,1986, p. 9540). ∗De�nitions of these parameters are provided in eq. (5.3) and (5.24),respetively.5.2.3 Analytial formulationThe analytial solution to the heating of a half-spae mixture is provided from MTigue(1986) for two types of loadings on the boundary x = 0m. The temperature and the247



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingpressure as a funtion of spae and time are expressed in turn for a onstant temperatureloading and a onstant heat �ux loading. Then, the displaement is formulated for eahloading ase.5.2.3.1 Constant temperature loadingThe equation of the temperature history, starting at t = 0 s, near the surfae of a semi-in�nite mixture, exposed to onstant surfae temperature Ti(x = 0, t) is of the form:
T (x, t)− T0
Ti − T0

= erf( x

2
√
αT t

)
, (5.21)where αT is the thermal di�usivity of the mixture as a whole, αT = Λ/ρ Cv, and wherethe funtion erf( ) is the omplementary error funtion, whih is de�ned by:erf(x) = 1− erf(x), with erf(x) = 2√

π

∫ x

0
exp(−m2)dm. (5.22)Two hydrauli boundary onditions are onsidered:i. Drained boundary: For zero initial pressure and a drained boundary, orresponding tothe boundary onditions de�ned in equation (5.17), the solution for the pressure given byMTigue (1986) is of the form,

p =
b
′

(Ti − T0)

1−R2
[erf(η) − erf(R η)] , (5.23)where η = x/2

√
αH t, and R2 = αH/αT , the ratio of the �uid and thermal di�usivities.The hydrauli di�usivity αH is de�ned by,

αH =
kp
µp

2 µDS(1− ν)

1− 2ν

[
B2(1 + νu)

2(1− 2ν)

9(1− νu)(νu − ν)

]
, (5.24)in whih the undrained Poisson's ratio νu is de�ned by,

νu =
3ν +B(1− 2ν)(1 −K/Ks)

3−B(1− 2ν)(1 −K/Ks)
, (5.25)and the Skempton oe�ient B is de�ned by,248



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading
1

B
= 1 + np

K(1−Kp/Ks)

Kp(1−K/Ks)
. (5.26)Finally, the oe�ient b′ is de�ned by,

b
′

=
4µDSB(1 + νu)

9(1 − νu)

[
cT +

B(1− ν)(1 + νu)

2(νu − ν)
np(cpT − cT )

]
. (5.27)The �uid �ux at the drained boundary is obtained from equation (5.23) and from theunoupled Dary's law,

q(0, t) = − kp b
′

(Ti − T0)

µp(1 +R)
√
παH t

. (5.28)Note that for small times, the �uid �ux is in�nite, whih may indue numerial prob-lems. The pressure �eld (5.23) exhibits a maximum at η = η∗ = x∗/2
√
αH t,

η∗ =

(
− lnR

1−R2

)1/2

. (5.29)Thus, a peak of pressure propagates into the semi-in�nite mixture, with its loation
x∗ proportional to √

αH t. Combining equation (5.29) with (5.23), it is seen that themagnitude of the peak pressure is onstant.ii. Undrained boundary: For an impermeable boundary, orresponding to the boundaryonditions de�ned in equation (5.18), the solution for the pressure given by MTigue (1986)is of the form,
p =

b
′

(Ti − T0)

1−R2
[erf(Rη)−R erf(η)] . (5.30)Therefore, the pressure at the boundary is onstant,

p(0, t) =
b
′

(Ti − T0)

1 +R
. (5.31)
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5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading5.2.3.2 Constant heat �ux loadingThe equation of the temperature history, near the surfae of a semi-in�nite mixture, ex-posed to a onstant heat �ux q(x = 0, t), is of the form:
T (x, t)− T0 =

2 q
√
αT t

Λ
F1(R η), (5.32)where the funtion F1(x) is de�ned by,F1(x) =

1√
π
e−x − x erf (x) , (5.33)where the funtion erf( ) is the omplementary error funtion and where F1(0) = 1/

√
π.Two hydrauli boundary onditions are onsidered:i. Drained boundary: For zero initial pressure and a drained boundary, orresponding tothe boundary onditions de�ned in equation (5.17), the solution for the pressure given byMTigue (1986) is of the form,

p =
2 b

′

q
√
αT t

Λ (1−R2)
[F1(R η)− F1(η)] . (5.34)The �ux at the boundary is onstant and is equal to,

q(0, t) = − kp
µp

b
′

q

Λ (1 +R)
. (5.35)Again, a peak of pressure propagates into the half spae and is loated at x∗ = η∗

√
αH t.Note that this time the magnitude of the pressure peak is not onstant. η∗ is given impliitlyby,

R erf(R η∗)− erf η∗ = 0. (5.36)ii. Undrained boundary: Finally, for an impermeable boundary, the solution for the pres-sure is of the form,
p =

2 b
′

q
√
αT t

Λ(1−R2)
[F1(R η)−R F1(η)] . (5.37)250



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingThe pressure rise at the boundary is equal to,
p(0, t) =

2 b
′

q
√
αT t√

π λ (1 +R)
. (5.38)

5.2.3.3 Formulation of the displaementThe foregoing solutions for the temperature and the pressure are used by MTigue (1986)to �nd the displaement �eld. The displaement ux is integrated diretly from the strain
ǫx,

ǫx =
∂ux
∂x

→ ux(x, t)− ux(a, t) =

∫ x

a
ǫx(ξ, t) dξ, (5.39)in whih the limit a is arbitrary. MTigue (1986) hoses the limit a to be equal to zero.Therefore, one form of the displaement �eld ux is,

ux(x, t) =
3(νu − ν)

2GB(1− ν)(1 + νu)

∫ x

0
p(ξ, t) dξ +

1 + ν

1− ν

cT
3

∫ x

0
T (ξ, t) dξ

+
1− 2ν

2G(1− ν)
c1(t) x+ c2(t), (5.40)where c1(t) and c2(t) are arbitrary funtions of time. These arbitrary funtions are foundthanks to the boundary onditions and are thus di�erent for eah ase. The integration ofthe stress equilibrium equation in one dimension gives,

σx(x, t) = c1(t). (5.41)One of the boundary onditions ommon to all ases is that σx(0, t) = 0, see Figure5.8. Hene, c1(t) = 0 in all the following ases. The funtion c2(t) only remains unknownand an be alulated by heading to the in�nite limit limx→∞ ux (x, t) = 0.As an alternative to MTigue's proposition, the limit a is hosen equal to ∞ in equation(5.39). The displaement �eld beomes, 251



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading
ux(x, t) =

3(νu − ν)

2GB(1 − ν)(1 + νu)

∫ x

∞
p(ξ, t) dξ +

1 + ν

1− ν

cT
3

∫ x

∞
T (ξ, t) dξ

+
1− 2ν

2G(1 − ν)

∫ x

∞
σx(ξ, t) dξ + ux(∞, t), (5.42)in whih ux(∞, t) is zero thanks to equation (5.14). In addition, if the displaementvanishes at x = ∞, the presribed tration σx should itself vanish.The four loading ases are onsidered in turn:1.i. Constant temperature and drained boundary: The expliit evaluation of the displae-ment, for the ase of a onstant temperature and a drained boundary, is obtained bysubstituting (5.21) and (5.23) into (5.40) and integrating,

ux =
3(νu − ν)

2GB(1 − ν)(1 + νu)

b
′

(Ti − T0)

1−R2
2
√
αT t×

[
R

(
η erf η − 1√

π

(
1− e−η2

))
−
(
R η erf (R η)− 1√

π

(
1− e−R2η2

))]

+
1 + ν

1− ν

cT
3
(Ti − T0)2

√
αT t

[
R η erf(R η) +

1√
π

(
1− e−R2η2

)]
+ c2(t).(5.43)In addition, if the following boundary ondition is imposed,

lim
x→∞

ux (x, t) = 0, (5.44)it follows that,
c2(t) = −

[
3(νu − ν)

2GB(1 − ν)(1 + νu)

b
′

1 +R
+

1 + ν

1− ν

cT
3

]
(Ti − T0) 2

√
αT t

π
. (5.45)in whih the seond term in brakets is the ontribution from the thermoelasti expansionof the drained medium (i.e. without pore pressure e�et). The �rst term is an additionaldisplaement due to the pore pressure. If the thermal loading is positive (Ti − T0) > 0and (νu − ν) > 0, the pressure ontribution results in a tensile e�etive stress and in astrething of the solid matrix. 252



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingFinally, from equations (5.43) and (5.45), the displaement at the boundary is given by,
ux(0, t) = c2(t). (5.46)1.ii. Constant temperature and undrained boundary: The expliit evaluation of the dis-plaement, for the ase of a onstant temperature and an undrained boundary, is obtainedby substituting (5.21) and (5.30) into (5.42) and integrating,
ux(x, t) =

3(νu − ν)

2GB(1− ν)(1 + νu)

b
′

(Ti − T0)

1−R2
2
√
αT t ×

[(
R η erf(R η)− 1√

π
e−R2η2

)
−R2

(
η erf(η) − 1√

π
e−η2

)]

+
1 + ν

1− ν

cT
3
(Ti − T0)2

√
αT t

[
+R η erf(R η)− 1√

π
e−R2η2

]
. (5.47)The displaement at the boundary is,

ux(0, t) = −
[

3(νu − ν)

2GB(1− ν)(1 + νu)
b
′

+
1 + ν

1− ν

cT
3

]
(Ti − T0) 2

√
αT t

π
. (5.48)2.i. Constant heat �ux and drained boundary: The expliit evaluation of the displaement,for the ase of a onstant heat �ux and a drained boundary, is obtained by substituting(5.32) and (5.34) into (5.42) and integrating,

ux =
3(νu − ν)

2GB(1− ν)(1 + νu)

4 q αT t

Λ

b
′

(1−R2)
× [iF1(R η)−R iF1(η)]

+
1 + ν

1− ν

cT
3

4 q αT t

Λ
[iF1(R η)] , (5.49)in whih the funtion iF1 is the integral of the funtion F1,iF1(y) =

∫ y

∞
F1(Y ) dY = −

[(
1

4
+
y2

2

) erf(y)]+ y

2
√
π
e−y2 . (5.50)253



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading
Sine iF1(0) = −1/4 (see Remark 5.2), for a onstant heat �ux and a drained boundary,the displaement at the boundary x = 0m is,
ux(0, t) = −q αT t

Λ

[
3(νu − ν)

2GB(1 − ν)(1 + νu)

b
′

1 +R
+

1 + ν

1− ν

cT
3

]
. (5.51)Remark 5.2. The omplementary funtion an be approximated by a series expansionwhih is used to integrate the funtion iF1 in equation (5.50). The omplementary funtionis de�ned by,

erfc(y) =
2√
π

∫ ∞

y
e−x2

dx. (5.52)Integrating term by term the uniformly onvergent series expansion of the exponentialyields to a series expansion of the error funtion itself,
erfc(y) =

2√
π

∞∑

k=0

(−1)k

k!

y2k+1

2k + 1
=

2√
π

(
y − y3

3
+ · · ·

)
. (5.53)For large y on the other hand, the omplementary funtion is approximated by the seriesexpansion,

erfc(y) =
e−y2

√
π

(
1

y
− 1

2

1

y3
+ · · · + (−1)n−1 1× 3 · · · × (2n− 3)

2n−1y2n−1
+ · · ·

)
. (5.54)Finally, with the help of equation (5.54), iF1(∞) = 0 and iF1(0) = 1/4 are obtained.2.ii. Constant heat �ux and undrained boundary: The expliit evaluation of the displae-ment for the ase of a onstant heat �ux and an undrained boundary, is obtained bysubstituting (5.32) and (5.37) into (5.42) and integrating,

ux =
3(νu − ν)

2GB(1 − ν)(1 + νu)

4 q αT t

Λ

b
′

(1−R2)
×
[iF1(R η)−R2 iF1(η)

]

+
1 + ν

1− ν
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3

4 q αT t

Λ
[iF1(R η)] . (5.55)254



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingSine iF1(0) = −1/4 (see Remark 5.2), for a onstant heat �ux and an undrainedboundary, the displaement at the boundary x = 0m is,
c2(t) = −q αT t

Λ

[
3(νu − ν)

2GB(1− ν)(1 + νu)
b
′

+
1 + ν

1− ν

cT
3

]
. (5.56)5.2.4 Comparing analytial and numerial resultsThe numerial results are provided for an abyssal red lay whose material properties areprovided in Table 5.5. This material appears to have the interesting property that itshydrauli to thermal di�usivity ratio is lose to one: R = 3.9. Therefore, thermo-hydro-mehanial ouplings should be strong and easily visible on the pressure and on the dis-plaement �elds as suggested by MTigue (1986). For an abyssal red lay, the harateristitime orresponding to thermal di�usion tdiff , eq. (5.2), at a height of 3m in the olumnis equal to 3.46 × 107 s whih is larger than that orresponding to the hydrauli di�usion:

2.25 × 106 s. Hene, the hydrauli front is ahead of the thermal front.The analytial solutions are systematially ompared with the numerial responses for 1.a onstant temperature loading and a drained boundary, 2. a onstant temperature loadingand an undrained boundary, 3. a onstant heat �ux loading and a drained boundary and 4.a onstant heat �ux loading and an undrained boundary. For eah loading ase, the historyof the temperature, the pressure and the displaement �elds are presented at a height of
x = 3m in the olumn. Furthermore, the pro�les of the latter �elds are illustrated for fourdi�erent times, in the viinity of the loading 0 < x < 15m.As a onvention, in all the following �gures, the plain urve will represent the numerialresponse, and the dash urve will represent the analytial response provided by MTigue(1986) and expressed in Setion 5.2.3.Remark 5.3. The thermoelasti analytial response expressed by MTigue (1986) undera onstant temperature boundary desribes an instantaneous thermal shok. This loadingis smoothed out in the numerial simulations as indiated in Remark 5.1.5.2.4.1 Constant temperature loading and a drained boundaryThe �eld histories of the numerial responses and of the analytial urves math satisfa-torily (Figure 5.9) for both a onstant temperature loading and a drained boundary. Thetemperature �eld history is well reprodued in spite of the temperature time-dependent255



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingfuntion replaing the thermal shok. At t = 3.46×107 s, the mixture temperature is equalto 311K, whih is equal to 46% of the steady state value. At t = 2.25× 106 s, the pressureis almost at its peak, no dilatation has ourred yet, and the thermal �ux has not beensensed yet by the mixture. Signi�antly, the peak appears to be ahead in time omparedwith the heat front: This is due to the fat that the hydrauli di�usion is 16 times greaterthan the thermal di�usion with R = 3.9. The dilatation behaviour is well reprodued bythe numerial model. The di�erene between the two displaement responses observed forthe long term behaviour (t > 1010 s) is due to the fat that our olumn is not a semi-in�niteslab but is a �nite olumn of height equal to 800m.
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Simulation response
Analytical solution() (d)Figure 5.9: (a) Sketh of the mesh and of the boundary onditions applied to the semi-in�nite olumn. (b) Temperature, () pressure and (d) displaement histories at x = 3min the olumn, for a onstant temperature and a drained boundary. The temperature �eldreahes a steady state. The pressure �eld displays a peak when the heated boundary isdrained. This peak is due to a pressure rise into the pores before a signi�ant dilatationours. The pressure propagation is ahead of the thermal front beause R = 3.9. Thedisplaement �eld shows a dilatation synhronised with the thermal front.Similarly to the history urves, the �eld pro�les of the numerial response (Figure 5.10,right) follow very well the pro�le of the analytial urves (left). The propagation of theheat front reahes 5m at time 1 × 107 s. As expeted, a pressure peak propagates intothe mixture with time. The magnitude of the peak is onstant, whih is onsistent with256



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingMTigue's onlusions, see eq. (5.29) and eq. (5.23). Note that for lower times, themagnitude of the peak (output of the numerial model) is smaller due to the temperaturetime-funtion. The dilation of the mixture inreases with time, indued by the temperatureontribution. The displaements ahead of the thermal front are indued by the dilatation ofthe mixture at the thermal front. The phenomenon is denominated pull-on. The magnitudeof the pressure peak [kPa℄ is too small to indue a signi�ant dilatation.Analytial solution Simulation response(e)
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Figure 5.10: (e) Temperature, (f) pressure and (g) displaement pro�les in the olumn,for a onstant temperature and a drained boundary: (left) analytial solution, (right)numerial response. The thermal front has penetrated up to 5m. A onstant pressurepeak propagates into the olumn. The pressure front is ahead of the thermal penetrationbeause R = 3.9. The dilatation has reahed up to 10m due to pull-on indued by thedilatation below 5m.
257



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading5.2.4.2 Constant temperature loading and an undrained boundaryFigure 5.11 represents the �eld history omparison between the numerial responses andthe analytial urves for the ase with a onstant temperature loading and an undrainedboundary. The temperature and the displaement histories provide a good orrespondenebetween the analytial urves and the numerial responses in spite of the temperaturetime-dependent funtion replaing the thermal shok. Their histories are very similar tothe drained boundary ase. The numerial response of the pressure �eld history followsthe general pro�le of the analytial urve. This behaviour is indued by the propagationof the pressure front into the mixture and by its impossibility to relax (in�nite drainedpath). The plateau illustrates a steady state behaviour. Note that no redution of thepore pressure is indued by the dilation of the solid skeleton, t > 108 s.
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Simulation response
Analytical solution() (d)Figure 5.11: Same as Figure 5.9 for a onstant temperature and an undrained boundary.The temperature and the displaement �elds display a similar behaviour to the drainedboundary ondition. On the other hand, the pressure �eld ends by a plateau when theheated boundary is undrained. Loally the �uid is trapped into the pores : the pressure annot dissipate in spite of the dilatation. Note that some numerial disturbanes arise in tworegions: (i) at early times, these disturbanes are indued by the numerial time-dependentloading; (ii) at late times, by the �nite property of the implemented olumn.
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5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingThe numerial disturbanes observed at early times and at late times are indued bythe oarse mesh at the loading boundary (x = 0m) and by the �nite property of theimplemented olumn, respetively. The undrained boundary ondition should lead to asharp inrease of the pressure at the boundary (x = 0m) up to a onstant value, seeeq.(5.31). Results should be improved by either an exponential re�nement towards theboundary x = 0m or by the implementation of a time sheme suitable for thermal shoks(Wood and Lewis, 1975).Analytial solution Simulation response(e)
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Figure 5.12: Same as Figure 5.10 for a onstant temperature and an undrained boundary.The pro�le of the temperature remains similar to the drained boundary ase. On theother hand, the pressure propagates into the olumn and is maximum and onstant atthe undrained boundary. Furthermore, the displaement magnitude is inreased omparedwith the drained boundary ase.In Figure 5.12, the propagation of the heat front is the same as with a drained boundaryondition (in Figure 5.10) and reahes 5m at time 1 × 107 s. Again, the pressure frontpropagates into the mixture with time, ahead ompared with the heat front. However,259



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingthe magnitude of the pressure at the boundary x = 0m is onstant. Note that for lowertimes, the magnitude of the pressure from the analytial solution is smaller than that of thesimulation response due to the temperature time-funtion. The pro�le of the displaementis similar to the drained boundary ase but with a larger magnitude due to the pressureontribution.
5.2.4.3 Constant heat �ux loading and a drained boundaryFigure 5.13 represents the �eld histories omparison between the numerial responses andthe analytial urves for the ase of a onstant heat �ux loading and a drained boundary.A orret math is obtained between the analytial temperature history and the numerialresponse in spite of our �nite olumn. The latter property indues the numerial front tobe slightly ahead of the analytial one. At very large times t > 1011 s, the temperaturedisplays a plateau T = T0.The numerial response of the pressure history follows quite well the pro�le of theanalytial urve to within the fat that the pressure magnitude of the numerial responseis larger than the one provided by the analytial response. This is a onsequene of thenumerial thermal front whih is slightly ahead of the analytial one. The very late pressurederease is due to the fat that our olumn is not in�nite. At late times t > 1011 s,the pressure dissipates ompletely. The dilatation behaviour is well reprodued by thenumerial model and the displaement history is synhronised with the temperature history.Figure 5.14 ompares the �eld pro�les of the numerial response with the analytialsolutions, at four di�erent times. A good orrespondene is obtained for the temperaturepro�le, although a small magnitude di�erene is observed. Again, the thermal front pene-trates into the mixture, up to at least 5m at time 1 × 107 s. A pressure peak propagatesinto the mixture, as time inreases. The magnitude of the peak is inreasing with thetemperature penetration. Again, the pressure peak is learly ahead in time ompared withthe heat front. The numerial urves display the same type of behaviour as the analytialsolution, exept that the magnitude of the peaks for eah time is larger. This is due to�nite property of the implemented olumn whih indues the thermal front to be slightlyahead of the analytial response. The dilation of the mixture inreases with time. Againthe deformations of the numerial test are larger than the analytial response due to �niteproperty of the implemented olumn. 260



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading
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Simulation response
Analytical solution() (d)Figure 5.13: (a) Sketh of the mesh and of the boundary onditions applied to the semi-in�nite olumn. (b) Temperature, () pressure and (d) displaement histories at x = 3min the olumn, for a onstant heat �ux and a drained boundary. The temperature risesexponentially, i.e. no steady state is reahed. The pressure �eld, although lose to thedrained boundary, is ontinuously heated: therefore the pressure does not dissipate easily.The pressure plateau represents this time an equilibrium between hydrauli dissipationand pressure rise indued by thermal exitation. The displaement �eld shows a dilatationdelayed with respet to the thermal front.5.2.4.4 Constant heat �ux loading and an undrained boundaryFor the ase of a onstant heat �ux loading and an undrained boundary, the �eld historyomparison between the numerial responses and the analytial urves is presented inFigure 5.15. The temperature and the displaement histories display a orret mathbetween the analytial urve and the numerial response in spite of our �nite olumn. Thehistory urves remain very lose to the drained boundary problem. The numerial responseof the pressure history follows quite well the pro�le of the analytial urve to within thefat that the numerial response is a little ahead in time than the one provided by theanalytial response.Figure 5.16 ompares the �eld pro�les of the numerial response with the analytialsolutions, at four di�erent times. A good orrespondene is obtained for the temperature261



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingAnalytial solution Simulation response(e)
288 289 290 291 292 293
0

5

10

15

Mixture temperature [K]

C
o
lu

m
n

h
ei

g
h
t

[m
]

 

 

t = 5 ×105 s
t = 1 ×106 s
t = 5 ×106 s
t = 1 ×107 s

288 289 290 291 292 293
0

5

10

15

Mixture temperature [K]

C
o
lu

m
n

h
ei

g
h
t

[m
]

 

 

t = 5 ×105 s
t = 1 ×106 s
t = 5 ×106 s
t = 1 ×107 s

(f)
0 0.1 0.2 0.3 0.4 0.5 0.6

0

5

10

15

Fluid pressure [kPa]

C
ol

u
m

n
h
ei

gh
t

[m
]

 

 

t = 5 ×105 s
t = 1 ×106 s
t = 5 ×106 s
t = 1 ×107 s

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

Fluid pressure [kPa]

C
ol

u
m

n
h
ei

gh
t

[m
]

 

 

t = 5 ×105 s
t = 1 ×106 s
t = 5 ×106 s
t = 1 ×107 s

(g)
−0.5 −0.4 −0.3 −0.2 −0.1 0

0

5

10

15

Vertical displacement [mm]

C
ol

u
m

n
h
ei

gh
t

[m
]

 

 

t = 5 ×105 s
t = 1 ×106 s
t = 5 ×106 s
t = 1 ×107 s

−0.5 −0.4 −0.3 −0.2 −0.1 0
0

5

10

15

Vertical displacement [mm]

C
ol

u
m

n
h
ei

gh
t

[m
]

 

 

t = 5 ×105 s
t = 1 ×106 s
t = 5 ×106 s
t = 1 ×107 s

Figure 5.14: (e) Temperature, (f) pressure and (g) displaement pro�les in the olumn, fora onstant heat �ux and a undrained boundary: (left) analytial solution, (right) numerialresponse. The thermal front has penetrated up to 5m. The pressure propagates into theolumn. The pressure peak is due to the drained boundary ondition. The magnitude ofwhih is inreasing with time due to the ontinuous heating. The dilatation has reahedup to 10m due to pull-on indued by the dilatation below 5m.pro�le, although a small magnitude di�erene is observed. The pro�le of the temperatureis not in�uened by the hydrauli boundary ondition due to the partially oupled modelused by MTigue (1986) (Setion 5.2.1). The pressure propagates into the mixture withtime. The pressure peak is loated at the undrained boundary. The magnitude of the peakis inreasing with time. Again, the pressure peak is learly ahead in time ompared withthe heat front. The numerial urves display the same type of behaviour as the analytialsolutions, exept that the magnitude of the peaks for eah time is larger. Again, thedisplaement magnitude is slightly inreased ompared with the drained boundary asedue to the pressure ontribution. The small variations between the simulation responses262



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingand the analytial solutions are due to the �nite property of the implemented olumn.
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Figure 5.16: Same as Figure 5.14 for a onstant heat �ux and an undrained boundary.The pro�le of the temperature remains similar to the drained boundary ase. On the otherhand, the pressure propagates into the olumn with a maximum loated at the undrainedboundary. The magnitude of the maximum pressure is inreasing with time due to theontinuous heating. Again, the displaement magnitude is slightly larger ompared withthe drained boundary ase.5.2.5 The importane of the di�usivity ratio RThe importane of the di�usivity ratio R is �rst analysed with the analytial solutions.Three limit values are worth investigating: R → ∞ harateristi of large permeabilityporous media, R → 0 harateristi of small permeability mixtures and R ∼ 1 whih isobserved in abyssal red lay and rok salt materials. Next, the di�erene in behaviourof the latter materials is illustrated for the ase of a onstant temperature loading and adrained boundary. Finally, the onlusions reahed in this setion are gathered.265



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading5.2.5.1 Limits of the di�usivity ratio RThe drained and the undrained limits are found to be strongly assoiated with the ratio ofthe hydrauli di�usivity and the thermal di�usivity R =
√
αH/αT . Moreover, the thermo-mehanial oupling appears to be strongest when hydrauli and thermal di�usivities areof equal order MTigue (1986). Three ases are disussed below,1. Drained limit R→ ∞ ex: large permeability2. Undrained limit R→ 0 ex: small permeability3. Like order R ∼ 1 ex: abyssal red lay and rok salt materials (5.57)1. Drained limit : R → ∞. When the �uid di�usivity is large in front of the thermaldi�usivity: αH >> αT ; three remarks an be made:i. The pore pressure vanishes rapidly in omparison with the rate of temperature hange,see eq. (5.23), (5.30), (5.34) and (5.37).ii. The �uid �ux (at the drained boundary) does not depend on the permeability. In thisase, the porous blok provides no resistane to the �uid �ow, on the time sale of theheating. The �uid �ux is limited only by the amount of thermal energy delivered tothe medium and by its elasti properties (MTigue, 1986, eq. (38)).iii. In the same manner, if R → ∞, one an see that the pore pressure ontribution tothe displaement �eld beomes negligible in front of the thermoelasti ontribution,eq. (5.43) and (5.45)-(5.46).In onlusion, for the drained limit ase, the medium behaves as a simple thermo-elastibody with properties of the porous skeleton. If a mixture displays a large di�usivity ratio

R2 >> 1, a thermo-mehani unoupled onstitutive law is suitable.2. Undrained limit : R→ 0. The undrained limit is obtained when the thermal di�usivityis large in front of the hydrauli di�usivity, for αH << αT . Two observations are made:i. The volumetri ontent is zero: the �uid is trapped loally in the pores, at the timesale of the heating.ii. One an see that the pressure ontribution to the displaement �eld, eq. (5.43) and(5.45), is not negligible anymore ompared with the thermoelasti ontribution. This266



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingHydrauli ontribution Thermal ontributionerf(η) ∝ δ erf(Rη) eq. (5.23)
R erf(η) ∝ δ erf(Rη) eq. (5.30)exp(−η2) ∝ δ exp(−R2η2) eq. (5.34)
R exp(−η2) ∝ δ exp(−R2η2) eq. (5.37)Table 5.6: Comparison between the hydrauli and the thermal ontributions for a di�u-sivity ratio R = 1. δ is of order of magnitude of one: O(100) and the symbol ∝ means`proportional to'an be illustrated by substituting eq. (5.27) into (5.45), whih provides a displaement�eld highly dependent on undrained parameters,

lim
R→∞

ux(0, t) = −1 + νu
1− νu

cT,u
3

(Ti − T0) 2

√
αT t

π
, (5.58)where, cT,u is the undrained thermal expansion oe�ient,

cT,u = cT +B np (cpT − cT ). (5.59)In onlusion, for the undrained limit ase, the medium again behaves as a simplethermo-elasti body, but exhibits this time e�etive properties modi�ed by the preseneof the �uid: undrained properties. If a mixture displays a low di�usivity ratio R2 << 1,a thermo-mehanial unoupled onstitutive law is suitable if undrained oe�ients areused.3. Like magnitude : R ∼ 1. It is ruial to understand that the thermoelasti onstitutiveoupling of heat �ow (thermal ondution), �uid �ow (hydrauli di�usion) and deformationis strongest for thermal and hydrauli di�usivities of like order.i. The loser R ∼ 1, the loser the thermal and the hydrauli ontributions are in mag-nitude, and therefore the stronger the oupling (Table 5.6).ii. The loser R ∼ 1, the loser the pressure and the thermal ontributions are in magni-tude in the displaement �elds equations, and therefore the stronger the oupling, seeeq. (5.43) and (5.45). 267



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loading5.2.5.2 Comparing salt and layTo illustrate the importane of the di�usivity ratio R, the behaviour of two materials isompared in the ase of a onstant temperature loading and a drained boundary. Bothmaterials have a di�usivity ratio R relatively lose to one, whih ensures a strong ouplingbetween heat ondution and hydrauli ondution.Comparing Table 5.5 with Table 5.7, one an see that the di�usivity ratio of the saltis loser to one than the di�usivity ratio of the lay: Rclay = 3.9 > 1 and Rsalt = 0.29 < 1.This partiularity has an in�uene on the magnitude of the fator 1/(1−R2), whih has akey importane on the pressure and on the displaement magnitude analytially desribedin Setion 5.2.3.In �gure 5.17, the thermo-hydro-mehanial responses of the two materials are om-pared. The setup is idential to that developed in Subsetion 5.1.1 for a onstant temper-ature and a drained boundary. The thermal responses of the two materials are similar inbehaviour (not shown). However, the pressure response for the salt rok is signi�antlylarger than the pressure response of the lay. This is due to the di�usivity ratios: thedi�usivity ratio of the salt is loser to one, |Rsalt − 1| = 0.79, ompared with the lay,
|Rclay − 1| = 2.9.Material parameter Value UnitHeat apaity, ρ Cp 1.89×106 J/m3.KCondutivity, Λ 6.60 W/m.KSolid expansivity, cT 1.2×10−4 1/KFluid expansivity, cpT 3.0×10−4 1/KDrained bulk modulus, K 20.7 GPaFluid bulk modulus, Kp 2 GPaSolid bulk modulus, Ks 23.5 GPaShear modulus, µDS (Seond Lamé's onstant) 12.4 GPaDrained Poisson's ratio, ν 0.25 -Porosity of the porous blok, np 0.001 -Permeability of the porous blok, kp 10−21 m21.0 nanodaryDynami visosity (water), µp 1.0×10−3 Pa.sThermal di�usivity, α∗

T 3.5×10−6 m2/sHydrauli di�usivity, α∗
H 0.16×10−6 m2/s

R =
√
αH/αT 0.29 -Table 5.7: Material properties of salt, Salado Formation, Delaware Basin, New Mexio(MTigue, 1986, p. 9540). ∗De�nitions of these parameters are provided in eq. (5.3) and(5.24), respetively. 268



5. Preliminary results 5.2. Thermo-Hydro-Mehanial tests: thermal loadingAbyssal red lay: |Rclay − 1| = 2.9 >> Salt: |Rsalt − 1| = 0.79
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Pmax= 0.0075MPa << Pmax= 35.86MPaFigure 5.17: Pressure history of (left) abyssal red lay and (right) salt; at x = 3m inthe olumn, for a onstant temperature and a drained boundary. For the same loading,the pressure peak in the salt mixture is signi�antly larger than the pressure in the laymixture. This is due to the fat that the di�usivity ratio R of the salt is loser to one thanthe di�usivity ratio of the lay.5.2.6 Summary and onlusionThe validity of the numerial model has been heked by omparing the output resultswith analytial solutions provided by MTigue (1986). A good math is obtained for thetwo types of loading: onstant temperature and onstant heat �ux; and for the two typesof hydrauli boundary onditions; drained and undrained boundary. The disrepaniesbetween the simulation responses and the analytial solutions are attributed to the fatthat a �nite olumn is implemented, instead of a semi-in�nite mixture, and to the Heavisidestep funtion used for the thermal loading. The disturbane due to the Heaviside stepfuntion an be further damped by a re�nement of the mesh in the viinity of the loadedboundary.Throughout this setion, omprehensive information on the di�usion behaviour ofthermo-hydro-mehanial mixtures has been observed. The main points are summarisedbelow.The hydrauli to thermal di�usivity ratio R informs on the dominane of one type ofdi�usion on the other. For example the abyssal red lay is endowed with R = 3.9 andthe hydrauli di�usivity is larger than the thermal one. As expeted, for all loadings andboundary onditions types, the numerial results display a hydrauli front ahead of thethermal one.A semi-in�nite olumn of mixture subjeted to a onstant temperature loading has theharateristis to allow the temperature history to reah a steady state distribution into the269



5. Preliminary results 5.3. Axi-symmetri boundary value problemsolumn. Keeping this in mind, it is worth noting that the pressure history displays a peakwhen the heated boundary is drained. This peak is due to a pressure rise into the poresbefore a signi�ant dilatation ours. Furthermore, the magnitude of the pressure peakremains onstant and propagates into the sample. On the other hand, the pressure historyends by a plateau when the heated boundary is undrained. Loally the �uid is trappedinto the pores; the pressure an not dissipate in spite of the solid skeleton dilatation. It isworth noting that the magnitude of the pressure is inreased from one order of magnitudebetween the drained and the undrained ases. In the latter ase, the results show thatthe dilatation of the mixture is not large enough to allow a signi�ant dissipation of thepressure.A semi-in�nite olumn of mixture subjeted to a onstant heat �ux loading displays atemperature history whih inreases exponentially. Therefore when the heated boundaryis drained, the pressure does not dissipate easily; in fat it displays a plateau due tothe exponential heating. Note that it does not mean that the �uid is trapped into thepores, but that the �uid is ontinuously heated and undergoing dissipation at the sametime. Conversely if the heated boundary is undrained, the pressure history follows theexponential behaviour of the temperature history. This time the �uid is trapped into thepores.5.3 Axi-symmetri boundary value problemsIn axi-symmetri boundary value problems, errors in the viinity of the inner radius ariseand the mesh requires a speial treatment. This setion aims to identify the origin ofthe numerial disturbanes and to treat them appropriately, i.e. to minimise the errors.The boundary value problem of a hollow ylinder made of a linear elasti isotropi solidand undergoing in�nitesimal strain under stati onditions is analysed (Figure 5.18) in anunoupled mehanial ontext.5.3.1 Analytial solutionsA hollow ylinder is subjeted to internal and external pressures on its lateral boundaries,and to either a uniform axial displaement or uniform axial tration on its lower and upperbases. The material is linear isotropi elasti, with λDS and µDS the Lamé's onstants ofthe drained solid.The motion an then be shown to be ompatible with a radial displaement, ur = ur(r)depending only on the radius and an axial displaement uz = uz(z) depending only on the270
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Figure 5.18: Hollow ylinder subjeted to internal and external pressure, p1 and p2, re-spetively.axial oordinate z while the tangential displaement uθ vanishes.Then, the strain tensor is prinipal in the axes of the ylinder, and so does the stresstensor sine the material is isotropi. Therefore, the radial strain ǫr, the irumferentialstrain ǫθ, axial strain ǫz, and dilatation tr ǫ simplify to:
ǫr =

dur
dr

, ǫθ =
ur
r
, ǫz =

duz
dz

, tr ǫ = ǫr + ǫθ + ǫz =
1

r

d

dr
(r ur) +

duz
dz

. (5.60)The stress omponents,
σr = λDS tr ǫ+2µDS dur

dr
, σθ = λDS tr ǫ+2µDS ur

r
, σz = λDS tr ǫ+2µDS duz

dz
,(5.61)should satisfy the balane of momentum equilibrium equations div σ = 0 given in theylindrial oordinates by Malvern (1969, p. 668),
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+
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+
d σzz
d z

+
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r
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(5.62)
In fat sine the stress tensor is prinipal in the axes of the ylinder, only two equationsare non-trivially satis�ed, 271
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d σr
d r

+
σr − σθ

r
= 0,

d σz
d z

= 0.

(5.63)Upon insertion of (5.61) into (5.63), the equilibrium equations beome,




(λDS + 2µDS)
d

dr

(
1

r

d

d r
(r ur)

)
= 0,

(λDS + 2µDS)
d

dz

(
d uz
d z

)
= 0.

(5.64)Finally, upon integration of (5.64), the equilibrium equations yield the displaements,
ur = A r +

B

r
, uz = ǫz z + uz(0), (5.65)where A and B are onstants de�ned by the lateral boundary onditions and ǫz is theonstant axial strain. Calulating the resulting strains,

ǫr = A r − B

r2
, ǫθ = A r +

B

r2
, tr ǫ = 2 A+ ǫz (5.66)the volume hange is observed to be onstant in spae, and therefore so is the �rst stressinvariant tr σ = 3KDStr ǫ, with KDS = λDS + 2µDS/3 the bulk modulus.The values of the onstants A and B are identi�ed for various boundary onditions.Four ases are onsidered: (1) the internal and external lateral pressures are di�erent, (2)the internal and external lateral pressures are equal, (3) the internal pressure is null andzero external displaements are presribed and (4) the internal pressure is �xed and zeroexternal displaements are presribed at the in�nite external boundary.(1) Two di�erent lateral pressures. Let σr(r1) = −p1 and σr(r2) = −p2 be the pressuresapplied respetively on the internal boundary r = r1 and external boundary r = r2. Then
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5. Preliminary results 5.3. Axi-symmetri boundary value problemsThe radial and tangential stresses vary radially,
σr = −p2r

2
2 − p1r

2
1

r22 − r21
− p1 − p2

r2
r21r

2
2

r22 − r21
, σθ = −p2r

2
2 − p1r

2
1

r22 − r21
+
p1 − p2
r2

r21r
2
2

r22 − r21
, (5.69)where, on the ontrary, the axial stress is onstant in spae,

σz =
µDS (3λDS + 2µDS)

λDS + µDS
ǫz −

λDS

λDS + µDS

p2r
2
2 − p1r

2
1

r22 − r21
. (5.70)(2) The two lateral pressures are equal. If the two pressures are idential, p1 = p2 = p, theonstant B vanishes and strain and stress beome homogeneous:

ǫr = ǫz = −1

2

λDSǫz + p

λDS + µDS
, tr ǫ =

µDS ǫz − p

λDS + µDS
, σr = σθ = −p. (5.71)Note that the radial displaement is linear in r,
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2

λDS ǫz + p

λDS + µDS
− 1

2

1

λDS + µDS
r. (5.72)Remark 5.4. The expression (5.71) holds as well for a solid ylinder (r1 = 0) subjetedto the pressure p = p2 at the outer boundary r = r2.(3) Fixed internal pressure and zero external displaement. Let σr(r1) = −p1 be thepressure applied on the internal boundary r = r1 and ur(r2) = 0 be the displaementapplied to the external boundary r = r2. Then
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5. Preliminary results 5.3. Axi-symmetri boundary value problemsThe radial and tangential stresses vary with 1/r2,
σr =
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+
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, (5.76)where, on the ontrary, the axial stress is onstant in spae,

σz = − λDS r21
λDS r21 + µDS r21 + µDS r22

(
p1 + λDSǫz

)
+
(
λDS + 2µDS

)
ǫz. (5.77)(4) Fixed internal pressure and zero displaement at the in�nite external boundary. Let

σr(r1) = −p1 be the pressure applied on the internal boundary r = r1 and ur(r2) = 0 bethe displaement applied to the external boundary r = r2 → ∞. Then the onstant Avanishes, and
ur =

B

r
, ǫr = −ǫθ = −B

r2
, tr ǫ = ǫz. (5.78)with B still given by (5.73) where r2 = ∞.5.3.2 Numerial onsiderationsAording to Hughes (1987a, p.140), the numerial integration (quadrature) formula of thefuntion f(x) an be written as follows,
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5. Preliminary results 5.3. Axi-symmetri boundary value problems
where nint is the number of integration points, ξ̃l is the oordinate of the lth integration,
Wl is the `weight' of the lth integration point, and R is the remainder.If the number of integration points is equal to two nint = 2, the Gaussian quadrature rulesyield,

ξ̃1 = − 1√
3
, ξ̃2 =

1√
3
,

W1 = W2 = 1,

R =
g(4)

(
ξ̄
)

135
, (5.80)where g(4) = d4g/dξ4, and ξ̄ denotes some point in the interval [ξ̃1, ξ̃2℄. If g is a onstantor linear polynomial this two point integration rule is exat. If g is a quadrati polynomialthen this integration rule is approximate. It is said to be `seond-order' aurate.Unfortunately, if the funtion g is proportional to ξ−1, as in equation (5.78), the re-mainder is proportional to ξ−4. The smaller the value of ξ̄ the higher the remainder andthe aurate-less the integration rule. Finally, the only way to redue the error (withouthanging the integration rule) is to re�ne the mesh where the value of ξ̄ is small.Three important questions are addressed below :1. How muh is an aeptable error?2. What is the in�uene of the mesh size on the error?3. How to optimise the mesh so that the error beomes aeptable ?5.3.2.1 Error magnitudeAn error lower than 0.001 % will be onsidered as a very preise result. An error greaterthan 0.1 % will be onsidered as an unpreise result. An error lower than 0.1 % and greaterthan 0.001 % will be onsidered as aeptable. For all axi-symmetri hollow ylinder tests,the error should be estimated as a funtion of the mesh.275



5. Preliminary results 5.3. Axi-symmetri boundary value problems5.3.2.2 In�uene of the mesh size on the errorThe error is found to be aeptable, if the mesh is su�iently re�ned. As re�ning the meshis very `expansive' in time alulation, a study is designed to evaluate the evolution of theerror as a funtion of a representative mesh riterion.If a homogeneous mesh is assumed, the mesh riterion is de�ned as the radial lengthof one element ∆e
r over the total radial length of the sample: r2 − r1.The evolution of the error for the displaement, the deformation and for the stress �eldsis srutinised, at r = r1 = 0.5mm, while r2 = 5.5mm (Table 5.8). The ase of a hollowylinder with a �xed internal pressure and a zero external displaement is assumed. Sinethe error is maximum at r = r1, the error analysis fouses on this point. Note that for aplain ylinder r = r1 = 0m, additional problems arise in the numerial treatment of theintegration method.mesh riterion 0.1 0.05 0.02 0.002number of elements 10 20 50 500per meter% error for ur 8.46 2.73 0.48 0.23% error for ǫr 54.79 35.52 17.13 2.03% error for σr 41.24 25.06 11.25 1.2Table 5.8: Evolution of the integration error on the radial displaement, the deformationand the stress with a homogeneous mesh, at the inner radius r = r1. Note that the error ofthe deformation and of the stress is O(10i) when the error of the displaement is O(10i−1).If an homogeneous mesh is assumed, the number of elements needed to obtain a `orret'error is huge.As a onlusion, homogeneous mesh does not seem adequate for axi-symmetri testssine the number of elements needed to obtain an aurate result is huge.5.3.2.3 Mesh optimizationIn order to optimise the number of elements for axi-symmetri tests and keeping in mindthat the loser to the inner radius r = r1, the higher the remainder, the mesh is re�ned`strongly' at r = r1 and `loosely' at r = r2. In between, the re�nement needs to beontinuous to avoid additional numerial perturbations.The following formula is proposed to alulate the `external' radial oordinate r(n) ofthe element n, the maximum number of elements being equal to ne,276



5. Preliminary results 5.3. Axi-symmetri boundary value problems
r(n)− r1 = f(n)× r2 − r1

f(ne)
, (5.81)where the funtion f(n) is alulated by a home-made algorithm aording to a logarithmirule,

f(n) =
|r2 − r1|
1.2ne−n

. (5.82)As a onlusion, optimising the mesh by re�ning lose to the inner radius appears togive out more aurate results very lose to r = r1 than a homogeneous mesh (Table 5.9).However, this `home-made' optimisation is not ideal: signi�ant error remains along thelayer not so far from r = r1, see Figure 5.19.Sine mesh optimisation is not the �rst goal of this work, this `home-made' optimisationis assumed su�ient to reprodue orretly the behaviour at the inner radius.mesh riterion 0.1 0.05 0.02 0.002number of elements 10 20 40 50 100per meter% error for ur 11.13 0.3420 0.2091 0.2090 0.2087% error for ǫr 61.46 9.445 0.1671 0.0772 0.0643% error for σr 47.32 5.958 0.0583 0.0083 0.0000Table 5.9: Evolution of the integration error on the radial displaement, the deformationand on the stress with an non-homogeneous mesh, at the inner radius r = r1. The erroron the displaement remains greater or equal to 0.209. This result is probably due to theremaining error along the layer, see Figure 5.19. On the other hand, the auray of thestrain and of the stress beomes aeptable at the inner radius for 50 elements or more.
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Figure 5.19: Pro�le of the error along the r-diretion for the radial displaement, thestrain and the stress. Note that with a non-homogeneous mesh, re�ned at the inner radius
r1 = 0.5mm (on the left-hand-side), the maximum error is not loated at r/r1 = 0mm. Forthe displaement, the maximum error is loated at r = r2. For the strain, the maximumerror is loated around r = 2mm. Finally, for the stress, the maximum error is loated inthe range 1 < r < 1.5mm.
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Chapter 6A borehole stability analysis: fouson di�usion and mass transferThe work presented in this hapter1 has been submitted to the International Journalof Rok Mehanis and Mining Sienes under the title Di�usion and Mass Transfer inThermo-poro-elasti Dual Porous Media: A borehole stability analysis, by the followingauthors, in order, Rahel Gelet, Benjamin Loret and Nasser Khalili. The paper has beenaepted with minor revisions.The motivation of this �rst publiation is to address a borehole stability problem ofa fratured reservoir in a thermally enhaned oil reovery ontext. Importantly, foredonvetion is disregarded in this hapter, and di�usion and mass transfer phenomena areonsidered alone.The problem of di�usion and mass transfer in dual porous media is onsidered in athree-phase framework. The solid phase is assumed to ontain two distint avities �lledwith �uid. The porous mixture is omposed of two overlapping media: the porous bloksand the �ssure network. The �uid an transfer between the avities due to �uid pressuredi�erene. In addition, hydrauli and thermal di�usions take plae through the mixture.The key idea of this study highlights the importane of the di�erene between theharateristi times of the di�usion phenomena. This work stems from the onlusionsdrawn by MTigue (1986) detailed in Setion 5.2. Spei� to dual porous media, the ratioof hydrauli to thermal di�usivity is greater in the �ssure network than in the porous blok.This partiular feature, along with the assumption that the solid phase only is ontrollingthe deformation of the overall mixture (see Remark 2.13, p. 117), rules the behaviour offratured media when onvetion is negleted.The main onlusions of this study reveal the importane of the dual porosity oneptfor the predition for failure in �ssured reservoirs; sine the single porosity approah under-1The Remarks were not presented for publiation279



6. Borehole Stability analysis 6.1. Introdutionestimates the failure potential. Due to the absene of onfrontation with experimental data,this onlusion remains a strong hypothesis; however suh data to the best knowledge ofthe author and to date remains unavailable.Setion 6.1 introdues the bakground literature and de�nes the problem statement.A global understanding of mass transfer, di�usion and deformation is provided. The gov-erning equations assoiated with these phenomena are presented for a mixture in thermalequilibrium (Setion 6.2). The �nite element approximation of the governing equations isformulated (Setion 6.3) and applied to the stability analysis of a vertial borehole (Se-tion 6.4). A parametri analysis is arried out to evaluate the in�uene of mass transferon the pressure pro�les of the �uids around the borehole (Setion 6.5). Permeable andsemi-permeable boundary onditions are ompared to predit the potential for failure ofthe wellbore under drained and partially drained onditions. Finally, the main points ofthe paper are gathered in Setion 6.6.6.1 IntrodutionThe in�uene of thermal loading on the behavior of fratured poro-elasti media is rele-vant to various appliations, suh as enhaned heavy-oil reovery by steam or hot waterinjetion, thermal and hydrauli stimulations of tight reservoirs, management of nulearwaste disposal in a lay bu�er, and geothermal hot dry rok energy extration. In all theseappliations, a borehole or a tunnel is required and the stability analysis forms a ruialpart of the design (Lake et al., 1992).Currently borehole stability analyses under thermal loading are sare and fous mainlyon reservoirs represented by saturated roks with a single porosity (MTigue, 1990, 1986;Wang and Papamihos, 1994; Chen et al., 1997; Chen and Ewy, 2005; Rahman et al., 2000;Zhang et al., 2003; Chen et al., 2003; Abousleiman and Ekbote, 2005; Wang and Dusseault,2003; Pao et al., 2001). A key fator in�uening wellbore stability is the variation of porepressure on the lining of the wellbore due to mud penetration (Chen et al., 1997; Chen andEwy, 2005; Rahman et al., 2000). Failure typially ours when the pore pressure reduesthe e�etive on�ning pressure below a threshold value (Zhang et al., 2003; Chen et al.,2003).Closed form solutions for thermally indued �uid �ow around a borehole in low per-meability media have been presented by a number of investigators, where heat transfer isdominated by ondution (MTigue, 1990, 1986; Wang and Papamihos, 1994; Chen andEwy, 2005). MTigue (1990, 1986) provided analytial results for the thermoelasti re-sponse of saturated porous roks with a single porosity, highlighting the importane of the280



6. Borehole Stability analysis 6.1. Introdutionthermal to hydrauli di�usivity ratio and the ompetition between the heat and the �uid�ows. Wang and Papamihos (1994) examined the thermally indued pore �uid pressurearound a pumping well for both old and warm injetion proesses, underlying the im-portane of the thermal oupling to aurately estimate the indued �uid �ow rate in lowpermeability media. Chen and Ewy (2005) investigated the thermoporoelasti e�et onwellbore stability and analyzed the ollapse failure index in the region near the wellbore.Notable ontributions have also been made by Abousleiman and Ekbote (2005), Wangand Dusseault (2003) and Pao et al. (2001) on the e�ets of anisotropy, ondutive versusonvetive heat �ow, and multi-phase �ow on borehole instability.Based on Biot's theory of mixture (Biot, 1941), thermo-hydro-mehanial models havebeen extended to aount for the dual porosity onept introdued by Barenblatt et al.(1960). However, the existing literature fouses on onsolidation (Masters et al., 2000)or on the dominane of onvetion over ondution phenomena (Khalili and Selvadurai,2003; Nair et al., 2004). Nair et al. (2004, 2002) presented results on the sensitivityof the thermoelasti response in dual porosity media to frature spaing, but based onseveral restritions. In partiular, the deformation �eld in their dual porosity model wasformulated by assigning eah avity system with its own e�etive stress, deformation andoverall ompliane, in ontradition of the priniple of e�etive stress where a single stressentity is de�ned for the entire solid skeleton (Khalili and Valliappan, 1996; Loret andKhalili, 2000b; Khalili and Loret, 2001; Khalili, 2008). Furthermore, in their approah, tode�ne the e�etive stress parameters the deformation �elds of pore and frature systemsare assumed to work in series whih may not be appliable in real roks.The paper presents a fully oupled �nite element formulation for a thermo-poro-elastidual porous medium under non-isothermal onditions. The fratured porous medium isdesribed as a porous mixture omposed of two overlapping ontinua: the porous bloksand the �ssure network. The solid phase has a speial role as it provides the matrix skele-ton and enloses the �uid phases. The theoretial model of the three-phase mixture is builtby postulating onstitutive equations for the three phases and by enforing the balanesof mass, momentum and energy. A summary of the governing di�erential equations is pro-vided in Setion 6.2. The formulation presented is spei�ed for a loal thermal equilibriumbetween the phases, saturated soils and for di�usion dominated �uxes (Loret and Khalili,2000a; Khalili and Selvadurai, 2003). The weak form of the governing equations and thetime-integration proedure to solve the oupled equations through a �nite element methodare detailed in Setion 6.3. The primary variables are the displaements, the pore �uidpressure, the pressure of the �uid in the �ssures and the temperature of the mixture. Theresulting system of equations is used to address the failure potential of a vertial borehole281



6. Borehole Stability analysis 6.2. Governing equationssubjeted to both pressure and temperature gradients (Setion 6.4). Simulations of heavy-oil reovery through thermal stimulation demonstrate the in�uenes of the dual porosityapproah and of the boundary onditions on the borehole stability (Setion 6.5). In addi-tion to the stability issue, the study fouses on mass transfer between the pore matrix andthe �ssure network; and on the di�erene in di�usivity ratios between the two avities.Notation: Vetor and matrix quantities are identi�ed by boldfae letters, for example
σ is the total stress. I is the identity matrix. tr, ∇(·) and div denote respetively thetrae, the gradient and the divergene operators.6.2 Governing equationsWithin a dual porosity oneptual framework (Khalili and Valliappan, 1996; Khalili andSelvadurai, 2003), di�erential equations desribing the deformation, hydrauli and heat�ows, and mass transfer through deformable �ssured porous media may be expressed as(the onvention of summation over repeated mute indies i and j is used),
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(6.1)
in whih,

ξp = (cp − cs)/c, ξf = 1− cp/c

app = np cH,p + (ξp − np) cs − apf , apf = −(ξf − nf )(cp − cs)

aff = nf cH,f + (ξf − nf ) cs − apf , apT = (np − ξp) cT − np cT,p

afT = (nf − ξf ) cT − nf cT,f , aTT = ρCp,

Γ = η (pp − pf ), η = ᾱ kp/µp,

ᾱ = 4n(n+ 2)/l2 with n = 1, 2, 3,

(6.2)
where ui is the displaement of the solid phase, pp is the pressure of the pore �uid, pf isthe pressure of the �ssure �uid and the temperature of the mixture, whih is in thermalequilibrium, is denoted T . The subsripts s, p, f refer to the solid skeleton, the pore �uidand the �ssure �uid, respetively.Equation (6.1)1 uses the Lamé onstants of the drained solid λ and µ, the body forevetor Fi, the ompressibility of the mixture c, the ompressibility of the porous bloks cp,282



6. Borehole Stability analysis 6.2. Governing equationsthe ompressibility of the solid grains cs, and the volumetri thermal expansion oe�ientof the solid phase cT . Equations (6.1)2,3 require for eah �uid k = p, f the marosopiporosity nk, the marosopi intrinsi permeability kk, and the dynami visosity µk. Thehydrauli ompressibility cH,k and the thermal ompressibility cT,k are de�ned in eq. (6.11)from the intrinsi density ρk of the �uid k. A linear mass transfer funtion Γ = η (pp− pf )de�ning the exhange of �uid between the porous bloks and the �ssure network is adopted(Barenblatt et al., 1960; Warren and Root, 1963). η is the leakage parameter de�ned byWarren and Root (1963) through the fator ᾱ as a funtion of the average �ssure spaing
l and the number of normal sets of �ssures n. While the linear transfer funtion is easilyamenable to omputational implementation and onsistent with a thermodynami analysis,leading to positive dissipation, it is also known to be inaurate at early times. The nonlinear Vermeulen sheme has been adopted by Zimmerman et al. (1993) in the analysis offratured geothermal reservoirs where, at eah point of the frature ontinuum, a porousblok of spherial shape is attahed: the �uid di�uses in the blok and the net �ow throughits boundary is viewed as a soure/sink term for the frature ontinuum. Lu and Connell(2007) have devised a one-dimensional semi-analytial sheme that provides the time ourseof the transferred mass in a gas reservoir. At early times, while the rate of mass transferin their model tends to vanish, it tends to a onstant for the linear transfer sheme and toin�nity for the Vermeulen sheme. Correspondingly, the mass transferred depends linearlyon time in the linear transfer sheme, but on the square root of time in the shemes ofVermeulen and Lu and Connell, albeit with distint saling fators.Equation (6.1)4 involves the overall heat apaity at onstant strain and �uid pressure
Cp, the overall density ρ, and the overall thermal ondutivity Λ.Equations (6.1) are diret onsequenes of the �eld equations (balane of momentumfor the mixture, balane of mass for eah �uid phase, balane of energy for the mixture),

−divσ = F, (6.3)
−divJk = nk

1

ρk

dkρk
dt

+
1

V

dVk
dt

− ρ̂ktr
ρk
, k = p, f, (6.4)

−divq = T
d (ρS)

dt
, (6.5)where σ is the total stress, F is the body fore vetor, Jk is the �ux of the �uid k and q isthe heat �ux of the mixture. The term ρ̂ktr represents the mass supply to the avity k bythe other avity.The initial on�guration, whih is taken as a referene, represents a state in equilibriumin whih stress, strain, pressures and temperature an be non-zero. Departure from thisreferene state is denoted ∆(.). The shear behavior is aounted for, fully, by the shearmodulus µ of the drained solid skeleton eq. (6.41). The �uid does not reat to shear283



6. Borehole Stability analysis 6.2. Governing equationsstresses. The assoiated relationship links the elasti strain ǫ
el to the e�etive stress σ̄,

trǫel = c
trσ̄

3
, dev ǫel =

dev σ̄

2µ
(6.6)in whih the deviatori parts of the elasti strain and of the e�etive stress are denoted

dev ǫel and dev σ̄, respetively. The thermo-mehanial onstitutive matrix relates theisotropi part of the total stress trσ/3, the volume variations of the �uids ∆Vp/V and
∆Vf/V , and the entropy variation of the solid ∆(ρsSs) to the isotropi part of the totalstrain tr ǫ, the �uid pressures pp, pf and the overall temperature variation ∆T = T − T 0from the initial temperature T 0 by,
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(6.7)
in whih ρs is the apparent density of the solid equal to nsρs, Ss is the intrinsi entropy ofthe solid per unit mass [m2/s2℄ and Cp,s is the intrinsi heat apaity of the solid, at onstantstrain and �uid pressure [J/kg.K℄. ξp and ξf are the e�etive stress parameters, whihde�ne the hydro-mehanial oupling and apf is the oupling term ensuring ompatibility ofdeformation between the two pore systems (Khalili, 2003). The apparent entropy variationof the generi �uid k is expressed separately as,

∆(ρkSk) = −nk cT,k pk + ρk
Cp,k

T
∆T, k = p, f . (6.8)By summing the ontributions of the three phases, the entropy variation for the mixtureintrodues the heat apaity of the porous medium ρCp = ρsCp,s + ρp Cp,p + ρf Cp,f ,
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cT
c
tr ǫ+ apT pp + afT pf +

ρCp

T
∆T. (6.9)The density of the thermo-barotropi �uid k varies with its pressure and temperature,
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, k = p, f , (6.10)in whih the ompressibility cH,k and the thermal expansion cT,k are de�ned as,
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6. Borehole Stability analysis 6.3. Finite element formulationThe di�usion onstitutive relations are desribed by unoupled Dary's law and Fourier'slaw,
Jk = − kk

µk
∇pk, k = p, f ; q = −Λ∇T, (6.12)while the mass transfer uses Barenblatt's quasi-steady relationship (Barenblatt et al., 1960),

ρ̂ktr = (−1)α ρ0 η (pp − pf ) , (6.13)in whih η is the leakage parameter, whih ontrols the mass transfer due to the �uidpressure di�erene between the two avities, and α = 1 for k = p, α = 2 for k = f .This thermo-hydro-mehanial model derives from an e�etive stress onept, eq. (6.7)1,
trσ
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+ ξppp + ξfpf =

trǫ

c
− cT

c
∆T, (6.14)and aounts for hydrauli �uxes within the two avities, overall heat �ux and �uid ex-hanges between the two avities. This model neglets onvetive e�ets, the gravity foreand the oupled di�usive terms between the hydrauli �uxes and the heat �ux. Additionalinformation on the parameters of the model an be found in previous works Khalili andValliappan (1996), Khalili et al. (1999) and Khalili and Selvadurai (2003).6.3 Finite element formulationA mixed �nite element formulation is developed in whih the primary unknowns are thedisplaements u, the pore pressure pp, the pressure of the �ssure �uid pf and the tempera-ture of the porous medium T . To ompat the �nite element formulation, it is instrumentalto introdue the funtions fp, ff and fT de�ned as,

fp = app ṗp + apf ṗf + apT Ṫ + ξp div u̇+ η (pp − pf ) ,
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cT
c

div u̇,

(6.15)in whih the super-imposed dot indiates a partial time derivative.6.3.1 The semi-disrete equationsMultiplying the �eld equations by the virtual �elds δu, δp and δT and integrating by partsover the body V provides the weak form of the problem, for k = p, f ,
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6. Borehole Stability analysis 6.3. Finite element formulationwhere n̂ is the unit outward normal to the boundary ∂V . A generalized Galerkin proedureis adopted and the same interpolation funtions are used for the primary unknowns andfor the variations. The primary unknowns are interpolated, within the generi element e,in terms of nodal values through the interpolation funtions Nu, Np, NT, respetively,
u = Nu u

e; pk = Np p
e
k, for k = p, f ; T = NTTe. (6.17)The surfae loading ontributions of a generi element e are gathered into the vetor
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where Bu is the standard strain-displaement matrix, ǫ = Buu

e. Inserting the total stress(6.7)1 and the hydrauli and thermal �uxes (6.12) in (6.18) yields a non-linear system ofequations inluding- an element ontribution to the balane of momentum for the mixture,
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u, (6.19)- an element ontribution to the balane of mass for the pore �uid,
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(6.20)- an element ontribution to the balane of mass for the �ssure �uid,
−
[
Je
kf

+ ηMe
pp

]
pe
f + ηMe

pp p
e
p

−Me
pp(aff ṗ
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(6.21)- an element ontribution to the balane of energy for the mixture,
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TT Ṫe − T
cT
c

Ce
Tu u̇

e −Re
T. (6.22)Details of the element fore vetors and matries are provided in Appendix F.1. Theontribution of the element e to the global set of equations may be ast in a matrixformat,
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6. Borehole Stability analysis 6.3. Finite element formulationHere K
e is the element sti�ness matrix and D

e the element di�usion matrix,
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, (6.24)
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; (6.25)

while F
e is the element load vetor, and X

e the element unknown vetor,
F
e =

[
Re

u Re
pp

Re
pf

Re
T

]T
, X

e =
[
ue pe

p pe
f Te

]T
. (6.26)All sub-matries of Ke and D

e are listed in Appendix F.2 . The resulting global non-linearsemi-disrete equations (6.18) for the unknown vetor X imply the residual R to vanish,
R = F

surf (S,X)− F
int

(
X,

dX

dt

)
= 0, (6.27)in whih F

int is the vetor of internal fores and F
surf is the vetor of surfae loadingsdenoted olletively by S.6.3.2 Time integrationThe semi-disrete equations are integrated through a generalized trapezoidal rule de�nedby a salar α ∈ ]0, 1]. At step n+ 1, the equations are enfored at time tn+α = tn + α∆t,with ∆t = tn+1 − tn, namely

Rn+α = F
surf (Sn+α,Xn+α)− F

int (Xn+α,Vn+α) = 0. (6.28)In the above relation, we de�ne Z = S,X,V as,
Zn+α = (1− α)Zn + αZn+1, (6.29)and Xn+1 and Vn+1 are approximations of X(tn+1) and (dX/dt)(tn+1) respetively. Thesystem (6.28) is solved iteratively by an expliit/impliit operator splitting, namely atiteration i+ 1,
R
i+1
n+α = F

surf
E (Sn+α,X

i
n+α)− F

int
I (Xi+1

n+α,V
i+1
n+α) = 0, (6.30)287



6. Borehole Stability analysis 6.3. Finite element formulationin whih,
i = 0 : {

X
0
n+1 = Xn + (1− α)∆tVn

V
0
n+1 = Vnfor i ≥ 0 : 




X
i+1
n+1 = Xn +∆t V i+1

n+α = X
0
n+1 + α∆t V i+1

n+1

= X̃
i
n+1 + α∆t∆V

V
i+1
n+1 = V

i
n+1 +∆V

(6.31)
where X̃

i
n+1 is de�ned as the preditor value by,

i ≥ 0 : X̃
i
n+1 = X

0
n+1 + α∆tVi

n+1 (= X
i
n+1 for i > 0). (6.32)and,

X
i(+1)
n+α = (1− α)Xn + αX

i(+1)
n+1 , V

i+1
n+α = (1− α)Vn + αVi+1

n+1. (6.33)The partitioning shown in the above equation (6.30) is motivated by two observations: 1.the dependene of the vetor of external fores on the solution is weak; 2. the vetor ofinternal fores depends linearly on the rate vetor V and non-linearly on the solution X.A number of authors, inluding MTigue (1986), Bear and Corapioglu (1981) and Nairet al. (2004), have pointed out that the hydro-mehanial terms T apT , T afT and T cT /can be negleted in the energy equation (6.22). Indeed, these oe�ients may often beof a smaller magnitude than aTT , partiularly in geotehnial materials. The rates of theprimary variables in the boundary value problems addressed here have typial magnitudes,namely ṗp = ṗf ≈ O(104) [Pa/s℄, u̇ ≈ O(10−6) [m/s℄ and Ṫ ≈ O(10) [K/s℄. Therefore, byusing Table 6.1,
T apT ṗp ≈ O(101)

T afT ṗf ≈ O(100)

T cT /c trǫ̇ ≈ O(101)




<< aTT Ṫ ≈ O(105) [W/m3℄. (6.34)Nevertheless, they are preserved in this formulation for the sake of generality.The global iteration proess uses the full Newton-Raphson proedure as desribedabove. The equation system to be solved is obtained by insertion of the time-integrator(6.31)-(6.33) in the residual (6.30),

R
i+1
n+α = R

i
n+α −C

∗α∆V = 0 ⇔ C
∗ (α∆V) = R

i
n+α, (6.35)in whih the Newton diretion ∆V is sought. The e�etive di�usion matrix C

∗ an beexpressed in terms of the global di�usion matrix D and the global sti�ness matrix K,
C
∗ =
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, (6.36)288



6. Borehole Stability analysis 6.4. Non-isothermal borehole stability analysiswhere it has been reognized that the derivatives of F int
I depend linearly on V so that thesti�ness matrix K, and the di�usion matrix D do not depend on V but only on X.The time step ∆t is inreased from 1 to 1000 s in order to keep the number of alulatedtimes to a reasonable value. The time integration parameter α is taken equal to 2/3orresponding to the Galerkin method that provides unonditional stability and �rst orderof auray, for linear problems and a single pass. Experiene has shown that α equal to2/3 provides better stability than the Crank-Niolson method, α equal to 1/2, in spite ofthe lower auray. With α = 1/2, the pro�le of the solution displays some osillations,partiularly in the viinity of the perturbation (Hughes, 1987a, p. 467). The four-nodeelement (QUAD4) is used to interpolate all unknowns. The number of integration pointsis equal to two (in eah spatial dimension), for all sti�ness matries and all residuals. The�nite element ode has been developed as part of this researh.6.4 Non-isothermal borehole stability analysisThe thermo-hydro-mehanial onstitutive equations are now used to assess the stabilityof a borehole in a heavy-oil reovery ontext, i.e. a thermally stimulated reservoir.To this end, a vertial wellbore drilled in a thermo-poro-elasti fratured medium isonsidered, see Figure 6.1. A unit thikness of the formation (h = 1m) is analyzed inwhih, the inner radius r1 is set to 0.1m and the far-�eld radius r2 is set to 800m torepresent a boundary at a large distane.We denote the initial (prior to drilling) pore and �ssure pressures as p0p and p0f ; and theinitial temperature as T 0. The fully saturated formation is loated at a depth of 1000mand is subjeted to the following vertial gradients of in-situ stresses, �uid pressures andtemperature,

∂σ0z/∂z = −29.0 kPa/m,
∂σ0x/∂z = ∂σ0y/∂z = −23.5 kPa/m,
∂p0p/∂z = ∂p0f/∂z = 9.8 kPa/m,
∂T 0/∂z = 0.05 °C /m. (6.37)The fratured reservoir is idealized as a dual porosity medium with the isotropi materialproperties presented in Table 6.1. Sine both the loading onditions display symmetryabout the vertial axis of the wellbore an axi-symmetri formulation is employed. Toredue omputational time without loss of auray, a graded mesh is used and the sizeof the �nite elements is inreased along the radial diretion (towards r2 in Figure 6.1)aording to a logarithmi rule.The ap rok on the top of the reservoir is onsidered to be rigid, onstraining thevertial deformation of the reservoir. The initial vertial strain is obtained from equation289
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Figure 6.1: Shemati diagram of a vertial borehole subjeted to in-situ stresses (left).2D representation of the problem with an axi-symmetri mesh in the r-z plane (right).(6.7),
ǫ0z = − ν

E

(
σ0x + σ0y

)
+

1

E
σ0z +

cp − cs
3

p0p +
c− cp

3
p0f +

cT
3
(T 0 − T 0)

︸ ︷︷ ︸= 0 , (6.38)
whih represents the deformation experiened by the reservoir prior to drilling.Material parameter Value Unit Ref.Elasti modulus E 9.5 GPa 1Poisson's ratio ν 0.25 - 1Bulk modulus of grains Ks = 1/cs 10 GPa 1Bulk moduli of the �uids Kk = 1/cH,k 4.3 GPa 1Visosities of the �uids µp = µf 10−3 Pa.s 1,2Porous bloks porosity np 0.15 - 1,2Porous bloks permeability kp 5× 10−20 m2 1,2Compressibility ratio cp/c 0.9 - 3Fissure network porosity nf 0.1 × np - 3Fissure network permeability kf 10 × kp m2 3Thermal ondutivity of the porous medium λ 2.65 W/m.K 1Volumetri thermal expansion of the porous medium cT 1.8×10−5 1/K 1,2Volumetri thermal expansion of the �uids cT,p = cT,f 4.5×10−4 1/K 4Heat apaity of the porous medium Cv 837 J/kg.K 1,2Density of the porous medium ρ 1980 kg/m3 1,2Table 6.1: Input parameters representative of a homogeneous isotropi dual porousmedium. 1: Nair et al. (2002), 2: Nair et al. (2004) Gulf of Mexio Shale, 3: Wilsonand Aifantis (1982) and 4: (Kestin, 1968, p. 541).290



6. Borehole Stability analysis 6.4. Non-isothermal borehole stability analysis6.4.1 Boundary onditionsThe boundary onditions at the far-�eld radius r = r2, at the top z = h and at the bottom
z = 0 of the dual porous medium are presented in Table 6.2. To test the stability of theborehole, a onstant mud pressure pw = 12.0MPa is applied. The boundary onditions onthe wellbore radius r = r1 are handled separately aording to two distint on�gurations.

r = r2 r ∈]r1, r2[
z ∈ [0, h] z = h and z = 0

σr(r2, z) = σ0r ǫz(r, z) = ǫ0z

pp(r2, z) = p0p Jp(r, z) = 0

pf (r2, z) = p0f Jf (r, z) = 0

T (r2, z) = T 0 q(r, z) = 0Table 6.2: Boundary onditions for a thermal reovery test with an axi-symmetri meshin the r-z plane.Two types of onditions are envisaged at the dual-porosity wellbore wall r = r1: a fullypermeable boundary ondition on both avities and a semi-permeable boundary onditionin whih the porous bloks are sealed by the drilling mud ake and have zero outward �ux.a) Permeable boundary. The radial stress, the pressures of the �uid in the two avities andthe temperature are onsidered to be totally ontrolled at the wellbore, for any z ∈ [0, h],
σr(r1, z) = σ0r H(−t)− pwH(t),

pp(r1, z) = p0pH(−t) + pwH(t),

pf (r1, z) = p0f H(−t) + pwH(t), (6.39)
T (r1, z) = T 0H(−t) + TwH(t),where H(t) is the Heaviside step funtion (Figure 6.2).b) Semi-permeable boundary. In this ase a mud ake is formed on the borehole wall asthe drilling mud in�ltrates into the permeable medium. Therefore, a pore matrix endowedwith low permeability an be sealed at the inlet by the mud ake. We term this boundaryondition a semi-permeable boundary, sine the sealing proess is applied only to the porousbloks (Figure 6.2). The seond relationship in (6.39) is therefore hanged to,Jp(r1, z) = 0. (6.40)The overall ompressibility of the mixture c and the Lamé onstants of the drainedsolid λ and µ, are dedued from the Young's modulus E and Poisson's ratio ν through theelasti relationships,
c =

3(1− 2ν)

E
, λ =

Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (6.41)291
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Zero Hydraulic fluxFigure 6.2: Sketh of a semi-permeable hydrauli boundary ondition with zero �ux at theporous bloks boundary.6.4.2 Charateristi parametersIn a porous medium with a single porosity, the pressure response to a heating/ooling testis ontrolled by the di�usivity ratio R =
√
αH/αT of the hydrauli di�usivity αH over thethermal di�usivity αT de�ned by MTigue (1986),

αT =
Λ

ρCv
, αH =

kp
µp

2µ(1− ν)

1− 2ν

B2(1 + νu)
2(1− 2ν)

9(1 − νu)(νu − ν)
, (6.42)in whih B is the Skempton oe�ient and νu is the undrained Poisson's ratio,

1

B
= 1 + np

cH,p − cs
c− cs

, νu =
3 ν +B(1− 2ν)(1 − cs/c)

3−B(1− 2ν)(1 − cs/c)
. (6.43)In a dual porosity medium (2P), hydrauli di�usion takes plae in two spatially separatedavities, and as suh two distint di�usivity ratios an be de�ned. For the porous bloks,

R is typially smaller than one, R < 1 with the thermal di�usion being faster than thehydrauli di�usion. Conversely, for the �ssure network R is greater than one, R > 1 inwhih the hydrauli �ow is faster than the heat �ow. Cruial to the understanding ofthe behavior is the fat that the porous bloks and the �ssure network are endowed withopposite harateristis of di�usion dominane.For the sake of omparison, the di�usivity ratio of the assoiated single porous medium(A1P) is also analyzed (Table 6.3). For this ase, the overall porosity is de�ned as nA1P =

np + nf and the overall permeability as kA1P = kp + kf . This single porous medium isendowed with only one unknown pressure as the pressure equilibrium between the two poresystems is assumed to hold throughout. For the assoiated single porous medium (A1P),the thermal di�usivity front is behind the hydrauli di�usion front with RA1P = 2.16,analogous to the �ssure network harateristi.In addition to the di�usivity ratios, the responses of the behavior of the dual porositymixture are srutinized with the help of two other harateristi parameters, namely, aharateristi time t∗ and a harateristi leakage parameter η∗. Both parameters arede�ned with respet to a point of interest rc ∈]r1, r2[ in the viinity of the borehole. Thispoint, whih de�nes the boundary of the failure zone, is hosen as equal to ten times theradius of the borehole, rc = 1m. 292



6. Borehole Stability analysis 6.5. Thermal e�ets on dual porous mediaParameter Pore matrix (2P) (A1P) Fissurenetwork (2P)Porosity, nk (-) 0.14 0.154 0.014Permeability, kk (m2) 5 ×10−20 5.5 ×10−19 5 ×10−19Hydrauli di�usivity, αH (m2/s) 6.97 ×10−7 7.48 ×10−6 9.06 ×10−6Thermal di�usivity, αT (m2/s) 1.6 ×10−6 1.6 ×10−6 1.6 ×10−6Di�usivity ratio, R (-) 0.66 < 1 < 2.16 < 2.38Table 6.3: Comparison between the di�usivity ratios R =
√
αH/αT of the porous bloks,of the �ssure network as parts of dual porosity medium, and of the assoiated singleporosity medium. Note that thermal di�usion is faster than hydrauli di�usion for thepore matrix (2P) while the opposite holds for �ssure network (2P) and assoiated singleporosity analysis (A1P).A harateristi time de�ned as t∗ = (rc − r1)

2/α represents the time that is requiredfor a di�usion front to reah the point of interest rc in whih α is a di�usion parameter.For a region of length (rc − r1), the di�usion time sale distinguishes the early time fromthe late time responses of the system. The analysis of thermo-hydro-mehanial loadingin dual porous media highlights three harateristi times, namely, the end of hydraulidi�usion through the �ssures 8.17×104 s, seond the end of thermal di�usion in the mixture
5.07×105 s, and last the end of hydrauli di�usion through the pores 1.4×106 s. We hosethe harateristi time of the system to be the largest of those three harateristi times;therefore at t = t∗, all the di�usion fronts should have reahed rc.The dimensionless harateristi leakage parameter η∗ is expressed as in Khalili et al.(1999),

η∗ = η
µp r

2
c

kp + kf
(6.44)in whih µp = µf due to thermal equilibrium. For an average frature spaing l equal to0.03 m, one set of fratures n = 1 and the material parameters presented in Table 6.1, theaverage harateristi leakage parameter is equal to η∗av = 1.1× 103 from eq. (6.44).6.5 Thermal e�ets on dual porous mediaNumerial results of thermal e�ets in a fratured reservoir (Table 6.1) are now presentedin the viinity of the borehole. Two sensitivity analyses are arried out: The in�uenes ofthe temperature loading ∆T = Tw − T 0 and of the leakage parameter η on the pressureand stress responses of the system are examined. The variation with time of the e�etivestresses around the borehole are srutinized and a stability analysis is onduted at themost unfavorable time.Results are presented from Figures 6.3 to 6.10 and a ontinuum mehanis onventionis used with ompressive stresses taken as negative.293



6. Borehole Stability analysis 6.5. Thermal e�ets on dual porous media6.5.1 In�uene of temperatureThe e�et of thermal loading on a single porosity model has been analyzed by MTigue(1986) who provides analytial responses to a half-plane subjeted either to a jump of heat�ux or to a jump of temperature. These analytial responses have been used to examinethe response of the �nite element ode in the partiular ase of a single porosity model.In what follows, the e�et of temperature on a fratured medium is presented and thefeatures of the dual porosity approah are ompared with a lassi single porosity model.Both heating and ooling tests are performed; the di�erene between the temperature ofthe �uid at the wellbore Tw and the temperature of the in-situ �uid T 0 is suessivelyset to +50◦C, -50◦C and 0◦C. The leakage parameter is set equal to the average leakageparameter η∗ = η∗av. The results are presented for t = 80 s, whih orresponds to an earlytime response of the system and where the di�erene between the three loadings is thelargest.
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Figure 6.3: Pro�les of pore pressure and �ssure pressure, at time 80 s and for three imposedtemperature hanges ∆t at the borehole. The leakage parameter is set equal to the averageleakage parameter η∗ = η∗av .The pore pressure variation under thermal stimulation is due to a fator of 0.04 betweenthe thermal dilatation of the solid skeleton and that of the �uid (Table 6.1). The generaltrend is that heating, Tw − T 0 = 50◦C, indues a higher pore pressure and therefore alower radial e�etive stress than Tw − T 0 = 0◦C; while ooling, Tw − T 0 = -50◦C, induesthe opposite response (Figure 6.3-6.4). A hot thermal stimulation weakens the wellbore,whereas ooling shields against failure.When onsidering the two avities as part of a dual porous medium, the pressureresponses (2P) are signi�antly di�erent from the assoiated single porosity model (A1P).As expeted, suh behavior is due to the disparity between the di�usivity ratio of theporous bloks Rp = 0.66 and the di�usivity ratio of the �ssure network Rf = 2.38. In theporous bloks, thermal di�usion is faster than hydrauli di�usion and therefore the porepressure is unable to dissipate, ausing inreases or dereases in �uid pressure. On theother hand, in the �ssure network, the thermally indued pressure dissipates as soon as itis generated. 294



6. Borehole Stability analysis 6.5. Thermal e�ets on dual porous mediaThe e�etive stresses, displayed in Figure 6.4 and throughout the paper, are de�nedby Biot's relationship extended to dual porosity and represent the stresses undergone bythe solid skeleton (Khalili and Valliappan, 1996),
σ̄ = σ + ξp pp I+ ξf pf I, (6.45)in whih ξp and ξf are the e�etive stress parameters equal to 0.27 and 0.1, respetively,with the material parameters presented in Table 6.1. Again, ompared with the assoiatedsingle porosity model, the dual porosity approah displays a wider range of e�etive stressvariations related to the pore pressure response (eq. 6.45). The assoiated single porositymodel signi�antly underestimates the hanges of �uid pressures and e�etive stresses.
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Figure 6.4: Pro�les of radial e�etive stress and tangential e�etive stress, at time 80 s andfor three imposed temperature hanges ∆t at the borehole. The leakage parameter is setequal to the average leakage parameter η∗ = η∗av .6.5.2 In�uene of mass transferIn a dual porosity medium, the mass transfer oe�ient in�uenes greatly the pro�les ofthe �uid pressures and the e�etive stresses. A parametri analysis is now onduted toexamine the in�uene of mass transfer and to identify when the dual porosity approahbeomes essentially idential to a lassial single porosity model.The harateristi leakage parameter η∗eq is de�ned as the minimum dimensionless masstransfer to obtain instantaneous hydrauli equilibrium at a time of interest. For t = 80 s,
η∗eq is equal to 1.1× 106. This value was found by trial and error and is spei� to the dualporous medium haraterized in Table 6.1. Note that η∗eq is a time-dependent parameter.The in�uene of mass transfer is illustrated by seleting three representative valuesof the leakage parameter: η∗/η∗eq = 0 whih represents no mass transfer, η∗/η∗eq = 0.001whih represents a low mass transfer, and η∗/η∗eq ≥ 1 whih orresponds to instantaneoushydrauli equilibrium. The leakage parameter is related to the average �ssure spaingand to the porous bloks permeability, and hene represents the ability of the dual porousmedium to transfer �uid mass from one avity to the other. In this setion and hereafter,only heating tests ∆T = + 50◦C will be onsidered.295



6. Borehole Stability analysis 6.5. Thermal e�ets on dual porous mediaThe sensitivity of the �uid pressures to the leakage parameter is presented in Figure6.5 for two distint types of boundary ondition: (left) permeable boundary and (right) asemi-permeable boundary. A omparison with an assoiated single porous medium is alsopresented.In general, the pore pressure inreases due to a ombination of low permeability andhigher thermal expansion for the �uid than for the solid, whereas the �ssure pressuredissipates rapidly due to a higher permeability. For η∗/η∗eq = 0 the two �uid �elds arede-oupled and no mass transfer ours. For η∗/η∗eq = 0.001 moderate mass transfer takesplae as the pore pressure dissipates into the �ssures. Consequently, the pore pressure peakin the porous bloks is lower than the ase for η∗/η∗eq = 0; and the pressure in the �ssurenetwork is higher than the assoiated single porosity response. Finally, for η∗/η∗eq ≥ 1 themass transfer between the pores and the �ssures is instantaneous and the two avities arein hydrauli equilibrium. Note that this equilibrium pressure is not equal to the �ssurepressure when η∗/η∗eq = 0, but is equal to the pressure response of the assoiated singleporous medium. For η∗/η∗eq ≥ 1, three urves of the pore pressure, the �ssure pressure andthe pore pressure of the assoiated single porosity model are superposed.For a permeable boundary, the pore pressure maximum is loated a short distane awayfrom the wellbore wall due to a �ux inward to the formation Jp ≥ 0 for radii larger than
r/r1 ≥ 1.2 and a �ux outward to the wellbore Jp ≤ 0 for radii smaller than r/r1 ≤ 1.1.For a semi-permeable boundary, the maximum is loated at the borehole itself due to the�ux of the porous bloks Jp = 0, whih indues a zero pore pressure gradient ∇pp = 0at r = r1. In addition, the magnitude of the pore pressure maximum is higher for thesemi-permeable boundary than for the permeable boundary sine the pore �uid an onlydissipate internally and through mass transfer. On the other hand, the pore pressure peakis smaller for the permeable boundary due to the diret dissipation the pressure throughthe wellbore wall.Permeable boundary Semi-permeable boundary
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Figure 6.5: Pro�les of pore pressure and �ssure pressure, at time 80 s, for a thermal loadingequal to Tw − T 0 = 50◦C. 296
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Figure 6.6: Pro�les of e�etive radial stress and e�etive tangential stress, at time 80 s,aounting for a permeable boundary. The thermal loading is equal to Tw − T 0 = 50◦C.
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Figure 6.7: Same as Figure 6.6 for a semi-permeable boundary on the porous bloks.The sensitivity of the e�etive stresses to mass transfer oe�ient is illustrated inFigures 6.6 and 6.7. The ompressive e�etive radial stress experienes a signi�ant dropfor η∗/η∗eq = 0, whih tends to diminish for high mass transfer η∗/η∗eq ≥ 1. By omparingFigures 6.6 and 6.7, the semi-permeable boundary is seen to introdue a greater redutionin e�etive radial stress than the permeable boundary. For a low leakage parameter (loseto zero) the e�etive radial stress shifts from ompressive to tensile. The positive e�etof the ompressive mud pressure applied at the borehole is annihilated by the thermallyindued inrease in pore �uid pressure.Mass transfer from the porous bloks to the �ssure network inreases the dissipation ofthe pore pressure and onversely dereases the dissipation of the �ssure pressure. This inturn inreases the apparent di�usivity ratio of the pore matrix; and dereases the apparentdi�usivity ratio of the �ssure network. For the intermediate leakage parameters η∗/η∗eq ≤
0.1, the dual porosity approah is the only one whih an represent orretly the redutionin the e�etive radial stress indued by the pore pressure response.297



6. Borehole Stability analysis 6.5. Thermal e�ets on dual porous media6.5.3 Time pro�lesThe variation with time of the �uid pressures gives an indiation of the time sale at whihthe dual porosity model has the largest in�uene on the e�etive stress response. Thepressure and stress pro�les are shown for three representative time intervals; from t = 6 sat very short time t/t∗ = 4.2 10−6, to t = 80 s at short time t/t∗ = 5.5 10−5 and �nally
t = 800 s at intermediate time t/t∗ = 5.5 10−4. Beause the harateristi time t∗ is relatedto the slowest di�usion phenomenon (and does not aount for mass transfer e�ets), theratio t/t∗ remains small even for the intermediate time. Fousing on a permeable boundaryat the wellbore and on a heating test Tw − T 0 = 50◦C, the results are presented for twovalues of the dimensionless leakage parameter representing an in�nite frature spaing,
η∗ = 0, and an average frature spaing equal to 0.03m, η∗ = η∗av.Over time, the pore pressure front propagates into the formation away from the boreholewall with a diminishing pressure peak (Figure 6.8). As expeted, the larger the leakageparameter, the faster the dissipation of the pore pressure. Contrary to the pore pressurebehavior, the pressure in the �ssure network dissipates more slowly with an inrease inthe leakage parameter. Note that for the very short time response (t = 6 s), average masstransfer does not play a signi�ant role in the �uid pressure response of the system andpore and �ssure �uid pressures, for η∗ = 0 and η∗ = η∗av , di�er little.

1 1.2 1.4 1.6 1.8 2
8

12

16

20

24

28

32

Radial distance : r/r1

P
or

e
p
re

ss
u
re

(M
P
a)

 

 
t = 6 s

t = 80 s
t = 800 s

η∗ = 0
η∗ = η∗av

1 1.2 1.4 1.6 1.8 2
8

10

12

14

16

18

Radial distance : r/r1

F
is

su
re

p
re

ss
u
re

(M
P
a)

 

 

t = 6 s

t = 80 s

t = 800 s

η∗ = 0
η∗ = η∗av
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Figure 6.9: Pro�les of e�etive radial stress and e�etive tangential stress, for η∗ = 0 and
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J2 for a �xed timealong the radial diretion. The mean e�etive stress Sp and the mean shear stress √
J2are, respetively, equal to,

Sp = − σ̄rr + σ̄θθ + σ̄zz
3

, (6.46)and,
J2 =

1

6

[
(σrr − σθθ)

2 + (σθθ − σzz)
2 + (σzz − σrr)

2
]
+ σ2rθ + σ2rz + σ2θz. (6.47)To perform the borehole ollapse analysis, the Druker-Prager riterion (Druker andPrager, 1952) is hosen to represent the failure envelope,

√
J2 = 3ASp +D, (6.48)299



6. Borehole Stability analysis 6.5. Thermal e�ets on dual porous mediawhere A andD are positive material onstants. If the Druker-Prager yield surfae insribesthe Mohr-Coulomb yield surfae, these onstants an be related to a frition angle φ anda ohesion C by,
3A =

2 sin φ√
3 (3− sinφ)

, D =
6 C cosφ√
3 (3− sinφ)

. (6.49)Figure 6.10 shows the stress path, along the dimensionless radius r/r1, for two distintboundary onditions at the wellbore: (left) permeable boundary and (right) semi-perme-able boundary. The response of a dual porous medium (2P) with an average mass transferoe�ient η∗ = η∗av is ompared with an assoiated single porous medium (A1P). Theresults are presented at t = 6 s whih orresponds to the maximum redution in the e�etiveradial stress (Figure 6.9).The failure riterion line is alibrated to interset the e�etive stress path representa-tive of the dual porosity approah with a permeable ondition on the wellbore; as a �rstapproximation, the following values A = 0.1 and D = 8 MPa are assumed to desribe thefailure envelope, yielding a frition angle φ of 38◦and a ohesion C of 7 MPa.The objetive is to evaluate if the semi-permeable ondition, modeled with the dualporosity approah and ompared with the assoiated single porosity approah, a�ets thestability of the borehole positively or negatively.Permeable boundary Semi-permeable boundary
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Figure 6.10: E�etive stress path along dimensionless radial diretion r/r1, in the Meanshear stress √
J2 - Mean e�etive stress Sp plane, for two distint boundary onditions.The results are presented at time 6 s and with an average leakage parameter η∗ = η∗av .For a permeable boundary at the wellbore, the two stress paths at r/r1 = 1 are loatedbelow the failure riterion. At a distane from the wellbore wall, the (A1P) e�etivestress path remains inside the failure envelope. In ontrast to the (A1P) response, the(2P) e�etive stress path intersets the failure line and penetrates slightly into the failuredomain. On the other hand, the (2P) stress path of the semi-permeable boundary onditionis loated outside the failure envelope for r/r1 ≤ 1.1. As expeted, the semi-permeableboundary indues a stronger ollapse potential at the wellbore wall.300



6. Borehole Stability analysis 6.6. ConlusionWhen aounting for a semi-permeable boundary ondition, the e�etive radial stress isgreatly redued by the pore pressure in the viinity of the wellbore (Figure 6.7) whereas thee�etive tangential stress remains essentially non a�eted. Consequently, the mean shearstress √
J2 is signi�antly inreased. In addition, the magnitude of the e�etive radialstress is lower for a semi-permeable boundary ondition, whih means a lower magnitudeof the mean e�etive stress.Figure 6.10 highlights that in the dual porosity model, whih ontains few �ssures andtherefore uses a low leakage parameter oe�ient, there is a greater potential for failurethan in the assoiated single porosity model. By onsidering a single porosity model insteadof taking the dual porosity approah, it is possible that inorret drilling mud pressure willbe alibrated and unexpeted borehole failure will result. Finally, the semi-permeableboundary signi�antly inreases the potential of failure of the borehole.6.6 ConlusionDi�usion mehanisms and mass transfer between materials with two porosities have beenstudied in the ontext of heavy-oil reovery with thermal stimulation. A model desribingthe behavior of poroelasti dual porous media has been extended to aount for thermalloading in a previous work (Khalili and Selvadurai, 2003). The fully oupled thermo-hydro-mehanial system has been spei�ed for mixtures that are in thermal equilibrium and fordi�usion dominated media. The governing equations have been presented to haraterizethermo-hydro-mehanial oupled behavior. A �nite element approximation has been out-lined and the nonlinear �eld equations integrated via an impliit time marhing shemeand solved using a full Newton-Raphson proedure. This �nite element analysis has beenemployed for a vertial borehole problem.A parametri analysis has been developed to study the in�uene of the leakage pa-rameter on the pore pressure, the �ssure network pressure and the e�etive stresses inthe viinity of the wellbore. The rise in the thermally indued pore pressure is more pro-nouned when the leakage parameter is low, representing a sparsely �ssured media; whereasthe response of the �ssure network pressure is indued by the pore pressure dissipation andis therefore more pronouned for high leakage parameter. The e�etive stress is mostlyontrolled by the pore pressure, whih indues a redution in ompressive e�etive stressfor low leakage parameter values.The highest redution in the ompressive e�etive stress ours at a very short timeafter the loading, when the mass transfer has not resulted in the dissipation of exess porepressure into the �ssure network. Below a threshold value of ompressive e�etive stress,ollapse of the borehole ours. It is also shown that dual porosity media display a higherfailure potential ompared with an assoiated single porosity medium. In addition, a semi-permeable boundary ondition on the porous matrix greatly inreases the failure potentialompared with a permeable boundary ondition at the wellbore lining.Consequently, the single porosity approah underestimates the failure potential of �s-sured reservoirs. A onsistent dual porosity approah is required for an aurate predition301



7. The SUPG methodof the potential for thermally indued wellbore failure in fratured porous media.
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Chapter 7Thestreamline-upwind/Petrov-GalerkinmethodThe phenomenon of fored onvetion, also alled advetion (see Remark 7.1), typiallyidenti�ed by the �uid veloity multiplied with the gradient of the temperature v · ∇T (orthe enthalpy or the onentration), requires srutiny and hallenges the usability of nu-merial methods. Methods being suessfully applied in di�usion-dominated �ows, whereno onvetion is present, may totally fail when they are applied to onvetion-dominatedproblems. This is partiularly the ase with the widely used Bubnov-Galerkin methods.Using Bubnov-Galerkin methods for the approximation of onvetion-di�usion di�erentialequations may ause spurious numerial osillations.In linear problems, suh as heat ondution problems, the appliation of the Bubnov-Galerkin method leads to symmetri e�etive di�usion matries. In these ases, it anbe shown that the solutions possess the `best approximation' property (Brooks andHughes, 1982), that is the di�erene between the �nite element solution and the exatsolution is minimised with respet to a ertain norm. On the other hand, the `best-approximation' property is lost for non-symmetri e�etive di�usion matries desribingoupled onvetion-ondution problems. As a result Bubnov-Galerkin methods appliedto these problems are far from `optimal' and even violate basi physial priniples like theentropy ondition (Hirsh, 1988).While several Eulerian methods have been proposed to ure theses spurious osillations,for example the Galerkin / Least Squares method (GLS), the Galerkin / Gradient LeastSquares method (GGLS) and the Unusual Stabilised Finite Element Method (USFEM); thestabilisation sheme de�ned by the Streamline-Upwind/Petrov-Galerkin (SUPG) methodand introdued by Brooks and Hughes (1982) is preferred. This method adds perturbationswhih are formulated in terms of modi�ations of the Galerkin test funtions NT , that isthe method does no require the introdution of additional test funtions. This featuresimpli�es greatly the implementation of the SUPG method and is most probably the main303



7. The SUPG method 7.1. Presentation of the SUPG methodreason for the wide suess of the SUPG method. In addition, the SUPG method has beenextensively studied and is well desribed in the literature.Remark 7.1. De�nitions of the terms advetion and onvetion. In this work the term ad-vetion is used as synonymous with onvetion. However, in some disiplines a distintionremains:� Many engineers prefer to use the term onvetion to desribe transport by ombinedmoleular and Eddy di�usion (turbulent di�usion), and reserve the usage of the termadvetion to desribe transport with a general (net) �ow of the �uid (like in river orpipeline) (Suthersan, 1997, p. 13).� In the oean and atmospheri sienes, advetion is understood as horizontal move-ment resulting in transport `from plae to plae', while onvetion is a vertial `mixing'(Randall, 2000, p. 648).In Setion 7.1, the SUPG method is brie�y introdued and the most important featuresof the method are highlighted. A speial attention is given to the struture of the weakformulation.In Setion 7.2, omparison between analytial solutions and �nite element responses forsimple problems are illustrated. One-dimensional steady state, one-dimensional transient,two-dimensional steady state and two-dimensional transient di�usion-onvetion problemsare onsidered. The optimal stabilisation parameter is sought for eah problem. Fur-thermore, stability requirements (or the absene of) for di�usion-onvetion problems areoutlined for various time marhing sheme.In Setion 7.3, the mehanisms of spurious osillations and the limitations of the SUPGmethod are summarised. Appliations in a porous medium ontext are exposed and thedisontinuity apturing method (DCM) is introdued to smoothly resolve sharp layers.The work presented in this hapter is restrited to di�usion-onvetion problems unou-pled from the hydrauli and the mehanial ontributions. Simulations of thermo-hydro-mehanial proesses in Chapter 8 whih involve oupled di�usion-onvetion �ows willapitalise upon the lessons learned in the elementary instanes onsidered here.7.1 Presentation of the SUPG methodThe main harateristis of the SUPG method are introdued with an unoupled di�usion-onvetion problem as example. The method originates from the upwind �nite di�erenesmethod whih uses the arti�ial di�usion idea. A `lassial' formulation of the onvetion-di�usion problem is then presented and weak formulations are displayed to enhane theterms whih requires stabilisation. The method to determine the stabilisation parameteris summarised to outline the dependeny of this parameter on the problem under onsid-eration and on the hosen shape funtions. The method taps on the work of Brooks and304



7. The SUPG method 7.1. Presentation of the SUPG methodHughes (1982) and the formalism of (Fries and Matthies, 2004), and we should refer tothem for more detailed explanations.7.1.1 Introdution of the SUPG methodHere, only the main struture of the SUPG method is shown. The starting point is ageneri partial di�erential equation of a one-dimensional di�usion-onvetion problem forthe unknown T ,
LT − f = 0, with LconvT = v∇T, (7.1)where L is a generi di�erential operator, f is the soure term, Lconv is the onvetive partof the whole operator L and v is the onvetive veloity. The weak form assoiated with(7.1),
∫

V
δT (LT − f) dV , (7.2)introdues the weight funtion δT . The �nite element method requires to onstrut �nitedimensional approximations of the unknown T and of the weighting funtion δT , whihshould be denoted T h and δT h, respetively. The supersript h refers to the disretisation ofthe domain V with respet to a harateristi length sale h. Nevertheless, this importantnotation is dropped in this setion to larify the notation.Let NT be the interpolation funtions hosen to interpolate the unknown temperature

T , and WT the interpolation funtions to interpolate the variation orresponding to thetemperature δT ,
T = NT Te,

δT = WT δTe.
(7.3)By summing the elementary ontributions over the total number of elements nel, thesemi-disretised form of the problem is,

nel∑

e=1

[δTe]T
∫

V e

WT
T (LT − f) dV e = 0. (7.4)Choosing the weighting funtions equal to the shape funtions : WT = NT leads to aBubnov-Galerkin method also alled Galerkin method. Any method for whih WT 6= NTis alled a Petrov-Galerkin method. The denomination of the SUPG method implies that

WT is hosen di�erently from NT . The standard Bubnov-Galerkin test funtions NT are305



7. The SUPG method 7.1. Presentation of the SUPG methodmodi�ed by a streamline upwind perturbation whih does not require the introdution ofadditional test funtions,
WT = NT + τ Lconv NT ,

= NT + τ v∇NT , (7.5)where Lconv is the onvetive part of the whole operator L applied to the vetor NT ,and τ is the stabilisation parameter that weights the perturbation. NT is a ontinuousweighting funtion and τ v ∇ NT is the disontinuous streamline upwind ontribution.Both ontributions are assumed to be smoothed on the element interiors. Note that thestabilisation ontribution is restrited to the element interiors,
nel∑

e=1

[δTe]T
∫

V e

(NT + τLconv NT )
T (LT − f) dV e = 0. (7.6)Cruially, the perturbation τ Lconv NT applies to the residual form of the di�erentialequation, that is to all the terms of the weak form. This proedure ensures that onsistenyis enfored from the beginning in that the exat solution also ful�lls the stabilised weakform exatly (Fries and Matthies, 2004).7.1.2 Origin of the SUPG method: the arti�ial di�usionThe SUPG method originates from the upwind �nite di�erene methods, whih have beendesigned to prelude wiggles. Kelly et al. (1980) introdued a `balaning dissipation' inwhih additional di�usion α̃T [m2/s℄ is added to the one-dimensional problem,

LT = v∇ T − (αT + α̃T ) div (∇ T ) , (7.7)where α̃T → 0 as the size of the linear element h→ 0. This upwind method is onstrutedby adding the `proper' amount of arti�ial di�usivity α̃T to the physial di�usivity, and aonventional (Bubnov-)Galerkin �nite element disretisation is employed,
nel∑

e=1

[δTe]T
∫

V e

WT
T

(
v
∂T

∂x
− (αT + α̃T )

∂2T

∂x2

)
dV e = 0, (7.8)where the weighting funtions and the shape funtions are equal WT = NT . The diver-gene theorem is used on the two di�usion terms,306



7. The SUPG method 7.1. Presentation of the SUPG method
nel∑

e=1

[δTe]T
[∫

V e

NT
Tv
∂T

∂x
dV e +

∫

V e

αT
NT

∂x

T∂T

∂x
dV e −

∫

∂V e

αTN
T
T

∂T

∂x
.n̂dSe

+

∫

V e

α̃T
NT

∂x

T∂T

∂x
dV e −

∫

∂V e

α̃TN
T
T

∂T

∂x
.n̂ dSe

]
= 0, (7.9)in whih the boundary term of the `arti�ial di�usivity' vanishes by onsidering the stabil-isation ontribution only on the element's interior:

nel∑

e=1

[δTe]T
∫

∂V e

α̃TN
T
T

∂T

∂x
.n̂ dSe = 0. (7.10)Then the `arti�ial di�usivity' term is transformed into a stabilised `onvetive' term.For a non-zero salar �uid veloity v, eq. (7.9) beomes,

nel∑

e=1

[δTe]T

[∫

V e

(
NT +

α̃T

v

∂NT

∂x

)T

v
∂T

∂x
dV e +

∫

V e

αT
NT

∂x

T∂T

∂x
dV e

−
∫

∂V e

αTN
T
T

∂T

∂x
.n̂dSe

]
= 0. (7.11)One an interpret this arti�ial di�usion method as a stabilisation of the onvetiveterm, where the test funtions of the onvetive term beome (NT + α̃T /v∇NT ) insteadof only NT .This tehnique may be interpreted as `balaning di�usion', in that it balanes the under-di�use response of the Galerkin treatment. In one-dimension, when the arti�ial di�usivity

α̃T is equal to v2τ the solution is nodally exat (Brooks and Hughes, 1982). Problemshave been noted with the treatment of soure terms, transient behaviour, quadrati shapefuntions and with the generalisation to multi-dimensions: in these ases, pronouneddi�usion orrupts the true solution; in the latter ase, this has manifested itself by a so-alled spurious rosswind di�usion e�et (Brooks and Hughes, 1982). The reason for thise�et is the inonsisteny of the above equation: the exat solution does not satisfy theweak form of the problem with arti�ial di�usion.7.1.3 Standard di�usion-onvetion formulationsThe extension of the SUPG method from one-dimensional steady di�usion-onvetion prob-lems to more omplex problems, suh as transient problems, requires srutiny; in fat the307



7. The SUPG method 7.1. Presentation of the SUPG methodstabilisation is not restrited to the onvetive term. The standard di�erential operatorfor the one-dimensional steady di�usion-onvetion equation with no soure term, f = 0,writes,
LT = v∇ T − αT div (∇ T ), with LconvT = v∇ T. (7.12)With the SUPG method (Brooks and Hughes, 1982; Hughes and Brooks, 1979), theweak form of eq. (7.12) beomes,
nel∑

e=1

[δTe]T
[∫

V e

NT
T

(
v
∂T

∂x
− αT

∂2T

∂x2

)
dV e+

∫

V e

(
τ v

∂NT

∂x

)T(
v
∂T

∂x
− αT

∂2T

∂x2

)
dV e

]
= 0. (7.13)If the unknowns are interpolated with linear isoparametri shape funtions, it implies that

∂2T/∂x2 = 0 on the element interior. As the stabilisation (τ v ∂NT /∂x) is only requiredon the element interior, eq. (7.13) redues to,
nel∑

e=1

[δTe]T
[∫

V e

NT
T

(
v
∂T

∂x
− αT

∂2T

∂x2

)
dV e+

∫

V e

(
τ v

∂NT

∂x

)T(
v
∂T

∂x

)
dV e

]
= 0. (7.14)In this ase, it is seen that the streamline upwind modi�ation does not a�et theweighting of the di�usion term. Note that equations (7.11) and (7.14) are equivalent for,

α̃T = v2 τ. (7.15)First order derivatives, however, do not only our in onvetive terms, but also in time-dependent terms ∂T/∂t of non-stationary problems. The standard di�erential operator forthe one-dimensional unsteady di�usion-onvetion equation with no soure term, f = 0,is,
LT =

∂T

∂t
+ v∇ T − αT div (∇ T ), with LconvT = v∇ T. (7.16)Then, in general the same stabilisation as for onvetive terms has to be implementedfor the transient term, whih leads to the following weak form when using the SUPG308



7. The SUPG method 7.1. Presentation of the SUPG methodmethod and linear shape funtions,
nel∑
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[δTe]T
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V e
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+
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)T(
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+
∂T

∂t

)
dV e

]
= 0. (7.17)Based on this logi, all the �rst order derivatives of the oupled di�usion-onvetionformulations should have a similar stabilised weak form.7.1.4 Weighting the modi�ation : the stabilisation parameter τThe stabilisation parameter τ is hosen so that the solution to the one-dimensional steadystate di�usion-onvetion problem be exat at all nodes. The solution proeeds in twosteps: (1) The weak form of the one-dimensional steady di�usion-onvetion problem isfurther disretised in spae. (2) The exat solution of the problem and the linear shapeand test funtions (for a regular mesh) are ombined to express the stabilisation parameter

τ .(1) The starting point is the weak form of the one-dimensional steady di�usion-onvetionproblem eq. (7.14),
nel∑

e=1

[δTe]T
[∫
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NT
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dV e+
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]
= 0. (7.18)The spatial disretisation of the solution T = NT Te through the shape funtion vetor

NT leads to,
nel∑
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]
Te = 0. (7.19)(2) The exat vetor of element nodal values Tex is known for this problem (Fries andMatthies, 2004) to within two element onstants C1 and C2,

Tex = C1 exp(v x

αT

)
+ C2. (7.20)309



7. The SUPG method 7.1. Presentation of the SUPG methodwhere x is the vetor onstraining the nodal positions. By replaing eq. (7.20) into (7.19),the stabilisation parameter τ an be rearranged to,
τ = −

nel∑
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Tex

, for v 6= 0. (7.21)
The seond term of the numerator is expanded by use of the divergene theorem,
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Tex =
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]
Tex, (7.22)in whih the boundary term anels out on the element's interior, for a one-dimensionalproblem with linear interpolation funtions. Hene, the stabilisation parameter τ reduesto,

τ = −
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(7.23)
τ = −
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− αT
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, for v 6= 0. (7.24)

From there, one an evaluate the remaining integrals expliitly for linear shape andtest funtions and a regular mesh. The details are presented in Fries and Matthies (2004,310



7. The SUPG method 7.2. Validation of the SUPG methodp. 22). The result is,
τ =

h

2v

sinh

(
vh

αT

)

cosh

(
vh

αT

)
− 1

− αT

v2
, for v 6= 0

=
h

2v

(
cothPeg −

1

Peg

)
[s], for v 6= 0, (7.25)where Peg is the grid Pélet number,

Peg =
vh

2αT
, for αT 6= 0, (7.26)and h is the point spaing. Consequently, the stabilisation parameter (7.25) required toobtain a nodally exat solution for one-dimension steady di�usion-onvetion problems,with linear elements and a regular node distribution, is known. Notie however that it isnot guaranteed that this stabilisation parameter provides a nodally exat solution for one-dimensional transient di�usion-onvetion problems or for two-dimension steady di�usion-onvetion problems (with bilinear shape funtions). In fat, in general, it doesn't.The stabilisation parameter τ = h/2v is sometimes alled the onvetive time or theintrinsi time whih represent the time for a partile to travel the distane h/2 at a speedequal to v for onvetion-dominated ases, that is (coth Peg − 1/Peg) → 1 for Peg > 10(see Figure 7.1).Results for one-dimensional ases are very muh satisfying. The generalisation to mul-tidimensional problems remains deliate and should be adapted to eah appliation. Theoptimal hoie of the stabilisation parameter τ for more omplex problems remains anopen question.7.2 Validation of the SUPG methodThe implementation of the SUPG method requires the modi�ation of the weighting fun-tions and therefore the introdution of the stabilisation parameter τ or of the arti�ialdi�usivity α̃T (Setion 7.1). The arti�ial di�usivity α̃T is preferred to the stabilisationparameter τ sine no non-zero ondition on v is required for α̃T . However both writings areorret and desribe the same stabilisation to within v2, see eq. (7.15). The denominationof arti�ial di�usivity is misleading sine the SUPG method is improved upon the upwindmethod. However the denomination is kept owing to the dimensions.The e�etive di�usion matrix C

∗ is now dependent on the �uid veloity v in one-dimension or v = [vx,vy℄ in two-dimension at eah time and at eah iteration: the problem311



7. The SUPG method 7.2. Validation of the SUPG methodto be solved is highly non-linear. Additional �nite element details are given in Remarks 7.2and 7.3, respetively on the Gauss quadrature and on the the �uid veloity used throughout.Remark 7.2. In this work, a two-by-two Gauss quadrature is used for all weighting andshape funtions, inluding the one de�ned for the SUPG method. Note that the samequadrature rule is used for the residual and the e�etive di�usion matries, inluding theonvetive ontributions. The details regarding the implementation of the onvetive on-tributions are gathered in Setion 8.1. Finally, all meshes are disretised with bilinearquadrilateral elements (Q4).Remark 7.3. The �uid veloity is denoted v in 2-dimension or v in one-dimension. Inthis hapter, the �uid veloity is a given value, onstant in time and uniform in spae.However in Chapter 8, the �uid veloity will be alulated from the balane of mass of theappropriate �uid and will lose the onstant in time and uniform in spae properties.For a single phase medium omposed of one �uid, simple problems are presented inturn in whih the �nite element response is systematially ompared with the appropriateanalytial solution (if appliable). The ability of the SUPG method to ure spurious wigglesis demonstrated for: (1) one-dimensional steady state di�usion-onvetion problems, (2)one-dimensional transient di�usion-onvetion problems, (3) two-dimensional steady statedi�usion-onvetion problems with �ow skew to the mesh and (4) two-dimensional transientdi�usion-onvetion problems with �ow skew to the mesh.Furthermore, the optimum stabilisation parameters τ (or the arti�ial di�usivities α̃T )are sought for eah ase. Extensions from the exat form obtained for one-dimensionalsteady state di�usion-onvetion problems are proposed based on two ideas: i. the addi-tion of a transient ontribution to damp the stabilisation at early times so as to addresstransient problems and ii. the segregation of the onvetion ontributions depending ontheir diretions.7.2.1 One-dimensional steady state di�usion-onvetion problemsFollowing the work of Brooks and Hughes (1982), the auray of the SUPG method isillustrated with a one-dimensional steady state problem. The implementation of the SUPGmethod in the �nite element ode developed as part of this researh is also validated.Consider the one-dimensional di�usion-onvetion equation,
αT div (∇ T ) = v∇ T, with αT =

Λ

ρ Cv
, (7.27)in whih v is the veloity, T the temperature and αT the thermal di�usivity of the �uid.Both v and αT are assumed onstant and positive. The problem of �nding T satisfyingeq. (7.27) and the following boundary onditions,312



7. The SUPG method 7.2. Validation of the SUPG method
T = T0 at x = 0,

T = TL at x = L;
(7.28)is solved by the exat solution,

ϕ(x) =
T (x)− T0
TL − T0

=

1− exp

(
Pe x

L

)

1− exp (Pe)
, (7.29)where Pe is the global Pélet number,

Pe =
v L

αT
. (7.30)For a one-dimensional ase, with onstant data, the SUPG solution with a ontinuousspae disretisation will onverge to the solution if the arti�ial di�usivity α̃T from eq.(7.15) and (7.25) is equal to,

α̃T =
v h

2
ξ̃(Peg), with ξ̃(Peg) = coth Peg −

1

Peg
, and Peg =

v h

2 αT
, (7.31)in whih h is a harateristi length of the element (point spaing) and Peg is the gridPélet number whih determines whether the problem is loally 1 onvetion-dominated ordi�usion-dominated (Note the division by two ompared with the global Pélet number).The limits of the funtion ξ̃(Peg) are,

Peg → ∞ onvetion-dominated ξ̃(Peg) → 1,

Peg → 0 di�usion-dominated ξ̃(Peg)/Peg → 1/3.
(7.32)In an e�ort to improve omputational e�ieny, Brooks and Hughes (1982) introduedtwo alternative approximations to the funtion ξ̃ (Figure 7.1): the doubly asymptotiapproximation,

ξ̃(Peg) =

{
Peg/3, −3 ≤ Peg ≤ 3,

sgn Peg, |Peg| > 3;
(7.33)and the ritial approximation,1The global Pélet number informs on the dominane of onvetive heat transport over di�usive heattransport for a domain of length L. Similarly, the grid Pélet number informs on the dominane ofonvetion over di�usion for a sub-domain/element of length h/2. Therefore, the dominant heat transportmehanisms may be di�erent depending on the sale under onsideration.313



7. The SUPG method 7.2. Validation of the SUPG method
ξ̃(Peg) =





−1− 1/Peg, Peg < −1,

0, −1 ≤ Peg ≤ 1,

1− 1/Peg, 1 < Peg.

(7.34)
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Figure 7.1: The optimal upwind funtion is approximated by two simpli�ations: the dou-bly asymptoti approximation and the ritial approximation, Brooks and Hughes (1982,p. 214).7.2.1.1 Simulation results: The stabilisation funtion ξ̃To ure the unwanted wiggles, the stabilisation funtion ξ̃ is implemented in three di�erentways as illustrated in Figure 7.1. Finite element responses using (7.31), (7.33) and (7.34)for a grid of 10 elements are ompared with the exat solution eq. (7.29) in Figure 7.2.The onvetive terms are treated impliitly:a) The optimal rule solution gives a nodally exat solution.b) The �nite element response without the use of the SUPG method is easily seen - spuriousosillations, or `wiggles', our at grid Pélet greater than 1, rendering the solutionuseless.) The doubly asymptoti approximation is under-onvetive (or over-di�usive) for a gridPélet number greater than 1, as if the veloity was underestimated.d) The ritial approximation is over-onvetive for a grid Pélet greater or equal to 1,that is the in�uene of the veloity is overestimated.These results validate the implementation of the popular SUPG method in the �niteelement ode developed as part of this thesis for one-dimensional unoupled problems. Inthe following work, the optimal rule will be preferred to the two alternative formulationsproposed earlier to ensure a good auray on the �nite element results.314
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Figure 7.2: Relative temperature pro�le along the horizontal distane x. Comparison ofthe various stabilisation funtions ξ̃ with the exat solution eq. (7.29). While the op-timal rule a) gives a nodally exat solution, the doubly asymptoti approximation ) isunder-onvetive and the ritial approximation d) is over-onvetive. b) The ompari-son between �nite element solutions with and without the SUPG method illustrates thespurious osillations and the e�ieny of the method for one-dimensional problems.7.2.1.2 Impliit versus expliit treatment of onvetionWhen the onvetive term is treated impliitly, eq. (4.69), the onvergene of the residualis very good for the optimal rule, the double asymptoti approximation and the ritialapproximation. Conversely, when the onvetive term is treated expliitly, eq. (4.72),the onvergene of the residual fails for grid Pélet numbers Peg greater than 0.3. Thisthreshold was obtained by performing tests on a one-dimensional, 10 meters length mesh,omposed of 10 elements, equally distributed.Sine the expliit treatment of the onvetive term leads to divergene, for one-dimensional problems endowed with an arti�ial di�usivity α̃T leading to a nodally exatapproximation, the expliit treatment of the onvetive ontribution developed in Subse-tion 4.3.2 is not pursued further in this work.7.2.1.3 Re�ning the meshNote that the results presented in Figure 7.2 are mesh-independent. In other words ifthe mesh is re�ned, the simulation response is more smooth but remains the same as the315



7. The SUPG method 7.2. Validation of the SUPG methodanalytial result. When the mesh is re�ned, the point spaing h is redued along with thevalue of the grid Pélet number Peg eq. (7.31); and the smaller the grid Pélet number theless numerial wiggles arise, i.e. the less the SUPG method is needed.Therefore, for large �uid veloities, the grid Pélet number an be lowered by re�ningthe mesh. This an be useful to avoid the implementation of the SUPG method forproblems lose to the di�usive-onvetive limit.7.2.1.4 Element versus nodal stabilisationThe stabilisation parameter τ = α̃T /v
2 an be alulated for eah node or for eah elementand is then labeled τ e. In pratie, for the �nite element method, often the elementstabilisation is preferred due to the assembling proess of elementary matries. If the meshis homogeneous, i.e. h is onstant and the �uid veloity v is onstant, element stabilisationand nodal stabilisation beome equal. Both are nodally exat and have a loal harater,as they are independent of the boundary onditions and of any node positions.If the mesh is heterogeneous with a onstant �uid veloity, element stabilisation andnodal stabilisation beome di�erent. For irregular node distribution it is impossible toobtain nodally exat results with element stabilisation, beause then the information ofthe relative up and downstream positions of the neighboring nodes is needed and thisannot be obtained from only one element. For irregular node distribution, the only wayto obtain a nodally exat solution is to perform a nodal stabilisation.In this work, irregular node distributions are avoided in favor of homogeneous meshes.However, the implemented stabilisation is a nodal stabilisation sine the �uid veloity v isassumed to be, in the most general ase, non-uniform in spae (Remark 7.3). Hene, the�uid veloity v an be di�erent for eah node inside one element, alike the stabilisationparameter τ .7.2.2 One-dimensional transient di�usion-onvetion problemsThe optimal arti�ial di�usivity α̃T is sought for a one-dimensional transient di�usion-onvetion problem. Two di�erent types of numerial perturbations are observed in tran-sient ases. Undershootings arise due to the sti� thermal boundary ondition, near theperturbation. On the other hand, spurious wiggles arise when the heat front hits a `hard'boundary (a boundary ondition imposed on the temperature). Hene, the arti�ial di�u-sion should smooth both perturbations to be onsidered optimum.The partial di�erential equation of the problem with onstant veloity v and thermaldi�usivity αT writes,

αT div (∇ T ) = v∇ T +
∂T

∂t
. (7.35)316



7. The SUPG method 7.2. Validation of the SUPG methodThe problem of �nding T satisfying eq. (7.35) and the following boundary onditions,
T = TL at x = 0,

T = T0 at x = L;
(7.36)is solved by the exat solution (Carslaw and Jaeger, 1959),

ϕ(x) =
T (x)− T0
TL − T0

=
1

2

[erf( X

2
√
t∗

−
√
t∗

2

)
+ eX erf( X

2
√
t∗

+

√
t∗

2

)]
, (7.37)in whih ϕ denotes the relative temperature; and X and t∗ are dimensionless parametersde�ned by,

X =
x v

αT
, t∗ =

v2 t

αT
. (7.38)Figure 7.3 presents the dimensionless temperature pro�les along the horizontal distane

x for various times and for four grid Pélet numbers Peg ranking from 0.34 to 4.3. Themesh is omposed of 100 elements of equal length h = 0.086m. The arti�ial di�usivityused for the �nite element alulation is de�ned in equation (7.31). The �nite elementmethod reprodues well the pro�le of the analytial solution. An aeptable auray isobtained for all grid Pélet numbers.The di�erene in auray between the simulation response and the analytial solutionis most probably due to the hoie of the arti�ial di�usivity α̃T . Aording to Setion 7.1.4,the arti�ial di�usivity used here does not lead to a nodally exat solution for transientdi�usion-onvetion problems unlike the steady di�usion-onvetion ase.In transient problems, undershooting arise due to the sti� thermal boundary onditionapplied on the left-hand-side (x = 0m) at the very beginning of the simulation. Thisundershooting is larger when aounting for the SUPG method ompared with a non-stabilised response (Figure 7.4). This numerial disturbation has already been desribedin the literature (Yin et al., 2010). Reduing this exessive undershooting (or overshootingfor ooling test) at the beginning of the alulation is ruial to the stability and theauray of the overall response. One way to avoid suh numerial problem is to aountfor a transient-ontribution in the arti�ial di�usivity. The issue of the de�nition of thearti�ial di�usivity for transient problems is disussed later in Setion 7.2.2.2.7.2.2.1 The SUPG method : a ure for spurious osillationsTo illustrate the numerial spurious osillations indued by the onvetion term and theurative e�et of the SUPG method, the simulation responses are ompared for di�u-sion without onvetion, di�usion-onvetion with SUPG and di�usion-onvetion without317
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Figure 7.3: Relative temperature pro�les along the horizontal diretion x for four di�erenttimes and for grid Pélet numbers Peg ranking from 0.34 to 4.3. The harateristi length ofthe elements h is equal to 0.086m and the �uid veloity is set equal to v = 2PegαT /h. The�nite element response reprodues well the onvetion-dominated pro�le of the analytialsolution. The auray of the solution is good when using the de�nition of the arti�ialdi�usivity expressed in eq. (7.31).SUPG in Figure 7.5. Spurious osillations arise for grid Pélet numbers Peg > 1 and whenthe heat front reahes a sharp boundary ondition.The omparison is presented for two grid Pélet numbers : Peg = 2.15 and Peg = 36.6(Figure 7.5). The mesh is omposed of 100 elements of uniform length h. The evolutionof the grid Pélet numbers represents a pure inrease of �uid veloity v. With di�usiononly, the heat is penetrating very slowly in the layer. For all the proposed times, thetransition between the maximum and the minimum of the relative temperature, ϕ = 1 and
ϕ = 0, remains very lose to the heated side. When onvetion is added to di�usion, heatpropagates faster in the layer than the response without onvetion. Without aountingfor the SUPG method, wiggles arise when the heat front hits the boundary ondition ϕ(x =

10m) = 0. These spurious osillations render the solution useless. If the SUPG methodis used to stabilise the transient di�usion-onvetion problem, wiggles are suppressed. Forsemi-in�nite problems, that is with no sharp boundary ondition bloking the heat front318
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Figure 7.4: Relative temperature pro�le along the horizontal diretion x for t = 100 s. Theharateristi length of the elements h is equal to 0.086m and the �uid veloity is set equalto v = 2Peg αT /h. Osillations arise during the early period due to the sharp temperaturegradient applied at the boundary: x = 0m. When aounting for the SUPG method,these osillations are larger than the non-stabilised response. This inrease of numerialperturbation may indue serious stability and onvergene issues in oupled problems. Theremedial ation to this problem is to add a transient-ontribution in the arti�ial di�usivityformula whih is disussed in Setion 7.2.2.2.propagation, the SUPG method is not needed as no spurious wiggles are likely to appear.An example of suh problems is treated in Nair et al. (2004).7.2.2.2 In�uene of the arti�ial di�usivityIn order to �nd the optimum stabilisation orretion fator for a one-dimensional transientdi�usion-onvetion problem, the temperature pro�les are ompared for di�erent arti�ialdi�usivities α̃T i, for i = 1, 10. These de�nitions are ompared in Figure 7.7 and de�nedthroughout this setion.Brooks and Hughes (1982) refer to the work of Raymond and Garder (1976) who pro-posed a stabilisation parameter to maximise auray near boundary layers. Combinationsof the de�nitions of α̃T with Raymond and Garder's proposition (Raymond and Garder,1976) are proposed throughout.� For steady state di�usion-onvetion problems, Brooks and Hughes (1982) introduedthe optimal funtion ξ̃opt along with the arti�ial di�usivity α̃T1,
ξ̃opt(Peg) = coth Peg − 1/Peg, α̃T1 =

hv

2
ξ̃opt(Peg). (7.39)For a transient purely onvetive problem (αT = 0), Raymond and Garder (1976)proposed to modify the denominator of equation (7.39) to √

15. With this optimumhoie, the phase auray is improved from fourth oder to sixth order aording319
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Figure 7.5: Relative temperature pro�le along the horizontal diretion x. The hara-teristi length of the elements h is equal to 0.086m and the �uid veloity is set equalto v = 2 Peg αT /h. The simulation response for di�usion only is ompared with that ofdi�usion-onvetion with SUPG and di�usion-onvetion without SUPG. With no on-vetion, the heat front propagates slowly in the layer and all the urves remain on theleft-hand-side. On the other hand, if onvetion is aounted for, the heat propagatesmore quikly in the layer. Spurious osillations arise when the heat front hits the hardboundary ϕ(x = 10m) = 0 and when the SUPG method is not aounted for. The popularSUPG method removes e�iently these unwanted numerial wiggles. Without the SUPGmethod, the higher the grid Pélet number, the more numerial wiggles arise.to the method of Dendy (1974). As proposed by Brooks and Hughes (1982), thisproposition is extended to a transient di�usion-onvetion problem (αT 6= 0),
α̃T2 =

hv√
15

ξ̃opt(Peg). (7.40)� A general design of α̃T is proposed by Shakib et al. (1991) in a spae-time Galerkin/least-squares variational formulation. Two additional forms of the funtion ξ̃(Peg)(also named the di�usion orretion fator) are introdued (Figure 7.6). Hene, twoadditional forms of the arti�ial di�usivity are inferred: a. from the general designonditions:
ξ̃gen(Peg) =

(
1 +

1

Peg
2

)(−1/2)

, α̃T3 =
hv

2
ξ̃gen(Peg), (7.41)and b. from a modi�ed de�nition of ξ̃gen(Peg):

ξ̃mod(Peg) =

(
1 +

9

Peg
2

)(−1/2)

, α̃T mod =
hv

2
ξ̃mod(Peg). (7.42)320
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α̃T3 =




(
2

v h

)2

︸ ︷︷ ︸onvetive limit+ (
4αT

v2 h2

)2

︸ ︷︷ ︸di�usive limit (−1/2)

. (7.43)
in whih the two terms on the right-hand-side an be interpreted as the onvetion-dominated and di�usion-dominated limits (Tezduyar and Osawa, 2000). Towardsthe onvetion-dominated limit, the dependeny on the mesh size h is α̃T3 ≈ hv/2,hene O (h), while it is α̃T3 ≈ h2v2/4αT towards the di�usion-dominated limit,hene O (h2). Fortunately, the mesh dependeny of onvetion is smaller than thatof di�usion.Combining the modi�ed funtion ξ̃mod(Peg) with the proposition of Raymond andGarder (1976) leads to,

α̃T4 =
hv√
15

ξ̃mod(Peg). (7.44)� Tezduyar and Osawa (2000) proposed some new ways of omputing the arti�ialdi�usivity based on the element-level matries and vetors. In one-dimension, theextension of α̃T3 (7.43) to transient problems is,
α̃T5 =




(
2

v h

)2

︸ ︷︷ ︸onvetive limit+ (
2

v2 ∆t

)2

︸ ︷︷ ︸transient limit+ (
4 αT

v2 h2

)2

︸ ︷︷ ︸di�usive limit (−1/2)

. (7.45)321



7. The SUPG method 7.2. Validation of the SUPG methodNote that towards transient-dominated limit, α̃T5 ≈ v2∆t/2 and there is a relationof O (v2∆t): the arti�ial di�usivity is mesh independent but beomes dependent onthe time step ∆t. The seond term on the right-hand-side of eq. (7.45) mimis theonvetive ontribution. For larity the reasoning is performed with the stabilisationparameter τ5: having an operator v ∂T/∂x, the onvetion ontribution to τ5 anbe estimated by h/2v. Hene having ∂T/∂t brings the following ontribution to τ5:
∆t/2. Sine α̃T5 = v2τ5, eah ontribution is multiplied by v2.Again, ombining α̃T5 with the proposition of Raymond and Garder (1976) leads to:

α̃T6 =



(√

15

v h

)2

+

( √
15

v2 ∆t

)2

+

(
2
√
15 αT

v2 h2

)2


(−1/2)

. (7.46)� Earlier, Tezduyar and Ganjoo (1986) proposed for transient di�usion-onvetionproblems to use the algorithmi ourant number C2τ or the element ourant number
C∆t,

C2τ =
2 α̃T

hv
=

2 τv

h
, C∆t =

∆t v

h
, (7.47)to weight the stabilisation whih leads to the following de�nitions of the arti�ialdi�usivity,

α̃T7 = α̃T1 × C2τ (α̃T1), α̃T8 = α̃T2 × C2τ (α̃T2),

α̃T9 = α̃T1 × C∆t, α̃T10 = α̃T2 × C∆t,
(7.48)the idea being that the smaller the onvetive time τ [s℄ or the time step ∆t [s℄, thesmaller the arti�ial di�usivities and onversely.As pointed out by Brooks and Hughes (1982, p. 215), the struture of the streamlineupwind weighting funtion (WT in Setion 7.1) is far more important than the preisevalue of the arti�ial di�usivity α̃T . The response obtained with the arti�ial di�usivity

α̃T1 provides a smoother response along the old side, that is a better stabilisation, than allthe other propositions α̃T i for i = 2, 10 (Figure 7.7). Nevertheless, the transition betweenthe transient-dominated period and the onvetion-dominated period is better representedby the parameters α̃T5, α̃T6 and α̃T9, α̃T10.These parameters have in ommon to aount for the time step ∆t. In transientalulations, the time step is not onstant and varies from small values, for example 1 s,322
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τ5 =




(
2v

h

)2

︸ ︷︷ ︸onvetion limit+ (
2

∆t

)2

︸ ︷︷ ︸transient limit+ (
4 αT

h2

)2

︸ ︷︷ ︸di�usion limit



(−1/2) (7.49)
in whih the time step ∆t is used. If the maximum time step allowed is too small, this tran-sient ontribution will remain large enough to disturb the e�ieny of the stabilisation pa-rameter τ5 during the onvetion-dominated period, whih inevitably leads to a onvergenefailure at large time steps. Therefore, unlike the lassi pratie to redue the maximumtime step when divergene appears, the maximum time step must be inreased to allow agood onvergene during the onvetion-dominated period (at large time steps >> ∆tmax).324



7. The SUPG method 7.2. Validation of the SUPG methodOne way to alibrate the maximum time step ∆tmax is to ensure that,
(

2

∆tmax

)2

<<

(
2v

h

)2

+

(
4 αT

h2

)2

, → ∆tmax ≥ δ

√
h4

h2v2 + 4α2
T

(7.50)in whih δ is higher or equal to 4. In addition, the maximum time step should also satisfythe stability requirements (see Setion 7.2.5),
∆tmax ≤ L2

αT
, (7.51)so that by ombining the lower bound (7.51) and the upper bound (7.50) an additionalonstrain on the mesh size h arise,

δ2α2
Th

4 + L4v2h2 + 4L4α2
T ≥ 0 (7.52)whih provides one positive lower bound to h

h ≥



−L4v2 +

√
L8v4 − 16L4α4

T δ
2

2δ2α2
T




0.5 (7.53)Fortunately, this lower bond tends to zero sine L8v4 >> 162L4α4
T for δ = 4 and water

αT ≈ 1× 10−7.7.2.3 Two-dimensional steady di�usion-onvetion problemsA unique optimal arti�ial di�usivity is sought for a two-dimensional steady di�usion-onvetion problem based on the di�erentiation of the onvetion magnitude in the x-diretion and in the y-diretion. The simulation response is ompared with the analytialsolution for a �ow skew to the mesh and for high Pélet numbers. The in�uene of theangle between the veloity and the mesh is analysed.The partial di�erential equation of the problem writes,
vx
∂T

∂x
+ vy

∂T

∂y
= αT

(
∂2T

∂x2
+
∂2T

∂y2

)
, (7.54)in whih x and y are the spae diretions. Following the notation of Setion 7.1, theweak formulation of the above problem when using the SUPG method and bilinear shapefuntions beomes, 325
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nel∑

e=1

[δTe]T
[∫

V e

NT
T

(
vx
∂T

∂x
+ vy

∂T

∂y
− αT

∂2T

∂x2
− αT

∂2T

∂y2

)
dV e

+

∫

V e

τ

(
vx

∂NT

∂x
+ vy

∂NT

∂y

)T(
vx
∂T

∂x
+ vy

∂T

∂y

)
dV e

]
= 0,

(7.55)
where the stabilisation parameter τ = α̃T / ‖v‖2 addresses both spae diretions at one.7.2.3.1 Multidimensional arti�ial di�usivityFor bilinear isoparametri quadrilaterals, one generalisation of equation (7.31) was pro-posed by Brooks and Hughes (1982),

α̃T =
vx hx ξ̃x + vy hy ξ̃y

2
,

ξ̃x = coth Pegx −
1

Pegx
, ξ̃y = coth Pegy −

1

Pegy
,

Pegx =
vx hx
2 αT

, Pegy =
vy hy
2 αT

,

vx = ex · v, vy = ey · v,

(7.56)
in whih the unit vetors ex and the ey, and element lengths hx and hy are de�ned inFigure 7.9, and the omponents vx and vy of the veloity vetor are evaluated at eahGauss point, while the di�usion property αT is isotropi.
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xFigure 7.9: Four node parallelogram �nite element geometry; de�nitions of element lengths
hx and hy used in eq. (7.56). For more general quadrilaterals, a proposition is given inSetion 7.2.4.7.2.3.2 Analytial solution for high Pélet numbersThe two-dimensional di�usion-onvetion problem (7.54) an be re-written into a newoordinate system for an isotropi di�usivity αT , where ξ is aligned with the �ow diretionand η is perpendiular, 326
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vξ
∂T

∂ξ
+ vη

∂T

∂η
= αT

(
∂2T

∂ξ2
+
∂2T

∂η2

)
. (7.57)By assuming that di�usion in the �ow diretion ξ is muh less important than on-vetion, and that no onvetion ours perpendiular to the �ow, the problem redues to,

vξ
∂T

∂ξ
= αT

∂2T

∂η2
⇔ ∂T

∂t
= αT

∂2T

∂η2
, (7.58)whih beomes equivalent to a transient ondution problem in whih time t is replaedby ξ/vξ (Raithby, 1976).The losed form solution of the simpli�ed problem (7.58) is sought for a bounded squaredomain presented in Figure 7.10 (top-left). The veloity vetor v is uniform and skew tothe grid. Let us de�ne a solid line, whih is parallel to the veloity vetor, and whih passesthrough the enter of the domain. The thermal boundary onditions are ϕ = 1 above thesolid line and ϕ = 0 under. When the solid line intersets a boundary node of the mesh,a value of ϕ = 0.5 is assigned to this node.The analytial solution (Carslaw and Jaeger, 1959) for the spei� problem is (Raithby,1976):

ϕ(x∗, y∗) =
T (x∗, y∗)− T0

TL − T0

= 0.5


1 + erf√Peg

2


 (y∗ − y∗c )v

∗
x − x∗v∗y√

(y∗ − y∗c )v
∗
y + x∗v∗x











(7.59)
in whih T0 is equal to 273 K and TL is equal to T0 + 50 K. The supersript ∗ indiatesdimensionless values, suh as,

x∗ =
x

hx
, y∗ =

y

hy
, y∗c =

yc
hy
, v∗x =

vx
‖v‖ , v∗y =

vy
‖v‖ , (7.60)with,

‖v‖ =
√

v2x + v2y. (7.61)and where y∗c is indiated on Figure 7.10 (top-left). This solution is valid for α̃T >> 1 andfar enough from the upstream boundary onditions (x = 0m in Figure 7.10, top-left).327



7. The SUPG method 7.2. Validation of the SUPG method7.2.3.3 Simulation resultsThe grid has a dimension of 10×10m2 and is disretised with a 10×10 mesh of equal sizedsquare elements (hx = hy = 1). The grid Pélet number is set equal to Pegx = Pegy = 106and the di�usivity of the �uid (water) is equal to αT = 1.4×10−6 m2/s resulting in aveloity ‖v‖ = 2.8m/s.In Figures 7.10 and 7.11, the analytial solution eq. (7.59) is ompared with the�nite element responses with SUPG and without SUPG (Galerkin method) to evaluatethe in�uene of the angle θ between the veloity diretion and the x-diretion on theauray of the SUPG method. Beause the global Pélet number is equal to Pe = 2×107,the solution is essentially one of pure onvetion.For θ = 0◦, the analytial solution mathes that of the SUPG method as the arti�ialdi�usivity α̃T redues to the one-dimensional one, whih provides a nodally exat solutionin one-dimension. As the angle θ is inreased from 0◦ to 45◦, the SUPG proedure stabilisesthe spurious wiggles and a good agreement with the analytial solution is obtained. Brooksand Hughes (1982) observed that for the partiular ase of θ = 45◦ the SUPG methodwith a two-by-two quadrature provides a less aurate solution than a one point Gaussianquadrature.Nevertheless, the ase θ = 45◦ is the exeption. In general, the SUPG method witha two-by-two quadrature provides a better response than the SUPG method with a onepoint quadrature and than the Galerkin approah. Furthermore, the SUPG method enjoysthe absene of spurious rosswind di�usion unlike the upwind method.
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Figure 7.11: Relative temperature pro�les in the plane (x∗, y∗), for a onvetive �owskew to the mesh, Peg = 106. E illustrates the exat solution of a onvetion-dominatedproblem, from eq. (7.59). SUPG stands for the �nite element response aounting for theSUPG method whih demonstrates the stabilisation e�et of the method. G represents the�nite element response with no stabilisation (Galerkin method): spurious wiggles disturbthe solution. The SUPG method signi�antly improves upon the Galerkin method as ite�iently ures the spurious wiggles. In addition, a good agreement with the exat solutionis obtained for all the proposed angles.
∂T

∂t
+ v · ∇T = div (αT∇T ), (7.62)

where v is the veloity vetor. The weak formulation of eq. (7.62) when using the SUPGmethod and linear shape funtions NT , beomes,330
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nel∑

e=1

[δTe]T
[∫

V e

NT
T

(
∂T

∂t
+ v · ∇T − div (αT∇T )

)
dV e

+

∫

V e

τ (v · ∇NT )
T

(
∂T

∂t
+ v · ∇T

)
dV e

]
= 0,

(7.63)where the stabilisation is applied to all terms of eq. (7.62) exept the di�usion term whihvanishes on the element's interior.7.2.4.1 Multidimensional transient stabilisation parameterTezduyar and Osawa (2000) proposed an omprehensive way of omputing the stabili-sation parameter τ for multidimensional and transient di�usion-onvetion problems. Intheir ontribution, τ is based on the element-level matries and vetors and is omputed atan element level. Their approah is followed throughout this setion; exept that the sta-bilisation parameter is omputed at the node level. The main advantage of the formulationis that it automatially takes into aount the transition between the transient-dominatedperiod, the di�usion-dominated and the onvetion-dominated periods. This setion tapson the work of Tezduyar and Osawa (2000) and we should refer to them for more detailedexplanations.A ompat notation of the element matries is introdued as following,
me =

∫

V e

NT
T

∂T

∂t
dV e,
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V e

NT
Tv · ∇T dV e, c̃e =

∫

V e

(v · ∇NT )
T ∂T

∂t
dV e,
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∫

V e

∇NT
T · αT∇T dV e, k̃e =

∫

V e

(v · ∇NT )
T
v · ∇T dV e.

(7.64)
From these element-level matries, the element-level dimensionless Reynolds andCourant2 numbers are de�ned;

Ree =
‖v‖2
αT

‖ce‖∥∥∥k̃e
∥∥∥
, Creu =

‖ce‖
‖me‖ ,

Creα =
‖ke‖
‖me‖ , Creα̃ = τ

∥∥∥k̃e
∥∥∥

‖me‖ ,

(7.65)
in whih the Courant numbers an be used to determinate the maximum time step ∆t (seeSetion 7.2.5). The omponents of the element-based τ are de�ned as follows;2The Courant numbers presented here are adapted from Tezduyar and Osawa (2000) to enfore thedimensionless feature. 331



7. The SUPG method 7.2. Validation of the SUPG method
τS1 =

‖ce‖∥∥∥k̃e
∥∥∥
, τS2 =

‖ce‖
‖c̃e‖ ,

τS3 = τS1 × Ree,

(7.66)in whih τS1 is related to onvetion-dominated limit, τS2 is related to transient-dominatedlimit and τS3 is related to di�usion-dominated limit. Tezduyar and Osawa (2000) proposedthe following formulation for τ ,
τSUPG =

(
1

τ rS1
+

1

τ rS2
+

1

τ rS3

)−1/r

, (7.67)whih is the inverse of the r-norm of the vetor with omponents 1/τS1, 1/τS2 and 1/τS3.The higher the value of r the sharper the swith from one period to the other. The de�nitionof τSUPG in eq. (7.67) an be seen as an impliit de�nition beause of its dependeny onthe solution.An alternative proposal of τSUPG (7.66) follows by extending the one-dimensional expres-sion (7.45),
τS1 =

h

2 ‖v‖

τS2 =
∆t

2

τS3 =
h2

4 αT





τSUPG =

(
1

τ2S1
+

1

τ2S2
+

1

τ2S3

)−1/2

, (7.68)
in whih h is the `element length' de�ned as Tezduyar and Osawa (2000),

h = 2 ‖v‖
(

nne∑

a=1

|v · ∇Na
T |
)−1

, (7.69)and nne is the number of element node. Assuming that the veloity v is given, thede�nition of τSUPG in eq. (7.68) has no dependeny on the solution.Finally, the two proposals (7.67) and (7.68) have been ompared for a transientdi�usion-onvetion problem by Tezduyar and Osawa (2000) with square elements anda onstant in time and uniform in spae veloity; their performanes are almost idential.In the sequel, the form (7.68) is used in view of its oding simpliity.332



7. The SUPG method 7.2. Validation of the SUPG method7.2.4.2 Simulation resultsThe example used to test the two-dimensional transient di�usion-onvetion problem isthe same as in Setion 7.2.3.3, with a �xed angle of θ = 21.8◦. The problem statement isillustrated in Figure 7.10 (top-left).The time steps ∆t are alulated aording to a logarithmi law, up to the maximumvalue of 104 seonds. In other words, the alulated times are t = [1, 2, · · ·, 9, 10, 20, · · ·,90, 100, 200, · · ·, 900, · · ·, 10000, 20000, · · ·, 90000, 100000, 110000, et℄. This patternis partiularly usefull to produe historial graphis with the log(time) in absissa, whihallows to visualise on the same �gure the early period, the intermediate period and thelate period.Two numerial tests are presented in Figures 7.12 and 7.13: for a very high grid Péletnumber Peg = 106 whih almost represents pure onvetion and for a high grid Péletnumber Peg = 102 whih illustrates a onvetion-dominated �ow, respetively.For eah test, the relative temperature response of the SUPG method is omparedwith that of the Galerkin method. To assess the in�uene of the transient ontributionin the stabilisation parameter proposed by Tezduyar and Osawa (2000), eq. (7.68), thetemperature pro�les are also ompared with the response produed by the stabilisationparameter without transient ontribution eq. (7.56).For `pure' onvetion Peg = 106 (Figure 7.12), the addition of the transient ontributionin the stabilisation parameter seems to disturb the uring e�et of the SUPG method atall times. Therefore, the use of the standard stabilisation parameter is reommended forvery high grid Pélet numbers.For standard onvetion-dominated �ows Peg = 102 (Figure 7.13), the addition of thetransient ontribution in the de�nition of τ has a bene�ial e�et at early times only.Hene, if the response at early time is not sought and if the loading onditions an bear asti� inrease, the use of the stabilisation parameter with no transient ontribution shouldbe favored.To summarise, the introdution of a transient ontribution in the stabilisation param-eter is only useful to desribe the early period. The prie to pay is quite heavy, sinethe spurious wiggles are not ompletely ured. Importantly, no optimum stabilisationparameter exists for two-dimensional transient problems.
333
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Figure 7.12: Relative temperature pro�les in the plane (x∗, y∗), for a onvetive �owskew to the mesh and a very high grid Pélet number Peg = 106. SUPG stands for the�nite element response aounting for the SUPG method; whereas G represents the �niteelement response with no stabilisation on the weighting funtion, that is the standardGalerkin method, whih displays a heavily disturbed response. The SUPG method usingeq. (7.56) produes better results (at all times) than when aounting for a transientontribution eq. (7.68). This is due to the high grid Pélet number Peg = 106, whihindues the transient ontribution of (7.68) to be equal or smaller than the onvetionontribution. Therefore, for high grid Pélet numbers, the stabilisation parameter with notransient ontribution (7.56) is more e�ient.
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Figure 7.13: Same as Figure 7.12 for a smaller grid Pélet number: Peg = 102. At earlytimes (left), the SUPG method with eq. (7.68) displays a smoother temperature pro�lethan the SUPG method with eq. (7.56), thanks to the transient ontribution. On the other,during the intermediate and the late periods, the SUPG method with eq. (7.56) produessmoother results than Tezduyar and Osawa's proposition. The desription of the earlyperiod is better viewed by using eq. (7.68); whereas the desription of the intermediateand of the latter periods is better reprodued with eq. (7.56). No optimum stabilisationparameter exists for two-dimensional transient problems.
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7. The SUPG method 7.2. Validation of the SUPG method7.2.5 Stability requirementsAn algorithm for whih stability imposes a time step restrition is alled onditionallystable; whereas an algorithm for whih there is no time step restrition imposed by stabilityis alled unonditionally stable. Usually, unonditionally stable algorithms are preferred.The semi-disretised �nite element matrix form of the oupled thermo-hydro-meha-nial model, eq. (2.319)-(2.324), an be expressed as a funtion of the di�usion matrix D,the sti�ness matrix K and the onvetion matrix Cconv, by (Setion 4.2.4.4),
D V+KX+ Cconv X = 0. (7.70)Consisteny and stability are linked to a ertain problem and to a ertain type of timemarhing sheme. In this work, a preditor-multi-orretor algorithm with all ontributionsbeing impliit is used to disretised the di�usion-onvetion equation (presented in Setion4.3.2.2). The integration parameter is hosen equal to α = 2/3. Importantly, no stabilityinformation is given for this general ase, that is the di�usion matrix D, the sti�ness matrix

K and the onvetion matrix Cconv are non-symmetri and do not respet the othonormalityproperty (Brooks and Hughes, 1982; Belytshko and Hughes, 1983). Hene, onditionalstability haraterises non-linear transient Newton-Raphson shemes and the time step islimited by the various di�usive limits, yielding the lassial result,
∆t ≤ L2

αk
, (7.71)in whih L is the di�usion length and αk = {αH,p, αH,f , αT,s, αT,p, αT,f} represents in turnthe hydrauli and the thermal di�usivities.The partiular ase of a fully expliit multi-orretor algorithm (with a lumped massmatrix) is presented by Brooks and Hughes (1982, Setion 4.3) and is summarised in Re-mark 7.5. Furthermore, more information on stability onepts for time marhing shemesfor di�usion-onvetion problems are presented in Belytshko and Hughes (1983) (see Re-mark 7.6).Remark 7.5. Stability onditions for an expliit (`lumped' di�usion matrix) multi-orretor algorithm are presented in Brooks and Hughes (1982) to disretised a one-dimensional onstant oe�ient onvetion-di�usion equation, while maintaining a goodphase auray. Note that expliit algorithms are always onditionally stable, but an bemore e�ient than impliit algorithms for non-linear problems. With α = 1/2, a uniformgrid of element length h and no additional iterations in the multi-orretor algorithm, thefollowing stability onditions hold on the Courant number Cr = ∆t v/h, for the SUPGmethod: 336
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Di�usive limit : Cr ≤ Pegeff =
1

2

v h

αT + α̃T
,Di�usion-onvetion limit: Cr ≤ 1,

(7.72)and for the Galerkin method:




Di�usive limit : Cr ≤ Peg =
vh

2αT
,Di�usion-onvetion limit: Cr ≤ 1/Peg.

(7.73)
Remark 7.6. In Belytshko and Hughes (1983, p. 150), the von Neumann method isused to analyse the stability of the Navier-Stokes equations disretised with a Galerkinmethod and the generalised trapezoidal method. Unonditional stability is maintained forthe generalised trapezoidal sheme as long as the integration parameter α ≥ 1/2, the sameas when the onvetive term is absent. However, no onlusion an be drawn regardingases in whih α < 1/2.7.3 Beyond SUPGThe next step after validating the implementation of the SUPG method (Setion 7.2), isto assess the in�uene of onvetion-dominated di�usion-onvetion �ow on the full om-prehensive model involving ross-oupling phenomena. In the previous setion, spuriousosillations have been observed in di�erent onditions. Hene, a summary of the di�erentspurious osillations mehanisms is provided here. Then, the limitations of the SUPGmethod are presented and partiular attention is given to unsteady, oupled and non-linear systems. A short review of the implementation of the SUPG method as part oflarger thermo-mehanial and hemo-mehanial models is onsidered. Finally, the dison-tinuity apturing method is presented to remedy the remaining instabilities of the SUPGmethod.7.3.1 Mehanisms of numerial `noise' and spurious osillationsSpurious numerial osillations arise when sharp temperature gradients are applied ordevelop in the medium. Three problems are segregated:1. In transient di�usion-dominated di�usion-onvetion problems, osillations arise dur-ing the early times due to a sharp temperature gradient applied at the boundary(analogous to a shok front) (Idelsohn et al., 1998). This sharp gradient disappearsafter a few time steps if the problem is di�usion-dominated. In order to overomethese osillations, the mesh an be re�ned at the viinity of the perturbation, without337



7. The SUPG method 7.3. Beyond SUPGa�eting the auray of the response as no mesh-dependent stabilisation method isrequired. Alternatively, the time sheme an be modi�ed with various time-steppingalgorithms to arti�ially damped the noise to an aeptable level (Wood and Lewis,1975).2. In steady onvetion-dominated di�usion-onvetion problems, spurious osillationsare indued by a sharp temperature gradient applied at the boundary (Figure 7.2, b).As presented above, the SUPG method is designed to ure the unwanted wiggles anda nodally exat solution is proposed by Brooks and Hughes (1982) for homogeneousmeshes. These osillations are indued by a high grid Pélet number, haraterizingthe loal limit between a smooth temperature gradient and a sharp temperaturegradient, with respet to the hosen mesh.3. In transient onvetion-dominated di�usion-onvetion problems, two types of sharpgradients are enountered. The �rst sharp gradient ours during the early timesbeause of the transient solution (shok front) Yin et al. (2010).The seond sharp gradient arise when the thermal front hits a presribed boundaryondition (therefore at later times, as the thermal front needs to travel into themedium before hitting the boundary), see Figure 7.5. Again the grid Pélet numberde�nes the loal limit between smooth and sharp gradients.7.3.2 The limitations of the SUPG methodConerning unsteady, multidimensional, oupled and non-linear di�usion-onvetion sys-tems, the limitations of the SUPG method are identi�ed in the literature and many im-provements have been proposed:� The regular/homogeneous mesh is a onstraint imposed by the SUPG method toobtain a good auray with a given stabilisation parameter. One limitation of theSUPG method is that for a regular/homogeneous mesh, osillations arise duringearly times beause of the transient solution (a sharp gradient analogous to a shokfront) (Yin et al., 2010). Wellbore stability analyses are usually onduted duringthe early period. Unfortunately, both the SUPG method and the Galerkin/leastsquare method fail to irumvent the osillation phenomenon at early times. There-fore, wellbore stability analyses aounting for high onvetion an not be preditedby the SUPG method: the osillations on the temperature response will spoil thepressures and the stress responses. One way to overome these spurious temperatureosillations, is to replae the transient di�usion-onvetion problem by an di�usion-onvetion-reation problem, whih is then e�iently addressed by a stabilised �niteelement approah, the subgrid sale/gradient subgrid sale method (SGS/GSGS)338



7. The SUPG method 7.3. Beyond SUPG(Yin et al., 2010). The main drawbak of this method is that the SGS/GSGS)method displays a larger dispersion than the SUPG method for late times.� For more ompliated systems than steady di�usion-onvetion, the solution pos-sesses unresolved internal and boundary layers, whih are small subregions wherethe derivatives of the solution are very large. The widths of these layers are usuallysigni�antly smaller than the mesh size and hene overshooting and undershootingosillations remain in narrow regions along sharp layers (see Figure 7.10 for θ 6= 0).Although the remaining non-physial osillations are usually small in magnitude,they are not permissible in many appliations, suh as (John and Knobloh, 2007):1. Chemially reating �ows where it is essential to guarantee that the onentra-tions of all speies are non-negative.2. Free-onvetion omputations where temperature osillations reate spurioussoures and sinks of momentum that a�et the omputation of the �ow �eld.3. Numerial simulations of ompressible �ow problems, where the solution maydevelop disontinuities (for example shok waves) whose poor resolution maya�et the global stability of the numerial alulations.In order to improve the SUPG method to smoothly resolve sharp layers, the introdu-tion of a disontinuity apturing or shok apturing operator was proposed by Hugheset al. (1986) and Johnson et al. (1990). The generalisation of the disontinuity-apturing operator to systems has proven to be an essential ingredient for auratelyapturing shok waves (Hughes, 1987b), with enhaned stability and equal onsis-teny. A omprehensive review of these disontinuity apturing methods is proposedin John and Knobloh (2007).Sine the mid of the 1980s, a number of methods have been proposed to improve theSUPG method by removing (or at least diminishing) the spurious wiggles at unresolved lay-ers. As presented by Frana et al. (2006), the SUPG method has inspired other stabilisationmethods, suh as the Galerkin/Least-Squares method (GLS), the Galerkin/Gradient-Least-Squares method (GGLS) and the Unusual Stabilised Finite Element Method (USFEM).The latter is also suggested by stati ondensation of bubbles added to the �nite elementspae. These stabilisation methods address many problems suh as di�usion-onvetion,reation-di�usion and di�usion-onvetion-reation salar equations; and also Stokes, in-ompressible Navier-Stokes and ompressible Navier-Stokes equations.Aside from the Eulerian tehniques ited above, Eulerian-Lagrangian Methods (ELMs),or harateristis methods, have been developed to address di�usion-onvetion problems.The basi onept of ELMs is to solve the transport equation in a Lagrangian form `along'harateristi lines, e�etively deoupling onvetion and di�usion terms (Oliveira and339



7. The SUPG method 7.3. Beyond SUPGBaptista, 1995). Points within the Eulerian grid are traked bakward (or forward) alongthe harateristi lines over the time step, thereby forming a Lagrangian grid. The methodretains the onveniene of a �xed omputational Eulerian grid. A signi�ant advantage ofthese ELMs is that, owing to the Lagrangian nature of the onvetion step, the restritionon the time step size (via the loal Courant number) is relaxed (Kaazempur-Mofrad andEthier, 2002). Although attrative, questions remain about the robustness of the ELMs,for example there is no inherent mass preservation. From the literature, ELMs seemto apply to unoupled di�usion-onvetion problems and to hemial onvetion (usuallyalled advetion) rather than thermal onvetion.Nevertheless, the sope of this study is restrited to the implementation of the SUPGmethod applied to the generalised di�usion-onvetion energy equations presented in thefully oupled model (2.4). The limitation that is most likely to appear in our ase is thatovershooting and undershooting osillations may indue even greater spurious `noise' onthe pressure and stresses pro�les. In that ase, the introdution of a disontinuity apturingoperator will beome neessary.7.3.3 The SUPG method applied to porous media: a short literaturereviewThe subjet of �ow and heat in porous media has been studied for many deades. Likewise,little researh has been done on fored onvetion in porous media (Nield and Bejan, 2006).Several models have been developed, for example dual porosity models (Bai and Rogiers,1994), homogenization methods (Royer et al., 2002) and loal thermal non-equilibriummodels (Polyaev et al., 1996).In many referenes (Nair et al., 2004; Bataillé et al., 2006), although the onstitutivemodel is detailed, no or little information is given on the implementation of the onvetiveterm. Nevertheless, the implementation of fored onvetion in porous media as part of aoupled onstitutive model has rarely been studied. Very often, the heat transport equationis unoupled from the rest of the model. The few papers whih inlude a �nite elementformulation and use the SUPG method are now presented:� Zhou et al. (2009) present a partially deoupled poro-thermoelasti model to assessthe variation of in-situ stresses and indued seismiity with old water injetion intoa geothermal reservoir. On one hand, the pore �uid di�usion and heat transfer inthe pore matrix are assumed to be 3-D, and are modeled with a boundary integralequation method: therefore the 3-D reservoir does not need to be disretised. Onthe other hand, the �uid �ow and the onvetive heat transfer in the frature aremodeled with a �nite element method. The two methods are oupled and share thesame mesh on the frature plane. This setup provides the advantage of resolving a 3-D problem with only a 2-D mesh whih results in less omputational e�orts; howeverthe main drawbak is the partial deoupling of the pressures and the temperature340



7. The SUPG method 7.3. Beyond SUPG�elds.In this deoupled model, the SUPG method is used to solve the purely onvetiveheat transport equation in the frature. The modi�ed weighting funtions are appliedto the onvetive term, whereas the weighting funtions of the heat soure intensityterm are not modi�ed. This feature does ensure the auray of the method as theweighting funtion is not applied to all the terms of the weak form; unless the heatsoure intensity term vanishes on the element interior. The `upwind' parameter τ̃ isdetermined as in Brooks and Hughes (1982).� Gajo (2002) studied a non-linear analysis of non-isothermal wave propagation in �uid-saturated porous media. The thermo-mehanial law developed here is derived fromthe work of Peker and Deresiewiz (1973) whih aounts for both the temperatureof the solid and the temperature of the �uid in the de�nition of the e�etive stress.This strong hypothesis is opposite to our assumption that only the solid phase wouldontrol the overall thermal dilatation of the mixture. An original ontribution isintrodued by Gajo (2002) in the form of a seond initial temperature for the �uidin order to aount only for the variation in �uid temperature ourring inside theelement, whereas the variation in �uid temperature ourring outside the element isnot desirable. This seond initial temperature is then treated as a primary unknownand allows the onvetion terms to be separated from the balane of energy of the �uidphase. The SUPG method is orretly implemented on the resulting pure onvetiveequation. Some small wiggles are visible on the temperature response, however noinformation is given on the in�uene of these disturbanes on the pressure response.Overall, the omplexity of the balane of energy equation for the �uid phase withonvetion (Gajo, 2002, eq. 5) has been overome by the introdution of the seondinitial temperature for the �uid phase. Suh `trik' an not be applied to our workas our thermo-mehanial onstitutive law is signi�antly di�erent.� Finite element simulations of hemo-mehanial oupling in elasti-plasti homoioniexpansive lays have been studied by Gajo and Loret (2003). A di�usion-onvetionequation, aounting for the appropriate ouplings, desribes the onvetive transportof salt and the SUPG method is used to ure the spurious wiggles during the �niteelement disretisation. The modi�ed weighting funtion is appropriately applied tothe onvetive term. However, the shape funtion of the pressure, the mass andthe time dependent ontributions in the balane of mass of salt are not modi�ed.Again, auray of the SUPG method is not ensured, as only the generalised di�usionterms vanish on the elements interior. This omission is illustrated in Gajo and Loret(2003, Figure 22) where the advetion with SUPG urve does not math with theadvetion without SUPG urve for the three �rst times (No sharp boundary has beenenountered yet and the wiggles-ure is useless). As a result the advetion with SUPGurve is over-di�usive. However, the latter omission is understandable owing to the341



7. The SUPG method 7.3. Beyond SUPGomplexity of the fully oupled model whih requires a robust non-linear algorithm(line-searh algorithm).Two additional papers have aurately implemented the SUPG method as part of aoupled model Li et al. (2006); Fahinotti et al. (2006); however it remains unlear ifonvetion is dominant or not in their appliations and if the stabilisation method isatually required or not.The SUPG method is used on the fully oupled model (outlined in Setion 2.4) tostabilise the �uids energy equations due to the presene of onvetion terms. To imple-ment aurately the SUPG method, the perturbation is applied to all terms of the energyequations (Setion 8.1).7.3.4 The disontinuity apturing methodIn order to improve the SUPG method to smoothly resolve sharp layers, the introdutionof a disontinuity apturing or shok apturing operator was proposed by Hughes et al.(1986) and Hughes (1987b). The method is brie�y resumed and the main results are thenpresented.7.3.4.1 The weighting funtionThe disontinuity apturing method suggests in plae of (7.5), the weighting funtion ofthe form,
WT = NT + τ1 v∇NT + τ2 v‖ ∇NT , (7.74)in whih v‖ is the projetion of v on ∇T , de�ned by,
v‖ =





(v · ∇T )
‖∇T‖2

∇T, if∇T 6= 0,

0, if∇T = 0.

(7.75)and ∇T is obtained through the disretised form ∇NTT
e. ‖·‖ denotes the 2-norm, alsoalled the Eulidean norm. This method is seen to be non-linear sine v‖ = v‖(T

e). Theinteration of equation (7.74) with the onvetion term v · ∇T brings,
WT

Tv · ∇T = NT
Tv · ∇T +∇NT

T τ1 v
Tv · ∇T +∇NT

T τ2 v
T
‖ v · ∇T,

= NT
Tv · ∇T +∇NT

T τ1 v
Tv · ∇T +∇NT

T τ2 v
T
‖ v‖ · ∇T,

(7.76)342



7. The SUPG method 7.3. Beyond SUPGdue to v‖ · ∇T = v · ∇T from (7.75),
WT

Tv · ∇T = NT
Tv · ∇T +∇NT

T τ1 v
Tv · ∇T︸ ︷︷ ︸streamline +∇NT

T τ2 v
T
‖ v‖ · ∇T︸ ︷︷ ︸disontinuity- .operator apturing

operator

(7.77)
The streamline matrix vTv is a rank-1 positive-semide�nite matrix whih ats onlyin the streamline diretion; and the disontinuity apturing matrix vT

‖ v‖ is also a rank-1 positive-semide�nite matrix whih ats only in the diretion of the disrete solutiongradient.The disontinuity apturing method is experimented with four sets of parameters: DC1,in this ase,
τ1 = τ and τ2 = τ‖, (7.78)The main drawbak of eq. (7.78) is obvious if v = v‖; the doubling of the stabilisationparameter τ is engendered. To avoid this, DC2 has been proposed to remove the omponent

τvTv in the diretion ∇T , in this ase
τ1 = τ and τ2 = max(0, τ‖ − τ). (7.79)

τ‖ is de�ned in a similar way than τ but through the parallel veloity v‖, as presentedin Table 7.1, in whih ξ = ξ(x) is the inverse mapping and |b|p is the `length' of b withrespet to the p-norm, denoted,
|b|p =

(
nsd∑

i=1

|bi|p
)1/p

, with bi = vj
∂ξi
∂xj

. (7.80)
h and h‖ are the element mesh parameters desribing the length of the element in thediretion of the veloity v and in the diretion of the temperature gradient ∇T , respetively.Tezduyar and Park (1986) proposed to rede�ne the stabilisation parameter τ2 in eq.(7.74), whih leads to the sheme denoted EC1,
τ2 =

h‖

2
∥∥v‖

∥∥ η
(∥∥v‖

∥∥
‖v‖

)
, (7.81)343



7. The SUPG method 7.3. Beyond SUPG
τ τ‖

b = (v · ∇)ξ b‖ = (v‖ · ∇)ξ

h = 2 ‖v‖ / |b|p h‖ = 2
∥∥v‖

∥∥ /
∣∣b‖

∣∣
p

Peg = ‖v‖h/2αT Peg‖ =
∥∥v‖

∥∥h‖/2αT

ξ̃ = ξ̃(Peg) ξ̃‖ = ξ̃(Peg‖)

τ = hξ̃/2Peg τ‖ = h‖ξ̃‖/2Peg‖Table 7.1: Comparison between the stabilisation parameter related to the streamline op-erator τ and the stabilisation parameter related to disontinuity-apturing operator τ‖.with,
h‖ =

2
∥∥v‖

∥∥
∑

a

∣∣v‖ · ∇Na
T

∣∣ and η(x) = 2x(1 − x). (7.82)Note that the funtion η vanishes at the end of its domain; that is whenever theveloity and the solution gradient vetors are either perpendiular or parallel, the funtionis designed to beome zero η = 0,
∥∥v‖

∥∥
‖v‖ =

v

‖v‖ · ∇T
‖∇T‖

{
= 0 if v ⊥ ∇T,
= 1 if v // ∇T.

(7.83)By seleting η = 1 and η = 1−
∥∥v‖

∥∥ / ‖v‖, the disontinuity apturing method DC1 andDC2 from Hughes et al. (1986) are reovered, respetively. The proposition of Tezduyar andPark (1986) ensures that the stabilisation is not doubled if v‖ = v and is a generalisationof the ad ho proposition introdued by Hughes et al..In addition to EC1, Tezduyar and Park (1986) introdued the sheme EC2 whihdepends not only on the diretion of ∇T but also on its magnitude,
τ2 =

h‖

2
∥∥v‖

∥∥ η
(∥∥v‖

∥∥
‖v‖

)
h‖

‖∇T‖
Tref

, (7.84)where Tref is a global saling of the unknown T .344



7. The SUPG method 7.3. Beyond SUPGNote that the `element length' (7.82) introdued by Tezduyar and Park (1986) is easierto ompute than the one presented by Hughes et al. (1986) in Table 7.1 and is used for allthe methods (John and Knobloh, 2007).7.3.4.2 Simulation resultsThe problem to be solved is the onvetion of a single phase in a steady �ow skew tothe mesh with downwind essential boundary ondition (Hughes et al., 1986; Tezduyar andGanjoo, 1986; John and Knobloh, 2007). The thermal di�usivity is assumed to be verysmall; i.e. the grid Pélet number is very large. A 10 × 10 square mesh is employed. Thein�ow boundary onditions involve a disontinuity resulting in an internal disontinuityskew to the mesh. The out�ow boundary onditions indue spurious sharp boundary layersat the downwind boundary. The �uid veloity is positioned aording to three di�erentangles. In two ases, the internal and external boundary layers interset at a orner. Inthe third ase, only one internal sharp boundary remains.The �ow �elds are given as vy/vx = 2, vy/vx = 1 and vy/vx = 0.5 (Figures 7.14 and7.15). The results for the Galerkin formulation are not shown due to their large osillations.The SUPG response ures most of the spurious wiggles, nevertheless osillations about theinternal layer and the downwind boundary remain. The e�et of the disontinuity apturingmethod is manifest. For DC1 the solution does not exhibit the strong overshoots of theSUPG solution at the boundary layers; in addition improvements are also observed at theinternal disontinuity. The lak of auray is most probably due to the doubling e�etbetween the SUPG method and the disontinuity apturing method, when v = v‖
3. Thisdrawbak is e�etively removed by he DC2 solution whih is quite good with all the layersand the plateau apparent. Nevertheless, few overshooting nodes remain for DC2.The solutions EC1 and EC2 proposed by Tezduyar and Park (1986) also provide a goodimprovement of the overshoots ompared with the SUPG method alone. Improvementsare observed both at the downwind boundary and at the internal disontinuity. Note thatthe referene temperature in eq. (7.84) is taken equal to Tref = 30◦C.EC1 and EC2 are preferred to DC1 and DC2 sine the responses are smoother with fewerovershoots.

3In addition, the tolerane required for onvergene is relatively large: 0.01 for both the residual normand for the temperatures. 345
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Figure 7.14: Relative temperature pro�les for a onvetive �ow skew to the mesh. SUPGstands for the �nite element response aounting for the SUPG method. DC1 and DC2stand for the �nite element response with the disontinuity apturing method (added toSUPG) with τ2 = τ‖ and τ2 = max(0, τ‖−τ), respetively. The signi�ant improvements ofthe disontinuity apturing methods over SUPG are manifest: the solutions do not exhibitthe overshoots of the SUPG at the downwind boundary; in addition the overshoots at theinternal disontinuity are redued. The DC2 response exhibits less arti�ial di�usion when
v = v‖ and therefore a smoother response.
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Figure 7.15: Relative temperature pro�les for a onvetive �ow skew to the mesh. SUPGstands for the �nite element response aounting for the SUPG method. EC1 and EC2stand for the �nite element response with the disontinuity apturing method (added toSUPG) with eq. (7.81) and (7.84), respetively. The overshoots at the downwind bound-ary are e�etively removed with both EC1 and EC2 methods. Minor improvements areobserved also at the internal boundary.
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Chapter 8Simulation of heat extration ingeothermal reservoirs
Heat extration in geothermal reservoirs, also alled hot dry rok (HDR), an be desribedwith a ontinuum mixture only if loal thermal non-equilibrium (LTNE) within the mixtureis aounted for. With the loal thermal non-equilibrium assumption, heat transport isorretly desribed in eah phase. Thermal transport within the �ssure phase is dominatedby fored onvetion with respet to ondution, owing to previous hydrauli stimulation.On the other hand, ondution is the dominant heat transport mehanism within theporous blok (the solid phase and the pore �uid phase).Convetion dominated di�usion onvetion equations display spurious osillations whenimplemented with lassi numerial methods suh as the Galerkin method or the �nitedi�erene method. A method to stabilise these equations has been developed by Brooksand Hughes (1982) and is alled the streamline-upwind/Petrov-Galerkin method (Chapter7). In Setion 8.1, the streamline-upwind/Petrov-Galerkin method is extended to stabilisethe fully oupled thermo-hydro-mehanial model for dual porous media. The weak formu-lation is presented for both a mixture in loal thermal non-equilibrium and for a mixturein loal thermal equilibrium.In Setion 8.2, preliminary results with fored onvetion in a fully oupled thermo-hydro-mehanial model are displayed. The model is simpli�ed to a single porosity in loalthermal equilibrium to provide a �rst insight on the oupled response. To this respet,the SUPG method as part of a fully oupled model is tested. Results are satisfatoryand wiggles are ured e�iently. Finally, the analytial solution of a problem in LTNE isompared with the �nite element response and the LTNE assumption is learly identi�edas unavoidable.In Setion 8.3, thermal reovery from a single porous medium in loal thermal non-equilibrium is investigated. A parametri analysis is arried out to evaluate the in�ueneof the LTNE assumption on the �uid outlet history, from a hot dry rok reservoir. The348



8. HDR reservoirs 8.1. The stabilisation proess for a THM modelmain ontribution is the asertainment that the temperature outlet pro�le in thermal loalnon-equilibrium is haraterised by a double-step pattern; representing the response of thereservoir respetively by, (1) the initial onvetion of the �uid (stage 1), (2) the transfer ofheat between the solid and the �uid (stage 2), and (3) the �nal depletion of the mixture(stage 3). Next, the model is alibrated with data from the Fenton Hill hot dry rokreservoir. Temperature preditions ompare favorably with experimental data for varioussetups. In �ne, thermo-hydro-mehanial behaviour of the reservoir is desribed and tensileindued e�etive stress are observed owing to the thermal ontration of the rok. Theresults presented in this setion will be submitted for publiation in a near future.In Setion 8.4, the latter results are extended to a dual porous medium. The om-prehensive framework used to de�ne the onstitutive behaviour of fratured porous mediain LTNE is summarised from Chapter 2. Partiular emphasis is laid on both mass andenergy exhanges between the avities whih is ontrolled by the modi�ed hemial po-tential di�erene and by the oldness di�erene, respetively. Again, three parameters ofthe model are alibrated, suessively, with the thermal outputs of the Fenton Hill andof the Rosemanowes hot dry rok reservoirs. The solid-to-frature �uid heat transfer pa-rameter, whih ontrols the loal thermal non-equilibrium between the porous blok andthe frature �uid, is found in the range 35 < κsf < 120mW/m3.K. Next, the alibratedmodel is used to desribe the long term behaviour of the Fenton Hill hot dry rok reservoir.The thermally indued e�etive stress and the mehanisms for �uid loss are targeted. Aparametri analysis is arried out to evaluate the in�uenes of the dual porosity oneptand of the frature spaing on the e�etive stress response and on the permeation of �uidinto the porous blok. The thermally indued e�etive stress is found to be less tensilewith the dual porosity model ompared with the single porosity response illustrating theprotetive e�et of the pore pressure drop whih beomes more signi�ant for large fraturespaings. The results presented in this setion will also be submitted for publiation in anear future.8.1 The stabilisation proess for a THM modelThe omprehensive model involves six types of unknowns, namely the solid displaements,the �uid pressures, the temperatures of the solid, of the pore �uid and of the �ssure �uid;and six types of �eld equations: 1. the balane of momentum for the solid skeleton 2 thebalane of mass of the pore �uid 3. the balane of mass of the �ssure �uid 4. the balaneof energy of the solid 5. the balane of energy of the pore �uid and 6. the balane of energyof the �ssure �uid. These equations are oupled as shown in Setion 2.4.The stabilisation of a THM model with the SUPG method is now onsidered for twosub-problems: I. the stabilisation of the balane of energy equations for a mixture in loalthermal non-equilibrium (LTNE) and II. the stabilisation for the partiular ase of loalthermal equilibrium, whih displays only one balane of energy equation for the mixtureas a whole. 349



8. HDR reservoirs 8.1. The stabilisation proess for a THM modelThe equations that display the onvetion-di�usion phenomenon have been addressedin the previous hapter, i.e. the balane of energy of the �uid phases. The balane ofenergy of the solid phase does not need to be stabilised in LTNE sine no onvetive termis involved. Similarly, the balane of mass of the �uid phases are disregarded for the samereason.8.1.1 Stabilisation for a mixture in LTNEReferring to Setion 7.1.1, the semi-disretised form of the balane of energy for the �uids
k = p, f ,

nel∑

e=1

[δTe]T
∫

V e

WT
Tk

(Lk Tk − f) dV e = 0, with Lconv,k Tk = vconv,k · ∇Hk, (8.1)involves the Petrov-Galerkin weighting funtion WTk
, de�ned as a funtion of the shapefuntion vetor NT and a rather ad-ho stabilisation parameter τconv,k (Setion 7.2.2.2),

WTk
= NT + τconv,k Lconv,k NT , k = p, f ; (8.2)the generi di�erential operator Lk and Lconv,k the onvetive part of the operator Lk.The balane of energy equations for solid and the �uids, in the ase of a mixture in loalthermal non-equilibrium, are summarised below (Setion 2.4),

LsTs = − ∂

∂xi

(
ns Λs

∂Ts
∂xi

)
+ aTsTs

∂Ts
∂t

+ aTsp
∂pp
∂t

+ aTsf
∂pf
∂t

+ aTsǫ
∂2ui
∂t∂xi

+κsp (Ts − Tp) + κsf (Ts − Tf ) , (8.3)
LpTp = − ∂

∂xi

(
Tp np Θp

∂pp
∂xi

+ np Λp
∂Tp
∂xi

)
+ aTpTp

∂Tp
∂t

+ aTpp
∂pp
∂t

+aTpf
∂pf
∂t

+ aTpǫ
∂2ui
∂t∂xi

+ aTpTs

∂Ts
∂t

+ κsp (Tp − Ts) + κpf (Tp − Tf )

+ρ̂p Hp + Mp · ∇Hp︸ ︷︷ ︸
convective term

, (8.4)
LfTf = − ∂

∂xi

(
Tf nf Θf

∂pf
∂xi

+ nf Λf
∂Tf
∂xi

)
+ aTfTf

∂Tf
∂t

+ aTff
∂pf
∂t350



8. HDR reservoirs 8.1. The stabilisation proess for a THM model
+aTfp

∂pp
∂t

+ aTf ǫ
∂2ui
∂t∂xi

+ aTfTs

∂Ts
∂t

+ κsf (Tf − Ts) + κpf (Tf − Tp)

+ρ̂f Hf + Mf · ∇Hf︸ ︷︷ ︸
convective term

, (8.5)
in whih the oe�ients of the model are presented in Table 2.9, p. 179. The onvetiveparts of the balane of energy equations for the �uids (8.4)-(8.5), may also be expressed interms of volume �uxes Jk, for k = p, f ,

Mp · ∇Hp = ρp Jp · ∇Hp and Mf · ∇Hf = ρf Jf · ∇Hf . (8.6)The gradient of the �uid enthalpies (for onstant thermal expansion oe�ients ckT )are de�ned by (Note that the inrement de�nitions are arbitrary),
∇Hp = v0 (1− T0 cpT )∇pp + Cp,p ∇Tp,

∇Hf = v0 (1− T0 cfT )∇pf + Cf,p ∇Tf , (8.7)in whih Ck,p is the heat apaity at onstant pressure of the �uid k de�ned by,
Ck,p = Ck,v +

c2kT
ρpckH

T0, k = p, f. (8.8)By replaing in (8.6) the gradient of the �uid enthalpies by (8.7), the onvetive partsof the balane of energy equations are reformulated to,
Mp · ∇Hp = bTpp (vp − vs) · ∇pp + bTpTp (vp − vs) · ∇Tp,

Mf · ∇Hf = bTff (vf − vs) · ∇pf + bTfTf
(vf − vs) · ∇Tf , (8.9)in whih,

bTpp = np (1− cpT T0), bTff = nf (1− cfT T0),

bTpTp = np ρp Cp,p, bTfTf
= nf ρf Cf,p.

(8.10)
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8. HDR reservoirs 8.1. The stabilisation proess for a THM model8.1.1.1 The weighting funtionIt is important to notie that for this fully oupled model, the onvetive ontributions arelinked to two primary variables: the pressures pk and the �uid temperatures Tk, eq. (8.9).This writing makes the appliation of the SUPG method deliate, indeed the arti�ialdi�usivity α̃conv,Tk
(used in the alulation of τconv,k, for the �uid k) is harder to identify.Two options arise:1. The format of the onvetive terms in eq (8.4) and (8.5) suggests to use the enthalpies

Hk as primary variables, instead of either the temperature Tk or the pressure pk.The ensuing algebrai manipulations may not be un-tratable but they hange thestruture that we have in mind from the start.2. The oupled terms in the de�nition of the onvetive parts of the balane of energyequations are negleted in view of the de�nition of τconv,k = α̃conv,Tk
/ ‖vconv,k‖2,

Mp · ∇Hp ≈ bTpTp (vp − vs) · ∇Tp,

Mf · ∇Hf ≈ bTfTf
(vf − vs) · ∇Tf . (8.11)For simpliity, the seond option is hosen. The �uid di�usivities used in the streamlineupwind di�usivity equations (7.68) are,

α̃conv,Tp =
npΛp

bTpTp

, α̃conv,Tf
=
nfΛf

bTfTf

, (8.12)and the onvetive �uid veloities are,
vconv,p = vp − vs, vconv,f = vf − vs. (8.13)

8.1.1.2 The weak formulationReall that the �eld equations ontaining onvetive terms, for a mixture in loal thermalnon-equilibrium, are the balane of energy for the two �uids k = p, f . The elementaryweak ontributions to the three balane of energy equations are onsidered in turn.352



8. HDR reservoirs 8.1. The stabilisation proess for a THM modelElementary ontribution to the balane of energy for the solid phase:
∫
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(8.14)
in whih no stabilisation is required sine no onvetive term appears in this balaneequation. The elementary ontribution to the balane of energy for the pore �uid,
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(8.15)

and the elementary ontribution to the balane of energy for the �ssure �uid,
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8. HDR reservoirs 8.1. The stabilisation proess for a THM model
+
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(8.16)
require stabilisation on all terms exept the di�usive terms and the boundary terms (�rstand last lines) whih anel out to zero on the elements interior and do not require stabili-sation (Brooks and Hughes, 1982, p. 211-212) sine 1. the unknowns are interpolated withmulti-linear isoparametri interpolation funtions, 2. the material properties are isotropiand 3. the element domains are retangular. For a general mesh, the di�usion terms alsorequire stabilisation with ∇WT

Tk
instead of ∇NT

T . However, for reasonable element shapes,the streamline upwind ontribution on the di�usive terms is small and an be negleted(Brooks and Hughes, 1982, p. 212).In the left-hand-side of eq. (4.68), the parameters related to the mass transfer ontri-butions have been heavily linearised to beome, eq. (2.317),
γTpp = ηρ0 × [Cp,pT0 −H0], and γTpTp = −ηρ20S0 × [Cp,pT0 −H0],

γTff = −ηρ0 × [Cf,pT0 −H0], and γTfTf
= +ηρ20S0 × [Cf,pT0 −H0].

(8.17)In addition, the following parameters anel out to zero due to their very low order ofmagnitude ompared with their neighbor parameters (in the same equation);
aTpf = 0, aTpTs = 0, and aTpǫ = 0,

aTfp = 0, aTfTs = 0, and aTf ǫ = 0.
(8.18)

8.1.2 Stabilisation for a mixture in thermal equilibriumReferring to Setion 7.1.1, the semi-disretised form of a oupled problem in loal thermalequilibrium 354
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nel∑

e=1

[δTe]T
∫

V e

WT
T (L T − f) dV e = 0, with Lconv T =

∑

k=p,f

vconv,k · ∇Hk; (8.19)involves the Petrov-Galerkin weighting funtion WT , de�ned as a funtion of the shapefuntion vetor NT ,
WT = NT + τconv Lconv NT . (8.20)The balane of energy equation for the mixture as a whole, in the partiular ase ofloal thermal equilibrium, redues to
LT = − ∂

∂xi

(
T np Θp

∂pp
∂xi

+ T nf Θf
∂pf
∂xi

+ Λ
∂T

∂xi

)
+ aTT

∂T

∂t
+ aTp

∂pp
∂t

+aTf
∂pf
∂t

+ aTǫ
∂2ui
∂t∂xi

+Mp · ∇Hp +Mf · ∇Hf︸ ︷︷ ︸
convective terms

, (8.21)where the mass transfer ontributions anel out (ρ̂p = -ρ̂f in loal thermal equilibriumonly); and the onvetive terms are gathered on the seond line as funtions of the �uidenthalpies. Upon linearisation around the referene state with the initial enthalpy S0 = 0(Table 2.9 and Remark 2.15), the oe�ients are,
aTf = T [(nf − ξf ) cT − nf cT,f ], aTp = T [ (np − ξp) cT − np cT,p],

aTT = ρ Cp, aTǫ = T cT /c,
(8.22)in whih ρ Cp = ρs Cs,p + ρp Cp,p + ρf Cf,p. The onvetive parts of the balane of energy(8.21), when the mass �uxes Mk are replaed by the volume �uxes Jk, for k = p, f , are,

Mp · ∇Hp +Mf · ∇Hf = ρp Jp · ∇Hp + ρf Jf · ∇Hf . (8.23)By substituting in (8.23) the gradient of the �uid enthalpies by their de�nitions (8.7)in thermal equilibrium, the onvetive part of the balane of energy is reformulated to,
Mp · ∇Hp +Mf · ∇Hf = bTpp (vp − vs) · ∇pp + bTff (vf − vs) · ∇pf

+
(
bTpTp (vp − vs) + bTfTf

(vf − vs)
)
· ∇T, (8.24)in whih the oe�ients are detailed in eq. (8.10).355



8. HDR reservoirs 8.1. The stabilisation proess for a THM model8.1.2.1 The weighting funtionThis time, the onvetive ontributions of the balane of energy equation are now linked tothree primary variables: pp, pf and T , eq. (8.24). Again, the oupled e�ets are negletedin the de�nition of the Petrov-Galerkin weighting funtion, and eq. (8.24) is approximatedto
Mp · ∇Hp +Mf · ∇Hf ≈

(
bTpTp (vp − vs) + bTfTf

(vf − vs)
)
· ∇T (8.25)in view of the de�nitions of τconv = α̃conv,T/ ‖vconv‖2 and vconv:

WT = NT + τconvvconv,T · ∇NT (8.26)Nevertheless, two options remain:1. The mixture an be stabilised with respet to the largest �uid veloity,if vp ≥ vf vconv = (vp − vs), α̃conv,T =
npΛp

bTpTp

;if vf > vp vconv = (vf − vs), α̃conv,T =
nfΛf

bTfTf

.

(8.27)
2. Alternatively, both ontributions an be used and saled by √b2TpTp

+ b2TfTf
,

vconv =

(
bTpTp (vp − vs) + bTfTf

(vf − vs)
)

√
b2TpTp

+ b2TfTf

, α̃conv,T =
Λ√

b2TpTp
+ b2TfTf

. (8.28)
The option n◦2. is implemented in the �nite element program, although both optionsare essentially the same if vf >> vp, whih is likely to be the ase for dual porous media.8.1.2.2 The weak formulationThe elementary weak ontribution to the balane of energy of a mixture in thermal equilib-rium is: 356
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(8.29)
in whih the �rst and the last lines represent the di�usive terms and the boundary term.The remarks exposed in Setion 8.1.1.2 on the struture of the weak equations apply hereas well.Note that one the SUPG stabilisation method is performed on the three-temperaturemodel, the elementary weak ontributions to the balane of energy do not redue to thatof a single-temperature model when enforing the temperatures and the parameters to beequal pointwise. Nevertheless, both disretisation are orret and should lead to the sameresult upon re�nement; sine, for large Pélet numbers, τconv = h/2vconv → 0 when theelement size h→ 0.8.2 Preliminary results on fored onvetion in a oupledmodelA �rst insight of heat extration in geothermal reservoirs is provided below. First, themodel is restrited to a single porosity model in loal thermal equilibrium and is appliedto the Soultz-sous-Forêt site. The fully oupled thermo-hydro-mehanial response is in-vestigated in spite of the unrealisti assumption of LTE. Next, the nature of the thermalboundary ondition between the reservoir and the surrounding formation is brie�y out-lined. The ability of the SUPG method to ure spurious wiggles is validated for oupledmodels in LTE. Finally, the LTNE hypothesis is srutinised by omparison with an ana-lytial solution. The LTNE assumption appears unavoidable to desribe thermal depletionin geothermal reservoirs, in spite of the remaining unertainties regarding the oe�ientof volumetri inter-phase heat transfer κsp.8.2.1 Problem setup at Soultz-sous-ForêtsThe �rst HDR projets were initiated in di�erent parts of the world, Fenton Hill (USA)starting in 1973, Rosemanowes (England) in 1977 and Hijiori (Japan) in 1989; now followed357



8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled modelby more elaborate Enhaned Geothermal Systems (EGS); projets at Soultz-sous-Forêts(Frane), Coso (USA) and Habanero (Australia).
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Figure 8.1: Fluid irulation in the geothermal reservoir at Soultz-sous-Forêts after hy-drauli stimulation.Preliminary numerial results are preformed at Soultz-sous-Forêts (Frane), in the x−yplane. The injetion well is named GPK1 and the prodution well is denoted GPK2 (Figure8.1). The old water injeted into GPK1 is heated within the stimulated reservoir and isextrated in well GPK2. The hot produed �uid is ooled with water from a pond nearGPK2 and is then re-introdued into GPK1 for a new irulation yle. The reservoirhas been arti�ially stimulated (hydraulially indued or hemially indued) prior to theirulation test. Arti�ial stimulation is not reprodued in this study, our main fous israther on the irulation test itself. Gravity and free onvetion are not aounted for.8.2.1.1 Material propertiesThe material properties of the Soultz-sous-Forêts reservoir are presented in Table 8.1, for asingle porosity medium model. The subsript p is used to haraterise the unique porositywith respet to the solid phase endowed with the subsript s.In Table 8.1, the volumetri thermal expansion of the �uid is given for the initialtemperature of 80◦C. The volumetri thermal expansion of the �uid cpT inreases withtemperature, see Figure 2.6 and eq. (2.171). Nevertheless, it may remain onstant between80◦C and 200◦C at a pressure of 60 MPa (Bataillé et al., 2006, p. 663).The thermal di�usivity αT and hydrauli di�usivity αH of a single porosity medium,are de�ned by MTigue (1986), 358



8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled modelMaterial parameter Value Unit RefereneDrained elasti modulus E 54 GPa 3Drained Poisson's ratio ν 0.25 - 1Bulk modulus of grains Ks = 1/cs 50 GPa 3Bulk modulus of the �uid Kp = 1/cH,p 2.2 GPa 1Dynami visosity of the �uid µp 3× 10−4 Pa.s 2Overall network porosity∗ np 0.1003 - 2,3Overall network permeability+ kp 1.0110−12 m2 1Thermal ondutivity of the solid Λs 2.49 W/m.K 3Thermal ondutivity of the �uid Λp 0.6 W/m.K 1Heat apaity of the solid Cs,v 1000 J/kg.K 3Heat apaity of the �uid Cp,v 4200 J/kg.K 1Density of the solid ρs 2910.2 kg/m3 2,3Density of the �uid ρp 980 kg/m3 1Volumetri thermal expansion of the solid cT 7.5×10−6 1/K 2Volumetri thermal expansion of the �uid cpT 1×10−3 1/K 2Table 8.1: Input parameters representative of the hot dry rok reservoir at Soultz-sous-Forêts (Frane). 1: Estimated parameters for water and graniti rok, 2: Bataillé et al.(2006) and 3: Evans et al. (2009). ∗The porosity aounts for the �uid in the �ssurenetwork and in the rok matrix. +The permeability desribes the interonneted �ssurenetwork post-stimulation.
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(8.30)
in whih B is the Skempton oe�ient and νu is the undrained Poisson's ratio,

1

B
= 1 + np

cH,p − cs
c− cs

, νu =
3 ν +B(1− 2ν)(1− cs/c)

3−B(1− 2ν)(1 − cs/c)
. (8.31)For the material de�ned in Table 8.1, the thermal and hydrauli di�usivities are equalto αT = 7.59 × 10−7 m2/s and αH = 66.80m2/s. Therefore, the di�usivity ratio R =

√
αH/αT is equal to 9383 >> 1 whih illustrates that the hydrauli �ow is faster thanthe heat �ow. Note that the di�usivity ratio does not aount for the dominant heattransportation phenomenon whih is onvetion rather than di�usion, in the �ssure network(maro-�ssures). The harateristi times t = L2/αk, k = H,T , assoiated with a lengthof L = 450 meters (distane separating the two wells) are equal to 8462.5 years for thermaldi�usion and 0.84 hours for hydrauli di�usion.359



8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled model8.2.1.2 GeometryThe 3-D dimensions of the hydraulially stimulated reservoir are approximately 450 × 36
× 750 as length, width and height (x,y,z). The Soultz-sous-Forêts site is oneptualisedby a reservoir omposed of several fratured zones. Only one frature zone is representedin this 2-D simpli�ed model. The simulation of the irulation test is performed in thehorizontal x− y plane of spae as presented in Figure 8.2. The thikness of the fraturedzone is assumed to be equal to 36m (in the y-diretion), whih represents the width of thestimulated domain at the logging depth (Bataillé et al., 2006).
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Figure 8.2: Coneptual model of the 2-D irulation test, at Soultz-sous-Forêts, in thehorizontal x − y plane of spae. Note that the above sketh is enlarged along the y-axis.The boundary onditions illustrated on this sketh are properly listed in Table 8.2.8.2.1.3 Boundary onditionsThe in-situ stresses de�ned in (Evans et al., 2009, p. 38-39), are disregarded in favor ofa no-displaement boundary ondition perpendiular to the walls of the mesh (Table 8.2).The in�uene of the overall behaviour on the stress �eld will generate indued stresses thatould be later ompared with a referene situation (non-zero initial stresses). Hene, theinitial state is de�ned by zero initial stresses, the initial �uid pressure p0p = 37MPa andthe initial temperature T 0 = 170◦C, orresponding to a depth of z = 3.7 km.The injetion temperature Tinj = 80◦C is applied at the injetion well and the outlettemperature is sought. All the walls of the reservoir are insulated from the surroundings,that is q · n̂ = 0.The injetion and prodution pressures are ontrolled manually. The injetion pressureis equal to pp = p0p + 1MPa, whereas the prodution pressure is �xed to pp = p0p - 1MPa.All remaining boundaries are assumed impermeable, that is Jp · n̂ = 0.360



8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled modelType Boundary ConditionDisplaements r, l, t, b No normal displaementFluid �ow r, l, t, b Impermeable: Jp · n̂ = 0injetion well pp = p0p + 1 MPaprodution well pp = p0p - 1 MPaHeat �ow r, l, t, b Thermally insulated: q · n̂ = 0injetion well Tinj = 80◦CTable 8.2: Boundary onditions used for the irulating model, at Soultz-sous-Forêt. l =left, r = right, t = top, b = bottom boundary of Figure 8.2.8.2.1.4 A non-homogeneous veloity �eldThe boundary onditions of Table 8.2 applied to the geometry desribed in Figure 8.2indue a realisti veloity �eld illustrated in Figure 8.3. The main harateristi of the�eld is its non-homogeneity in spae.
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8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled model8.2.1.5 Mesh de�nitionThe mesh is omposed of 450 elements of size hx × hy = 15m × 2m and 510 nodes. Thegrid Pélet number is alulated with the average �uid veloity ‖v‖ = 1.44 × 10−5 m/s(Bataillé et al., 2006) and the thermal di�usivity αT = Λ/ρCv = 7.5 10−7m2/s (Table8.1),
Peg =

hx ‖v‖
2αT

(8.32)that orresponds to a value of 142.3.8.2.2 In�uene of the thermo-hydro-mehanial ouplingsThe thermo-hydro-mehanial model is simpli�ed to a single porosity model in loal ther-mal equilibrium to provide a �rst understanding of the oupled response of onvetion-dominated mixtures. Sine no hard boundary ondition is imposed on the mesh, theSUPG method is not required. The analysis of its e�ieny to ure spurious wiggles willbe addressed in Subsetion 8.2.3.Reall that the model is simpli�ed to a single porosity medium. In addition, gravityand loal thermal non-equilibrium are disregarded. The fully oupled model (redued toone equivalent porosity and one temperature) omprise the balane of momentum for themixture, the balane of mass for the �uid and the balane of energy for the mixture,
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+bTpTp · ∇Tp + bTpp · ∇pp. (8.35)By using the material parameters of Table 8.1, and the de�nitions of bTpTp and bTpp ineq. (8.10); one an observe that bTpTp∇T >> bTpp∇pp (for ∇T = 90 ◦C/450m and ∇pp362



8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled model= 2MPa/450m). Therefore the oupling ontribution in the onvetive ontributions isnegligible. On the other hand, if the enthalpy de�nition Hp,
∇Hp = v0 (1− T0 cpT )∇pp + Cp,p ∇T, (8.36)is approximated by assuming that the �uid is inompressible and non-dilatable, that is

Cp,p = Cp,v = constant and cpT = 0.0,
∇Hp = Cp,v ∇T, (8.37)the onvetive ontribution would be strongly underestimated: npρpCp,v << bTpTp , and aslower propagation of the thermal front would be obtained.The pro�le responses of the temperature, the �uid pressure and the horizontal dis-plaement are plotted in Figures 8.4 and 8.5, for four di�erent times. The e�etive stressresponses are presented in Figure 8.6. The temperature results along the horizontal dis-tane x are presented in terms of a dimensionless temperature ϕ de�ned to be equal to onewhen the in-situ temperature T is equal to the initial temperature T 0 = 170◦C and equalto zero when T is equal to the injetion temperature Tinj = 80◦C,
ϕ =

T − Tinj
T 0 − Tinj

. (8.38)The overall mehanism is ontrolled by the propagation of the ooled thermal front(Figure 8.4, left) whih indues the mixture to ontrat (see Figure 8.5). The perturbationof the temperature pro�les at 7.63months is most probably due to the non-monotoniveloity around the produing well GPK2 (Figure 8.3). Note that the rate of propagationof the ooled front is not realisti due to the loal thermal equilibrium assumption. A morerealisti thermal assumption will be presented in a subsequent example (Subsetion 8.2.4and Setion 8.3). The in�uene of the pressure �eld and of the mehanial �eld on thetemperature response are negligible.Importantly, the pressure pro�le is not in�uened by the propagation of the ooledfront. Hene, the �uid pressure is unlikely to in�uene in turn the temperature responsevia the onvetive veloity vp. It should be noted that the thermo-hydrauli ouplingsarise though the transient terms ∂pp/∂t and ∂T/∂t, but also though the veloity termontrolling the amount of onvetion Mp.The in�uene of the temperature on the displaement is signi�ant and non-monotoni(Figure 8.5). The horizontal displaement pro�les desribe (1) �rst that the rok ontratslose to the injetion point, (2) seond that this ontration involves the left-hand-sidepoints as time goes on and as the thermal front propagates toward the right; and (3) thirdthat the onjuntion of rigid boundaries and homogeneous temperature repartition allows363



8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled modelthe elasti ontration to reover its initial state. Logially, the largest displaements arisewhen the thermal front is almost in the middle of the wells, where all the points move awayfrom the rigid walls.
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8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled modelwill be srutinised in Setions 8.3 and 8.4, for the single porosity onept and the dualporosity onept, respetively.
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T = Tknown at t > 0, on ∂V. (8.39)2. The Neumann boundary ondition that is imposed on the ondutive �ux,
Q = Qknown at t > 0, on ∂V. (8.40)3. The onvetive boundary ondition that uses a onvetive heat transfer parameter

hsf [W/m2.K℄ and desribes the amount of energy of a onvetive �uid heating asolid wall of temperature Tknown,
Q = hconv(Tknown − T ) at t > 0, on ∂V. (8.41)4. The Robin boundary ondition that is a linear ombination of Dirihlet and Neumannboundary onditions,
aT + bQ = Rknown at t > 0, on ∂V (8.42)and is a general form of the insulating boundary ondition for di�usion-onvetionequations. However, Brooks and Hughes (1982, p. 211) advise against the use ofsuh a boundary ondition as it is not suitable for ertain numerial simulation, infavor of the lassi Neumann ondition on the onvetive �ux.Note that the Robin boundary ondition is not a mixed boundary ondition whihindiates that di�erent boundary onditions are used on di�erent parts of the domain.Thermal boundary onditions of enhaned geothermal reservoir have been desribed invarious ways in the literature. Reservoirs an be simply desribed by one unique fratureinterating with a ondutive in�nite surrounding (Gringarten et al., 1975; Cheng et al.,2001), or heavily embedded in an impermeable bu�er rok (Bataillé et al., 2006).The Dirihlet boundary ondition is often employed at a ertain distane from thereservoir boundaries (Bataillé et al., 2006). This boundary ondition assumes that therok surrounding the reservoir is impermeable (or endowed with a very low permeabilityompared with the stimulated zone), i.e. thermal di�usion is dominant over onvetion.This surrounding rok desribes the hot formation, at least during the time of the simu-lation. The main drawbak of suh a ondition is that the formation around the reservoirneeds to be modeled whih signi�antly inreases the number of elements.The Neumann boundary ondition is usually employed on the reservoir or the fratureedges. Often a heat ondution equation is used to represent the ondutive heat �ux366



8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled modelbetween the reservoir and the impermeable rok in the diretion perpendiular to thereservoir slot (Kolditz and Diersh, 1993; Cheng et al., 2001). Whereas adiabati onditionsan be employed on the reservoir edges in the diretion of the �ow. The ondutive heat�ux may either be de�ned as an expliit funtion of time (Kolditz and Diersh, 1993) oras an expliit funtion of time and spae (Cheng et al., 2001).Alternatively, a onvetive boundary ondition is rarely employed. This boundaryondition is used when a onvetive �uid heats a solid wall remaining at a �xed temper-ature Tknown. The main drawbak of this boundary ondition is the identi�ation of theonvetive heat transfer parameter hconv (Setion 3.3.2).The behaviour of a thermo-hydro-mehanial model with insulated boundaries (a Neu-mann boundary ondition) has been srutinised in Setion 8.2.2. The ontribution of theexternal heat supply is now assessed by omparing the previous results with a Dirihletboundary ondition (applied on a piee of formation added on top of the reservoir). Theonvetive boundary ondition will be analysed later in Setion 8.3.8.2.3.1 The Dirihlet boundary onditionWhen a piee of formation is added on the side of the reservoir, the veloity �eld in thereservoir is not modi�ed due to the low permeability of the formation kp = 10−20m2(Figure 8.7). A Dirihlet boundary ondition T = T 0 is used on the formation at y = H,whih has been alibrated so that T (x,H, t) would remain equal to T 0 over the life timeof the reservoir ≈ 40 years (Remark 8.1); hene,
H =

√
tlife time × αT ≈ 30m. (8.43)The injetion temperature is applied at GPK1 and all the other boundaries are assumedto be insulated. The hydrauli and mehanial boundary onditions remain the same as inthe previous setion. The pro�le responses of the temperature, the horizontal displaementand the e�etive stresses are plotted in Figures 8.7 and 8.8, for four di�erent times. Stabilityissues are illustrated in Figure 8.10.The temperature propagates in the porous medium at the same rate as in the previoussetion regardless of the additional heat ontribution brought by the piee of formation(Figure 8.8, left).The pressure variation is not in�uened by the thermal front (not shown) and remainsthe same as in Figure 8.4, right.The horizontal displaement pro�le is similar to the one in the previous setion butwith a lower magnitude (Figure 8.8, right). This is due to the fat that two thermalfronts propagate in the reservoir whih distribute the displaement ontribution along the367
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x-diretion and the y-diretion. The e�etive stresses are also in�uened by this x− y nonuniform repartition (Figure 8.9). Thermal ontration is visible along both diretions, astensile e�etive stress inreases behind the thermal front.
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8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled modelThe di�erenes between the two proposed thermal boundary onditions remain negligi-ble (at least when the mixture is in loal thermal equilibrium) and suggests that the heattransfer mehanisms in side the reservoir overome that of the reservoir with the surround-ings. The validity of this hypothesis will be investigated for a mixture in loal thermalnon-equilibrium in Setion 8.3.8.2.4 In�uene of loal thermal non-equilibriumIf loal thermal non-equilibrium is not aounted for, the balane of energy equation ofthe mixture is likely to desribe the temperature behaviour of the �uid in the fratures(heat transported by onvetion), rather than that of the mixture in loal thermal non-equilibrium; hene, the temperature of the mixture will propagate at a time sale imposedby the veloity of the �uid in the fratures. To illustrate this, the analytial solution ofheat propagation of a unique rak embedded in an impermeable rok (Gringarten et al.,1975) is ompared with the numerial response of the equivalent single porosity modelin loal thermal equilibrium (LTE) and in loal thermal non-equilibrium (LTNE) (Figure8.12).The ontext of the analytial solution is framed so as to best adapt the �nite elementanalysis. Gringarten et al. (1975) proposed a study of a 2-D reservoir, of length L = 300min the x-diretion and of in�nite extent in the y-diretion whih holds a unique rak ofaperture b = 0.3m. Therefore, the distane separating two potential raks is in�nite.By further assuming 1-D onvetion in the frature in the x-diretion, and 1-D ondutionin the impermeable rok in the y-diretion, the analytial solution of the �uid temperaturein the frature Tp(x, 0, t) an be found by utilizing a Laplae transform (Gringarten et al.,1975; Cheng et al., 2001),
Tp(x, 0, 0) − Tp(x, 0, t)

Tp(x, 0, 0) − Tp(0, 0, t)
=





erf[ Λsx

vpbρpCp,v

√
vρsCs,v

Λs(vt− x)

]
, for x ≤ vt,

0, for x ≥ vt,

(8.44)in whih vp is the veloity of the �uid in the frature along the x-diretion and the �uidondutivity is enfored to zero Λp = 0. A dimensionless time td is introdued toaurately ompare the temperature history,
td =

(ρpCp,v)
2

ΛsρsCs,v

(
vpb

x

)2(
t− x

vp

)
. (8.45)The �nite element setup for a ontinuous �ssured porous medium is adapted from theanalytial setup proposed by Gringarten for a single rak embedded in a semi-in�nite370
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y = 0m, y = ye and x = L on both phases. The in-situ temperature is hosen equal to
T 0
p = T 0

s = T 0 = 80◦C, the injetion temperature Tp = 170◦C is imposed instantaneouslyat x = 0m on the �uid phase only ; and the prodution temperature at x = Lm is sought.Sine symmetry is observed around the x-axis, half of the reservoir only is implemented.The length of the reservoir and the aperture of the raks are hosen equal to Gringartensetup, L = 300m and b = 0.3m. The height of the reservoir is hosen equal to
ye = 100m. Sine the semi-in�nite rok surrounding the rak is assumed to be im-permeable in Gringarten study, ye is alibrated so that the ritial time for ondutionin the y-diretion is greater than the life-time of the reservoir. The porosity np is simplyalulated by assuming that b represents the umulative aperture of the �ssured networkover the distane ye. Hene, np = b/ye = 0.003.Finally, the �uid veloity vp is imposed, onstant, uni-diretional along the x-axisand null along the y-axis. The value of the �uid veloity is arbitrarily hosen to vp =

5 × 10−5 m/s whih orresponds to a pressure gradient of ∇pp = 4.5 × 103 Pa/m for anoverall permeability of kp = 1× 10−14 m2 and a �uid visosity of µp = 0.3 × 10−3 Pa.s. Inother words, the pressure drawdown would be equal to 1.35MPa over the 300m separatingthe injetion point and the prodution point.The temperature history and the temperature pro�le of a mixture in thermal equilib-rium are haraterised by step-like urves desribing a onvetion-dominated behaviour;371



8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled modelwhereas the temperature urves of the analytial results are haraterised by a less sti�slopes whih orrespond to a less onvetive behaviour (Figure 8.12). The LTNE �uid tem-perature displays an intermediate response between the LTE response and the analytialsolution. The solid and the �uid temperature remain in LTNE until td = 20 (see Figure8.13).

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Dimensionless time td

R
el

at
iv

e
te

m
p
er

at
u
re

 

 

HOT

COLD

Gringarten analytical solution
Tf at LTNE
T at LTE

0 100 200 300

0

0.2

0.4

0.6

0.8

1

Horizontal distance x [m]

R
el

at
iv

e
te

m
p
er

at
u
re

 

 

3.7 months

32 years

Gringarten analytical solution
Tf at LTNE
T at LTEFigure 8.12: (Left) Relative outlet temperature versus dimensionless time. (Right) Relativetemperature pro�le at times 3.7months and 32 years. Gringarten analytial solution ispresented in eq. (8.44). LTE stands for loal thermal equilibrium and LTNE for loalthermal non-equilibrium. The LTNE simulation uses an inter-phase heat transfer κsp =

1.0 × 10−2 W/m3.K found by trial and error to `best �t' the analytial response. The gapbetween the analytial solution and the LTNE response is attributed to the estimation ofthe �uid porosity np. In spite of the signi�ant di�erene between the urves, the LTNEresponse is loser to the analytial solution ompared with the LTE response.

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Dimensionless time td

R
el

a
ti

v
e

te
m

p
er

a
tu

re

 

 
Fluid phase
Solid phase

Figure 8.13: Relative outlet temperatures of the solid and the �uid phases versus dimen-sionless time. The solid and the �uid phase remain in LTNE until td = 20.The LTNE response is endowed with a volumetri oe�ient of inter-phase heat transfer
κsp = 1.0×10−2 W/m3.K, whih has been found by trial and error to `best �t' Gringartenanalytial results. The oe�ient of volumetri inter-phase heat transfer κsp is linked to aspei� surfae Ss

sp [m2/m3℄ and to a inter-phase heat transfer hsp [W/m2.K℄,372



8. HDR reservoirs 8.2. Preliminary results on fored onvetion in a oupled model
κsp = Ss

sp × hsp, (8.46)in whih the inter-phase heat transfer parameter hsp is related to a solid-�uid system.The latter oe�ient also aounts for the regime of the dominant heat transport of the�uid, so that a rok-water di�usion-dominated system will have a di�erent inter-phaseheat transfer parameter than a rok-water onvetion-dominated system. κsp illustratesthe rate at whih a solid-�uid system reahes thermal equilibrium.It is uneasy to ompare the validity of κsp with the literature sine this parameterrepresents both the material parameters of the mixture and the geometri disposition ofthe frature network. Therefore, a disussion is presented below; (1) �rst on the evaluationof Ss
sp and (2) seond on the validity of hsp by omparison with empirial formulas.(1) The spei� surfae of a solid-�uid system an be alulated in two di�erent ways;either onsidering the spei� surfae of the frature network, or that of the solid bloks(Setion 3.3.2):i. In the �rst ase, the fratures are grouped in a plate shape (retangular box) of size
L× b ×Hm3. The overall spei� surfae of the frature network is then alulatedwith the formula Ss

sp = (2LH + 2Lb+ 2bH)/LbH = 8.67m−1 (for H = 1m); andthe solid to �uid inter-phase heat transfer hsp is equal to 2.88 × 10−3 W/m2.K.ii. In the seond ase, the solid bloks are grouped in a plate shape (retangular box) ofsize L × (ye − b) × Hm3, the overall spei� surfae of the frature network anbe alulated with the formula Ss
sp = (2LH + 2L(ye − b) + 2(ye − b)H)/L(ye −

b)H = 2.02m−1 (for H = 1m); and the solid to �uid inter-phase heat transfer hsp isequal to 1.23 × 10−2 W/m2.K.As a partial onlusion, the evaluation of the spei� area allows to enlose the oe�-ient of inter-phase heat transfer within a minimum and a maximum:
1.15 10−3 W/m2.K < hsp < 4.95 10−3 W/m2.K. (8.47)(2) This result an be ompared with an empirial formula, (Bejan, 1993, p. 37), in whihthe overall heat transfer oe�ient hsp of a onvetive liquid along a wall of thikness

(ye− b) = 99.7m is,
1

hsp
=

1

hconv
+
ye− b

Λs
, → hsp = 2.88 10−2 W/m2.K, (8.48)in whih hconv is the onvetive heat transfer oe�ient of water under fored onvetionequal to 1000W/m2.K, (Bejan, 1993, p. 24). Note that the order of magnitude of the373



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriuminter-phase heat transfer parameter in eq. (8.48) is only one degree of magnitude abovethe upper boundary of eq. (8.47). Therefore, the LTNE response with a solid to �uid inter-phase heat transfer hsp equal to 4.95×10−3 W/m2.K gives a better insight on Gringarten'sformula and in the possibility of reproduing suh a behaviour with a ontinuum model inloal thermal non-equilibrium.Finally, the literature provides omprehensive results on the maximum boundary of theinter-phase heat transfer hsp (Minkowyz et al., 1999; Nield et al., 2002). Departure fromloal thermal non-equilibrium due to a rapidly hanging heat soure, suh as a onvetive�ux, is signi�ant for the ratio of the Sparrow number over the Pélet number Sp/4Pesmaller than unity (de�nitions of Pe and Sp are provided in Setion 3.4),
Sp

4Pe

[
np + (1− np)

Λs

Λp

]
< 1 → hsp < 1.38W/m2.K. (8.49)in whih the spei� area is Ss

sp = 2.02m−1, the solid ondutivity is Λs = 2.87W/m.K,the �uid ondutivity is Λf = 0.6W/m.K and the Pélet number Pe = 1.029 × 105.In this setion, the analytial solution of a porous medium subjeted to a onvetiveheat �ow has been ompared to the simulation response of a ontinuum model, �rst inloal thermal equilibrium and seond in loal thermal non-equilibrium. The responsein loal thermal non-equilibrium, with a volumetri inter-phase heat transfer equal to
κsp = 1.0 × 10−2W/m3.K, gives a more satisfatory response to the problem than theresponse in loal thermal equilibrium. The inferred inter-phase heat transfer oe�ient hsp[W/m2.K℄ has been ompared with the literature with a mixed suess. On the other hand,the transition limit between LTE and LTNE has been identi�ed for hsp < 1.38 W/m2.K.Hene, all the proposed oe�ients of inter-phase heat transfer hsp, whih magnitude areranking from O(10−3) to O(10−1), fall easily into the LTNE limit.If it seems lear that the proposed appliation an only be desribed with a ontinuummixture in loal thermal non-equilibrium, the identi�ation of the volumetri inter-phaseheat transfer parameter remains uneasy. One way to avoid suh problem is to alibrate κspwith experimental data. The issue of the identi�ation of the volumetri inter-phase heattransfer parameter for enhaned geothermal reservoirs is disussed later in Setion 8.3.8.3 A single porositymedium in loal thermal non-equilibriumThe work presented in this setion has been submitted to the International Journal forNumerial and Analytial Methods in Geomehanis under the title Thermal reovery froma fratured medium in loal thermal non-equilibrium, by the following authors, in order,Rahel Gelet, Benjamin Loret and Nasser Khalili.374



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumThe motivation of this seond publiation is to desribe the thermal depletion of afratured reservoir in a oupled thermo-hydro-mehanial ontext. The main ontribu-tion of this work is the use of a ontinuum model in loal thermal non-equilibrium. Thevolumetri inter-phase heat transfer κsf [W/m3.K℄ of a given geothermal reservoir is theleast well-available of the required input parameters. In this work, experimental data fromFenton Hill HDR reservoir (Figure 8.14) are used to alibrate the model.
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Figure 8.14: Coneptual representation of the Fenton Hill reservoir, inspired from Zyvoloskiet al. (1981, Figure 3-2). The injetion well is denoted EE-1 and the prodution well isdenoted GT-2. The extent and the amount of fratures linking the two wells are notpreisely known and are indiated here for the illustration.8.3.1 IntrodutionGeothermal extration from deep hot dry rok (HDR) reservoirs may beome a viablealternative to grey energies in the �far future� (Tenzer, 2001). The prodution of geothermalenergy is ahieved by old water injetion, in fratured igneous roks (originally with lowmatrix permeability), at sites where the vertial temperature gradient is favorable. Ofruial importane to the eonomi viability of these enhaned geothermal systems (EGS)is the knowledge of thermal output evolution, indued thermal stress and �uid loss, atvarious time sales of the irulation tests (Armstead and Tester, 1987).Thermo-poro-elasti mehanisms in addition to hemial, damage and plasti proessesan play a signi�ant role on the overall behavior of the HDR reservoirs (Evans et al., 2009)Closed form solutions for the predition of unoupled reservoir depletion have beenpresented by a number of investigators, where heat transfer is dominated by onvetion inthe �uid phase and by ondution in the solid phase (Gringarten et al., 1975; Elsworth,375



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibrium1989; Cheng et al., 2001). Ghassemi et al. (2005) provided an unoupled three-dimensionalintegral equation for alulating thermally indued stresses, highlighting the importaneof indued thermal stress, without the burden of disretizing the reservoir. Notable ontri-butions have also been made by Wang and Dusseault (2003) on the e�ets of onvetive-ondutive heat �ow on the stresses near a ylindrial wellbore.Coupled thermo-hydro-mehanial analyses for geothermal systems are sare (Hayashiet al., 1999) and fous mainly on partially oupled systems in an e�ort to implement apreise frature network through a system of disrete disontinuities (DuTeaux et al., 1996;Bruel, 2002), to ouple free and fored onvetion (Bataillé et al., 2006), or to haraterizejoint losure with a stress dependent law (Kohl et al., 1995; Bower and Zyvoloski, 1997).Alternatively, omprehensive fully oupled thermo-hydro-mehanial formulations basedon the mixture theory have been presented by Loret and Khalili (2000a) and Khalili andLoret (2001) for unsaturated porous media, with emphasis on the importane of an appro-priate de�nition of the e�etive stress.A key fator in�uening geothermal energy reovery is the di�erene in harateristitimes between di�usion in the solid phase and onvetion in the �uid phase. The thermallyindued e�etive stress whih results from these two ontributions may lead to permeabil-ity hange and �uid loss. Thermal shrinkage and pressure drop, aross the body of thereservoir, our at various time sales and the understanding of their interation requiresthe simulation of a ontinuum mixture in loal thermal non-equilibrium (Aifantis, 1980a;Willis-Rihards and Wallroth, 1995).This paper is aimed at presenting a fully oupled �nite element formulation for athermo-elasti fratured medium in loal thermal non-equilibrium. The fratured mediumis desribed as a porous mixture omposed of a solid phase and a �uid phase. The solidmatrix is made of impermeable solid bloks surrounded by saturated fratures. Numeri-al solutions are obtained by enforing the balanes of mass, momentum and energy. Asummary of the governing di�erential equations is provided in Set. 8.3.2. The weak formof the governing equations, the disretization and time-integration proedures to solve theoupled equations through a �nite element method are detailed in Set. 8.3.3. The pri-mary variables are the displaements, the pressure of the �uid, the temperature of thesolid phase and the temperature of the �uid. The resulting system of equations is used toaddress a generi HDR reservoir subjeted to temperature gradients and to various externalheat supplies (Set. 8.3.4). An attempt to de�ne a dimensionless threshold above whih aLTNE analysis is required is exposed (Set. 8.3.5). The threshold embodies loal physialproperties of the mixture, elements of the geometry of the reservoir and the prodution�ow rate. When interpreted with help of this threshold, the simulations of geothermalenergy reovery highlight quite distint time pro�les of the outlet temperature, dependingwhether loal thermal equilibrium (LTE) or loal thermal non-equilibrium (LTNE) holdin the reservoir. The alibrated model is used to obtain the thermal output and the ther-mally indued e�etive stress response to irulation tests, whih are ompared with dataobtained at the Fenton Hill HDR reservoir (Set. 8.3.6).376



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibrium8.3.2 The two temperature thermoporoelasto modelGeothermal energy is produed by irulating a �uid through the frature reservoir withina single porosity oneptual framework. This ontinuum treatment requires the mixtureto be in thermal non-equilibrium so that the proesses ating on the �uid phase and onthe solid phase are properly aounted for.8.3.2.1 Model assumptionsLoal thermal non-equilibrium between the phases holds at all points of the simulated zone.Eah phase k is endowed with its own temperature Tk and its own material properties.Loal thermal non-equilibrium (LTNE) emanates from the ontrast between the rapidonvetion of heat by the moving �uid in the fratures and the slow di�usion of heatthrough the solid matrix. Indeed, the harateristi time assoiated with onvetion isseveral orders of magnitude smaller than the harateristi times of di�usion in both solidskeleton and �uid, Set. 8.3.3.3.In order to onentrate e�orts on the heat exhange between phases, a number ofrestritions are adopted in the development of the model:1. The material properties of eah phase, namely, the porosities, the permeabilities, thedensities, the visosities, the ondutivities, the spei� heat apaities, the hydrauliompressibility, the oe�ients of thermal expansion, as well as the solid-�uid spei�heat transfer oe�ient, are assumed to remain onstant with time;2. Density driven onvetion and gravity e�ets are negleted. In addition, the thermalboundary resistane (Kapitza resistane), the solid surfae wettability and the laggingresponse (Virto et al., 2009) are onsidered negligible in the lifetime of the reservoir;3. The additional sti�ness indued by the initial �uid pressure is not aounted foreither;4. The �ow regime remains laminar.8.3.2.2 Governing equationsWith the indies s and f referring to the solid and to the �uid respetively, the governing�eld equations of the two phase mixture in loal thermal non-equilibrium enfore thebalane of momentum of the mixture as a whole, the balane of mass for the �uid phaseand the balanes of energy of the solid and �uid phases (Eringen and Ingram, 1965; Bowen377



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumand Chen, 1975),
divσ + ρg = 0,

divJf + Jf = 0, Jf ≡ nf
1

ρf

dfρf
dt

+
1

V

dsVf
dt

,

divqs +Qs = 0, Qs ≡ Ts
dsss

dt
+ êsf ,

divqf +Qf = 0, Qf ≡ Tf
dssf

dt
− êsf + ρfJf · ∇Hf ,

(8.50)
where σ is the total stress, g is the gravity, Jf is the apparent volumetri �ux of the �uidrelative to the solid skeleton, and qk is the apparent heat �ux through the phase k. Therate of energy transfer (or exhange) from the solid phase to the �uid phase êsf is de�nedby the onstitutive equation (8.62) below.The �eld equations feature intrinsi quantities like the mass density ρk, the spei�entropy Sk [J/kg·K℄ and the spei� enthalpy Hk [J/kg℄ of phase k. At variane, with
nk = Vk/V the volume fration of phase k in the mixture, ρk = nk ρk and sk = ρk Skare apparent quantities that represent respetively the mass and entropy of the phase kper unit urrent volume of mixture. Finally, u denotes the displaement vetor of thesolid skeleton, while vk denotes the veloity vetors of any phase k, so that the apparentvolumetri �ux of the �uid relative to the solid skeleton Jf is equal to nf (vf − vs).The initial on�guration, whih serves as a referene, represents a state in mehanialand thermal equilibrium in whih stress, strain and �uid pressure maybe non-zero. Thesolid temperature and the �uid temperature are initially equal to T 0. Departure from thisreferene state is denoted by the symbol ∆(·).The thermo-elasti mixture remains isotropi in both elasti and thermal properties.The shear behavior is aounted for by the seond Lamé's onstant µDS of the drainedsolid skeleton while the �uid does not reat to shear stresses. The elasti relationship linksthe elasti strain ǫ

el to the e�etive stress σ,
trǫel = c

trσ

3
, dev ǫel =

devσ

2µDS
, (8.51)where tr and dev denote respetively the trae and deviator operators. Atually, the totalstress σ and the e�etive stress σ,

σ = σ + ξf pf I, (8.52)have idential deviatori parts. Here pf is the �uid pressure, and ξf = 1 − cs/c is Biot'soe�ient expressed in terms of the ompressibilities [1/Pa℄ of the solid skeleton c and ofthe solid onstituent cs. The ompressibility c and the Lamé's onstants [Pa℄ of the drainedsolid λDS and µDS are assoiated with the drained Young's modulus E and the drainedPoisson's ratio ν through the standard relationships,
c =

3 (1 − 2ν)

E
, λDS =

E ν

(1 + ν) (1− 2 ν)
, µDS =

E

2 (1 + ν)
. (8.53)378



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumThe total strain of the solid skeleton derives from the displaement vetor u = (ui),namely omponentwise ǫij = 1
2 (∂ui/∂xj + ∂uj/∂xi). It is ontributed additively by theelasti strain and by the thermal strain,

ǫ = ǫ
el + cT ∆Ts I , (8.54)with cT [1/K℄ the volumetri thermal expansion oe�ient of the solid skeleton.Aside the deviatori omponents whih are governed by (8.51)2, the mixed thermo-mehanial onstitutive system relates the isotropi part of the total stress trσ/3, thevolume of the �uid vf = Vf/V

0, and the entropy of the solid ss to the isotropi part of thetotal strain tr ǫ, to the �uid pressure pf and to the solid temperature Ts by Loret (2008)
−trσ

3
= −1

c
tr ǫ+ ξf pf +

cT
c
∆Ts,

∆vf = ξf tr ǫ+ (ξf − nf ) (cs pf − cT∆Ts),

∆ss =
cT
c
tr ǫ− (ξf − nf ) cT pf +

ρs Cs,v

T 0
∆Ts,

(8.55)in whih Cs,v [J/kg.K℄ is the intrinsi spei� heat apaity of the solid, i.e. per unit massof solid, at onstant volume and �uid pressure.The thermodynami potentials of the �uid are built separately. Assuming that thehydrauli ompressibility, the thermal expansion oe�ient and the heat apaity are on-stant, the hange of the apparent entropy of the �uid is expressed as,
∆sf = −nf cfT ∆pf +

ρf Cf,p

Tf
∆Tf , (8.56)where Cf,p [J/kg.K℄ is the intrinsi spei� heat apaity of the �uid, i.e. per unit mass ofthe �uid, at onstant pressure. The �uid enthalpy Hf and the �uid density ρf depend onthe pressure and temperature only, so that the enthalpy gradient has the format,

∇Hf = (1− TfcfT )
∇pf
ρf

+ Cf,p∇Tf , (8.57)while the hange of the intrinsi mass density,
1

ρf

dfρf
dt

= cfH
dfpf
dt

− cfT
dfTf
dt

, (8.58)expresses in terms of the hydrauli ompressibility cfH [1/Pa℄ and of the oe�ient ofthermal expansion cfT [1/K℄,
cfH =

1

ρf

dfρf
dpf

∣∣∣∣
Tf

, cfT = − 1

ρf

dfρf
dTf

∣∣∣∣
pf

. (8.59)379



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumFluid �ow and heat di�usion are de�ned by unoupled Dary's law and Fourier's lawrespetively. Dary's law of seepage through the solid skeleton,Jf = − kf
µf

(∇pf − ρfg), (8.60)expresses in terms of the marosopi permeability of the frature network kf [m2℄ and ofthe dynami visosity µf [Pa.s℄, while Fourier's law of heat transfer through phase k,qk = −nk Λk ∇Tk, k = s, f. (8.61)requires the intrinsi thermal ondutivity Λk [W/m.K℄.Finally, the rate of energy transfer from the solid to the �uid,
êsf = κsf (Ts − Tf ), (8.62)is simply proportional to the temperature di�erential. It agrees with `Newton's law ofooling' whih states that the rate of temperature derease of a body immersed in a �uidis at all times proportional to the body-�uid temperature di�erene. Satisfation of thethermodynamis of irreversible proesses requires the spei� inter-phase heat transferoe�ient between the solid phase and the �uid κsf ≥ 0 [W/m3.K℄ to be positive.8.3.3 Finite element disretizationThe �nite element formulation onsiders the displaement vetor u, �uid pressure pf ,temperature of the solid skeleton Ts and temperature of the �uid Tf as primary unknowns.The �nite element ode written in FORTRAN has been developed as part of this work.8.3.3.1 The semi-disrete equationsWithin the generi element e, the primary unknowns,

u = Nuu
e, pf = Np p

e
f , Tk = NT Te

k, k = s, f , (8.63)are interpolated in terms of nodal values through the respetive interpolation funtions
Nu, Np, NT . Multiplying the �eld equations (8.50) by the virtual �elds δu, δp, δTs and
δTf , and integrating by parts over the body V , provides the weak form of the problem,

∫

V
∇(δu) : σ − δu · ρg dV =

∫

∂V
δu · σ · n̂ dS,

∫

V
∇(δp) · Jf − δpJf dV =

∫

∂V
δpJf · n̂ dS,

∫

V
∇(δTs) · qs − δTs Qs dV =

∫

∂V
δTs qs · n̂ dS,

∫

V
∇(δTf ) · qf − δTf Qf dV =

∫

∂V
δTf qf · n̂ dS,

(8.64)
380



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumwhere n̂ is the unit outward normal to the boundary ∂V . A standard Galerkin pro-edure is adopted for the balanes of momentum (8.64)1, the balane of mass of the�uid (8.64)2 and the balane of energy of the solid (8.64)3. On the other hand, thestreamline-upwind/Petrov-Galerkin proedure (SUPG) devised by Brooks and Hughes(1982) is adopted for the treatment of the onvetive term ρf vconv · ∇Hf in the bal-ane of energy of the �uid phase (8.64)4. The onvetive veloity vconv is identi�ed as thedi�usion veloity vf − vs. The virtual �eld δTf is interpolated via the funtion WT ,
WT = NT + τSUPG vconv · ∇NT , (8.65)in whih the perturbation is weighted by the time-like parameter τSUPG. The modi�ed in-terpolation funtion WT applies to the whole di�erential equation. This proedure ensuresthat onsisteny is enfored from the beginning whih distinguishes the SUPG method fromthe arti�ial di�usion method (Brooks and Hughes, 1982; Fries and Matthies, 2004). Bysumming the elementary ontributions over the total number of elements nel, the semi-disretized form of eqn (8.64)4 may be transformed to,
nel∑

e=1

∫

V e

(δTe
f )

T ((∇NT )
T qf − (WT )

T Qf )dV
e =

nel∑

e=1

∫

∂V e

(δTe
f )

T (NT )
T qf · n̂ dSe .

(8.66)The stabilization ontribution is restrited to the element interiors, sine the ondutivity
Λf is isotropi and bi-linear elements are used (Brooks and Hughes, 1982). The stabilizationparameter τSUPG devised by Tezduyar and Osawa (2000),

τSUPG =

(
1

τ2S1
+

1

τ2S2
+

1

τ2S3

)−
1
2
, (8.67)is built from the three times τS1, τS2, τS3 assoiated respetively with onvetion-dominated,transient-dominated and di�usion-dominated �ows,

τS1 =
h

2|vconv|
, τS2 =

∆t

2
, τS3 =

h2

4 αT,f
. (8.68)Here αT,f is the thermal di�usivity of the �uid and h is the `element length' in the diretionof the �ow de�ned as (Tezduyar and Osawa, 2000)

h = 2 |vconv|
( nne∑

a=1

|vconv · ∇Na
T |
)−1

, (8.69)and nne is the number of element nodes. Note that the de�nition of τSUPG in eqn (8.67)does not depend of the solution Tf but is dependent on the veloity vconv and on the timestep ∆t. The stabilization parameter (8.67) redues to the exat form for 1-dimensional381



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumand steady state problems τS1 = h/2|vconv | if the grid Pélet number Peg = h |vconv|/2αT,fis high, that is for a onvetion-dominated �ow (Brooks and Hughes, 1982). The term τS2smooths the response at early times. The di�usion-dominated limit τS3 is three times thevalue of the latter referene.The resulting non-linear �rst-order semi-disrete equations for the unknown vetor X,
X = [u pf Ts Tf ]

T , (8.70)with maximum nodal length = dimension of spae + 3, imply the residual R,
R = F

grav + F
surf (S,X)− F

int+conv

(
X,

dX

dt

)
= O , (8.71)to vanish. Here F

int+conv is the vetor that ontains the internal fores together with theonvetive ontributions inluding the SUPG stabilization, appearing on the left-hand-sideof eqns (8.64), Fsurf is the vetor of surfae loadings denoted olletively S and F
grav isthe vetor ontributed by gravity (Appendix G.1). The residual vetor inludes termsassoiated with the four physial phenomena of interest,

R =
[
Ru Rpf RTs RTf

]T
. (8.72)8.3.3.2 Time integrationThe semi-disrete equations are integrated through a generalized trapezoidal rule de�nedby a salar α ∈ ]0, 1]. At step n+ 1, the equations are enfored at time tn+α = tn + α∆t,with ∆t = tn+1 − tn, namely,

Rn+α = F
grav + F

surf (Sn+α,Xn+α)− F
int+conv (Xn+α,Vn+α) = O . (8.73)In the above relation, Z = S,X,V is de�ned as Zn+α = (1−α)Zn +αZn+1, and Xn+1 and

Vn+1 are approximations of X(tn+1) and (dX/dt)(tn+1), respetively.The system (8.73) is solved iteratively by an expliit-impliit operator split, namely atiteration i+ 1,
R
i+1
n+α = F

grav
E + F

surf
E (Sn+α,X

i
n+α)− F

int+conv
I (Xi+1

n+α,V
i+1
n+α) = O . (8.74)The global iteration proess uses a full Newton-Raphson proedure. The Newton diretion

∆V is sought by setting eqn (8.74) to zero,
C (α∆V) = R

i
n+α , (8.75)in whih the e�etive di�usion matrix C an be expressed in terms of the global di�usionmatrix D = D(X,V) and of the global sti�ness-onvetion matrix K = K(X,V),

C = D+K α∆t . (8.76)382



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumThe global di�usion and sti�ness-onvetion matries are obtained by assembling the ele-ment ontributions whih have the following blok struture,
D
e =




0 0 0 0

De
pfu

De
pfpf

De
pfTs

De
pfTf

De
Tsu

De
Ts pf

De
TsTs

0

0 ∗De
Tfpf

0 ∗De
TfTf




; (8.77)
K

e =




Ke
uu Ke

upf
Ke

uTs
0

0 Ke
pfpf

0 0

0 0 Ke
TsTs

Ke
TsTf

0 ∗Ke
Tfpf

∗Ke
TfTs

∗Ke
TfTf



. (8.78)The detailed expressions of these matries are given in Appendix G.2. Convetion termsthat require a speial treatment are highlighted with the supersript ∗.The four-node element (Q4) is used to interpolate all unknowns. For all simulations,element sizes of 10× 10m2 are used. The number of integration points is equal to two (foreah spae dimension), for all matries and all residuals inluding the onvetive ontribu-tions.Eah omponent of the residual vetor R is saled by a referene value: Ru,ref =

75.0 106 N for the balane of momentum ontributions, Rpf ,ref = 1.0 10−6 m3/s for thebalane of mass ontribution and RTs,ref = RTf ,ref = 1.26W for the balane of energyontributions. Ru,ref represents the overburden stress, Rpf ,ref the maximum �uid �ow and
RTs,ref = RTf ,ref the maximum heat �ow; all four quantities referring to a unit area of onesquare meter. The norm of the residual at eah iteration i is then alulated by summingthe neq ontributions (neq = number of equations),

∣∣Ri
∣∣ =

neq∑

a=1

∣∣∣∣
Ra

Ra,ref

∣∣∣∣ . (8.79)Iterations are stopped when the toleranes below involving both the overall saled residualand unknowns are satis�ed:- ∣∣Ri
∣∣ /
∣∣R1
∣∣ < 0.001- ∣∣xi − xi−1
∣∣ /
∣∣xi
∣∣ < 0.001, for x = uj , pf , Ts, Tf .The average number of Newton-Raphson iterations per time step has been observed toremain around 3.8.3.3.3 Charateristi timesThe time integration parameter α is taken equal to 2/3. Conditional stability haraterizesnon-linear transient onvetive-di�usive problems disretized with a full Newton-Raphson383



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumsheme (Belytshko and Hughes, 1983). The time step ∆t is inreased by �ts and starts inthe range [∆tmin, ∆tmax℄ in order to keep the omputation time within aeptable limits.The lower bound ∆tmin is assoiated with the fastest di�usion time, that is the hydraulidi�usion of the �uid and is maintained onstant until hydrauli steady state is reahed.
∆tmax is obtained with respet to the slowest remaining di�usion, that is the thermaldi�usion of the solid. The hydrauli di�usivity αH depends on the seepage and mehanialproperties,

αH =
kf
µf

2µDS(1− ν)

1− 2ν

[
A2(1 + νu)

2(1− 2ν)

9(1− νu)(νu − ν)

]
, (8.80)in whih A is the Skempton oe�ient,

1

A
= 1 + nf

cfH − cs
c− cs

, (8.81)and νu is the undrained Poisson's ratio,
νu =

3 ν +A(1− 2ν)(1 − cs/c)

3−A(1− 2ν)(1− cs/c)
. (8.82)The thermal di�usivities αT,s, αT,f through the solid and the �uid, respetively, involveonly thermal properties,

αT,s =
ns Λs

ρs Cs,v
, αT,f =

nf Λf

ρf Cf,p
. (8.83)Heat transport in the �uid phase is dominated by onvetion due to the high perme-ability of the frature network; whereas heat transport in the solid phase is ontrolled bydi�usion. The harateristi time assoiated with onvetion at speed of vf,z is proportionalto the distane traveled L,

tconv =
L

vf,z
. (8.84)On the other hand, the harateristi times assoiated with seepage and with thermaldi�usion in phase k depend on the square of the distane traveled L,

tHdiff =
L2

αH
, tTdiff,k =

L2

αT,k
. (8.85)In the tests reported in Setions 8.3.5 and 8.3.6, and in geothermal tests in general, the�uid veloity vf,z ranges from O
(
10−6

)m/s to O
(
10−3

)m/s, the hydrauli di�usivityof water typially of the order O (101)m2/s is muh larger than the thermal di�usivityof the solid about O (10−6
)m2/s whih is itself an order of magnitude larger than thethermal di�usivity of water O (10−7

)m2/s. Consequently, over a di�usion length of L =384



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibrium
230m separating the injetion and prodution wells (see Setions 8.3.5 and 8.3.6), theharateristi times assoiated with onvetion and di�usion, through the solid phase andthe �uid phase, range as follows,

tHdiff ≈ 1 hour,

tconv ∈ [2.66 days, 7.31 years],

tTdiff,s ≈ 1, 500 years,

tTdiff,f ≈ 10, 000 years .

(8.86)Hene, in absene of heat transfer aross the solid-�uid interfae, the rate of the temper-ature propagation, and its impats on pressure and displaement �elds, an be up to 105times faster in the onvetion-dominated frature network than in the di�usion-dominatedsolid skeleton. Therefore loal thermal equilibrium is unlikely to be established before thelate period of the irulation test, and the overall thermo-hydro-mehanial behavior ofthe mixture an only be aurately modeled if loal thermal non-equilibrium between thesolid phase and the �uid phase is aounted for.Remark 8.2. Aording to (8.84), the stabilization parameter for onvetion-dominated�ows τS1, eqn (8.68), an be interpreted as the time required for a partile to be onvetedover half the length of the element.8.3.4 HDR reservoir analysisThe fully oupled thermo-hydro-mehanial model is used in the subsequent setions toinvestigate the thermal drawdown of a generi hot dry rok reservoir in loal thermal non-equilibrium. Information on the geometry, initial and boundary onditions onsidered areprovided �rst.8.3.4.1 Geometry of the HDR reservoirAn arti�ially fratured reservoir with horizontal injetion and prodution wells is onsid-ered (Fig. 8.15). The simulations assume a plane strain analysis. The �nite element meshinludes half of the reservoir and a portion of the surrounding low permeability rok for-mation. The HDR fratured reservoir is idealized by a single porosity saturated medium.The material properties and onstitutive equations haraterizing the proesses involvedare desribed in Set. 8.3.2.2.Adding the surrounding low permeability formation in the analysis allows to assess thein�uene of the external heat supply whih is presented in Set. 8.3.5.5. The width of thissurrounding domain XF −XR is hosen so that the harateristi time of heat di�usion,eqn (8.85), is greater than the life-time of the reservoir (≈ 20 years). The formation isendowed with the same material properties as the reservoir exept for the permeability.The injetion and the prodution wells are loated at the bottom and at the top of thereservoir, respetively. The length of the wells is a key parameter that governs the �owpath and the heat transfer between the rok and the �uid. Two setups are onsidered:385



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibrium
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Figure 8.15: Representation of a generi HDR reservoir (not at sale). The permeability
kf of the reservoir depends on the average frature spaing B and on the average fratureaperture 2 b. The simulations assume a plane strain analysis, in the x − z plane, andsymmetry with respet to z-axis.1. in one ase, the wells penetrate horizontally into the entire reservoir, that is XW =

XR. Consequently, the veloity of the �uid vf is vertial and uniform between thetwo wells, Fig. 8.20, left;2. in the seond ase, the wells penetrate into one third of the reservoir, leading tonon-uniform veloity �eld, Fig. 8.20, right.8.3.4.2 The spei� inter-phase heat transfer oe�ient κsfThe oe�ient of spei� inter-phase heat transfer κsf [W/m3.K℄ ontrols the rate atwhih the two phase system (solid-�uid) reahes thermal equilibrium. The higher thisoe�ient, the faster thermal equilibrium is reahed. The oe�ient of spei� inter-phaseheat transfer is de�ned by the produt of the solid-�uid spei� surfae Ss
sf [m2/m3℄ withthe oe�ient of solid-�uid heat transfer hsf [W/m2.K℄,

κsf = Ss
sf × hsf . (8.87)For a square blok of size B bordered by a frature �uid of width b, the volume frationsof the solid and �uid are equal to

ns =
B2

(B + 2 b)2
, nf =

4 b (B + b)

(B + 2 b)2
. (8.88)The spei� surfae Ss

sf is the total surfae area of the interstitial voids divided by thetotal volume of the medium,
Ss
sf =

4B

(B + 2 b)2
. (8.89)For 2 b≪ B, the spei� surfae area simpli�es to

Ss
sf =

2nf
2 b

=
4

B
. (8.90)386



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibrium
Ss
sf vanishes if the frature porosity tends to zero nf → 0, for a onstant aperture 2 b,or if the �ssure spaing tends towards in�nity B → ∞. A disussion on the theoretialformulation of the spei� surfae area (8.90) is provided in Appendix G.3.The oe�ient of solid-�uid heat transfer hsf (also known as the partile-to-�uid heattransfer oe�ient) depends of the nature of the solid, the nature of the �uid and thedominant regime of heat transport. By assuming that the e�et of onvetion in the frature�uid phase (perpendiular to the solid-frature interfae) is negligible, the oe�ient ofsolid-�uid heat transfer may be quantitatively haraterized by the sum of the thermalresistanes of the two phases in series (Bejan, 1993),

1

hsf
=

2 b

2nfΛf
+

B

2ns Λs
. (8.91)The general form of the spei� oe�ient of heat transfer between the solid and the�uid phase κsf is non-linearly related to B and b through eqs (8.87), (8.89), (8.91). Thisgeneral form should be used when the ratio between the frature aperture and the fraturespaing is in onstant evolution, for example during omminution. On the other hand,in geothermal appliations, the frature width is muh smaller than the frature spaing,namely 2 b ≪ B. Then the spei� oe�ient of heat transfer between the solid and the�uid phase is linearly related to B−2,

κsf =
8

B2

2ns ΛsΛf

nsΛs + 2Λf
. (8.92)The thermal ondutivities of the two phases are involved. Alternatively, assuming nsΛs ≪

2Λf , the above relation would redue to,
κsf = 8

ns Λs

B2
, (8.93)where the two phases are not treated symmetrially, à la Warren and Root (1963), withemphasis on the most insulating material. For a geothermal reservoir, typial values entail

ns ≈ 1, Λs = 2.71W/m.K and Λf = 0.6W/m.K, and the two phases are seen to ontributeto the overall ondutivity.Correlations of the solid-�uid heat transfer oe�ient hsf have been proposed in theliterature with the Nusselt number (Wakao and Kaguei, 1982) and with a apillary tubemodel (Zanotti and Carbonell, 1984). Few experimental works have investigated the mag-nitude of the solid-�uid heat transfer oe�ient hsf (Peker and Deresiewiz, 1973; Jianget al., 2006). Instead, here, a sensitivity analysis is performed to determine the thresh-old value that separates loal thermal equilibrium from the loal thermal non-equilibrium(Minkowyz et al., 1999; Nield et al., 2002). A alibration of the model, and hene of thespei� inter-phase heat transfer oe�ient, with help of data provided from the FentonHill HDR reservoir is proposed in Set. 8.3.6.387



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibrium8.3.4.3 Initial onditionsPrior to the irulation test, the reservoir is assumed to be in loal thermal equilibrium, andthe solid and �uid have idential temperatures T 0
s = T 0

f = T 0. The geothermal gradientis negleted sine the height of the reservoir is small with respet to its average depth H.The initial pressure of the �uid p0f = ρfgH is assumed proportional to the depth of thepoint of interest H, the �uid density ρf and the gravity g, i.e. the hydrostati gradient isalso negleted. The initial stress state is due to the overburden stress and to the lateralearth stress.
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Figure 8.16: Thermal, hydrauli and mehanial boundary onditions.
8.3.4.4 Boundary onditionsA sketh of the thermal, hydrauli and mehanial boundary onditions is shown in Fig. 8.16.The injetion temperature Tinj is applied to all the phases along the injetion well. Theoutlet temperature Tf,out along the produing well is an output of the simulations. The re-maining horizontal and vertial boundaries are thermally insulated from the surroundings,that is qs · n̂ = qf · n̂ = 0.The injetion and prodution pressures, pf,inj and pf,out respetively, are both spei�edalong the injetion and prodution wells. The remaining boundaries are hydrauliallyimpermeable, i.e. Jf · n̂ = 0.The vertial stress σz = σ0z remains onstant along the top boundary z = ZR, and sodoes the horizontal stress σx = σ0x along the lateral boundary x = XF . The displaementson the other boundaries are spei�ed, ux(x = 0, z) = 0 and uz(x, z = 0) = 0.At the ontat between the reservoir and the surrounding rok x = XR, two typesof interations are onsidered: (1) the reservoir is thermally insulated from the rok for-mation; (2) the reservoir exhanges heat with the formation whih remains at the initialtemperature T 0, namely Ts = Tf = T 0 along x = XF .388



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibrium8.3.5 The double-step pattern of thermal depletion in LTNEThis setion fouses on the in�uene of the LTNE assumption on the time pro�les of the�uid temperature (at the produing well). The reservoir response in terms of �uid pressure,displaement and e�etive stress will be presented in Set. 8.3.6.In the ontext of a �uid saturated fratured medium, reservoir performanes an be ex-pressed in a general form in terms of the frature porosity nf and two dimensionless pa-rameters (Gringarten et al., 1975). These parameters re�et the overwhelming importaneof the harateristi lengths of the frature network, namely the average aperture 2 b andthe average spaing B.(1) The dimensionless temperature TD built from the outlet �uid temperature Tf,out, theinitial temperature T 0 and the injetion temperature Tinj,
TD =

T 0 − Tf,out
T 0 − Tinj

, (8.94)ranges between 0 (Tf,out = T 0) at early time and 1 (Tf,out = Tinj) ultimately.(2) Adapted from the work of Minkowyz et al. (1999) and Nield et al. (2002), the dimen-sionless parameter ηD that serves to delineate LTE and LTNE,
ηD =

1

nf

Sp

Pe
, (8.95)is de�ned in terms of the frature porosity nf , of a modi�ed Sparrow number Sp whih mea-sures the relative weights of heat transfer aross the system and heat ondution throughthe porous medium, and of the Pélet number Pe, whih measures the relative weights ofonvetion and thermal ondution,

Sp =
κsf Z

2
R

nsΛs + nf Λf
, Pe =

ZR v∞

αT,f
. (8.96)The general form of the dimensionless LTNE parameter ηD expresses in terms of thethermal properties of the porous medium, Λs, Λf and αT,f , the �uid porosity nf , thedi�usion-onvetion length ZR, the aperture of the frature network 2 b and the steadystate veloity v∞ through eqns (8.90) and (8.92). For ns Λs ≫ nfΛf and for ns ≈ 1, theabove dimensionless LTNE parameter simpli�es to

ηD =
1

nf

16Λf

Λs + 2Λf

ZR αT,f

v∞B2
. (8.97)Of prime interest for the eonomial suess of a HDR reservoir is the knowledge of thetime pro�le of the temperature drawdown Tf,out for representative pumping/produtionrates Jf . The frature porosity nf for igneous and metamorphi roks ranges from 0.0005to 0.01 (Evans et al., 2009; Elsworth, 1989; Bataillé et al., 2006).389
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Figure 8.17: Dimensionless temperature outlet TD as a funtion of time for three porosities
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BT for an average steady state veloity and several �uid porosities in Set. 8.3.5.2. Thesethresholds de�ne the onset of LTNE in whih thermal drawdown urves hange from asingle-step pattern to a double-step pattern. A hyperboli dependeny between (BT )

2 and
nf is observed whih mathes with eqn (8.97) for nf over the range of interest. Set. 8.3.5.3addresses the in�uene of the pumping rate on the frature spaing thresholds BT . Thehyperboli relation between (BT )

2 and v∞ suggested by eqn (8.97) is well reovered by the�nite element simulations.Attention is restrited to a uniform and vertial �ow, while the reservoir is insulatedfrom the rok formation. Departures from this setting are onsidered in Sets. 8.3.5.4 and8.3.5.5. The issue of �uid loss is ignored throughout and will be addressed in a subsequentSetion 8.4.8.3.5.1 Single- versus double-step patternsA hange of time pro�le is observed as the frature spaing B inreases. Time pro�lesfor small B are learly dominated by onvetion and display a harateristi single-steppattern. Conversely, the time pro�les for large B display three stages and typial double-step patterns.(1) In the �rst stage, the strong inrease of the dimensionless temperature orresponds tothe abrupt propagation of the injetion temperature dominated by onvetion. This e�etis mostly attributed to the di�erene in harateristi times between fored onvetion inthe frature network and di�usion of heat in the solid matrix. Aordingly for eah fratureporosity nf , the magnitude of the dimensionless temperature TD at the end of this �rst390



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumstage is inreasing as a funtion of B. Thus, the smaller B (the larger the spei� solid-�uidheat transfer κsf ), the higher the `instantaneous damping' of the ooled �uid front by thesolid phase. On the other hand, the duration of the �rst stage is independent of B, and itis about equal to the harateristi time for a partile of �uid to �ow the length ZR at thesteady veloity v∞,
tstage 1c =

ZR

v∞
≈ 2× τS1 = 13 days . (8.98)(2) During the seond stage, the dimensionless temperature remains onstant and displaysa plateau. Heat transfer between the solid and the �uid phases takes plae partly atonstant �uid temperature.(3) The third stage is haraterized by a seond strong inrease of the temperature. Thetime required for the outlet temperature Tf,out to reah 95% of the injetion temperature

Tinj is higher for a model in LTNE than in LTE. In other words, the response of the mixtureis delayed by the transfer of heat from the solid phase to the �uid phase. This type ofbehavior is harateristi of the response of reative �ows and of phases in non-equilibrium:as an example, the onsolidation time of a dual porosity medium is delayed ompared witha single porosity medium (Khalili et al., 1999).8.3.5.2 In�uene of the frature porosity nfThe in�uene of the frature porosity, in the range of 0.001 < nf < 0.01, is mainly visibleduring the �rst and the seond stage of the double-step pattern (Fig. 8.17).(1) For eah frature spaing B, the magnitude of TD at the end of this �rst stage isinreasing as a funtion of the �uid volume ratio nf , i.e. the larger the volume of ooled�uid, the smaller the temperature outlet. Sine ns ≈ 1, the rate of heat transfer an beonsidered as onstant, eqn (8.92), as opposed to the overall amount of heat supply in thesystem. In addition, the duration of the �rst stage is independent of nf in agreement witheqn (8.98).(2) Time pro�les in Fig. 8.17 indiate that inreasing the porosity of the frature network
nf redues the time length of the seond stage and, hene, speeds up thermal depletion.An inrease of �uid porosity modi�es the phase and the heat repartitions in the systemand hene redues the overall amount of heat to be transferred by the solid to the �uid.Sine the rate of heat transfer is almost independent of the �uid porosity, see eqn (8.92)in whih ns ≈ 1, the heat transfer period requires less time.In terms of frature spaing, the threshold between LTE and LTNE dereases withinreasing �uid porosity, BT = 6m (nf = 0.001), BT = 2.5m (nf = 0.005) and BT = 2m(nf = 0.01), due to the inreasing amount of ooled �uid. Those values are obtainedby trial and error and orrespond to Ts = Tf , at the reservoir outlet, over the entireirulation test. For smaller frature spaings B < BT , the loal thermal non-equilibriumresponses are indistinguishable from the responses in equilibrium and display overshooting391
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Figure 8.18: Dimensionless temperature outlet TD as a funtion of time, for a porosity
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(BT )

2 =
1

ηD

1

nf

16Λf

Λs + 2Λf

ZR αT,f

v∞
, (8.99)in whih the dimensionless LTNE parameter ηD takes the value identi�ed in Set. 8.3.5.2 for

nf = 0.005, i.e. ηD = 13. A good agreement for the square of the frature spaing threshold
(BT )

2 as a funtion of the �ow rate v∞ is obtained between the numerial response andthe above orrelation, as illustrated in Fig. 8.19.8.3.5.4 In�uene of the �ow pathResults reported so far orrespond to a uniform vertial �ow (Fig. 8.20, left). The in�ueneof a non-uniform �ow path on the frature spaing threshold BT for nf = 0.005 is addressedfor wells shorter than the horizontal extent of the reservoir (Fig. 8.20, enter).The limit between a single-step pattern and a double-step pattern is lowered to BT =

16m (v∞ = 2.0 10−4 m/s) when the �ow �eld is non-uniform. The reason is attributed to393
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10−20 m2) whih is ontinuously heated by the surrounding earth, Ts = Tf = T 0, alongits boundary x = XF (Fig. 8.20, right). In this ase, the results are strongly in�uenedby the formation width XF − XR. If inreased to in�nity, the results will shift bak tothe ase of an insulated reservoir, whereas if redued, the additional heat transferred fromthe formation should in�uene further the frature spaing threshold BT . No experimentaldata are available to alibrate the width of the rok formation that thermally ontributes394



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibrium
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

−1

10
0

10
1

10
2

10
3

LTE

LTNE

v∞ [m/s]

B
2 T

[ m
2
]

 

 

FE simulation
Smoothed dataFigure 8.21: Same as Fig. 8.19 but for a non-uniform �ow path and heat exhange with aformation of 30m width. The drawdown results orrespond to the tip of the produtionwell, i.e. x = XW = 60m. A non-linear non-monotoni response is obtained from the �niteelement (FE) simulations in opposition with the power response suggested by eqn (8.99).Heat exhange between the reservoir and the rok formation requires the use of the SUPGmethod, Remark 8.5.to the reservoir (Set. 8.3.6). The arbitrary value of XF −XR = 30m is disussed below.For nf = 0.005 and non-uniform �ow of v∞ = 2.0 10−4 m/s, the limit between a single-step pattern and a double-step pattern orresponds to BT = 3m. The ontribution ofthe rok formation redues the rate of the thermal depletion of the �uid whih may neverreah TD = 0.95, for small �ow rates. The additional heat provided by the formationin the neighborhood of the prodution well is little a�eted by onvetion due to small�uid veloities in this area (Fig. 8.22, right). The relation between the square of thefrature spaing threshold and the inverse of the �ow rate is no longer linear and even non-monotoni (Fig. 8.21). The non-monotoni behavior an be further explained by lookingat the harateristi times. At high �ow rates v∞ > 10−3m/s, the time required for thethermal depletion of the reservoir is muh smaller than the harateristi time required bydi�usion in the hot formation. The hot formation is merely equivalent to a zero heat �uxboundary ondition along the line x = XR, for the time span over interest.For intermediate �ow rates, the harateristi times of di�usion in the rok formationand of thermal depletion in the reservoir are of similar magnitude. The externally suppliedheat is mainly transported aross the reservoir by the onvetive �uid so that the depletiontime of the �uid phase is inreased. Although the �uid veloity is inreased, the �uidtemperature remains high due to the external heat supply. Hene, the LTE threshold isonly obtained for larger frature spaings (smaller rates of heat transfer).Remark 8.4. Instead of inluding a rok formation in the �nite element mesh, the in�u-ene of the hot formation an be introdued via a onvetive boundary ondition,

qk · n̂ = hk,earth(Tk − Tearth), k = s, f, (8.100)in whih hk,earth is the heat transfer oe�ient [W/m2.K℄ between the phase k and earth,and Tearth is the onstant temperature of the earth. The heat transfer oe�ients are de�nedby the thermal ondutivities weighted by a oe�ient W : hf,earth =W nfΛf/(XF −XR),
hs,earth = W ns Λs/(XF −XR) and Tearth = T 0. The ase of a reservoir surrounded by a395



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibrium

0

100

200

0

100

200

100

150

200

x
z0

100

200

0

100

200

100

150

200

x
z

With the Galerkin method With the SUPG method
T

f 
 [

 C
]

T
f 

 [
 C

]
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8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumMaterial parameter Value Unit RefereneDrained Young's modulus E 38.9 GPa 1Drained Poisson's ratio ν 0.3 - 1Bulk thermal expansion oe�ient cT 3.3 10−6 1/K 2Fissure network porosity nf < 0.01 - 1Fissure network permeability kf < 1.0 10−13 m2 1Solid grains ompressibility cs 2.7 10−11 1/Pa 1Solid thermal ondutivity Λs 2.71 W/m.K 3Solid spei� heat apaity Cs,v 948.55 J/kg.K †Solid density ρs 2600 kg/m3 †Solid thermal di�usivity αT,s 1.1 10−6 m2/s -Fluid hydrauli ompressibility cfH 4.54 10−10 1/Pa †Fluid thermal expansion oe�. cfT 1.0 10−3 1/K †Fluid dynami visosity µf ‡ 3.0 10−4 Pa.s †Fluid thermal ondutivity Λf 0.6 W/m.K †Fluid spei� heat apaity Cf,p 4275 J/kg.K 3Fluid density ρf 980.0 kg/m3 †Fluid thermal di�usivity αT,f 1.58 10−7 m2/s -Table 8.4: Input parameters representative of Fenton Hill HDR reservoir, run segment 5.1: Murphy et al. (1977). 2. Zyvoloski et al. (1981). 3: Elsworth (1989). † Estimatedparameters for water and granite. ‡ Although, �uid dynami visosity varies muh withtemperature and with visosity-inreasing additives or propping agents, the �uid dynamivisosity µf used throughout orresponds to pure water at 95◦C, Table A.2.4 in de Marsily(1986).8.3.6 Fenton Hill HDR reservoirThe thermal responses eliited from the thermo-hydro-mehanial model in LTNE may beompared with results from a 300-day irulation test at the Fenton Hill HDR reservoir,New Mexio, USA.The irulation test was indued between depths 2903m and 2667m with an averagereservoir height ZR of 230m (Zyvoloski et al., 1981). The horizontal half-width XR of thepermeable reservoir is arbitrary hosen equal to 200m surrounded by a formation of width
XF −XR = 30m. The horizontal half-width of the wells is equal to either (1) XW = 200mor (2) XW = 60m. Loading boundary onditions and material parameters are doumentedin Tables 8.3 and 8.4. The �uid pressures at the injetion and the prodution wells arehydrostati.For a typial di�usion length ZR of 230m and the material parameters of Table 8.4,the harateristi times of seepage and of thermal di�usion through the solid skeleton, asde�ned by eqns (8.85), are equal to 3500 s≃ 1 hour and 4.8 1010 s≃ 1520 years, respetively.Therefore, as indiated in Set. 8.3.3.3, the minimum and the maximum time steps aretaken equal to ∆tmin = 1000 s and ∆tmax = 1010 s≃ 317 years.397
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kf = 8.0 10−15 m2, the porosity nf = 0.005, and the optimum spei� inter-phase heattransfer oe�ient κsf = 33mW/m3.K, orresponding to a blok width B = 14.2m inagreement with the magnitude used in Fig. 3.2 in Zyvoloski et al. (1981). If the �ow �eldis non-uniform, the alibration yields a higher permeability kf = 2.35 10−14 m2, the sameporosity nf = 0.005 and a slightly smaller spei� inter-phase heat transfer oe�ient
κsf = 30mW/m3.K. 398
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8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumalready started to propagate inside the reservoir, whereas the thermal depletion of the solidphase is on�ned to the immediate viinity of the injetion well. However, as heat transferbetween the two onstituents gets ompleted, the mixture tends to thermal equilibrium.This early signi�ant di�erene in time depletion rates is due to the volume di�erenebetween the solid skeleton and the �uid. Indeed, the �uid porosity is nf = 0.005, and thefrature aperture is 2 b = 0.035m for a typial frature spaing of B = 14.2m. Hene,although loal thermal equilibrium is `almost' instantaneous along the frature walls, thewidth of the solid bloks (perpendiular to the fratures) is muh larger than the apertureof the fratures; and therefore at the sale of the solid bloks the time required to ooldown the solid phase (by di�usion of heat from the solid blok) is muh larger than thatfor the �uid phase.In transient onvetion-dominated di�usion onvetion problems, two types of numer-ial noises are enountered: (1) the �rst type is observed during the initial times due tothe appliation of a sharp temperature gradient at the injetion well whih, analogous toa shok front, disappears after a few time steps (Idelsohn et al., 1998; Yin et al., 2010);(2) the seond type is observed later when the thermal front hits a presribed boundaryondition. The SUPG method was initially designed to ure the seond type of numerialnoise for steady state onvetion-dominated di�usion onvetion problems (Brooks andHughes, 1982). However, if the SUPG method is used for transient onvetion-dominateddi�usion onvetion problems, the magnitude of the early time noise is enlarged omparedwith the Galerkin approximation. This problem is takled using the method proposedby Tezduyar and Osawa (2000), eqn (8.67): the magnitude of the �rst kind of numerialnoise is dereased with respet to a Galerkin approximation and the seond type of noiseis e�iently ured.This issue is partiularly important in oupled problems sine the early numerial noisein the �uid temperature may pollute the response of the other �elds, see Figs. 8.24 to 8.27during the early/intermediate period.The pressure �eld reahes steady state within 1 hour due to the high hydrauli di�usiv-ity of the frature network, Fig. 8.25, left. To highlight the in�uene of the LTNE assump-tion, the pressure responses in LTNE (κsf = 33W/m3.K) and in LTE (κsf = 100W/m3.K)are ompared in Fig. 8.25. The very little di�erene (during the early/intermediate period)is assoiated with distint rates of thermal depletion of the �uid phase. The pressure dropsat t = 2.31 and 5.79 days are indued by the fat that the �uid phase is embedded in amore rigid solid skeleton, thermally undisturbed at short times. Indeed, the drained ther-mal expansion/ontration of the mixture is ontrolled loally by the solid phase and isindependent of the hange in �uid temperature, until energy exhange between the phasestakes plae, giving rise to a solid temperature variation. However, these thermally in-dued pressure drops remain very small in magnitude, i.e. a few kPa, due to the largepermeability of the frature network.The strain response is assoiated with the thermal depletion of the solid phase, Fig. 8.26.The latter takes plae during the late period and indues a ontration of the solid skeleton402



8. HDR reservoirs 8.3. A single porositymedium in loal thermal non-equilibriumin both lateral and vertial diretions. The ontrative strains inrease over time butremain largest near the injetion well where ooling takes plae �rst. Consequently, thestrains remain small during the early/intermediate periods. The slight noise due to theovershooting of the temperature of the solid phase has limited impat. Note that theabsene of noise in the lateral strain pro�le is due to a smooth temperature gradient in the
x-diretion.The e�etive stresses are similarly governed by the thermal depletion of the solid phaseduring the late period, Fig. 8.27. Cooling of the lower part of the reservoir indues on-trative strains and tensile stresses. A sort of arhing develops in the upper part of thereservoir where a ompressive e�etive horizontal stress develops in time. The limit re-sponse of the reservoir is reahed at about 30 years, as might be guessed from the stresspro�le at a later time displayed on Fig. 8.28.Tensile stresses indued by the ontration of the rok may ause the aperture of thefratures to inrease or/and ould initiate new vertial fratures in the x − z and y − zplanes from the solid phase. Conversely, ompressive stresses indued by the pull-in nearthe prodution well an ause the aperture of the fratures to redue. None of these ouplede�ets are aounted for in this study. The potential inrease in permeability of the voids(or miro-fratures) perpendiular to the main �ow path may lead to an inrease of �uidloss. Conversely, an inrease of frature aperture in the x−z plane would favor the `growth'of the reservoir.It is worth noting that a variation of aperture ould signi�antly in�uene the �uiddistribution and the rate of thermal depletion. If the injetion is ontrolled by a onstantpressure gradient, a variation of aperture would modify the onvetive veloity throughthe balane of mass of the �uid. Hene, the above preditions of heat extration are validif the thermally stress-indued aperture hange is negligible. However, if the injetion isontrolled by a onstant �ow rate, a variation of aperture would only modify the �uidpressure (Ghassemi et al., 2008). Hene, the thermal preditions would remain unhangedsine the pressure ontribution was found to be small.8.3.7 ConlusionsDi�usion and fored onvetion mehanisms between two phases have been studied in theontext of heat extration from a fratured hot dry rok reservoir. A model desribingthe behavior of poroelasti fratured media has been extended to aount for loal thermalnon-equilibrium. The fully oupled thermo-hydro-mehanial system has been spei�ed forsingle porosity mixtures. The nonlinear �eld equations assoiated with a Galerkin �niteelement disretization have been stabilized with a Petrov-Galerkin method and solvedusing a full Newton-Raphson proedure. This �nite element analysis has been employedto investigate the response of a generi hot dry rok reservoir.A parametri analysis has been arried out to study the in�uenes of the solid-�uidheat transfer oe�ient, the �uid porosity and the �ow rate. As a typial feature of loalthermal non-equilibrium, the temperature outlet pro�le displays a double-step pattern,representing the three-stage response of the reservoir, namely 1. the initial onvetion of403



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumthe �uid; 2. the transfer of heat between the solid and the �uid, and 3. the �nal depletionof the mixture. The solid-�uid heat transfer oe�ient ontrols the harateristi timeto reover loal thermal equilibrium. Porosity in�uenes the duration of stage 2. Large�ow rates favor the time di�erene between heat propagation in the �uid and in the solid,and therefore the double-step pattern. The in�uenes of the spatial uniformity of the �owpath and of the external heat supply on the thermal depletion of the reservoir have alsobeen srutinized. The performane of the system appears very sensitive to the spatialdistribution of the �ow path and less sensitive to the amount of external heat supply.The model is used to desribe the thermo-hydro-mehanial behavior of a long termirulation test on the Fenton Hill HDR reservoir. The least well-de�ned material param-eters have been alibrated with experimental data and the omparison with the numerialresults demonstrates a loal thermal non-equilibrium response. It has been found that thethermally indued �uid pressure drop is very small in magnitude and is on�ned to theearly time response. Later, the thermally indued e�etive stresses are tensile near theinjetion well due to the thermal ontration of the solid, suggesting a possible inreaseof frature aperture, and ompressive near the prodution well due to the pull-in of theproduing area.Here, the solid bloks are endowed with their own temperature, but they are imper-meable to �uid. A more general model would aount for permeable porous bloks, andthus introdue the temperatures of the solid, the temperature of the �uid of the pores andthe temperature of the �uid of the frature, as well as the pressures assoiated with thesetwo �uids. Still, in a geothermal ontext, the seepage of �uid through the porous bloksmay be onsidered so slow, that the temperatures of the �uid of the pores and the solidare equal. Consequently, the improved model would introdue the pressure of the pores asan additional unknown. The retardation of the �ow indued by the seepage of the �uidthrough porous bloks remains to be quanti�ed.8.4 A dual porosity medium in loal thermal non-equilibriumThe work presented in this setion will be submitted to the Journal of Geophysial Researhin a near future under the title A thermo-hydro-mehanial oupled model in loal thermalnon-equilibrium for fratured HDR reservoir, by the following authors, in order, RahelGelet, Benjamin Loret and Nasser Khalili.The motivation of this third publiation is to present the omprehensive framework usedto de�ne the onstitutive behavior of fratured media in LTNE within the dual porosityonept. The thermo-mehanial seant onstitutive matrix and the generalized di�usionand transfer onstitutive relations are summarised from Chapter 2. Partiular emphasisis laid on both mass and energy exhanges between the avities whih are ontrolled bythe modi�ed hemial potential di�erene and by the oldness di�erene, respetively. The�nite element approximation of the governing equations uses the displaement vetor, thetwo �uid pressures and the three temperatures as primary variables. It is applied to the404



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumanalysis of a generi hot dry rok (HDR) geothermal reservoir. Three parameters of themodel are alibrated from the thermal outputs of the Fenton Hill and Rosemanowes HDRreservoirs. The solid-to-frature �uid heat transfer oe�ient κsf , whih ontrols the rateof heat exhange between the porous bloks and the frature �uid, is found in the range33 to 120mW/m3.K. The alibrated model is next applied to simulate irulation testsat the Fenton Hill HDR reservoir. The �ner thermo-hydro-mehanial response providedby the dual porosity model with respet to a single porosity model is highlighted in aparameter analysis. Emphasis is put on the in�uene of the frature spaing, on thee�etive stress response and on the permeation of the �uid into the porous bloks. Thedual porosity model yields a thermally indued e�etive stress that is less tensile omparedwith the single porosity response, re�eting distint pore pressure ontributions. Thise�et beomes signi�ant for large frature spaings. In agreement with �eld data, �uidloss is observed to be high initially and to derease with time.8.4.1 IntrodutionGeothermal energy resoures initially tested at Los Alamos National Laboratory (Murphyet al., 1981) ontinue to attrat a signi�ant amount of attention in present-day ommerialprototypes (Tenzer, 2001). The development of onstitutive models for energy extrationfrom arti�ially fratured hot dry rok (HDR) reservoirs requires three main ingredients:(1) a proper thermo-hydro-mehanial oupled model developed from a rational thermody-nami framework; (2) a theory of mixtures for a solid skeleton and one (or several) �uid(s),and (3) loal thermal non-equilibrium (LTNE).The purpose of this work is to ontribute to a framework of understanding of thethermo-hydro-mehanial response of fratured media, where, at eah geometrial point,the solid skeleton displays two �uid avities and the temperatures of the solid and �uidsare independent. Field observations of pressure buildup and depletion history of reservoirshave demonstrated that standard poro-elastiity may be too rude for modelling purpose.A more elaborate formulation, suh as the dual porosity onept, is needed to provide areliable desription of the e�etive stress and of the �uid pressures in fratured reservoirs(Warren and Root, 1963; Kazemi, 1969; Zhang and Roegiers, 2005).As for geothermal energy appliations, fous so far has been on partially oupled sys-tems in an e�ort to implement a network of disrete disontinuities (DuTeaux et al., 1996;Bruel, 2002), to ouple free and fored onvetion (Bataillé et al., 2006), or to haraterizejoint losure with a stress dependent law (Kohl et al., 1995). The losed form solutions byGhassemi et al. (2005) of the thermally indued stress, in geothermal reservoirs where heattransport is dominated by onvetion in the �uid phase and by ondution in the solidphase, are worth notie. Still, the in�uene of a seond porosity, whih is not partiipatingto fored onvetion owing to its low permeability, has been systematially disregarded.Indeed, in spite of their importane in the �elds of petroleum engineering, reservoirengineering and geothermal energy extration, as stressed by e.g. Hayashi et al. (1999),405



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumthermo-hydro-mehanial oupling e�ets in media with double porosity have rarely beeninvestigated to the exeption of (Bai and Rogiers, 1994; Bower and Zyvoloski, 1997; Masterset al., 2000; Khalili and Selvadurai, 2003; Nair et al., 2004). Cruially, the extension of thee�etive stress onept to media with multiple porosity, and avities saturated either byliquids or gases, has been an open question for a while. Two propositions remain today:(1) the double e�etive stress onept (Elsworth and Bai, 1992) and (2) the extensionof Biot's relationship to dual porosity (Khalili and Valliappan, 1996). Hydro-mehanialdual porosity models, based on the double e�etive stress onept, have been extended toaount for thermal e�ets, (Bai and Rogiers, 1994; Bower and Zyvoloski, 1997; Masterset al., 2000; Nair et al., 2004). On the other hand, Khalili and Selvadurai (2003) presented athermo-hydro-mehanial model for elasti media with double porosity, using a systematimarosopi approah based on a single e�etive stress onept. This model, assumingloal thermal equilibrium (LTE), has been applied to wellbore stability in the ontext ofenhaned heavy-oil reovery by hot water injetion in Chapter 6. The importane of anappropriate de�nition of the e�etive stress is illustrated in the thermo-hydro-mehanialformulations developed for unsaturated porous media (Loret and Khalili, 2000b,a; Khaliliand Loret, 2001).A key fator in geothermal energy reovery is the di�erene in the harateristi timesbetween di�usion of heat in the porous bloks and fored onvetion in the frature network,a feature that motivates an analysis that allows for loal thermal non-equilibrium. In fat,Setion 8.3 show that ontinuum models displaying a single porosity an adequately preditthe thermal depletion of hot dry rok reservoirs if LTNE between the solid skeleton and the�uid is aounted for. Still, to the exeption of the above work, none of the onstitutivemodels aounting for LTNE in mixtures inluding a solid and a �uid, namely Bowenand Garia (1970); Peker and Deresiewiz (1973); Aifantis (1980a,b); De La Cruz andSpanos (1989); Hsu (1999), have targeted geothermal reservoirs. Mehanial engineeringappliations have addressed paked beds (Minkowyz et al., 1999; Nield et al., 2002).Quantifying the inter-phase heat transfer oe�ient is essentially an open question in thedomain of deformable saturated dual porosity media.Of ruial importane to the eonomial viability of enhaned geothermal systems isthe knowledge of the indued thermal stresses and of the permeation losses into the porousmatrix (Armstead and Tester, 1987). Provided that the injetion and prodution wellsare appropriately onneted, water loss is mainly attributed to the unontrolled thermalontration of the rok. Aording to Rihards et al. (1994), water loss may our aordingto three mehanisms: steady state di�usive loss, transient loss into storage and loss dueto reservoir growth (propagation of the frature network). To the exeptions of Zyvoloskiet al. (1981); Tenma et al. (2008); Ghassemi et al. (2008), few studies really address �uidlosses into the matrix, permeation being usually imposed by a ontinuous leak-o� into theformation. In ontrast, the present approah quanti�es the ontributions of the two �uidpressures on the thermally indued e�etive stress and identi�es a mehanism of �uid loss.A fully oupled �nite element formulation for a thermo-elasti fratured medium in406



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumloal thermal non-equilibrium is exposed here. The fratured medium is desribed as adual porosity mixture omposed of a solid phase and two �uid phases. While Gelet et al.(2011) onsider a single porosity model with one pore pressure and two temperatures,the dual porosity model displays two pore pressures and three temperatures. The solidphase has a speial role as it provides the matrix skeleton and enloses the �uid phases inthe porous bloks and the frature network. The three phase model is embedded withina rational thermodynami framework. The balane equations and the Clausius-Duheminequality are presented in Set. 8.4.2. Even if the mixture is in LTNE, a single Clausius-Duhem inequality is required for the whole mixture. Three types of ontributions, eahwith its own physial interpretation, are identi�ed in the dissipation (Set. 8.4.3). Theresulting three inequalities motivate the form and struture of the onstitutive equations,namely (1) the thermo-mehanial equations linking generalized stresses to generalizedstrains; (2) the onstitutive equations for mass and energy transfers (exhanges) and (3)the onstitutive equations for generalized di�usion. The weak form of the �eld equations,the spatial disretization and time integration proedures to solve the oupled equationsthrough a �nite element proedure are summarized in Set. 8.4.5. The primary variablesare the displaements, the two pressures of the �uids, the three temperatures of the solidand of the �uid phases. The resulting system of equations is used to address a generi HDRreservoir subjeted to the injetion of a ool �uid and tested for various frature spaings(Set. 8.4.6). Comparisons between �eld data and the simulated response are used toalibrate three parameters of the model so as to math the thermal output (Set. 8.4.7).Partiular attention is laid on the magnitude of the spei� solid-to-frature �uid heattransfer oe�ient. One alibrated, the model is used to simulate irulation tests, andthe reservoir response is examined in terms of the e�etive stress and of the permeationof �uid through the porous bloks (Set. 8.4.8). A parametri analysis is performed toexplore the response of the model, with speial emphasis on the frature spaing.Compat or index tensor notation is used throughout. Vetor and tensor quantitiesare identi�ed by bold fae letters, e.g. the total stress is denoted σ, and I represents theseond order identity tensor. tr(·) denotes the trae of a seond order tensor, ∇(·) thegradient operator and div (·) the divergene operator. The subsripts s, p, f refer to thesolid skeleton, the pore �uid and the frature �uid, respetively. Unless stated otherwise,the onvention of summation over repeated indies is not used.
8.4.2 Balane equations for the three phase mixtureEah of the three phases is endowed with its own kinematis, mass and energy ontent.Aordingly, the thermo-hydro-mehanial response of the mixture requires the partialdi�erential equations in spae and time expressing the balanes of momentum, the balanesof mass and the balanes of energy to be satis�ed pointwise.407



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibrium8.4.2.1 Basi de�nitionsDual porous media are made of three phases, a solid, a �uid in the pores and a �uidin the fratures. Although the �uids are idential, typially water, the two �uid phasesare segregated by their spatial loation and are therefore viewed as separate onstituentsendowed with their own independent pressures and temperatures. In the ontext of thetheory of mixtures, the three phases are viewed as three independent overlapping ontinua.Furthermore, the solid phase, also referred to as the solid skeleton, has a speial role asit serves as a referene (Biot, 1977). Eah phase ontains a single onstituent, or speies,and therefore the two terms ould be used interhangeably. However, the term onstituentwill be used to refer to the individual properties of a speies while the term phase refersto its ontribution to the mixture.At eah point of eah phase are de�ned intrinsi quantities, labeled by subsripts, andapparent or partial quantities, labeled by supersripts. At eah point of the fraturedporous medium of volume V , the phase k is introdued along with its intrinsi propertiesof mass Mk and volume Vk. The volumes Vk of the phases sum up to the total volume
V = Vs + Vp + Vf of the mixture. The set of all phases is noted by K = {s, p, f} while
K∗ = {p, f} refers to the set of speies whih di�use through the solid skeleton. Eah phase
k is endowed with a volume fration nk, an intrinsi density ρk, a partial density ρk,

nk =
Vk
V

; ρk =
Mk

Vk
; ρk =

Mk

V
= nkρk, k ∈ K, (8.101)and an absolute veloity vk. The volume frations sum up to one, ns + np + nf = 1. Thetotal mass density of the mixture ρ is the sum of the apparent ontributions,

ρ =
∑

k∈K

ρk . (8.102)At the referene time t = 0, the total volume V is denoted V 0. The volume ontent andthe mass ontent of the �uid phase k per unit referene volume of porous medium aredenoted by vk and mk, respetively,
vk =

Vk
V 0

= nk
V

V 0
, mk =

Mk

V 0
= ρk v

k = ρk
V

V 0
, k ∈ K . (8.103)The referene and urrent volumes, V 0 and V respetively, are related by the determinantof the deformation gradient F, whih linearizes to 1 + trǫ for small strains,

V

V 0
= detF ∼ 1 + trǫ . (8.104)The mass �ux Mk and the volume �ux Jk per unit urrent area of the mixture measurethe relative veloity of the �uid phase k with respet to the solid,Mk = ρk Jk = ρk (vk − vs) , k ∈ K∗ . (8.105)408



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumThe solid phase is endowed with its own (in�nitesimal) strain tensor ǫ = 1
2

(
∇u+ (∇u)T

),whih is de�ned from the marosopi displaement vetor u and whih is onstitutivelydeomposed into an elasti ontribution ǫ
e and a thermal ontribution ǫ

θ,
ǫ = ǫ

e + ǫ
θ . (8.106)The partial stress and pressures of the three phases, σs and pressures pk, whih are linkedto the intrinsi stress σs and pressures pk of the assoiated phases through the volumefrations,

σ
s = nsσs, σ

k = −nkpk I, k ∈ K∗ , (8.107)sum up to the total stress,
σ = σ

s + σ
p + σ

f . (8.108)The total stress σ and the e�etive stress σ̄ may be deomposed into a spherial part anda deviatori part s, by use of the mean stresses p = −1
3 trσ and p̄ = −1

3 trσ̄,
σ = −p I+ s, σ̄ = −p̄ I+ s. (8.109)The stress omponents are positive in tension so that the mean stresses p and p̄ are ountedpositive in ompression. The elasti strain ǫ

e = CDS
σ̄ is by de�nition linked by a one-to-one relationship with the e�etive stress σ̄ through the drained ompliane tensor CDS.In an isotropi ontext,

trǫe = −c p̄, dev ǫe =
s

2µDS
, (8.110)in whih c is the drained ompressibility of the solid skeleton and µDS its shear modulus.

dev ǫe denotes the deviatori part of the elasti strain ǫ
e = 1

3 trǫ
e I+dev ǫe. In this isotropiontext, the deviatori parts of the elasti and total strains, dev ǫe and dev ǫ respetively,are equal.Furthermore, the thermodynamial state of eah �uid onstituent is measured by itspressure pk, its temperature Tk, its entropy Sk and thermodynami potentials per uniturrent mass of the onstituent suh as the internal energy Uk, the free energy Ek, theenthalpy Hk, and the hemial potential Gk, also alled free enthalpy,

Ek = Uk − Tk Sk, Hk = Uk +
pk
ρk
, Gk = Hk − Tk Sk, k ∈ K∗ . (8.111)Thermodynami potentials per unit urrent volume are denoted by a lower letter, e.g.

ek = ρkEk for the free energy and sk = ρkSk for the entropy.409



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibrium8.4.2.2 Balanes of momentum, mass and energyA single balane of momentum is required for the mixture as a whole,
divσ + ρg = 0 , (8.112)the body fore ρg due to gravity g, the mass density ρ =

∑
k∈K ρ

k being ontributedadditively by all onstituents of the mixture. Sine the mass of the solid onstituent isonstant, a balane of mass is required for the �uid phases only,
divJk + fk = 0, fk ≡ nk

1

ρk

dρk
dt

+
1

V

dVk
dt

− ρ̂k

ρk
, k ∈ K∗ . (8.113)Mass onservation implies the rates of mass hange ρ̂k to sum up to zero,

∑

k∈K∗

ρ̂k = 0, ρ̂f = −ρ̂p . (8.114)This study aims to desribe the transient period, referred to as loal thermal non-equilibrium (LTNE), before the system reahes loal thermal equilibrium (LTE). Hene, abalane of energy is required for eah phase. Besides terms whih are standard for singlephases, the energy equations display terms that embody the rates of energy exhanges
êk = êkM · vs − êkU = X

(4)
k , k ∈ K. The balane of energy for the solid phase aounts forthe �ux of thermal energy due to ondution qs, the rate of solid entropy and the rate ofenergy exhange between the solid phase and the other phases,

div qs + Ls = 0, Ls ≡ Ts
dss

dt
+ ês . (8.115)The balane of energy for the �uid phase k aounts for the �ux of thermal energy dueto ondution qk, the rate of �uid entropy, the rates in free energy due to mass transferand fored onvetion, and the transfer of energy between the �uid phase k and the otherphases,

div qk + Lk = 0, Lk ≡ Tk
dsk

dt
+ ρ̂kHk +Mk · ∇Hk + êk, k ∈ K∗ . (8.116)Energy onservation implies the rates of energy transfer êk to sum up to zero,

∑

k∈K

êk = 0, ês = −êp − êf . (8.117)8.4.2.3 The Clausius-Duhem inequalityA single dissipation inequality is required at the mixture level. The dissipation assoiatedwith eah phase is obtained by inserting the balane of energy into the balane of entropyof eah speies. The entropy produtions of the phases are next summed without multi-plying by the phase temperatures. The resulting inequality, referred to as Clausius-Duhem410



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriuminequality, proves a useful guide to restrit the form of the onstitutive ouplings (Erin-gen and Ingram, 1965; Bowen and Garia, 1970). The Clausius-Duhem inequality may beadvantageously rewritten in a form that highlights the thermo-mehanial, transfer anddi�usion ontributions, dD = dD1 + dD2 + dD3 ≥ 0, namely,
dD1

dt
=

∑

k∈K

1

Tk

(
−dek

dt
+
(
σ
k − ek I

)
: ∇vs − sk

dTk
dt

)

+
∑

k∈K∗

1

detF

Gk

Tk

dmk

dt
≥ 0,

dD2

dt
= −

∑

k∈K∗

(
Gk +

1

2
(vk − vs)

2 − 1

2
v2s) 1

Tk
ρ̂k −

∑

k∈K

êkS

+
∑

k∈K

1

Tk
êk ≥ 0,

dD3

dt
= −

∑

k∈K∗

Jk · 1

Tk

(
∇pk + ρk(

dkvk
dt

− bk)

)
−
∑

k∈K

qk · ∇TkT 2
k

≥ 0 ,

(8.118)
whih are required to be positive individually (Loret, 2008). Note that the rate of entropyexhange between phase k and the other phases of the mixture êkS appears to have no workonjugate variable. The mixture has been assumed to be losed with respet to momentum,eq (8.112), to mass, eq (8.114), and to energy, eq (8.117). Similarly, it is assumed to belosed with respet to entropy, so that the sum of the rates of entropy transfer vanish,

∑

k∈K

êkS = 0 . (8.119)Therefore the onstitutive equations of individual rates of entropy transfer are not neededhere. On the other hand, onstitutive equations need to be developed for the rates ofmass transfer ρ̂k and the rates of energy transfer êk. Although not made expliit here, themomentum transfer of individual phases ould also be retrieved from Dary's law.The set of independent variables used so far has taitly inluded the strain, the pres-sures and the temperatures. Alternatively, the total stress might be substituted to thestrain as an independent variable. The modi�ation is realized by performing a par-tial Legendre transform of the elasti potential of the mixture Ψ(ǫ, pp, pf , Ts, Tp, Tf ) =

msEs −
∑

k∈K∗ vkpk that yields the omplementary potential Ψc,
Ψc(σ, pp, pf , Ts, Tp, Tf ) = Ψ(ǫ, pp, pf , Ts, Tp, Tf )− detFσ : ǫ . (8.120)A referene on�guration is identi�ed, in whih the temperatures of the three phasesare equal. Departure from this referene state is denoted by the symbol ∆(·).The Clausius-Duhem inequality is linearized by (1) negleting the inertial terms inthe transfer ontributions dD2 and in the di�usion ontributions dD3; (2) identifying theurrent and referene on�gurations so that detF may be set to 1. Within an updated411



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumLagrangian analysis, the volume ontent vk and the volume fration nk are equal at eahtime, but their rates di�er, namely dvk = dnk + nk trǫ. The same remark applies tothe mass ontent mk and apparent mass density ρk. The thermo-mehanial ontributionto the Clausius-Duhem inequality dD1, eqn (8.118)1, is modi�ed by multiplying by thetemperature of the solid onstituent Ts,
Ts

dD1

dt
= −dΨc

dt
− dσ

dt
: ǫ− ss

dTs
dt

−
∑

k∈K∗

vk
dpk
dt

≥ 0,

dD2

dt
= −

∑

k∈K∗

Gk

Tk
ρ̂k +

∑

k∈K

1

Tk
êk ≥ 0,

dD3

dt
= −

∑

k∈K∗

Jk · ∇pk
Tk

−
∑

k∈K

qk · ∇TkT 2
k

≥ 0 .

(8.121)
Thermo-mehanial onstitutive assumptions and simpli�ations are motivated in the nextsetion.8.4.3 Constitutive equationsThe Clausius-Duhem inequalities (8.121) serve as guidelines to develop the onstitutiveequations:(1) the thermo-mehanial behavior is onstruted in order the thermo-mehanialdissipation dD1 to exatly vanish, Set. 8.4.3.1. The thermo-mehanial behavior of asingle �uid k is introdued separately from the thermo-mehanial elasti equations,Set. 8.4.3.2;(2) the energy dissipation is due exlusively to the transfers of mass and energybetween phases, to di�usion of �uids through the solid skeleton and to ondutionand onvetion of heat;(3) the onstitutive equations of mass and energy exhanges are expressed in a formatthat ensures the seond dissipation dD2 to be positive, Set. 8.4.3.3;(4) the onstitutive equations of thermal and hydrauli di�usions enfore the thirddissipation dD3 to be positive as well, Set. 8.4.3.4.8.4.3.1 Thermo-mehanial elasti equationsAt onstant total stress and pore pressures, the sole hange of solid temperature leadsto a volume hange of the solid skeleton, the strain is uniform over the phases, and thevolume hange of eah of the three phases is proportional to its volume fration (Loretand Khalili, 2000b). Therefore the omplementary energy depends on the restrited setof variables {σ, pp, pf , Ts}. Then, the vanishing of dD1 implies that the omplementaryenergy Ψc(σ, pp, pf , Ts) an be used as a thermo-elasti potential, that delivers the workonjugate variables {ǫ, vp, vf , ss},

ǫ = −∂Ψc

∂σ
; −vk =

∂Ψc

∂pk
, k ∈ K∗; −ss = ∂Ψc

∂Ts
. (8.122)412



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumThe omplementary energy is assumed to be an isotropi quadrati funtion of the stress,and the sum of a quadrati funtion and of an a�ne funtion of the pressures and solidtemperature,
Ψc(σ, pp, pf , Ts) = −1

2

(
css p

2 + cpp p
2
p + cff p

2
f + 2 csp p pp + 2 csf p pf

+2 cpfpp pf )−
|s|2

4µDS

−1

2
cTT ∆T 2

s −∆Ts (cTs p+ cTp pp + cTf pf )

−
∑

k∈K∗

(vk)0pk − (ss)0Ts .

(8.123)
Therefore the deviatori stress and strain are proportional, and the salar work onjugatevariables (−p, trǫ), (pp, vp), (pf , vf ), and (ss, Ts) are related by a symmetri and onstantmatrix,




−trǫ
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, dev ǫ =
s

2µDS
. (8.124)

The identi�ation of the onstitutive oe�ients is best addressed via the equivalent mixedformat,
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trǫ
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. (8.125)The thermo-mehanial onstitutive relations extend the onept of e�etive stress (Biot,1941) to dual porosity,
trσ

3
+ ξppp + ξfpf =

1

c
(trǫ− cT∆Ts) . (8.126)The e�etive stress oe�ients ξp and ξf and the other mehanial oe�ients have beenidenti�ed via a loading deomposition (Khalili and Valliappan, 1996),

ξp = (cp − cs)/c,

ξf = 1− cp/c,

c22 = (ξf − nf ) (cp − cs) + cs (ξp − np) ,

c33 = (ξf − nf ) (cp − cs) + cs (ξf − nf ) ,

c23 = c32 = − (ξf − nf ) (cp − cs) .

(8.127)
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8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumThe relations (8.125) and (8.127) use the drained ompressibility of the solid skeleton c[1/Pa℄, the ompressibility of the porous bloks cp, the ompressibility of the solid grains
cs, the volumetri thermal expansion oe�ient of the solid phase cT [1/K℄, and the heatapaity of the solid Cs,v per unit mass of solid, at onstant strain and �uid pressures[J/kg.K℄.The onstitutive equations for the apparent entropies of the �uids are expressed sepa-rately from the thermo-mehanial relations (8.125) in Set. 8.4.3.2.8.4.3.2 Thermo-mehanial properties of the single �uid kThe entropy Sk, the hemial potential Gk and the enthalpy Hk of the �uids enter thebalane of energy (8.116). The variation of the spei� volume vk = 1/ρk for a ompressibleand dilatable �uid k,

dvk
vk

= ckT dTk − ckH dpk, (8.128)introdues the ompressibility ckH [1/Pa℄ and the thermal expansion oe�ient ckT [1/K℄,
ckH = − 1

vk

(∂vk
∂pk

)
|Tk

=
1

ρk

(∂ρk
∂pk

)
|Tk

,

ckT =
1

vk

( ∂vk
∂Tk

)
|pk

= − 1

ρk

(∂ρk
∂Tk

)
|pk
.

(8.129)For onstant oe�ients ckT and ckH , the spei� volume results as a non-linear funtionof the departures of pressure and temperature from the referene state labeled by a zerosupersript,
vk = v0k exp

(
−ckH

(
pk − p0k

)
+ ckT

(
Tk − T 0

k

))
. (8.130)Moreover, as (∂Sk/∂vk)|Tk

= ckT /ckH , the di�erential of the entropy dSk,
Tk dSk = Tk

ckT
ckH

dvk + Ck,v dTk , (8.131)integrates to,
Sk − S0

k =
ckT
ckH

(vk − v0k) + Ck,v Ln
Tk
T 0
k

, (8.132)the heat apaity at onstant volume Ck,v = Tk (∂Sk/∂Tk)|vk [J/kg.K℄ being assumedonstant.The inremental variations of the hemial potential Gk and of the enthalpy Hk expressin terms of the spei� volume vk and of the entropy Sk,
dGk = vkdpk − SkdTk, dHk = vkdpk + TkdSk , (8.133)414



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumand integrate to,
Gk −G0

k = −vk − v0k
ckH

+

(
Ck,v +

ckT
ρkckH

− S0
k

)(
Tk − T 0

k

)

−Ck,v Tk Ln
Tk
T 0
k

,

Hk −H0
k = −vk − v0k

ckH
(1− Tk ckT ) +

(
Ck,v +

ckT
ρkckH

)
(Tk − T 0

k ) .

(8.134)
In spite of the third law of thermodynamis (Kestin, 1968), the referene potentials G0

k,
H0

k and S0
k are onventional, and need to be assigned.The enthalpy may alternatively be expressed as a funtion of pressure and temperature,

dHk = vk(1− TkckT ) dpk + Ck,p dTk , (8.135)through the heat apaity at onstant pressure Ck,p [J/kg.K℄,
Ck,p = Ck,v +

Tkc
2
kT

ρkckH
. (8.136)Note that the di�erential operator d appearing in the relations above is arbitrary, i.e. itmay refer to time or spae.8.4.3.3 Constitutive equations for mass and heat transfersThe onstitutive equations of mass and energy exhanges are de�ned by enforing theseond term of the Clausius-Duhem inequality dD2 to be positive, eqn (8.121). For thatpurpose, the rate of mass exhange ρ̂k and the rate of energy exhange êk are viewed aswork-onjugated respetively to the hemial potential saled by the temperature −Gk/Tkand to the oldness (inverse temperature) 1/Tk. Due to a lak of in situ measurements andas a �rst approximation, no oupling is assumed between mass transfer and energy transfer.In other words, the transfer ounterparts of the thermo-osmosis and of the isothermalheat transfer in the di�usion onstitutive equations developed in Setion 8.4.3.4 are notintrodued.The transfers satisfy the losure relations (8.114) and (8.117) so that a single massrate, e.g. the rate ρ̂p of the pore �uid, and two rates of energy exhange, e.g. the rates

êp and êf assoiated with the �uids, are needed. Consequently, equation (8.121) may berearranged to highlight the driving fores of the transfer mehanisms, namely the jumpsin saled hemial potential −Gk/Tk aross the �uid phases and in oldness 1/Tk arossthe three phases,
mass transfer : −ρ̂p

(
Gp

Tp
− Gf

Tf

)
≥ 0 ;

heat transfer : −êp
(

1

Tp
− 1

Ts

)
− êf

(
1

Tf
− 1

Ts

)
≥ 0 .

(8.137)415



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumThe �rst inequality is satis�ed by setting
ρ̂p = −η ρ2p T 0

p

(
Gp

Tp
− Gf

Tf

)
= −ρ̂f . (8.138)This onstitutive equation for mass transfer extends the existing isothermal formulationwhere the mass transfer is ontrolled by the di�erene of pressures between the avi-ties. The atual leakage parameter η is de�ned in Set. 8.4.6.3. The dissipation inequality(8.137)1 is learly satis�ed for η ≥ 0.The onstitutive relations of energy transfer assume the simple linear format,

ês = κsp(Ts − Tp) + κsf (Ts − Tf ),

êp = κsp(Tp − Ts) + κpf (Tp − Tf ),

êf = κsf (Tf − Ts) + κpf (Tf − Tp) .

(8.139)These relations extend the proposition of Bowen and Chen (1975) for porous media witha single porosity. The oe�ients κab, ab = sp, sf, pf , are the volumetri or spei� inter-phase heat transfer oe�ients [W/m3.K℄. The seond inequality, in eqn (8.137), an bewritten as a sum of terms κab(Ta − Tb)
2/(TaTb) over ab = sp, sf, pf , so that the inequalityis satis�ed if the three spei� inter-phase heat transfer oe�ients are positive, namely

κsp ≥ 0, κsf ≥ 0 and κpf ≥ 0.8.4.3.4 Constitutive equations for hydrauli and heat di�usionsThe di�usion onstitutive equations are similarly de�ned by enforing the third term ofthe Clausius-Duhem inequality dD3 to be positive. The volume �ux Jk is seen as work-onjugated to the hydrauli gradient −∇pk/Tk and the heat �ux qk is onjugated tothe thermal gradient ∇(1/Tk). Sine the �uids are segregated by their spatial loation,no oupling between the pore �uid di�usion and the frature �uid di�usion is physiallyappropriate. For eah �uid k, the extended Dary's law equation desribing hydraulidi�usion under ombined hydrauli and thermal gradients assumes the oupled format,
Jk = −Tk

kk
µk

·
(∇pk − ρkg

Tk

)
− nk T

2
k Θk

(∇Tk
T 2
k

)
, k ∈ K∗ , (8.140)where kk is the intrinsi permeability [m2℄, µk is the dynami visosity of the �uid [Pa.s℄and Θk the thermo-osmosis oupling oe�ient [m2/s.K
].Similarly, the extended Fourier's law de�ning the heat �uxes qk, k ∈ K, under ombinedhydrauli and thermal gradients displays no oupling over phases, but a priori it inludesan internal thermo-hydrauli oupling,qs = −ns T 2

s Λs

(∇Ts
T 2
s

)
,qk = −nk T 2

k Φk

(∇pk − ρkg

Tk

)
− nk T

2
k Λk

(∇Tk
T 2
k

)
, k ∈ K∗ .

(8.141)416



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumThe Φk's are alled the isothermal heat �ow oe�ients [m2/s.K
], and the Λk's are thethermal ondutivities [W/m.K℄. Along Onsager's reiproity priniple, the generalizeddi�usion matrix linking the vetor of �uxes {Jp, Jf , qs, qp, qf} to the driving gradients

{−∇pp/Tp, −∇pf/Tf , −∇Ts/T 2
s , −∇Tp/T 2

p , −∇Tf/T 2
f } is assumed symmetri so that thethermo-osmosis oe�ients are equal to the isothermal heat �ux oe�ients: Θk = Φk,

k ∈ K∗. The Clausius-Duhem inequality (8.121)3 is satis�ed if the generalized di�usionmatrix is positive semi-de�nite, whih is ensured by the inequalities,
Λk ≥ 0, k ∈ K;

kk
µk

≥ 0, k ∈ K∗; Λk
kk
µk

− nkTkΘ
2
k ≥ 0, k ∈ K∗ . (8.142)8.4.4 The oupled �eld equationsInserting the thermo-mehanial onstitutive equations (8.106) and (8.125)1 into the bal-ane of momentum (8.112) yields three oupled partial di�erential equations involving thedisplaement vetor, the pressures and the solid temperature,

µDS ∇2u+
(
λDS + µDS

)
∇(divu)− ξp∇pp − ξf ∇pf −

cT
c

∇Ts − ρg = 0 . (8.143)The drained ompressibility of the solid skeleton c and the Lamé's onstants of the drainedsolid λDS and µDS are dedued from the drained Young's modulus E and Poisson's ratio
ν through the standard relationships,

c =
3(1− 2ν)

E
, λDS =

Eν

(1 + ν)(1− 2ν)
, µDS =

E

2(1 + ν)
. (8.144)A �eld equation desribing seepage is obtained by inserting the onstitutive relations(8.125)2, (8.125)3, (8.128) and (8.140) into the balane of mass (8.113), yielding in turnfor the pores and for the fratures,

div

(
kp
µp

(∇pp − ρp g) + npΘp∇Tp
)

= app
∂pp
∂t

+ apf
∂pf
∂t

+ ξp div
∂u

∂t

+apTs

∂Ts
∂t

+ apTp

∂Tp
∂t

− ρ̂p

ρp
,

(8.145)
div

(
kf
µf

(∇pf − ρf g) + nfΘf ∇Tf
)

= aff
∂pf
∂t

+ apf
∂pp
∂t

+ ξf div
∂u

∂t

+afTs

∂Ts
∂t

+ afTf

∂Tf
∂t

− ρ̂f

ρf
,

(8.146)the rates of mass transfer being de�ned by the non-linear onstitutive laws (8.134)1 and(8.138).Heat �ow, fored onvetion and heat transfer in presene of loal thermal non-equilibriumare obtained by inserting the onstitutive equations (8.125)4, (8.135), (8.131), (8.141) into417



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumthe equations of balane of energy (8.115) and (8.116), resulting in turn for the solid, pore�uid and frature �uid to,
div (nsΛs∇Ts) = aTsTs

∂Ts
∂t

+ Ts
cT
c

div
∂u

∂t

+ Ts apTs

∂pp
∂t

+ Ts afTs

∂pf
∂t

+ κsp (Ts − Tp) + κsf (Ts − Tf ) ,

(8.147)
div (npΛp∇Tp + TpnpΘp (∇pp − ρpg)) = aTpTp

∂Tp
∂t

+ Tp apTp

∂pp
∂t

+ Mp · ∇Hp + ρ̂p Hp

+ κsp (Tp − Ts) + κpf (Tp − Tf ) ,

(8.148)
div (nfΛf∇Tf + TfnfΘf (∇pf − ρfg)) = aTfTf

∂Tf
∂t

+ Tf afTf

∂pf
∂t

+ Mf · ∇Hf + ρ̂f Hf

+ κsf (Tf − Ts) + κpf (Tf − Tp) .

(8.149)The enthalpies of the �uids Hp and Hf are de�ned by eqns (8.134)2. Note that the term
ρ̂p (Hp −Hf ) vanishes when the frature spaing B tends to zero, i.e. when hydrauli andthermal equilibria are reovered. The oe�ients appearing in equations (8.145) to (8.149)are identi�ed in terms of known properties,

akk = nk cH,k + (ξk − nk) cs − apf , k = p, f ; apf = −(ξf − nf )(cp − cs),

akTs
= (nk − ξk) cT , k = p, f ; akTk

= −nk cT,k, k = p, f ;

aTsTs = nsρs Cs,v; aTkTk
= nkρk Ck,p, k = p, f .

(8.150)In a HDR reservoir ontext, if the fratured medium is desribed with a single porositymodel, the �uid in the porous bloks is motionless with respet to the solid. In other words,the pores introdue a residual porosity, isolated from the frature network. On the otherhand, the pores ontribute to the di�usion of heat. A omparison with a single porositymodel serves to highlight the in�uene of the dual porosity onept on the overall reservoirresponse.The single porosity model is reovered by setting the pore volume fration np to zero,whih implies cp = cs. Consequently, ξp = 0 and ξf = 1− cs/c, and Biot's e�etive stressis reovered. Details pertaining to the single porosity model are postponed to AppendixH.1.8.4.5 Finite element disretizationThe �nite element formulation is developed for the following primary unknowns: displae-ment vetor u, pressure of the pore �uid pp, pressure of the frature �uid pf , temperature418



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumof the solid skeleton Ts, temperatures of the pore �uid Tp and of the frature �uid Tf .These primary unknowns are interpolated within the generi element e, in terms of nodalvalues through the interpolation funtions Nu, Np, NT , respetively,
u = Nuu

e, pp = Np p
e
p, pf = Np p

e
f , Tk = NT Te

k, k ∈ K. (8.151)Multiplying equations (8.112)-(8.116) by the virtual �elds δu, δp, and δT , and integratingby parts over the body V , provides the weak form of the problem,
∫

V
∇(δu) : σ − δu · ρg dV =

∫

∂V
δu · σ · n̂ dS, (8.152)

∫

V
∇(δp) · Jk − δp fk dV =

∫

∂V
δp Jk · n̂ dS, k ∈ K∗ (8.153)

∫

V
∇(δT ) · qk − δT Lk dV =

∫

∂V
δTqk · n̂ dS, k ∈ K, (8.154)where n̂ is the unit outward vetor normal to the boundary ∂V . A standard Galerkin pro-edure is adopted for the whole system of equations (8.152)-(8.154). Spei� stabilizationad ho for fored onvetion, suh as the Streamline Upwind / Petrov-Galerkin method,is required only if a hard out�ow boundary ondition is applied on the temperature �eld.The resulting non-linear �rst-order semi-disrete equations for the unknown vetor X,

X = [u pp pf Ts Tp Tf ]
T (8.155)with maximum nodal length = dimension of spae + 5, imply the residual R to vanish:

R = F
grav + F

surf (S,X)− F
int+conv

(
X,

dX

dt

)
= O, (8.156)Here F

int+conv is the vetor that ontains the internal fores together with the onvetiveontributions appearing on the left-hand-side of eqn (8.152)-(8.154), Fsurf is the vetor ofsurfae loadings denoted olletively S and F
grav is the vetor ontributed by gravity (Ap-pendix H.2). The semi-disrete equations are integrated through a generalized trapezoidalrule de�ned by a salar α ∈ ]0, 1]. At step n + 1, the equations are enfored at time tn+α= tn + α∆t, with ∆t = tn+1 − tn, namely,

Rn+α = F
grav + F

surf (Sn+α,Xn+α)− F
int+conv (Xn+α,Vn+α) = O . (8.157)In the above relation, Z = S,X,V are de�ned as Zn+α = (1−α)Zn+αZn+1, and Xn+1 and

Vn+1 are approximations of X(tn+1) and (dX/dt)(tn+1), respetively. The system (8.157)is solved iteratively by an expliit-impliit operator split (Hughes, 1987a), namely at step
n, iteration i+ 1,

R
i+1
n+α = F

grav
E + F

surf
E (Sn+α,X

i
n+α)− F

int+conv
I (Xi+1

n+α,V
i+1
n+α) = O. (8.158)419



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumThe partition shown in equation (8.158) is motivated by two observations: (1) the depen-dene of the vetor of external fores on the solution is weak; (2) the vetor of internalfores depends non-linearly on the solution X through the non-linear �eld equations (8.143)-(8.149). The global iteration proess uses a full Newton-Raphson proedure. The Newtondiretion ∆V is sought by setting the residual eqn (8.158) to zero,
R
i+1
n+α = R

i
n+α − C (α∆V) = O . (8.159)

R
i
n+α represents the exat non-linear ontributions of the omprehensive model, whereasthe e�etive di�usion matrix C is expressed in terms of the global di�usion matrix D =

D(X,V) and of the global sti�ness-onvetion matrix K = K(X,V),
C = D+K α∆t. (8.160)The global di�usion and sti�ness-onvetion matries are obtained by assembling the ele-ment ontributions whih have the following blok struture,
D
e =




0 0 0 0 0 0

De
pp u De

pp pp De
pp pf

De
pp Ts

De
pp Tp

0

De
pf u De

pf pp De
pf pf

De
pf Ts
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Tsu
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Tspp
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TsTs
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TpTp
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Tfpf
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, (8.161)
K

e =




Ke
uu Ke

upp Ke
upf

Ke
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0 0

0 Ke
pp pp Ke
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pp Tp
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pp Tf

0 Ke
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. (8.162)
The detailed expression of these matries is provided in Appendix H.3. The �nite elementode has been developed as part of this work. The four-node element (QUAD4) is usedto interpolate all unknowns. The number of integration points is equal to two (in eahspatial dimension), for all matries and all residuals inluding the onvetive ontributions.Iterations (index i) are stopped when the toleranes below involving both the overall saledresidual and unknowns are satis�ed:tol1: ∣∣Ri

∣∣ /
∣∣R1
∣∣ < 0.001tol2: ∣∣xi − xi−1
∣∣ /
∣∣xi
∣∣ < 0.001, for x = uj , pp, pf , Ts, Tp, Tf .420



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumEah omponent of the residual vetor is saled by a representative value for the problemat hand as detailed in Setion 8.3.The time integration parameter α is taken equal to 2/3. Conditional stability hara-terizes non-linear transient onvetive-di�usive problems disretized with a full Newton-Raphson sheme (Belytshko and Hughes, 1983). The time step ∆t is inreased by �ts andstarts in the range [∆tmin, ∆tmax℄ in order to keep the omputation time within aeptablelimits. The average number of Newton-Raphson iterations per time step has been ob-served to remain around 5. The lower bound ∆tmin is assoiated with the fastest di�usiontime and is maintained onstant until hydrauli steady state is reahed, whereas ∆tmax isassoiated with the slowest remaining di�usion proess.To inrease the auray of the solution in the viinity of the injetion well, the meshis graded along the vertial diretion aording to a logarithmi rule.8.4.6 HDR reservoir analysisThe thermo-hydro-mehanial onstitutive equations are now used to investigate generiHDR reservoirs with various frature spaings B subjeted to hydrauli gradients andthermal loadings.8.4.6.1 Geometry of the HDR reservoirAn arti�ially fratured reservoir with horizontal injetion and prodution wells is onsid-ered (Figure 8.29). The injetion and the prodution wells are loated at the bottom andat the top of the reservoir, respetively, and they penetrate the entire horizontal extent ofthe problem domain xR. The problem de�nition requires information on the horizontal andvertial extents of the reservoir xR and zR respetively, on the average frature spaing B,on the average frature aperture 2 b and on the average permeability of the porous bloks
kp, whih provide seond porosity. The simulations assume a plane strain analysis, andthe �nite element mesh inludes only half of the reservoir.8.4.6.2 Initial and boundary onditionsPrior to the irulation test, the reservoir is assumed to be in loal thermal equilibrium,and the solid and the �uids have idential temperatures T 0 = T 0

s = T 0
p = T 0

f . Geothermalgradient is negleted. The initial pressures of the �uids p0p = p0f = ρfgz are assumed to bein hydrostati equilibrium, proportional to the depth z, with the �uid densities ρp = ρf .The initial stress state is due to the overburden stress σ0z = σv and to the lateral earthstress σ0x = σH . Sine, the �uids are initially in loal thermal and hydrauli equilibria, thereferene thermodynami potentials of the �uids are equal: S0 = S0
p = S0

f , G0 = G0
p = G0

f ,and H0 = H0
p = H0

f .The thermal, hydrauli and mehanial boundary onditions (BC) are shown in Figure8.30. 421



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibrium
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Figure 8.29: Representation of a generi HDR reservoir. The exat onvetive �ow pathis unknown and only the average frature spaing B and nf the porosity of the fraturenetwork are required to obtain the average frature aperture 2 b, eqn (8.165). kp and kfdenote the permeabilities of the porous bloks and of the frature network, respetively.The simulations assume a plane strain analysis, in the x−z plane. Symmetry with respetto z-axis is assumed.(1) Thermal boundary onditions:The injetion temperature is applied to all the phases along the injetion well (x ∈
[0, xR], z = 0). The remaining boundaries (x = 0, z ∈]0, zR]), (x ∈ [0, xR], z = zR)and (x = xR, z ∈]0, zR]) are insulated from the surroundings, that is qs · n̂ = qp · n̂ =

qf · n̂ = 0, n̂ being the loal unit outward normal to the reservoir.(2) Hydrauli boundary onditions:The injetion and prodution pressures, denoted pinj and pout, are spei�ed alongthe injetion and the prodution wells, respetively, for the two �uid phases so that
pp(x ∈ [0, xR], z = 0) = pf (x ∈ [0, xR], z = 0) = pinj and pp(x ∈ [0, xR], z = zR) =

pf (x ∈ [0, xR], z = zR) = pout. The remaining boundaries (x = 0, z ∈]0, zR[) and
(x = xR, z ∈]0, zR[) are impermeable, i.e. Jp · n̂ = Jf · n̂ = 0.(3) Mehanial boundary onditions:The vertial stress σz = σ0z remains onstant along the top boundary (x ∈ [0, xR], z =

zR) and similarly for the horizontal stress σx = σ0x along the lateral boundary (x =

xR, z ∈ [0, zR]), while the displaements on the other boundaries are spei�ed as
ux(x = 0, z ∈ [0, zR]) = 0 and uz(x ∈ [0, xR], z = 0) = 0.The in�uenes of the spatial uniformity of the �ow path and of the external heat supplyon the thermal depletion of the reservoir have been addressed in Setion 8.3. They aredisregarded herein so as to fous on the spei� in�uene of the dual porosity model.422
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Figure 8.30: Thermal, hydrauli and mehanial boundary onditions (BC). Symmetrywith respet to z-axis is assumed.8.4.6.3 Parameters related to the frature spaing BThe frature spaing B in�uenes three material parameters used in the model, namely (1)the leakage parameter η [1/Pa.s℄, (2) the spei� solid-to-frature �uid heat transfer oe�-ient κsf [W/m3.K℄ and (3) the spei� pore �uid-to-frature �uid heat transfer oe�ient
κpf [W/m3.K℄.(1) The leakage parameter η = ᾱ kp/µp ≥ 0 that ontrols the �ow between the porousbloks and the frature network draws from Barenblatt et al. (1960). In this double porosityontext, the leakage parameter does not treat the two avities symmetrially, and putsemphasis on the permeability of the porous bloks kp whih is lower than the permeability ofthe frature network. The aperture fator ᾱ [1/m2℄ orresponding to the lowest permeablephase has been introdued by Warren and Root (1963),

η = ᾱ
kp
µp
, with ᾱ =

4n(n + 2)

B2
, (8.163)in whih n = 2 represents the spae dimension.(2) The spei� solid-to-frature �uid heat transfer oe�ient κsf is usually de�ned asthe produt of the solid-to-frature �uid spei� surfae Ss

sf [m2/m3℄ with the oe�ientof solid-to-frature �uid heat transfer hsf [W/m2.K℄,
κsf = hsf × Ss

sf , with Ss
sf =

4ns
B

for 2 b≪ B . (8.164)where the spei� surfae Ss
sf is obtained by onsidering a porous blok square of size Bbordered by a frature �uid of width b. The spei� surfae Ss

sf represents the ratio of thewetted solid surfaes over the total volume (de Marsily, 1986). The volume fration nf ofthe frature �uid is then equal to
nf =

2× 2 b

B
for 2 b≪ B , (8.165)423



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumso that, for a given frature porosity nf , the average frature aperture 2b inreases withthe frature spaing B. By assuming that the e�et of onvetion in the frature �uidphase (perpendiular to the solid-frature �uid interfae) is negligible, the oe�ient ofsolid-to-frature �uid heat transfer hsf may be quantitatively haraterized by the sum ofthe thermal resistanes of the two phases in series (Bejan, 1993),
1

hsf
=

2 b

2nfΛf
+

B

2nsΛs
. (8.166)By inserting eqs (8.165) and (8.166) in eqn (8.164), the spei� oe�ient of heat transferbetween the solid and the frature �uid κsf is, in turn, linearly related to B−2,

κsf =
8ns
B2

nsΛs × 2Λf

nsΛs + 2Λf
. (8.167)It is worth noting that if nsΛs ≪ 2Λf , the above relation redues to κsf = 8 (ns)

2Λs/B
2where the formulation does not treat the two phases symmetrially, à la Warren and Root(1963), and puts emphasis on the most insulating phase.(3) Similarly, the spei� pore �uid-to-frature �uid heat transfer oe�ient κpf isde�ned as the produt of the pore �uid-to-frature �uid spei� surfae Ss

pf [m2/m3℄ withthe oe�ient of pore �uid-to-frature �uid heat transfer hpf [W/m2.K℄,
κpf = hpf × Ss

pf =
8 (np)

2Λp

B2
, with

Ss
pf =

np
ns

× Ss
sf and hpf ≈ 2npΛp

B
,

(8.168)for Λp = Λf , 2b≪ B and np ≪ 1.Consequently, the three oe�ients η, κsf and κpf sale with the inverse of the squareof the frature spaing B−2, as illustrated in Table 8.5.Parameter Unit Eqn Frature spaing B [m℄
0.01 1 10 13 20

η [1/Pa.s℄ (8.163) 3.2 10−12 3.2 10−16 3.2 10−18 1.88 10−18 8.0 10−19

κsf [W/m3.K℄ (8.167) 6.18 104 6.18 6.18 10−2 3.30 10−2 1.54 10−2

κpf [W/m3.K℄ (8.168) 1.2 102 1.2 10−2 1.2 10−4 7.07 10−5 3.0 10−5Table 8.5: Sensitivity of the leakage parameter η, the spei� solid-to-frature �uid heattransfer oe�ient κsf and the spei� pore �uid-to-frature �uid heat transfer oe�ient
κpf to the frature spaing B for a two-dimensional frature network n = 2 endowed witha pore permeability kp = 10−20 m2, a frature porosity nf = 0.005 and a pore porosity
np = 0.05. The other material parameters are taken from Table 8.8.Correlations of the solid-to-frature �uid heat transfer oe�ient hsf have been pro-posed in the literature, with the Nusselt number (Wakao and Kaguei, 1982) and with a424



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumapillary tube model (Zanotti and Carbonell, 1984). Few experimental works have investi-gated the magnitude of this oe�ient (Peker and Deresiewiz, 1973; Jiang et al., 2006).Instead, here, a alibration of the model with help of data provided from the two HDRreservoirs of Fenton Hill and Rosemanowes is proposed (Setion 8.4.7). A sensitivity anal-ysis is performed in Subsetion 8.4.8.2 to determine the in�uene of the frature spaing
B on the results.Boundary onditions Value Unit RefereneInjetion temperature Tinj 70 ◦C Fig. 6-1 in 1Initial in-situ temperature T 0

s = T 0
p = T 0

f 178 ◦C Fig. 6-3 in 1Initial prodution pressure p0out = ρfgz at z = 2.673 km 26.19 MPa -Initial injetion pressure p0inj = ρfgz at z = 2.903 km 28.44 MPa -Imposed prodution overpressure 0.0 MPa -Imposed injetion overpressure 9.0 MPa Fig. 4-1 in 1Overburden ompressive stress σv −75.0 MPa 2Earth ompressive stress σH −37.5 MPa 2Table 8.6: Initial and loading boundary onditions representative of Fenton Hill HDRreservoir, run segment 5. 1: Zyvoloski et al. (1981). 2: Murphy et al. (1977).Boundary onditions Value Unit RefereneInjetion temperature Tinj 23 ◦C 1Initial in-situ temperature T 0
s = T 0

p = T 0
f 83.5 ◦C 2Initial prodution pressure pout = ρfgz at z = 2.160 km 21.12 MPa -Initial injetion pressure pinj = ρfgz at z = 2.490 km 24.35 MPa -Imposed prodution overpressure 0.0 MPa -Imposed injetion overpressure 10.0 MPa Fig. 6 in 2Overburden ompressive stress σv at zav = 2.325 km −60.4 MPa 3Earth ompressive stress σH at zav = 2.325 km −65.11 MPa 3Table 8.7: Initial and loading boundary onditions representative of Rosemanowes HDRreservoir, RH12/RH15 system. 1: Hiks et al. (1996). 2: Rihards et al. (1994). 3: Bruel(1995).Unless the frature spaing tends to zero, the dual porosity model will not reover theresponse of the single porosity model sine it aounts for the presene of the pore �uid inthe balane of momentum and in the balane of energy equations, while the single porositymodel does not reognize the pore �uid.8.4.7 Calibration with �eld dataThe thermal response obtained from the thermo-hydro-mehanial model may be omparedwith �eld results from the literature. Two hot dry rok reservoirs are investigated: (1)Fenton Hill, New Mexio, USA, and (2) Rosemanowes, Cornwall, UK. The time pro�lesof the frature �uid temperature (at the prodution well) are srutinized alone in Figure425



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumMaterial parameter Value Unit RefereneDrained Young's modulus E 38.9 GPa 1Drained Poisson's ratio ν 0.3 - 1Volumetri thermal expansion cT 3.3 × 10−6 1/K 2Compressibility ratio cp/c 0.9 - 3Frature network porosity nf < 0.01 - 1Porosity of the porous bloks np 10 × nf - 4Frature network permeability kf < 10−13 m2 1Permeability of the porous bloks kp ≥ 10−20 m2 1
≤ 10−18 m2 1Solid grains ompressibility cs 2.7× 10−11 1/Pa 1Solid thermal di�usivity αT,s 1.1 × 10−6 m2/s 5Solid thermal ondutivity Λs 2.71 W/m.K 5Solid spei� heat apaity Cs,v 948.55 J/kg.K 6Solid density ρs 2600 kg/m3 6Fluid ompressibilities cpH = cfH 4.54 × 10−10 1/Pa 6Fluid thermal expansion cpT = cfT 10−3 1/K 6Fluid dynami visosities µp = µf 3× 10−4 Pa.s 6Fluid thermal ondutivities Λp = Λf 0.6 W/m.K 6Thermo-osmosis oe�ients Θp = Θf 0 m2/s.K 6Fluid spei� heat apaities Cp,p = Cf,p 4275 J/kg.K 5Fluid densities ρp = ρf 980.0 kg/m3 6Fluid thermal di�usivities αT,p = αT,f 1.58 × 10−7 m2/s -Solid-to-pore �uid heat transfer oef. κsp 104 W/m3.K 7Table 8.8: Input parameters representative of Fenton Hill HDR reservoir, run segment 5.1: Murphy et al. (1977). 2: Zyvoloski et al. (1981). 3: Wilson and Aifantis (1982). 4: Firstestimation owing to the rather high pressure of the overburden rok. 5: Elsworth (1989).6: Estimated parameters for water. 7: Loal thermal equilibrium is enfored between thepore �uid phase and the solid phase owing to the absene of onvetion, to their similarthermal di�usivities αT,s ≈ αT,p × 10, and to the large spei� surfae Ss

sp.8.31, even if the numerial results presented in this setion desribe a omplete thermo-hydro-mehanial problem. The response in terms of �uid pressures and e�etive stresswill be studied in Setion 8.4.8 for Fenton Hill HDR reservoir only. The reservoirs aredesribed with a dual porosity model in LTNE and the simulations assume a plane strainanalysis. Furthermore, the triple point of water is used as a referene (Kestin, 1968, p. 513)so that the referene entropy and hemial potential are set to S0 = 2.101 kJ/K.kg and
G0 = −187.6 kJ/kg, respetively.For a LTNE analysis, the time pro�le of the temperature depletion is haraterized bythree stages: (a) the �rst stage represents the abrupt propagation of the injetion tem-perature dominated by onvetion; (b) the seond stage haraterizes the heat transferbetween the frature �uid phase and the porous bloks and () the third stage representsthe �nal thermal depletion of the porous medium. The least well-de�ned of the materialparameters required for a thermo-hydro-mehanial simulation in LTNE are the frature426



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumMaterial parameter Value Unit RefereneDrained Young's modulus E 40.0 GPa 1Drained Poisson's ratio ν 0.25 - 2Volumetri thermal expansion cT 3.3× 10−6 1/K 3Compressibility ratio cp/c 0.9 - 4Frature network porosity nf < 0.01 - 5Porosity of the porous blok np 10× nf - 6Frature network permeability kf ≤ 10−13 m2 1Permeability of the porous blok kp 10−18 m2 5Solid grains ompressibility cs 2.0 × 10−11 1/Pa 3Solid thermal di�usivity αT,s 1.29 × 10−6 m2/s -Solid thermal ondutivity Λs 2.8 W/m.K 1Solid spei� heat apaity Cs,v 822.1 J/kg.K 7Solid density ρs 2642 kg/m3 7Fluid hydrauli ompressibilities cpH = cfH 4.54 × 10−10 1/Pa 3Fluid thermal ompressibilities cpT = cfT 0.65 × 10−3 1/K 3Fluid dynami visosities µp = µf 6× 10−4 Pa.s 5Fluid thermal ondutivities Λp = Λf 0.68 W/m.K 7Thermo-osmosis oe�ients Θp = Θf 0 m2/s.K 3Fluid spei� heat apaities Cp,p = Cf,p 4219.8 J/kg.K 7Fluid densities ρp = ρf 978.0 kg/m3 7Fluid thermal di�usivities αT,p = αT,f 1.67 × 10−7 m2/s -Solid-to-pore �uid heat transfer oe�ient κsp 104 W/m3.K 8Table 8.9: Input parameters representative of Rosemanowes HDR reservoir. 1: Bruel(1995). 2: Armstead and Tester (1987). 3: Estimated parameters for water or granite.4: Wilson and Aifantis (1982). 5: Rihards et al. (1994). 6: First estimation owing tothe rather high pressure of the overburden rok. 7: Kolditz and Clauser (1998). 8: Loalthermal equilibrium is enfored between the pore �uid phase and the solid phase owing tothe absene of onvetion, to their similar thermal di�usivities αT,s ≈ αT,p × 10, and tothe large spei� surfae Ss
sp.permeability kf , the frature porosity nf and the solid-to-frature �uid spei� heat trans-fer oe�ient κsf . These oe�ients are alibrated so that the numerial response mathesthe �eld response based on the following proedure: (i) the frature network permeability

kf is obtained so that the end of the �rst stage mathes the �eld data; (ii) the fraturenetwork porosity nf is adjusted so that the duration of the seond stage mathes the restof the response and (iii) the optimum solid-to-frature �uid heat transfer oe�ient κsf isobtained so that the temperature magnitude of the seond stage best �ts the �eld data.8.4.7.1 Fenton Hill reservoirThe irulation test was indued between the depths 2903m and 2667m with an averagereservoir height of zR = 230m. Experimental results for the test `segment-5' are reported inZyvoloski et al. (1981). The horizontal half-width of the permeable reservoir is arbitrarily427



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibrium
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Figure 8.31: Relative temperature outlet TD = (T 0 − Tf (z = zR))/(T
0 − Tinj) versus timein days. LTE stands for loal thermal equilibrium and is obtained for κsf = 100W/m3.K.Colors are available on the eletroni version. (left) Fenton Hill hot dry rok reservoir with

kf = 8.0 10−15 m2 and nf = 0.005. Field data pertain to ◦ 2703m, ⋄ 2673m, × 2626mand 2 in the asing 2660m (Zyvoloski et al., 1981). The optimum spei� solid-to-frature�uid heat transfer oe�ient κsf is equal to 33mW/m3.K. (right) Rosemanowes hot dryrok reservoir with kf = 3.2 10−14 m2, nf = 0.005. Field data pertain to ◦ the asing shoeof the prodution well (≈ 2125m in true vertial depth) (Kolditz and Clauser, 1998). Theoptimum spei� solid-to-frature �uid heat transfer oe�ient κsf lies in the range 60to 120mW/m3.K. The late overshooting osillations for the LTE solution are due to animperfet damping of the onvetive ontribution (Setion 8.3).hosen equal to xR = 200m. Loading boundary onditions and material parameters aredoumented in Tables 8.6 and 8.8, in whih the hydrostati pressure gradient between theinjetion and the prodution wells is imposed.The thermo-hydro-mehanial model for this LTNE analysis reovers well the �eldresponse for the ombination of frature permeability kf = 8.0 10−15 m2, frature porosity
nf = 0.005 and spei� solid-to-frature �uid heat transfer oe�ient κsf = 33mW/m3.K.This set of alibrated parameters is the same as for a single porosity model if the thermaldi�usivity of the solid phase is replaed by the thermal di�usivity of the porous bloks (the`equivalent' solid phase).If the alibrated material parameters are onsidered suitable, the frature spaing anbe alulated with eqn (8.167), B = 13m whih mathes well the 10m magnitude proposedin Figure 3.2 of Zyvoloski et al. (1981). Furthermore, the solid-to-frature �uid heattransfer oe�ient hsf an be estimated to hsf = 0.12W/m2.K.It is worth noting that the �eld data for Fenton Hill reservoir display spatially hetero-geneous initial rok temperatures (Zyvoloski et al., 1981). This situation is attributed toirulation in the hot dry rok reservoir before the irulation tests. The initial tempera-ture T 0 used to alulate the relative temperature TD and to perform the alibrations inFigure 8.31, left, represents the temperature at the lowest outlet point z = 2703m. If theinitial temperature T 0 is hosen at a higher outlet point z > 2703m, the alibrations holdfor higher values of the solid-to-frature �uid heat transfer κsf .428



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibrium8.4.7.2 Rosemanowes reservoirThis seond irulation test was performed between the depths 2490m and 2160m withan average reservoir height of zR = 330m. The horizontal half-width of the permeablereservoir is also hosen equal to xR = 200m. Loading boundary onditions and materialparameters are doumented in Tables 8.7 and 8.9. The setup and the boundary onditionsare similar to the Fenton Hill simulation so as to simplify the implementation. The exper-imental results for the RH12/RH15 system reported in Kolditz and Clauser (1998), theirFigure 5, provide the data for the alibration.The thermo-hydro-mehanial LTNE model reovers well the �eld response for theombination of frature permeability kf = 3.2 10−14 m2, frature porosity nf = 0.005 andspei� solid-to-frature �uid heat transfer oe�ient κsf in the range 60 to 120mW/m3.K.The lak of auray of the alibration is most probably due to the simpli�ed setup assumedfor the numerial simulations: in the �eld, the wells are not horizontal and the fraturepermeability is not uniform within the reservoir. Furthermore, signi�ant water loss (45%)was generated owing to the unon�ned nature of the reservoir (Brown et al., 1999), and toits lak of stability (Bruel, 2002) leading to the development of short-iruit �ow paths.The alibration of the spei� solid-to-frature �uid heat transfer oe�ient κsf yieldsthe same order of magnitude for both hot dry rok reservoirs, whih indiates that theorder of magnitude is reliable. The omparisons between the �eld results and the modelsimulations demonstrate responses in loal thermal non-equilibrium, haraterized by threestages, whih again provides on�dene in the LTNE model.8.4.8 Thermo-hydro-mehanial responseThe alibration of the thermo-hydro-mehanial model is now used to perform oupled sim-ulations on the Fenton Hill HDR reservoir. Emphasis is laid on delineating the di�erenesin the response of the geothermal system in terms of temperatures, �uid pressures ande�etive stress, as inferred by the single and dual porosity models. Speial attention is de-voted to the frature spaing B. Some details of the onstitutive model are also addressed,inluding the in�uene of the thermodynami potentials S0 and G0 and the unonnetedporosity limit.For the material parameters assoiated with Fenton Hill reservoir, we hypothesize thatthe dual porosity onept will provide a response in the range of a single porosity model andof a dual porosity model endowed with a low pore permeability (lower than the expetedvalue presented in Table 8.8). Furthermore, the dual porosity model is endowed with amass transfer law whih allows the permeation of �uid from the fratures towards the pores.It is expeted that large frature spaings redue the thermally indued tensile stress and�uid loss: this phenomenon highlights a key feature of sparsely fratured reservoirs withrespet to densely fratured reservoirs.For the irulation tests simulated, the energy exhanges due to mass transfer ρ̂pHpand ρ̂fHf appearing in the energy equations of the �uids (8.148) and (8.149) have been429



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumheked to have virtually no in�uene on the overall response.Results are presented in Figures 8.32 to 8.40. The sign onvention of ontinuum me-hanis is used, ompressive stresses being negative.8.4.8.1 Dual porosity model versus single porosity modelThe thermo-hydro-mehanial response of fratured media in a LTNE analysis an besought with two types of models: (2P) models developed for dual porous media involvingtwo pressures and three temperatures or (1P) models developed for single porous media assummarized in Appendix H.1 and involving one pressure and two temperatures. Both typesare used to predit the thermo-hydro-mehanial behavior of the Fenton Hill HDR reservoirin Figures 8.32 and 8.33. As a simpli�ation here, the (2P) model assumes the temperaturesof the solid and of the pore �uid to be idential. Still, two sub-options are onsidered: (i)the pores are onneted to eah other with a large permeability kp = 10−18 m2 and (ii) thepores are onneted to eah other with a low permeability kp = 10−21m2 so that both thedi�usive �ow in the pores and the mass transfer are small.The dual porosity response with a large pore permeability (and hene large mass trans-fer) is expeted to range between the response of the single porosity model (1P), sine nopore pressure ounterbalane e�et is aounted for in the e�etive stress, and the dualporosity response with a low pore permeability, sine the indued pore pressure will dissi-pate slowly due to the small mass transfer.The material parameters mathing �eld data for the Fenton Hill HDR reservoir areused, that is, permeability of the frature network kf = 8.0 10−15 m2, volume fration ofthe frature �uid nf = 0.005 and spei� solid-to-frature �uid heat transfer oe�ient
κsf = 33mW/m3.K. The triple point of water is used as a referene. The initial andloading boundary onditions are detailed in Set. 8.4.6.2. The leakage parameter η isestimated from (8.163) for the material parameters presented in Table 8.8 and for theaverage frature spaing B = 13m (Set. 8.4.7.1). The vertial pro�les at time t = 1.9 yearsof the temperatures, �uid pressures and stress hanges from the initial state ∆σ̄ = σ̄− σ̄

0plotted in Figures 8.32 and 8.33 illustrate the late time of the numerial test. The oupledthermo-hydro-mehanial response at early time t = 34.72days is presented next in Figure8.34.The oupled behavior of fratured media in thermal and hydrauli non-equilibria isgoverned by the di�erene in harateristi times between the thermal depletion of thefrature �uid phase and of the solid/pore �uid phases (Figure 8.32, top). The signi�antdi�erene in temperature between the frature �uid and the porous bloks orrelates withtheir highly distint masses and volumes. Indeed, heat di�uses by ondution in the porousbloks whih are endowed with a large volume ns + np = 0.995. On the other hand, thetemperature of the frature �uid propagates by onvetion and thermal depletion is muhfaster than in the porous bloks.The solid temperature responses provided by the single porosity model (1P), the dual430



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibrium
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Figure 8.32: Fenton Hill reservoir, late time (t = 1.9 years) vertial pro�les of the tem-peratures of solid and pore �uid (top-left), the temperature of frature �uid (top-right),the pressure of pore �uid (bottom-left), and the pressure of frature �uid (bottom-right)for kf = 8.0 10−15 m2, nf = 0.005, κsf = 33mW/m3.K and B = 13m (Set. 8.4.7.1).I.W. stands for injetion well and P.W. for prodution well. The responses of the vari-ous models math for the temperatures and for the frature �uid pressure. On the otherhand, the pore pressure response of the dual porosity model displays a pressure drop nearthe injetion point. The magnitude of the pressure drop is ontrolled by the di�usivityratio Rp and is larger for smaller pore permeability (kp = 10−21 m2). The single porositymodel leaves out of aount the pore pressure response. Regarding the pore pressure, thedual porosity response for kp = 10−18 m2 is bounded by the dual porosity response forsmaller pore permeabilities and by the frature �uid pressure (1P), lose to the injetionwell z/zR < 0.3.porosity model (2P) with a large pore permeability (kp = 10−18 m2) and with a small porepermeability (kp = 10−21 m2) almost math and are not in�uened by the pressure and thestrain �elds. Hene, the alibration proposed in Set. 8.4.7 remains valid for all models.As expeted from the large frature permeability kf = 8.0 10−15 m2, the response of thefrature �uid pressure varies little from one model to the other as opposed to that of thepore �uid pressure. The single porosity model disregards the pore �uid pressure. The dualporosity model displays a derease in pore pressure indued by the thermal ontration ofthe solid phase. Indeed, sine (1) the pore �uid is embedded into the solid phase whihontrols fully the magnitude of the thermal ontration and (2) the oe�ient of thermalexpansion of the �uid cpT is approximatively 300 times greater than that of the solid phase
cT , the pore pressure derease is governed by the thermal depletion of the solid phase.On the other hand, the magnitude of the pore pressure peak is ontrolled by thehydrauli to thermal di�usivity ratio Rp =

√
αH,p/αT,p. The lower Rp, the greater thepore �uid pressure response. Hene, for the dual porosity model with kp = 10−21m2, Rpis small and the pore pressure drop is large ompared with the dual porosity model with431
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Figure 8.33: Fenton Hill reservoir, late time (t = 1.9 years) vertial pro�les of the hangesin vertial e�etive stress (left), lateral e�etive stress (middle) and out-of-plane e�etivestress (right). Tensile stresses are ounted positive. Owing to the pore pressure ontribu-tion, the stress responses desribed by the single porosity model (1P) are not equivalentto the responses desribed by the dual porosity model. The single porosity model preditsa thermally indued tensile stress in the viinity of the injetion well, whereas the dualporosity model predits a smaller tensile stress (∆σ̄x and ∆σ̄y) and an inrease of ompres-sive stress (∆σ̄z). The pore pressure drop ounterbalanes the ontration indued by thesolid temperature. As expeted, the dual porosity response with kp = 10−18 m2 is boundedby the single porosity and by the dual porosity with kp = 10−21 m2 responses, lose to theinjetion well z/zR < 0.3.
kp = 10−18m2 in whih the pore pressure drop dissipates through the onneted pores andthrough mass transfer with the frature network.While the thermal depletion of the various phases is the same for all the proposedmodels, the vertial e�etive stress is signi�antly in�uened by the pore pressure ontri-bution whih tends to damp (kp = 10−18m2) or to suppress (kp = 10−21m2) the thermallyindued tensile stress (1P) (Figure 8.33). Interestingly, the e�etive stress response pre-dited by the dual porosity model for a large pore permeability is bounded by the singleporosity response and by the dual porosity response for a small pore permeability, lose tothe injetion well z/zR < 0.3.The response of the dual porosity model is fully reovered by the single porosity modelin the partiular ase of small frature spaings B → 0 as presented in the next subsetionin Figure 8.35. This phenomenon is onsistent with the fat that, for very small fraturespaings B, fratured media lose their spatial and time sale separation harateristis,whih are the two main hypotheses of the dual porosity onept. One loal thermal andhydrauli equilibria are reahed, the dual porosity model is indeed expeted to redue toa single porosity model in LTE with porosity equal to the sum of the frature and poreporosities and permeability equal to the sum of the frature and pore permeabilities.Moreover, the early mehanism of �uid loss is a onsequene of the law of mass transferindued by the jump in saled hemial potentials between the two �uids. During theearly time t = 34.72days, the thermal front propagates in the frature �uid only, while theporous bloks are almost thermally undisturbed as shown in Figure 8.34 for kp = 10−21 m2.Consequently, the thermally indued ontration of the pore �uid is small and restrited tothe viinity of the injetion well. On the other hand, the temperature di�erene betweenthe pore �uid and the frature �uid leads to a large mass transfer from the fratures towards432
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Figure 8.35: Fenton Hill reservoir, late time (t = 1.9 years) vertial pro�les of solidand pore �uid temperatures (top-left), frature �uid temperature (top-right), pore �uidpressure (bottom-left) and frature �uid pressure (bottom-right) for kf = 8.0 10−15 m2,
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8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibrium8.4.8.3 In�uene of the referene thermodynami potentials S0 and G0The hemial potential (8.134) ontrols the rate of mass transfer (8.138). It is de�nedin terms of the referene thermodynami potentials S0 and G0. A sensitivity analysis isproposed for two sets of referene thermodynami potentials:(1) for the �rst set, the injetion state of the irulation test is used as referene:
Sinj = 0.0 and Ginj = 0.0 for Tinj = 70◦C, pinj = 27.44MPa ;(2) for the seond set, the triple point of water is used as referene: STPW = 0.0 and
GTPW = 0.0 for TTPW = 0.01◦C, pTPW = 611.2Pa.referene state S0 (kJ/K.kg) G0 (kJ/kg)injetion of the irulation test 1.136 -79.3triple point of water 2.101 -187.6Table 8.10: Two possible de�nitions of the referene thermodynami potentials.The ensuing thermodynami potentials are listed in Table 8.10. The ontours of thesaled hemial potential displayed in Figure 8.38 show a quantitative, rather than quali-tative, in�uene of the referene potentials S0 and G0.
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Figure 8.39: Fenton Hill reservoir, late time (t = 1.9 years) vertial pro�les of jump in saledhemial potentials (left), pore �uid pressure (middle), and hange in vertial e�etivestress (right) for kf = 8.0 10−15 m2, kp = 10−20m2 and nf = 0.005. I.S. : the injetionstate of the irulation test is used as a referene. T.P.W. : the triple point of wateris used as a referene. Mass transfer is larger for T.P.W. Although the pore pressuredrop dissipates more e�etively for larger mass transfer, the onsequenes on the reservoirresponse are quite small. For the pore �uid pressure and the hange in vertial e�etivestress, the T.P.W. and the I.S. responses superpose.ompressibility cp is adequately estimated. cp haraterizes the intermediate stress-state ofa loading deomposition problem (Khalili and Valliappan, 1996) whih an be representedby the hydrauli harateristi time needed for the pore �uid to exit the porous blok,
tH =

B2

4αH
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2µDS(1− ν)

1− 2ν

[
A2(1 + νu)

2(1− 2ν)

9(1 − νu)(νu − ν)

]
, (8.169)in whih αH is the hydrauli di�usivity of the porous bloks, A is the Skempton oe�ientand νu is the undrained Poisson's ratio,
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A
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cp,H − cs
c− cs

, νu =
3ν +A(1− 2ν)(1 − cs/c)

3−A(1− 2ν)(1− cs/c)
. (8.170)For geothermal reservoirs, the maximum time sale of the problem would be approxima-tively tmax ≈ 30 years, so that during the time span of interest, the porous blok willremain undrained if tH > tmax and cp = cs should be enfored. The latter time onstraintprovides a bound to the permeability,
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µp
tmax
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[
9(1− νu)(νu − ν)

A2(1 + νu)2(1− 2ν)

]
≈ 2.3 × 10−23 m2 (8.171)below whih a single porosity model an be safely used, i.e. the pore pressure in�uenean be disregarded. For higher permeabilities, the dual porosity model should be usedto apture the orret stress evolution. It should be noted that for t ≈ tH , the porepressure (indued by both early mass transfer and by thermal ontration) remains largeand negative (Figure 8.40) whih means that further fraturing annot our in the porousbloks and that any opening will be on�ned to the existing fratures. These aspets annotbe predited using a single porosity model whih will indiate tensile stresses irrespetiveof the situation in the bloks. 437
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Figure 8.40: Fenton Hill reservoir lose to the injetion well z/zR ≤ 0.1, vertial pro�lesof pore pressure (left) and hange in vertial e�etive stress (right) for kf = 8.0 10−15 m2,
kp = 10−21 m2, B = 13m and nf = 0.005. The hydrauli harateristi time is tH ≈
40days. For times lose to tH , the pore pressure remains high and negative. However, for
t > tH the exessive pore pressure an dissipate in the frature network.8.4.9 ConlusionsThe main onern here has been to develop thermo-hydro-mehanial onstitutive equa-tions that exhibit key features of fratured media in loal thermal non-equilibrium. Amodel desribing the behavior of poro-elasti dual porous media has been extended toaount for thermal ontributions within a rational thermodynamis framework. The on-stitutive equations have been motivated and restrited by the Clausius-Duhem inequalityto haraterize the thermo-mehanial transfer and di�usion onstitutive relations. Earlierporo-mehanial analyses, starting from Barenblatt et al. (1960), have onsidered the �uidtransfer between the two avities to be driven by the pressure jump. The extension to amixture in loal thermal non-equilibrium indiates that the driving engine for this masstransfer is the jump of the saled hemial potential.A �nite element approximation has been developed that aounts for these onstitu-tive features, and the thermo-hydro-mehanial ouplings. The primary variables are thedisplaements, the pressures in the two avities and the temperatures of the three phases.The non-linear �eld equations are solved using a full Newton-Raphson proedure. This�nite element analysis has been employed to investigate the mehanisms of deformation,di�usion, fored onvetion and transfer in the ontext of heat extration from a fraturedhot dry rok reservoir.Prior to the desription of long term irulation tests, three parameters of the modelhave been alibrated with �eld data from two instrumented HDR reservoirs, namelyfrom the Fenton Hill and Rosemanowes sites. Simulations highlight a loal thermal non-equilibrium response haraterized by three stages.A sensitivity analysis has been arried out to study the in�uenes of the dual porositymodel and of the frature spaing on the phase temperatures, the �uid pressures, and thee�etive stress. As expeted, the dual porosity model provides, lose to the injetion well,a thermo-hydro-mehanial response whih is bounded by the single porosity response andby the dual porosity response endowed with a low pore permeability. The drop in thethermally indued pore pressure is more pronouned when the frature spaing is large.438



8. HDR reservoirs 8.4. A dual porosity medium in loal thermal non-equilibriumHene, large frature spaings tend to inrease the ompressive e�etive stress. In viewof potential �uid loss due to the thermally indued rok ontration, the aforementionede�et advies against densely fratured reservoirs in favor of multiple frature systems withlarge frature spaings.Aounting only for the frature �uid and disregarding the pore pressure ontribution,the single porosity approah overestimates the thermal ontration of fratured reservoirs.A dual porosity approah delivers information, (1) on �uid permeation in the porous ma-trix; (2) on the bene�ial e�et of the pore pressure ontribution towards thermally induedstress; (3) on the history of the stress path and (4) on the optimum frature spaing toredue �uid loss indued by thermal ontration. Atually, the dual porosity response re-overs well the �eld observations, e.g. Murphy et al. (1981), that �uid loss is high at thebeginning of the irulation test and dereases with time.

439



Summary and onlusions
GeneralThe main objetive of this study was to develop a onstitutive model for the fully oupledanalysis of heat �ow, hydrauli �ow and deformation in saturated dual porous media. Themain tasks aomplished were: (1) formulation of the governing equations for the ou-pled thermo-poro-elasti deformation, generalised �ows and generalised transfer proesseswithin a mixture in loal thermal non-equilibrium, (2) interpretation and identi�ation ofthe onstitutive parameters, (3) implementation of the omprehensive equations in a �niteelement ode using a non-linear numerial sheme, (4) validation of the proposed modeland of the orresponding numerial ode using analytial solutions from the literature,(5) appliation of the model to a borehole stability analysis, (6) implementation of thestreamline-upwind/Petrov-Galerkin method to treat the onvetive terms and (7) applia-tion of the model to the predition of heat extration in enhaned geothermal reservoirs.A thermo-hydro-mehanial model for dual porous mediaA onstitutive model was developed as part of this investigation to desribe the oupled be-haviour of fully saturated, dual porous media subjet to thermo-hydro-mehanial loadingsinluding those able to ause loal thermal non-equilibrium.The �eld equations were developed using the theory of mixtures. The deformationequation for the mixture as a whole was derived by satisfying the equation of momentum.The equations governing the �ow of �uids were established from the onservation equationsof mass for eah sub-avity, namely the porous blok and the �ssure network. The equationsgoverning the �ow of heat were established from the balane equations of energy for eahphase of the mixture.The onstitutive equations were obtained within a rational thermodynami framework.The entropy inequality, also alled the Clausius-Duhem inequality, was stated for the mix-ture as a whole so as to motivate and to provide restritive informations on ouplingphenomena in between phases. Three types of onstitutive equations were required bythe thermodynami theory: (1) The thermo-mehanial onstitutive equations whih de-sribe a reversible proess governed by the thermo-poro-elasti theory; (2) the generalised440



Conlusiondi�usion equations and (3) the generalised transfer equations whih desribe irreversibleproesses and were simpli�ed by assuming symmetry properties.The thermo-poro-elasti onstitutive law was obtained through the e�etive oneptwhih was identi�ed within a loading deomposition of a planar element. The generaliseddi�usion onstitutive law was obtained by oupling Dary's law and Fourier's law. Theunoupled mass and energy transfer onstitutive laws were obtained so as to reover thesame transfer �uxes when reduing to a hydro-mehanial model and to a single porositymodel, respetively.The omprehensive equations were written using a mixed formulation where the basivariables were solid matrix displaement vetor, �uid pressures of the porous blok and ofthe �ssure network, and temperatures of solid and of the �uids.Constitutive parameters: interpretation and identi�ationPartiular attention was given to identi�ation and determination of the model parameters.A range of values of these parameters for typial soils, roks and water were gatheredfrom the literature. The onstitutive parameters harateristi of dual porous media wereexpressed in terms of onstants measurable through experiments performed at di�erentsales. Extensive parameters were desribed within a typial range of temperature torestrit appropriately the thermodynami potentials. The oe�ients of thermo-osmosisand of volumetri inter-phase heat transfer were investigated through experimental dataand theoretial orrelations whih highlighted the di�ulties to identify their magnitude.The numerial implementation: �nite element methodNumerial solution to the omprehensive equations was obtained using the �nite elementapproah. The fully oupled governing equations were disretised using the Galerkinmethod, while time integration of the rate equations was aomplished using a preditor-multi-orretor algorithm. Two expliit/impliit partitions were proposed with a partiularfous on the onvetion ontributions. The non-linear �rst-order semi-disrete equationswere solved so as to fore the exat form of the residual to vanish; whereas, the globale�etive di�usion matrix, entral in the implementation, was linearised.Preliminary numerial resultsThe thermal ontributions of the proposed model were validated using several numerialexamples. A simpli�ed single porosity mixture in loal thermal equilibrium with no on-vetion was onsidered. Numerial preditions were ompared with analytial solutionsfrom the literature for a semi-in�nite one-dimensional olumn of porous media subjet to(1) a �xed temperature loading and (2) a �xed thermal �ux loading, for both (i) a drained441



Conlusionboundary and (ii) an undrained boundary. The results were satisfatory and showed themodel was highly sensitive to thermal shoks whih required a step loading funtion toahieve aeptable auray. Furthermore, an axi-symmetri boundary value problem wasanalysed in a purely mehanial ontext and an optimisation of the mesh was proposed tominimise the errors on the displaement, the strain and the stress.A borehole stability analysis: fous on di�usion and masstransferA borehole stability problem of a fratured reservoir in a thermally enhaned oil reoveryontext was addressed whih highlighted the importane of the di�erene between theharateristi times of the di�usion phenomena. A parametri analysis was developed tostudy the in�uene of the leakage parameter on the pore pressure, the �ssure networkpressure and the e�etive stresses in the viinity of the wellbore. Numerial solutionsshowed the e�etive stress was mostly ontrolled by the pore pressure, whih indued aredution in ompressive e�etive stress for low leakage parameter values. It was found thatdual porosity media displayed a higher failure potential ompared with an assoiated singleporosity medium. This result was strengthened if a semi-permeable boundary onditionon the porous blok was applied ompared with a permeable boundary ondition at thewellbore lining.The streamline-upwind/Petrov-Galerkin methodNumerial solution to the energy equations ontaining onvetion terms required stabili-sation. The streamline-upwind/Petrov-Galerkin approah was implemented and tested forvarious unoupled onve- tion-dominated di�usion-onvetion problems for whih opti-mum stabilisation parameters were sought. Numerial preditions were ompared with ana-lytial solutions from the literature for (1) a one-dimension steady ase, (2) a one-dimensiontransient ase, (3) a two-dimension steady ase and (4) a two-dimension transient ase. Theresults were satisfatory and showed that the auray of the thermal response was highlysensitive to the ad-ho stabilisation parameter. The streamline-upwind/Petrov-Galerkinmethod may require additional support in the form of the disontinuity apturing methodto aurately damp overshooting/undershooting osillations. Few numerial works have in-vestigated the implementation of the streamline-upwind/Petrov-Galerkin method as partof a oupled onstitutive model for porous media.Simulation of heat extration in geothermal reservoirsThe oupled thermo-hydro-mehanial model developed spei�ally for saturated dualporous media was applied to the simulation of heat extration in geothermal reservoirs.442



ConlusionThe streamline-upwind/Petrov-Galerkin method was extended to stabilise the model andthe weak formulation was developed for both a mixture in loal thermal non-equilibriumand for a mixture in loal thermal equilibrium. The stabilisation and the onvergene ofthe numerial results were then tested within a simpli�ed single porosity mixture in loalthermal equilibrium.Thermal reovery from a hot dry rok reservoir desribed with a fratured medium inloal thermal non-equilibrium was investigated. The harateristi time before loal ther-mal equilibrium is established, referred to as loal thermal non-equilibrium, was ontrolledby the volumetri solid-to-frature �uid heat transfer oe�ient. A parametri analysiswas arried out to study the in�uene of the loal thermal non-equilibrium assumption onthe �uid thermal output response. The numerial temperature response was haraterised,at the outlet of the reservoir, by a double-step pattern. The latter was representing sues-sively (1) the initial onvetion of the �uid, (2) the transfer of heat between the solid andthe �uid, and (3) the �nal depletion of the mixture. The model was then used to desribethe thermo-hydro-mehanial behaviour of a long term irulation test on the Fenton Hillhot dry rok reservoir. The least well-de�ned material parameters were alibrated withexperimental data and the omparison with the numerial results demonstrated a loalthermal non-equilibrium response. Although alibrated, the numerial preditions wereable to math, with great auray, the experimental data.With a single porosity model, the thermally indued �uid pressure drop was very smallin magnitude and was on�ned to the early time response. Later, the thermally induede�etive stresses were tensile near the injetion well due to the thermal ontration ofthe solid, suggesting a possible inrease of frature aperture, and ompressive near theprodution well due to the pull-in of the produing area.On the other hand, the dual porosity model predits a signi�ant thermally induedpore pressure drop during the late response, for sparsely fratured media. This situation isdue to the mass transfer fore that is the di�erene in modi�ed hemial potentials betweenthe pore �uid and the �ssure �uid. The dual porosity model suggests that sparsely fraturedmedia are less sensitive to thermal ontration and to �uid losses than heavily fraturedmedia. This onlusion would explain partially the relative suess of the Fenton Hill hotdry rok reservoir and of the Soultz-sous-Forêt projet as opposed to the Rosemanoweshot dry rok reservoir. Furthermore, the new transfer law reovered well �eld observationsthat �uid losses were large initially and dereased with time.Reommendations for further researhThree topis worthy of further researh are desribed below.The �rst topi is to investigate the e�ets of fored onvetion for a borehole stabilityproblem of a fratured reservoir in a thermally enhaned oil reovery ontext. It is expetedthat the thermally indued pore pressure inrease would indue a signi�ant inrease ofporous blok permeability whih would favor the transportation of the frature �uid in the443



Conlusionviinity of the well. To investigate this e�et it would be worthwhile to perform furthernumerial tests on typial tight reservoirs so as to evaluate the in�uenes of sti� thermalloadings.The seond topi stems from the idea that the spei� surfae area of the porous blok -frature �uid system varies proportionally to the frature �uid porosity and to the inverse ofthe frature aperture. This empirial formula, whih is used throughout the study of heatextration in enhaned geothermal reservoirs, requires veri�ation against experimentaldata. Laboratory experiments on saturated fratured igneous roks may be performedusing testing tehniques apable of measuring dual porosity material parameters.The third topi involves performing adequate experimental tests so as to measure thepore pressure variation in igneous fratured roks with fored onvetion in a ontext ofheat extration from a enhaned geothermal reservoir. Ideally, the tests would be omparedwith numerial results to alibrate aurately the mass transfer law, that is the refereneentropy and the referene hemial potential. This would allow a proper predition ofthe optimum frature spaing so as to minimise �uid losses from thermal ontration.However, pressure and stress results of �eld tests, in the viinity of the wells and deep intothe reservoirs, would also be of great interest.
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Appendix ARay M. Bowen (1970) onstitutivemodelBowen and Garia (1970) developed a formulation of a thermo-mehanial theory of amixture where eah onstituent has its own temperature �eld. Besides the multiple tem-perature mixture approah, the theory also ontains the e�ets of non-linear elastiity,non-linear heat ondution, non-linear visosity and di�usion. However, only the linearisotropi part of the theory is analysed here where eah body has its own temperature�eld.On one hand, the multiple temperature di�usion method implied by the theory of mix-tures is brie�y summarised. On the other hand, the multiple temperature linear isotropitheory (the linearised �eld equations appropriate to a mixture of one �uid and one isotropisolid) is analysed in detail from Bowen and Garia (1970, Setion 6) and Bowen and Chen(1975, Setion 2). This appendix aims to provide a matrix form of the thermo-mehanialonstitutive equation obtained by the authors so that the latter an be ompared with ourmodel (developed in Chapter 2) and simpli�ed to single porosity media. The partiulardeoupling relating Bowen's model to Biot's approah are detailed.Notation: In this appendix, Bowen's model is written with notations that are similarto the referene Bowen and Chen (1975). Whereas, our model is written with notationsintrodued in Loret (2008).A.1 Bowen Multiple temperature theoryIn the work of Bowen and Garia (1970), the authors �rst summarise the �eld equationsgoverning the theory of mixtures: the balane of mass, linear momentum, moment ofmomentum, energy and entropy inequality. Finally, they rewrite the entropy inequalityso as to obtain an equation in the form of (2.90). Their formulation appears to be moregeneral than ours as they aount for non-linearities suh as non-linear elastiity. Twotypes of models an be segregated (Truesdell, 1984, Chap 5A):460



Appendix A A.1. Bowen Multiple temperature theory� A mixture is said to be onstrained if its onstituents have a ommon temperature,say T . For onstrained mixtures the Clausius-Duhem inequality redues to: equation(2.90) times T greater or equal to zero. The Helmotz free energy is therefore used aspotential.� However for multiple temperature mixtures, Bowen and Garia (1970) introdued aMassieu funtion for eah speies,
Λa = −ρ

a Ea

Ta
(A.1)where Ea is the free energy, ρa the apparent mass density and Ta the temperature ofspeies a.As a rule in `Rational Thermodynamis' theories (Coleman and Noll, 1963; Truesdell,1984), the onstitutive equations whih de�ne the mixture are stated �rst. The hoie ofindependent variables is naturally extended from the previous mixture theories where asingle temperature was allowed.Next, the appropriate thermodynami restritions are listed. The method leads to sixrelations that are neessary and su�ient in order that the Clausius-Duhem inequality besatis�ed for every admissible thermodynami proess. The �rst two are: for eah speies

a = 1, . . . ,K� Λ = Λ
(
νb, ǫ

b
) (A.2)� Ua = Ua

(
νb, ǫ

b
)
= − 1

ρa
∂Λ

∂νa

(
νb, ǫ

b
) (A.3)where νa is de�ned as the oldness and is equal to νa = 1/Ta. Moreover, the method relatesthe partial stresses σa to the Massieu funtions and to the partial strains ǫa, through (fora linear isotropi theory)

σ
a = − 1

νa
ΛaI−

1

νa

∂Λ

∂ǫa
and Λ =

K∑

a=1

Λa (A.4)where Λ is the total Massieu funtion.Finally, more restritions are imposed upon the model by the axiom of material frame-indi�erene and by material symmetry (Truesdell, 1984, p. 230).461



Appendix A A.2. Bowen's multiple temperature linear isotropi theoryA.2 Bowen's multiple temperature linear isotropi theoryIn this setion, the linearised expressions for the internal energies and stresses for a mixtureof one �uid, subsript f , and one isotropi solid, subsript s, are presented. The phasesare subjeted to small oldness hanges, small deformations and small departures fromequilibrium.Sine the stresses in equilibrium and the internal energies are expressed as derivatives ofthe Massieu funtions, it is onvenient to expand the Massieu funtions �rst to obtain theommon oe�ients. Expanding Λa about the referene state, and realling that sine Λais an isotropi funtion of its arguments, the oe�ients in its expansion must be isotropitensors. Let us write for the �uid speies (Bowen and Chen, 1975, eq. 2.1),
Λf = Λ0

f − αff ∆νf − αfs∆νs − ν0 σff
tr ǫf
ρf0

− ν0 σfs tr ǫs + 1
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(tr ǫs)2 − ν0 µfss (dev ǫs : dev ǫs) (A.5)where, tr ǫf = ρf0
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) (Bowen and Chen, 1975, eq. 2.1)
ǫ
s = tr ǫs I

3
+ dev ǫs (A.6)tr ((ǫs)2) =

(tr ǫs)2
3

+ dev ǫs : dev ǫsand for the solid speies, (Bowen and Chen, 1975, eq. 2.2)
Λs = Λ0
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Appendix A A.2. Bowen's multiple temperature linear isotropi theory
+τsfs∆νf tr ǫs + τsss∆νs tr ǫs − 1
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ν0 χsff
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(tr ǫs)2 − ν0 µsss (dev ǫs : dev ǫs) (A.7)The analysis of Bowen's multiple temperature linear isotropi theory proeed in sixsteps. The partial stresses (1) and the partial entropies (2), of the solid and the �uidphases, are derived in turn from the previous Massieu funtions. (3) Next, the thermo-mehanial onstitutive matrix is onstruted. (4) Symmetry is enfored on the latter toallow the omparison with (5) our model whih is presented in a �fth step. (6) Finally, theoe�ients of the two models are ompared.(1) Partial stressesLet us work with the isotropi part of the partial stresses, namely ps and pf , theisotropi part of the partial strains. Hene the partial stresses write,
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∂ tr ǫa for a = s, f (A.8)Due to the linearisation proess to �rst order around the referene on�guration of theinverse oldness, the oldness of the solid writes,
1

νs
=

1

ν0
+∆

(
1

νs

)
=

1

ν0
+
ν0 − νs
ν0νs

=
1

ν0
− 1

νs

∆νs
ν0

=
1

ν0
−
(

1

ν0
+∆

(
1

νs

))
∆νs
ν0

=
1

ν0
− ∆νs

ν20
+ 0

(
ǫ2
) (A.9)A similar relation an be obtained for 1/νf . Inserting this last result into equation (A.8)leads to,
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∂ tr ǫa) for a = s, f (A.10)After using MATLAB to expand equation (A.10) and negleting the seond order terms,the partial stresses redue to, 463
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− (σss + σfs) (A.12)(2) The partial entropiesBy use of equation (A.3) and from the partial derivatives of the Massieu funtions, theinternal energies expression Ua an be dedued for eah speies,
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for a = s, f (A.13)In addition, the entropies ρa Sa relate to the Massieu funtions through their de�nition(A.1),

Λa = ρa Sa − νa ρ
a Ua for a = s, f (A.14)The relation between on one hand the entropy for the solid ρs Ss and the entropy forthe �uid ρf Sf , and on the other hand the Massieu funtion and the oldnesses νs and νfis then obtained,
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for a = s, f (A.15)After using MATLAB to expand equation (A.15) and negleting the seond order terms,the partial entropies redue to, 464
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ρs Ss = Λ0
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+(−ν0 vff + αsf )∆νf + (−ν0 vfs − αfs)∆νs + 0 (ǫ)2 (A.17)Remark A.1. The generalised stresses: ps, pf , ρs Ss and ρf Sf will be expressed asfuntions of the generalised strains: tr ǫs, tr ǫf , ∆Ts and ∆Tf . To do so, the oldnessvariation ∆νs will be replaed by the temperature variation ∆Ts, by use of
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0 (A.18)The same relation stands for ∆νf = −∆Tf ν

2
0 .(3) Bowen's thermo-mehanial onstitutive matrixOne form of the thermo-mehanial equation onsiders the primary variables to beapparent strains and temperatures; and the dependent variables to be the apparent stressesand entropies. A matrix links the partial stresses to the partial strains as:
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Appendix A A.2. Bowen's multiple temperature linear isotropi theoryBy gathering equations (A.11), (A.16) and (A.17) the thermo-mehanial onstitutiverelation may be written the following matrix form,
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tr ǫs
tr ǫf
∆Ts

∆Tf







































































(A.20)in whih
π0s =

Λ0
s

ν0
− (σss + σfs) π0f =

Λ0
f

ν0
− (σsf + σff )

ρf0

∆ps = ps − πs0 ∆pf = pf − πf0

∆(ρs Ss) = ρs Ss − (Λ0
s + ν0 αs) ∆(ρf Sf ) = ρf Sf − (Λ0

f + ν0 αf )

(A.21)
In equation (A.20), the oe�ients multiplying linear terms in the Massieu funtionsare gathered at a upper level; and the oe�ients fator of quadrati terms are gath-ered at a lower level. Note that Bowen's thermo-mehanial matrix displays symmetryfrom the lower/quadrati oe�ients point of view only. The non-symmetry is due to theupper/linear oe�ients.(4) Bowen's thermo-mehanial onstitutive matrix: fored symmetryWhen expanding the Massieu funtion, Bowen took into aount all the linear andquadrati terms that are mathematially possible, regardless of the available �eld param-eters and of the physial meaning of the introdued oe�ients. Moreover, Bowen tookgreat are not to neglet initial terms. It is worth noting that Bowen's model is the mostgeneral sine all proposed terms are oherent and possible. For instane, from the terms π0sand π0f rigidity indued by initial apparent stress and pore pressure are taken into aount.466



Appendix A A.2. Bowen's multiple temperature linear isotropi theoryThis appendix aims to ompare Bowen's non-symmetri general ase to our partiularsymmetri onstitutive model. Bowen's model is simpli�ed so that the onstitutive matrixbeomes symmetri. Note that some information is lost during the symmetrization proess.When imposing symmetry to equation (A.20), the six following relations are enfored:
αsf = αfs

σsf
ρf0

= σfs

αsf = −σfs
σsf
ρf0

= −αfs

σfs = αss +
Λ0
s

ν0

σsf
ρf0

= αff +
Λ0
f

ν0

(A.22)
Hene, the thermo-mehanial onstitutive relation fored to symmetry an be writtenin the following format,





































































∆ps

∆pf

∆(ρs Ss)

∆(ρf Sf )





































































= −
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σff

ρf0
−ν0 αfs

ν0
ρf0

σff

+
λfs

ρf0
−

χff

ρf02
+ν0

τsf
ρf0

+ν0
τff
ρf0

ν0 σss −ν0 αfs ν2
0 αfs −ν2

0 αfs

+ν0 τss +
ν0
ρf0

τsf −ν3
0 vss −ν3

0 vfs

−ν0 αfs

ν0
ρf0

σff −ν2
0 αfs ν2

0 αfs

+ν0 τfs +
ν0
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tr ǫs
tr ǫf
∆Ts

∆Tf



































































 (A.23)Note that even after this fored symmetry, Bowen's TM onstitutive matrix still dis-plays upper/linear terms: Three terms are remaining in the matrix, namely σss, σff and
αfs. In addition, the initial stress values redued to1,

π0f =
Λ0
f

ν0
− (−αfs +

σff
ρf0

) π0s =
Λ0
s

ν0
− (σss − αfs)

∆ps = ps − πs0 ∆pf = pf − πf0

∆(ρs Ss) = ρs Ss ∆(ρf Sf ) = ρf Sf

(A.24)1Note that onsequent to the symmetrization proess, the initial entropies of the solid and the �uidphase redues to zero. 467



Appendix A A.2. Bowen's multiple temperature linear isotropi theory(5) Our thermo-mehanial onstitutive matrixThe latter result is ompared with our thermo-mehanial onstitutive matrix. Forsimpliity, the potential is imposed to be quadrati in the generalised partial strains. Asno linear terms nor initial ones are taken into aount in our potential, less oe�ientsarise ompared with Bowen. In order to ompare Biot's thermo-mehanial onstitutivematrix to equation (A.23), the relation needs to be expressed with the same strain andstress vetors. From Loret (2008), the thermo-mehanial onstitutive matrix writes,



−ps

−pf

−ρsηs

−ρfηf




=




Kss λ −Kss cT −λ cTf

λ L −λ cT −L cTf

−Kss cT −λ cT −Cs
m/T

0
s λ cT cTf

−λ cTf −L cTf λ cT cTf −Cf
v /T 0

f







tr Es

tr Ef

∆Ts

∆Tf




(A.25)
where,

M−1 =
nf
Kf

+
1− nf
Ks

− K

K2
s

L =M (nf )
2

Kss = K + L

(
−ns +

K

Ks

)2

λ = − L

nf

(
−ns +

K

Ks

)

Cs
m = Cs

σ − cT : Kss : cT T
0
s Cf

v = Cf
p −M(nf )2(cTf )

2 T 0
f

(A.26)
in whih ns and nf are the volume frations of the solid phase and the �uid phase, respe-tively; Ks, Kf and K are the bulk modulus of the solid grains, the �uid and of the mixtureas a whole, respetively; cT and cTf are the thermal dilatation oe�ients of the mixtureas a whole and of the �uid phase, respetively. Finally, Cs

σ is the partial heat apaity ofthe solid phase at onstant stress and Cf
p is the partial heat apaity of the �uid phase atonstant pressure.(6) Identi�ation and interpretationEquations (A.23) and (A.25) are ompared; due to the symmetry, ten equalities areobtained. However, Bowen's matrix displays thirteen terms. Hene, all the oe�ients468



Appendix A A.2. Bowen's multiple temperature linear isotropi theoryintrodued by Bowen and Chen (1975) an not be identi�ed at one. To �nd an issue,the quadrati/lower oe�ients are assumed more important than the linear ones and willbe identi�ed in priority. No restrition will be imposed on the linear oe�ient and theywill be onsidered arbitrary. Let us start the identi�ation proess by the mehanial partonly, Bowen's oef. = Biot's oef. + arbitrary oef.
(
λss +

2
3µss

)
= Kss + −σss

λfs
ρf0

= λ + αfs

− 1

ρf0
χff

ρf0
= L + −σff

ρf0

(A.27)
Seondly, from the rest of the matrix (A.23) the following equalities are obtained:Bowen's oef. = Our oef. + arbitrary oef.

τss =
Kss cT
ν0

+ −σss

τsf
ρf0

= −λ cT
ν0

+ αfs

τfs = −λ cTf

ν0
+ αfs

τff
ρf0

= −L cTf

ν0
+ −σff

ρf0

vfs = −λ cTf cT

ν20
+ −αfs

vss = − Cs
m

T 0
s ν

3
0

+
αfs

ν0

vff = − Cf
v

T 0
f ν

3
0

+
αfs

ν0

(A.28)

Bowen's quadrati oe�ients have all been related to our oe�ients. Note thatno ontradition arises during the identi�ation proess. The problem being under-onstrained, any value an be assigned to the arbitrary oe�ients.In lassial thermo-elastiity, the oe�ient αfs is usually hosen equal to zero αfs = 0(Bowen and Chen, 1975, eq. 2.36). Furthermore, the initial values of the Massieu funtionsmay be hosen equal to zero due to their potential nature.469



Appendix A A.2. Bowen's multiple temperature linear isotropi theoryHowever, great are should be taken when hoosing π0s = −σss and π0f ≡ −σff . Theirvalue strongly depends on the de�nition of the referene state. When hoosing π0s = σss =

π0f = σff = 0 no sti�ness indued by initial stresses an be taken into aount.As a onlusion, the arbitrary oe�ients σss and σff will be assumed to be zero, ifand only if the referene state is de�ned as an equilibrium state in whih the mixture issubmitted to vanishing initial apparent stresses.
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Appendix BPeker and Deresiewiz (1973)onstitutive modelPeker and Deresiewiz (1973) presented a formulation to aount for the e�ets of tem-perature on the behaviour of �uid-saturated roks. The model desribes a single porousmedium before thermal equilibrium ours, eah phase is endowed with its own tempera-ture. No phase hange is aounted for here.The onstitutive model presented by Peker and Deresiewiz (1973) is disussed in foursetions. First, the Clausius-Duhem inequality whih provides useful restrition on thehoie of stress/strain variables is desribed. Then the partial stress/strain formulationis presented in a matrix form and ompared to our model (developed in Chapter 2) andsimpli�ed to single porosity media. This onstitutive formulation is then transformed toan equivalent total stress/strain formulation and is one more ompared with our thermo-mehanial onstitutive model. Finally, a re�exion is proposed on the physial meaning ofthe thermo-elasti ouplings terms αsf and αfs introdued and measured by Peker andDeresiewiz (1973).Notations: To ease the omparison, the notations introdued by Peker and Dere-siewiz (1973) are kept when desribing their work and the notations introdued in Setion2.2.2 are used when desribing the onstitutive model developed as part of this study.B.1 The Clausius-Duhem inequalityFollowing the model of Peker and Deresiewiz (1973), the elasti strain in the solid phaseis noted eij , and eii = e. The strain of the liquid phase is noted ǫii = ǫ. They representthe respetive dilatations of the phases. The partial stresses, namely the stress in the solidand liquid phases measured per unit area of bulk, are noted σij for the solid phase and
σ = −β p for the �uid phase, p being the �uid pressure and β the porosity.Peker and Deresiewiz (1973) assumed the hange of internal energy per unit volume
E to be funtion of four variables: the solid strain, the �uid strain and the entropies of the471



Appendix B B.1. The Clausius-Duhem inequalitysolid and �uid phases per unit volume, ηs and ηf ,
E = E(eij , ǫ, ηs, ηf ) (B.1)The following derivative relation is a onsequene of the assumed funtional dependeneof the internal energy,
Ė =

∂E

∂ei
ėi +

∂E

∂ηs
η̇s +

∂E

∂ηf
η̇f (B.2)Therefore, after insertion of the onservation of energy into the balane of entropy, thethermo-mehanial part of the Clausius-Duhem equation, takes to following form,

1∑

i=1

(
σi −

∂E

∂ei

)
ėi +

(
T̄s −

∂E

∂ηs

)
η̇s +

(
T̄f − ∂E

∂ηf

)
η̇f = 0 (B.3)where T̄s and T̄f denote the solid and �uid temperatures. The thermo-mehanial partof the Clausius-Duhem equation is equal to zero as no dissipation ours in the elastidomain. Hene, it is su�ient for any proess that,

σi =
∂E

∂ei
, T̄s =

∂E

∂ηs
, T̄f =

∂E

∂ηf
(B.4)The previous equation desribes the funtional dependene of the stresses and of thetemperatures on the strains and on the entropies. In addition, the relations (B.4) may bewritten in totally inversed form, assuming the inversion is possible,

ei = ei (σi, T̄s, T̄f ),

ηs = ηs (σi, T̄s),

ηf = ηf (σi, T̄f ) (B.5)Note that in this model, the strains depend on the stresses and on both the solid andthe �uid temperature variation, ontrary to the entropies whih depend on the stressesand on their respetive phase temperature. Compared to Bowen's systemati proedure,equations (B.5)2 and (B.5)3 an appear as a restritive result.472



Appendix B B.2. A partial stress/strain formulationB.2 A partial stress/strain formulationTheir development proeeded by obtaining, next, the stress-strain-temperature relations.A partial stress-strain approah is adopted. To ease the omparison, the model proposedby Peker and Deresiewiz (1973) is redued to its isotropi part. The matrix form relatingthe generalised stresses: partial stresses of the solid and of the �uid phases, namely σi/3and σ, and entropies of the solid and the �uid phases, namely −ηs and −ηf ; to thegeneralised strains: e, ǫ, ∆Ts and∆Tf , where∆Ts and∆Tf are deviations from equilibriumtemperature in the two phases, is symmetri:



σi/3

σ

−ηs

−ηf




=




P/3 Q −R11 −R12

Q R −R21 −R22

−R11 −R21 −Cs/T0 + 3 αs R11 3 αs R12

+αfs R21 +αfs R22

−R12 −R22 αf R21 −Cf/T0 + αf R22

+3 αsf R11 +3 αsf R12







e

ǫ

∆Ts

∆Tf




(B.6)
where P , Q and R are the lassi elasti moduli introdued by Biot. Cs and Cf are thespei� heats per unit volume of bulk at onstant stress and pressure. αs and αf representthe usual (isobari) oe�ients of thermal expansion for the individual phases, and αsf ,
αfs are seen to be thermo-elasti oupling terms: αsf is the strain in the matrix due to aunit hange of temperature in the liquid phase and αfs is the dilatation of the �uid due toa unit hange in matrix temperature. Moreover the remaining oe�ients are related tothese by,

R11 = αs P + αfs Q R21 = 3 αs Q+ αfs R

R12 = αsf P + αf Q R22 = 3 αsf Q+ αf R
(B.7)Note that, in addition to the usual isobari oe�ient of thermal expansion of eahphase, two new oe�ients appear αsf and αfs whih represent measures of dilation ofeah phase aused by the temperature hange of the other phase.Due to the fat that this thermo-mehanial onstitutive system is expressed in partialstresses and strains, it an be ompared with the system A.25. The parameter identi�ationleads to, 473



Appendix B B.3. The equivalent total stress/strain formulationPeker and Deresiewiz (1973) Loret (2008)
3 αs cT

αf cTf

αsf 0

αfs 0

P/3 Kss

Q λ

R L

(B.8)
Note that if αsf = αfs = 0 Peker and Deresiewiz's model redues to our formulation.As a �rst onlusion, one may suppose that our model is a partiular ase of the oneproposed by Peker and Deresiewiz.B.3 The equivalent total stress/strain formulationFurthermore, the thermo-mehanial onstitutive model, presented in Setion 2.2.2 andexpressed in a total stress-strain form, is now ompared with the model presented byPeker and Deresiewiz (1973) one in order to highlight our theoretial di�erenes.The equivalent total stress/strain formulation an be dedued from the partialstress/strain relation, equation (B.6). The total stress/strain system relates the follow-ing generalised stresses: the total isotropi stress pI , the volume ontent variation of the�uid ∆ vf , ηs and ηf ; to their respetive generalised strains: e, the �uid pressure pf , ∆Tsand ∆Tf .The transformation proesses in four steps:1. The total isotropi stress pI is de�ned by the same de�nition as equation (2.125).Therefore, pI is obtained by summing the partial isotropi stresses of eah phase, namely,
pI = −

(σii
3

+ σ
)

= −
(
P

3
+Q

)
e− (Q+R) ǫ+ (R11 +R21) ∆Ts + (R12 +R22) ∆Tf (B.9)2. The partial stress of the �uid phase σ an be related to the �uid pressure pf throughits de�nition and the porosity β. As no initial stress nor strains are introdued in theformulation, their is no need to deompose the porosity and to linearise the alulation.Hene,

pf =
1

β
(−σ) 474



Appendix B B.3. The equivalent total stress/strain formulation
=

1

β
(−Q e−R ǫ+R21 ∆Ts +R22 ∆Tf ) (B.10)The entropy equations remain unhanged and an be dedued from equation (B.6),

ηs = R11 e+R21 ǫ+ (Cs/T0 − 3 αs R11 − αfs R21)∆Ts

− (3 αs R12 + αfs R22)∆Tf

ηf = R12 e+R22 ǫ− (3 αsf R11 + αf R21)∆Ts

+(Cf/T0 − 3 αsf R12 − αf R22)∆Tf (B.11)3. Next, the strain of the �uid phase ǫ is replaed by its volume ontent variation ∆ vf .The volume ontent de�nition may be rearranged as below,
vf =

Vf
V0

=
Vf
Mf

Mf

V0
=

Vf
Mf

Mf

V

V

V0
=
ρf

ρf
det F (B.12)Hene, the derivative of the volume ontent an be written,

d vf =
dρf

ρf
det F+

ρf

ρf
d (det F)− ρf

ρ2f
det F d (ρf )

=
dρf

ρf
det F+

ρf

ρf
e− ρf

ρf
det F (cHf dpf − cTf dTf ) (B.13)Sine the derivation proess is �nished, the little deformation hypothesis det F = 1an safely be applied. Moreover, the hypothesis of inompressible �uids is made, namely

cHf dpf << cTf dTf . Finally, sine the inrement ∆(·) and the derivative d(·) relationsare equivalent, the volume ontent redues to,
∆ vf =

∆ρf

ρf
+
ρf

ρf
e+

ρf

ρf
cTf ∆Tf

=

(
1

ρf0
+∆

(
1

ρf

))
(ρf0 +∆ρf ) (e− ǫ+ cTf ∆Tf ) (B.14)due to the de�nition,

ρf0 = ρf (1 + ǫ) → ρf − ρf0 = ∆ρf = −ρf ǫ (B.15)475



Appendix B B.3. The equivalent total stress/strain formulationAfter linearisation at the �rst order of ∆ vf around the referene on�guration, thefollowing relations are obtained:
∆ vf = β0 (e− ǫ+ cTf ∆Tf ) → ǫ = −∆ vf

β0
+ e+ cTf ∆Tf (B.16)One an now replae the strain of the �uid phase ǫ by its volume ontent variation

∆ vf , through equation (B.16) into equations (B.9), (B.10) and (B.11). In a matrix form,the following non-symmetri system is obtained,
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(B.17)
4. Finally, the seond line of the system (B.17) is reversed and the following non-symmetrirelation is obtained after rearranging,
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(B.18)
where, 476



Appendix B B.4. Re�exion on the physial meaning of the terms αsf and αfs

K =

(
P

3
− Q2

R

)

R21 = 3 αs Q+ αfs R

R22 = 3 αsf Q+ αf R (B.19)The onstitutive model proposed by Peker and Deresiewiz (1973) an be omparedwith our model (2.204) redued to a single porosity medium,
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cs(1−
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e
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(B.20)
Note that by use of the relations (A.26), with Kf = 0 to respet the inompressible�uid hypothesis and (B.8), the two systems are found idential, exept that in our modelthe oe�ients αsf = αfs = 0 are assumed to be null. Furthermore, the omparison holdsif the volume ontent ∆ vf is replaed by the mass ontent ∆mf/ρf yielding a symmetrimatrix, for αsf = αfs = 0.B.4 Re�exion on the physial meaning of the terms αsf and

αfsHere, a re�exion on the physial meaning of the oe�ients αsf and αfs is proposed, whihare the thermo-mehanial oupling terms introdued and measured by Peker and Dere-siewiz (1973). First, the impliations of Biot's approah on both models are srutinised.Next, the measurement of the terms αsf and αfs is ommented.Our model stems from Biot's approah: the solid skeleton is paid a speial role. Thespeies being in the interstitial porosity are viewed as �owing through the solid skeleton477



Appendix B B.4. Re�exion on the physial meaning of the terms αsf and αfsmatrix. Therefore, the hypothesis of a ontinuous grain path rossing the porous mediumfrom side to side is assumed to hold for every appliation.To ease our reasoning, a thought experiment is proposed. A single porous mediumfully saturated is said to be in a transient thermal state. The temperature variation fromequilibrium in the solid phase is ∆Ts and the temperature in the �uid phase is ∆Tf . Inorder to fous our attention on the thermo-mehanial behaviour only and not on the inter-phase heat transfer, the two phases are separated by a thermally insulated barrier. Sine aontinuous grain path relating the extremities of our sample is assumed, the deformationof the porous medium is said to be equal to the deformation of the solid skeleton. Due tothe thermally insulated barrier, the solid skeleton is only in�uened by the solid skeletontemperature ∆Ts. If ∆Ts > 0 the deformation of the medium inreases thanks to the solidskeleton volumetri expansion oe�ient. Due to the ontinuous grain path assumption,the variation of volume ontent of the �uid phase is driven by the solid skeleton deformationand is logially proportional to the solid skeleton volumetri dilatation by its porosity β0.Therefore, by onsidering a ontinuous grain path, under zero stress and zero pressureassumptions, our thermo-mehanial onstitutive model redues to,
{

e = 3 αs Ts + 0 Tf

∆vf = β0 3 αs ∆Ts + 0 ∆Tf
(B.21)By using the hypothesis of a ontinuous grain path, the thermo-mehanial behaviourappears to be independent on the �uid temperature. This supposition reovers suessfullythe results of the `thermodynami of irreversible proesses' approah, see Setion 2.2.2.When onsidering an unstressed state (zero stress and zero pressure), Peker and Dere-siewiz's model redues to the following system,

{
e = 3 αs ∆Ts + 3 αsf ∆Tf

∆vf = β0(3 αs − αfs) ∆Ts + β0 3 αsf ∆Tf
(B.22)The dependene of the solid and the �uid strains on the �uid temperature is induedby the funtional dependene of the internal energy E. However, if this oupling is pos-sible from a systemati point of view, it is inompatible with the ontinuous grain pathhypothesis.The value of αsf appears to be one order of magnitude lower than its orrespondingdiret oe�ient αs, the ratio being exatly of -0.1. Sine no indiation on the preisionof the measurement and no other measurements to ompare this result is available, noonlusion an be made.The proedure arried out to measure αfs is based on the variation of the mass ontentof the whole saturated sample at di�erent temperatures rather than on the variation of478



Appendix B B.4. Re�exion on the physial meaning of the terms αsf and αfsthe volume ontent of the �uid phase. As presented in Remark 2.18, on page 140, thethermo-mehanial formulation involving the volume ontent and the mass ontent are notequivalent. In fat, the formulation with the mass ontent variation is dependent on the�uid temperature variation, see equation (2.207).Overall, more measurements should be made to estimate the validity of the ontinuousgrain path assumption and of the independene of the thermo-mehanial behaviour withthe �uid temperature variation.In onlusion, our thermo-mehanial onstitutive system is not a partiular ase ofPeker and Deresiewiz's (1973) model, as the independene of the thermo-mehanial be-haviour on the �uid temperature is imposed by the thermo-mehanial part of the Clausius-Duhem inequality, in agreement with the ontinuous grain path assumption.
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Appendix CMTigue (1986) onstitutive model
MTigue (1986) presented a linear theory for a �uid saturated poro-thermo-elasti medium.MTigue's theoretial model allows for the ompressibility and thermal expansion of boththe �uid and solid onstituents. The model desribes a single porosity medium fully satu-rated: the mixture is omposed of two phases a solid phase and a �uid phase. Moreover,the model is assumed to be in thermal equilibrium. Hene, a single temperature is de�nedfor the whole mixture. In this ontext, no mass transfer nor energy transfer are de�ned.The presented �eld equations are the balane of mass of the �uid, the momentumbalane equation for the mixture and the balane of energy equation for the mixture. Thethermo-mehanial onstitutive behaviour is based on Biot's poro-elastiity theory andan be seen as a diret extension of the isothermal theory of Rie and Cleary (1976) thusallowing for ompressible �uid and solid onstituents, as well as thermal expansion of bothphases. Similarly to our model, the thermal expansion of the porous medium is ontrolledby the solid skeleton only. In addition to our model, MTigue takes into aount thepresene of unonneted porosity through a seond solid onstituent bulk modulus K ′′

s thatis di�erent form the solid onstituent bulk modulus K ′

s. Moreover they aount for thedi�erene between the thermal response of the drained porous medium α
′

s and that of thesolid onstituent alone α′′

s . If the following simpli�ations are onsidered K ′

s = K
′′

s and α′

s= α
′′

s , MTigue's thermo-mehanial behaviour relations redue to ours. The generaliseddi�usion onstitutive equations are equivalent to Dary's law and to Fourier's law. Nooupling between the mass �ux and the heat �ux is aounted for. The energy balaneequation for the mixture presents a highly redued form of the omplete energy balane:onvetive transport and thermo-elasti ouplings are negleted so as to obtain a tratableanalytial solution.Close form solutions are sought. Drained and undrained thermoelasti limits have beenidenti�ed. The �rst is obtained when the pore �uid pressure vanishes, in whih ase themedium behaves as a simple thermo-elasti body with the properties of the solid skeleton.The undrained limit is obtained when the `hange in �uid ontent' is null. In this ase, themedium again behaves as a simple thermo-elasti body, but exhibits e�etive properties480



Appendix C C. MTigue (1986) onstitutive modelmodi�ed by the presene of the �uid. These limiting ases are strongly assoiated withthe ratio of the hydrauli and thermal di�usivities, c/κ (where  is diretly proportional tothe permeability over the visosity and κ is equal to the ratio of the thermal ondutivityover the volumetri heat apaity). When c/κ→ ∞ (e.g. for large permeability) the �uidpressure relaxes rapidly in omparison to the rate of temperature hange, and the materialexhibits a drained response. For c/κ → 0 (e.g. for very small permeability) the �uid isimmobilised on the time sale of heat transfer, and undrained behaviour is obtained.The theory has been speialised to the ase of one dimensional deformation, and exatsolutions for several illustrative problems have been found. These inlude the heating ofa half-spae with either a onstant temperature or a onstant heat �ux boundary. Bothdrained (zero pressure) and impermeable (zero �ux) onditions on the �uid have beenonsidered. One of the main result is the observation that the oupling between heattransfer �uid �ow and deformation is strongest for thermal and �uid di�usivity of likeorder, namely R = (c/κ)1/2; large ontrasts result in the drained and undrained limitingbehaviour are obtained as disussed previously. Two andidate materials for nulear wasteisolation, deep-sea sediment and rok salt remarkably display a ratio of �uid to thermaldi�usivity of like order (MTigue, 1986, Table 1).
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Appendix DAppendies of Chapter 2.3.3To obtain the �nal form of the balane of energy equations several substitutions are in-volved. To this end, two demonstrations are gathered in this Appendix. The �rst onedesribes the balane of energy equations for a mixture in loal thermal non-equilibrium,whereas the seond desribes the balane of energy for a mixture in loal thermal equilib-rium. Note that K represents all the speies, namely the solid skeleton, the pore �uid andthe �ssure �uid, whereas K∗ represents only the pore �uid and the �ssure �uid.Demonstration D.1. Demonstration balane of energy equations for a mixture in loalthermal non-equilibrium. The proedure stands in four steps:i. The �rst step aims at writing the balane of energy equation for speies with respetto the mass enter. The generi energy equation is obtained by inserting the balane ofmomentum in the basi initial relation to have an expression with no momentum transferontributions p̂k · vk,
ρk

dkUk

dt
− σ

k : ∇vk + divqk − rk = ρ̂k
(
Ũk − Uk +

1

2
(ṽk − vk)

2

)
+ ûk (D.1)First, let us substitute the �rst term ρk dkUk

dt to express the time derivative with respetto the mass enter,
ds

dt

(
ρkUk

)
=

(
ds

dt
ρk
)
Uk + ρk

(
dkUk

dt
+∇Uk · (vs − vk)

) (D.2)Expressing the balane of mass (2.21) with respet to the mass enter leads to,
dsρk

dt
+ div

(
ρk (vk − vs)

)

︸ ︷︷ ︸
divMk

+ρkdiv vs = ρ̂k (D.3)Replaing dsρk

dt from equation (D.3) into equation (D.2) and rearranging brings,482
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ds

dt

(
ρkUk

)
=

(
ρ̂k − divMk − ρkdivvs

)
Uk + ρk

dkUk

dt
−∇Uk ·Mk

=
(
ρ̂k − ρkdivvs

)
Uk + ρk

dkUk

dt
− div (Uk Mk) (D.4)Finally replaing ρk dkUk

dt into equation (D.1), leads to the following form of the balane ofenergy,
ds

dt

(
ρkUk

)
+ div (UkMk) + ρkUk divvs − σ

k : ∇vk + divqk − rk =

ρ̂k
(
Ũk +

1

2
(ṽk − vk)

2

)
+ ûk (D.5)Equation (D.5) may also be written with respet to the speies motion,

dk

dt

(
ρkUk

)
+ ρkUk divvk − σ

k : ∇vk + divqk − rk =

ρ̂k
(
Ũk +

1

2
(ṽk − vk)

2

)
+ ûk (D.6)ii. The seond step aims at writing the de�nition of the internal energy for the solid

msUs as a funtion of the elasti potential of the mixture in the referene on�guration Ψ.The de�nition of the elasti potential of the mixture in the referene on�guration Ψ hasbeen previously introdued in equation (2.110),
Ψ = ms Es −

∑

p,f

vk pk

= ms Us − Ts m
s Ss −

∑

p,f

vk pk (D.7)Hene, the internal energy of the solid may be written in the following formats, due toequation (2.117), 483
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ms Us = Ψ+ Ts m

s Ss +
∑

p,f

vk pk

ρs Us = Ψa + Ts ρ
s Ss +

∑

p,f

nk pk, ; with Ψ = detFΨa. (D.8)iii. Let us fous on the balane of energy equation for the solid phase. First, thederivative of ρs Us is expressed in an expliit manner with respet to the mass enter.Under braed numbers are positioned to emphasis the simpli�ations. The internal energyof the solid written in the atual on�guration an not be derived �rst. To obtain the orretresult, the equations need to be kept in the referene on�guration. The simpli�ation bydet F an be done after the derivation proess only. Hene,
d (ms Us) =

∂Ψ

∂ǫ
: dǫ+

∂Ψ

∂Ts
dTs

︸ ︷︷ ︸
(1)

+
∑

k∈K∗

∂Ψ

∂pk
dpk

︸ ︷︷ ︸
(2)

−Ts d
(
∂Ψ

∂Ts

)
− ∂Ψ

∂Ts
dTs

︸ ︷︷ ︸
(1)

−
∑

k∈K∗

d

(
∂Ψ

∂pk

)
pk −

∑

k∈K∗

∂Ψ

∂pk
dpk

︸ ︷︷ ︸
(2)

(D.9)
After reorganization and simpli�ation, the derivative of ms Us redues to,

d (ms Us) =
∂Ψ

∂ǫ
: dǫ− Ts d

(
∂Ψ

∂Ts

)
−
∑

k∈K∗

d

(
∂Ψ

∂pk

)
pk

= τ : dǫ+ Ts d (ρ
s Ss) +

∑

k∈K∗

pk dvk (D.10)Sine the derivation proess is �nished, one an safely simplify equation (D.10), using
dms = dρs detF+ ρs detFdiv v, by det F,

d (ρs Us) = −ρs Us I : dǫ+ σ : dǫ+ Ts (ρ
s Ss I : dǫ+ d (ρs Ss))

+
∑

k∈K∗

pk (nk I : dǫ+ dnk)

= (σ + pk nk I+ Ts ρ
s Ss I− ρs Us I) : dǫ+ Ts d (ρ

s Ss) +
∑

k∈K∗

pk dnk484
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= (σs − ρs Es I) : dǫ+ Ts d (ρ

s Ss) +
∑

k∈K∗

pk dnk (D.11)In the further development, the following de�nitions are used,
σ =

∂Ψa

∂ǫ
+Ψa I

= σs +
∑

k∈K∗

(
−pk

)
I

Ψa = ρs Es −
∑

k∈K∗

nk pk





→ σs − ρs Es I =
∂Ψa

∂ǫ
, (D.12)

and,
divvs =

d(trǫ)
dt

. (D.13)Let us now rewrite the four �rst terms of equation (D.5) using equations (D.10) and(D.12). The deviatori part of the strain devǫ is dropped here, sine the shear behaviouris aounted for fully by the shear modulus of the drained solid. To highlight the simpli�-ations, underbraed numbers are positioned,
d (ρs Us)

dt
+ ρs Us div vs − σs :

dǫ

dt
=

∂Ψa

∂(tr ǫ) :
d(tr ǫ)
dt︸ ︷︷ ︸

(1)

+ Ts
dρs Ss

dt
+
∑

k∈K∗

pk
dnk

dt

+




Ψa

︸︷︷︸
(2)

+Ts ρ
s Ss +

∑

k∈K∗

nk pk

︸ ︷︷ ︸
(3)




d(tr ǫ)
dt

−




∂Ψa

∂(tr ǫ)︸ ︷︷ ︸
(1)

+
∑

k∈K∗

pk I︸︷︷︸
(3)

+Ψa I︸︷︷︸
(2)




d(tr ǫ)
dt

(D.14)
Finally, by rearranging equation (D.14), the �nal form of the balane of energy equationfor the solid phase may be written in the following format,

Ts
ds (ρs Ss)

dt
+ Ts ρ

s Ss div vs +
∑

k∈K∗

pk
dsnk
dt

+ div qs − rs

= ρ̂s
(
Ũs +

1

2
(ṽs − vs)

2

)
+ ûs =

ρ̂s

2
v2
s

︸ ︷︷ ︸
mass transfer

+ êsenergy − vs · êsM︸ ︷︷ ︸
energy transfer

(D.15)Note that the mass transfer of the solid phase ρ̂s vanishes in the double porosity model,485
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Ts

ds (ρs Ss)

dt
+ Ts ρ

s Ss div vs +
∑

k∈K∗

pk
dsnk
dt

+ div qs − rs = ûs (D.16)iv. Let us fous on the balane of energy equation for the �uid phases. First, the internalenergy per unit volume for speies ρk Uk is de�ned by use of Table (2.1),
ρk Uk = ρk Gk − pk + Tk ρ

k Sk (D.17)Let us work on the three �rst terms of equation (D.6) to highlight some simpli�ations.By use of equation (D.17) several substitutions are made,
dk

dt

(
ρkUk

)
+ ρkUkdivvk + pkdivvk

=
dk

dt

(
ρk Gk − pk + ρk Tk Sk

)
+
(
ρk Gk − pk + ρk Tk Sk

)
divvk

+pkdivvk

= Gk
dk

dt
ρk + ρk

dkGk

dt
− dkpk

dt
+ Tk

dk (ρk Sk)

dt
+ ρk Sk

dkTk
dt

+


ρk Gk − pk︸︷︷︸

(1)

+ρk Tk Sk


 divvk + pkdivvk︸ ︷︷ ︸

(1)

(D.18)After reorganization and simpli�ation by use of the balane of mass equation (2.21), thethree �rst terms of the generi balane of energy for the speies k redue to,
dk

dt

(
ρkUk

)
+ ρkUkdiv vk + pkdivvk = ρ̂k Gk + ρk

dkGk

dt
− dkpk

dt
+ Tk

dk

dt

(
ρk Sk

)

+ρk Sk

(
dk

dt
T k + T kdivvk

) (D.19)Moreover, the derivative dk

dt

(
ρk Sk

) is written with respet to the mass enter,
dk

dt

(
ρkUk

)
+ ρkUkdivvk + pkdivvk = ρ̂k Gk + ρk

dkGk

dt
− dkpk

dt
(D.20)486
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+ρk Sk

(
dkT k

dt
+ Tk divvk

)
+ Tk

[
d
(
ρk Sk

)

dt
+∇

(
ρk Sk

)
· (vk − vs)

]

The de�nition of the hemial potential total derivative is obtained from Table 2.1,
dkGk =

dkpk
ρk

− Sk d
kTk → dkpk = ρk(d

kGk + Skd
kTk) (D.21)in whih the derivative of the partial pressure writes,

dkpk = pk d
knk + nk d

kpk → ρk
dkGk

dt
− dkpk

dt
+ ρk Sk

dkT k

dt
= −pk

dknk
dt

(D.22)By replaing equation (D.22) and simplifying, equation (D.20) may now be ast in thefollowing form,
dk

dt

(
ρkUk

)
+ ρkUkdivvk + pkdivvk = Tk

ds

dt

(
ρk Sk

)

+Tk div (Sk Mk) + Tk ρ
k Skdivvs − pk

dknk
dt

+ ρ̂k Gk (D.23)Finally, the balane of energy equation for the �uid phases displays the following form,
Tk

ds

dt

(
ρk Sk

)
+ Tk div (Sk Mk) + Tk ρ

k Sk div vs − pk
dknk
dt

+ divqk − rk

+ρ̂k
(
Gk − Ũk −

1

2
(ṽk − vk)

)
− ûk = 0 (D.24)Note that the balane of energy equation for the �uid phases may be written in a formthat involves mass transfer, energy transfer and di�usion terms. The demonstration isprovided in Remark D.1.

Tk
ds

dt

(
ρk Sk

)
+ Tk div (Sk Mk) + Tk ρ

k Sk divvs − pk
dknk
dt

+ divqk︸ ︷︷ ︸
diffusion

−rk

+ ρ̂k
(
Gk +

1

2
(vk − vs)

2 − 1

2
v2
s

)

︸ ︷︷ ︸
mass transfer

+vs · êkM − êkenergy︸ ︷︷ ︸
energy transfer

+Jk ·
(∇ pk

nk
+ ρk

(
dkvk

dt
− bk

))

︸ ︷︷ ︸
convection

= 0

(D.25)
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Appendix D D. Appendies of Chapter 2.3.3The term Tk div (Sk Mk) may be written in the following format,
Tk div (Sk Mk) = Tk ∇Sk ·Mk + Tk Sk div (Mk)

= Tk ρk ∇Sk · Jk + Tk Sk

(
ρ̂k − dρk

dt
− ρk divvs

)
eq. (2.26)

= Tk ρk ∇Sk · Jk + Tk Sk ρ̂
k − Tk Sk

(
1det F dmk

dt

)
eq. (2.89)Therefore, equation (D.25) an be rearranged by replaing the term Tk div (Sk Mk),

Tk
ds

dt

(
ρk Sk

)
+ Tk ρ

k Sk divvs + Tk Sk

(
− 1det F dmk

dt

)
− pk

dsnk
dt

+ divqk︸ ︷︷ ︸
diffusion

−rk + ρ̂k
(
Hk +

1

2
(vk − vs)

2 − 1

2
v2
s

)

︸ ︷︷ ︸
mass transfer

+(vs · êkM − êkU )︸ ︷︷ ︸
energy transfer

+Mk ·
(
∇Hk +

(
dkvk

dt
− bk

))

︸ ︷︷ ︸
convection

= 0 (D.26)
Remark D.1. Proof of equation (D.25). The temporary notation CTr is used to representthe transfer terms of equation (D.25),

CTr = ρ̂k
(
Gk − Ũk −

1

2
(ṽk − vk)

)
− ûk

= ρ̂k
(
Gk −

1

2
v2
k

)
+ vk · êkM − êkU by eq. (2.31) and (2.46)

= ρ̂k
(
Gk −

1

2
v2
k

)
+ vs · êkM − êkU + (vk − vs) · êkM

= ρ̂k
(
Gk −

1

2
v2
k

)
+ vs · êkM − êkU

+(vk − vs) ·
(
∇ pk + ρk

(
dkvk

dt
− bk

)
+ ρ̂k vk

)
by eq. (2.32)488
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= ρ̂k

(
Gk +

1

2
v2
k − vkvs

)
+ vs · êkM − êkU

+(vk − vs) ·
(
∇ pk + ρk

(
dkvk

dt
− bk

))

= ρ̂k
(
Gk +

1

2
v2
k − vkvs

)
+ vs · êkM − êkU

+Jk ·
(∇ pk

nk
+ ρk

(
dkvk

dt
− bk

))

= ρ̂k
(
Gk +

1

2
(vk − vs)

2 − 1

2
v2
s

)

︸ ︷︷ ︸
mass transfer

+vs · êkM − êkU︸ ︷︷ ︸
energy trnasfer

+Jk ·
(
∇ pk + ρk

(
dkvk

dt
− bk

))

︸ ︷︷ ︸
diffusion

+pk ∇(nk) · (vk − vs) (D.27)
Demonstration D.2. Demonstration of the balane of energy for the mixture in thermalequilibrium, proof of equation (2.307).First, the following notations are introdued: the total entropy S, the total heat soureand total heat �ux of the mixture are equal to,

S =
∑

k∈K

ρkSk, q = qI = ∑
k∈K

qk, r = rI =
∑

k∈K

rk (D.28)If the speies are in thermal equilibrium Tk = Ts = T , summing up the energy equationsover the speies, aounting for the losure relations (2.20), (2.31), (2.46), the energyequation for the mixture redues to,
T

dS

dt
+ T S divvs + divq− r = −

∑

p,f

ρ̂k
(
Gk +

1

2
(vk − vs)

2

)

−
∑

p,f

T div (Sk Mk) −
∑

p,f

Jk ·
(
∇pk + ρk

(
dkvk

dt
− bk

)) (D.29)Upon expanding the divergene term div (Sk Mk), the energy equation beomes,
T

dS

dt
+ T S divvs + divq− r = −

∑

p,f

ρ̂k
(
Gk +

1

2
(vk − vs)

2

) (D.30)489
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−
∑

p,f

TSk div (Mk) −
∑

p,f

Mk ·
(∇pk
ρk

+ T ∇Sk +
(
dkvk

dt
− bk

))The de�nition of the enthalpy and of the enthalpy gradient are obtained from Table (2.1),
Hk = Gk + T Sk and ∇Hk =

∇pk
ρk

+ T ∇Sk (D.31)Furthermore, by use of the mass balane equation (2.26),the term div (Mk) is replaed,
T

dS

dt
+ T S divvs + divq− r = −

∑

p,f

ρ̂k
(
Hk +

1

2
(vk − vs)

2

)
+

−
∑

p,f

T Sk

(
dρk

dt
+ ρkdiv vs)∑

p,f

Mk ·
(
∇Hk +

(
dkvk

dt
− bk

)) (D.32)Finally, by use of equation (2.89), the �nal form of the balane of energy for a mixture inthermal equilibrium is obtained,
T

dS

dt
+ T S divvs + divq− r +

∑

p,f

ρ̂k
(
Hk +

1

2
(vk − vs)

2

)

−
∑

p,f

T Sk

(
1det F dmk

dt

)
+

∑

p,f

Mk ·
(
∇Hk +

(
dkvk

dt
− bk

))
= 0 (D.33)
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Appendix EAppendies of Chapter 4
E.1 Sub-matries of the weak formulationThe detailed formulation of eah sub-matrix introdued in the weak formulation is writtenbelow. Eah unknown type is disretised with four funtions of interpolation. For a planestrain problem, the sub-matries of the weak formulation write,

u =

[
ux1

ux2

]
= Nu ue, (E.1)

Nu =

[
N1

u 0 N2
u 0 N3

u 0 N4
u 0

0 N1
u 0 N2

u 0 N3
u 0 N4

u

]
, (E.2)

[ue]T =
[
u1x1

u1x2
u2x1

u2x2
u3x1

u3x2
u4x1

u4x2

]
, (E.3)

pk = Np p
e
k, for k = p, f, (E.4)

Np =
[
N1

p N2
p N3

p N4
p

]
, (E.5)

[pe
k]

T =
[
p1k p2k p3k p4k

]
, for k = p, f, (E.6)

Tk = NT Te
k, for k = s, p, f, (E.7)

NT =
[
N1

T N2
T N3

T N4
T

]
, (E.8)491
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[Te

k]
T =

[
T 1
k T 2

k T 3
k T 4

k

]
, for k = s, p, f, (E.9)

Bu =




∂N1
u

∂x1
0

∂N2
u

∂x1
0

∂N3
u

∂x1
0

∂N4
u

∂x1
0

0
∂N1

u

∂x2
0

∂N2
u

∂x2
0

∂N3
u

∂x2
0

∂N4
u

∂x2

∂N1
u

∂x2

∂N1
u

∂x1

∂N2
u

∂x2

∂N2
u

∂x1

∂N3
u

∂x2

∂N3
u

∂x1

∂N4
u

∂x2

∂N4
u

∂x1




, (E.10)
∇Nu =

[
∂N1

u

∂x1

∂N1
u

∂x2

∂N2
u

∂x1

∂N2
u

∂x2

∂N3
u

∂x1

∂N3
u

∂x2

∂N4
u

∂x1

∂N4
u

∂x2

]
, (E.11)

∇ ·Nu =




∂N1
u

∂x1
0

∂N2
u

∂x1
0

∂N3
u

∂x1
0

∂N4
u

∂x1
0

0
∂N1

u

∂x2
0

∂N2
u

∂x2
0

∂N3
u

∂x2
0

∂N4
u

∂x2


 , (E.12)

∇Np =




∂N1
p

∂x1

∂N2
p

∂x1

∂N3
p

∂x1

∂N4
p

∂x1

∂N1
p

∂x2

∂N2
p

∂x2

∂N3
p

∂x2

∂N4
p

∂x2


 , (E.13)

∇NT =




∂N1
T

∂x1

∂N2
T

∂x1

∂N3
T

∂x1

∂N4
T

∂x1

∂N1
T

∂x2

∂N2
T

∂x2

∂N3
T

∂x2

∂N4
T

∂x2


 , (E.14)

Del =




λDS + 2µDS λDS 0

λDS λDS + 2µDS 0

0 0 µDS


 ,

vp =

[
vp,x1

vp,x2

]
, vf =

[
vf,x1

vf,x2

]
.

(E.15)
Due to similarities between axi-symmetri and plane strain analyses, all the integrationsneessary to develop the element sti�ness matrix for an axi-symmetri analysis are verysimilar to that of plane strain analysis, exept that492



Appendix E E.2. Detailed elementary weak formulation� The integration domain is over the volume of the body of revolution, dV e = dx1 dx2

→ dV e = 2π r dr dz� The Del matrix beomes of size 4×4 and the Bu beomes of size 4×8.For an axi-symmetri analysis, Del and Bu are de�ned by using ylindrial oordinatesinstead of Cartesian oordinates,
Del =




λDS + 2µDS λDS 0 λDS

λDS λDS + 2µDS 0 λDS

0 0 µDS 0

λDS λDS 0 λDS + 2µDS



, (E.16)

Bu =




∂N1
u

∂x1
0

∂N2
u

∂x1
0

∂N3
u

∂x1
0

∂N4
u

∂x1
0

0
∂N1

u

∂x2
0

∂N2
u

∂x2
0

∂N3
u

∂x2
0

∂N4
u

∂x2

∂N1
u

∂x2

∂N1
u

∂x1

∂N2
u

∂x2

∂N2
u

∂x1

∂N3
u

∂x2

∂N3
u

∂x1

∂N4
u

∂x2

∂N4
u

∂x1

N1
u

r
0

N2
u

r
0

N3
u

r
0

N4
u

r
0




. (E.17)
E.2 Detailed elementary weak formulationThe elementary weak formulation, before assembling, writes as following. The sub-matriesare provided in Appendix E.1. The non-linear terms issued from onvetion are highlightedin green and the non-linear terms issued from the internal energy due to mass transfer areolored in blue.Elementary ontribution to the balane of momentum for the mixture:

∫

V e

BT
u Del Bu ue −∇NT

u Np(ξp p
e
p + ξf pe

f ) −∇NT
u NT αǫTs T

e
s dV

e

−
∫

V e

NT
u ρb dV e −

∫

∂V e

NT
u σ · n̂ dSe.

(E.18)493



Appendix E E.2. Detailed elementary weak formulationElementary ontribution to the balane of mass for the pore �uid:
∫

V e

−∇NT
p

kp
µp

∇Np p
e
p −∇NT

p np Θp ∇NT Te
p dV e

∫

V e

−NT
p Np(app ṗ

e
p + apf ṗ

e
f ) dV e

+

∫

V e

−NT
p NT (apTs Ṫ

e
s + apTp Ṫ

e
p)−NT

p [1 1]∇ ·Nu ξp u̇
e dV e

+

∫

V e

−NTT
e
0 ρpηN

T
p


Gp

(
Npp

e
p,NTT

e
p

)

NTTe
p

−
Gf

(
Npp

e
f ,NTT

e
f

)

NTT
e
f


 dV e

−
∫

∂V e

NT
p Jp · n̂ dSe +

∫

V e

∇NT
p

kp
µp

ρp g dV e.

(E.19)
in whih the hemial potential Gk (Npp

e
k,NTT

e
k) of the �uid k is de�ned in eq. (2.160)2.Elementary ontribution to the balane of mass for the �ssure �uid:

∫

V e

−∇NT
p

kf
µf

∇Np p
e
f −∇NT

p nf Θf ∇NT Te
f dV e

∫

V e

−NT
p Np(aff ṗe

f + apf ṗ
e
p) dV e

+

∫

V e

−NT
p NT (afTs

Ṫe
s + afTf

Ṫe
f )−NT

p [1 1]∇ ·Nu ξf u̇
e dV e

+

∫

V e

+NTT
e
0 ρpηN

T
p


Gp

(
Npp

e
p,NTT

e
p

)

NTTe
p

−
Gf

(
Npp

e
f ,NTT

e
f

)

NTT
e
f


 dV e

−
∫

∂V e

NT
p Jf · n̂ dSe +

∫

V e

∇NT
p

kf
µf

ρf g dV e.

(E.20)
Elementary ontribution to the balane of energy for the solid phase:

∫

V e

−∇NT
T ns Λs ∇NT Te

s −NT
T NT aTsTs Ṫ

e
s dV e

+

∫

V e

−NT
T Np (aTsp ṗ

e
p + aTsf ṗ

e
f )−NT

T [1 1] ∇ ·Nu aTsǫ u̇
e dV e

+

∫

V e

−NT
T NT (κsp(T

e
s −Te

p) + κsf (T
e
s −Te

f )) dV
e

−
∫

∂V e

NT
T qs · n̂ dSe.

(E.21)
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Appendix E E.2. Detailed elementary weak formulationElementary ontribution to the balane of energy for the pore �uid:
∫

V e

−∇NT
T np Λp ∇NT Te

p −∇NT
T Tp np Θp ∇Np p

e
p dV e

+

∫

V e

−NT
T NT (aTpTp Ṫ

e
p + aTpTs Ṫ

e
s)−NT

T Np (aTpp ṗ
e
p + aTpf ṗ

e
f ) dV e

+

∫

V e

−NT
T [1 1]∇ ·Nu aTpǫ u̇

e dV e

+

∫

V e

−NT
T NT (κsp(T

e
p −Te

s) + κpf (T
e
p −Te

f )) dV
e

+

∫

V e

+NTT
e
0 ρ

2
pηN

T
T


Gp

(
Npp

e
p,NTT

e
p

)

NTTe
p

−
Gf

(
Npp

e
f ,NTT

e
f

)

NTT
e
f




×Hp(Npp
e
p,NTT

e
p) dV

e

+

∫

V e

−NT
T (vp − vs) · (∇Np bTpp p

e
p +∇NT bTpTp T

e
p) dV

e

−
∫

∂V e

NT
T qp · n̂ dSe +

∫

V e

∇NT
T npTpΘp ρp g dV e.

(E.22)

in whih the enthalpy Hk(Npp
e
k,NTT

e
k) of the �uid k is de�ned in eq. (2.160)3. Elementaryontribution to the balane of energy for the �ssure �uid:

∫

V e

−∇NT
T nf Λf ∇NT Te

f −∇NT
T Tf nf Θf ∇Np p

e
f dV e

+

∫

V e

−NT
T NT (aTfTf

Ṫe
f + aTfTs Ṫ

e
s)−NT

T Np (aTfp ṗ
e
p + aTff ṗ

e
f ) dV e

+

∫

V e

−NT
T [1 1]∇ ·Nu aTf ǫ u̇

e dV e

+

∫

V e

−NT
T NT (κsf (T

e
f −Te

s) + κpf (T
e
f −Te

p)) dV
e

+

∫

V e

−NTT
e
0 ρ

2
pηN

T
T


Gp

(
Npp

e
p,NTT

e
p

)

NTTe
p

−
Gf

(
Npp

e
f ,NTT

e
f

)

NTT
e
f




×Hf (Npp
e
f ,NTT

e
f ) dV

e

+

∫

V e

−NT
T (vf − vs) · (∇Np bTfpf pe

f +∇NT bTfTf
Te

f ) dV
e

−
∫

∂V e

NT
T qf · n̂ dSe +

∫

V e

∇NT
T nfTfΘf ρf g dV e.

(E.23)
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Appendix E E.3. Sub-matries of the e�etive onvetion-di�usion matrixE.3 Sub-matries of the e�etive onvetion-di�usion matrixThe identi�ation of the sub-matries of the sti�ness matrix K
e, of the di�usion matrix D

eand of the onvetion matrix C
e
conv is obtained by omparing equations (4.38) to (4.43),

Ke
u u = Ee

uu, Ke
u pp = −ξp Ce

up,

Ke
u pf

= −ξf Ce
up, Ke

u Ts
= −aǫTs C

e
uT ,

Ke
pp pp = −Je

kp
− γpp M

e
pp, Ke

pp pf
= γpp M

e
pp,

Ke
pp Tp

= −Je
Θp

− γpT Me
pT , Ke

pp Tf
= γpT Me

pT ,

Ke
pf pf

= −Je
kf

− γpp M
e
pp, Ke

pf pp = γpp M
e
pp,

Ke
pf Tf

= −Je
Θf

− γpT Me
pT , Ke

pf Tp
= γpT Me

pT ,

Ke
Ts Ts

= −Qe
Λs

− (κsp + κsf )M
e
TT , Ke

Ts Tp
= κsp M

e
TT ,

Ke
Ts Tf

= κsf Me
TT ,

Ke
Tp pp

= −Qe
Θp

− γTpp [M
e
pT ]

T, Ke
Tp pf

= γTpp [M
e
pT ]

T,

Ke
Tp Ts

= κsp M
e
TT , Ke

Tp Tf
= (κpf + γTpTp)M

e
TT ,

Ke
Tp Tp

= −Qe
Λp

− (κsp + κpf + γTpTp)M
e
TT ,

Ke
Tf pf

= −Qe
Θf

+ γTff [M
e
pT ]

T, Ke
Tf pp

= −γTff [Me
pT ]

T,

Ke
Tf Ts

= κsf Me
TT , Ke

Tf Tp
= (κpf − γTfTf

)Me
TT ,

Ke
Tf Tf

= −Qe
Λf

− (κsf + κpf − γTfTf
)Me

TT .

(E.24)
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Appendix E E.3. Sub-matries of the e�etive onvetion-di�usion matrixThe identi�ation of the sub-matries of the di�usion matrix D
e brings,

De
pp u = −ξp [Ce

up]
T, De

pp pp = −app Me
pp,

De
pp pf

= −apf Me
pp, De

pp Ts
= −apTs M

e
pT ,

De
pp Tp

= −apTp M
e
pT ,

De
pf u = −ξf [Ce

up]
T, De

pf pp = −apf Me
pp,

De
pf pf

= −aff Me
pp, De

pf Ts
= −afTs

Me
pT ,

De
pf Tf

= −afTf
Me

pT ,

De
Ts u = −aTsǫ [C

e
uT ]

T, De
Ts pp

= −aTsp [M
e
pT ]

T,

De
Ts pf

= −aTsf [Me
pT ]

T, De
Ts Ts

= −aTsTs M
e
TT ,

De
Tp u = −aTpǫ [C

e
uT ]

T, De
Tp pp

= −aTpp [M
e
pT ]

T,

De
Tp pf

= −aTpf [Me
pT ]

T, De
Tp Ts

= −aTpTs M
e
TT ,

De
Tp Tp

= −aTpTp M
e
TT ,

De
Tf u = −aTf ǫ [C

e
uT ]

T, De
Tf pp

= −aTfp [M
e
pT ]

T,

De
Tf pf

= −aTff [M
e
pT ]

T, De
Tf Ts

= −aTfTs M
e
TT ,

De
Tf Tf

= −aTfTf
Me

TT ;

(E.25)

and the identi�ation of the sub-matries of the onvetion matrix C
e
conv introdues theapproximated terms,

Ce
Tp pp

= −bTpp C
e
Tp,vp

, Ce
Tp Tp

= −bTpTp C
e
TT,vp

,

Ce
Tf pf

= −bTff C
e
Tp,vf

, Ce
Tf Tf

= −bTfTf
Ce

TT,vf
.

(E.26)
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Appendix FAppendies of Chapter 6
F.1 Finite element sub-matriesThe �nite element sub-matries of the ompat weak formulation in equations (6.19-6.22)are listed below.� the four element matries ontributing to the balane of momentum of the mixture,

Ee
uu =

∫

V e

BT
u Del Bu dV e, Ce

up =

∫

V e

∇NT
u Np dV

e

Ce
pu =

∫

V e

NT
p [1 1]∇ ·Nu dV e, Ce

uT =

∫

V e

∇NT
u NT dV e,

Ce
Tu =

∫

V e

NT
T [1 1]∇ ·Nu dV e;

(F.1)
� the matries desribing the hydrauli ondutivity and the thermal ondutivity,

Je
kp

=

∫

V e

∇NT
p

kp
µp

∇Np dV
e, Je

kf
=

∫

V e

∇NT
p

kf
µf

∇Np dV
e

Qe
Λ =

∫

V e

∇NT
p Λ∇Np dV

e

(F.2)
� the three mass matries,

Me
pp =

∫

V e

NT
p Np dV

e, Me
TT =

∫

V e

NT
T NT dV e

Me
pT =

∫

V e

NT
p NT dV e

(F.3)498



Appendix F F.1. Finite element sub-matries� the element fore vetors,
Fe
u =

∫

∂V e

NT
u σ · n̂ dSe +

∫

V e

NT
u F dV e

Fe
pp =

∫

∂V e

NT
p Jp · n̂ dSe

(F.4)
Fe
pf

=

∫

∂V e

NT
p Jf · n̂ dSe

Fe
T =

∫

∂V e

NT
T q · n̂ dSe

(F.5)in whih,
Nu =

[
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]

Np = NT =
[
N1 N2 N3 N4

]
, (F.6)where N1, N2, N3 and N4 are the shape funtions. Del is the drained sti�ness matrix,

Del =




λDS + 2µDS λDS 0 λDS

λDS λDS + 2µDS 0 λDS

0 0 µDS 0

λDS λDS 0 λDS + 2µDS



,

(F.7)and Bu is the strain displaement matrix,
Bu =




∂N1

∂r
0

∂N2

∂r
0

∂N3

∂r
0

∂N4

∂r
0

0
∂N1

∂z
0

∂N2

∂z
0

∂N3

∂z
0

∂N4

∂z

∂N1

∂z

∂N1

∂r

∂N2

∂z

∂N2

∂r

∂N3

∂z

∂N3

∂r

∂N4

∂z

∂N4

∂r

N1

r
0

N2

r
0

N3

r
0

N4

r
0




, (F.8)
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Appendix F F.2. De�nition of the matries K and D in eq. (6.24)where r and z are the radial and the axial oordinates for the axi-symmetri ase. Notethat in equations (F.6), the shape funtions are the same for all primary variables.F.2 De�nition of the matries K and D in eq. (6.24)Identi�ation of the sub-matries of the sti�ness matrix K and of the di�usion matrix D,equation (6.24).
Ke

u u = Ee
uu, Ke

u pp = −ξp Ce
up

Ke
u pf

= −ξf Ce
up, Ke

u T = −cT /cCe
uT

Ke
pp pp = −Je

kp
− ηMe

pp, Ke
pp pf

= ηMe
pp

Ke
pf pf

= −Je
kf

− ηMe
pp, Ke

pf pp = ηMe
pp

Ke
T T = −Qe

Λ.

(F.9)
and,

De
pp u = −ξp Ce

pu, De
pp pp = −app Me

pp

De
pp pf

= −apf Me
pp, De

pp T = −apT Me
pT

(F.10)
De

pf u = −ξf Ce
pu, De

pf pp = −apf Me
pp

De
pf pf

= −aff Me
pp, De

pf T = −afT Me
pT

De
T u = −T cT /c [Ce

uT ]
T, De

T pp
= −T apT [Me

pT ]
T

De
T pf

= −T afT [Me
pT ]

T, De
T T = −aTT Me

TT

(F.11)
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Appendix GAppendies of Setion 8.3
G.1 De�nition of the vetors F

grav and F
surf

F
grav omprises the gravity ontributions to the weak form of the problem (8.64),

F
grav =




∫

V
NT

u ρg dV

−
∫

V
(∇Np)

T kf
µf
ρf g dV

0

0

0




, (G.1)
while the surfae ontributions are gathered in

F
surf =




∫

∂V
NT

u σ · n̂dS

∫

∂V
NT

p Jf · n̂dS

∫

∂V
NT

T qs · n̂dS

∫

∂V
NT

T qf · n̂dS




. (G.2)
G.2 De�nition of the matries K

e and D
e in eqn (8.77)The submatries of the element generalized sti�ness and di�usion matries of the �niteelement formulation (8.77) are built from onstitutive matries, namely for the generalized501



Appendix G G.2. De�nition of the matries K
e and D

e in eqn (8.77)sti�ness-onvetion matrix,
Ke

uu = Ee
uu, Ke

u pf
= −ξf Ce

up,

Ke
uTs

= −cT /cCe
uT , Ke

pfpf
= −kf/µfQe

p,

Ke
TsTs

= −nsΛsQ
e
T − κsfM

e
TT , Ke

TsTf
= κsfM

e
TT .

(G.3)and for the generalized di�usion matrix,
De

pfu
= −ξf (Ce

pu)
T, De

pfpf
= −aff Me

pp,

De
pfTs

= −afTs
Me

pT , De
pfTf

= −afTf
Me

pT ,

De
Tsu

= −Ts cT /c (Ce
uT )

T, De
Tspf

= −Ts afTs
(Me

pT )
T,

De
TsTs

= −aTsTs M
e
TT .

(G.4)Some sub-matries of the element matries K
e and D

e are disretized with the SUPGmethod namely,
∗Ke

Tfpf
= −nf (1− TfcfT )

∗Ce
Tp,

∗Ke
TfTs

= κsf
∗Me

TT ,

∗Ke
TfTf

= −nfΛfQ
e
T − κsf

∗Me
TT −nfρfCf,p

∗Ce
TT ,

∗De
Tfpf

= −Tf afTf

∗Me
Tp,

∗De
TfTf

= −aTfTf

∗Me
TT .

(G.5)The material properties have been aggregated in the oe�ients,
aff = nf cfH + (ξf − nf ) cs, afTs

= −(ξf − nf ) cT ,

afTf
= −nf cfT , aTsTs = nsρs Cs,v,

aTfTf
= nfρf Cf,p .

(G.6)The �nite element sub-matries of the ompat weak formulation in equations (G.3) to(G.5) are now provided in expliit form. First, the three matries involved in the elementaryontribution to the balane of momentum of the mixture,
Ee

uu =

∫

V e

(Bu)
T Del Bu dV e, Ce

up =

∫

V e

(∇Nu)
T Np dV

e,

Ce
uT =

∫

V e

(∇Nu)
T NT dV e,

(G.7)where Del is the drained sti�ness matrix and Bu is the strain displaement matrix. Next,the matries involved in the di�usion phenomena,
Qe

p =

∫

V e

(∇Np)
T ∇Np dV

e, Qe
T =

∫

V e

(∇NT )
T ∇NT dV e. (G.8)The mass matries below are disretized with the Galerkin method,

Me
pp =

∫

V e

(Np)
T Np dV

e, Me
TT =

∫

V e

(NT )
T NT dV e,

Me
pT =

∫

V e

(Np)
T NT dV e,

(G.9)502



Appendix G G.3. An expression for the spei� surfaewhile the following matries are disretized with the SUPG method,
∗Me

TT =

∫

V e

(WT )
T NT dV e, ∗Me

Tp =

∫

V e

(WT )
T Np dV

e. (G.10)Two onvetive matries assoiated with the element ontributions of the balane of energyof the �uid phase are required:
∗Ce

TT =

∫

V e

(WT )
T vconv · ∇NT dV e,

∗Ce
Tp =

∫

V e

(WT )
T vconv · ∇Np dV

e.
(G.11)The [1×4℄ vetors of shape funtions,

Np = NT =
[
N1 N2 N3 N4

]
, (G.12)are idential for the pressure and temperature �elds. N1, N2, N3 and N4 are the shapefuntions of the Q4 elements; Nu is the expanded shape funtion vetor of size [2×8℄.G.3 An expression for the spei� surfaeThe empirial expression of the spei� surfae desribed in the literature applies to �uid�ow through paked beds. The starting point is the spei� area of a solid sphere bathedin �uid at maximum density in a ube of side length dp,

Ss
sf =

solid areatotal volume =
πd2p
d3p

. (G.13)In this situation, the solid porosity ns is equal to π/6. Hene, by assuming that the wettedsurfae is equal to the solid-�uid spei� surfae, the spei� surfae is related to the solidporosity ns and to the solid harateristi dimension dp,
Ss
sf =

6ns
dp

. (G.14)Although satisfatory for small partiles (Nield et al., 2002; ?; Nield and Bejan, 2006)eqn (G.14) is not adapted for the solid-�uid spei� surfae area of HDR reservoirs endowedwith rok bloks with a spaing larger than aperture B ≫ 2 b. To the best knowledgeof the authors, no experimental result is available to evaluate Ss
sf for HDR reservoirs. Atheoretial formula ad-ho to our 2D plane strain problem is proposed. The spei� surfae

Ss
sf is obtained by onsidering four �uid retangles of size b× (B + b) surrounding a solidsquare of area B2 and of wetted length 4×B in a surfae S = (B + 2 b)2,

Ss
sf =

�uid lengthtotal surfae =
4×B

S
. (G.15)503



Appendix G G.4. The disontinuity apturing method
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Figure G.1: Contours of �uid temperature for a dimensionless �ux v∞ = 9.0 10−3 m/sat time t = 0.38hour, aounting for heat transfer with the surrounding, with the SUPGstabilization (left) and with the SUPG and DC stabilizations (right). The DC stabilizatione�etively ures some overshootings that are not taken are of by the SUPG method.The total surfae may be substituted by the �uid porosity nf = 4 b (B + b)/S, leading to(8.90) for 2 b ≪ B. This relation highlights the importane, at onstant aperture 2 b, ofthe �uid porosity nf in the heat transfer mehanism. Still, note that its validity has notbeen tested experimentally.G.4 The disontinuity apturing methodThe shok apturing operator proposed by Tezduyar and Ganjoo (1986) aims at improvingthe SUPG stabilization to smoothly resolve sharp layers. The disontinuity apturing (DC)stabilization suggests, in plae of (8.65), the weighting funtion of the form,
WT = NT + τSUPG vconv · ∇NT + τDC vconv‖ · ∇NT , (G.16)in whih vconv‖ is the projetion of vconv on the diretion of the gradient i = ∇Tf/|∇Tf |if ∇Tf 6= 0, namely,
vconv‖ = (vconv · i) i , (G.17)and ∇Tf is obtained onsistently with the element disretization Tf = NTT

e
f . If ∇Tfvanishes, then so does vconv‖. This method is seen to be non-linear sine the projetiondepends on the solution.Tezduyar and Ganjoo (1986) proposed to de�ne the stabilization parameter τDC as afuntion of the diretion ∇Tf with respet to the �ow and of its magnitude as,

τDC =
h‖

2 |vconv‖|
h‖

|∇Tf |
Tref ,f

η(p) , (G.18)504



Appendix G G.4. The disontinuity apturing methodwhere Tref,f is a referene value of the unknown Tf and h‖ is the element size in thediretion of the thermal gradient,
h‖ =

2 |vconv‖|∑

a

|vconv‖ · ∇Na
T |
. (G.19)The argument p = |vconv‖|/|vconv | of the funtion η remains in the interval [0, 1], and thefuntion η(p) is designed to vanish at the end of its domain, that is, whenever the veloity

vconv and the gradient ∇Tf are either perpendiular (p = 0) or parallel (p = 1). Tezduyarand Ganjoo (1986) take η(p) = 2p (1− p). The DC method ats only on thermal gradientoblique to the �ow. For a thermal gradient orthogonal to the �ow, both the veloity vconv‖and η vanish, and for a thermal gradient parallel to the �ow, η = 0 so that the SUPGstabilization is not doubled.The disontinuity apturing method is illustrated by Fig.G.1. While it damps someovershootings whih are not ured by the SUPG stabilization, the DC stabilization hasalso drawbaks: 1. the number of iterations per time step is heavily inreased, and 2. thefully oupled thermo-hydro-mehanial model fails to onverge at large times and largepumping rates.
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Appendix HAppendies of Setion 8.4
H.1 Redution of the dual porosity model to a single porositymodelThe dual porosity model redues to a single porosity model by assuming that the volumefration np of the pore �uid vanishes, whih implies cp = cs. Consequently, the e�etivestress parameters redue to,

ξp = 0, ξf = 1− cs
c
. (H.1)Hene, the �eld equations (8.143) to (8.149) desribe the balane of momentum of themixture, the balane of mass of the frature �uid, and the balanes of energy of the solidand of the frature �uid, namely,

µDS ∇2u+
(
λDS + µDS

)
∇(divu)− ξf ∇pf −

cT
c

∇Ts + ρb = 0 , (H.2)
div

(
kf
µf

∇pf + nfΘf ∇Tf
)

= aff
∂pf
∂t

+ ξf div
∂u

∂t
+ afTs

∂Ts
∂t

+ afTf

∂Tf
∂t

, (H.3)
div (nsΛs∇Ts) = aTsTs

∂Ts
∂t

+ Ts
cT
c

div
∂u

∂t
+ Ts afTs

∂pf
∂t

+ κsf (Ts − Tf ) , (H.4)
div (nfΛf ∇Tf + TfnfΘf ∇pf) = aTfTf

∂Tf
∂t

+ Tf afTf

∂pf
∂t

+Mf · ∇Hf

+κsf (Tf − Ts) ,

(H.5)while the balane of mass and the balane of energy of the pore �uid beome elusive.506



Appendix H H.2. De�nition of the vetors F
grav and F

surfH.2 De�nition of the vetors Fgrav and Fsurf

F
grav omprises the gravity ontributions to the weak form of the problem (8.152)-(8.154),

F
grav =




∫

V
NT

u ρg dV

−
∫

V
(∇Np)

T kp
µp
ρp g dV

−
∫

V
(∇Np)

T kf
µf
ρf g dV

0

−
∫

V
(∇NT )

T np TpΘp ρp g dV

−
∫

V
(∇NT )

T nf Tf Θf ρf g dV




, (H.6)
while the surfae ontributions are gathered in

F
surf =




∫

∂V
NT

u σ · n̂dS

∫

∂V
NT

p Jp · n̂dS

∫

∂V
NT

p Jf · n̂dS

∫

∂V
NT

T qs · n̂dS

∫

∂V
NT

T qp · n̂dS

∫

∂V
NT

T qf · n̂dS




. (H.7)
H.3 De�nition of the element matries Ke and DeThe submatries of the element generalized sti�ness-onvetion matrix (8.162) are builtfrom the onstitutive matries, namely

Ke
uu = Ee

uu,

Ke
upp = −ξp Ce

up,

Ke
upf

= −ξf Ce
up,

Ke
uTs

= −cT /cCe
uT ;

(H.8)507



Appendix H H.3. De�nition of the element matries K
e and D

e

Ke
pppp = −Je

kp − γpp M
e
pp,

Ke
pppf

= γpp M
e
pp,

Ke
ppTp

= −Je
Θp

− γpT Me
pT ,

Ke
ppTf

= γpT Me
pT ;

(H.9)
Ke

pfpf
= −Je

kf
− γpp M

e
pp,

Ke
pfpp

= γpp M
e
pp,

Ke
pfTf

= −Je
Θf

− γpT Me
pT ,

Ke
pfTp

= γpT Me
pT ;

(H.10)
Ke

TsTs
= −Qe

Λs
− (κsp + κsf )M

e
TT ,

Ke
TsTp

= κsp M
e
TT ,

Ke
TsTf

= κsf M
e
TT ;

(H.11)
Ke

Tppp = −Qe
Θp

− γTpp (M
e
pT )

T − bTpp C
e
Tp,vp,

Ke
Tppf

= γTpp (M
e
pT )

T,

Ke
TpTs

= κsp M
e
TT ,

Ke
TpTp

= −Qe
Λp

− (κsp + κpf + γTpTp)M
e
TT − bTpTp C

e
TT,vp,

Ke
TpTf

= (κpf + γTpTp)M
e
TT ;

(H.12)
Ke

Tfpp
= −γTff (M

e
pT )

T,

Ke
Tfpf

= −Qe
Θf

+ γTff (M
e
pT )

T − bTff Ce
Tp,vf

,

Ke
TfTs

= κsf M
e
TT

Ke
TfTp

= (κpf − γTfTf
)Me

TT ,

Ke
TfTf

= −Qe
Λf

− (κsf + κpf − γTfTf
)Me

TT − bTfTf
Ce

TT,vf
,

(H.13)
in whih the oe�ients have been linearized around the referene on�guration,

γpp = η, γpT = −η ρp S0 ,

γTpp = +η ρp × (Cp,pT
0 −H0), γTpTp = −η ρ2p S0 × (Cp,pT

0 −H0) ,

γTff = −η ρp × (Cf,pT
0 −H0) , γTfTf

= +η ρ2p S
0 × (Cf,pT

0 −H0) ,

bTpp = np (1− cpT T
0), bTff = nf (1− cfT T

0),

bTpTp = np ρp Cp,p, bTfTf
= nfρf Cf,p .

(H.14)
The submatries of the generalized di�usion matrix (8.161),

De
ppu = −ξpCe

pu, De
pppp = −appMe

pp,

De
pppf

= −apfMe
pp, De

ppTs
= −apTsM

e
pT , De

ppTp
= −apTpM

e
pT ;

(H.15)508



Appendix H H.3. De�nition of the element matries K
e and D

e

De
pfu

= −ξfCe
pu, De

pfpp
= −apfMe

pp,

De
pfpf

= −affMe
pp, De

pfTs
= −afTs

Me
pT , De

pfTf
= −afTf

Me
pT ;

(H.16)
De

Tsu
= −Ts cT /c Ce

Tu, De
Tspp

= −TsapTs(M
e
pT )

T,

De
Tspf

= −TsafTs
(Me

pT )
T, De

TsTs
= −aTsTsM

e
TT ;

(H.17)
De

Tppp
= −TpapTp(M

e
pT )

T, De
TpTp

= −aTpTpM
e
TT ; (H.18)

De
Tfpf

= −TfafTf
(Me

pT )
T, De

TfTf
= −aTfTf

Me
TT , (H.19)involve oe�ients de�ned in (8.150).The �nite element sub-matries of the weak formulation in equations (H.8) to (H.19)are listed below, starting with the [1×4℄ vetors of shape funtions,

Np = NT =
[
N1 N2 N3 N4

]
, (H.20)whih are idential for the pressure and temperature �elds. N1, N2, N3 and N4 are theshape funtions of the Q4 elements. Nu is the expanded shape funtion vetor of size [2×8℄for the displaement.Five matries are involved in the balane of momentum of the mixture,

Ee
uu =

∫

V e

(Bu)
T Del Bu dV e,

Ce
up =

∫

V e

(∇Nu)
T Np dV

e,

Ce
uT =

∫

V e

(∇Nu)
T NT dV e.

Ce
pu =

∫

V e

(Np)
T [ 1 1 ] ∇ ·Nu dV e,

Ce
Tu =

∫

V e

(NT )
T [ 1 1 ] ∇ ·Nu dV

e.

(H.21)
where Del is the drained sti�ness matrix and Bu is the strain displaement matrix. Thenext matries pertain to hydrauli ondutivity and heat ondution,

Je
kp

=

∫

V e

(∇Np)
T kp
µp

∇Np dV
e,

Je
kf

=

∫

V e

(∇Np)
T kf
µf

∇Np dV
e,

Qe
Λs

=

∫

V e

(∇NT )
T ns Λs ∇NT dV e,

Qe
Λp

=

∫

V e

(∇NT )
T np Λp ∇NT dV e,

Qe
Λf

=

∫

V e

(∇NT )
T nf Λf ∇NT dV e ,

(H.22)
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Appendix H H.3. De�nition of the element matries K
e and D

ewhile the matries below are involved in the thermo-osmosis and oupled isothermal heat�ow,
Je
Θp

=

∫

V e

(∇Np)
T np Θp ∇NT dV e,

Je
Θf

=

∫

V e

(∇Np)
T nf Θf ∇NT dV e,

Qe
Θp

=

∫

V e

(∇NT )
T Tpnp Θp ∇Np dV

e,

Qe
Θf

=

∫

V e

(∇NT )
T Tfnf Θf ∇Np dV

e .

(H.23)
Three mass matries are required in the general ase,

Me
pp =

∫

V e

(Np)
T Np dV

e, Me
TT =

∫

V e

(NT )
T NT dV e,

Me
pT =

∫

V e

(Np)
T NT dV e .

(H.24)Note that they atually redue to a single matrix if the same shape funtion is used forthe pressures and the temperatures, namely Np = NT .The four onvetive matries disretised with the Galerkin method adopt the format,
Ce

TT,vp
=

∫

V e

(NT )
T (vp − vs) · ∇NT dV e,

Ce
Tp,vp =

∫

V e

(NT )
T (vp − vs) · ∇Np dV

e,

Ce
TT,vf

=

∫

V e

(NT )
T (vf − vs) · ∇NT dV e,

Ce
Tp,vf

=

∫

V e

(NT )
T (vf − vs) · ∇Np dV

e.

(H.25)
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