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SUMMARY 

Hydrologic and climate models predict variables through a simplification of the 

underlying complex natural processes. Model development involves minimising 

predictive uncertainty. Predictive uncertainty arises from three broad sources which 

are measurement error in observed responses, uncertainty of input variables and 

model structural error. This thesis introduces ways to improve predictive accuracy of 

hydroclimatic models by considering input and structural uncertainties. The specific 

methods developed to reduce the uncertainty because of erroneous inputs and 

model structural errors are outlined below. 

The uncertainty in hydrological model inputs, if ignored, introduces systematic biases 

in the parameters estimated. This thesis presents a method, known as simulation 

extrapolation (SIMEX), to ascertain the extent of parameter bias. SIMEX starts by 

generating a series of alternate inputs by artificially adding white noise in increasing 

multiples of the known input error variance. The resulting alternate parameter sets 

allow formulation of an empirical relationship between their values and the level of 

noise present. SIMEX is based on the theory that the trend in alternate parameters 

can be extrapolated back to the notional error free zone. The case study relates to 

erroneous sea surface temperature anomaly (SSTA) records used as input variables 

of a linear model to predict the Southern Oscillation Index (SOI). SIMEX achieves a 

reduction in residual errors from the SOI prediction. Besides, a hydrologic application 

of SIMEX is demonstrated by a synthetic simulation within a three-parameter 

conceptual rainfall runoff model. 

This thesis next advocates reductions of structural uncertainty of any single model by 

combining multiple alternative model responses. Current approaches for combining 

hydroclimatic forecasts are generally limited to using combination weights that 

remain static over time. This research develops a methodology for combining 

forecasts from multiple models in a dynamic setting as an improvement of over static 

weight combination. The model responses are mixed on a pair wise basis using 

mixing weights that vary in time reflecting the persistence of individual model skills. 

The concept is referred here as the pair wise dynamic weight combination. Two 

approaches for forecasting the dynamic weights are developed. The first of the two 
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approaches uses a mixture of two basis distributions which are three category 

ordered logistic regression model and a generalised linear autoregressive model. 

The second approach uses a modified nearest neighbour approach to forecast the 

future weights. These alternatives are used to first combine a univariate response 

forecast, the NINO3.4 SSTA index. This is followed by a similar combination, but for 

the entire global gridded SSTA forecast field. Results from these applications show 

significant improvements being achieved due to the dynamic model combination 

approach. The last application demonstrating the dynamic combination logic, uses 

the dynamically combined multivariate SSTA forecast field as the basis of developing 

multi-site flow forecasts in the Namoi River catchment in eastern Australia. To further 

reduce structural uncertainty in the flow forecasts, three forecast models are 

formulated and the dynamic combination approach applied again. The study 

demonstrates that improved SSTA forecast (due to dynamic combination) in turn 

improves all three flow forecasts, while the dynamic combination of the three flow 

forecasts results in further improvements. 
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CHAPTER ONE 

1 INTRODUCTION 

1.1 Motivation 

Water resource management and planning plays a vital role in shaping human 

habitat and its surrounding environment. Good hydrological knowledge 

facilitates superior water resource planning and implementation. Hydrologists 

rely on models to simulate the natural process that are not readily known, 

such as flood levels, irrigation demand, storage volumes or the next seasons 

flow. For example, a seasonal flow forecast model is important for irrigation, 

hydropower generation, flood mitigation or managing failure risk of drinking 

water supply. Any model development involves minimising the predictive 

uncertainty (residual error) in order to improve the output reliability.  

This research offers robust tools to improve predictive accuracy of 

hydroclimatic models. Firstly, it demonstrates a statistical tool to reduce the 

uncertainty caused due to imprecise input variables. Secondly, it introduces a 

robust multimodel combination approach to reduce structural uncertainty of 

any single model. Consequently the understanding of the potential sources of 

uncertainty, as explained next, is a prerequisite of exploring any methods for 

reducing this uncertainty. 

1.2 Background and Context 

It is worthwhile to flag early in this manuscript that no consensus definition of 

uncertainty exists in scientific literature (Montanari, 2007). This thesis refers to 

uncertainty as measurements of departure of estimates from respective true 

values. The terms noise, error (common in statistics) and uncertainty (used in 

hydrology) are used synonymously here. 

There has been considerable interest in analysing uncertainties in 

environmental models (Beven, 2006; Beven and Freer, 2001; Butts et al., 

2004; Montanari, 2007; Montanari and Grossi, 2008). The models vary from 

hydraulic routing of hourly flood hydrograph to statistical models of seasonal 

sea surface temperature. Figure 1.1 shows sources of uncertainty introduced 
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at various stages of the modelling process. Total error in hydrological 

modelling arises from three broad sources (Huard and Mailhot, 2006; Kavetski 

et al., 2002; Vrugt et al., 2005). These are (a) measurement error in observed 

responses, (b) uncertain input variables and (c) model structural error. 

Input time series

Model

Output time series

Observed 
response

True 
process

Input
error

Model 
error

True response

Predictive
error

Observation 
error

True 
predictors

C
al

ib
ra

tio
n

Figure 1.1. Conceptual diagram of categories of error in time series models. 

1.2.1 Measurement error in observed responses 
The observed response is used to calibrate model parameters. Erroneous 

observation leads to weak parameter estimates contributing adversely to the 

total simulation error. The uncertainty in response variables due to unsteady 

error structure, non stationary systems or measurement anomalies are 

discussed in a number of hydrological studies (Cordery et al., 2004; Khadam 

and Kaluarachchi, 2004; Viney and Bates, 2004). Studies on model calibration 

and design of likelihood function generally consider unseen true population 

based on an error prone sample of response data. There have been continual 

research contributions on various aspects of calibration of hydrological 

models (Huang and Liang, 2006; Madsen, 2000; Madsen, 2003; Sorooshian 

et al., 1993; Tolson and Shoemaker, 2008; V´azquez et al., 2008; Yapo et al., 

1996; Yapo et al., 1998). 

In a perfect model with true input data, the ordinary least square method 

provides robust estimates of parameters against response variables with 

white measurement errors. Standard statistical text books contain sufficient 
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details on how to deal with various error distributions of the response variable 

while calibrating the model parameters (Agresti, 1996; Chambers, 1992; 

Hastie and Tibshirani, 1986; Hastie et al., 2000). Note that calibration is 

alternatively known as the inverse problem in time series statistics. The 

research on robust calibration spreads across the entire science discipline 

and is beyond the scope of this PhD research.  

1.2.2 Uncertain input variables 
Uncertainty of input variables may range from errors in the observed inputs  to 

a coarse density of observation stations. The associated errors in the input 

can be a result of instrumentation, interpolation or extrapolation of data in 

space and time or conversion of point measurements into areal values. For 

example inadequate representation of catchment rainfall in a rainfall runoff 

model or designing predictors based on insufficient climate indices in flow 

forecast models. The uncertainty in hydrological model inputs, if ignored, 

introduces systematic bias in the parameters estimated. There have been 

many studies that address the effect of input uncertainty of a hydrological 

model (Andreassian et al., 2001; Huard and Mailhot, 2006; Kavetski et al., 

2002; Kavetski et al., 2006a; Kavetski et al., 2006b; Troutman, 1982). 

However, Huard and Mailhot (2006) conceded the limited application of 

various frameworks (including their own proposed Bayesian method) due to 

high level of non linearity; they depicted the reduction of input error effect of 

widely used models as an open research problem. The reduction of the bias 

caused by input error forms a minor part of this research. 

1.2.3 Inadequate model structure 
Hydrologic models are simplifications of complex natural phenomena. These 

simplifications lead to structural uncertainty. Competing hydrological models 

have been developed with an aim to minimise model uncertainty for various 

applications (Boughton, 2005). Different model structures are being studied to 

reduce uncertainty including the changes in uncertainty as a function of 

temporal and spatial scaling, model complexity versus accuracy, model 

robustness to different climate zones etc. (Huang and Liang, 2006; Liden and 

Harlin, 2000; Wagener and Wheater, 2005). The model structural error is 

specific to the model of choice and the scope of improvement is often limited.  
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The differential improvement in prediction, achieved by adjusting a single 

model structure in isolation, diminishes asymptotically. For example, the 

progression of an autoregressive (AR) model into an autoregressive 

integrated moving average (ARIMA) results from the quest of shrinking 

structural error. However the progression is still constrained by the basic 

premise of a regression model conforming to a given distribution. Another 

example from a conceptual modelling point of view may be the evolution from 

a simple 3 parameter ABC rainfall runoff model (Feiring, 1967; Huard and 

Mailhot, 2006) to a 16 parameter Sacramento model (Burnash, 1975; 

Burnash, 1973). In this example, the same basic premise post progression 

remains that the state variables are not readily observable. Hence it is 

reasonable that the expedition for structural perfection should look beyond a 

single modelling platform. The concept of model combination arises to exploit 

strength of different modelling platform. The concept is as old as time series 

statistics, as alluded to in the following quote in Clemen (1989): 

“In combining the results of these two methods, one can obtain a result 

whose probability law of error will be more rapidly decreasing” 

(Laplace, 1818) 

Clemen (1989) drew conclusions based on two thousand relevant journal 

pages and 11 books that combining forecasts leads to increased forecast 

accuracy. He declared that “we no longer need to justify this methodology”. 

The forecasting community agreed that use of ensemble forecasts is common 

practice now (Armstrong, 2001; Hoeting, 1999; Kim et al., 2006; Menezes et 

al., 2000; Zou and Yang, 2004). In the field of hydrology, model combination 

is sometime known as ensemble forecasting (Armstrong, 2001, pp 418), 

hence the term ensemble appears synonymously with the term combination in 

this thesis. Note that the earliest ensemble prediction in meteorology may be 

attributed to Sanders (1963). 

The general theory of uncertainty and its propagation can be found in various 

statistical text books (Barry, 1978; Dieck, 2002; Jaech, 1985; Rabinovich, 

1993). The method relevant to this thesis is the weighted combination of two 

results where the weights reflect the respective uncertainty. The weights are 
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proportional to the precision (inverse of error variance) of the respective 

results pp 144-148 (Dieck, 2002). Besides, Dieck (2002) documented prime 

equations for uncertainty analysis and analytical equations of uncertainty 

(error) propagation. These theories are based on the assumption of stationary 

error which is not always true for time series variable. The thesis extends the 

above concept into non stationary error variance. Accordingly, it develops a 

time varying combination method as an improvement over the existing static 

combination methods applicable to hydroclimatic forecasts. 

1.3 Scope of the Research 

This research focuses on hydrological and climate modelling using the 

broader discipline of time series forecasting and applied statistics to develop 

model combination approaches. It explores ways to improve predictive 

accuracy of hydroclimatic models after the scope of improvement of an 

individual model has been exhausted. The reduction in uncertainty is 

achieved by a two pronged statistical approach. Firstly it proposes shrinking 

the parameter bias of individual models (Chapter 2 and Chapter 3) by 

modelling the input error distribution. Secondly, it advocates combining a 

number of bias corrected individual models (Chapter 4 to Chapter 6) as a way 

to reduce overall uncertainty of any single modelling structure. The second 

topic of combining models forms the bulk of the research contribution. The 

two topics are briefly introduced below while the relevant details of any 

particular theory are included at later chapters.  

1.3.1 Mitigation of input error 
The first part of this thesis introduces a method termed ‘Simulation 

Extrapolation’ or SIMEX (Cook and Stefanski, 1994) for use in parameter 

estimation where input error is significant. SIMEX mitigates parameter bias 

caused by inaccurate input variable values. This thesis presents the first 

application of SIMEX to hydrology and climate modelling. The thesis first 

assesses the rationale behind SIMEX in a linear regression (climate model) 

setting in Chapter 2 and then in a non linear conceptual case study (rainfall 

runoff model) in Chapter 3. 
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1.3.2 Mitigation of model error 
This research advocates model combination as a way to reduce model 

structural error (Butts et al., 2004). Static weight combination is the current 

practice to combine multiple hydroclimatic models as a means of reducing 

structural error (Barnston et al., 2003; Colman and Davey, 2003; Greene et 

al., 2005; Peng et al., 2002; Raftery et al., 2005; Robertson et al., 2004; 

Sharma and Lall, 2004). Static combination ignores any non stationarity of 

individual model skill (or, increased accuracy associated with individual 

models for defined conditions or periods of time), a likely attribute of any 

hydroclimatic model. The consideration of persistence of the component 

model skills while combining forecasts is introduced here. The method is 

named the Pair wise Dynamic Weight (PDW) combination method. The term 

dynamic is used here to denote the fact that the mode of combination varies 

with time. 

The usefulness of PDW method is demonstrated using cases with increasing 

complexity. The first case study involves combining univariate sea surface 

temperature anomaly (SSTA) forecasts (Chapter 4) which is extended to the 

case of a multivariate SSTA forecast next (Chapter 5). Finally PDW is applied 

to a multivariate hydrological forecast where the underlying data exhibits 

significant asymmetry in its probability distribution attributes (Chapter 6).  

1.4 Outline of the Thesis 

This thesis is presented as a collation of papers. The chapters of this 

manuscript are either published or submitted for publication in scientific 

journals. Each chapter can be read as a stand alone document. The notations 

are chapter specific. Readers may note certain amount of duplication of 

information that is presented among the chapters. No dedicated literature 

review chapter exists. The literature reviews specific to each topic are 

included at the beginning of the relevant chapters. The overall conclusion and 

a summary of original contributions are included in Chapter 7. A 

comprehensive and updated bibliography is attached at the end for ease of 

the readership. 
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The two main contributions of the research presented here related to input 

and structural errors (Sections 1.3.1 and 1.3.2) are presented in five 

hydroclimatic modelling scenarios as follows: 

Chapter 2. Application of SIMEX to reduce the effect of input error on a 

linear model. The case study presented here relates to 

erroneous sea surface temperatures used as input variables 

of a linear model to predict the Southern Oscillation Index 

(SOI). 

Chapter 3. Application of SIMEX in a typical non linear hydrologic 

problem where the associated rainfall inputs are uncertain. 

The application studies the impact on model parameter values 

when the input uncertainty is taken into consideration.  

Chapter 4. Application of the forecast combination procedure based on 

PDW to a univariate response case, which in this case is the 

forecast of the NINO3.4 sea surface temperature index. 

Chapter 5. Application of forecast combination based on PDW to a 

multivariate response case, a globally grided sea surface 

temperature anomaly medium term forecast. 

Chapter 6. Using the forecast combination logic based on PDW for 

forecasting highly variable and skewed multi-site river flows 

using predicted sea surface temperature anomaly fields. 

Chapter 7. Conclusion 

1.5 Summary 

This thesis developed an overall structure for mitigating predictive uncertainty. 

As has been mentioned above, each chapter can be read as a stand alone 

document. The case studies presented are selected to best illustrate the logic 

developed in each chapter. Consequently the applications do not use the 

same case study from the beginning to the end. The rest of this section 

summarises the overall structure of the thesis, as illustrated in Figure 1.2. 
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This introductory chapter motivates the research as a means to aid water 

resources planning by improving accuracy of the hydroclimatic model 

simulations. The improvements are sought by reducing total predictive 

uncertainty. The term ‘uncertainty’ is explained along with the 

conceptualisation of uncertainties under three broad sources. These are 

measurement error of responses, imprecise input variables and uncertain 

model structure. The thesis limits its scope into mitigating impacts of the later 

two sources of uncertainty. 

The second and third chapters introduce a statistical tool (SIMEX) to mitigate 

the effect (parameter bias) of imprecise input variables in a model. This 

research encourages application of SIMEX to improve prediction using 

hydroclimatic models. 

The manuscript, from the fourth chapter onwards, focuses on model structural 

uncertainty, without taking into consideration the input uncertainty addressed 

using SIMEX in chapters 2 and 3. The impact of structural uncertainty is 

reduced by combining multiple model responses. Chapter four underpins the 

primary theory of dynamic combination of univariate responses using a 

mixture regression method. 

The dynamic weight method is further developed in chapter five. The 

procedure is extended to multivariate responses. Accordingly, the mixture 

regression models developed are now applicable for more generic modelling 

scenarios where interest is not on a single response, but a collection of 

outcomes. Besides, a nearest neighbour based non parametric method of 

constructing multivariate dynamic weight is presented.  

Chapter six aims at assessing the impact of the model combination algorithms 

presented in chapters 4 and 5 to a practical hydrological application. This 

chapter allows a critical evaluation of effectiveness of the proposed dynamic 

combination in reducing forecast uncertainty. The discussion of the chapter 

six provides helpful insight into strength and weakness of the method in 

improving hydroclimatic predictions. 
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2 MITIGATING PARAMETER BIAS DUE TO 
UNCERTAINTY IN COVARIATES    

ABSTRACT 

The uncertainty in hydrological model covariates, if ignored, introduces 

systematic bias in the parameters estimated. We introduce here a method to 

determine the true value of parameters given uncertainty in model inputs. This 

method, known as SIMulation EXtrapolation (SIMEX) operates on the basis of 

an empirical relationship between parameters and the level of input noise (or 

uncertainty). The method starts by generating a series of alternate model 

inputs by artificially adding white noise in increasing multiples of the known 

error variance. The resulting parameter sets allow us to formulate an empirical 

relationship between their values and the level of noise present. SIMEX is 

based on theory that the trend in alternate parameters can be extrapolated 

back to the notional error free zone.  

We illustrate the strength of SIMEX in improving skills of predictive models 

that use uncertain sea surface temperature anomaly (SSTA) data over the 

NINO3 region as predictor to the Southern Oscillation Index (SOI), an 

alternate measure of the strength of the El Nino Southern Oscillation. Our 

hypothesis is that the higher magnitude of noise in the pre-1960 data period 

introduces bias to model parameters where SSTA is the input variable. The 

relatively error invariant Southern Oscillation Index (SOI) is regressed over 

SSTA and calibrated using a subset of the series from 1900 to 1960. We 

validate the resulting models using the less erroneous 1960 to 2003 data 

period. Overall the application of SIMEX is found to reduce the residual 

predictive errors during the validation period. 
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2.1 Introduction 

Hydrological modelling involves estimating model parameters that describe 

the relationship between one or more response variables and associated 

covariates. In many instances the covariates are either derived or erroneous 

representations of the variables they seek to represent. The associated errors 

in the covariates can be a result of instrumentation, interpolation or 

extrapolation of data in space and time or conversion of point measurement 

into areal values. In some instances it becomes possible to formulate a 

process whereby their nature and distributional representation can be 

specified, and its impact on the assessment of model and parameter 

uncertainty established. This paper discusses a mechanism for assessing the 

impact of input errors on hydrological model specification, presenting a 

methodology whereby parameter estimation procedures can be cognizant of 

the nature of uncertainty associated with erroneous model inputs.  

Total residual error in hydrological modelling and parameter uncertainty arise 

from three broad sources. These are: (a) model structural error, (b) error in 

observed responses, and (c) input error or error in observed model covariates. 

Uncertainty in the model structure is an important source of error in the 

modelled responses (Butts et al., 2004), requiring development of alternatives 

whereby outputs from multiple models are pooled together so as to generate 

an ensemble of hydrographs that are able to represent the uncertainty present 

(Marshall et al, 2007). Errors in responses have a significant effect on the 

specification of the model, especially so if the methods used to assess model 

parameterisation exhibit sensitivity to outliers (Yapo et al., 1996). Errors in 

input data introduce systematic bias in model parameterisation during 

calibration. Kavetski et al. (2002) demonstrate the extent of this bias in 

parameter specifications of a distributed hydrologic model by artificially 

corrupting the rainfall. A conventional least square calibration disregards the 

presence of input error in the data and has been shown to result in 

parameters and associated uncertainty estimates that result in significant bias 

in the resulting model outputs.  



Chapter 2 Southern Oscillation Index 

Page 36 

Consider a situation where one is in a position to specify the probability 

distribution governing the additive errors associated with the model inputs. 

What is the extent of bias that is introduced as a result of these errors in a 

hydrological modelling study? What is the effect likely to be when the 

magnitude or variance of the additive errors is increased in a controlled 

manner? Is it possible to develop a relationship between the error distribution 

and the resulting parameter estimates? If so, is it possible to use this 

relationship as a basis for estimating parameters that would apply were the 

input variables free of additive errors? This paper seeks to answer the above 

questions in the context of hydroclimatic modelling applications, introducing a 

method termed ‘Simulation Extrapolation’ or SIMEX (Cook and Stefanski, 

1994) for use in parameter estimation where input data is not error free. 

The paper is organised as follows. The next section outlines the logic behind 

the SIMEX approach. In Section 2.2, the method is applied to estimate 

parameters of a conceptual rainfall runoff model in a synthetic setting 

designed to illustrate its applicability and limitations. The later sections present 

an application of the approach to ascertain the parameters of a simple 

regression model designed to estimate seasonal values of the Southern 

Oscillation Index based on reconstructed sea surface temperature data with 

known error characteristics. The paper concludes by summarising the main 

issues raised and suggestions for further work. 

2.2 Simulation Extrapolation (SIMEX) 

Measurement error and its implication in linear and non-linear models have 

been studied at length in the field of applied statistics (Brown and Mariano, 

1993; Carroll, 1995; Fuller, 1987; Liang and Liu, 1991; Linder et al., 1993). 

Simulation Extrapolation (SIMEX) is one aspect of this area that proposes an 

algorithm for estimation of optimal model parameters given prior knowledge 

about the additive error distribution linked to the model covariates. SIMEX was 

introduced by Cook and Stefanski (1994) and Stefanski and Cook (1995) with 

the aim of providing an intuitive approach for assessing the ‘true’ parameter 

set in situations where covariate data is corrupt. SIMEX expects the error in 

input data to be of an additive form, often requiring modification of the basic 
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model structure (such as a log-transform in case of multiplicative errors) to 

enforce the additive assumption. While SIMEX has been popular in the 

applied statistical area since its inception (Berry et al., 2002; Holcomb, 1999; 

Kim et al., 2000; Kim and Gleser, 2000; Marcus and Elias, 1998; Stefanski, 

2000); this study is the first application of the method in hydrology or 

hydrometeorology to our knowledge 

SIMEX may be applied in a linear model, an exponential model, a logistic 

regression (Carroll et al., 1995) and in certain non linear settings 

(Staudenmayer and Ruppert, 2004). This method has also been extended to 

non-parametric models in recent years (Carroll et al., 1999; Lin and Carroll, 

2000; Staudenmayer and Ruppert, 2004). We illustrate the rationale behind 

SIMEX using a simple linear regression model. Consider the following linear 

regression model: 

Y = �x X+ �x     [1] 

where, X represents a zero mean independent variable or covariate, Y 

represents a zero-mean response, �x is the slope parameter and �x is the 

associated error. The error term �x has a zero mean and reflects the 

uncertainty associated with the response Y and the prescribed model 

structure.  

Consider a case where instead of observing the covariate X, the observed 

variable is inclusive of an additive error term, the erroneous covariate 

(denoted W) being expressed as:  

W= X + U     [2] 

where U is an independent and Normally distributed additive error having a 

zero mean and variance of �u
2, denoted as U�N(0, �u

2). Hence Equation [1] 

changes to the following:

Y = �w W + �w    [3] 

The error in W introduces a bias in parameter estimate �w with respect to the 

coefficient �x that defines the true model. Consequently, the residual error (�w) 
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not only includes �x but also an error introduced because of the bias in �w. In 

statistical literature �w is defined as naïve estimate and �x as the true estimate 

of the regression model.  

A numerical example of Equation [1] and [2] is illustrated in Figure 2.1 where 

{X= x1, x2, x3… x400} are drawn from uniform random numbers bounded by [-1, 

+1]. The response {Y= y1, y2, y3… y400}  is synthetically generated as, Y= 0.8* 

X + N (0, 0.12) 

Figure 2.1 The response Y plotted against true covariate X and the covariate 

measured with error W. The solid blue line is Y~X and the broken red line is 

Y~W model. Note the reduction in parameter value (slope) due to error in the 

covariate. 

Here the true parameter value �x = 0.8. The notional observed covariate with 

additive error {W= w1, w2, w3… w400}, is produced by adding N(0, �u
2) to X 

where , �u
2 = {0.30 to 0}1

400 decreasing linearly as a function of the sequence 

length. In this paper the capital italics, eg. N(.) denote functions, the curly 

brackets and straight uppercase fonts indicate a set of discrete vectors if not 

mentioned otherwise. Only 50 points out of 400 are drawn for clarity in Figure 

2.1. Note how the naïve estimate due to error in observation yields �w= 0.55. 

The error in covariate biases the parameter towards zero. The SIMEX method 

attempts to remove the bias from �w through the use of a simulation based 

procedure described below. 
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The parametric SIMEX algorithm starts with a given model structure G(X; �) 

and known Y, W and �u
2. Estimation of the SIMEX estimate of �x (denoted 

�simex in the text below) proceeds as follows: 

1. Initialise i =1. 

2. Specify the variance inflation factor {�i} such that 0< �i-1 <�i < �i+1

3. Generate a series of random normal deviates U*(i) �N(0, �i �u
2). 

4. Estimate the synthetic covariate, W*(i) = W + U*(i), the resulting series 

representing an increased error variance equal to (1+ �i) �u
2

5. Estimate b*(i) from Y = G(W*(i); b*(i)) + �w

6. Repeat the steps from 3 to 5 B times where B denotes the number of 

trials to be used and is chosen subjectively, and accept the average of 

all b*(i) as its expected value �* (i). 

7. Repeat the steps from 2 to 6 for i =2,3,..n, where n is subjectively 

specified 

8. Construct a relationship �*(i) ~ �i, denoted as �* = S(�). The function 

used to relate these variables is usually chosen based on the data 

formulated in step 7. A straight line or a quadratic relationship are some 

possible choices of S(.). 

9. Extrapolate to SIMEX estimate of the parameter �simex = S(�=-1). Given 

the variance of the inflated error in step 4 equals (1+�)�u
2 the case 

where (�=-1) represents a scenario where no additive error is present 

in the model. 

The SIMEX algorithm repeatedly adds noise with variance ��u
2 to W (where 

�>0) and computes the slope, which, in case of a linear model, consistently 

estimates S(�) = �x �x
2 / [�x

2+ �u
2 (1+ �)], where �x

2 is the variance of the true 

covariate X. The SIMEX theory states that the solution S(� = �1) represents 

an asymptotically unbiased parameter estimate for �x (Carroll et al., 1995). 
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In the example illustrated in Figure 2.1 we select � = {0.0, 0.50, 1.00,  … 

5.00}. Note that � = 0.0 represents the case where the estimated parameter 

value is the naïve estimate. The number of trials used for estimating �*(i) was 

specified as 500 (B=500, see step 6). Figure 2.2 illustrates the relationship 

between �* and �. The SIMEX estimate of the parameter �simex is 0.79. It is 

apparent that the naïve estimate (�w= 0.55) offers a poor representation of the 

true parameter value (�x= 0.80), which is ascertained accurately through the 

SIMEX extrapolation (�simex = 0.79) described above. SIMEX estimates are 

closer to the true parameter values than the naïve estimates. 

Figure 2.2 The regression coefficient �* is plotted against �. Note the bias due 

to increase in the error variance (�). The point (�*,� = 0) is the naïve estimate 

and S(� = -1) is the SIMEX corrected estimate, denoted by the letter ‘s’. The 

whiskers indicate the ± 5% confidence limit. The extrapolation is based on a 

quadratic function. 

It should also be noted that the use of algorithm presented above may be 

constrained when there is limited knowledge on the extent of the error 

variance �u
2. Replicate measurements are often available in modelling in 

place of an estimate of �u
2. An example of such a situation is the error 

variance associated with the catchment averaged rainfall versus known point 

rainfall measurements at multiple locations in and around the catchment. 

There exists a non-parametric alternative of SIMEX where the multiple 
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replicates are used as the basis of specifying the additive error structure in 

steps 2 to 4 of the above algorithm (Devanarayan and Stefanski, 2002). 

We now compare SIMEX to existing hydrological research on the impact of 

uncertainties on parameter behaviour (Beven and Freer, 2001; Carpenter and 

Georgakakos, 2004; Jonsdottir et al., 2006; Lee et al., 1990; Rajaram and 

Georgakakos, 1989). The above referenced works present methods that are 

formulated by breaking down the functional form being modelled into distinct, 

separate steps, each of which can have an associated error term that is then 

subsequently ascertained. Consequently, the rationales used (variations of 

generalised likelihood measures and stepwise Kalman filter) often impose 

restrictions on the error structures associated with the processes considered 

(error usually assumed to be white Gaussian noise) and a simplification of the 

propagation of the input errors on the model outputs. For example Rajaram 

and Georgakakos (1989) assumed an error propagation logic whereby the 

total uncertainty was a linear combination of Gaussian input and Gaussian 

state uncertainty. The methods (Berry et al., 2002; Carroll et al., 1999; 

Rajaram and Georgakakos, 1989) that require assumptions about the 

distribution of unobserved true covariate X can be classed as ‘structural 

estimators’ while SIMEX is a ‘functional estimator’ which needs no such 

assumption (Staudenmayer and Ruppert, 2004). In addition to the above, 

most approaches for bias correction use either  ‘method of moments’ or 

‘orthogonal regression’ as their basis (Carroll et al., 1995). SIMEX uses the 

method of moments as its basis for ascertaining the true model parameters, 

implying that the variance inflation factor � is ascertained based solely on the 

order two moment of the difference between observed and error added data. 

In contrast, orthogonal regression estimators (Huard and Mailhot, 2006; 

Kavetski et al., 2002; Kavetski et al., 2006a; Kavetski et al., 2006b) minimize 

the orthogonal distance (OD) between the points {Y,W} and the function 

Y=G(X; �) with unknown parameters {�x, X}, as stated in Equation [4]: 

( ) ( ){ }�
=

−+−=
N

i
iiii xwxGyOD

1

22);()( ηββ
   [4] 
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where the first difference term inside the summation over the N observations 

represents the deviation of observed responses from the modelled response 

using the true model parameters, and the second represents the deviation of 

the true covariates from the (erroneous) observed ones, 	 representing the 

relative uncertainty of the X and Y data, something that needs to be assumed 

in practice. It should be noted that as X represents the true (unknown) 

observation set, orthogonal regression estimators consider these as 

parameters, thereby increasing the effective number of parameters that are 

being estimated. In addition, specification of 	 can lead to an over correction 

for attenuation due to measurement errors (Carrol et al, page 29, 1995). 

2.3 Application of SIMEX 

The previous section outlined SIMEX using a synthetic setting (Figure 2.2). 

The form of the errors (probability distribution and variance) was assumed 

known and stationary. In a general context, the error distribution will seldom 

be completely known and will need to be ascertained based on multiple 

observations of the random variable (such as multiple raingauge readings 

based on which the catchment averaged rainfall is estimated if the method 

were to be applied for rainfall runoff model parameter estimation) or the 

mathematics used in its formulation (such as the averaging process in the 

catchment averaged rainfall). In a general setting, it is also possible that the 

error distribution is not stationary, but changes as a function of time. Such 

non-stationarity is common in many hydroclimatic systems, with the error 

variance reducing with time as instrument precisions have increased. 

One such example where the error distribution is markedly non-stationary is 

the case of Sea Surface Temperature Anomaly (SSTA) data, often used as 

the basis of specifying General Circulation Model initial conditions, and 

serving as a basis for many empirical rainfall and streamflow probabilistic 

forecasting approaches (Chen et al., 2004; Goddard and Mason, 2002; Latif 

et al., 1998). Reconstructed, gridded, monthly sea surface temperature 

anomaly (SSTA) data (Kaplan et al., 1998), available from the Climate Data 

Library of the Lamont-Doherty Earth Observatory of Columbia University, New 

York, is used in the example discussed here. The SSTA data set was 
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reconstructed based on point measurements of sea surface temperature 

using the Kaplan Optimal Smoother (OS) interpolation algorithm (Kaplan et 

al., 1997) . The reconstructed data set and associated error characteristics 

are available from 1856 onwards, at a resolution of 5° latitude by 5° longitude. 

The raw data sets used in Kaplan OS SSTA are collected by UK 

Meteorological Office and referred to as MOHSST5 (Bottomley et al., 1990). 

The interpolation procedure allows for estimation of the error variance at each 

time step/grid location. The error variance associated with the NINO3 El Nino 

Southern Oscillation (ENSO) index expressed as the average of SSTA over 

5°N to 5°S and 150°W to 90°W, is illustrated in Fig ure 2.3.  

Figure 2.3 The error variance of monthly NINO3 estimates. Note higher of 

error prior to 1960. The post 1960 data contains low error due to improved 

instrumentation and more records. 

The error variance is relatively small in more recent times (post 1960) due to 

better instrumentation and higher temporal and spatial recording density. The 

data during earlier periods has higher error variance (also note the noticeable 

increase in the error variance over the two world wars). Assuming the error 

variance to be either insignificant, or stationary in time, is likely to impact on 

the many applications the NINO3 data has been used for. We describe next 

an attempt to develop a predictive model that uses the above described SSTA 

data as the basis for infilling another well studied ENSO indicator, the 

Southern Oscillation Index (SOI). 
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2.3.1 Predicting southern oscillation index 
The Southern Oscillation Index (SOI) represents the standardised pressure 

difference between Darwin and Tahiti with records extending back to 1876. 

The SOI is estimated from two controlled weather stations, and is thereby 

assumed to have less significant error in the context of the results reported 

below. 

Consider a setting where one needs to estimate SOI data based on a 

predictive relationship developed using selected SSTA data. Assume that the 

relationship between the SSTA predictor variables and the SOI can be 

expressed using a simple linear regression model. We attempt to use the 

above setting to ascertain the impact the non-stationarity in the error variance 

associated with the SSTA (as illustrated in Figure 2.3) has on the resulting 

model. We formulate the regression model using SSTA corresponding to the 

NINO3 region outlined above, and develop the infilling model using the 

relatively error prone data from 1900 to 1960, using the later less erroneous 

data (1961 to 2003) as the basis for validating the relationship. 

The lagged correlation of seasonal SSTA to the SOI of next two seasons and 

the following three months are estimated to serve as the basis for identifying 

predictors for use in the above mentioned model. These correlations are 

presented in Table 2.1 separately for the two segments the data has been 

divided into for development and validation purposes. Note that the seasons 

mentioned in the table referred to southern hemisphere, for example summer 

period spans from December to February. A consistent drop in correlation in 

pre 1960 data is experienced in most cases except when autumn SSTA (not 

shown here) is used. We discard the results affected by the autumn 

predictability barrier (Ruiz et al., 2005). The remaining three seasons result in 

15 correlations of which 2 have very small values flagging them unsuitable 

under the linear setting the model is developed in. The resulting 13 

correlations serve as the basis for the infilling/predictive models developed. 

Ten out of the 13 models show reduction in correlation in the 1900-1960 

segments of the data, see Table 2.1. Hence our preliminary assumption of 

higher error in earlier part of the SSTA data appears valid and a likely 
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indicator of loss of skill from any linear model calibrated using this data 

segment. 

Table 2.1 Correlation of lagged sea surface temperature anomaly (SSTA) to 

southern oscillation index (SOI) for pre and post 1960 period. The values 

marked “*” represent cases where the correlation coefficients are small, and 

are not considered in this study (WIN: winter, SPR: spring, SUM: summer). 

 SSTA WIN  SSTA SPR  SSTA SUM 

SOI Post’60 Pre’60 SOI Post’60 Pre’60 SOI Post’60 Pre’60

SPR -0.57 -0.56 SUM 0.73 0.72 AUT -0.57 -0.53 

SUM -0.53 -0.65 AUT -0.51 -0.42 WIN* 0.05 -0.25 

Sep -0.58 -0.55 Dec -0.58 -0.58 Mar -0.63 -0.55 

Oct -0.48 -0.44 Jan -0.69 -0.58 Apr -0.58 -0.49 

Nov -0.51 -0.48 Feb -0.65 -0.68 May* -0.13 -0.30 

The above 13 relationships are expressed through simple linear regression 

models (without an intercept term), with parameters calibrated using the 1900 

to 1960 data record. We validate the models using post 1960 data and 

measure the mean squares of errors of the prediction to quantify model 

performance. We next alter the parameter estimates using the SIMEX 

procedure described in earlier sections, using the known error variance of 

SSTA (varying as a function of time, unlike the SIMEX application described in 

the previous section) during the calibration period. We re-compute the 

residual variance of prediction during the validation period. The results from 

this analysis are presented in Figure 2.4 and Table 2.2. 
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Table 2.2 Predictive model performance using Winter SSTA predictors. The 

values tabled represent the sum of the Mean Square Errors associated with 

each predictive model, the summation enabling the overall improvement 

obtained due to SIMEX. 

SOI Before SIMEX After SIMEX 

Spring 9.6 9.4 

Summer 9.5 9.5 

September 12.0 11.7 

October 13.3 13.2 

November 15.6 15.3 

Table 2.2 presents the improvements obtained using SIMEX for the validation 

period for the case where Winter SOI is the sole response variable. Figure 2.4 

illustrates similar results obtained for all the response variables considered in 

the study. There is an overall improvement in validation fit with reduction in 

residual variance as can be inferred from both sets of results. While the 

improvements are not dramatic, they serve to remind us of the impact ignoring 

additive error (and error non-stationarity) can have when high dimensional 

models that have complex non-linear interactions associated with them are 

built and used for climate modelling applications. 

2.4 Discussion and Conclusion 

The total residual error in hydroclimatic models consists of errors in the (a) 

response variable, (b) model structure and (c) input data. The errors in input 

data introduce bias in parameter estimates. We demonstrate that SIMEX 

mitigates this bias from the parameters of selected models as long as the 

error distribution and any associated non-stationarity is known This research 

focuses on the overall improvement offered due to the SIMEX approach. Note 
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that the extent of improvement of the predictions also depends on structural 

error and noise in the response data. 

Figure 2.4  Sum of mean squares of errors during validation period before and 

after applying SIMEX. The points below the 1:1 line shown an improvement 

due to SIMEX 

Parametric SIMEX requires the specification of input error distribution, 

something that is decided based on the causes that lead to the error being 

present. We feel the specification of the error distribution should be problem 

specific, for instance, errors in rainfall are often assumed to be log-normally 

distributed given that they have a lower bound of zero that cannot be violated. 

Multiplicative error in rainfall to preserve the number of rain-days (Kavetski et 

al., 2006b) or a combination of multiplicative and a small additive error 

(Carpenter and Georgakakos, 2004) have been used in prior rainfall-runoff 

studies. The statistical inference of spatial and temporal interpolation models 

of point measurements can be used to estimate the error structure (Kaplan et 

al., 1997). The general topic of measurement uncertainty  is covered in 

various books (Barry, 1978; Dieck, 2002; Jaech, 1985; Rabinovich, 1993). 

Parameter error is assumed independent of time and input error in the works 

of Rajaram and Georgakakos (1989) and Lee et al. (1990) and in follow up 

studies such as Jonsdottir (2006). We feel the SIMEX logic has certain 
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advantages over the other methods of assessing uncertainty used more 

widely in hydrology (Beven and Freer, 2001; Carpenter and Georgakakos, 

2004; Jonsdottir et al., 2006; Lee et al., 1990; Rajaram and Georgakakos, 

1989). The main advantages is the flexibility SIMEX provides in allowing for a 

range of error structures (especially pertinent in our examples where the input 

error varies as a function of time), and the simplicity of the logic used in the 

method which will enable other researchers to develop it for a wider range of 

problems than what we have presented in our paper. Structural estimators 

and orthogonal regression based estimators (defined in the last paragraph of 

Section 2.2) tend to over parameterise in cases of complex systems (refer to 

discussion in concluding paragraph of Section 2.2). A functional (eg. SIMEX) 

estimator has advantages over structural estimators when model structures 

are complex (such as non-linear hydrological systems) and error distributions 

nonlinear and nonstationary. The application of Bayesian representations of 

orthogonal regression schemes (Huard and Mailhot, 2006; Kavetski et al., 

2002; Kavetski et al., 2006a; Kavetski et al., 2006b) offer added benefits due 

to the utilisation of prior knowledge on the parameters involved. Note that 

SIMEX utilises similar prior knowledge while formulating the extrapolation 

function S(�) as well in ascertaining sample parameters b* for each increment 

of the variance inflation factor as mentioned in the algorithm in Section 2.2. 

We envisage comparative studies in future to determine the relative strength 

and weaknesses of the orthogonal regression versus SIMEX method using 

historical hydrologic time series. 

The focus of this research is to study parameter behaviour as a function of 

input uncertainty. The main example included in this paper refers to the 

predicting the Southern Oscillation Index using erroneous sea surface 

temperature anomaly data, where the error structure is markedly 

heteroskedastic as per the accuracy of observational networks that were 

available in the previous century. A preliminary synthetic study to test the 

stability of SIMEX in a typical non-linear hydrological setting of the 

Sacramento Rainfall Runoff Model was conducted and reported in Chowdhury 

and Sharma (2005). This preliminary study within a limited three parameter 

space indicated that SIMEX, in a Sacramento modelling context, is exhibiting 
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a trend with respect to the variance inflation factor � (and hence can be 

extrapolated),providing another example of how the SIMEX rationale can be 

used to ascertain parameters in typical hydroclimatic settings. 

While the purpose of this paper was to expose the SIMEX rationale in a 

simple setting to a hydrological audience, there are several aspects of SIMEX 

that need further work and investigation. These includes issues related to the 

number of simulations needed, the number of increments of the variance 

inflation factor needed, the type of regression model (parametric or non-

parametric) to be used to perform the extrapolation, and the confidence 

intervals associated with SIMEX estimated parameters, all require further 

study and investigation. Another issue to be investigated in greater detail is 

the specification of the error distribution for various hydroclimatic variables, 

and the special case where multiple input error terms (with possible co-

dependence) may be needed in order to characterise the response. 

While these issues have not been covered in the present study, we hope that 

our presentation provides readers with an appreciation of the importance of 

input errors, the problems in ignoring them in model building, the 

complications that arise when they are non-stationary, and the utility of the 

SIMEX procedure in specifying models for use in error free conditions. We 

intend to explore many of the limitations outlined above, along with the 

sensitivity of the procedures described to a range of factors including data 

length in future papers that follow on from this work.  
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CHAPTER THREE 

This chapter reprinted the following article: 

Chowdhury, S. and Sharma, A. (2008), A simulation based approach for 

representation of rainfall uncertainty in conceptual rainfall runoff models. 

Hydrological Research Letters, 2: 5-8. DOI: 10.3178/HRL.2.2. 

Reprinted with permission from Hydrological Research Letters. 

Permitted by the chief editor Dr. Yosuke Yamashiki,. dated: 15 August 2008 
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3 REPRESENTATION OF RAINFALL UNCERTAINTY IN 
CONCEPTUAL RAINFALL RUNOFF MODELS 

ABSTRACT 

One of the common contributors to the uncertainty in any rainfall runoff model 

is the error distribution within the rainfall inputs. The uncertain rainfall 

introduces systematic bias in the estimated parameters. We present here the 

application of a method, known as simulation extrapolation (SIMEX), to 

ascertain the extent of parameter bias. SIMEX requires a knowledge of the 

standard error associated with the rainfall at any given time step. With this 

knowledge, it generates multiple sets of rainfall with artificially inflated error 

variance, and then assesses whether this leads to any trend in the resulting 

parameters. This trend is then extrapolated back to assess the most suitable 

parameter value when the input is error free. The applicability of the method is 

investigated using a synthetic example where rainfall uncertainty is 

multiplicative and temporally invariant. This paper ascertained the bias trend 

in three key storage parameters of the Sacramento Rainfall Runoff Model 

representing surface and subsurface flow mechanisms respectively. This 

initial investigation confirmed the stability of SIMEX for use in hydrological 

model specification studies; which hints the possibility of embedding this 

simple method to improve runoff estimation. 
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3.1 Introduction 

Rainfall is the prime input variable of any rainfall runoff model. The availability 

and quality of rainfall data varies in time and across multiple locations of most 

catchments. Rainfall runoff models require prior transformation of these point 

rainfall time series to a sub-catchment scale. The transformation of point to 

aerial scale introduces input error to the rainfall runoff model. What is the 

effect of this input error on the resulting flows? Given known transformation 

error profiles, can we reduce the total uncertainty caused by this error on the 

simulated flows? This paper discusses a method to minimise the impact of 

rainfall error on flow simulations from any rainfall-runoff model. 

Errors in input data introduce systematic bias in model parameterisation 

during calibration (Carroll et al., 1995; Chowdhury and Sharma, 2007). The 

bias in parameter estimation of rainfall runoff model due to uncertain rainfall 

has been studied by Kavetski et al. (2002). Later studies (Kavetski et al., 

2006a; Kavetski et al., 2006b) used an orthogonal regression scheme termed 

as ‘total least square’ to mitigate the effect input error. An alternative 

functional estimator termed Simulation Extrapolation, or SIMEX in short, was 

introduced for use in hydroclimatic studies by Chowdhury and Sharma (2007), 

that can mitigate parameter bias with fewer underlying assumptions. The 

Chowdhury and Sharma (2007) study was limited to hydrological applications 

in linear settings whereas this research letter investigates practical non linear 

extensions of the approach that include rainfall runoff modelling. More details 

on the rationale used are presented next. 

3.2 Methodology 

SIMEX, as the name implies, simulates parameter sensitivity to artificially 

inflated input error which in turn allows the extrapolation of parameters to an 

error free state. The method was originally developed in mid nineties (Cook 

and Stefanski, 1994; Stefanski and Cook, 1995) and more recently applied in 

hydrological area by Chowdhury and Sharma (2007). We briefly repeat the 

method here for the benefit of the readership, detail of which can be referred 

to publications mentioned above.  
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Consider an ideal case of a modelling response variable y in presence of the 

error free input variable x: 

y = G(�x ,x)+ �x     [1] 

Here, �x is the true parameter of the regression y~x , G() is an underlying 

model, and �x is the associated total error term. In practise we seldom know 

the true input variable (x) and need to set up our model using uncertain input 

variable, say w. The input variable w results the naive parameter estimate �w

of the regression y~w instead. 

The SIMEX methodology requires a known error distribution for w with respect 

to x. Say, w includes an additive Gaussian error with variance �w
2 and mean 

zero. Synthetic input data w* is generated adding artificially inflated error ��w
2

to w, where the inflation factor is � > 0. Say the resulting biased parameter 

estimate of y~w* is �*. The simulation is repeated for a number of inflation 

factors for example �={0.5,1.0,1.5..}. Hence a regression relationship of �*~�

can be derived. The regression is extrapolated to � = -1 to compute �simex. For 

a number of generalised linear models (Carroll et al. 1995), analytical 

solutions dictate that �simex � �x . 

3.3 Rainfall Runoff Model Parameters 

The Rainfall runoff relationship can be highly non linear and difficult to model. 

While an analytical proof of SIMEX in simple linear settings may be viable, a 

more practical option for implementing the method in a nonlinear rainfall runoff 

modelling study is through a detailed numerical simulation. This section 

evaluates the utility of SIMEX in a practical hydrological setting using the 

Sacramento conceptual rainfall-runoff model. 

The Sacramento Model 

The Sacramento Model is a water balance model widely used in Australia 

(Boughton, 2005). Sacramento Model is also alternatively known as National 

Weather Service River Forecasting System (NWS-RFS) in USA (Burnash, 

1975; Burnash et al., 1973). A general specification of the model is:  
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Qt= Sac(It, Et; �) + �t     [2] 

where Sac() is the Sacramento model which uses rainfall and evaporation 

data (It, Et) to generate flow (Qt) at time t with residual error �t . The model 

parameter vector � consists of 16 parameters. The parameters define the 

following five major characteristics of the conceptual modelling system:  

a) soil moisture storages,  

b) rate of outflow,  

c) percolation from upper to lower storages,  

d) direct runoff from impervious areas, and  

e) evapo-transpiration and deep seepage loss.  

The Sacramento model has five soil moisture storages. The model essentially 

simulates water movements between storages, loss and routing as 

represented in Figure 3.1. 

We use daily rainfall and evaporation at Golspie, NSW in Australia from 1980 

to 1992 as a notional true estimate of catchment rainfall and evaporation, {It, 

Et; t=1,2.. (12x365)}, the time series being shown in Figure 3.2. The average 

rainfall per wet day in the catchment equals 8 mm/day with a standard 

deviation of 9 mm. The fraction of wet days in the recorded period is 26 %. 

We generate flow based on a set of given values for all 16 model parameters. 

The resulting flow sequence, illustrated in Figure 3.2, is the synthetic true flow 

series {Qt; t=1,2.. (12x365)} used in the results presented below. This study 

monitored only three storage parameters with notional true values of {60, 150, 

38} mm. We appreciate that limiting the parameter number reduces the 

complexity of the Sacramento model. Nevertheless this significantly expedites 

computation without compromising the objective of demonstrating the 

application of our proposed approach in a rainfall-runoff modelling setting. 
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Figure 3.1 The Sacramento Model. The three storage parameters allowed to 

vary in this study are upper zone tension water (UZTW), upper zone free 

water (UZFW) and lower zone tension water (LZTW). The effect on lower 

zone free water (LZFW) and the other 12 parameters (not shown here) are 

not considered. 

Figure 3.2 The recorded daily rainfall, evaporation and the synthetic flow used 

in this study. 

The next step in this synthetic study is to generate a corrupted rainfall data 

set. The scope for errors in rain records during drier times is low (a dry day 
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reading is error free). Nevertheless a storm may completely miss the rain 

gauge. Multiplicative error in rainfall (Kavetski et al., 2006b) or a combination 

of multiplicative and a small additive error (Carpenter and Georgakakos, 

2004) have been assumed as appropriate in prior studies. We assumed the 

rain record error to be multiplicative in this study. Accordingly we artificially 

corrupt the rainfall series It by multiplying it by a lognormal series Ut � logN(1, 

log 0.12) as in Equation [3]. Figure 3.3 illustrates the effect of error density on 

rainfall estimates. The corrupted series, Wt becomes the notional recorded 

rainfall. For simplicity we assume the evaporation estimate to be error free as 

evaporation has much lesser spatial and temporal variability compared to 

rainfall.  

Wt = It   Ut      [3] 

Figure 3.3. The relationship of true daily rainfall to naive rainfall due to logN(1, 

log 0.12) error. 

Three parameters are allowed to vary keeping the remaining 13 parameters 

constant. They are UZTW (upper zone tension water storage capacity), 

UZFW (upper zone free water storage capacity) and LZTW (lower zone 

tension water storage capacity). The relative roles of these parameters are 
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outlined in the Sacramento Model conceptual representation in Figure 3.1. We 

now need an objective function prior to calibrating a rainfall runoff model. 

The design of objective function depends on the purpose behind the 

formulation of hydrologic models. Robust hydrologic models require multiple 

objective functions (Khadam and Kaluarachchi, 2004; Madsen, 2000). Our 

objective function to calibrate the Sacramento Model is based on flow 

hydrograph and flow duration curve. Equal weight has been assigned to both 

criteria as follows. 

Obj(�) = Argmin | �t (Qest
t - Qt )2 + �i (Qest

i - Qi)2 | [4] 

Where, Qi, Qest
i = observed and estimated flow at ith percentile, the 

number of percentiles being set equal to the total number of time steps 

(t) in the sample. Argmin() minimises the objective function. 

A suitable optimisation scheme is required to efficiently solve Equation [4] and 

thus estimate {�p; p=1,2,3}. The choice of suitable optimisation schemes to 

solve non-linear hydrological models is intricate (Duan et al., 1992; Kuczera, 

1997; Sorooshian et al., 1993; Yapo et al., 1998). We chose  the L-BFGS-B 

optimisation algorithm (Byrd et al., 1995; Zhu et al., 1997). The L-BFGS-B is a 

limited-memory quasi-Newton algorithm for solving large non-linear 

optimization problems subject to simple bounds on the variables. It is intended 

for problems in which information on the Hessian matrix is difficult to obtain, or 

for large (or dense) problems.  

The naive estimate {�naive} is attained by solving the objective function 

Equation [4] where the rainfall is Wt in the Sacramento model as shown: 

Qest
t = Sac(Wt, Et; �p

naive| �q )    [5] 

Where, p � {1,2,3} and q � {4,5.. 16}. 

The rainfall data with error produces the following naive parameter estimates: 

�naive� {63, 151.5, 38.7} mm. The naive estimate is a SIMEX step when � =0.   

Note the difference between these and the true parameter values {60, 150, 
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38} mm. Can SIMEX help in modifying these naive estimates so as to offer a 

better representation of the truth? 

Application of SIMEX 

We generate replicates of the corrupted rainfall W*, with the addition of 

increasing levels of error {�i�2}, thereby resulting in an increasingly biased 

parameter vector �p*. In this example, we use variance inflation factors 

��{0.25,0.5,1.0,1.5} with 300 random trials each. The expected value of �p* is 

estimated as the sample mean over the 300 trials. The distributions of the 300 

trials of each parameter and interdependence among three parameters {� = 

�1*, �2*, �3*} are analysed below followed by SIMEX extrapolation. 

Figure 3.4 The empirical probability density function showing the affect of 

increase in the variance inflation factor (�) on parameter estimates. 

The probability density functions of the sampled parameters (Figure 3.4), 

ascertained using kernel density estimation approaches, show the increase in 

variance in the parameter sampling distribution with increase in �. The effect 

of rainfall error is more significant for the upper storage parameter (UZTW), 

which is expected. The lower storage (LZTW) is less sensitive to input error 

due to the dampening effect of the prolonged accumulation involved. The 

three parameters exhibit near independence with respect to each other a 
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feature that allows us to formulate separate relationships between � and the 

estimated parameter value for each of the parameters considered. 

Figure 3.5 illustrates the relationship between (�~ �p*) for each p. The 

presence of a clear trend in the relationship allows the formulation of the 

following regression relationship: 

�p*~ Gp(�)      [6] 

where Gp(.) denotes generic regression equations that may be linear or non-

linear depending on the relationship that exists. In this example, a linear 

regression relationship is found to be satisfactory. The extrapolation to Gp(�= -

1) gives us the SIMEX corrected estimate as shown in Figure 3.5 and listed 

(along with naive estimates and the true values) in Table 3.1. Note that the 

SIMEX corrected estimates are closer to the true values compared to the 

naive estimates. 

Figure 3.5. The biased parameter values are plotted against the multiples of 

error variance (�). The point (�|� = 0) is the naive estimate and (�|� = -1) is the 

SIMEX corrected estimate (s). 
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Table 3.1. Improvement in parameter values due to SIMEX. 

Parameters (mm) True Naive SIMEX 

UZTW 60 63 59.2 

LZTW 150 151.5 149.3 

UZFW 38 38.7 38.4 

3.4 Discussion and Conclusion 

Uncertainty in input variable results in systematic bias in parameter estimates. 

We ascertained that SIMEX helps to mitigate the bias of the Sacramento 

model parameters. The study demonstrated that parameters with higher 

influence on direct runoff are more sensitive to rainfall error. This research 

letter primarily aims to present the stability of SIMEX in a non linear rainfall 

runoff modelling setting. However the problem definition has been simplified in 

many respects which need further work. The three model parameters 

considered were independently related to the variance inflation factor �. In a 

full 16 parameter setting, any likely interdependence of the parameter needs 

to be addressed using multivariate statistics. 

SIMEX needs prior knowledge of the error distribution and any associated non 

stationarity in the rainfall time series. One of the future works will be the 

specification of error in rainfall data, which requires several considerations. 

The instrumentation error is often non stationary due to change in accuracy 

and method of measurements over time, which can be obtained from the 

manufacturers or experimentally quantified (Barry, 1978; Jaech, 1985). The 

translation of radar rainfall record to ground rainfall (Chumchean and Sharma, 

2006) or downscaling of GCM simulations of rainfall and other atmospheric 

variables to rainfall at the local catchment scale (Mehrotra and Sharma, 2006)  

introduces uncertainty that may be possible to quantify and specify error 

distributions for use in a SIMEX or similar framework. The transformation of 

point rainfalls to aerial rainfall involves interpolation error which can be 
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ascertained using available statistical methods (Kaplan et al., 1997). 

Alternatively non parametric SIMEX may be useful when multiple replicates 

(or possibilities) of rainfall scenario are available (Devanarayan and Stefanski, 

2002). 

Due to less onerous assumptions and computational burden, we envisage 

application of SIMEX to be a routine practice among practitioners to improve 

parameter estimation during any rainfall runoff model production. 

3.5 Acknowledgement 

We acknowledge the New South Wales Department of Water and Energy, 

Australia for rainfall and evaporation data. Funding for this research came 

from the Australian Research Council and the Sydney Catchment Authority. 

We recognize the contributors of the freely available statistical software R 

which has been used in this study (R Development Core Team, 2006). 

3.6 Reference 

Barry BA. 1978. Errors in practical measurement in science, engineering, and 

technology. Wiley: New York. 

Boughton W. 2005. Catchment water balance modelling in Australia 1960–

2004. Agricultural Water Management 77: 91-116. 

DOI:10.1016/j.agwat.2004.10.012 

Burnash RJ. 1975. The NWS river forecast system–catchment modelling. 

Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water 

Resources Publications: Colorado. 

Burnash RJ, Ferral RL, McGuire RA. 1973. A Generalized Streamflow 

Simulation System–Conceptual Modelling for Digital Computers, Department 

of Water Resources: Californina. 

Byrd RH, Lu P, Nocedal J, Zhu C. 1995. A limited  memory algorithm for 

bound constrained optimization. Scientific Computing 16: 1190-1208. 



Chapter 3 Rainfall Runoff Model 

Page 67 

Carpenter TM, Georgakakos KP. 2004. Impacts of parametric and radar 

rainfall uncertainty on the ensemble streamflow simulations of a distributed 

hydrologic model. Journal of Hydrology 298: 202-221. 

DOI:10.1016/j.jhydrol.2004.03.036 

Carroll RJ, Ruppert D, Stefanski LA. 1995. Measurement Error in Nonlinear 

Models. Monographs on Statistics and Applied Probability 63, Chapman and 

Hall; 305 pp. 

Chowdhury S, Sharma A. 2007. Mitigating Parameter Bias in Hydrological 

Modelling due to Uncertainty in Covariates. Journal of Hydrology 340: 197-

204. DOI:10.1016/j.jhydrol.2007.04.010. 

Chumchean S, Sharma A. 2006. An integrated approach to error correction 

for real-time radar-rainfall estimation. Journal of Atmospheric and Oceanic 

Technology 23: 67-79. DOI: 10.1175/JTECH1832.1 

Cook JR, Stefanski LA. 1994. Simulation-Extrapolation Estimation in 

Parametric Measurement Error Models. Journal of the American Statistical 

Association 89: 1314-1328. 

Devanarayan V, Stefanski LA. 2002. Empirical simulation extrapolation for 

measurement error models with replicate measurements. Statistics & 

Probability Letters 59: 219-225. DOI:10.1016/S0167-7152(02)00098-6 

Duan Q, Sorooshian S, Gupta V. 1992. Effective and efficient global 

optimization for conceptual rainfall-runoff models. Water Resources 

Research, 28: 1015-1031. 

Jaech JL. 1985. Statistical analysis of measurement errors. Wiley: New York. 

Kaplan A, Kushnir Y, Cane MA, Blumenthal MB. 1997. Reduced space 

optimal analysis for historical data sets: 136 years of Atlantic sea surface 

temperatures. Journal of Geophysical Research (C. Oceans) 102: 27,835-

27,860. 



Chapter 3 Rainfall Runoff Model 

Page 68 

Kavetski D, Franks S, Kuczera G. 2002. Confronting Input Uncertainty in 

Environmental Modelling. In Calibration of Watershed Models, Gupta HV, 

Sorooshian S, Rousseau AN, Turcotte R (eds); pp 49-68. 

Kavetski D, Kuczera G, Franks S. 2006a. Bayesian analysis of input 

uncertainty in hydrological modeling: 1. Theory. Water Resources Research

42:W03407. DOI:10.1029/2005WR004368 

——. 2006b. Bayesian analysis of input uncertainty in hydrological modeling: 

2. Application. Water Resources Research 42: W03408. 

DOI:10.1029/2005WR004376 

Khadam IM, Kaluarachchi JJ. 2004. Use of soft information to describe the 

relative uncertainty of calibration data in hydrologic models. Water Resources 

Research 40: W11505. DOI:10.1029/2003WR002939 

Kuczera G. 1997. Efficient subspace probabilistic parameter optimization for 

catchment models. Water Resources Research 33: 177-185. 

Madsen H. 2000. Automatic calibration of a conceptual rainfall-runoff model 

using multiple objectives. Journal of Hydrology 235: 276-288. 

DOI:10.1016/S0022-1694(00)00279-1 

Mehrotra R, Sharma A. 2006. A nonparametric stochastic downscaling 

framework for daily rainfall at multiple locations. Journal of Geophysical 

Research - Atmospheres 111. DOI:10.1029/2005JD006637 

R Development Core Team. 2006. R Foundation for Statistical Computing: 

Vienna. ISBN 3-900051-07-0. URL http://www.R-project.org. 

Sorooshian S, Duan Q, Gupta VK. 1993. Calibration of rainfall runoff models: 

Application of global optimization to the Scramento Soil Moisture Accounting 

Model. Water Resources Research 29: 1185-1194. DOI:10.1029/92WR02617 

Stefanski LA, Cook JR. 1995. Simulation-extrapolation: The measurement 

error jackknife. Journal of the American Statistical Association 90: 1247-1256. 

http://www.R-project.org


Chapter 3 Rainfall Runoff Model 

Page 69 

Yapo PO, Gupta HV, Sorooshian S. 1998. Multi-objective global optimization 

for hydrologic models. Journal of Hydrology 204: 83-97. 

Zhu C, Byrd RH, Lu P, Nocedal J. 1997. Algorithm 778: L-BFGS-B: Fortran 

Subroutines for Large-Scale Bound-Constrained Optimization. ACM 

Transactions on Mathematical Softwares 23: 550-556. 



Chapter 3 Rainfall Runoff Model 

Page 70 

(blank page) 



Chapter 4 Nino3.4 Prediction 

Page 71 

CHAPTER FOUR 
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the U.S. Copyright Act or that satisfies the conditions specified in Section 108 

of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not 

require the AMS’s permission.  
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4 LONG RANGE NINO3.4 PREDICTIONS USING PAIR 
WISE DYNAMIC COMBINATIONS 

ABSTRACT 

The interest in climate prediction has seen a rise in the number of modelling 

alternatives in recent years. One way to reduce the predictive uncertainty from 

any such modelling procedure is to combine or average the modelled outputs. 

Multiple model results can be combined such that the combination weights 

may either be static or vary over time. This research develops a methodology 

for combining forecasts from multiple models in a dynamic setting. We mix 

models on a pair wise basis using importance weights that vary in time 

reflecting the persistence of individual model skills. Such an approach is 

referred to here as a dynamic pair wise combination tree, and is presented as 

an improvement over the case where the importance weights are static or 

constant over time. The pair-wise importance weight is modelled as a product 

of a ‘mixture ratio’ and a ‘bias direction’, the former representing the fraction of 

the absolute residual error associated with each of the paired models, and the 

latter representing an indicator of the sign of the two residual errors. The 

mixture ratio is modelled using a generalised autoregressive model and the 

bias direction using ordered logistic regression. 

The method is applied to combine three climate models, the variables of 

interest being the monthly sea surface temperature anomalies averaged over 

the NINO3.4 region from 1956 to 2001. We test the combined model skill 

using a ‘leave ± 6 months out cross validation’ approach along with validation 

in 10 year blocks. This study attained a small but consistent improvement of 

the predictive skill of the dynamically combined models compared to the 

existing practice of static weight combination. 
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4.1 Introduction 

Climate models vary in complexity from simplistic conceptualisations of the 

underlying physics, to statistical or empirically based methods, to detailed 

physical representations of the processes involved. The relative strengths and 

weaknesses of climate prediction models vary depending on the assumed 

model structure, the data quality, the period of calibration and the method of 

validation. The increase in computing power and availability of more accurate 

input data has resulted in significant improvements in climate predictions. 

However the fact remains that each type of model is often able to capture 

some aspect of the underlying behaviour better than the other. The differential 

improvement in prediction, achieved by investigating a single modelling 

approach in isolation, diminishes asymptotically. Climate modellers are now 

combining various models in order to exploit the strength of individual 

approach and reduce the variance of predictive uncertainty (Barnston, A. G. et 

al., 2003: Colman, A. W. and Davey, M. K., 2003: Greene, A. M. et al., 2005: 

Peng, P. et al., 2002: Raftery, A. E. et al., 2005: Robertson, A. W. et al., 2004: 

Sharma, A. and Lall, U., 2004). The combination parameters are usually 

estimated based on overall performance of the component models. The 

consideration of persistence of the component model skills while building a 

combination of predictive models is introduced in this paper. The method is 

referred to as a pair wise dynamic model combination, the term dynamic 

being used to denote the fact that the mode of combination varies with time, 

with combination weights  ( or importance weights as they are referred to later 

in the paper) being modelled on the basis of the persistence they exhibit in 

some local time window. The aim is to improve upon the existing method of 

combining model predictions that overlooks persistence in the individual 

model skills. We present a general review of the existing developments that 

set the background of our current research in the remainder of this section. 

The rationale behind model combination is the statistical principle that the 

weighted mean of two zero centred symmetrical distributions has a lower 

variance. This principle raises the possibility that two or more inaccurate but 

independent predictions of the same future event can be combined to yield a 

prediction that is on average more accurate than either of them taken 
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individually (Bates, J. M. and Granger, C. W. J., 1969: Fraedrich, K. and 

Smith, N., 1989: Granger, C. W. J. and Newbold, P., 1977: Sanders, F., 1963: 

Thompson, P. D., 1977). The advantage of combining predictions using 

various methods is researched in the field of biometrics, econometrics and 

decision sciences (Dawes, R. et al., 1994: de Menezes, L. M. et al., 2000: 

Larrick, R. P. and Soll, J. B., 2006: Phillips-Wren, G. E. et al., 2004). Clemen 

(1989) drew conclusions based on an extensive literature search that 

combining forecasts leads to increased forecast accuracy. Accordingly, the 

ensembles of various models are being routinely used now to issue 

predictions in various disciplines (Armstrong, J. S., 2001: Hoeting, J. A., 

Madigan, D., Raftery, A. E. and Volinsky, C. T., 1999).  

The methods of model combination can be classed into two broad categories: 

static combination and dynamic combination. The static combination method, 

as the name implies, leads to a weighted average output in which the weights 

are time invariant and hence does not consider any temporal variations of the 

component model skill. Variations of such a weighted average combination 

(which includes Bayesian model averaging) have been used in a variety of 

applications such as rainfall runoff modelling (Granger, C. W. J. and Newbold, 

P., 1977: Kim, Y. O. et al., 2006: Marshall, L., 2006: McLeod, A. I. et al., 1987: 

Ragonda, S. K. et al., 2006: Shamseldin, A. Y., O'Connor, K.M., Liang, G.C., 

1997: Xiong, L. et al., 2001) and climate modelling (Coelho, C. A. S. et al., 

2004: Fritsch, J. M. et al., 2000: Peng, P. et al., 2002: Raftery, A. E. et al., 

2005: Rajagopalan, B. et al., 2002: Robertson, A. W. et al., 2004). The 

weighted average combination forms the benchmark against which we 

compared the performance of our proposed pair wise dynamic combination 

approach. It should be noted that estimation of the weights can be performed 

using an equal weighting for all models, or a weighting that reflects the 

accuracy of individual models, or using more appropriate optimisation based 

approaches that maximise the performance of the weighted combination 

output (Coelho, C. A. S. et al., 2004: Doblas-Reyes, F. J. et al., 2005: 

Kondrashov, D. et al., 2005: Pavan, V. and Doblas-Reyes, F. J., 2000: See, L. 

and Abrahart, R. J., 2001: Xiong, L. et al., 2001). However, such an approach 
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is unable to allow dynamic variations in weights to form outputs that resemble 

more the outputs from the better performing models at any given point in time. 

The dynamic combination allows the combination weights to vary over time. 

This combined outputs to take into account local nonstationarities and 

inhomogeneities in individual model outputs, thereby resulting in a forecast 

that is less susceptible to sudden and unexplained variations. The early 

attempt of dynamic combination was in the form of a switching regression 

model (Deutsch, M. et al., 1994) which later evolved into more complex non 

linear combinations (Lundberg, S. et al., 2000: Terui, N. and van Dijk, H. K., 

2002: Zou, H. and Yang, Y., 2004). These studies are related to forming 

econometric models with the relevant papers appearing in econometric and 

applied statistics literature, with no similar work being reported in climate 

science. We present next an approach that dynamically mixes climate 

prediction models in a pair wise hierarchical tree structure, offering significant 

advantages to model combinations which are of a more static form. 

4.2 Model Combination 

4.2.1 Static combination 
We first introduce a static combination of m=1,2,… M models for a period of t

= 1,2,…tmax. Let us define component predictions as {ûm,t; m=1,2,..M ; 

t=1,2..,tmax }, with residual error as {em,t; m=1,2,..M ; t=1,2..,tmax } so that: 

yt = ûm,t + em,t        [1] 

Where yt is the observed response at time t.  

Then the combined prediction 
t
(s) is ascertained as:  


t
(s) = �m ûm,t wm

(s)       [2] 

Where, wm
(s) are the static weights, superscript (s) is for static weight, 

conditional to wm
(s) � 0 and �m wm

(s) = 1. 

The parameter vector w(s) = {wm
(s); m=1,2,..M } is estimated through a 

constrained minimisation of the error variance of 	 (s) = {
t
(s) ; t=1,2..,tmax }, 

under the constraint that the parameters lie in the range 0 to 1 and sum up to 
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unity. This constraint reflects the assumption that each component model is 

unbiased. For a two model case the maximum likelihood estimate of w(s) from 

a bi-variate normal error distribution can be derived to be: 
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where, e1,t and e2,t are residual errors of model 1 and model 2 respectively. 

Note that this paper follows notations of lower case italics for scalar values 

(e.g.: ûm,t , wm
(s)) and straight roman (e.g.: um, w(s)) for vectors and bold fonts 

(eg: u, w) to represent higher dimension matrices if not mentioned otherwise 

(exception being M used for a scalar value). Vector series are enclosed by 

curly brackets. Functions are denoted by italic names followed by brackets, 

such as minimum being specified as Min(.). 

This weighted average combination method is referred as static combination 

hereafter due to its time invariant weight w(s). This paper proposes the 

dynamic weight instead, {�t}, which incorporates the persistence of 

component model skills as described in the rest of this Section. The error 

variance of the static combination prediction 	 (s) is used as the benchmark of 

performance of this proposed method. 

4.2.2 Paired dynamic combination 
Consider a case of combining predictions of a pair comprised of ith and jth

component models {m = i, j } using dynamic weights. If the component 

predictions at time t are ûi,t and ûj,t  then the two models can be combined as 

follows: 

yt = ûi,t �t + ûj,t (1 � �t ) + ët     [4] 

Here ët is the residual of the combination where the true weight �t is 

available. We continue the assumption of the static weight formulation that the 

component predictions are unbiased and hence restrict the weights within 0 to 
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1. This constraint reduces the serial correlations in the combined forecast 

error (Aksu, C., Gunter, S., 1992).   

Early research on model combination by Bates and Granger (1969) 

acknowledged the possible nonstationarity of Equation [3] and hence the 

need for estimating weights dynamically. The approach adopted in this and 

earlier studies are to investigate the possibility of using a dynamic structure in 

formulating the weights. Two possible ways of specifying the autoregressive 

structure in the dynamic weights are (Granger, C. W. J. and Newbold, P., 

1977: McLeod, A. I. et al., 1987):  

  [5] 

    [6] 

Where, t is the current time, h is a time bandwidth representing a local window 

centred around time t, 1� � >0 and � � 1 are parameters that control the 

degree of autocorrelation. Note that these methods are primarily based on 

precision (inverse of prediction error variance) of component predictions. The 

case of (�= 0, h= t-1) in Equation [5] and � = 1 in Equation [6] collapses them 

to the static weight estimate of Equation [3] when combining two independent 

predictions.  

Our proposed method starts by first computing a time series of target weights 

{�t∈[0,1]} that would produce perfect combined hindcast out of the 

component hindcast pairs. The target weights are predicted using generalised 

linear models (Chandler, R. E., 2005: Dunteman, G. H. and Ho, M. R., 2006: 

Helsel, D. R. and Hirsch, R. M., 2002: McCullagh, P. and Nelder, J. A., 1989: 

Yang, C. et al., 2005). Generalised linear regression requires that the 
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tr̂

response variable belongs to exponential family of distributions, in contrast 

the target weights which follow a beta distribution (Bates, J. M. and Granger, 

C. W. J., 1969). The requirement is met by formulating separate linear models 

in two steps.  

The first step uses a generalised linear autoregressive (GLAR) model 

(Shephard, N., 1995: Yu, L. et al., 2005) as the basis of predicting the mixture 

ratio rt :  

rt = |ej,t  |/ (|ej,t  |+ |ei,t  |)      [7] 

The GLAR is a special case of a generalised linear model that includes both 

autoregressive and exogenous covariates. Exogenous covariates imply the 

predictors external to the ones used in the component models and thus 

potentially adjoin additional predictive information.  

GLAR estimates the predicted mixture ratio  as follows: 

)ˆ( 1+trg = �t + 
 rt-. + � zt-.      [8] 

Where, 

rt-. : {1, rt-h(1), rt-h(2), …}, stepwise autoregressive covariates at lags of 

h(1), h(2), …, representing the persistence that is exhibited in rt ; 

zt-. : {z1,t-. , z2,t-. , …}, exogenous covariates at earlier times  (subscript 

t-.<t), 

�t : seasonally variant intercept, varying from one season to the other, 

but not varying across years; and 


, � : {
0, 
1, 
2,…, �1, �2, …}T the time invariant model parameters 

and the intercept (
0). 

g(.): a function transforming the response variable known as link 

function of the generalised linear model. 



Chapter 4 Nino3.4 Prediction 

Page 79 

The link function g(.) is chosen in a way that it transforms the bounded 

mixture ratio � {0 � 1} to unbounded values � {-
 � +
}. This research 

applies the following Logit(.) link function, which was used in the studies of 

forecast probabilities (Carrasco, J. A. and Ortuzar, J. D., 2002: Kamstra, M. 

and Kennedy, P., 1998). 

Logit(rt)= log [rt / (1 - rt)]      [9] 

GLAR parameters are estimated using Maximum Likelihood of the beta 

binomial distribution (Gelman, A. and Hill, J., 2006: Yang, C. et al., 2005) for 

the response rt, which was found to be suitable in the context of the over 

dispersion of r described in later sections. 

The mixture ratio, Equation [7] is not sufficient to keep ët
2 � Min(ei,t

2, ej,t
2). The 

second step introduces additional criteria that aim to identify the direction of 

the bias of each model. The models are combined based on rt only when ei,t

and ej,t have opposing sign i.e. two predictions are bracketing the true value.  

On the other hand while both predictions exhibit bias in the same direction the 

better prediction is chosen ignoring rt. This shields the combination from 

erratic high outlier with same sign. The bias direction {bt; t =1,2,..tmax} is 

mapped into three categories (see Figure 4.1 (top)) where bt is a categorical 

variable as follows: 

bt =  mix 0> ej,t / ei,t      [10] 

  zero 0< ej,t / ei,t < 1 

  one 1< ej,t / ei,t  

The optimum measure of �t+1 is defined as follows: 

�t+1  = rt+1 when bt+1 = mix     [11] 

 = 0   bt+1 = zero

 = 1   bt+1 = one
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The prediction of �t+1 is done in a two step process. The first step involves 

predicting rt+1, the mixture ratio model using GLAR. The second step is 

predicting the bias direction b={mix, zero, one} using an ordered logistic 

regression (OLR) model (Agresti, A., 1996). In OLR, the cumulative probability 

of b, P̂ (b) is estimated as: 

Logit [ P̂ (bt+1 = mix)] = �1 + xt �     [12] 

Logit [ P̂ (bt+1 = mix or bt+1 = zero)] = �2 + xt �

where �={�1, �2} are intercepts and xt ={x0,t, x1,t, x2,t , ..} are predictor vectors 

inclusive of a periodic intercept (x0,t),  and autoregressive and any exogenous 

covariates, and �={1, �1, �2, ..}T are model parameters. No third equation is 

necessary since P(b = one) = 1 - P(b = mix or b = zero). The logic for 

generation of this three category ordered regression variable is presented in 

Figure 4.1(bottom).  

If the predicted mixture ratio is xxxx and the bias direction is xxxx then the 

fitted dynamic weight (xxx) of the pair wise model combination can be 

estimated from Equation [11]. The dynamically combined prediction of the 

hydrologic response variable, 
t
(d), is as follows: 


t
(d)= ûi,t xxx + ûj,t (1 - xxxx)     [13] 

4.2.3 Multiple model combination 
The last section presented the basis for a pair wise combination of models. 

The exercise is now extended to M component models, where M > 2. We 

propose a paired combination hierarchical tree as shown for a four model 

case in Figure 4.2. 

Denoting the component prediction errors of the component models as e = 

{em,t; m=1,2,..M; t=1,2..,tmax}, one can estimate the variance-covariance matrix 

of the residuals Cov(e) as {cij; i=1,2,..M; j=1,2,..M}. The model pair with 

smaller covariance has a higher potential of improvement after combination. 

tr̂ tb̂

tω̂

tω̂ tω̂
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Hence the model pairing is performed by first sorting the models in order of 

their individual residual variance, and then starting from the lowest variance 

model and finding its pair as the model with which it has the lowest 

covariance. This process is repeated for the models that remain until all 

models are exhausted. If the number of component models is even, one 

would expect all models to be paired, if not, one would expect one component 

model to remain on its own. In the notation used in Figure 4.2, the indices of 

the models have been altered to reflect the pairs as (1,2) and (3,4). This 

notation will be followed in the remainder of this paper. 

Figure 4.1 (top) The classification method of the bias direction variable. The 

time series of the ratio of two model residuals (e2/e1) are grouped into three 

zones. The residuals are classified into a three category response variable 

{mix, zero, one} as shown. (bottom) The simple ordered logistic model for a 
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three category response variable. The regression lines are dividing the 

probability space. For a given value of the predictor x, the dashed line is 

showing P(b=mix) equal to 0.26, P(b=zero) equal to 0.70-0.26 and P(b=one) 

equal to 1-0.70. 

Figure 4.2 The tree showing pair wise hierarchical mixing of four component 

models. 

The hierarchical combination tree will have multiple levels depending on the 

number of component models present. The hierarchical tree contains l levels 

which satisfy the following constraints:  2l � M and 2l-1 < M where the exact 

value depends on the binary divisibility of M. This hierarchical tree uses the 

same (M -1) number of weight parameters as the static combination method 

described in Section 4.2.1. If wt,i 
(k) includes {�t ∈ wt,i 

(k)} and represents the ith

weight time series vector at kth level of the mixing tree then the weight matrix 

W can be shown as following: 

W = {wt,i 
(k); k=1,2,..l; i=1,2,..nk, t=1,2,..tmax},    [14] 

 where, nk  �  2k-1. 

The predicted value of W consists of (M-1 x tmax ) elements of tω̂  where the 

full set of component predictions are û = {ûm,t; m=1,2,..M; t=1,2..,tmax}. The 

hierarchical extension of Equation [13] for the tree shown in Figure 4.2 where 

M =4 is as follows, 


t
(d)= û1,t (wt,1

(1) • wt,1
(2)) + û2,t (wt,1

(1) • (1- wt,1
(2)))  

 + û3,t ((1- wt,1
(1)) • wt,2

(2)) + û4,t ((1- wt,1
(1)) • (1 - wt,2

(2))) [15] 
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4.2.4 Model combination algorithm 
The algorithm for combining M models using the pair wise dynamic procedure 

described above is as follows.  

i) Index the models in such a way that the pairs satisfy the logic in 

Section 4.2.3.  

ii) Choose the pair {û1,t , û2,t ;t=1,2..,tmax } and compute the target 

mixture ratio and bias direction {rt, bt; t=1, 2…tc} for the period of 

calibration tc using Equations [7] and [12].  

iii) Identify any autoregressive structure in {r, b} and plausible 

exogenous predictors using a model selection algorithm such as 

the Akaike Information Criterion (AIC) (Chambers, J. M., 1992: 

Hastie, T. and Pregibon, D., 1992: Hastie, T. et al., 2000). 

Ascertain parameters 
, �, � and � of the selected model. 

iv) Apply the developed model to obtain estimates of combination 

weights for a forecast period tc+ , {xxx ; t= tc+ }. 

v) Repeat step ii) to iv) for all M/2 pairs of combination, if M is even. 

Otherwise repeat for (M-1)/2 pairs and add the remaining 

component model at lower tree level. 

vi) Repeat step 1 to 5 for all l levels of the hierarchical tree and thus 

estimate the weight matrix �. 

Compute the final estimate by Equation [15]. The error variance of 	(d) should 

be narrower than that 	(s). 

4.3 Application 

The pair wise dynamic combination approach is applied to three component 

models selected from the pool of models available to predict globally gridded 

sea surface temperature anomalies (SSTA). The base of the anomalies was 

the Global Ocean Surface Temperature Atlas (GOSTA) Climatology of 1951 

to 1980 (Bottomley, M. et al., 1990). The extended SST data set, 

reconstructed at the US National Climate Data Centre (Smith, T. M. and 

tω̂



Chapter 4 Nino3.4 Prediction 

Page 84 

Reynolds, R. W., 2002), was used as observed SST. The component models 

predicted monthly SSTA at NINO3.4 region at 3 months in advance. For 

example, the SSTA value in April, May or June 1980 corresponds to the 

forecast of those months as made in January, February or March 1980 

respectively. The first set of the three models was developed at University of 

California, Los Angles, USA, hereafter referred as UCLA model (Kondrashov, 

D. et al., 2005). This is a multilevel quadratic inverse stochastic model 

formulated using global sea surface temperature data from 1950 to 2003 with 

an emphasis on ENSO variability. The second set of the three models was 

developed at the Climate Prediction Centre of the National Oceanic and 

Atmospheric Administration, USA. It uses a statistical method known at 

constructed analogue and referred to as the CACPC model (van den Dool, H., 

2000). The third model was prepared by the Demeter project of European 

Centre for Meteorological Forecast and referred to as the ECMF model 

(Palmer, T. N. et al., 2004). The concurrent hind-casts during the period of 

January 1956 to December 2001 of these component models are used as the 

basis of evaluating the accuracy of the model combination procedure. This 

study used an available set of hind cast realisation only and it may not be the 

most up to date version of the component model. All SSTA time series, except 

UCLA, were downloaded from the data library of International Research 

Institute for Climate and Society, New York (accessed on February 2006). 

The UCLA data was collected as per comm. D Kondrashov. The relative 

performances of our hind cast data set (represented as residuals from the 

observed) are illustrated in Figure 4.3. Note that the component model pair, 

which shows a low residual covariance, offers a potential of improvement 

based on the pair wise dynamic combination approach. 

This research briefly trialled the two existing dynamic weight estimation 

methods presented in Equations [5] and [6]. The proposed GLAR plus OLR 

method is tested in greater detail. The first step in the proposed approach is 

the identification of relevant predictors, followed by an evaluation of the 

resulting model in a predictive sense. Details on each of these are presented 

next. 
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Figure 4.3 The paired plot of the three model residuals. The value in the 

diagonals shows the variance of the individual model error, the numbers in 

upper boxes are the covariance. The lower covariance has higher potential of 

improvement via combination. 

4.3.1 Predictor selection 
The predictors for the mixture ratio (rt-.) model in Equation [8] are ascertained 

from lagged values of the response (rt) over the past 12 time steps (months). 

Predictors for the categorical bias direction (bt) are selected from lagged 

values of the ratio ej,t/ei,t. This ratio (termed residual ratio) is constrained to lie 

within [-1, 2] to avoid numerical instability when ei,t � 0. The inclusion of 

hydrologic variables to the pool of candidate exogenous predictors involves 

detail knowledge of the component model pairs. We do not include any 

exogenous variables at this stage of the research. 
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The final predictor vector is chosen using standard statistical model selection 

procedures involving partial autocorrelation to the response, backward 

stepwise model selection using the partial F test (Chambers, J. M., 1992: 

Hastie, T. and Pregibon, D., 1992: Hastie, T. et al., 2000) and partial mutual 

information (Sharma, A., 2000). The statistical analysis selected various 

autoregressive lags and a periodic intercept with 12 values of 3 monthly 

means, eg. February intercept contains the mean of January to March values 

of the mixture ratio (or residual ratio) of the entire calibration period. The lag 

period of autoregressive covariates are listed in Table 4.1. The preference 

was towards smaller number of predictors to preclude over parameterisation, 

which is why a limited number of (autoregressive) covariates were considered 

in the regression formulations. 

Table 4.1 Predictor variables for pair wise model combinations. Note that U: 

UCLA, C:CPC, E:ECMF in the table. Note also that t-3 implies a lag of 3 

months, see Equation [8] & [12] for further description of the notations. 

(a) Precision ratio (GLAR) model 

Pairs Autoregressive predictor (rt-.) Periodic Intercept (�t) 

U + E  rt-3  ,  rt-6 {rs ; s =1,2..12} 

(U+E)+C rt-3 {rs ; s =1,2..12}

(b) Bias direction (OLR) model 

Pairs Autoregressive predictor (xt) Periodic Intercept (x0,t) 

U + E  ej,t-3/ei,t-3  ,  ei,t-3 {ej,s/ei,s ; s =1,2..12} 

(U+E)+C ej,t-11/ei,t-11  ,  ei,t-6 {ej,s/ei,s ; s =1,2..12}
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4.3.2 Results 
The results presented next evaluate the performance of the modelling 

framework presented in the previous section in the context of forecasting 

weights as the basis of reducing predictive uncertainty of the NINO3.4 

forecasts. 

(1) Bias direction forecasts 

We consider next the predictive accuracy of the ordered logistic regression of 

the categorical bias direction as stated in Equation [12]. The expected bias 

direction at any time step is the category with the highest predicted 

probability. The validation results for the classification obtained using the 

model structure illustrated in Figure 4.4 are presented in Table 4.2. As can be 

inferred from the diagonal values in the table, the correct classification rate is 

52% and 44% at level 2 and 1 combinations respectively. The potential of 

combination error arising from misclassification of one to zero or vice versa is 

higher than the misclassification of the category mix. Such misclassification 

rate (zero to one, one to zero) was small in this study. The result table shows 

that there are only 5 out of possible 30 instances in level 2 combination and 

another 3 out of 20 instances in level 1 misclassified zero to one or vice a 

versa.  

(2) Mixture ratio forecasts 

Dynamic weights are predicted based on precision forecast conditional on 

bias direction forecast (Equation [11]). In the results that follow, a leave ± 6 

months out cross validation where data blocks of 6 months from either side of 

a validation month are excluded in the formulation of the model, is performed 

to ascertain the predictive accuracy associated with the categorical forecast. 

For example, the July 1970 validation is based on a calibration period of 

January 1956 to December 1969 and February 1971 to December 2001. In 

addition to this, we also validate the model in four ten year blocks, for 

example validation from 1992 to 2001 that has been calibrated for the period 
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of 1956 to 1991. The mean of squared error (MSE) of the predictions is used 

as a measure of forecast accuracy. 

Table 4.2 Contingency table (represented as percentages) showing 

predictions from ordered logistic model. The diagonal indicates the correct 

classification rate; (a) the level two tree where UCLA and ECMF models are 

combined; (b) the level one tree where (UCLA+ECMF) is combined with CPC. 

  Obs     Obs  

Predicted one zero mix  Predicted one zero mix 

one 25 5 17  one 17 3 7 

zero 0 0 0  zero 0 0 0 

mix 17 9 27  mix 34 12 27 

Total 42 14 44  Total 51 15 34 

  (a)     (b)  

  

Figure 4.4 Pair wise hierarchical mixing tree of UCLA(U), CPC(C) and 

ECMF(E). The first pair UCLA + ECMF is chosen due to its lowest covariance. 

The static combination forecasts (Equation [2]) is used as the benchmark to 

evaluate the performance of this dynamic combination method. Let us index 

{UCLA, ECMF, CPC} as models {1, 2, 3} based on lower to higher paired 

covariance. The static weight of UCLA and ECMF models are w1
(s) and w2

(s). 
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These weights can be compared to the overall weight assigned to individual 

models at Level 1 of the hierarchical tree in Figure 4.4. Using the notation as 

of Equation [14] for the dynamic weight {wt,m 
(k)}, where m refers to the pair 

number for the l’th tree level, the weight representing the weight for the first 

model included in the pair (the weight for the other model being (1- wi
(l)), the 

overall weights associated with individual models can be derived as shown in 

Table 4.3. 

The dynamic and static weights, as explained above, from the ± 6 months out 

cross validation are presented in Figure 4.5 and Figure 4.6 The static weights 

do not change over time (the wiggly appearance being a result of presenting 

results in cross validation). As expected the static weights represent the 

centroid of the observed values of the dynamic weights. A close scrutiny of 

the predicted weights revealed that the UCLA model dominated during El 

Nino period, reflecting prime calibration intent of UCLA (Kondrashov et al., 

2005). The weights during La Nina phase slightly favoured the CPC model. 

While overall ECMF contribution was minor, this minor role is more evident 

during La Nina and the neutral years. 

Table 4.3 The notation and comparative association of the dynamic weight 

(46 years of monthly values) to static weight. 

Model Index Dynamic Weight Static Weight

UCLA 1 {wt,1
(1) • wt,1

(2)}, t=1,2,…46x12 w1
(s)

ECMF 2 {wt,1
(1) • (1- wt,1

(2))}, t=1,2,…46x12 w2
(s)

CPC 3 {(1- wt,1
(1))}, t=1,2,…46x12 1- w1

(s) - w2
(s)
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Figure 4.5 The overall dynamic weights for the UCLA model. The predicted 

weights in validation are drawn in solid lines and the optimum weights as 

black dots. The broken line is a 4 monthly moving average of the optimum 

weights included for clarity. The near horizontal line along 0.55 is the static 

weight. 

Figure 4.6 The overall dynamic weights for the CPC model. . The predicted 

weights in validation are drawn in solid lines and the optimum weights as 

black dots. The broken line is a 4 monthly moving average of the optimum 

weights included for clarity. The near horizontal line along 0.35 is the static 

weight. 
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(3) NINO3.4 prediction from the combined models 

This subsection presents improvements achieved in predicting NINO3.4 due 

to model combination by dynamic weight. We start by offering an assessment 

of the performance of existing precision ratio based combination methods 

(Equation [6] and [7]). The performances of these precision ratio based 

estimates are scrutinized based on last ten years (1991 to 2001) of hindcasts. 

Various combinations of parameters �, h and � of Equation [5] and [6] did not 

improve the predictive error variance compared to that of (0.192) static weight 

based combination (Figure 4.7), confirming the need of a more flexible 

dynamic weight formulation.  

Figure 4.7 The error variance of the combined prediction is drawn against the 

parameters of Equation [5] and [6]. The predictive variance of static weight 

combination of period 1992 to 2001 is 0.192, higher h value or �= 1 collapses 

the model to the static weight case. None of the two methods exhibit any 

improvement (i.e. error variance < 0.192) by localised estimation of the 

weights (by smaller h or �> 1). 

Readers should recall that our proposed model consists of two stages, the 

first stage aiming to ascertain the magnitude of the mixture ratio between the 

two models, and the second step the direction of the respective errors the two 

models have. These stages are referred to as the mixture ratio and the bias 

direction models. Table 4.4 presents the mean squared error (MSE) of 
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calibration and various validation results. Improvements can be noted in all 

validation cases presented. 

Table 4.4 The mean of squared errors (MSE) of NINO3.4 predictions prior to 

and after the inclusion of the bias direction model. The first row represents the 

calibration using the full data set (1951 to 2001). The second row represents 

leave ±6 months out cross validation skills. The other rows represent 

validation in ten year blocks. Note that all cases exhibit superior performance 

after consideration of the bias model. 

Precision ratio only Including bias direction

Calibration 0.1472 0.1401 

±6 mth CV 0.1484 0.1444 

2001 to 1992 0.1875 0.1853 

1991 to 1982 0.1917 0.1845 

1981 to 1972 0.1199 0.1071 

1971 to 1962 0.1167 0.1159 

The MSE of dynamic combination (same as the second column in Table 4.4), 

the static combination and the component models for the same period for the 

NINO3.4 response variable are listed in Table 4.5. The overall reduction of 

MSE (Table 4.5) and improved prediction skill  in either combination method 

reconfirms the past finding that the model combination improves the 

prediction accuracy (Armstrong, J. S., 1989: Clemen, R. T., 1989). We note 

that the reduction of MSE of dynamic combination to that of static combination 

is minor. However the better results are consistence for all the cases. The 

reduction of MSE, if analysed by an one tail t test, is found to be significant at 

confidence level of p= 0.0117. A notable point here is that these 

improvements are based on the use of persistence of various orders only, 

with no exogenous predictors being considered for simplicity in our 
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presentation. In addition to the presented MSE, the results are analysed using 

alternative measures like mean absolute error, mean error in probability space 

and Nash-Sutcliffe Efficiency or R2. These measures drew similar conclusion 

and are not presented here. 

Table 4.5 The mean of squared errors (MSE) for various model results for a 

concurrent period for NINO3.4. The first row represents the calibration using 

the full data set (1951 to 2001). The second row represents leave ±6 months 

out cross validation skills. The other rows represent validation in ten year 

blocks.  

 DW Static W UCLA CPC ECMF 

Calibration 0.1401 0.1477 0.1821 0.1998 0.5576 

±6 mth CV 0.1444 0.1503 0.1821 0.1998 0.5576 

2001 to 1992 0.1853 0.1946 0.2499 0.2281 0.8476 

1991 to 1982 0.1845 0.1908 0.2259 0.2536 0.6946 

1981 to 1972 0.1071 0.1121 0.1483 0.1631 0.4400 

1971 to 1962 0.1159 0.1205 0.1322 0.1909 0.325 

4.4 Discussion 

While the results presented in the previous section do point to the utility of the 

proposed dynamic combination approach, there are a number of issues that 

need to be discussed. Foremost amongst these are predictive models used to 

ascertain the dynamic combination weights. 

The inclusion of bias direction model reduces the chance of combined 

prediction being inferior to individual model. No strong and clear basis of 

setting the order of the categories of the bias direction variables exists. There 

are alternatives to the ordered logistic regression used for the bias direction 

model. They are linear discriminant analysis, quadratic discriminant analysis 
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and multinomial models. However an evaluation of these alternatives did not 

yield any better prediction in the case study presented here. In addition, we 

preferred OLR as it needs lesser parameter than the multinomial model. It is 

worthwhile here to flag the basic assumption of each component model being 

unbiased while formulating the combination method. However this study did 

not remove the minor bias from component predictions prior to combination. 

We formed the view that any apparent fine bias is local to the time window of 

analysis only; any pre whitening of the predictions in absence of detail 

calibration knowledge may be precarious. 

The class of linear predictive models, in our case the GLAR, does not 

represent well the probability distribution of the weights because of its limited 

ability to assume their extreme limits of 0 and 1, and thus underestimates the 

confidence interval of the combined prediction. The localised regression 

models (Cleveland, W. S., 1979: Lall, U. et al., 2006) such as Loess  

(Cleveland, W. S. et al., 1988) and Generalised Additive Models (Hastie, T. 

and Tibshirani, R., 1986) yielded better predictions in some trials. Our findings 

concur with Bates and Granger (1969) that the weights (mixture ratio) follow a 

beta distribution; improvements can be expected by choosing a predictive 

model that represents this to a better extent such as beta regression model 

(Ferrari, S. L. P. and Cribari-Neto, F., 2004) ; something that was not 

attempted to keep our presentation simple and concise. 

One way to avoid the need of a design distribution altogether is to use non 

parametric predictive models (Lall, U. and Sharma, A., 1996: Mehrotra, R. and 

Sharma, A., 2004: Sharma, A. and Lall, U., 1999). The details of alternative 

regression options and nonparametric methods are not included here in order 

to maintain the focus of the paper on the rationale of combining models in a 

dynamic manner as presented here. 

One can infer the weights �t as the probability of one component model 

exhibiting a lower error as compared to its pair in each pair wise combination. 

The estimation of these weights, or gating function as referred in (Hastie, T. et 

al., 2000: Marshall, L., Nott, D, Sharma, A, 2007), proceeds through the 

assumption of a linear form in the logistic transformed space. This is an 
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assumption often used for simplicity and can be improved upon by having 

other gating functions (instead of the Logit transform used here) or 

nonlinear/nonparametric models instead of the linear one used. A notable 

departure in this research from existing combination weight formulation is to 

use absolute residual ratio (Equation [7]) instead of precision ratio (inverse of 

variance). Precision ratio based dynamic weights (variants of Equation [3], [5] 

or [6]) requires a minimum band width (time window) to obtain a stable 

estimate of the variance. Whereas the absolute ratio (which is the analytical 

solution of the weights when the predictions are bracketing the true value) can 

be deduced at every time step. 

It should also be noted that the notion of formulating dynamic combination 

weights has been explored in earlier studies, although not in the context of 

formulating climate model forecasts. Marshall et al. (2007) dynamically 

applied the Bayesian Model Averaging (Hoeting, J. A., Madigan, D., Raftery, 

A. E. and Volinsky, C. T., 1999) where the method assumes knowledge of 

exogenous predictors (with imbedded persistence) and full structural details of 

all component models. In contrast this study regards each component model 

as a black box, i.e. no structural knowledge is needed, giving way to mix wide 

types of (statistical or dynamical) predictive models available off the shelves, 

and considers models on a pair wise basis. Another example of a similar 

application is found in Robertson, A. W. et al., (2004) where all the component 

models were paired against the climatological forecasts as a way to stabilise 

the multivariate weight computation. This resulted in a multivariate extension 

to the static weight combination presented in Section 4.2.1. Kim et al. (2006)  

applied the artificial neural network method to dynamically combine 

hydrological models. However the predictor identification (of the weights) was 

performed in a full multivariate setting and could represent added predictive 

variance due to the complexity of the neural network models used. 

While this paper advocates model combination using the dynamic weight 

rationale, the robustness of the simple static combination can not be 

underestimated. The simple method often gives satisfactory result compared 

to more computationally intensive approaches (Gooijer, J. G. D. and 
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Hyndman, R. J., 2006, pp 17), which is more true if the component predictions 

exhibits good precision. The complexity of combination increases with higher 

number of component models. Increased number of hyper parameters 

(parameters external to the component models) reduces the degrees of 

freedom which may eventually compromise the strength of combination. 

However, the use of cross validation as the basis for evaluating model 

performance removes this concern to a significant extent, as the cross 

validation mean square error represent the predictive error the models may 

have. Any reduction of the number of component models can be carried out 

during the design of the combination tree by pre combining (using static 

weight) the model partners showing high residual covariance. Although 

empirical studies in the economic forecasting literature recommend a 

maximum number of components as 6 to 8 (Armstrong, J. S., 2001, pp 420: 

Hibon, M. and Evgeniou, T., 2005), it is unclear if that finding holds for the 

type of models considered here, and especially so if our aim were to formulate 

such combinations over a multivariate response representing grided sea 

surface temperature anomalies spread over the full world surface. 

Nevertheless the bias direction model here, to some extent, shields the loss of 

parsimony of the combined prediction when the number of models M is high. 

We are of the opinion that the optimum size of M largely depends on the 

extent of the uncertainty and level of independence of the component 

predictions. This empirical study is based on ensemble mean only; 

nevertheless the predicted weights can be applied to combine the full set of 

component realisations in order to attain full probability range. Our future work 

aims to expand this method, now applied to a univariate response, to a 

multivariate spatially distributed response vector. In a multivariate extension, 

we envisage the challenge will be to maintain spatial dependence in the 

predicted responses with minimal loss of degrees of freedom while 

consistently exhibiting improvement. 

4.5 Conclusion 

This paper presented a methodology for combining forecasts from multiple 

models in a dynamic manner. Multiple models were mixed in pairs based on 

importance weights that were allowed to vary in time reflecting the persistence 
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of individual model skills and of any relevant exogenous variable. The model 

pairs were first matched based on the sample error covariance. Then the 

pairs were combined by ascertaining a weight for each time step. The weights 

were structured in a hierarchical pair wise combination tree. This process 

provided a low dimension setting for investigating any predictive structure of 

the relative model strengths. A two step regression model was used to predict 

the weights; the steps being the formulation of the mixture ratio model and the 

bias direction model. The mixture ratio was predicted by a generalised linear 

autoregressive model and the bias direction by an ordered logistic regression. 

The method was applied to combine two statistically based and one dynamic 

climate models. The variables of interest was the monthly sea surface 

temperature anomalies averaged over the NINO3.4 region from 1956 to 2001 

predicted three months in advance. The combined model skill was tested 

using a ‘leave ± 6 months out cross validation’ along with validation in 

individual 10 year blocks. This empirical study first reconfirmed the concept 

that the predictions from static weight combination (or a weighted model 

average) of multiple models improves the skills compared to any single model 

prediction. Secondly, we found that the predictions using existing precision 

ratio based dynamic weight did not offer any improvement over predictions 

using static weight combination. Thirdly, the proposed dynamic weight 

computation method is an improvement over the existing precision ratio based 

dynamic weights. The proposed method exhibited a very small but consistent 

increase in prediction skill over that of static weight method for the entire six 

validation scenario with no case of worsening results. These consistent 

results suggest that the potential of improvement is real if multiple predictions 

are combined using our proposed dynamic weights. 
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CHAPTER FIVE 

This chapter reprinted the following article: 

Chowdhury, S. and A. Sharma, 2009: Improving prediction skill by a 

dynamic combination of multiple global sea surface temperature 

forecasts. Journal of Climate, under review. 

This work has been submitted for publication. Copyright in this work may be 

transferred to American Meteorological Society (AMS) without further notice, 

and this version may no longer be the latest version. 
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5 GLOBAL SEA SURFACE TEMPERATURE 
FORECAST 

ABSTRACT 

Current approaches for combining hydroclimatic forecasts to reduce predictive 

uncertainty are mainly limited to using combination weights that remain static 

over time. Recent research has shown the advantage of time variant mixing 

weights (dynamic weights) over static weights in long range prediction of El 

Nino Southern Oscillation Indices. This paper extends the dynamic 

combination algorithm to predict a multivariate sea surface temperature field. 

Two approaches for forecasting multivariate dynamic weights are presented in 

this paper. The first of the two approaches uses a mixture of two basis 

distributions which are three category ordered logistic regression model and a 

generalised linear autoregressive model. The second method uses a modified 

nearest neighbour approach to forecast the future weights. 

The case study presented combines predictions from three climate models for 

the period 1958 to 2001. The variables of interest here are the monthly global 

sea surface temperature anomalies at a 5°x5° latitu de-longitude grid, 

predicted three months in advance. The prediction from static weight 

combination is used as the base case for comparison. The predicted sea 

surface temperature using the dynamic combination algorithm consistently 

exhibits better accuracy to that of static combination in each season. 

Improved skill is achieved at 93% of the global grid cells compared to the 

static weights, in four, 10 year independent validation segments. Our results 

also consistently outperform the best performing single model amongst the 

three models considered. 
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5.1 Introduction 

There are various dynamic and stochastic models for hydroclimatic prediction, 

each model being subject to their own strengths and weaknesses. The 

selection of a single best model introduces selection uncertainty as well as 

discards any superior strengths of the models not selected over the full 

historical record but a shorter period of time (Hibon, M. and Evgeniou, T., 

2005).  This paper investigates combining multivariate responses from 

multiple models as an alternative to selecting a single model. Linear 

combinations of multiple model responses are used to reduce the predictive 

uncertainty of climate variables (Barnston, A. G. et al., 2003: Pena, M. and 

van den Dool, H., 2008: Peng, P. et al., 2002: Raftery, A. E. et al., 2005 ) . 

While climate scientists and hydrologists have been aware of the advantage 

of model combination (Fraedrich, K. and Smith, N., 1989: Sanders, F., 1963: 

Thompson, P. D., 1977), research on improving the linear  combination 

methods has been limited. One scope of improvement is to allow the linear 

model combination weights to be non stationary, by allowing weights to 

change as a function of time (Bates, J. M. and Granger, C. W. J., 1969: Miller, 

C. M. et al., 1992). Such an approach is similar to the rationale behind 

dynamic linear models (Huerta, G. and Sansó, B., 2007: Lundberg, S. et al., 

2000: West, M. and Harrison, J., 1997), where the parameters of the model 

(analogous to the model combination weights here) are allowed to vary with 

time. 

The rationale for model selection weights that vary over time has been 

investigated in hydroclimatology by McLeod et al. (1987) and more recently by 

Chowdhury and Sharma (2009) (hereafter referred to as CS2009). Such 

weights were termed dynamic model combination weights (or dynamic 

weights in short), and the improvement resulting from their use for 3-month-

ahead forecasts of the NINO3.4 index in contrast to temporally invariant 

weights (or static weights) were documented in CS2009. While the CS2009 

study was limited to univariate application, this paper extends the method for 

multivariate prediction of global sea surface temperature anomalies. The 

existing developments that set the background of our current research are 

discussed in next paragraph. 
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Extensive review and a bibliography on time series combination research 

compiled by Clemen (1989) corroborate the earlier studies on this topic. 

Combinations of multiple models have been widely adopted in practice in 

econometrics (Armstrong, J. S., 2001: Hoeting, J. A., Madigan, D., Raftery, A. 

E. and Volinsky, C. T., 1999). Research on non stationary model combination 

weights (mostly sourced from disciplines outside of hydroclimatology) has 

investigated various non continuous and non linear methods for combining 

constituent or component models (Deutsch, M. et al., 1994: Terui, N. and van 

Dijk, H. K., 2002: Yu, L. et al., 2005: Zou, H. and Yang, Y., 2004). In contrast, 

hydroclimatic research has commonly assumed a stationary skill of the 

component models (Butts, M. B. et al., 2004: Georgakakos, K. P. et al., 2004: 

Ragonda, S. K. et al., 2006: Shamseldin, A. Y., O'Connor, K.M., Liang, G.C., 

1997: Sharma, A. and Lall, U., 2004), with few exceptions that explore a 

dynamic combination (Devineni, N. et al., 2008: Marshall, L. et al., 2007: See, 

L. and Abrahart, R. J., 2001: Xiong, L. et al., 2001). Most of the above 

mentioned studies focus on models that produce single or univariate outputs. 

A dynamic model combination where multiple or multivariate outputs are of 

interest requires consideration of the multivariate or spatial dependence that 

needs to be simulated in the resulting response.  

This paper is organised as follows. We first describe the multivariate dynamic 

weight formulation and two techniques for predicting the dynamic weights 

forward in time. We next present the application of the proposed methodology 

to dynamically combine global sea surface predictions from three predictive 

models. Finally we securitized the results with relevant discussion and 

conclusion. 

5.2 Methodology 

The alternative forecasts issued by various models are combined using 

parameters referred to as weights in this paper. The persistence of individual 

model skill is reflected by using weights that vary over time (are dynamic 

instead of static). The time variant property of the weight raises additional 

requirement of forecasting the dynamic weight time series. Before presenting 

the rationale for forecasting dynamic model combination weights, we first 
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assess the rationale for estimating static weights or combination weights that 

do not vary with time. Static model combination weight, in its various forms, 

embodies a major portion of the current state of practice; hence it is used as a 

benchmark of our proposed method. Later we present the dynamic weight 

formulation and two methods for forecasting the dynamic weights forward in 

time. 

5.2.1 Static weight 
Consider multivariate predictions of a component model m for a time step t at 

any location l as {ûm,l,t : m=1,2,.. ; l=1,2,.. ; t=1,2.. }. Then the combined 

prediction of all component models 
l,t
(s) can be ascertained as: 


l,t
(s) = �

m
ûm,l,t wm,l    [1] 

Where, wm,l; m=1,2,.. are the static weights at location l, conditional to 

wm � 0 and �
m

wm= 1. 

The Equation [1] above denotes weighted average of multiple alternative 

forecasts. Note that the weights are equal in case of simple multi-model 

mean. The estimation of {wm,l} here largely follows a methodology similar to 

Robertson et al. (2004). The methodology can be divided into three steps. 

First, the weights at all grid points are derived by combining only two 

predictions rather than all of the models combined together. For example, 

each component model prediction at each grid point is paired against a 

common reference prediction. The reference prediction may be the 

climatology values (i.e. mean prediction over a long period). The static weight 

of each pair is estimated by minimising a loss function, chosen as the sum of 

squared errors in this study. Next, the resulting weights (paired against 

climatology) of all component models are normalised to add to unity. The 

above two steps are repeated for all grid points forming the raw weights. At 

third step, the spatial variations of these raw weights are reduced by a 

smoothing function centred at each grid point and spreading across its 

neighbours. 
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This method of estimating static combination weight ensures stability in the 

estimated values; an important consideration for combining multivariate 

forecast variables from a number of alternative models. Such an approach is 

attractive, but the fact remains that it is incapable of dealing with cases where 

individual model skills may be non stationary, in which case the combination 

weights may need to change with time as proposed in combination approach 

outlined in next section. 

Note that this paper follows notations of lower case italics for scalar values 

(e.g. ûm,l,t) and straight Romans for vectors (e.g. ûm,t � {ûm,l,t ; l=1,2,..}) and 

bold fonts (e.g. ût � {ûm,l,t ; m=1,2,..; l=1,2,…} or Û � {ûm,l,t ; m=1,2,..; l=1,2,…; 

t=1,2,..}) to represent higher dimension matrices if not mentioned otherwise. 

Vector series is shown within curly brackets {.}. Functions are denoted by 

capital italic names followed by brackets, such as minimum being specified as 

Min(.). Any departure from this notation (eg K in nearest neighbour method) is 

mentioned exclusively. 

5.2.2 Dynamic weight 
Consider the case of combining predictions of two component models, û1,l,t

and û2,l,t, at a location l. For ease of notation let us conceal the location 

subscript l now within the straight font notation as û1,t � {û1,l,t ; l=1,2,3..}: 

yt = û1,t �t + û2,t(1 � �t ) + ët   [2]  

 Where, yt: observed predictand at time t

�t: weight dynamically assigned to model 1, and 

 ët : the residual of the combined prediction. 

The algebraic solution of the weights in Equation [2] that makes ët = 0, �t

equals  

�t = e2,t / (e2,t -  e1,t )    [3] 

where e1,t  and e2,t are residuals of the model 1 and 2. 
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Analytically, � may span from -
 to +
.  We assume that the component 

models are unbiased and hence weights are constraint to be {�t ∈ 0�1}. So 

the observed dynamic weight is written as: 

�t= �t  0< �t <1   [4] 

  1  1< �t

  0  0> �t

Consequently, given the above derivation of �t , Equation [2] can be seen as 

dynamic extension of Equation [1] that is weighted average of two alternative 

forecasts at every time step.  

The combination problem can now be considered as a time-series forecasting 

problem where the response is the dynamic weight �t, conditional to 

predictors which could be chosen from past lags of � and selected 

exogenous variables. Additionally, the prediction problem needs to account 

for the significant mass of observations that fall precisely at 0 or 1, resulting in 

the prediction comprising of two prediction problems – (1) whether �t is 0, 1 or 

in-between, and (2) if in-between, what is the numeric value predicted. 

This paper presents two methods for forecasting the observed weight time 

series {�t; t=1,2..,tmax}  forward in time. The first method uses a mixture of two 

generalised linear regression approaches (GLM) and the second method uses 

a modified nearest neighbour sampling process (KNNW) for predicting the 

dynamic combination weights. 

(1) Mixture regression method 

The first method for predicting the combination weight t uses a generalised 

linear regression rationale. Generalised linear regression requires the 

response variable to belong to a family of exponential distributions, in contrary 

the weights {�t} follow a beta distribution (Bates, J. M. and Granger, C. W. J., 

1969) with high inflation at zero and one. Hence the linear regression is 

formulated by first defining {�t} as an aggregation of two intermediate 

variables, each of which is predicted separately. This approach of simplifying 
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the response distribution inflated at a point or several points as a mixture of 

two basis distributions is synonymous to modelling rainfall as a mixture of 

amount and occurrences (Bruhn, J. A. et al., 1980: Harrold, T. I. et al., 2003: 

Srikanthan, R. and McMahon, T. A., 2001: Yang, C. et al., 2005) or other 

applications involving a mixture of a discrete and continuous distributions e.g. 

the Zero Inflated Poisson Model (Hall, D. B., 2000: Martin, T. et al., 2005). 

These two basis distributions are: (1) mixture ratio {rt} and  the (2) categorical 

variable bias direction {bt}, as specified in Equations [5] and [6] below. 

rt = |e2,t| / (|e2,t| + |e1,t|)    [5] 

bt  =  mix  when  0< �t <1   [6] 

zero  0> �t

one  1< �t. 

It should be noted that the dynamic weight �t equals the mixing ratio rt when 

the bias direction bt equals “mix”, and equals 0 or 1 when that is not the case 

In the above formulation, the bias direction indicates whether both the 

forecasts are under or over predicting, or alternately the case where the bias 

is in opposing directions. The approach of using bias direction and mixture 

ratio as the basis for predicting the dynamic weight is similar to the forecasting 

method presented for the case of a single predictand in CS2009.  

The first stage of the forecasting weights models the mixture ratio {rt} using a 

generalised linear autoregressive (GLAR) structure (Shephard, N., 1995). The 

second stage models the  bias direction using a three category ordered 

logistic regression (OLR) (Agresti, A., 1996). For sake of space the details of 

GLAR and OLR are not included here, the fundamentals of these regression 

methods are available at the reference quoted above, and their application is 

illustrated with sufficient detail in CS2009. The brief algorithm for this method 

is repeated from CS2009 below:  
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i ) Compute the time series of mixture ratio and bias direction, as 

defined in Equations [5] and [6], from the residuals of the hindcast 

series.  

ii ) Formulate an OLR model to forecast the three bias categories {mix, 

zero, one}. Account for any seasonality in the bias category time 

series by formulating the prediction model on a seasonal basis, or 

introducing seasonally varying coefficients in the model. More specific 

examples on predictor selection methods are provided in the case 

study presented at later sections. 

iii ) Formulate a GLAR model to forecast the mixture ratio {rt} using an 

autoregressive structure and may be additional exogenous 

predictors. A logistic transformation of {rt} is needed, after which the 

GLAR parameters are ascertained. If necessary, account for 

seasonality using a periodic intercept term. 

iv ) If the GLAR forecast of mixture ratio at a future time t is �t, the 

dynamic weight at t is �t, 0 or 1 if OLR forecast result is mix, zero or 

one.  

As evident in this section, the regression based forecasting methods are 

constraint by the inflexible assumption of design distributions. The onerous 

requirement of conformity to a design distribution (here exponential 

distribution) can be avoided using a non parametric approach. This paper 

introduces such a non parametric method in the next section. 

(2) Nearest neighbour method 

The second method of forecasting model combination weights uses a non 

parametric weighted nearest neighbour approach known as KNNW (Mehrotra, 

R. and Sharma, A., 2006). The KNNW approach aims to ascertain the 

conditional dependence of predictands (�t) on a specified set of predictors 

(here mainly rt-.) by identifying nearest neighbours of the predictors in the 

historical record. A forecast is then expressed as an expected value of the 

conditional probability distribution formed based on the nearest neighbours. 
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Identification of the nearest neighbours proceeds by ranking historical 

responses using a modified squared Euclidean distance (�) metric: 

��(t) = �p �p (xp,� – xp,t)2    [7] 

 where,  xp,� = the scaled pth predictor vector at a past time �, 

  p = 1, 2, … index of multiple predictor vectors, 

  � = t-1, t-2, … index of past time, 

  �p=the influence load to pth predictor vector. 

The time series of historical weights {��; � =t-1, t-2, t-3 …} is ranked based on 

the order of the current ��(t) . If k� is the sorted rank of �� then k� ∈ {1, 2, 3, 

…K, 
}, where K is the farthest neighbour considered for ascertaining the 

prediction in the KNNW method. The probability of re-sampling a past 

observation at a future time t is then specified as follows (Lall, U. and Sharma, 

A., 1996): 

 Pr (�t = �� | X) = k� -1 /(1+ 2-1 +3-1… +K-1)   [8] 

Where X is the multiple predictor vector {xp,�}. 

The nearest neighbour method is implemented as follows. 

i ) Compute the time series of observed dynamic weights {�t}, using 

Equations [3] and [4].  

ii ) Identify the predictor set X to forecast {�t} from a pool of candidate 

predictors. If the dynamic weights exhibit a marked seasonal 

structure, it may be necessary to include a seasonal indicator in the 

pool of candidate predictors. Examples of possible candidate 

predictors and method of selection are shown in the case study. 

iii ) Formulate simple linear regression of �t ~ X. Use the normalised 

absolute value of the multiple regression parameters to determine the 

influence load {�p, p=1, 2,..}. This technique of assigning influence 

loads (also known as predictor weights for the KNN method) is as 
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described in Souza Filho and Lall (2003), and represents a 

simplification of the optimisation based alternative presented in 

Mehrotra and Sharma (2006). 

iv ) Specify an appropriate K, recommended to be the nearest integer to 

the square root of the training time series length (Lall, U. and 

Sharma, A., 1996). Rank past observed weights {��} based on the 

modified Euclidian distance (�) of current predictor to all predictors in 

the past as shown in Equation [7]. 

v ) The expected value at a future time t, as computed by the conditional 

probability distribution defined in Equation [8], is the weight at future 

time t. 

(3) Multivariate response 

We discuss here the steps adopted to represent spatial dependence in the 

forecasts of the multivariate sea surface temperature field. Examples of 

multivariate responses include global grided sea surface temperatures 

(Robertson, A. W. et al., 2004), wind speed (Yan, Z. et al., 2002) or multi site 

rainfall (Yang, C. et al., 2005). Combination of multivariate responses requires 

a matrix of spatially distributed weight time series. It is reasonable to expect 

that each component model of multivariate predictions would preserve spatial 

statistics to a varying degree. Our combination weights are restricted to �t ∈

{0�1} and thus help to conserve the characteristics of the component model’s 

spatial dependence, allowing simple multivariate extension of the dynamic 

combination method. The inter dependence of the spatially distributed weights 

are simulated through the dependence characteristics of the predictor matrix. 

This is done by smoothing the raw predictors’ across the neighbourhood as 

shown in Equation [9]. The readers are reminded that the location subscript l

in Equation [2] to [8] is concealed in the straight font, since those equations 

are applicable to all grid points xp,t = {xp,l,t ; l=1,2,..}. If the smooth pth predictor 

at a location l at any time t is xp,l,t then, 

xp,l,t = �n cp,n • x*p,n,t     [9] 
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Where,  

n= l ± 1, l ± 2, … location index of the neighbours relative to this 

location l, 

x*p,n,t = the raw scaled pth predictor at a neighbouring location n at any 

time t, and  

cp,n = a measure of influence (eg. correlation coefficient) of the 

predictor at any neighbour n to this location l (note that cp,n=l = 1 if the 

measure is correlation coefficient). 

In summary, the dynamic weight combination method begins with computing 

the observed weights, see Equation [3] and [4], from the hind cast series of 

the two component models. Then the raw predictors of the observed weights 

at each grid point {x*p,n,t } are selected from a pool of  candidate predictors. 

Spatial variability of the selected raw predictors is condensed later, see 

Equation [9]. Once the predictors are ascertained the weights are forecasted 

applying either the mixture GLM or the non parametric method KNNW. 

5.3 Application 

The method is applied to improve the 3 months ahead prediction of global sea 

surface temperature anomalies (SSTA) at 5° by 5° gr ids of the global sea 

surface between 60°N to 40°S. The base of the anoma lies was the 

climatology of Global Ocean Surface Temperature Atlas (GOSTA) from 1951 

to 1980 (Bottomley, M. et al., 1990: Reynolds, R. W. and Smith, T. M., 1995). 

The observed data set came from the extended SSTA set, reconstructed at 

the US National Climate Data Centre (Smith, T. M. and Reynolds, R. W., 

2002). Three model predictions were combined. The first and second models 

were prepared by the DEMETER project (ECMWF, 2004) of European Centre 

for Medium Range Weather Forecast (ECMWF). One of these two models 

was developed at ECMWF is referred as ECM here (Wolff, J. E. et al., 1997), 

the other model comes from Météo-France (Madec, G. et al., 1997) which is 

referred as MetF in short. The DEMETER models (ECM, MetF) are global 

coupled ocean-atmosphere models. The third model was developed at the 
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Climate Prediction Centre of the National Oceanic and Atmospheric 

Administration, USA and referred to as the CPC model (van den Dool, H., 

2000: van den Dool, H. et al., 2003). The CPC model used a statistical 

technique known as constructed analogue to forecast SSTA as linear 

combination of all past observation at the same month. All SSTA time series 

were downloaded from the data library of International Research Institute for 

Climate and Society, New York. The common period of hind-casts among 

these three models extends for a period of March 1958 to December 2001. 

Note that this study accepts the component model as black box and ignores 

any minor biases. The removal of apparent bias by looking only through a 

certain time window might affect any unique strength of the model at an 

alternative time window. 

As mentioned at the beginning of the Section 5.2, we decided to compare the 

performance of dynamically combined prediction to the predictions obtained 

by static combination.  Each of the three models (ECM, MetF, CPC) were first 

combined against the GOSTA climatology in isolation (Robertson, A. W. et al., 

2004). The three sets of weights were normalized at the next step. The spatial 

noises of the normalized raw weights were condensed by taking an average 

value of weights of all surrounding grid cell within ±20° distance. These 

smooth static weights were used to combine the three component models and 

form the static weight alternative 
l,t
(s) of our proposed method. 

The readers may note that the dynamic weight formulation and forecasting 

methods developed in Section 5.2 are based on two component models only. 

Application of this method to higher number of component models requires a 

hierarchical pair-wise combination tree. The design of the tree may be 

influenced by a number of considerations, such as residual covariance and 

existence of static combination nodes. The formation of pair-wise combination 

tree of the three component model is illustrated in Figure 5.1. The two global 

circulation models, ECM and MetF were first combined using static weight as 

described in Section 5.2.1. The joined ECM+MetF model were then combined 

with CPC using the dynamic weight logic. As a first step, the dynamic 

combination method computed the observed weights of (ECM+MetF) and 
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CPC pair using Equation [3] and [4]. Contours of the mean of the observed 

weight time series are shown in Figure 5.2. The background shades in Figure 

5.2 llustrates the cells with high concentration of 0 or 1 in the observed weight 

time series. The next step requires selection of predictors to forecast these 

observed weight time series. 

ECM+MetF+
CPC

ECM+MetF

ECM MetF CPC

Figure 5.1 The combination tree of the three component models. The 

component models are, MetF: Météo-France, ECM: European Centre for 

Medium Range Weather Forecast, CPC: Climate Prediction Centre of the 

National Oceanic and Atmospheric Administration, USA. 

Figure 5.2 Mean observed weights from 1958 to 2001 for the dynamic 

combination of the (ECM+MetF) and CPC model combination. The yellow 

zones are locations where the majority of the three category observed weights 

{0, 0<�<1, 1} are either 0 or 1. 
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5.3.1 Predictor selection 
The predictors for both the mixture GLM and the KNNW forecasting methods 

are ascertained from lagged values of the mixture ratio (rt) and an indicator of 

the relative bias associated with both models, referred to as the residual ratio 

(�t) as shown in Equation [10].  

�t = e2,t/e1,t     [10] 

The residual ratio �t is constrained to fall within {-1 � 2} avoiding numerical 

instability when e1,t � 0. A common set of predictors is used for the entire 

global sea surface for simplicity. This is achieved by first identifying the 

geographical spread of the concentration of high loadings of the first few 

principle components of observed � or {�l,t; l=1,2.., t=1,2..}. We narrowed our 

predictor search by primarily aiming to forecast � at these identified locations. 

At each identified location, we select a set of predictors based on the partial 

autocorrelation to the response, backward stepwise selection using an F test 

(Chambers, J. M., 1992: Hastie, T. and Pregibon, D., 1992: Hastie, T. et al., 

2000) and partial mutual information (Sharma, A., 2000). This research uses 

the same predictor variables for all the seasons. Seasonality is represented 

by using a seasonal intercept or a variable that remains constant for each 

season (month). Based on the predictor selection procedure outlined above, 

the optimal predictors were identified as autoregressive lags of the mixture 

ratio of order 3, 6 and 12 months and residual ratio of 3 and 12 months as 

shown in Table 5.1. The approach of using minimal predictor set ensures 

strong parsimony, an important feature of any forecasting model. Note that 

the predictors are limited to persistence only, to maintain simplicity in our 

presentation we do not attempt to search for any predictors exogenous to the 

observed weights. 

Spatial dependence in the dynamic weight is represented by using predictors 

that represent a weighted average over a local spatial domain, as explained 

through Equation [9]. In this study the correlation coefficient depicts the 

parameter {cn} of Equation [9]. An exhaustive cross correlation analysis of raw 

predictors at each grid points against all other grid locations concludes that 

the influence beyond ±20° distances reduces signifi cantly. Figure 5.3 displays 
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one such analysis at a grid point in equatorial Pacific Ocean. Accordingly 

each raw predictor vector is smoothed by a weighted linear combination of 

neighbouring predictors within ±20° where c n >0.4. 

Table 5.1 Predictor variables for pair wise model combinations.  

MODELS Predictor vector 

GLAR  r� ; � =t– 3, 6, 12 months 

OLR �� ; � =t– 3, 12 months 

KNNW  r� ; � =t– 3, 6, 12 months 

r: mixing ratio, �: residual ratio, see Equation [5] 

Figure 5.3  Spatial correlation of weights in all cells to a reference cell at 0°N x 

240°E. Correlations � 0.4 are drawn in thicker line in colour, and lower values 

(<0.4) are shown in black broken line. Note the little or no correlation beyond 

20° from the reference cell (0°N x 240°E). Similar decay pattern is observed 

when the reference cell is moved across the ocean surface. 
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5.3.2 Forecasting dynamic weights 
As mentioned earlier in the text, the two methods used to forecast the weights 

are the mixture GLM and the KNNW. The calibration of the mixture GLM is 

based on maximizing the likelihood of mixture ratio in GLAR and bias 

categories in OLR model estimates separately. The value of K in KNNW 

method is estimated based on square root of calibration data length (Lall, U. 

and Sharma, A., 1996). The influence load �p of Equation [7] is estimated 

using scaled absolute value of the linear regression coefficients (Mehrotra, R. 

and Sharma, A., 2006) of predictand (observed weight) versus the predictor 

set. Only one set of influence loads are used for the entire world for simplicity. 

This spatially uniform influence load is ascertained by first estimating linear 

regression coefficients at all grid points. The marginal distribution for each 

regression coefficient across the globe is ascertained next and the value 

corresponding to the highest probability density (mode) is selected as 

representative for the entire world. Results from these two dynamic weight 

forecasting methods are presented in the next section. 

5.4 Results and Discussion 

It should be noted that forecast combination adds parameters supplementary 

to each component model and hence any combination exercise is prone to 

over fitting (Pena, M. and van den Dool, H., 2008). Moreover dynamic 

combination introduces additional parameters and complexity to the overall 

prediction scheme in comparison to a static combination approach. It is 

imperative that the performance of any such “complex” model be evaluated in 

a carefully designed cross-validation setting. We attempt to do so by 

estimating model prediction error, reflective of the performance of the model 

in a pure forecast setting. This study validates the results obtained by all 

procedures by applying the models in four ‘ten year’ blocks. For example, 

results from 1992 to 2001 are based on parameters that have been calibrated 

for the period of 1958 to 1991 only. We believe that the ten year gap would 

minimise any likely artificial inflation of skill because of boundary influences. It 

is pertinent to note the caution (DelSole, T. and Shukla, J., 2009) against 

inadvertently instilling artificial skill in validation results by biased predictor 

selection. The possibility of overestimating validation performance arises if the 
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validation period is not removed prior to predictor selection. In this research 

the predictors are limited to only three auto regressive terms, the choice of 

which does not change by expunging the validation data. Besides, as 

recommended by DelSole and Shukla (2009), the predictors are chosen 

based on a variety of rigorous statistical analyses (see Section 5.3.1) rather 

than simple correlation which may exhibit spurious signal. Overall we believe 

that our validation result reflects realistic predictive skill of the models. 

The prediction obtained by the dynamic weights is compared against the 

static weight prediction which in turn is compared against the selection of the 

best performing single component model (MetF in this study). 

First we compare the extent of the overall reproduction of global SSTA 

distribution by MetF to that of combined models. The probability density of the 

observed and predicted SSTA at all grid locations pooled together is 

presented in Figure 5.4. The figure illustrates unconditional distribution and 

biases. It shows that the density of the SSTA predictions using dynamic 

weight combination is closer to the observed SSTA when compared to static 

weight; whereas static weight combination outperformed the results compared 

to the best performing single model MetF.  
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Figure 5.4 The pooled probability densities of the global sea surface 

temperature anomalies are drawn over four validation periods. The grey 

shade represents the observed anomaly, the green dash line the MetF 

prediction, the red dash line the static combination results, and the blue solid 

line the dynamic combination results. Note the improvement in the 

representation of the overall variation in the anomalies through the use of the 

dynamic combination. 

This study used mean squared error (MSE) as a relative measure of skill 

between different models. Table 5.2 demonstrates a consistent reduction of 

MSE due to model combination across all the four validation blocks. Static 

combination offered reductions of 5 to 13% of MSE of component models 

whereas the dynamic combination yields higher reduction of 13 to 21%. There 
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was no case of increased MSE after predictions are combined. The 

improvements achieved by the either method of forecasting are similar with 

minor but consistently better performance of KNNW method over the mixture 

GLM method. We further examined the performance of the combination 

methods on a month by month basis by analysing (as shown in Table 5.3) the 

percentage reduction of MSE in each month with respect to MSE of the best 

single model MetF. The dynamic combination of predictions reduced MSE 

compared to that of static combination which in turn is better than any single 

model predictions. We next assess the performance of dynamically combined 

prediction in representing spatial dependence across the forecasted SSTA 

field.  

Table 5.2  MSE of SSTA predictions across various validation periods. 

 DWR DWK SW CPC ECM MetF 

1962 to 1971 5.51 5.49 6.09 6.97 6.63 6.56 

1972 to 1981 5.52 5.50 6.10 6.95 6.68 6.52 

1982 to 1991 5.56 5.52 6.11 6.90 6.67 6.49 

1992 to 2001 5.58 5.55 6.13 6.97 6.77 6.45 

(DWR: dynamic weight forecasted using regression, DWK: dynamic weight 

forecasted using KNNW, SW: static weight, CPC ECM MetF: component 

models) 

The contours of MSE of statically combined predictions minus that of 

dynamically combined prediction using the KNNW approach across the global 

sea surface grid are presented in Figure 5.5. The cells with positive difference 

denote improvement and are shown using blue shades and the cells with no 

improvement are shown in yellow, the cell counts being summarised in Table 

5.4. Figure 5.5 and Table 5.4 demonstrates that 96 to 98% of the locations 

exhibited improved predictions due to dynamic weight method compared to 

static weight. The decrease of sum of squared error is found statistically 

significant when analysed by a paired one tailed t test (p= 2.94x10-5). Similarly 
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paired one tailed t test of MSE at all the grid points accepted the null 

hypothesis that the MSE of KNNW is less than that of mixture GLM at 

p=0.0034.  

Table 5.3 Percentage reduction of MSE using the dynamic combination 

approach compared to the MSE of the MetF model. The errors of all four 10 

year blocks (1962-2001) validations are aggregated here. 

 DWR DWK SW  DWR DWK SW 

Jan 15.7 16.2 9.4 Jul 28.3 29.3 19.6 

Feb 10.4 10.8 3.9 Aug 12.1 13.1 7.6 

Mar 8.3 8.7 1.8 Sep 7.6 8.1 0.1 

Apr 18.8 19.1 9.8 Oct 15.9 16.2 3.7 

May 14.7 15 2.8 Nov 12.9 13.3 0.2 

Jun 16.9 16.8 7.2 Dec 12.1 11.9 2.5 

(DWR: dynamic weight forecasted using regression, DWK: dynamic weight 

forecasted using KNNW, SW: static weight.)  

Table 5.4 Percentage of cells where the KNNW dynamically combined model 

MSE is smaller compared to that of static weight combination. 

Years 1962 to 1971 1972 to 1981 1982 to 1991 1992 to 2001 

Percent 98.2 97.7 97.7 96.1 
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Figure 5.5 The reduction in prediction MSE due to the KNNW dynamic weight 

combination compared to that of static weight combination. The lighter shades 

(blue) and solid contours are the zones with improved prediction (or lower 

MSE). The darker boxes (red) and broken contours are the zones exhibiting 

indifference or worse prediction. 
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The representation of spatial dependence is analysed by measuring linear 

inter-dependence across the global grid. The correlation of the SSTA time 

series at a reference grid point to all other cells in the grid is measured first. 

The reference grid point is then moved across all the available grid cells {l=1, 

2, …lmax}, resulting in ½ lmax (lmax -1) estimates of the correlation. A subset of 

these correlations is compared against their historical values as illustrated in 

Figure 5.6. Few systematic losses (or gain) of spatial correlation were evident 

except where the observed correlation is low. The artificial inflation of linear 

dependence around low correlation zone can be attributed to the underlying 

component model predictions. We have drawn a least square fitted line to 

correlations for both the dynamically combined prediction and the best 

component prediction MetF. The fitted line correspond to the combined 

prediction is closer to the 1:1 line indicating a better match to the observed 

statistics. 

Our case study found that the improvement due to dynamic combination is 

spatially and temporally consistent. We observed that due to the lower 

accuracy of the component models at extra tropics (hence higher scope of 

improvement), the reduction of MSE around extra tropics is higher than that of 

equatorial zones. The weaker improvements around equatorial zones concur 

the earlier study of univariate dynamic weight application of CS2009 study 

that had achieved small improvement in NINO3.4 prediction. The spatial 

consistency of improvement is scrutinized as follows. First, a spatial spread of 

minimum MSE out of three models (ECM, MetF, CPC) separately at each grid 

point is selected. The percent improvement over this potential minimum MSE

spread is drawn in Figure 5.7. We found a spatially consistent reduction of 

MSE (by approximately 50%) due to dynamic combination. On the contrary, 

the static combination could not outperform the best component model in 

significantly large pockets in the South Pacific Ocean and around the east and 

west coast of the North American continent. This observation is analogous to 

past studies that had experienced lesser skill of combined models in the extra 

tropics (Colman, A. W. and Davey, M. K., 2003).  
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Figure 5.6. Correlation of SSTA at a reference grid point to the rest of the sea 

surface grid, the reference grid point being rotated across the grid. The 

correlation ascertained using the predicted time series is plotted against that 

using the observed time series during a validation period. Only 1000 randomly 

selected estimates of the correlation are drawn for clarity. The diagonal is the 

1:1 line and the red dash line is the least square fitted line to the points. The 

green dash dot line is the least square fitted line to MetF correlation vectors 

(not shown here). 
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Figure 5.7 The percent reduction of MSE at each grid location compared to 

the best component model at that grid point. The positive reduction denotes 

improvement. The positive contours are red solid line, the negative contours 

are drawn in black broken line. 

In this study, the dynamic combination is only applied at the highest pair of the 

combination tree (Figure 5.1) unlike the pair wise dynamic weight combination 

method of CS2009. This simplification in the combination method architecture 

did not worsen the MSE results for our case study significantly. Ideally one 

can expect predictions to be improved if the pair wise combination tree 
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contains only one dynamic weight node with the rest remaining as static 

weight nodes. While multiple nodes of dynamic weights provide multiple 

possibilities of improvement, we recommend a single dynamic node only at 

the highest tree level in case of multivariate prediction, a sensible 

simplification when the number of component models is high. Dynamic 

combination is appropriate for cases when the number of alternative forecasts 

is small and the length of hindcasts is long. The issues associated to 

combining a large number of forecasts with small period of hindcast are 

discussed in detail by Pena and van den Dool (2008).  This paper does not 

investigate the effect of varying the number of component models or 

combination tree architecture. 

5.5 Conclusion 

This study illustrated two methods of dynamically combining multiple 

multivariate predictions of globally grided sea surface temperature anomalies 

available at 5°x5° grids. These anomalies were pred icted three months in 

advance for a period of 1958 to 2001 using three separate models (referred to 

as component models in this study). As a first step, the observed vectors of 

combination weights (i.e. dynamic weights) were computed from the hindcast 

time series of the SSTAs at each sea surface temperature grid cell. Next, two 

approaches for forecasting multivariate dynamic weights 3 months ahead 

were applied, and performance tested using independent validation in 10-year 

blocks. The first of the two approaches uses a mixture of a three category 

ordered logistic regression model to forecast the state of bias of component 

prediction pairs and a generalised linear autoregressive model to ascertain 

the magnitude of the mixing weights in case of opposing bias is forecasted. 

The second approach uses a nearest neighbour formulation where Euclidean 

distances are ascertained based on the relevance of each predictor to the 

observed dynamic weight vector. The prediction skill from static weight 

combination was used as the base case to compare the merits of using 

dynamic weights instead. The predicted sea surface temperature using the 

dynamic combination algorithm consistently exhibited better accuracy, both in 

space and time, to that of the static combination. Improved skill, in four 10 
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year validation blocks tested, is achieved in 96% or more global grids with the 

rest showing indifference to static weight skills. 
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CHAPTER SIX 

This chapter reprinted the following article: 

Chowdhury, S. and Sharma, A. (2009), Multi-site Seasonal Forecast of Arid 

River Flows Using a Dynamic Model Combination Approach. Water 

Resources Research, under review. 

This work has been submitted for publication. Copyright in this work may be 

transferred to American Geophysical Union without further notice, and this 

version may no longer be the latest version. 
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6 MULTI-SITE SEASONAL FORECAST OF ARID 
RIVER FLOW 

ABSTRACT 

This paper dynamically combines three independent forecasts of multiple river 

flow volumes a season in advance for arid catchments with high variability. 

The case study considers five inflow locations in the upper Namoi Catchment 

of Eastern Australia. The seasonal flows are predicted based on concurrent 

Sea Surface Temperature Anomalies (SSTA), which are predicted a season 

forward using a dynamic combination of three SSTA forecasts. The river flows 

are predicted using three statistical forecasting models: 1) a mixture of 

generalised log normal and multinomial logit models; 2) the local regression of 

independent components of five inflows; 3) the weighted nearest neighbour 

method; where each of these models use the predicted SSTA along with prior 

lags of the flow as the main driving variables. The study demonstrates that 

improved SSTA forecast (due to dynamic combination) in turn improves all 

three flow forecasts, while the dynamic combination of the three flow forecasts 

results in further, although smaller, improvements.
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6.1 Introduction 

Seasonal forecast of river flow is vital for efficient water resource 

management, aiding irrigation, hydropower generation, flood mitigation, 

drinking water supply and managing water dependant eco systems. The water 

availability in the coming irrigation season is a prime consideration to decide 

plantation areas of water sensitive annual crops at the start of the season. 

The potential benefit of seasonal flow forecast is high for agricultural 

economies of arid regions (Podbury et al. 1998, Letcher et al. 2004). 

Hydrologists have a number of models at their disposal to forecast river flow, 

with a varying degree of success. The structural uncertainty of a single model 

can be reduced by combining alternative modelling platforms. This paper 

investigates the scope of improving forecast skill by dynamically combining 

alternative forecasting approaches. Various hydrological studies have 

reported improvement of flow forecast after combination of multiple methods 

(Ajami et al. 2006, Devineni et al. 2008, Georgakakos et al. 2004, Goswami 

and O'Connor 2007, Ragonda et al. 2006, Shamseldin 1997). This research 

uses a pair wise dynamic combination approach first introduced by 

Chowdhury and Sharma (2009a) in the context of combining forecasts of the 

NINO3.4 sea surface temperature anomaly (SSTA) based index 

representative of the strength of an El Nino Southern Oscillation anomaly. The 

improvement of global SSTA forecast was recently reported by Chowdhury 

and Sharma (2009a, 2009b) after dynamically combining three SSTA forecast 

models. Can similar improvements be achieved for flow forecast models? 

When can we expect forecast combination to exhibit improvement? What 

improvement of flow forecast is delivered by better global SSTA forecast? 

This paper seeks to explore these questions. 

This study forecasts stream flow directly circumventing the uncertainty of 

needing to specify rainfall runoff models. This approach has certain 

advantages especially for regions with few rainfall events and sparse rain 

gauge networks. For example, flow is mostly a continuous variable with 

considerable memory which assimilates information spatially. Uncertainty of 

flow measurement is less demanding than the extrapolation of point rain 

gauge into catchment scale. Consequently forecast of flow rather than rainfall 
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is often recommended (Chiew et al. 1998, Dutta et al. 2006), which is 

strengthen by the fact that stream flow is the ultimate variable of interest for 

water resource management. The main challenge in such a predictive 

framework is to identify the climate variables that constitute predictors of flow. 

Various indices and transformations of SSTA have been found to be useful as 

predictors of hydrological variables such as rain and flow (Sharma 2000c, 

Drosdowsky and Chambers 2001a, Verdon et al. 2004). The relationship of El 

Nino Southern Oscillation (ENSO) and flow has been well established in many 

parts of the world (Hamlet and Lettenmaier 1999, Chiew and McMahon 2002, 

Muluye and Coulibaly 2007). Accordingly, the concurrent SSTA field at Pacific 

and Indian Oceans are used as the predictor source in our case study. 

The case study comprise of forecasting seasonal flow at five locations of an 

arid catchment. The details of the catchment and flow characteristics are 

documented in Section 6.3. Since, forecast error of any model is generally a 

culmination of imprecise predictors and structural uncertainty (Butts et al. 

2004, Huard and Mailhot 2006); we first attempt to reduce the flow forecast 

error by using a more precise predictor approximation selected from a SSTA 

forecast field that arises through a dynamic model combination approach 

(Chowdhury and Sharma, 2009b). Secondly the structural uncertainty is 

reduced by considering three flow forecast models and using a dynamic 

combination approach to arrive at the final forecast. Lastly, we analyse the 

performances of the various forecast methods considered and scrutinise the 

advantages of forecast combination in light of our case study.  

This paper is organised as follows. First we describe the methodology of 

dynamic combination algorithm preceded by background literature on time 

series combination. Then we illustrate the benefit of dynamically combining 

three SSTA forecasts as reported in Chowdhury and Sharma (2009b). Section 

6.3 describes the study catchment along with the three flow forecast models 

considered. This is followed by an analysis of results and related discussions 

on the merits and demerits associated with the various approaches 

presented. 
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6.2 Model Combination 

6.2.1 Background 
Combinations of multiple forecasts have been widely adopted in practice in 

the time series forecasting discipline (Clemen 1989, Hoeting 1999, Armstrong 

2001). There has been various studies supporting and analysing a range of 

forecast combination methods (Menezes et al. 2000, Ajami et al. 2006, Kim et 

al. 2006, Devineni et al. 2008) that provide a good background to this area of 

research. In general the model combination involves linear combination of 

multiple response time series where the combination weights remains time 

invariant. While McLeod et al. (1987) were the first to propose a non 

stationary model combination weight, only few studies using such dynamic 

weights in hydrology (See and Abrahart 2001, Xiong et al. 2001, Marshall et 

al. 2007) have been reported since. One approach is to combine the models 

in pairs using combination weights that vary in time reflecting the persistence 

of individual model skills. A summary of the pair-wise dynamic weight 

combination method is presented next, with readers being referred to 

Chowdhury and Sharma (2009a, 2009b) for additional details on this topic. 

6.2.2 Dynamic weight combination 
Consider the case of two component hydrologic forecasts, û1,l,t and û2,l,t, at a 

location l. For ease of notation let us conceal the location subscript l within the 

straight font notation as û1,t � {û1,l,t ; l=1,2,3..}. These can be combined as: 

�t = û1,t �t + û2,t (1 � �t )     [1] 

Where �t : combined forecast at time t and �t: weight dynamically 

assigned to model 1.  

The observed dynamic weight is defined as: 

�t= e2,t / (e2,t -  e1,t )      [2] 

Here e1,t  and e2,t are residuals of the model 1 and 2. Ignore any forecast bias 

and constraint the weights to positive fractions only, {�t ∈ 0�1}. The 

combination procedure is as follows. 
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First, prepare a time series of weights {�t; t=1,2,3,..} using component model 

hind cast residuals as shown in Equation (2). Next predict the weight time 

series forward by formulating a model with appropriate predictors and auto 

regressive components as well as multi site characteristic of �t that is {�l,t; 

l=1,2,3..}. Two such models were presented in Chowdhury and Sharma 

(2009a), one being a mixed regression model and the other being a weighted 

nearest neighbour method. Once such a predictive model has been 

formulated, we use the predicted future weight (say �t+1) to combine two 

alternative forecasts û1,t+1 and û2,t+1 into �t+1. Note that the model combination 

operates on a pair-wise basis, with multiple pairs being formulated if more 

than two model forecasts are to be combined. Details on the rationale behind 

the model combination and the logic for imparting spatial dependence in 

multivariate forecast fields are presented in Chowdhury and Sharma (2009b). 

This paper demonstrates weighted combination of mean forecast only. As a 

result, the information about the uncertainty in the process contained in the 

forecast ensemble is not retained in the dynamic combination forecasts. 

However, estimates of the standard error associated with the forecasts can be 

obtained by building a conditional variance model (similar to the dynamic 

combination that is analogous to a conditional mean), or alternately by using 

well formulated conditional bootstrap alternatives to develop nonparametric 

error estimates. A practical application of improvements due to dynamically 

combining three separate sea surface temperature forecast is described next. 

6.2.3 Combining sea surface temperature forecasts 
Concurrent reconstructed sea surface temperature anomalies (SSTA) at 5° by 

5° grids of the global sea surface between 60°N to 40°S are prime source of 

flow predictors used in this research. Reconstructed, monthly sea surface 

temperature anomalies, known as the Kaplan Optimal Smoother SSTA 

(Kaplan et al. 1997, Kaplan et al. 1998) are source of observed SSTA time 

series. This reconstructed dataset extends from 1856 to 2003. 

One, two and three months SSTA forecast are necessary to predict flow 

volumes over the next three months. Two sets of SSTA forecasts have been 

used in the study reported here. The first of these originates from  Météo-
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France (Madec et al. 1997), which is referred as MetF here, it is developed by 

the DEMETER project (ECMWF 2004) of European Centre for Medium Range 

Weather Forecast. The second forecast set is developed by dynamically 

combining the following three models. They are (a) MetF, (b) another 

DEMETER model that is referred to as ECM (Wolff et al. 1997), and (c) a 

statistical model from Climate Prediction Centre (CPC) of the National 

Oceanic and Atmospheric Administration, USA (van den Dool 2000, van den 

Dool et al. 2003). The common hindcast period of these models used in our 

study is 1958 to 2001. 

The combined SSTA forecast is named the DW model here, named after the 

dynamic combination method that is used. Figure 6.1 shows the percent 

reduction of mean of squared error of the DW forecast compared to that of 

MetF forecast for each SSTA grid cell considered. The MetF forecast is 

chosen for comparison due to its smallest error variance to that of CPC and 

ECM. The figure shows a considerable improvement of the SSTA forecast 

post combination; most of the region returns a 25 to 75% reduction in mean 

squared error. Can flow forecast be improved to the similar extent by using 

this improved SSTA forecast as the basis of concurrent prediction? 

Additionally, could further improvements in flow forecasts be possible by 

considering a dynamic combination of multiple flow forecast models? These 

are two of the questions we seek to address in the remainder of this paper. 
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Figure 6.1 Percent reduction of combined SSTA forecast compared to that of 

single best SSTA forecast (MetF model). 

6.3 Catchment Description and Flow Forecasting Methods 

6.3.1 Catchment and river description 
The Namoi River Catchment, with an area of 42,000 km2, is a major 

contributor of flows within the Murray Darling Basin in Eastern Australia. The 

centroid of the catchment is about 450 km north-west of Sydney. There are 

three major reservoirs with a total storage capacity of 872x106 m3 and 

numerous other small dams, weirs and on farm ponds. The river supports 

96,000 ha of irrigated agriculture in addition to stock and domestic water use 

of the local population. Cotton is the major crop grown along with wheat and 

grazing pasture for the live stocks. Long term mean surface water use is 

estimated to be 320x106 m3 which is close to half of the available runoff in the 

catchment (CSIRO 2007). Water extraction is regulated by the Government of 

the State of New South Wales (NSW). Available water resources are 

allocated at the start of a sowing season to the irrigators proportional to 

individual entitlement of annual extraction volume. The allocation is 

continually revised throughout the irrigation season. Australian climatic 

variability results in an unreliable pattern such as a low allocation (less than 

50%) era of 5 years followed by a resource abundant decade. Hence, it is 
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typical of farming in an arid environment to vary sowing area of irrigated 

annual crops from year to year. The land developed at the start of the sowing 

period is dependant on present allocation of irrigation water and a forecast of 

likely increase in allocation due to higher inflow in next few seasons. 

Overdevelopment of the land than the available water increases capital 

expenditure, while underdevelopment amounts to a lost opportunity of the rare 

water abundant years. Hence improved forecast of next seasons flow in the 

major rivers in the Namoi Catchment has good economic potential. 

The eastern half of the catchment is relatively wet (Preece and Jones 2002) 

and includes all the major streams notably meeting irrigation demand. This 

study chose five major river flow locations in the eastern half of the Namoi 

Catchment as shown in Figure 6.2. The overall natural flow has been 

artificially altered to a varying degree by extractions, weirs and river 

regulations since the European settlement in the catchment in the nineteenth 

century. The flow of Namoi River at Keepit and the Peel River at Carroll Gap 

are regulated by the Split Rock Dam and the Chaffey Dam constructed in 

1987 and 1979. We removed any human induced change in volumes 

(response time series) prior to seting up the seasonal forecasting models. 

This is done by modelling the river system by the Integrated Quantity Quality 

Model (IQQM). The hydrologic model IQQM was progressively developed in 

the 1990s by the NSW Government in Australia (Simons 1996). This is a 

conceptual deterministic model that mainly simulates (using a node link 

structure) daily rainfall runoff, river routing, reservoir operation, irrigation 

demand and associated extractions subject to legal compliance (Hameed and 

Podger 2001). The calibrated Namoi IQQM has been applied in various water 

management studies (CSIRO 2007) including the development of a legal 

framework to share water resources of the catchment (NSW Government 

2003). All the dams, weirs, towns, irrigation and other extraction points are 

removed from the Namoi IQQM to simulate natural daily flow free of human 

interference. The natural daily flows of 1898 to 2007 are aggregated to 

estimate the seasonal flows used in this study. 
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Figure 6.2 Namoi River Catchment flowing in a westerly direction. The five 

flow locations modelled are shown highlighted. 

6.3.2 Flow variability 
Strong flow variability is customary to arid rivers in Australia and southern 

Africa. A number of studies in past and present acknowledged the annual 

variability (McMahon 1979, Ward 1984, Chiew et al. 2003, McMahon et al. 

2007) which tends to get more erratic at seasonal time scales. Mean volumes 

of Namoi inflows are two to ten times higher than the median flow volumes, 

see Table 6.1. Considerable spatial difference of flow height within Namoi 

Catchment were reported in past studies as well (Crapper et al. 1999). 

Readers may refer to Kachroo (1992) for an overview of the formulation 

process behind a flow forecast model. Forecasting flows of arid rivers pose 

additional challenges related to long hydrograph tails (Anderson and 

Meerschaert 1998) as seasonal pattern and persistence forms a minor portion 

of the total variance. A number of prior researches identified various SSTA 

derived indicators (including NINO3.4) as prime predictors of flow and rainfall 

in Eastern Australia. However simulation of a variable that exhibits a high 
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coefficient of skewness through a simple (linear) model using predictors that 

are not as highly skewed is difficult. 

Table 6.1.  Flow locations, catchment area and associated statistics in units of 

1000 m3. Note the spatial and temporal variability across the five rivers. 

Catchments (km2) Min Med Mean Max 

Manila River at Split Rock 1650 70 5790 18780 429920 

Namoi River at Keepit Dam 5700 830 45410 94560 1050040 

Peel River at Carroll Gap 4670 1440 29300 65830 640570 

Mooki River at Breeza 3630 0 3150 29090 635860 

Cox’s Creek at Boggabri 4040 0 1770 16430 417860 

This section presents three methods that are primarily aimed at our case 

study of forecasting flows at five locations using predictors from a concurrent 

SSTA field. Three flow forecasting models are developed with an aim of 

demonstrating the dynamic combination of three forecasts. One of the prime 

considerations in forming these three models is to maximise the structural 

independence among the three. Prior to presenting detail formula of the flow 

forecasting models in the following sub sections, let us introduce the notation 

style for the ease of readership. This paper denotes variables in italics for 

scalar values (e.g. yl,t), in straight Romans for vectors (e.g. 	t = {
l,t ; l=1,2,..}) 

and in bold fonts for higher dimension matrices (e.g. V={vi,t; i=1,2..I; 

t=1,2,..T}). Functions are defined by italic names followed by brackets, such 

as logarithm being specified as log(.). The response vector (river flow) at a 

location l at time t is denoted by yl,t and random predictors are usually given a 

notation of X or Z, Greek characters denotes parameters. 

6.3.3 Mixture of linear and multinomial regression (GLM) 
The Generalized Linear Model (GLM) (McCullagh and Nelder 1989, Chandler 

2005, Yang et al. 2005) is an extension of linear regression to include 



Chapter 6 Multi-site River Flow 

Page 150 

response variables that follow a family of exponential distributions. The 

exponential family relevant to hydrology includes log Normal, multinomial and 

Gamma distributions. We have used a mixture of two GLMs’ in our forecast 

model. The first GLM forecasts total flow (sum of flows across the five sites) 

assuming a log Normal distribution. The second GLM forecast the proportion 

of the total flow at each site assuming a multinomial distribution. This 

approach is based on the rationale that overall water availability in a 

catchment is dictated by global climate indices whilst the spatial variation is 

more localised related to factors such as the wind direction or vegetation 

profile (evapo-transpiration). The two stages are outlined below. 

The first stage involves a forecast of the sum of five river flows using a 

generalised linear autoregressive (GLAR) model (Shephard 1995, Yu et al. 

2005). The GLAR is a special case of GLM that includes both autoregressive 

terms and random covariates. The autoregressive variable exploits the 

persistence structure, a common feature in flow time series, and the random 

covariate allows inclusion of long range climate indicators known to influence 

the regional precipitation (Sveinsson et al. 2008). While the choice of sum of 

flows, instead of single site, simplify the regression into univariate GLAR, the 

summation also reduces the high variance of an arid river flow system. 

Besides, a skewness stabilising logarithmic transformation is used to allow 

proper specification of the forecasting model: 

log(�t)= �s + � log(Yt-.)+ � Xt    [3] 

�t  : sum of multi-site seasonal flow forecasted at time t, 

Yt-.  : sum of multi-site flow matrix at selected earlier time steps, 

�s  : seasonally varying intercept where s=1,2,3 and 4. 

Xt  : multiple exogenous indicators derived using sea surface 

temperature anomalies, 

�, � : GLAR parameters. 
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The first two elements of Equation [3] model seasonality and persistence in 

the flow time series. The third element models climatic influences using 

variables derived from concurrent SSTA fields. Our case study explored 

various climatic indices and the first five principle components (PC) of the 

Indian and Pacific Ocean SSTA. Redundant predictors were screened out by 

backward stepwise model selection using the partial F test (Chambers 1992, 

Hastie and Pregibon 1992, Hastie et al. 2000). In addition to the seasonal 

intercept, the auto-regressors in this example were identified as Yt-. = {Yt-1 ;  

Yt-3}. The following exogenous predictors were retained: Xt = {PC1+, PC1-, 

PC2}, where PC1+ denotes the positive part in the first principal component 

with negative values being replaced by zeroes, PC1-, the negative part, and 

PC2 the second principal component. While separating PC1 into the positive 

and negative parts may not adhere to distributional assumption (e.g. 

Gaussian) of linear model, it allows non proportional influence of two opposing 

climate state for example El Nino and La Nina. The loadings of the first two 

principle components are shown in Figure 6.3. The positive or negative PCs 

are designed to separate the strong positive or negative anomalies in the 

transformed SSTA series. This association of SSTA PCs to flows has been 

reported in numerous past studies (Araghinejad et al. 2006, Cardoso and Dias 

2006, Cardoso et al. 2005, Guetter and Georgakakos 1996, Hamlet and 

Lettenmaier 1999, Hsieh et al. 2003, Piechota et al. 1998). 

Next, the total catchment flow �t is apportioned to various locations using a 

multinomial logit model (Agresti 1996, pp 206, Augustin et al. 2008). The 

multinomial distribution is an extension to the widely used binomial distribution 

(eg. rainfall occurrence model). The multinomial logit model predicts the log 

odds ratio of proportions of total flow at a site as shown below: 

log(rl,t /r5,t) = �l + �l Zt     [4] 

rl,t  : proportion of total flow at a location l at time t,  l =1, 2, 3 and 4. 

r5,t  : proportion of total flow at 5th location at time t, 

Zt : multiple predictor set  at time t,  
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�l, �l : location specific intercept and the coefficient vectors. 

It should be noted that subscript l in Equation [4] can assume any 4 values, as 

r5,t = 1 - � rl,t. A common set of the multiple predictor vector Zt is used for all 4 

locations. In simple terms this can be seen as four linear models predicting 

the four log odds ratio based on a same predictor set. 
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Figure 6.3. Loadings of the first two principle components used as predictors 

of the forecast model GLM. 

Candidate predictors of the multinomial model may include inflow ratios in 

past time steps of all the rivers along with suitable climatic indices. The 

stepwise backward removal (Hastie et al. 2000) from the pool of candidate 

predictors of this case study retained two predictor vectors Zt = {Yt-1, r2,t-1}. 
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The first predictor is the summation of the flows at the previous time step, Yt-1. 

The second predictor is the proportion of the Namoi River flow of the previous 

season (r2,t-1= y2,t-1/Yt-1, where y2,t-1 is flow from the 2nd river). These predictor 

variables are useful indicators of the state of the overall wetness of the 

system and the spatial spread of the total catchment inflow at the previous 

time step. The flow at individual site is then estimated as 
l,t
(G) = rl,t • �t . 

The above mixture of log normal and multinomial generalised regression 

models is necessary to replicate spatial dependence across the predicted 

flows over the five rivers. However there is an alternative way to maintain 

spatial dependence while utilising the flexibility of univariate regression as 

shown next. 

6.3.4 Independent component and local polynomial (ICM) 
The need of a multivariate regression arises from the inter dependence of the 

flow variables constituting the multiple response vector. The need to have a 

multivariate model can be removed if the multivariate response matrix can be 

transformed in a manner that removes the inter dependence. Independent 

Component Analysis (ICA) yields such transformation (Westra et al. 2007). As 

per the Central Limit Theorem, linearly mixing a number of independent 

signals leads to response that approaches a Gaussian probability distribution. 

ICA reverses the above logic by arguing that there must exist a set of 

independent signals that can be identified through transformations that result 

in these variables being maximally non-Gaussian, or, characterised by 

probability distributions that are as different as possible from the Gaussian 

distribution. Independent Components (ICs) are the result of un-mixing the 

multivariate response matrix using the above rationale. The ICA is performed 

on the log-transformed flow series in which the Markov order 1 persistence 

structure has been removed (Westra et al. 2008): 

log(yl,t) = �s log(Yt-.) + ql,t     [5] 

yl,t :flow at location l and time t, 

Yt-.  :sum of multi-site flow at various earlier time steps, 
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�s :seasonal parameter, function of time t, where s � {1, 2, 3 or 4}, 

ql,t :regression residual at location l and time t,  

Due to the common predictors for all 5 flow sites the dependence structure is 

maintained within the regression residual Q={ql,t ; l=1,2..L; t=1,2,..T}. The 

derivation of ICs of Q simplifies the multivariate regression into multiple 

univariate regressions. The generic procedure is as follows (Hyvarinen and 

Oja 2000). 

First, the data is centred by subtracting the mean of each column of the data 

matrix Q. The large data matrix may then be condensed by projecting the data 

onto it's principle component (PC) directions QE where E is eigenvector 

matrix. The number of PCs to retain can be specified by the user. Note that 

the intermediate step of estimating PC is not a pre requisite of ICA. The ICA 

algorithm deduces the un-mixing matrix W subject to QE.W=V. The un-mixing 

matrix W is chosen to maximize the neg-entropy approximation (Common 

1991, Girolami and Fyfe 1996) i.e. non-Gaussianity of the components under 

the constraints that W is an ortho-normal matrix. As a result, the columns of V

are independent of each other and can be modelled as independent 

univariate time series. Say V={vi,t; i=1,2..I; t=1,2,..T} denotes I number of ICs 

of flow residuals Q={ql,t ; l=1,2..L; t=1,2,..T} where I � L. Next V is modelled 

using local regression as described below. 

The use of local regression to forecast flow is not new (Grantz et al. 2005, Lall 

et al. 2006). Local regression blends much of the simplicity of linear least 

squares regression with the flexibility of nonlinear regression providing a 

convenient tool to ascertain complex nonlinear relationship between V and the 

SSTA predictor field. Prediction of V is done using a locally weighted 

polynomial regression, called Loess, originally proposed by Cleveland (1979) 

and further developed later (Cleveland et al. 1988, Cleveland and Grosse 

1991). At each point in the data set a quadratic curve is fit to a local subset of 

the data. The polynomial is fit using weighted least squares, giving more 

weight to points near the point whose response is being estimated and less 

weight to points further away. The use of the weights is based on the idea that 
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points near the explanatory variable space are more likely to be related to 

each other in a simple way than points that are further apart. The following 

second degree local polynomial regression Gi,j(.) is used to predict the ICs of 

the flow residual matrix. 

vi,t = Gi,j(
j Xt + �j Xt
2) + �i,t     [6] 

Xt  : multiple predictor vector that includes persistence and climatic 

indices  


j; �j  : locally weighted regression parameters where j is within the 

neighbourhood of Xt. 

�i,t : regression error of ith IC at time t. 

The inverse of ICA (and PC) weight matrices transform back the 

predicted tl
inv

ti qv ,, ˆˆ ⎯→⎯ , the substitution of estimated regression residual in 

Equation [5] gives the flow forecast for the ICM method: 
l,t
(I). Note that as 

each IC is independent, their associated predictors must be independent too. 

Hence, separate predictor vectors Xt are identified in the forecasting model for 

each IC. 

This case study first deduced 3 ICs of five flow residuals (I=3, L=5). The 3 

flow ICs, shown in Figure 6.4, retained 98% of variance. Five ICs of Indian 

and Pacific Ocean SSTA were used as candidate predictors. The final model 

also retained three ICs of SSTA, one SSTA IC forms predictors to locally 

regress one flow IC. The spatial loadings of three SSTA ICs are shown in 

Figure 6.5. 
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Figure 6.4. Three independent component of the five river flow, together they 

retain 98% of total variance. 
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Figure 6.5 Loadings of three independent components used as predictors in 

the IC forecast model. 
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6.3.5 Modified nearest neighbour sampling (KNM) 
The non-parametric method allows modelling with fewer assumptions on the 

nature of dependence or the nature of the probability distribution of the 

response series to be modelled, and hence a suitable alternative to a 

parametric or semi-parametric regression model (GLM and ICM here) to 

forecast the multi-site seasonal flow vector. The nonlinearity of the underlying 

dynamics associated with hydrological processes and the availability of large 

data sets to develop the models from, favour nonparametric alternatives over 

corresponding parametric equivalents in regression and simulation modelling 

studies. Nearest neighbour methods use the similarity (neighbourhood) 

between current observations of predictors (SSTA field in this study) and 

similar sets of historical observations to obtain the best estimate for a 

dependent variable (multi-site flow) (Karlsson and Yakowitz 1987, Lall and 

Sharma 1996). We have applied a weighted nearest neighbour approach 

(Souza Filho and Lall 2003, Mehrotra and Sharma 2006) in formulating the 

forecasting model reported here. We refer this K nearest neighbour modelling 

approach as KNM in this paper. The KNM approach aims to ascertain the 

conditional dependence of multi-site seasonal flow yt ={yl,t , l=1,2, …L} on a 

weighted set of predictors by identifying K nearest neighbours in the historical 

record. Identification of the nearest neighbours proceeds by ranking historical 

responses using a modified squared Euclidean distance (�) metric: 

��(t) = �p �p (xp,� – xp,t)2     [7] 

where,  xp,�  :the scaled pth predictor at a past time �, 

p  :1, 2, … index of multiple predictor vectors, 

�  : t-1, t-2, … index of past time, 

�p :the influence load to pth predictor vector. This load can be 

approximated as the coefficients of the linear relationship of (Yt ~xt) 

where xt={xp,t; p=1,2,..} and Yt = �l yl,t

The response time series {y�; � =t-1, t-2, t-3 …} is ranked based on the order 

of the current ��(t) . If k� is the sorted rank of y� then k� ∈ {1, 2, 3, …K, 
}, 
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where K is the farthest neighbour considered for ascertaining the prediction in 

the KNM approach. We recommend K equals the nearest integer of �T (Lall 

and Sharma 1996). A forecast is then expressed as an expected value of the 

conditional probability distribution formed based on the nearest neighbours. 

The probability of re-sampling a past observation at time t is then specified as 

follows (Lall and Sharma 1996): 

Pr(�t = y� | X) = k� -1 /(1+ 2-1 +3-1… +K-1)   [8] 

where X is the multiple predictor vector {xp,�}. Note that flows at all sites are 

sampled together from past observation y� = {yl,�.; l=1,2… L}. This concurrent 

multisite sampling reflects historical spatial dependence. The expected value 

of the forecast by KNM method is 
l,t
(K). 

This case study selected KNM model predictors in few steps. First the total 

flow time series (Yt) is scaled by removing the mean and normalising the 

variance to one. Alternatively, variance stabilising transformation like taking 

logarithm can also be used. The seasonal mean and the lag one scaled flow 

forms first two predictor vectors. Then we globally explored the spread of 

correlation and mutual information scores (Sharma 2000a) (see Appendix for 

mutual information formulation) of Yt to the SSTA field. Seven SSTA zones 

with high dependence scores are selected as potential predictors. A partial F 

test of linear association of Yt to the seven zones retained four zones (see 

Figure 6.6). Hence xt = {seasonal mean flow, Yt-1, average SSTA zones at 

Pacific Ocean north, central, south and Indian Ocean north}. The influence 

loads (�p) of the predictors are {0.55, 0.07, 0.08, 0.08, 0.11, 0.11}. This 

approach of using zone averaged SSTA is not new in hydrological studies. 

(Maity, R. and Kumar, D. N., 2009: Sharma, A., Luk, K.C., Cordery, I., Lall, U., 

2000b: Verdon, D. C. and Franks, S. W., 2005: Verdon, D. C. et al., 2004). 

6.3.6 Dynamic combination of forecasts 
The three component forecasts GLM, ICM and KNM are dynamically 

combined to reduce the structural uncertainty of any single forecast. It should 

be noted that the approach presented assumes that the component models 

being used are pre-defined and non-alterable. This is especially so when the 
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component models are conceptual water balance models that have been 

developed by different groups and agencies, and hence are difficult to modify 

at each time-step of the simulation. 
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Figure 6.6. Predictors of the KNM model as the mean seasonal SSTA at 4 

zones shown as hatched boxes in this graph. The mutual information score of 

total flow volumes to mean seasonal SSTA is shown in the background. 

The pair wise dynamic weight requires pre sorting the model pairs and the 

design of a hierarchical tree structure. In case of a univariate response, 

Chowdhury and Sharma (2009a) recommended models to be paired such that 

the covariance of the paired responses was the minimum across all possible 

pairs. The guideline to optimal design of the hierarchical tree for multivariate 

response remains a potential future research topic. In this case study, the 

residual co variances are all of similar magnitudes. Hence any variation of the 

tree architecture has a minor influence on the final result. After a few 

evaluations we decided on the tree structure as shown in Figure 6.7. For 

simplicity, the first level of combination used static weight with dynamic 

combination assigned to the highest level, an approach similar to multivariate 

SSTA combination of Chowdhury and Sharma (2009b). Accordingly, KNM is 

combined to GLM using static weights. The static weight assigned to KNM is 

the ratio of precision of KNM forecast to the sum of precision of KNM and 

GLM (Granger and Newbold 1977, McLeod et al. 1987). Then the KNM+GLM 

are dynamically combined to ICM. Note that the tree structure keeps the 
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number of weights to two, same number as a static combination of three 

forecasts. 

KNM+GLM+ICM

KNM+GLM ICM 

KNM GLM 

Figure 6.7. Pair wise forecast combination tree. 
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Figure 6.8. The stacked time series of weights corresponding to three models. 

The forecast time series are extracted from ±6 month cross validation results. 

The Namoi River is on top and the Coxs Creek is the figure below. 
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The predictors of the time variant weights are {�t-1 ; PC1- and PC1+}, where 

PC1 represents the first principal component of the Indian and Pacific Ocean 

SSTA field, and PC1+ and PC1- their respective positive and negative 

components. The weights imply that the comparative forecast strength of next 

season of any single model is reflected by this season’s performance and the 

current state of climate. Figure 6.8 shows the observed weight time series and 

the fitted weight prediction. The forecast flow time series is drawn against the 

observation in Figure 6.9. Note that only the time series of the wettest and the 

driest rivers are shown in this manuscript for sake of brevity. 
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Figure 6.9. Forecast of the next season’s flow total (in 106 m3) is drawn 

against the actual observation (in black shade). The blue solid line is the 

combined forecast and the green broken line is the single model (GLM) 

forecast. The forecast time series are extracted from ±6 month cross 

validation results. The horizontal broken lines are showing first, median and 

third quarter of the 100 year flow records. The Namoi River is on top and the 

Coxs Creek is the figure below. 
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6.4 Results and Discussion 

6.4.1 Model calibration and validation 
All three models (GLM, ICM, KNM) forecast the total flow volume of the next 

season at the end of current season. For example the autumn flow volume is 

forecasted using summer flow volume and the autumn SSTA forecast. The 

results presented here represent concurrent model forecasts using three 

SSTA fields. The first field is the observed SSTA used to calibrate the model 

for a period of 1893 to 2003 (excluding a validation window). The second set 

is the MetF SSTA forecast. The third set is the DW SSTA forecast derived in 

this research by dynamically combining SSTA forecasts from two additional 

models to MetF as mentioned in Section 6.2.3. Predictors derived from the 

second and third sets contain forecast error. Our decision of using observed 

SSTA to calibrate the component models avoids biased parameter estimates  

due to error in the SSTA forecasts (Kavetski et al. 2002, Huard and Mailhot 

2006, Chowdhury and Sharma 2007). MetF and DW forecasts are used to 

validate (out of sample) the performance of the calibrated model. We used a 

leave ±2 seasons out cross validation to assess our results. For example, the 

winter 1980 validation uses the parameters calibrated by removing the full 

1980 data set. The validation period spans from 1958 to 2001, decided by the 

length of SSTA forecasts. Note that the long data set allows us to carefully 

choose the predictor space that remains static while moving the validation 

window along the time series (Mason 2008). Assuming minimal artificial skill 

beyond one year, the validation may be a reflection of true forecast skill 

instead of calibration accuracy. 

We have chosen three component flow forecast models: KNM, GLM and ICM. 

There are four alternative sources of predictors (SSTA forecasts) to these 

models as described in Section 6.2.3. They are MetF, CPC, ECM and DW (or. 

MetF+CPC+ECM). The first validation trial used predictors derived from the 

best SSTA forecast model MetF, out of available three single SSTA forecasts. 

Note that the absence of any non SSTA flow predictor implies that flow 

forecast skill depends strongly on SSTA forecast accuracy. The MetF forecast 

exhibits the smallest forecast error variance compared to that of CPC and 

ECM. Consequently, MetF is used to illustrate the performance of the model 
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that would be attained if a single SSTA forecast approach were used instead 

of the dynamic combination approach. The second validation trial is based on 

predictors derived from combined SSTA forecast: DW. Finally we investigated 

incremental skill post combination of the three flow forecast models where the 

predictors came from DW SSTA forecast. 

Model combination, due to extra parameters, reduces degrees of freedom. 

The method relies on due diligence of the modellers in maintaining parsimony, 

using minimal parameters and testing extensive validation. We chose not to 

present the calibration results as this does not reflect the true predictive 

errors. Validation results are mainly unaffected by model complexity and 

hence better represent predictive performance. Accordingly, it is emphasised 

that the next two sections analysed validation results only. 

6.4.2 Measures of forecast strength 
One of the most commonly used performance criteria is the mean of squared 

errors (MSE). MSE is a measure of squared deviation of forecast from the 

observation. Note that the mathematical formulations of the error measures 

discussed in this section are included in the appendix. The MSE can also be 

expressed as the summation of systematic error (squared-bias) and random 

error (variance) (Vazquez, 2003, Hastie and Tibshirani 2000). The MSE for all 

the cases evaluated are presented in Table 6.2. The KNM model achieved 

higher reductions in MSE (25-30%), by using DW instead of MetF SSTA 

forecast, due to its higher initial error base. In general, the ICM came out to be 

the best model (based on the MSE measure). While forecast combination 

further reduced MSE, the reduction is minor and inconsistent across the 

rivers.  

The MSE is a poor indicator of a models ability to forecast both high and low 

flow events, with the squared residual terms tending to enhance the 

significance of the larger errors which are usually associated with high flow 

events. The research on evaluating forecast performance by Armstrong 

(2001, pp. 460) concluded against using MSE in comparative evaluation. The 

MSE is aimed at cases where residuals are randomly distributed with zero 

mean and constant variance which is unlikely in case of seasonal flow of arid 
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river. There are few ways to address the MSE bias caused by flood outliers 

and boundary values such as sequences of low flow or zeros. One method is 

to stabilise the variance is by a prior transformation of flow using a logarithmic 

or a Box-Cox transformation (Box and Cox 1964). Accordingly, a log 

transformation and standardisation was performed on the data to allow an 

improved characterisation of the associated errors. The entire flow series 

matrix was increased by one unit (103 m3), prior to transformation, in order to 

avoid any zero flow seasons. 

Table 6.2. Mean of squared errors (MSE) of the flow forecast. The units are 

(106 m3)2 per season. The last column includes forecasts of total flow. 

SSTA Models Manila Namoi Peel Mooki Coxs  Total 

MetF KNM 253 2344 1258 1009 457 19740 

 GLM 193 3763 1779 445 238 18780 

 ICM 168 1959 893 663 333 13850 

DW KNM 188 1652 929 674 327 13670 

 GLM 170 2435 1316 459 242 14760 

 ICM 158 1594 805 768 324 12850 

Combined K+G+I 160 1488 806 610 310 12180 

The MSE of the transformed flows is presented in Table 6.3. Overall, the 

reduction in transformed flow MSE when using the DW SSTA is evident. Due 

to the transformation process the errors are now independent of the river size, 

hence all the five rivers can be pooled together to get an overall measure of 

performance. The combined forecast illustrates a drop in transformed flow 

MSE in the pooled time series; however the reduction is not consistent across 

the five rivers. A comparative analysis of MSE of multiple river flows may not 

account for differing level of forecast difficulty of each river satisfactorily. The 
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relative potency of the models for each river requires different measures as 

discussed next. 

The Nash-Sutcliffe efficiency (Nash and Sutcliffe 1970) measures the 

improvement in forecast error variance with respect to the null model which is 

the sample mean. In case of seasonal flow the null model can be extended to 

a set of four seasonal means, a proposition after Garrik et al. (1978). We refer 

this measure as coefficient of efficiency (CE) here. The advantage of CE over 

MSE is that it is dimensionless. While the CE includes the variance of 

observations in addition to systematic and random error (Vazquez 2003), 

similar to the MSE, it is sensitive to large random error associated to flood 

peaks (Leagates and McCabe 1999, V´azquez et al. 2008). Notably, a prior 

transformation (as used in Table 6.3) may not be always robust in case of a 

flow series with a long drought sequence (series of zero bounded entries). 

Hence we search for measures, as an alternative of CE, which is suitable for 

arid river flow (time series with unstable variance). 

Table 6.3. Error variance of the transformed flow forecasts. The 

transformation applied here is the standardised log of non zero flows. The 

final column shows the analysis where all the rivers are pooled together. 

SSTA Models Manila Namoi Peel Mooki Coxs  Pooled

MetF KNM 1.04 1.06 1.14 1.09 1.04 1.07 

 GLM 0.83 0.84 1.03 0.70 0.72 0.83 

 ICM 0.80 0.73 0.81 0.91 1.05 0.87 

DW KNM 1.07 0.92 1.02 1.03 1.05 1.03 

 GLM 0.77 0.79 0.99 0.70 0.71 0.79 

 ICM 0.77 0.67 0.75 0.89 0.93 0.82 

Combined K+G+I 0.78 0.67 0.78 0.80 0.86 0.78 
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The relative absolute error (RAE), which is the ratio of absolute residual error 

to that of null model error, serves as a useful alternative to CE. The RAE 

returns 1 or a higher value for no model skill to 0 for a perfect forecast. In 

order to avoid outliers due to near zero null error and rivers with long dry 

seasons, either a Winsorised or a median value of RAE (MdRAE) is 

recommended. Winsorising trims time series at an upper and lower boundary 

(Wu 2006, Jose and Winkler 2008). Winsorising relies on selection of 

appropriate boundary limit, requiring external deliberation. For simplicity we 

chose the ultimate trimming by accepting MdRAE as presented in Table 6.4.  

Table 6.4. Median relative absolute error (MdRAE) of the flow forecast. The 

final column shows the analysis where all the rivers are pooled together. 

SSTA Models Manila Namoi Peel Mooki Coxs  Pooled

MetF KNM 0.92 1.14 1.13 1.09 1.09 1.07 

 GLM 0.87 1.03 1.19 0.38 0.44 0.77 

 ICM 0.90 1.08 0.98 0.40 0.51 0.81 

DW KNM 0.90 1.04 1.01 1.00 0.92 0.98 

 GLM 0.69 0.97 1.04 0.34 0.40 0.66 

 ICM 0.81 0.93 0.94 0.56 0.22 0.78 

Combined K+G+I 0.74 0.92 0.95 0.49 0.30 0.74 

New insights to the forecast strength of the two driest rivers (Mooki and Coxs 

Rivers) are evident from MdRAE, as they are most prone to outliers in MSE 

based measure. The MdRAE measures of Mooki and Coxs rivers are 0.5 and 

0.3, which is lower (hence superior skill) than the other three rivers. The 

combined flow forecast yields a narrower range of MdRAE across all the five 

rivers (0.30 to 0.95) than either GLM (0.22 to 0.94) or ICM (0.34 to 1.04). It is 

important to note that if the combined model results are compared with any 
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one of the models on an individual basis, the combined model outperforms 

the other model on a majority of the rivers analysed. Similar conclusion can be 

reached using other statistics (not shown here) such as the linear error in 

probability space skill score (Potts et al. 1996). 

In summary, the improvement in predictor field by using DW rather than MetF 

SSTA forecast advances the flow forecast accuracy. The performance of 

single forecast model ICM and GLM are similar while KNM is a weaker 

alternative. There is an overall reduction of errors after combining the three 

forecast models. However the incremental reduction in error due to the 

combination is small and not consistent across all the five rivers. Note that 

these remarks are based on univariate measures only. These measures do 

not consider spatial dependence of the rivers. 

6.4.3 Representation of spatial dependence 
One of the key requirements for forecasting a multivariate response is the 

representation of spatial dependence across the river system. A Pearson’s 

correlation can be used as a simple measure of spatial dependence. The 

correlation of the raw flows of the arid river system would reflect linear 

dependence among larger rivers during major flooding period only. Hence, the 

flow time series is transformed using a log transformation (after adding a unit 

volume to avoid zeroes) and standardised to reduce the influence of outliers. 

The correlations of each transformed river flow against the four other rivers 

are estimated next. Accordingly an observed vector of 10 correlation statistic 

is established. Figure 6.10 shows the comparative graph of observed versus 

modelled correlation values. For clarity we only presented the set derived 

using DW SSTA forecast. The figure provides some interesting insights into 

the differing capabilities of each model. The simple GLM structure is able to 

model the correlation in six out of the ten cases. The structure of GLM is weak 

in reproducing low correlation or interdependence between dry rivers. On the 

other hand linear regression tends to inflate dependency between the larger 

rivers. KNM and ICM structures are primarily aimed at forecasting multivariate 

response variable. The KNM model maintained the inter site correlation better 

than GLM, however there is an apparent bias of underestimation. Conversely 

ICM returns a pattern of overestimated correlation. The dynamically combined 
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flow forecasts illustrate superior replication of inter site correlation reducing 

the scatter present in the GLM estimates and mitigating the bias in KNM and 

ICM. 
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Figure 6.10. Spatial dependence presented as paired correlation of log flow of 

two rivers. Component models are KNM (k), GLM (g), ICM (i) and the 

combined model legend is (d). 

6.5 Discussion 

Combining flow forecast in this case study yields improvement as compared 

to forecasts where no combination was performed. However, the 

improvements in the combined flow forecasts are smaller compared to what 

was achieved through a similar combination in order to arrive at a multivariate 

SSTA forecast. What factors determine the potential and extent of 

enhancement possible as a result of combination? There are two major prior 

indicators of likely improvement post combination. First and foremost, the 
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component model that has the lowest associated residual error variance is 

likely to influence the final model combination the most. Theoretically, if we 

have a model with a zero error variance, the combined model should 

effectively collapse to this. Secondly, the improvement in each combination 

(at all levels of the hierarchical tree) depends on the covariance of the errors 

between the two combined models. If this covariance is small in comparison 

to either of the model error variance, mixing the two models is likely to result 

in greater improvements. An inspection of SSTA forecasts in Figure 6.11 for 

the Central North Pacific shows that the minimum covariance is only 43% of 

the best forecast variance. On the other hand, the covariance of flow 

forecasts is a high 86% of the best forecast variance. The high covariance 

ratio indicates that the three different flow models (each having their own 

distinct predictor set) are unable to contribute enough “new” information so as 

to result in better combined forecasts. Note that we intentionally attempted to 

exert independence and dissimilarity among different flow forecasting models. 

However, the resulting weak independence in the forecast despite the use of 

different model structures and predictors may be attributed to the fact that the 

unexplained variances of all component forecasts are relatively high. The high 

unexplained variance masks any independence across the forecasts.  

Figure 6.11. Residual errors of the three component forecasts with the 

corresponding variance and covariance measures listed in the diagonal and 
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upper triangle boxes. The left panel contains residual error of log flow, the 

right panel shows residual errors of sea surface temperature within the 175°-

225°E by 10°-20°N box. 

A comparative analysis of the relative merits of individual predictor variables 

in the three forecast schemes (GLM, ICM, KNM) is complicated due to prior 

transformations and different modelling hierarchies. As a result, our 

comparison (Table 6.5) is based on a backward removal of each predictor 

from the full model and then assessing the overall increase in forecast error 

variance. The approach is similar to computing chi square statistic by 

removing a predictor and estimating the increase in residual deviance while 

analysing generalised linear models. In general SSTA predictors did not aid 

prediction skill significantly and as a result narrows any difference between 

the three forecast schemes. Another reason of lack of independence may be 

the similarity between the SSTA principle components and independent 

components. A closer inspection reveals that the zones of the KNM predictors 

coincide with regions having high loadings in both ICs and PCs. Future 

studies should explore inclusion of different predictor sources such as wind 

speed and geo potential heights in forming the models to be combined. 

Table 6.5. The percentage increase of forecast error variance after backward 

removal of a predictor. The forecast is issued at the end of last season for this 

season. The variance is computed after log transformation of the flows. 

GLM Predictors Manilla Namoi Peel Mooki Coxs 

Total flow: last season 21 23 20 11 4 

Tot flow: this season, last year 8 15 14 2 2 

SSTA PC1: this season 8 14 13 2 2 

SSTA PC2: this season 12 18 15 3 2 

Namoi flow fraction: last 

season  

8 23 18 7 15 
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ICM Predictors Manilla Namoi Peel Mooki Coxs 

Total flow: last season 20 26 15 19 2 

Mean total flow: this season 8 8 7 7 6 

SSTA IC1: this season 8 8 7 4 5 

SSTA IC2: this season: 5 5 5 19 5 

SSTA IC3: this season: 12 11 13 12 16 

KNM Predictors Manilla Namoi Peel Mooki Coxs 

Total flow: last season 19 14 4 5 4 

Mean total flow: this season 4 11 19 4 7 

SSTA Zone N Pacific: this 

season 

16 9 14 2 2 

SSTA Zone C Pacific: this 

season 

6 13 14 2 6 

SSTA Zone S Pacific: this 

season 

12 10 20 15 12 

SSTA Zone I Ocean: this 

season 

11 12 15 7 4 

It is important to note that all three forecasting schemes used in this paper are 

formulated on statistical platform. Statical models are forced into a 

relationship with the response to maximize the performance returning higher 

covariance among the forecasts. One way to address this is to reduce the 

forecast (such as using PCs or ICs) and then combing the reduced forecast 

only. Similarly, the inclusion of the physics based forecasting platform 
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(dynamical model) has the potential of further improving the combined 

forecast skill. 

In addition to the results reported above, we have further scrutinised the 

performance of a static weight combination for the three forecasts. The static 

weights are derived as the ratio of the precision (inverse of variance)  of each 

forecast to the summation of all three precisions (Kim et al. 2006). As 

expected, the static weight did not offer any overall improvement over a 

dynamic weight combination. We have not included the analysis here for the 

sake of brevity. Interested readers are referred to our earlier publications on 

the dynamic combination logic (Chowdhury and Sharma 2009a, 2009b) for a 

discussion of the improvements obtained over the static combination in the 

context of SSTA forecasting. It is relevant to state that the derivation of static 

weight often involves the objective function that minimises squared error of 

combined forecast. Such objective function may artificially dampen forecast 

error variance without necessarily enhancing any forecast skill (Zhang and 

Casey 2000). In contrast, the analytical derivation of dynamic weight 

(Equation [2]) does not force minimisation of squared error and hence any 

resulting improvement is more reliable. 

6.6 Conclusion 

This study presented a rationale for combining multiple model forecasts using 

a dynamic combination rationale, an approach that has been documented to 

improve forecast accuracy in the context of forecasting globally distributed 

SSTA fields forward in time. It used a dynamically combined SSTA forecast 

field as the basis of deriving concurrent flow forecasts using three alternate 

approaches, and proceeded to assess the improvements that result when 

these three flow forecasts were dynamically combined. The three forecasting 

methodologies were applied to forecasts inflows at five locations in the upper 

Namoi Catchment in Eastern Australia, the approaches being: (1) a mixture of 

generalised log normal and multinomial models, named GLM; (2) the non 

parametric nearest neighbour method KNM; and (3) the ICM scheme, based 

on a local regression of the independent components of the five inflows. 

Notable to each of these approaches was the different predictor base used for 
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each, these predictors being derived from various transformations of the 

dynamically combined forecasts of the Indian and Pacific Ocean SSTA. 

Improvements in flow forecast were sought in two stages. First, the SSTA 

forecasts were improved by dynamically combining three alternative SSTA 

forecasts. It was demonstrated that the improved SSTA forecast in turn 

improves all three flow forecasts scheme. In terms of a univariate assessment 

of forecast accuracy, the GLM and ICM exhibited an overall superior forecast 

skill to that of the KNM. Spatial dependence, however, was better replicated 

by KNM and ICM compared to that from the GLM. Secondly, a dynamic 

combination of the GLM, KNM and ICM forecast was performed as an added 

step to reduce forecast structural uncertainty. This dynamic combination was 

found to result in a small though noticeable improvement in terms of the 

overall flow forecast; however this improvement was not consistent across all 

five rivers. The combined flow forecast exhibited superior representation of 

spatial dependence than any of the single forecasts. Our reasoning for the 

improvements in flow forecasts being smaller in proportion to the 

improvements noted in case of the dynamically combined SSTA forecasts lies 

with the strong dependence that exists across the three flow forecasts. Lack 

of such dependence across the three SSTA forecasting models resulted in the 

combination being significantly superior to any of the individual forecasting 

models. 
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6.8 Appendix 

MSE: Mean squared error; 

CE: Coefficient of efficiency;  

MdRAE: Median relative absolute error;  

MI: mutual information score. 

yt : observed response at time t


t : forecasted response at time t

y : mean observed response 

s: season where, s=1,2,3 and 4. 

t: time index where t=1,2,3,4,5, ….T; 

f(.) =density. 

f(.;.)=joined density. 

i = 1,2,..N, ordinate of discrete points of density estimation. 
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CHAPTER SEVEN 

7 CONCLUSION 
The motivation of this research is to reduce predictive uncertainty of models 

aiding superior water resources management. It explores techniques 

applicable beyond exhaustion of current model improvement practices such 

as rigorous calibration and continual structural adjustment. The reduction in 

uncertainty is achieved by a two step statistical approach. Firstly it proposes 

shrinking the parameter bias of individual models by addressing input error 

using the method ‘Simulation Extrapolation’ or SIMEX. Secondly it advocates 

combining a number of bias corrected individual models using pair wise 

dynamic weights (PDW) as a way to reduce overall uncertainty of any single 

modelling structure.  

The research demonstrates that SIMEX mitigates the parameter bias of 

hydrologic models as long as the error distribution and any associated non-

stationarity are known. Two types of hydroclimatic models are used 

representing increasing complexity. First, Chapter 2 demonstrates a reduction 

of error in Southern Oscillation Index reconstruction using linear regression of 

NINO3.4 observations with non-stationary noise. Secondly, Chapter 3 exhibits 

a reduction of error in flow series resulting from erroneous rainfall input in the 

Sacramento model. 

The PDW model combination method is used in three different settings. First 

of all the PDW is applied to combine three univariate models, the response 

being the three month ahead forecast of the monthly NINO3.4 SSTA derived 

index. The study demonstrates that the proposed PDW formulation is an 

improvement over the use of model combination logic where combination 

weights do not change with time. PDW exhibits a small but consistent 

increase in prediction skill over that of current practice of static weight 

method. The case study concludes that the potential of improvement is real if 

multiple predictions are combined using the proposed dynamic weight 

rationale. 
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The multivariate case study uses three month ahead forecasts of globally 

grided monthly sea surface temperature anomalies (SSTA) from three 

predictive models. The prediction skill from static weight combination is used 

as the base case to compare the merits of using dynamic weights instead. 

The predicted SSTA using the dynamic combination algorithm consistently 

exhibits notable improvement, both in space and time, to that from static 

combination. This constitutes a numerical validation of PDW in a multivariate 

forecasting context. 

Finally, three seasonal forecasts of inflows at five neighbouring locations in 

Eastern Australia are combined using PDW. The customary high skew 

associated with arid Australian rivers results in flow volumes many times 

higher than their respective medians along with significant periods of zero 

flow. The flow forecasts require specification of predictor variables which are 

derived from various transformations of concurrent forecasts of Indian and 

Pacific Ocean SSTA. The combined flow forecast exhibits superior replication 

of spatial dependence than any single forecast. The PDW approach achieves 

a minor improvement in the overall flow forecast. However, the combination of 

flow forecasts does not yield similar enhancement of skill as compared to the 

SSTA forecast combination. This is due to limited independence among all 

three flow forecast models. The extent of independence among component 

forecasts dictates the extent of improvement post combination. This case 

study explores the strengths and weaknesses of the PDW method in 

hydrological modelling context. 

The original research contributions from this study are reiterated below, while 

details can be sought in the earlier chapters. 

7.1 Original Research Contributions 

7.1.1 Mitigation of input error 
The SIMEX method mitigates parameter bias caused by inaccurate input 

variables. It is a functional estimator whereas existing limited research on 

input error modelling in hydrology is based on the use of structural estimators. 

Structural estimators often resorts to assumptions regarding the distribution of 

unobserved true covariates leading to certain likelihood measures. SIMEX 
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offers advantages over structural estimators when model structures are 

complex with nonlinear and non-stationary error distributions as in hydrologic 

systems. This is the first reported research on the use of SIMEX in 

hydrological and climate modelling. 

7.1.2 Mitigation of model error 
This doctoral work presents a methodology for combining forecasts from 

multiple models in a dynamic manner. Multiple models are mixed in pairs 

based on importance weights that are allowed to vary in time reflecting the 

persistence of individual model skills and of any relevant exogenous variable. 

The weights are structured in a hierarchical pair wise combination tree.  

The optimal weight time series are based on analytical solution (Equation [3], 

Chapter 5) of the combination that returns error free prediction. The analytical 

weights do not require minimisation of squared error, contrary to the current 

practice of estimating weights. While the current practice imposes the 

reduction of squared error however the reduction may not necessarily 

correspond to improved predictive skill. 

Two approaches for forecasting pair wise dynamic weights (PDW) are 

introduced. The first of the two approaches uses a mixture of two basis 

distributions which are three category ordered logistic regression model and a 

generalised linear autoregressive model. The second method uses a modified 

nearest neighbour approach to forecast the future weights. The proposed 

methodologies constitute an original contribution to the literature on forecast 

combination in hydrological and climate modelling. 

7.2 Limitations and Future Work 

This research presents case studies that demonstrates the alternatives 

developed to mitigate model input uncertainty as well as model structural 

uncertainty. Consequently, the manuscript does not follow a single case study 

from the beginning to the end, but separate case studies for each of the 

chapters presented.  
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The input uncertainty reduction alternative (SIMEX) outlined in Chapters 2 

and 3 is used to assess the changes in the formulation of a model to predict 

El Nino Southern Oscillation indices (Chapter 2) and the hydrological 

response to rainfall (Chapter 3). It should be noted that it is not applied to the 

NINO3.4 or global SSTA forecast models included in Chapter 4 or Chapter 5. 

The forecast models assume the inputs to not be uncertain, an acceptable 

assumption given the limited information that is available to quantify the extent 

of uncertainty that could be present. Later in Chapter 6, the structural details 

of the river flow forecast models are included. The structural accuracy of 

these flow forecast models are low compared to the uncertainty of the SSTA 

covariates. Hence SIMEX has a limited potential of improving parameter 

estimates where bulk of the parameter inaccuracy can be contributed to the 

model structure. 

The three component models used in NINO3.4 case study (Chapter 4) are not 

followed through to flow forecast model in Chapter 6. The component model 

UCLA (see Chapter 4.3) is predominantly calibrated for the NINO region and 

no suitable UCLA hindcast has been available at the time of research 

progression to multivariate application presented in the later chapters. 

Consequently, the later chapters replace the UCLA model by the MetF model. 

The reader may also note a difference between the reductions in squared 

error post combination presented in Figure 5.7 and Figure 6.1. The difference 

is caused by different forecast lead time and different comparative bench 

marks. Chapter 5 uses three months ahead forecast of monthly SSTA, 

whereas Chapter 6 uses forecast of next three monthly SSTA. The 

comparative bench mark in the first case is the best single forecast at each 

grid point and in the second case the benchmark is MetF forecast at every 

grid point. 

Future progression of this research will be to apply all the tools within a single 

case study of hydroclimatic model simulation. The limitations and future work 

related to the two main tools (SIMEX, PDW) are presented below. 
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7.2.1 Simulation extrapolation (SIMEX) 
This section first discusses the limitations of the case studies presented to 

introduce SIMEX. The synthetic rainfall-runoff study assumes that the three 

model parameters are independently related to the variance inflation factor. 

This may not be the case in a more general setting, necessitating a 

multivariate regression relationship that enables all parameters to be 

modelled jointly. Another limitation of SIMEX is an implied assumption of high 

structural accuracy of the model compared to the noise in covariates. Hence 

SIMEX is recommended after satisfying any remaining perfection of the model 

structure. The case study in Chapter 2 (SOI prediction) is presented as a 

proof of concept only, while the partitioners are recommended to first check 

sampling variability (by tools such as bootstrapping) prior to embark into bias 

correction exercise. 

While current research exposes the SIMEX rationale to a hydrological 

audience, there are several aspects of it that need further work and 

investigation as listed next. 

a) Practice guideline of SIMEX application in hydrology needs attention to 

following issues. They are: the number of simulations required, the 

incremental steps of the variance inflation factor needed, more 

directives on extrapolation methods, and the confidence intervals 

associated with SIMEX estimated parameters.  

b) Another issue to be investigated in greater detail is the specification of 

the error distribution (with possible co dependence) of various 

hydroclimatic variables (e.g. rainfall, evaporation). There are several 

sources of uncertainty in catchment rainfall measurement that needs 

attention. For example non stationary instrumentation error, conversion 

of radar rainfall record, downscaling of GCM simulations at a local 

catchment scale or spatial and temporal transformation of point 

rainfalls. Reporting of standard error of statistical conversion of point to 

aerial rainfall is a prerequisite of SIMEX. Practical application of SIMEX 

recommends future work on proper specification of error of rainfall 

data. 



Chapter 7 Conclusion 

Page 194 

c) These analyse can be extended to investigate the role of SSTA data 

error in influencing non stationarity of SOI versus NINO3 relationship 

providing important insights into ENSO behaviour. The flexibility of 

allowing non stationary noise band in SIMEX implies that it may be 

used to transport parameter estimate to future climate change 

scenario. 

d) Current research is limited to the parametric form of SIMEX. Alternative 

research using a non parametric SIMEX may be useful in data 

intensive settings. 

e) Finally, SIMEX is essentially presented as a robust alternative to 

existing orthogonal or structural estimators of input error analysis in 

hydrologic models. A comparative study in future to the orthogonal 

regression method using historical hydrologic time series will help 

develop a comprehensive picture on input error modelling. 

7.2.2 Pair wise dynamic weight (PDW) 
The success of the PDW method does not nullify the strength of simpler static 

combination methods. The complexity of the PDW combination increases with 

higher number of component models. Increased number of hyper parameters 

(parameters external to the component models) reduces the degrees of 

freedom which may eventually compromise the strength of combination. 

Hence this method is suitable for component models that come with a long 

period of hind cast for sake of calibration and validation. In general, this PhD 

work envisages following future research studies.  

a) The optimal number of component models is unclear as past research 

has been case specific. Generic research on optimal number (as a 

function of dependence of candidate forecasts) is necessary. A follow 

on investigation should explore the ways to reduce number of models 

to the optimal quantity. 

b) The case study combines mean forecasts only. Natural progression of 

the application will be combining full set of component realisations in 

order to reflect full probability distribution that is likely. 
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c) One useful application of PDW is to include null model forecast (e.g. 

climatology) as one of the component models. This will guard against 

any period of poor forecast accuracy to fall below mean forecast. 

d) The design of the tree architecture of PDW needs further attention. 

This is especially true for combination of multivariate response field. 

The simplification of applying PDW in only one node (possibly at the 

highest level) requires simultaneous attention while researching the 

tree architecture. 

e) While the PDW combination logic presented was used to estimate a 

combined forecast for a seasonal time step, how such a combination 

will lead to a complete forecast hydrograph with finer time step is a 

question that needs to be suitably addressed. This is important for time 

series with long memory for example hourly flow hydrograph or daily 

storage volume. A combined forecast hydrograph will require a 

combination of multiple models at multiple points in time (and possibly 

in space), which will lead to a discontinuity in the mass-balance in the 

hydrograph whenever such a combination is made. Future research 

needs to investigate on how this problem can be suitably addressed 

and mass balance conditions appropriately satisfied. 

7.3 List of Peer Reviewed Manuscripts 
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developed over prior presentations in 7 peer reviewed international 
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