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ABSTRACT 

Driving in stop-&-go (S&G) traffic can be a frustrating experience and can lead to an 

increase in fuel emissions, driver distress and safety risks. Past studies have modelled 

the time spent in S&G traffic as one of the factors for the disutility of a route. These 

studies did not account for the effect of the number of S&G waves, which has been 

found to bear a closer relationship with driver discomfort. This thesis tests the 

research hypothesis that an increase in the number of S&Gs on a route increases its 

disutility for a driver. As a proof of concept, a Stated Choice (SC) experiment was 

initially conducted on a sample of university staff and students. A D-efficient pivot 

design technique was used to generate the set of choice tasks. The competing routes 

were defined in terms of the number of S&Gs along with other travel attributes. The 

collected data was analysed using a Random Parameter Error Component Logit model 

to account for the taste heterogeneity and serial correlation among the choice tasks. 

The results showed that the number of S&Gs negatively impacted the utility of a 

route, thus validating the proposed hypothesis. Another follow-up SC study was then 

conducted on a sample of general commuters in Sydney. The data from this study was 

analysed using a Latent Class Choice Model which relaxed the distributional 

assumption associated with the previous statistical model. The obtained results 

showed a negative effect for the number of S&Gs, except for nearly one quarter of the 

sample which was indifferent towards this attribute. Lastly, a driving simulator 

experiment was conducted to further understand the role of S&G traffic characteristics 

on driver frustration. Participants were made to drive through virtual scenarios 

depicting varying S&G traffic conditions. A Structural Equation Model was estimated 

on the data which indicated that the number of S&Gs had a positive effect on the level 

of frustration and was also observed to influence route choice. The findings from this 

thesis not only extend the body of knowledge on intricate route choice behaviour of 

drivers, but also inform policies aimed at reducing traffic congestion and the resulting 

S&G traffic. 
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CHAPTER 1  

INTRODUCTION 

The paramount objective of this chapter is to introduce the research project and set the 

tone of the thesis. The first few sections in this chapter provide the context of the 

research problem and the motivation behind taking up this topic for research. The 

aims and objectives are defined next which is then followed by the potential 

contributions of this research work. The chapter concludes with the organisation of 

thesis where the contents of each contributing chapters are outlined. 

1.1 Context to the Research Problem 

Transportation infrastructure constitutes one of the key drivers of economic growth 

and prosperity of a region. Statistics from Infrastructure Australia (2015) show that 

the transportation sector, as a whole, contributed nearly 10 percent towards the GDP 

of Australia in the year 2011. Interestingly, the share of urban roadway infrastructure 

was more than half the overall contribution. The urban road network in Australia 

caters to nearly 70 percent of all passenger and a significant proportion of non-bulk 

domestic freight movement (BITRE, 2014). Due to growing demand on roads, major 

cities around the world are experiencing unprecedented traffic congestion problems. 

Traffic congestion impairs economic growth due to loss of person hours, fuel 

emissions, other environmental hazards, and safety risks. For example, the annual 

congestion cost, which includes fuel cost and monetary value of lost time, for 

Australia in the year 2015 was roughly 16.5 billion dollars (AU) (BITRE, 2015). The 

cost was much higher in the US, of the order of 120 billion dollars (US) per year (The 

White House, 2014).  

Government agencies around the world are striving hard to alleviate the menace 

caused due to traffic congestion. One traditional and a widely used solution has been 

to add extra capacity to the existing roadway infrastructure. For example, the US 

government recently sanctioned 302 billion dollars (US), spread across four years, to 
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build and maintain roadway infrastructure aiming to bring down congestion (The 

White House, 2014). The government of Australia has also proposed to invest 15 

billion dollars (AU) towards key roadway development and upgradation projects like 

the WestConnex, Pacific highway upgrade, etc. in the state of New South Wales 

(NSW). Additionally, the Australian government also earmarked around 25 million 

dollars (AU) in 2011 to fund major studies to tackle the problem of congestion 

(BITRE, 2011).  

In order to effectively introduce measures aimed at relieving traffic congestion, it is 

crucial to first understand its dynamics and impacts on driver behaviour. A vast 

literature exists on car driver behaviour under congested traffic and the resulting de-

valuation towards such conditions. However, a peculiar aspect of congested traffic, 

namely stop-&-go traffic, has not been studied in depth to date. It is important to 

thoroughly study the impact of stop-&-go waves on drivers to gain better insights into 

the traffic congestion problem. This will aid transport agencies to allocate budget 

towards measures that are effective in reducing the ill-effects of traffic congestion and 

the consequent stop-&-go waves.  

1.2 What is a Stop-&-go Wave 

A stop-&-go (S&G) wave, also called traffic oscillation or phantom jam, is a traffic 

phenomenon that often exists in urban road networks during congestion. Shott (2011) 

defines S&G traffic as a condition where vehicles are forced to decelerate and travel 

at a lower speed, or even come to a halt, before resuming their original speeds. These 

waves were first observed inside the Lincoln tunnel in the US by Edie (1961). The 

study observed significant speed fluctuations on a one lane traffic stream caused due 

to small perturbations. Li et al. (2010) found S&G waves to occur in a cyclic pattern 

alternating between slow (stop) and fast (go) movements. Tanaka & Nakatsuji (2011) 

expressed S&G waves as a complete cycle of acceleration from a stop, travelling at 

different speeds in a short distance, and deceleration to a complete stop. Zheng et al. 

(2011) defined one cycle of S&G as deceleration followed by an acceleration of the 

vehicle. Empirical studies by Ahn et al. (2004), Laval et al. (2009), Li et al. (2010), 

Mauch & Cassidy (2004) found that S&G waves generally repeat in intervals of 2-15 
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minutes, last for up to 30 seconds and propagate backwards at a wave speed between 

10 to 20 km/h on freeways. 

Multiple reasons can lead to the initiation of S&G waves in congested traffic. A 

primary reason for that is asymmetric driver behaviour (Edie & Baverez, 1965). Yeo 

& Skabardonis (2009) analysed individual vehicle trajectory data to observe the 

variability in driver behaviour under different situations. They found heterogeneity in 

the measurement error across drivers with regard to judging the speed of the leader 

vehicle. Interestingly, their study revealed that drivers who overreact to braking 

situations often initiate S&G waves. Similar observations were also made by Laval & 

Leclercq (2010) who classified drivers into timid and aggressive on the basis of 

behaviour. Thus, the presence of few such drivers in a congested traffic stream could 

potentially instigate widespread S&G conditions. Apart from that, S&G waves can 

also be triggered due to reasons like:  

 lane change manoeuvres (Ahn & Cassidy, 2007; Laval, 2007),  

 any kind of moving bottleneck in a traffic stream (Koshi et al., 1992; Laval, 

2007),  

 a drop in the roadway capacity (Bertini & Leal, 2005; Cassidy & Bertini, 

1999a,b),  

 different roadway geometric features like curves and uphill segments (Jin & 

Zhang, 2005).  

The aforementioned factors of initiation of S&G waves were mainly observed using 

the available vehicle trajectory data on freeways. Few other factors that can 

potentially cause the formation of these waves in urban road networks are:  

 capacity drop due to the presence of on-street parking (Wijayaratna & 

Wijayaratna, 2016) 

 presence of signalised intersections, roundabouts, etc.   

Like traffic congestion, S&G waves also have an adverse effect on network 

performance and the surrounding environment. They not only cause an increase in 

fuel emissions (Helbing, 1997), but also lead to safety risks. Moreover, numerous 
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studies have found that continuous exposure to S&G traffic can lead to detrimental 

effects on driver physiology, particularly the cardiovascular measurements like blood 

pressure and heart rate (Apparies et al. 1998; Yang et al. 2013). Levinson et al. (2004) 

showed in their study that S&G traffic results in heightened discomfort and frustration 

levels among drivers as they need to be more focussed while driving. Malta et al. 

(2011) also found drivers to experience elevated levels of frustration when subjected 

to recurring cycles of S&G. This built up frustration is often the precursor to 

aggressive driving behaviour which can pose a serious threat to on-road safety (Lee, 

2010).  

Given the demerits of S&G traffic, it can thus be inferred that drivers tend to associate 

a disutility towards a route where S&G traffic is prevalent. This intuition fuelled the 

motivation behind this research topic, which is described in the following section.  

1.3 Motivation 

The motivation behind this research idea can be understood through a hypothetical toy 

network shown in figure 1.1. The figure comprises an origin (O), destination (D) and 

two travel routes (route-I and route-II) between the OD pair. Consider the two routes 

to have a similar travel distance and cost, but different prevailing traffic conditions. 

Let the traffic condition be expressed in terms of two attributes: travel time and time 

spent in S&G. For simplicity, let us also assume that the travel time on both routes is 

the same, which is 20 minutes. Thus, in figure 1.1, the only distinguishing factor 

between route 1 and 2 is the time spent in S&G attribute.  

A few studies have modelled the route choice decisions of car drivers as a function of 

time spent in S&G traffic. For example, Hensher (2001a) in his study found that car 

drivers, on average, perceived each minute under S&G traffic equivalent to 2.5 

minutes of free flow time. Using this information, we can evaluate the disutility 

associated with each route given in figure 1.1. For the sake of brevity, let us express 

the disutility in terms of the total perceived time as shown in equations 1.1 and 1.2: 

   𝑅𝑜𝑢𝑡𝑒 − 𝐼: (20 −  10) +  10 × 2.5 =  35 minutes (1.1) 
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𝑅𝑜𝑢𝑡𝑒 − 𝐼𝐼: (20 −  8) +  8 × 2.5 =  32 minutes (1.2) 

In the two equations, the first term represents the time spent in free flow traffic while 

the second term represents the perceived time under S&G traffic. Since route-II has a 

lower disutility, there should be more drivers on this route at network equilibrium. In 

other words, more car trips should be assigned to route-II at user equilibrium, where 

no driver can gain on travel time savings by unilaterally switching to another route 

(Wardrop, 1952). However, previous studies did not consider the effect of the number 

of S&Gs which is also expected to impact a route’s disutility along with the time 

spent in such conditions, as indicated by Levinson et al. (2004) and Malta et al. 

(2011). 

 

Figure 1.1: Hypothetical toy network with two route specific attributes 

Figure 1.2 expands the previous network representation to include the additional 

attribute which is the number of S&Gs experienced. As shown in the figure, consider 

that routes I and II have 10 and 16 cycles of S&Gs prevailing on them. Using this 

extra piece of information, it can be calculated that the average time spent in each 

occurrence of S&G is 60 seconds and 30 seconds on routes I and II respectively. 

Route-I: 

Travel time (mins) = 20 

Time in S&G (mins) = 10 

Route-II: 

Travel time (mins) = 20 

Time in S&G (mins) = 8 

O D 
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Thus, it can be observed that route-II is more onerous for travel due to a frequent 

occurrence of S&G waves. Assuming a weighting parameter of 1 minute per S&G 

cycle, the new route disutility value can be evaluated using equations 1.3 and 1.4 

𝑅𝑜𝑢𝑡𝑒 − 𝐼: (20 −  10) +  10 × 2.5 + 10 × 1 =  45 minutes (1.3) 

𝑅𝑜𝑢𝑡𝑒 − 𝐼𝐼: (20 −  8) +  8 × 2.5 + 16 × 1 =  48 minutes (1.4) 

 

Figure 1.2: Modified toy network with the new attribute, number of S&Gs 

Through equations 1.1 to 1.4, it can be seen that the route with the lowest disutility 

changed upon adding the new attribute. While route-II was the better option in figure 

1.1, it got changed to route-II upon adding the number of S&Gs. Thus, figure 1.2 

substantiates our initial intuition that drivers tend to have a disutility towards a route 

with more S&Gs, not accounting for which can lead to an inaccurate representation of 

vehicle assignment and the resulting traffic congestion. In reality, drivers generally try 

to jointly minimise both travel time and discomfort (expressed in terms of the number 

of S&Gs) instead of just minimising the former.  

Route-I: 

Travel time (mins) = 20 

Time in S&G (mins) = 10 

S&Gs (number) = 10 

Route-II: 

Travel time (mins) = 20 

Time in S&G (mins) = 8 

S&Gs (number) = 16 

O D 



  Chapter 1: Introduction 

Neeraj Saxena  7 

1.4 Aims and Objectives  

The primary aim of this thesis is to test the research hypothesis: an increase in the 

number of S&Gs on a route increases its disutility for a driver. In other words, drivers 

are less likely to travel on a route which has a higher number of S&Gs ceteris paribus. 

Additionally, this thesis evaluates the willingness to pay (WTP) measures between the 

number of S&Gs with respect to travel time and cost. A series of experiments have 

been conducted on different samples from the car driver population in Sydney. The 

entire research project can be broken down into 2 main tasks which aim to test the 

validity of the proposed hypothesis. Figure 1.3 shows the funnel chart which 

illustrates the tasks that have been undertaken in this thesis. We now briefly discuss 

each of these objectives: 

 

Figure 1.3: Funnel chart presenting the objectives defined for this thesis 

  

Experiments to be conducted 

Research Hypothesis  

Task 1:  

Online Stated Choice 

Experiment 

Task 2:  

Driving Simulator 

Experiment 
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Task 1: Online Stated Choice Experiment 

Stated Choice (SC) experiments are a popular method of data collection in situations 

such as the addition of a non-existent alternative or a hypothetical policy decision 

(refer to Bliemer & Rose (2011) for an extensive review of the previous SC studies). 

SC experiments are not only quite effective, but are also quick, cheap and easy to 

conduct as they usually do not require any sophisticated setup for data collection. This 

task mainly involved the design of SC experiment which included the selection of 

appropriate:  

 attributes and their corresponding levels,  

 design strategy  

The mode of data collection for the SC experiment was through an online web 

interface which further demanded  

 preparation of the survey webpage 

 systematically storing the survey responses in a database 

The data collected from the online SC experiment was then analysed using discrete 

choice models which help in understanding the choice behaviour of individuals, the 

relative importance of attributes under consideration and the WTP measures to 

continue with the current choice. The candidate models used for analysis in this task 

were: 

 Random Parameter Logit: It explains taste heterogeneity among individuals 

for a given attribute 

 Latent Class Choice Model: It explains the choice preference of an individual 

and his/her association to a cluster or a population segment. All individuals 

belonging to a given segment depict similar choice preferences. 

A detailed discussion of the specifications of experimental design, data collection, 

candidate model formulations and analysis of results is presented in chapter 3 and 

chapter 4 of this thesis. 
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Task 2: Driving Simulator Experiment  

Driving simulator experiments present real-world scenarios to participants in a 

virtually controlled environment to closely study their driving behaviour. 

Additionally, these experiments help in minimising the measurement bias which could 

possibly arise during the online SC experiment. This task mainly involved: 

 designing virtual driving scenarios that participants experienced 

 preparing a survey questionnaire which asked the participants about their 

levels of frustration and route preferences in every driving scenario, socio-

demographics and perception towards S&G traffic 

The collected driving simulator data was then analysed using a Structural Equation 

Model (SEM). The SEM takes into consideration the effect of the number of S&Gs on 

the level of frustration of the participants. Chapter 5 discusses the design 

specifications of the driving simulator experiment along with the model formulation, 

quantitative data analysis and interpretation of results.  

1.5 Contributions  

The core contribution of this thesis is to closely understand the intricate route 

selection process of car drivers when subjected to S&G waves on a day-to-day basis. 

This research project is the first attempt towards including the number of S&Gs 

experienced as an additional attribute to explain a route’s disutility to a driver. The 

series of experiments conducted in this study not only test the proposed research 

hypothesis, but also explain the contribution of underlying socio-demographic and 

psychological factors that instigate a particular route choice behaviour in drivers. The 

findings from this study would potentially facilitate the development of transportation 

models that better represent the impacts of traffic congestion on network performance, 

fuel emissions, etc., by accounting for the ill-effects of S&G traffic. Additionally, the 

outcomes from this study will also aid transportation planners and decision-makers in 

framing policies, for example, toll pricing, aimed at mitigating both higher travel 

times and discomfort due to the increased number of S&Gs while evaluating the toll 
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price. The main contributions of this thesis are summarised below along with the 

contributing chapter number in parenthesis: 

 Understanding the impact of the number of S&Gs on the route choice 

behaviour of car drivers during work trips (Chapter 3) 

 Determining the proportion of individuals that exhibit a specific taste towards 

the number of S&Gs attribute while making route choice (Chapter 4) 

 Inferring the role of S&G traffic characteristics (including the number of 

S&Gs) along with socio-demographic characteristics on psychological factors, 

like the level of frustration of individuals. Also to check for the association 

between the inbuilt frustration and the resulting route choice (Chapter 5) 

1.6 Organisation of Thesis 

This thesis is divided into six chapters where each research contribution stated above 

is covered exclusively in a chapter. Figure 1.4 shows the schematic workflow diagram 

of this thesis. Chapters 3 and 4 have been put together under the same stream, Online 

Stated Choice Experiments, as they follow a similar experimental design 

methodology. A detailed discussion of each constituent chapter of this thesis is 

presented below: 

Chapter 2: Background 

This chapter conducts an extensive review of the literature to showcase the current 

state-of-the-art across three separate fields of knowledge where the phenomenon of 

S&G traffic has been studied. This review provides sufficient evidence for the 

motivation behind conducting this study, which has been discussed earlier in sections 

1.2 and 1.3. This chapter first reviews the works which focussed on modelling the 

occurrence of S&G waves from the observed traffic data. It then discusses the studies 

which explained driver route choice in terms of the time spent in S&G traffic along 

with other travel related attributes. Lastly, this chapter reviews the works in the field 

of control theory relating to the design of S&G Adaptive Cruise Control (ACC) 

system in modern luxury cars using vehicle kinematic measures. This chapter 
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identifies the research gaps associated with each of the three fields and highlights the 

contribution of the thesis with regard to addressing the identified gaps. 

 

Figure 1.4: Workflow diagram illustrating the chapters of this thesis 

Chapter 3: Experiment I – Proof of Concept Study 

This chapter forms the first half of the stream Online Stated Choice Experiments and 

presents a route choice study that serves as a proof of concept. The study tested the 

research hypothesis on a sample of university staff and students who regularly drove 

to work by car during weekday mornings. A stated choice (SC) experiment design 

technique, which is a widely used method of experiment design, was selected in this 

study due to its advantages such as cost and time effectiveness and a simple design 

framework. This study utilised the SC design technique to come up with multiple 

choice tasks where each task comprised the current route and two other hypothetical 

routes that were pivoted around the first. This chapter first describes the design 

specifications like the selection of the number of alternatives, attributes and levels. It 

then discusses the layout of the online SC experiment that was presented to the 

Chapter 2 

Background 

Chapter 3 

Experiment I – Proof of Concept Study 

Chapter 4 

Experiment II – Expanded Study 

Chapter 5 

Experiment III – Driving Simulator Study 

Chapter 6 

Conclusions & Future Directions 

 

Online  

Stated Choice 

Experiments 
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participants. An empirical analysis of the collected data is presented next. Next, this 

chapter discusses the discrete choice model, the Random Parameter Error Component 

Logit (RPECL) model, and its formulation that was used for analysing the collected 

data. It is then followed by a discussion of the results from data analysis which shows 

that the participants do associate a non-zero disutility towards a route as the number 

of S&Gs increases, thus indicating the validity of the research hypothesis. Lastly, this 

chapter summarises the main findings, highlights the policy implications of the results 

and the limitations of the study.  

Chapter 4: Experiment II – Expanded Study 

This chapter constitutes the remaining half of the Online Stated Choice Experiments 

stream. It extends the scope of the research study by overcoming a few limitations 

associated with the proof of concept study discussed in chapter 3 of this thesis. This 

chapter first discusses the design procedure which was used to account for a different 

set of respondents. The data collection method is discussed next which is quite similar 

to the one discussed in the previous chapter. It is followed by an empirical analysis of 

the collected data. This chapter then presents a hybrid choice model, the Latent Class 

Choice Model (LCCM), and its formulation which was used for data analysis. Results 

show that drivers generally have a negative effect towards the number of S&Gs 

attribute; barring one-quarter of the sample which is indifferent towards this attribute. 

Finally, this chapter discusses the key findings and limitations of this study along with 

exploring few real world applications of the obtained results to better represent and 

counter the ill-effects of S&G traffic on the overall network performance.  

Chapter 5: Experiment III – Driving Simulator Study 

This chapter presents the driving simulator experiment that was conducted to further 

understand the role of S&G traffic characteristics on psychological factors like the 

level of frustration in drivers. It also investigates the dependency between the inbuilt 

frustration and the route choice of drivers. This chapter first presents the design 

specifications of the experiment which include developing the virtual scenarios, the 

parameters governing the formation of S&G waves and the layout of the experiment. 

An empirical analysis of the collected dataset is presented next. It then discusses the 
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Structural Equation Model (SEM) and its mathematical formulation that finds the 

relationship between the explanatory variables (socio demographic and route specific 

information) and the levels of frustration reported by the participants. Results show 

that attributes such as the time spent in S&G and the number of S&Gs have a positive 

effect on the built up frustration propensity (a latent variable). It also shows an 

association between frustration propensity and the observed route choice. This chapter 

highlights the potential applications of the results and limitations of the study at the 

last. 

Chapter 6: Conclusions & Future Directions 

This chapter summarises the thesis and discusses the main findings, policy 

implications and limitations of the research works that were conducted in this thesis. 

A few possible extensions of the research work are also proposed in this chapter.  
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CHAPTER 2  

BACKGROUND 

The occurrence of stop-&-go (S&G) waves, a phenomenon that usually exists in 

congested traffic, has motivated researchers to unravel its intricacies for more than 

five decades. Ever since their first detection inside the Lincoln tunnel in the US in the 

year 1958, there have been numerous works to learn more about the dynamics of S&G 

waves and how it affects driving behaviour. A wide spectrum of studies have been 

conducted till date which span across multiple domains such as driver psychology and 

behaviour, and different streams of engineering like transportation, electrical and 

automobile. These works can be broadly classified into three segments: 1) traffic flow 

studies, 2) route choice behaviour, and 3) adaptive cruise control theory. The works 

related to traffic flow study the life cycle of S&G waves such as their formation, 

propagation and dissipation. Studies associated with route choice modelling of drivers 

analyse the impacts of S&G conditions on the resulting route choice preferences of 

drivers. The adaptive cruise control theory, which is a relatively new field when 

compared to the other two, comprises works that design algorithms to enable modern 

luxury cars to traverse smoothly through the alternating cycles of S&G. These 

segments of research, even though quite extensive, looked at the S&G phenomenon 

from a unique and definite perspective. As a result, there exist few research questions 

which still need to be explored across these segments. Thus, the aim of this chapter is 

to discuss the state-of-the-art within each of the three segments of research and 

identify the potential research gaps which this thesis tries to address.  

The organisation of this chapter is as follows: Section 2.1 provides an extensive 

literature review of the different traffic flow studies which looked at explaining the 

dynamics of S&G waves (also referred to as traffic oscillations (Li et al., 2010)) and 

quantifying their occurrence. Section 2.2 reviews the studies on understanding the 

route choice behaviour of drivers under S&G traffic. Section 2.3 delineates the 

literature in adaptive cruise control theory discussing the techniques used to quantify 
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an occurrence of S&G. Finally, section 2.4 concludes the chapter with a discussion on 

the research gaps in the reviewed literature, and how this thesis aims to make a novel 

contribution to the existing knowledge base by addressing these identified gaps.  

2.1 Traffic Flow Studies on S&G Waves 

Stop-&-go (S&G) waves were first observed inside a tunnel, where lane change 

manoeuvres were prohibited, by Edie (1961) and Edie & Baverez (1967). The studies 

observed significant speed fluctuations in a one lane traffic stream caused due to small 

perturbations. Numerous works have been conducted since then to better understand 

the evolution and dissipation of S&G waves. These studies can be segregated into two 

categories: theoretical and empirical. The theoretical works modelled the dynamics of 

S&G waves by encompassing asymmetric driving behaviour (Yeo & Skabardonis, 

2009) and driver heterogeneity (Laval et al., 2009; Laval, 2011) into the simplified 

car-following model proposed by Newell (2002). On the other hand, the empirical 

studies mainly analysed the observed traffic data using different techniques to uncover 

the formation, duration, dissipation and periodicity of S&G waves. However, despite 

the rich literature, a few complexities associated with the dynamics of S&G waves 

still remain unclear to researchers (Laval & Leclercq, 2010; Suh et al., 2012). We 

discuss the state-of-the-art for each of the two categories in the following subsections, 

along with highlighting the research gaps which this thesis aims to address.  

2.1.1 Theoretical models to understand S&G waves 

Earlier models which were used to represent traffic flow were based on the concepts 

of fluid mechanics (Pipes, 1950; Lighthill & Whitham, 1955; Richards, 1956). These 

were the first order macroscopic models that well represented the movement of 

vehicles in congested traffic. However, these models did not realistically represent the 

S&G phenomenon due to their inability to account for: 1) unstable flows, 2) 

spontaneous breakdowns and 3) capacity drops (Nagel & Nelson, 2005). One of the 

earliest work in the direction of modelling the S&G phenomenon can be traced back 

to Chandler et al. (1958) and Herman et al. (1959). For example, Chandler et al. 

(1958) proposed a linear car-following model which is illustrated in equation 2.1. The 

equation states that the acceleration of the follower vehicle at time 𝑡 is directly 



  Chapter 2: Background 

Neeraj Saxena  16 

proportional to the relative velocity difference between the leader and follower 

vehicles at time 𝑡 − ∆.  

𝑥�̈�  (𝑡) =  𝜆 (𝑥𝑙 ̇ (𝑡 −  ∆) −  𝑥𝑓 ̇ (𝑡 −  ∆)) (2.1) 

Where, 

∆ represents the reaction time (time lag) which is about 1.5 seconds 

𝜆 is the proportionality constant which around 0.37 sec
-1 

𝑥�̈� (𝑡) is the acceleration of the follower vehicle at time 𝑡 

𝑥𝑙  ̇ (𝑡 −  ∆) is the velocity of the leader vehicle at time 𝑡 −  ∆ 

𝑥𝑓 ̇ (𝑡 − ∆) is the velocity of the follower vehicle at time 𝑡 − ∆ 

The model explained the concepts such as the local and asymptotic stabilities which 

represent the response of the follower vehicle (in the case of local stability) and 

downstream vehicles (in the case of asymptotic stability) due to a fluctuation triggered 

by the leader vehicle. These local and asymptotic instabilities characterise the 

formation of S&G waves. Since then, a few research works have been carried out 

modelling the S&G phenomenon using the first order traffic flow models. For 

example, recently Shott (2011) applied a mesoscopic LWR model to observe the 

creation and propagation of S&G waves on a freeway with an on-ramp. The effect of 

oscillations on en-routing decisions was also studied, making available the travel time 

during oscillations on each of the two routes to the drivers. These linear models were 

easy to compute due to its simple formulation. However, these models did not 

represent the S&G evolution realistically, mainly due to the exclusion of physical 

constraints (for eg. speed range) and non-linear driving behaviour (Li & Ouyang, 

2011).  

Non-linear car-following models, unlike their linear counterparts, impose a speed 

bound which restricts the magnitude of S&G waves to approach infinity. For example, 

Gazis et al. (1959) highlighted the inability of the linear car-following models to 

represent the flow density relationship derived from the observed traffic flow data 

inside the Lincoln tunnel. Thus, the authors proposed a non-linear car-following 
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model which states that the response of the follower vehicle is directly proportional to 

the velocity difference and inversely proportional to the relative spacing between 

itself and the leading vehicle. Equation 2.2 shows the proposed non-linear car-

following model. Subsequent works by Edie (1961) and Gazis et al. (1961) proposed a 

general class of non-linear car-following models which is shown in equation 2.3.  

𝑥�̈� (𝑡) =  
𝜆

(𝑥𝑙 (𝑡 −  ∆) −  𝑥𝑓 (𝑡 −  ∆))
 (𝑥𝑙 ̇ (𝑡 −  ∆) −  𝑥𝑓 ̇ (𝑡 −  ∆)) (2.2) 

𝑥�̈� (𝑡) =  
𝜆 .  𝑥�̇�

𝑚 (𝑡)

(𝑥𝑙  (𝑡 −  ∆) − 𝑥𝑓 (𝑡 −  ∆))
𝑛  (𝑥𝑙  ̇ (𝑡 −  ∆) −  𝑥𝑓 ̇ (𝑡 −  ∆)) (2.3) 

In the two equations, (𝑥𝑙 (𝑡 − ∆) −  𝑥𝑓 (𝑡 −  ∆)) is the relative spacing between the 

follower and leader vehicles. 𝑚 and 𝑛 are the calibration parameters. The remaining 

terms have their usual meaning. 

A wide range of non-linear car-following models have been proposed since then to 

realistically model the dynamics of S&G waves. Gipps (1981) proposed a safe 

distance car-following model where the follower vehicle adjusts its speed such that it 

can avert a collision in case of sudden braking by the leader vehicle. Bando et al. 

(1995; 1998) put forward a non-linear Optimal Velocity Model (OVM) to study S&G 

waves, which was later used and extended by several research works (Davis, 2003; 

Helbing, 1997; Jiang et al., 2001; Sawada, 2002; Zhao & Gao, 2005). However, the 

additional level of realism offered by these models was undermined by a few 

challenges. Some of the limitations of these models were: 1) these could not be solved 

using traditional analytical methods, due to the curse of non-linearity, but required 

simulation techniques instead, 2) the models required approximations to be made 

while representing local stability properties (Li et al., 2010), and 3) calibration of such 

models often became a daunting task. A recent work by Li & Ouyang (2011) 

proposed a solution technique to quantify the formation of S&G waves when using 

non-linear car-following models.  

A wealth of works also exist in the literature which have associated the occurrence of 

S&G waves with heterogeneity in driver responses. Del Castillo (2001) proposed a 
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car-following model that assumed a probabilistic distribution of headways during the 

deceleration state. Similarly, Kim & Zhang (2008) proposed a wave propagation 

model which considered stochastic driver reaction time. Kerner (2004) and Orosz et 

al. (2009) proposed another traffic state, in addition to the free flow and congested 

regimes. Traffic flow in this regime was considered to be stable, but sensitive to 

external perturbations, thus resulting in the formation of S&G waves. The studies 

discussed above followed the simplified car-following model proposed by Newell 

(2002) to represent vehicle dynamics. However, the car-following model assumed 

symmetric driving behaviour resulting in parallel vehicle trajectories. This behaviour 

was contradicted in a study by Laval & Leclercq (2010) who found the observed 

vehicle trajectories (on a freeway) around S&G locations to be deviating from the 

Newell trajectories. This brought out the limitation of such studies as they could not 

accurately model the dynamics of S&G waves, even though they assumed 

heterogeneity in driving response. Furthermore, these studies did not clearly identify 

what causes the difference in driver behaviour across traffic states. 

Asymmetric driving behaviour was first observed by Edie (1965) and Foote (1965) 

who found a variation in driver’s reaction time and space headway during acceleration 

and deceleration states. Newell (1965) put forward two separate curves (in the speed-

spacing diagram) for the acceleration and deceleration states. However, the actual 

shapes (functions) of such curves were not discussed. Yang & Koutsopoulos (1996) 

used a split fundamental diagram with a separate set of parameters for the acceleration 

and deceleration curves. Yeo & Skabardonis (2009) recently proposed the asymmetric 

traffic theory which states that drivers have different sensitivities towards gap 

acceptance and speed adjustments when exposed to acceleration and deceleration 

situations. The work analysed freeway vehicle trajectories and was able to identify the 

A-curve and the D-curve corresponding to the acceleration and deceleration states 

respectively. The study also found that the measurement and anticipation errors in 

human driving have an association with the growth and dissipation of S&G waves. 

For example, an S&G wave, triggered by a lane change, can grow in magnitude due to 

reasons such as: 1) proximity of the follower vehicle to the D-curve (reduced 

spacing), and 2) drivers overreacting to the anticipation error. Laval & Leclercq 

(2010) picked heterogeneity in driver aggressiveness to model the formation of S&G 
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waves. The study found the presence of both timid and aggressive drivers around the 

locations of S&G in the empirical vehicle trajectory dataset. Figure 2.1 shows the 

space-time trajectory of a few observed vehicles undergoing an S&G wave. The 

figure shows that while the aggressive drivers (shown as *) maintain a closer distance 

than the Newell trajectory, the timid drivers (shown as +) leave a wider spacing. It 

was also observed that the timid drivers caused a relatively larger impact on the 

evolution of S&G waves than the aggressive ones. The study proposed modifications 

to the car-following model proposed by Newell (2002) by taking into account driver 

heterogeneity in the modelling framework. Later, Chen et al. (2012) also proposed a 

car-following model that accounted for behavioural heterogeneity among drivers 

before and after undergoing S&G waves. The authors also found rubbernecking as a 

potential trigger behind the formation of S&G waves. 

 

Figure 2.1: Contrasting driver aggressiveness against Newell’s trajectory 

(Source: Laval & Leclercq (2010)) 

The discussion above presented a snapshot of the theoretical works looking into the 

S&G phenomenon. Readers can find an extensive review of the state-of-the-art of 

such works in the articles by Laval & Leclercq (2010), Li & Ouyang (2011) and Suh 

et al. (2012). 
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2.1.2 Empirical studies to quantify S&G waves 

Analogous to the theoretical studies, several research works have analysed real-world 

traffic data, like loop detector counts and vehicle trajectories, to learn more about the 

triggers, dynamics and safety hazards (eg. crash occurrence (Zheng et al., 2010)) of 

S&G waves. Table 2.1 lists out a few other triggers for S&G waves, apart from driver 

asymmetry and car-following behaviour that have been identified to date. Of all the 

triggers, lane changing manoeuvres have been identified as the primary reason behind 

the initiation of S&G waves. It leads to a sudden reduction in the available gap for the 

following vehicle, once the vehicle in front cuts in, thus triggering the formation of 

S&G waves (Yeo & Skabardonis 2009). Few studies also observed the cyclic nature 

of S&G waves which repeat in the interval of 2-15 minutes, last for up to 30 seconds 

and propagate backwards at a wave speed between 10 to 20 km/h (Ahn et al., 2004; 

Laval et al., 2009; Laval & Leclercq, 2010; Li et al., 2010; Mauch & Cassidy, 2004).  

Table 2.1: Factors initiating S&G waves 

Trigger Identified by 

Lane changing manoeuvres Ahn & Cassidy (2007); Laval & Daganzo 

(2006); Laval (2007); Suh et al. (2012); Yeo 

(2008); Yeo & Skabardonis (2009); Zielke et al. 

(2008) 

Moving bottlenecks Koshi et al. (1992); Laval (2007) 

Static bottlenecks (eg. merges 

and diverges) 

Ahn & Cassidy (2007); Bertini & Leal (2005); 

Cassidy & Rudjanakanoknad (2005); Laval & 

Daganzo (2006); Laval et al. (2007); Mauch & 

Cassidy (2004); Menendez (2006) 

Queue discharging side of 

capacity drops 

Bertini & Leal (2005); Cassidy & Bertini 

(1999a,b) 

Roadway geometric features (eg. 

curves and uphill sections) 

Jin & Zhang (2005); Laval & Leclercq (2010) 

A variety of empirical data processing methods have been used to extract S&G 

information from the observed traffic data. These can be classified into stationary and 

non-stationary signal processing techniques. An input (data) signal is considered as 
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stationary if its frequency or periodicity remains constant with time. In other words, 

the analyst is only interested in knowing the underlying frequency component while 

working on a stationary input signal. A pure sinusoidal function is a perfect example 

of a stationary wave, which has got a uniform frequency of 1/2π cycles/radian. Non-

stationary wave analysis techniques, on the other hand, are capable of reporting both 

frequency and time information of any fluctuation embedded in the signal. We review 

the two techniques in the following subsections highlighting their merits and 

limitations. 

2.1.2.1 Stationary wave processing techniques 

The earlier empirical studies analysed traffic oscillation properties using the time 

series of raw traffic data. For example, Kuhne (1987) fitted sinusoidal waves on the 

speed profile from a loop detector to determine the characteristics (amplitude and 

frequency) of S&G waves. Paolo (1988) also conducted a similar study using the 

traffic count information from different loop detectors. The two studies aggregated 

information over a given time period to smoothen the raw data. However, aggregation 

dampens the effect of traffic oscillations by smoothing it out along with other 

unwanted components (Zheng & Washington, 2012). Thus, these techniques were not 

reliable in estimating traffic oscillations, as they might have provided contradictory 

results from what was actually present in the original data. Neubert et al. (1999) 

conducted a cross-correlation analysis on traffic flow parameters (average speed, flow 

and density) which revealed that S&G waves were characterised by a strong 

correlation between flow and density (ρ~1). The time period of oscillations was 

determined by measuring the separation between neighbouring peaks on a 

correlogram, which was found to be around 10 minutes. However, few limitations of 

this method, as highlighted by Li et al. (2010) were: 1) identification of distinct peaks 

becomes challenging in case of multiple comparable frequency components, and 2) 

amplitude of traffic oscillations cannot be determined from the correlogram plot, 

which is standardised between [-1,1]. Muñoz & Daganzo (2003) used another signal 

processing technique, called the oblique coordinate system, to plot cumulative traffic 

counts against time to reveal the underlying traffic oscillations. The analysed data 

comprised aggregated loop detector counts, occupancy and average speeds over a 20 
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second interval. The oblique coordinate system amplifies the signal pattern using a 

technique that is similar to the second order difference of cumulative vehicle counts 

with a moving time window (Mauch & Cassidy, 2004). The advantages of 

considering a moving time window were: 1) it helped reduce the local noise from 

traffic data, and 2) it provided frequency along with an approximate location of the 

signal fluctuation in time. The smoothed data signal is given by equation 2.4. 

𝑥�̂� (𝑚0) =  𝑓𝑚 −  
1

2
 (𝑓𝑚+𝑚0

+  𝑓𝑚−𝑚0
) =  

1

2
 [ ∑ 𝑥𝑚−𝑖 −  ∑ 𝑥𝑚+𝑖

𝑚0

𝑖=1

𝑚0−1

𝑖=0

] (2.4) 

Where 𝑥�̂� represents the cumulative traffic count at an instant 𝑚, and 𝑚0 is the half 

window length on either side of 𝑚, which was taken as 7.5 minutes in the study. 

Wiggles in the oblique plot represented the oscillation pattern in the data. The 

technique became popular and was picked by other researchers due to its simple 

framework. However, later research works identified a few limitations inherent in the 

model formulation. The oblique coordinate system method requires a careful selection 

of the time window, a failure to do so might lead to biased traffic oscillation 

information from the smoothed data. Figure 2.2 has been taken from Li et al. (2010), 

which gives a good illustration of the impact of time window length on the resulting 

oscillation patterns. Figure 2.2(a) shows a pure sinusoidal signal used as an input and 

figures 2.2(b) and (c) show the resulting patterns using the window lengths as 10 and 

30 units respectively. While figure 2.2(b) shows an amplification of the signal 

(meaning frequent traffic oscillation), figure 2.2(c) shows a considerable dampening 

of the same input signal (inferring negligible traffic oscillation). Another limitation of 

the method can be seen through figures 2.2(d-f) where different lengths of the time 

window might cause a noisy signal (figure 2.2(d)) to depict periodic oscillations of 

different magnitudes (figures 2.2(e and f)). Thus, an inappropriate window length 

might lead to an under or over representation of the underlying traffic oscillation 

patterns. 
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Figure 2.2: Effect of window length on signal resolution 

(Source: Li et al. (2010)) 

Li et al. (2010) conducted a frequency spectrum analysis, a popular technique in 

signal processing, to reveal traffic oscillation patterns from the aggregated traffic data. 

The analysis comprises three steps: 1) de-trending the signal to remove traffic demand 

effects, 2) identifying stationary time intervals for analysis, and 3) detecting 

oscillations of interest in these time intervals. De-trending is generally carried out by 

fitting a lower order polynomial function. A Short Time Fourier Transformation 

(STFT) is then applied to identify the oscillation pattern within the de-trended, non-

stationary time series data. STFT overcomes the limitations of the Fourier transform 

by using multiple smaller sized windows to capture irregularities in the non-stationary 

data. STFT plots are helpful in dividing the signal into smaller, same sized time 

intervals within which the oscillation pattern remains invariant. The oscillation pattern 

within this time interval is then analysed to determine its amplitude and frequency, 

which represents the magnitude and period of the oscillation. The authors also used a 

term called the cycle abundance index (CAI) to quantify the number of oscillations 

caused during a given time interval. The study found the average oscillation 

periodicity to be between 8 and 12 minutes with an average CAI around 6 across 

different study locations. However, this method also requires a subjective judgement 

while selecting the oscillation-invariant time period, making it difficult to reproduce 
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the same result across analysts (Zheng & Washington, 2012). The study also proposed 

a model to relate oscillations observed at the loop detectors with the trajectory 

oscillations experienced by an individual driver. Equation 2.5 presents the proposed 

model which was developed using a simplified vehicle trajectory and principles of 

traffic theory 

𝑇𝑑

𝑇𝑡
= 1 +  

�̅�

𝑣𝑤
> 1 (2.5) 

In this equation, 𝑇𝑑 is the oscillation period observed from the detector data (using the 

frequency spectrum analysis), 𝑇𝑡 is the period of oscillation faced by a driver, �̅� is the 

average speed of the vehicle and 𝑣𝑤 is the traffic wave speed (~ 15 km/h). The model 

is a useful find as it provides a reasonable and cost-effective means of determining 

traffic oscillations at an individual vehicle resolution from the easily available loop 

detector data. However, the model made some simplifying assumptions, which limited 

the application of the model in the real world. Firstly, the model assumed a steady 

traffic state which does not hold true as the traffic flow rate approaches or exceeds the 

roadway capacity (Rouphail et al., 2005; Tanaka & Nakatsuji, 2011). Thus, the steady 

state assumption does not hold true in the presence of traffic oscillations, which are 

prevalent in congested traffic. Secondly, the model considered zigzag vehicle 

trajectories which do not reflect driver asymmetries (Laval & Leclercq, 2010; Laval, 

2011; Yeo & Skabardonis, 2009). 

2.1.2.2 Non-stationary wave processing techniques 

The above discussion indicates that the observed traffic data, in general, shows a 

temporal variation in frequency which cannot be accurately picked by the previous 

techniques. Wavelet Transformation (WT) has evolved as a widely used technique 

over time for identifying transient locations in a non-stationary signal. WT is useful in 

discerning the location and frequency components of a pulse in a signal, which is not 

visible to a naked eye, thus making it useful in analysing local events. The technique 

is quite popular in the field of image processing, geophysics, finance, engineering and 

medicine (Addison, 2002; Kumar & Foufoula-Georgiou, 1997). In the last one 

decade, WT has found numerous applications in traffic engineering relating to 
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automatic detection of freeway incidents (Adeli & Samant, 2000; Ghosh-Dastidar & 

Adeli, 2003), traffic features around freeway work zones (Adeli & Ghosh-Dastidar, 

2004; Ghosh-Dastidar & Adeli, 2006), traffic flow forecasting (Boto-Giralda et al., 

2010; Jiang & Adeli, 2005), and traffic pattern recognition (Jiang & Adeli, 2004; 

Vlahogianni et al., 2008). Recent studies by Zheng et al. (2011a,b) and Zheng & 

Washington (2012) applied WT to distil origins of S&G waves from the transient non-

stationary vehicle trajectory data. Figure 2.3 has been taken from Zheng et al. (2011a) 

and shows how the spatio-temporal location of the start and end of an S&G wave can 

be extracted from a vehicle trajectory (top figure). The authors defined an S&G wave 

as one complete cycle of deceleration followed by acceleration. The transient points 

are characterised by sharp spikes in the wavelet based energy plot (bottom figure).  

 

Figure 2.3: Detecting S&G formation using wavelet transformation 

(Source: Zheng et al. (2011a)) 

Addison (2002) and Zheng & Washington (2012) conducted numerical simulation 

experiments to compare stationary wave processing techniques (in time and frequency 

domain) against WT. The studies suggested the superiority of WT over other popular 

techniques with regard to accuracy, robustness and consistency. Moreover, the WT 
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technique requires no subjective judgement in selecting the size and shape of the time 

window Thus, the results can easily be replicated across analysts. A detailed 

discussion on the WT technique and its unique properties has been provided in 

Appendix A of this thesis. 

In a quick recap to this section, research works in modelling the stop-&-go (S&G) 

phenomenon have evolved over decades, ever since their first detection in the early 

1960s. The current state-of-the-art includes both theoretical models (such as the 

behavioural car-following model by Laval & Leclercq (2010)) and empirical 

techniques (such as wavelet transformation) that are capable of explaining and 

quantifying the dynamics of S&G waves. However, the field, even though deep, does 

not throw sufficient light on some research questions once the horizon is broadened. 

Firstly, the studies discussed above did not ascertain the effect of S&G traffic on the 

way people make their routing decisions. Secondly, a majority of the recent works 

analysed freeway vehicle trajectory data (NGSIM, 2010) to study S&G waves. Thus, 

their application gets constrained when trying to understand S&G traffic on urban 

roads, which exhibit different dynamics when compared to freeways. We discuss 

these limitations in detail in the last section of this chapter.  

2.2 Studies on Route Choice in S&G Traffic 

As discussed earlier in this chapter, stop-&-go (S&G) waves occur in cycles of 

deceleration followed by acceleration. It becomes onerous to traverse through such 

traffic conditions as drivers need to be more focussed while driving, resulting in 

elevated levels of discomfort and frustration levels (Hennessy & Wiesenthal, 1999; 

Levinson et al., 2004). Thus, a few studies have explored the impact of S&G traffic on 

the route choice behaviour of drivers. The first study in this direction was conducted 

by Small (1999). A stated choice (SC) experiment was conducted to understand the 

route preferences of individuals. Figure 2.4 shows one of the questions (referred to as 

choice task henceforth) that was presented to a participant. Each choice task 

comprised two hypothetical routes each of which was defined in terms of travel time, 

travel cost and the percentage of travel time spent in S&G traffic. Each of the three 

attributes was allowed to take 3 levels. S&G traffic was defined as the congested 
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traffic state corresponding to the level of service (LoS) of E and F as per the highway 

capacity manual (TRB, 2000). 

SC Experiment: Travel Time and Congestion 

Please circle either Choice A or Choice B 

  

Average total travel time: 11 minutes Average total travel time: 8 minutes 

  

Percentage of total time spent in S&G 

traffic: 36% 

Percentage of total time spent in S&G 

traffic: 38% 

  

Your cost: US $0.25 Your cost: US $1.50 

  

Choice A Choice B 

Figure 2.4: Sample stated choice task used in Small (1999) 

Further extensions of this study were conducted by Hensher (2001a) and Rose et al. 

(2009), who evaluated the impact of driving under different traffic conditions on a 

route’s disutility. For example, Hensher (2001a) also conducted an SC study where 

the participants were given three alternatives, namely, the status-quo (current) 

alternative and other two hypothetical alternatives that were pivoted around the status-

quo alternative. Each alternative was defined in terms of six attributes: free flow 

travel time, slowed down travel time, S&G travel time, travel time uncertainty, car 

running cost and toll charge. Each attribute was set at 4 levels. The studies showed 

that drivers find it more onerous driving in S&G traffic than other traffic conditions. 

For instance, car commuters, on average, perceived each minute spent under S&G 

traffic equivalent to 2.5 minutes of free flow time (Hensher, 2001a). However, the 

attribute duration spent in S&G traffic is not the only indicator of discomfort 

experienced by a driver. Consider the case where the time spent in S&G on a route R 

is 4 minutes. This duration can either be due to the occurrence of 4 stops each of 1 

minute duration, or by 8 stops of 30 seconds duration each. In reality, the latter case is 

expected to be more cumbersome causing a significant increase in the level of 

frustration and discomfort among drivers (Levinson et al., 2004; Malta et al., 2011). 

Thus, it is more intuitive to also study the effect of the number of S&Gs on a route’s 

disutility.  
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Reviewing the SC experiment design, multiple choice tasks were presented to the 

participants during the survey. The total number of choice tasks generated ranged 

between 11 (Small, 1999) and 64 (Hensher, 2001a). The selection of choice tasks was 

made using the fractional factorial method which picks the desirable set from the full 

factorial (3
3
 and 4

12
 respectively for the above two studies). Further, a blocked design 

style was adopted where a subset of the selected choice tasks was presented to a 

participant (2 blocks of 5 and 6 choice tasks each in Small (1999) and 4 blocks of 16 

each in Hensher (2001a)). Although the fractional factorial technique is 

computationally easy, it has been found to suffer from a few limitations like the 

dominant alternative case, non-orthogonality of alternatives and attribute level 

imbalance (Hensher et al., 2009). An inappropriate SC design could lead to inaccurate 

estimation of the model parameters and WTP measures. Thus, a more principled SC 

design strategy would be more accurate in unravelling the route choice behaviour of 

drivers.  

We now review the data analysis techniques that were used in the aforementioned 

studies. Small (1999) used a logistic regression on the collected SC experiment data to 

evaluate the trade-off among the different attributes. Although the logit model has a 

simple closed form framework, it makes rather restrictive assumptions like the IIA 

property and a uniform or systematic taste preference across individuals (Train, 2009). 

This inadequacy led to a widespread application of the mixed logit model in this 

context. The mixed logit model not only estimates the mean parameter effect, but also 

its standard deviation which explains the preference heterogeneity observed across 

individuals. Hensher (2001a) and Rose et al. (2009) used mixed logit models to 

quantify the impact of driving in S&G traffic on the route choice of car commuters. 

The model had better goodness-of-fit statistics than the conventional multinomial 

logit (MNL) model for the SC dataset under consideration. However, the mixed logit 

data analysis technique (particularly the random parameter logit model) was later 

challenged by researchers due to a few reasons such as: 1) presence of a status-quo 

alternative which remains time-invariant for an individual, 2) a priori assumptions 

regarding the mixing distribution of the random coefficients, and 3) tricky to include 

socio-demographic variables directly in the utility function. We elaborate on these 

shortcomings towards the end of this chapter.   
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2.3 Modelling S&G Conditions in Control Theory 

A rich literature exists in the field of control theory on the Adaptive Cruise Control 

(ACC) (also known as Adaptive Driver Assistance Systems, ADAS) feature that is 

available in modern vehicles today. Starting in the early 1990s within the luxury car 

segment, ACC systems are now available in vehicles across different car and truck 

segments. While a Cruise Control (CC) feature controls just the throttle of a vehicle, 

ACC is a semi-autonomous system that operates both the throttle and brake systems 

of the car by maintaining a pre-set value of time headway from the target (leader) 

vehicle in a traffic stream (Naus et al., 2008). As a more recent development, these 

advanced systems now come with a stop-&-go functionality that enables low-speed 

adaptive cruise control in congested traffic. The feature is specifically designed for 

vehicles experiencing recurring cycles of stop-&-go (S&G) waves in urban road 

networks. The advantages of stop-&-go ACC (S&G-ACC) are as follows. Firstly, it 

relieves the driver from the additional stress caused due to frequent cycles of 

deceleration followed by acceleration (Marsden et al., 2001; Venhovens et al., 2000). 

Secondly, a simulation study by Benz et al. (2003) showed that the S&G-ACC feature 

enables the vehicle to accelerate and decelerate smoothly, which significantly helps in 

bringing down fuel emissions. Moreover, the study also observed improved traffic 

efficiency as vehicles cruised at a smaller and consistent time headway between 1 – 

1.8 seconds, when compared to vehicles without this functionality, thus increasing 

traffic throughput. Figure 2.5 shows the working mechanism of the S&G-ACC 

equipped vehicle. A radar is mounted on the host vehicle (the white coloured vehicle 

in figure 2.5), which tracks the relative speed and distance between itself and the 

target vehicle (the immediate leader in the same lane). A suitable time headway value 

is set upfront by the user (driver of the host vehicle), and the desirable relative 

distance is calculated using the selected time headway, the host vehicle speed and the 

spatial separation between the two vehicles at standstill. The S&G feature is activated 

once the actual distance goes below the desirable value, which then decelerates the 

host vehicle by applying brakes. Alternatively, Stanton et al. (2011) defined the 

activation of S&G-ACC once the target vehicle was detected and the speed of the host 

vehicle went below 26 km/h. 
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Figure 2.5: Working of the S&G-ACC function in modern cars 

(inset: Odometer of the host vehicle) (Source: Gritzinger (2015)) 

Most ACC algorithms in practice are formulated as a linear (Naus et al., 2008; van 

Driel et al., 2007) or a non-linear (Martinez and Canudas-de-Wit, 2007) programming 

problem. The main control objective is to maintain a desirable relative distance 

between the host and leader vehicles. The objective function is bounded by constraints 

or criteria for a better performance evaluation of the ACC system. These criteria can 

be divided into two main categories: 1) comfort and 2) driving behaviour 

characteristics. As S&G-ACC is a semi-autonomous system, it should resemble the 

non-linearity in driving behaviour to enhance its user acceptability (Stanton et al., 

2011). Time headway and time to collision (TTC) are generally used as proxies to 

analyse driving behaviour when following a preceding vehicle (Han & Yi, 2006; 

Yamamura et al., 2001). While time headway is defined as the time difference 

between the fronts of the leader and host vehicles, TTC denotes the time before the 

two vehicles collide, if neither of the vehicles take an evasive action. The comfort 

criterion, on the other hand, can be expressed in terms of the longitudinal motion or 

fluctuations a driver experiences while travelling in S&G traffic. Typically, peak 

acceleration (deceleration) and jerk (rate of change in acceleration or deceleration) 

values are taken as comfort metrics. Bounded values of the two metrics can ensure a 
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certain degree of comfort in the longitudinal control of the vehicle (Martinez & 

Canudas-de-Wit, 2007; Naus et al., 2008; Yi & Moon, 2004).  

The algorithms undergo a rigorous testing and calibration exercise which involves 

simulation experiments. The experiments use wider bounds for the comfort and 

driving behaviour constraints to accommodate heterogeneity in driving behaviour, 

which enhances the safety aspect of the ACC system. For example, one of the design 

constraints, the peak deceleration, was set a value as high as -7.8 m/s
2
 (Sieler et al., 

1998), -9 m/s
2
 (van Driel et al., 2007) and -10 m/s

2
 (Martinez & Canudas-de-Wit, 

2007) to evaluate the performance of the ACC system being studied. However, the 

selected thresholds are quite high which is not generally witnessed in a real-life 

context. Moreover, likewise the traffic flow literature, these studies also did not 

explore the effect of S&G traffic on the routing behaviour of drivers. 

2.4 Discussion 

This chapter reviewed the three domains of knowledge where the characteristics of 

S&G waves have been extensively studied. First, section 2.1 presented the state-of-

the-art in the field of traffic flow studies. The current models and techniques are 

capable of explaining the perplexities associated with the S&G phenomenon. 

However, these methods have a few shortcomings which were briefly discussed 

towards the end of this section. The studies provided an in-depth analysis of the life-

cycle of S&G waves, but could not explain the consequences of this phenomenon on 

the route choice behaviour of drivers. It is equally important to know how drivers 

react to such conditions, as ignoring this can lead to inaccurate modelling of vehicle 

assignment and the resulting traffic congestion in a road network. Furthermore, the 

works were mainly built upon analysing freeway data (traffic counts and vehicle 

trajectory information). This restricts the transferability of the results to urban roads 

which exhibit contrasting traffic dynamics to freeways. In other words, there exist a 

few additional factors, specific to urban roads, such as parking manoeuvres and 

presence of roundabouts and signalised intersections that can also trigger an S&G 

wave (Fosgerau et al., 2013; Wijayaratna & Wijayaratna, 2016). 
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Section 2.2 presented the literature on the effect of S&G traffic on the route 

preferences of drivers. However, these studies took into account the time spent in 

S&G traffic and did not consider the number of S&Gs experienced which also 

represents an indicator to the discomfort caused. Thus, the paramount objective of this 

thesis is to determine the impact of the number of S&Gs experienced on a route 

towards its disutility. Secondly, the fractional factorial technique used to design the 

SC experiment has been widely criticised due to a random selection of choice tasks. A 

more recent design strategy, also called the D-efficient design, provides a more 

principled way of picking choice tasks from the full factorial. The strategy facilitates 

significant parameter estimation utilising a smaller sample size than other design 

techniques (Bliemer & Rose, 2011). Due to these advantages, we propose to use the 

D-efficient design technique to generate the SC experiments in this thesis. Lastly, 

section 2.2 also identified a few limitations of the previous studies discussed with 

regard to the quantitative data analysis techniques used. The conventional MNL 

specification is not a right tool to analyse SC datasets. The mixed logit model is able 

to capture the unobserved correlation structure in SC datasets, but is prone to some 

deficiencies. Firstly, the model is not well-suited for SC datasets which comprise the 

status-quo alternative. The status-quo alternative induces unobserved serial correlation 

among other alternatives and choice tasks due to its time-invariant nature (for an 

individual) (Hess & Rose, 2008; Train & Wilson, 2008). This correlation cannot be 

captured by the simple mixed logit (random parameter model to be precise) 

specification. Thus, we estimate a modified version of the mixed logit model, called 

the Random Parameter Error Component Logit (RPECL), proposed by Hess & Rose 

(2007) to analyse the SC dataset in this thesis (chapter 3). Secondly, the mixed logit 

model requires a priori specification of the mixing distribution for each random 

coefficient, where incorrect selection can have deleterious effects on the parameter 

estimates and model interpretation (Hensher & Greene, 2003; Hess et al., 2005). 

Furthermore, simply knowing that a parameter is randomly distributed across 

individuals is of lesser interest to policy-makers (Hess et al., 2009). Thirdly, the works 

discussed in this section did not take into consideration the role of demographics, 

socio-economic characteristics, and attitudes towards an individual’s route choice. 

There exists a vast literature which discusses the differences in attitudes and 

behaviours of drivers towards congested traffic (see Hennessy & Wiesenthal (1997) 
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for example). These differences arise due to factors like age and gender (Blanchard et 

al., 2000; Wells-Parker et al., 2002; Wiesenthal et al., 2000). Thus, to overcome the 

last two shortcomings, we use hybrid choice models like the latent class choice model 

(chapter 4) and the structural equation model (chapter 5) in the later chapters of this 

thesis. These models are advanced econometric frameworks which have the following 

advantages: 1) they do not require any a priori assumption on the mixing distribution, 

2) these can model latent constructs (quantities) which typically cannot be observed 

by the analyst, and 3) they furnish enriched predictive power of the model along with 

its interpretation which can be useful information to policy-makers. 

With technological advancements in the past decade, a few studies have utilised GPS 

data from cars to identify the travelled path along with other observed attributes 

(Fosgerau et al., 2013; Frejinger & Bierlaire, 2007; Oshyani et al., 2012; Ramos et al., 

2012). For example, Fosgerau et al. (2013) and Frejinger & Bierlaire (2007) expressed 

the utility of a route in terms of the presence of traffic signals (for making a left turn 

manoeuvre). Fosgerau et al. (2013) found that a traffic signal resulted in a disutility 

that was equivalent to 20 seconds of travel time. Frejinger & Bierlaire (2007) also 

found this disutility to worth around 40 seconds. It can be argued that drivers mainly 

experience S&G waves around signalised intersections in urban networks. Therefore, 

the time spent at a signal can be used to represent disutility towards the number of 

S&Gs. However, a limitation behind this idea is that it would consider S&G waves to 

occur around the locations of traffic signals only. This assumption is rather restrictive 

as it ignores other possible locations like roundabouts, merge and diverge sections on 

freeways, presence of uphill sections, and other roadway geometric features where an 

S&G wave can occur (refer to table 2.1). This thesis, in contrast, explains disutility of 

a route in relation to the number of S&Gs experienced along with other route specific 

attributes, irrespective of the trigger and the location that leads to the formation of 

these waves. 

Finally, section 2.3 reviewed the works on modelling S&G waves in the adaptive 

cruise control algorithm of modern luxury cars. The S&G-ACC function controls both 

the throttle and brake pedals to smoothly traverse through congested traffic 

conditions. The algorithm is optimised in a way such that it closely represents the 



  Chapter 2: Background 

Neeraj Saxena  34 

actual human driving reaction, making it more safe and comfortable. The algorithm 

undergoes extensive testing which generally assigns higher threshold values to the 

constraints like maximum deceleration, etc. making the ACC system robust against 

driver variability. However, such high cut-off points cannot be used for quantifying 

the occurrences of S&G waves in a real-world scenario as they focus more on 

avoiding S&Gs rather than accounting for it. Moreover, these works also focussed 

primarily on accounting for the occurrence of the S&G phenomenon without 

exploring its effect on the route choice behaviour of drivers.  

This thesis adds to the body of knowledge in the following way. This thesis evaluates 

the impact of the number of S&G waves experienced, alongside other travel related 

attributes, on the route choice behaviour of drivers in urban road networks. In other 

words, it tests the research hypothesis: an increase in the number of S&Gs on a route 

increases its disutility for the driver. Although the idea sounds intuitive, the study 

makes a novel contribution by not only examining the research hypothesis, but also 

quantifying the relationship between discomfort due to the number of S&Gs and the 

resulting route choice. One of the outcomes of the experiments will be the trade-off 

value between travel time and the number of S&Gs experienced that drivers are 

willing to make. The obtained trade-off value would potentially be beneficial in 

modifying the existing urban transportation models to better reflect the evolution of 

congestion in a road network by assigning some weightage on the number of S&Gs 

experienced on a route. This trade-off has not been estimated so far in the literature to 

the best of our knowledge where the closest discussion is about the duration of being 

in an S&G situation.  
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CHAPTER 3  

EXPERIMENT I – PROOF OF CONCEPT STUDY 

One of the first tasks was to test the credibility of the research hypothesis, which has 

been discussed earlier in chapter 1. A survey was conducted on a sample of university 

staff and students which served as a proof of concept. The survey was formulated 

using the Stated Choice (SC) experimental design technique. The survey was 

circulated through an online interface which was not only quick, but also required 

lesser manpower when compared to the traditional paper based method. The collected 

data was then quantitatively analysed using a discrete choice framework called the 

Random Parameter Error Component Logit (RPECL) model.  

This chapter comprises five main sections which are: 1) a background to SC 

experiments, 2) design of the SC questionnaire for this study, 3) survey research, 4) 

empirical analysis of the collected data, and 5) quantitative analysis of the data. The 

first section gives an introduction to the SC technique highlighting its advantages and 

appropriateness to this survey. The second section delineates the SC design 

methodology that was adopted in this study, specifying the inputs (design 

specifications), the design procedure (D-efficient pivot design method), and the output 

(blocked SC tasks). The third section discusses the survey administration using the 

online survey instrument along with data collection. The fourth section presents the 

descriptive statistics of the collected data. The fifth section presents the mathematical 

formulation and the estimation routine of the RPECL model which is followed by 

results from the analysis. Finally, the chapter concludes with a discussion of key 

findings and limitations of the study. 

3.1 Stated Choice Experiments: A Background 

One of the limitations for using the Revealed Preference (RP) data, as highlighted by 

Hensher (2001a), is the inability to capture a non-existing or a non-perceived 

alternative. This limitation led to the introduction of Stated Choice (SC) experiments, 
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which were first introduced by Louviere & Woodworth (1983) and Louviere & 

Hensher (1983). SC methods have become a popular mode of data collection in the 

fields such as marketing, health economics, environmental economics, etc. (Louviere 

et al., 2000). Furthermore, these methods are increasingly being used in transportation 

research for forecasting the impacts of a proposed alternative or a hypothetical policy 

decision (Hensher, 2001c). The paper by Bliemer & Rose (2011) provides an 

excellent review of the applications of SC methods in the field of transportation 

engineering. Collecting data through this method is generally time and cost effective 

since it does not require sophisticated instruments for the experiment. An SC 

experiment involves presenting a series of questions (which will be addressed as 

choice tasks henceforth) to a participant, where each choice task comprises the current 

(optional) and hypothetical alternatives. Each alternative is defined using a bundle of 

attributes, where each attribute can take up different levels of magnitude across the 

multiple choice tasks. The participant chooses the best among the presented 

alternatives in each choice task. The objective of conducting an SC experiment is to 

estimate the trade-offs among the attributes which define an alternative. The trade-off 

information thus obtained is used in the relative ranking of attributes on the basis of 

their importance. Thus, we decided to conduct an SC experiment in this study based 

on the merits discussed above.  

Designing SC experiments, over the years, has transformed more into a science than 

as an art. The aim of a good SC design is to extract meaningful and significant trade-

off information by presenting a minimum number of choice tasks to participants. One 

of the earliest design methods, the full factorial design, presented every possible 

combination of the attributes to participants. For example, consider that a choice task 

comprises 2 options, namely, the iPhone smartphone and the Samsung smartphone. 

Each alternative is defined in terms of 2 attributes, the phone cost and battery life. 

Also, assume that the phone cost and battery life can take 2 levels each. Thus, the full 

factorial for this experiment becomes 8 (2 X 2 X 2) choice tasks. As a general rule of 

thumb, if there are 𝐽 alternatives, each having 𝐾𝑗 attributes, where the attribute 𝑘 𝜖 𝐾𝑗 

has 𝐿𝑗𝑘 levels, the total number of choice tasks (𝑇𝑓𝑓) in the full factorial can be 

calculated using equation 3.1.  
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𝑇𝑓𝑓 =  ∏ ∏ 𝐿𝑗𝑘

𝐾𝑗

𝑘=1

𝐽

𝑗=1

 (3.1) 

A major limitation of the full factorial design is that 𝑇𝑓𝑓 explodes as 𝐽, 𝐾𝑗 and 𝐿𝑗𝑘 

increase. For example, Hensher, (2001a) conducted an SC experiment involving the 

current (referred to as the status-quo alternative henceforth) along with two other 

hypothetical unlabelled alternatives. Every alternative was defined in terms of 6 

attributes, each of which had 4 levels. This made the full factorial design of the order 

of 4
12

 which was impossible to present all the choice tasks to a participant in the 

experiment. Moreover, the full factorial design consists of several choice tasks with a 

dominant alternative which is the case where one of the alternatives is better in every 

aspect (attribute) than the other alternatives. Assuming that the participants are 

rational in choice making (which means selecting the best alternative), such situations 

do not reveal any useful trade-off information to the analyst. Another design 

technique, the fractional factorial, presents a set of choice tasks from the full factorial 

rather than the full factorial itself, thus making it less burdensome for the participants. 

For example, in the same study by Hensher (2001a), 64 choice tasks were selected 

using the fractional factorial method and further divided into 4 blocks of 16 choice 

tasks each. The method became quite popular until it was recently shown to suffer 

from a serious limitation. The fractional factorial technique picks up choice tasks at 

random which leads to shortcomings like the dominant alternative case, non-

orthogonality among alternatives and an attribute level imbalance (Hensher et al., 

2009). These shortcomings could lead to an inaccurate estimation of the model 

parameters and WTP measures, as found by Rose et al. (2008).  

Another method, the orthogonal design technique (also known as the D-optimal 

design), proposed by Street et al. (2001) presents a structured way of selecting the 

choice tasks. The technique suggested that SC tasks should be selected such that the 

attributes common across alternatives should never take the same level over the 

experiment. In other words, the D-optimal design aims to maximise the attribute level 

difference for the common attributes among the alternatives (Burgess & Street, 2003; 

Street & Burgess, 2004; Street et al., 2005). This way, a respondent is forced to make 

a trade-off among all the attributes in a choice task, while orthogonality ensures an 
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independent effect for each attribute in a choice task. However, this method has been 

found to suffer from a few limitations as well. Some of these are: 1) possibility of 

getting a dominant alternative case, dropping which would lead to a loss of 

orthogonality, 2) unsuitability for labelled SC experiments, 3) it assumes zero prior 

information for the attributes, and 4) the design may promote lexicographic choice 

behaviour where only a few key attributes influence the overall choice behaviour of 

the participant (ChoiceMetrics, 2012).  

A recently introduced design technique, referred to as the D-efficient design, follows 

another principled approach for selecting the SC tasks, which overcomes the 

shortcomings of the D-optimal strategy. A D-efficient design selects choice tasks such 

that it generates parameter estimates with the minimum possible standard errors. 

Thus, it provides a design which has the highest t-statistic for the attributes defining 

the alternatives. The standard errors are obtained by taking the square root of the 

diagonal elements of the Asymptotic Variance Covariance (AVC) matrix. The AVC 

matrix can be determined if there exists some prior information on the parameters. 

This prior information can be obtained either from the literature or by conducting a 

pilot study. A few advantages of using the D-efficient design are: 1) it requires a 

relatively small sample size than the D-optimal method for determining significant 

parameter estimates (Bliemer & Rose, 2011), 2) it utilises prior information on the 

parameters for the design which makes it better than the D-optimal design that 

assumes no prior information (Bliemer & Rose, 2005), and 3) it provides the analyst 

with an additional flexibility to construct the SC experiment in accordance with the 

econometric model that will be later applied during data analysis.  

The efficiency of the D-efficient design can be determined from the AVC matrix. 

Instead of evaluating the entire AVC matrix, it is computationally convenient to 

determine the same for a single participant. Thus, a commonly used efficiency 

indicator, the D-error, uses the AVC matrix for a single respondent. Equation 3.2 

shows the formula to evaluate the D-error. 

𝐷 − 𝑒𝑟𝑟𝑜𝑟 = det (Ω1(𝑋, 𝛽))1/𝐾 (3.2) 

Where Ω1 is the AVC matrix for the respondent using the observed attributes 𝑋 and 

prior parameter values 𝛽. The AVC is the negative inverse of the expected Fisher 
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information matrix, where the latter is equal to the second derivative of the likelihood 

function (Train, 2009). 𝐾 represents the number of parameters to be estimated. 

Smaller the D-error value more efficient is the design. 

Both the D-optimal and D-efficient designs present the same (fixed) attribute levels to 

all the participants. This creates a problem where the participants are overly optimistic 

or pessimistic about the attribute levels being presented to them. For example, 

consider that an individual has a travel time of 20 minutes while driving to work by 

car. The person could depict inaccurate perception, and the resulting selection, if 

he/she is presented 80 minutes as the travel time in a choice task. On the other hand, 

the person would have a lower perception error had the attribute level been 30 

minutes. This led to the introduction of the pivot or reference alternative design which 

uses the respondent’s knowledge base to derive attribute levels of the hypothetical 

alternatives in the SC experiment (Hensher, 2004; Rose et al., 2008). In other words, 

the attribute levels of the hypothetical alternatives are pivoted around the revealed 

(status-quo) attributes of the participants. This helps in minimising the perception bias 

towards the levels which are much higher/lower than what the participants usually 

experience. Each segment of individuals comprises its own reference alternative, 

which represents the base case for all the individuals belonging to that segment. Rose 

et al. (2008) listed different approaches for developing an efficient pivot design which 

included: a single design using the population average (homogeneous); segmenting 

population based on the reference alternatives (heterogeneous); determine an efficient 

design on the fly, and a two-stage design process. Of these approaches, the single 

design using the population average performed well; close enough to the 

heterogeneous design. Also, the four methods were found to outperform the 

orthogonal design which assumes no or zero prior information. 

We used the D-efficient homogeneous pivot design technique in our experiment 

because of two main reasons. First, previous studies by Hensher (2001a) and Rose et 

al. (2009), which expressed disutility of a route in terms of the time spent in stop-&-

go (S&G), presented the SC tasks comprising the status-quo and two other 

hypothetical routes. However, the studies used the fractional factorial design, which is 

now widely accepted to suffer from some serious limitations. Thus, we maintained a 

similar experiment layout by using a more structured design strategy. This would not 
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only lead to better parameter estimates, but also give us an opportunity to compare our 

results with these studies. Secondly, the sampled pool of the participants was expected 

to show different travel characteristics. Thus, maintaining fixed attribute levels across 

the participants could potentially cause a magnification of the perception error 

(towards an attribute level that is much higher/lower than what the participants 

usually experience) which could seriously undermine the obtained results.  

3.2 Methodology Adopted for the SC Design 

Upon zeroing in on the D-efficient homogeneous pivot design as the suitable design 

technique for this study, the next task was to generate the SC tasks following this 

approach. As with any other design process in general, it is imperative to first 

accumulate the inputs, or the design specifications, required for the design of the 

experiment. These design specifications are then synthesised using a set procedure to 

get the final output, i.e. the set of SC tasks. Figure 3.1 shows the schematic 

representation of the SC experiment design process which was adopted in this study. 

The rest of this section elucidates each of the three steps shown in the figure.  

 

Figure 3.1: Schematic diagram of the SC experiment design methodology 

3.2.1 Design specifications 

This subsection describes the necessary inputs for the design of the experiment and 

how these were acquired.  

INPUT 

Design 
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PROCESS 
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Pivot Design 
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3.2.1.1 Number of alternatives 

We decided to present 3 alternatives in every choice task, namely, the status-quo and 

two unlabelled hypothetical routes. The reasons behind specifically selecting the 3 

alternatives were: 1) we wanted to be consistent with the previous studies (on route 

choice as a function of the time spent in S&G (Hensher (2001a) and Rose et al. 

(2009))) for a comparison of the results at the end, and 2) it would give additional 

flexibility to the participants to continue with their currently travelled route instead of 

forcing them to select between the two hypothetical routes. 

3.2.1.2 Attributes and their levels 

We expressed each of the three alternatives in terms of 4 attributes, namely, 1) the 

total travel time, 2) the time spent in S&G conditions, 3) the number of S&Gs 

experienced, and 4) the vehicle running cost. Each attribute was further defined using 

5 levels. Table 3.1 presents the attribute levels that were selected for the design in this 

experiment. The attributes and levels for the time spent in S&G and the vehicle 

running cost were taken from the previous study by Hensher (2001a). Maintaining the 

same levels for these two attributes would facilitate comparison of the results at the 

end. The number of S&G experienced was the newly added attribute which is also the 

novel contribution of this thesis.  

Table 3.1: Attributes and their levels adopted for the SC design 

Attribute name Levels 

Travel time (minutes) -20%, -10%, 0, 10%, 20% 

Time spent in stop-&-go traffic (minutes) -50%, -25%, 0, 25%, 50% 

Number of stop-&-gos experienced -50%, -25%, 0, 25%, 50% 

Running cost of vehicle (AU $) -25%, -12.5%, 0, 12.5%, 25% 

 

3.2.1.3 Number of choice tasks and blocks 

It was decided to keep the number of choice tasks to 10 per participant. The reasons 

behind specifically selecting this number were: 1) since our each choice task would 

consist of 3 alternatives with 4 attributes each, presenting 10 choice tasks to each 

participant would potentially provide us with unbiased responses without exposing 
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them to a higher cognitive load, and 2) the SC design presented to each participant in 

the study by Hensher (2001a) comprised 16 SC tasks using 6 attributes in all. As we 

selected 4 attributes for our study, presenting 10 choice tasks per respondent (16/6 ×

 4) was considered an adequate number. Furthermore, we selected a block design 

approach where two sets of 10 choice tasks each would be generated. Each of the two 

blocks would later be used in the actual survey such that they almost have an equal 

representation in the collected data. 

3.2.1.4 Prior attribute information 

We referred to the previous studies by Hensher (2001a) and Rose et al. (2009) to 

determine the estimated coefficients for the 4 attributes we used in this study. From 

the survey of the literature, we identified that the parameters for travel time, vehicle 

running cost and time spent in S&G traffic were highly negative and statistically 

significant, which indicated disutility towards travel. Since, none of the past studies 

looked at the impact of the number of S&Gs, we considered it to bear a negative sign 

as well (indicating disutility). Thus, we set the initial prior values that were negative 

and close to zero for all the 4 attributes under consideration. An initial SC experiment 

was generated using these prior values and was then used to conduct a pilot survey.  

We received responses from 25 participants in the pilot survey, which equated to 250 

rows of observations (as each person responded to 10 choice tasks). The collected 

sample was of a reasonable size and was slightly bigger than the one used by Collins 

et al. (2007) in their pilot survey. The dataset was quantitatively analysed using the 

random parameter logit model (Train, 2009). Table 3.2 shows the parameters that 

were obtained from data analysis of the pilot survey data. These parameters were 

further used to re-design the SC experiment for the full (final) survey. For the full 

survey design, we specified the prior parameters to follow a mixing distribution. A 

normal distribution was assumed for the parameters total travel time, time in S&G and 

number of S&Gs. Vehicle running cost was treated as a non-random parameter in the 

design. Further, a Bayesian normal distribution was assumed for the mean and 

standard deviation of all the prior parameters. Bayesian distributions are useful as they 

consider the mean and standard deviation values to be in turn derived from an 

underlying distribution. This improves the accuracy of the design as the prior values 
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are not treated as fixed, thus accounting for unobserved variation (Sándor & Wedel 

2002). 

Table 3.2: Prior parameter values and distributions assumed for the full design 

Attribute Mean Std. dev. Distribution for full design 

Total travel 

time (minutes) 
-0.2746 

**
 0.1923 

**
 [n,(n,-0.2746,0.0544),(n,0.1923,0.0526)] 

Time in S&G 

(minutes) 
-0.1228 

**
 0.1843 

**
 [n,(n,-0.1228,0.0379),(n,0.1843,0.0449)] 

No. of S&Gs -0.1382 
**

 0.2310 
**

 [n,(n,-0.1382,0.0654),(n,0.2310,0.0770)] 

Vehicle running 

cost (AU $) 
-1.5784 

**
 -- [(n,-1.5784,0.3706)] 

**
 significant at 95%; (n,µ,σ) where 𝑛 is normal distribution, µ and 𝜎 are the mean and 

standard deviation respectively 

Table 3.2 also shows the Bayesian distribution which was assumed for the priors. For 

example, the prior distribution of travel time is represented by the expression [n,(n,-

0.2746,0.0544),(n,0.1923,0.0526)]. The expression implies that the travel time 

parameter follows a normal distribution (the first instance of 𝑛 in the expression) with 

some mean and standard deviation. The mean of this distribution is in turn derived 

from another normal distribution (the second instance of 𝑛 in the expression) having a 

mean of -0.2746 and a standard deviation of 0.0544. Similarly, the standard deviation 

of the travel time distribution is also normally distributed (the third instance of 𝑛 in 

the expression) with a mean of 0.1923 and standard deviation of 0.0526. Looking at 

another example, the prior distribution of vehicle running cost is given by the 

expression [(n,-1.5784,0.3706)]. It implies that the prior is normally distributed 

having a mean and standard deviation of -1.5784 and 0.3706 respectively. In this 

expression, the mean and standard deviation are considered fixed and do not follow 

any distribution, as was the case with the previous example. 

3.2.1.5 Population segments and their reference alternatives 

The study was planned to be conducted on UNSW staff and students who drove to the 

university campus by car. Thus, to come up with a homogeneous pivot design, it was 

necessary to first segregate the survey population into well-defined segments. We 

referred to the UNSW travel survey report for the year 2014, an annual document 
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released by the university, which gave the travel pattern (information like travel time, 

distance, mode of commute) of staff and students to UNSW Kensington campus 

(UNSW 2014). Table 3.3 classifies the population of car users who drive to UNSW 

into six segments on the basis of travel time.  

Table 3.3: Segment-wise weightage and reference alternative used for the design 

Segment 

Travel 

time 

range 

(minutes) 

Weightage 

(%) 

Reference alternative taken for the design 

Travel 

time 

(minutes) 

Time in 

S&G 

(minutes) 

Number 

of S&Gs 

Running 

cost 

(AU $) 

1 0-15 19.05 7.5 2 5 0.85 

2 16-30 16.28 22.5 6 12 2.45 

3 31-60 20.67 45 11 20 5.3 

4 61-90 28.92 75 19 30 12.0 

5 91-120 13.43 105 26 42 19.3 

6 > 120 1.65 135 34 50 21 

The table shows that close to 65 percent of the population has a travel time of greater 

than 30 minutes which indicates that commuters do not stay in the vicinity of the 

campus and have longer driving periods. Thus, there is a higher likelihood that the 

survey sample experiences S&G traffic while driving to UNSW on a regular basis. 

The reference alternative for each segment was defined following a certain set of rules 

which are given below: 

 The travel time attribute was set as the mean of a segment’s travel time range  

 Time spent in stop-&-go (S&G) was kept between 20 to 25 percent of the travel 

time attribute (as found by Hensher, (2001b)) 

 Number of S&Gs experienced was set between 30 to 40 percent of the upper limit 

of the travel time range for a segment 

 Vehicle running cost was calculated as the product of cost per kilometre (AU 

$0.15) and the travelled distance for each segment (RACQ, 2014). 

The segment-wise weight and the reference alternatives were used as the design 

specification. The D-efficient homogeneous pivot design technique would yield a 

single SC experiment for the entire survey sample, i.e. the choice tasks (a combination 

of attribute levels, or proportions in this case) remain the same across the participants.  
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3.2.1.6 Model specification for the design 

The D-efficient SC design technique also required the econometric model according 

to which the SC tasks would be generated. We selected a Random Parameter Error 

Component Logit (RPECL) model specification to generate the SC experiment for 

this study. Given the panel nature of the dataset, where the participant provides 

multiple responses, the reasons behind selecting this model were: 1) to express the 

unobserved errors (in the overall utility) in terms of the preference heterogeneity 

across individuals (Train, 2009), and 2) to capture the correlations across choice tasks 

arising due to the presence of a time-invariant status-quo alternative (Hess & Rose, 

2008; Train & Wilson, 2008). 

3.2.2 Design of the SC experiment  

Once the design specifications were decided, we used these inputs to generate the D-

efficient homogeneous pivot design. The entire design procedure was carried out 

using the stated choice (SC) experimental design software package Ngene 

(ChoiceMetrics, 2012).  

As our plan was to analyse the dataset using a mixed logit model (which has been 

used in the previous studies by Hensher (2001a) and Rose et al. (2009)), the objective 

of the design was to generate a homogeneous pivot design on the lines of the mixed 

logit model specification (which we addressed as the RPECL in subsection 3.2.1.6). 

Thus, the proposed method resulted in a complex design, the solution space of which 

was constrained by multiple conditions (design specifications). The binding 

constraints that we specified in our design were: 

 No dominant alternative required 

 Using the RPECL specification for the panel dataset 

 Evaluating the Fisher information matrix across the six segments 

 Three parameters following a Bayesian normal distribution 

 Including the error component part to the utility equations of the three 

alternatives 

 Using a simulated sample of 200 respondents 



 Chapter 3: Experiment I – Proof of Concept Study 

Neeraj Saxena  46 

 Generating random parameter and Bayesian draws using Gaussian quadrature 

with an abscissa of 2  

 Generate 2 blocks of 10 choice tasks each 

All these constraints made the choice task selection and evaluation of its efficiency 

more complicated and time-consuming (ChoiceMetrics, 2012). We found a solution to 

overcome this computational hurdle in the Ngene software manual and its user’s 

forum (Bliemer (2014); ChoiceMetrics (2012)). The solution steps were as follows: 

 Estimate the MNL model on the pilot survey dataset. Call it as model-MNL 

 Input the estimated parameters from model-MNL (presented in table 3.4) as prior 

values in the experiment design code also specifying the model as MNL. Let’s 

call the design code as code-MNL 

 Save the resulting SC tasks from code-MNL in a file. Let’s call it design-MNL 

 Estimate the mixed logit model on the same pilot survey dataset. Call it as model-

RPECL 

 Prepare another design code, code-RPECL, using the prior parameter values  

obtained from model-RPECL (presented in table 3.2) and specify the model as 

RPECL 

 Evaluate the efficiency of design-MNL using the specifications given in code-

RPECL 

This process greatly reduced the level of complexity and computational time as the 

MNL specified design was much easier to extract when compared to the highly 

constrained design. The efficiency of the resulting design was evaluated next by 

assuming it to be generated through the complex RPECL specified design. In other 

words, the proposed steps indirectly provided a design as per the RPECL specification 

consuming much lower time and resources.  

As the design procedure involved multiple constraints (discussed above), it was quite 

computationally challenging and time consuming to generate a single design of 20 

choice tasks split into 2 blocks. For example, a single evaluation of the complex 

design took around 40 minutes on a 2.4 GHz processor with 8GB RAM. In other 

words, executing the script for all possible combinations would have become time 
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infeasible. Thus, the above steps were repeated twice with the evaluated designs (two 

separate sets of design-MNL) having 10 choice tasks in each design (Bliemer, 2015b). 

Therefore, we also estimated an MNL model on the pilot survey dataset. Table 3.4 

shows the parameter estimates that were obtained from the model. These estimates 

were used as the priors in the design procedure code-MNL. 

Table 3.4: Prior parameter values for model-MNL on pilot study data 

Parameter Estimated value 

Total travel time (minutes) -0.136 
**   

 

Time in S&G (minutes) -0.0410 
**

 

No. of S&Gs -0.0236 
**

 

Vehicle running cost (AU $) -0.694 
**

 
          **

 significant at 95%   

Thus, we followed the steps discussed above and prepared the two design scripts, 

code_RPECL and code_MNL, using the prior information given in tables 3.2 and 3.4 

respectively along with the other design specifications. The two scripts are available 

at the weblink given in appendix B of this thesis. We do not discuss the technical 

(coding) details of the script in this thesis and would instead encourage the readers to 

go through the software’s user manual (ChoiceMetrics, 2012). 

3.2.3 The resulting SC tasks 

We generated two separate designs of 10 stated choice (SC) tasks each instead of a 

single blocked design of 20 choice tasks for the reasons discussed above. Table 3.5 

shows the two sets of choice tasks that were finally obtained from this design 

exercise. The two blocks are identified by the field BlockID in the table. Each row in 

table 3.5 corresponds to the attribute levels (as proportions) for the two hypothetical 

alternatives. These proportions would be multiplied by the corresponding attributes of 

the status-quo alternative to relatively pivot the hypothetical alternatives around it. 

The three alternatives would thus make the choice tasks. 
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Table 3.5: Two blocks of choice tasks from the homogeneous pivot design 

BlockID TaskID RI_TT RI_TTS RI_S&G RI_VR RI_TT RI_TTS RI_S&G RI_VR 

0 1 1.1 0.50 1.00 1.000 0.9 1.50 1.00 1.000 

0 2 1.2 1.50 0.75 1.000 0.8 0.50 1.25 1.000 

0 3 1.1 1.25 0.75 1.250 0.9 0.75 1.25 0.750 

0 4 0.8 1.00 1.25 0.750 1.2 1.00 0.75 1.250 

0 5 0.9 1.00 1.50 1.125 1.1 1.00 0.50 0.875 

0 6 0.9 1.25 0.50 0.875 1.1 0.75 1.50 1.125 

0 7 1.0 0.75 1.25 1.250 1.0 1.25 0.75 0.750 

0 8 0.8 0.75 0.50 1.125 1.2 1.25 1.50 0.875 

0 9 1.2 0.50 1.00 0.750 0.8 1.50 1.00 1.250 

0 10 1.0 1.50 1.50 0.875 1.0 0.50 0.50 1.125 

1 1 0.9 1.25 0.50 0.750 1.1 0.75 1.50 1.250 

1 2 1.2 1.00 0.50 1.000 0.8 1.00 1.50 1.000 

1 3 0.9 0.50 1.25 0.750 1.1 1.50 0.75 1.250 

1 4 1.2 0.75 1.25 1.000 0.8 1.25 0.75 1.000 

1 5 1.1 1.00 0.75 1.250 0.9 1.00 1.25 0.750 

1 6 1.0 1.50 1.50 0.875 1.0 0.50 0.50 1.125 

1 7 1.1 1.25 1.00 0.875 0.9 0.75 1.00 1.125 

1 8 0.8 1.50 1.00 1.250 1.2 0.50 1.00 0.750 

1 9 0.8 0.50 0.75 1.125 1.2 1.50 1.25 0.875 

1 10 1.0 0.75 1.50 1.125 1.0 1.25 0.50 0.875 



 Chapter 3: Experiment I – Proof of Concept Study 

Neeraj Saxena  49 

The D-error was used as the performance indicator to evaluate the relative efficiency 

of the generated block designs. The software usually keeps on exploring new designs 

as per the modified Federov algorithm (Cook & Nachtsheim, 1980) until all possible 

combinations of the attributes have been tried which satisfy the specifications defined 

above and then evaluates their D-error. Since the number of possible combinations in 

our survey was of the order 54 × 2  =  390625 (5 levels; 4 attributes and 2 

alternatives), which along with longer processing time (around 40 minutes per 

evaluation) would have become time infeasible to converge upon a design with the 

least D-error (ChoiceMetrics, 2012). Thus, a general practice is to run the design code 

for a few hours (around 4 to 5 hours) until the D-error stabilises (Bliemer, 2015a). We 

also followed the same approach and the resulting blocks of choice tasks were chosen 

when the D-error value changed by less than one-thousandth (0.001) between the two 

consecutive iterations (evaluations). The D-error value upon meeting the stopping 

criterion for the two blocks was found to be 0.736 and 0.824 respectively (using 

equation 3.2). As discussed earlier in subsection 3.2.1.5, the two blocks would later be 

used to generate the SC tasks such that they have almost an equal representation in the 

collected dataset. 

3.3 Survey Research 

Once the Stated Choice (SC) tasks were ready, the next tasks were to: 1) decide the 

survey administration method, 2) design the survey instrument for the study, and 3) 

data collection. This section provides a discourse on the three tasks mentioned above. 

3.3.1 Selecting the survey administration method 

There exist a wide range of survey administration methods in practice which mainly 

include the traditional paper-based surveys, personal interviews, telephone surveys, 

and online surveys. Each survey method has its pros and cons (Research Lifeline, 

2012). Until very recently, paper-based surveys generally had among the highest 

response rates, much more than online surveys. Nulty (2008) reviewed works across 

disciplines like education, health, etc which compared paper-based against online 

surveys and found the former to have a higher response rate by an average margin of 

around 25 percent. However, with the recent boom in internet patronage along with 

the smartphone revolution, online surveys are fast catching up on this statistic. For 
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example, Hohwü et al. (2013) found the response rate for paper-based and online 

surveys as 56.2 and 53.4 percent respectively in their study on children health and 

welfare. Apart from that, online surveys have other advantages like: 1) these are quite 

cost effective as they do not require additional manpower (in the form of survey staff) 

during data collection, 2) a well programmed online survey, which can be accessed 

especially through smartphones and tablets, can considerably increase the number of 

responses, and 3) data assembly and storage is quite convenient in contrast to the 

manual data entry required for paper-based surveys. Due to these advantages along 

with a higher response rate as observed by studies discussed above, we decided to 

circulate our survey instrument through an online medium. 

3.3.2 Layout of the survey instrument 

The online survey was thus programmed for this study. The survey instrument was 

developed in-house using the programming languages like HTML (primarily for the 

web page design), Jquery and Java Script (mainly for the back end logics and 

validations) and PHP (to store the responses in an SQL database). The webpage was 

developed using the software tool Wamp Server (WampServer, 2017). The URL for 

the survey webpage can be found in appendix B of this thesis. The online survey, with 

the title Route choice in stop-&-go conditions, comprised the following layout: 

 Introduction to the survey 

 Revealed travel characteristics 

 Route choice tasks 

 Socio-demographic Information 

 Advertisement for the driving simulator study  

3.3.2.1 Introduction to the survey 

This section first welcomed the participants and informed them about the aims of the 

study, contents of the survey, expected completion duration, and a chance of winning 

gift vouchers worth AU $20 through a lottery. The amount was decided based on the 

following: 1) The available funding which was AU $100 (given that this was a proof 

of concept study), and 2) we anticipated the survey duration (based on initial testing 

of the survey) to be around 15 minutes and this compensation was well above the 
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average existing wage rate of the sample population. More details on the observed 

survey duration and average wage rate will be presented in section 3.4 of this chapter.  

The survey then moved on to the part which defined the stop-&-go (S&G) wave, time 

spent in S&G and number of S&Gs. The description of S&G waves shown was: 

“Stop-&-Go waves are characterised by the sudden braking, followed by 

acceleration, of vehicles. These waves are often prevalent in congested traffic 

conditions on urban road networks. Under stop-&-go conditions, vehicles are forced 

to decelerate and travel at slower speeds or even come to a halt, before accelerating 

again, many times over the duration of the trip.” The number of S&Gs was described 

as follows: “The number of times one experiences the situation of decelerating to a 

halt and then accelerating again while driving.” Similarly, the time spent in S&G 

traffic was defined as: “The travel time that you spend in stop-&-go traffic. This 

component of travel time is all included in the total travel time.” A focus group was 

conducted to finalise the wording of these definitions to ensure that respondents have 

a proper idea of S&G waves in the survey. An animated video (refer to appendix B for 

the weblink to the survey page) was also shown to the participants to increase their 

awareness about this phenomenon and help them better associate with such 

conditions, if they experienced any. From the modelling (data analysis) standpoint, 

the reason behind showing the video was to minimise, if not eliminating, the 

measurement or the perception bias that might have been introduced if the participants 

found it hard to precisely recollect the number of S&Gs experienced during the travel. 

The implications of this bias will be discussed in section 3.6 of this thesis. 

3.3.2.2 Revealed travel characteristics 

In this section, the participants were asked to recollect their most recent trip to work 

on a weekday morning. Based on their travel experience, they were supposed to 

provide details on their total travel time, time spent in S&G, number of S&Gs and the 

distance travelled. The vehicle running cost was indirectly calculated using the 

distance and multiplying it with AU $0.15 per kilometre (RACQ, 2014). There were 

two things that the participants were made aware of: 1) the total travel time was 

inclusive of the time spent in S&G, and 2) the car running cost represented the 

average fuel cost incurred during the trip. Validation checks were applied on these 

fields to ensure that the participants did not give null or infeasible values. Apart from 
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the non-negativity check, the upper thresholds of the attributes were constrained as 

given below:  

 Travel time should be less than or equal to 250 minutes 

 Time spent in S&G should be less than or equal to 250 minutes 

 Number of S&Gs should be less than or equal to 250  

 Distance travelled should be less than or equal to 300 kilometres 

3.3.2.3 Route choice tasks  

The route choice section first presented a scenario to the participants where they had 

two alternate hypothetical routes along with the current route in their choice set. All 

three routes had a similar distance but varying traffic conditions prevailing on them. 

The participants were then informed about the 10 choice scenarios (tasks) where each 

scenario represented varying traffic conditions on the three routes. Based on their 

judgement, the participants were asked to select the most preferred route for travelling 

to work among the three candidate routes. An example was also shown which 

explained the contents of the choice task and how the participants should record their 

responses. Figure 3.2 shows the example that was presented to the participants. The 

example was then followed by the set of 10 Stated Choice (SC) tasks. The response 

was mandatory for every choice task and the back button of the web browser, which 

lets one go back to the previous question, was disabled in this part of the survey. This 

was done to prohibit the participants to alter their response to the previous set of 

questions based on the later ones. The participants were informed about this restricted 

browsing feature before commencing with the actual 10 choice tasks. Additionally, 

the order of the choice tasks presented was randomised across the participants to 

counter the learning effect.  

3.3.2.4 Socio-demographic information 

The socio-demographic section followed the SC tasks where the participant 

information was collected. A set of 11 questions were asked in this section, which 

included gender, age, annual gross income, occupation, household size, number of 

cars owned, etc. A question on their frequency of commute to work by car was also 

asked in this section. The response to each of these questions was mandatory. 
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Section 3: Route Choice Section 

Example: 

Consider a respondent gave the following details for a recent trip to work: 

Total travel time (minutes) = 25 

Time spent in stop-&-go traffic (minutes) = 8 (included in the total travel time) 

Number of stop-&-gos experienced = 12 

Average car running cost (AU $) = 1.2 

The following table is then shown to the person as one of the choice scenarios. 
 

SCENARIO 1 of 10 

 Current Route Route-1 Route-2 

Total travel time (minutes) 25 28 23 

Time spent in stop-&-go (minutes) 12 18 6 

Number of stop-&-go experienced 8 6 10 

Average vehicle running cost (AU $) 1.2 1.05 1.35 
*
 I would choose:    

 

 

NOTE: 

1. For the 10 scenarios, the backspace key and back button of your browser will be 

disabled 
2. You must ( 

* 
) select the most preferred route in each choice scenario, based on 

your judgement. 

Please select from the alternatives carefully as it is important for a sound analysis. 

Figure 3.2: An example scenario shown to the participants 

3.3.2.5 Advertisement for the driving simulator study 

Towards the end of the survey, the participants were informed about a follow-up 

driving simulator study in the future. The section asked for their willingness to 

participate in the study once it starts. Interested participants were asked to provide 

their email address which would be used in the future to invite them for the study. The 

section showed a few images of the driving simulator setup and subjects driving in a 

virtual scenario to increase the participant awareness and to potentially increase the 

 X  
Next 
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response rate for the future study. It also warned the participants prone to motion 

sickness and pregnant women to avoid participating in the study. 

3.3.3 Data collection 

All necessary clearances from the university human ethics committee, Human 

Research Ethics Advisory (HREA) Panel H: Science and Engineering, were taken 

prior to data collection. The copy of the approval letter (HC No. 15007) is available in 

appendix C of the thesis. We ensured that the survey instrument does not pose any 

health and safety hazards and maintained the confidentiality of the participant 

information.  

Individuals who drove to UNSW, Kensington campus for work by car at least thrice a 

week were selected for the analysis. The exclusion criteria to the survey included 

people who: 1) did not drive to UNSW for work, 2) did not possess a driver’s license, 

and 3) were undergraduate or postgraduate students. A respondent satisfying any of 

these criteria was dropped from the analysis. The reason behind using these exclusion 

criteria was to obtain a sample of car drivers who even had obligatory duties like 

teaching, administrative works, etc. Postgraduate research (Ph.D.) students were also 

considered as staff in this study as they too have research and teaching obligations to 

be met. The selected sample represented work trips to UNSW where a person is 

required to be on time at work to perform their duties. Studying non-work trip 

purposes, which characterise a different travel behaviour (for example, drivers won’t 

mind travelling longer if on an outing), were beyond the scope of this thesis and have 

been discussed in the future research directions in chapter 6 of this thesis. 

A set of rules were coded in the SC tasks to avoid situations arising due to 

unreasonable combinations of the attribute levels for the hypothetical alternatives. The 

used logics were as follows: 1) setting the minimum and maximum values on the 

revealed travel attributes (10 and 150 minutes for the travel time; 2 and 120 minutes 

for the time spent in S&G; 5 and 150 for the number of S&Gs, and AU $0.75 and AU 

$18 for the vehicle running cost), and 2) bounding the ratio of the time spent in S&G 

and the travel time between 0.2 and 0.6. In order to avoid confusion during the choice 

tasks, respondents were informed that the total travel time was inclusive of the time 

spent in S&G traffic. 
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The survey was circulated between Tuesdays and Fridays for around 20 weeks. The 

link to the survey was emailed to the administrative managers of roughly 15 schools 

within the university, asking them to forward the link among their staff. Additionally, 

the link was also circulated via the university’s explode email, a group mainly 

comprising university staff. Strategies like sending repeated reminder emails along 

with incentivising the survey in the form of prizes to respondents, awarded through a 

lottery, were used to further improve the response rate (Nulty, 2008). At last, a total of 

200 responses were received from the main survey. The survey completion time was 

found to be between 15 and 18 minutes across all the participants. 

3.4 Empirical Analysis 

The collected data was first cleaned and a few incomplete or invalid responses were 

dropped from further analysis. The responses that were dropped included: 1) 

incomplete responses: where the participants could not complete the survey due to 

reasons like losing interest during the survey and using other web browsers (like 

internet explorer) instead of the recommended ones (Google Chrome, Mozilla Firefox 

and Safari) to fill the survey, and 2) left biased responses: where the participant 

always selected the left most option, the status-quo alternative, across all the 10 

choice tasks. We analysed these responses closely and found that the participants still 

selected the status-quo alternative when other alternatives were better on few 

attributes. That is, the participants never traded-off on any attribute and had a zero 

willingness to shift away from the currently travelled route. The left biased responses 

constituted roughly 8 percent of the total collected data, which being a small 

proportion, were discarded from data analysis.  

The resulting dataset (will be addressed as the effective dataset henceforth) comprised 

145 participant responses, which equated to 1450 stated choice (SC) observations. We 

discuss the descriptive statistics of the effective dataset in this section. A thorough 

empirical analysis gives us useful insights on selecting an appropriate quantitative 

data analysis technique.  

Figure 3.3 shows the distribution of the four revealed travel related characteristics in 

the effective dataset. Nearly three-quarters of the participants incur a vehicle running 

cost up to AU $3 which equates to roughly 20 kilometres of travel to UNSW from 
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their homes. It indicates that most of the participants stay within a 20 kilometre radius 

of the UNSW campus.  

   

   

Figure 3.3: Distribution of travel characteristics of the participants 

For this distance, the other three graphs reveal interesting information. The travel time 

for almost half the sample is between 20 to 60 minutes which makes it more likely for 

the drivers to experience traffic congestion on the way to the campus. The conjecture 

is further corroborated from the time spent in stop-&-go (S&G) graph which shows 

that nearly 80 percent of the sample spends up to half an hour in S&G traffic. They 

also undergo multiple cycles of S&G, with a majority of the population experiencing 

up to 30 S&Gs during the travel to work. Thus, we can infer two key points from this 

figure: 1) the sampled respondents have to travel through congested traffic on a 

regular basis. Thus, they are expected to have a better association with S&G traffic 

and can approximately recollect the number of S&Gs experienced, and 2) the graphs 
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show significant variability in the revealed travel related attributes which potentially 

indicates heterogeneity in the travel behaviour of the participants. That is, the 

participants travelling for 60 minutes are expected to show different preferences 

towards travel characteristics in comparison to the ones driving for 20 minutes.  

Table 3.6 gives some more statistics on the trends observed in figure 3.3. The table 

shows the mean of the travel related information of the effective dataset to be on a 

higher side. For example, the average driving time and the vehicle running cost are 

around 40 minutes and AU $2.6 respectively. It implies that a majority of the sampled 

respondents have a travel time of more than 30 minutes. Nearly 48 percent of the total 

travel time is observed to be spent driving in stop-&-go (S&G) traffic with an average 

of 18 stops experienced. It shows that sampled drivers have to experience congested 

driving coupled with S&G conditions while travelling to UNSW during morning peak 

hours. The minimum, maximum and percentile columns convey that each travel 

specific attribute has a wide range and the distribution shown in figure 3.3.   

Table 3.6: Summary of descriptive statistics of the effective dataset 

Data Mean 
Std. 

dev. 
Min. Max. 

20
th

 

percentile 

80
th

 

percentile 

Travel Time  

(minutes) 
38.13 23.33 5 120 18 55 

Time in S&G 

(minutes) 
18.24 15.81 1 75 5 30 

No. of S&Gs 17.61 27.06 1 100 4 30 

Running cost 

(AU $) 
2.61 2.55 0.3 15.75 0.9 3.75 

Figure 3.4 shows the descriptive statistics of the socio-demographic characteristics of 

the effective dataset. The survey received a good number of responses from females 

when compared to males. The age distribution shows that roughly 68 percent of the 

population is above 30 years which generally corresponds to the lower age limit of 

university staff.  
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Figure 3.4: Descriptive statistics of socio-demographic variables of the collected data
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The remaining participants are between 20 to 30 years which represents the age limit 

of the majority of the post-graduate research students in the university. The weekly 

income graph has a good representation (most of the segments are more than 10 

percent) across different segments. It shows that roughly 30 percent of the sample has 

an income of up to AU $1,000 per week which corresponds to the regular stipend of 

research students. The remaining sample belongs to a higher income bracket which 

includes skilled labour, technicians, administrative and teaching staff (refer to the pie 

chart on the occupation status for more details). The average hourly wage rate for the 

effective dataset is calculated as a minimum of AU $25.50, assuming 52 weeks and 

45 hours of work per week. Nearly half of the participants drove to the UNSW 

campus on all 5 days of the week which has two implications: 1) they generally 

belonged to a high-income group which could afford the daily fuel, toll and parking 

costs, and 2) the regular drive to work would have exposed them to the phenomenon 

of S&G waves and would have helped them to recollect the number of S&Gs 

experienced in the travel. Thus, in summary, we concluded that the selected sample 

was suitable to test the relationship between route choice and the number of S&Gs 

experienced. As a sidenote, it is worth mentioning that we could not validate whether 

the collected sample was a representative of the sampling frame of interest, i.e. 

participants who drove at least thrice a week to UNSW for work in the morning, due 

to lack of available data.  

3.5 Discrete Choice Analysis 

The stated choice dataset thus obtained was further analysed to understand the route 

choice behaviour of the sampled respondents and to test the validity of the proposed 

hypothesis. Additionally, we were also interested in determining the trade-off, also 

known as the willingness to pay (WTP), between the attributes that the participants 

made while assessing the different routes presented to them across the choice tasks. 

Thus, we used a discrete choice modelling technique for the quantitative analysis of 

the dataset. In this section, we review the various discrete choice models in practice 

and select the most suitable model for this study.  
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One of the earliest models, the logistic regression, proposed by McFadden (1973) 

provided forecasts on the mode choice of individuals based on the alternate specific 

and person specific attributes. The model has salient features like: 1) a closed form 

solution which is easy to compute, and 2) it provides the relative impact of attributes 

(on the choice) along with the WTP measures. This seminal model is widely used in 

practice to date and has served as the pivot in the quest for other econometric 

frameworks. The nice closed form of the logit kernel is a result of a few underlying 

assumptions like the unobserved errors follow an EV-1 (Gumbel) distribution and are 

Independent and Identically Distributed (IID). The consequence of these, especially 

the IID assumption, is the well-known Independence of Irrelevant Alternatives (IIA) 

property which imposes a proportional substitution pattern among the alternatives 

(Ben-Akiva & Lerman, 1985). Moreover, the IID assumption has been found to be 

quite restrictive in a few situations. For example, the logit model is ill suited to 

analyse stated choice (SC) datasets where few unobserved errors such as the 

individual taste remain the same across the multiple choice tasks (Hensher, 2001a). 

As a result, numerous models have been proposed by researchers over the years which 

relax (partly of fully) the assumptions made in the logistic regression. Table 3.7 

tabulates a few studies which compared the logit model against more flexible 

frameworks and found the logit model to under estimate the value of time (VoT) and 

other WTP measures on most of the occasions. 

Over the years, the mixed logit model has evolved as a better tool to analyse the 

choice data. Hensher and Greene (2003) discussed the current state-of-the-art and 

application of the Mixed Logit model (MXL) in the field of transportation 

engineering. The model is particularly useful in SC experiments where an individual 

is subjected to a series of choice tasks. The MXL relaxes the IIA condition by 

splitting the unobserved component of the overall utility into two components, a user 

defined part and an idiosyncratic part. The user defined part can be reshaped to form a 

Random Parameter Logit (RPL) or an Error Component Logit (ECL) model (Train, 

2009). While the RPL formulation explains preference heterogeneity among 

individuals, ECL captures the correlation among the unobserved component of utility 

across alternatives and multiple choice tasks (Hess & Rose, 2008; Train, 2009). 
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Table 3.7: Comparison of WTP using logit and other models 

Author(s)  

(year) 

Data 

type 

Response 

variable 

type 

Models 

used 

VoT 

MNL 

VoT other 

model 

Bhat (1995) RP Multinomial 
MNL & 

HEV 
14.7

US
 20.8

US
 

Hensher (2001a) SP Multinomial 
MNL & 

MXL 
14.8

 AU
 20.7

 AU
 

Hensher (2001b) SP Multinomial 

MNL, 

MNP &  

H-MNP 

4.6
 AU

 
MNP: 5.3

 AU
 

H-MNP: 7.6
 AU

 

Hensher (2004) SP Multinomial 
MNL & 

MXL 
10.8

 AU
 6.1

 AU
 

Hess, Bierlaire, 

& Polak (2005) 
Simulated Binary 

MNL & 

MXL 
17.2

 AU
 62.8

 AU
 

Phanikumar & 

Maitra (2006) 
SP Multinomial 

MNL & 

MXL 
32.1

IN
 46

IN
 

AU 
value in AU $/hr 

IN
 value in INR/hr

  US
 value in US $/hr 

MXL: Mixed logit   HEV: Heteroscedastic extreme value                

MNP: Multinomial probit             H-MNP: Heteroscedastic multinomial probit  

RP: Revealed preference data             SP: Stated preference data 

The ECL model is particularly useful in analysing the pivot design SC experiment 

data where the hypothetical alternatives are pivoted around the Status Quo (SQ) 

alternative. The presence of the SQ alternative gives rise to two kinds of correlations: 

1) between the SQ and hypothetical alternatives as the former remains unchanged 

while the latter are forced to vary in every choice task, and 2) between the non-

existing hypothetical alternatives which might be highly correlated with each other 

than the reference alternative (Train & Wilson, 2008). These correlations cause 

systematic substitution patterns which lead to an inaccurate estimation of the WTP 

measures. Thus, adding normally distributed (ND) error components to the 

deterministic component of the utility of alternatives can better account for the 

correlations (in the unobserved part of the utility) arising due to the presence of the 

SQ alternative (Hess & Rose, 2008; Scarpa et al., 2005). 
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This study used a Random Parameter Error Component Logit (RPECL) model, which 

was a combination of both the RPL and ECL specifications. The model not only 

accounted for the taste heterogeneity across individuals, but also captured the 

correlation (in the unobserved part of the utility) across the multiple choice tasks that 

arose due to the presence of the time invariant SQ (reference) alternative in the pivot 

design SC experiment (Hensher, 2008; Hess & Rose, 2008). In other words, the model 

is particularly useful in the case of pivot design SC experiments. We now discuss the 

model formulation of RPECL in the following subsection. We adopt the following 

formatting styles while discussing matrix algebraic notations used in the model 

formulation: 1) scalar quantities are written in italics, 2) vectors in italics and bold 

face, and 3) matrices in bold face.  

3.5.1 Model formulation 

Consider individual 𝑛 ∈ 𝑁 where 𝑁 is the total number of participants surveyed. The 

individual 𝑛 faces 𝑇 choice tasks within the experiment. Each choice task 𝑡 ∈ 𝑇 

comprises three alternatives, the SQ and two other hypothetical alternatives that are 

pivoted around the first. According to Hess & Rose (2008), the general utility 

specification is given by equations 3.3 – 3.5: 

             𝑈𝑛1𝑡 =  𝜷𝒏
′ 𝑿𝒏𝟏 +  𝜎𝜉𝑛1 +  휀𝑛1𝑡 (3.3) 

               𝑈𝑛2𝑡 =  𝜷𝒏
′ 𝑿𝒏𝟐𝒕 +  𝜎𝜉𝑛2𝑡 +  휀𝑛2𝑡 (3.4) 

              𝑈𝑛3𝑡 =  𝜷𝒏
′ 𝑿𝒏𝟑𝒕 +  𝜎𝜉𝑛3𝑡 +  휀𝑛3𝑡 (3.5) 

In these equations, 𝑿𝒏𝒋𝒕 is an [𝑖 ×  1] vector of 𝑖 alternate specific attributes for 

individual 𝑛 and alternative 𝑗 (𝑗 𝜖 𝐽 𝑤ℎ𝑒𝑟𝑒 𝐽 ≡ {1,2,3}) in choice task 𝑡. 𝜷𝒏 is an 

[𝑖 ×  1] vector of parameter weights (fixed and random) for that individual. The 

idiosyncratic term 휀𝑛𝑗𝑡 follows an EV-I (Gumbel) distribution. The terms 𝜉𝑛1,  𝜉𝑛2𝑡 

and 𝜉𝑛3𝑡 represent the individual specific error components and are drawn from a 

standard normal distribution. The notations 𝑿𝒏𝟏 and 𝜉𝑛1 for the SQ alternative do not 

have the subscript 𝑡 because they remain invariant for individual 𝑛. The parameter 𝜎 

ensures homoscedasticity among the error components across the three alternatives. 

The term 𝜉 mainly focusses on capturing the correlation (in the unobserved error term 
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of the utility) across the multiple choice tasks which arise due to the invariant SQ 

alternative. It does not accommodate the panel impact where some unobserved 

individual specific effects remain the same across the multiple choice tasks for an 

individual.  

The distribution of the random parameter vector is specified by the analyst. Some 

commonly used distributions are the normal, lognormal, uniform and triangular 

distributions. Each distribution is applied in a specific case and has its own merits and 

demerits. For example, a normal distribution can produce both negative and positive 

parameter estimates for travel time due to its symmetrical shape. On the other hand, a 

lognormal distribution considers the same parametric sign, but yields a much higher 

mean and variance because of its long tail, which makes it unsuitable for WTP 

calculations (Hensher, 2001a). Similarly, Hess et al., (2005) have found that the 

lognormal distribution gives the best model fit, but the worst mean and standard 

deviation during the WTP estimation. Conversely, the normal distribution has the 

poorest model fit, but the best estimate for the WTP. Moreover, Hensher & Greene 

(2003) found that VTTS estimates using the normal and triangular distributions are 

generally similar in magnitude. Since the aim of the study was to test the impact of the 

number of stop-&-gos (S&Gs) on route choice and evaluating the WTP between the 

travel time and the number of S&Gs, we decided to assign a normal distribution to the 

random parameters.  

Hess and Rose (2007) provide the likelihood function of the RPECL model. Bhat & 

Castelar (2002) and Hensher (2008) have also used a similar likelihood function, but 

in a different context. Equation 3.6 gives the log-likelihood function 𝐿𝐿 (𝑾) for this 

model.  

𝐿𝐿 (𝑾) =  ∑ ln [∫ (∏ (∫𝑃𝑛𝑡 (𝑗𝑛𝑡| 𝑿𝒏𝒋𝒕, 𝜷𝒌
𝜉

, 𝜷𝒇, σ) ℎ(𝛏) 𝑑𝝃)

𝑇

𝑡=1

)  𝑔(𝜷𝒌) 𝑑𝜷𝒌
𝜷𝒌

]

𝑁

𝑛=1

 (3.6) 

𝑃𝑛𝑡 (𝑗𝑛𝑡| 𝑿𝒏𝒋𝒕, 𝜷𝒌, 𝜷𝒇, 𝜎) =  
exp  (𝑉𝑛𝑗𝑡)

∑ exp  (𝑉𝑛𝑘𝑡)𝐽
𝑘=1

 (3.7) 
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In this equation, 𝜷𝒌 and 𝜷𝒇 are the random and fixed parameter vectors respectively 

from the parent coefficient vector 𝜷𝒏. The expression in equation 3.7, 

𝑃𝑛𝑡  (𝑗𝑛𝑡| 𝑿𝒏𝒋𝒕, 𝜷𝒌, 𝜷𝒇, 𝜎), represents the probability of individual 𝑛 to select 

alternative 𝑗, which is the chosen alternative, in choice task 𝑡. The expression 

corresponds to a logit kernel where the observed utility, 𝑉𝑛𝑗𝑡, is expressed in terms of 

the observed attributes, fixed and random parameters (expressed as 𝜷𝒏
′ 𝑿𝒏𝒋𝒕 in the 

equations 3.3 – 3.5). ℎ(𝝃) corresponds to the probability density function (pdf) of the 

standard normal distribution and 𝑔(𝜷𝒌) is the pdf of the mixing distribution (which is 

again a normal distribution in this study).  

3.5.2 Model estimation 

The estimated set of parameters in equation 3.6, 𝑾, comprises the mean of 𝜷𝒌, 𝜷𝒇, 

elements of a variance-covariance matrix of the attributes that are randomly 

distributed (Ω), and elements of a variance-covariance matrix of the error components 

(∑). Only the diagonal elements of Ω are estimated, the square root of which represent 

the standard deviation of the random parameters 𝜷𝒌. In other words, all the off-

diagonal elements in Ω are constrained to zero. The error component matrix ∑ is a 1 X 

1 matrix which corresponds to a univariate dependent variable, the route choice. ∑  is 

normalised to 1 for identification and is multiplied to the error variance parameter σ. 

Equation 3.6 is generally estimated using the Maximum Simulated Log-likelihood 

(MSL) technique discussed in Bhat (2001); Bhat & Gossen (2004); Revelt & Train 

(2000) and Train (2009). The MSL form for equation 3.6 is given in equation 3.8, 

where R represents the number of simulated draws for the random and error 

component parameters used in the estimation. 

𝑀𝑆𝐿 (𝑾) =  ∑ ln [ 
1

𝑅
  ∑ ∏(𝑃𝑛𝑡𝑟 (𝑗𝑛𝑡| 𝑿𝒏𝒋𝒕, 𝜷𝒌𝒓, 𝜷𝒇, 𝜎) )

𝑇

𝑡=1

𝑅

𝑟=1

]

𝑁

𝑛=1

 (3.8) 

The estimation procedure of the RPECL model was coded in Matlab which can be 

accessed from the URL given in appendix B of the thesis. The simulated likelihood 

function given in equation 3.8 was constructed using 1,000 standard Halton draws (R) 

for each of the random parameters and the error components (Train, 2009). We used 
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the non-linear unconstrained numerical optimisation scheme proposed by Broyden-

Fletcher-Goldfarb-Shanno (BFGS) to maximise equation 3.8. The method is 

particularly useful in situations where the analytical form of the Hessian matrix is 

unavailable or is too expensive to compute at every iteration. The numerical Hessian 

matrix obtained upon convergence (𝐇) was used to evaluate the vector of standard 

errors of the parameters (𝑆𝑡𝑑𝑒𝑟𝑟𝑜𝑟) using equation 3.9 where diag is the diagonal 

operator. 

𝑆𝑡𝑑𝑒𝑟𝑟𝑜𝑟 =  √diag (𝐇−1
)

2
 (3.9) 

3.5.3 Deriving the WTP measures between the attributes  

Once the parameter set (𝑾) was obtained upon solving the likelihood function until 

convergence, a variety of Willingness To Pay (WTP) measures were evaluated using 

these parameters. The willingness to pay (WTP) is defined as the price which makes a 

consumer trade-off between buying and not buying a product (Schlereth et al., 2012). 

Equation 3.10 expands the observed part (𝜷𝒏
′ 𝑿𝒏𝒋𝒕) of the utility specification for one 

of the alternatives. The notations used in the equations 3.3. – 3.5 still apply, but have 

been suppressed for brevity.   

𝜷′𝑿 =  𝛽𝑇𝑇 . 𝑋𝑇𝑇 +  𝛽𝑇𝑇𝑆. 𝑋𝑇𝑇𝑆 +  𝛽𝑆𝑛𝐺𝑜 . 𝑋𝑆𝑛𝐺𝑜 +  𝛽𝑉𝑅𝐶 . 𝑋𝑉𝑅𝐶 (3.10) 

       𝜷′𝑿 =  𝛽𝑇𝑇 . 𝑋𝑂𝑡ℎ𝑒𝑟 +  (𝛽𝑇𝑇𝑆 +  𝛽𝑇𝑇). 𝑋𝑇𝑇𝑆 +  𝛽𝑆𝑛𝐺𝑜 . 𝑋𝑆𝑛𝐺𝑜 +  𝛽𝑉𝑅𝐶 . 𝑋𝑉𝑅𝐶 (3.11) 

The four attributes used here are: the total travel time (𝑋𝑇𝑇), the time spent in stop-&-

go(𝑋𝑇𝑇𝑆), the number of stop-&-gos (𝑋𝑆𝑛𝐺𝑜), the vehicle running cost (𝑋𝑉𝑅𝐶).  The 

attribute 𝑋𝑇𝑇 represents the total travel time for an alternative, which is inclusive of 

the time spent in stop-&-go (S&G) traffic, 𝑋𝑇𝑇𝑆. Equation 3.11 represents an adjusted 

utility specification of equation 3.10 to get a revised estimate for 𝑋𝑇𝑇𝑆. 𝑋𝑂𝑡ℎ𝑒𝑟 denotes 

the time spent in other traffic conditions in this equation. The WTP estimates as 

obtained from equation 3.11 are given below. 

Running cost – Travel time (AU $/hr) =  (𝛽𝑇𝑇 𝛽𝑉𝑅𝐶)⁄ × 60 (3.12) 
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Running cost – Time in S&G (AU $/hr) =  {(𝛽𝑇𝑇 +  𝛽𝑇𝑇𝑆) 𝛽𝑉𝑅𝐶}⁄ × 60 (3.13) 

Running cost – No. of S&Gs (AU $/stop) =  𝛽𝑆𝑛𝐺𝑜 𝛽𝑉𝑅𝐶⁄  (3.14) 

Travel time – No. of stop-&-go (min/stop) =  𝛽𝑆𝑛𝐺𝑜 𝛽𝑇𝑇⁄  (3.15) 

Time in S&G – No. of S&Gs (min/stop) =  𝛽𝑆𝑛𝐺𝑜 (𝛽𝑇𝑇 +  𝛽𝑇𝑇𝑆)⁄  (3.16) 

Equations 3.12 and 3.13 represent the Value of Travel Time Savings (VTTS) under 

overall and S&G traffic conditions respectively. Equation 3.14 denotes the WTP in 

dollars associated with the occurrence of an S&G. Equations 3.15 and 3.16 represent 

the trade-off between the number of S&Gs against the time spent under overall and 

S&G conditions. As discussed earlier in subsection 3.2.7.5, the travel time was 

inclusive of the time spent in S&G in the experiment. Therefore, equations 3.13 and 

3.16 have the coefficient for the time spent in S&G as 𝛽𝑇𝑇 +  𝛽𝑇𝑇𝑆. Equation 3.15, 

which represents the willingness to pay in minutes of an individual to reduce the 

occurrence of S&G by one, is one of the novel contributions that this study aims to 

make. 

3.5.4 Model results 

Two formulations of the mixed logit model were tested and compared for the effective 

dataset to determine the trade-off between the four attributes used in the SC 

experiment. Model 1 represents the Random Parameter Logit (RPL) model to capture 

preference heterogeneity towards the four attributes across the participants. Model 2 is 

the Random Parameter Error Component Logit (RPECL) model to account for the 

correlation (in the unobserved component of the utility) across the multiple SC tasks 

along with the preference heterogeneity. All the parameters for the observed attributes 

except the vehicle running cost were set as random. The random parameters were 

assigned a normal distribution for both the models because of the following reasons: 

1) the merits of using a normal distribution which have been discussed earlier in 

subsection 3.5.1, 2) the model with a triangular distribution did not give better 

goodness of fit. The lognormal distribution was not tested due to the reasons 

discussed earlier in subsection 3.5.1. The results for the triangular distribution are 

provided in appendix D (table D.1) of this thesis. The estimation routines for models 1 
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and 2 were coded in Matlab. Alternatively, model 1 was also estimated in STATA 

using the mixlogit package for verification (Hole, 2007; StataCorp., 2013). 

Table 3.8: Estimation results from the selected model specifications 

Attribute Model 1 (RPL) Model 2 (RPECL) 

 

Mean of random parameters 

Travel time  -0.3011 
***

 -0.3657 
***

 

Time spent in stop-&-go -0.1270 
***

 -0.1581 
***

 

Number of stop-&-go -0.0821 
***

 -0.0973 
***

 

 

Standard deviation of random parameters 

Travel time  0.1897 
***

 0.2493 
***

 

Time spent in stop-&-go 0.1064 
***

 0.1136 
***

 

Number of stop-&-go 0.0571 
***

 0.0736 
***

 

 

Non-random parameters 

Running cost -1.1854 
***

 -1.3994 
***

 

Sigma (σ) -- 1.0982 
***

 

 

Log-likelihood at convergence -1120.37 -1070.43 

Adjusted Rho-squared 0.1797 0.2141 

LR test versus model 1 

(H0: Model 1 is true) 
-- 99.88 

***
 

       ***
 significant at 99% 

Table 3.8 shows the estimation results for both the models. Both the models report 

highly significant and negative parameter estimates which represent an increase in the 

disutility of a route as the level of the attribute under consideration increases. A 

negative sign on the number of stop-&-gos (S&Gs) implies that the attribute also 

contributes towards disutility of a route, thus indicating the validity of the proposed 

hypothesis. A pairwise correlation coefficient between the parameters of travel time 

and number of S&Gs was observed to be 0.29, and that of the time spent in S&G and 

the number of S&Gs as 0.20. These low correlation coefficients indicated that the 

estimated parameters were nearly independent of one another. 

Table 3.8 also shows a significant standard deviation for the number of S&Gs 

experienced which signifies a different perception across individuals towards this 
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attribute. The parameter 𝜎 in model 2 is significant and indicates a correlation in the 

unobserved errors across the multiple choice tasks due to the presence of the status 

quo alternative. These error components are normally distributed (𝜉 ~ 𝑁[0, 1.0982]), 

which is not accounted for in model 1 (𝜎 = 0). Model 2 has a superior final log-

likelihood value than model 1 which indicates a better fitting model for the given 

dataset. A Likelihood Ratio (LR) test was also conducted to check the null hypothesis 

that model 2 was statistically no different to model 1 (𝐻0: 𝜎 = 0). The calculated LR 

value (99.88) was higher when compared to the critical chi-squared value (3.84) for 1 

degree of freedom at 5 percent significance. Thus, the null hypothesis was rejected 

and it could be concluded that the RPECL (model 2) outperformed the RPL (model 1) 

model for the dataset considered in this study.  

The RPECL model also performed better than a few alternate model specifications 

which were tested in this analysis. A comparison of the overall goodness of fit of the 

different models is provided in appendix D (tables D.2 – D.4) of this thesis. 

Furthermore, the impact of socio-demographic variables was not included in model 2 

due to three reasons. Firstly, due to the panel nature of the dataset, these variables 

were introduced after interacting (multiplying) them with the given route specific 

attributes. Several combinations of these interaction variables were tested, but found 

to be statistically insignificant. Secondly, as we wanted to compare the findings from 

our model with the one used by (Hensher, 2001a), which also did not include socio-

demographic information, we decided not to include them for a consistent 

comparison. Thirdly, the alternate model specification (Table D.2 in appendix D), the 

2 segment latent class model, also showed a negative and significant effect of the 

number of S&Gs on the disutility of a route. The model also showed that being a 

female makes one more likely to have a high WTP for travel time reduction. 

However, this observation was found to be inconsistent with the previous literature 

which found females to have a lower value of time (Srinivasan 2005). Thus, we 

concluded that the current sample size could not provide interesting socio-

demographic characteristics, and did not include them in the final results. A detailed 

discussion on the latent class model will be presented in chapter 4 of this thesis. 
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Table 3.9 summarises the mean of the WTP estimates obtained from model 2 which 

were calculated using equations 3.14 – 3.18. The WTP measures corresponding to 

equations 3.17 and 3.18 were simulated through the Krinsky and Robb parametric 

bootstrapping technique, using 1,000 draws, because both the parameters in each 

equation were normally distributed (Krinsky & Robb, 1990). The other WTP 

measures given in equations 3.14, 3.15 and 3.16 were evaluated as point estimates of 

the mean. 

Table 3.9: Mean WTP estimates from the RPECL model 

Willingness To Pay measure Estimated value 

Running cost – Travel time (AU $/hr) 15.68 

Running cost – Time in stop-&-go (AU $/hr) 22.45  

Running cost – No. of stop-&-go (AU $/stop) 0.070  

Travel time – No. of stop-&-go (min/stop) 0.267  

Time in stop-&-go – No. of stop-&-go (min/stop) 0.186  

The ratio of the Value of Travel Time Savings (VTTS) in S&G to other driving 

conditions was observed to be 1.4. If the ratio is greater than one, it would validate the 

fact that drivers find travelling in S&G conditions more onerous due to an increased 

focus and discomfort due to these conditions (Levinson et al., 2004). This ratio was 

calculated as 1.3 by Hensher (2001a) and 1.2 by Rose et al. (2009) (ratio of VTTS in 

S&G to the summation of VTTS in free flow and slowed conditions). Additionally, 

the ratio between travel time and time spent in S&G was found to be 1:2.37 in this 

study, which was again close to the one (1:2.5) reported in Hensher (2001a). Thus, the 

results from this study were found to be consistent with the previous literature. 

Furthermore, both the VTTS estimates (under S&G and other driving conditions) 

were less than the minimum hourly wage rate of the effective sample (AU $25.50) 

which indicated the obtained estimates to be meaningful. Table 3.9 also reports the 

trade-off estimate between the overall travel time and the number of S&Gs. The 

estimated value implies that drivers do not mind travelling for an additional 16 

seconds (0.267*60), on average, to reduce the occurrence of stop-&-go (S&G) by one 

on their travelled route before shifting to another route. This value reduces to 11 

seconds while driving in S&G conditions. 
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3.6 Discussion 

This study tested the hypothesis of an increase in the disutility on a travelled route 

with an increase in the number of S&Gs experienced by a driver. The collected Stated 

Choice (SC) data on the university car commuters (drivers) was analysed using the 

Random Parameter Error Component Logit (RPECL) model which explains both the 

correlation among the choice tasks and the preference heterogeneity. Results from the 

SC experiment data showed an increase in disutility as the number of S&Gs increased 

on a route. In other words, drivers experience elevated discomfort levels when 

undergoing alternating cycles of S&G traffic. Thus, the outcome of this proof of 

concept study looks promising as our intuition (the research hypothesis) was proved 

right. This finding adds to the existing literature which, until now, focussed on 

expressing driver discomfort and the resulting disutility as a function of the time spent 

in S&G traffic. Results also showed that drivers, on average, were willing to spend up 

to 16 seconds extra on travel time to reduce an additional occurrence of S&G on their 

current route.  

This estimate of discomfort can have interesting policy implications. One of the 

policy implications could be a need to re-assess some existing policies like the toll 

pricing. Another implication of the obtained results would be towards the 

development of transportation models that better represent the route choice of drivers 

and how it affects the traffic congestion pattern in a road network. We discuss these 

policy implications later in chapter 6 of the thesis. 

This study brought out some interesting findings that added to the existing literature 

on driver route choice behaviour. However, the study made a few considerations 

(assumptions) which limited the scope of this work. Firstly, the study considered the 

number of S&Gs that was revealed by the respondents during the SC experiment as 

the true measure. Generally, it is challenging to recollect the instances of S&Gs when 

compared to other quantities like travel time and cost. This might bring in a 

measurement bias in the observed attribute (number of S&Gs) which might not have 

been greatly reduced by showing video animations in the survey to the participants. 

Secondly, the study was conducted on a sample of university staff and students which 

do not represent the demographics and travel characteristics of the general population 
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in Sydney. That is, the WTP measures obtained from this study might be skewed 

which limits its applicability to the regional transportation models of Sydney. 

Moreover, the collected sample was relatively small to derive reliable and meaningful 

interpretations using the advanced and parameter intensive models, like the hybrid 

choice models (refer to appendix D for more information). Thirdly, the effective 

sample in this study comprised individuals whose commute frequency to work ranged 

between 1 and more than 5 days per week. We initially wanted to restrict the 

minimum commute frequency to at least 3 days a week. The reason behind it was that 

these individuals were expected to show a better association towards S&G traffic than 

the occasional car drivers. As a result, they could better recollect the time spent in 

S&G and number of S&Gs experienced with minimum measurement bias in their 

response. However, due to a low response rate, we did not receive sufficient responses 

in the desirable range. Moreover, removing the participants with commute frequency 

less than 3 days considerably reduced our effective sample size. Thus, we analysed 

the data for all the individuals who drove to work by car. Fourthly, the RPECL model 

used in this study did not yield significant effects for the socio-demographic variables, 

which were included as interaction variables. Including them can further help in 

disentangling the complex route choice behaviour of drivers in terms of their socio-

economic status. We address a majority of these shortcomings in the extension of this 

study, which is discussed in the next chapter. 



 

72 

 

 

CHAPTER 4  

EXPERIMENT II – EXPANDED STUDY 

The motivation behind this chapter came from the positive results that were obtained 

from the proof of concept study. In this chapter, we further enrich the analysis by 

relaxing a few assumptions that were made during experiment I, which we discussed 

towards the end of chapter 3. A similar online survey was conducted on a sample of 

car commuters residing in Sydney or its neighbouring regions who regularly drove to 

work. The collected data was analysed using a hybrid choice modelling framework, 

called the Latent Class Choice Model (LCCM), which segregates individuals into 

subgroups where each subgroup has a unique set of characteristics and preferences. 

The results obtained from this study would provide a better mapping to the larger 

(regional) population in Sydney. It would also offer a richer set of information to 

decision-makers in proposing new and innovative policies aimed at reducing traffic 

congestion and the resulting stop-&-go (S&G) waves.  

This chapter mainly covers: 1) design of the SC questionnaire, 2) survey research, 3) 

descriptive statistics of the collected data, and 4) quantitative analysis of the data. We 

do not repeat the discussion on the background to SC experiments and encourage the 

readers to refer back to section 3.1 for a detailed review. The first section presents the 

inputs, or the design specifications, a slightly modified design procedure and the 

resulting output from the Stated Choice (SC) design exercise. The second section 

discusses the survey administration and data collection using the similar online survey 

instrument that was used in the previous experiment. The empirical analysis of the 

collected data constitutes the third section of the chapter. The fourth section presents 

the econometric framework and the estimation routine of the LCCM which is 

followed by the results from the analysis. Finally, the chapter concludes with a 

discussion of the results and limitations of the study.  
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4.1 Methodology Adopted for the SC Design 

We used the same approach, i.e. the D-efficient homogeneous pivot design SC 

technique, which was adopted in experiment I – a proof of concept study. For the 

current experiment, the set of inputs parameters (design specifications) to the SC 

design was revised to accommodate the characteristics of the new survey sample, 

which comprised the people residing in Sydney or its neighbouring regions who also 

drove regularly to work. This section primarily elaborates on the modifications that 

were made to the SC design process, previously discussed in section 3.2, to 

accommodate the new design requirements. More details on the unchanged 

components can be found in section 3.2 of this thesis. 

4.1.1 Design specifications 

This subsection describes the set of inputs for the SC survey design and how these 

were acquired. While some of the inputs remained unchanged from the previous 

experiment, few design specifications required additional exploration.  

4.1.1.1 Number of alternatives 

We retained the same number of alternatives (three) from the previous study. The 

presented alternatives included the status-quo along with two unlabelled hypothetical 

routes which were pivoted around the status-quo alternative. We discussed the reasons 

behind selecting three alternatives in subsection 3.2.1.1. 

4.1.1.2 Attributes and their levels 

We maintained the same number of attributes (four) and the attribute levels (five) that 

were employed previously. A detailed discussion on the attributes along with their 

attribute levels can be found in subsection 3.2.1.2.  

4.1.1.3 Number of choice tasks and blocks 

It was decided to present 10 choice tasks per participant in the current study, which 

was still manageable with regard to the cognitive load on participants. We followed 

the blocked design method where two distinct blocks of 10 choice tasks each were 
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formed. More details on the number of choice tasks and blocks is presented in 

subsection 3.2.1.3. 

4.1.1.4 Prior attribute information 

The results from the previous chapter, obtained upon estimating the RPECL model on 

the effective dataset, were used as priors to the new full survey design. Table 4.1 lists 

the mean, standard deviation of the prior estimates along with their assumed 

distributions used for the design exercise.  

Table 4.1: Prior parameters and distributions used in the expanded study 

Attribute Mean Std. dev. Distribution for full design 

Total travel 

time (minutes) 
-0.3657 

***
 0.2493 

***
 [n,(n,-0.3657,0.0238),(n,0.2493,0.0207)] 

Time in S&G 

(minutes) 
-0.1581 

***
 0.1136 

***
 [n,(n,-0.1581,0.0149),(n,0.1136,0.0134)] 

No. of S&Gs -0.0973 
***

 0.0736 
***

 [n,(n,-0.0973,0.0110),(n,0.0736,0.0107)] 

Vehicle 

running cost 

(AU $) 

-1.3994 
***

 -- [(n,-1.3994,0.1178)] 

***
 significant at 99%; (n,µ,σ) where 𝑛 is normal distribution, µ and 𝜎 are the mean 

and standard deviation respectively 

Similar to the priors reported in table 3.2, a normal distribution was assumed for the 

parameters total travel time, time in S&G and number of S&Gs. Vehicle running cost 

was treated as a non-random parameter in the design. Further, a Bayesian normal 

distribution was assumed for the mean and standard deviation of all the prior 

parameters, which is shown in the rightmost column of table 4.1. For example, the 

prior distribution for the number of S&Gs is represented by the expression 

[𝑛, (𝑛, −0.0973,0.0110), (𝑛, 0.0736,0.0107)]. The expression implies that the 

parameter follows a normal distribution (the first instance of 𝑛 in the expression) with 

some mean and standard deviation. The mean of this distribution is in turn derived 

from another normal distribution (the second instance of 𝑛 in the expression) having a 

mean of -0.0973 and a standard deviation of 0.0110. Similarly, the standard deviation 

of the prior distribution is also normally distributed (the third instance of 𝑛 in the 

expression) with a mean of 0.0736 and standard deviation of 0.0107.  



 Chapter 4: Experiment II – Expanded Study 

Neeraj Saxena  75 

4.1.1.5 Population segments and their reference alternatives 

The target audience for the study consisted of the individuals residing in Sydney or its 

neighbouring regions who regularly drove to work by car. Thus, to come up with a 

homogeneous pivot design, it was necessary to first classify the survey population into 

well-defined segments. We found some key statistics on the car driving (not 

passengers) population in Sydney, which constituted 63.5 percent of the total average 

commute trips, from the Household Travel Survey (HTS) report of Sydney for the 

waves 2012-13 and 2014-15 (BTS, 2014; 2015). The statistics of our interest like the 

travel time and travel distance distribution of vehicle (car) drivers were extracted from 

the HTS database and presented in tables 4.2 and 4.3 respectively.  

Table 4.2: Travel time distribution of car drivers in Sydney. Source: (BTS, 2015) 

Travel time range 

(in minutes) 

Trips 

(in ,000) 

Representation 

(%) 

0 – 10 3657 42.378 

10 – 20 2348 27.214 

20 – 30 1242 14.387 

30 – 40 452 5.239 

40 – 60 644 7.464 

Above 60 286 3.319 

Total 8630 100 

 

Table 4.3: Travel distance distribution of car drivers in Sydney. Source: (BTS, 

2015) 

Travel distance range 

(in km) 

Trips 

(in ,000) 

Representation 

(%) 

0 – 2 1953 22.360 

2 – 5 2468 28.597 

5 – 10 1813 21.008 

10 – 20 1385 16.048 

Above 20 1011 11.714 

Total 8630 100 

The tables show that nearly half the car driving population has a travel time and travel 

distance of more than 10 minutes and 5 kilometres respectively, making them more 

susceptible to experience congestion and S&G traffic. We used these inputs along 

with travel time and distance information from a route choice study conducted by 
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Shakeel et al. (2016) to generate a two way classification table between travel 

distance and time. An Iterative Proportional Fitting (IPF) algorithm was applied to 

render the desired classification table for the statistics reported in the above two 

tables. The IPF is a widely used technique to synthesise population level information 

using aggregate and some sampled information (Norman, 1999). The resulting two 

way cross classification table thus obtained is shown in table 4.4. The table shows that 

around 60 percent of the population covers more than 5 kilometres with a travel time 

greater than 10 minutes. Table 4.4 was further used to calculate the weighted average 

distance for each travel time segment (by multiplying the percentage with the mean 

distance of each segment) which is presented in table 4.5. 

We classified the population into 6 segments based on travel time. The reference 

alternative for each population segment was synthesised using the inputs presented in 

tables 4.4 and 4.5. Table 4.6 shows the reference alternatives that were used as an 

input in the SC design exercise. The set of rules that were followed to derive the 

reference attributes are listed below. These are the same rules that were used in 

chapter 3. 

 The travel time attribute was set as the mean of a segment’s travel time range  

 Time spent in stop-&-go (S&G) was kept between 20 to 25 percent of the travel 

time attribute (as found by Hensher, (2001b)) 

 Number of S&Gs experienced was set between 30 to 40 percent of the upper limit 

of the travel time range in a segment 

 Vehicle running cost was calculated as the product of cost per kilometre (AU 

$0.15) and the average distance (from table 4.5) in each segment (RACQ, 2014). 

These segment specific reference alternatives were used to generate a D-efficient 

homogeneous pivot design which yielded a single SC experiment for the entire survey 

sample, i.e. the choice tasks remained the same across the participants. 



 

77 

Table 4.4: Two way classification table between travel time and distance. Cell values in ,000 trips 

 Travel time (minutes) 

0-10 11-20 21-30 31-40 41-60 60+ Total BTS Total 

Trip 

distance 

(km) 

0-2 1881.479 0 0 0 0 0 1881.479 1953 

2-5 1752.991 624.628 0 0 0 0 2337.619 2468 

5-10 22.679 1723.927 0 0 0 0 1746.606 1813 

10-20 0 0 1057.966 293.546 165.454 0 1516.966 1385 

20 + 0 0 183.639 158.520 478.652 286.519 1107.330 1011 

Total 3657.149 2348.555 1241.605 452.066 644.106 286.519 8630  

BTS Total 3657 2348 1242 452 644 286  8630 

 

Table 4.5: Weighted average of travel distance for each travel time segment 

 
Travel time (minutes) 

0-10 11-20 21-30 31-40 41-60 60+ 

Wt. avg.  

distance 

(km) 

2.24 6.44 17.22 20.26 26.15 30.00 
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Table 4.6: Reference alternatives selected for the SC design on Sydney sample 

Segment 

Travel 

time 

range 

(minutes) 

Weightage 

(%) 

Reference alternative taken for the design 

Travel 

time 

(minutes) 

Time in 

S&G 

(minutes) 

Number 

of S&Gs 

Running 

cost 

(AU $) 

1 0-10 42.378 5 2 4 0.35 

2 10-20 27.214 15 5 7 1.00 

3 21-30 14.387 25 8 10 2.60 

4 31-40 5.239 35 10 14 3.05 

5 41-60 7.464 50 15 20 3.95 

6 > 60 3.319 75 20 30 4.50 

 

4.1.1.6 Model specification for the design 

We used the same Random Parameter Error Component Logit (RPECL) model 

specification to generate the SC tasks in the current experiment. The reasons behind 

selecting the model have already been discussed in the subsection 3.2.1.6. 

4.1.2 Design of the SC experiment  

With all the known design specifications, the next step was to generate the D-efficient 

homogeneous pivot SC design. We followed a slightly modified approach to the SC 

design when compared to the one previously discussed in subsection 3.2.2. The key 

difference was the way we specified segment weights in the design. We allowed the 

population segment proportions to be flexible during this design exercise. This was 

unlike the previous design style (discussed in subsection 3.2.2) which assumed these 

weights to be fixed. Thus, the modification offered more robustness to the SC design 

as it was difficult to know the true weight of a population segment a priori.  

Two separate design procedures were written for the model specifications MNL and 

RPECL respectively. Let’s name the scripts as code_full_MNL and 

code_full_RPECL, which can be accessed through the weblink provided in appendix 

B of this thesis. The parameters for the MNL model were estimated using the 

effective dataset of 145 participants from the previous experiment. The estimates have 

been reported in table 4.7. These estimates were used as prior values in the design 

script code_full_MNL. Additionally, the segment weights were specified in ranges for 
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the reasons discussed above. Table 4.8 shows the original segment weights that are 

reported in table 4.6 along with their corresponding ranges that were used in 

code_full_MNL. As discussed earlier in subsection 3.2.2, we executed the 

code_full_MNL script first to obtain the set of SC tasks, which we refer to as 

design_full_MNL. The design also provided the optimum proportion weights that 

further minimised the overall efficiency of the design. The optimum weights, which 

are shown in the third column of table 4.8, were used as new weight inputs in the 

design script code_full_RPECL. Moreover, code_full_RPECL used the prior 

parameter information given in table 4.1.  

Table 4.7: Prior parameter values from the MNL model 

Parameter Estimated value 

Total travel time (minutes) -0.1750 
**   

 

Time in S&G (minutes) -0.0679 
**

 

No. of S&Gs -0.0256 
**

 

Vehicle running cost (AU $) -0.7790 
**

 
                          **

 significant at 95% 

Table 4.8: Segment weights used in the design procedure 

S. No. Travel time 

segment 

Original 

weight 

Range specified in 

code_full_MNL 

Optimum weight for 

code_full_RPECL 

1 0-10 0.424 0.30 - 0.45 0.384 

2 10-20 0.272 0.20 – 0.35 0.284 

3 21-30 0.144 0.10 – 0.20 0.157 

4 31-40 0.052 0.02 – 0.10 0.065 

5 41-60 0.075 0.05 – 0.10 0.078 

6 > 60 0.033 0.01 – 0.05 0.032 

 

The steps for evaluating the efficiency of design_full_MNL using code_full_RPECL 

remain the same. Readers can find a detailed explanation of these steps in subsection 

3.2.2 of this thesis. The entire design procedure was carried out using the Ngene 

software package (ChoiceMetrics, 2012).  

4.1.3 The resulting SC tasks 

Two separate blocks of 10 choice tasks each were generated from the design exercise. 

Table 4.9 shows the choice tasks within each block where the field BlockID is the 
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identifier for blocks. Each choice task in the table corresponds to proportions which 

are multiplied with the attributes of the status-quo alternative to obtain the attributes 

for the two hypothetical alternatives. The D-error for the two blocks, upon stabilising, 

was found to be 0.745 and 0.746 respectively. More details on the adopted blocked 

design approach and stability of the D-error have been discussed in subsection 3.2.3. 

4.2 Survey Research 

A similar methodology was adopted for the survey administration and data collection 

as discussed previously in section 3.3 of this thesis. In this section, we briefly discuss 

the survey administration method, layout of the survey instrument and data collection. 

4.2.1 Survey administration method 

We decided to use the same online survey instrument which was used to survey the 

UNSW sample in the previous chapter. The reasons behind selecting an online 

method have been previously discussed in subsection 3.3.1. For this study, we 

contracted a data collection and management organisation, Qualtrics, to administer the 

survey (Qualtrics, 2016). They circulated the online survey within their own 

participant pool in Sydney, which has a decent representation of individuals with 

diverse demographic and socio-economic characteristics. Additionally, it was also 

possible to control the composition of the survey sample by applying a certain set of 

quotas during data collection. This level of control during data collection was not 

witnessed during experiment I, where extra filtering criteria had to be dropped due to 

a low response rate to the survey. Hence, we could find a sample of the participants in 

this study which well represented the socio-demographics of Sydney’s population.  

4.2.2 Layout of the online survey 

The online survey instrument mainly comprised four sections: 1) introduction to the 

survey, 2) socio-demographic, 3) revealed travel characteristics and 4) route choice 

tasks. For this experiment (survey), the socio-demographic section was put ahead of 

the route choice part due to the reasons discussed in the next subsection. Subsection 

3.3.2 of this thesis elucidates each of these sections. The weblink to the survey page is 

available in appendix B of this thesis. 



 

81 

Table 4.9: Two blocks of homogeneous pivot design for the full survey 

BlockID TaskID RI_TT RI_TTS RI_S&G RI_VR RI_TT RI_TTS RI_S&G RI_VR 

0 1 1.1 1.50 0.75 0.875 0.9 0.50 1.25 1.125 

0 2 1.0 0.75 1.00 1.125 1.0 1.25 1.25 0.875 

0 3 0.8 0.75 0.50 1.125 1.1 1.00 1.50 0.875 

0 4 1.1 1.00 1.25 0.750 0.9 1.00 1.00 1.250 

0 5 0.9 1.25 1.50 1.250 1.2 0.75 0.50 0.750 

0 6 0.8 0.50 1.25 0.750 1.2 1.50 0.75 1.250 

0 7 1.0 1.50 1.50 0.875 1.0 0.50 0.50 1.125 

0 8 1.2 0.50 1.00 1.000 0.8 1.50 0.75 1.000 

0 9 1.2 1.00 0.75 1.250 0.8 1.25 1.00 0.750 

0 10 0.9 1.25 0.50 1.000 1.1 0.75 1.50 1.000 

1 1 0.8 1.25 1.00 1.250 1.2 0.75 1.00 0.750 

1 2 0.9 0.50 0.50 1.125 1.1 1.50 1.50 0.875 

1 3 1.0 1.25 1.50 0.875 0.9 1.00 0.50 1.125 

1 4 0.9 0.75 1.25 1.125 1.1 1.25 0.75 0.875 

1 5 1.2 1.50 1.00 0.875 0.8 0.50 1.25 1.000 

1 6 1.1 0.50 0.75 0.750 0.9 1.50 1.25 1.250 

1 7 1.2 0.75 1.50 1.250 0.8 1.25 0.50 0.750 

1 8 0.8 1.00 1.25 0.750 1.2 1.00 0.75 1.250 

1 9 1.1 1.00 0.75 1.000 1.0 0.75 1.00 1.125 

1 10 1.0 1.50 0.50 1.000 1.0 0.50 1.50 1.000 
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4.2.3 Data collection 

Individuals residing in Sydney who regularly drove to work by car were selected as 

the target population for this study. The criteria used to define the population of 

interest were: 1) residing in Sydney or its neighbouring regions, 2) possessing a 

driver’s license, and 3) driving at least thrice a week to work. A respondent not 

satisfying any of these criteria was dropped from the survey. The data collected thus 

represented a sample of car drivers who regularly drove by car, thus having a better 

perception towards stop-&-go (S&G) traffic than the people who drove occasionally. 

In order to maintain representativeness of the collected sample with regard to the 

target population, a set of quotas were also defined on the socio-demographic 

attributes like gender, age and income. The quotas represented the summary statistics 

of the target population and were obtained from the Sydney Household Travel Survey 

(HTS) report for the year 2012-13 (BTS, 2015). The statistics represented the 

characteristics of individuals who drove by private vehicle for their commute, which 

constituted 63.5 percent of the total weekday trips. The socio-demographic questions 

were asked in the starting section of the survey and participants were discontinued 

from the survey once any of the specified quotas got fulfilled. This ensured that we 

maintained a sufficient representation and richness of demographics, with regard to 

the target population, in the collected data.   

The survey was circulated between Tuesday and Friday every week for around 5 

weeks. We received a total of 288 responses from the survey. The survey response 

duration was found to be around 10 minutes, on average, across all the respondents, 

which was lower than what was observed in the previous experiment. This could be 

due to two reasons: 1) the surveyed participants regularly respond to other surveys (as 

they get paid each time), and thus can quickly respond to some sections, particularly 

the socio-demographic section, and 2) the survey did not have the section on the 

advertisement to the driving simulator study which further reduced the response time. 

All necessary clearances from the university’s human ethics committee were taken 

before commencing the survey.  
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4.3 Empirical Analysis 

The collected data was first cleaned and a few incomplete or invalid responses were 

excluded from further analysis. The responses that were dropped included: 1) 

incomplete responses: where the participants could not complete the survey due to 

reasons like losing interest or loss of internet connection while responding to the 

survey, 2) left biased responses: where the participants always selected the left most 

alternative, the status-quo, across the 10 choice tasks, and 3) unusual response time: 

where the participants took less than 5 minutes or more than 20 minutes to complete 

the survey. The minimum and maximum response time was found to be 2 and 829 

minutes respectively, which was infeasible given the length of the survey and the 

level of ease of participants. The justification behind dropping the left biased 

responses has been discussed earlier in section 3.4 of this thesis. All these responses 

constituted roughly 13 percent of the total collected data which, not being a sizeable 

proportion, were discarded from further data analysis.  

The effective dataset comprised 249 participant responses, which equated to 2490 

stated choice (SC) observations in all. We discuss the descriptive statistics of the 

effective dataset in this section. A thorough empirical analysis will provide us useful 

insights on selecting an appropriate quantitative data analysis technique.  

Figure 4.1 shows the descriptive statistics of the socio-demographic characteristics of 

the effective dataset. The survey received nearly equal responses from both females 

(47 percent) and males (53 percent). The age is evenly distributed among different age 

brackets except the youngest and the eldest age group, which seldom drive due to 

legal and physical constraints respectively. The annual income plot shows that nearly 

60 percent of the sample has an income of AU $50,000 per annum which is well 

above the low-income group category as defined by ABS (2015). The pie chart on 

occupation shows that the sample primarily comprises participants with white-collar 

(office going) jobs who use a car to drive to work. Exactly three-quarters of the 

sample have a driving experience of 10 years and above which makes them more 

likely to be aware of S&G traffic. Thus, the each of these socio-demographic 

attributes shows decent representation of segments (most of them are more than 10 

percent) in the collected data. 
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Figure 4.1: Summary statistics of socio-demographic attributes of the available data 
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Table 4.10 compares the sample statistics (from the survey) with the summary 

statistics of the target population obtained from the Sydney Household Travel Survey 

(HTS) report . The latter set of statistics was used as quotas to control the quality of 

collected data (discussed earlier in subsection 4.2.3). The survey sample maps well 

with the target population statistics, with up to 5 percent difference between the two 

proportions for most of the socio-demographic segments. A deviation of more than 10 

percent (twice when compared to the other attributes) is observed in the elderly (60 

years and above) and high-income (AU $125K and above) groups due to their low 

response rate. We tried to boost their participation, but were not successful despite 

sending several waves of reminder emails within the target population. Nevertheless, 

the collected dataset gives a good representation of the general car driving population 

in Sydney. Thus, the results obtained from the collected sample can also be mapped to 

a regional level. 

Table 4.10: Comparison between the sample and population statistics 

Category Segment Sample (%) Population (%) 

Gender Male 52.61 53 

Female 47.39 47 

Age 20 years and less 2.01 3.59 

21 to 30 years 20.08 12.98 

31 to 40 years 23.29 16.57 

41 to 50 years  24.10 19.34 

51 to 60 years  21.69 18.23 

60 years and above 8.84 29.28 

Income (AU $) 25K and less 13.65 18.48 

25.1K to 50K 24.10 19.94 

50.1K to 75K 25.70 20.82 

75.1K to 125K 26.91 20.82 

125K and above 9.64 19.94 

Figure 4.2 and table 4.11 show the distribution and summary statistics of the four 

revealed travel related characteristics respectively. The figure shows that the 

distributions are skewed towards the left for a majority of the sample. Table 4.11 

reports a mean travel time of 36 minutes and a vehicle running cost of AU $3.57 for 

car commuters (which equates to roughly 25 kilometres of travelled distance), with 80 

percent of the sample having a drive time and running cost up to 45 minutes and AU 
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$5.25 respectively. Nearly half of this time is spent driving in stop-&-go (S&G) traffic 

with around 12 occurrences of S&G experienced on average.  

   

   

Figure 4.2: Distribution of travel specific attributes of the participants 

Table 4.11: Summary of descriptive statistics of travel specific attributes 

Data Mean 
Std. 

dev. 
Min. Max. 

20
th

 

percentile 

80
th

 

percentile 

Travel time  

(minutes) 
36.06 22.89 10 140 20 45 

Time in S&G 

(minutes) 
16.47 18.75 0 130 5 25 

No. of S&Gs 12.06 17.25 0 100 3 15 

Running cost 

(AU $) 
3.57 2.86 0.15 17.25 1.5 5.25 
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In other words, the sampled drivers have to experience congested driving coupled 

with S&G conditions while travelling to work during morning peaks which can be 

used to test the relationship between route choice and the number of S&Gs 

experienced. The data for the time spent in S&G traffic and the number of S&Gs is 

found to have a greater standard deviation value than the mean. These measures are 

generally hard to perceive when compared to travel time and cost, thus causing few 

respondents to report an over-estimated value. Nevertheless, the mean of the estimate 

is still reasonable and can be used for further analysis. 

We also closely analysed the Stated Choice (SC) responses of the participants in this 

experiment to possibly discern different behaviours (strategies) adopted by the 

participants while making choices. Figure 4.3 shows the choice tasks 3, 5, 6, 8, 9 and 

10 belonging to the same block (block-0 shown in table 4.9) of SC tasks used in the 

study. Unlike the other choice tasks, these selected choice tasks demonstrate a clear 

preference towards an alternative. Within each choice task plot, the four attributes are 

represented by histograms where the height denotes their levels across the three 

alternatives. The rectangular boxes at the feet of the histograms give the percentage of 

respondents selecting the route in a given choice task. The three main types of 

respondent behaviour that can be identified through visual inspection of the plots are:  

1. Individuals who are more inclined towards reducing their travel time and the 

number of S&Gs while making route selection. These people do not have a high 

disutility towards the running cost and are willing to pay a little extra to minimise 

the travel time and the number of S&Gs. Choice tasks 3, 8 and 10 represent this 

behaviour. 

2. Drivers who are more likely to select the route with the lower running cost and 

the number of S&Gs. This kind of behaviour is only visible in choice task 5. 

3. Individuals who primarily try to minimise their travel time and running cost. 

They generally do not consider the number of S&Gs while making their route 

choice. Choice tasks 6 and 9 depict this kind of behaviour. 

Similar observations were also made for the other block (block-1 shown in table 4.9) 

of SC tasks. Identification of these patterns would give us a justification to classify 

the available dataset on the basis of behavioural interpretation. It would also be a 
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handy input during data analysis, using the Latent Class Choice Model (LCCM), to 

classify and describe different segments of individuals depicting a particular route 

choice behaviour. 

 

Figure 4.3: Selected SP choice tasks from block 0 presented to the respondents 

(Percentage of route selection is given in the rectangular boxes) 

4.4 Discrete Choice Analysis 

We used discrete choice models again to quantitatively analyse the collected SC 

dataset and discern the underlying route choice behaviour and WTP measures of the 

participants. Mixed logit models in general, an adaptation of which was used in 

chapter 3 of this thesis, are able to explain the unobserved correlations among the 

alternatives and choice tasks by specifying a mixing distribution on the parameters of 

interest. The continuous mixing distributions often provide a good fit to the data, but 
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the resulting correlation structure (i.e. the asymptotic variance covariance matrix) 

among parameters is a black box which implies that the cause of the distribution 

cannot be readily explained (Walker & Ben-Akiva, 2011). Moreover, mixed logit 

models have also found criticism as they require the analyst to make an a priori 

assumption on the type of the mixing distribution to be used. Fosgerau (2006) and 

Hess et al. (2005) discuss some of the unfavourable consequences of specifying an 

incorrect distribution on the model interpretation, parameter and WTP estimates. In 

fact, simply knowing that a parameter is randomly distributed across individuals is of 

lesser interest to policy-makers (Hess et al., 2009). These challenges prompted us to 

study more about advanced econometric frameworks like the hybrid choice models. 

These models not only overcome the limitations of the mixed logit model, but also 

provide a more comprehensive and coherent interpretation of the results. We used a 

hybrid choice model called the Latent Class Choice Model (LCCM) in this study to 

analyse the SC dataset.  

A Latent Class Choice Model (LCCM) is a statistical tool that can reveal the 

underlying subgroups of individuals from the observed multivariate data based on the 

frequency of these variables and response patterns (Hagenaars & McCutcheon, 2009). 

The tool, which was first developed in the field of marketing sciences (Kamakura & 

Russell, 1989), is a parsimonious technique of clustering the observed choice patterns 

of individuals into mutually exclusive latent segments. Unlike parametric discrete 

choice models like the mixed logit, LCCM does not require any mixing distribution to 

be assumed upfront. It, in turn, identifies latent segments in the population from the 

observed data using information, such as the socio-demographics of individuals. 

Unlike the cluster analysis approach which congregates points in a sample to form 

separate groups (segments), the LCCM is a statistical model which even tells the 

probability of a point belonging to a particular segment (Antoine & Molenaar, 2016). 

It also does not make assumptions such as linearity, normality and homogeneity that 

are required in cluster analysis (Vermunt & Magidson, 2002). The LCCM is similar to 

a factor analysis with the key difference being a discrete latent variable (number of 

segments) in the LCCM against a generally continuous latent construct in factor 

analysis (with recent computational developments researchers have also started using 

factor analysis on ordinal data). LCCMs have found numerous applications in 
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transportation planning to study the heterogeneity in the mode choice behaviour (Hess 

et al., 2009) and modality styles of individuals (Krueger et al., 2016; Vij et al., 2013).  

The LCCM comprises two components, namely, a class membership model and a 

discrete choice model. The class membership model expresses the unobserved latent 

class segments in terms of the available data, like the socio-demographic information 

of individuals. The model can be specified as a multinomial logit (MNL) which 

estimates a set of coefficients that are the same for the individuals within a segment. 

The choice model, on the other hand, evaluates the probability of observing the 

response pattern of the individual, conditioned that the individual belongs to a specific 

latent segment. The response pattern can be a set of choices made by the individual in 

the SC experiment. The choice model can be specified using different formulations 

depending upon the nature of the available response data. The integrated framework is 

then run multiple times by progressively increasing the number of latent classes at 

each run. The optimum number of latent segments is determined based on the three 

criteria: 1) overall goodness of fit, 2) model parsimony, and 3) behavioural 

interpretation of the latent segments (Vij et al., 2013). We now discuss the model 

formulation that will be used in this study. We use the following formatting styles to 

represent matrix algebraic notations in the following section: scalar quantities are 

written in italics, vectors in italics and bold face, and matrices in bold face. 

4.4.1 Model formulation 

Consider that the collected dataset for 𝑁 individuals contains two parts: cross 

sectional data on the socio-demographic information and panel data of the choice 

patterns for every individual. We first discuss the class membership model 

specification. Assuming that the sample comprises 𝐶 latent class segments, the utility 

(or the membership propensity) (𝑈𝑛𝑐) for individual 𝑛 belonging to latent class 𝑐 is 

given by equation 4.1.  

𝑈𝑛𝑐 =  𝜶𝒄
′ 𝑾𝒏 +  휀𝑛𝑐 (4.1) 
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In this equation, 𝜶𝒄 is a vector (of size 𝑝 × 1) of parameters that is exclusive to class 

𝑐. 𝑾𝒏 denotes a vector of observed socio-demographic characteristics of 𝑛 of size 

𝑝 × 1 where 𝑝 is the number of observed attributes. 휀𝑛𝑐 represents the idiosyncratic 

error term and is considered to follow a Gumbel distribution with a variance of 𝜋2 6⁄ . 

This forms the logit kernel for the class membership model which is given in equation 

4.2. 

𝛾𝑛𝑐 =  
exp(𝜶𝒄

′ 𝑾𝒏)

∑ exp(𝜶𝒌
′ 𝑾𝒏)𝐶

𝑘=1

 (4.2) 

In equation 4.2, 𝛾𝑛𝑐 is the latent class prevalence for individual 𝑛 being in class 𝑐. In 

order to maintain model identification, one of the latent segments is set as the base 

category. It means that parameters for only 𝐶 − 1 segments can be estimated from a 

class membership model, with 𝜶𝒄 vector for the base category being normalised to 

zero.  

For the choice model, an error component logit (ECL) specification is used to capture 

the correlation across the multiple choice tasks for individual 𝑛. Assume that an 

individual is presented with 𝑇 choice tasks, each of which comprises 𝐽 alternatives. 

The utility (𝑈𝑛𝑗𝑡|𝑐) that individual 𝑛, belonging to class 𝑐, derives from alternative 𝑗 

in choice task 𝑡 is given by equation 4.3 where 𝑿𝒏𝒋𝒕 is a vector (of size 𝑟 × 1) of 𝑟 

route specific attributes presented in that choice task for the alternative. 𝜷𝒄 is a vector 

of generic parameters of size 𝑟 × 1 and 𝜎𝑐 is the estimated variance of the error 

component for every latent segment 𝑐. The error component ξnj|c, which is considered 

to capture the impact of multiple responses by one individual, is assumed to be 

normally distributed with a mean and variance of 0 and 1 respectively. εnjt is again 

the idiosyncratic term (like εnc in equation 4.1) that follows a Gumbel distribution. 

Equation 4.4 gives the logit kernel for evaluating the probability of choosing the 

alternative in a single choice task. 

𝑈𝑛𝑗𝑡|𝑐 =  𝜷𝒄
′ 𝑿𝒏𝒋𝒕 +  𝜎𝑐𝜉𝑛𝑗|𝑐 +  휀𝑛𝑗𝑡 (4.3) 
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𝑃𝑛𝑗𝑡|𝑐 =  ∫
exp(𝜷𝒄

′ 𝑿𝒏𝒋𝒕 +  𝜎𝑐𝜉𝑛𝑗|𝑐)

∑ exp(𝜷𝒄
′ 𝑿𝒏𝒍𝒕 + 𝜎𝑐𝜉𝑛𝑙|𝑐)𝐽

𝑙=1

 𝑓(𝜉𝑛𝑗|𝑐) 𝑑𝜉𝑛𝑗|𝑐 (4.4) 

Let 𝒀𝒏 be the vector (of size 1 × 𝑇) of observed response pattern across 𝑇 choice 

tasks for the individual 𝑛. Then the probability of observing 𝒀𝒏 conditional on the 

latent class 𝑐 is given by equation 4.5. In this equation, ynjt is an indicator which is 

equal to 1 if individual 𝑛 selects alternative 𝑗 in task 𝑡 and 0 otherwise. 

𝑃(𝒀𝒏|𝑐) =  ∏ ∏(𝑃𝑛𝑗𝑡|𝑐)𝑦𝑛𝑗𝑡

𝐽

𝑗=1

𝑇

𝑡=1

 (4.5) 

Equation 4.6 gives the total probability of observing 𝒀𝒏 across 𝐶 latent segments 

which is calculated as the expected value of latent class prevalence and its 

corresponding conditional choice probability.   

𝑃(𝒀𝒏) =  ∑ 𝛾𝑛𝑐

𝐶

𝑐=1

∏ ∏(𝑃𝑛𝑗𝑡|𝑐)𝑦𝑛𝑗𝑡

𝐽

𝑗=1

𝑇

𝑡=1

 (4.6) 

Equation 4.6 is repeated over all individuals 𝑁 to give the likelihood function. 

Equation 4.7 gives the likelihood function for the LCCM model. In this equation, 𝛂 is 

a matrix of size (𝑝 × (𝐶 − 1)) formed by horizontally concatenating estimable 

membership coefficients for each of the 𝐶 − 1 segments. Similarly, 𝛃 is a matrix of 

the choice parameters of size (𝑟 × 𝐶) and 𝝈 is a (𝐶 × 1) sized vector of the error 

components. The log-likelihood function can then be formed as shown in equation 

4.8. The objective is to determine the set of parameters that maximises this equation.  

𝐿(𝛂, 𝛃, 𝝈) = ∏ ∑ 𝛾𝑛𝑐

𝐶

𝑐=1

∏ ∏(𝑃𝑛𝑗𝑡|𝑐)𝑦𝑛𝑗𝑡

𝐽

𝑗=1

𝑇

𝑡=1

𝑁

𝑛=1

  (4.7) 
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𝐿𝐿(𝛂, 𝛃, 𝝈) = ∑ ln ∑ 𝛾𝑛𝑐

𝐶

𝑐=1

∏ ∏(𝑃𝑛𝑗𝑡|𝑐)𝑦𝑛𝑗𝑡

𝐽

𝑗=1

𝑇

𝑡=1

𝑁

𝑛=1

 (4.8) 

4.4.2 Model estimation 

Since equation 4.8 comprises the term 𝑃𝑛𝑗𝑡|𝑐, which is a unidimensional integral, we 

used simulation technique to estimate the log-likelihood function. Equation 4.9 shows 

the simulated log-likelihood function for the LCCM where 𝑅 is the number of 

standard Halton draws used in the estimation routine (Train, 2009). Equation 4.9 can 

be re-arranged to get equation 4.10 which represents the simulated log-likelihood 

function of the LCCM. The equation can be maximised to recover the parameter 

estimates using the non-linear unconstrained numerical optimisation scheme proposed 

by Broyden-Fletcher-Goldfarb-Shanno (BFGS). The advantages of using this 

algorithm have been discussed earlier in section 3.5.2 of this thesis.  

𝑀𝑆𝐿(𝛂, 𝛃, 𝝈) = ∑ ln ∑ 𝛾𝑛𝑐 (
1

𝑅
)

𝐶

𝑐=1

∏ ∏(𝑃𝑛𝑗𝑡|𝑐)𝑦𝑛𝑗𝑡

𝐽

𝑗=1

𝑇

𝑡=1

𝑁

𝑛=1

 (4.9) 

𝑀𝑆𝐿(𝛂, 𝛃, 𝝈) = ∑ ln [(
1

𝑅
) ∑ 𝛾𝑛𝑐

𝐶

𝑐=1

∏ ∏(𝑃𝑛𝑗𝑡|𝑐)𝑦𝑛𝑗𝑡

𝐽

𝑗=1

𝑇

𝑡=1

]

𝑁

𝑛=1

 (4.10) 

The estimation procedure of the LCCM was coded in Matlab which can be accessed 

through the weblink given in appendix B of this thesis. The simulated likelihood 

function given in equation 4.10 was constructed using 1,000 standard Halton draws 

for each of the random and error components (Train, 2009). The function was 

optimised using the BFGS algorithm and the standard errors of the parameters were 

calculated by taking the inverse of the simulated Hessian matrix.  

4.4.3 Calculating the WTP estimates  

Once the set of parameters (𝛂, 𝛃, 𝝈) is estimated upon solving the likelihood function 

(given in equation 4.7), we evaluated the different Willingness To Pay (WTP) 
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measures using this information. Separate sets of the WTP estimates were calculated 

for each of the 𝐶 latent segments. The estimates were obtained using the equations 

3.14 – 3.18 which have been discussed earlier in section 3.5.3 of this thesis.  

4.4.4 Model results 

As discussed earlier, the LCCM model involves simultaneous estimation of the class 

membership model and the choice model. The choice model consisted of the four 

attributes from the SC experiment and a normally distributed error component term 

capturing the correlations across the multiple choice tasks. The membership model 

was defined in terms of the socio-demographic characteristics of the participants. Of 

the different socio-economic variables that were tried in the membership model, the 

model with age, gender and income had a superior goodness of fit along with model 

parsimony. The dichotomised age and income variables signified young people 

(between 20-40 years) versus older (Erikson & Erikson, 1998), and low-income 

(below AU $25,000 p.a.) versus high-income respectively (ABS, 2015). Once the 

attributes for the membership model were identified, the LCCM was re-executed 

multiple times by incrementing the number of latent segments after each run. Table 

4.12 provides a comparison between the LCCM runs with different numbers of latent 

segments on the basis of overall goodness of fit measures such as log-likelihood (LL), 

adjusted rho-squared (ρ
2
), Akaike Information Criterion (AIC), and Bayesian 

Information Criterion (BIC).  

Table 4.12: Goodness of fit measures for the different LCCM specifications 

Latent 

segments 

Estimated 

parameters 
LL Adj. ρ

2
 AIC BIC 

2 14 -2207.74 0.192 4443.48 4532.77 

3 23 -2072.81 0.242 4191.63 4338.32 

4 32 -2030.98 0.257 4125.96 4330.05 

5 41 -1988.19 0.273 4058.38 4319.88 

6 50 -1970.72 0.279 4041.45 4360.35 

 

The table shows that the number of estimated parameters rises sharply from 14 to 50 

as the number of latent class segments increases from 2 to 6 respectively. In other 

words, the LCCM becomes more complex upon adding new latent classes. The final 
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log-likelihood and the adjusted rho-squared values improve significantly between 

classes 2 and 3, but are relatively stable beyond 3. A monotonically decreasing trend 

can be seen for the AIC measure. On the other hand, the BIC measure depicts a nearly 

U-shaped trend, with a plateau formation between 3 and 5 latent segments. Thus, from 

table 4.12, we finally select the LCCM with three latent segments for analysis. The 

selected model is parsimonious, has the least AIC and BIC measures of fit, and a 

behavioural interpretation (based on the empirical analysis presented earlier in section 

4.3) for each of the three latent segments. 

 

Table 4.13: Parameter and WTP estimates from the three segment LCCM 

Parameters Class 1 Class 2 Class 3 

 

Class Membership Model 

Constant 0.2888 0.2903 0 

Females 0.5744 0.4691 
**

 0 

Age (below 40 years) -0.8136 
***

 -0.6606 
***

 0 

Income (below 25K) -0.325 -0.353 0 

    

Choice Model 

Travel time -0.3948 
***

 -0.1913 
***

 -0.0413 
***

 

Time spent in stop-&-go -0.0951 
***

 0.0055 -0.0488 
***

 

Number of stop-&-gos -0.0374 
***

 -0.0035 -0.1656 
***

 

Running cost -0.7085 
***

 -3.9599 
***

 -0.5231 
***

 

Sigma (σ) 0.801 
***

 0.604 
***

 0.4526 
***

 

    

Representation in sample (%) 47 22 31 

    

WTP Measures 

Running cost – Travel time  

(AU $/hr) 
33.43 2.90 4.74 

Running cost – Time in stop-&-go  

(AU $/hr) 
41.49 2.82 10.33 

Running cost – No. of stop-&-go  

(AU $/stop) 
0.05 0.00 0.32 

Travel time – No. of stop-&-go 

(min/stop) 
0.09 0.02 4.01 

Time in stop-&-go – No. of stop-&-go 

(min/stop) 
0.08 0.02 1.84 

***
 significant at 99%       

**
 significant at 90%       
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Table 4.13 gives the estimated parameters of the LCCM model, along with the WTP 

measures for each of the three latent segments. A negative coefficient on age signifies 

that young people are less likely to be in latent segments 1 and 2. Females are more 

likely to be in segment 2 than the remaining segments. A negative sign on the income 

coefficients signifies that the individuals in the two subgroups are less likely to be 

from the low-income group. However, the coefficients for income are not statistically 

significant at 90 percent confidence interval. One of the reasons for that could be a 

correlation among the categorical explanatory variables. Nonetheless, we still 

included the income variable in the utility equation because of two reasons: 1) a 

membership model primarily serves as a prediction model, thus it is acceptable to 

include covariates which bear correlation with one another as long as the goodness of 

fit is reasonably good, and 2) income is a key attribute which is generally used to 

stratify the population into segments. Interestingly, the model indicates segregation of 

older and high-income people into two different segments.  

Results from the choice model show a negative and highly significant parameter 

values for most of the attributes across the three segments. However, the coefficient 

for the time spent in stop-&-go (S&G) and the number of S&Gs is statistically 

insignificant and close to zero for the individuals belonging to latent class 2. 

Moreover, this segment also has a highly negative coefficient for the running cost. A 

significant error component variance across all the segments confirms the presence of 

the unobserved correlation across the multiple choice tasks in the available SC 

dataset. We now discuss some interesting observations from table 4.13. The identified 

latent segments can be labelled as follows: 

Class 1 – Travel time minimisers: These constitute 47 percent of the sample 

population and assign a similar weight on the disutility towards travel time and 

running cost. In other words, drivers in this segment have a high value of time (AU 

$33.43 per hour) which indicates their high productivity. They are in general less 

perturbed by the discomfort due to the number of S&Gs, which can be seen through a 

small coefficient value of -0.0374. The trade-off value observed between travel time 

and the number of S&Gs is also less (0.09 minutes per stop) which signifies a 

willingness to travel for an extra 6 seconds to reduce the number of S&Gs by one on 
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the travelled route by the individuals belonging to this segment. This segment mainly 

includes individuals from the older age group who are also in the higher income 

bracket. These people can be considered as “time-poor” as they have additional 

professional and personal responsibilities upon them as well as extra disposable 

income. Thus, these people do not mind spending extra on the running cost in order to 

reduce their travel time. 

Class 2 – Calm cost minimisers: Comprising 22 percent of the sample population, 

drivers in this segment have a very high disutility towards running cost (-3.9599) 

when compared to travel time (-0.1913) and an insignificant and near zero effect 

towards S&G traffic. In other words, drivers in this group pivot their route choice 

decisions mainly around cost and are indifferent towards occurrences of S&G. They 

are generally comfortable on departing early from home to compensate for a route 

with a longer travel time, but a lesser travel cost. A fairly low value of time (AU 

$2.90 per hour) explains their purely cost minimising behaviour. Similarly, the 

statistically insignificant trade-off value between travel time and the number of S&Gs 

(0.02 minutes per stop) suggests their calm or tolerant attitude towards the two 

attributes. This segment also comprises people from the old age and high-income 

groups. Interestingly, being a female makes one more likely to be in this segment. 

This finding is also backed by a study by Srinivasan (2005) which found women to 

spend lesser on travel than males.  

Class 3 – Restless cost minimisers: At 31 percent of the sample population, drivers in 

this segment have a high disutility towards running cost (-0.5231) when compared to 

travel time (-0.0413), along with a negative and significant disutility towards S&G 

traffic. They are quite sensitive towards the number of S&Gs experienced, which can 

be seen through a high disutility coefficient of -0.1656. They generally have a less 

value of time (AU $4.74 per hour), but assign a very high weight on travel time to 

reduce an occurrence of S&G (4.01 minutes per stop). This segment mainly comprises 

young people who also fall in the low-income group, which explains their cost saving 

attitude. These people tend to get frustrated easily while experiencing alternating 

cycles of S&G waves. This observation is in line with the past literature which also 
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found young drivers to exhibit higher levels of stress and frustration (Hauber, 1980; 

Wiesenthal et al., 2000). 

4.5 Discussion 

This chapter extended the previous study (the proof of concept study discussed earlier 

in chapter 3) by testing the research hypothesis on a much representative (at a regional 

level) survey sample. This study overcomes a few limitations of the previous study 

which are discussed as follows. Firstly, the expanded study was conducted on a 

sample of general car commuters residing in Sydney and its neighbouring regions, 

unlike the previous study which was conducted on university staff. Secondly, only the 

regular car commuters (who drove at least thrice a week to work) were surveyed in 

this study, in contrast to both regular and occasional in the previous study. Thirdly, we 

had better control on participant selection while collecting data in this study, which 

we did not witness in the last study. Thus, the data collection strategy we adopted in 

this study ensured a sample that: 1) better depicted the travel characteristics of car 

drivers in Sydney region, 2) had a better knowledge and experience of stop-&-go 

(S&G) traffic conditions, and 3) comprised a good mix of participant demographics in 

the resulting sample. Additionally, this study also explained the role of socio-

demographic characteristics on the resulting route choice preferences of the 

individuals. The study utilised the LCCM to classify the participants among different 

segments (three) based on their socio-demographic information. On the contrary, 

these variables could not be included in the previous analysis due to the statistical 

challenges while including them in the RPECL model (refer to section 3.5.4 of this 

thesis for more information).  

The quantitative analysis brought out some interesting and important findings in this 

study. The results show that nearly three-quarters of the sample had a disutility 

towards the number of S&Gs experienced. This is in accordance with the proposed 

research hypothesis, which was even validated in the proof of concept study. 

Especially, the analysis found that the restless cost minimising users associated a 

higher disutility towards the occurrence of S&G compared to the travel time 

minimisers group. Interestingly, the calm cost minimising group of users were found 

to be indifferent towards S&G conditions and mainly pivot their route choice 
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decisions around travel cost. This find could not be identified in the previous 

(RPECL) model.  

The findings from this study expand the existing knowledge base on understanding 

the intricacies associated with the route choice behaviour of car drivers. Previous 

studies found that drivers find it more onerous spending time in S&G traffic than in 

normal driving conditions (Hensher, 2001a). This study found that the number of 

S&Gs also contributed towards the disutility for a given route. An explanation for this 

observation could be that drivers need to be more focussed while undergoing 

alternating cycles of S&G traffic, which causes discomfort to them. This discomfort 

eventually becomes visible in the form of increased physiological activity and 

frustration level which eventually results in aggressive driving behaviour. These 

reasons lead to drivers considering factors other than minimising travel time while 

making routing decisions. Instead, a more inclusive approach would be to consider 

them to follow a mix of two strategies, i.e. minimising both travel time and discomfort 

(which can be expressed in terms of the number of S&Gs). Thus, the findings from 

this study would potentially be useful in modifying existing transport modelling 

techniques to reflect a more realistic route choice selection process of drivers. 

This study provides richer and more representative information (when compared to 

the proof of concept study) which can be scaled up at a regional level in Sydney. The 

results from this study will provide meaningful inputs to planners to frame policies 

that ease users of the discomfort caused by S&G traffic. Two potential policies and 

their implications can be suggested at this point, namely the toll pricing strategies and 

the introduction of autonomous vehicles. We discuss these policies in chapter 6 of this 

thesis.  

This study finds more relevance to the application in the real world as it overcomes a 

few restrictive assumptions that were made in its precursor study. However, the 

limitation with regard to the measurement bias associated with the number of S&Gs 

still persists in this study. In addition to that, results from the LCCM revealed a need 

to even include attitudinal variables in the modelling paradigm. Due to the onerous 

nature of S&G traffic, the factors such as the level of frustration and mental load, 

along with socio-demographics, often influence route choice behaviour of drivers 
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(Levinson et al., 2004; Malta et al., 2011). Nonetheless, our objective at the start of 

this study was to gradually narrow down the set of assumptions that were made in the 

predecessor study. Once the assumptions regarding the goodness of the sample have 

been accommodated, we plan to next address the remaining assumptions in the 

following chapter of this thesis.  
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CHAPTER 5  

EXPERIMENT III – DRIVING SIMULATOR STUDY 

The chapter aims to study the effect of stop-&-go (S&G) traffic characteristics on the 

levels of frustration in drivers and also to investigate the association between 

frustration and route choice behaviour under such conditions. Additionally, this 

chapter narrows down the set of assumptions which were associated with the previous 

experiments discussed in chapters 3 and 4 of this thesis. This chapter tests the 

modified research hypothesis by conducting a driving simulator experiment which 

was useful in minimising the measurement bias with regard to quantities like the 

number of stop-&-gos (S&Gs) experienced and the consequent level of frustration (a 

latent variable). The collected data was analysed using a Structural Equation Model 

(SEM), to quantify the impact of S&G traffic attributes along with individual specific 

characteristics on the levels of frustration experienced by drivers on a route. The 

obtained results would provide a better understanding about the development of driver 

stress in S&G traffic and whether it affects route choice.  

The organisation of this chapter is as follows: Section 5.1 provides a short background 

on the motivation behind conducting this experiment. Section 5.2 provides a brief 

description of driving simulators highlighting their applications, merits and utility to 

this study. Section 5.3 delineates the steps that were followed during the design of the 

experiment. Section 5.4 presents the experimental layout that was followed during 

data collection. Section 5.5 discusses the participant recruitment process followed in 

this study. Section 5.6 presents an empirical analysis of the collected data. Section 5.7 

first presents a discussion on the SEM which is then followed by its mathematical 

formulation, estimation and model results. Finally, a discussion of the results is taken 

up in section 5.8. 
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5.1 Motivation behind the Experiment 

Results from chapters 3 and 4 indicated disutility of a route to increase as the number 

of stop-&-gos (S&Gs) experienced on it increased. It is the alternating nature of S&G, 

requiring drivers to be more focussed, that causes them to experience elevated levels 

of discomfort and frustration (Levinson et al., 2004). A few studies have found a 

positive correlation between traffic congestion and driver stress. For example, 

Jovanović et al. (2011) suggest traffic congestion as one of the sources of frustration. 

Hennessy & Wiesenthal (1999) conducted telephone interviews with the participants 

driving under different traffic conditions. The study found that the participants gave a 

higher frustration score while driving in congested traffic than normal conditions. 

Lazarus (1966) also found adverse (congested) driving conditions along with time 

pressure to contribute towards driver frustration. This induced frustration, as 

established in the literature, is the precursor to aggressive driving behaviour which 

poses a risk to safe driving (Blanchard & Blanchard, 1984; Blanchard et al., 2000; 

Hennessy & Wiesenthal, 1997).  

The above discussion indicates that driving in congested or S&G traffic does make 

drivers more annoyed and frustrated. The hypothesis we tested and quantified in this 

experiment was: An increase in the number of S&Gs on a route makes drivers more 

frustrated. We conducted a driving simulator experiment to test this new research 

hypothesis. Additionally, we wanted to test whether there exists a dependency 

between driver frustration and their resulting route choice behaviour in the driving 

simulator experiment. The following section provides a discussion on driving 

simulators highlighting their merits and usefulness to this study.   

5.2 Using Driving Simulators for Data Collection 

A driving simulator is an advanced setup which presents a virtual driving world 

before participants in a controlled environment. The virtual scenario, which is 

designed by the analyst, corresponds to a traffic situation of interest which is 

encountered in day-to-day life. Participants are required to drive through the scenario 

which gives an opportunity to closely study their driving behaviour. The Stated 

Choice (SC) experiment approach, used in the previous chapters, is an effective tool 

for answering the research question, but suffers from one shortcoming. In an SC 
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experiment, competing alternatives are defined using a limited number of attributes 

which are of interest to the analyst (since adding more attributes might lead to 

situations like attribute non-attendance and lexicographic behaviour in participants 

(Campbell et al., 2006)). In other words, the analyst studies the relative importance 

and trade-off among these key attributes ceteris paribus. However, the actual choice 

making is a much more complex process which cannot be exhaustively modelled 

using few key attributes. Driving simulators, on the other hand, present a wholistic 

scenario where a participant simultaneously interacts with the surrounding traffic, 

roadway infrastructure and environment. Thus, the obtained data offers more realism 

as it reflects close to the actual driving behaviour of the participant. 

Driving simulators have been around in transportation and related fields for more than 

two decades. Technological advances over the years have witnessed a transition from 

the basic PC based driving simulator (Beede & Kass, 2006; Koutsopoulos et al.,  

1994) to a more sophisticated fully instrumented cabin (Haque & Washington, 2014; 

van Driel, et al., 2007). Driving simulators have found a wide spectrum of 

applications in transport research related to: traffic safety and accident (Dixit et al., 

2014; Fiorentino & Parseghian, 1997; Lee et al., 2003; Lee et al., 2002), reaction time 

and gap acceptance (Alexander et al., 2002; Choudhary & Velaga, 2017; Farah et al., 

2009; Haque & Washington, 2014; Yan et al., 2003), route choice behaviour and 

driver disutility (Jeihani et al., 2017; Koutsopoulos et al., 1995; Levinson et al., 2004; 

Tian, 2010), user acceptability towards intelligent vehicle systems (Hoedemaeker, 

2000; Stanton et al., 1997; van Driel et al., 2007; Xiong & Olstam, 2015), risk 

attitudes of drivers (Dixit et al., 2015; 2017), and physiological and psychological 

aspects of driving (Abou-Zeid et al., 2011; Mehler et al., 2009; Reimer et al., 2006; 

Lee, 2010). These studies brought out several interesting findings, which in a few 

cases were quite different to the existing alternate methods. For example, Levinson et 

al. (2004) also conducted an online SC experiment, alongside the driving simulator 

experiment, to compare driver disutility towards the ramp and freeway delays. While 

the results from the former indicated that drivers found ramp delays as more onerous 

than freeway delays, the driving simulator study brought out contrasting results. The 

authors also compared both the methodologies and highlighted the probable reasons 

that could have produced strikingly different findings.  
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The advantages of using driving simulators are as follows. Firstly, they provide a 

more realistic data gathering platform when compared to SC experiments. As a result, 

they help in reducing the hypothetical bias (cases where the actual preferences of 

participants differ from what they reported in the SC experiment) and measurement 

errors which might get introduced in the latter technique, despite a well-designed 

experiment. Secondly, they provide a safe environment for data collection, unlike 

naturalistic (real-time) data collection methods. Although the naturalistic driving data 

offers the highest level of realism, it has limited availability mainly due to safety 

concerns. On the other hand, driving simulators collect data in a controlled 

environment, thus making them quite safe. Thirdly, they also facilitate the collection 

of various psychological and physiological factors, due to a more engaging 

environment, which are hard to perceive in an SC experiment. Despite its merits, the 

use of driving simulators is mostly limited due to the high installation and operational 

cost.  

We decided to re-test the research hypothesis by conducting a driving simulator 

experiment to account for the limitations discussed at the end of chapter 4 of this 

thesis. The reasons behind going for a driving simulator study were: 1) to let the 

participants experience driving in stop-&-go (S&G) traffic, giving them a better idea 

about the number of S&Gs faced, and 2) to study the level of frustration which gets 

induced while driving in such conditions.  

5.3 Design of the Driving Simulator Experiment 

This section explains the methodology involved in designing the virtual scenarios for 

the driving simulator experiment. This section describes the design specifications of 

several components like the logic used to determine the attributes of interest, 

questionnaires, and the layout of the experiment. We start this section with a 

discussion of the driving simulator equipment that was used for data collection.  

5.3.1 Apparatus 

The study was conducted using a high fidelity driving simulator installed at the Travel 

Choice Simulation Laboratory (TRACSLab), UNSW Sydney. The TRACSLab 

facility was recently set up (in 2015) which gave us the additional boost to conduct 
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this study. Figure 5.1 shows the driving simulator that was used in this study. The 

setup comprises interiors of a Holden Commodore car and includes a driver’s seat, 

steering wheel, accelerator and brake pedals, odometer and an automatic transmission 

gearbox.  

 
Figure 5.1: Driving simulator setup used in the experiment 

The projector screen displays a 150 degree, high resolution, horizontal view of the 

virtual scenario to the participants. The central and right-side rear view mirrors are 

also displayed on the screen. The simulator exerts a resistive force while operating the 

steering wheel or the brake pedal. The odometer is calibrated to give a better sense of 

vehicle speed to the participants. The simulator also comes equipped with an audio 

system that recreates sounds such as vehicle noise, honking, etc. All these features 

collectively offer a realistic driving environment to the participants providing a 

platform to minutely study their behaviour. Data such as position, speed, acceleration, 

deceleration and braking can be collected at a very fine resolution, which was set at 

10Hz (every 0.1 seconds) for this study. 
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5.3.2 Design of virtual scenarios 

The first step involved in the design of the virtual scenarios was recreating a 

hypothetical city called Congestington. The built-up environment of the city consisted 

of houses, government offices, high rise buildings, schools, hospitals, shopping areas, 

etc. Figure 5.2 shows the line diagram of the road network map of the hypothetical 

city. The participants started the driving task on the western end of the city (Country 

Drive) and the objective was to reach their workplace located at the eastern end of the 

city (Alpha Consultancy). Two red and white chequered boxes (see figure 5.2) were 

placed by the roadside at the destination to demarcate the finish line. The road 

network consisted of two unlabelled one lane bi-directional routes, addressed as the 

left route and the right route henceforth, which were aesthetically similar to one 

another. Providing single lane roads along with no left turning lanes at the two T-

intersections ensured that the subject vehicle had to stop or slow down while entering 

and crossing the T-intersection. Thus, it was safe to assume that the participants had 

to put similar amount of effort while making left or right turn and treated them 

equally. This assumption was empirically verified by taking feedback from the 

participants at the end of the experiment. None of the participants reported that they 

experienced trouble while making a particular turn. Providing a single lane also 

ensured that the participants experienced S&G traffic which would have become 

challenging to recreate in a multi-lane environment. The length of the left and right 

routes was around 4.4 and 4.0 km respectively. The posted speed limit sign boards 

read 50 km/h and no overtaking or lane changing was allowed on both the routes. 

Audio messages were played to guide the participant’s vehicle (referred to as the 

subject vehicle henceforth) to the chequered box (destination). Alternatively, the 

participants could follow the vehicles in front (which were programmed to reach the 

destination) in case they missed the audio messages. The subject vehicle was part of a 

group of vehicles on each route where the leader vehicle of the platoon (a truck) was 

programmed to initiate S&G waves.  

Different levels of S&G traffic conditions were recreated on the two routes. This was 

done by placing proximity sensors, denoted by shaded rectangles in figure 5.2, on 

both the routes. A proximity sensor corresponds to the spatial location where the 

leader vehicle was programmed to trigger S&G waves. A total of 3 and 5 proximity 
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sensors were placed on the left and right routes respectively. The leader vehicle 

decelerated to a halt every 𝑠 seconds upon entering the proximity sensor and resumed 

acceleration after 𝑑 seconds in a stopped position.  

A set of three driving scenarios were designed for the experiment where each scenario 

comprised the same two alternatives (routes) but with varying S&G conditions. Thus, 

a total of 6 driving tasks (2 routes across 3 scenarios) were developed by altering the 

values of 𝑠 and 𝑑 along with a few other parameters. The parameters were set in a 

way such that the left route had a lesser number of S&Gs of longer duration while the 

right route had a greater number of S&Gs of shorter duration. The reasons behind 

maintaining this design across all scenarios were: 1) given that there were 3 scenarios 

to be presented, the participants could only start learning about the routes from the 

third scenario which happened to be the last, thus causing minimal learning bias, and 

2) the shuffled scenario would have required an extra effort to be put in modifying the 

scenarios. 

 
Figure 5.2: Road network map of the hypothetical city 

Table 5.1 gives the parameter values which were used in the design of each driving 

task. The values of 𝑠 and 𝑑 were generally drawn from a uniform distribution to add 

more realism to the driving tasks. The acceleration and deceleration rates were kept 

constant across all the scenarios so that a variation in their intensity does not affect 

route choice. The parameter ambient traffic density was used to set the number of 
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vehicles to be simulated as surrounding traffic in every driving task. While a 

proportion closer to 0 signifies very few vehicles, a value closer to 1 represents higher 

ambient traffic density. The cruising speed of the simulated vehicles forming the 

platoon was set at 50 km/h for all the driving tasks except for the left route in scenario 

3 (42 km/h) which represented driving at a lower speed in congested traffic. 

Table 5.1 also gives the resulting values of the four attributes of interest (travel time, 

time spent in S&G, number of S&Gs and fuel cost) for a given setting of the 

parameters. These values were obtained after making multiple test runs to check for 

the suitability of the tasks and the resulting scenarios. The exact procedure for 

deducing the attributes is discussed below: 

i. Travel time: It was calculated as the difference between the time instants when the 

subject vehicle started driving and once it reached the destination (upon crossing the 

chequered boxes) during every task. Sensors were placed at these two locations which 

recorded the timestamp the moment the subject vehicle was detected. Travel time on 

the left route was maintained between 1.1 to 1.25 times the travel time on the right 

route in each of the three scenarios (refer to table 5.1). 

Table 5.1: Calibration parameters used in the design of virtual scenarios 

Parameter 
Scenario 1 Scenario 2 Scenario 3 

Left Right Left Right Left Right 

S&G start (s) (sec) [13,16] [4,4] [8,10] [4,5] [20,25] [5,6] 

Stopped time (d) (sec) [22,25] [4,6] [14,16] [5,6] [14,15] [7,7] 

Ambient traffic density 0.3 0.3 0.4 0.4 0.5 0.5 

Stream speed (km/h) 50 50 50 50 42 50 

Acceleration (m/s
2
) 4 

Deceleration (m/s
2
) 6 

 

Resulting values of attributes 

Travel time (mm:ss) 7:51 6:26 8:09 6:33 7:20 6:20 

Time in S&G (mm:ss) 4:09 3:28 4:22 3:30 3.02 3.13 

Number of S&Gs 7 22 10 19 5 14 

Fuel Cost (AU $) 0.59 0.82 0.65 0.76 0.66 0.53 

ii. Number of S&Gs: For this study, we adopted the definition of S&G given by 

Zheng et al. (2011a) which characterises S&G as a cycle involving deceleration 

followed by acceleration of the vehicle. Thus, we quantified one occurrence of S&G 
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as the deceleration of the leader vehicle from the cruising speed to zero followed by 

an acceleration back to its original speed. For this study, we determined the number of 

S&Gs initiated by the leader vehicle rather than counting the number experienced by 

the subject vehicle. The reason behind adopting this approach can be explained as 

follows: The aim of this study was to understand the participant’s response to 

recurring cycles of S&Gs. Such conditions are mainly inflicted upon the subject 

vehicle due to the presence of vehicles in the front rather than the vehicle itself. Thus, 

we took into consideration the number of S&Gs triggered by the leader vehicle as an 

attribute to evaluate a route’s disutility for the participant (in the subject vehicle). The 

total number of S&Gs experienced was accumulated for the entire route and recorded 

as an attribute. Furthermore, the number of S&Gs on the right route was maintained 

between 1.75 to 3 times (refer to table 5.1) the number experienced on the left route.  

iii. Time spent in S&G: Time spent in S&G refers to the duration for which a vehicle 

undergoes a cycle of S&G. Timestamps were recorded each time the leader vehicle 

commenced deceleration towards zero speed and when it resumed its original cruising 

speed upon acceleration. The time difference between the two instants gave the time 

spent under S&G for that cycle. This quantity was accumulated over all S&Gs 

experienced on a route and used as an attribute for analysis. The overall time spent in 

S&G on the left route was maintained between 0.9 to 1.2 times (refer to table 5.1) that 

experienced on the right route.  

iv: Fuel cost: A fuel consumption model had to be coded for this experiment since the 

existing driving simulator lacked an inbuilt mechanism. We adopted the fuel 

consumption model given by Ferreira (1982) which also took into consideration the 

additional fuel used up during S&G traffic. Equation 5.1 shows the mathematical 

expression of the model proposed by the author.  

𝐹𝐶 =  𝑎1𝐷 +  𝑎2𝑇𝑠 + 𝑎3𝑆 (5.1) 

Where, 

FC: Fuel consumed in litres 

D: Distance travelled at cruising speed 
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Ts: Amount of stopped time 

S: Number of stops made 

a1, a2, a3: Calibration parameters 

Based on an empirical analysis conducted by Ferreira (1982), the values of calibration 

parameters were set as follows: a1 = 0.07 l/km; a2 = 1.2 l/hr and a3 = 0.022 l/stop. 

These values were obtained for a 1500cc engine car and at a cruising speed of 48 

km/h. Given the speed limit of 50 km/h used in this study, the cruising speed was 

expected to be around 48 km/h. Thus, we could use these calibration parameter values 

directly for our case. Equation 5.1 provides us with a consistent mechanism of 

approximating the actual fuel consumed during each driving task. Furthermore, we 

evaluated the fuel consumed by the leader vehicle and stored it as an attribute. It was 

done due to the following reasons: 1) as the subject vehicle was part of a platoon 

undergoing S&G cycles, the fuel consumption quantity between itself and the leader 

vehicle should only differ marginally, and 2) the computational ease while calculating 

the fuel consumed by the leader vehicle (which was programmed) in real-time (the 

reason for evaluating it in real-time will be discussed in section 5.4). As we discussed 

above, these assumptions facilitated a simplified model which was expected to 

consistently give us good estimates of the actual fuel consumed, in the absence of an 

inbuilt fuel consumption mechanism. The obtained fuel quantity was converted into 

cost by multiplying it by the average price of petrol in Sydney, i.e. AU $1.30. The fuel 

cost on the right route was higher and maintained between 1.1 to 1.4 times the cost on 

the left route.  

 The range of ratios for each of the four attributes was carefully selected after several 

trials and satisfied the following conditions: 1) the difference in travel time was not 

too small to be unnoticed by the participants, and 2) the ratio was not too large to 

induce non-selection of the route. 

5.3.3 Design of questionnaires 

Three sets of questionnaires were designed which were planned to be handed over to 

the participants at different times of the experiment session. This subsection 

elaborates on each of the questionnaires. 
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5.3.3.1 Self-reported frustration ratings 

The participants were asked to report the levels of frustration experienced at the end 

of every driving task (6 in all). The questions asked were: What was the level of 

frustration you experienced while driving? and How frustrated would you be if you 

have to experience such conditions during your actual commute to work? The first 

question was taken from an earlier study by Lee (2010) which looked at the effect of 

frustration on driver’s performance. The second question was asked in case the 

participants found the driving time on the route as too less. Thus, the second question 

asked them to rate their levels of frustration had they witnessed similar S&G 

conditions, as experienced during the task, in their actual commute. The responses (to 

both the questions) were recorded on a 5-point Likert scale (as used in Lee (2010)) 

with the anchors 1: Not at all frustrated; 2: Slightly frustrated; 3: Moderately 

frustrated; 4: Very frustrated and 5: Extremely frustrated. These anchors were taken 

from the list prepared by Brown (2010) which also provides anchors to a variety of 

other questions. 

5.3.3.2 Route choice questions 

Participants were asked to select the most preferred route at the end of the second 

route in every scenario. The questions asked were: Having travelled on both routes, 

which route would you select for your next trip to work, and If you had to experience 

traffic conditions like the two routes for the length of your actual commute, which 

route would you select. The second question was asked so as to capture their route 

choice if they had to undergo S&G conditions similar to what they experienced on the 

two routes in real-life. The options to both the questions were 1) the first route, and 2) 

the second route.  

5.3.3.3 Socio-demographic questionnaire 

A set of questions were designed to gather the socio-demographic information of the 

participants. The information collected from this questionnaire would later allow us to 

even study the role these attributes in modelling driver frustration. The questionnaire 

consisted of 11 questions which asked for information such as gender, age, income, 

occupation, driving experience, etc.  
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5.3.3.4 Online SC survey 

This questionnaire was exactly the same as the one discussed earlier in chapter 4 of 

this thesis. Participants were shown a set of 10 choice tasks, where each choice task 

comprised the currently travelled route (status-quo) and other two hypothetical routes. 

The attributes (four in all) of the hypothetical routes were pivoted around the attribute 

values of the status-quo alternative.  

5.3.3.5 Attitude towards S&G traffic 

Three questions were asked to participants to understand their perception towards 

S&G traffic in real-life. The responses to these questions were again recorded on a 5-

point Likert scale to be consistent with the other route choice questions in the experiment 

which also used a similar scale (eg. Question on the level of frustration experienced (Lee, 

2010)). The first question asked was: How often do you experience stop-&-go traffic 

during your actual commutes? which had the options: 1: Never; 2: Rarely; 3: 

Sometimes; 4: Often and 5: Always. The second question was: How frustrated do you 

feel when driving in such conditions? which had the options: 1: Not at all frustrated; 

2: Slightly frustrated; 3: Moderately frustrated; 4: Very frustrated and 5: Extremely 

frustrated. The last question was: How likely are you to look for an alternate route 

with a slightly higher travel time but fewer stop-&-gos? which had the options: 1: 

Extremely unlikely; 2: Unlikely; 3: Neutral; 4: Likely and 5: Extremely likely.  

5.4 Experimental Procedure 

The experiment comprised the introduction, driving task, online SC survey and 

attitudinal questionnaire sections. Figure 5.3 shows the sequence of sections presented 

to the participants in the entire experiment session. A warm-up task was given upfront 

to familiarise the participants with the mechanisms of the simulator equipment and the 

virtual routes played before them. The participants drove on both the routes during the 

warm-up task. It was then followed by the three driving scenarios. The order of the 

scenarios was randomised across the participants using the Latin square design 

technique (Williams, 1949).  
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Figure 5.3: Layout of the driving simulator experiment session 

The participants were informed about a set of penalties, applicable to the three 

scenarios, which were as follows: 1) an AU $3 deduction in case the participants 

violated the road rules discussed earlier in subsection 5.3.2, and 2) each task (route) 
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Participant Briefing 

Section 1: Introduction 

 Contents of the survey 

 Brief discussion on S&G traffic 
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 Providing questionnaires 
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could be finished within 9 minutes without breaking the road rules, inability to do so 

would attract a penalty at a rate of AU $1 per minute. The penalties were designed to 

foster real-world driving behaviour among the participants in the driving simulator 

experiment. Travel time and fuel cost incurred was displayed on the screen at the end 

of every route for their information. This was done since drivers can easily evaluate 

these two attributes in real-life. Information on S&G conditions was not displayed 

because drivers generally experience such conditions without exactly keeping a count. 

The participants were then asked to report the frustration ratings at the end of every 

route within a scenario. A 5-10 minute break was given after the warm-up task and in 

between the scenarios where the participants were allowed to relax and offered 

refreshments. A set of questionnaires regarding socio-demographics and route choice 

and attitude towards S&G were presented during break time and towards the end of 

the session respectively. A monetary reward of AU $40 was handed to participants 

upon completing the entire study. The expected duration of the study was around 90 

minutes which included time for driving, briefing, relaxation and responding to 

questions. 

5.5 Participant Recruitment 

The invitation to the driving simulator study was mainly circulated among university 

staff and students. This was done by emailing the flyer of the experiment to the 

administrative managers of the different schools on campus and via the professional 

staff group email to be circulated among the members. Additionally, the invitation to 

the study was also posted on social media platforms, like Facebook, and community 

bulletin boards around campus to attract people from outside (however, despite our 

efforts, we could not find a good response from the people outside the campus). 

Individuals who drove to UNSW (Kensington campus) or work by car at least thrice a 

week were contacted for this study. The exclusion criteria to the study included 

people who: 1) did not drive to UNSW or work, 2) did not possess a driver’s license, 

3) had a history of motion sickness, and 4) pregnant women. A respondent satisfying 

any of these criteria was not invited to the study. The reason behind using these 

exclusion criteria was to obtain a sample of car drivers who drove regularly to 

university or work and might have experienced traffic congestion (and S&G traffic) 

on a daily basis. The study ran for around 6 weeks in June 2017 and a total of 111 
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people participated in this experiment. Of these participants, 12 were not able to finish 

the experiment due to uneasiness or motion sickness. Approvals were again taken 

from the university human ethics committee, Human Research Ethics Advisory 

(HREA) Panel H: Science and Engineering, before commencing the study. The copy 

of the approval letter (HC No. 15752) is available in appendix C of this thesis.  

A simulation procedure was followed to determine the minimum sample size required 

for the quantitative data analysis which will be discussed later in section 5.7. The 

procedure showed that around 70 participants would provide us with parameter 

estimates from the statistical analysis at a significance level of 5 percent. Thus, we 

collected data for 99 participants in all to capture the variance in real-world dataset 

missing in the simulated dataset. Results from the simulation study are provided in 

appendix E of this thesis. 

5.6 Empirical Analysis 

The effective dataset for further analysis comprised responses from 99 participants 

which equated to 594 rows of observations. Figure 5.4 shows the socio-demographic 

information of the effective dataset. The experiment saw a majority of participation 

from males, which comprise three-quarters of the sample. 60 percent of the 

participants are up to the age of 30 years which typically represents the age group of 

students. The remaining 40 percent of the sample is above 30 years and corresponds 

to the usual age group of university staff. The pie chart on the weekly income 

distribution shows around 50 percent of the sample to earn up to AU $800 per week 

(AU $41,600 per annum), which roughly equates to the weekly wages or stipend 

received by the students. The other income groups also have a decent share (around 

10 percent representation in the sample) in the sample representing the weekly salary 

of staff. The employment status and the occupational distribution also shows 54 

percent of the sample as students enrolled part-time or full-time and 56 percent of the 

sample as undergraduate, postgraduate and Ph.D. students respectively. The 

remaining sample comprises workers like professionals, teaching staff, administrative 

staff, technicians and other jobs. 
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Figure 5.4: Socio-demographic information of the effective dataset 

  

74% 

26% 

Gender 

Male

Female
60% 

23% 

13% 

4% 

Age (years) 

20 - 30

30 - 40

40 - 50

50 - 60

22% 

29% 

7% 
9% 

15% 

8% 
10% 

Weekly Income ($) 

0 - 400

400 - 800

800 - 1300

1300 - 1600

1600 - 2000

> 2000

Not Disclosed

9% 

46% 

8% 

28% 

6% 3% 

Employment Status 

Student: PT

Student: FT

Work: FT

Work: PT

Work: Casual

Other

26% 

3% 

2% 

6% 
14% 

42% 

7% 

Occupation 

Professionals

Teaching staff

Technicians

Admin Staff

Student: UG

Student: Res.

Other

12% 

21% 

18% 7% 
6% 

36% 

Driving Experience (years) 

0 - 2

2 - 4

4 - 6

6 - 8

8 - 10

> 10



 Chapter 5: Experiment III – Driving Simulator Study 

Neeraj Saxena  117 

The pie chart on driving experience shows a good representation (around 10 percent 

representation in the sample) of different experience groups. While almost 40 percent 

of the sample represents experienced drivers with an experience of at least 8 years, the 

sample also comprises 33 percent relatively new drivers with up to 4 years of driving 

experience. The latter group of participants lacks driving experience as they either got 

their full driver’s licence recently or still driving on the provisional licence. Thus, they 

are expected to exercise more caution when driving in general and easily get 

perturbed during S&G traffic conditions as it requires additional attention (Levinson 

et al., 2004; Lee & Winston, 2016).  

Table 5.2 shows the travel related information on each of the two routes across three 

scenarios. The statistics presented in this table were obtained after sorting the 

scenarios in the order we defined during the design. In other words, the scenario 

statistics presented in this table do not correspond to the shuffled order which was 

presented to the participants.  

Table 5.2: Descriptive statistics of route specific information 

Average attribute 

value 

Scenario 1 Scenario 2 Scenario 3 

Left Right Left Right Left Right 

Travel time (mm:ss) 7:24 6:07 7:43 6:25 7:26 6:13 

Time in S&G (mm:ss) 3:25 3:04 3:38 3:16 2:59 2:53 

Number of S&Gs 5.17 18.4 8.4 17.89 4.84 12.13 

Fuel Cost (AU$) 0.54 0.74 0.61 0.73 0.53 0.61 

 

Frustration Rating 2.23 2.62 2.32 2.64 2.14 2.45 

Real-world Frustration 

Rating 

2.25 2.70 2.44 2.71 2.13 2.46 

 

The values for the trip related attributes provided in this table match closely to the 

ones reported in table 5.1 discussed earlier in subsection 5.3.2. This indicates that the 

parameters used for designing the scenarios were able to re-create, to a great extent, 

the actual driving behaviour. The table shows that the left route always has a slightly 

higher travel time but fewer S&Gs and vice-versa for the right route, which is 

consistent with the experiment design. We conducted a one-way ANOVA to check if 

the four route specific attributes on the left and right routes were statistically different 
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from one another. Results from the ANOVA test showed that the mean attribute 

values on both the routes were statistically different from one another at 99 percent 

confidence interval. For example, the mean values of the number of S&Gs on the left 

and right routes in scenario 1 were found to be statistically different [ 

F(1,196)=622.905 and p-value=0.000]. 

Table 5.2 also shows the self-reported frustration ratings for each of the six routes 

driven by the participants. It can be observed that the average frustration rating is 

always higher on the right route across three scenarios. Thus, the participants 

experienced higher levels of frustration when asked to drive on a route which had 

more S&Gs even though it was quicker. This observation indicates the validity of the 

proposed research hypothesis for this study, i.e. more S&Gs on a route makes drivers 

more frustrated. The observation is also in line with the previous literature which 

indicated the level of frustration to be higher under more intense S&G traffic 

(Hennessy & Wiesenthal (1999) for example). 

Table 5.2 also shows the fuel cost to be higher for the right route, which has the 

higher frustration rating. It could be argued that fuel cost might have also affected the 

higher frustration rating given by the participants. However, our intuition says that 

drivers find S&G traffic to be more frustrating as they need to be extra focussed while 

driving which might not have a bearing on the cost incurred. The literature we 

discussed above also supports our idea since they too did not consider the effect of 

fuel cost on the frustration rating (Hennessy & Wiesenthal, 1999; Levinson et al., 

2004). Furthermore, we conducted a Pearson correlation test between the self-reported 

frustration ratings (assumed as a continuous variable for simplicity) and the running 

cost to empirically verify the relationship. The correlation coefficient was found to be 

0.29 which being low indicates weak relationship between the two quantities. 

Figure 5.5 shows the route choices made by all the 99 participants across three 

scenarios. The figure shows that a majority of the participants preferred travelling on 

the left route, across three scenarios, which had a slightly higher travel time but fewer 

S&Gs. While the proportional split between the two routes (left: right) was 3:2 in 

scenarios 1 and 3, it increased to 2:1 in scenario 2. Looking at table 5.2 and figure 5.5, 
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it can be said that a majority of the participants selected the route on which they 

experienced lesser levels of frustration. 

 

Figure 5.5: Route preferences of the participants across scenarios 

Thus, the effective dataset is composed of the participants depicting a wide variety of 

socio-demographic characteristics (most of the segments under a socio-demographic 

attribute have around 10 percent representation in the sample) and driving styles 
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check for the validity of the proposed research hypothesis. 

5.7 Structural Equation Model 
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decision-making process is modelled as a “black box” which takes in observed 

variables such as the alternate specific attributes and socio-demographic information 

of individuals and outputs the resulting choice (Ben-Akiva et al., 2002). In other 

words, this discrete choice modelling framework evaluates the direct effect of the 

observed attributes on the choices made. However, such models generally do not take 

into consideration the impact of the unobserved (latent) individual specific 
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in the actual choice making process (Anable, 2005; Bamberg & Schmidt, 2001; 

Gärling et al., 2003).  

A Structural Equation Model (SEM) is a multivariate modelling technique used to 

estimate the joint association between the latent constructs (structural) and the 

observed variables (measurement) (MacCallum & Austin, 2000). SEM is a widely 

used tool for pattern identification among different variables in the domain of 

transportation engineering, particularly travel behaviour (Golob, 2003). Recent studies 

have also used this tool to measure aggressive driving behaviour (Abou-Zeid et al., 

2011), develop an aggression index at a signalised intersection (Hamdar et al., 2008) 

and towards cyclist safety (Nair et al., 2016). The main advantage of using SEM is 

that it explicitly accounts for the measurement errors when jointly estimating the 

observed and latent variables (Schumacker & Lomax, 2012). This is particularly 

useful in this study as the observed frustration ratings can be subject to errors since 

they do not truly represent the underlying frustration propensity (a latent variable). 

A typical SEM framework comprises two sub-models, namely the latent variable 

structural equation model and the latent variable measurement model. The structural 

equation model specifies a linear relationship between the latent constructs and the 

observed covariates. These latent constructs can be observed by the analyst in the 

form of indicator variables which can be measured on a continuous, nominal or an 

ordered scale. The measurement equation model expresses a linear relationship 

between the “soft” latent constructs (computed through the structural part) and the 

indicator variables and also allows for measurement errors in the latter in capturing 

the true intrinsic value of the former. 
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Figure 5.6: The SEM framework adopted 
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structural equation model). Since this experiment comprised unlabelled alternatives, 

the same frustration propensity relationship can be used for both the routes. The 

frustration propensity is then mapped to the observed frustration ratings (𝑰) which 

were given by the participants in the experiment (this represents the measurement 

model). The term 𝝃 represents the structural error in measuring the true frustration 

propensity. 𝜼 represents the measurement error and 𝜺 signifies the idiosyncratic error 

term in the discrete choice model. 𝑨 and 𝑩 are the parameters which are estimated 

from the SEM. We discuss the model formulation of the SEM, followed by model 

identification and estimation in the following subsections. The same notations used in 

figure 5.6 are used to maintain uniformity. We follow the same formatting style, both 

in figure 5.6 and in the next subsections, while discussing matrix algebraic notations 

used in the model formulation, i.e. scalar quantities are written in italics, vectors in 

italics and bold face, and matrices in bold face.  

5.7.1 Model formulation 

Consider that participant 𝑛 ∈ 𝑁 evaluates route 𝑗 ∈ 𝐽 in choice scenario 𝑡 ∈ 𝑇. The 

participant gives a frustration rating 𝑖𝑛𝑗𝑡 for each of the routes driven within a 

scenario and the route choice 𝑦𝑛𝑡 at the end of every scenario. As discussed earlier in 

section 5.3, the experiment comprised a total of three scenarios (𝑇 = 3) each 

involving two routes (𝐽 = 2). Thus, the participant provided a total of six indicator 

ratings (along with three route choices) in the entire experiment. We now present the 

mathematical formulation of each the two components of the SEM, which has been 

discussed in the paper by Bhat & Dubey (2014).  

5.7.1.1 Latent variable structural equation model 

The structural equation specifies a linear relationship between the frustration 

propensity 𝑓𝑛𝑗𝑡
∗  (latent construct) and a set of explanatory variables. Equation 5.2 

gives the expression (in scalar notations) for this linear relationship.  

𝑓𝑛𝑗𝑡
∗ =  𝒂𝟏𝒙𝒏𝒋𝒕

′ +  𝒂𝟐𝒛𝒏
′ +  𝜉𝑛 (5.2) 
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In this equation, 𝒙𝒏𝒋𝒕 is a vector of size 1 × 𝑘, where 𝑘 is the number of route specific 

attributes (the time spent in S&G and the number of S&Gs, so 𝑘 = 2 in this study as 

shown in figure 5.6). 𝒛𝒏 is a 1 × 𝑚 vector of socio-demographic variables, where 𝑚 

is the number of covariates (gender, age and driving experience, so 𝑚 = 3 in this 

study as shown in figure 5.6). 𝒂𝟏 and 𝒂𝟐 are the structural coefficients of size 1 × 𝑘 

and 1 × 𝑚 respectively which are assumed to be generic parameters due to the 

unlabelled routes setting discussed earlier. 𝜉𝑛 is the structural error term which do not 

have the subscripts 𝑗 and 𝑡. While the structural error is the same across alternatives 

(𝑗) due to the routes being unlabelled, it remains the same across scenarios (𝑡) since it 

reflects the unobserved attitudes which do not change quickly for the participant over 

time (at least over the duration of this experiment). It is assumed that 𝜉𝑛 follows a 

standard normal distribution since 𝑓𝑛𝑗𝑡
∗  is a continuous latent variable in the range 

(−∞, ∞) (Bolduc et al., 2005). Equation 5.2 can be re-written using matrix notations 

as shown in equation 5.3. 

𝑭∗ =  𝐗𝑨′ +  𝝃 (5.3) 

𝑭∗ = {𝑓𝑛11
∗ , 𝑓𝑛21

∗ , … . 𝑓𝑛𝐽𝑇
∗ } represents a 𝐽𝑇 × 1 vector of frustration propensities for 

individual 𝑛. 𝐗 is a 𝐽𝑇 × (𝑘 + 𝑚) matrix formed by concatenating (horizontally) 𝑘 

route specific attributes across 𝐽𝑇 observations and repeating 𝑚 socio-demographic 

variables 𝐽𝑇 times for participant 𝑛. 𝑨 is the vector of structural coefficients of size 

1 × (𝑘 + 𝑚) which is obtained upon concatenating (horizontally) 𝒂𝟏 and 𝒂𝟐. 𝝃 is 

formed by repeating the structural error term (𝜉𝑛) 𝐽𝑇 times, and follows a univariate 

normal distribution: 𝝃 ~ N(0,𝛙) where 𝛙 is a correlation matrix which is parametrised 

to one for the case of a single latent construct (as in our study). Generally speaking, 

for the case of 𝑙 latent constructs, 𝝃 is distributed as a multivariate (𝑙 dimension) 

normal (𝝃 ~ MVNl (0,𝛙)) where 𝛙 is a 𝑙 × 𝑙 correlation matrix which captures the 

correlation among the different latent variables.  
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5.7.1.2 Latent variable measurement equation model 

The frustration propensity (𝑓𝑛𝑗𝑡
∗ ) thus obtained is used as an explanatory variable to 

model the observed frustration ratings given by the participant. Equation 5.4 gives the 

linear expression for the measurement model using scalar notations.  

𝑖𝑛𝑗𝑡
∗ =  𝛿𝑗 + 𝑏𝑓𝑛𝑗𝑡

∗ +  𝜂𝑛𝑗𝑡 (5.4) 

In this equation, 𝑖𝑛𝑗𝑡
∗  is the latent variable signifying the overall frustration (a latent 

variable) experienced by participant 𝑛 for alternative 𝑗 in driving scenario 𝑡. 𝛿𝑗 is an 

alternate specific constant and 𝑏 is the factor loading on the latent construct (𝑓𝑛𝑗𝑡
∗ ). 

Like the structural coefficients, 𝑏 is treated as a generic parameter due to the 

unlabelled routes setting followed in this experiment. 𝜂𝑛𝑗𝑡 is the measurement error 

term which follows a standard normal distribution. The error term generally requires 

normalisation for identification purpose (McKelvey & Zavoina, 1975). Since 𝑖𝑛𝑗𝑡
∗  

cannot be observed by the analyst, who can only observe the indicator rating 

(frustration rating 𝑖𝑛𝑗𝑡) which is generally asked on an R-point Likert scale (𝑅 = 5 in 

this study). The realisation (or the probability of occurrence) of the ordered rating 𝑟 

can be expressed using equation 5.5. 

Pr (𝑖𝑛𝑗𝑡 = 𝑟) =  Pr (𝜇𝑟−1
𝑗

 <  𝑖𝑛𝑗𝑡
∗  <  𝜇𝑟

𝑗
) (5.5) 

In this equation, 𝝁𝒋 is a 1 × (𝑅 + 1) vector of threshold points within which the 

observed rating 𝑟 ∈ 𝑅 falls. In other words, the observed rating 𝑟 lies between the 

(𝑟 − 1)th and 𝑟th elements of the threshold vector 𝝁𝒋. The superscript 𝑗 signifies a 

different threshold vector for every alternative (route in this study). The elements in 

each set are: 𝝁𝒋 = {−∞, 0, 𝑒𝛼1𝑗 , 𝑒𝛼1𝑗+ 𝛼2𝑗 , … , 𝑒𝛼1𝑗+ 𝛼2𝑗…+ 𝛼(𝑅−2)𝑗 , ∞}. The parameters 

𝛼1𝑗 , 𝛼2𝑗, … ,  𝛼(𝑅−2)𝑗 (𝑅 − 2 in number) are estimated in the model to compute 𝝁𝒋. As 

the measurement errors are normally distributed, the expression on the right-hand side 

in equation 5.4 becomes a probit kernel (Train, 2009). The equations above can be re-

written in matrix notation and shown in equations 5.6 and 5.7. 
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𝑰∗ =  𝜹 + 𝑩. 𝑭∗ +  𝜼 (5.6) 

Pr (𝑰) =  Pr (𝝁𝒍𝒐𝒘  <  𝑰∗  <  𝝁𝒖𝒑) (5.7) 

In equation 5.6, 𝑰∗ = {𝑖𝑛11
∗ , 𝑖𝑛21

∗ , … . 𝑖𝑛𝐽𝑇
∗ } represents a 𝐽𝑇 × 1 vector of actual 

frustration (latent variable) experienced. 𝜹 is a 𝐽𝑇 × 1 vector made by 𝑇 repetitions of 

𝛿𝑗, i.e. the alternate specific constant for each alternative. 𝑩 is a 𝐽𝑇 × 1 vector which 

is formed by repeating the generic factor loading (𝑏) 𝐽𝑇 times. The dot (.) between 𝐵 

and 𝑭∗ signifies element wise multiplication of the two quantities. 𝜼 = {𝜂𝑛11
∗ ,

𝜂𝑛21
∗ , … . 𝜂𝑛𝐽𝑇

∗ } is a vector of measurement errors of size 𝐽𝑇 × 1. 𝜼 follows a 

multivariate (𝐽𝑇 dimension) normal distribution such that: 𝜼 ~ MVNJT (0,∑) where ∑ 

is a correlation matrix of size 𝐽𝑇 × 𝐽𝑇. In equation 5.7, 𝑰 = {𝑖𝑛11, 𝑖𝑛21, … . 𝑖𝑛𝐽𝑇} is a 

𝐽𝑇 × 1 vector of the observed ordered responses given by the participant. 𝝁𝒍𝒐𝒘 and 

𝝁𝒖𝒑 are the lower and upper threshold vectors of size 𝐽𝑇 × 1 each consisting of the 

lower and upper cut-off values from the set 𝝁𝒋 for each element in 𝑰. Given the 

distributional assumptions made on the measurement error, the joint probability of 

observing 𝑰 also follows a multivariate normal distribution.  

5.7.2 Model identification 

Equation 5.8 can be obtained by substituting equation 5.3 in equations 5.6. Equation 

5.9 gives the expression to evaluate the joint probability of observing the indicators 

(𝑰∗) which is a multivariate normal distribution of 𝐽𝑇 dimensions with the mean (�̈�) 

and covariance (�̈�) shown in equations 5.10 and 5.11 respectively. While �̈� is of size 

𝐽𝑇 × 1, �̈� is of size 𝐽𝑇 × 𝐽𝑇. 

As an illustration, we show the calculation of the mean and variance for equation 5.8. 

The term 𝜹 + 𝑩. 𝐗𝑨′ in the equation comprises all known quantities (attributes or 

parameter values) thus forming the mean, which is shown in equation 5.10. For 

evaluating the variance, we use the following properties from statistics:  

 If 𝑣 is a random variable and 𝑜 a scalar then 𝑉𝑎𝑟(𝑜𝑣) =  𝑜2𝑣.  
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 Assuming 𝑂 and 𝑉 as vector notations,  𝑉𝑎𝑟(𝑂𝑉) =  𝑂𝑉𝑂′.  

 If 𝑉 and 𝑁 are two independent random numbers then 𝑉𝑎𝑟(𝑉 + 𝑁) =  𝑉𝑎𝑟(𝑉) +

𝑉𝑎𝑟(𝑁) 

The last two terms in equation 5.8, 𝑩. 𝝃 +  𝜼 are stochastic. Also, we know that the 

error terms 𝝃 and 𝜼 are independent. Thus, we can calculate the variance of equation 

5.8, which is shown in equation 5.11. 

𝑰∗ =  𝜹 + 𝑩. 𝐗𝑨′ +  𝑩. 𝝃 +  𝜼 (5.8) 

𝑃𝑟(𝑰∗) =  𝑀𝑉𝑁𝐽𝑇 (�̈�, �̈�) (5.9) 

�̈� =  [𝜹 + 𝑩. 𝐗𝑨′] (5.10) 

�̈� =  [𝑩𝛙𝑩′ +  ∑] (5.11) 

All the parameters to be estimated in �̈� and �̈� are identifiable by ensuring that the 

diagonal elements of ∑ which correspond to the ordinal variables are normalised to 

one. In other words, ∑ is normalised as an identity matrix. The value of 𝛙 has been 

discussed above.   

The SEM formulation presented above evaluates the joint probability of observing 𝐽𝑇 

frustration ratings given by the participant in the experiment. As the participants were 

asked to drive on the two routes in quick succession within a scenario, we expected 

some dependency between the routes within and between scenarios. A Pearson Chi-

Squared test between frustration ratings on left and right routes across three scenarios 

was conducted which also indicated a dependency between the two sets of ratings 

(significant at 95 percent confidence interval). Thus, we decided to jointly estimate 

the frustration ratings rather than treating them as independent. We now discuss the 

estimation procedure for the model.  
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5.7.3 Model estimation 

The probability of jointly observing 𝑰 indicator ratings responses requires the 

evaluation of a 𝐽𝑇 dimensional multivariate normal (MVN) cumulative distribution 

function (cdf). It implies that in order to solve the MVN cdf, one has to solve a 𝐽𝑇 

dimensional integral. A general procedure to solve such complex functions is through 

the Maximum Simulated Log-likelihood (MSL) approach (Greene & Hensher, 2010; 

Train, 2009). However, this widely used estimation procedure poses the following 

limitations due to the curse of dimensionality: 1) the MSL can become infeasible as 

the order of integration grows bigger, 2) the numerical solution methods can become 

quite time-consuming and might also lead to convergence issues during estimation 

(Bhat et al., 2010). A recent inference approach, the Composite Marginal Log-

likelihood (CML), provides a simulation free technique thus overcoming the 

shortcomings of the MSL. The method which is gradually becoming popular requires 

estimation of a pairwise likelihood function, called the marginal likelihood, which is 

easy to compute due to a lower dimensionality. This marginal likelihood function 

provides a good approximation to the full likelihood function. Furthermore, the CML 

estimator is consistent and asymptotically normal and is a lot quicker in computation 

time when compared to the MSL approach. Readers can find a good description of the 

CML approach and its advantages over the MSL method in the paper by Paleti & Bhat 

(2013).  

As shown in equation 5.9, the full likelihood function (for an individual) is a 𝐽𝑇 

dimensional integral, which is equivalent to 6 in our experiment. According to the 

CML technique, this multidimensional integral can be broken down into 

independently observing different duplets of the observed indicator ratings. In other 

words, we defined the paired likelihood function of simultaneously observing two 

frustration ratings. This resulted in a total of (𝐽𝑇
2

) combinations to be evaluated. The 

resulting marginal likelihood function for individual 𝑛 is thus shown in equation 5.12. 

     𝐿𝐶𝑀𝐿
𝑛 (�̈�, �̈�) =  ∏ ∏ 𝑃𝑟(𝑖𝑛𝑖 = 𝑟𝑛𝑖,  𝑖𝑛𝑗 = 𝑟𝑛𝑗)

𝐽𝑇

𝑗=𝑖+1

𝐽𝑇−1

𝑖=1

  (5.12) 
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𝐿𝑛 𝐿(�̈�, �̈�) = ∑ log 𝐿𝐶𝑀𝐿
𝑛 (�̈�, �̈�)

𝑁

𝑛=1

 (5.13) 

Equation 5.12 represents the pairwise probability of observing two indicator 

(frustration) ratings 𝑖𝑛𝑖 and 𝑖𝑛𝑗 simultaneously. The first term, 𝑟𝑛𝑖 and 𝑟𝑛𝑗 are the 

ratings on a Likert scale given on 𝑖𝑡ℎ and 𝑗𝑡ℎ occasion respectively by participant 𝑛. 

Equation 5.13 gives the log-likelihood function by summing the logarithm of equation 

5.12 across the participants. The procedure to determine the parameters �̈� and �̈� is 

discussed below.  

To estimate equation 5.12, we need to set up the following vector. Create a selection 

matrix 𝐐 of size 2 × 𝐽𝑇. Introduce the value 1 on the 𝑖𝑡ℎ and 𝑗𝑡ℎ columns of the first 

and second rows respectively, while the other elements are zero. Equation 5.12 

represents multiplication of bivariate normal cdfs, each of which can be estimated 

using equation 5.14. The first two terms in the bivariate cdf on the left-hand side 

represent the mean value and the third term is the correlation. Equations 5.15 and 5.16 

give their expressions. The threshold vector 𝜶𝒍𝒐𝒘 =  𝐐𝝁𝒍𝒐𝒘 and 𝜶𝒖𝒑 =  𝐐𝝁𝒖𝒑 is a 

column vector of size 2 × 1 representing the first and second rows for the ratings 𝑖 

and 𝑗 respectively. Similarly, the mean value is selected as 𝜷 =  𝐐�̈� and covariance 

𝝎 =  𝐐�̈�𝐐′ which are of sizes 2 × 1 and 2 × 2 respectively. 𝝎𝟏𝟏 and 𝝎𝟐𝟐 are the 

diagonal elements and the superscript on 𝜶𝒍𝒐𝒘, 𝜶𝒖𝒑 and 𝜷 represent the indicator 

rating.  

𝑃𝑟(𝑖𝑛𝑖 = 𝑟𝑛𝑖,  𝑖𝑛𝑗 = 𝑟𝑛𝑗) =  [
𝛷(𝜿𝒖𝒑

𝒊 , 𝜿𝒖𝒑
𝒋

, ζ𝑖𝑗) −  𝛷(𝜿𝒖𝒑
𝒊 , 𝜿𝒍𝒐𝒘

𝒋
, ζ𝑖𝑗)

− 𝛷(𝜿𝒍𝒐𝒘
𝒊 , 𝜿𝒖𝒑

𝒋
, ζ𝑖𝑗) +  𝛷(𝜿𝒍𝒐𝒘

𝒊 , 𝜿𝒖𝒑
𝒋

, ζ𝑖𝑗)
]  (5.14) 

𝜿𝒍𝒐𝒘
𝒊 =  

𝜶𝒍𝒐𝒘
𝒊 −𝜷𝒊

𝑠𝑞𝑟𝑡(𝝎𝟏𝟏)

𝜿𝒍𝒐𝒘
𝒊 =  

𝜶𝒍𝒐𝒘
𝒊 −𝜷𝒊

𝑠𝑞𝑟𝑡(𝝎𝟏𝟏)

      

𝜿𝒍𝒐𝒘
𝒋

=  
𝜶𝒍𝒐𝒘

𝒋
−𝜷𝒋

𝑠𝑞𝑟𝑡(𝝎𝟐𝟐)

𝜿𝒍𝒐𝒘
𝒋

=  
𝜶𝒍𝒐𝒘

𝒋
−𝜷𝒋

𝑠𝑞𝑟𝑡(𝝎𝟐𝟐)

 (5.15) 
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ζ𝑖𝑗 = 
𝝎𝟐𝟏

𝑠𝑞𝑟𝑡(𝝎𝟏𝟏) .  𝑠𝑞𝑟𝑡(𝝎𝟐𝟐)
 (5.16) 

The model estimation routine was coded in Matlab, picking the bivariate cdf function 

from Professor Alen Genz’s webpage (Genz, 2017). The log-likelihood function given 

in equation 5.13 was solved using the BFGS algorithm and the standard errors were 

calculated by taking the inverse of the simulated Hessian matrix upon convergence. 

The Matlab code is available through the weblink given in appendix B of this thesis.  

5.7.4 Model results 

For model estimation, the variable age was dichotomized into young (up to 40 years) 

and older age groups (Erikson & Erikson, 1998). Similarly, the variable driving 

experience was dichotomised at a threshold of 8 years since it gave a near equal 

representation of both the groups, i.e. less (up to 8 years) and more experienced 

drivers. The two dichotomised variables were found to be correlated with one another. 

Thus, an interaction variable between the two age and experience groups was 

constructed to be used as an explanatory variable in the latent variable structural 

equation model. Of the four resulting categories of the interaction variable, the 

category old (above 40 years) and less experienced (up to 8 years) did not have any 

observation which was intuitive. The category young and more experienced was kept 

as the base and the other two categories were estimated. 

Table 5.3 shows the model parameters upon convergence. The parameter for the time 

spent in S&G and the number of S&Gs is highly significant (at 99 percent confidence 

interval) and bears a positive sign. In other words, the two attributes positively 

influence the frustration propensity of drivers. This finding indicates the validity of 

the hypothesis proposed in this study. The interpretation of the two parameters is as 

follows: While the former implies that a 1 minute increase in the time spent in S&G 

traffic increases the frustration propensity by 0.9153 on average, the latter increases 

the propensity by 0.0329, on average, with every additional repetition of S&G. This 

positive association is consistent with the previous literature which identified traffic 
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congestion (eventually resulting in S&G traffic) as one of the factors instigating driver 

frustration (Jovanović et al., 2011; Lazarus, 1966). 

Gender is found to have a significant effect on the frustration propensity, where 

females experience a higher frustration propensity than males. Hauber (1980) too 

found a similar thing, where young females reported higher stress levels than older 

males. We checked our dataset and found around 60 percent of the females as young 

(under 40 years). Thus, our finding is consistent with the previous literature. 

Table 5.3: Results from the SEM estimation 

Parameter Estimate 

 

Structural Model (A) 

Time in S&G 0.9153 
***

 

Number of S&Gs 0.0329 
***

 

Male -0.4442 
***

 

Young & Less Exp. 0.7378 
***

 

Young & More Exp. Base 

Old  & More Exp. 0.6729 
***

 

 

Measurement Model (B) 

 Left Route Right Route 

Factor Loading 0.9538 
***

 0.9538 
***

 

Constant -2.2523 
***

 -2.0149 
***

 

Cut-off Points 

𝜇1 0.4704 
***

 0.2472 
***

 

𝜇2 0.2023 
***

 0.1886 
***

 

𝜇3 0.3829 
***

 0.4756 
***

 

   

Model Fit 

LL (converged) -3813.16 

Adjusted Rho-squared 0.1227 

Number of observations 594 
***

 significant at 99%        

The table also shows a positive and significant effect for the interaction variable 

category young and less experienced drivers (0.7378). A positive sign implies that 

drivers belonging to this group are expected to exhibit a higher frustration propensity 

when compared to the base category (young and more experienced). This can be 
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explained as follows: As people in this group are relatively new to driving, they need 

to be extra careful while driving in S&G traffic, which possibly leads to a higher 

frustration propensity value. Similarly, the participants belonging to the older and 

more experienced group also show a higher frustration propensity (0.6729) than the 

base category. As the people belonging to this segment are usually at the peak of their 

career, they generally have a high value of time. Thus, they are more likely to get 

frustrated when driving to work in S&G traffic, which possibly explains the positive 

effect of this group towards the frustration propensity. 

For the latent variable measurement model, the loading for frustration propensity 

(0.9538) is positive and highly significant. In other words, people with higher 

propensity value are more likely to give a higher frustration rating which is intuitive. 

Different constants and threshold points, which are highly significant as well, are 

estimated for both the routes. The threshold limits of the frustration propensity for the 

left route can be evaluated as {0, 𝑒0.4704, 𝑒0.4704+0.2023, 𝑒0.4704+0.2023+0.3829}. 

Similarly the threshold points of the frustration propensity for the right route are 

{0, 𝑒0.2472, 𝑒0.2472+0.1886, 𝑒0.2472+0.1886+0.4756}. 

Several other specifications of the SEM were also tested. One of the models we tried 

also included travel time in the structural part. However, its parameter turned out to be 

insignificant (even at 80 percent confidence interval) upon model convergence. A few 

possible reasons behind that could be: 1) due to less variability in the attribute owing 

to a small sample, and 2) the travel time difference might have been perceived as too 

less by the participants. Thus, we dropped the travel time attribute from the model 

reported in table 5.3. The table also gives the overall goodness of fit of the selected 

SEM specification. The chosen model had a decent goodness of fit statistics and also 

conveyed meaningful interpretations. The results and goodness of fit measures of the 

alternate specifications tested are provided in appendix D (table D.5) of this thesis.   

We used the parameter estimates from table 5.3 to evaluate the frustration propensity 

score for the available dataset. The mean propensity score was found to be 3.46 with a 

standard deviation of 0.59. The range of the score was between 1.17 and 5.02. We 

categorised the score into bins of width 1and used them to check for an association 

with the observed route choices across all three scenarios using the Pearson Chi-
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Squared test. The result from the test was found to be statistically significant at 99 

percent confidence interval which suggested a dependency between frustration 

propensity and the route choice of the participants. 

5.8 Discussion 

The study presented in this chapter was conducted with the prime objective of 

determining the effect of the time spent in S&G and the number of S&Gs on the 

psychological factors, like the levels of frustration of drivers. Previous studies in the 

domain of driver psychology have identified traffic congestion as one of the triggers 

for driver stress, which eventually gets transformed into aggression (Hennessy & 

Wiesenthal, 1999; Jovanović et al., 2011). As stop-&-go (S&G) traffic generally 

occurs in the congested regime, we expected a positive correlation between the level 

of frustration and the attributes such as the time spent in S&G and the number of 

S&Gs. Another reason behind conducting this study was to account for the 

measurement bias limitation which persisted since the last two studies presented in 

chapters 3 and 4 of this thesis.  

Thus, we conducted this study using a driving simulator which gave us the 

opportunity to closely study the participant’s driving style and route choice behaviour. 

The driving simulator setup not only helped in reducing the measurement bias 

towards the time spent and the number of S&Gs experienced, but also in observing 

how the level of frustration builds up while travelling through S&G traffic. The 

designed experiment presented a total of three scenarios to each participant, which 

comprised two routes within every scenario. The two routes had a similar travel 

distance and travel time, but different congested traffic conditions (characterised by 

S&G traffic). The participants were asked to drive on each route within a scenario and 

rate (on a 5-point Likert scale) the level of frustration experienced at the end of the 

drive. Similarly, at the end of every scenario, the participants were asked to select the 

most preferred route for travel from the two available alternatives. This way, every 

participant provided six frustration ratings and three route choices in all during the 

experiment. 
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The descriptive statistics of the collected data showed a good representation of staff 

and students, who generally depict distinct socio-demographics and driving 

behaviour, in the effective sample. It was observed that a majority of the participants 

reported a lower frustration rating for the route (left route precisely) with a slightly 

higher travel time but fewer S&Gs. Additionally, it was observed that the same route 

was preferred for travel by the participants across all three scenarios presented to 

them. This observation showed the level of frustration could eventually influence the 

route choice behaviour of drivers.  

The results from the SEM showed that the attributes like the time spent in S&G and 

the number of S&Gs had a positive effect on the frustration propensity (a latent 

variable). Although the effect of the time spent in S&G (0.9153) was much higher 

than the effect for the number of S&Gs (0.0329), it was still useful to include this 

attribute to account for the case when there are more cycles of S&G within a short 

period of time. Thus, the proposed research hypothesis for this study was found to be 

valid. Additionally, the Pearson Chi-Squared test between the computed frustration 

propensity score (on a nominal scale) and the observed route choice indicated a 

dependency between the two. In other words, it can be concluded that the built up 

frustration also influenced the route choice behaviour of the participants. This is an 

interesting finding as it indicates that the number of S&Gs indirectly influences route 

choice (via the frustration propensity). We also conducted a simple logistic regression 

to check for the direct effect of S&G traffic characteristics on route choice for the 

current dataset. However, the parameters turned out to be highly insignificant.  Thus, 

the current finding adds a new dimension to the earlier outcomes by even accounting 

for the role of psychological aspects in the route choice behaviour. The finding is 

more grounded in the existing literature on driver stress which also suggests that 

drivers become more agitated while driving in heavy congested (S&G traffic) 

conditions (Jovanović et al., 2011; Lazarus 1966).  

The study presented in this chapter brought out some interesting findings which add to 

the existing knowledge base on driver stress in congested (S&G) traffic conditions. 

However, despite our attempts to conduct a methodologically sound experiment, this 

study has a limitation. We could manage to collect a small sample for analysis which 
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mainly comprised university staff and students who do not offer much variability in 

the available data. We tried different channels to recruit the participants from outside 

the university to make the sample more homogeneous and representative of the car 

driving population in Sydney, but were not successful in getting many responses.  

The results from this study can have few potential applications in the real world. The 

results from this study can be useful in managing traffic operations in a way such that 

S&G conditions and the resulting driver stress levels can be kept under check. We 

discuss the policy implications of the results in chapter 6 of this thesis. 
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CHAPTER 6  

CONCLUSIONS, LIMITATIONS & FUTURE DIRECTIONS 

Traffic congestion problem is an overgrowing concern among transport planners 

worldwide who are striving hard to keep this menace under check. It not only leads to 

an economic loss in the form of person hours wasted in congestion, but also poses a 

serious threat to the surrounding environment and the road user safety. Thus, in order 

to propose congestion mitigation measures, it is crucial to first understand the 

dynamics of traffic congestion and its impact on the route preferences of car drivers. 

This thesis looked at studying the role of stop-&-go (S&G) traffic, a phenomenon that 

is common in congested traffic conditions, in the intricate route choice behaviour of 

car drivers. Particularly, the aim of this thesis was to test the research hypothesis: an 

increase in the number of S&Gs on a route increases its disutility for a driver. 

Chapter 1 of this thesis presented the motivation (through an example) which laid the 

foundation to conceptualise the proposed research hypothesis.   

Chapter 2 of this thesis presented the state-of-the-art in the three domains of 

knowledge where the characteristics and dynamics of S&G traffic have been 

extensively studied. It first reviewed the literature from traffic engineering which 

either deals with mathematical modelling of S&G waves (theoretical studies) or 

identifying their characteristics such as formation, propagation and dissipation using 

different techniques (empirical studies). However, while these works were able to 

quantify the occurrence of S&G waves, they did not study the impact of these 

conditions on the route choice of drivers. The chapter next presented research works 

on driver behaviour where the time spent in S&G was used as one of the attributes to 

express disutility of a route. However, as we showed through the example presented 

in chapter 1, it is the number of S&Gs experienced which is also expected to have an 

adverse effect on disutility of a route along with the time spent in such conditions. 

Moreover, the methodologies adopted for experiment design and data analysis in 

these works are also known to have a few limitations. Lastly, the chapter presented 
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the literature on Adaptive Cruise Control (ACC) algorithms which used the measures 

of vehicle dynamics such as the time headway, acceleration (deceleration) and jerk for 

its calibration. However, these measures were generally assigned a very high value, 

from a safety perspective, which could not be used for quantifying the occurrences of 

S&G waves in a real-world scenario. Thus, this chapter was able to identify the 

research gap in the existing body of knowledge, i.e. determining the impact of the 

number of S&Gs experienced on the route choice behaviour of car drivers.  

Chapter 3 presented a proof of concept study which was conducted as the first step 

towards testing the validity of the proposed research hypothesis. A Stated Choice (SC) 

experiment was conducted on a sample of respondents comprising university staff and 

students. The survey instrument first made the participants aware of S&G traffic 

which was followed by 10 SC tasks to understand their route choice behaviour. The 

collected dataset was analysed using an econometric approach, called the Random 

Parameter Error Component Logit (RPECL) model, to account for the preference 

heterogeneity across individuals and the serial correlation arising due to the panel 

nature of the dataset. Results from the analysis showed a negative sign on the 

coefficient for the number of S&Gs attribute which indicated an increase in disutility 

of a route as the attribute value increases. This finding showed that the hypothesis we 

set at the beginning of this study was valid. This study also found that the participants 

were willing to travel for 16 extra seconds to avoid one additional occurrence of S&G. 

It is an interesting finding which indicates that drivers are not always travel time 

minimisers, but rather assign some weight to discomfort (which can be explained in 

terms of the number of S&Gs) as well. However, this study being the first step 

towards thoroughly testing the research hypothesis had the following limitations: 1) a 

restricted sample of university staff and students which do not reflect the overall 

demographics and travel characteristics of the wider population, 2) the sample even 

included occasional drivers (drove less than thrice a week to work) who might have 

biased perceptions towards S&G traffic due to a less frequent exposure to such 

conditions, and 3) the RPECL model showed preference heterogeneity among the 

participants, but was not able to pinpoint the cause behind this variation.  
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The experiment presented in Chapter 4 of this thesis extended the proof of concept 

study by overcoming the limitations discussed above. It circulated another SC survey 

(similar to the one used in the earlier study) to the individuals residing in Sydney or 

its neighbouring regions who regularly drove to work. The empirical analysis of the 

collected dataset indicated three types of route choice behaviour upon visual 

inspection of the collected SC data. The Latent Class Choice Model (LCCM) used for 

the quantitative data analysis also confirmed the existence of three groups of people, 

i.e. 1) Travel time minimisers, 2) Calm cost minimisers, and 3) Restless cost 

minimisers. Nearly 78 percent of the total participants, belonging to the first two 

segments, were found to have a significant disutility towards the number of S&Gs 

attribute. Particularly, the restless cost minimisers group, which generally comprised 

young participants, had the highest disutility towards the number of S&Gs and were 

willing to travel for additional 4 minutes to avoid one extra occurrence of S&G. This 

was in line with the previous studies which also found young drivers to get easily 

perturbed in congested (S&G) traffic (Hauber, 1980; Wiesenthal et al., 2000). 

Interestingly, 22 percent of the participants, belonging to the calm cost minimisers 

group, were found to be indifferent to the number of S&Gs. The overall trade-off 

value between travel time and the number of S&Gs across the three segments was 

found to be 1.29 minutes per stop which was higher than what was found in the 

previous (proof of concept) study. However, this study, like the previous study, 

considered the number of S&Gs experienced, revealed by the participants at the start, 

as the true measure which might be susceptible to a measurement bias. Moreover, we 

also came across the literature which suggested that drivers tend to experience higher 

levels of frustration in congested traffic (Hennessy & Wiesenthal, 1999; Jovanović et 

al., 2011) which gave us the push to further extend our exploration.     

Chapter 5 extended the research exploration to study the effect of the number of 

S&Gs and the time spent in S&G on psychological factors, like the level of frustration 

in drivers. The chapter also aimed to investigate the dependency between the inbuilt 

frustration and the resulting route choice of drivers. A driving simulator experiment 

was conducted which not only minimised the measurement bias associated with the 

attributes of S&G traffic, but also facilitated the study of driver stress under such 

conditions. The experiment asked the participants to drive on two different routes, 
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within each of the three scenarios, to study their level of frustration and route choice. 

The descriptive statistics of the collected dataset showed that a majority of the 

participants preferred the route with a slightly higher travel time but fewer S&Gs. A 

Structural Equation Model (SEM) was used for the data analysis which showed that 

every minute spent in S&G and every additional occurrence of S&G on average 

increased the frustration propensity by 0.9153 and 0.0329 respectively. This finding 

not only validated the proposed hypothesis for this study, but also provided 

quantification between S&G traffic characteristics and the frustration propensity (a 

latent variable) of the participants. Furthermore, results from the Pearson Chi-Squared 

test, conducted on the frustration propensity scores and route choices of the 

participants, revealed a dependency between the two. Thus, it can be said that S&G 

traffic characteristics (including the number of S&Gs) have an indirect effect on route 

choice. This observation was in contrast to the findings from the previous two studies 

(presented earlier in chapters 3 and 4) which indicated a direct effect of S&G 

attributes on route choice. The obtained results were consistent with the previous 

literature on driver psychology which also hinted an indirect effect of traffic 

congestion on route choice (Hennessy & Wiesenthal, 1999; (Jovanović et al., 2011). 

This study added a new dimension in explaining the intricate route choice behaviour 

of drivers, i.e. the evaluating the impact of psychological constructs. However, this 

study has a limited scope as the collected dataset did not represent the travel and 

socio-demographic characteristics of the overall car driving population in Sydney.  

In conclusion, the three studies presented in this thesis corroborated the validity of the 

proposed hypothesis which was an increase in the number of S&Gs on a route 

increased its disutility for a driver. While the findings from chapters 3 and 4 indicated 

a direct effect of the number of S&Gs on disutility of a route, results from chapter 5 

pointed an indirect effect between the two quantities. The results from these studies, 

even though contrasting, still confirmed that the number of S&Gs also had an impact 

(association) on the route choice behaviour of drivers along with the other attributes 

that have been used by other researchers until now. Moreover, chapters 3 and 4 found 

a non-zero trade-off value between travel time and the number of S&Gs. This value 

shows the willingness of drivers to reduce discomfort on the travelled route and not 

just purely minimising travel time. Additionally, results from chapter 5 confirmed and 
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quantified the fact that S&G traffic makes drivers more frustrated which is also the 

precursor to incidents like driver aggression and road rage. The quantification of these 

relationships can have a few policy implications which are discussed in the following 

section.  

6.1 Policy Implications of the Findings 

Each of the experiments conducted in this thesis brought out a few interesting 

findings. The results from these experiments can potentially inform policy decisions 

and measures aimed at mitigating traffic congestion and the resulting S&G traffic. 

Some policy implications of the results obtained from this thesis are summarised 

below: 

6.1.1 Modifying the toll pricing strategy 

Tolls are additional costs which are generally applied to curb the greedy behaviour of 

road users. Examples such as Braess Paradox show that the user equilibrium 

assignment (where users aim to minimise their travel time only) can actually put the 

network in a worse-off situation (Sheffi, 1984). Thus, tolls are one of the ways of 

shifting the network equilibrium more towards system optimum rather than user 

equilibrium.  

The toll pricing calculation on a link is generally done considering the travel time loss 

caused to all other road users due to the addition of a new user. In other words, the toll 

price levied on the new user is equivalent to the monetary value of the delay caused to 

other users due to its entry. However, the price evaluation does not directly take into 

account the discomfort caused due to the addition of new vehicles, which often 

stimulates S&G traffic. The results from the experiments conducted in this thesis 

indicate that drivers generally consider both travel time and discomfort while 

selecting a route for travel. Thus, the toll calculation function should account for both 

delay (expressed as additional travel time) and discomfort (expressed as the number 

of S&Gs experienced). Equation 6.1 gives the expression for the modified toll 

function. In this equation, toll-cost is in dollars, TT Delay signifies the travel time 

delay in hours and S&G represents the average number of S&Gs experienced. The 

calibration parameters 𝜔 and 𝜗 represent the value of time ($/h) and the WTP 
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measure between the number of S&Gs and cost ($/S&G). These calibration 

parameters can be derived from table 4.13 by taking the weighted mean (for 

simplicity) of the WTP measures of interest, i.e. AU $17.80 per hour (𝜔 = 0.47 ×

33.43 + 0.22 × 2.9 + 0.31 × 4.74) and AU $0.12 per stop(𝜗 = 0.47 × 0.05 +

0.22 × 0 + 0.31 × 0.32) . Alternatively, a more effective way will be to have 

separate toll-cost functions for each of three segments identified in the table 

specifically catering to the WTP of users in that segment. However, its 

implementation will involve more complexity and computational effort to apply class 

specific toll-costs to users. 

𝑇𝑜𝑙𝑙 − 𝐶𝑜𝑠𝑡 ($) =  𝜔 ∗ 𝑇𝑇 𝐷𝑒𝑙𝑎𝑦 +  𝜗 ∗ 𝑁𝑜. 𝑜𝑓 𝑆&𝐺𝑠 (6.1) 

The modified toll cost function in equation 6.1 assigns some weight on discomfort 

which can be expressed in terms of the number of S&Gs experienced on average on a 

link. Implementation of this toll value would potentially lead to a smoother flow of 

traffic by reducing the level of congestion and discomfort caused by S&G traffic. 

6.1.2 Updating existing transportation models 

The transportation models in practice are a handy tool for transport planners to 

ascertain the response of a transportation network to any stimulus given in the form of 

a policy enforcement or an infrastructural change. An important component of these 

models is the traffic assignment module which redirects vehicles on different paths 

(routes) in the network. The traffic assignment procedure first determines the set of k-

shortest paths between an origin destination pair and then distributes the demand 

(number of cars users for example) among the paths until equilibrium conditions are 

obtained. The shortest paths are evaluated using the generalised cost information of 

every path (which is made up of links (arcs)) which is expressed in terms of travel 

time (for the User Equilibrium (UE) case) or travel time and cost (for the System 

Optimal (SO) case). However, as discussed in the subsection above, the contribution 

of discomfort (in the form of the number of S&Gs experienced) in the generalised 

cost function is also noteworthy. In other words, the revised generalised link cost 

function as shown in equation 6.2 should be utilised as an input into the UE 
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formulation. In this equation, 𝜇 represents the trade-off value between travel time and 

the number of S&Gs. Its value (weighted mean) was obtained as 1.29 minutes per 

stop (𝜇 = 0.47 × 0.09 + 0.22 × 0.02 + 0.31 × 4.01) from table 4.13 presented in 

chapter 4 of this thesis. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝑜𝑠𝑡 (𝑚𝑖𝑛𝑠) =  𝑇𝑇 +  𝜇 ∗ 𝑁𝑜. 𝑜𝑓 𝑆&𝐺𝑠 (6.2) 

The resulting UE link flows (using the revised generalised link cost function) are not 

only expected to provide a better representation of the evolution and propagation of 

traffic congestion in a road network, but also result in smoothening of traffic flow 

resulting in fewer S&Gs. We also conducted an exploratory work to compare the 

vehicle assignment for the two cost functions, default (travel time only) and modified 

(travel time and the number of S&Gs), in a microscopic simulation study. Appendix F 

of this thesis presents the analysis from this study. The initial results looked promising 

where the proportion of vehicles assigned to a route at equilibrium was found to be 

different across the two functions. However, it is noteworthy to state that this analysis 

is still in its infancy and the challenges with regard to its application on a wider scale 

need to be addressed carefully. Some immediate caveats that we see upfront are: 1) 

quantifying the occurrences of S&G waves in a macroscopic or mesoscopic network 

loading framework which would make the problem computationally tractable for a 

large scale network instance (Chiu et al., 2011), and 2) accounting for equilibrium 

conditions with link interactions where S&G conditions on the downstream link might 

spill back onto the upstream link (Sheffi, 1984).  

6.1.3 Segment specific schemes: Introduction of Autonomous Vehicles 

An Autonomous Vehicle (AV) is a self-sufficient system that reduces the extent of 

human (driver) intervention required during driving operations. The society of 

automotive engineers (SAE) classifies vehicles into six levels based on the degree of 

automation they offer (SAE Mobilus, 2016). The classification ranges between a 

manually driven car (Level 0) to a fully automatic self-driving car (Level 5). The 

state-of-the-art is presently at Level 1 (Subaru and Mazda) and 2 (Mercedes Benz E-

Class) and auto majors such as General Motors, Daimler and Ford plan to 
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manufacture a fleet of Level 4 and 5 vehicles in the near future. AVs are increasingly 

grabbing the attention and curiosity of the road users and planning bodies across the 

globe as their introduction on roads is expected to invoke a major paradigm shift in 

the way people travel.  

AVs are capable of sensing the environment and navigate without driver intervention. 

This facilitates significant reduction, or even elimination, of asymmetries in driving 

behaviour, due to the human factor, which is often the trigger for S&G waves (Laval 

& Leclercq, 2010b). Thus, having some proportion of AVs in the fleet of on-road 

vehicles can potentially lead to channelized traffic flow through a great reduction in 

traffic congestion and the consequent S&G traffic (Litman, 2015). One of the policy 

measures, as discussed earlier in chapter 4, is encouraging the use of AVs among the 

travel time minimisers user group having a high value of time. It can reap the 

following benefits: 1) they can still be productive while on the go, and 2) having some 

AVs on road will in-turn benefit other road users as well. Policy makers can 

potentially encourage the uptake of AVs among this user group through the following 

schemes: 1) Relaxing the taxes and duties involved in importing an AV into Australia, 

as the AV manufacturing in Australia is still growing when compared to the US, and 

2) providing adept infrastructure to support AVs movement on roads (for example, 

V2V and V2I communication). However, it is worth mentioning at this point that 

although promising, the idea along with the potential schemes requires a thorough 

evaluation on the grounds of acceptability and safety of AVs. 

The schemes discussed above can reap two potential benefits once implemented in 

real-life. Firstly, it would help in reducing the magnitude of traffic congestion and the 

resulting S&G traffic through smoother traffic conditions, which is vital for the good 

economic health of a city. Secondly, as shown in chapter 5 of this thesis, keeping 

S&G traffic under control would also encourage calm driving conditions which would 

considerably reduce incidents pertaining to road rage due to driver aggression. 



 Chapter 6: Conclusions, Limitations & Future Works 

Neeraj Saxena  143 

6.2 Future Research Directions 

As the saying goes that research is a never-ending process, we have identified a few 

directions to further extend the research problem, which we presented in this thesis, in 

future endeavours. The future works are discussed below: 

Firstly, future works will aim at further enriching the data analysis presented in 

chapter 5 of this thesis. The current analysis quantifies the relationship between S&G 

traffic characteristics and the level of frustration and also shows an association 

between the latter and route choice of the participants. Thus, a future task will be to fit 

an Integrated Choice and Latent Variable (ICLV) model on the available dataset to 

even gauge the exact effect size of the inbuilt frustration propensity (a latent variable) 

on route choice. An ICLV model typically integrates the latent psychological 

constructs into the discrete choice modelling framework which not only facilitates a 

more detailed depiction of the true choice process, but also enhances the predictive 

power of the model (Bolduc & Alvarez-Daziano, 2010; Temme et al., 2008) 

Secondly, future research will focus on the naturalistic driving data to study the 

relationship between the attributes of S&G traffic, such as the time spent in S&G and 

the number of S&Gs, and the route choice behaviour of drivers. As drivers generally 

consider travel time as a disutility (Cirillo & Axhausen, 2006), the naturalistic driving 

data will enable studying their actual behaviour when subjected to S&G traffic. We 

imagine that the vehicle trajectory data along with the route preferences of drivers 

would be available for analysis. Thus, a sub-problem of this work will be to quantify 

the number of S&Gs experienced from the trajectory data. As discussed in chapter 2 

of this thesis, Wavelet Transformation (WT) is an effective technique which has been 

used by researchers to locate the initiation, propagation and dissipation of an S&G 

wave in space and time (Zheng et al., 2011a,b; Zheng & Washington, 2012). We 

conducted some initial work on this sub-problem, which is presented in appendix A of 

this thesis, where we used WT to find the time instant of the formation and dissipation 

of an S&G wave for a sample vehicle trajectory.  

Thirdly, the congestion mitigation policies discussed above will be tested in a 

simulation environment to build a much stronger case before the planners on its 
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merits. Several aspects of this step such as the scale of the network, amount of data 

required need to be accessed to test these policies.  

Additionally, some other interesting explorations on the line of the research problem 

presented in this thesis could be: 

 Studying the effect of the number of S&Gs on route choice for non-work trips 

 Effect of the number of S&Gs on public transit users 

 Comparing the route choice behaviour of drivers under S&G traffic across 

different geographies 
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APPENDIX A  

WAVELET TRANSFORMATION 

For identifying transient locations in a non-stationary signal, Wavelet Transform 

(WT) has evolved as a widely used technique over time. WT is useful in discerning 

both the time and frequency components of a signal fluctuation, which is more 

detailed than its stationary signal processing counterparts. Experiments suggest the 

superiority of WT over popular techniques with regards to accuracy, robustness and 

consistency (Addison, 2002; Zheng & Washington, 2012). Figure A.1 explains the 

key differences in the degree of resolution among the Fourier, Short Time Fourier 

Transform (STFT), and WT techniques, based on Heisenberg’s uncertainty principle. 

Heisenberg’s uncertainty principle states that the area of each rectangular box, as 

shown in figure A.1, must be equal (which is 𝑓 × 𝑡 in this case). The thin, long 

rectangles in figure A.1(a) signify that Fourier transform gives a high frequency 

resolution, but compromises on the temporal detail. An STFT in figure A.1(b) 

improves the former technique by capturing some temporal detail through a smaller 

time window at an expense of losing some frequency resolution. However, the 

window length is decided subjectively by an analyst, and is fixed for the entire length 

of a signal. Wavelet transform (WT) in figure A.1(c) outperforms the other two 

techniques by using time and frequency windows of variable lengths to analyse 

transient points in a non-stationary signal. As a general rule, WT provides good 

frequency and temporal resolution by using long and short time windows for low and 

high frequency signals respectively. As WT technique requires no subjective 

judgement in selecting the size and shape of a time window, the results can easily be 

replicated across analysts. 

A.1 Properties of a Wavelet 

Wavelet transformation identifies the location and frequency of a signal fluctuation by 

scaling (dilation and compression) and translating a suitable wavelet function over the 
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time domain of a signal. A wavelet is represented by a complex mathematical 

function that should satisfy the conditions stated in equations A.1 and A.2 

 

Figure A.1: Frequency-time plots in accordance with Heisenberg’s uncertainty 

principle for (a) Fourier, (b) STFT and (c) Wavelet transformations 

𝐸 =  ∫ |𝜑(𝑡)|2 𝑑𝑡 <  ∞
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∫ 𝜑(𝑡) 𝑑𝑡 = 0
∞

−∞

 (A.2) 

Equation A.1, which is also called the admissibility condition, states that a wavelet 

must have a finite energy (E) at each point within a signal domain (Daubechies, 

1992). This energy value is represented as brightness in the time-frequency plot 

shown in figure A.1(c). The level of brightness increases as one nears a localised 

fluctuation. Equation A.2 suggests that a wavelet should have a zero mean value, 

which implies that the total area under a given wavelet should be zero. This property 

also aids in recognising localised fluctuations.  

Wavelet analysis can be broadly classified into continuous and discrete wavelet 

transformation. While Discrete Wavelet Transform (DWT) provides an accurate 

location of fluctuation in space and time at lesser computational cost, Continuous 

Wavelet Transform (CWT) is considered ideal for detecting sharp changes in a signal 

(Kumar & Foufoula-Georgiou, 1997). A wide range of wavelets can be used to 

identify the traffic oscillation information from the given data. Zheng & Washington 

(2012) provide exhaustive guidelines for selecting an appropriate wavelet from a 

candidate set. According to the guidelines, it is vital to know the mathematical 

properties of a given wavelet, which further paves the way for its application in a 

given context. The two important properties of a wavelet are: 1) vanishing moments 

and 2) compact support. A wavelet function 𝜑(𝑡) is said to possess 𝑛 vanishing 

moments if equation A.3 is satisfied. 

∫ 𝑥𝑘  𝜑(𝑡) 𝑑𝑡 = 0
∞

−∞

             ∀ 𝑘 ∈ [1, (𝑛 − 1)] (A.3) 

A wavelet with more vanishing moments is capable of analysing a more complex 

signal. For example, a wavelet with 2 vanishing moments can identify only a linear 

discontinuity (degree 1). Similarly, a wavelet with 3 vanishing moments can identify 

up to a quadratic fluctuation (degree 2). Compact support is defined as an interval 

within which a wavelet is defined (or is non-zero). The wavelet function is evaluated 



Appendix A 

Neeraj Saxena  167 

at each point in the support domain for CWT case and at discrete points in case of 

DWT. Some interesting points about vanishing moments and compact support are as 

follows:  

 High frequency wavelets (at a smaller scale) have a compact support 

 More vanishing moments denotes a complex wavelet, which ensures an 

accurate representation of an input signal. However, it leads to a sharp 

increase in the computation time 

 Wavelets with more vanishing moments are high on regularity (more smooth 

wavelet function), but require a wider support domain 

 Wavelets with a smaller support size are more efficient in detecting transient 

locations in a signal  

A good wavelet should preferably have fewer vanishing moments that are adequate 

enough for analysing the signal fluctuation of interest. 

A.2 Application in Identifying Stop-&-go Waves  

A Mexican hat wavelet is found to perform reasonably well in identifying stop-&-go 

waves from the vehicle trajectory data (Zheng et al., 2011a,b; Zheng & Washington, 

2012). A Mexican hat wavelet represents the second derivative of the standard 

Gaussian function and its shape resembles a traffic oscillation pattern. Equation A.4 

gives a general equation for this wavelet where 𝜇 and 𝜎 represent the translation and 

scale parameter respectively. The value 
2

𝜋
1

4⁄  √3𝜎
 ensures that the wavelet function at 

different scales has the same energy. Properties of other wavelets like Haar, Gauss, 

Daubechies, Meyer, Morlet, etc. are thoroughly reviewed in Zheng & Washington 

(2012). 

𝜑(𝜇, 𝜎, 𝑡) =  
2

𝜋
1

4⁄  √3𝜎
 ((

𝑡 − 𝜇

𝜎
)

2

− 1)  exp  (− (
𝑡 − 𝜇

𝜎
)

2

) (A.4) 
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𝑇(𝜇, 𝜎) = ∫ 𝜑(𝑡). 𝑣(𝑡) 𝑑𝑡
∞

−∞

 (A.5) 

𝐸𝑏 =  
1

max (𝜎)
 ∫ (𝑇(𝜇, 𝜎))

2
 𝑑𝜎

∞

0

 (A.6) 

A wavelet is translated over the time domain of an input signal 𝑣(𝑡) and the 

correlation coefficient 𝑇(𝜇, 𝜎) is determined at a given scale (refer to equation A.5). 

The wavelet is then dilated and is made to run over the entire signal again. Thus, we 

get a plot between the scale and translation parameter, where 𝑇(𝜇, 𝜎) is represented 

by the level of brightness at that scale and translation. This plot is known as a 

scalogram. A brighter area on the scalogram signifies the spatio-temporal location of 

the point of singularity in an input signal. A scalogram plot requires a visual 

inspection to identify the transient points, which becomes a cumbersome task while 

analysing bigger datasets. Zheng et al. (2011a) proposed an automation procedure, by 

calculating average wavelet based energy (𝐸𝑏) from the scalogram plot. Equation A.6 

gives an expression for evaluating this metric. An average wavelet based energy (𝐸𝑏) 

at a given translation (𝜇) is defined as the average of squared correlation coefficients 

(𝑇(𝜇, 𝜎)) across all scales (𝜎). A peak in the energy profile represents an approximate 

location of a transient point in data. 

Zheng et al. (2011a) used the speed-time plot of individual vehicles (from NGSIM 

dataset) to locate traffic oscillations. The authors defined traffic oscillation as a cyclic 

pattern characterised by: 1) arrival of deceleration wave, 2) arrival of acceleration 

wave, and 3) arrival of another deceleration wave. A deceleration wave is identified 

by a sudden change in the speed of a vehicle which causes a sharp spike in the 

average wavelet based energy. Hence, one can precisely determine the occurrence of 

traffic oscillations experienced by individual vehicles using the wavelet transform. 

A.3 Analysis using the Vehicle Trajectory Data: An Example 

We applied WT on the vehicle trajectory data to identify locations of traffic 

oscillation, followed by evaluating the surrogate measures, like the time headway, 
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peak acceleration (deceleration) and jerk values, around these spots. We select the 

time headway over the Time To Collision (TTC), as it accounts for potential hazards, 

which is unlike TTC that is primarily used for evaluating safety (Vogel, 2003). We 

present the analysis for a single vehicle undergoing S&G for illustration. 

NGSIM data on the interstate US-101 is used for analysis in this study. The NGSIM 

dataset provides a rich information on the microscopic features of a vehicle like 

speed, location, acceleration, etc., collected at a fine temporal resolution of 10 Hertz 

(NGSIM, 2010). The data was collected during the morning peak traffic between 

07:50am to 08:35am. The study site on US-101 is a 2100 feet long section in the 

southbound direction, Los Angeles, California, US. The section has 5 traffic lanes and 

also includes an on and off ramp. Lane-4, being in the vicinity of ramps, is selected 

because of a higher likelihood of witnessing S&G waves. Figure A.2(a) shows the 

speed profile of the vehicle id 540 travelling on lane-4. The figure shows a major 

speed fluctuation between 810 and 845 seconds from the start of data collection. 

 

Figure A.2: Plots generated for vehicle id. 540 (a) speed-time, (b) Local maxima 

lines and (c) Average wavelet based energy 
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A wavelet transformation is conducted by selecting the Mexican hat mother wavelet 

with a scale range between 1 and 64 (Zheng & Washington, 2012). Figure A.2(b) 

shows the local maxima lines obtained upon analysing the speed trajectory signal 

given in figure A.2(a). Like the scalogram, local maxima lines are another way of 

representing singularities in the input signal. A local maxima line is a locus of points 

across scales where the correlation coefficient is a local maximum. Only the lines that 

are formed over the entire scale spectrum are considered. Partial lines and scattered 

points are ignored as these are generated due to noise in the signal. The oscillation 

location can be accurately determined by tracing the location of a maxima line at the 

finest scale, which is 1 in this figure (Zheng & Washington, 2012). For example, the 

green lines show a mapping of oscillation points on the speed time plot. Figure A.2(c) 

shows the plot of average wavelet based energy that was calculated using equation 

A.6. The figure shows the formation of three energy peaks, which jointly define a 

traffic oscillation (Zheng et al., 2011a). Thus, it can be inferred that vehicle 540 

experienced one cycle of stop-&-go (S&G). The unexpected peaks at the start and end 

of figures A.2(b) and A.2(c) constitute the boundary effect (Addison, 2002), which 

are generally ignored. The analysis is done using the wavelet toolbox in Matlab. 

Once the traffic oscillation location in time is determined from the plots, we then 

evaluate the surrogate measures around this location from the given data for vehicle id 

540. The time headway, acceleration (deceleration) and experienced jerk value at an 

instant when the S&G wave is initiated are found as 1.90 seconds, -4.06 m/s
2
 and -

2.35 m/s
3
 respectively. The negative value of jerk signifies that the driver hit hard on 

the brakes causing a sudden reduction in its speed. Not surprisingly, the observed 

deceleration value is much lower than what is used in the design of ACC systems. 

Thus, finding out these surrogate measures from the real-world data can provide us 

with alternate metrics of quantifying S&G waves. 
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APPENDIX B 

WEB URL TO THE RESOURCES 

I. Ngene Scripts for the Design of the SC Experiments  

https://github.com/neerajsaxena040885/Ngene-Scripts.git  

 

 

II. Online Survey Pages 

1. URL to the Proof of concept study discussed in Chapter 3 of this thesis: 

http://rcitiunsw.epizy.com/sngotest/index.php 

2. URL to the Extended study discussed in Chapter 4 of this thesis: 

http://rcitiunsw.epizy.com/sngosydney/index.php  

3. URL to the Driving Simulator study discussed in Chapter 5 of this thesis: 

http://rcitiunsw.epizy.com/drivsim/index.php 

 

 

III. Matlab Code of the Statistical Models used 

1. RPECL model discussed in Chapter 3 of this thesis: 

https://github.com/neerajsaxena040885/RPECL.git  

2. LCCM model discussed in Chapter 4 of this thesis: 

https://github.com/neerajsaxena040885/LCCM.git  

3. SEM model discussed in Chapter 5 of this thesis: 

https://github.com/neerajsaxena040885/SEM.git   

4. Data Generation Process using the SEM model 

https://github.com/neerajsaxena040885/SEM-DGP-100.git   

https://github.com/neerajsaxena040885/Ngene-Scripts.git
http://rcitiunsw.epizy.com/sngotest/index.php
http://rcitiunsw.epizy.com/drivsim/index.php
http://rcitiunsw.epizy.com/drivsim/index.php
https://github.com/neerajsaxena040885/RPECL.git
https://github.com/neerajsaxena040885/LCCM.git
https://github.com/neerajsaxena040885/SEM.git
https://github.com/neerajsaxena040885/SEM-DGP-100.git
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APPENDIX C 

ETHICS APPROVAL LETTERS 

C.1 Online Stated Choice Study 
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C.2 Driving Simulator Study 

 
 

  



Appendix C 

Neeraj Saxena  175 

 



 

Neeraj Saxena  176 

 

 

APPENDIX D 

RESULTS FROM THE OTHER MODEL SPECIFICATIONS 

D.1 Chapter 3: Proof of Concept Study 

Different model specifications were tried on the dataset discussed in chapter 3. The 

first alternate model specification tried was the Random Parameter Error Component 

Logit (RPECL) model with a triangular distribution. The parameter estimates obtained 

from this model are shown in table D.1.  

Table D.1: Results from the RPECL model with a triangular distribution 

Attribute Estimated parameters 

 

Mean of random parameters 

Travel time  -0.3048 
***

 

Time spent in stop-&-go -0.1291 
***

 

Number of stop-&-go -0.0852 
***

 

 

Standard deviation of random parameters 

Travel time  0.4369 
***

 

Time spent in stop-&-go 0.2691 
***

 

Number of stop-&-go 0.1553 
***

 

 

Non-random parameters 

Running cost -1.1965 
***

 

Sigma (σ) -0.2604 

 

Log-likelihood at convergence -1115.1818 

Adjusted Rho-squared 0.1835 
       ***

 significant at 99% 

We then estimated the Latent Class Choice Model (LCCM) specification as discussed 

in chapter 4 of this thesis. In this model, the class membership model comprised 

gender, age and a constant term as the covariates. We also used income as the 
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covariate but it turned out insignificant in all the LCCMs tested by us. Thus, we 

dropped the variable from the model. The choice model in this specification was an 

error component logit with the same number of attributes (four) as used in the RPECL 

model. We tried the LCCM with a different number of segments. Tables D.2 and D.3 

show the model estimates with two and three latent segments. 

Table D.2: Results from the two segment LCCM 

Parameters Class 1 Class 2 

 

Class Membership Model 

Constant -0.4515 
*
 0 

Females 0.8921 
***

 0 

Age (below 40 years) -0.9103 
***

 0 

   

Choice Model 

Travel time -0.4118 
***

 -0.0928 
***

 

Time spent in stop-&-go -0.2177 
***

 0.0221 
***

 

Number of stop-&-gos -0.1013 
***

 -0.0177 
***

 

Running cost -0.9954 
***

 -1.0181 
***

 

Sigma (σ) 0.8143 
***

 0.7209 
***

 

 

Log-likelihood at convergence -1087.7194 

Adjusted Rho-squared 0.2104 
              ***

 significant at 99%    
*
 significant at 90% 
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Table D.3: Results from the three segment LCCM 

Parameters Class 1 Class 2 Class 3 

 

Class Membership Model 

Constant -1.0652 
*
 -0.9528 0 

Females 0.8457 0.6510 0 

Age (below 40 years) -0.8197  1.0653  0 

    

Choice Model 

Travel time -0.3611 
***

 -0.6262 
***

 -0.0904 
***

 

Time spent in stop-&-go -0.3720 
***

 -0.2058 
***

 -0.0182 
***

 

Number of stop-&-gos -0.2029 
***

 -0.0724 
***

 -0.0228 
***

 

Running cost -0.9490 
***

 -1.6764 
***

 -1.0216 
***

 

Sigma (σ) 0.6475 
***

 1.1471 
**

 0.4526 
***

 

 

Log-likelihood at convergence -1059.6004 

Adjusted Rho-squared 0.2304 
     ***

 significant at 99%  
**

 significant at 95%  
*
 significant at 90% 

 

Comparison of the Models 

Table D.4 shows a comparison of the different model specifications based on the 

number of estimated parameters, the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC). All the tested models show a significant 

disutility towards the four attributes of interest, particularly the number of S&Gs 

which validates the proposed hypothesis.  

Table D.4: Comparison of the models tested 

Model specification 
No. of 

parameters 
AIC BIC 

RPL 7 2254.74 2299.38 

RPECL (normal distribution) 8 2241.38 2292.40 

RPECL (triangular distribution) 8 2146.36 2297.38 

LCCM (2 segments) 13 2201.44 2284.35 

LCCM (3 segments) 21 2161.20 2295.14 

 

The table shows that the 2 segment LCCM has a slightly lower BIC value (2284.35) 

when compared to the RPECL (normal distribution) model (2292.40) reported in 
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chapter 3 of this thesis. However, the 2 segment LCCM estimates a higher number of 

parameters (13) when compared to the RPECL model (8). Thus, the RPECL model 

with the normal distribution is a reasonable option as it is not only parsimonious, but 

also has a decent BIC value. The other models tested have a higher BIC value and are 

thus discarded for further consideration. 

Looking at table D.2 again, one of the segments (class 1) in the 2 segment LCCM 

shows a statistically significant positive parameter value (0.8921) for the covariate 

female. This implies that being a female makes a person more likely to belong to this 

segment. The value of time for this segment is quite high, when compared to the 

second segment, and is evaluated as AU$ 24.82 (−0.4118 −0.9954⁄  × 60). This 

observation is not consistent with the previous literature which found females to have 

a lower value of time (Srinivasan, 2005). Thus, we finally selected the RPECL model 

with the normal distribution, which is reported in chapter 3, as a tool to prove the 

validity of the proposed research hypothesis.  

D.2 Chapter 5: Driving Simulator Study 

Different model specifications of the Structural Equation Model (SEM) were tried to 

find the model which satisfied the following criteria: 1) model parsimony, 2) the best 

goodness of fit statistics, and 3) conveyed meaningful interpretations. Table D.5 

shows the specifications tried by us. The colour coding scheme used in this table is 

presented at the bottom of the table. 
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Table D.5: Alternate specifications of the SEM tested 

Parameters Model 1 Model 2 Model 3 Model 4 

 

Structural part 

Travel Time + + +  

Time in S&G + + + + 

Number of S&Gs + + + + 

Fuel Cost  -   

Male - - - - 

Age <= 40 Exp <= 8 + + + + 

Age > 40 Exp > 8 + + + + 

 

Measurement part 

Travel Time    + 

Fuel Cost   -  

Factor Loading + + + + 

Left Route 

Constant - + + - 

µ1 + + + + 

µ2 + + + + 

µ3 + + + + 

Right Route 

Constant - + + - 

µ1 + + + + 

µ2 + + + + 

µ3 + + + + 

 

Goodness of Fit 

Log-likelihood -3813.16 -3808.42 -3808.42 -3813.16 

Adj. Rho-squared 0.1180 0.1146 0.1300 0.1498 

AIC 7656.32 7648.84 7648.84 7656.32 

BIC 7722.12 7719.03 7719.03 7722.12 

 

         Legend: 

 Significant at 90%  Insignificant at 90%  Not considered 
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APPENDIX E 

THE SEM MODEL: SIMULATION STUDY 

We generated simulated datasets of varying sizes (50, 70, 100 and 500 participants) 

using the Structural Equation Model (SEM) specification to determine the minimum 

sample size required for the driving simulator experiment. The first step was to 

generate the matrix of route specific and socio-demographic attributes. Each of the 

route specific attributes was drawn from a uniform distribution with the range as 

follows: travel time {min: 1.0; max: 3.75}, time spent in S&G {min: 1.0; max: 2.5}, 

number of S&Gs {min: 1.0; max: 3.0}, and fuel cost {min: 1.5; max: 3.0}. Binary 

socio-demographic variables like age less than 40 years and driving experience less 

than 8 years were generated using the following procedure: 1) set the cumulative 

density as 0.40 and 0.48 respectively for the two variables, 2) generate uniformly 

distributed random numbers between 0 and 1, and 3) if the random number is less 

than the cumulative density value then assign 0 else 1. True values for the structural 

and measurement parameters were assumed to generate the resulting frustration 

ratings. Additionally, the unobserved error terms were drawn from a standard normal 

distribution as follows: 1) the structural unobserved error remains the same for an 

individual across scenarios, and 2) the measurement errors are different for every 

individual, route and scenario. 

We executed the SEM on a set of 50 different simulated datasets for a given sample 

size. The resulting parameter values from each run were averaged to find the mean 

parameter value for that sample size, as shown in Table E.1. The performance of a 

sample size was determined using the Absolute Percentage Bias (APB) statistic (for 

every parameter) proposed by Paleti & Bhat (2013) which is shown in equation E.1. 

𝐴𝑃𝐵 (%) =  |
𝑀𝑒𝑎𝑛 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒
 × 100| (E.1) 
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Table E.1: Model performance by sample size 

Parameter True  Sample size = 50 Sample size = 70 Sample size = 100 Sample size = 500 

value Mean APB Mean APB Mean APB Mean APB 

aTTS 0.55 0.5217 5.145 0.5575 1.364 0.6004 9.164 0.563 2.433 

aSnGo 0.2 0.1896 5.2 0.1934 3.3 0.1749 12.55 0.198 0.891 

aAgeLT40 0.5 0.4323 13.54 0.4305 13.9 0.4627 7.46 0.493 1.485 

aExpLT8 0.65 0.6441 0.908 0.6646 2.246 0.6971 7.246 0.662 1.914 

bL_Cons -0.95 -1.0216 7.537 -1.0332 8.758 -1.0321 8.642 -0.973 2.377 

bR_Cons -1.10 -1.2083 9.845 -1.1675 6.136 -1.2115 10.136 -1.117 1.557 

𝑑 1.05 0.8323 20.733 0.9801 6.657 0.9715 7.476 1.048 0.224 

µL_1 -0.5 -0.5235 4.7 -0.4639 7.22 -0.4793 4.14 -0.516 3.131 

µL_2 -0.6 -0.6105 1.75 -0.6019 0.317 -0.6467 7.783 -0.583 2.897 

µL_3 -0.65 -0.6453 0.723 -0.7198 10.738 -0.6536 0.554 -0.65 0.045 

µR_1 -0.4 -0.4393 9.825 -0.3968 0.8 -0.4192 4.8 -0.406 1.536 

µR_2 -0.55 -0.5168 6.036 -0.5468 0.582 -0.5937 7.945 -0.527 4.213 

µR_3 -0.7 -0.7901 12.871 -0.6807 2.757 -0.7323 4.614 -0.709 1.218 

Mean APB   7.805  4.982  7.116  1.840 

Table E.1 shows the mean APB for the sample size of 70 participants as 4.982 which 

is quite low. Given the time and budget constraints, we decided to collect data for at 

least 70 participants in our driving simulator study. We finally conducted the study on 

99 participants to account for any variability in the responses which was probably not 

captured in the simulated dataset. 
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APPENDIX F  

ANALYSING THE EFFECT OF STOP-&-GO CONDITIONS IN TRAFFIC 

ASSIGNMENT MODELS 

F.1 Hypothetical Example 

In order to test the effect of stop-&-go (S&G) waves on vehicle assignment, a 

hypothetical network was built in Aimsun. The network comprised 4 centroids 

(namely A, B, C and D), 4 nodes (node ids 362, 377, 355 and 370) and 16 links (all 

links are bidirectional). A dynamic scenario was built using the Stochastic Route 

Choice (SRC) model for traffic assignment and microsimulation model for network 

loading. The simulation period was set for 1 hour during which a demand of 1800 cars 

and 450 trucks was loaded from A to B. Shortest paths were computed every 10 

minutes during the simulation period. Figure F.1 shows the snapshot of the 

hypothetical network where the length of sections is in metres. 

 

Figure F.1: The hypothetical network considered 
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There exist two possible routes in the given network, the upper route (A-362-355-377-

B) and the lower route (A-362-370-377-B). Table F.1 shows the other route specific 

details. 

Table F.1: Route specific details of the hypothetical network 

Route 

Name 

Node sequence Length (m) Signals on 

nodes 

Total green time 

for movement (sec) 

Upper A-362-355-377-B 6000.95 355, 377 40+25=65 

Lower A-362-370-377-B 5331.52 370, 377 25+25=50 

The table shows that the distance from A to B is greater while travelling through the 

upper route. In order to create S&G waves on the sections, traffic signals were placed 

at the nodes 355, 370 and 377. The green time of the signals on both the routes was 

adjusted so as to have a lesser green time on the lower route. This was done to 

increase the number of occurrences of S&Gs on the lower route, which was 

comparatively shorter in trip length.  

F.2 Dynamic Scenarios Created 

We created 2 dynamic scenarios for traffic assignment in this study. The two 

scenarios are discussed next.  

1. Default case: 

A dynamic scenario was created using the default link cost function. The default link 

cost function comprises link travel time (TT) only, i.e. 𝑍 =  𝑓(𝑇𝑇). Similarly, default 

link costs were set for the initial, dynamic and K-initial shortest path functions as 

well. 

2. Modified case: 

A python script was written so as to define a new link cost function 𝑍 =  𝑇𝑇 +  𝜇 ∗

𝑛𝑜. 𝑜𝑓 𝑆&𝐺𝑠. This script was linked to the dynamic scenario through the dynamic and 

K-initial shortest path cost functions. The parameter μ which represents the 
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willingness to shift to another route was assumed to be 60 seconds per S&G for the 

study.  

F.3 Quantification of S&G Waves 

In Aimsun, the analyst can define two threshold speed limits, namely the queue entry 

speed and the queue exit speed. A queue entry speed is the lower threshold below 

which a vehicle is considered as stopped. The vehicle then remains in this stop 

condition until its speed goes beyond the upper threshold which is the queue exit 

speed. Figure F.2 shows the diagrammatic representation of the speed profile of a 

vehicle. The queue entry and exit speeds were set as 1 m/s and 4m/s respectively in 

this study. The duration of the stop is the difference between the queue exit and entry 

times. Aimsun considers this duration as one stop. For example, for the given speed 

profile, the vehicle underwent 2 stops, with the second stop still ongoing. 

 

Figure F.2: S&G identification from the speed profile of a vehicle 

F.4 Results and Discussion 

Both the default and modified cases were executed and the following results were 

obtained. Figures F.3 and F.4 represent the percentage vehicles assigned during the 10 

minute interval on the upper and lower routes respectively. Figures F.5 and F.6 depict 

the average number of S&Gs experienced on the upper and lower routes respectively.  
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Figure F.3: Vehicles assigned on the upper route during 10 minute intervals 

 

Figure F.4: Vehicles assigned on the lower route during 10 minute intervals 

 

Figure F.5: Average number of S&Gs on the upper route in 10 minute intervals 
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Figure F.6: Average number of S&Gs on the lower route in 10 minute intervals 

From figures F.3 and F.4 it can be observed that path assignment was higher on the 

upper path during the first 40 minutes of the simulation. This is because there was a 

higher number of S&Gs experienced over the lower path, which can be seen in figure 

F.6. However, the percentage path assignment dropped a bit in the last 20 minutes of 

the simulation as the number of S&Gs increased on the upper path resulting in more 

vehicles assigned to the lower path. On the other hand, the default case had roughly 

similar percentage of vehicles assigned as those were determined purely on the basis 

of link travel time. Thus, it was observed from the results that a greater proportion of 

vehicles were assigned on the upper path during the first 40 minutes, even though it 

was longer but had fewer S&Gs existing over it. This indicates the validity of the 

hypothesis we were testing in this study. However, it was also observed that travel 

time was also increasing with an increase in the number of S&Gs. Future works will 

try to address this aspect of the model. 
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