
Design methodology for ontology-based multi-agent
applications (MOMA)

Author:
Ying, Weir

Publication Date:
2009

DOI:
https://doi.org/10.26190/unsworks/20629

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/40717 in https://
unsworks.unsw.edu.au on 2024-04-18

http://dx.doi.org/https://doi.org/10.26190/unsworks/20629
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/40717
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Design Methodology for Ontology-based

Multi-Agent Applications (MOMA)

Weir Ying

Submitted in the total fulfilment of the requirements for the degree of

Master of Philosophy (MPhil)

March 2009

School of Information Systems, Technology and Management

University of New South Wales

Australia

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, or substantial proportions of material which have been accepted for the

award of any other degree or diploma at UNSW or any other educational

institution, except where due acknowledgement is made in the thesis. Any

contribution made to the research by others, with whom I have worked at UNSW

or elsewhere, is explicitly acknowledged in the thesis. I also declare that the

intellectual content of this thesis is the product of my own work, except to the

extent that assistance from others in the project's design and conception or in

style, presentation and linguistic expression is acknowledged.’

Signed ...

Date ...

I

Abstract

Software agents and multi-agent systems (MAS) have grown into a very active

area of research and commercial development activity. There are many current

emerging real-world applications spanning multitude of diverse domains. In the

context of agents, ontology has been widely recognised for their significant

benefits to interoperability, reusability, and both development and operational

aspects of agent systems and applications. Ontology-based multi-agent systems

(OBMAS) exploit these advantages in providing intelligent and semantically

aware applications.

In addressing the lack of support for ontology in existing methodologies for multi-

agent development, this thesis proposes a design methodology for the building

of such intelligent multi-agent applications called MOMA. This alternative

approach focuses on the development of ontology as the driving force of the

development process. By allowing the domain and characteristics of utilisation

and experimentation to be dictated through ontology, researchers and domain

experts can specify the agent application without any knowledge of agent design

and lower level programming. Through the use of a structured ontology model

and the use of integrated tools, this approach contributes towards the building of

semantically aware intelligent applications for use by researchers and domain

experts.

MOMA is evaluated through case studies in two different domains: financial

services and e-Health.

II

Acknowledgements

First and foremost, I wish to express my deepest gratitude to A/Prof. Pradeep

Ray, my supervisor, for his encouragement, support and valuable guidance to

every stage of my research. His devotion is sincerely appreciated.

I would also like to thank the students and research fellows from the Asia-Pacific

Ubiquitous Healthcare Research Centre (APuHC), Dr. Subhagata Chattopadhyay,

Dr. N. Parameswaran, Alfred Wong and Fred Yip. Their criticisms, advice and help

with my thesis have proven to be extremely valuable.

My appreciation extends to Angalee Sujanani and Jaminda Wimalosiri. Their

research provided inspiration and a basis for the case studies in this thesis.

Last but not least, I would like to thank my family and friends who have provide d

much needed support and understanding throughout my research.

III

Table of Contents

ABSTRACT .. I

ACKNOWLEDGEMENTS ... II

TABLE OF CONTENTS .. III

TABLE OF CONTENTS .. III

LIST OF FIGURES ... VI

LIST OF TABLES ... VIII

LIST OF ABBREVIATIONS .. IX

CHAPTER 1. INTRODUCTION .. 1

1.1 BACKGROUND AND CONTEXT .. 1
1.2 RESEARCH PROBLEM AND MOTIVATION .. 3
1.3 RESEARCH OBJECTIVES .. 4
1.4 RESEARCH QUESTIONS .. 5
1.5 SIGNIFICANCE OF RESEARCH ... 6
1.6 RESEARCH DESIGN METHODOLOGY .. 7
1.7 ORGANISATION OF THESIS .. 9

CHAPTER 2. BACKGROUND .. 10

2.1 INTRODUCTION .. 10
2.2 AGENT AND MULTI-AGENTS ... 11

2.2.1 Definition of Agent .. 11
2.2.2 Definition of MAS .. 12
2.2.3 Motivation for agents and MASs ... 13
2.2.4 Limitations of Agents and MAS ... 14

2.3 ONTOLOGY ... 15
2.3.1 What is ontology? ... 15
2.3.2 Benefits and motivation for the use of ontology ... 16
2.3.3 Motivation for the use of Ontology in MAS ... 18
2.3.4 Benefits of ontology to MAS development .. 18
2.3.5 Benefits of Ontology to MAS operations ... 19

2.4 AGENT-ORIENTED SOFTWARE ENGINEERING ... 21
2.4.1 AOSE Methodologies ... 22
2.4.2 Support for Ontology-Based MAS Development ... 32
2.4.3 Implementation for reviewed methodologies ... 39

2.5 SUMMARY .. 40

CHAPTER 3. DESIGN METHODOLOGY FOR ONTOLOGY-BASED MULTI-AGENT APPLICATIONS
(MOMA) 41

3.1 INTRODUCTION .. 41
3.1.1 Scope and Limitations.. 42
3.1.2 Overview of MOMA process .. 44

3.2 ONTOLOGY DEVELOPMENT .. 46
3.2.1 Step 1: Concept Identification ... 48
3.2.2 Step 2: Ontology Modelling ... 53

IV

3.2.3 Step 3: Code Generation .. 71
3.2.4 Tools and techniques ... 72

3.3 AGENT DEVELOPMENT .. 84
3.4 TESTING ... 88
3.5 SUMMARY .. 90

CHAPTER 4. CASE STUDY IN THE FINANCIAL SERVICES DOMAIN .. 91

4.1 INTRODUCTION .. 92
4.1.1 Financial Multi-agent systems ... 92
4.1.2 Architecture ... 94

4.2 ONTOLOGY DEVELOPMENT .. 96
4.2.1 Step 1: Concept Identification ... 97
4.2.2 Step 2: Ontology Modelling ... 98
4.2.3 Step 3: Code Generation .. 103

4.3 AGENT DEVELOPMENT .. 103
4.3.1 Agents and reasoning .. 103

4.4 TESTING ... 108
4.5 DISCUSSION AND EVALUATION ... 109
4.6 SUMMARY .. 114

CHAPTER 5. CASE STUDY IN THE E-HEALTH DOMAIN ... 116

5.1 INTRODUCTION .. 117
5.1.1 Standardisation ... 119
5.1.2 Agent applications for interoperability in e-health ... 121

5.2 ONTOLOGY DEVELOPMENT .. 125
5.2.1 Step 1: Concept Identification ... 125
5.2.2 Step 2: Ontology modelling ... 126
5.2.3 Step 3: Code Generation .. 130

5.3 AGENT DEVELOPMENT .. 131
5.3.1 Agent reasoning and concept sharing ... 131

5.4 EXAMPLE SCENARIO .. 132
5.5 EVALUATION AND DISCUSSION ... 135
5.6 SUMMARY .. 136

CHAPTER 6. CONCLUSION .. 137

6.1 EVALUATION ... 137
6.1.1 Discussion .. 138
6.1.2 Limitations ... 139

6.2 FUTURE WORKS ... 140
6.3 CONCLUDING REMARKS ... 141

REFERENCES .. 143

LIST OF PUBLICATIONS .. 152

APPENDIX A: CHAPTER 4 IMPLEMENTATIONS ... 153

APPENDIX A1: CHAPTER 4 ONTOLOGY IMPLEMENTATION IN OWL/RDF .. 153
APPENDIX A2: CHAPTER 4 GENERATED JAVA CODE ... 153

APPENDIX B: CHAPTER 5 IMPLEMENTATIONS ... 155

APPENDIX B1: CHAPTER 5 DATA SOURCE FOR GT GUIDED TOOL .. 155
APPENDIX B2: CHAPTER 5 ONTOLOGY IMPLEMENTATION IN OWL .. 155

V

APPENDIX B3: CHAPTER 5 GENERATED JAVA CODE ... 156

APPENDIX C: RESOURCES AND SOURCE CODE ... 158

APPENDIX C1: GT GUIDED TOOL IMPLEMENTATION .. 158
APPENDIX C2: OTHER TOOLS ... 159

VI

List of Figures

Figure 2-1: overview of Mase ... 22
Figure 2-2: Mase Goal Hierachy diagram ... 23
Figure 2-3: Mase sequence diagram .. 23
Figure 2-4: Mase role model .. 24
Figure 2-5: Agent class diagram ... 25
Figure 2-6: Mase communication class diagram ... 25
Figure 2-7: mase deployment diagram .. 26
Figure 2-8: Extended version of mase 2002 ... 27
Figure 3-1: Parts of MOMA .. 45
Figure 3-2: ontology Development part of MOMA .. 46
Figure 3-3: Ontology Development Part .. 47
Figure 3-4: GT guided concept identification ... 52
Figure 3-5: Types of Ontology (Guarino 1997) ... 54
Figure 3-6: Mediation Ontology ... 58
Figure 3-7: Ontology Meta-MOdel ... 60
Figure 3-8: An Example of generic ontology .. 62
Figure 3-9: Concept attributes ... 64
Figure 3-10: Example of concept relationships in UML ... 65
Figure 3-11 communication ontology example ... 68
Figure 3-12: Screenshot of Ontology Bean Generator .. 72
Figure 3-13: GT guided process for concept indentification 73
Figure 3-14: GT Guided Tool for collecting data source .. 74
Figure 3-15: GT Guided Tool for open coding .. 75
Figure 3-16: GT Guided Tool for axial coding and concept refining 76
Figure 3-17: GT Guided Tool for Axial coding and relationship definition 77
Figure 3-18: GT Tool for axial Coding and relationship definition - 2 way
relationships ... 78
Figure 3-19: GT Guided Tool final output .. 79
Figure 3-20: Concept and Attributes in UML ... 80
Figure 3-21: Generalisation of concept in UML ... 80
Figure 3-22: Aggregation of concepts in UML ... 80
Figure 3-23: Composition ... 81
Figure 3-24: Association with cardinality in UML .. 81
Figure 3-25: Legend of cardinality .. 81
Figure 3-26: Constrains in UML .. 82
Figure 3-27: Ontological mapping in UML ... 82
Figure 3-28: Ontology part of the MOMA process .. 84
Figure 3-29: Ontology Manager ... 87
Figure 4-1: OntoMarketSim overall architecture ... 96

VII

Figure 4-2: Chapter 4 Concept Identification ... 98
Figure 4-3: Graphical Representation of partial financial domain ontology 99
Figure 4-4: OntoMarketSim Communication Ontology 100
Figure 4-5: Protege ontology development snapshot ... 103
Figure 4-6: Portfolio values of a simple Agent trader and an Intermetdiate Agent

 .. 109
Figure 5-1: OBMAS Architecture (Sujanani 2005) .. 122
Figure 5-2: OBMAS layered architecture ... 123
Figure 5-3: Database schema and data representation 124
Figure 5-4: Chapter 5 Concept Identification ... 126
Figure 5-5: Partial domain ontology for newborns .. 128
Figure 5-6: protégé development environment showing SpecialCaseNewborn
concept ... 130
Figure 5-7: Conceptual architecture .. 132
Figure 5-8: Mediation ontology ... 134

VIII

List of Tables

Table 1-1: design evaluation methods (hevner et al. 2004) 9
Table 2-1: Superset of steps identified in AOSE methodologies 38
Table 2-2: Methodologies with support for ontology ... 39
Table 4-1: Chapter 4 lessons learned ... 113
Table 4-2: Chapter 4 Evaluation of MOMA methodology 114
Table 5-1: Chapter 5 Evaluation of MOMA methodology 136

IX

List of Abbreviations

ACL Agent Communication Language
AOSE Agent Oriented Software Engineering
CCS Clinical Computer Systems
CORBA Common Object Requesting Broker Architecture
DAML DARPA Agent Markup Language
DARPA Defence Advanced Research Projects Agency
EHR Electronic Healthcare Record
EMR Electronic Medical Record
FIPA Foundation for Intelligent Physical Agents
GT Grounded Theory
HL7 Health Level Seven
IP Interaction Protocol
KQML Knowledge Query Manipulation Language
MAS MAS Multi-Agent System
OBMAA Ontology-based Multi-Agent Application
OBMAS Ontology-based Multi-Agent System
OIL Ontology Inference Layer or Ontology Interchange Layer
OOP Object Oriented Programming
RIM Reference Interchange Model
SUMO Suggested Upper Merged Ontology
SWRL Semantic Web Rule Language

1

Chapter 1. Introduction

This chapter provides a brief background on ontology, the agent paradigm and

their usefulness. In so doing, we reveal the motivations for the design

methodology for ontology-based multi-agent applications called MOMA. This

chapter will then highlight the research objects, motivation and its significance. A

detailed description of the research methodology of this thesis will then be

provided. Finally, an outline of the thesis is presented.

1.1 Background and context

Agent technology has become one of the most active and promising areas of

research and development activity in computing in recent years. Agents are

highly autonomous, situated, interactive software entities that are seen as the

backbones for the next generations of mainstream software systems (Fan 2000).

Agent technology has drawn on the diversity of computing areas, including

software engineering, distributed computing, networking, mobile computing,

collaborative computing, security and robotics (Sundsted 1998; Honavar 1999).

The potential of agent technology is revealed through Multi-Agent Systems

(MAS). MASs are computational systems in which two or more agents are

interacting or working together to achieve a set of goals (Fan 2000). The

coordination between agents possessing diverse knowledge and capabilities

would enable the achievement of global goals that could not be otherwise

achieved by a single agent working in isolation (Nwana & Wooldridge 1996).

These characteristics of MASs have made it extremely useful for the running of

simulations and information retrieval systems in a wide variety of domains such

2

as finance, telecommunications and e-Health. The term Multi-Agent (MA)

application in this thesis will refer to the application of MAS in specific real world

domains.

Ontology is a specification of objects, concepts and entities that exist in a domain

of interest and the relationships among them. They have been used successfully

in the fields of artificial intelligence, information retrieval, natural language

processing and knowledge engineering. In the context of MASs, ontology has

been acknowledged as being beneficial to various MAS development activities in

addition to operational aspects of MAS. Ontological modelling of agent

knowledge is regarded as essential to operations of MAS, particularly to the

communication between system components and reasoning of agents. Ontology

brings both a degree of interoperability and reusability of system design for MAS

(Uschold & Gruninger 1996; Chandrasekaran et al. 1999; Falasconi et al 1996). As

a result, Ontology-based Multi-Agent Systems (OBMAS) have gained popularity in

terms of research and applications. In a wider context, ontology allows the

sharing of common understanding of structure of information among people. The

nature of ontology also allows the reuse of domain knowledge. A MAS system is

ontology-based when its design specification explicitly includes ontology, and

ontology is used by the agents at the run-time to facilitate operation.

The growing popularity of agent-based technologies leads traditional software

engineering methodologies to evolve into a set of Agent Oriented Software

Engineering methodologies (AOSE). The role of the AOSE methodologies is to

assist in all the phases of the life cycle of an agent-based application, including its

management.

3

While small development projects such as these may be acceptable for applying

informal software engineering principles to, the absence of specialised AOSE

methodologies for MAS construction will generally result in cumbersome, error-

prone, and time-consuming application development (Eurescom 2001b; Lind

2000b). The disregard for AOSE methodologies is seen as the main reason for the

failure of many past MAS development experiences (Fan 2000). Therefore it is

accepted that AOSE methodologies are needed to guide developers in the

creation of multi-agent applications.

1.2 Research problem and motivation

The numerous advantages for the use of ontology in MAS are widely

acknowledged (Falasconi et al. 1996; Malucelli & Oliveira 2004; Yuan 1999)

Ontological modelling of agent knowledge is also regarded as essential to the

operation of MAS, particularly to the communication between system

components (e.g. between agents) and the reasoning of agents. Reusability of

system design through ontology has been recognised in single agent knowledge

based systems (Uschold & Grunninger 1996; Chandrasekaran et al. 1999;

Falasconi et al. 1996). However, the majority of AOSE methodologies do not

support the use of ontology-based MAS development. As a result, existing AOSE

methodologies do not provide, or provide to a lesser extent, the various

important capabilities that an ontology-based development methodology can,

such as support for interoperability and reusability.

The AOSE methodologies show that there is a conceptual level for analysing the

agent-based systems, no matter what the agent theory, agent architecture or

agent languages are. The lack of a standard agent architecture and agent

4

programming languages are a problem for the implementation of these

methodologies. Since there is no standard agent architecture, the design of MAS

needs to be customised for each of the existing agent architectures.

One implicit assumption that is made by all these AOSE methodologies is that the

user of the methodology must be knowledgeable in the field of agent technology,

or at least software engineering processes, techniques and tools. In domains such

as finance and medicine, we cannot expect those experts and researchers to

have knowledge in agent oriented software engineering. In these cases we will

assume that outside help needs to be sought. From here onwards, experts and

researchers in their perspective domains will be referred to as domain experts.

1.3 Research Objectives

The objective of this research is to develop a practical methodology for the

development of an ontology-based multi-agent application (OBMAA). This

methodology, called Design Methodology for Ontology-Based Multi-Agent

Applications or MOMA will concentrate on the development of ontology and the

use of this ontology to drive the implementation of the agent application. Full

MOMA methodology includes the design and development of the ontology,

agents and their integration. However, the agent development methodology is

borrowed from existing AOSE methodologies. This thesis will focus only on the

design and development of ontology parts of the methodology. The other parts

of the methodology will be treated as black boxes for implementation and

evaluation purposes. This is where that part of the methodology is assumed to be

there and fully working.

5

The main objectives of this methodology are to (Refer to Section 3.1 for further

details):

1. Provide a structured meta-model for the development of ontology for

agent application development.

2. Allow the ontology model to define behaviour of agents.

3. Facilitate the use of tools to drive development, conceptual testing and

implementation of ontology for agent systems.

4. Provide support for reuse and sharing of the developed ontology.

5. Distinguish the roles of domain expert and agent developer in the

development process of MOMA.

6. Work towards a methodology that can be used by domain experts (and

researchers) without the expertise of an agent developer.

1.4 Research Questions

A software engineering methodology, defined by Henderson-Sellers et al. (1998),

contains the following:

• A software engineering process to conduct the system

development

• Techniques to assist the process; and

• Definition of the work product.

The process contains activities and tasks (Henderson-Sellers et al. 1998).

Activities are large scale descriptions of what needs to be done, such as

“requirements engineering” activity, “design” activity, “implementation” activity

and “testing” activity. A task on the other hand refers to smaller scale that is

associated with each activity in the process. Techniques are linked to each task

which provides away of carrying out each task. Tasks will be referred to as steps if

6

they are sequential in nature. Since the work product will be ontology based

multi-agent application, these definitions will be the models on which this

application will be built.

The development of the MOMA methodology conforms to the definition

provided above. Several research questions must be answered:

1. What are the models required for ontology in an ontology-based multi-

agent application?

The term “model” here refers to the class of models or meta-models

which is used to produce ontology and the system design by the domain

experts during the development process (Section 3.2.2.1-3.2.2.2). This

question will satisfy the work product definition.

2. What process is needed to develop OBMA applications?

The process will be the activity and tasks of the methodology. That is, the

steps of the methodology.

3. What tools and techniques can be used in assisting the development of

OBMA applications?

This question will satisfy the “techniques” part of the definition. Tools and

techniques will be used to assist the performance of the activities and

tasks in the process.

1.5 Significance of research

This research provides an alternative lightweight approach to the traditional

AOSE methodologies for the development of OBMAS. It will allow domain experts

(with help) to quickly develop OBMAA.

7

The inclusion of ontology allows us to separate domain knowledge from the

underlying agent implementation, to a certain degree. Capturing the domain

knowledge in ontology would keep the agent system as generic as possible. This

will greatly facilitate the reuse of ontology and agent systems. This moves us one

step closer to the eventual goal of having the domain knowledge and generic

MAS platforms interchangeable.

Ultimately, the demonstration of the significant advantages of ontology and its

use in both AOSE design process and agent operations will foster the widespread

development of ontology based agent systems, hence contributing to the

growing maturity of both ontology and agent technology.

1.6 Research design methodology

The work of this thesis can be classified as design science, one of the two core

paradigms that characterise much of the research in the Information systems

discipline, the other being behavioural science (Hevner et al 2004; March and

Smith 1995). Behavioural science research paradigm seeks to develop and verify

theories that explain or predict human/organisational behaviour surrounding the

development and use of information systems, while design science paradigm

seeks to create innovative artifacts through which the development and use of

information can be effectively and efficiently accomplished. Artifacts can be

broadly classified as methods (i.e. set of steps, guidelines or algorithms), models

(i.e. abstractions and representations), constructs (vocabularies and symbols) and

implementation (i.e. prototype systems) (Hevner et al. 2004). This thesis aims to

create two of these artifacts: methods and models. The method will be the

MOMA process itself, while the models will be the set of ontology meta-models

that accompany the MOMA methodology.

8

March and Smith (1995) identified that a typical design science research should

comprise of two basic processes: build and evaluate. Build refers to the

constructions of artifacts – i.e. the model and the method of MOMA. The

evaluation process refers to the use of appropriate evaluation methods to assess

the artifacts’ performance. The evaluation of designed artifacts typically uses

methodologies available in the knowledge base. A summary of evaluation

methods is shown in Table 1-1.

1. Observational • Case Study: Study artifact in depth in business

environment
• Field Study: Monitor use of artifact in

multiple projects
2. Analytical • Static Analysis: Examine structure of artifact

for static qualities (e.g., complexity)
• Architecture Analysis: Study fit of artifact into

technical IS architecture
• Optimization: Demonstrate inherent optimal

properties of artifact or provide optimality
bounds on artifact behaviour

• Dynamic Analysis: Study artifact for dynamic
qualities (e.g. performance) during use.

3. Experimental • Controlled Experiment: Study artifact in
controlled environment for qualities (e.g.,
usability)

• Simulation: Execute artifact with artificial
data

4. Testing • Functional (Black Box) Testing: Execute
artifact interfaces to discover failures and
identify defects

• Structural (White Box) Testing: Perform
coverage testing of some metric (e.g.
execution paths) in the artifact
implementation

5. Descriptive • Informed Argument: Use information from
the knowledge base (e.g., relevant research)
to build a convincing argument for the

9

artifact’s utility
• Scenarios: Construct detailed scenarios

around the artifact to demonstrate its utility
TABLE 1-1: DESIGN EVALUATION METHODS (HEVNER ET AL. 2004)

The evaluation method used for this research will through case studies. Case

studies of the MOMA methodology will be conducted in both Financial Services

and e-Health domains. Each case study however will be evaluated using a

combination of black box and scenario testing.

1.7 Organisation of thesis

The thesis will be presented in the following chapters:

Chapter 1 - Introduction: provides a brief background to establish context and an

overview of the research motivation, objective and significance.

Chapter 2 – Background: gives detailed background information on the domains

of both ontology and multi-agent systems. This chapter continues with a review

of current AOSE methodologies and their limitations.

Chapter 3 – MOMA Methodology: Details of the MOMA methodology, including

model, process, tools and techniques as well as examples.

Chapter 4 – Case study in finance domain using MOMA.

Chapter 5 – Case study in e-Health domain using MOMA.

Chapter 6 – Discussion, evaluation, conclusions and future works.

10

Chapter 2. Background

2.1 Introduction

Agent technology has become one of the most active and promising areas of

research and development activity in computing in recent years. Agents are

highly autonomous, situated, interactive software entities that are seen as the

backbones for the next generations of mainstream software systems (Fan, 2000).

The potential of agent technology is revealed through MASs which are

computational systems in which two or more agents are interacting or working

together to achieve a set of goals. The coordination between agents possessing

diverse knowledge and capabilities would enable the achievement of global goals

that cannot be otherwise achieved by a single agent working in isolation (Nwana,

1996). Originating from artificial intelligence, agent technology has progressively

draw on a diversity of computing areas, including software engineering,

distributed computing, networking, mobile computing, collaborative computing,

security and robotics (Honavar, 1999). As a result, Agent-Oriented Methodologies

emerged as an extension to traditional software engineering methodologies and

became widely accepted as needed for agent technology to become widespread

commercial success (Flores-Mendez 1999; Sycara 1998; Zambonelli

Organisational Abstractions for the Analysis and Design of Multi-Agent Systems,

2000).

In this chapter, definitions of Agent and Multi-Agent systems will be provided

along with their respective advantages and limitations. Ontology and its benefits

11

to MAS will then be explored. Using these advantages as a measure, existing

AOSE methodologies are reviewed. Limitations identified will provide motivation

for the MOMA methodology in Chapter 3.

2.2 Agent and multi-agents

2.2.1 Definition of Agent

The term “Agent” in our case refers to a software agent. Software Agents are

entities or piece of software that acts on behalf of its user to accomplish a given

task (Mountzia, 1996). There is however a variety of proposed definition offering

different opinions on what constitutes an agent (Mountzia 1996; Nwana 1996;

Wooldridge M. 1999). As mentioned in Wooldridge, a universal definition of the

term “software agent” may be impossible since attributes that characterize

agency may vary across domains. Nwana describes an agent as a software

abstraction, an idea, or a concept. The concept of an agent provides a convenient

and powerful way to describe a complex software entity that is capable of acting

with a certain degree of autonomy in order to accomplish tasks on behalf of its

user. Of the various proposed definitions of agents, commonly agreed upon

concepts include:

• persistence - code is not executed on demand but runs continuously and

decides for itself when it should perform an activity;

• autonomy - agents are capable of task selection, prioritization, goal-

directed behaviour and decision-making without human intervention;

• social ability - agents are able to engage other components through some

sort of communication and coordination and may collaborate on a task;

12

• reactivity - agents perceive the context in which they operate and react to

it appropriately.

Even though agents may assume other attributes such as mobility, adaptability

and personality, the above attributes characterize the core notion of intelligent

agency.

2.2.2 Definition of MAS

A MAS is a computational system, or a loosely coupled network in which two or

more agents interact or work together to perform a set of tasks or to satisfy a set

of goals. Each agent is considered as a locus of a problem-solving activity which

operates asynchronously with respect to the other agents (Lesser, 1996). MAS

can be used to solve problems which are difficult or impossible to solve for an

individual agent or a monolithic system.

Agents in a MAS exhibit several important characteristics (Wooldridge M. 2002):

• Autonomy - the agents are at least partially autonomous

• Local points of view - no agent has a full global view of the system.

• Decentralisation – there is no controlling agent (otherwise the system is

effectively reduced to a monolithic system).

MAS themselves manifest self-organising and complex behaviours even when the

individual strategies of their agents are simple. Individual agents communicate

through a common language such as the Knowledge Query Manipulation

Language (KQML) or FIPA's Agent Communication Language (ACL).

13

2.2.3 Motivation for agents and MASs

Agents are believed to represent the next advancement in software engineering.

They offer a notably more powerful and natural abstraction for modelling and

developing systems than conventional methods such as procedural abstraction,

abstract data types and object oriented abstraction (Wooldridge M. 1999). The

concept of software components, capable of flexibly interacting with each other

to satisfy their objectives is a familiar concept to software engineering. For

example, in an electronic trading application, it is natural to model participants in

trade transactions as agents which buy and sell stock on behalf of their end users.

This allows the use of agent paradigm to easily model complex interactions in

existing systems (Wooldridge M. a., 2000).

The power of agents and MASs are particularly realised in the engineering of

open systems, which are often dynamic in structure. Their system components

are usually not known in advance, highly heterogeneous and capable of change

over time. Thus, the ability to engage in flexible and robust interaction among

the system components is crucial. Agents exhibit this ability through negotiation

and coordination capabilities. These capabilities are done through the use of

agent communication languages (KQML or FIPA-ACL). The core attributes of

agents such as autonomy, pro-activeness and reactivity allows them to deal with

dynamic and unpredictable environments. Agents can continually monitor their

environment revise their goals and proactively adopt new goals (Jennings, 1995).

Another important contribution of agents and MASs is in the engineering of

distributed systems. In such systems, it is difficult to specify a simple point of

14

control because the systems are built out of distributed components, each of

which may possibly attempt to achieve conflicting individual goals (Jennings,

1995). It is therefore natural to map the distributed entities onto autonomous

problem solving agents, which negotiate and coordinate in a versatile manner to

resolve conflicts and achieve the global goals. In addition, the pro-activeness of

the agents makes it possible to abstract away from the control issue, thereby

dealing with the decentralisation of control. If the system incorporates

distributed resources, agents can be used to “wrap” around these resources to

create “active resources”. Tasks can then be performed directly at the remote

resource sites, limiting the need for communication across the network and

reducing network traffic (Horlait, 2003).

Agents also provide benefits of the conventional OO paradigm such as modularity

and reusability. When a problem is too complex or unpredictable, the most

effective way to address it is to develop a number of modular agents, each of

which specialises at solving a particular aspect of the problem (Jennings, 1995). A

MAS, however, represents more than a modular object-based system. As

discussed earlier, agents can interact and coordinate in an autonomous, flexible

and context-dependent manner so as to ensure that the tasks are properly

managed (Sycara, 1998). Reusability is supported simply by reusing the design or

coding of similar agents in previous MAS development experiences.

2.2.4 Limitations of Agents and MAS

Although the agent paradigm offers many exciting opportunities, it does have

some shortcomings. For many applications the sophistication of agents is simply

not needed (Eurescom, 2001). For example, a software entity that engages in a

15

relatively small amount of reasoning and simple communications can sensibly be

modelled as an object rather than an agent. A MAS is also not suitable for

systems where global constraints have to be maintained when risk is too high to

give agents absolute trust and delegations (Jennings, 1995).

2.3 Ontology

2.3.1 What is ontology?

Ontology is a very old concept that generally been confined to the philosophical

domain in the past, since the time of Aristotle. However since the 1990s,

ontology has become increasingly attractive to various computing areas such as

knowledge engineering, knowledge management, natural language processing,

information retrieval and integration, cooperative information systems and agent

based system design (Gamper, 1999).

In the context of computing, ontology is defined as an “explicit specification of a

shared conceptualisation” (Fensel, 2001). “Conceptualisation” refers to an

abstract model of phenomena in the real world. It defines the relevant concepts

or entities that exist in the universe of discourse and the relations that hold

amongst them. The “shared” characteristic of ontology implies that ontology

should capture consensual knowledge, i.e. it is not restricted to an individual but

accepted by a group. “Explicit” means that ontology should be clearly defined. In

the context of MAS, this means that ontology used by agents need to be explicitly

stated and no remain implicit within the agent codes. Finally “formal” refers to

the fact that ontology should be machine-readable. Different degrees of

formality are possible. Ontology like WordNet provides a thesaurus for natural

16

language terms explained in natural language where as Cyc (Cyc 2009) provides

formal axioms for knowledge (Fensel 2001).

2.3.2 Benefits and motivation for the use of ontology

The importance of ontology in areas such as knowledge engineering, information

retrieval and database design has been widely discussed (Uschold, 1996). This

research focuses on the importance of ontology in the context of MAS. Ontology

has been widely recognised for its significant benefits to interoperability and

reusability.

One of the major benefits of ontology is that it provides a degree of

interoperability. Interoperability refers to the ability of heterogeneous

components to interact and work with each other to achieve shared or individual

goals. Interoperability involves not only communication between the

heterogeneous components, but also the ability of these components to use

exchanged information. In the context of MAS, the interoperability problem can

be divided into two major issues:

Semantic heterogeneity – this is a case of semantic interoperability. When the

knowledge base, each agent or information of each resource uses a different

vocabulary to express the same information (e.g. “Price” versus “Cost”) and/or

uses the same vocabulary to express different information (e.g. “Stock” in one

agent/resource means shares, but another agent refers stock as items of

inventory), then there is an inconsistency in the meaning of the knowledge.

Another example of this is where the same concept refers to different scales or

reference of measurement (e.g. “Price” maybe measured in dollars in one

instance and euros in another).

17

Structural heterogeneity – This occurs when the knowledge of each agent or

resource, uses a different conceptual schema to represent its data. For example,

the concept “Stock-Name” is represented as an object in one instance, but used

as an attribute under another concept in another instance.

Both heterogeneity issues can be addressed by the use of ontology. When the

knowledge bases of heterogeneous agents or resources are explicitly

conceptualised by ontology, the structural and semantic interoperability between

these agents or resources can be achieved by mapping between these

ontologies. This is done through a method known as ontology mapping, which

specifies the semantic correspondences between the concepts of one ontology

with another (Madhavan, 2002).

Another major benefit of the use of ontology is its capability to enhance reuse.

Ontology can be used to capture knowledge elements of a system. For example,

in the case of a problem-solving system, the methods for domain independent

problem-solving methods and the domain knowledge can be kept in two

separate components. This modularity in knowledge modelling would allow

different problem domain and the reuse of domains knowledge across different

problems (Uschold 1996).

Another factor that enables ontology to enhance reusability is its readability.

Software reuse is typically promoted by the readability of the software design

and/or codes. Ontology enhances readability by offering a structured, explicit

human-readable mechanism for representing knowledge. They help the system

developers to easily comprehend, inspect and reuse this knowledge for future

applications.

18

2.3.3 Motivation for the use of Ontology in MAS

Literature is currently rich with discussion of ontology’s importance (Uschold,

1996), such as in the areas of knowledge engineering (Shave 1997), information

retrieval (Ding, 2001) database design (Sugumaran & Storey 2001) and the

semantic web (Davies Fensel & Van Harmelen 2003). The focus on the

importance of ontology in this thesis is in the context of MAS. Ontology has been

widely recognised for their significance and benefits to interoperability,

reusability, MAS development and MAS operation (Falasconi, Lanzola, &

Stefanelli, 1996; Malucelli & Oliveira, 2004; Knoblock, Arens, & Hsu, 1994).

Interoperability and reusability were mentioned briefly in the previous section.

This section will look at the benefits of ontology to MAS development activities

and operations.

2.3.4 Benefits of ontology to MAS development

Two major activities in MAS development that can be facilitated by the use of

ontology are system analysis and agent knowledge modelling.

System analysis involves the formulation of the problem to be solved and/or the

representation of the application’s domain knowledge (Girardi & deFaria, 2004).

The availability of an ontology which holds explicit, comprehensive knowledge

about the target domain will greatly promote the developer’s understanding of

the application, thereby facilitating his elicitation of the system goals and

responsibilities. This importance of ontology has been realised and exploited by

the Knowledge Engineering community in the engineering of knowledge-based

systems (Shave, 1997; Chandrasekaran, Josephson, & Benjamins, 1999). Ontology

19

offers a structured, explicit, human-readable mechanism for representing

domain knowledge. These characteristics promote the readability of an ontology,

hence enhancing its reusability in terms of representation.

Given these benefits to system analysis, various methodological frameworks for

developing MASs and knowledge-based systems have exploited ontology to

facilitate their problem-elicitation process such as “GRAMO” (Girardi & deFaria,

2004) and “CommonKADS” (Schreiber et al. 1994).

Agent knowledge modelling refers to the specification of local knowledge of each

agent in a MAS, including problem-solving knowledge and local domain-related

knowledge. Just as for an application’s domain knowledge, an ontology can be

used as an effective representation mechanism for agent’s local domain-related

knowledge (Mukherjee, Dutta, & Sen, 2000). Different ontology can be assigned

to different agents to represent the agent’s different views of the world

(Falasconi, Lanzola, & Stefanelli, 1996). In addition, ontology offers a mechanism

for decoupling the modelling of agent domain-related knowledge from its

problem-solving knowledge, hence promoting the reuse of agent and knowledge

modules. Since the local domain-related knowledge of each agent is extracted

from the application’s domain knowledge, the use of ontology to represent the

application’s domain knowledge during system analysis would facilitate the use

of ontology to represent agent’s local knowledge during agent knowledge

modelling.

2.3.5 Benefits of Ontology to MAS operations

20

Ontology is beneficial to two major aspects of MAS operations: inter-agent

communication and agent reasoning.

Inter-agent communication occurs when messages are passed from one agent to

another. Even though sharing a common ACL will allow agents to exchange

messages (common syntax and protocols), it does not ensure that the

communicating agents will interpret the exchanged messages in a uniform and

consistent manner, that is, to share the same semantics or meaning of the

message (Uschold 1996; Falasconi Lanzola & Stefanelli 1996). Successful agent

communication requires an agreement between agents to share ontology during

communication. This shared ontology provides the agents with a set of common

vocabulary for formulating and interpreting the content of the exchanged

messages. For example, if agent A sends agent B the following message (written

in FIPA-ACL):

 Inform

 :sender AgentA

 :receiver AgentB

 :language KIF

 :ontology FruitDomainOntology

 :content (>(price fruit X) (price fruit Y))

Then both agents need to commit to the Fruit Domain ontology (stated in the

field “:ontology”) where concepts “price” and “fruit” are defined. This means that

the local knowledge of each agent should contain the common ontology that is

used for communication. This requirement indicates the inter-dependency

between ontology’s role in agent communication at run-time and modelling of

agent knowledge at design time.

21

Agent reasoning at run-time uses the problem-solving knowledge of the agent.

The domain-related knowledge held by the agents is also use as inputs.

(Benjamins, de Barros & Valente 1996). If the domain-related knowledge has

been modelled as ontology during agent knowledge modelling, with all the

relevant domain concepts and relationships being explicitly defined, the agent

reasoning process can easily utilise this knowledge. By using representation

language such as OWL (W3C), reasoning engines can be used directly on the

ontology. Axiom languages such as Semantic Web Rule Language (SWRL) can be

imposed on the ontology to provide logic to the reasoning.

2.4 Agent-Oriented Software Engineering

The role of agent-oriented methodologies is to assist in all phases of the life cycle

of an agent-based application, including its management. While for small

development projects, it may be acceptable to apply informal software

engineering principles for the development of MASs, the absence of specialised

AOSE methodologies for MAS construction will generally result in cumbersome,

error prone, and hence expensive, development process (Lind 2000).

Even though research in AOSE is still less developed than other conventional

software engineering paradigms such as the OO paradigm, a number of AOSE

methodologies have been proposed to assist the analysis and design of MASs.

These methodologies vary significantly in their scope, approach, processes,

modelling concepts and modelling notations as well as their intended purpose

and domain. To avoid building these methodologies from scratch researchers on

agent-oriented methodologies have followed the approach of extending existing

methodologies to include the relevant aspects of agents. Summaries of the

22

commonly used methodologies in each category are presented in the following

section.

2.4.1 AOSE Methodologies

MaSE

The Multi-agent Systems Engineering (MaSE) methodology is a general purpose

methodology for developing heterogeneous multi-agent systems (Deloach, Wood

& Sparkman 2001). MaSE uses a number of graphically based models to describe

system goals, behaviours, agent types and communication interfaces. MaSE also

provides a way to specify architecture-independent detailed definition of the

internal agent design. MaSE uses conventional OO modelling techniques such as

OMT and UML. An overview of the MaSE methodology is illustrated in Figure 2-1.

FIGURE 2-1: OVERVIEW OF MASE

23

The development phase of MaSE consists of Analysis and Design phases. The

Analysis Phase involves three steps.

1. “Capturing Goals” step firstly identifies goals of the target system and

organises them into Goal Hierarchy Diagram. An example is illustrated in

Figure 2-2.

FIGURE 2-2: MASE GOAL HIERACHY DIAGRAM

2. “Applying Use Cases” step produces Use Cases from the system

requirements and elaborates on them in the form of Sequence Diagrams.

An example is illustrated in Figure 2-2.

3.

FIGURE 2-3: MASE SEQUENCE DIAGRAM

4. “Refining Roles” step identifies roles from system goals and actors,

thereby developing a Role Model. This model shows all the roles in the

system, their corresponding goals and the communication paths between

roles (Figure 2-4). The developer may further elaborate on the Role Model

by defining tasks to be performed by each role and the communications

24

between tasks. A concurrent Task Diagram, which is basically a state

transition diagram, can be developed to provide a detailed definition of

each task.

FIGURE 2-4: MASE ROLE MODEL

The Design Phase of MaSE transforms the preceding Analysis models into

constructs necessary for the actual implementation of the MAS system. The

phase consists of four steps.

“Creating agent Classes” step identifies agent classes for the target system by

applying one-to-one mappings between roles and agents. Multiple roles,

however, can be combined into a single agent class if the size and frequency of

inter-role communications are high. An Agent Class Diagram is produced to show

the identified agent classes, their corresponding roles and conversation paths

between agent classes. An example of an Agent Class Diagram is illustrated in

Figure 2-5.

25

FIGURE 2-5: AGENT CLASS DIAGRAM

“Constructing conversations” step defines coordination protocols between

agents. Each conversation is described by two Communication Class Diagrams,

each specifying the state transitions of each agent participant during the

conversation. An example of Communication Class Diagram is illustrated in Figure

2-6.

FIGURE 2-6: MASE COMMUNICATION CLASS DIAGRAM

“Assembling Agent Classes” step identifies and constructs the internal

components of each agent class. The developer can either reuse a pre-defined

agent architecture and internal components, or retrieve pre-defined components

and assemble them into a user-defined architecture, or define both internal

components and agent architecture from scratch.

“System Design” step instantiates agent classes with actual agent instances and

allocates these instances to nodes. A Deployment Diagram is developed to show

26

the number, types, locations and communication paths between agent instances.

An example of Deployment Diagram is illustrated in Figure 2-7.

FIGURE 2-7: MASE DEPLOYMENT DIAGRAM

In 2002, MASE was expanded to provide support for ontology-based MAS

development (DiLeo, Jacobs, & DeLoach, 2002). Ontology was introduced as a

mechanism to model the application domain. An additional step – “Building

ontology” – has accordingly been added to the Analysis phase (Figure 2-8). This

step constructs the domain ontology by identifying the scope of the ontology,

collecting data about the domain, forming the initial ontology, and finally

refining, validating and maturing the ontology into a complete version. Once the

domain ontology is constructed, parameters passed between agents during the

execution of tasks or during conversations are specified in accordance with the

ontology. Specifically, the data type of each exchanged parameter is defined

using the concepts defined in the ontology. Step “Assembling agent classes” of

MASE has also been extended to support the specification of ontology for

individual agents. This specification is needed if the agent requires a knowledge

model that is different from the other agents and/or from the overall domain

ontology. The developer should determine the mappings between these

27

individual agents’ ontologies in order to interoperate between the

heterogeneous agents.

The step “Assembling agent classes” of MASE has also been extended to support

the specification of ontology for individual agents. This specification is needed if

the agent requires a knowledge model that is different from the other agents

and/or from the overall domain ontology. The developer should determine the

mappings between these individual agents’ ontologies in order to interoperate

between the heterogeneous agents.

FIGURE 2-8: EXTENDED VERSION OF MASE 2002

MASSIVE

MASSIVE (Lind 2000) follows an “iterative view engineering process” for MAS

development, which is a product-centred development process that combines

Round-trip engineering and Iterative Enhancement. In the first cycle of the

development process, the developer firstly produces a preliminary version of the

28

development product, which is composed of seven different “views” of the

system. These views are then implemented and refined if errors occur during

implementation. The initial implementation is then tested and/or enhanced,

which may result in enhancements to the views. If enhancements cannot be

integrated into the views (e.g. because they are incompatible with some basic

requirements of the views), the implementation must be changed. After this

step, the next cycle is executed until the entire system is fully implemented.

SODA

SODA, “Societies in Open and Distributed Agent spaces” (Omicini, 2000) proposes

a number of abstractions and techniques for the modelling of agent societies and

environments. It does not aim to provide support for agent internal design, but

rather focuses on inter-agent design. SODA’s development process is structured

into Analysis and Design phases.

GAIA

This widely referenced methodology aims to guide the developer from a

statement of requirements to a design that is sufficiently detailed to be

implemented directly (Wooldridge, Jennings, & Kinny, 2000). GAIA has been

extended to include new organisational abstractions that enable it to support the

development of “open” MASs (Zambonelli, Jennings & Wooldridge 2003).

MESSAGE

MESSAGE (Eurescom 2001) adopts the Rational Unified Process lifecycle and

extends UML to support the modelling of concepts such as “organisation”, “role”,

29

“goal” and “task”. The MESSAGE development process covers the Analysis and

Design phases only.

Methodology for BDI Agents (BDIM)

Belief-Desire-Intention (BDI) is a prominent architectural model for agents. Each

BDI agent is composed of beliefs (the agent’s knowledge of the world), desires

(the agent’s motivations such as goals, objectives or allocated tasks) and

intentions (the desires that the agent is committed to achieving at a certain point

in time). The BDIM (Kinny, Georgeff, & Rao, 1996) is especially targeted at MASs

that are based on the BDI paradigm.

In BDIM, models are classified into two levels of abstraction: external and

internal. External models describe the target MAS from the system-level point of

view, while Internal models define each agent class in terms of its internal

components. Accordingly, the development process of BDIM is organised into

two groups of steps: those for developing external models and those for

developing internal models.

INGENIAS

INGENIAS (Pavon & Gomez-Sanz 2003) is built upon MESSAGE. It reconstructs

and extends MESSAGE to include a new model (Environment Model), provide

support for the BDI agent architecture and provide tools for documenting the

system and for automatic code generation.

Methodology with High-Level and Intermediate Levels (HLIM)

30

HLIM (Elammari & Lalonde 1999) starts from a high-level view of the system and

drills down to intermediate, implementable definitions of system design. Its

development process is structured into two phases: Discovery and Definition.

Methodology for Enterprise Integration (MEI)

MEI (Kendall, 1999)is targeted at enterprise integration applications. It is based

upon the IDEF approach in workflow modelling, CIMOSA framework in enterprise

modelling and use-case approach in OO software engineering. MEI develops MAS

by mapping various elements of the Use Case Model, IDEF/CIMOSA Functional

Model and IDEF Information Model onto the design of agents, agent internal

components and agent interactions.

PROMETHEUS

Prometheus (Padgham & Winikoff 2002; Winikoff & Padgham 2004) is well suited

to the development of BDI-based MASs. The development process of

Prometheus is structured into three phases: System Specification, Architectural

Design and Detailed Design.

PASSI

A Process for Agent Societies Specification and Implementation (PASS) (Burrafato

& Cossentino 2002; Cossentino & Potts 2002), offers a step-by-step requirement-

to-code process for MAS development. It consists of twelve steps, grouped

according to their outputs.

ADELFE

31

ADELFE (Bernon et al. 2002) is a methodology dedicated to adaptive MASs, which

are MASs that can adapt themselves to unpredictable, evolutionary and open

environments. At the core of ADELFE is the AMAS theory, which postulates that

the global behaviour of a MAS emerges from the collective behaviour of the

different agents composing it. Agents designed by ADELFE are equipped with an

ability to deal with cooperation failures know as “non cooperative situations”.

CoMoMAS

CoMoMAS (Glaser N. 1997;) is built upon CommonKADS – a methodology for

developing knowledge-based systems (Schreiber et al. 1994). CommonKADS

proposes a set of seven models for specifying various types of knowledge

required by a knowledge-based system: Organisation, Task, Expertise,

Decomposition Expertise, Design, Communication and Agent Models. CoMoMAS

adapts CommonKADS to the development of MAS by including MAS-specific

knowledge structures, taking into account the reactive, cognitive, cooperative

and social competencies of autonomous agents.

MAS-CommonKADS

MAS-CommonKADS (Iglesias et al. 1996; Iglesias et al. 1998) is also based on

CommonKADS. However, the methodology also takes advantages of various OO

techniques such as the use of case analysis and CRC cards.

CASSIOPEIA

CASSIOPEIA (Collinot & Drogoul 1998; Collinot, Drogoul & Benhamou 1996) aims

to support the development of problem-solving MASs, where agents work

32

together to fulfil a specific collective task. The methodology process from the

collective task to the design of MAS along three steps.

TROPOS

TROPOS (Castro et al. 2001; Castro, Kolp & Mylopoulos 2002; Bresciani et al.

2004) is based upon the organisational modelling framework proposed by Yu. It

employs the concept of “actor”, “goal”, and “dependency” to represent system

requirements, MAS architecture and MAS detailed design. The development

process of TROPOS is structured into four phases.

2.4.2 Support for Ontology-Based MAS Development

As mentioned in Section 2.3, ontology is widely acknowledged in literature for its

significant benefits to interoperability, reusability, MAS development and

operations. However, a majority of the existing AOSE methodologies do not

recognise and implement these ontology’s benefits, including MASSIVE, SODA,

GAIA, BDIM, INGENIAS, HLIM, MEI, PROMETHEUS, ADELFE, COMOMAS,

CASSIOPEIA and TROPOS. These methodologies neither mention the use of

ontology in their MAS development process, nor integrate ontology into their

MAS model definitions. The AOSE methodologies review that showed some

consideration for ontology includes: MAS-CommonKADS, MESSAGE, MASE and

PASSI.

In MAS-CommonKADS, ontologies are used to represent the knowledge of the

application’s domain and the agents’ local domain-related knowledge.

Accordingly, MAS-CommonKADS illustrates the use of ontologies for knowledge

33

representation in system analysis and agent knowledge modelling respectively.

However, MAS-CommonKADS does not recognise the essential role of ontologies

in agent communication. In particular, it overlooks the importance of ontology-

sharing by communicating agents, and the need for the messages exchanged to

be formulated in terms of shared ontological concepts. It is also unclear whether,

and how, MAS-CommonKADS can enable agent reasoning at run-time to utilize

agents’ ontology-based knowledge, since no reference to ontologies is made

during the specification of agents’ problem-solving knowledge. Moreover, MAS-

CommonKADS completely overlooks the capability of ontologies to support

interoperability. The methodology does not consider the possibility of agents

possessing heterogeneous ontologies, or of MAS incorporating heterogeneous

non-agent resources, and how the heterogeneity issues between these

components can be solved. As a result, MAS-CommonKADS’ support for

reusability is also limited, since the methodology cannot show how legacy

(heterogeneous) system components can be reused.

Similar to MAS-CommonKADS, MESSAGE uses ontologies as the representation

mechanism for modelling application’s domain knowledge and agents’ local

domain related knowledge. Thus, it exercises the use of ontologies to support

system analysis and agent knowledge modelling. However, unlike

MASCommonKADS, MESSAGE makes it possible for agent reasoning to utilize

ontology-based knowledge at run-time. The specification of agents’ behavioural

knowledge at design time in MESSAGE refers to the domain-related knowledge of

agents (which is modelled in ontologies) as providing the context for, and the

input information to, the agents’ behavioural knowledge. Nevertheless,

MESSAGE does not recognise the importance of ontologies in agent

communication. It neglects the requirement of ontology-sharing between the

communicating components, and the need for formulating exchanged messages

34

using the shared ontological concepts. MESSAGE also does not exploit ontologies

to support interoperability. The potential existence of heterogeneous MAS

components and how these components can be interoperated are not discussed.

The extended version of MASE (DiLeo, Jacobs, & DeLoach, 2002) exploits

ontologies to facilitate system analysis and agent knowledge modelling, by using

ontologies as the representation mechanism for application’s domain knowledge

and agents’ local domain-related knowledge. MASE outperforms MESSAGE and

MAS-CommonKADS in that it recognises the essential role of ontologies in agent

communication. In particular, it requires the developer to formulate the

exchanged messages in term of the concepts obtained from an ontology shared

between the communicating agents, through the “datatyping” of the exchanged

parameters with these concepts. MASE also exploits ontologies to support

interoperability. It considers the case of agents committing to heterogeneous

ontologies (e.g. when the agents wrap around heterogeneous information

sources) and highlights the need for ontological mappings between these local

ontologies. MASE’ support for reusability is thus enhanced, since it allows the

legacy (heterogeneous) system components to be reused. However, the benefits

of ontologies to agent reasoning cannot be realised in MASE, since MASE does

not address how agents’ behavioural knowledge (such as agents’ plans and

actions) relates to agents’ ontology-based knowledge. Without an explicit

indication of this relationship, MASE cannot illustrate whether, and how, the

agent reasoning process can utilize the ontology-based domain knowledge.

In PASSI, ontologies are used in system analysis and agent knowledge modelling

to represent the application’s domain knowledge and agents’ local domain-

related knowledge. The importance of ontologies to agent communication is also

acknowledged by PASSI. The developer is required to identify, for each agent

35

conversation, the ontology that needs to be shared by the communicating

agents, and to define the exchanged messages in term of the shared ontological

concepts. However, PASSI fails to provide clear support for the use of ontology-

based knowledge by agent reasoning at run-time, since no reference to

ontologies is made during the specification of agents’ problem-solving

knowledge.

Even though the above four AOSE methodologies excise the use of ontology in

their MAS development process and product, they do not comprehensively

acknowledge and implement all of those diverse roles of ontology in MASs,

namely those identified in Section 2.3.4. More specifically, although all four

methodologies exploit ontology to facilitate their system analysis and agent

knowledge modelling activities, none of them, can illustrate the use of ontology

to support interoperability, reusability, agent communication and agent

reasoning altogether by itself.

Table 2-1 summarises the steps in all the methodologies reviewed. The four

methodologies that utilise ontology are indicated by step 5, the utilisation of

domain concepts. The extent of the support for ontology discussed earlier is

summarised in Table 2-2.

36

Steps

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
ES

SA
G

E

IN
G

EN
IA

S

BD
IM

H
LI

M

M
EI

PR
O

M
ET

H
EU

S

PA
SS

I

A
D

EL
FE

CA
SS

IO
PE

IA

Co
M

oM
A

S

M
A

S-
Co

m
m

on
KA

D
S

TR
O

PO
S

1.
 Id

en
tif

y

Sy
st

em

Fu
nc

tio
na

lit
y

X X X X X X X X X X X X X X X

2.
 S

pe
ci

fy
 u

se

ca
se

 s
ce

na
rio

s X X X X X X X X

3.
 Id

en
tif

y
ro

le
s X X X X X X X X X X

4.
 Id

en
tif

y

ag
en

t c
la

ss
es

 X X X X X X X X X X X X X X X X

5.
 M

od
el

do
m

ai
n

co
nc

ep
t

ut
ili

sa
tio

n

X X X X

6.
 S

pe
ci

fy

ac
qu

ai
nt

an
ce

s

be
tw

ee
n

ag
en

t

cl
as

se
s

X X X X X X X X X X X X X X

7.
 D

ef
in

e

in
te

ra
ct

io
n

pr
ot

oc
ol

s

X X X X X X X X X X X X X X X

8.
 D

ef
in

e

co
nt

en
t o

f

ex
ch

an
ge

d

m
es

sa
ge

s

X X X X X X X X X X

37

9.
 S

pe
ci

fy
 a

ge
nt

co
m

m
un

ic
at

io
n

la
ng

ua
ge

 X X

10
. S

pe
ci

fy

ag
en

t

ar
ch

ite
ct

ur
e

X X X X X X X

11
. D

ef
in

e

ag
en

t

in
fo

rm
at

io
n

st
ru

ct
ur

e

X X X X X X X X X X X X

12
. D

ef
in

e

ag
en

t

be
ha

vi
ou

r

Co
ns

tr
uc

ts

 X X X X X X X

13
 S

pe
ci

fy

sy
st

em

ar
ch

ite
ct

ur
e

 X X X X X X X

14
. S

pe
ci

fy

or
ga

ni
sa

tio
na

l

St
ru

ct
ur

e/
in

te
r-

ag
en

t a
ut

ho
ri

ty

re
la

tio
ns

hi
p

 X X X X X X X X X

15
. M

od
el

 M
A

S

en
vi

ro
nm

en
t

 X X X X X X X X X

16
. S

pe
ci

fy

ag
en

t-

en
vi

ro
nm

en
t

in
te

ra
ct

io
n

m
ec

ha
ni

sm

 X X X X X

17
. S

pe
ci

fy

ag
en

t

in
he

rit
an

ce
 a

nd

ag
gr

eg
at

io
n

 X X X X

18
. I

ns
ta

nt
ia

te

ag
en

t c
la

ss
es

 X X X X X X

38

19
. S

pe
ci

fy

ag
en

t i
ns

ta
nc

e

de
pl

oy
m

en
t

X X

TABLE 2-1: SUPERSET OF STEPS IDENTIFIED IN AOSE METHODOLOGIES

Extent of

ontology

support

 M
A

S-

Co
m

m
on

KA
D

S

M
ES

SA
G

E

M
aS

E

PA
SS

I

Ontology

domain model

Expertise

model includes

the domain

knowledge

Domain

model

relevant to

the target

application

only

Ontology used

as

representation

of the

application’s

domain

knowledge and

used as agent

domain related

knowledge

Apart of

Agent

Society

Model

Ontology

communication

model

No No No explicit

model –

exchange

messages are

formulated in

terms of

concepts

Yes –

exchanged

messages

are in terms

of shared

ontological

concepts

Notation used

for ontology

CommonKADS

notation

Extended

UML

UML Class

diagrams

Object

39

constraint

language

Support for Use

of existing

generic

ontology

No No No No

Defined

ontology

structure

No No No No

Ontology

reasoning at

runtime

No Yes No No

TABLE 2-2: METHODOLOGIES WITH SUPPORT FOR ONTOLOGY

2.4.3 Implementation for reviewed methodologies

The AOSE methodologies show that there is a conceptual level for analysing the

agent-based systems, no matter the agent theory, agent architecture or agent

language. The lack of standard agent architecture and agent programming

languages is a problem for the implementation of these methodologies. Since

there is no agent architecture, the design of these methodologies needs to be

customised for each agent architecture. As a result very little is mentioned about

the agent architecture and implementation. This problem is difficult to address

without proper standards. The examples presented in Chapter 3 will be using the

de facto standard of Foundation for Intelligent Physical Agents (FIPA) as a

guideline.

40

2.5 Summary

This chapter has defined the terms “Agent”, “Multi-Agent System” and

“Ontology”. It also discussed the potentials of Agent Technology and MAS, and

the benefits of ontology to MAS development and MAS operation.

This chapter also provided a review of some existing AOSE methodologies for

MAS analysis and design. It describes each methodology and highlights the

general limitations of each method. These limitations include those relating to

the general analysis and design activities of MAS, and those relating particularly

to the support for ontology-based MAS development. Limitations also extend to

the lack details on agent implementation, system architecture and deployment.

Although this is majorly due to a lack of standardisation, the reviewed

methodologies do no mention any details of implementation specific to any

architecture.

The reviewed AOSE methodologies do not mention the splitting of tasks and

roles. Although it is assumed that users of these methodologies will be the

designers and developers of the agent system, we cannot assume that agent

developers possess expertise knowledge of the domain of every application they

are developing. Some roles can be done by one person. However, it is useful to

explicitly state the roles for tasks of a methodology to allow greater flexibility in

planning.

These limitations provide the motivation for the MOMA methodology presented

in the next chapter.

41

Chapter 3. Design Methodology for Ontology-
based Multi-Agent Applications (MOMA)

3.1 Introduction

This chapter will present the MOMA methodology. MOMA is intended for use by

domain experts for creating smart agent applications without needing to have

intricate agent development knowledge. MOMA attempts to do this by having

the domain knowledge and business logic specified in the ontology as much as

possible. Together with guided procedures and a set of tools, MOMA aims to

distinguish the roles of its users and address some of the limitations of existing

AOSE methodologies regarding ontology support.

In the last chapter we established the usefulness of ontology and multi-agent

systems, in particular the benefits of ontology-based multi-agent systems. We

explored AOSE methodologies and their usefulness in designing multi-agent

based systems. We saw that there was very limited support for ontology in these

methodologies and even lower support for ontology at runtime. These

methodologies also do not provide details on architecture specific

implementation as a part of the methodology. Although this cannot be seen as a

limitation per se, developers using this methodology will need to look elsewhere

to find methods of implementation depending on the agent architecture they are

going to use.

The Design Methodology for Ontology-Based Multi-agent Applications (MOMA)

presented in this chapter intends to address the above mentioned limitations to

some extent. MOMA will try to:

42

1. Provide a structured meta-model for the development of ontology for

agent application development. An established model is essential for the

further support of reuse and sharing.

2. Allowing the ontology model to define behaviour of agents. In a sense, we

are trying bring the business logic from the underlying agent

implementation to an abstract conceptual level.

3. Facilitate the use of tools to drive development, conceptual testing and

implementation of ontology for agent systems. Tools are essential

throughout the MOMA process.

4. Provide support for reuse and sharing of the developed ontology.

Although ontology inherently supports reuse and sharing, without the

establishment of some kind of modularisation and structure, reuse and

sharing will be very limited.

5. Distinguish the roles of domain expert and agent developer in the

development process of MOMA. We will be assuming that the domain

expert does not have expertise in agent development and that the agent

developer has very little knowledge of the domain.

6. Work towards a methodology that can be used by domain experts (and

researchers) without the expertise of an agent developer.

3.1.1 Scope and Limitations

MOMA is not a formal and comprehensive methodology and has some

limitations. Before any use or evaluation, this section will detail some of the

foreseeable limitations of MOMA. This section will also scope the coverage of this

thesis on the MOMA methodology.

43

Firstly, this thesis does not address the design of agents and agent “societies”,

nor the interaction and behaviour of agents with established agent theories.

There will also be minimal discussion of agent implementation. The scope of this

thesis will focus on ontology development at the core. The AOSE methodologies

reviewed in Chapter 2 used agent theory for the designing and development of

agents and multi-agent systems. Further work will be required to incorporate

these methodologies with MOMA. Established agent theories will allow MOMA

to ultimately translate the ontology into an agent application. However, this will

not be covered in this thesis.

MOMA uses the Java Agent DEvelopment Framework (JADE), an agent

framework implemented in Java. This limits MOMA to a single architecture.

However, this also has an advantage. By limiting to a single architecture, MOMA

can detail some of the implementation and deployment of the agent system

itself.

Although MOMA introduces support for adding logic in ontology through rules

and axioms, it does not contain a methodology to formulate these from the

requirements.

The ontology exists at a conceptual level at design time only. Once the ontology

is complete it will be consumed in the implementation process and will be

embedded with the agent code at runtime. This means that changes in the

ontology structure will result in a proportional change in the agent code.

Ultimately, we envision MOMA being a part of or integrated with a formal and

complete methodology that allows design and development of both ontology

44

and agents for the construction of ontology-based multi-agent systems in any

architecture.

3.1.2 Overview of MOMA process

MOMA is driven by ontology development. MOMA methodology can be broken

down into two main parts: Ontology Development and Agent Development.

Ontology Development is performed by the domain expert. This is where the

ontology of the world is modelled. The resulting ontology is then used in the

Agent Development part. The agent development part is performed by the Agent

Developer. Agent Development involves the implementation of the world

modelled by the ontology through the use of agent theories. The result of the

methodology (the two parts) is an agent application, which can then be tested

and used. Any changes that need to be made to the agent application will result

in beginning the process again. The process is illustrated in Figure 3-1.

45

FIGURE 3-1: PARTS OF MOMA

Due to the magnitude of the topics and research areas that can be covered for

the components of the methodology, the scope of this thesis will only be focused

on the Ontology Development part. The Agent Development part will be briefly

explained and possible processes proposed. However for the purpose of

implementation and evaluation, the Agent Development part will be treated as a

black box parts where only input and output is known.

The rest of the chapter will be split into the two components, Ontology

Development and Agent Development, in Sections 3.2 and 3.3 respectively. This

is followed by a summary in Section 3.5.

46

3.2 Ontology Development

FIGURE 3-2: ONTOLOGY DEVELOPMENT PART OF MOMA

This section details the Ontology Development part of the MOMA methodology

(outlined in red in the figure above as a part of the overall process).

47

FIGURE 3-3: ONTOLOGY DEVELOPMENT PART

MOMA concentrates on the development of ontology for agent implementation.

The purpose of the Ontology Development part is to model the domain

knowledge and application world as ontology and output it in the form of code

which can be integrated and implemented by the Agent Development part. The

modelling is performed by the domain expert. This means that the domain

knowledge is explicitly modelled (in the form of ontology) so that it does not

have to be defined in lower level code. Conceptually, this also separates some of

the logic from the underlying agent code. Figure 3-3 above shows the states of

domain knowledge as it transitions into application ontology as java code. In this

48

diagram, the tools are used to make each of the transitions. Initially we have the

input, sources of knowledge that are consolidated into the domain knowledge.

Using the Ground Theory guided tool, concepts, their relationships and attributes

are then extracted from the domain knowledge. These concepts are then used to

for modelling into the domain ontology through the use of Protégé ontology

development IDE. This ontology can then be translated into Java code through a

protégé plug-in called Bean Generator. The output of the entire component is the

Java code that represents the domain ontology. The concepts identified may also

be agents or agent actions. For example, “Trader” and “Buy” are concepts which

can be implemented as agents and agent actions. The domain expert does not

need to know this.

To achieve this, the Ontology Development Component is broken down into

three main steps:

1. Concept Identification – domain expert identifies the concepts, their

relationships and attributes about domain of the intended application.

2. Ontology Modelling – domain expert models the domain in which the

application exists.

3. Code Generation – code is generated from the ontology to be

implemented in Agent Development part.

3.2.1 Step 1: Concept Identification

The purpose of this step is let the domain expert identify concepts, their

relationships and attributes in the domain and world in which the agent

application will exist. The input of this step is domain knowledge. This source of

knowledge could be in the form of text extracts, literature or even the domain

expert themselves. A list of concepts and their relationships and attributes will be

49

the outcome of this step. This knowledge will be used in the next step when

modelling the ontology.

Possible agents and agent actions may also be identified as concepts in this step.

However, the domain expert will not need to be aware of this as agents will be

chosen and implemented in the Agent Development part.

Identification of concepts for the purpose of ontology modelling can be a very

time-consuming task. It also follows a very implicit and intuitive process. To make

it easier for domain experts (who might not have expertise in knowledge

engineering), a more methodological approach is needed. Hence, for the purpose

of identification of concepts and relationships, MOMA is guided by the principles

of Grounded Theory (GT) (Strauss 1994; Strauss 1998). GT facilitates the

production of core categories and relationships from data through a systematic

method of constant comparison where new data is continuously compared to

existing data. Although GT originates in the social sciences; it has been proven to

valuable when applied to ontology construction (Kuziemsky 2007). The key points

are marked with a series of codes, which are extracted from the text. The codes

are grouped into similar concepts, in order to make them more workable. From

these concepts categories are formed. In the context of ontology, the codes are

extracted from requirements and domain information. Concepts and sub-

concepts are the results. GT has three systematic coding cycles: open, axial and

selective coding, all of which are described below.

Open Coding – involves refactoring, breaking down, examining, comparing,

conceptualisation and categorising data to identify discrete concepts, which are

the basic units of analysis in grounded theory (Strauss 1998). Once concepts are

identified they are grouped together to establish preliminary categories. Open

50

coding is continuous and as new data or knowledge is gathered and concepts and

categories are identified they go through a continuous cycle of comparison to

existing concepts and categories in a process called constant comparison.

Axial Coding – extends the initial level concepts and categories from open coding

by establishing connections in new ways between categories and sub-categories

(concepts and sub-concepts in context of ontology) (Strauss 1998). During axial

coding Strauss recommends using a “paradigm model” that establishes a

framework by linking data by condition context, action/interaction and

consequences (Strauss 1994). This “paradigm model” will be our extended

ontology meta model.

Selective coding – involves consideration of the multiple concepts and sub-

concepts that emerge from the axial coding and identifying one or two core

categories to which all the other child concepts or sub-concepts relate (Strauss

1994). The core concepts become the means for building a conceptual from

which to develop the ontology.

GT is a general methodology that uses an interpretive approach for deriving

theory. Although we describe our approach as GT guided, we are only using some

of the principles from GT. Our approach is derived from the works of (Kuziemsky

2007).

Data collection

GT does not specify where the data should come from. However, it is important

to identify source of where knowledge and information is coming from. This is

because we need to know what format the data will be in. For example, dealing

with text from literature and an interview with a domain expert will require

51

different methods to extra the data. Hence our approach will introduce data

collection as a first step before the coding process. Collecting data will involves

identifying possible sources of knowledge. The source of knowledge will then be

converted to a common format and centralised. The preferred format is text

(which we have built a tool for), but other formats in audio or visual will also

work. For example, we have literature as one source and domain expert

knowledge as another. Since literature is already in text format, we do no need to

convert. For domain expert however, one way of extracting knowledge is in the

form of an interview or discussion, during which notes can be taken. These notes

can then be easily converted to text (if they are not already in text).

Opening coding or Initial concept gathering

After we have centralised all our source data and converted them into a similar

format, we can start indentifying the preliminary concepts. This stage also known

as open coding, involves going through the data (text) that was gathered and

identify relevant concepts (open codes). These are usually keywords or important

domain related terms. Open coding is continuous and as new data or knowledge

is gathered and concepts and categories are identified. For example, in the

domain of Finance, Stock, Equity or Shares may be relevant concepts in right

context.

Axial Coding or concept refining

Once our initial concepts have been identified, we will refine these concepts

through axial coding. Axial coding in GT uses a “paradigm model” that establishes

a framework by linking data by condition context, action/interaction and

consequences (Strauss 1994). Because we are using GT for the identification of

concepts for ontology construction we will use an ontology paradigm model. We

will link the concepts using properties or attributes of the concept and

52

relationships between concepts. This means that we will refine concepts in terms

of their properties and relationships. For example, we have Stock, ASX Code and

Portfolio. Refining concepts will be broken down into two stages. First we identify

the properties. This is done first because relationships are normally not identified

as initial concepts and we will need to add them in later. In the example earlier,

we can see that ASX code can be a property of stock. For identification of

relationships, the domain expert will need to identify the relationship first and

then connects the two concepts using that relationship. For example, Stock is a

part of portfolio. The domain expert needs to identify the relationship “apart”

first and then link the two concepts. There might also be a inverse relationship.

i.e. Portfolio “contains” Stock. This can be treated as another case of axial coding.

The output of axial coding stage is a list of concepts, their properties and

relationships. The figure below illustrates the overall process.

FIGURE 3-4: GT GUIDED CONCEPT IDENTIFICATION

The next stage of GT is selective coding which involves identifying core

categories. This is so that concepts can be sub-categorised into a hierarchy. For

example, Dollars and Euros could be sub-categorised under Currency. Selective

53

coding however will not be used, as it overlaps with ontology modelling in the

next step.

The process of identifying concepts, their properties and relationships can be

very subjective, where different domain experts will get different sets of

concepts as output. The objective of this however is not to get consistent results,

but to provide the domain expert with a structured method for identifying

concepts based on principles of GT. A tool for this process is illustrated in Section

3.2.4.1.

3.2.2 Step 2: Ontology Modelling

The purpose of this step is to model the world in which the agent application

resides as an ontology. Once again, the domain expert does not require knowing

about agents in this step. Their goal is to explicitly model the world and any

details that are required to simulate the world in which they want to implement

the agent application. The input for this step is the concepts, relationships and

attributes identified in the last step. The output of this step is the resulting

ontology after being modelled.

3.2.2.1 The generic meta-model

The aim of the ontology meta-model is to assist the creation of ontology for the

analysis and design phase of MAS development. The model presents knowledge

at several levels as well as from different agent perspective. In particular, it

defines the concepts, relations and logic the agents need to know and share

about the application domain and its tasks.

The ontology model should be structured in such a way that it provides

modularity, separating purpose and task of each different ontology. The model

54

should also be layered in terms of generality, such that each layer captures its

own level of knowledge and perspective of the application domain. Layering the

ontology also promotes reuse and easier maintenance of the ontology.

A common taxonomy for classifying ontology is by their level of generality

(Guarino 1997; Falasconi et al. 1996; Fensel 2001; van Heijst et al. 1997; Gamper

et al. 1999). These are broken down into Generic ontology, Domain ontology,

Task Ontology and Application Ontology shown in the diagram below.

FIGURE 3-5: TYPES OF ONTOLOGY (GUARINO 1997)

Generic ontology or Foundational ontology defines very general concepts about

the world such as “Time”, “Object”, “Entity”, “Action”, “Event” etc. These

concepts are independent of domains and tasks and thus can be reused across

applications. One example is CYC (Lenat & Guha 1990), a generic ontology that

provides thousands of concepts and millions of axioms for formalizing

commonsense knowledge for reasoning. Another example is SUMO (Suggested

Upper Merged Ontology) (Niles 2001), the largest formal public ontology in

existence today developed by the IEEE Standard Upper Ontology Working Group

(http://suo.ieee.org).

http://suo.ieee.org

55

Domain Ontology defines concepts that are specific to particular domains. For

example, the Accounting domain defines concepts such as “Debit”, “Credit”,

“Asset”, “Liability”, etc. While a Medical domain ontology will define concepts

such as “Disease”, Symptom”, “Medication”, “Surgery” etc. Domain ontologies

may be reused across applications that belong to the same domain. For example,

the Unified Medical Language System (UMLS) ontology offers numerous

biomedical and health related concepts that can be reused across biomedical and

e-Health systems. Domain ontologies can be thought of as extensions of

Foundational Ontologies. A purpose suggested by Valente 1995 for the use of

domain ontologies is to act as abstract core concepts that play a pivotal role in

reasoning, and that they may be a source for constructing special inference

services in spatial and temporal reasoning. For example, Valente 1995 developed

a formalism and inference engine for reasoning with (legal) norms, as a part of

legal core ontology for law. As a general guideline, concepts in the domain

ontology are usually nouns.

Task Ontology defines domain independent concepts that are related to generic

tasks (e.g. negotiation task, diagnosis task) or problem-solving methods (e.g.

propose and revise method, board-game method). For example, a Negotiation

Task Ontology may define concepts such as “Offer” and “Reserved Price”, while

an Inventory Management Ontology may define concepts such as “Order” and

“Inventory Count”. Task ontology can be reused in similar tasks across different

applications. As a general guideline, concepts in the domain ontology are usually

verbs, actions or related nouns.

Application Ontology defines concepts that are specific to the application. Since

each application is typically characterised by a particular domain(s) and a

particular task(s), Application Ontology are basically a synthesis of Domain

56

ontologies and Task Ontology that have been specialised to model the

application’s specific knowledge needs. For example, an application ontology of a

Real Estate Agency MAS may define concepts such as “House-offer-price”, which

is the specialisation of concept “House-price” from a Real Estate Ontology and

the concept “Offer” from a Negotiation Task Ontology. Application ontology

normally cannot be reused across applications because each different application

normally engages in a different combination of domain and tasks as well as

numerous custom concepts particular to that application (Ying 2006).

3.2.2.2 The extended meta-model

The ontology taxonomy in the previous section represents a very general view of

structure of ontology. However, for the purpose of MAS development this model

is not sufficient. Elements that are missing or not explicit in this model are:

Communication ontology – According to FIPA standards, communications consist

of the speech acts (Searle 1969). Agent communication languages such as ACL

and KQML provide a standard for agent communication. These languages enable

an agent to specify the intention and the content of a message as well as the

protocol, the language, and the ontology that are used. Without a these

elements (protocol, language and ontology) the message would not be

understood. So there is a necessity to use association ontology to link these

elements. The communication ontology will help define the syntax in which the

agents communicate with. For example, an agent A wants to say “hi” to agent B.

In this case a formally defined Greetings concept will specify the protocol

“inform” (FIPA ACL), the language as RDF, and ontology of the English language

containing the word “hi”.

57

The communications ontology should be constructed while modelling the agents

and establishing their interactions.

Mediation Ontology - Mediation ontology are used for heterogeneous MASs that

makes use of external entities. It provides a layer of abstraction to those external

sources. The idea is very similar to that of a Mediator Pattern in OOP for

subsystems. These entities can be:

Information sources – Repository of information or data. For example, a

database. The mediation ontology should capture concepts and relations that

conceptualise the information stored inside the resource or those that needs to

be used and accessed by the MAS. It may be derived from the information

source’s conceptual schema (Guarino 1997).

Application Systems or services – The corresponding mediation ontology will

capture all the concepts relating to the operational interface of the source,

including all accessible resources and services. In the case of other MASs, the

ontology would also include communication protocols for interaction with those

agents.

In these systems, only the agents that are directly interfacing with the external

sources will need to hold knowledge of the Mediation ontology, since only these

agents are required to know about the conceptualisation of the resources’

applications. The figure below illustrates how Mediation ontology is used.

58

FIGURE 3-6: MEDIATION ONTOLOGY

Specialised Domain Ontology and Specialised Task Ontology– Every MAS will

require its own specialised ontology which is modelled in the application

ontology. Although the domain ontology should provide the application ontology

all the concepts that it needs, sometimes it might be missing details or

information that might be specific to the application. This is especially the case

when the domain ontology is not developed for the particular MAS and existing

ontology is being reused. For example, an animal ontology would have a concept

called “Dog” and have attributes such as “Breed”, “Fur Colour” and “Weight”.

While an ontology used for a Pet shop Application may require extra attributes

such as “Diet”, “Number of walks required per week” etc. This way the

specialised domain ontology allows us to add another layer of abstraction and

allows us to extend the domain ontology for specific applications while at the

same time keeping the domain ontology to be generic as possible so that it can

59

be reused. Similarly, the Specialised Task Ontology has the same rationale.

Specialised Ontology will also include action actions.

Rules and Axioms – Ontology in most MAS systems today are used as a medium

for communication and understanding between the agents. The reasoning of the

agents are designed and implemented within the agents themselves. Another

approach to this is to have the rules and axioms to accompany the ontology so

that the agents can use it for reasoning through existing reasoning engines

without having to implement its own. Although ontology supports reasoning,

through languages such as OWL, it is very hard to model complicated logic within

the ontology itself. This is the reason for the introduction of rule languages such

as SWRL (A Semantic Web Rule Language) (SWRL 2008). A simple use of these

rules would be to assert that the combination of the hasParent and hasBrother

properties implies the hasUncle property. Informally, this rule could be written

as:

hasParent(?x,?y) ∧ hasBrother(?y,?z) ⇒ hasUncle(?x,?z)

From this rule, if John has Mary as a parent and Mary has Bill has a brother then

John has Bill as an uncle.

Extending the common structure of ontology with additional elements, we arrive

at a more complete ontology model for MAS. In terms of implementation of the

ontology for agent consumption, the Generic, Domain and Task Ontology are not

required. However, for the purpose of completeness and additional semantics,

they are included in the model. The relation between the ontology above is

illustrated in the diagram below presented in UML.

60

FIGURE 3-7: ONTOLOGY META-MODEL

3.2.2.3 Ontology Development Process

Ontology development methodology is a series of steps set for defining a process

in which ontology could be created systematically. Because of the myriad factors

such as purpose, intention and domain for ontology, finding a common

methodology for the purpose of ontology engineering is difficult. Currently there

are several major methodologies that could be considered such as the Mike

Uschold and King’s skeletal methodology, Bernarass et alia, TOVE and SENSUS

and those surveyed in (Cristani 2005), all of which either do not provide details of

building steps or are domain specific. The surveyed methodologies also do not

consider the ontology for the purpose of agent consumption in the context of

AOSE. The scope of this thesis does not cover methodology for the modelling of

ontology. An adapted ontology engineering methodology will be considered as

future work. Therefore the domain expert should use methodologies mentioned

61

above in conjunction with the guidelines provided below for the modelling of the

ontology in the meta-model. For the purpose of the case study and its evaluation,

we have used an iterative method based on (Ying 2006).

For the purpose of illustration and documentation, UML is used as a graphical

representation of ontology and ontological concepts (see Section 3.2.2.4.1).

Ontology is modelled using an Integrated Development Environment (IDE) for

ontology modelling called Protégé (see Section 3.2.2.4.2).

3.2.2.3.1 Constructing the ontology

 The developer has two choices in this step. He/she can either find and use

existing ontology or construct each ontology themselves. The reuse of ontology

involves matching the required concepts to existing ontology such as SUMO or

Cyc. The developer can then either use the entire ontology or just parts of the

ontology where only the required concepts are present. The advantage of using

existing ontology is that it provides compatibility which bridges the syntactic gap

with existing standardised generic ontology. This will make problems such as the

ontology mapping (Kalfoglou 2003) task easier. The disadvantage of using of

existing ontology is that it may be time-consuming to identify all the concepts

that are required in the existing ontologies.

The developer has the option of creating their own Generic, Domain and Task

Ontology. The advantage of this is that it can be much faster and the ontology

will only contain relevant concepts. The disadvantage of this is that it becomes a

custom ontology. Although the concepts may be generic in nature, the

combination of these concepts will have very little reuse value. In essence, it will

become a part of the application ontology.

62

A simple example of Generic, Domain and Task Ontology for the Computer Shop

example is illustrated in Figure 3-8 below.

FIGURE 3-8: AN EXAMPLE OF GENERIC ONTOLOGY

3.2.2.3.2 Customising Domain and Task Ontology for Application
Ontology

Application ontology needs specific attributes and relationships specific to the

MAS. Since Generic, Domain and Task ontology should be as generic as possible,

they are not necessarily used by the application ontology. For example, a concept

such as “Laptop” may include an attribute called “User Rating” which is only

relevant to the MAS application.

3.2.2.3.3 Modelling domain and task concepts

63

If Generic Ontology has already been constructed then, the Specialised Domain

and Task Ontology are simply adding attributes and relationships that are specific

to the MAS application. The developer will need to identify the Domain and

concepts from the requirements documentation. For example, the requirement

may allow the agent to accept user queries and perform searches. This indicates

the need to know about the information retrieval domain, which involves

concepts such as “Query”, “Keyword” and “Hit”.

Similarly a Specialised Task Ontology may need to reuse or specialise concepts

from the Task Ontology. For example, consider a Computer parts inventory

management MAS which may involve “calculate stock order”. Specialisation of

Task Ontology concepts such as “Calculate”, “Inventory Count” and Domain

Concepts such as “Stock” maybe required creating the specialised Task Ontology

concept called “Calculate-number-of-stock to order”.

3.2.2.3.4 Modelling specialised attributes of concepts

Attributes in terms of MAS applications have similar functions to that of

attributes of Classes in Object-Oriented Programming (OOP). That is, they store

information about the particular concept or class. They allow instances of a

concept with a unique set of attributes to be created.

After the identification of all the concepts, the developer should inspect these

concepts in further detail as some concepts may be attributes of other concepts.

For example, “CPU manufacturer” would become “manufacturer” attribute in the

concept “CPU”. Below are examples of attributes.

64

FIGURE 3-9: CONCEPT ATTRIBUTES

3.2.2.3.5 Modelling relationships between concepts

Relationships between two concepts are a type of link between the

corresponding instances of concepts. Some intuition and knowledge of the

domain may be required in identifying relationships between concepts. Concepts

can be related using three UML standard relationships:

• Generalization: it permits the generalization/specialization relationship

between two concepts that is one of the fundamental operators for

constructing ontology.

• Association: it models the existence of a logical relationship between two

concepts. It is possible to specify the role of the involved entities in order

to clarify the structure.

• Aggregation: it can be used to construct sets where value restrictions can

be explicitly specified; in the W3C RDF standard three types of container

object are enumerated: the bag (an unordered list of resources), the

sequence (an ordered list of resources) and the alternative (a list of

alternative values of a property). We choose to represent a bag as an

aggregation without any explicit restriction, while a sequence is qualified

65

by the ordered attribute and the alternative is identified with the only

one attribute of the relationship.

Below is an example of relationships between concepts illustrated in UML.

FIGURE 3-10: EXAMPLE OF CONCEPT RELATIONSHIPS IN UML

Note that all knowledge regarding the tasks and knowledge may not be apparent

until later stages of the development process (agent development part), thus

indicating the need for iterative refinements of both Specialised Domain and Task

Ontology.

3.2.2.3.6 Building the Mediation Ontology

If the target MAS contains external resources, the developer needs to extend the

Ontology Model to include Mediation ontologies that conceptualise the

applications provided by these resources.

• If the resource is a processing application system (e.g. a legacy system),

its Mediation ontology should capture all the concepts and relations that

conceptualise the domains and tasks/services provided by the resource;

and

66

• If the resource is an information source (e.g. a database), its Mediation

ontology should capture all the concepts and relations that conceptualise

the information stored in the resource. This Mediation ontology can be

derived from the conceptual schema of the resource, e.g. database

schema.

Generally, each resource in a MAS should be conceptualised by a separate

Mediation ontology. The developer is referred to other research work on

external resource ontology development, e.g. Hwang (1999), Pazzaglia & Embury

(1998), Mars et al. (1994), Decker et al. (1999) and FIPA (2001b).

3.2.2.3.7 Specify ontological mappings between mediation ontology and
MAS application ontology.

Ontological mappings between Mediation ontologies and MAS Application

ontologies are necessary because:

• They enable wrapper agents to translate ACL messages (formulated in

MAS Application ontologies’ vocabulary) into resource-level queries

(formulated in Mediation ontologies’ vocabulary), and from resource-

level information back to ACL messages; and

• They allow the interoperability between heterogeneous resources. For

example, information retrieved from different resources can be

integrated using MAS Application ontology.

If each heterogeneous resource is wrapped by a different agent class, each

resource’s ontology would need to be mapped against the corresponding

wrapper agent’s ontology. The different wrappers will then communicate with

67

each other to exchange the information/services obtained from the resources.

Otherwise if the heterogeneous resources are wrapped by the same agent class,

it is most efficient for each resource’s ontology to be mapped against the agent

class’s ontology, which acts as the common ontology.

3.2.2.3.8 Building the Communication Ontology

FIPA standards define agent communication in terms of speech acts (Searle

1969). These are grouped by FIPA in several interaction protocols. FIPA

standards also require agent communication to have a language and ontology.

The communication ontology defines these concepts in terms of ontology. It can

be thought of as a medium used to communicate domain concepts. Agent

communication languages such as ACL and KQML provide a standard for agent

communication. These languages enable an agent to specify the intention and

the content of a message as well as the protocol, language, and ontology that is

used. Without these elements (protocol, language and ontology) the message

would not be understood. So there is a necessity to use association ontology to

link these elements.

Each communication concept will contain at least three attributes: protocol,

language and ontology. Protocol refers to the FIPA Interaction Protocols (IPs). IP

specifications deal with pre-agreed message exchange protocols for ACL

messages. Refer to (FIPA 2002) for details. Language is the representation

language of the domain ontology. For example, OWL or RDF could be used for

modelling the ontology. Finally, ontology refers to the name of the domain

ontology or concept that is referred to in the communication. Figure 3-11 below

illustrates communications between an Inventory Agent and a Sales Agent.

68

FIGURE 3-11 COMMUNICATION ONTOLOGY EXAMPLE

In the above diagram, the Sales Agent starts a conversation with the Inventory

Agent. The conversation contains the Computer ontology, the Query protocol

and the RDF language. This means that the Sales Agent wants to perform a

speech act based on the FIPA’s query protocol in order to ask the Inventory

Agent on how much stock is available(number of stocks) provided by the

Computer ontology.

The Communication Ontology requires knowledge of agents. Therefore, this will

be deferred to the Agent Development Part. However, the concepts such as Sales

and Inventory and stock availability will still be modelled in the ontology. Hence

the domain expert is not required to be aware of agents.

3.2.2.3.9 Adding logic through Rules and Axioms

Although logic is already modelled into the ontologies through description logic

in languages such as OWL, complex business logic is hard to model. For this

reason, the use of rules and axioms to accompany the ontology will fill this gap.

For example, a simple rule that asserts that Laptops are computers. Laptop(?x) ⇒

Computer(?x), can be modelled using the subclass facility in OWL as:

Class(Laptop partial Computer)

69

or

Subclassof(Laptop Computer)

The Equivalent Semantic Web Rule Language (SWRL) rule for such a rule would

be:

Implies(Antecedent(Laptop(I-variable(x)))

 Consequent(Computer(I-variable(x))))

For complicated logic however, would be much harder to model in ontology

languages such as OWL. For example:

Computer(?x) & (=?y numberOfScreens) (?x) ⇒ (>=?y numberOfVideocards) (?x)

This means that a computer must have equal or more video cards than screens.

By modelling business logic in the ontology, the ontology will dictate the

behaviour of the agents. This allows knowledge to be specified at a higher level in

ontology as appose to low level programming languages used to implement the

agents. The modelling of business logic in rules and axioms however is out of the

scope of this thesis and will not be covered in detail.

3.2.2.3.10 Specifying Ontological mappings between Application
Ontologies

When developing the application ontology the developer should also consider

the specification of ontological mappings between ontologies. Ontological

mapping is a semantic correspondence between two concepts of two different

ontologies (Madhavan 2002). Research in linguistics, logics and psychology has

70

proposed much potential semantic correspondence between concepts (Winston

et al. 1987). Winson et al. (1987) presents a taxonomy of semantic

correspondence that pertain to the part-whole relationships. Storey (1993)

suggested seven major semantic correspondences between concepts:

“inclusion”, “possession”, “attribution”, “attachment’, “synonym”, homonym”

and “case”. They can therefore adopt whichever semantic correspondence suits

that mapping of the target MAS application ontology. However, the developer

should consider the following three basic semantic correspondence, which covers

the majority of the possible semantic associations between concepts (Parent &

Spaccapietra 1998):

Equivalence - this is where two concepts are semantically equivalent. For

example, concept “LCD Screen” is the computer ontology is equivalent to the

“LCD Display” in the Entertainment Systems domain ontology.

Subsumes – this is where one concept semantically includes another concept,

either in terms of whole-part, specialisation or instantiation. For example, the

concept “Computer” in the Computer Domain Ontology subsumes “Calculator” in

the Electronics Domain Ontology.

Intersects - this is where one concept overlaps partially in semantics with

another concept. For example, “Computer System” in the computer ontology

intersects with the concept “Home Entertainment system” in the Entertainment

Systems ontology.

The related MAS Application ontology can either be mapped against each other,

or against a common ontology. Normally, when there are more than two

ontologies to be mapped amongst themselves, the second approach should be

71

favoured over the first. The common ontology to be used in the second approach

may be one of the existing MAS ontology itself, or built from scratch from

existing application ontologies.

Generating ontological mappings is a time consuming and error prone task. There

are several research works in performing this activity. Some of them include:

Ehrig and Sure (2004), Kalfoglou & Schorlemmer (2003), Calvanese et al. (2001)

and Madhavan et al. (2002). The domain expert may use one of these as a guide

for completing this task.

3.2.3 Step 3: Code Generation

The purpose of this step is to convert the ontology into code that will assist agent

implementation in the agent development part. Because the agent development

part is still work in progress, the sophistication of the generated code from this

step is essential for the determination of the processes that will be required in

the agent development part.

Bean Generator was used to generate Java code for the ontology modelled in

protégé. Below is a screenshot of the generator.

The ontology bean generator plug-in is a Protégé Tab widget which generates

java files representing an ontology that can be used with the JADE environment.

With the bean generator tool you can generate FIPA/JADE compliant ontologies

from RDF(S), XML and Protégé projects.

72

FIGURE 3-12: SCREENSHOT OF ONTOLOGY BEAN GENERATOR

Bean Generator is fairly simplistic and does not include features for generating

Rules and axioms. Bean Generator also does not generate any agent related

code. A tool that can generate more agent relevant code and those that can

handle rules and axioms can be thought of as future work. Refer to Appendix A2

and Appendix B3 for examples of generated java code.

3.2.4 Tools and techniques

This section presents tools and techniques used for the ontology development
process.

3.2.4.1 GT Guided Tool

73

We have adapted the GT process for identification and grouping of concepts. The

identification of concepts is an intuitive and time consuming task that does not

have a clear guided process. The aim of this tool is to provide the user with a

methodological process to do this. The implementation of this tool is done as a

proof of concept. Some features have not been implemented and will be

considered future work. Refer to Appendix C1 for implementation source. The

process is shown below in Figure 3-13.

It is a linear process where the output of one step is used as the input for the

next.

FIGURE 3-13: GT GUIDED PROCESS FOR CONCEPT INDENTIFICATION

The process begins with data collection. This can be in the form of requirements

documentation, scope or thoughts and even concepts in the entered text. The

tool requires some form of text as in input data source. Figure 3-14 shows a

screenshot of the interface of the tool that that allows user to input the data

source in the form of existing file. The user also has the option to manually input

text in the text area. Although the source needs to be entered as text, other

74

sources such as notes from discussions or interviews with domain experts can

also be translated to text and entered.

FIGURE 3-14: GT GUIDED TOOL FOR COLLECTING DATA SOURCE

Once the data source as been entered, the user may go through and select

concepts and/or categories from the next step as a part of open coding (Figure

3-15). The open codes are listed on the right hand side. The user may also add

concepts that are not identified in the input text. Another feature would be the

tool parsing the input text and counting occurrences of keywords and suggesting

possible concepts in a separate list. This however has not been implemented yet.

75

FIGURE 3-15: GT GUIDED TOOL FOR OPEN CODING

Once the user is done identifying concepts in open coding, the “Next” button will

bring them to the first part of axial coding (Figure 3-16). Figure 3-15 above is a

screenshot of the tool where the user is allowed to refine the open codes

selected in the previous step. The codes are split into concepts, categories or

properties. The user still has the option to add additional concepts and

properties. When the concept is selected in the top right, the “concept

properties” listed directly below will automatically update with the properties of

that concept. This can be edited by adding in concepts using the “Add” button or

by selecting from the list of open codes on the left.

The “Next” button will end this step and bring the user to the second part of axial

coding. In this step, the user identifies the relationships between each concept.

Right now the tool supports one to one relationships (Figure 3-17) and two-way

76

relationships (Figure 3-18). Many-to-many relationships will be considered as

future implementations.

FIGURE 3-16: GT GUIDED TOOL FOR AXIAL CODING AND CONCEPT REFINING

77

FIGURE 3-17: GT GUIDED TOOL FOR AXIAL CODING AND RELATIONSHIP DEFINITION

78

FIGURE 3-18: GT TOOL FOR AXIAL CODING AND RELATIONSHIP DEFINITION - 2 WAY RELATIONSHIPS

Once the axial coding steps are complete, the “Finish” button will bring the user

to the result page. This is the output of the concepts, properties and relationships

the user has defined from the original text input. This output can then be used

for modelling the ontology in OWL or other formats through tools such as

Protégé (Section 3.2.2.4.2). A screenshot of the output is shown in Figure 3-19.

79

FIGURE 3-19: GT GUIDED TOOL FINAL OUTPUT

3.2.4.2 Ontology languages

Currently there are many presentation languages for ontologies. For the purpose

of documentation, a graphical language for ontology modelling is recommended

to facilitate communication and provide a visual aid. Some examples include

UML, IDEF5 Schematic Language and LINGO. However, if the graphical language

is not powerful enough in terms of expression for the ontology, textual languages

such as CycL, KIF, KL-ONE and DAML+OIL can be used. Alternatively, XML based

languages such as OWL can used as a visual representation for ontology

(Separate visualisation tools will be needed such as Protégé and VisOWL plugin).

For modelling in the design and analysis stage, UML and Object Constraint

Language (OCL) will be used. Examples in the case studies will also use this.

80

Using UML, the ontological concepts are represented as UML classes. Attributes

of the concepts are represented by attributes of classes. Operations/methods of

the classes are not modelled because ontology only captures the structure of the

concepts, not their behaviour (Bergenti and Poggi 2002).

Relationships between concepts are represented as relationships between

classes. UML allows for the representation of the following types of relationships

between concepts (Object Management Group 2003):

FIGURE 3-20: CONCEPT AND ATTRIBUTES IN UML

Generalisation – concept A is a type of concept B. For example, “Laptop” is a

type of “Computer”.

Laptop Computer

FIGURE 3-21: GENERALISATION OF CONCEPT IN UML

Aggregation – concept A is a part of concept B. For Example, “CPU” is a part of

“Computer”.

ComputerCPU

FIGURE 3-22: AGGREGATION OF CONCEPTS IN UML

Composition – a stronger type of aggregation. When A is part of concept B, then

A only exists if B exists. For example, “Single Result” is a part of “Search Results”.

81

FIGURE 3-23: COMPOSITION

Association – when concept A is related to concept B. An association relationship

may be described by a predicate, which is basically an ontological concept itself

(Bergenti & Poggi 2002). For example, “Employee” is related to “Company”

through “Job”.

Each relationship between concepts should be annotated with cardinalities,

which indicates the number of potential instances of each concept that may be

involved in the relationship.

FIGURE 3-24: ASSOCIATION WITH CARDINALITY IN UML

FIGURE 3-25: LEGEND OF CARDINALITY

Axioms, rules or other assertions that specify constraints on the ontological

concepts, attributes and relationships are modelled by OCL. OCL constraints are

represented as notes in UML.

82

Course
students

Classroom1..* 0..1

Course.students >= 10

FIGURE 3-26: CONSTRAINS IN UML

Ontological mappings use an extension of Dependency or Instantiates of UML.

The corresponding semantic correspondence (equivalent, subsumes or intersect)

is used as a label. If the mapping is bi-directional, then the arrow can be double-

headed.

FIGURE 3-27: ONTOLOGICAL MAPPING IN UML

3.2.4.3 Ontology modelling tool

Protégé – OWL

The Protégé-OWL editor is an extension of Protégé that supports the Web

Ontology Language (OWL). OWL is the most recent development in standard

ontology languages, endorsed by the World Wide Web Consortium (W3C) to

promote the Semantic Web vision. "An OWL ontology may include descriptions

of classes, properties and their instances. Given such an ontology, the OWL

formal semantics specify how to derive its logical consequences, i.e. facts not

literally present in the ontology, but entailed by the semantics. These

entailments may be based on a single document or multiple distributed

83

documents that have been combined using defined OWL mechanisms" (see the

OWL Web Ontology Language Guide).

The Protégé-OWL editor enables users to:

• Load and save OWL and RDF ontologies.

• Edit and visualize classes, properties, and SWRL rules.

• Define logical class characteristics as OWL expressions.

• Execute reasoners such as description logic classifiers.

• Edit OWL individuals for Semantic Web markup.

Protégé-OWL's flexible architecture makes it easy to configure and extend the

tool. Protégé-OWL is tightly integrated with Jena and has an open-source Java

API for the development of custom-tailored user interface components or

arbitrary Semantic Web services. Below is a screen shot of the Protégé –OWL

development environment.

Figure -3.3.9 Protégé-OWL development environment

84

3.3 Agent Development

FIGURE 3-28: ONTOLOGY PART OF THE MOMA PROCESS

This section details the Agent Development part of the MOMA methodology

(outlined in red in the figure above as a part of the overall process).

The purpose of the Agent development Part is to implement the ontology and

code generated from the ontology into the agent application. The ontology

should contain the domain knowledge. It is up to the agent developer to identify,

design and code the agent “societies”.

This part is performed by the agent developer or software engineer. With the

intended requirements of the agent application and the code generated from the

85

ontology development part, the agent developer will need to identify the agents

as well as define their logic. Some of this may already be generated as code and

the agents modelled as concepts. It is the agent developer’s task to implement

the agent application given the knowledge (in the form of code) from the domain

expert.

This thesis does not cover the methodology for designing agents that use those

methodologies reviewed in chapter 2.

This part varies in difficulty depending on the sophistication of the code

generated in Ontology Development part. For the purpose of the case studies in

Chapters 4 and 5, this part will be seen as a black box.

3.3.1.1 JADE agent platform

JADE (Java Agent Development Framework) is a software framework fully

implemented in Java language. It simplifies the implementation of multi-agent

systems through a middle-ware that claims to comply with the FIPA specifications

and through a set of tools that supports the debugging and deployment phase.

JADE is most used agent platform in agent-related scientific projects. It is

available under Open Source License.

The communication architecture offers flexible and efficient messaging, where

JADE creates and manages a queue of incoming ACL messages, private to each

agent; agents can access their queue via a combination of several modes:

blocking, polling, timeout and pattern matching based. The full FIPA

communication model has been implemented and its parts have been clearly

distinct and fully integrated: interaction protocols, envelope, ACL, content

languages, encoding schemes, ontologies and, finally, transport protocols. The

86

transport mechanism, in particular, is like a chameleon because it adapts to each

situation, by transparently choosing the best available protocol. Java RMI, event-

notification, and IIOP are currently used, but more protocols can be easily added

and integration of HTTP has been already achieved. Most of the interaction

protocols defined by FIPA are already available and can be instantiated after

defining the application dependent behaviour of each state of the protocol. SL

and agent management ontology have been implemented already, as well as the

support for user defined content languages and ontologies that can be

implemented, registered with agents, and automatically used by the framework.

In the past work, ontology has had to be manually translated into more

redistricted machine readable formats such as XML, database schema, or object

oriented schema in order to bridge the communication gap between software

agents and the ontology. JADE agent platform can also through Protégé, take

advantage of and use the FIPA compliant ontology in Java that is generated

directly from Java ontology Bean Generator.

3.3.1.2 Ontology Management

FIPA recommends MAS store ontology on an ontology server(s), which is

exclusively controlled by an “ontology manager” agent. Other agents in the

system that wish to obtain, access or update ontology would need to

communicate with the Ontology Manager.

87

FIGURE 3-29: ONTOLOGY MANAGER

Potential Tasks of the “ontology manager” agent are:

• To perform all necessary reasoning, inferences or ontology-mapping

activities to answer ontology-related queries posed by other agents.

• To distribute copies of ontology to authorised agents

• To control the update of ontology

• To inform the other agents of changes in the ontology

The use of a specialised “Ontology Manager” agent is useful in that it helps to

relieve the workload from the other agents by taking care of all ontology-related

reasoning and mapping activities. It also helps to ensure security by checking

whether a particular agent is authorised to obtain a requested ontology.

The “Ontology Manager” Agent is an application-independent component that is

generally provided by the implementation framework. FIPA-based platforms such

as JACK, JADE, FIPA-OS and ZEUS all provide this. The developer therefore does

not have to design one from scratch, but can customise the provided

specification of the provided “Ontology Manager” agent to suit the application.

88

The alternative choice for the developer is to let the agents have direct access to

the ontology without using the “Ontology Manager” agent. This will provide a

much simpler design. However, the drawbacks are that the system loses access

control and management of the ontology. The agents would also need to

perform all the reasoning and mapping activities themselves.

3.4 Testing

Testing and evaluation will exist on several levels. The tests can be carried out at

different levels of development. The testing and evaluation refers to the testing

of the application to be developed and not the methodology itself. The testing

and evaluation of the methodology is through case studies in Chapter 4 and 5.

Concept testing

Concept uses tools to verify that the ontology is correct before moving on to

implementation. Concept testing involves two steps.

Finding missing concepts – this is can be done while stepping through the

scenarios. While going through the scenarios, the developer will check if all the

concepts that were used in the scenario that are needed by the agents have been

modelled in the ontology. For example, for the scenario used above, while

stepping through the scenario, the developer might realise that there is only a

concept for reserved price, but not minimal price. The developer would then add

this concept into the ontology at the appropriate place.

Scenario testing – Scenario testing can be done before any modelling or

implementation. The aim is to run through scenarios to logically verify whether

the system will work. By developing full scenarios, problems can be identified

89

early before any development has begun. This stage of testing would also set the

ground and generate ideas for modelling and implementation. For example,

consider an application involving trading agents. A scenario might be a simple

negotiation between two trading agents A and B. The scenario starts with agent

A offering agent B amount z for an item. Agent B will consider the offer by

following the logic:

If offer z >x where x is the reserved price, then accept offer.

Else if offer y < z < x where y is the minimum acceptable value, then make counter

offer of value n where y < n <x.

Else decline the offer.

Once agent A receives a response of accept or decline then the trade ends here,

but if agent A receive a counter offer, then agent A would use a similar logic as

above to that of agent B, to make another offer or decline or accept the offer.

Once the scenario is set out, the developer would step through it with different

values to verify that the logic is sound.

Consistency testing – this is where the complete ontology is modelled in a tool

such as Protégé and by exploiting tools associated with ontology representation

languages (e.g. OWL/DL), perform automatic checking of consistency using a

reasoner.

90

3.5 Summary

This chapter presented the MOMA methodology used to construct ontology for

multi-agent consumption. The MOMA process strings together several tools and

methodologies in creating agent applications. MOMA is broken down into two

parts, Ontology Development and Agent Development. Ontology Development

involves the domain expert identifying concepts and relationships and modelling

it as ontology. This is then generated as Java code to be used by Agent

Development. In the Agent Development part, agent developers implement the

stub code generated from the ontology code produced by Ontology

Development part. The result is the agent application. Agent Development was

not discussed in this thesis.

In the next chapter, a detailed case study in the financial services domain is

conducted using MOMA.

91

Chapter 4. Case study in the financial services

domain

The financial landscape is complex and volatile by nature, making timely

information about market trends critical to strategic success. As a result, the

study of financial market behaviour exists as a consequential field of endeavour

for researchers and financial analysts alike.

In order to gain a collective understanding of financial markets, it is important to

observe and investigate the relationships between trends and characteristics

across different markets. However, due to the complex conglomeration and

distributed nature of financial domain information, the majority of such analysis

is carried out at a low level, requiring extensive knowledge of programming

languages. This can be problematic for those financial information consumers,

researchers and analysts who do not have the expertise required for carrying out

complex development in these languages.

The purpose of this case study is for the evaluation of the MOMA methodology

presented in Chapter 3. This case study involves the development of an agent

application that simulates stock market trading called OntoMarketSim. This case

study is based on FINBuilder, a process our team has been working on since 2003

(Sujanani 2005). This case study was accepted as a journal paper, “The

development of ontology driven multi-agent systems: A case study in the

financial services domain” and will appear in the Computing and Informatics

Journal, Volume 3, 2009 (Ying 2009). Through this case study, we will evaluate

the benefits of MOMA. Namely, it will allow researchers and domain experts in

the field of finance to create smart agent applications without the need for

extensive agent design and lower level programming. By specifying the logic and

92

domain knowledge in the ontology, the reuse and sharing nature of ontology can

be exploited, allowing parts of the ontology to be shared and reused.

This chapter will be organised as follows: Section 4.1 will give an introduction and

background to the case study as well as motivations behind the case study.

Section 4.1 will also give an overview of the architecture of the end result.

Section 4.2 and 4.3 present the use of MOMA methodology for the case study for

Both Ontology Development and Agent Development parts respectively.

Section 4.4 will discuss testing and running of the resulting application. Section

4.5 will contain discussion and evaluation of the MOMA methodology for this

case study. Section 4.6 will give a summary of the chapter.

4.1 Introduction

This case study will look at the process undertaken using the MOMA

methodology in the design and development of financial market simulator

(OntoMarketSim) – an application that facilitates user customisation of agent

interaction within the financial domain. The introduction of an ontology-driven

infrastructure for use in the financial domain would enable experimentation

activities such as pre-trade and behavioural analysis of financial markets to be

conducted by end-users at a more intuitive level than is currently possible.

4.1.1 Financial Multi-agent systems

Conventionally, research into financial markets has involved analytical

frameworks described mathematically. Traditional mathematical methods used

to study financial market behaviour such as statistical analysis have been

identified as having shortcomings such as the following (Vergara et al. 2003):

93

• They are able to describe macroscopic properties of a system already in

existence, but not the origin of these properties. This type of analysis

involves studying financial data from different financial markets and then

identifying regular patterns or laws governing the statistics of the data. It

usually does not include examining the imperatives and actions that

produced the financial data to begin with.

• They cannot be easily applied to situations where the assumptions

behind mathematical equations no longer hold. The majority of

statistical methods and techniques developed to analyse data are

applicable on the condition that the variables involved satisfy certain

assumptions - for example, that the sample comes from a normal

population. However, in cases where the assumptions do not hold, these

methods cease to be valid and hence should not be used.

• They do not handle heterogeneity in populations well. Traditionally, the

behaviours of traders have been described with mathematical models and

their interaction with financial market analysed under equilibrium

conditions. In reality, it is not always the case that financial markets and

traders exhibit the rational behaviour reflected in mathematical models.

Traders for example, display heterogeneity in their trade decision-making,

interpretation of company announcements and market trends, and

adaptive behaviours.

In these instances, alternatives such as agent-based models or non-parametric

methods need to be considered. In dealing with the dynamics of collections of

entities, agent-based models are better equipped to handle the different kinds of

global dynamics that can result from these entities significantly impacting on

each other through their interaction within changing environments.

94

However, of the financial agent systems described in the literature, we found

that most of the agents in these models were intrinsically algorithmically linked,

with mathematical functions dictating and modifying the agents' behaviours

(Neuberg 2003). Furthermore, in the majority of the work surveyed, the agent

infrastructures were closely coupled with the application domain knowledge

required to dictate the agents' behaviours. By placing most of the explicit domain

information within the agents themselves, any potential to re-use the multi-

agent infrastructure in conjunction with different domains was destroyed.

With these problems in hand, OntoMarketSim will be developed using the

MOMA methodology to evaluate the effectiveness of design of such a system for

the purpose of financial market simulation. The main objectives of this

application will be the separation of domain knowledge from underlying agent

code through the use of ontology. This will hence allow domain experts and

typical users of the system to dictate the behaviour of the application through

high level concepts rather than low level programming language. Another

beneficial side effect is the potential for sharing and reuse of the domain

knowledge.

4.1.2 Architecture

Figure 4-1 illustrates the overall application architecture of OntoMarketSim after

all implementation. Following the acquisition of financial market knowledge, the

conceptual outline of the financial ontology was developed. This enabled the

process of specifying the ontology in Protégé to be more accurate and allowed

for easier verification of knowledge and concepts.

95

 The OntoMarketSim tool was developed within an agent-based framework that

interfaced with the ontology using MOMA. We investigated a number of multi-

agent platforms and decided to use the JADE framework as it had the greatest

amount of ontology support. JADE has a content reference model which enabled

ontologies subscribing to its model to be accessed by its agents. The model

required the inclusion of low-level ontological elements - predicates, terms,

concepts and agent actions. Using the Bean Generator Tool from step 3 of the

Ontology Development part of MOMA (Section 3.2.3), we were able to generate

a FIPA/JADE compliant ontology automatically from the ontology modelled in

Protégé through which agents could be implemented.

The financial domain also influenced the design of the behaviours of the

OntoMarketSim agents - such as reactions to different financial events and

trading decisions. To create the market environment, trading data was acquired

and modified from market data sources and fed into OntoMarketSim by hard

coding the data into the system. This was done for a controlled simulation. This is

illustrated in Figure 4-1 by the external entity Trading Data Sources which

produce the Market Data feeds. For the purpose of this case study these data

sets were hard coded.

96

FIGURE 4-1: ONTOMARKETSIM OVERALL ARCHITECTURE

In the next section we will look at how we used MOMA in designing the whole

application.

4.2 Ontology Development

A survey of current work discovered few financial domain ontologies, and none

of those found had been written with the purpose of utilisation in multi-agent

systems in the manner proposed by this case study.

For instance, in the stock market ontology of (Alfonso 2005), the low-level design

details that describe the elements, relationships and rules of a stock market

domain are presented. Though the paper focuses on the reusability of the

ontology, it does not provide an application demonstrating how this could be

made possible. In another two studies (Zhang 2000; Zhang 2003), the authors

propose the use of financial domain ontologies within a multi-agent system.

However, the ontologies developed were used only as a common semantic

97

interface for agents where domain knowledge still resides within the agents. Our

aim is to allow end-users (i.e. financial domain experts) to specify the system

without needing the knowledge required to program agent behaviour in low-

level languages. Other studies of financial market ontologies mainly focussed on

ontology mapping such as mapping across different news sources or information

formats (Snoussi 2003).

4.2.1 Step 1: Concept Identification

The application for this case study is not very complex and will not need a large

number of concepts, hence it would easier to construct our own domain

ontology. For identification of concepts, we used the GT Guided Tool (Section

3.2.1).

The source data used was partial selected extracts from Wikipedia and Douglas

Mctaggart “Economics” fourth edition in the form of text. The extracts contain

concept definitions and explanations of financial market mechanisms. These are

used as input for the GT guided tool as a starting point for the extraction of

concepts. The text extracts were entered into the tool as text.

Figure below depicts the process of using GT tool for identification of concepts.

98

FIGURE 4-2: CHAPTER 4 CONCEPT IDENTIFICATION

The resulting concepts we have identified:

Stock, Portfolio Order, Macroeconomic Events (MacroEvent), Company, Profit,

Loss, Buy, Sell, Order Matching, Validate Order, Validate Portfolio, Take Over,

Market, Trader, Order Type, Process Order, Invalid Order, Owns, Process Order

Error, Amount, Price.

Note that concepts such as Amount and Price can be a part of the generic

ontology, but here we will treat them as integers. The relationships are

illustrated in the next section.

4.2.2 Step 2: Ontology Modelling

4.2.2.1 Customising Domain ontology for Application

Figure 4-3 presents a portion of our financial domain ontology where the

concepts Portfolio, Stock, Company and MacroEvent are children of an abstract

root concept called Concept. Additionally, the concepts TakeOverEvent,

99

LossEvent and ProfitDropEvent are child concepts of MacroEvent. The dotted

lines connecting concepts represent a non parent-child relationship. The

relationships between the concepts Portfolio and Stock are 'containsStock' and

the inverse 'isPartOfPortfolio'. Relationships for the concepts Company and Stock

are 'isIssuedBy' and 'ownsStock'. For Company and MacroEvent the relationships

are 'hasEvent' and 'eventBelongsTo'.

FIGURE 4-3: GRAPHICAL REPRESENTATION OF PARTIAL FINANCIAL DOMAIN ONTOLOGY

The Specialised task ontology for this case study Task ontology will only be

“Perform Order Matching” and “Update Stock tables” for the order processing

Agent. The Trader Agent will have its behaviour modelled as in the task ontology.

Refer to Section 4.5. “The Event Agent Behaviour” and “Order Agent Behaviour”

will be the task ontology for the Event Agent and Order agents respectively.

Although the concepts Buy and Sell were considered as Tasks, they will be child

concepts of TraderAction, which is implemented at code level. Please refer to

Appendix A1 for the full ontology in RDF/OWL.

4.2.2.2 Building the Mediation Ontology

100

Mediation ontology would only apply for macroeconomic events if they are

external to the system or if the market data was dynamically changing and have

and external source. Since both of these are handled in the application itself by

internal agents Mediation ontology is not required here.

4.2.2.3 Building the Communication Ontology

The communication ontology defines the concepts that are used when the agents
interact with each other. The communication ontology for OntoMarketSim is
show below.

FIGURE 4-4: ONTOMARKETSIM COMMUNICATION ONTOLOGY

In the diagram above, there are four agents, the TraderAgent, OrderAgent,

EventAgent and the OrderProcessAgent. The EventAgent informs the Trader of

the change in macroeconomic events that are specified in the MacroEvents

ontology. The TraderAgent submits an order depending on the updates it

receives from the Event Agent. The other is specified through the ontology Agent

Action, which can be the concept Buy or Sell. TraderAgent also provides the stock

101

and the amount. The OrderAgent forwards the request to the OrderProcessAgent

which processes the order and sends transaction details back to the TraderAgent

for it to update its portfolio.

4.2.2.4 Adding logic through Rules and Axioms

An advantage of the use of ontologies is that the conditions can be classified

through description logic reasoning. For a simplistic example using the ontology

illustrated in Figure 4-3, we could create defined concepts

GoodInvestmentCompany as a sub-concept of the concept Company. The

GoodInvestmentCompany is defined as:

This simply means that a GoodInvestmentCompany is Company and is being

taken over. We then create another concept called GoodStock as a sub-concept

of Stock to define the stocks issued by instances of GoodInvestmentCompany.

Through the use of inferencing we could derive instances of the concepts

'GoodStock' which can be used by the trading agents. This however was not

implemented. To implement this feature, an agent must either be setup to

interface with a reasoner or the rules and axioms are generated or implemented

in agent code. All other agents that require inference will need to interact with

this agent to access the reasoner.

102

4.2.2.5 Specifying Ontological mappings between application
ontology

Since the application only deals with one application ontology, this step is not

required.

4.2.2.6 Modelling ontology in Protégé

Modelling of the ontology was done in Protégé. We used Protégé which stored

the ontology internally as RDF for a number of reasons. Firstly, we felt the

Protégé interface was both intuitive and user-friendly, not requiring a large

amount of time to become familiar with. Secondly, it contained numerous plug-

ins that enabled the user to extend the editor's core functionality. Some of the

plug-ins that looked especially useful was the OntoViz Tab, which enabled the

visualisation of Protégé ontologies and the XML Tab, which enabled Protégé

ontologies to be extracted from XML files and XML files to be translated into

Protégé ontologies. This could facilitate the depiction of the ontology in a more

presentable manner.

There was a major benefit in exploit the tools associated with the ontology

representation language (e.g. OWL/DL) to perform automatic checking of

consistency. This is done by a reasoned (RacerPro) through a DIG interface in

Protégé. Any defect will lead back to the conceptualization step resulting in a

cyclic ontology development process. A development snap shot is show in Figure

4-5.

103

FIGURE 4-5: PROTEGE ONTOLOGY DEVELOPMENT SNAPSHOT

4.2.3 Step 3: Code Generation

Using the Bean Generator Tool, we were able to automatically generate a

FIPA/JADE compliant ontology automatically from the ontology specified in

Protégé through which agents could be implemented. The code was generated

using the Protégé plug-in, Bean Generator. Please refer to Appendix A2 for the

output.

4.3 Agent Development

This section briefly details the development and implementation of the agents.

4.3.1 Agents and reasoning

104

It is the agent developer’s task to identify the agent from both the ontology and

requirements. For example, the concept “Trader” is modeled as a concept in the

ontology. The developer will identify this as being an agent and implement it as

an agent class. Further he would subclass these further, into simple trader,

intermediate trader and advanced.

Having established the agent environment, we developed some scenarios with

which to test the OntoMarketSim tool. Agents were assigned different

responsibilities and levels of sophistication for trading. These agents are

identified from both the requirements and the ontology.

Order Agent: This agent carries out the role of the interface between the market

and the traders. It is comparable to an electronic trading website that allows

traders to submit buy and sell orders.

The frontend of OntoMarketSim includes an interface for entering external

orders into the system. This is especially useful when we want to atomically test

an agent's behaviour as it enables us to rapidly enter test orders into the system

and observe the agent's reaction to the market state.

Order Processing Agent: In essence, this agent carries out the functions of a

stock market trading engine. It communicates with the Order Agent in order to

receive new orders and send back confirmations of order submissions. In

addition, this agent updates the market buy and sell order tables by performing

order matching. These tables display a continual listing of the current buy and sell

orders - including the prices set for limit orders, the stock name and symbol, and

the order quantity. Once a successful transaction is completed, the agent either

105

removes the orders from the tables, or updates the buy and sell quantities

displayed.

Event Agent: The prices of stocks in the simulated stock market are only affected

by macroeconomic events. The Event Agent represents these events, and

disseminates announcements relating to companies to all traders.

Communication between this agent and the trader agents is carried out through

messages conforming to the macroeconomic event ontology layer. Each trader

agent's reaction to these events varies according to its level of sophistication. An

alternative implementation would use the Mediation ontology, if macro-

economic events were updated via an external information source.

Trader Agent: Trader agents comprise the main entities of interest in the

prototype. Through their performance, the ability to simulate trading with the

financial ontology can be evaluated. OntoMarketSim models the heterogeneity of

stock market traders through three different trader agent types. These are:

• Simple Agent - exhibits primitive trading behaviour.

• Intermediate Agent - has moderately informed trading behaviour.

• Advanced Agent - possesses sophisticated trading behaviour.

In order for meaningful comparison of agent performance to take place, each

agent is initialised with an ownership of the same number and valuation of

stocks. Each agent is also provided with a list of stocks that they are interested in

buying. This reflects real-world trading decisions to invest in technology stocks or

blue chip stocks. For the purposes of better performance comparison, we

decided to standardise the number of shares each agent buys or sells on each

106

trade. Additionally, OntoMarketSim enables these settings to be defined at

trader initialisation.

The main differences in behaviour arise from the agents' buying and selling

strategies, and from their reaction to market macroeconomic events. For

example, being the most primitive, the Simple Agent type is designed to ignore

trend indications given by market macroeconomic events, while the Intermediate

Agent and Advanced Agent behaviours react to these events. The reasoning

behaviour of the agents is implemented through a series of conditional

statements of the form:

for all C conditions and A actions. Agents evaluate each conditional statement as

true or false by consulting the financial ontology. The statements vary depending

on the sophistication of each trader agent. For example, an agent of intermediate

intelligence incorporates the following conditions in its behaviour:

Each agent also has a trading portfolio, comprising of realised and unrealised

profit tables. These can be viewed at any time during a OntoMarketSim

(company has loss) -->
 do: suspend trading for x time
(drop in profit) -->
 do: suspend trading for x time

(company is being taken over) -->
 do: buy shares
(currently hold takeover target company shares) -->
 do: suspend trading for x time; sell shares

107

simulation, and are dynamically updated every time an order transaction is

successfully completed. The updating of the portfolio is carried out through the

passing of information committed to the portfolio ontology layer. In addition, a

graph of the profits over the total trading time can be viewed and is updated

automatically.

An example of a scenario would start with a macroeconomic event agent creating

an instance of TakeOverEvent concept. The instance of the TakeOverEvent

concept is shown below by an OWL/RDF representation.

 <TakeOverEvent rdf:ID="TakeOverByCompanyX">

 <isTakenOverBy rdf:resource="#CompanyX"/>

 <eventBelongsTo rdf:resource="#CompanyY"/>

 </TakeOverEvent>

This is sent through the Macroeconomic Event Layer of the financial ontology.

Because the trader agent shares the same ontology, it would immediately

understand the concept and compute a response. Depending on the

sophistication of the trader agent reasoning, conditional statements will be

evaluated using the TakeOverEvent concept. A response by the trader agent will

either be nothing or creation of an instance of OrderDetails with attributes

representing sell or buy orders of certain quantities of stock. An example of an

OrderDetails instance in OWL/RDF is shown below:

 <OrderDetails rdf:ID="OrderDetailsInstance16">

 <amount rdf:datatype="&xsd;int">10</amount>

 <price rdf:datatype="&xsd;float">143.2</price>

 <orderType rdf:datatype="&xsd;string">Buy</orderType>

108

 <stockOrder rdf:datatype="&xsd;string">CompanyXStock</stockOrder>

 </OrderDetails>

The instance of OrderDetails is then sent to the order agent through the order

layer of the ontology. Once matching and validation is complete, the instance of

OrderDetails get passed onto the order processing agent which in essence

updates our virtual stock market.

Although reasoning and logic is implemented in the underlying code, with the

help of a better code generator or the use of agents that implement reasoner,

MOMA intends to extract this logic from the lower level code and move it to the

higher level ontology. This will be considered as future work.

4.4 Testing

As the application domain of OntoMarketSim did not already have a standard set

of prescribed evaluation criteria, we developed an evaluation strategy based on a

heuristic evaluation technique described in (Ray 2003). This involved both testing

OntoMarketSim with predefined inputs and demonstrating it to a number of

different individuals with varying knowledge and expertise in the fields of

information technology and finance.

A number of discrete event simulations with varying macroeconomic event

combinations were run using OntoMarketSim. Figure 4-6 shows the graph of the

portfolio values of a Simple Agent and an Intermediate Agent, that both traded

with an equal number of shares from the same company over a common time

period.

109

FIGURE 4-6: PORTFOLIO VALUES OF A SIMPLE AGENT TRADER AND AN INTERMETDIATE AGENT

The macroeconomic event that occurred during this period was an

announcement that the company was the target in a takeover. This

announcement occurred at the start of the trading period - in Dec-05.

As indicated in the graph, the Simple Agent, which was not responsive to the

macroeconomic event, continued trading, as it normally would have. The black

line on the graph goes to zero in Aug-06 as the agent has sold all its holdings, and

has realised all its profits. The Intermediate Agent, on the other hand, was

receptive to the company announcement through interaction with the financial

ontology and reasoning. As a result it ceased trading for a short time to allow for

market stabilisation, before re-commencing. In this instance, its strategy was

successful. While the results obtained by each simulation were not always the

same, they did show that OntoMarketSim successfully demonstrated the use of

ontologies with heterogeneous agents within the financial domain.

4.5 Discussion and Evaluation

The initial problem of simulating a simple stock market environment for this case

study was implemented successfully using the MOMA methods. We can see that

110

the generated code from the ontology development part of MOMA useful in

providing the knowledge, and building parts for the agent implementation.

Without the generated code, the implementation would have taken much longer.

Although the methodology itself did not be completely carried out by the domain

expert themselves, further case studies and research will help devise a structured

methodology for the Agent Development part of MOMA. The ontology

development part however did not require agent or programming expertise at

all. With a smart code generator, MOMA would give more control of the agent

application logic. Ultimately, we envision the Agent Development part would

contain implementation of generic code that would run on the generated code

from ontology without modification.

In regards to reuse and sharing, the domain ontology in theory can definitely be

reused for another agent application (even one with different requirements since

the domain ontology would not change in this case). However, the agent

implementation will not be able to be reused as it is customised to the specific

requirements of this case study. Due to the small scale of this case study, further

exhaustive case studies are required to verify the reuse and sharing capabilities

of the ontology. Without a meta-model to guide the building of ontology, the

ontology cannot be separated into the distinct modules and therefore will make

it much harder to reuse.

OntoMarketSim was demonstrated on a Windows platform, however, it would

be able to run on any platform that has the Java Runtime Environment. The JADE

framework is also able to integrate with web browsers and Java Applets, so the

application could be translated into a web service in the future, enabling greater

flexibility. Similarly, due to the underlying JADE infrastructure, the prototype may

111

be run on multiple computers with little complication and hence it has been

assessed as scalable.

The prototype consisted entirely of the financial ontology layers, and agents.

Hence its design was modular. In addition, coupling was loose, as agents

communicated with each other through the sending and receiving of messages

that subscribed to the ontology. Thus they did not necessarily need to know the

names of the other agents to whom they were sending messages to as generic

broadcasting techniques could be employed.

Interoperability - The specification of the ontology in Protégé enables sharing

across applications and agents. The layered approach taken to the development

means that concepts could be specified in separate smaller ontologies and then

combined into a larger encompassing ontology.

Agent Communication - The ontology semantically unified agent communication.

OntoMarketSim agents needed to merge information from diverse sources -

other trading agents, market data and macroeconomic events. The financial

ontology played a critical role here as it enabled agents to derive semantic

understanding from the exchange of data. The most obvious advantage of

inserting an ontology layer between the agent infrastructure and domain

knowledge layers was that common domain knowledge was able to be specified

in a single source, communicable to all entities that required it. Thus, while the

agents were essentially heterogeneous in nature - having different behaviours

and perceptions, the financial world they functioned within, was consistent

across all agents.

112

The ontology plays a crucial role as agent communication is solely carried out

through the passing of messages that subscribe to the ontology. This means that

whenever an agent receives information for another agent - for example, when

the Order Agent receives a sell order from a Trader Agent - no meaning

translations are required to understand the communication. Thus, the need for

the actual financial domain information to be coded at the infrastructure layer in

order for all agents to understand is removed. Also eliminated is the need for

human interpretation and supervision to facilitate agent reasoning and dictate

behaviour.

Below is a table summarising stepwise the problems that were encountered in

each step of the methodology and solutions where the problem was resolved.

Tasks MOMA Problems and

Issues

Solution

Identify domain and
task ontology – doing
so helped us model
the domain of the
agent application,
which can then be
used for the
implementation of
the application.

The use of Standard upper
ontology such as SUMO or Cyc
for small applications takes up
more time than necessary
(having to sort through a large
ontology for only a few
concepts).

 The developer needs to
make a compromise
between the time and
effort needed to build
ontology off a standard
one and the potential for
the ontology to be
reusable.

Several Concepts were missed
when performing this step.

Additional Concepts were
discovered through
scenario-based testing.

Customising domain
ontology for
application – this
allowed generic
ontology to be
extended and
customised as
application ontology.
By doing this, the

Does not support complex
logic when modelling
application ontology.

Rules and axioms can be
achieved through the use
of “defined” concepts in
protégé using OWL.
However, this proves to be
difficult to implement in
code. Also Bean Generator
does not support
generation of defined

113

generic ontology can
be shared and
reused.

concepts to code.

Intermediate concepts were
required to classify the
concepts. E.g. buy and sell
concepts would have a
TraderAction parent. There
was no sub-step for creating
these concepts.

These concepts were
added in, but it is noted
that an additional sub-step
is required to
accommodate this.

Adding logic through
Rules and Axioms –
modelling the
business logic of the
agent application in
ontology.

Hard to add logic through
rules and axioms by
generating into code.

Use an agent that is
interfaced with a reasoner
to perform reasoning for all
other agents.

TABLE 4-1: CHAPTER 4 LESSONS LEARNED

After several iterations of the development steps, the ontology was complete.

From the evaluation of the problems above, some limitations that were not

foreseen were discovered. Namely, the need for development steps to needs to

be iterative and the inclusion of a sub-step for discovering intermediate

concepts.

In terms of satisfying the objectives of MOMA that were initially set out, the

following table summarises the evaluation of each (refer to section 3.1 for details

of each objective):

Objective Evaluation

1. Structured meta-

model for reuse

and sharing

Although the meta model was designed to support

reuse. The nature of the case study means that we

could not test this fully.

2. Move business

logic and domain

knowledge from

underlying agent

code to higher

Domain knowledge is definitely been moved from

the agent code to the ontology. However, some of

the behaviour and business logic of the agents

themselves still needs to be coded in the Agent

Development Part. This is majorly due to the fact

114

level. that generation of code for axioms and rules is not

supported.

3. Facilitate the use

of tools to

accelerate

development.

MOMA is driven by the use of tools as a part of its

processes. The use of tools definitely sped up the

development, especially for time consuming tasks

such as concept identification.

4. Reuse of existing

ontology.

Refer to 1.

5. Distinguish roles

between domain

expert and agent

developer

There is a clear distinction between the roles of

domain expert and agent developer. The two parts

of MOMA separates these roles. However there is

still requirement for the agent developer to request

information from the domain expert.

6. Usability by

domain expert

without the agent

developer

This objective has not been satisfied. Without the

agent developer, at its current state MOMA cannot

produce a working agent application. This is limited

by the ability of the code generator. The ultimate

goal is to have the ontology be generated into code

that can be plugged directly into a generic agent

framework.

TABLE 4-2: CHAPTER 4 EVALUATION OF MOMA METHODOLOGY

4.6 Summary

This chapter looked at a case study in the financial services domain which utilised

the methodology presented in Chapter 3. A discussion of the case study was also

presented. This chapter showed that there is potential for the MOMA

methodology to be used by domain experts and researchers in the financial

115

domain without the knowledge and expertise of agent development and lower

level programming. However, further research is required to fully exploit this

benefit. The benefit of reusing agent application itself is not possible, however

the reuse of the ontology at the state before it is turned into code can be reused

for similar agent applications in the domain with slightly different requirements.

Overall this case study showed that the MOMA methodology can be used to

build agent applications in the domain of financial services while meeting

majority of its objectives set in chapter 3. The result of this case study showed

gaps in, and parts of, the methodology that required ad hoc meeting the

requirements and objectives. These gaps identified further areas of further

research and future work.

The next chapter will present the second case study in the domain of e-Health.

116

Chapter 5. Case study in the e-Health domain

The term e-Health is a relative recent term for healthcare practice which is

supported by electronic processes and communication. With an increase in

development and research in areas such as telemedicine and Electronic Medical

Record (EMR), the e-Health domain makes a good candidate for the introduction

of agent applications in solving many of its problems.

The purpose of this case study is for the evaluation of the MOMA methodology

presented in Chapter 3. This case study involves the development of an agent

application that tries to solve the interoperability problem in data retrieval in the

e-Health domain. This case study is based on previous work on OBMAS for e-

Health (Wimalasiri 2003). This case study was submitted for publication as “An

Ontology Driven Multi-agent Approach to Integrated e-Health Systems” for the

Journal of Biomedical Informatics. The scenario of new born babies will be used

due to the enormity of the scope of this application. The scenario is suggested as

a part of a discussion with an experienced medical doctor. Although this was

considered as a proof of concept, implementation was carried out for the

Ontology Development part of MOMA.

MOMA with full agent implementation was illustrated in Chapters 3 and 4. Hence

the agent part is not the focus of this thesis. The focus of the case study in this

chapter focuses only on Ontology Development.

This chapter will be organised as follows: Section 5.1 will give an introduction and

background to the case study as well as motivations behind the case study.

Section 5.2 and 5.3 present the use of MOMA methodology for the case study for

both Ontology Development and Agent Development parts respectively.

117

Section 5.4 will contain discussion and evaluation of the MOMA methodology for

this case study. Section 5.5 will give a summary of the chapter.

5.1 Introduction

Increases in the quality of patient healthcare are dependent on transparent

access to distributed patient information. The current healthcare industry finds

healthcare consumers exercising their freedom to visit any number of healthcare

providers who adopt Electronic Health Care systems that does not coordinate

with other providers (HMT 2005). During each episode of care, an addition or a

modification is made to the Electronic Health Record (EHR) that is stored with the

respective healthcare providers. The quality of service provided by a healthcare

provider is intrinsically dependent on the availability and the interoperability of

this distributed patient health information (Katehakis 2001). In a clinical setting,

each healthcare provider should be able to browse and query the patient’s

healthcare record, irrespective of the locality or format of the EHR. Information

held within these various EHRs may allow the healthcare provider to make a

more informed diagnosis or recognize potential adverse drug interactions.

The need for collaboration between healthcare providers arises from the way

healthcare consumers view and utilise the services of health care providers.

Healthcare consumers generally visit a number of different healthcare providers

over the course of their life, depending on their need or their proximity to the

healthcare provider. An individual may visit his/her local GP for a mild influenza

and/or vaccinations, but use the services of a specialist for treatment of a severe

medical problem (e.g. cancer). Similarly, a patient may visit one healthcare

118

provider when he is at home and another when he is away on business. As a

result, patient records tend to be divided and dispersed amongst several

different healthcare entities leaving each with incomplete information.

Management of this medical information is crucial to both healthcare providers

and consumers.

The need for collaboration is further bolstered by changes in today’s society in

terms of new ways of which doctors interact with patients. While the doctor-

patient relationship has traditionally been hallowed turf, it is quickly becoming an

impersonal one to the extent that they may no longer involve any face-to-face

contact. The internet has further revolutionized the industry as more and more

individuals consult online doctors to have their prescriptions filled and symptoms

diagnosed. Each online transaction represents another detail in a patient record

that is not to be accessible using the current healthcare system (Besell 2002). As

a result of those developments, healthcare providers are less likely to be

informed about their patient’s entire treatment history. It is evident that the

quality of healthcare could be improved substantially if all relevant information

were available to each healthcare provider.

While there is an obvious need to share and exchange health information, lack of

standards and coordination between different health information systems have

resulted in isolated islands of information. Healthcare providers need to be

presented with a unified view of a patient’s medical record, transparent from its

distributed nature.

This case study addresses semantic interoperability amongst these e-Heath

systems using an Ontology-Based Multi-Agent application

119

5.1.1 Standardisation

Heterogeneity is a product of the intrinsic differences between healthcare

providers. Since healthcare providers have a particular focus in service provision,

their e-Health systems are similarly designed. For instance, a pharmacist may

need only to store information on prescriptions, while a physician would store

medical histories as well. Furthermore, the healthcare domain is always evolving,

reflecting new treatments and guidelines. Diabetes diagnostic tests, for instance,

have evolved from testing for the presence of glucose in urine, to measuring

blood glucose levels, to the glycosylated haemoglobin A1c test. The results of

each test have different thresholds and units, requiring an individually specific

structure and schema to store (Ganguly 2005). As such, e-Health systems that

adopt a new standard due to an update in both structure and schema for its data

will be substantially different to e-Health systems that still adhere to old

standards.

The ultimate aim in e-Health systems is to allow two healthcare providers to

exchange patient health information seamlessly. One approach involves

restricting e-Health systems to a standardised format or schema such as MML

[http://www.medxml.net/], thus enabling interoperability with any supporting

Clinical Computing Systems (CCS). This can be quite restrictive in terms of both

implementation and extensibility of those e-Health systems if all systems had to

model their internal data in the same way.

http://www.medxml.net/

120

 A second approach is to use standardized messaging protocols such as those

specified by HL7 (Orguna 2005). These and other such standards and frameworks

have been developed to enable the interoperability and integration of distributed

and heterogeneous e-Health systems. Even if HL7 or some other standard

messaging protocols are implemented, there is no guarantee that the semantics

will match. For example, a date can easily be transferred a cross systems using

such protocols where both systems will understand both the meaning and the

data. However, depending on the implementation of the system, there might be

confusion when trying to interpret the data. This date might refer to date or birth

or the date the record was created. In this case, the semantics of the relationship

was not clearly communicated by the messaging protocol.

Interoperability solutions are of four types: physical level (e.g. connectors), data

level (e.g., schema designs), specification level (e.g. CORBAmed framework) and

semantic level (e.g., semantic web). The problem of semantic interoperability is

most difficult (Ganguly 2005). We believe standards translate the problem of

semantic interoperability to specification level, a level at which most standard

solutions exist. Our experience with CORBA and HL7 suggests that it is possible

for applications to communicate with these standards, but semantic

interoperability is still a problem. These methods allow semantic interoperability

to a degree by establishing a standard messaging protocol.

While standards guarantee a certain level of interoperability (Wong 2003), an

agreement on a high level schema – a prerequisite for effective co-operation

between e-Health systems – is impossible to either establish or to maintain

(Rector 1991)These standards only form a partial solution to the problem of

syntactic and semantic interoperability. Furthermore, standards present the

following problems:

121

• All participating healthcare providers in any transaction have to use the

same standard. If two entities are using different standards, the two

distinct pieces of software will not be able to communicate.

• Standards have to be maintained in a constantly changing environment.

• Clinical computing systems that are restricted to standards for internal

data modelling or schema may not meet their particular business

requirements

We realise that reliable interoperability is achievable only with a universally

accepted standard. Given the complexities of the field of healthcare as

demonstrated by the number of standards currently in existence, this prospect is

highly unlikely. Integrating e-Health systems of different standards or indeed

even non-standardized e-Health systems will be critical to the success of

collaborative healthcare processes. Several CCSs attempt to address this need by

creating multiple interfaces, one for each standard. This solution is obviously not

scalable and does not accommodate generic ad hoc e-Health systems.

5.1.2 Agent applications for interoperability in e-health

Although standards such as HL7’s Reference Information Model can also define a

high level conceptual schema for communication, it does not support reasoning

and is subject to a variety of logical flaws (Smith 2006). In addition, HL7’s RIM is

data oriented in its modelling and even though it supports abstract models, it is

still at a schema level whereas ontology is at a higher level of conceptual

abstraction. There are also other insurmountable obstacles and incoherencies of

RIM which are addressed in (Smith 2006). In terms of maintenance, ontologies

122

are able to evolve and adapt easily to the discovery of new concepts and

relationships, where as a standard is more rigid in its evolution due to it being

data focused. In addition, the creation of ontology relies to a greater extent on

the knowledge of the domain of application – such as the medical domain – than

on programming and data modelling knowledge.

In an attempt to solve the semantic interoperability problem between e-Health

systems, we propose the use of an ontology-based multi-agent application. The

high level of architecture of this solution is shown in Figure 5-1. In such

architecture, agents communicate with each other through common domain

knowledge. We believe ontologies could offer a solution for the management of

information dissemination as the sharing of common domain concepts and

relationships could bridge the different perspectives of the agents. This

framework can be similarly applied to a Service Oriented Architecture and has

been proven to be successful in telemedicine domains (Davis 2006).

FIGURE 5-1: OBMAS ARCHITECTURE (SUJANANI 2005)

123

The hardware and data storage layers for the Clinical Computer Systems (CCS)

are tightly coupled and are both represented in Figure 5-2. Heterogeneous e-

Health systems will likely have its own implementation and can store data in

different ways. An example of a storage technique is use of a relational database.

Patient data will likely be stored in tables with schemas that are internal to the

CCS implementation. It is therefore difficult for such systems to exchange data

due to different interpretation and storage techniques. A possible representation

of such a data store is illustrated in Figure 5-3, which presents two tables – Tables

3a and 3b use separate formats to store data for newborns which in turn may be

used by two different EHR systems. An example of an interface for a CCS with this

implementation would be a spread sheet and forms implemented in the end user

interface.

FIGURE 5-2: OBMAS LAYERED ARCHITECTURE

124

FIGURE 5-3: DATABASE SCHEMA AND DATA REPRESENTATION

Ontology helps us to overcome interoperability through defining a common

vocabulary for entities that need to share information in a domain. This not only

allows us to reuse the domain knowledge but also makes explicit assumptions

and separates operational knowledge from domain knowledge (Natalya 2008).

While ontologies have been used for sharing knowledge in many domains, this

application extends this knowledge sharing to software agents that would help

the semantic interoperability problem to some extent.

Due to the enormity of the scope, and use, of this agent application, we will be

limiting the application to medical records of new-borns.

125

5.2 Ontology Development

5.2.1 Step 1: Concept Identification

Once again, as application for this case study is not very complex and a large

number of concepts will not be required, and hence it would be easier to

construct our own domain ontology. For the identification of concepts, we used

the GT Guided Tool (Section 3.2.4).

There were multiple sources for of input data for the GT Guided Tool. These
include:

Lowell Vizenor, Barry Smith, Werner Ceusters “Foundation for the Electronic

Health Records” – used as a reference for EHR and possible record fields that

were required. This was taken in the form of text.

Group Discussions and specific contributions from an experienced medical doctor

with both concepts and scenarios. These were recorded as notes and diagrams

and later converted into text for input into the GT guided tool.

Both sources were converted into text before entered into the GT guided tool.

The figure below illustrates the process of this step.

126

FIGURE 5-4: CHAPTER 5 CONCEPT IDENTIFICATION

The identified concepts include:

Date, Time, Name, Date of Birth, Mode of Birth, Complications, Caesarean, Fetal

Discomfort

The relationships are illustrated in the next section.

5.2.2 Step 2: Ontology modelling

Domain specific ontology defines concepts in terms of semantics that are

applicable to a certain area, which in our case, it’s a subset of the medical

domain. By defining ontology as such frameworks for specific requirements,

ontology developers are able to reuse such frameworks and provide for

application and information integration. An example of such ontology in the

medical domain is the meta-thesaurus of UMLS (UMLS 2007). The Unified

Medical Language System (UMLS) project develops and distributes multi-

purpose, electronic "Knowledge Sources" and associated lexical tools for system

developers. For the OBMAS framework to perform, we ideally assume that the e-

Health systems use the same base ontology so that agents will have the same

127

perspectives of the world when interacting and exchanging information.

However, in cases where this underlying ontology differs, we would use ontology

mapping techniques such as similarity based ontology mapping techniques

(Wong 2003) to reconcile the two ontologies. These mapping techniques,

however are beyond the scope of discussion in this paper.

For simplicity, partial domain ontology is shown in Figure 5-5. These concepts will

be mapped to the lower level data within the different implementations such

that the individual data will become instances of the concepts of the ontology.

For example, the data instance “Mary” from Figure 3a will become an instance of

the concept Name. The mapping strategies of the ontological concepts are out of

the scope of this paper.

Once we have established a base ontology that provides the same domain

perspective for all agents, it is possible to develop the application specific

ontology as discussed next.

128

FIGURE 5-5: PARTIAL DOMAIN ONTOLOGY FOR NEWBORNS

5.2.2.1 Adding logic through Rules and Axioms

The application layer ontology will provide our framework with flexibility and

customisation. This layer of ontology is built on top of (and using concepts from)

the domain ontology. These individual ontologies are application specific and can

be formalised as:

O:={(H,{C},{R}.{r}) | Ci ∈ D, Rj ∈ D, i=1...m,j=1...n, r ∈ ({Ci},{Rj})} (1)

Where O is the ontology, H is the hierarchy, {C} and {R} are sets of concepts and

relations belonging to the domain ontology D. r represents the constrains that

are placed on the relationships of the concepts {C}.

129

The purpose of this layer of ontology is to provide each different e-Health system

its own way of customising and constructing concepts. Because this ontology is

built from the domain ontology that is shared by all other systems, all systems

should be able to understand each other’s application ontologies. For example,

the doctor could create a concept called CaesareanBirth as a sub-concept of

ModeOfBirth (shown in Figure 5-5). The concept refers to newborn babies that

are born through a caesarean section due to a fetal discomfort. The

CaesareanBirth concept is defined as:

CaesareanBirth ≡ ModeOfBirth ∩ ∃ mayHaveComplications.FetalDiscomfort (2)

This simply means that the CaesareanBirth concept is a ModeOfBirth concept and

has fetal discomfort as sub concept of Complication. We then could create

another concept called SpecialCaseNewborn defined below:

SpecialCaseNewborn ≡ Newborn ∩ ∀hasModeOfBirth. CaesareanBirth (3)

Through the use of inferencing we could derive instances of newborns that are

born through a caesarean section due to fetal discomfort. This can be done

through the use of a reasoning engine such as Renamed Abox and Concept

Expression Reasoner (RACER 2007).

5.2.2.2 Specifying Ontological mappings between application
ontology.

The CCS may have several layers of user interface for creating the ontology. For

system maintenance and administrators, there could be an ontology creation and

editing tool such as protégé. For general purpose use, the CCS could just translate

a search query into an ontology concept underneath and provide a layer of

130

encapsulation for the end user. The ontology language used for modelling of

these new concepts should be reasoner compliant such as OWL-DL, but again this

is an implementation issue. We have used Protégé as the platform for our

prototype ontology development.

A partial screenshot of the application ontology mentioned in the earlier section

is shown in Figure 5-6. The RDF/OWL representation of the concept

SpecialCaseNewborn is shown below:

 <owl:Class rdf:ID="SpecialCaseNewborn">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasModeOfBirth"/>

 <owl:someValuesFrom

rdf:resource="#CaesareanBirth"/>

 </owl:Restriction>

 <owl:Class rdf:about="#NewBorn"/>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

FIGURE 5-6: PROTÉGÉ DEVELOPMENT ENVIRONMENT SHOWING SPECIALCASENEWBORN CONCEPT

5.2.3 Step 3: Code Generation

Please refer to Appendix B2 for the output.

131

5.3 Agent Development

5.3.1 Agent reasoning and concept sharing

Agents are software entities that augment objects by being able to perform a

task autonomously, or with minimal guidance. Agents are able to communicate in

a high-level language based on the "speech-act theory" rather than on method-

invocation, which results in increased robustness and flexibility. Agents use a

knowledge base that contains information about themselves and their

environment and are able to migrate from one host to another, interacting with

other agents by exchanging messages using the agent communication language

(ACL). In our case, the messages that are exchanged will encapsulate the

ontology. Because the agents share the same domain ontology, the data

exchanged between two agents will have a higher level abstraction and become

instances of concepts. In dealing with the dynamics of collection of entities from

which multiple data is exchanged, agent-based models are better equipped to

handle different kinds of global dynamics that can result from these entities

significantly impacting each other through their interaction within the changing

environment.

Ontology facilitates the use of reasoning and can easily derive instances for data

requests from other agents in the form of concepts. The agents themselves do

not have to need reasoning capabilities, as the reasoning engine can be

requested from a separate entity such as a server or another agent. When the

concepts are in the application layer ontology, the interacting agent will derive

the arbitrary application layer concept by referring to its domain ontology layer

and once again establishing the same perspective of the world. This allows the

agents and their underlying systems to share new concepts as well as data and

bridge the gap of semantic interoperability.

132

5.4 Example scenario

We make use of a scenario to illustrate the agent application approach and how

it attempts to solve the semantic interoperability problem between e-Health

systems. The scenario is based on the examples in the earlier sections. We start

with a basic OBMAS setup shown in Figure 5-7, in which there are three CCS

implementations with their own EHR data stores and a common ontology. They

all use the agent framework for communication. The scenario is a doctor wanting

to find records of newborn babies that were born through a caesarean section

due to fetal discomfort, for research purposes.

The mapping between the data and ontology is illustrated in Figure 5-8 where

the two data layers belong to CCS2 and CCS3 with the common domain layer

ontology mapped to both. This is shown by the dotted arrows leading from the

Agent Framework

 FIGURE 5-7: CONCEPTUAL ARCHITECTURE

 EHR CCS1

Ontolog
y

A

A

Ontology

CCS3 EHR

EHR CCS2

Ontolog
y

A

133

domain concept to the corresponding data stored in tables. The application layer

ontology contains the new concepts built on top of the domain layer ontology by

CCS1. The doctor requests for the desired data through an interface in CCS1 in

the form of a search application. CCS1 would translate the inputs from the doctor

into concepts in the application ontology. In this case, the concepts

CaesareanBirth and SpecialCaseNewborn are defined in description logic

statements (2) and (3) respectively in Section 5.2.2. CCS1 then sends out an agent

A1 with instructions to request data for those concepts, that is, look for patient

records of newborns that were born through a caesarean section due to fetal

discomfort. Agent A1 speaks to Agent A2 giving the concepts CaesareanBirth and

SpecialCaseNewborn. Agent A2 does not recognise these concepts due to the

fact that CCS1’s application ontology differs from CCS2. Agent A2 will refer to the

domain ontology (Figure 5-5) which is shared between all the CCS and derive the

meaning of both CaesareanBirth and SpecialCaseNewborn from the domain

ontology. Now that Agent A2 understands the meaning of those concepts, it will

retrieve the data mapped to the concepts used to create the application layer

concepts CaesareanBirth and SpecialCaseNewborn. Similarly, Agent A1 repeats

the same process with Agent A3. The data collected by Agent A1 is then

formatted and displayed on CCS1’s user interface.

134

FIGURE 5-8: MEDIATION ONTOLOGY

135

5.5 Evaluation and Discussion

In terms of satisfying the objectives that were initially set out, the following table

summarises the evaluation of each (refer to section 3.1 for details of each

objective):

Objective Evaluation

1. Structured meta-

model for reuse

and sharing

Although a very simple domain ontology was used

for this case study, we can still see potential reuse.

The meta-model separates the application ontology

from the domain ontology. This will allow the

generic concepts such as “Name” or “DOB” to be

reused.

2. Move business

logic and domain

knowledge from

underlying agent

code to higher

level.

By allowing new and advanced concepts to be

formulated in the ontology, new vocabulary is

created for the agents. This will change their

behaviour in terms of the understanding and

retrieval of the information that is requested.

3. Facilitate the use

of tools

Successfully demonstrated the use of tools such as

the GT guided Tool, Protégé, Bean Generator etc.

4. Reuse existing

ontology.

As with Chapter 4, both case studies were too small

to make use of existing generic ontology, however,

some concepts maybe borrowed from them.

5. Distinguish roles

between domain

expert and agent

developer

There is a clear distinction between the roles of

domain expert and agent developer. The two parts

of MOMA separates these roles. However there is

still a necessity for the agent to request information

136

from the domain expert.

6. Enable Usability

by domain expert

without the agent

developer

The ontology part of the methodology can easily be

used by a domain expert in this case.

TABLE 5-1: CHAPTER 5 EVALUATION OF MOMA METHODOLOGY

5.6 Summary

This chapter looked at a minor case study in the e-Health domain which utilised

the MOMA methodology presented in chapter 3. Scenarios in this case study

were used as a proof of concept. The agent application solution in this case study

solved the original interoperability problem. Similarly to the case study in

Chapter 4, most of the original objectives set out for MOMA were met (although

not fully). A discussion of the case study was presented in Section 5.5.

The next chapter conclude the thesis with further discussions, overall evaluation,

limitations and consideration for future works.

137

Chapter 6. Conclusion

This chapter concludes the thesis by summarising what has been achieved in the

previous chapters. This thesis started with an introduction into ontology-based

multi-agent systems, their benefits in modelling the real world and ability to

solve complex problems. The problem of existing AOSE methodologies lacking

support for ontology was identified. MOMA was proposed as a solution and the

design and research of the MOMA methodology was given.

Chapter 2 provided the background for the problem domains of ontology and

multi agent systems, as well as their usefulness and limitations. A review of

existing AOSE methodologies confirmed the original problem that we set out of

solve.

In chapter 3, the MOMA methodology was proposed.

Chapter 4 presented a case study using MOMA to create an agent application for

the simulation of the stock market. Another case study was presented in Chapter

5 in the domain of e-Health. This case study using MOMA was for creating an

agent application to solve interoperability in information retrieval in the domain

of e-Health.

The next section will present the overall evaluations of the MOMA methodology

presented in Chapter 3. Section 6.1 will present evaluation of MOMA through the

two case studies in Chapter 4 and 5. Section 6.2 will consider future work. Finally,

Section 6.3 will finish with concluding remarks.

6.1 Evaluation

We have seen the MOMA methodology used through the two case studies in

Chapters 4 and 5. A qualitative evaluation of the agent application in solving the

138

original problem as well as how MOMA met its original objectives was given for

each case study. The original objectives of MOMA are presented in Section 3.1.

In both case studies, a structure for reuse and sharing was established. However

due to the nature of the case studies, the ontology were very simplistic and the

full extent of reuse cannot be tested fully. In both cases, the generic ontology in

each respective case study was simple and generic enough to be used for a

similar application. Tools played an essential role in both case studies. They not

only drove the development process, but were also a methodological way of

completing tasks (e.g. concept identification). In both case studies, domain

knowledge was moved from the agent code to ontology (at design time).

However, some of the behaviour and business logic of the agents themselves

could not be modelled in an ontology. This means that MOMA have not

completely satisfied the objective of allowing the domain expert to specify the

application at a higher level without having to have knowledge of lower level

programming. The roles in each of domain expert and agent developer or

software engineer were clearly separated by the two parts of development.

However, we have found that communication between the domain expert and

agent developer was still essential when implementing the application. Because

the business logic of the agent application was not able to be modelled in

ontology, the requirements must be passed onto the agent developer so that

they can implement those directly into the agents themselves.

6.1.1 Discussion

The case study scenarios allowed the methodology to be tested in real world

domains, demonstrating that the methodology is versatile enough to work in a

wide and diverse range of domains and situations.

139

The size and extent of the case studies were quite small and therefore made it

was difficult to determine the difference between required developments time

and effort compared to traditional formal AOSE methodologies. However, for the

same end result, fewer steps were required when using MOMA. In terms of

implementation, MOMA makes use of many tools and techniques such as the

Protégé IDE and Bean Generator to speed up the development process. Once

again this was difficult to compare as the majority of the AOSE methodologies are

used only for the design and analysis stages.

Collaboration required between the programmer and domain expert was

considerably reduced in the implementation stages. This was because the

ontology was generated into Java code and provided as stub files for the

programmer to work with. However in terms of design and analysis, the

programmer role was not required, but instead knowledge of agent modelling

expert was. This possibly had not been originally considered.

In terms of facilitating development with the use of tools, MOMA uses tools

throughout modelling, code generation, implementation and testing. These tools

considerably helped speed the process of development.

Compared to the AOSE methodologies analysed, MOMA undoubtedly offers

better support for the use of ontology. Very few of the existing AOSE

methodologies support the use of ontology as none are ontology driven.

6.1.2 Limitations

There are several limitations of MOMA that were realised both before and after

the case studies.

140

Section 3.1.1 details the limitations that were noted before the case studies were

carried out. These are summarised below:

• MOMA does not address the design of agents and agent “societies”, nor

the interaction and behaviour of agents with established agent theories.

• MOMA uses the Java Agent DEvelopment Framework (JADE) agent

framework implemented in Java (refer to Section 3.4.2 for details). This

limits MOMA to a single architecture.

• MOMA introduces support for adding logic in ontology through rules and

axioms, but it does not contain a methodology to formulate these from

the requirements.

• The ontology exists only at a conceptual level at the time of design.

After carrying out the case study, a few new problems and limitations were

discovered. These are detailed in the evaluation sections of Chapter 4 and 5.

• The ontology development steps are not explicitly iterative.

• There is a missing sub-step for customising domain and task ontology for

discovering intermediate concepts.

6.2 Future works

Continuation of research will focus mostly on the methodology itself, and the

extension of the methodology to address the above mentioned limitations.

Below is a list of the major areas that can be considered as future work.

141

1. Expanding case studies into various business sectors with more complex

problems and real users. This will allow us to see if MOMA can be used

other domains to solve different problems.

2. Testing usability and implementation performance. In this thesis, we have

assumed the role of the domain expert in MOMA. Usability studies needs

to be conducted for real users (i.e. experts in different fields). The

resulting implementation also needs to be tested for its performance in

solving the problem at hand.

3. Support for generation of axioms and rules into code will definitely be

useful. By having a tool that does this, we can extract both business logic

and domain knowledge from the agent implementation in the

development process.

4. The GT Guided Tool implementation is for now a proof of concept. An

improved user interface is required to render it more usable. Features like

word count and text analysis would also be welcomed to make the tool

easier to use and help the domain expert identify concepts from large

amounts of text quickly.

5. The Agent Development part of MOMA was treated as a black box.

Although the ontology were intended for consumption by agents, it would

be interesting to see if MOMA would work with different emerging

technologies other than agents. For example, semantic web services.

6.3 Concluding remarks

In summary, the research in this thesis proposed a design methodology for

ontology-based multi-agent applications called MOMA. MOMA improves on

142

existing AOSE methodologies in terms of the support for the use of ontology.

MOMA was also intended to be used by domain experts and researchers without

the agent development and software engineering expertise and knowledge.

Through the use of tools and driven by ontology, MOMA was applied through

two case studies in the domains of financial services and e-Health. It is hoped

that future work will improve upon MOMA by integrating the agent development

part with better tools. Ultimately, we envision MOMA as a useful methodology

for the creation of ontology-based agent applications that can be used by domain

experts.

143

References

1. Abrahamsson, P., Warsta, J. S. & Ronkainen, J. 2003, ‘New Directions on
Agile Methods: a Comparative analysis’, Proceedings of the International
Conference on Software Engineering, Portland, Oregon, USA.

2. Alonso, S., Bas, J., Bellido, S., Contreeas, J., Benjamins, R., Gomez, J. 2005
WP10: Case study eBanking D 10.7 Financial Ontology DIP.

3. Benjamins, R., de Barros, L. & Valente, A., 1996, Banff, Canada.

4. Bergenti, F. & Poggi, A. 2001, ‘Agent-oriented Software Construction with
UML’, Handbook of Software Engineering and Knowledge Engineering Vol
2, ed. S.K. Chang, pp. 757-770, Singapore: World Scientific Publishing Co.

5. Bernon, C., Gleizes, M., Picard, G., & Glize, P. 2002, ‘The ADELFE
methodology for an intranet system design’, Proceedings of the 4th
International Bi-Conference Workshop on Agent-Oriented Information
Systems, Toronto, Canada.

6. Bessel, TL., MacDonald, S., Silagy, C.A., Anderson, J.N., Hiller, J.E. &
Sansom, L.N. 2002, ‘Do internet interventions for consumer cause more
harm than good?’ A systematic review, Health Expect 2002; 5(1), pp. 28-
37

7. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. 2004,
‘TROPOS: An Agent-Oriented Software Development Methodology’,
Journal of Autonomous Agents and Multi-Agent Systems 8, pp. 203-236

8. Burrafato, P., & Cossentino, M. 2002, ‘Designing a multi-agent solution for
a bookstore with the PASSI methodology’, Proceedings of the 4th
International Bi-Conference Workshop on Agent-Oriented INformation
Systems, Toronto, Canada.

9. Calvanese, D., de Giacomo, G., & Lenzerini, M. 2001 ‘A framework for
ontology integration’, Proceedings of the 1st International Semantic Web
Working Symposium, Stanford, USA, pp. 303–317

10. Castro, J., Kolp, M., & Mylopoulos, J. 2001, ‘A Requirements-Driven
Development Methodology’, Proceedings of the 13th International
Conference on Advanced Information Systems Engineering CAiSE01,
Interlaken, Switzerland

11. Castro, J., Kolp, M., & Mylopoulos, J. 2002, ‘Towards Requirements-Driven
information Systems Engineering: The Tropos Project’, Information
Systems 27, pp. 365-389

144

12. Chandrasekaran, B., Josephson, J.R., & Benjamins, V.R. 1999, ‘What are
ontologies, and why do we need them?’, IEEE Intelligent Agents 14(1), pp.
20-26

13. Collinot, A., & Drogoul, A. 1998, ‘Using the Cassiopeia Method to Design a
Soccer Robot Team’, Applied Artificial Intelligence Journal 12, pp. 127-147

14. Collinot, A., Drogoul, A., & Benhamou, P. 1996, ‘Agent Oriented Design of
a Soccer Robot Team’, Proceedings of the 2nd International Conference on
Multi-Agent Systems, Kyoto, Japan, pp. 41-47

15. Cossentino, M., & Potts, M. 2002, ‘A CASE tool supported methodology
for the design of multi-agent systems’, Proceedings of the 2002
International Conference on Software Engineering Research and Practice

16. Cristani, M., Cuel, R. 2005, A Survey on Ontology Creation Methodologies
2005

17. Davies, J., Fensel, D., & Van Harmelen, F. 2003, Towards the semantic
web:ontology-driven knowledge management, Chichester, England:
Wiley.

18. Davis, J., Studer, R. & Warren, P. (ed.) 2006, ‘Semantic Web Technologies:
Trends and Research in Ontology-based Systems’, John Wiley 2006, ISBN:
978-0-470-02596-3

19. Decker, S., Erdmann, M., Fensel, D. & Studer, R. 1999, ‘Ontobroker:
Ontology Based Access to Distributed and Semi-Structured Information’,
Proceedings of the IFIP TC2/WG2.6 8th Working Conference on Database
Semantics-Semantic Issues in Multimedia Systems, New Zealand, pp. 351-
369

20. Deloach, S. A., Wood, M. F. & Sparkman, C. H. 2001, ‘Multiagent Systems
Engineering’, International Journal of Software Engineering and
Knowledge Engineering, Vol. 11, No.3, pp. 231-258

21. DiLeo, J., Jacobs, T. & DeLoach, S. 2002, ‘Integrating Ontologies into
Multiagent Systems Engineering’, Proceedings of the 4th International Bi-
Conference Workshop on Agent-Oriented Information Systems, Bologna,
Italy

22. Ding, Y. 2001, ‘The role of ontology’, Proceedings of the 4th International
Conference of Asian Digital Libraries, Bangalore, India

23. Ehrig, M., & Sure, Y. 2004, ‘Ontology Mapping an Integrated Approach’,
Proceedings of the 1st European Semantic Web Symposium, Heraklion,
Greece

145

24. Elammari, M. & Lalonde, W. 1999, ‘An Agent-Oriented Methodology: High
Level and Intermediate Models’, Proceedings of the 1st Bi-Conference
Workshop on Agent-Oriented Information Systems, Heidelberg, Germany

25. Eurescom 2001, MESSAGE: Methodology for Engineering Systems of
Software Agents - Final Guidelines for the Identification of Relevant
Problem Areas where Agent Technology is Appropriate, [Online], Available
from: <http://www.eurescom.de/public/projectresults/P900-
series/907d2.asp>

26. FIPA 2002 “FIPA Interaction Protocols, [Online], Available from:
<http://www.fipa.org/repository/ips.php3> [March 2008]

27. Falasconi, S., Lanzola, G. & Stefanelli, M. 1996, ‘Using Ontologies in Multi-
Agent Systems’, in Proceedings of the 10th Knowledge Acquisition for
Knowledge-Based Systems Workshop (KAW’96), Banff, Canada

28. Fan, X. 2000, ‘Towards a building methodology for software agents’,
Proceedings of the 6th International Conference on Object-Oriented
Information Systems,London, UK, pp. 45-53

29. Fensel, D. 2001, Ontologies: A Silver Bullet for Knowledge Management
and Electronic Commerce, Springer-Verlag, Berlin

30. Flores-Mendez, R. 1999, ‘Towards a Standardization of Multi-Agent
System Frameworks’, ACM Crossroads Student Magazine, [Online],
Available from: <http://www.acm.org/crossroads/xrds5-
4/multiagent.html>

31. Gamper, J., Nejdl, W. & Wolpers, M. 1999, ‘Combining Ontologies and
Terminologies in Information Systems’, in Proceedings of the 5th
International Congress on Terminology and Knowledge Engineering,
Innsbruck, Austria, 152-168.

32. Ganguly, P., Ray, P. & Parameswaran, N. 2005, ‘Semantic Interoperability
in Telemedicine through Ontology-Driven Services’, Telemedicine and e-
Health Journal, Vol. 11, No. 3

33. Girardi, R., & deFaria, C. 2004, ‘An Ontology-Based Technique for the
Specification of Domain and User Models in Multi-Agent Domain
Engineering’, Clei Electronic Journal 7

34. Glaser, N. 1997, ‘The CoMoMAS Approach: From Conceptual Models to
Executable Code’, Proceedings of the 8th European Workshop On
Modelling Autonomous Agents in a Multi-Agent World: Multi-Agent
System Engineering, Ronneby, Sweden

http://www.eurescom.de/public/projectresults/P900-series/907d2.asp
http://www.eurescom.de/public/projectresults/P900-series/907d2.asp
http://www.fipa.org/repository/ips.php3
http://www.acm.org/crossroads/xrds5-4/multiagent.html
http://www.acm.org/crossroads/xrds5-4/multiagent.html

146

35. Glaser, N. 1997, ‘The CoMoMAS Methodology and Environment for Multi-
Agent System Development’, Multi-Agent Systems - Methodologies and
Applications, pp. 1-16

36. Guarino, N. (ed.) 1997, ‘Semantic Matching: Formal Ontological
Distinctions for Information Organization, Extraction, and Integration’,
Information Extraction: A Multidisciplinary Approach to an Emerging
Information Technology, Springer Verlag, Berlin, pp. 139-170

37. HMT. 2005, ‘$162 Billion in Annual Savings Possible’, Health Management
Technology, Nov 2005; 26, 11; ABI/INFORM Global

38. Henderson-Sellers, B., Simons, A. & Younessi, H. 1998, The OPEN Toolbox
of Techniques, Addison Wesley Longman Ltd, England

39. Hevner, A.R., S.T., March, J., Park, J., & Ram, S. 2004, ‘Design science in
information systems research’, MIS Quarterly, 28(1), pp. 75-106

40. Honavar, V. 1999, Intelligent Agent and Multi Agent Systems, Tutorial at
IEEE CEC

41. Horlait, E. 2003, Mobile Agents for Telecommunication Applications,Kogan
Page Science, England

42. Hwang, C.H. 1999, ‘Incompletely and imprecisely speaking: Using dynamic
ontologies for representing and retrieving information’, Technical report,
Microelectronics and Computer Technology Corporation, Texas, USA

43. Iglesias, C., Garijo, M., Gonzalez, J. & J.R., V. 1996, ‘A Methodological
Proposal for Multi-Agent Systems Development Extending
CommonKADS’, Proceedings of the 10th Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada

44. Iglesias, C., Garijo, M., Gonzalez, J., & J.R., V. (1998). Analysis and Design
of Multi-Agent Systems using MAS-CommonKADS. Intelligent Agents IV
(LNAI Volume 1365), pp. 313-326

45. Jennings, N.W. 1995, ‘Applying Agent Technology’, Applied Artificial
Intelligence 9, (4)351-359

46. Kalfoglou, Y., Schorlemmer, M. 2003, The Knowledge Engineering Review
18, Cambridge University Press, pp. 1-31

47. Kalfoglou, Y., Schorlemmer, M. 2003, ‘IF-Map: an ontology mapping
method based on Information Flow theory’, Journal on Data Semantics
1(1), pp. 98-127

48. Katehakis, D.G., Sfakianakis, S., Tsiknakis, M. & Orphanoudakis, S.C. 2001,
‘An Infrastructure for integrated electronic health record services: The
role of XML’, J. Medical Internet Res., Vol. 3, No. 1, pp. e7

147

49. Kendall, E. 1999, ‘Role modelling for agent system analysis, design and
implementation’, Proceedings of the 1st International Symposium on
Agent Systems and Applications, Palm Strings, California, pp. 204-218

50. Kinny, D., Georgeff, M. & Rao, A. 1996, ‘A Methodology and Modelling
Technique for Systems of BDI Agents’, Proceedings of the 7th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World,
Eindhoven, The Netherland, pp. 56-71

51. Knoblock, C., Arens, A. & Hsu, C. 1994, ‘Cooperating Agents for
Information Retrieval’, Proceedings of the 2nd International Conference
on Cooperative Information Systems, Toronto, Canada

52. Kuziemsky, C.E., Downing, M., Black, F.M., Lau, F. 2007, ‘A grounded
theory guided approach to palliative care systems design’, International
Journal of Medical Informatics, 76S 2007 S141-S148

53. Lenat, D.B., & Guha, R.V. 1990, Building large knowledge-based systems:
Representation and inference in the CYC project, Addison-Wesley, USA

54. Lesser, V. 1996, ‘Cooperative Multi-agent systems: A Personal View of the
State of the Art’, IEEE Transactions on Knowledge and data engineering,
pp. 133-142

55. Lind, J. 2000, ‘Issues in Agent-Oriented Software Engineering’,
Proceedings of the 1st International Workshop on Agent-Oriented
Software Engineering (AOSE-2000), Limerick, Ireland, pp. 45-58

56. Lind, J. 2000, ‘The MASSIVE development method for Multiagent
Systems’, Proceedings of the 5th International Conference on the Practical
Application of Intelligent Agents and Multi-Agents, Manchester, UK

57. Madhavan, J., Bernstein, P.A., Domingos, P. & Halevy, A.Y. 2002,
‘Representing and reasoning about mappings between domain models’,
Proceedings of the 18th National Conference on Artificial Intelligence,
Alberta, Canada, pp. 80-86

58. Malucelli, A. & Oliveira, E. 2004, ‘Ontology-Services Agent to Help in the
Structural and Semantic Heterogeneity’, Proceedings of PRO-VE'04 - 5th
IFIP Working Conference on Virtual Enterprises, Toulouse, France

59. March, S. & Smith, G.F. 1995, ‘Design and natural science research on
information technology’, Decision Support Systems 15, pp. 251-266

60. Mars, N.J.I., Ter Stal, W.G., de Jong, H., van der Vet, P.E. & Speel, P.H.
1994, ‘Semi-automatic Knowledge Acquisition in Plinius: An Engineering
Approach’, Proceedings of the 8th Banff Knowledge Acquisition for
Knowledge-based Systems Workshop, Banff, Canada, 4.1-4.15

148

61. Mountzia, M. 1996, ‘An Intelligent-Agent based Framework for
Distributed Systems Management’, Proceedings of the 3rd HP OVUA
Workshop, Toulouse, France

62. Mukherjee, R., Dutta, P. & Sen, S. 2000, ‘Analysis of domain specific
ontologies for agent-oriented information retrieval’, Working notes of the
AAAI-2000 Workshop on Agent-Oriented Information Systems

63. Noy, N.F. & McGuinness, D.L. 2008, Ontology Development 101: A Guide
to Creating Your First Ontology, Stanford University, Stanford, [Online],
Available from:
<http://protege.stanford.edu/publications/ontology_development/ontol
ogy101-noy-mcguinness.html> [June 2008]

64. Neuberg, L. & Bertels, K. 2003, ‘Heterogeneous Trading Agents’,
Complexity Journal, May, pp. 28-35

65. Niles, I. & Pease, A. 2001, ‘Towards a Standard Upper Ontology’,
Proceedings of the 2nd International Conference on Formal Ontology in
Information Systems (FOIS-2001), Chris Welty and Barry Smith (ed.),
Ogunquit, Maine, October 17-19

66. Nwana, H.S. 1996, ‘Software Agents: An Overview’, Knowledge
Engineering Review, Cambridge University Press, pp. 1-40

67. Object Management Group. 2003, OMG Unified Modelling Language
Specification, [Online], Available from:
<http://www.omg.org/technology/documents/formal/uml.htm> [20
September 2008]

68. Omicini, A. 2000, ‘SODA: Societies and Infrastructure in the Analysis and
Design of Agent-Based Systems’, Proceedings of the 1st International
Workshop on Agent-Oriented Software Engineering, Limerick, Ireland, pp.
185-194

69. Orguna, B., Vub, J. 2005, ‘HL7 ontology and mobile agents for
interoperability in heterogeneous medical information systems’,
Computers in Biology and Medicine, 2005, Aug 30 [Epub ahead of print]

70. Padgham, L. & Winikoff, M. 2002, ‘Prometheus: A methodology for
developing intelligent agents’, Proceedings of 3rd International Workshop
on Agent-Oriented Software Engineering, Bologna, Italy

71. Padgham, L. & Winikoff, M. 2002, ‘Prometheus: A pragmatic methodology
for engineering intelligent agents’, Proceedings of the OOPSLA 2002
Workshop on Agent-Oriented Methodologies, Seattle, USA, pp. 97-108

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://www.omg.org/technology/documents/formal/uml.htm

149

72. Parent, C. & Spaccapietra, S. 1998, ‘Issues and approaches of database
integration’, Communications of the ACM 41(5), pp. 166-178

73. Pavon, J. & Gomez-Sanz, J. 2003, ‘Agent Oriented Software Engineering
with INGENIAS’, Proceedings of the 3rd International Central and Easter
European Conference on Multi-Agent Systems, Prague, Czech Republic,
pp. 394-403

74. Pazzaglia, J-C.R. & Embury, S.M. 1998, ‘Bottom-up Integration of
Ontologies in a Database Context’, Proceedings of the 5thInternational
Workshop on Innovative Application Programming and Query Interfaces,
Seattle, USA, 7.1-7.7

75. Peng, Y., Finin, T., Labrou, Y., Chu, B., Long, J. & WJ. 1998, ‘A Multi-Agent
System for Enterprise Integration’, International Journal of Agile
Manufacturing

76. RACER 2007 Renamed Abox and Concept Expression Reasoner
<http://www.sts.tu-harburg.de/~r.f.moeller/racer/> [November 2007]

77. Ray, P. 2003, Integrated Management from E-Business Perspective -
Concepts, Architectures and Methodologies, Kluwer Academic/Plenum
Publishers, New York

78. Rector, A.L., Nolan, W.A. & Kay, S. 1991, ‘Foundations for an electronic
medical record’, Methods Inform. Med., Vol. 30, pp. 179-186

79. SFI Artificial Stock Market, [Online], Available from:
<http://www.santafe.edu/sfi/publications/Bulletins/bulletinFall99/news/
stockMarket.html> [March 2004]

80. SWRL, [Online], Available from: <http://www.w3.org/Submission/SWRL/>
[June 2008]

81. Schreiber, A., Wielinga, B., de Hoog, R., Akkermans, J. & Van de Velde, W.
1994, CommonKADS: A comprehensive methodology for KBS
development, IEEE Expert 9, pp. 28-37

82. Searle, J.R. 1969, Speech Acts, Cambridge University Press

83. Shave, M. 1997, ‘Ontological Structures for Knowledge Sharing’, New
Review of Information Networking 3, pp. 125-133

84. Smith, B. & Ceusters, W. 2006, ‘HL7 RIM: An Incoherent Standard’, Studies
in Health Technology and Informatics, 124, pp. 133–138, Presented at
Medical Informatics Europe, Maastricht, August 2006

85. Snoussi, H., Magnin, L. & Nie, J. 2003, ‘Toward an Ontology-based Web
Data Extraction’, The Fifteenth Canadian Conference on Artificial
Intelligence AI 2002, BASeWEB Proceedings

http://www.sts.tu-harburg.de/~r.f.moeller/racer/
http://www.santafe.edu/sfi/publications/Bulletins/bulletinFall99/news/stockMarket.html
http://www.santafe.edu/sfi/publications/Bulletins/bulletinFall99/news/stockMarket.html
http://www.w3.org/Submission/SWRL/

150

86. Sugumaran, V. & Storey, V. 2001, ‘Creating and Managing Domain
Ontologies for Database Design’, Proceedings of the 6th International
Workshop on Applications of Natural Language to Information Systems,
Madrid, Spain, pp. 17-26

87. Sujanani, A., Ray, P., Bhar, R. & Paramesh, N., 2005, ‘The Development of
Ontology Driven Multi-Agent Systems: A Case Study in the Financial
Services Domain’, Proceedings of the International Workshop on Business
Services and Networks (BSN05), Hongkong, March 2005

88. Sycara, K. 1998, ‘Multiagent Systems’, AI Magazine 19, pp. 79-92

89. UMLS Unified Medical Language System, [Online], Available from:
<http://www.nlm.nih.gov/research/umls/> [November 2007]

90. Uschold, M.A. 1996, ‘Ontologies: principles, methods, and applications’,
Knowledge Engineering Review, 11(2), pp. 93-155

91. Valente, A. 1995, ‘Legal knowledge engineering, a modeling approach’,
Doctorial Dissertation, IOS Press, Amsterdam

92. van Heijst, G., Schreiber, A. & Wielinga, B. 1997, ‘Using Explicit Ontologies
in KBS Development’, International Journal of Human Computer Studies
46, pp. 183-292

93. Vergara, J.E., de López, V.A., Villagrá, J.I., Asensio, J., Berrocal 2003,
‘Ontologies: Giving Semantics to Network Management Models’, IEEE
Network, special issue on Network Management, Vol. 17, No. 3, May/June

94. W3C. n.d., OWL Web Ontology Language, [Online], Available from:
http://www.w3.org/TR/owl-ref/

95. Wimalasiri J. S., Ray p., and Wilson C.S., An Ontology Driven Multi-agent
Approach to Electronic Prescriptions, Proceedings of the 24 th Conference
of Health Information Management Association of Australia (HIMAA03),
Sydney, Australia, July 2003

96. Winikoff, M. & Padgham, L. 2004, ‘The Prometheus Methodology.
Methodologies and Software Engineering for Agent Systems’, The Agent
Oriented Software Engineering Handbook, Chapter 11

97. Winston, M.E., Chaffin, R. & Herrmann, D. 1987, ‘A taxonomy of part-
whole relations’, Cognitive Science, Volume 11, Issue 4, October-
December, pp. 417-444

98. Wong, A., Ray, P., Parameswaran, N. & Strassner, J. 2003. ‘Ontology
Mapping for the Interoperability Problem in Network Management’, IEEE
Journal of Special Applications

http://www.nlm.nih.gov/research/umls/
http://www.w3.org/TR/owl-ref/

151

99. Wooldridge, M. 1999, ‘Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence’, Intelligent Agents, London: The MIT
Press, pp. 27-77

100. Wooldridge, M. 2002, An Introduction to MultiAgent Systems, John
Wiley & Sons Ltd, ISBN 0-471-49691-X

101. Wooldridge, M.A. 2000, ‘Agent-Oriented Software Engineering:
The State of the Art’, 1st International Workshop on Agent Oriented
Software Engineering, Limerick, Ireland, pp. 1-28

102. Wooldridge, M., Jennings, N., & Kinny, D. 2000, ‘The Gaia
Methdology for Agent-Oriented Analysis and Design’, Autonomous Agents
and Multi-Agent Systems 3, pp. 285-312

103. Ying W., Ray P., Paramesh N. 2006 “Ontology Engineering in
eFinance”, workshop paper in the 1st Asian Semantic Web Conference,
Beijing 2006

104. Ying W., Sujanani A., Ray P., Paramesh N., Lee D. 2009 “The
development of ontology driven multi-agent systems: A case study in the
financial services domain” – accepted for publishing in the Computer and
Informatics Journal Vol. 3 2009.

105. Zambonelli, F. 2000, ‘Organisational Abstractions for the Analysis
and Design of Multi-Agent Systems’, Proceedings of the 1st International
Workshop on Agent-Oriented Software Engineering, Limerick, Ireland, pp.
127-141

106. Zambonelli, F., Jennings, N. & Wooldridge, M. 2003, ‘Developing
Multiagent Systems: The Gaia Methodology’, ACM Transactions on
Software Engineering and Methodology 12, pp. 317-370

107. Zhang, Z., Zhang, C. 2003, ‘Agent-Based Hybrid Intelligent
Systems’, Design and application of hybrid intelligent systems, ISBN:1-
58603-394-8, pp. 799-808

108. Zhang, Z., Zhang, C. & Ong, S. 2000, ‘Building an Ontology for
Financial Investment’, Proceedings Of Intelligent Data Engineering and
Automated Learning - IDEAL 2000: Data Mining, Financial Engineering,
and Intelligent Agents 19, LNCS 1983, 2000

152

List of Publications

1. Weir Ying, Pradeep Ray, Paramesh N. “Ontology Engineering in eFinance”

– in the 1st Asian Semantic Web Conference Workshop proceedings,

Beijing 2006.

2. Weir Ying, Anjalee Sujanani, Pradeep Ray, N. Paramesh, Damien Lee “The

development of ontology driven multi-agent systems: A case study in the

financial services domain” – accepted in the Computing and Informatics

Journal Vol.3 to appear in April 2009.

3. Weir Ying, Jaminda S. Wimalasiri, Pradeep Ray, Subhagata Chattopadhyay

and Concepción S. Wilson “An Ontology Driven Multi-agent Approach to

Integrated e-Health Systems” - submitted for publication.

4. Weir Ying, Pradeep Ray “Methodology for development of ontology-

based intelligent systems” - submitted for publication.

153

Appendix A: Chapter 4 Implementations

Appendix A1: Chapter 4 ontology implementation in OWL/RDF

File path /Chapter 4/ontology/

Development snapshot of the ontology being modelled in Protégé is shown
below:

Appendix A2: Chapter 4 generated java code

The following code was generated by Bean Generator for the ontology illustrated
in Figure 4-1 shown below.

154

Each of the Java files listed below represent the concepts. Relationships and

attributes of each concept are contained in each concept class as methods.

Files:

OntoMarketSimOntology.java
Company.java
Stock.java
Portfolio.java
TakeOverEvent.java
DropProfitEvent.java
LossEvent.java

These files are in the folder /Chapter4/generated/

155

Appendix B: Chapter 5 Implementations

Appendix B1: Chapter 5 data source for GT Guided Tool

Source one: “Foundation for the Electronic Health Record: An Ontological

Analysis of the HL7’s Reference Information Model” by Lowell Vizenor, Barry

Smith, Werner Ceusters http://ontology.buffalo.edu/medo/HL7_2004.pdf

Source two: An experienced medical doctor.

Source three: UMLS. The Unified Medical Language System (UMLS) is a

compendium of many controlled vocabularies in the biomedical sciences. It

provides a mapping structure among these vocabularies and thus allows one to

translate among the various terminology systems; it may also be viewed as a

comprehensive thesaurus and ontology of biomedical concepts. We used UMLS

as a source of reference for concept identification.

Appendix B2: Chapter 5 ontology implementation in OWL

File path /Chapter 5/ontology/

Development snapshot of the ontology being modelled in Protégé is shown
below:

http://ontology.buffalo.edu/medo/HL7_2004.pdf

156

Appendix B3: Chapter 5 generated java code

The following code was generated by Bean Generator for the ontology illustrated
in Figure 5-4 shown below.

157

Each of the Java files listed below reprsent the concepts. Reslationships and
attributes of each concept are contained in each concept class as methodods.

Files:

NewbornOntology.java:
Complications.java
DOB.java:
ModeOfBirth.java:
NewBorn.java

158

Appendix C: Resources and source code

The following appendixes represent the files that are located on the attached CD.

Appendix C1: GT Guided Tool implementation

The GT tool is implemented in Java using Java’s SWING as the graphical user
interface.

javax.swing.JFrame

GTCASEToolView

AxialCodingProperties

AxialCodingRelationships

GTCASEToolAboutBox

GTCASEToolApp

SingleFrameApplication

FIGURE 7-1: CLASS ASSOCIATION FOR THE MAINS FILES OF GT GUIDED TOOL IMPLMENATION

The GT Guided Tool is started by GTCASEToolApp.java and instantiates the rest of
the SWING JFrame GUI.

The main files are:

AxialCodingProperties.java
AxialCodingRelationships.java
GTCASEToolAboutBox.java
GTCASEToolApp.java
GTCASEToolView.java
Output.java

159

The files are packaged in NetBeans IDE (http://www.netbeans.org) working
directory form. This can be directed imported as a project in NetBeans IDE.

Appendix C2: Other tools

A list of tools and packages that is used to develop and run the agent application:

Protege 3.3.1

Protégé is a free, open source ontology editor and a knowledge acquisition

system. Like Eclipse, Protégé is a framework for which various other projects

suggest plugins. This application is written in Java and heavily uses Swing to

create the rather complex user interface. Protege recently has over 100,000

registered users.

Protégé is being developed at Stanford University in collaboration with the

University of Manchester.

Bean Generator

The ontology bean generator plugin is a Protégé Tab widget which generates java

files representing an ontology that can be used with the JADE environment. With

the beangenerator tool you can generate FIPA/JADE compliant ontologies from

RDF(S), XML and Protégé projects.

JADE 3.3

Java Agent DEvelopment Framework, or JADE, is a software framework for multi-

agent systems, in Java that has been in development since at least 2001. The

JADE platform allows the coordination of multiple FIPA-compliant agents and the

use of the standard FIPA-ACL communication language in both SL and XML.

http://www.netbeans.org

160

NetBeans 6.5

NetBeans refers to both a platform for the development of applications for the

network (using Java, JavaScript, PHP, Python, Ruby, Groovy, C, and C++), and an

integrated development environment (IDE) developed using the NetBeans

Platform.

Java SDK 6.5

 The Java Development Kit (JDK) is a Sun Microsystems product aimed at Java

developers. Since the introduction of Java, it has been by far the most widely

used Java SDK.

	Title Page - Design Methodology for Ontology-based Multi-Agent Applications (MOMA)
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations

	Chapter 1 - Introduction
	Background and context
	Research problem and motivation
	Research Objectives
	Research Questions
	Significance of research
	Research design methodology
	Organisation of thesis

	Chapter 2 - Background
	Introduction
	Agent and multi-agents
	Definition of Agent
	Definition of MAS
	Motivation for agents and MASs
	Limitations of Agents and MAS

	Ontology
	What is ontology?
	Benefits and motivation for the use of ontology
	Motivation for the use of Ontology in MAS
	Benefits of ontology to MAS development
	Benefits of Ontology to MAS operations

	Agent-Oriented Software Engineering
	AOSE Methodologies
	Support for Ontology-Based MAS Development
	Implementation for reviewed methodologies

	Summary

	Chapter 3 - Design Methodology for Ontology-based Multi-Agent Applications (MOMA)
	Introduction
	Scope and Limitations
	Overview of MOMA process

	Ontology Development
	Step 1: Concept Identification
	Step 2: Ontology Modelling
	The generic meta-model
	The extended meta-model
	Ontology Development Process
	Constructing the ontology
	Customising Domain and Task Ontology for Application Ontology
	Modelling domain and task concepts
	Modelling specialised attributes of concepts
	Modelling relationships between concepts
	Building the Mediation Ontology
	Specify ontological mappings between mediation ontology and MAS application ontology.
	Building the Communication Ontology
	Adding logic through Rules and Axioms
	Specifying Ontological mappings between Application Ontologies

	Step 3: Code Generation
	Tools and techniques
	GT Guided Tool
	Ontology languages
	Ontology modelling tool

	Agent Development
	JADE agent platform
	Ontology Management

	Testing
	Summary

	Chapter 4 - Case study in the financial services domain
	Introduction
	Financial Multi-agent systems
	Architecture

	Ontology Development
	Step 1: Concept Identification
	Step 2: Ontology Modelling
	Customising Domain ontology for Application
	Building the Mediation Ontology
	Building the Communication Ontology
	Adding logic through Rules and Axioms
	Specifying Ontological mappings between application ontology
	Modelling ontology in Protégé

	Step 3: Code Generation

	Agent Development
	Agents and reasoning

	Testing
	Discussion and Evaluation
	Summary

	Chapter 5 - Case study in the e-Health domain
	Introduction
	Standardisation
	Agent applications for interoperability in e-health

	Ontology Development
	Step 1: Concept Identification
	Step 2: Ontology modelling
	Adding logic through Rules and Axioms
	Specifying Ontological mappings between application ontology.

	Step 3: Code Generation

	Agent Development
	Agent reasoning and concept sharing

	Example scenario
	Evaluation and Discussion
	Summary

	Chapter 6 - Conclusion
	Evaluation
	Discussion
	Limitations

	Future works
	Concluding remarks

	References
	List of Publications
	Appendix A: Chapter 4 Implementations
	Appendix A1: Chapter 4 ontology implementation in OWL/RDF
	Appendix A2: Chapter 4 generated java code

	Appendix B: Chapter 5 Implementations
	Appendix B1: Chapter 5 data source for GT Guided Tool
	Appendix B2: Chapter 5 ontology implementation in OWL
	Appendix B3: Chapter 5 generated java code

	Appendix C: Resources and source code
	Appendix C1: GT Guided Tool implementation
	Appendix C2: Other tools

