
A Principled approach to kernel memory management

Author:
Elkaduwe, Karunadipathi Wasala H. M. R. D. D. B.

Publication Date:
2010

DOI:
https://doi.org/10.26190/unsworks/23083

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/45068 in https://
unsworks.unsw.edu.au on 2024-04-25

http://dx.doi.org/https://doi.org/10.26190/unsworks/23083
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/45068
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

A Principled Approach To Kernel
Memory Management

A thesis submitted to the School of Computer Science and Engineering at

the University of New South Wales in fulfilment of the requirements for the

degree of Doctor of Philosophy.

Dhammika Elkaduwe
2010

��������	
���
�������

�������	
���
�
������
���
��
�����������������
����������������
�������
��

������ �

������
������!!
����
����	�����
���"�
�������#�$�
���
����
��

%
����
�&���
����'��!���(�	�

�������)�'��������(
!���*
�	�����������

�������������
�����������������������������	
��
�����������	�����

�����

������������
�����
���
���
��
���
��+
"�(�)��%'��,(���-���.����

/0012

�/�����!!
����
����	������	
���
�
���������
���
��
�����������������

	����
�������������������������
����������������	
��
�������
�
�	�

�������� �!����
�
��!���
���	�"#���
����
��$$%��'����������������-���.����

/0032

�4�����!!
����
����	��� �

������
���������
���
��
������2��������

���� �����������������������
���
�����	�!��
��������!��&
��'��(
�������

)
����
�����	�)�������
���
��"�*�		�	���
���
���
��"�	��,������

��/0032

�5�����!!
����
����	������	
���
�
���������
���
��
������2����������

	����
�������������������������
����������'����
��
�#������C�585��

&9�'���-���.����/0082

�:�����!!
����
����	��� �

������
���������
���
��
��������"������!�

����
������������������������������
����������������	
��
��������&
� �

)�������
�����'��(
��������
���(�����
�����"�*�		�	���
���
��()���)��

������

���������)��/0082

�;�����!!
����
����	��� �

������
���������
���
��
������2�������������

#�������
�����
���$������������!������������	
��
����������	�)�������
�����

'��(
��������*+������
���
���	��������������
�������
���<
��������.����

(�����������

���������

���������)��/00;2

Abstract

Small kernels are a promising approach to secure and reliable system construction.

These systems reduce the size of the kernel to a point where it is feasible to formally verify

the implementation correctness of the kernel with respect to an abstract formal model of

the kernel’s behaviour. The system is composed of user-level components, isolated from

one another using the kernel-provided mechanisms. The abstract formal model facilitates

the enforcement, and reasoning about the enforcement of different policies between these

user-level components. However, existing formal models only capture the application-level

interface of a small kernel with no clear relationship between the externally visible access

control model and the kernel’s low-level management of physical memory.

In this work, a model for managing the in-kernel memory of a formally verified, small

kernel is designed and evaluated for its formal and empirical characteristics. The design

eliminates all implicit memory allocations within the kernel by promoting all dynamically

allocated kernel memory into first-class, explicitly allocated kernel objects. This reduces

the problem of physical memory management within the kernel to that of controlling the

authority to perform these explicit allocations and controlling the dissemination of author-

ity over already allocated objects.

A formal protection model that unifies in-kernel management of physical memory with

access control is developed by extending the take-grant model. A formal analysis carried

out on the above developed model demonstrates that the model is capable of enforcing

spatial partitioning and isolation. The extension preserves the decidability of the original

take-grant model while providing the ability to reason about kernel memory consumption

of components which is not feasible in the original model.

Performance of the model is evaluated using a prototype implementation based on an

L4 microkernel. The analysis shows no significant performance degradation due to export-

ing all in-kernel memory allocations to user-level. When enforcing spatial partitioning to

a para-virtualised Linux kernel the model shows performance improvements compared to

a L4 based system enforcing a similar policy by run-time monitoring and shows similar

performance to a L4 system that attempts no control over memory consumption and a Xen

based system.

This work demonstrates the feasibility of exporting all in-kernel memory allocations

to user-level resource managers through a capability-based, decidable, protection model.

The model shows no performance degradation in the scenarios examined and can be used

to make strong formal guarantees on memory consumption of components.

Acknowledgement

This thesis would not have been possible without the help and the encouragement of

many. In particular, lot of the credit for successfully completing this thesis should go to my

supervisor Kevin Elphinstone. His persistent support, guidance and advice made this work

a reality. I am grateful to my co-supervisor Gernot Heiser for his advice and feedback on

the project when I needed them.

In addition to my supervisors, a number of others at ERTOS enriched the project with

their knowledge and skills. The support and the guidance given by Gerwin Klein was in-

strumental for the formal modelling and analysis of the kernel’s protection model. I would

like to thank Carl Van Schaik, Peter Chubb and Ben Leslie for enriching the seL4 and

seL4::Wombat implementations with their vast knowhow on low-level system program-

ming. In addition to these direct involvements I want to thank all my colleagues at ERTOS

for their input and the team spirit which made a difficult journey enjoyable.

Even with the help and support of all the above mentioned, this work would not have

been possible without the support and the understanding of my better-half Risheeka. I

greatly appreciate her understanding and support during a stressful period. Last but not

least my deepest gratitude goes to my parents, without whom none of this would have been

possible.

Contents

1 Introduction 1
1.1 Microkernel-Based Systems . 2

1.2 A Formally Verified Microkernel . 3

1.3 Managing Kernel Memory . 4

1.4 Protection Models . 5

1.5 Aim and Scope of Research . 5

1.6 Contributions . 7

1.7 Overview of this thesis . 8

2 Related Work 9
2.1 Kernel Memory Management . 9

2.1.1 In-Kernel Policy . 10

2.1.2 Kernel Memory as a Cache . 13

2.1.3 User-Level Management . 14

2.1.4 Summary . 15

2.2 Formal Modelling . 17

2.2.1 Background . 18

2.2.2 Classical Access-Control Models 19

2.2.3 Summary . 22

3 Managing Kernel Memory 23
3.1 L4.verified – Formal Verification . 23

3.1.1 Overview of the Methodology 23

3.1.2 Proof Effort: Case Study . 24

3.2 Summary of Existing Approaches . 27

3.2.1 Reasoning About Memory . 28

3.3 seL4 Approach: Rationale . 28

4 Conceptual Model 30
4.1 Overview of seL4 . 31

4.1.1 Basic Kernel Model . 31

4.1.2 System Structure . 31

4.1.3 seL4 Memory Management . 32

4.1.4 Kernel Objects . 33

4.2 Overview of Memory Management API 34

4.3 Kernel Object Allocation . 34

4.3.1 Type and Memory Safety of Kernel Objects 36

4.3.2 Preventing User-Level Access to Kernel Data 36

4.3.3 The Capability Derivation Tree 36

i

4.3.4 Summary of the Retype Operation 39

4.4 Recycling Memory . 39

4.5 Reusing Memory . 40

4.6 Managing Address Spaces . 41

4.6.1 Exception Model . 42

4.6.2 Capability Address Space . 43

4.6.3 Virtual Memory Address Space 46

4.7 Implementation Details . 50

4.7.1 Untyped Memory Abstraction 50

4.8 Summary . 52

5 Formal Model of Authority 53
5.1 The Take-Grant Model . 54

5.1.1 The seL4 protection model — Informal Introduction 56

5.2 Isabelle/HOL system . 57

5.3 The seL4 Protection model . 58

5.3.1 Semantic Entities . 58

5.3.2 Protection State . 59

5.3.3 Operational Semantics . 60

5.3.4 The Initial System State . 64

5.3.5 Fundamental Invariant of the Model 65

5.4 Informal Correspondence to seL4 . 65

5.4.1 Concrete and Abstract Protection States 66

5.4.2 Concrete and Abstract Operations 68

5.5 Summary . 70

6 Formal Analysis of the Protection Model 71
6.1 Informal Discussion of Requirements 71

6.1.1 Capability Based Protection . 72

6.2 Predicates . 73

6.3 Necessary Conditions for Propagation of Authority 75

6.4 Enforcing Subsystems . 82

6.4.1 Example System . 86

6.4.2 Relation to Concrete System . 89

6.4.3 Reducing Resource Manager’s Complexity 89

6.5 Information Access Control . 90

6.5.1 Isolated Components . 90

6.5.2 Proof of Isolation . 92

6.5.3 Enforcing Isolation . 95

6.6 Summary . 96

7 seL4::Pistachio 97
7.1 Cost of Managing Kernel Objects . 98

7.1.1 Cost of Allocating Kernel Objects 98

7.1.2 Prototype Allocator . 102

7.1.3 Memory Overhead of Untyped Capabilities 102

7.1.4 Cost of Revoking Memory . 103

7.1.5 Cost of Recycling Kernel Objects 105

7.1.6 Different Management Policies 106

ii

7.1.7 Limitations . 106

7.2 Cost of Capabilities . 107

7.2.1 Layout of a CSpace . 107

7.2.2 Capability Lookup Cost . 108

7.2.3 Managing a CSpace . 111

7.3 Performance of Kernel Primitives . 113

7.3.1 IPC operation . 114

7.3.2 Thread Operations . 114

7.3.3 Performance of VSpace Operations 115

7.4 Summary . 119

8 Performance Evaluation 120
8.1 seL4::Wombat . 121

8.1.1 Iwana— Best-Effort Allocator 123

8.2 L4/Iguana System . 125

8.2.1 Spatial Partitioning . 126

8.3 Wombat::Insecure system . 127

8.4 Results . 127

8.4.1 Lmbench Results . 128

8.4.2 AIM9 Benchmark Suite . 133

8.5 Summary . 134

9 Conclusion 135

iii

List of Figures

1.1 Microkernel-based system construction 2

3.1 L4.verified approach to kernel verification. 24

4.1 Example system configuration. 32

4.2 Allocation of different kernel object types using the retype method 35

4.3 The capability derivation tree. 37

4.4 Propagation of untyped capabilities using mint and imitate operations. . . 38

4.5 An example CSpace layout. 44

4.6 Deleting CNode objects . 45

4.7 Creating a virtual address space . 47

5.1 Take-grant authority distribution rules 55

5.2 Graphical representation of seL4 authority distribution rules 63

6.1 Example system configuration . 72

6.2 The effect of self-referencing capabilities 76

6.3 The effect of creating new entities . 77

6.4 The effect of SysCreate on connected 80

6.5 Example System Configuration . 83

6.6 Example Subsystem Configuration . 88

7.1 Variation of the object allocation cost. 100

7.2 Example system with diverse resource management policies 107

7.3 The variation of capability lookup cost for a single-level tree. 110

7.4 The variation of capability lookup cost for a two-level tree. 110

8.1 The seL4::Wombat system. 122

8.2 Wombat system configurations. 126

8.3 The variation of pipe bandwidth of seL4, normalised to native Linux. . . . 131

iv

List of Tables

2.1 Properties of existing kernel memory management schemes 16

3.1 Break-down of lines of Isabelle proof scripts related to kernel memory

management. 25

4.1 Summary of the kernel memory management API. 34

5.1 Summary of the operations in the seL4 protection model. 56

5.2 Correspondence between concrete kernel objects and protection state entities. 66

5.3 Relationship between the operations of the concrete kernel and those of the

protection model. 68

7.1 The cost of allocating various kernel objects. 99

7.2 The cost of reusing memory. 104

7.3 The cost of recycling kernel objects. 105

7.4 Performance of capability lookups . 109

7.5 Performance of CSpace management operations 112

7.6 Cost of IPC operation. 113

7.7 Performance of thread operations. 116

7.8 Summary of VM benchmarks . 117

7.9 Cost of managing virtual memory . 118

8.1 Summary of sub-tests in benchmarks. 127

8.2 Results of the lmbench benchmarking suite. 129

8.3 Performance of seL4 and Xen on ARM. 132

8.4 Results of the AIM9 benchmarking suite. 133

v

Chapter 1

Introduction

Society has become increasingly dependent on computer systems. Consequently, the secu-

rity and reliability of computer systems is a significant issue.

A key component in constructing a secure and reliable computer system is the operating-

system (OS) kernel. The kernel, defined as the part of the system that executes in the (most)

privileged mode of the processor, has unlimited access to hardware resources. Therefore,

any defect within the kernel is capable of undermining the security and reliability of the

entire system.

Mainstream OSes, unfortunately, are far from being secure and reliable. A major factor

of their poor track-record is their large size and the monolithic design. In terms of size,

they feature millions of lines of code. As an example, the source tree of Linux-2.6.27 is

composed of just under 6.4 million lines of code [osU08]. It is unlikely that this entire

source tree will be included in a single OS image, but since the design is monolithic,

whatever the portion that is selected — which is generally a large subset of the source tree

(except when the OS configuration is highly specialised) — runs in the most privileged

mode of the processor.

General wisdom is that bugs in any sizable code base are inevitable. Even well-

engineered software can expect to have in the order of 3 to 6 bugs per thousand lines of

code [Hat97]. Some parts of a monolithic kernel can have a much higher defect density—

Chou et.al. [CYC+01] reports two to 75 bugs per thousand lines of device driver code

— putting the number of potential defects that can undermine the system’s security and

reliability within a monolithic system into the tens of thousands.

A widely accepted approach to constructing secure and reliable system software is

to reduce the amount of kernel code in order to minimise the exposure to bugs. This is

a primary motivation behind microkernels [BH70, WCC+74, ABB+86, SFS96, HPHS04,

Lie93], separation kernels [IAD07, Rus81], isolation kernels [WSG02], MILS (multiple

independent levels of security) architecture [AFOTH06] and small hypervisors [SPHH06,

SLQP07]. In addition to reducing the potential for defects, the reduction in the code size

means that it is feasible to guarantee the absence of defects within the kernel through formal

verification [TKH05, HT05a, SLQP07].

This thesis focuses on the approach of using a formally verified microkernel as a reli-

able foundation for a wide rage of application domains, including those that requires strong

isolation guarantees. Specifically, the thesis examines the issue of what is an appropriate

model for managing the kernel’s internal memory, so that, once implemented and verified

in a microkernel, would provide a practical and secure foundation for a variety of systems,

while facilitating reasoning about security properties of systems built upon the microker-

1

Figure 1.1: Microkernel-based system construction and the use of formal protection models

to facilitate reasoning.

nel.

1.1 Microkernel-Based Systems
A pictorial representation of a system constructed using the microkernel-based approach is

shown in part (a) of Figure 1.1. As mentioned, the kernel is reduced to a bare minimum:

only the essential functionality is kept inside the kernel [Lie95]. Traditional OS services

such as virtual memory, interrupt handling, device drivers, file systems etc; are provided

outside of the kernel by means of de-privileged (i.e. user-level) components. This enables

modular-systems construction—the system is composed of smaller and hence tractable

components. They are robust as faults are isolated within components and once detected

a faulting components can be restarted [HBG+07, HBG+06, Hil92]. They are flexible and

extensible as user-level components can be removed, replaced or added [Lie96].

In between the microkernel and these user-level components is a small, domain-specific

supervisory OS personality (or supervisor), which is responsible for bootstrapping and

enforcing a suitable, domain-specific system-level policy over the execution of the compo-

nents. For some (arguably most) classes of systems, the desired policy is isolation, so that a

component failure is isolated from the rest. If components are real-time, then system-level

isolation policy should extend to both spatial and temporal domains. Or, in another ex-

treme, where higher performance is the important metric, system-level policy might trade

isolation between a few or all components in favour of performance.

In addition to the system-level policy, components themselves may enforce a subsystem-
level policy over the components they manage. An illustrative example is when the micro-

kernel is used as a virtualisation platform. The guest OS will have it’s own, fine-tuned

policy that it would enforce over the applications (sub-components) it manages. In gen-

eral, a system can have a number of such enforcement layers, with each layer enforcing a

policy over the components it manages. The requirements of each layer on the kernel to

enforce the policy is similar to that of the supervisor. Thus in the following discussion I

only focus on the supervisor and the enforcement of system-level policy.

2

1.2 A Formally Verified Microkernel
The success of microkernel-based systems depends, to a great extent, on the system’s abil-

ity to enforce these domain-specific, diverse policies. A key component in achieving this

is the microkernel — it must be equipped with sufficient API mechanisms such that the

supervisor can enforce and affirm the enforcement of the required policy. For example,

if the desired system-level policy is to isolate components, then there must be a sequence

of API operations that the supervisor can use to bootstrap the components into isolated

compartments and assure that these compartments are not breached in any future state, ir-

respective of component execution. Ideally, assurance here must be in the form of a formal

proof based on an abstract protection model (or security model) of the kernel and a formal

connection between the protection model and the kernel’s implementation (see part (b) of

Figure 1.1). Here the protection model facilitates reasoning about the policy enforcement,

and the formal connection (or the refinement proof) links the reasoning to the deployed

kernel.

A related project called L4.Verified [CKS08, Boy09, KEH+09] is working on a refine-

ment proof from a formal model of the kernel to its implementation. Hereafter, I use the

term verified kernel to refer to a kernel that is connected to its abstract model via a re-

finement proof. Suppose the L4.Verified project verifies the kernel to adhere to a specific

formal model. Then the design of the kernel and therefore it’s formal model should enable

the construction of secure and reliable systems and moreover, the formal model should

facilitate reasoning about whether the systems built on top have the properties of interest.

Formal models and their properties are well studied in the literature (for example

[Lam71, HR75, LS77, San92a]). To date, the published models, focus only on the applica-

tion level (or the API level), with the tacit assumption that the kernel’s internal behaviour,

when providing services to user-level components does not undermine the properties en-

forced at the API level. A clear relationship between the model used for reasoning and the

low-level management of physical memory in the kernel is either non-existent, insufficient

or ad hoc. Ideally, there should be a clear, systematic (potentially formal) relationship be-

tween the kernel’s physical memory management and the formalism used for reasoning, so

that the same policy enforced at API level is adhered to within the kernel.

This thesis focuses on a kernel design (a model) that unifies an access control based

protection model and the management of in-kernel memory. So that the reasoning done

using the protection model is adhered to within the kernel model.

However, the thesis does not attempt a grand unified design and a model to facilitate

reasoning about all properties—for example, temporal properties and information flow are

beyond the scope. Nor does it attempt to formally connect the model with the kernel im-

plementation. As mentioned earlier, connecting the model with the kernel implementation

is the aim of the related L4.verified project.

Unifying the protection model with the low-level management of kernel memory re-

quires tackling two considerations. First, the (unified) protection model needs to facilitate

reasoning—by looking at an initial state, one should be able to reason about the future

states and in particular assure the enforcement of the desired policy.

Second, both the kernel implementation and the protection model should be usable

across a broad range of system configurations without any modification. Even a small

change or an extension to the kernel or the protection model, invalidates the refinement

proof and depending on the modification, reestablishing refinement can take a significant

amount of effort.

3

1.3 Managing Kernel Memory
The microkernel provides primitive abstractions to all user-level components — the very

same components over which the system is attempting to enforce the desired, domain spe-

cific policy. The exact type and nature of the abstractions provided by the microkernel

varies depending on the kernel API, but generally these include threads, inter-process com-

munication (IPC), address spaces and so on. In providing these abstract services the kernel

consumes physical memory. For example, a thread requires memory within the kernel to

store its state and associated metadata. An address space requires page tables for storing

the associated mappings, and depending on the semantics of the abstraction, additional

kernel memory is needed for bookkeeping. This physical memory consumed by the kernel

in implementing its abstractions is referred to as kernel memory or kernel metadata.

The policy used by the kernel to manage its memory should match the policy enforced

over user-level components. For example, if the system requirements are such that two

components need to be isolated, then the same isolation boundaries must be reflected within

the kernel with regards to kernel memory management. If the system warrants a cache-

colouring scheme, either to improve the real-time predictability [LHH97] or to improve

performance in a multi-core system [CJ06, ZDS09], then the kernel should adhere to the

same scheme when allocating kernel memory for those components. If not, a malicious

component may use this mismatch to undermine the user-level enforcement.

The rationale here is that, if a policy is to be enforced faithfully, then the same pol-

icy should be applied, without exceptions, to all executions paths of the component —

including the paths it may take through the kernel when obtaining kernel services. If there

is a mismatch between the kernel’s internal memory management policy and the policy

warranted by the application domain, then we have a situation where different policies are

applied to the same component. A malicious component can leverage this difference and

undermine the enforcement. For example, (some versions of) the L4 microkernel [Lie95]

used a first-come-first-sever (FCFS) policy to allocate its kernel memory from a fixed-

size memory pool setup at boot-time. The L4 kernel provides address-space mechanisms

that can be used to partition the regions of physical memory a user-level component can

access through virtual memory. But, since the kernel uses a different policy when pro-

viding its services to these components, the kernel cannot be used to enforce partitioning

faithfully [BA03] — a malicious component can launch a denial-of-service (DoS) attack

against the system by exhausting the kernel memory pool. A similar FCFS policy is used

by the Asbestos [EKV+05] kernel, making it vulnerable to DoS attacks by kernel resource

exhaustion. The defect was noted and fixed in [ZBWKM06] by changing the kernel’s mem-

ory management scheme to a caching [CD94] scheme. Caching schemes guards against

DoS attacks, but are not suitable for real-time systems — caching schemes make temporal

guarantees difficult, if not impossible.

One possible solution is to modify the kernel’s memory management policy to match

the requirements of the application domain. However, modifying the low-level kernel code

to modify its memory allocation policy is not ideal for any kernel, and in particular would

require a significant amount of effort in the case of a formally verified kernel. This is

because changing the code invalidates the refinement proof and as I explain in Chapter 3,

changing the lowest level of kernel functionality (such as its memory management) requires

a significant effort in reestablishing refinement.

Existing approaches to principled kernel memory management can be broadly cate-

gorised into two classes: those that seek to impose a limit on memory consumption and

4

those where the kernel memory is treated as a cache of system state. Both approaches are

sufficient and even preferable in some circumstances but, quota-based limits provide lit-

tle control over resources once allocated and are generally inefficient in dynamic systems

(overall efficiency can be improved significantly by re-assigning resources to where they

can be utilised [Wal02]), and as mentioned earlier, caching-based schemes are not suitable

for the real-time domain.

1.4 Protection Models
A number of existing OSes provide protection models for reasoning and enforcing differ-

ent policies, with varying degrees of assurance on the enforcement. The level of assurance

may vary from an informal argument to a rigorous formal protection model of the sys-

tem [SSF99, VEK+07,ZBWKM06] and a formal proof of the enforcement [SW00]. How-

ever, these protection (or security) models only capture, and hence the reasoning and the

enforcement is limited to, the API level. The connection between the protection model and

the kernel’s internal resource management is either non-existent, insufficient or unclear.

The kernel implementation is almost always presented as a “black box”, with the assump-

tion that its internal behaviour does not undermine the policy (say isolation) enforced at

the application level.

1.5 Aim and Scope of Research
The ideal kernel memory management model for a formally verified kernel should be ca-

pable of enforcing different policies, as warranted by the application domain, including

domains where temporal predictability is a central requirement, and this should be achiev-

able without modifying the verified kernel code base. It must be possible to support diverse,

co-existing policies in the case where the system is composed of heterogeneous applica-

tions. The model should facilitate fine-grained revocation and reallocation of memory as

and when the need arises. At the same time, the kernel memory management model needs

to be amenable to poorly scaling formal methods, so that one can reason about and formally

affirm the enforcement of a particular policy.

The aim of this research is to design, implement and evaluate, both the formal and

empirical characteristics of a unified protection and kernel memory management model.

Unifying memory management with the protection model enables one to design and rea-

son about systems constructed on top of the kernel within a single model that encompasses

memory usage and access control. If the (unified) protection model has a formal decision

procedure, then one can make formal statements about the ability of the model to enforce

desired policies such as isolation. The memory management model should be general

enough to support a range of complex applications such as virtualisation and applications

with temporal demands and should have comparable performance to other systems to pro-

mote wide spread usage.

The design requirements for the model, therefore, are as follows:

• there should be a clear and precise relationship between the kernel’s memory man-

agement scheme and the externally-visible protection model;

• the protection model should have a formal decision procedure that evaluates the abil-

ity (or the inability) to enforce different policies;

5

• it should be possible to enforce diverse policies concurrently over the management

of kernel memory without modifying the verified kernel and

• the performance of the model should be comparable with other kernel memory man-

agement schemes.

The main barrier to providing a precise relationship between the protection model and

the kernel’s internal memory management scheme is the implicit memory allocations that

take place within the kernel. Implicit allocations here refer to the memory allocated by

the kernel as a side-effect of providing a service. The occurrence and the size of such

allocations are not directly related to the authority to obtain the service but rather to the

implementation of the service. For instance, the authority to a frame of physical memory

has no direct relationship to the amount of memory the kernel may allocate in terms of page

tables for mapping the frame, which depends on the implementation of virtual memory.

In general, protection models capture the authority distribution of the system and its

dynamics (how the distribution changes over time). A component receiving the authority

to a memory frame is captured by the protection model, but owing to implicit allocation,

this authority has a loose relation to the amount of kernel memory the component may

consume. Ideally, it should be possible to reason about the in-kernel memory consumption

of a component based on the authority it possesses.

The challenge in establishing an analysable relationship between the authority and the

kernel memory a component may consume, is to eliminate all implicit memory allocations

from the kernel, and make all allocations explicit via the authority possessed by the com-

ponent. This reduces the issue of in-kernel memory management to that of managing the

dissemination of authority.

Capability-based authorisation schemes and their properties on controlling authority

dissemination are well studied in literature. When coupled with a suitable transfer mech-

anism such as take-grant [LS77], these systems yield a decidable protection model. As

mentioned earlier, decidable models facilitate reasoning about the amount of authority an

application may obtain in the future by analysing the initial authority distribution.

While the primary concern of capability-based protection systems studied in literature

is controlling access to user-level resources, there is a natural synergy between their formal

properties and what is desired for controlling the explicit “allocation” authority. This work

leverages the above similarity via a novel proposal of extending the take-grant capability

protection to control the dissemination of explicit “allocation” authority.

An important consideration when extending any protection model is the effect the ex-

tension has on the decidability. It has long been recognised that protection models are

generally undecidable [HRU76]. Only a small subset of models are decidable, and for

some of the decidable ones, the decision procedure is NP-hard [San92a, ZLN05].

The classic take-grant model falls in the decidable category. Moreover, the decision

procedure has a linear complexity [LS77]. This thesis demonstrates that these desirable

properties of the take-grant model are preserved with the proposed extension.

Another important consideration here is the relationship between the protection model

used in the analysis and the actual kernel code. Formally speaking, the results of the

analysis is valid for the protection model, but not for the actual kernel unless the kernel

and the protection model are formally connected to one another. However, as mentioned

earlier, establishing such a relationship is beyond the scope of this thesis.

In the published literature, to date, specification and analysis of protection models has

been done manually, using pen and paper. Yet, there is a large amount of research effort in

6

developing machine-assisted theorem provers. One of the goals of this research is there-

fore, to validate the feasibility of specifying and analysing a protection model in a machine-

assisted theorem proving environment. However, there are a few past and ongoing research

projects that either use, used or hinted at how to use machine-assisted theorem provers for

safety analysis. In particular PSOS (Provably Secure Operating System) [FN79, NF03],

VFiasco [HT05b] and Coyotos [Coy] (the successor of EROS [SSF99]) projects are di-

rectly related to the formal work presented here, since their primary security mechanism is

capabilities.

While there are a number of policies one would like to enforce over the execution of

user-level components, the analysis in this thesis is limited to two commonly used policies

— partitioning [Rus99] and isolation.

Finally, this research explores the performance characteristics of a kernel with no im-

plicit memory allocations and its effect on the kernel-provided services in both, a micro-

and macro-level. Performance measurements were carried out on a prototype microkernel

called seL4::Pistachio that implements the proposed memory management scheme and the

associated protection model. Macro-level performance is evaluated by using seL4::Pistachio

as a virtualisation platform for hosting a para-virtualised Linux instance.

1.6 Contributions
The primary contributions of this work are:

• a design of a dynamic, general purpose memory management model which sup-

ports high-end hardware features such as MMU with no implicit memory allocations

within the kernel;

• a study of the feasibility of using capabilities to confer authority over all kernel

memory allocations and its effect on the formal protection models;

• the design of a unified, decidable protection model based on take-grant, that facili-

tates reasoning about in-kernel memory consumption of a component;

• a machine checked specification of the above developed protection model and a ma-

chine checked formal proof of the model’s ability to enforce spatial partitioning and

isolation;

• a machine-checked proof of spatial partitioning and a machine-checked proof of iso-

lation based on the protection model, together with a discussion on how to enforce

the proved policies in the concrete system;

• a prototype implementation of the proposed design based on L4;

• an evaluation of performance, both at micro- and macro-level, of a kernel without

any implicitly allocated kernel memory and

• a comparison of the cost associated with enforcing spatial isolation by centralised

authority vs. controlled distribution.

7

1.7 Overview of this thesis
The remainder of the thesis is as follows. Chapter 2 examines the literature on kernel

memory management and protection models, with the aim of identifying the merits and

demerits of existing methods. Chapter 3 motivates the proposed design in the context of a

formally verified, general-purpose microkernel targeted towards security applications.

A high-level design of the memory management scheme and the associated capability

protection mechanism (hereafter called the seL4 model) is presented in Chapter 4.

Chapter 5 demonstrates how the proposed memory management scheme and its se-

curity mechanism can be modelled as an abstract specification (protection model) within

a formal framework. This specification is developed using the machine assisted theorem

prover Isabelle/HOL [NPW02]. It also discusses informally, how the protection model

relates to the kernel implementation.

Then Chapter 6 demonstrates that the protection model developed in the previous chap-

ter is decidable and through formal proofs show how it can be used to reason about the

ability to enforce two different policies. The example policies considered are partitioning

and isolation. The chapter provides a formal, machine-checked, proof that these mecha-

nisms are sufficient to enforce the above two policies and demonstrates through a set of

formal examples how to bootstrap a system so that it guarantees the policy enforcement.

Next, Chapter 7 introduces the seL4::Pistachio microkernel — a prototype realisation

of the proposed model on modern hardware — and evaluates the performance of kernel-

provided primitive operations. Chapter 8 further analyses the performance of seL4::Pistachio

as a virtualisation platform. Finally, conclusions drawn from this work are presented in

Chapter 9.

8

Chapter 2

Related Work

In this chapter, the literature on different aspects related to the work presented in this thesis

is reviewed and discussed.

I present this discussion in two sections. First, Section 2.1 reviews research related

to kernel memory management. Second, Section 2.2 examines the research in the area of

security control models, including those used in capability-based systems, and the related

formalisms used for reasoning about the system behaviour.

The ideal kernel memory management model for a formally verified kernel should be

capable of enforcing different policies, as warranted by the application domain, includ-

ing domains where temporal predictability is a central requirement, and this should be

achievable without modifying the verified kernel code base. It must be possible to support

diverse, co-existing policies in the case where the system is composed of heterogeneous

applications. The model should facilitate fine-grained revocation and reallocation of mem-

ory as and when the need arises. At the same time, the kernel memory management model

needs to be amenable to poorly scaling formal methods, so that one can reason about and

formally affirm the enforcement of a particular policy. In Section 2.1, I critically analyse

the existing work with regards to the above mentioned requirements.

There is a large amount of literature on protection models (a.k.a. security models) and

their formal properties. Unfortunately, the published work, to date, has not considered the

application of security models to control or reason about the in-kernel memory allocations.

However, some models, in particular the ones used in capability-based systems and the

associated reasoning techniques show evidence that they can be modified or extended for

this purpose. Section 2.2 reviews these models in terms of their applicability as a model

for reasoning about kernel memory.

2.1 Kernel Memory Management
Existing approaches to in-kernel memory management can be broadly categorised into

three main classes: (a) those where memory management is governed by an in-kernel

policy, (b) those where the kernel’s memory is a cache of the system state and (c) those

that seek to export some sort of control of in-kernel memory management to user-level

applications.

The above categorisation is not strict. It simply aids the clarity of presentation. In the

following sections, I examine the work done on each of the categories.

9

2.1.1 In-Kernel Policy
In this category, the kernel memory is governed by a built-in policy that resides within the

kernel. This built-in policy can either be static (i.e. cannot be modified without modifying

the kernel code) or it can be extended or modified by uploading code into the kernel.

The Linux (2.4) memory manager [vR01] manages multiple pools of frames called

caches. These caches include the buffer cache, the inode cache and the slab cache. The

kernel uses a buddy system to allocate frames for these pools. Free frames are dynamically

reassigned from one cache to another, thus making the caches grow and shrink on demand.

Resources from these caches are allocated on a first-come-first-server (FCFS) basis and

when there are no free frames left in the system, the kernel randomly terminates tasks to

free memory.

The FreeBSD [Fre06] kernel, similar to Linux, uses a buddy system to manage its

frame-level allocations. However, unlike the slab allocator [Bon94] used in Linux, FreeBSD

uses a zone allocator. The zone allocator runs on top of the buddy-based frame alloca-

tion layer. Kernel modules register with the zone allocator, specifying the range of mem-

ory sizes (or zones) they are likely to request during run-time. Based on this specifica-

tion, the zone allocator grabs frames from the frame-allocation layer and carves them into

smaller “ready-to-go” chunks. Most run-time memory requests are satisfied from these

pre-allocated chunks. A garbage collector running in the background, searches for free

frames in the zone and returns them to the frame allocation layer, which can then allocate

the freed frames to a different zone. Kernel modules have the flexibility to use either the

zone allocator or the frame-allocation layer directly. A comparison between the Linux and

FreeBSD memory management subsystems can be found in [Dub98].

Early versions of the L4 kernel [Lie95] allocates metadata on a FCFS basis from a

global, fixed-size memory pool created at system start-up by sigma 1 — the kernel pager.

Once the pool is exhausted, no new metadata is allocated and respective system calls fail

with an error code. While there is no published information to date on the subject, brows-

ing the source reveals that a similar scheme is used in Asbestos [VEK+07] (the observation

is also made in [ZBWKM06]). FCFS is a simple and hence easy to implement and verify

policy, that works well if all applications are of the same level of trust or are of equal im-

portance to the system. However, in addition to opening a covert communication channel,

the scheme is vulnerable to denial-of-service (DoS) attacks from applications monopolis-

ing kernel memory and therefore cannot enforce strong spatial partitioning [BA03] or be

used in a system designed to execute untrusted and potentially malicious, downloaded web

contents [LIJ97].

Later versions of the L4 API [NIC05] rectified the situation by making kernel services

that require the allocation of kernel memory privileged — any kernel service that may re-

quire the allocation of kernel metadata must be made through, and therefore monitored by

the privileged server. As such, the privileged server is in a position to monitor and limit the

kernel memory consumption of an application. This makes it possible to enforce different

kernel memory allocation policies by modifying the privileged server rather than the veri-

fied kernel. However, the privileged server has no control over the regions of memory used

by the kernel. Thus, the scheme only provides mechanisms for limiting the kernel memory

consumed by an application rather than controlling.

The ability to limit the kernel memory consumption alone is sufficient in some circum-

stances, but not in some others. For example, authors in [LHH97] studied the use of CPU

cache-colouring techniques for improving the temporal predictability of real-time systems.

Verghese et al. [VDGR96] report significant performance improvements by localising data

10

to the local memory of a cache-coherent non-uniform memory architecture (CC-NUMA)

machine. The Solaris Memory Placement Optimisation (MPO) [MPO08] project applies

similar techniques to Solaris to improve performance on NUMA machines. A detailed

assessment of the importance of memory placement in NUMA machines can be found

in [AJR06]. Enforcing such schemes requires more control than limiting — the privileged

server should have the capacity to select the placement of kernel memory depending on the

requirements of the applications.

The concept of using a privileged server for governing allocations can be found in sev-

eral other systems. The System Domain of Nemesis [Nem00], Domain0 in Xen [BDF+03]

and Supervisory VM in Denali [WSG02] serve similar purposes. However, note that the

Nemesis System Domain is a much more powerful concept than its L4 counterpart, in that

it has control over where to allocate kernel memory and these allocated regions are used

by the kernel without further checking — the kernel trusted the System Domain. In that

sense the System Domain is part of the kernel, running in a different protection level of the

processor.

Several other approaches introduced mechanisms to control resource consumption of

an application directly, without mediation. Scout [SP99] accounts resources towards a spe-

cial abstraction called path, and limits the resource usage. A path represents a stream of

data flowing through the system via several subsystems. Banga et al. [BDM99] introduced

Resource Containers for accounting and controlling the consumption of resources. Virtual
Services [RMSK00] implements fine-grained resource accounting even in the presence of

shared services by intercepting system calls and using classification mechanisms to deter-

mine the correct resource principal to whom the resources are accounted to. The Solaris

resource manager [Inc] introduces limit nodes, or lnodes, which support user- or group-

based resource control. These approaches only support resource limits for principals.

The Solaris Zones [PT04, TC04] technology introduced resource pools for partition-

ing system resources. Resource pools allow a collection of resources to be exclusively

used by some set of processes. The current implementation of resource pools only include

CPUs [PT04] (on a SMP), with a plan of extending the concept to partition other resources,

including memory. The Linux-VServer [dL05] project uses virtualisation technology to iso-

late applications. Published literature however, does not provide sufficient details on how

the scheme handles memory, in particular when used within the kernel. These approaches

support, to various extents, isolation of components.

The SPIN system [BSP+95] allows uploading of code at run time to the kernel and

thereby can change the system policy. This is achieved by installing a spindle — application-

specific code written in a type-safe language. Even though spindles execute with kernel

privileges, they cannot interfere with the rest of the system. The SPIN system achieves this

property through a combination of run-time checks and compiler techniques. A spindle

can only introduce new functionality based on the core services — a part of a framework

for managing memory and other resources, implemented by the kernel itself. A spindle

can, therefore only “fine-tune” the policy rather than modify it completely. For example,

important features of memory management such as placement of memory, revocation and

replacement cannot be influenced by the uploaded spindle. Moreover, the memory man-

agement policy is global, which may not suite all applications on a heterogeneous system.

The VINO kernel [SESS96] facilitates an application to customise the kernel resource

management by grafting an extension into the kernel. Similar to SPIN, the amount of in-

fluence a VINO graft has on the underlying kernel memory allocator is limited. In contrast

to SPIN, VINO grafts are not written in a type-safe language. The kernel uses run-time

11

checking to protect against misbehaving modules. These run-time checks are expensive

compared to the actual extension [SESS96, HHL+97].

Both VINO and SPIN achieved extensibility by inserting modules into a monolithic

operating system (OS). An alternative approach is the use of multiple OS serves [Lie95]

in a microkernel based system. Each application, depending on its requirements, obtains

services from a different OS server. OS servers themselves are protected from one another,

thus removing the need for run-time checks required to protect the monolithic OS from

misbehaving extension modules. Moreover, the sever approach yields better performance

compared to the extension modules [LES+97, EH01].

The K42 kernel [IBM02] takes advantage of C++ inheritance to control the behavior of

the underlying memory allocator. Thus, by recompiling the kernel, its memory allocator

can be specialised to meet particular application requirement.

Analysis

In this class of systems, kernel memory management is governed by a policy integrated into

the kernel. This built-in policy can either be static in the sense that the policy cannot be

modified without modifying the kernel, or it can be extended by uploading code. Uploaded

code however, has limited capacity to modify the kernel’s memory management policy.

Thus, in this class of systems, the policy governing the management of in-kernel memory

is fundamentally fixed and can only be changed by modifying the kernel.

A policy is designed either to suit the needs of a particular application scenario, or it’s a

trade-off between generality and meeting some specific requirements. For this discussion,

I call the former type of policy specific and the latter generic. Specific policies, obviously

work well for the domain it was designed for but not with another where requirements are

different. Generic ones on the other hand, are suboptimal in any situation. In either case,

a single policy, be it specific or generic, does not best suite all application domains of the

kernel.

At one extreme, the requirements of the application domain can be strict partition-

ing and hence a strict partitioning of resources, including the kernel memory regions. At

the other extreme the system can be a best-effort, where kernel memory allocation is on-

demand and targeted to maximise through-put. A single memory allocation policy can

serve either one of these situations, but not both as there are fundamental trade-offs be-

tween the two extremes. For example, the FCFS policy employed by L4 and Linux is

sufficient for the latter case, but not for the former [BA03]. The Solaris Zones [TC04]

technology suits the needs of the former domain but is inefficient for the latter— efficiency

can be improved significantly by reassigning memory to where it can be utilised [Wal02].

Another example is the variants of quota-based policy used by most systems attempting to

limit the memory consumption — they can either provide predictability through reserva-

tions, or better utilisation, but not both.

It is long being established that the default resource management policy of an operating

system often yields suboptimal application performance [AL91, Sto81]. Applications can

benefit significantly by switching to a fine-tuned resource management policy that suites

their particular needs [EGK95, Han99]. This stems from the fact that the default in-kernel

policy is almost always generic, so that it is applicable to a wide range of applications, in

contrast to an application-specific, fine-tuned policy.

In systems where the management scheme is integrated into the kernel, the only way

to modify the kernel’s in-kernel memory management policy is by modifying the kernel

12

itself. This option is not attractive for a verified kernel. This is because any modification to

the kernel will nullify the refinement proof. Changing the lowest-level of behaviour; such

as that of the heap, requires a significant redo of the proofs (I quantify this claim through a

case study in Chapter 3).

Few systems provide the capability to extend or modify the memory management pol-

icy. However, the scope of such extensions is limited. Moreover, the ability to extend or

modify the low-level functionality of the kernel (like its memory management subsystem)

comes at the cost of increasing the kernel complexity and hence the degree of difficulty

involved in formal verification. For example, the VINO kernel uses run-time checks to

protect against misbehaving grafts. To verify the kernel one needs to model all these run-

time checks, prove the sufficiency of these checks to protect the kernel and show refinement

from the abstract model to the code implementing these checks. This process adds signif-

icantly more complexity to the poorly scaling and labour intensive verification process.

Moreover, given the limited scope these modules have on effecting the kernel memory

management policy this complexity is unjustified.

2.1.2 Kernel Memory as a Cache
In this approach the kernel’s internal data structures are viewed as a cache of the system

state which is generally managed outside of the kernel. When the cache is full the kernel

evicts an object to make room for another. Variations of this core idea are used in several

kernels.

In the V++ Cache kernel [CD94] the management of data structures required for imple-

menting the core kernel abstractions is done outside of the kernel by application kernels.

The core abstractions of the cache kernel include threads and address spaces. An appli-

cation kernel is responsible for managing and loading the objects into the kernel’s cache

when they are required. When its cache is full, the kernel evicts objects from the cache and

writes them back to user-level. A small number of objects, however, can be locked in the

cache. These locked objects ensure the execution of fault handling code (in particular code

that loads objects) without incurring further nested faults.

The KeyKOS [BFF+92] nanokernel employed a similar mechanism for managing its

kernel memory. However, unlike the cache kernel, evicted objects are written back to

protected disk blocks.

The EROS [SSF99] kernel — the successor of KeyKOS — implements an abstract

virtual-machine based on type-safe capabilities. Kernel metadata such as page tables, pro-

cess descriptors, are constructed from the capabilities stored in type-safe user-level mem-

ory [SFS96]. The kernel improves performance by avoiding the need to validate these

user-level data structures on every access by caching the results. When the kernel’s cache

is full, the object is written back to the user-level data structures and the contents are evicted

from the kernel’s cache.

HiStar [ZBWKM06] is a persistent system with a single-level object store. It manages

kernel memory as a cache of objects in its single-level storage.

Aegis Exokernel [EGK95] uses a notionally similar technique for implementing virtual

memory (VM). The kernel runs on the MIPS architecture which has a software-loaded

TLB. Upon receiving a page-fault the kernel propagates it to the application-level VM

(AVM) handler which maintains page tables for the address space. The AVM generates

the appropriate TLB entry and calls the kernel which validates and installs the entry. To

absorb the capacity misses, Aegis overlays the hardware TLB with a software TLB (STLB)

13

[BKW94].

In [RF97] Reed et al. leverage the single address space structure of Nemesis to propose

a conceptually similar scheme for managing virtual memory. The kernel maintains a single

page-table structure for the entire system. Each domain in the system has a default privilege

(read) for each page, which is set up by this structure. When a domain takes a page-fault,

the handler checks the current protection domain and if the domain is allowed additional

access to that page it modifies the page-table structure and puts the page into a list of altered

pages. When a protection domain switch occurs, the altered pages list is scanned and the

modified entries are fixed to reflect the default access rights.

Analysis

In this class of systems, kernel metadata is stored and maintained at user-level where it

is subjected to user-specific management policy or in secondary storage. Hence, except

for the cache replacement policy, no separate policy is required for managing the kernel

metadata.

The drawback of this approach is that applications compete for space in the kernel

cache. As such, guaranteeing predictable execution time for real-time applications become

difficult, if not impossible. A malicious application can easily thrash the kernel cache

and thereby degrade the performance of others. Even though there is the possibility to

incorporate the thrashing of kernel cache into the execution time analysis of the real-time

application, result would be too pessimistic to be useful.

2.1.3 User-Level Management
In these systems, the actual memory consumed by the kernel is managed by user-level

applications. One can modify the in-kernel memory management scheme by modifying

the user-level application rather than the verified kernel.

The system domain of Nemesis manages all memory allocations, including kernel

memory. For example, memory required for page tables is allocated by the high-level
translation system [Han99], which is a part of the system domain. User-level applications

request stretches — a contiguous region of virtual memory—from the system domain. To

create a stretch, the system domain allocates and initialises the required page tables which

are then used by the in-kernel or the low-level translation system.

Liedtke et al. [LIJ97] proposed an extension to the fixed-size memory pool used in

the original L4 microkernel. In this scheme the kernel still allocates metadata from a

central in-kernel pool until it is exhausted. Similar to the original model, once the pool is

exhausted subsequent system calls fail. However, user-level memory managers can donate
some of their own memory to the kernel memory pool and thereby rectify the situation.

Before donating a page to the kernel, the donor must remove the donated page from all

user address spaces and in doing so, it loses the control over the donated page. Thus, the

user-level memory manager cannot reclaim donated memory. These donated pages are

then used by the kernel to allocate metadata for the donor.

The Calypso translation layer [Szm01] — a virtual memory subsystem for the L4

microkernel— extends the above donor model in two aspects. First, it uses per-task kernel

memory pools as oppose to a central one. Second, it does not fail system calls upon the

exhaustion of a kernel memory pool. Instead, the requester is suspended and the fault is

propagated to a pager which can then resolve the fault by donating memory to the kernel.

14

In both the above schemes, the pager loses control over the donated page, thus cannot

reclaim the memory. Haeberlen and Elphinstone [HE03] further extended the scheme by

making the “donated” pages reclaimable. When the kernel runs out of memory for a thread,

it propagates the fault to the corresponding kpager. The kpager can then map any page it

possesses to the kernel, and later preempt the mapping. However, the kpager is not aware

of, and cannot control, the type of data that will be placed in each page and thus can not

make an informed decision about which page to revoke when the need arises to reclaim

memory to use in a different context.

The L4.sec kernel [Kau05a] divides kernel objects into first-class (addressable via capa-

bilities) and second-class objects. Both classes requires a kernel memory object — a region

of physical memory out of which other objects can be allocated, to provide the memory

required for creation of objects. L4.sec does not allow direct manipulation of second-class

objects such as page tables or capability tables (CNodes). As such, dynamically reallocat-

ing page table memory from an idle task to another task is not possible without destroying

the former.

The virtual machine monitor Xen [BDF+03] uses a similar mechanism for manging its

page tables. Before using a frame as a page-table the guest OS needs to notify Xen of this

fact, after which the guest OS loses its “write” privilege over the frame. All subsequent

updates to the page table must be made through and therefore validated by Xen. Obviously,

if a frame is registered as a page table, it should not appear as a page frame in a different

context. Xen enforces this by tracking the number of references made to a frame in a frame

table — a frame can change its type only when its reference count is zero.

The Fluke kernel exports the state of kernel data structures to user-level applications

[TLFH96]. However, the kernel memory consumed by these structures itself cannot be

controlled — primary focus of Fluke is exporting the state of kernel data structures to

facilitate user-level check-pointing rather than controlling in-kernel memory consumed by

these data structures.

Analysis

Exporting the control of kernel memory management to user-level applications via a secure

interface is attractive for several reasons. First, it enables user-level applications to use their

own fine-tuned, hence efficient, management policy. Second, it facilitate the co-existence

of diverse management policies by means of different user-level managers.

However, existing approaches do not fully satisfy the requirements we are looking for.

In some cases, they do not facilitate revocation at all (in the case of “donate” model and

Calypso). The ones that support revocation either do it at a coarse granularity (in the case

of L4.sec) or do not provide sufficient information to the user-level manager to make an

informed decision on what memory to reuse (in the case of kpager model). Moreover, the

performance of these approaches is also open for discussion. I explore their performance

later.

2.1.4 Summary
Table 2.1 summarises the main points of our discussion thus far. It shows general prop-

erties of each existing kernel memory management scheme. In-kernel policies cannot be

modified without modifying the kernel and hence invalidating the refinement proofs. State

caching schemes resolve the issue to a certain extent, but not entirely. The issue is resolved

15

Scheme Domain specific Co-existing Fine-grained Formal

tuning policies revocation reasoning

In-kernel by kernel no yes no

policy modifications (depends on policy)

State caching yes yes no no

(not suited for real-time) (to some extent)

User-level yes yes no no

management (kernel unchanged)

Table 2.1: Summary of the properties of existing kernel memory management schemes.

by placing the management of kernel data structures in user-level applications and thereby

facilitating policy modifications via modifying user-level code rather than the verified ker-

nel. Diverse policies can co-exist in the same system by means of different user-level code

managing-kernel data structures. It is not entirely satisfactory because the kernel uses an

in-built policy that views its metadata as a cache of these user-level structure. This in-built

policy works well for a best-effort system but not ideal for systems requiring predictable

execution times.

Out of the existing approaches, user-level management satisfies most of our require-

ments. One can modify the policy by modifying the user-level manager rather than the

kernel. It supports diverse policies simultaneously via different managers. Currently, none

of the existing user-level management schemes support fine-grained revocation and reuse

of memory. This, however, is a limitation in the design/implementation rather than a con-

ceptual one — there is no fundamental reason to avoid fine-grained revocation and reuse

of memory within this scheme. As I show in this thesis, one can achieve fine-grained

revocation and memory reuse without a significant loss of performance.

None of the existing user-level management schemes facilitate formal reasoning. Ide-

ally one should be able to affirm that a particular policy is enforced — it should be possible

to provide compelling evidence that a given user-level resource manager cannot violate the

system-level policy (or a subsystem-level policy for that matter) in any system state. The

policy here can be, for example, spatial partitioning [Rus99], and by compelling evidence

I mean a formal proof based on a formal model of the system, that the given resource man-

ager cannot violate the spatial partitioning policy in the current or in any derived system

state.

User-level management schemes have an attractive property that may make it possible

to bridge this gap. In this scheme, since kernel memory is managed by user-level applica-

tions (in contrast to opaquely, within the kernel), it naturally becomes a first-class resource

of the system. In other words, one can view kernel memory as a system resource a user-

level application can “access” in much the same way as having access to a file or a frame

of memory. The main difference between the kernel memory resource and the traditional

resources (say the file) would be the meaning of “access” — for the file it can mean read

or write permission and for the kernel memory it can be the permission to “consume” or

“release” kernel memory. This is simply a matter of how one interprets the permission.

In this manner, we can treat regions of kernel memory as a first-class resource governed

by the access control mechanism of the system. Then, we can convert the question of

policy enforcement to that of access control. For example, the question of whether or not

the partitioning policy holds comes down to the ability of a partition to obtain access to

16

a region of kernel memory it did not have initially from another. This type of questions,

termed safety questions [HRU76], is generally answered using a formal protection model
(a.k.a. security model) of the system. The protection model of a system is an abstract,

formal model that captures the authority distribution of the system together with the rules

used to control their dissemination.

Published work in the area of protection models has not investigated the possibility of

using them to reason about kernel memory. However, some models are general enough

and in particular the decision procedure used in the analysis is such that they can be ex-

tended for this task. In the next section, I investigate formal security models to understand

their suitability to use as a framework for reasoning about policy enforcement over kernel

memory.

Though it is not central to the topic of this theses, it is worth noting that not all policies

can be enforced via execution monitoring [Sch00]. To be enforceable using access control

the policy needs to be a safety property. Without going into formalisms, a safety property

has an exact point at which the system goes into an unsafe state. The partitioning policy we

looked at above, for example, is a safety property, because these is clear point at which par-

titioning is violated (when one partition gets an access right it did not have from another),

and hence the system is in an unsafe state. Availability, if taken to mean that resource ac-

cess will be granted eventually, is not a safety property. Because of the term “eventually”

one cannot determine when the system is in an unsafe state. The usual solution in such a

scenario is to use an approximation of the original policy which itself is a safety property.

For example, Giligor [Gli84] defined availability as resource access must be granted with

a (some) fixed time.

2.2 Formal Modelling
A formal framework for reasoning provides some clear benefits. As an illustrative example,

one should be able to answer questions such as “can application A access a given region of

kernel memory?” and “can A gain access to more kernel memory than what it has now?”

and if so “from whom?” and so on. These type of questions are called safety questions and

formulating an answer to a safety question is called safety analysis. Safety analysis is done

using a formal protection model (a.k.a. security model)— an abstract formalism capturing

the protection state of the system and the rules governing it’s mutations. The protection

state essentially capture who has access to what resources and the mutations define how

the protection state can be modified. I define the above terms in Section 2.2.1. Note that

the above definitions are just to facilitate our discussion.

As mentioned earlier, one may treat kernel memory as a resource much the same way as

a file or a frame. The protection state of the system may authorise an application to read or

write to a frame and the application may use this authority in a manner it sees fit. A region

of kernel memory may be viewed in much the same way — authority in this case would

be to “consume” or “release” the resource. The application may exercise this authority in

any way it chooses. Since the protection state can evolve, one may change the amount of

kernel memory a subject may use by adjusting its authority. Moreover, one may perform

safety analysis to identify the feasibility of an application obtaining “consume” authority

over a region of kernel memory.

Unfortunately, formal security models do not capture kernel memory consumption.

Thus, they cannot be used to reason about nor can they be used to control the kernel mem-

ory consumption of an application. The primary concern of these formal protection models

17

is controlling the access to user-level resources and as such have no notion of kernel mem-

ory.

From a safety analysis point of view, there is a difference between the authority to “con-

sume” kernel memory and the authority to a user-level frame. This difference stems from

the ability to perform create operations. An application possessing “consume” authority

to a region of kernel memory can exercise it’s authority and create a new entry in the pro-

tection state (say a thread), as opposed to reading or writing to the frame. These newly

added entries complicate the safety analysis for the following reason: the safety analysis,

by looking at the initial state, tries to determine whether a particular access right can be

leaked from one application to another. Create operations complicate this process because

they add new entries that we did not know of in the initial state, that might affect the final

outcome. Most safety analysis techniques in the published literature make (very) strong

assumptions on how and in particular when a create operation can be done. For example,

a common technique is to assume that all create operations take place first and not after

that [San88, SS92]. Such an analysis is not suitable for a security model attempting to

control the ability to create in a dynamic fashion — the ability to create is based on the

authority distribution which evolves.

However, by understanding the existing models, the limitations and in particular analy-

sis techniques and how the create operation is handled, I aim to extend the models and the

analysis to suit our needs.

The remainder of this section is organised in the following manner. Section 2.2.1 pro-

vides the background on access-control models. Then in Section 2.2.2, I critically analyse

the existing security models.

2.2.1 Background
Access control is concerned with the question of who can access what resources in the

system. The same resource, say a file, may be accessible to different users in different

ways. Some users may have read and write access to the file, while some others may only

read, and so on. Strictly speaking, users do not access system resources — these resources

are accessed by programs running on behalf of a user. In the classic sense of access control,

a program running is called the subject and system resources a called objects. So, access

control is concerned with enforcing authorised access of subjects to objects. This basic idea

was introduced by Lampson [Lam71]. He proposed an access control matrix, a subject ×
object matrix. Each cell in this matrix contains the access rights the corresponding subject

has over the object. In essence, the access control matrix represents the protection state of

the system — what access a subject is allowed on an object. As the system evolves, so does

its protection state. For example new subjects or objects might be created, access rights

might be removed from an existing subject or the subject itself might be deleted and so on.

The access control model defines a set of rules or commands by which the protection state

of the system can be changed.

The challenging aspect of access control is its dynamics. Starting from some protection

state and particular access control model can one reason about the future protection states?

In particular, “can some subject X obtain some access right α to resource (object) Y?”.

These type of questions are typically called safety questions [HR75]. Note the generality

of the safety question — depending on the context, one can select a subject and a particular

resource. For instance, in the context of kernel memory management, the resource of

interest would be a region of kernel memory and the access right would be the subjects

18

authority to consume it.

The protection state and the access-control model is collectively called the security
model or the protection model of the system. It describes the current access rights distribu-

tion of the system and the set of rules that can be used to manipulate the distribution. The

security model of the system is used for the safety analysis; i.e. the process of formulating

an answer to the safety question. If there exists an algorithm for safety analysis then the

security models is said to be decidable. Note that decidability does not necessarily mean

that safety analysis is feasible. It simply means there exists an algorithm — which itself

can be intractable.

2.2.2 Classical Access-Control Models
The use of abstract formulations of the security system for safety analysis has a long his-

tory. In 1976, Harrison et al. [HRU76], in a model known as HRU, first formulated the

safety question and proved that in the general case, safety is undecidable. However, the

safety question is decidable for mono-operational systems — systems in which every

command does a single operation. In later work, the same authors [HR78] showed that

safety is decidable for monotonic (i.e. contains no delete or destroy operation), and mono-
conditional (i.e. all commands have at most, one clause), systems. In the presence of

bi-conditional (i.e. has two clauses), commands even a monotonic system becomes unde-

cidable [HR78]. These results from the HRU model are disappointing in that the protection

system either does not facilitate reasoning (i.e. undecidable), or in the case where it does it

is too restrictive to be useful.

Since the introduction of HRU, a number of access control-models for which the safety

is decidable have been proposed — the take-grant model [LS77], Schematic Protection
Model (SPM) [San88], Type Access Matrix Model (TAM) [San92a], Dynamically Typed
Access Control (DTAC) and non-monotonic transformation model [SS92] are decidable

protection models.

The take-grant (TG) model initially proposed by Jones et al. [LS77], later enhanced by

Snyder [Sny81] and many others, falls outside the known decidable cases of HRU (mono-

operational), however there exists a linear-time algorithm for deciding the safety. While

there are number of variants to the classical model, in general, the model represents the sys-

tem state as a directed graph where vertices are either subjects or objects and the outgoing,

labelled, edges denote the authority the source of the edge has over the destination. The

access control model is defined as graph rewriting rules. In general there are four graph

rewriting rules — the take rule allows a subject to acquire access rights from another, the

grant rule allows a subject to propagate access rights to another, the remove rule facilitates

removing access rights and the create rule allows every subject to create new nodes in the

graph. Conceptually, creation of a new node in the abstract model corresponds to allocat-

ing physical memory within the kernel. Unfortunately, under the classical TG model, the

semantics of the create rule is such that every subject possess the ability to create with-

out any restriction. As such, it is not directly amenable to controlling memory allocations

within the kernel.

Even though safety under take-grant protection is decidable in linear time, the analysis

requires knowledge of the entire system — it does not facilitate endogenous reasoning.

In [LM82] Lockman and Minsky, showed that by removing the grant rule from the take-

grant model, flow of authority can be made unidirectional. All authority transfers are

authorised by the authority possessed by the receiver rather than the sender, thus providing

19

endogenous control — the ability to receive a capability is determined solely by the author-

ity within the subject receiving it. In a similar manner, the diminished-take [SW00] model

proposes filters on the take operation to enforce transitive read-only paths by the authority

on the receiver-side. While desirable, endogenous control is orthogonal to our interest —

a protection model for controlling the allocations within the kernel, which both the models

do not provide.

Many authors have proposed extensions to the take-grant model. Bishop and Sny-

der [BS79] enhanced the take-grant model by introducing de-facto rules — rules that de-

rive feasible information flow paths given the distribution of authority. The take-grant

model captures the direct authority (de-jure) distribution and the de-facto rules compute

the implied authority based on that distribution. For example, A can have a direct au-

thority to write to a file and B direct authority to read from the same file. This dis-

tribution implies a de-facto write authority from A to B (through the file). Later work

by the same authors [Sny81, Bis96] further enhanced the initial proposal. Wu [Wu90]

and later Bishop [Bis81] applied take-grant control for a hierarchical protection system.

Dacier [Dac93] formulated the classical take-grant model in terms of a petri net [DJ01]

and proposed an algorithm to determine all the access rights a subject may acquire with

the help of a given number of conspirators as opposed to the classical model where every

subject is a conspirator. Frank et al. [FB96] extended the take-grant model by adding a

notion of a cost of information or right flows and found the most likely path in terms of

the costs. All these models extend the take-grant model and propose variants for safety

analysis. However, none of these extensions have a notion of kernel resources and the

analysis assumes all subjects have the ability to create without affecting another, thus they

do not facilitate reasoning about the kernel memory consumption of a subject in particular

as create works on a global, limited resource.

Even though take-grant is a purely theoretical model it has being successfully used to

analyse practical systems. In [Bis84] Bishop demonstrated that with the proper extensions,

the take-grant protection model can be used to examine realistic systems for security flaws.

The diminished-take model was used to capture the operational semantics of the EROS

kernel [Sha03] and to verify its confinement [Lam73] mechanism [SW00]. In addition to

its use as an access-control model, more recent work has explored the possibility of using

take-grant for analysing network vulnerabilities [SSJ+05]. The wide-spread applicability

of the model and consequently the extensive literature on different analysis techniques and

various extensions to the basic model, make the take-grant model the ideal candidate for

exploring the possibility of using it to control the allocations within the kernel.

Closely related to take-grant is the send/receive [Min84] transport mechanism. Similar

to take-grant, the safety for this model is decidable, however it is more restrictive than take-

grant in the sense that in addition to “Take” (receive) or “Grant” (send) channels, it is also

possible to enforce additional restrictions on the type of privileges a subject may transport

over these channel. In the analysis, authors showed that creation of new subjects does not

increase the possibility of an access right leak between two existing subjects, as long as

all subjects possess the ability to send and receive authority to/from themselves (such a

state was called uniform). The analysis ignores the create operation assuming the initial

state is uniform. The motivation behind removing create operation is to fix the number of

subjects in the system. Excluding the create operation from the analysis limits its scope to

the behaviour of subjects that are already in existence. However, the result is encouraging

— since the creation of new subjects does not increase the possibility of an access right

leak, controlling the create operation should not, at least in theory, break the decidability

20

property of the model (which is based on access-right leakages).

In general, the create operation is treated as the most complex operation in safety anal-

ysis. This complexity stems from the fact that it introduces new subjects that we do not

know of in the initial state, yielding a potentially unbounded system [San88, AS91]. As

a workaround, the general norm is to assume all possible create operations to occur first,

which makes any subsequent create redundant and therefore can be ignored from the anal-

ysis.

Such a technique was used in the analysis of the Schematic Protection Model [San88]

(or SPM). In SPM, subjects are associated with a static security type. Each type is allowed

to create other types as defined by the can-create relationship. The model is only decidable

for acyclic creates [San92b] — that is, if subjects of type a are allowed to directly or

indirectly create subjects of type b, then it should not possible for subjects of type b to

directly or indirectly create subjects of type a. The can-create relation is static, in that

the types of subjects that can be created by another type, do not change as the system

evolves. The static nature of the can-create relation and the acyclic creates are exploited in

the analysis of SPM. All create operations are assumed to occur first. Each subject creates

subjects of all possible type, and so do the newly created subjects. Once this state is

computed, any subsequent create is redundant, thus the analysis focuses on copy (or grant)

operations. In later work, Ammann et al. [AS90, AS91] proposed an enhancement to SPM

called the extended SPM or ESPM, which yields a model that is formally equivalent to

the monotonic HRU [HR78] model. Similar to the analysis of SPM, ESPM also made the

assumption that all creates occur first in the system.

Sandhu introduced strong typing into HRU. Each subject or object is created to be

a particular type which thereafter does not change (static typing). This new model is

the Typed Access Matrix Model (TAM) [San92a]. Moreover, TAM allows to check for

the absence of rights. An extension to TAM, called the Augmented Typed Access Matrix
(ATAM) [AS92] allows checking for the absence of rights in the command. The notion

of strong typing in TAM is analogous (not identical though) to strong tranquillity in Bell-
LaPadula [BL76, BL73] style models. Strong tranquillity means that security levels asso-

ciated with subjects and objects do not change during the lifetime [Bis03]. The monotonic

TAM (MTAM) is decidable, but NP-hard. A simplified version of MTAM called, ternary
MTAM is decidable in polynomial complexity. Similar to the analysis technique for SPM,

the analysis of these models assumes all creates to occur first.

Strong tranquility is somewhat restrictive. Yet, allowing subjects to change their type

in an unconstrained manner has adverse effects on the system security [McL85, Den76].

There is however, a point in the middle where subjects are allowed to change their type,

but in a manner that does not violate the security policy; known as the weak tranquility.

For instance, the protection system of Asbestos [EKV+05] allows subjects to change their

security level, how ever in a contained manner. Such systems are flexible when compared

with rigid strong-tranquility systems.

In a similar manner, the Dynamically Typed Access Control (DTAC) [TP98] model

employed a dynamic type system. Similar to TAM, DTAC introduces typing into HRU.

In recent work, the authors introduced a graphical way of representation and a constraint

specification language [TP01]. As a result of DTAC’s dynamic nature, it requires more

run-time checks, analogous to type checking for programming languages.

Note that all the above work is done by using “pen-and-paper”. In other words, they

are not machine-assisted or machine-checked proofs.

21

2.2.3 Summary
The security model of a verified kernel should facilitate reasoning, in other words the

model should be decidable. Out of the few decidable security models that exist, the take-

grant model is the most promising candidate. It has being applied for a wide range of

domains.

The model does not have a notion of kernel memory or the general notion of a limited

resource — every subject can create nodes in the graph, without effecting another, and

the analysis is closely related to this assumption. This means we cannot directly use the

model to reason about kernel memory. However, related work indicates the possibility

of improving — there is evidence to suggest that it is possible to extend the model, and

thereby make it feasible to reason about kernel memory consumption. Moreover, since

the model, as it is, can be used to reason about overt information flow (both de-jure and

de-facto) the extended model should ideally facilitate both.

In Chapter 5, I explain how take-grant can be extended to facilitate reasoning about the

kernel memory consumption. Chapter 6 shows how the extended model can be used to

analyse kernel memory as well as overt information flows.

22

Chapter 3

Managing Kernel Memory

In this chapter, I argue that existing approaches to in-kernel memory management, while

attractive in many circumstances, are inadequate for a general purpose, formally verified

kernel and then motivate and rationalise the proposed memory management scheme.

The chapter is organised in the following manner. Section 3.1 investigates the work

carried out by the L4.verified team to formally verify the seL4 kernel and discusses the ad-

ditional requirements placed on the kernel design and in particular its memory management

model. Then Section 3.2 analyses the existing approaches against these requirements. Fi-

nally, Section 3.3 introduces the proposed memory management model and the challenges

in realising it.

3.1 L4.verified – Formal Verification
The term “formal verification” is highly overloaded — depending on the context, it may

refer to model checking, safety analysis, or formal refinement. In the following sec-

tions, I outline the formal verification approach adopted by the related L4.verified [EKK06,

EKD+07, KEH+09, Kle09] project and discuss its implications on the kernel design.

The end goal of the L4.verified project is to formally prove that the kernel’s implemen-

tation is correct with respect to a high-level, abstract model of its behaviour. This abstract

model is then used to reason about the ability to enforce a particular policy. The policy

here can be, for example, spatial partitioning [Rus99], isolation, confinement [Lam73] and

so on. The formal proof of correctness connects the reasoning at the abstract level with the

deployed kernel.

3.1.1 Overview of the Methodology
A pictorial representation of the steps involved in verifying the implementation correct-

ness of the kernel is shown in Figure 3.1. At the very top of the verification hierarchy

is a protection model (or a security model), which provides a high-level abstract view of

the security-critical functionality of the kernel. In particular it models the access-control

mechanism of the kernel.

The main objective of the protection model is to facilitate formal reasoning — it acts

as a framework for analysing the ability (or the inability) to enforce a given policy. Using

the protection model, one can prove formal theorems about the policy enforcement. I call

such an analysis a security analysis.

23

Figure 3.1: L4.verified approach to kernel verification.

Suppose the outcome of such a security analysis is favourable. The question then is

“what does it mean for the deployed system?”.

Formally speaking, the security analysis demonstrates that the protection model can

enforce the given policy, but not necessarily the deployed kernel — the bottom-most layer

of the verification hierarchy in Figure 3.1.

The answer to the above question comes from a refinement [dRE98] proof (see Fig-

ure 3.1). The aim of the refinement proof is to formally connect the protection model with

the seL4 kernel implementation, such that the results of the security analysis is formally

valid for the deployed kernel.

For the sake of completeness, it is worth mentioning that refinement is done in several,

hierarchical stages (see Figure 3.1). As one moves down the hierarchy, models become

less abstract with the final stage being the actual kernel. Each model in the hierarchy is

formally connected to the model immediately above it via a refinement proof(s).

This formal refinement is beyond the scope of this thesis. The thesis does not claim

any formal connection between the abstract model presented in Chapter 5 and the seL4

kernel. However, the desire to do so places additional requirements on the kernel’s memory

management model. I articulate these requirements by investigating, at a very high-level,

the refinement work done in L4.verified project.

3.1.2 Proof Effort: Case Study
In this section, I quantify the effort exerted by the L4.verified project in proving a refine-

ment relation between the kernel and its memory management model. I use the number of

lines of (Isabelle) proof scripts as an indication for measuring the effort.

The refinement example used for this analysis is from the high-level model of the kernel

to the low-level model. Pictorially, it corresponds to the middle double-sided arrow in

Figure 3.1.

The L4.verified project uses the interactive theorem prover Isabelle/HOL [NPW02]

for its refinement proofs. In this system, theorems are organised in a hierarchy of theory
files (*.thy), with each file containing definitions, lemmas and theorems, generally about

a particular part of the seL4 kernel. The number of lines in each file is counted using the

SLOCCount [Whe01] tool.

24

File Name Lines of script Lines of script Percentage of total

in the file related to kernel memory (%)

KernelInit R.thy 13,997 6203 5.9

CSpace R.thy 13,025 2384 2.3

CNode R.thy 12,122 961 0.9

Untyped R.thy 5331 5331 5.1

Retype R.thy 5251 5251 5.0

Ipc R.thy 5142 0 0

Wellformed.thy 4714 0 0

Finalise R.thy 4442 603 0.6

Detype R.thy 1840 1840 1.8

Others 39,079 0 0

Total 104,943 22,573 21.5

Table 3.1: Break-down of lines of Isabelle proof scripts related to kernel memory manage-

ment.

Table 3.1 shows a break-down of lines of Isabelle scripts in different theory files. In

this table, the first column provides the name of the theory file. The second column of the

table shows the number of lines of Isabelle script in each file and the third column is the

number of lines of script that deals with the kernel memory management model. The final

column shows the number of lines related to the kernel memory management model as a

percentage of the total.

For clarity of presentation, I have grouped all the small theory files which do not deal

with kernel memory into a single group called others.

There are three main theory files refining the kernel memory management model —

Untyped R.thy, Retype R.thy and Detype R.thy. The Untyped R.thy file contains refine-

ment theories on Untyped object. An Untyped object is a seL4 abstraction of a region of

physical memory. I explain these abstraction later, in Chapter 4. The Retype and Detype
operations allocate and de-allocate kernel objects respectively and the refinement theories

on these operations are mostly in the two theory files Retype R.thy and Detype R.thy re-

spectively.

In addition to the three main files, other files also contain theories about the kernel

memory management model. Out of these, the most obvious is the KernelInit R.thy, which

contains refinement theories on kernel initialisation including theories on how the kernel

memory pool is initialised and how memory is allocated the for initial system objects.

As I explain in Chapter 4, the seL4 kernel uses a capability derivation tree (CDT) to

record how capabilities are derived from one another. The information stored in the CDT

is essential for safe allocation of kernel objects (see Section 4.3.3). The CDT information

is maintained by linking capabilities. These capabilities are stored in a capability address

space or a CSpace, which is constructed by mapping CNode objects to one another. As

such, the corresponding refinement theory files contain theories related to the memory

management model.

In summary, the refinement proof consists of 105k lines of proof script, out of which

21.5% deals with the kernel memory management model. In terms of time, the entire proof

took an estimated 8 person-years (py) to complete. Thus, we can very roughly estimate

1.7 py to complete the proofs related to kernel memory. However, as I explain below, the

25

1.7 py is an underestimation due to the cross-cutting nature of memory management.

Obviously, the proof effort depends on the complexity of the memory management

model. The above estimation is for the seL4 memory management scheme described in

Chapter 4. I envisage that the complexity of the seL4 memory management scheme is

in par with those schemes used in high-end operating system kernels. Thus, the above

estimation is a valid indicator for other high-end operating systems.

Modifications are Costly

For any kernel, irrespective of whether it is verified or not, modifying kernel code, in partic-

ular the low-level functionality of the kernel, is generally time consuming and hence costly.

Such modifications usually involve low-level coding, testing, debugging and optimising.

The cost of modifying the kernel becomes even more prominent in the context of a for-

mally verified kernel. Firstly, it breaks refinement theorems — refinement proofs demon-

strate that code implementing the kernel is a refinement of a higher-level model. Any

non-trivial modification (and most of the trivial ones) to the kernel means that proofs are

no longer true. Hence the refinement will break. Depending on the nature of the modifica-

tion, reestablishing refinement requires a significant effort to both reprove the invalidated

invariants, and to prove newly required ones.

If the modification is a simple optimisation to the code — say, changing the code layout

to improve the cache behaviour — then the effort required to fix the refinement proof would

be low. Such modifications do not change the fundamental behaviour of the kernel and

therefore, are not visible at the high-levels of abstraction (see Figure 3.1).

However, any large modification to the kernel which has cross-cutting concerns in other

parts of the kernel requires significant effort. For example, the L4.verified team reports an

effort of 1.5-2 py to re-verify the kernel after introducing just a new API call with cross-

cutting features and the kernel data structures required for the realisation [KEH+09]. The

bulk of this cost is for proving new invariants for the new code which have to be preserved

over the whole kernel — not just in the new code.

Suppose we modify the kernel memory management model (because it does not suite

the system requirements), say from a partitioning scheme to a best-effort allocator. In the

best case, this modification will nullify 21% of the total refinement proofs which took

approximately (based on the percentage) 1.7 py complete.

In practise, however, the 1.7 py is an underestimation. This is because of the cross-

cutting nature of kernel memory management — almost all parts of the kernel depend

on the memory manager for their functionality. For example, the thread subsystem relies

on the kernel memory allocator for allocating thread control block, the virtual memory

subsystem for allocating page tables and so on. Any modification to the kernel memory

allocator, in particular a conceptual modification, is visible to all these kernel subsystems.

These subsystems now have to be modified so that they co-operate correctly with the new

allocator and the verification needs to prove that this co-operation is correct and sufficient

for the expected functionality of whole kernel — triggering additional proof obligations in

all parts of the kernel. Thus increasing the actual cost of re-verification.

Moreover, a modification to the kernel’s externally visible behaviour require modifica-

tions to the higher-level formal models to establish refinement. Roughly speaking, refine-

ment shows that kernel behaves according to its higher-level model. Thus, modifying the

visible behaviours of the kernel model may require modifying its protection model so that

one can prove refinement between the two. Modifying the protection model would break

26

the security theorems, which are based on the model (see Figure 3.1). Thus, one needs to

reprove these theorems for the new model.

In summary, changing the low-level functionality of a formally verified kernel — such

as how the in-kernel memory is managed — is highly expensive and therefore should

ideally be avoided. Furthermore, a verified kernel should be capable of catering the needs

of many diverse application domains so that the relatively-high cost of verification gets

amortised.

Based on these, we can conclude that a verified kernel should ideally be capable of

catering the needs of many different application domains without any modification to the

kernel code base.

3.2 Summary of Existing Approaches
As discussed in Chapter 2, existing approaches to in-kernel memory management can be

broadly categorised into three main classes: (a) those where memory management is gov-

erned by an in-kernel policy, (b) those where the kernel’s memory is a cache of the system

state and (c) those that seek to export the control of in-kernel memory management to

user-level applications.

In the first class of systems, kernel memory is managed by a policy integrated into

the kernel. While there is some flexibility to “fine-tune” the kernel policy, it can only be

changed by modifying the kernel — a fundamental change to the kernel policy requires

modification to the kernel’s code. In the context of a verified kernel, such a modification

means that the refinement proofs are no longer valid — nullifying the assurance provided

by formal verification. Moreover, as discussed previously, re-verification can be costly,

depending on the nature of the modification.

On the other hand, if we refrain from modifying the kernel integrated policy to preserve

the assurance, then the verified kernel can only be deployed in a system where there is a

natural synergy between the kernel’s policy and the domain’s requirements. For example,

a kernel using a first-come-first-serve memory allocation policy cannot be deployed in

a domain that warrants strict partitioning [BA03] and a kernel enforcing partitioning is

inefficient for a best-effort system [Wal02]— efficiency can be significantly improved by

reassigning memory to where it can be used. Ideally, a verified kernel should be capable of

catering to the needs of a number of application domains, so that the high cost associated

with verification gets amortised.

Kernels that treat their in-kernel memory as a cache of the system state can be viewed

as a special case of kernel-integrated policy where the policy is caching. A single policy,

as I discussed previously is not suited for all application domains. In this particular case,

the kernel’s caching scheme is not appropriate for a system with temporal requirements.

In the final class of systems, the in-kernel memory is managed by user-level resource
managers. Through an API, the kernel exports its in-kernel memory management to user-

level managers. In-kernel memory management policy is implemented outside of the ker-

nel. Thus, as I demonstrate through this thesis, one can change the policy to suit the

application domain by changing the user-level resource manager, rather than the verified

kernel code base. The scheme supports diversity by means of different user-level resource

managers— each resource manager implements its own policy over the resources it man-

ages. Through the same mechanism we can even support co-existing, diverse resource

management policies.

27

User-level management provides most of the features claimed by the kernel memory

management model of a general purpose, verified kernel. The only feature missing is the

ability to reason about the system behaviour. As an illustrative example, consider a user-

level resource manager attempting to partition kernel memory. There are two questions

the resource manager needs to answer; (a) can the kernel API be used for enforcing this

policy, and (b) if so, how to configure the applications in such a manner to guarantee the

enforcement. As this thesis demonstrates, by unifying the memory management model

with the formal protection model (see Figure 3.1) one can facilitate this type of reasoning

— it should be possible to answer the above questions, formally using the protection model.

3.2.1 Reasoning About Memory
A number of systems employ abstract models to facilitate formal reasoning of application

behaviour. Such models have been examined in KeyKOS [Har85], EROS [SSF99, Sha03],

Asbestos [VEK+07], and Hi-Star [ZBWKM06] including a formal proof of enforcing con-

finement in the case of EROS [SW00]. The sHype architecture [SJV+05] examined the

application of mandatory access control to communication and shared resources to achieve

isolation.

These models, however, focus only on the application level (at API level), with the tacit

assumption that the kernel’s internal behaviour, when providing services to these applica-

tions does not undermine the properties enforced at the API level. A clear relationship

between the high-level model and the low-level management of physical memory in the

kernel is either non-existent, insufficient or ad hoc. Ideally, there should be a clear, system-

atic (potentially formal) relationship between the kernel’s physical memory management

and the API model of the system, so that the same policy enforced at API level is adhered to

within the kernel — isolation at API level for example, should imply isolation of physical

memory inside the kernel.

3.3 seL4 Approach: Rationale
A kernel should provide an analysable relationship between a model of the system and the

kernel’s physical memory consumption. Thereby making it feasible to reason about and

control the amount of resources used by the kernel in providing services to application

software. Moreover, the kernel should minimise the allocation policy in the kernel, and

maximise the control application software has over the management of in-kernel physical

memory in an analysable manner.

The main issue in providing an analysable relationship between the model of the system

and the kernel’s physical memory management is implicit allocation. By implicit allocation

I mean the memory allocated as a side-effect of providing a kernel service. There is loose

relationship between these allocations and the authority to receive a kernel service. For

example, the authority to install a frame in a virtual address space has only a lower bound

(a frame) and has no connection to the actual amount of physical memory consumed by

the kernel, which is determined by the layout, the number of page tables and the number

of mappings in the virtual address space. These implicit allocations creates a gap between

the model and kernel’s internal behaviour.

Moreover, the need for an in-kernel memory management policy stems from these

implicit allocations. The kernel needs a scheme to manage implicitly allocated metadata

and hence an in-kernel memory management policy.

28

Motivated by these observations, we propose a memory allocation model that has two

main properties. First, it eliminates all implicit memory allocations from the kernel, and

makes all in-kernel memory allocations explicit via authorised requests from user-level re-

source managers. Second, all authority, including the authority to allocate kernel memory,

is precisely captured and the effects of usage are modelled by a protection model.

The former property creates a direct relationship between authority and kernel memory

usage. I show that this allows us to implement different kernel memory allocation policies

by modifying the authority distribution and the way in which a user-level resource manager

uses this authority.

The latter property facilitates reasoning — provided the protection model is amenable

for doing so. We can enforce and reason about the enforcement, of a different policies as

warranted by the application domain, based on the protection model.

The proposed scheme bears all the desired characteristics we discussed above. One can

use the memory management policy best suited for a particular application domain without

modifying the verified kernel code and hence without invalidating the refinement relation.

The protection model facilitates reason about the policy enforcement and the refinement

proof connects that reasoning with the deployed kernel.

However, the scheme presents several interesting challenges. First, there may be a

performance penalty involved with exporting policy decisions on kernel memory allocation

to user-level resource managers. Instead of the kernel deciding on when and where to

allocate the memory it requires, it exports the decisions to user-level resource managers.

This has performance implications that need to be addressed, quantified and reduced to

a bare minimum. Second, we need a method to connect the protection model with the

memory management model. As mentioned in Section 2.2, existing formal models do not

capture the notion of a limited resource and hence cannot be used to model the semantics

of kernel memory. However, there is the possibility of extending them to develop a new

protection model that captures the behaviour of kernel memory. Finally, the protection

model, while capturing the behaviour of kernel memory, should still be decidable with

respect to useful properties (e.g. safety). Unfortunately, protection models are in general

undecidable [HRU76] (with regards to safety analysis), hence do not facilitate reasoning.

The model must be carefully crafted to avoid creating an undecidable model.

In the following chapters I discuss the above mentioned facets: I start by introducing

the kernel model, in particular its memory management scheme in Chapter 4. Chapter 5

shows how to incorporate the authority to allocate kernel memory into a formal protection

model. Then, Chapter 6 shows how this model can be used to formally reason about and

enforce policies on memory usage of an application. Chapter 7 analyses the micro-level

performance of a prototype kernel that implements the above model. The macro-level

performance characteristics of the kernel model when used as a hypervisor is discussed in

Chapter 8. Chapter 9 concludes.

29

Chapter 4

Conceptual Model

In this chapter, I present a high-level view of the proposed memory management model.

As discussed in Chapter 3, the main barrier to providing a principled scheme for man-

aging the in-kernel memory is the implicit allocations that take place within the kernel. I

define implicit allocations as the memory that is allocated by the kernel as a side-effect of

obtaining a kernel service.

Almost all kernel provided services require metadata within the kernel for either di-

rectly supporting the service (e.g. page tables for implementing a virtual address space), or

for storing additional bookkeeping (e.g. bookkeeping required for reclaiming resources on

release). This metadata is managed implicitly by the kernel — when providing services,

the kernel allocates metadata as and when required. For some kernel services, these im-

plicit allocations of memory within the kernel make it hard, if not impossible, to reason

about the memory consumption of a process given its authority to use kernel services. Due

to the implicit nature of memory management within the kernel, one cannot make a direct

connection between the authority of an application to obtain a service and the amount of

physical memory consumed in providing the service.

The thesis propose a memory model that resolves the issue by promoting all dynami-

cally allocated kernel memory (be it the memory required for directly supporting the ser-

vice or the memory required for storing in-kernel bookkeeping) into first-class, explicitly

allocated kernel objects. These kernel objects are allocated only upon receiving authorised

requests from user-level resource managers, thus creating a direct relationship between au-

thority possessed by an application and the amount of kernel memory it may consume.

Consequently, one can reason about and enforce different policies on kernel memory man-

agement by reasoning about and controlling the flow of authority. I defer the discussion on

controlling authority flow until Chapter 5.

Achieving a direct relationship between the authority possessed by an application and

the amount of kernel memory it may consume is challenging for some kernel provided

services. For example, there is little relation between the authority to use an address space

and the amount of kernel memory consumed in providing it. Following sections, discuss

these challenges, how they can be addressed, and the impact of doing so on the kernel

provided abstractions.

The chapter is organised in the following manner: Section 4.1 provides the background

required for the reminder of the chapter. Section 4.2 summarises the memory allocation

model. Then the following three sections discuss the memory allocation model in depth —

object allocation, recycling of objects and reuse of memory to implement a different object

type is discussed in Section 4.3, Section 4.4 and Section 4.5 respectively. Then Section 4.6

30

discusses the impact of the allocation scheme on kernel abstractions. Section 4.7 reports

practical issues in realising the model and finally Section 4.8 summarises.

4.1 Overview of seL4

4.1.1 Basic Kernel Model
The seL4 microkernel API is based on kernel objects and capabilities [DVH66] to control

access to these kernel objects.

Each kernel object implements a particular abstraction and supports one or more meth-

ods related to the particular abstraction it provides. For example, a Thread Control Block
(TCB) object implements a thread abstraction, and thread related services (thread related

system calls) are the methods supported by this type of object.

The seL4 kernel uses partitioned (or segregated) capabilities [AW88] for access con-

trol. That is to say that capabilities themselves are stored within kernel-protected objects

making them tamper-proof. All seL4 objects are named and accessed via capabilities. The

possession of a capability with the required authority is sufficient to obtain a particular

service from the object pointed to by the capability. Processes have no intrinsic authority

beyond what they possess as capabilities.

System calls are implemented as object method invocations by invoking a capability

that points to the kernel object with a method name. As such, all system calls, without

exception, require at least one capability to authorise the operation.

An application can delegate all or part of its authority to another application, provided

the it is authorised to do so. Moreover, the delegated authority can be removed by perform-

ing a revoke operation. The kernel maintains a Capability Derivation Tree (CDT) to store

the bookkeeping required for implementing the revoke operation. When a revoke operation

is performed on a capability (say X), the kernel locates all the CDT descendants of X and

removes them from the system.

The kernel provides two operations for propagating a capability: the mint and imitate
operations. A capability propagated via the mint operation has equal or lesser authority

than the source and it is added to the CDT as a child of the source capability. On the other

hand, a capability copy made via the imitate operation has the same authority as the source

and it is inserted as a CDT sibling of the source.

4.1.2 System Structure
The overall structure of a system based on the seL4 microkernel is shown in Figure 4.1. The

microkernel runs directly above the hardware with full hardware privileges and provides

basic services to all other user-level components. Once the microkernel bootstraps itself,

it creates the initial resource manager — a domain specific OS personality responsible for

bootstrapping the remainder of the system.

The general structure of the system is a client-server configuration. Clients rely on

resource managers (servers) for OS services such as virtual memory, threads, IO function-

ality etc. These resource managers implement services using a suitable management policy

that they determine.

At system start-up, the kernel creates an initial resource manager and all the resources

remaining for it to function. The two subsequent resource managers shown in Figure 4.1

(RM1 and RM2) are created by the initial resource manager, and in doing so, the initial

31

Figure 4.1: Example system configuration.

resource manager delegates part of its resources (by delegating capabilities) to the newly

created managers. In this manner, the system supports hierarchical resource management

with each resource manager in the hierarchy creating sub-resource managers by delegating

a part of the resources it has. Moreover, the system supports coexisting resource managers

implementing diverse policies. For example, RM1 and RM2 in Figure 4.1 can implement

different policies over the resources they received from the initial resource manager.

4.1.3 seL4 Memory Management
The seL4 model eliminates all implicit allocations within the kernel by promoting all dy-

namically allocated kernel memory — be it the memory required for directly supporting

the service or the memory required for storing in-kernel bookkeeping — into first-class,

explicitly allocated kernel objects. These kernel objects are allocated only upon receiving

authorised requests from user-level resource managers. Thus creating a direct relationship

between authority possessed by an application and the amount of kernel memory it may

consume. Consequently, one can reason about and enforce different policies on kernel

memory management by reasoning about and controlling the flow of authority.

For regulating the in-kernel memory allocations, seL4 introduces a novel concept called

Untyped memory objects or UM objects. An UM object represents a power-of-two sized,

size-aligned region of physical memory. Possession of a capability that points to a UM

object (an UM capability) is sufficient authority to allocate kernel objects within the cor-

responding region of memory. By calling the retype method implemented by UM objects

user-level resource managers request the kernel to subdivide that region into kernel objects

(including smaller or equal-sized UM objects). Details of this object allocation mechanism

is discussed in Section 4.3.

With the exception of explicit allocations of objects via the retype method, the seL4 ker-

nel never allocates metadata, thus, establishing a direct relationship between the authority

of a process and the amount of kernel memory it may consume. As a result, controlling

the dissemination of authority yields precise control of the amount of physical memory a

process may consume.

As mentioned, seL4 promotes all dynamically allocated kernel metadata into first-class,

explicitly allocated objects. Moreover, all the memory required for implementing the ob-

ject and its functionality is pre-allocated, at the time of creation — once created, an object

can serve its purpose without requiring any further memory resources. The obvious prereq-

32

uisite here is that the amount of memory required for an object’s functionality is invariant.

In the next section, I show that it is possible to define objects that adhere to this invariant

and discuss the implications of doing so later in Section 4.6.

4.1.4 Kernel Objects
Objects implemented by the kernel can be divided into architecture independent and archi-

tecture dependent types. Architecture-dependent data structures such as page table nodes

are encapsulated in objects visible to applications via the API when the application pos-

sesses the appropriate capability.

Architecture Independent Objects

The following object types are independent of the underlying hardware architecture.

Untyped encapsulates a region of power-of-2, fixed-sized, size-aligned, continuous region

of physical memory that can be retyped to allocate new kernel objects.

TCB contains the state of a thread, including four capabilities to associate the thread with

its (a) capability address space (CSpace), (b) virtual-memory address space (VS-
pace), (c) exception handler endpoint, and (d) the reply endpoint. The two endpoint

capabilities in the TCB are used for handling exceptions — the former for notifying

a handler and the latter to notify the client, once the exception is resolved. The size

of a TCB depends on the architecture (because of the thread state), but for a given

architecture the size is fixed.

Endpoint is a synchronous interprocess communication rendezvous point. It contains

storage for endpoint state and a queue head for threads blocked on the endpoint. The

thread queue itself is implemented by linking the associated TCBs in a doubly-linked

list. Thus its size is fixed.

AsyncEndpoint is an object supporting an asynchronous interprocess notification mech-

anism. It contains the storage required for storing a message and a queue head for

threads blocked waiting for a notification. Similar to the previous case, blocked

thread queue is implemented via linking associated TCBs. If more than one message

is written to the object, the kernel combines the messages — for example, by XOR-

ing — to produce a single message. Hence, the object consumes only a fixed amount

of memory.

CNode is a power-of-2, fixed-sized storage container for capabilities, which can be com-

bined (by mapping one CNode to another) to form a graph-like data structure repre-

senting a thread’s CSpace. A CNodes contains a power-of-2, fixed number of slots

(specified at the time of creation) for storing capabilities and associated CDT infor-

mation. I introduce the CDT later in Section 4.3.3. For now it is sufficient to note

that the space required for a CDT entry is fixed (2 machine words). Moreover, a

capability requires another 2 machine words; making a total fixed per-slot storage of

4 machine words. As such, the kernel can compute the total storage required for a

CNode at the time of creation.

Architecture-Dependent Objects

Architecture-dependent objects are used to promote hardware-defined data structures into

first-class objects in the kernel’s API. For the purposes of this thesis, the underlying archi-

33

Operation Capability invoked Restrictions

retype parent UM capability leaf in the CDT

recycle object master capability no imitated copies

reuse memory parent UM capability -

Table 4.1: Summary of the kernel memory management API.

tecture is that of the ARM11 [ARM05].

PageDirectory is an object representing a specific virtual address space and the right to

manipulate it. It contains the root page table (page directory) of the two-level page-

table structure of ARM. Note that the size of a PageDirectory is fixed.

Frame is a frame of physical memory that is installable in a virtual address space for

providing backing storage for virtual memory. The size of a Frame is specified at the

time of creation and is invariant.

PageTable is the leaf node of the two-level page table structure of ARM architecture. On

ARM, the size of a leaf node is fixed at 4KB.

InterruptController is an object that stores the current interrupt associations of the ker-

nel. seL4 features user-level drivers, and delivers interrupts to user level via the

AsyncEndpoint notification mechanism. The size of this object is fixed and deter-

mined by the number of hardware interrupts.

InterruptHandler is used by user-level interrupt handlers to acknowledge the interrupt.

This is a dummy object (which consumes no memory) for facilitating interrupt ac-

knowledgement.

seL4 ASID Table object stores the association of a VSpace with a hardware address space

identifier and PageDirectory object implementing the VSpace (see Section 4.6.3 for

more details). The size of the seL4 ASID table determines the number of possible

concurrent address spaces and it is fixed at kernel compile time.

4.2 Overview of Memory Management API
Table 4.1 summarises the kernel memory management API. For each operation, the table

shows the capability that needs to be invoked to perform the operation and the restrictions

on the invoked capability.

In the following sections, I discuss the memory management API in depth. The retype

operation — the method used for object allocation — is analysed in Section 4.3. The

mechanism for recycling an existing object is discussed in Section 4.4 and how memory is

reused to implement a different object type is discussed in Section 4.5.

4.3 Kernel Object Allocation
Having introduced a rough sketch of the model, now I describe the object allocation scheme

in depth.

Once the kernel has bootstrapped itself, the authority over the remaining memory (not

used by the kernel) is conferred to the initial resource manager in the form of UM capabil-

ities to distinct, non-overlapping UM objects.

34

Figure 4.2: Allocation of different kernel object types using the retype method. Circles

represent capabilities and rounded boxes correspond to kernel objects.

Shown in part (a) of Figure 4.2 are two such UM capabilities and the regions of physical

memory they represent. In this diagram, circles and rounded boxes represent capabilities

and kernel objects, respectively.

The initial resource manager can use the UM capabilities in its possession to allocate

other kernel objects. This is achieved by calling the retype method on an UM capability,

specifying the type and the number of kernel objects that need to be created (see part (b)

of Figure 4.2).

Note that the retype method can allocate more than one kernel object at a time, but all

allocated objects are of the same type. In theory, a single retype operation can allocate

objects of different types. However, we did not find compelling, practical examples where

such an operation is useful.

When the retype method creates new kernel objects, it returns capabilities with full

authority to the newly-created objects — one capability for each new object. For example,

as shown in part (b) of Figure 4.2, upon receiving a request to retype UM1 into two TCBs,

the kernel creates two new TCBs in the corresponding memory region, and returns two

capabilities, with the full authority to each TCB object. These new objects are called

children, and the UM object used for the retype operation the parent. When creating new

objects, the retype operation enforces the following invariants:

1. The child object(s) must be wholly contained within the original parent UM object,

2. the child objects must be non-overlapping (not even partially), and

3. the child objects must be distinct.

The retype operation consumes kernel memory in two ways. First, the newly created

objects require backing storage. This storage is provided by the parent UM object and the

first invariant above guarantees that we do not exceed the provision provided by the parent.

Second, placing the newly created capabilities consumes memory, in terms of capability
slots—storage containers within the kernel for capabilities. The application performing

the retype operation provides the storage space required for placing the new capabilities

by supplying (as an argument to retype) a capability to a CNode—an array of capability

slots—and an offset into this array. The kernel places the newly-created capabilities in

these slots, given that the capability slots are initially empty. Thus, creating the child

capabilities does not consume any kernel metadata, beyond what is already supplied.

I discuss the need for the second and the third invariants later in Section 4.3.1, and

Section 4.3.3, respectively.

35

The initial resource manager may delegate all or part of the authority it received from

the retype operation to one or more of its clients, using either imitate or mint operations,

respectively. Thereby, the initial resource manager allows a client to obtain kernel services

by invoking the object.

The retype operation is capable of creating several types of objects, including smaller

UM objects. As such, the available storage can be divided into smaller regions, each of

which may be retyped individually or delegated to another user-level resource manager.

As mentioned, all the physical memory required to implement a kernel object is preal-

located to the object at the time of its creation. Moreover, this amount does not exceed the

memory resources of the parent UM it was derived from. This eliminates the need for the

kernel to dynamically allocate memory to satisfy requests from user-level tasks.

4.3.1 Type and Memory Safety of Kernel Objects
In order to ensure the integrity of kernel objects, the kernel needs to ensure that a region of

memory implements a single object at any given time.

To make this guarantee, the retype operation must guarantee that no existing object

is using any of the memory being consumed by retype. Thus, before starting the retype

operation, the kernel checks whether there are any existing objects within the region of

memory represented by the UM object.

Returning to the above invariants on retype (see Section 4.3), the first two restrictions,

together with the fact that initial UM objects are distinct and non-overlapping, guarantees

that two UM objects can only overlap if they have a parent-child relationship. For example,

the newly-created UM objects, UM3 in part (c) of Figure 4.2, overlaps with and is a child

of UM2. Similarly, any typed object — any object type other than UM, that resides in the

memory region encapsulated within an UM is a child of the parent UM — the two TCB

objects that consume memory from UM1 are children of UM1. So, the kernel can make

the above guarantee by ensuring that the parent capability used for the retype operation has

no children (typed or untyped children). I defer discussing the mechanism used to track

parent-child relationship and the need for the third invariant until Section 4.3.3.

4.3.2 Preventing User-Level Access to Kernel Data
For security reasons, kernel data structures must be protected from user-level access. I now

explain how this is achieved in the seL4 model.

The kernel prevents user-level access by using the following mechanisms. First, the

allocation policy guarantees that two typed objects never overlap. Two objects may overlap

in physical memory only if at least one object is an UM object. Moreover, only typed

objects contain any data.

Finally, the kernel ensures that each physical frame mapped by the MMU at a user-

accessible address is of the Frame object type. These Frame objects contain no kernel data

and since they cannot overlap with other typed objects, direct user access to kernel data is

not possible.

4.3.3 The Capability Derivation Tree
For type and memory safety of kernel objects, the kernel needs to guarantee that the mem-

ory being used by the retype operation is not currently used by any existing kernel object.

36

Figure 4.3: The capability derivation tree (CDT). Part (a) shows the CDT configuration

soon after the retype operation and Part (b) demonstrates the configuration of the CDT after

granting copies of C1 to other clients and given in Part (c) is the internal representation of

the corresponding logical tree.

Since, the retype operation only consumes memory from a single UM object the kernel

only needs to guarantee that the parent UM object used for retype has no existing children

(including smaller UM objects). The capability derivation tree (CDT), is the kernel’s inter-

nal bookkeeping mechanism to track the parent-child relationship between kernel objects.

An obvious design questions here is how to manage the storage required for the CDT?.

In seL4, all existing objects have at least one capability pointing to them. This property

provides an obvious location for including the CDT information — capabilities.

Whenever a new capability is created, that is, when a UM object is retyped, or when

rights to a typed object are delegated by copying its capability, the kernel records the rela-

tionship between the new capability and its parent in the CDT. For instance, the two TCB

capabilities generated via the example retype operation in Figure 4.2, are inserted into the

CDT as children of the parent UM capability. The configuration of the CDT soon after the

retype operation is shown in part (a) of Figure 4.3. In this figure, C1 and C2 denote the two

capabilities generated by the example retype operation.

Once an object is created, the resource manager may delegate its authority over the new

typed object to one or more of its clients by granting each client a copy of the capability.

seL4 provides two mechanisms for propagating capabilities for typed objects (or typed

capabilities)—the mint operation and the imitate operation. A capability propagated via

the mint operation has equal or lesser authority than the source and it is added as a CDT

child of the source. In Figure 4.3, for example, C3 and C4 are copies of C1 made via the

mint operation. On the other hand, a copy made via imitate has the same authority as the

source capability and it is inserted as a CDT sibling of the source. The capability C1’ in

Figure 4.3, for example, is a copy of C1 created via imitate. Note that these capability

copies as well as the capabilities generated via the retype method are descendants of the

parent UM capability — all capabilities that point to objects within the region covered by

the UM object are CDT descendants of the parent UM capability.

The kernel avoids dynamic allocation of storage for CDT nodes by implementing it as

a circular, doubly-linked list stored within the capabilities themselves. Shown in part (c)

of Figure 4.3 is the linked list representation of the logical tree from part (b) of the same

figure. This list is equivalent to the pre-order traversal of the logical tree. To reconstruct

the tree from this list, each node in the list is tagged with a depth field — the depth of the

node in the logical tree.

The number of bits used to encode the depth imposes a limit on the CDT depth and

hence a limit on the number of mint operations. For example, the prototype kernel pre-

sented in this thesis uses 7bits to encode the CDT depth and hence the tree is limited to

128 levels. It is possible to remove this limit by implementing the CDT as a tree, rather

37

Figure 4.4: Propagating untyped capabilities using mint and imitate operations. Part (a)

shows the initial UM capability. The CDT after making two copies of UM1 using mint and

a single copy using imitate operation is shown in part (b) and (c) respectively. Arrows are

used to point to children and dotted lines connect siblings.

than the pre-order traversal of it. However, this option was not considered as it requires

additional memory provision within capabilities. Moreover, experience with seL4 based

systems suggests that limited depth is not an issue in practise.

The CDT provides a simple mechanism to test whether it is safe to allocate objects

using a parent UM — for safe allocation the parent UM object must be a leaf in the CDT.

Moreover, given that the pre-order traversal of the logical tree is readily available, this

means that the capability to the right in the list of the parent UM capability must be either

a sibling (equal depth) or an ancestor (lesser depth). However, this simple test is suffi-

cient only in conjunction with another restriction on untyped capabilities, which I examine

below.

Untyped Capabilities

Before focusing on the restriction, I introduce the problematic scenario. Consider the un-

typed capability UM1, in Figure 4.4. Suppose we allow capability copy operations — mint

and imitate — on this UM capability. The CDT configuration after creating two copies;

UM2 and UM3, of capability UM1 via the mint operation is shown in part (b) of the figure.

Since these copies are made via mint, they will be installed into the CDT as children of the

capability UM1. In the figure, out-bound arrows point to child capabilities and dotted lines

connect siblings. In the CDT configuration in part (b), even though UM2 has no children,

the kernel cannot safely allocate new objects in the memory region it points to, without

knowing the status of UM3. Establishing the status of UM3 would require a traversal up

the CDT tree, until a common parent is found, and back down on all possible branches —

which can potentially be a long running operation. Part (c) of the figure shows the CDT

configuration after making a copy of UM1 through the imitate operation. In this case, as

above, the kernel cannot allocate objects safely using UM1 without knowing the status of

UM1’.
The issue arises from the fact that we now have two capabilities that are siblings in

the CDT, but are pointing to the same UM object. The kernel prevents this problematic

situation from occurring by using two techniques. First, the third restriction on retype

(see Section 4.3) — newly-created child objects must be distinct — ensures that new UM

capabilities created via retype point to distinct (different) UM objects. Recall the semantics

38

of retype: after allocating objects it returns a set of capabilities — one per newly-created

object. The capabilities in this set are siblings in the CDT — all of these capabilities are

inserted into the CDT as children of the parent UM capability. Since the newly-created

objects are distinct, none of the siblings in this set would point to the same UM object.

Second, the kernel disallows copy operations (both mint and imitate) on UM capabil-

ities. The only way to propagate a UM capability is by retyping — retype the parent UM

into another UM object of the same size. However, note that, as an optimisation, we can

allow mint operations on UM capabilities — conceptually, mint has the same effect as

retyping into an object of the same size.

These two invariants, together with the semantics of retype ensures that if a capability

points to an object; be it a typed object or an untyped object, that consumes memory from

a region covered by an UM object, then the capability must be a CDT descendent of the

UM capability. As such, if a parent UM capability does not have any CDT children, then

there are no (currently existing) objects within the region covered by the UM object. So,

performing the above mentioned simple test is sufficient to guarantee that it is safe to

perform the retype operation.

4.3.4 Summary of the Retype Operation
Before proceeding, I summarise the operational semantics of retype:

Operation: Creates a set of kernel objects and returns a set of capabilities to these newly-

created objects with the full authority to the newly-created object.

Arguments: User-level resource managers provide the following arguments to the retype

operation.

• The parent UM capability — the retype method is called by invoking the parent

UM capability.

• A set of empty capability slots for placing the result capabilities.

Restrictions: The following preconditions must be satisfied by the parent capability:

• Must be a UM capability, and

• must be a leaf in CDT.

Invariants: The retype operation enforces following invariants:

• Child objects must be wholly contained within the parent,

• child objects must be non-overlapping, and

• child objects must be distinct.

CDT relationship: The set of output capabilities to newly-created objects are:

• CDT children of the parent, and

• any two output capabilities are CDT siblings.

4.4 Recycling Memory
Once the retype operation creates kernel objects, the resource manager can use these ob-

jects to provide services to its clients. For example, the resource manager may allocate a

39

TCB object and use it to provide a thread abstraction for client A. At some point in time

(when client A no longer needs the thread), the resource manager may decide to reuse the

same TCB object to implement a thread for a different client B.

The seL4 memory management model facilitates the reuse of existing objects in a dif-

ferent context through the recycle operation. The recycle operation, revokes all the out-

standing capabilities and reconfigures the object to its initial state such that it can be reused

in another context.

When the retype operation creates new kernel objects, it returns capabilities — one

capability per newly created object. These capabilities, generated by the retype operation

are called master capabilities.

Possession of the master capability to an object is sufficient authority to recycle the

object. By calling the recycle method on the master capability, a resource manager can

instruct the kernel to revoke all the outstanding capabilities and reconfigure the object to

its initial state such that it can be used in a different context without any residual state from

the previous.

The kernel disallows recycling an object if there exists an imitated copy of the master

capability. Recall that imitate creates a capability with equal authority to the source and the

copy is inserted as a CDT sibling of the source. In that sense, an imitated master capability

means two master capabilities to the same object. The processes holding these two master

capabilities need to coordinate to recycle the object — one process needs to give up its

authority for the other to recycle the object. However, a resource manager can avoid the

need for such coordination by refraining from imitating the master capability.

4.5 Reusing Memory
The model described thus far is sufficient for safe allocation of kernel objects and reusing

the allocated objects from one context to another.

This model alone is sufficient for a simple static system configuration and even a dy-

namic system where it is not necessary to change the balance between the object types.

However, for a highly dynamic system, the kernel needs to support safe reuse of memory.

Reuse here refers to using a region of physical memory to implement a different kernel

object type, rather than reusing an already allocated kernel object in a different context.

Before reusing a memory region, the kernel needs to guarantee that there are no out-

standing references to the objects that previously occupied that memory. These references

include capabilities and direct pointers kept within other kernel data structures.

Possession of the parent UM capability that was used to allocate kernel objects is suf-

ficient authority to delete those objects. By calling a revoke operation on the parent ca-

pability, users can remove all of the CDT descendants, including capabilities that are not

directly accessible to the resource manager that possesses the parent capability.

Recall the structure of the CDT — any capability that has a reference to an object

within the region of memory covered by the UM object is a CDT descendent of the parent

UM object capability. Thus, when performed on the parent UM capability, the revoke

operation removes all capabilities that contain references to objects within the memory

region covered by the parent.

Removing the last capability to a kernel object destroys the only explicit record of the

object’s type and location information. Before this happens, the kernel deactivates the

object and removes any internal references to it from other kernel data structures. For

example, removing the last capability to a TCB halts the thread and removes it from the

40

scheduling queues and any such structure that may contain a reference to it. This cleanup

work is done by the internal destroy operation, which is triggered just before the last capa-

bility to an object is deleted.

Detecting the last capability reference to an object is done via the CDT. A capability is

the last reference to an object when:

• The capability has no CDT children or identical siblings (siblings that point to the

same object irrespective of access rights), and

• the CDT parent of the capability is untyped.

In other words, a capability is the last reference to an object when no other capability

is pointing to the same object and the parent is untyped.

By enforcing an additional invariant on the CDT structure, the above test can be per-

formed efficiently using the pre-order traversal of the CDT tree. The invariant here is that

identical siblings in the CDT — siblings pointing to the same kernel object, irrespective of

the access rights – must always be adjacent. This is initially a consequence of the fact that

retype returns capabilities to distinct objects and is maintained by the CDT insert operation.

With this invariant in place, the kernel can detect the last capability to an object by

considering just the two adjacent entries in the pre-order list of the CDT: A capability is

the last reference to an object when both adjacent entries refer to other kernel objects. The

ease of detecting the last reference via the CDT avoids reference counting, which is an

issue for objects without space to store a reference count (e.g. page tables), in particular in

a system without any dynamically allocated metadata.

In summary, when performed on a parent UM capability, the revoke operation identi-

fies all the capabilities that refer to objects within the memory region of the parent UM

and removes them from the system. Before removing the last capability to an object the

kernel breaks all the internal dependencies between that object and other kernel objects.

Therefore, upon the completion of revoke, there will be no outstanding references to the

objects that previously occupied that memory.

Once the revoke operation on the UM capability is complete, the memory region can

be reused to allocate other kernel objects, by calling the retype method on the parent UM

capability.

4.6 Managing Address Spaces
Having described the memory allocation model of seL4, I now discuss the implications

of the allocation model on seL4 abstractions. In particular, as a result of the allocation

model, seL4 address spaces are slightly different to what is provided by a more traditional

microkernel.

A seL4 thread is associated with two address spaces — a capability address space

(or CSpace) and a virtual memory address space (or VSpace). The need for two types

of address spaces, mainly stems from hardware defined data structure formats used for

implementing the VSpace.

Address spaces provided by seL4 (VSpace and CSpace) have slightly different seman-

tics to what is provided by most small kernels. To facilitate the discussion, I define two

terms. I use the term visible objects to refer to those objects that are mapped into an user-

level address space. For example, memory pages mapped into a virtual address space are

visible to the application and hence are visible objects. In addition to visible objects, an

41

address space requires meta objects, either to directly support the abstraction (e.g. page

tables) or to provide the bookkeeping for supporting the operational semantics of the ab-

straction (e.g. bookkeeping for revoking a page mapping).

In many small-kernel-based systems, including Mach [YTR+87], Chorus [ARG89],

Grasshopper [RDH+96] and Sawmill [APJ+01], the semantics of visible objects (memory

objects) is implemented outside the kernel by user-level pagers. However, the management

of meta objects required for implementing the address space is, traditionally, done within

the kernel.

The seL4 model exports the control of both visible objects and meta objects to user-

level resource managers through the capability interface. Meta objects required for con-

structing an address space are encapsulated as kernel objects, protected via capabilities and

allocated and managed using the techniques discussed in Section 4.3.

Constructing a seL4 address space requires allocating the required meta objects, in-

stalling mappings into these meta objects to construct the required (meta-object) layout of

the address space and finally, installing mappings for visible objects.

Exporting the management of meta objects to user-level resource managers has two

main implications. First, there is a performance penalty involved in exporting the manage-

ment, traditionally, done within the kernel, to a user-level manager. Second, the manage-

ment interface needs careful designing to avoid a malicious resource manager leaving the

meta objects (used for an address space) in an inconsistent state. In this section, I discuss

the design and how the kernel is guarded against misbehaving resource managers. I defer

the performance analysis until Chapter 7.

In most cases, the management of a VSpace is architecture-dependent, because the

meta objects required for implementing a VSpace are defined by the architecture. For

this discussion, the underlying architecture is that of the ARM11 [ARM05]. The design,

however, can be generalised for any architecture with a multilevel page-table format.

In the remainder of this section, I discuss the address space exception handling mecha-

nism (see Section 4.6.1) and the semantics of CSpace (see Section 4.6.2) and VSpace (see

Section 4.6.3).

4.6.1 Exception Model
Exceptions are handled via the kernel generating and delivering an exception IPC to an

exception-handler Endpoint on behalf of the thread generating the exception [YTR+87]. A

capability in the TCB of a thread associates the thread with an exception handler (see the

contents of a TCB given in Section 4.1.4).

The payload of the exception IPC contains sufficient information about the meta objects

required for resolving the exception. For example, an exception IPC notifying the handler

of a page fault indicates whether or not a second-level page-table object is required for

resolving the exception.

In a traditional setup, the kernel notifies user-level managers only about exceptions on

visible objects. In contrast, seL4 generates exceptions for both visible objects and meta

objects and then delivers to user-level managers. SeL4 user-level managers are responsible

for handling exceptions on visible objects as well as meta objects.

42

4.6.2 Capability Address Space
The capability address space (CSpace) is a logical address space of capabilities. It forms a

name space for capabilities — similar to a virtual address space translating virtual address

into physical, a CSpace translates capability indexes into capabilities. A capability index

is a 32bit (or 64bit in a 64bit machine) quantity used to name a capability within a CSpace.

The structure of the CSpace and the operations provided by the kernel to manipulate it

are important for security, maintainability and the overall system efficiency (both temporal

and spacial efficiency). Since the majority of kernel’s metadata is stored within CSpaces

— as capabilities and their CDT relationships to one another — the integrity of CSpaces

is crucial for system security. Furthermore, since the CSpace itself is maintained by po-

tentially malicious, user-level resource managers, the kernel operations to manipulate the

CSpace must be carefully crafted to avoid security breaches, while providing the required

functionality to manage the space efficiently. The layout of the CSpace impacts the effi-

ciency because every seL4 system call requires at least one capability address translation

to locate the capability that authorises the operation. In the following sections I introduce a

CSpace design and discuss how the design addresses security and efficiency requirements.

Structure of CSpace

CSpaces are formed by connecting CNodes to form a directed graph by placing the capa-

bility to one CNode within a capability slot of another.

Each CNode contains a number of capability slots. The number of slots contained

within a CNode may vary, but is always a power of two specified by the user-level manager

at the time of creating the CNode object and not changing afterwards.

Address Translation

The decoding of a capability index is done by using the most significant bits to index an

initial CNode (registered with the TCB of the thread) identifying a capability slot. If the slot

contains a capability to another CNode, the remaining bits are used to repeat the indexing

process in the next CNode. The process repeats until there are no remaining address bits

(32bits or 64bits, depending on the architecture) to decode. The process can also terminate

early successfully if a slot contains a non-CNode capability, or raise an exception in the

case of an empty slot.

Additionally, the decoding method uses a guarded-page-table (GPT) [LE96] like short-

cut mechanism to avoid decoding all bits via many levels of CNodes. Similar to a GPT,

one can skip intermediate levels required to complete the decoding by comparing the most

significant bits of the capability index with a guard value specified in the CNode capability.

If the guard is a prefix of the capability index, then a number of bits equal to the size of the

guard are deemed decoded and the remaining bits are decoded using the same process.

Naming Objects in a CSpace

In addition to managing the visible objects mapped into an address space, a seL4 resource

manager needs to manage meta objects implementing the address space.

As an illustrative example, consider the CSpace layout shown in part (a) of Figure 4.5.

In this figure, boxes represent CNodes and smaller boxes within them show the capability

slots. Rounded boxes denote other (than CNode) kernel objects, and arrows represent

43

Figure 4.5: An example CSpace layout. Rectangular boxes represent CNode objects that

constitute the address space and rounded boxes represent other kernel objects. Part (a)

represents a typical CSpace layout of a thread and part (b) shows a CSpace which contains

loops.

capabilities. The TCB objects shown in the figure denote the client thread(s) associated

with this CSpace. Note that a capability slot also contains CDT information which I have

omitted from the figure for clarity. A resource manager managing this CSpace needs to

access individual CNodes that constitute the space in addition to the visible objects that

are mapped into the space. This consumes a significant portion of the resource managers

capability address space, given that a single resource manager may manage the CSpace of

may client processes.

In seL4, the possession of a capability to a CNode with suitable authority is sufficient

to manage the entire CSpace rooted at that CNode. For example, the capability in slot B
(see in part (b) of Figure 4.5), authorises the management of the entire CSpace, provided

the capability contains sufficient authority. Individual CNodes constituting the space are

named by providing a capability index and a depth — the number of bits that must be

translated to reach the node — relative to that CSpace. Thereby, seL4 eliminates the need

for having a number of capabilities, within the CSpace of a resource manager to address

individual CNodes of a client CSpace.

Malformed CSpaces

Because the layout of a CSpace is managed outside the kernel by potentially, malicious

resource managers, the kernel can no longer rely on its structure when using it for decoding

addresses.

A malformed CSpace, may contain loops — for example, capability slot A in part (b) of

Figure 4.5, contains a capability to the object that contains capability slot A. In the presence

of loops, the translation may never terminate.

The seL4 kernel does not attempt to prevent or even detect loops. Instead, seL4 uses

the following two techniques to guarantee the termination of address lookup, even in the

presence of loops. First, the translation process terminates once a fixed number of bits is

translated. Second, at the time of retype, the kernel disallows the creation of CNode objects

with a single capability slot. This guarantees that every CNode translates at least one bit

from the address by means of indexing (regardless of the guard). Thus, every address

lookup is guaranteed to terminate.

44

Figure 4.6: Kernel rearranges the contents of the deleted CNode. In the figure, small boxes

represent CNode slots and numbers refer to capabilities they contain and hashed boxes

denote that the capability is a zombie. Continuous lines denote the last capability to the

CNode pointed to by the arrow and outbound dotted lines point to the CDT child of a

capability.

Deleting a CNode

Recall from Section 4.5, just before the last capability to a kernel object is destroyed, the

kernel destroys the object pointed to by that capability. Consequently, the destruction of a

CNode is potentially recursive — the destroyed CNode might contain the last capability to

another CNode, which in turn contains the last capability to another, and so on.

To avoid potentially unbounded recursion (and hence unbounded kernel stack), seL4

uses the algorithm described below to delete CNodes. This algorithm is motivated from

the following observations:

• When a CNode is being destroyed, its last capability is marked as a zombie, prevent-

ing any access to slots within the CNode. This means that the actual content within

the deleted CNode is opaque outside the kernel.

• If a deleted CNode contains the last capability to another CNode, then the second

CNode can only be accessed via the CDT when performing a revocation.

Based on these observations, note that the kernel can rearrange the contents of a CN-

odes undergoing deletion arbitrarily as ‘long as the CDT links are preserved.

Now I explain the algorithm using the diagram shown in Figure 4.6. In this figure,

boxes represent the slots in a CNode, numbers inside the boxes refer to individual capa-

bilities, the outbound arrows with continuous lines indicate that it is the last capability to

the CNode pointed to by the arrow and outbound arrows with dotted lines denote that the

capability pointed to by the arrow is a CDT child. If a box is hatched, it indicates that the

capability is a zombie. Note that, all capabilities in the figure have a CDT relationship to

another, but I have omitted them for clarity.

Part (a) of the figure shows the initial configuration. Now, suppose a request comes in

to delete the last capability (X) to CNode1. While deleting the individual slots of CNode1,

the kernel detects that capability 2 is the last capability to another CNode (CNode2).

The seL4 kernel avoids recursive calls by deferring the deletion of CNode2 — instead

of deleting CNode2 the kernel swaps capability 2 with the capability in the first slot of

CNode2 (capability 5). The configuration after rearranging the contents is shown in part

45

(b) of Figure 4.6. Now the kernel can proceed deleting CNode1, given capability 5 is not

the last capability to another CNode. If capability 5 is the last capability to another CNode,

then the kernel repeats the swap operation. This swapping is done until the kernel finds

a capability that is not the last capability pointing to a CNode and then proceeds with the

deletion of CNode1.

As for CNode2 (in Part (b) of Figure 4.6) the only possibility of reaching it, is though a

revoke operation performed on the UT capability — the Untyped capability used to allocate

the CNode2 — at that point the kernel deletes CNode2.

4.6.3 Virtual Memory Address Space
One of the challenging problems encountered during the development of seL4 was the

design of a safe and efficient mechanism for manging the virtual memory address space

(VSpace) — in particular, on architectures with hardware-defined page table structures.

Since all dynamically allocated kernel memory is managed outside the kernel, the kernel

needs to export the management of hardware-defined page tables to user-level in a secure

and efficient manner.

The main challenge in the design is that the VSpace and its associated hardware units,

such as the Translation Lookaside Buffer (TLB), contains entries that references kernel ob-

jects (e.g. Frame objects). These references are essentially capabilities stored in a hardware-

defined format. The kernel must be able to reach these capabilities by walking the CDT,

thereby allowing them to be kept consistent with the CSpace capabilities they were derived

from. Recall from our previous discussions that all metadata required for safe management

of kernel memory is kept within the CSpace and the CDT. Thus, the consistency between

these references and the CSpace is crucial for safe memory management.

For safe management of memory, the kernel enforces the following invariant: a ref-

erence in a hardware defined structure is usable only if the capability from which it was

derived exists. When the capability is revoked — say, to reuse the memory to implement a

different object type — the kernel guarantees that references to that particular object kept

in hardware defined structures are no longer usable.

To enforce the above invariant, the kernel enforces some additional restrictions on ob-

ject capabilities that constitute the VSpace. This section discusses the VSpace management

API and the restrictions required to guarantee the invariant. The discussion is based on the

VSpace implementation for the ARM11 [ARM05] (ARMv6 ISA) architecture. The con-

cepts, however, can be generalised to any architecture with a multilevel-page-table struc-

ture.

Virtual Memory on ARM11

The Memory Management Unit (MMU) architecture of ARM11 consists of a two-level,

hardware-walked page-table structure and a tagged TLB — tagged with a 8bit Address
Space Identifier (ASID) — giving 256 hardware address spaces.

I first introduce the objects provided by seL4 for managing a VSpace from user-level

and then discuss their usage through an example.

The seL4 API defines the following objects for VSpace management:

seL4 ASID Table: The seL4 ASID table is a global, fixed-sized table created at the time

of bootstrapping the kernel. It is global in the sense that there is only one table in the

system — the one created at boot time. The table is indexed by a seL4 ASID— thus,

46

Figure 4.7: Creating a virtual address space. The square box represents the seL4 ASID

table and the rounded boxes represent kernel objects required for implementing a VSpace.

The dark arrows represent capabilities and the dotted arrows show the weak-links.

its size determines the maximum number of concurrent virtual address spaces in the

system. Each seL4 ASID is associated with a hardware ASID.

To prevent denial-of-service attacks based on exhausting seL4 ASIDs, the seL4

ASID table slots are exported to user-level as capability protected objects.

PageDirectory: A PageDirectory object defines the root page table of the two-level, hard-

ware defined page table structure. A suitably authorised capability that points to a

PageDirectory gives the holder the right to manipulate the particular VSpace.

PageTable: The PageTable object implements the leaf node of the ARM11, two-level page

table structure.

Frame: A Frame object encapsulates a frame of physical memory that is installable in a

VSpace for backing virtual memory. As mentioned in Section 4.3, Frame objects

contain no kernel data.

For simplicity, the seL4 API only supports hardware-defined frame sizes. Note that

the model does not impose a limit on supporting other page sizes, which are a mul-

tiple of the base size. Not supporting these page sizes is a design decision motivated

by keeping the interface simple. Performance implications of this decision are dis-

cussed in Section 7.3.3.

Creating a VSpace

Shown in Figure 4.7 is an illustrative example of a VSpace, created by using seL4 kernel

objects. In the figure, the square box represents the seL4 ASID table and rounded boxes

represent different kernel objects required to install a page mapping into an virtual address

space. Dark arrows denote capabilities and the dotted ones denote weak links, which I

explain below.

Using this example, I explain how kernel objects are used to implement a virtual ad-

dress space and the restrictions enforced by the kernel to guarantee the invariant.

The first step in creating a VSpace is to allocate a PageDirectory object using the retype

method. This newly created PageDirectory object, however, is not yet usable as a VSpace.

47

To make it usable, the resource manager needs to initialise the PageDirectory with a seL4

ASID.

The initialisation is done by invoking the PageDirectory object and passing a capability

that authorises the use of a slot in the seL4 ASID table. As depicted in part (a) Figure 4.7,

the initialisation operation updates the seL4 ASID table, by copying the memory address

of the PageDirectory into the provided slot and updates the PageDirectory capability by

storing the seL4 ASID (i.e. table index) in the capability (to reduce the cost of indirection

through the seL4 ASID table on an address-space switch, the kernel additionally stores the

hardware ASID in the capability). The capability provides the storage required for storing

ASID information. Moreover, once a seL4 ASID is used to initialise an address space,

the same seL4 ASID cannot be used again unless that original address space is deleted or

recycled.

Once a PageDirectory is initialised, it can be used as the VSpace of a thread. Moreover,

any number of threads can share the same VSpace.

Other objects required to implement a VSpace can be installed into an initialised PageDi-

rectory: By invoking the PageDirectory and passing a PageTable capability and a virtual

address, a resource manager can install the PageTable into that address space. As shown in

part (b) of Figure 4.7, after installing the PageTable the kernel updates the PageTable ca-

pability by storing the seL4 ASID (of the PageDirectory) and the virtual address to which

it is mapped. Similarly, a Frame object can be installed into an address space by invoking

the PageDirectory and passing a Frame capability together with a virtual address. After

installing the Frame the kernel updates the Frame capability with the seL4 ASID and the

virtual address used for the mapping.

seL4 ASIDs provide two main services. First, they act as kernel’s internal naming

mechanism for identifying an address space to remove a mapping from. Second, they

provide a weak link between VSpace mappings and the capabilities from which they were

derived. I explain the motivation behind weak links through an example.

Consider the address space shown in part (b) of Figure 4.7. This address space consists

of a PageTable mapping and a Frame mapping installed within the PageTable. Suppose

the resource manager wants to reclaim all the memory from this address space. For this,

ideally, the resource manager should first revoke all the Frames, then the PageTables and

finally the PageDirectory.

When the resource manager calls revoke on the Frame capability, the seL4 ASID acts

as a link to locate the PageTable slot containing the mapping — kernel retrieves the seL4

ASID and the virtual address of the mapping from the Frame capability, locates the PageDi-

rectory by using the seL4 ASID to index the seL4 ASID table, locate the PageTable slot by

walking the page-table structure using the virtual address and removes the mapping from

the PageTable and from the TLB. Using the same process, the kernel can locate and remove

the PageTable mapping.

However, when deleting an address space, a resource manager may not follow this ideal

sequence. Instead, the resource manager may delete the PageDirectory, before removing

the Frame or the PageTable mappings. The hardware-defined PageDirectory structure does

not provide bookkeeping provision to back-track the capabilities from which the mappings

are derived from, and update the bookkeeping stored in those capabilities.

One possible solution here is to allocate shadow tables to store the bookkeeping re-

quired for back-tracking the capabilities. This option was traded in favour of reducing the

memory foot-print of an address space.

Instead of back-tracking the capabilities, seL4 uses weak links through the seL4 ASID

48

table. When a PageDirectory is revoked (using the bookkeeping stored in the PageDi-

rectory capability) the kernel updates the seL4 ASID table by setting the corresponding

PageDirectory address (called PD addr in the Figure 4.7) to NULL (and does a selective,

TLB flush using the hardware ASID). A subsequent attempt to remove a PageTable or a

Frame is easily detected and can be ignored — the kernel has already flushed the ASID

from the TLB and since the PageDirectory itself is deleted there can be no more TLB

entries from the mappings that existed in the address space.

Because of the fact that a PageDirectory can be deleted without updating the capability

links, these links are called weak links.

A PageTable can only be used once in the construction of an address space. The re-

strictions required for efficient enforcement of this condition are discussed further below.

Among others, this restriction guarantees that a PageTable used in the deleted address

space cannot be installed into another. Hence, the Frame mappings contained within the

PageTable — which can now be potentially dangling, due to the removal of the Frame

capabilities from which they were generated — are not usable. To reuse a PageTable in an-

other space, the resource manager either has to perform a recycle operation or reclaim the

memory used by the PageTable via a revoke operation (on the parent Untyped capability)

and reallocate PageTables via retype. Both these operations reinitialise the PageTable.

When a mapping is removed from an address space, the kernel uses the seL4 ASID to

flush the TLB. To be exact, the kernel uses the hardware ASID assigned to the seL4 ASID,

however since this assignment is fixed we can consider them equal for this discussion. As

such, the kernel needs to guarantee that the same PageDirectory is not initialised with two

different seL4 ASIDs.

The kernel provides the above guarantee by enforcing the following three restrictions

on PageDirectory capabilities: (a) once a PageDirectory capability is initialised with a seL4

ASID it is immutable — that is, any copy made of the original will contain the same (valid)

seL4 ASID, (b) the initialised PageDirectory needs to be an uninitialised (i.e. no seL4

ASID) CDT leaf, and (c) kernel disallows imitate operations on uninitialised PageDirectory

capabilities.

To explain these restriction, the first one guarantees that none of the CDT ancestors of

the PageDirectory capability were initialised — if they were, then the capability should

have a valid seL4 ASID. The second invariant guarantees that none of the ancestors can be

initialised. This is because these ancestors will not be leafs in the CDT. The final invariant

guarantees that any capability copy made from an uninitialised PageDirectory is always a

CDT descendent (not a sibling) of the source.

Checking if a PageDirectory capability is initialised (or not) is straight-forward and

testing for a CDT leaf can be done in constant time using the pre-order traversal of the

logical tree (see Section 4.3.3).

The above restrictions avoid the need to traverse the CDT up to the Untyped capability

and back down in all possible CDT branches to establish the status of all capabilities that

refer to the same PageDirectory. Depending on the number of capability copies made, such

a traversal can be long running.

Frame objects can be shared. For each shared mapping, the resource manager needs

to create a copy of the Frame capability and use the copy to install the new mapping.

Recall that when a Frame object is installed into a VSpace, the kernel stores bookkeeping

information inside the Frame capability to facilitate revocation. By creating a copy of the

Frame capability the resource manager provides the storage for bookkeeping the shared

mapping. When the Frame object is deleted, the kernel can locate all capability copies

49

though the CDT and by using the bookkeeping in those capabilities remove all the shared

mappings.

Sharing of PageTables, however, is somewhat problematic. We can allow sharing of

PageTables using the same technique as Frames — a new capability copy for each shared

mapping. Thus, when deleting the PageTable, the kernel can locate and revoke all the

shared mappings from PageDirectorys and the TLB. However, the problem arises when

un-mapping a Frame installed within a shared PageTable — when PageTable is shared

mappings contained within it may appear in the TLB, either with different ASID tags or

with different virtual address (or both). There is not enough bookkeeping in the hardware

defined data structure to trace the PageTable capability to determine whether the PageTable

is shared (see Figure 4.7). Consequently, the kernel needs to flush the entire TLB on

every Frame un-map, pessimistically assuming that the PageTable is shared. Flushing the

entire TLB is unattractive for performance reasons and hence seL4 disallows the sharing

of PageTable.

Disallowing PageTable sharing is a design trade-off to facilitate the use of selective

TLB flush of the ARM11 architecture. If need be, the model can accommodate shared

PageTables. This option is attractive in particular for an architecture that does not support

selective TLB flushes.

The kernel guarantees that PageTables are not shared by enforcing the same three

restrictions as with the PageDirectory: (a) once a PageTable capability is installed into

a PageDirectory, the capability is updated with an immutable used tag, (b) an unused

PageTable capability can be installed into a PageDirectory only if it is a CDT leaf, and

(c) the imitate operation is disallowed on unused PageTable capabilities. The sufficiency

of these restrictions can be explained using the same reasoning given above for PageDirec-

tory capabilities.

4.7 Implementation Details
In this section, I brief on the main implementation details of realising the model on modern

hardware. The discussion here is based on seL4::pistachio (see Chapter 7), a prototype

realisation of the model for ARM11.

4.7.1 Untyped Memory Abstraction
I have already discussed how untyped memory can be used to allocate any kernel object

type. In most cases, the kernel needs to access these objects — for example to examine

and modify the contents of a TCB object.

The seL4 kernel accesses all its memory virtually. That is to say, kernel-generated

addresses are translated via the MMU. Though it is feasible to configure the kernel to use

physical addresses directly, this would imply, among other things, switching the MMU on

and off on every kernel entry and exit, causing a significant overhead in handling system

calls. To prevent such an overhead, the memory region covered by all the Untyped objects

must be accessible to the kernel via a virtual address mappings.

A region of virtual memory, usually allocated towards the high-end of the address space

above the user accessible virtual memory region, called the kernel window, contains map-

pings to all the Untyped memory objects. These mappings are privileged — in that only

the kernel can access them and are never modified.

50

Since all Untyped objects and therefore other kernel objects derived from them are

mapped into the kernel window, the kernel window size imposes a maximum limit on the

kernel objects. For the experimental prototype, this did not cause any concerns — the

hardware consists of only 128MB of RAM which fits within the (576MB) kernel window.

Other platforms, however, may have more physical memory than the kernel window.

There are three possible solutions for this. First is to increase the size of the kernel win-

dow. This is acceptable for most cases and in particular, is an attractive solution for 64bit

machines where the virtual memory address space is significantly larger.

However, increasing the kernel window, and therefore reducing the user-accessible VM

region is not ideal for virtualisation. Guest OSes, typically have their own algorithms for

deciding the memory layout of a process — for example, the guest decides where to place

the process stack, heap, shared libraries and so on. These decisions are made by higher-

layers of the guest kernel. If seL4’s kernel window is large enough to interfere with these

policy decisions, then porting the guest OS to seL4 becomes (at best) hard — now we need

to make changes to policy layers of the guest. If there is no such interference, then we

simply need to keep the page tables used within the guest consistent with those used within

seL4. That said, a small increase in the kernel window does not cause serious concerns,

but may not be sufficient to map all the available physical memory. As such, this option

was not further investigated.

The second possibility is to keep the size of the virtual window fixed, but establish

mappings on demand. Investigating this option is beyond the scope of this work.

The seL4 model opts for a third solution. In the process of bootstrapping, the kernel

creates “one-to-one” (i.e. with a fixed offset) mappings of the kernel window to a region of

free physical memory. If these mappings are insufficient to cover all the available physical

memory, then, the remainder is used to allocate Frame objects. These Frame objects are

never accessed by the kernel, thus eliminating the need for virtual memory mappings for

them within the kernel.

Memory Mapped IO

Most platforms’ physical memory contains memory mapped IO regions. For obvious rea-

sons, such a region of memory should not be used to allocate kernel objects.

The seL4 model exports the control of these IO regions to the initial resource manager

by encapsulating them as Frame objects. Similar to a normal Frame object, the initial

resource manager can either install these Frames into its or some others’ virtual address

space and thereby gain or delegate access to the device. Moreover, since Frame objects

cannot be used to allocate any kernel object, kernel objects are guaranteed not to overlap

with any device memory.

Cache Aliasing

An Untyped memory object (parent) can be used to allocate a Frame object (or a number

of Frame objects, depending on the size of the Untyped object). A Frame object can be

installed as the backing storage for a page within the user-accessible VM region. Moreover,

after performing a revoke operation on the parent Untyped capability, the memory region

can be reused to implement a different kernel object — say a TCB object — which is

accessed by the kernel through a different address within the kernel window. This may

lead to cache aliasing — the same physical memory region is accessed using different

51

virtual addresses. Such aliasing is avoided by flushing the cache when a Frame object, is

unmapped during a revoke operation.

Similar aliasing may take place when kernel objects (accessed via the kernel window)

are revoked and the memory is used to implement Frame objects. Again, this is avoided by

a cache flush. However, the responsibility is delegated to the user-level managers.

4.8 Summary
The seL4 memory management model removes all implicit memory allocations from the

kernel — all memory allocations in the kernel are explicit via authorised requests from

user-level resource managers. Thus, the allocation scheme makes a direct connection be-

tween the authority a user-level resource manager possesses and the amount of kernel mem-

ory it may consume.

Since there is a direct relationship between the authority — conferred via capabilities

— and the ability to consume a particular region of memory, reasoning about memory

consumption boils down to reasoning about capability dissemination.

In the next Chapter (Chapter 5) I discuss the model used for controlling the dissemina-

tion of capabilities.

52

Chapter 5

Formal Model of Authority

Having described the memory allocation model of the seL4 kernel in Chapter 4, I now

introduce a formal model governing the dissemination of authority and memory alloca-

tion. Recall from our previous discussions that seL4 unifies memory management with the

capability based authority model. I call this machine-checked specification the abstract
protection model or simply the protection model.

As I have discussed in Section 2.2, a protection model is an abstract, formal, speci-

fication that captures: (a) the authority distribution of the system (protection state), and

(b) the rules governing the mutations of the above authority distribution (access-control
model) [Lan81].

In other words, the protection model is an abstract, formal model that captures the

distribution of authority and how this distribution evolves over time. The purpose of such

a model is to facilitate reasoning — it provides a framework for analysing the feasibility of

enforcing different policies related to protection state.

In this chapter, I present the protection model and in Chapter 6 I analyse its formal

properties. In particular, the analysis shows that the model is capable of enforcing (at

least) two useful policies relating to access control — spatial partitioning and isolation. I

introduce these policies later in Chapter 6.

The protection model is based on the take-grant model [LS77]. It deviates from the

original take-grant model (and any such model based on take-grant) in two important as-

pects. First, the protection model captures the behaviour of untyped memory objects —

making it feasible to reason about physical memory usage of an application, which is not

possible with the original model. Second, for reasons I discuss latter, the model does not

employ the take rule.

The formalisation of the model and its analysis in the next chapter (see Chapter 6) are

developed entirely in the interactive theorem prover Isabelle/HOL [NPW02]. Thus making

the intuitive graph diagram notation that is commonly used for this type of specification

and analysis fully precise.

Moreover, parts of this chapter and some parts of the following chapter formed the basis

for the following publications [EKE08, EKE07], which are coauthored with Dr. Gerwin

Klein and Dr. Kevin Elphinstone.

The remainder of this chapter is structured as follows. In Section 5.1, I introduce the

classical take-grant access control model and the extensions proposed. Section 5.2 briefly

outlines the Isabelle/HOL system and the notation used in the formal specification and

the formal proofs in the following chapter (see Chapter 6). The seL4 protection model is

described in Section 5.3 which is followed by an informal description of how the protection

53

model relates to the concrete kernel (see Section 5.4).

5.1 The Take-Grant Model
Protection models provide a formalism and a framework for specifying, analysing and im-

plementing security policies. Such a model consists of: (a) finite set of access rights, and

(b) a finite set of rules for modifying the distribution of these access rights. The safety
analysis of a model then determines, for the given set of rules in the model and an initial

distribution of access rights, whether or not it is possible to reach a state in which a partic-

ular access right α is acquired by a subject that did not possess it initially. If there exists an

algorithm that decides safety, then the model is said to be decidable.

The classical access model used in capability systems is the take-grant model, origi-

nally proposed by Lipton and Snyder [LS77] and later enhanced by many authors [BS79,

Sny81,Bis81,Bis96,SW00]. The model is decidable in linear time [LS77] — the complex-

ity of the decision algorithm varies linearly.

Suppose we want to know the possibility of subject S1 (i.e. an application) accessing a

particular object O1 (i.e. a resource) in some way; say for writing. This falls into a safety

question — can the S1 acquire write authority over O1 — and the answer can be formulated

by a safety analysis on the take-grant model. Bishop et. al. [BS79] later extended the

analysis to cover de facto rights — access rights implied by a given distribution of authority.

As an illustrative example, assume that there is a subject S1 with write authority over

subject S2. Moreover, S2 has write authority to subject S3. Then, S1 possesses a de facto

write authority to subject S3; because data that S1 writes to S2 can then be transfered to

S3 via S2. Though S1 does not possess direct (or de jure) write authority to S3, it can still

write to S3 via S2. The above example is an instance of the find rule defined in [BS79].

The take-grant model represents the protection state of the system as a directed graph;

where nodes represent subjects or objects in the system, and labelled directed arcs represent

authority (i.e. capabilities) possessed by a subject over the object pointed to by the arc. An

outgoing arc from X to Y with label α means X possesses α authority over the object Y
(see Figure 5.1).

If the set of of access rights of the system is R, then any label α on an arc is a nonempty

subset of R (α ⊆ R). While R might vary, there are two rights that deals with the propa-

gation of authority — the take right (t) and the grant right (g). They play a special role in

dissemination of authority.

The system operations that modify the authority distribution are modelled as graph

mutation rules. There are number of formulations of the basic model, with different graph

mutation rules in the literature. The specific rules that I discuss here are [LS77]: take,
grant, create and remove. Take and grant rules are used to propagate existing authority

from one node to another. The create rule adds a node to the graph and an arc connecting

the new node to an existing one. The remove rule takes away part of the access rights from

an arc or removes the arc entirely.

A detailed description of the take-grant model and its rules can be found elsewhere;

including in [Har84, Bis02]. Following is a detailed description of the graph rewriting

rules based on the definitions used by Lipton and Snyder [LS77]:

• take rule: Let S,X, Y be three distinct vertices in the protection graph. Let there

be an arc from X to Y labelled α, and from S to X with a label γ such that t ∈ γ.

54

Figure 5.1: Take-grant authority distribution rules

55

Operation Description Take-grant operation

SysCreate Create new subjects/objects modified create rule

SysRemove Remove a capability modified remove rule

SysRevoke Remove a set of capabilities -

SysGrant Propagate a capability grant rule

SysNoOP NULL operation -

SysRead Reading information -

SysWrite Writing information -

Table 5.1: Summary of the operations in the seL4 protection model.

Then the take rule defines a new graph by adding an edge from S to Y with the label

β ⊆ α. Part (a) of Figure 5.1 represents an application of the take rule.

• grant rule: Let S,X, Y be three distinct vertices in the protection graph. Let there

be an arc from S to Y labelled α, and from S to X with a label γ such that g ∈ γ.

Then the grant rule defines a new graph by adding an edge from X to Y with the

label β ⊆ α. Part (b) in Figure 5.1 is a graphical illustration of this rule.

• create rule: Let S be a vertex in the protection graph. Then the create rule defines a

new graph by adding an new node X and a arc from S to X with a label α. Part (c)

of Figure 5.1 represents an application of this rule.

• remove rule: Let S,X be vertices in the protection graph. Let there be an arc from

S to X with a label α. Then the remove rule defines a new graph by deleting β labels

from α. If α− β = {} then the arc itself is removed. The operation is shown in part

(d) of Figure 5.1.

These graph rewriting rules model different operations that takes place in a system.

The take and grant rules model the propagation of access rights. The grant rule models

a situation where a subject propagates all or part of the authority it possesses to another.

The take rule also models a propagation of access right(s). However, unlike the grant rule,

where the dissemination of authority is controlled by the sender, the take rule models a

situation where the dissemination of authority is governed by the receiver side — the take

rule allows a subject to acquire authority possessed by another. The creation of a new

subject (e.g. a process) or an object (e.g. a file) is modelled by the create rule. Finally, the

remove rule models the revocation of access rights.

5.1.1 The seL4 protection model — Informal Introduction
The list of the operations in the seL4 protection model is given in Table 5.1. The first col-

umn of this table gives the names of the protection model operations. For each operations,

the second column provides a brief description and the third column shows the relationship

of the operation to the take-grant rules specified above.

The operations in the seL4 protection model modify the classic take-grant rules in sev-

eral aspects. The most significant of these modifications is the create rule, or the SysCreate
operation as it is called in the seL4 protection model. Adding a new node to the protection

graph corresponds to allocating a new object in the concrete kernel. In classic take-grant,

there is no restriction on adding new nodes to the protection graph: each entity has the

56

potential to add new nodes to the graph without affecting the potential of another to add

another node to the graph. Consequently, the take-grant model is not expressive enough

to capture the semantics of Untyped memory: the mechanism used by seL4 to control

the allocation of physical memory. In the seL4 protection model, the create rule is only

applicable if there is an outgoing arc with Create authority.

The second modification is that seL4 protection model uses a simpler remove rule (or a

SysRemove operation) than that of take-grant. The protection model removes the capability,

or the whole arc, instead of removing part of its label. In the protection model the only

way to diminish authority (i.e. remove part of the label) is by removing the capability and

granting a new one with diminished authority.

In addition to removing a single capability, the seL4 protection model provides an

operation called SysRevoke which removes a set of capabilities from the protection state.

The main purpose of SysRevoke is to mimic the revoke operation of the seL4 kernel. A

detailed discussion of kernel’s revoke operation is provided elsewhere in Section 4.5. None

of the graph rewriting rules in take-grant represent the revoke operation. However, it can

be simply be thought of as a set of multiple applications of remove.

Furthermore, the seL4 protection model does not employ the take rule. This has the

advantage of giving each subject control over the distribution of its authority at the source.

All authority distributions in the protection model are governed by the sender using the

SysGrant operation; which is similar to grant rule in take-grant.

However, the protection model, can be easily extended to support the take rule or the

effect of take on authority propagation can be modelled with an appropriate grant right

[Sha99].

In addition to the above rules, which modify the authority distribution, the seL4 protec-

tion model defines three more operations that do not mutate the protection state: SysNoOP,

SysRead and SysWrite. Out of these, the last two operations model accessing data for

reading and writing, respectively. Even though these two operations do not mutate the pro-

tection state, they have preconditions that are visible to the protection model. As the name

implies, SysNoOP does not perform any function. The motivation behind its inclusion is

discussed later in Section 5.4.

5.2 Isabelle/HOL system
This section gives a short introduction to Isabelle/HOL — the interactive theorem prover

used for this work. It is by no means comprehensive, but it introduces the Isabelle/HOL

notation that is used in this thesis. For a complete treatment I recommend [NPW02].

Isabelle is a generic system for implementing logical formalisms. It is generic in the

sense that it can be instantiated with different object logics. Isabelle/HOL is the speciali-

sation of Isabelle for HOL — which stands for Higher-Order-Logic. These formalisations

are organised in an acyclic graph of theories. Each theory contains a set of declarations,

definitions, lemmas and theorems. From a technical point of view, lemmas and theorems

are the same — a theorem is a lemma with contextual significance. For the most part, the

notations used in Isabelle/HOL coincides with that of standard mathematics.

HOL is a typed logic, whose type system is similar to that of functional programming

languages like ML [MTH90] or Haskell [Bir98]. Typed variables are written ’a, ’b, etc.

The notation x::’a means that HOL term x is of type ’a. HOL provides a number of base

types, in particular bool, the type of truth values, and nat, the type of natural numbers.

Type constructors are supported as well: nat list is a list of natural numbers and nat

57

set denotes a set of natural numbers. The empty list is written [] and the list constructor

is written with the infix x ·xs.

New data types can be introduced in a number of ways. However, in this thesis, I

am using only three ways to introduce new types. The command datatype defines a new

algebraic data type. For example, the four primitive access rights of a capability are defined

by:

datatype rights = Read | Write | Grant | Create
Expressions such as types caps = capability set are used for simple abbreviations.

Finally, the record command introduces tuples with named components. In the example;

record point =

x :: nat

y :: nat

the new type point is a tuple of two nat components. If p is a point (i.e. p::point),

the term x p stands for the x -component of p, and y p for its y -component. If the x -

component of some variable q is 2 and y -component is 3, then q is written q ≡ (|x = 2, y = 3 |).
The update notation q(|y := 4 |) leads to (|x = 2, y = 4 |).

The space of total functions is denoted by ⇒. Function update is written f(x := y).

When a function is updated, for example after performing f(x := y) operation, the up-

dated function if called with x returns y. Sequential updates are written f(x:= a, y :=

b). Applying a function f to a set A is written f ‘ A ≡ {y | ∃ x∈A. y = f x}.

The symbol =⇒ is used for implication when writing lemmas to separate antecedent

and conclusion. [[A1; . . . ; An]] =⇒ A abbreviates A1=⇒(. . . =⇒ (An=⇒ A) . . .).

Isabelle proofs can be augmented with LATEX text. This presentation mechanism is used

to generate the text for all of the specifications, definitions, lemmas and theorems in this

thesis — they are directly from the machine-checked Isabelle sources.

5.3 The seL4 Protection model
In this section, I present the formal protection model of seL4 using the Isabelle/HOL sys-

tem.

5.3.1 Semantic Entities
The protection state consists of a collection of objects. There is no distinction between

active subjects and passive objects. Instead, they are collectively called entities. Each

entity is identified by its memory address which is represented by a natural number. In the

usual graph models found in the literature, entities would be nodes and their addresses the

names or labels of these nodes.

types entity_id = nat

There are four primitive access rights in the model. As usual, each right represents

authority to perform particular operation.

datatype rights = Read | Write | Grant | Create
Out of these access rights, Read and Write have the obvious meaning — they authorise

reading and writing of information. Similar to the take-grant model [LS77], Grant is

58

sufficient authority to propagate a capability to another entity. The Create right confers

the authority to create new entities.

Each capability has associated with it an entity_id, which identifies an entity and a

set of access rights that defines the operations the holder of the capability is authorised to

perform on that entity. Thus, a capability or cap is defined in the following manner;

record cap = entity :: entity_id

rights :: rights set

In the protection model, an entity only contains a set of capabilities. Thus an entity is

defined as follows:

record entity = caps :: cap set

Entities have no additional authority beyond what they possess as capabilities.

5.3.2 Protection State
The protection state of the system consist of two fields:

record state = heap :: entity_id ⇒ entity

next_id :: entity_id

The component heap stores the entities of the protection model. It is modelled by a

total function which returns an entity given the entity_id. If the provided entity_id

does not corresponds to any existing entity, then the heap return nullEntity, which is

defined in the following manner.

nullEntity:: entity

nullEntity ≡ (|caps = {} |)
Thus, we require a test to determine whether or not a given entity_id corresponds to

an existing entity in that protection state. This test is facilitated via the next_id component

in the state. The heap can be viewed as an array that contains entities from addresses

0 up to and excluding next_id. The next_id is the next free slot for placing an entity

without overlapping with any existing one.1 This setup allows a simple test to determine

the existence of an entity for a given entity_id :

isEntityOf :: state ⇒ entity_id ⇒ bool

isEntityOf s e ≡ e < next_id s

In a well formed state all the existing capabilities should only point to existing entities:

the entities stored in heap contain capabilities, which again contain references to other

entities. In any run of the system, these references should only point to existing entities.

We call such system states sane :

sane :: state ⇒ bool

sane s ≡ (∀ c∈all_caps s. isEntityOf s (entity c)) ∧
(∀ e. ¬ isEntityOf s e −→ caps_of s e = {})

where

1An alternative to this model is the use of a partial function for the heap. I found working with a total

functions slightly more convenient in Isabelle.

59

caps_of :: state ⇒ entity_id ⇒ cap set

caps_of s r ≡ caps (heap s r)

all_caps :: state ⇒ cap set

all_caps s ≡ ⋃
e caps_of s e

The term caps_of s r denotes the set of all capabilities contained in the entity with ad-

dress r in state s, and all_caps s denotes all capabilities in the given state s — the union

of the capabilities over all entities in the system.

Adding a new entity to the system state is done via the SysCreate operation. This

operation uses the next_id of the current state as the entity_id of the newly created

entity. Thus, the create operation will guarantee that for any sane state s :

• the new entity will not overlap with any of the existing ones, and

• no capability in the current state will be pointing to the heap location of the new

entity.

5.3.3 Operational Semantics
Next, I formally introduce the operations of the seL4 protection model, captured in data

type sysOPs :

datatype sysOPs = SysNoOP entity_id

| SysRead entity_id cap

| SysWrite entity_id cap

| SysCreate entity_id cap cap

| SysGrant entity_id cap cap rights set

| SysRemove entity_id cap cap

| SysRevoke entity_id cap

The rationale behind these abstract operations is to capture the seL4 kernel operations

as closely as possible — even though the thesis does not provide or claim the feasibility

of providing, a formal connection between the two. SysRead and SysWrite operations

capture the reading and writing of information, from and to objects, respectively. These

two operations have preconditions that are visible at the abstract level, but does not modify

the authority distribution and hence does not mutate the protection state. The SysNoOP

does not cause a change to the protection state either. It is included in the protection model

to mimic seL4 kernel operations such as sending a non-blocking message to a thread not

willing to accept — which results in a dropped massage.

The first argument of each operation indicates the entity initiating that operation. The

second argument is the capability being invoked and the third argument depends on the

operation being performed. The third argument for SysCreate is a capability that points

to the destination entity for placing the newly created capability, for SysGrant it is the

capability that is transported and for SysRemove it is the capability that is removed. The

fourth argument to SysGrant is a mask for the access rights of the transported capability.

The diminish function reduces access rights according to such a mask R ;

diminish :: cap ⇒ rights set ⇒ cap

diminish c R ≡ c(|rights := rights c ∩ R |)
Through the diminish function, the entity initiating the SysGrant operation is at liberty

to transport a subset of the authority it possesses to the receiver.

60

Any operation is allowed only under certain preconditions, encoded by legal.

legal :: sysOPs ⇒ state ⇒ bool

legal (SysNoOP e) s = isEntityOf s e

legal (SysRead e c) s = isEntityOf s e ∧ c ∈ caps_of s e ∧
Read ∈ rights c

legal (SysWrite e c) s = isEntityOf s e ∧ c ∈ caps_of s e ∧
Write ∈ rights c

legal (SysCreate e c1 c2) s = isEntityOf s e ∧ {c1, c2} ⊆ caps_of s e ∧
Grant ∈ rights c2 ∧ Create ∈ rights c1

legal (SysGrant e c1 c2 r) s = isEntityOf s e ∧ {c1, c2} ⊆ caps_of s e ∧
Grant ∈ rights c1

legal (SysRemove e c1 c2) s = isEntityOf s e ∧ c1 ∈ caps_of s e

legal (SysRevoke e c) s = isEntityOf s e ∧ c ∈ caps_of s e

The legal function models the authority checks that are performed before allowing an

operation. Firstly, it checks if the entity initiating the operation exists in that state. Sec-

ondly, all the capabilities specified in the operation should be in the entity’s possession at

that state. Finally, the capabilities specified should have at least the appropriate permis-

sions.

Each operation listed under sysOPs mutates the protection state in a particular way,

provided that the operation is legal in the starting state. The mutation performed by each

operation is defined using an Isabelle function. For example, the state modifications done

by SysCreate operation are defined in a function called createOperation and the muta-

tions performed by SysGrant is shown in grantOperation and so on. The relationship

between SysCreate and createOperation, for example, is analogous to that of a system

call number and the function implementing the system call — here SysCreate corresponds

to the system call number and the createOperation is the function implementing that sys-

tem call.

I now define how each of the operations mutates the protection state, assuming it is

started in a legal state. The SysCreate and SysGrant operations add capabilities to entities.

createOperation e c1 c2 s ≡
let nullEntity = (|caps = {} |);

newCap = (|entity = next_id s, rights = allRights |);
newTarget = (|caps = {newCap} ∪ caps_of s (entity c 2) |)

in (|heap = (heap s)(next_id s := nullEntity, entity c2 := newTarget),

next_id = next_id s + 1 |)
where

allRights ≡ {Read, Write, Grant, Create}

The SysCreate operation allocates a new entity in the system heap, creates a new

capability to the new entity with full authority, and places this new capability in the entity

pointed to by the c2 capability. For ease of reference, I will call the entity which receives

the new capability as the parent of the newly created entity.

The create operation consumes resources in terms of creating a new entity in the heap.

So, the subject initiating this call is required to provide and invoke an untyped capability

c1. In the abstract level, an untyped capability is a capability with the Create right. This is

why the legal function checks for Create among the set of access rights of the capability

c1. Moreover, since this operation is placing a capability in the parent entity, the capability

which names the parent; i.e. c2, should possess the Grant right among its set of access

61

rights (see the definition of legal for SysGrant).

Note that the newly created entity has no capabilities within it (see the definition of

SysCreate). Since all authority is conferred via capabilities, this means that soon after the

creation, the new entity has no authority. After the new entity is created, the parent can

propagate all or part of its authority to the new entity by grant operation(s).

grantOperation e c1 c2 R s ≡
s(|heap := (heap s)(entity c1 := (|caps = {diminish c2 R} ∪
caps_of s (entity c1) |)) |)

The SysGrant operation, similar to SysCreate, adds a capability to the entity pointed to

by c1. However, unlike with SysCreate, the new capability is a (potentially) diminished

copy of the existing capability c2. Note that the entity initiating this operation can only

propagate a capability that is in its possession and should possess Grant right over the

entity receiving the diminished copy.

The SysRemove and SysRevoke operation remove capabilities from system entities.

removeOperation e c1 c2 s ≡
s(|heap := (heap s)(entity c1 := (|caps = caps_of s

(entity c1) - {c2} |)) |)
The SysRemove operation removes the specified capability c2 from the entity denoted by

c1.

The SysRevoke operation is a repeated application of SysRemove. It is used to remove

all the CDT children of a given capability. The implementation of the CDT and its main

purpose is discussed in Chapter 4.3.3. In brief, the seL4 kernel internally tracks in the

capability derivation tree (or the CDT) how capabilities are derived from one another with

create and grant operations. The revoke operation is facilitated by this information in

the CDT. The protection model however, does not model the CDT explicitly, instead the

model uses an under-specified function cdt that returns, for the current system state and

the capability to be revoked, a list that describes which capabilities are derived from the

given one and therefore are to be removed and from which entities:

cdt :: state ⇒ cap ⇒ (cap × cap list) list

Each element in the above list has two components (cap × cap list); the capability and a

list of capabilities. The capability identifies an entity in the protection model and the second

component specifies a list of capabilities that are to be removed from that particular entity.

Given one of these elements, removeCaps function removes the capabilities specified in the

list by repeatedly calling SysRemove :

removeCaps e (c, cs) s ≡ foldr (removeOperation e c) cs s

foldr f [] a = a

foldr f (x # xs) a = f x (foldr f xs a)

The revoke operation is then just a repeated call of removeCaps for each element in the list

returned from the cdt function.

revokeOperation e c s ≡ foldr (removeCaps e) (cdt s c) s

Note that CDT is neither an axiom in the model nor an assumption in the proofs (pre-

sented in the next chapter). The model simply says there exists a function CDT which

returns for a given capability a list of capabilities, but does not define how the list is com-

puted. That is, the proofs will hold for any instance of the CDT.

62

Figure 5.2: Graphical representation of seL4 authority distribution rules

63

The motivation behind under-specifying the CDT is to keep the model simple as possi-

ble — the model only captures the behaviour of operations upon which the proved proper-

ties rely on. On the other hand, due this under-specification it becomes infeasible to reason

about some other, arguably interesting, properties. For example, one cannot reason about

what entity might reclaim a resource from another. If this type of reasoning is required,

then the model has to be augmented with an instance of the CDT which specifies how the

list is computed. Further, note that the proofs (in the next chapter) will hold for any such

instance of the CDT function.

Figure 5.2 shows the definitions of the above operations as graph rewriting rules.

Having explained the operations in the model, I now turn to executing a command. A

single step of execution in the model is summarised by the function step. The first task of

step is to check the legality of the command in that state. If the command is legal, then it

is passed to step’, which decodes the command and calls the appropriate operation.

step’ :: sysOPs ⇒ state ⇒ state

step’ (SysNoOP e) s = s

step’ (SysRead e c) s = s

step’ (SysWrite e c) s = s

step’ (SysCreate e c1 c2) s = createOperation e c1 c2 s

step’ (SysGrant e c1 c2 R) s = grantOperation e c1 c2 R s

step’ (SysRemove e c1 c2) s = removeOperation e c1 c2 s

step’ (SysRevoke e c) s = revokeOperation e c s

step :: sysOPs ⇒ state ⇒ state

step cmd s ≡ if legal cmd s then step’ cmd s else s

The legal function checks the preconditions required for each command. If a com-

mand does not satisfy the preconditions then it is not allowed to proceed and hence there

is no modification to the protection state.

The state after a whole system run, i.e., executing a list of commands, is then just repetition

of step (note that the list of commands are read from right to left):

execute :: sysOPs list ⇒ state ⇒ state

execute = foldr step

5.3.4 The Initial System State
Up to now, I have discussed the model, its operations and in particular, how a sequence of

commands can be executed. Suppose we have a list of commands that we would like to

execute. Now, the question is from what state should we start the execution?

The model defines an initial protection state, from which a given sequence of com-

mands can be executed. I use the notation s i to denote the initial protection state.

There is only one entity that exists in state s i — a initial resource manager. The initial

resource manager possesses full rights to all the system resources conferred via capabilities.

In the protection model, these capabilities are folded into one.

s i ≡ (|heap = [0 �→ {allCap 0}], next_id = 1 |)
where

allCap e =(|entity = e, rights = allRights |)
allRights ={Read, Write, Grant, Create}

64

The notation [0 �→ {allCap 0}] stands for an empty heap where the position 0 is

overwritten with an object that has {allCap 0} as its capability set. As one would expect

the definition of empty heap is as follows:

emptyHeap ≡ λx. nullEntity

Starting from this initial state, the protection state evolves by executing the operations

defined by in the protection model.

5.3.5 Fundamental Invariant of the Model
A sane system state is a condition required for proving all most all of the security theorems

in Chapter 6. A sane state guarantees two important properties of the model required for

the these security theorems: (a) there are no dangling reference within capabilities, and (b)

the newly added entity will not overlap with an existing one.

By investigating the definition of the initial state s i — the state from which we start

executing — we see that it is sane:

Lemma 1. The initial state created for the resource manager (s i) is sane. In Isabelle we
write:

sane s i

Proof. By unfolding the definition of state s i and sane.

Moreover, sanity is preserved by step. In Isabelle, I proved the following lemma:

Lemma 2. Single execution steps preserve sanity:
sane s =⇒ sane (step a s)

Proof. By case distinction on the command to be executed, unfolding definitions, and

observing that no operation creates overlapping objects or references to non-existing ob-

jects.

Next, I lift the above lemma to a command sequence by induction and prove:

Lemma 3. Execution preserves sanity:
sane s =⇒ sane (execute cmds s)

Proof. By induction over the command sequence and Lemma 2.

All possible states of the protection model, created by any run of the system are de-

rived by executing some sequence of commands starting from the initial state s i. Since,

this initial state, s i, is sane (from Lemma 1) and since execution preserves sanity (from

Lemma 3), we see that all system states reached by any run of the system are sane.

5.4 Informal Correspondence to seL4
The formalism I presented in Section 5.3 provides a framework for reasoning about the

ability to enforce access control policies. The analysis in Chapter 6 affirms that the pro-

tection model is capable of enforcing at least two useful policies. One important question,

however, is: What does this proof means for the concrete kernel?.

65

Concrete Object Type Representation Possible Access Rights

Untyped Entity with no capabilities Create
TCB Entity with capabilities Grant, Read and Write
Endpoint - -

AsyncEndpoint - -

CNode Entity with capabilities Grant
VSpace Entity with capabilities Grant
Frame Entity with no capabilities Read and Write
InterruptController Entity with capabilities Grant
InterruptHandler Entity with no capabilities Write
seL4 ASID Entity with no capabilities Write

Table 5.2: Correspondence between concrete kernel objects and protection state entities.

A full formal treatment of this topic, is beyond the scope of this thesis. Note that the

thesis does not either, claim to connect or claim the feasibility of connecting the protection

model with the seL4 kernel. What is provided in this section is an informal description of

the relationship between the protection model and the seL4 kernel.

The approach and the feasibility of connecting the protection model with a formal

model of the concrete seL4 kernel — developed by the L4.verified team [EKK06,EKD+07,

CKS08] — is discussed elsewhere [Boy09].

In the remainder of this section, first I discuss, informally, the connection between the

protection state and the concrete kernel state. Then I focus on the informal relationship

between the system calls of the concrete kernel and the operations of the protection model.

5.4.1 Concrete and Abstract Protection States
The concrete kernel state consists of objects. Roughly, there are two main types of kernel

objects—objects that directly implement kernel operations and objects that support in the

implementation of kernel operations. Thread Control Block (TCB) objects which imple-

ments threads, for example, fall into the former category while Endpoint objects which

acts as rendezvous points for synchronous interprocess communication falls into the latter.

Note that this distinction is not clear-cut, I introduced it to aid our discussion.

In the protection model, all object types that directly implement kernel services are

folded into entities. The capabilities stored inside these kernel objects are modelled by the

capability set of corresponding entity — which can be empty in a case where the concrete

object does not store authority. In addition to authority, these objects have data (or meta

data) stored in them. The abstract protection model captures only the operations that can

be performed on this data. This is achieved by modelling the access rights. However, the

model does not attempt to model the actual data stored in the object.

The two types of endpoint objects implemented by the concrete kernel support in es-

tablishing communication channels between threads. The functionality of these two object

types is modelled implicitly by modelling the impact of the service; the protection model

captures the communication channel between entities rather than the rendezvous point used

in establishing the channel.

Table 5.2 shows a summary of how each concrete kernel object is modelled using enti-

ties. The first column of this table gives the concrete kernel object type, the second column

66

shows its representation at the abstract level and the final column indicates the possible

access rights over the abstract entity.

Given below is a detailed discussion, highlighting the important points on how concrete

objects are modelled at the abstract level and the limitations in doing so.

Discussion

Each thread in the concrete kernel is associated with a capability address space; which can

be shared with another. The capability address space is essentially a collection of CNode
objects—a set of slots for storing capabilities. At the abstract level, a thread is represented

by an entity. Recall the definition of an entity: it contains a set of capabilities. These

capabilities represent the capability address space the thread is associated with. If two

threads share the same capability address space, then at the abstract level they become a

single entity.

However, currently the model does not directly support partial sharing of address spaces.

For the correspondence to hold it is assumed that CNodes are either, not shared between

threads — even though there is room in the allocation model for shared CNodes — or the

implication of such sharing is modelled indirectly by a method described below.

The main limitation that arises with the lack of partial sharing is when capabilities are

either copied or deleted from the shared CNode. This capability modification is now visible

to all entities sharing the space. In the current model, shared CNodes can still be modelled

indirectly by duplicating the operation across the entities sharing the space — copying or

deleting the capability into or from all the entities sharing the address space.

Similar to CNodes, Sharing of a page tables (second level tables) also denotes a par-

tially shared address space. However, recall from our discussion in Chapter 4 the memory

allocation scheme disallows the sharing of page tables.

Besides threads (or TCB objects) and CNodes, there are number of other concrete ker-

nel objects: Frame objects for backing virtual memory, Untyped Memory objects, page-

table objects (VSpace) and seL4 ASID for implementing virtual memory, the Interrupt-

Controller object which describes the current interrupt association of the system and Inter-

ruptHandler objects for acknowledging interrupts. In brief, all these concrete object types

appear as entities at the abstract level. The abstract protection model is concerned with

the authority distribution and it’s mutations. Therefore, most semantic differences between

concrete objects becomes irrelevant at this level.

An abstract Frame object is modelled as an entity with no capabilities within it. More-

over, all the capabilities pointing to the entity, will have a subset of {Read, Write} as their

permissions. Similarly, an entity corresponding to an Untyped Memory object also has an

empty capability set, but any capability pointing to it can only have the Create permission.

The InterruptController object stores, for each interrupt, a capability that should be

invoked to deliver the interrupt. These capabilities are modelled by the capability set of the

abstract entity corresponding to the InterruptController. Acknowledging an interrupt via

the InterruptHandler object is modelled as a write operation to the corresponding entity.

Page table objects are restricted capability storage or CNodes. They are restricted in the

sense that they can only store capabilities to Frame objects and their structure is dictated by

the underlying hardware. These restrictions are not related to the protection model. As such

page tables are modelled in the same way as CNodes. Each thread in the concrete kernel is

associated with a collection of page tables—or a VSpace. The contents of the page tables

of a thread in the concrete system is captured by the capability set in the corresponding

67

Capability Type Concrete Kernel protection model

Untyped Retype sequence of SysCreate
Revoke SysRevoke

TCB ThreadControl SysNoOP , SysGrant
Exchange Registers SysWrite or SysRead

Yield SysNoOP
Synchronous IPC Send IPC SysWrite or SysNoOP
(Endpoint) Wait IPC SysRead

Grant IPC SysWrite, SysGrant or SysNoOP
Asynchronous IPC Send Event SysWrite
(AsyncEndpoint) Wait Event SysRead
CNode imitate SysGrant

mint SysGrant
Remove SysRemove
Revoke SysRevoke
Move SysGrant, SysRemove

Recycle SysRevoke, sequence of SysRemove
VSpace Install Mapping SysGrant

Remove Mapping SysRemove
Remap SysRemove, SysGrant

initialise SysNoOP
Frame - -

InterruptController Register interrupt SysGrant
Unregister interrupt SysRemove

InterruptHandler Acknowledge interrupt SysWrite
seL4 ASID Table Associate VSpace SysNoOP

Disassociate VSpace SysNoOP

Table 5.3: Relationship between the operations of the concrete kernel and those of the

protection model.

entity at the abstract level.

Since the contents of the CSpace and the VSpace of a thread is abstracted by the capa-

bility set within the entity, the ability to add capabilities to the CSpace or the VSpace of a

thread, in the concrete kernel, is modelled by a capability with Grant authority over that

particular abstract entity.

5.4.2 Concrete and Abstract Operations
Each operation in the concrete kernel maps to one or more operations in the protection

model.

Table 5.3 shows how the concrete kernel operations are modelled by those in the protec-

tion model. The first column of this table, indicates the object type which implements the

operation. The second column provides a descriptive name for the concrete operation. The

last column shows how the given operation is modelled in the abstract protection model.

Broadly speaking, the concrete kernel performs three main types of operations: (a) cre-

ation of new kernel objects, (b) adding or removing capabilities to or from kernel objects,

68

and (c) writing or reading information to or from kernel objects. The creation of a new

concrete kernel object maps to SysCreate at the abstract level. The addition of a capabil-

ity maps to a SysGrant operation and the removal of a capability or capabilities maps to

SysRemove or SysRevoke, respectively. Finally, reading and writing information at the

concrete level maps to SysRead and SysWrite abstract operations.

Some of the concrete system calls (due to performance reasons) perform a combina-

tion of these main operations. Such system calls are modelled as a sequence of abstract

operations.

Most operations of the concrete kernel have no effect on the authority distribution.

Such operations have no visible effect on the protection state. At the abstract level, these

operations are therefore, modelled either by SysRead or SysWrite; in the case where the

concrete operation modifies the user-visible data, or with SysNoOP ; in all other cases.

Given below is a detailed discussion of the summary presented in Table 5.3.

Discussion

The retype operation is the mechanism through which kernel objects are allocated. For

performance reasons, the concrete retype operation supports the allocation of a number of

objects (of the same type) in one system call. Thus, it maps to a sequence of SysCreate
operations in the protection model where sequence length is determined by the number of

concrete objects created.

The ThreadControl operation provides an interface for controlling the properties of a

thread. It facilitates a number of sub-operations, which are selected based on the system

call arguments. These sub-operations include modifying thread parameters (like priority)

and copying capabilities into the TCB for associating the thread with other kernel objects.

In the abstract, the former operations are mapped to SysNoOP and the latter to SysGrant.
The Exchange Registers facilitates reading or writing user context from a TCB. Thus, this

operation corresponds to SysRead or SysWrite. The final operation supported by a TCB

object is yield which has no visible effect in the abstract model and therefore modelled by

SysNoOP .

Except for GrantIPC, the two Endpoint objects aid in implementing information flow

channels. Thus, their operations corresponds, mainly to SysRead or SysWrite; in cases

where communication is successful, or SysNoOP in case where there is no willing re-

ceiver to receive a non-blocking message. In addition to information, GrantIPC supports

propagation of capabilities given an appropriate and a willing receiver. Such IPC opera-

tions are modelled by a SysWrite followed with a SysGrant.
CNode related operations, in most cases, are straightforward. They either directly cor-

responds to an operation in the protection model or have an obvious combination. The only

standout is the recycle operation. Recall the behaviour of recycle — it revokes all CDT

children of the given capability (which is modelled by the SysRevoke), and then if the

capability is the last remaining reference to the object after the revocation, it re-initialises

the object. This reinitialisation requires removing all capabilities within the given object

which is modelled by a sequence of SysRemoves.

Similar to CNode, VSpace operations are straightforward but simpler than CNode ones.

Installing and removing mappings corresponds to SysGrant and SysRemove respectively

and Remap removes the existing mapping and installs a new one. The last operation,

initialise, associates an address space (PageDirectory) with a seL4 ASID, which has no

visibility at the abstract level.

69

Frame objects do not implement any system call.They are used for installing VSpace

mappings—as arguments in VSpace operations.

The InterruptController object stores the current interrupt association of the concrete

kernel. For each interrupt line, the InterruptController object stores an AsyncEndpoint

capability that is invoked to deliver the interrupt. These AsyncEndpoint capabilities are

stored into the InterruptController object through Register Interrupt and are removed via

the Unregister Interrupt operation. At the abstract level, these two operations maps to

SysGrant and SysRemove respectively.

The seL4 ASID table associates a VSpace with a hardware address space identifiers (of

the ARM11 architecture). The operations performed on this object does not modify the

capability distribution and has no visibility to user-level applications. Therefore, all the

concrete operations on this object map to SysNoOP at the abstract level.

5.5 Summary
The take-grant model has been extended, and analysed by many authors (example [Sny81,

Bis96,SW00]). Shapiro [Sha03] applied the diminish-take model—another variant of take-

grant, to capture the operational semantics of the EROS [Har85, SSF99] system. All these

formalisations and proofs however, are pen-and-paper only, mostly using graph diagram

notation.

While graph diagram notation is intuitive for this domain, in this work I did find that

graph diagrams can often be deceptively simple, glossing over subtle side conditions that

the theorem prover enables us to track precisely. Examples of such side conditions are:

new nodes added to the graph cannot overlap with the existing ones, and the graph cannot

have dangling arcs; the two conditions guaranteed by sanity.

The main cause of this impreciseness is the human intuition — for instance, a “new

node” intuitively will not overlap with an existing one. As such the specification simply

ignores this possibility. Automated theorem provers on the other hand, lack this intuition,

hence the specification needs to be precise about the what a “new node” is, and prove that

all “new nodes”, added in any state, adhere to that specification — recall the definition of

sane and Lemma 3. Even though it is beyond the scope of this thesis, one can evaluate the

kernel implementation against such a precise specification.

In this chapter, I have developed a precise specification of the model governing the

dissemination of authority and the management of kernel memory by extending the take-

grant model. The specification is entirely developed using the Isabelle/HOL interactive

theorem prover. In the next chapter, I analyse the formal properties of this model.

70

Chapter 6

Formal Analysis of the Protection Model

Having described the seL4 protection model in the previous Chapter 5, I can now explore

the question of whether the model is sufficient to enforce two useful authority distribution

policies and if so, what preconditions are required to ensure the enforcement, and how to

bootstrap a system satisfying these preconditions.

The first policy I explore is spatial partitioning. I explain the details of this policy later

in Section 6.1. In brief, I show how to confine the collective authority of a set of entities

(called a subsystem) and with that confine their access to physical resources. Moreover, the

proof identifies the preconditions required for enforcing subsystems and Section 6.4.1 pro-

vides a formal example of an initial resource manager that bootstraps the system satisfying

the identified preconditions.

The seL4 protection model, not only facilitates reasoning about physical memory con-

sumption, but is also expressive enough to capture direct (de-jure) and indirect (de-facto)

access to information, based on the distribution of authority. In Section 6.5, I show how

the model can be used to reason about information access, by investigating the feasibility

of enforcing complete, bidirectional isolation between entities. A formal definition of the

isolation policy is provided later in Section 6.5.

All formal definitions, lemmas, theorems, and examples I present in this Chapter are

machined-checked using the Isabelle/HOL system.

6.1 Informal Discussion of Requirements
Ideally a partitioned system can be viewed as a distributed system, with each machine

in this idealised system, communicating with another via dedicated communication links.

Rushby [Rus99] defined partitioning as:

A partitioned system should provide fault containment equivalent to an ide-

alised system in which each partition is allocated an independent processor

and associated peripherals and all inter-partition communications are carried

on dedicated lines.

In such a system, no application in a partition will be capable of accessing physical

resources, from another in a different partition; be it physical memory or CPU cycles. As

such, partitioned applications are isolated in both the spatial and temporal domains. The

former is called spatial partitioning and the latter temporal partitioning.

Temporal partitioning, while important, is beyond the scope of this thesis. Spatial

partitioning, on the other hand, is central to seL4.

71

Initial resource manager

subsystem ss
1

e
1

e
2

subsystem ss
n

e
(i+2)

e
i

e
(i+1)

seL4 microkernel

������������

���

{Read

}

subsystem ss
2

e
3

�����

{Read}

{Write}

Figure 6.1: Example system configuration

According to Rushby’s definition in [Rus99], spatial partitioning is concerned with

software in one partition accessing the memory of another — isolation of the memory

resources.

The seL4 protection model, by extending its access control to cover physical mem-

ory, provides a framework for analysing and enforcing a spatial partitioning policy over

applications.

However, partitioning in the seL4 protection model, extends beyond physical memory,

and therefore beyond simple spatial partitioning. Besides physical memory, the model

captures the configuration of authority within a partition that allows communication. Thus,

the model facilitates reasoning about the communication channels that a set of partitioned

applications may acquire in a future state.

To make the distinction, I use the term subsystems. In an idealised system, each subsys-

tem is allocated independent memory resources and all inter-subsystem communications

are carried on dedicated lines.

As an illustrative, concrete, example, consider the system configuration in Figure 6.1.

In this system there are n distinct subsystems, namely ss1, ss2 . . . ssn. Each subsystem is a

collection of one or more applications or processes, or at an abstract level, a set of entities.

The initial resource manager responsible for instantiating subsystems needs to guarantee

that any given subsystem, say ssi, cannot exceed the amount of physical memory given to

it. Nor should ssi be capable of directly communicating with another subsystem unless the

resource manager has explicitly arranged for it.

6.1.1 Capability Based Protection
The initial resource manager (see Figure 6.1), created by the system soon after booting,

is responsible for creating and disseminating the authority for each subsystem. Once the

subsystems are setup, the initial resource manager can exits, leaving the subsystems which

are now bounded by the authority they received from the initial resource manager and the

protection model.

Recall the protection mechanism of seL4 — all memory allocation is explicit by user

request via the invocation of an Untyped capability. This means that the amount of physical

memory that an entity (or a process) can use is strictly controlled by the untyped capabil-

ities in its possession. Similarly, all communication channels are named and accessed via

capabilities.

72

So, if a subsystem ssi can violate its boundary, then there should be at least one en-

tity in ssi that has received a capability from an entity in a different subsystem. In other

words, subsystem boundaries are violated only if capabilities are allowed to flow from one

subsystem to another. Thus, enforcing subsystems boils down to isolation of authority.

Given this scenario, the question is: Under which conditions can some entity, say ex,

leak a capability to some other entity ei in the current state or at any point in the future?

And, importantly, can such a future leak be foreseen and prevented?

Once the subsystems are created, they will execute system calls, and thereby modify

the protection state. In order to make strong guarantees we need to prove that there is no

sequence of commands with which to arrive at a future system state in which ex can leak

more access to ei. Moreover, the interest here is in mandatory isolation of authority, that

is, in showing that ex cannot leak a capability to ei, rather than that ex can but does not.

A subsystem is then the set of entities such that all the entities that possess the ability

to leak to a subsystem entity, in the current state or in some future state, is within the

subsystem itself.

Unlike subsystems, analysing the access to information has another dimension — proxy

or de-facto access. As an example, consider the configuration shown in Figure 6.1. If sub-

systems are enforced, then subsystem ss2 will not come into possession of a capability to

directly write (de-jure write) to subsystem ssn; if it does it will be a violation of the sub-

system policy. However, subsystem ss2 can still indirectly write information to subsystem

ssn through subsystem ss1. For this to happen, subsystem ss1 reads information from ss2

(using its read authority) and then writes that to ssn (using its write authority), causing a

de-facto write from ss2 to ssn via ss1.

To analyse the direct and indirect access to information, I use another policy: bidi-

rectional, mandatory, isolation of entities. I leave the formal definition of isolation till

Section 6.5. In brief, a set of entities are isolated if all the entities that possess the ability

to either directly or indirectly access information from an entity in the isolated set, in the

current state or in some future state, is within that set itself. Note the similarity between

subsystems and isolation. The two analysis are similar, but performed for different access

rights. As such, one should be able derive one analysis from the other.

With this informal introduction I now turn to analysing the seL4’s protection model.

I show that it is feasible to enforce subsystems and isolate entities. The structure of the

formal analysis is as follows: first in Section 6.2, I introduce some formal predicates related

to the informal discussion above. Section 6.3 shows that it is feasible to decide if a leak can

take place in any future state and identifies what restrictions should be in place to prevent

such a leak. Then, these results are extended in Section 6.4 to show that it is feasible to

enforce subsystems and provides an example of a resource manager enforcing subsystems

(see Section 6.4.1). Section 6.5 shows how the model can be used to reason about direct

and indirect access to information.

6.2 Predicates
Before proceeding to the analysis, a precise statement of what leak means is warranted.

Suppose we have two entities, ex and e y, in some state s. Suppose ex is authorised to add

a capability to e y. Then we say ex can leak to e y in state s.

In our model, there are two operations that add a capability to a system entity —

SysCreate and SysGrant. These operations are legal only if the entity initiating the

73

operation has a capability that points to the entity under consideration and has (at least)

Grant right (see definition of legal in Section 5.3.3). Such a capability I call a grantCap :

grantCap :: entity_id ⇒ cap

grantCap e ≡ (|entity = e, rights = {Grant} |)
Note that grantCap e is the capability that contains the minimum (least) authority that

allows an addition of a capability to entity e. This notion of least authority is captured by

the infix operator :<. It indicates that a set of capabilities (C) has at least as much authority

as a given capability (c):

c :< C ≡ ∃ c’∈C. entity c = entity c’ ∧ rights c ⊆ rights c’

If there is a capability in the given set such that it points to the same object and has equal

or more authority, then :< returns true, and false otherwise.

Now I can define the predicate leak. I write s
 ex → e y to indicate that in state

s, entity ex has the ability to add a capability to entity e y. The definition of leak is as

follows:

leak :: state ⇒ entity_id ⇒ entity_id ⇒ bool

s
 ex → e y ≡ grantCap e y :< caps_of s ex

The rationale behind the leak predicate is the following observation:

Lemma 4. Suppose there exists some entity z in state s. Suppose, none of the entities
in subsystem ss1 has a capability that points to z in state s. Suppose after executing a
command on s, some entity in ss1 gets a capability that points to z. Then, there exists an
entity that can leak to an entity in ss1 and already has a capability that points to z in state
s.

[[isEntityOf s z; ∀ c∈⋃
e∈ss1 caps_of s e. entity c �= z;

∃ c∈⋃
e∈ss1 caps_of (step cmd s) e. entity c = z]]

=⇒ ∃ ex e y c’. c’ ∈ caps_of s ex ∧ entity c’ = z ∧ ey ∈
ss1 ∧ s
 ex → e y

Proof. By unfolding the definitions and observing that only the grant operation can leak a

capability to an existing entity.

As an illustrative example consider the system in example Figure 6.1. Just for explana-

tion let us assume that the number of entities in a system does not grow. The two entities

in subsystem ss1 have no capability that points to e i. Suppose, after executing a command

one of these entities gets a capability that points to e i. This is at odds with the enforcement

of subsystem. For this to happen, from Lemma 4, we see that there should exists some

entity (say ex) that has a capability to e i and has the ability to leak to an entity in ss1 in the

current state. Moreover, ex cannot be one of the two entities in ss1, since they did not have

a capability that points to e i in state s. So to enforce subsystem policy, what we need is

a mechanism to prevent entities outside a subsystem from leaking capabilities into entities

within a subsystem.

Similar to SysGrant, SysCreate also adds a capability to an entity. However, unlike

SysGrant, the capability added by the SysCreate will not point to any of the existing

entities (such as e i in Figure 6.1).

Preventing a leak in the initial state (s0) is trivial — the initial resource manager cre-

ates this state, and therefore the capabilities possessed by any entity are directly under its

control. More interesting are leaks that might occur in some later state:

74

leakInFuture :: state ⇒ entity_id ⇒ entity_id ⇒ bool

♦ s
 ex → e y ≡ ∃ cmds. execute cmds s
 ex → e y

That means, there is a sequence of commands, that if executed will result in a state in which

entity ex can leak to e y.

The purpose of the analysis in the next section is twofold. Firstly, I show that given the

initial state s0, it is feasible to decide whether ♦ s0
 ex → e i is true. Secondly, identify

a restriction R that the resource manager can enforce on s0 such that R s =⇒ ¬ ♦ s0

ex → e i.

6.3 Necessary Conditions for Propagation of Authority
This part of the analysis identifies the necessary conditions that must be satisfied in the

initial state for one entity to leak a capability to another in some future state. To be precise,

I show that given a state s, and two entities ex and e y in s, we can give a tight and safe

approximation of the value of the predicate ♦ s
 ex → e y. I show formally that the

approximation is safe and argue informally that it is tight (i.e. close enough).

In fact, the literature usually does not call this predicate an approximation, but just

makes stronger assumptions on the system such that the approximation is precise. Here I

leave the model itself more general, and recognise that the decision procedure is, indeed a

conservative approximation only.

Using this approximation, I show that if the initial resource manager adheres to certain

restrictions on the initial dissemination of capabilities, a leak between two entities can be

prevented in any future derived state.

In the analysis, the ability to create entities is not excluded. Moreover, I do not make

any assumptions about the ordering of create operations. Contrary to some of the pen-

and-paper proofs in the literature [San88, AS91, Min84, San92a], here I directly show the

property for any sequence of commands, including ones that add new entities to the state

and without any assumptions on ordering of commands in the sequence.

The only restriction is that the entities ex and e y already exist in s ; otherwise the

statement itself does not make sense in state s. I will discuss later why this does not

constitute any loss of generality.

Recall the initial state s i created by the kernel for the initial resource manager (see

Section 5.3.4). Starting from this state, the resource manager executes some sequence of

operations to bootstrap the rest of the system. For our discussion here, the exact sequence

of commands the initial resource manager executes to bootstrap is irrelevant. It is sufficient

to note that this sequence can only contain operations defined by the protection model.

Moreover, the same is true for any subsequently created entity.

I have already proved that sanity is invariant (see Section 5.3.5). Thus, I only need to

consider sane states for the proof.

The structure of the proof is as follows. First, I introduce a property, related to leak,

and that is preserved by step. Such a property, as we shall see later naturally lends itself

to identifying the restriction that will prevent a leak in the future.

The main invariant property of the system relating to dissemination of authority is the

symmetric, reflexive, transitive closure over the leak relation — the arcs in the capabil-

ity graph with Grant right (see Figure 5.2). The symmetric closure of leak is called

connected and I write s
 ex ↔ e y to denote ex and e y are connected in state s :

s
 ex ↔ e y = s
 ex → e y ∨ s
 e y → ex

75

Figure 6.2: The effect of self-referencing capabilities

The intuition behind this invariant is the following. We are looking at grant capabilities

only, because these are the only ones that can disseminate authority. We need the transitive

closure, because we are looking at an arbitrary number of execution steps. We need the

symmetric closure, because as soon as there is one entity in the transitive closure that has

a grant capability to itself or has the ability to create, it can use its authority to reverse the

direction of potential authority flow (or invert) in all or part of the grant arcs it is transitively

connected to. Given the transitive and symmetric part, the reflexiveness follows. I further

explain the need for symmetric and reflexive closures below.

As an illustrative example of inverting the grant arcs, consider the three entities in

Figure 6.2. Shown here are only the grant capabilities; capabilities that contain at least the

Grant authority. Initially, entity e1 has a grant capability, sRef to itself (see part (a)). Part

(b) of the figure shows the capability configuration when e1 grants a copy of sRef to e2. As

it can bee seen from the diagram, in this state the initial arc from e1 to e2; arc c1, is reversed

by the capability c3. The system state after e2 granting a copy of c3 to e3 is shown in part

(c) of the figure. Note how, all arcs in part (a), are reversed, either directly, or transitively.

Say, for instance, the initial arc from e2 to e3 is reversed transitively; from e3 we follow c4

and arrive at e1 and from there take arc c1 to arrive at e2. As for the reflexiveness, starting

from any entity we can find path back to it (see part (c) of the figure).

Suppose e1 did not have a grant capability to itself, but possesses the authority to create.

In this case, as shown in Figure 6.3, e1 can use this authority and create a system state

that resembles that of part (a) of Figure 6.2; first, by exercising its authority to allocate,

e1 creates a new entity e
′
1 (see part (b) of Figure 6.3), and in the process gets a grant

capability, capability c3 to the new entity. Then in steps (c) and (d), by using c3, e1 grants

copies of c3 and c1 to entity e
′
1 respectively. Note the similarity between the state (d) in

Figure 6.3 and state (a) of Figure 6.2. Thus, using the same reasoning one can see that all

arcs between e
′
1, e2 and e3 can be inverted.

The ability to invert grant arcs in the presence of the Grant operation is well studied

in the literature [LM82, Min84, Bis84] and two broad classes of solutions are proposed

to make the authority flow unidirectional: (a) remove the Grant operation and authorise

propagations from the receiver side (a variant of this is the diminished-take model [Sha99]),

and (b) remove self-referencing capabilities — all applications have a nontransferable,

76

Figure 6.3: The effect of creating new entities

intrinsic authority to modify its address space. Removing the Grant operation means the

sender loses its ability to decide what authority to propagate.

However, adopting schemes such as diminished-take, where it is possible to enforce

filters by controlling the authority in the receiver side complicates the protection model.

Moreover, adding an intrinsic right to manage the address space makes resource manage-

ment hard. As such, these techniques were not considered in seL4.

The two assumptions: symmetry and reflexivity, is what makes the analysis an approx-

imation. Without these, as explained above, the closure is not invariant over the grant and

create operations. With symmetry and reflexivity, we might claim that a given entity can

gain more authority in the future than what it in fact can: a) if there is no self-referential

grant capability in the system, and b) if there is no create authority in the system. Although

it is possible to build such systems in seL4, and for small, static systems this might even

occur in practise, these are very simple to analyse and it is unlikely that the approximation

will lead to undue false alarms in the general case. For the vast majority — those with the

ability to create and to grant to themselves — the invariant and therefore the prediction is

precise.

Recall the definition of leak : it is computed based on the authority one entity pos-

sesses over the other. Given our states are sane, we see that only existing entities can be

connected.

Lemma 5. Connected implies existence:
[[sane s; s
 ex ↔ e y]] =⇒ isEntityOf s ex ∧ isEntityOf s e y

Proof. By unfolding the definitions, and observing from leak that one entity must possess

a capability that points to the other. Thus, given the state is sane, both must be existing

entities in that state.

Next I analyse how each of the operations affects the connected relation. In particular,

the analysis focuses on properties of the form, ”if two entities become connected after

execution of an operation, what was their relation at the starting state”.

The SysNoOP operation, as the name implies does nothing. Similarly, SysRead and

SysWrite mutate data and have no effect on the capability distribution. Therefore, it is

trivial to conclude that these three operations will not effect the connected relation. Thus,

the following lemmas:

77

Lemma 6. Connected is invariant over NoOP:
step (SysNoOP e) s
 ex ↔ e y =⇒ s
 ex ↔ e y

Lemma 7. Connected is invariant over Read:
step (SysRead e c) s
 ex ↔ e y =⇒ s
 ex ↔ e y

Lemma 8. Connected is invariant over Write:
step (SysWrite e c) s
 ex ↔ e y =⇒ s
 ex ↔ e y

Proof. By unfolding the definition of step.

The remaining four operations — SysCreate, SysGrant, SysRemove and SysRevoke,

modify the capability distribution, and therefore have the potential to modify the predicate.

I now examine their behaviour in detail.

Out of these operations, SysRemove and SysRevoke, remove capabilities: from a single

entity in the case of SysRemove or from a set of entities in the case of SysRevoke. By recall-

ing that leak and therefore connected checks for the existence of a particular capability,

we see that neither operation has the potential to connect two entities that are disconnected.

This leads to the following two lemmas.

Lemma 9. Connected is invariant over Remove:
step (SysRemove e c1 c2) s
 ex ↔ e y =⇒ s
 ex ↔ e y

Proof. By unfolding the semantics of remove and observing that they can not add capabil-

ities to the state.

Lemma 10. Connected is invariant over Revoke:
step (SysRevoke e c) s
 ex ↔ e y =⇒ s
 ex ↔ e y

Proof. By induction over the list of capabilities to remove and Lemma 9.

The SysGrant operation on the other hand, does have the ability to connect two entities

that previously had not been connected. However, only under restricted conditions: the

grant operation can connect two entities only if they were transitively connected in the

state before.

Lemma 11. Grant preserves the transitive, reflexive closure of connections 1:
step (SysGrant e c1 c2 R) s
 ex ↔ e y =⇒ s
 ex ↔∗ e y

Proof. Suppose s
 ex ↔ e y, then by definition of the transitive closure, the lemma is

true. Thus, the case we need to consider is when ¬ s i
 ex ↔ e y, but step (SysGrant

e c1 c2 R) s
 ex ↔ e y. For this to happen, either ex or e y, in the derived state, must

possess a grantCap to the other. Let this entity be x and the other y. From the definition of

SysGrant, we see that entity c1 = y, entity c2 = x and Grant ∈ rights c2. More-

over, from legal we see {c1, c2} ⊆ caps_of s e and Grant ∈ rights c1. Thus, by

definition and symmetry of connected, we have s
 x ↔ e and s
 e ↔ y. Given

these facts, from the definition of transitive and reflexive closure, we can conclude the

lemma.

Unlike the operations we considered thus far, SysCreate introduces a complication in

that it introduces new entities in to the system. However, if we consider existing entities

and make use of the sane state property, we see that:

1Note that, in standard logic the superscript ”*” denotes the transitive and reflexive closure

78

Lemma 12. Create preserves connected on existing entities:
[[isEntityOf s ex; isEntityOf s e y; step (SysCreate e c1 c2) s
 ex ↔ e y]]
=⇒ s
 ex ↔ e y

Proof. By unfolding the definition of create operations and making use of the fact that

there can be no dangling references that might point to the new entity (given the state is

sane), and that the new entity does not overlap with any of the existing ones.

From these lemmas we see that if two existing entities become connected after execut-

ing a single command, then they should either be connected in the previous state, in the case

of SysNoOP, SysRead, SysWrite, SysRemove, SysRevoke and SysCreate, or connected

transitively, in the case of SysGrant. By combining the previous lemmas we have:

Lemma 13. Connected after a single command:
[[isEntityOf s ex; isEntityOf s e y; step cmd s
 ex ↔ e y]] =⇒ s
 ex ↔∗ e y

Proof. By case distinction on the command, and using the appropriate lemma from Lemma 6

to Lemma 12.

The plan for the rest of the proof is as follows. First lift Lemma 13 to the reflexive,

transitive closure, such that step cmd s
 ex ↔∗ e y =⇒ s
 ex ↔∗ e y, for any two

existing entities ex and e y. Then, by induction over the command sequence we prove that

execute cmds s
 ex ↔∗ e y =⇒ s
 ex ↔∗ e y.

The motivation behind proving the above lemma is the following observation: Suppose

ex can leak to e y in the derived state execute cmds s. Then by definition of connected,

execute cmds s
 ex ↔ e y, and hence from the definition of transitive closure execute

cmds s
 ex ↔∗ e y. Then from the above lemma, we can concluded s
 ex ↔∗ e y.

In other words, if ex can leak to e y in some future state derived from s the ex and e y must

be transitively connected in the starting state s.

It turns out, that the first step — lifting Lemma 13 to the reflexive, transitive closure,

is the most interesting one. This proof was done by induction over the reflexive, transitive

closure. Although, we are considering the connected relationship between existing enti-

ties, the proof obligation in the induction step is more general — it requires us to consider

entities that might have being introduced by the current command. Recall that there is only

one command that introduces a new entity — SysCreate. It turns out that Lemma 12 is not

strong enough to get through the induction step, because it requires both entities to exist in

the pre-state.

Hence, I break the proof into two parts: I treat SysCreate separately from the other

commands. I call the commands that do not introduce new entities transporters. The

lemma I proved for transporters is as follows:

Lemma 14. Transport commands preserve connected∗ in sane states:
[[step cmd s
 ex ↔∗ e y; sane s; ∀ e c1 c2. cmd �= SysCreate e c1 c2]]
=⇒ s
 ex ↔∗ e y

Proof. Firstly we see that the derived state is sane, this follows from Lemma 2. Next, we

induct over the transitive and reflexive closure. If two entities, x and y, are connected in

the derived state, from Lemma 5 it follows both x and y exists in that state. Given that

transporters do not add new entities, x and y are entities in s, hence from Lemma 13 we

can conclude the lemma.

79

e
3

e
2

e
1

e
4

e
5

e
6

SysCreate�

a) Initial state

e
3

e
2

e
1

e
4

e
5

b) After Create

Figure 6.4: The effect of SysCreate on connected

The complication that arises with SysCreate is the newly introduced entity. The enti-

ties considered in the induction step may include this newly created entity. To get through

the induction step, one needs a stronger lemma which answers the following question: Can

two entities, let us call them x and y, become transitively connected through the newly

introduced entity, and if so what is the relationship between x and y in the previous state?

The intuition behind the proof is the following. Recall SysCreate — the newly added

entity brings with it no authority. If we assume a graph based representation of the system

state as shown in Figure 6.4, where nodes represent entities and arcs represent capabilities

with Grant rights, then there are no arcs going out of the new entity (e6 in the Figure).

Moreover, if the state is sane, then there is only a single arc connecting the new node

to the rest of the nodes. Together these two properties guarantee that, if two entities say

x and y, are connected transitively in the post-state through the new entity, then x and y

should have been transitively connected in the pre-state through the entity which is holding

the capability to the new entity in the post-state. As an illustrative example, in part b)

of Figure 6.4 nodes e2 and e3 are transitively connected to one another through the new

node e6 only because they were transitively connected to one another through e1, in the

initial state.

Note that the lack of dangling references and creating non-overlapping objects; in other

words having a sane state, is central to this proof. In part b) of the figure, suppose e6

overlaps with the e4 or if e4 has an dangling arc which happens to point to e6. Then in

the post-state, all entities becomes transitively connected to one another, which violates the

property I just stated.

The properties I just mentioned are captured in the following lemma:

Lemma 15. Given two entities ex and e z are transitively connected in the state after
SysCreate e c1 c2, given that ex exists in the pre-state s, and given that sane s, it is
true that, s
 ex ↔∗ e (where e is the entity that performed the create operation) if e z

is the entity just created or s
 ex ↔∗ e z otherwise. In Isabelle:
[[step (SysCreate e c1 c2) s
 ex ↔∗ e z; isEntityOf s ex; sane s]]
=⇒ if e z = next_id s then s
 ex ↔∗ e else s
 ex ↔∗ e z

Proof. We note that the derived state is sane, which follows from Lemma 2. Then we

80

induct over the transitive and reflexive closure. The base case is trivial. The induction

step has the following form: given isEntityOf s ex, sane s, and step (SysCreate e

c1 c2) s
 ex ↔∗ e y, step (SysCreate e c1 c2) s
 e y ↔ e z, and the induction

hypothesis if e y = next_id s then s
 ex ↔∗ e else s
 ex ↔∗ e y, we show e z

= next_id s −→ s
 ex ↔∗ e and e z �= next_id s −→ s
 ex ↔∗ e z. We make

a case distinction on whether e y and e z are existing or newly introduced entities.

If both are existing entities we conclude using Lemma 13. If both are newly added, we

have s
 ex ↔∗ e by assumption.

If e y is newly created, and e z is existing, we know from the induction hypothesis that

s
 ex ↔∗ e and need to show s
 ex ↔∗ e z. This is true, since from the assumption

step (SysCreate e c1 c2) s
 e y ↔ e z, the definition of legal, and sane s, we have

that s
 e ↔ e z and therefore with transitivity what we had to show.

The remaining case is the dual. We know that e y is an existing entity, and hence s

 ex ↔∗ e y. We also know that e z is new and therefore need to show s
 ex ↔∗ e.

This reduces to showing s
 e y ↔ e which again follows from the assumption step

(SysCreate e c1 c2) s
 e y ↔ e z, e z being new, the definition of legal, and sane s.

This concludes the proof of Lemma 15.

By combining Lemma 14 and Lemma 15 we get the following lemma:

Lemma 16. Single execution steps preserve connected∗ for existing entities in sane states:
[[step cmd s
 ex ↔∗ e z; isEntityOf s ex; isEntityOf s e z; sane s]]
=⇒ s
 ex ↔∗ e z

Proof. By case distinction on transporter commands and create, and using Lemma 14 and

Lemma 15 to prove each case respectively.

The rest of the proof is relatively easy. By induction over a sequence of commands,

one can immediately conclude:

Lemma 17. Execution preserves connected∗ for all entities existing in any sane initial
state:
[[sane s; isEntityOf s ex; isEntityOf s e y; execute cmds s
 ex ↔∗ e y]]
=⇒ s
 ex ↔∗ e y

Proof. By induction on the list of commands and Lemma 16

Together with s
 ex → e i =⇒ s
 ex ↔∗ e i, we conclude our theorem on how

to decide future leaks :

Lemma 18. In a sane state, if one existing entity can leak authority to another entity at
any time in the future, then they are connected now:
[[sane s; isEntityOf s ex; isEntityOf s e y; ♦ s
 ex → e y]] =⇒ s
 ex ↔∗ e y

Proof. By Lemma 17 and the definition of ♦ s
 ex → e y.

The decidability (or approximation thereof) of this model is more naturally phrased like

in the literature as the contra-positive of Lemma 18. It clearly identifies the restriction that

will prevent a leak from ex to e y in any future state:

Theorem 1. In any sane state, if two existing entity are not connected, they will never be
able to leak authority to each other.
[[sane s; isEntityOf s ex; isEntityOf s e y; ¬ s
 ex ↔∗ e y]]
=⇒ ¬ ♦ s
 ex → e y

81

Proof. Contra-positive of Lemma 18.

There are two noteworthy aspects of the above theorem. First, it shows that it is possible

to decide if some entity ex can leak authority to another entity e y, in any future state

derived from s, by looking at the capability distribution of s. By computing the symmetric,

reflexive and transitive closure over leak on state s — for which there are number of well

knows efficient algorithms (for example [Nuu95]) — the initial resource manager, who has

the full control and the knowledge over the initial distribution of grant rights, can predict

capability leakages that might happen in future states.

Second, the theorem identifies the restriction that needs to be enforced on state s to

prevent a capability leak. If the initial resource manager distributes capabilities in such a

manner that the two entities, ex and e y, are not in the symmetric, reflexive and transitive

closure over leak in state s, then the protection mechanism guarantees that ex will never

be able to leak a capability to e y, in any future state derived from s. How this restriction is

enforced in a practical situation is discussed latter in Section 6.4.1.

The assumptions of Theorem 1 are that the state s is sane and that both entities exist

in s. Sanity is not an issue. I have already shown that it is a global system invariant. The

restriction to existing entities might be a reason for concern. Formally, we can make no

useful statement in s over entities that do not exist yet. However, intuitively, we would

like the non-leakage property to be true as well for all entities that do not exist yet. The

theorem implies that ex can not leak authority to e y via any of these new entities (create

operations were not excluded in the proof), but what about a new entity e, created later,

leaking new authority to e y? The theorem does not make a statement about this (because

the precondition isEntityOf s e is false).

However, we can run the system up until e is freshly created. In this state e exists, has

no authority yet, the state is sane, and e y still exists. The theorem is then applicable and

says that e will not be able to leak to e y if e y is not transitively connected to e at that point.

The classic non-leakage property does not fully express our intuition about the subsys-

tem — we want to show that ex cannot acquire more authority, even from an entity that is

not in existence yet, but might come into existence later (possibly in another subsystem).

The next section generalises the above theorem to make a more intuitive and direct

statement about authority distribution and show how subsystems can be enforced by using

the model.

6.4 Enforcing Subsystems
In this section, I generalise the non-leakage result to show that it is feasible to imple-

ment subsystems using the seL4 protection model. As I mentioned earlier, a subsystem is

merely a set of entities such that none of the entities in the subsystem will gain access to

a capability to an entity of another subsystem if that authority is not already present in the

subsystem. For instance, if there is no Write authority over a particular entity ex within

a subsystem at the start, then none of the entities in that subsystem will ever gain write

authority over ex, in any run of the system. Thus, guaranteeing that isolated subsystems

will remain isolated in all possible future states. If the authority is already present, then I

show that it cannot be increased.

Subsystems can grow over time (given they have the authority to do so) and therefore,

unlike the leakage proof in Section 6.3, the statement also includes the effects of entities

that currently do not exist yet.

82

Figure 6.5: Example System Configuration

Formally, a subsystem is identified by any of its entities e s and it is defined as the set

of entities in the symmetric, reflexive, transitive closure of grant arcs to e s, or in short

connected∗:
subSys :: state ⇒ entity_id ⇒ entity_id set

subSys s e s ≡ {e i. s
 e i ↔∗ e s}

As earlier, I start with an illustrative, informal example. Figure 6.5 shows the config-

uration of a system with two subsystems: subsystem ss1 and ss2. The state shown here

is the initial configuration (or s0) just after bootstrapping. One can obtain the entities in a

subsystem, using the subSys function, specifying the current system state and one of the

entities in that subsystem. For instance, the entities of subsystem ss1 in s0 are given by

subSys s0 e1 = {e1, e2} .

Note that, in state s0 shown in Figure 6.5, neither of the two entities e1 and e2 has a

capability to the entity e5. For subsystem boundaries to hold, I need to show that in no

future system state any of the entities in ss1 — which might grow/shrink depending on

create/remove/revoke operations — will have a capability to e5. Thus, making the two

subsystems strongly isolated spatially.

The above property alone is sufficient for isolation of authority — it shows that if a

subsystem does not possess any authority over an entity, then the subsystem will never be

able to acquire any authority over that entity. However, it is somewhat limiting; because it

does not allow us to reason about existing authority. For instance, using the above property,

we can not reason about the behaviour of the two communication channels that exists

between e1 and e3, and e4 and e2 respectively.

To make it possible to reason about both the existing and non-existing authority of a

subsystem, I introduce a different formulation: the collective authority possessed within a

subsystem, over an entity in a different subsystem can not increase. To formally phrase this

statement, I need two more concepts — the subSysCaps function and the dominate (infix

:>) operator.

subSysCaps :: state ⇒ entity_id ⇒ cap set

subSysCaps s x ≡ ⋃
caps_of s ‘ subSys s x

c :> CS ≡ ∀ c’∈CS. entity c’ = entity c −→ rights c’ ⊆ rights c

The subSysCaps function initially finds the set of entities in the subsystem by using subSys,

83

and then returns the union of all capabilities possessed by the entities in that subsystem.

Note that symbol ‘ stands for mapping a function to a set.

A capability c dominates a capability set CS, (x :> CS) if CS provides at most as much

authority as capability c over the entity c points to. That means, for example, if c only

possesses a Grant right to some entity e, then no capability in CS will provide more than a

Grant right to e. For instance, in Figure 6.5, using the above notation, I write

noCap e5 :> subSysCaps s0 e1

with noCap e ≡ (|entity = e, rights = {} |) to indicate that there is no e5 capabil-

ity anywhere in subsystem ss1. Similarly, for e3 I write wCap e3 :> subSysCaps s1 e1,

where wCap e ≡ (|entity = e, rights = {Write} |). That means, the maximum author-

ity within subsystem ss1 over the entity e3 is {Write}.

For subsystem boundaries to hold I need to show that:

∀ cmds. c :> subSysCaps (execute cmds s0) e1

where c is some capability to an entity in s0. For example c can be noCap e5, if we

are considering the flow of authority over entity e5, or wCap e3 if the interest is on the

communication channel to e3.

Below, I show such mandatory subsystem boundaries are enforceable. Following that,

in Section 6.4.1, I provide a formal example of subsystems together with a description of

how a resource manager bootstraps them.

For this proof, I have two main assumptions. First, I assume that the entity we are

interested in gaining authority to exists in the state we use for reasoning. In the examples

I provided above, note that entity e5 and e3 are already in existence in state s0. Second, I

assume that at least one entity in the subsystem under consideration exists now, otherwise

the subsystem would be empty. In the example, for instance ss1 = {e1, e2}. I will

discuss later how the results of this analysis can be used in situations that does not comply

with these two assumptions.

Moreover, as in the previous analysis, all states considered in this proof are sane. I have

already proved that sanity is a system invariant.

Enforcing Subsystems

To enforce mandatory, subsystem boundaries, I build upon the results from Section 6.3. It

turns out that the main classic take-grant theorem of Section 6.3 is not of much direct use in

this proof. However, the central Lemma 16 of Section 6.3 can be used to good advantage.

Recall, that for two existing entities in any sane state s, they can not become transitively

connected after executing a single command, unless they were already transitively con-

nected before:
[[step cmd s
 ex ↔∗ e y; isEntityOf s ex; isEntityOf s e y; sane s]]
=⇒ s
 ex ↔∗ e y

The main lemma I would like to show in this section is that single step execution does

not increase the authority of a subsystem; that is, a lemma similar to the following:

c :> subSysCaps s e s =⇒ c :> subSysCaps (step cmd s) e s

which can then be lifted to command sequences by induction.

I start the analysis by closely examining the term c :> subSysCaps s e s. This term

can be expressed directly by referring to the entities of subsystem e s. Then by definition,

we get for any entity that is transitively connected to e s in s, that there is no capability that

contains more authority than c. Formally:

84

Lemma 19. Unfolding c :> subSysCaps s e s:

(c :> subSysCaps s e s) = (∀ ex. s
 ex ↔∗ e s −→ c :> caps_of s ex)

Proof. By unfolding the definitions of :>, subSysCaps and subSys.

So, to show that subsystem boundaries are not violated, I need to show that the above

property is true for all states derived from s.

Lemma 20. Single execution steps do not increase subsystem authority:
[[sane s; isEntityOf s e s; isEntityOf s e; entity c = e; c :> subSysCaps s e s]]
=⇒ c :> subSysCaps (step cmd s) e s

Proof. One may assume a sane state s, and two entities e s and e such that e is the en-

tity the capability c points to. Let us consider the situation after executing a single com-

mand on s. Let the new state be s’. After unfolding the goal as above, we may ad-

ditionally assume s’
 ex ↔∗ e s for an arbitrary, but fixed ex, and now have to show

c :> caps_of s’ ex. We proceed by case distinction on whether c :> caps_of s ex,

that is if c already dominated all authority of ex before the command was executed.

• We start with the case ¬ c :> caps_of s ex. That means, in s the entity ex already

had a capability with more authority than c.

We know by assumption that isEntityOf s e s. Moreover, given we are consider-

ing sane states, ex also must already exist in s — otherwise it could not have any

capability, in particular not one stronger than c. Given both of these are entities in

s and we know by assumption that s’
 ex ↔∗ e s, we get via Lemma 16 that

s
 ex ↔∗ e s. But if that is the case, then ex was already part of the e s subsystem

in s, and thus the subsystem e s in s already had more authority than c, which is a

contradiction.

• In the second case, we assume c :> caps_of s ex and we still need to show that

the execution step did not add authority stronger than c. Here, we proceed by case

distinction over the command that was executed. The only interesting cases are

SysGrant and SysCreate.

If the operation was some SysGrant e g c1 c2 R, the capability diminish c2 R is

being added to the entity of c1. If that entity is not ex, then caps_of s’ ex =

caps_of s ex and we are done. If the entity of c1 happens to be ex we need to

check that diminish c2 R has less authority than c. Via sane we know that ex

exists in s (c1 points to it) and from s’
 ex ↔∗ e s we get again via Lemma 16

that s
 ex ↔∗ e s. From legal we know that {c1, c2} ⊆ caps_of s e g (where

e g is the entity initiating the grant operation) and Grant ∈ rights c1 and therefore

s
 ex ↔ e g. By transitivity, e g is in the subsystem of e s, and by assumption c :>

subSysCaps s e s. The capability c2 is part of e g, hence part of subSysCaps s e s

and therefore has less authority than c. The diminished version of c2 has even less

(or equal) authority and in particular less than c. This concludes the grant case.

If the operation was SysCreate e c c1 c2, then there are three possibilities: ex is

the entity that was created, or it was the target of c2 that gets the new capability to

the entity that was created, or it is neither of these. In the latter case, caps_of s’ ex

= caps_of s ex and we are done. In the first case, caps_of s’ ex = {} and since

trivially c :> {}, we are done as well. In the remaining case, we add the capability

85

newCap s to caps_of s ex. We know that newCap s points to next_id s which

was not an entity in s. On the other hand, we know by assumption that the target of c

is an entity in s. Thus, the addition of newCap s to caps_of s ex does not increase

authority over the target of c. This concludes the create case and the proof.

The above lemma is essentially the induction step of the final theorem. In addition,

there is one more simple lemma that I need. Observe that if e is an entity in s, then it will

be an entity in any subsequent state:

Lemma 21. Entities are preserved by execution:
isEntityOf s x =⇒ isEntityOf (execute cmds s) x

Proof. By induction on cmds, then unfolding the definitions and observing that next_id

never decreases.

This leads us to the final isolation theorem.

Theorem 2 (Isolation of authority). Given a sane state s, a non-empty subsystem e s in s,
and a capability c with a target entity e that exists in s, if the authority of the subsystem
does not exceed c in s, then it will not exceed c in any future state of the system.
[[sane s; isEntityOf s e s; isEntityOf s e; entity c = e; c :> subSysCaps s e s]]
=⇒ c :> subSysCaps (execute cmds s) e s

Proof. By induction over the command sequence, and using the Lemma 20, Lemma 21,

and Lemma 3 to prove the induction step and the required preconditions.

This proves that seL4 protection model is capable of enforcing subsystem boundaries.

The authority that any subsystem collectively has over another entity can not grow beyond

what is conferred.

Going back to our example in Figure 6.5, this means that no entity in subsystem ss1

will ever gain any authority over the entity e5. Moreover, none of these entities will gain

more authority than {Write} over entity e3.

6.4.1 Example System
The proof in the previous section shows that the protection model is capable of enforcing

subsystem boundaries — once created, the collective authority within a subsystem over an-

other entity in a different subsystem can not grow. But how can we create these subsystems

in the first place?.

In this section, I show how subsystems are bootstrapped by an abstract resource man-

ager. Note that there are a number of methods a resource manager can use.

After the system bootstraps itself, it creates the state for the resource manager — the

state s i formally defined as: s i ≡ (|heap = [0 �→ {allCap 0}], next_id = 1 |). This

state, contains only the resource manager, with full access rights to itself and with the

authority over all the unused physical memory (see also Section 5.3.4).

It is the responsibility of the resource manager to create and set up the rest of the system,

such that subsystem boundaries are not violated in any derived state. Once the subsystems

are setup the resource manager exits the system by removing all its authority to freshly

created subsystems. Moreover, the resource manger is trusted to enforce subsystems.

86

For the sake of clarity, the state created by the resource manager, after bootstrapping

all user-level applications and exiting is called s0. Note that all applications in s0 and the

capabilities these applications possess in s0 are strictly under the control of the resource

manager.

The current mechanisms used by the resource manager for bootstrapping is as follows.

For each of the subsystems, it creates a subsystem resource manager who is responsible

for bootstrapping the rest of that particular subsystem. This scheme stems from a major

application domain of seL4: running para-virtualised guest operating systems (OS) in each

subsystem. For each subsystem, the resource manager creates a single entity — the guest

OS kernel. It is then up to the guest OS to bootstrap and manage the remainder of that

subsystem.

Given that all the user-level applications in s0 and their capability configurations are

created by the resource manager, it can be assumed that the resource manager has infor-

mation about the global system state. In this case, the global system state is provided to

the resource manager through a simple specification language. This language allows the

developer to specify the subsystems that should be created together with the authority they

should possess over one another and the amount of physical memory that should be com-

mitted to each subsystem manager. Given below is an example written in this specification

language:

"ss0" {
text { 1024 to 4096 };
data { 4096 to 5120 };
resource { 4 };
comm { this → ss2 };

};

"ss1" {
text { 5120 to 6144 };
resource { 4 };
comm { this → ss1 };

};

To explain the above specification, the system has two subsystems ss0 and ss1. Given

this specification the resource manager creates two subsystems by creating two subsys-

tem resource managers. The keywords text and data specify where to find the text and

data segment of the program. The resource specifies the amount of physical memory —

untyped capabilities — each should have access to. Keyword comm specifies the required

communication channels. We write comm {this → ss1} to say that the current entity

should be able to send information to ss1.

For ss0 and ss1 to be subsystems, what should be guaranteed is that neither ss0 nor

ss1 has a capability with Grant authority that points to the other. Formally, ¬ s
 ss0

↔ ss1. This property is guaranteed by our specification language — there is no language

construct to specify such a connection. Note that this does not mean that there will be no

grant operations in the system at all. The subsystem resource managers are free to provide

grant authority within each of the subsystems. The specification language merely excludes

the language constructs that break the policy it enforces.

This specification ”compiled” into a compact representation is called the global state.

Given this global state, the resource manager starts bootstrapping the system. Initially,

it creates a pool of entities. Then it populates each entity in accordance with the above

87

Figure 6.6: Example Subsystem Configuration

description. In addition to what is in the description, each entity, or in this case, each

subsystem resource manager, gets a capability to itself with Grant authority to enable

authority distribution within the subsystem itself.

A graphical representation of the state created by the system after bootstrapping itself,

is shown in part (a) of Figure 6.6. As mentioned earlier, this state consists of a single en-

tity: the resource manager (entity 0). In the diagram, allRights refers to full authority,

and C, G, R, W is used to denote Create, Grant, Read and Write rights respectively. The

configuration soon after creating and populating each entity with the required authority,

according to the above specification is given in part (b) of Figure 6.6. Note that in part (b)

of the diagram the two entities (entity 1 and 2) are connected through the resource manager

which formally means that both entities still inhabit the same single subsystem. The final

task of the resource manager is to break these connections. Once all the required capabil-

ities are in place, the resource manager removes its own capabilities to the bootstrapped

entities and exits. Thereby, it breaks the connection and makes them isolated subsystems,

as shown in part (c) of Figure 6.6 — which represent state s0. Once the resource manager

exit the subsystems which were inactive thus far, become active and start executing.

One possible sequence of commands the resource manager (entity 0) can execute to

produce s0 is given below:
cmdSeq ≡
[SysCreate 0 (allCap 0) (allCap 0), SysCreate 0 (allCap 0) (allCap 0),

SysCreate 0 (allCap 0) (allCap 0), SysCreate 0 (allCap 0) (allCap 0),

SysGrant 0 (allCap 1) (allCap 1) {Grant},

SysGrant 0 (allCap 1) (allCap 2) {Write},

SysGrant 0 (allCap 1) (allCap 3) {Create},

SysGrant 0 (allCap 2) (allCap 2) {Grant},

SysGrant 0 (allCap 2) (allCap 1) {Write},

SysGrant 0 (allCap 2) (allCap 4) {Create},

SysRemove 0 (allCap 0) (allCap 1), SysRemove 0 (allCap 0) (allCap 2),

SysRemove 0 (allCap 0) (allCap 3), SysRemove 0 (allCap 0) (allCap 4)]

where

allCap e ≡ (|entity = e, rights = allRights |) and

grantCap e ≡ (|entity = e, rights = {Grant} |).
The direct, formal description of the final state created by the resource manager (i.e.

the state shown in part (c) of Figure 6.6) is given below:

s0 = (|heap = [1 �→ {grantCap 1, writeCap 2, utCap 3}, 2

�→ {grantCap 2, writeCap 1, utCap 4}], next_id = 5 |)
where

88

writeCap e ≡ (|entity = e, rights = {Write} |) and

utCap e ≡ (|entity = e, rights = {Create} |).
Note that in s0 all subsystems, including 1 and 2, have only one entity. Strictly speak-

ing, there are 5 subsystems in s0, each with one entity. But only the entities 1 and 2

contain capabilities. They constitute the two main subsystems. The two main subsystems

thus created cannot increase the authority they have over each other. For example, we can

show:

Lemma 22. For no sequence of commands can the subsystem 1 gain authority over entity
4 which corresponds to the physical memory resources of subsystem 2.

∀ cmds. noCap 4 :> subSysCaps (execute cmds s0) 1

Proof. Firstly, we note sane s0. Moreover, by examining s0 we see that isEntityOf s0

1 and isEntityOf s0 4. Then we observe that noCap 4 :> subSysCaps s0 1. Given

these facts, we can directly apply Theorem 2 and conclude.

6.4.2 Relation to Concrete System
The bootstrapping mechanism described in the previous section is based on the abstract

protection model of seL4. To enforce subsystems, at this abstract level, the resource man-

ager needs to guarantee that any two entities (subsystem resource managers) are not con-
nected. In this section, I describe how these abstract concepts relates to the concrete kernel

and thus what restrictions a concrete resource manager needs to adhere in order to enforce

subsystems.

As I mentioned earlier, abstract entities correspond to threads and their associated

CSpace and VSpace in the concrete system. At the abstract level, a connection implies

a capability in ones possession that points to the other, and with Grant authority. For en-

forcing subsystems, such connections needs to be avoided. At the concrete level preventing

two threads from being connected implies:

• There should not be any GrantIPC channel between any two threads,

• CNodes and page-tables to which one thread has Grant authority cannot be shared

between threads, and

• A capability with Grant authority to the TCB of a thread cannot be placed in another

threads possession.

Recall from our discussion in Section 5.4, that the above three restrictions cover all

possibilities of propagating a capability from one process to another (in the current state).

Thus, if these restrictions are enforced at the concrete level, then it implies the corre-

sponding entities are not connected at the abstract level. Then from the proof, subsystem

boundaries cannot be violated in any derived state.

6.4.3 Reducing Resource Manager’s Complexity
The enforcement of the subsystem policy depends on the correctness of the resource man-

ager. If the resource manager distributes the capabilities according to the (arguably) simple

rules specified above, then seL4’s protection model guarantees the policy enforcement.

89

However, bootstrapping an application, in particular a paravirtualised OS, needs more

than distributing capabilities. This is solved by having another bootstrapping state — the

resource manager distributes the capabilities and then calls a secondary resource manager,

integrated to the guest OS that sets up a suitable environment for the guest OS to run.

The motivation behind this two stage bootstrapping is to reduce the complexity of the

security critical part. If the resource manager distributes capabilities correctly, then the

subsystems will hold, irrespective of what happens within the guest.

6.5 Information Access Control
Subsystems are compartments for confining capabilities, and therefore the right to use a

region of physical memory — a subsystem can only use regions of memory that were

granted to it by the initial resource manager and nothing more.

Besides physical memory, the seL4 protection model can also be used to reason about

direct and indirect access to information via overt channels.

A primitive designed to facilitate information access is called an overt channel [Lam73].

An illustrative example of an overt channel is the IPC primitive. The discussion in this sec-

tion deals only with accessing information via overt channels. Hereafter I use the term

access to information to refer to overt access to information.

Access to information can be either direct or indirect via a proxy. I explain these two

access patterns latter.

The access control policy that I investigate is the bidirectional isolation of access to

information. To facilitate the discussion, I call a set of entities that may access information

from one another, either directly or indirectly, a flowDomain. Moreover, if the flowDo-

mains of two entities, say x and y, are disjoint then I call the domains isolated. Informally,

a flowDomain is isolated if all the entities that possess the ability to, either directly or in-

directly, access information from an entity in the flowDomain is within the flowDomain

itself. Formal descriptions of these terms are provided in Section 6.5.1.

The motivation behind bidirectional (or complete) isolation is the application of seL4 as

a virtual machine monitor. The proof demonstrates that the seL4 protection model is capa-

ble of completely isolating the virtual machines from another and identifies the invariants

required for doing so.

For achieving such isolation, however, the definition of a subsystem is not strong

enough; because the definition does not preclude inter-subsystem communication. How-

ever, most of the lemmas and especially the proof engineering techniques from the subsys-

tem proof are used in the following analysis. In fact, it was possible to prove most of the

(new) lemmas by applying the same Isabelle commands.

The remainder of this section is organised in the following manner: Section 6.5.1 in-

troduces formal definitions and predicates regarding information access, together with a

rationale behind using it. Then Section 6.5.2 provides a formal proof which demonstrates

that seL4 protection model is capable of enforcing isolation. Finally, Section 6.5.3 dis-

cusses the implications of isolation on the previous bootstrapping mechanism.

6.5.1 Isolated Components
As indicated above, isolation is the bidirectional absence of access. That is to say that,

information can neither get in or get out from a set of isolated entities. Since it is bidirec-

tional, by definition, the isolation property should be commutative.

90

Now let me examine the conditions under which an entity e1 can access information

from another entity e2 in some state s. There are two direct possibilities: in state s (a)

e1 has a capability with Read authority that points to e2, or (b) e1 has a capability with

Write authority that points to e2. The former case facilitates a read operation and the latter

a write operation. These two conditions cover the de-jure information access; accesses that

are directly authorised by the access control system.

In state s, e1 might not have direct access to e2’s information, but might have a capa-

bility with Grant authority that points to e2 which would allow e1 to setup such a channel.

In summary, if e1 is in possession of a capability with at least one of { Read, Write,

Grant }, rights that points to e2, then it can, in the two former cases directly read or write

information from and to e2, or in the latter case setup an information access channel in a

subsequent state. To capture this requirement, I introduce the grwCap :

grwCap :: entity_id ⇒ cap

grwCap e ≡ (|entity = e, rights = {Read, Write, Grant} |)
Note that all access rights that allow or may lead to a state that would allow a direct

information access channel to some entity y is contained in grwCap y capability. In state

s, if entity x has a capability that points to y and contains at least one of these rights, then

x already has or can setup a direct channel with y. I denote this by writing canGRW s x y,

and its definitions is as follows:

canGRW :: state ⇒ entity_id ⇒ entity_id ⇒ bool

canGRW s x y ≡ grwCap y � caps_of s x

The infix operator � is used to indicate that a set of capabilities provides at least one of

the access rights contained in the given capability.

c � C ≡ ∃ c’∈C. entity c’ = entity c ∧ rights c’ ∩ rights c �= {}

When analysing the access to information, Read and Write access rights are symmetric

[Sha99]: x can write to y has the same effect as y can read from x. The only difference is

who initiates the access — which is irrelevant, since we are trying to prevent all possible

accesses. Further, as I have shown in the previous section, it is irrelevant who has the

capability with Grant authority, because grant arcs can be reversed.

So, to compute the entities that may directly access information we need the symmetric

closure of the canGRW. I call this canAccess and write (x, y) ∈ canAccess s to denote

x and y satisfies the canAccess relationship in state s.

canAccess :: state ⇒ (entity_id × entity_id) set

canAccess s ≡ {(x, y). canGRW s x y ∨ canGRW s y x}

Given a system state s, canAccess s returns a set of pairs of entities that can directly

communicate or can setup such direct communication channel with one another.

In addition to direct access to information covered by canAccess, entity x may access

information from y indirectly by collusion with a third party. For example, x may write

some information to z which in turn writes that to y, yielding an indirect write from x to

y. Such accesses, known as de-facto access, can take place via a chain of entities. I cover

de-facto accesses by taking the transitive closure and reflexive closure of canAccess. I call

this canAccessTrans :

canAccessTrans :: state ⇒ (entity_id × entity_id) set

canAccess∗ s ≡ (canAccess s)∗

The canAccessTrans function, given a protection state, returns a set of pairs of entities

that can directly or indirectly access information from one another. The syntax s
 x �∗

91

y means x and y are in the canAccessTrans relationship in s.

Given a state s, using canAccessTrans function I can compute the set of entities a given

entity x may directly or indirectly access information from. I call this set an accessDomain :

accessDomain :: state ⇒ entity_id ⇒ entity_id set

accessDomain s x ≡ {e. s
 e �∗ x}

The accessDomain function returns the set of all entities e such that e and x satisfies

the canAccessTrans relationship in state s.

Isolation Predicate

If entities x and y are isolated from one another in state s, then the two accessDomains

computed for x and y in that state are disjoint. Formally:

isolated :: state ⇒ entity_id ⇒ entity_id ⇒ bool

isolated s x y ≡ accessDomain s x ∩ accessDomain s y = {}

In other words, in state s, if there is no common entity that both x and y may directly

or indirectly access information from, then they are isolated in state s.

6.5.2 Proof of Isolation
Similar to subsystems, isolating two entities in the initial state (s0) is trivial — this state is

created by the initial resource manager, hence all the capabilities an entity possesses and

therefore its accessDomain is under the strict control of the initial resource manager. What

is required is to reason about what happens to two initially isolated domains as the system

evolves.

To show that the seL4 protection model is capable of enforcing isolation, I need to

prove that two initially isolated domains will always remain isolated after executing any

sequence of commands. The isolation theorem I need to prove is:

isolated s x y =⇒ isolated (execute cmds s) x y

Similar to the previous proofs, I make use of the fact that sanity is a system invariant—

all states considered in this proof are sane. Moreover, the scope of our reasoning is limited

only to existing entities. That is, the two entities x and y must exist in the current state.

Once again, note that I am not excluding the creation of entities: after executing a sequence

of commands the access domain of x, depending on the commands it executes may contains

entities which were not present in the previous state. These subsequently created entities

are also covered by the proof.

This proof is very similar to the subsystem proof. The main difference is the use of

a different closure: here we consider the transitive, symmetric and reflexive closure of

grwCap, where as the subsystem proof considered the transitive, symmetric and reflexive

closure of grantCap. In theory, one should be able to derive this proof from the lemmas in

the previous section.

However, it was much more convenient to take the proof techniques from the previ-

ous section and prove the required lemmas about the new closure separately rather than

deriving from existing ones.

The isolation proof itself is about 500 lines of Isabelle scripts. Where ever possible

I used existing proofs from the previous section. In particular, previous lemmas relating

to sanity and existence of entities are directly used here. However, lemmas relating to

92

canAccess relationship are proved separately, but using the same proof techniques. In

fact, in most cases, the Isabelle commands for proving the lemmas were almost identical

to its counterpart — the difference between the two closures was automatically handled by

Isabelle. As such, I will only provide a brief overview of the proof, and show the essential

lemmas together with a very brief description of the techniques used for proving.

Before introducing the proof, I introduce some properties of canAccess and the rela-

tionship between canAccess∗ and connected∗.

In a sane state, two entities in canAccess relationship have the following property:

Lemma 23. In a sane state only existing entities can be in the canAccess relationship:
[[sane s; s
 x � y]] =⇒ isEntityOf s x ∧ isEntityOf s y

Proof. By unfolding the definition of canAccess and sane

By definition, the canAccess∗ and connected∗ relates to one another in the following

manner:

Lemma 24. If two entities are in the s
 x ↔∗ y relationship, then they are in the s

x �∗ y relationship:
s
 x ↔∗ y =⇒ s
 x �∗ y

Proof. By inducting over the transitive and reflexive closure and by using the fact that by

definition (x,y) ∈ connected =⇒ (x,y) ∈ canAccess s

Furthermore, by definition of isolated :

Lemma 25. Isolated entities are not in canAccess∗ relationship:
isolated s x y =⇒ ¬ s
 x �∗ y

Proof. By unfolding the definitions.

Now I start the analysis by investigating the effect executing a single command has

on the canAccess∗ relationship. Then I lift this relationship to a command sequence by

induction. Here also, similar to the previous proof, I treat transporters — commands that

do not introduce new entities into the system — separately from SysCreate which does

introduces a new entity. For transporters I proved:

Lemma 26. In a sane state, transport commands preserve canAccess∗:
[[sane s; ∀ e c1 c2. cmd �= SysCreate e c1 c2; step cmd s
 x �∗ y]]
=⇒ s
 x �∗ y

Proof. Firstly, note that derived state is sane, which follows from the Lemma 2. Next, we

induct over the transitive and reflexive closure. If two entities x and y are in canAccess re-

lationship in the derived state, then from Lemma 23 both of them must exists in the derived

state and since transporters do not introduce new entities they must exist in s. Except for

SysGrant, none of the transport commands add capabilities, and therefore cannot lift two

entities into the canAccess relationship unless they are already in the relationship in state

s. In the case of SysGrant, suppose some entity z grants x a capability, with appropriate

rights to y. Then by definition s
 x ↔ z and s
 z � y. Since s
 x ↔ z, from

Lemma 24 and the definition of transitive closure s
 x � z. Then since s
 z � y

we can conclude s
 x �∗ y.

For the SysCreate operation I proved:

93

Lemma 27. Let x and y be two entities in a sane state s. Suppose x already exists in state
s and x and y are in the canAccess∗ relationship in the derived state after executing a
SysCreate. Then, if y is the newly created entity, then x and the entity that initiated the
create operation (entity e) are in the canAccess∗ relationship in s, and if not x and y are
in canAccess∗ relationship is s:
[[sane s; isEntityOf s x; step (SysCreate e c1 c2) s
 x �∗ z]]
=⇒ if z = next_id s then s
 x �∗ e else s
 x �∗ z

Proof. Using the same proof techniques as Lemma 15.

Given these two lemmas, I can now prove that execution of a single command does not

violate isolation:

Lemma 28. If two existing entities x and y are isolated in a sane state s, then they will
remain isolated after executing a single command:
[[sane s; isEntityOf s x; isEntityOf s y; isolated s x y]]
=⇒ isolated (step cmd s) x y

Proof. The proof obligation here is to show that it is not possible that some entity z is

in the canAccess∗ relationship in the derived state with both x and y. Firstly, we note

that the derived state is sane and that ¬ s
 x �∗ y. These follow from Lemma 2 and

Lemma 25 respectively.

Now, we do a case distinction on the command. We treat transporters separately from

SysCreate. For transporters, from Lemma 26 we see that s
 z �∗ x and s
 z �∗

y. Moreover, from the definition, canAccess∗ commutes and therefore we see that s
 x

�∗ y. This is a contradiction.

For SysCreate, it follows from Lemma 27 that if z is the newly created entity, then both

x and y must be in the canAccess∗ relationship with some entity e — the entity initiating

the create operation in state s — or if it is not then x and y are in canAccess∗ relationship

with z in state s. In either case, we see that x and y are in transitive relationship — either

via e or z. Thus, we can conclude the proof by contradiction.

Then I lift Lemma 28 to a sequence of commands by induction to prove the final isola-

tion theorem:

Theorem 3. Suppose we have two entities x and y already existing in isolation in a sane

state s. Then, they will remain isolated in any subsequent derived state:
[[sane s; isEntityOf s x; isEntityOf s y; isolated s x y]]
=⇒ isolated (execute cmds s) x y

Proof. By induction over the command sequence, and using Lemma 28, Lemma 21, and

Lemma 3 to prove the induction step and the pre-conditions required for the induction

step.

The above theorem proves the ability to enforce isolation between entities: if two enti-

ties are bootstrapped in a manner such that they are isolated, then the seL4 protection model

guarantees that they will remain isolated in any derived state, reachable via the execution

of any sequence of commands.

94

6.5.3 Enforcing Isolation
In this section I discuss how to bootstrap isolated components and provide an example

sequence of commands that an abstract initial resource manager can use in doing so. The

bootstrapping mechanism is derived from that used for subsystems (see Section 6.4.1). As

such, its main application area is bootstrapping para-virtualised operating systems in each

isolation domain.

Similar to bootstrapping subsystems, for each isolation domain, the initial resource

manager creates a single entity (or thread) — the domain resource manager. The function-

ality of a domain resource manager is similar to that of a subsystem resource manager.

As I have discussed in Section 6.4.1 when granting authority to each concrete, sub-

system resource manager (thread) the initial resource manager adheres to the following

rules:

• There are no GrantIPC channel between any two threads,

• CNodes and page-tables to which one thread has Grant authority cannot be shared,

and

• A capability with Grant authority to the TCB of a thread cannot be placed in another

threads possession.

The authority distribution rules required for enforcing isolation, is more stringent than

those for enforcing subsystems; because subsystems do not preclude the ability to access

information across its boundary. We only disallow the propagation of authority across

a subsystem boundary. For isolation, on the other hand we need to prevents both the

propagation of authority and the access to information across an isolation boundary. As

such, the rules required for isolation are more restrictive. These rules are:

• There are no IPC channel of any sort between any two threads. This includes both

the synchronous and the asynchronous IPC primitives provided by the kernel and

channels that are setup using shared Frame objects.

• CNodes and page-tables to which one thread has Grant authority cannot be shared,

and

• A capability (with any authority) to the TCB of a thread cannot be placed in another

threads possession.

Now I demonstrate how an abstract initial resource manager can bootstrap a system

with two isolated entities. Using our normal notation, a formal description of a protection

state with two isolated components soon after initial resource manager has exited is given

below:

s iso =

(|heap = [1 �→ {grantCap 1, utCap 3}, 2 �→ {grantCap 2,

utCap 4}], next_id = 5 |)
The two entities; entity 1 and 2, corresponds to the two domain resource managers.

Each of the domain resource manager is authorised to grant capabilities to itself and create

other entities. As an example, for entity 1, the above authorities are conferred via grantCap

1 and utCap 3 respectively.

A possible sequence of commands the initial resource manager (entity 0) can execute,

starting from s i, to produce s iso is given below:
isoCMD ≡

95

[SysCreate 0 (allCap 0) (allCap 0), SysCreate 0 (allCap 0) (allCap 0),

SysCreate 0 (allCap 0) (allCap 0), SysCreate 0 (allCap 0) (allCap 0),

SysGrant 0 (allCap 1) (allCap 1) {Grant},

SysGrant 0 (allCap 1) (allCap 3) {Create},

SysGrant 0 (allCap 2) (allCap 2) {Grant},

SysGrant 0 (allCap 2) (allCap 4) {Create},

SysRemove 0 (allCap 0) (allCap 1), SysRemove 0 (allCap 0) (allCap 2),

SysRemove 0 (allCap 0) (allCap 3), SysRemove 0 (allCap 0) (allCap 4),

SysRemove 0 (allCap 0) (allCap 0)]

By using Theorem 3 I can show that the two entities — entity 1 and 2 — remain

isolated in any derived state:

Theorem 4. The two isolation domains in s iso remains isolated in any derived state:
isolated (execute cmds s iso) 1 2

Proof. By using Theorem 3, noting that preconditions required for isolation are satisfied

in s iso.

6.6 Summary
This chapter has analysed the formal characteristics of the seL4 protection model. The

formal, machine-checked proofs presented here shows that the protection model is capable

of enforcing at least two, commonly used policies — spatial partitioning and isolation.

The proofs identify a set of invariants an initial resource manager needs to enforce

while bootstrapping the system to guarantee the enforcement of either policy. Moreover,

the formal examples demonstrates that it is possible to bootstrap a system while adhering

to the invariants identified by the proof.

96

Chapter 7

seL4::Pistachio

In this chapter I report the results of experiments conducted to measure the overheads

introduced by the proposed model to the primitive kernel operations. These experiments

characterise the performance of frequently used kernel primitives of a microkernel-based

system, such as inter-process communication (IPC), thread operations, virtual memory

primitives and in particular the performance of the kernel memory management interface

and its impact on other primitives.

The motivation for analysing the micro-level performance is two fold. First, micro-level

analysis exposes effects the model has on each microkernel primitive, which are not that

obvious at a macro-level. Second, by knowing the performance characteristics of primitive

operations, one can better structure the higher-level software which uses the primitives.

All results reported here were obtained on a KZM-ARM11 evaluation board, which

comprises an ARM1136JF-based [ARM05], FreescaleTM i.MX31 processor running at

532MHz, a unified L2 cache of 128KB and 128MB DDR RAM. The proposed memory

allocation model is implemented by a prototype microkernel called seL4::Pistachio. Im-

plementation details presented in this chapter are based on the ARM11 implementation of

the prototype kernel. seL4::Pistachio is loosely based on the L4-embedded [NIC05] code

base.

For comparing the performance, I have selected OK Labs’ [Ope] L4 kernel (version

2.1-dev.35) or OKL4 — a successor version of L4-embedded. Hereafter I call this kernel

L4. Except for the proposed memory allocation model and the associated protection mech-

anism, L4 and seL4::Pistachio provide similar abstractions and functionality. They differ

mainly in the way they manage in-kernel memory — L4 uses a standard in-kernel allocator

in contrast to the proposed memory allocation scheme used by seL4::Pistachio. Besides

that, the only other conceptual difference between the two kernels is the use of capabilities

in seL4::Pistachio — which stems from the proposed protection model. Since the two ker-

nels are similar in all other aspects, comparing their numbers will avoid any discrepancies

not imposed by the proposed scheme.

Section 7.1 examines the raw cost of managing kernel memory from user-level and

then examines different allocation techniques that can be used to reduce the overheads. The

seL4 kernel is based on capabilities — all seL4 system calls require at least one capability

to authorise the operation. Consequently, the cost of capabilities in the system call path is

critical to the performance of seL4::Pistachio. Section 7.2 examines these costs, techniques

a user-level application can use to reduce them, and the cost of managing a capability

address space. Then, Section 7.3 analyses the effect capabilities have on primitive kernel

operations by comparing the performance of seL4::Pistachio with the numbers for similar

97

operations on L4. Finally, Section 7.4 summarises the main findings of the chapter.

7.1 Cost of Managing Kernel Objects
Since all dynamically allocated memory within the kernel is represented as an object at the

API level, seL4 objects can be categorised into two parts — architecture-independent and

dependent objects. There are five architecture-independent objects in seL4 — Untyped,

TCB, Endpoint, AsyncEndpoint and CNode . On the ARM architecture, there are three

architecture-dependent object types that need kernel-memory allocation — PageDirectory,

PageTable and Frame. Detailed discussion on the functionality of these objects can be

found in Chapter 4.

To create any seL4 abstraction, a server needs to either allocate the corresponding ker-

nel object or reuse an already allocated object from a different context. As an illustrative

example, to create a thread a server (resource manager) either needs to allocate a TCB

object or reuse an existing TCB from a different context. When the abstraction provided

by an object is no longer required, a server can reclaim the underlying memory from the

object and reuse it to implement other objects. In this section, I investigate the performance

of the primitives provided by seL4 to manage kernel objects.

As I described in Chapter 4, there are three primitive operations to manage seL4 kernel

objects — the retype method to allocate new kernel objects, the revoke method to reclaim

memory from an object no longer required for the system and the recycle method to reuse

an existing object in a different context. Following three subsections investigate the per-

formance of each of the above primitives and the final subsection (Section 7.1.6) discusses

a general scheme for managing kernel objects from user space.

Unfortunately, the performance of seL4 kernel memory management primitives are

not directly comparable to L4 or other similar systems. This is because of the implicit

nature of kernel-memory allocations in those systems — as and when the need arises, the

kernel allocates memory implicitly without the knowledge of the user-level application.

Comparing the cost of an implicit allocation with the cost of seL4 object allocation directly

is unfair because the former includes the cost of policy decision made by the in-kernel

allocator, which is not included in the latter. If we factor out the policy decision, then

we are mainly left with the cost of object initialisation which is irrelevant to the topic. A

fair comparison can be made by implementing a similar allocation policy to that used by

the in-kernel allocator using the seL4 primitives and comparing the cost for standard OS

operations such as thread creation, process creation, virtual memory objects etc. Such a

comparison at a micro-level and at a macro-level is presented in Section 7.3 and Chapter 8

respectively.

The main focus of this section is to identify the raw costs of managing kernel objects,

associated trade-offs and the effects different policies have on the overall management cost.

7.1.1 Cost of Allocating Kernel Objects
Allocation of kernel objects is performed by the retype method, implemented by the un-

typed memory (UM) objects. Before examining the performance measurements, I sum-

marise the relevant parts of the retype method presented in Chapter 4.

Possession of an UM capability (parent UM) provides sufficient authority to allocate

kernel objects in the corresponding region — by invoking a UM capability with the correct

98

Object type Number of cycles

AsyncEndpoint 582

CNode (16 slots) 841

Endpoint 578

Frame (4KB) 2246

PageTable 2249

PageDirectory 15545

TCB 758

UM (4KB) 575

UM (16KB) 575

Table 7.1: The cost of allocating various kernel objects.

set of arguments, a user-level application can request that the kernel refines that region into

other kernel objects (including smaller UM objects).

When the retype method creates new kernel object(s), it returns capabilities to the

newly-created objects — one capability for each new object. The user-level application

that created these new objects can then delegate all or part of its authority to others by

using the appropriate capability copy operation — mint to create a CDT child with partial

or equal authority or imitate to make a CDT sibling with equal rights. To facilitate the

discussion in this section, I call the capabilities directly created via the retype operation,

master capabilities and a copy made from master a slave.

Recall from our discussion in Chapter 4, the retype operation also consumes memory

in terms of CNode slots for placing the master capabilities. These CNode slots are explic-

itly identified in the retype operation —- the arguments passed to the retype call includes

specifying empty CNode slots for placing the master capabilities.

Table 7.1 shows the cost of allocating different kernel object types. The numbers shown

in the table are the average of 500 measurements and the maximum coefficient of variation

for any measurement is less than 2%. These measurements include the cost of marshaling

system call arguments and trapping in and out of the kernel. Moreover, these were taken

for a two-level capability tree; a representative CSpace layout of a large-scale server. This

means that, every capability required to complete the operation is located within a two-level

capability tree.

The retype operation, requires three lookups for; (a) locating the invoked UM capabil-

ity, (b) locating the root CNode of the destination CSpace for the newly created capabili-

ties, and (c) locating the CNode within the above CSpace for placing the capabilities. Once

these capabilities are located, the kernel affirms that it is safe to allocate new objects us-

ing the located UM capability; i.e. the UM capability has no existing children and that the

destination slots for placing capabilities are empty. As I explained in Chapter 4, this safety

test takes constant time, and in the implementation requires only three memory references;

one to locate the next CDT entry via the linked list and another two memory accesses to

retrieve the required information. The collective cost of these operations, I call the start-up
cost.

Besides the start-up cost, the other main contributing factor for the above measurements

is the cost of initialising the allocated object. For instance, the high cost of allocating a

Page-directory stems from the kernel initialising the 16KB of memory required for the

object and the cost of allocating a frame or a page table is dominated by the work required

99

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35

N
o

rm
al

is
ed

 C
o

st

Number of Objects Per-Retype Operation

16B Obj.
32B Obj.
64B Obj.

128B Obj.
256B Obj.
512B Obj.
1KB Obj.
2KB Obj.
4KB Obj.
8KB Obj.

Figure 7.1: Variation of the object allocation cost against the object size and the number

of objects created per retype operation. The X axis shows the number of objects created

per retype and Y axis is the normalised cost.

to initialise the 4KB of memory implementing the object. Moreover, note that the cost

of allocating a Page-directory is significantly higher than that of allocating a page table.

By comparing the memory sizes, one may expect the cost of allocating a Page-directory

to be about 4 times that of allocating a page table. The measurements however, show a

significantly higher number. This increase in the cost is due to the trashing of the 16KB L1

cache of i.MX31 processor.

When creating UM objects, the kernel does not initialise the memory — the memory is

initialised at the time of allocating typed objects. This is why there is no difference in the

cost of creating 4KB and 16KB UM objects. Moreover, this is the base-line cost of creating

a kernel object; for all other object types, the cost is this plus the initialisation cost.

Slab Allocation

One possibility of reducing the allocation cost is by using the slab allocation technique

initially proposed to SunOS 5.4 [Bon94] and later adopted (with various changes) by many

main stream systems including Linux (Slab cache [vR01]) and FreeBSD (Zone allocator

[MBKQ96]). The basic idea of slab allocation is to allocate a batch of objects at one time,

store them in a cache and serve subsequent requests from this cache. Once an object is

released, it is put back to the cache rather than destroyed.

One important requirement for implementing a slab allocation strategy is the ability

to reuse objects from one context in another. In seL4 this operation is supported by the

recycle method, which I discuss in Section 7.1.5.

The motivation here is that by allocating several objects per retype operation, the start-

up cost can be amortised over the several objects created. Moreover, the scheme has natural

synergy with client-server systems; where the server keeps a pool of objects out of which

it serves its clients.

100

As one would imagine, slab allocation is not ideal for all situations. It improves the

temporal performance, but depending on the application domain, may lead to underutili-

sation of memory. For instance, a memory constrained embedded device might trade the

temporal gain from slab allocation to a scheme with better memory utilisation. Or in an-

other context, the developer might prefer the speedup of slab-based allocation [MYHH08]

because it reduces energy consumption by cutting down the execution time and hence im-

proving the battery life. I envisage that seL4 mechanisms are flexible enough to support

these diverse, domain specific, memory allocation schemes.

Figure 7.1 shows the normalised cost of allocating kernel objects of different sizes,

when objects are created in batches of size 1 to 32. The X axis of the figure shows the

number of objects allocated per retype operation and the Y axis shows the cost, normalised

to that of creating a single object. The object size was changed by allocating a CNode

with different number of slots. The memory required for the object is initialised at the time

of its creation, and since every CNode slot is made-up of four machine words (16-bytes),

when allocating a CNode with X slots the kernel needs to initialise 16X bytes of memory.

Moreover, the measurements are taken with a hot data and instruction cache.

The results in Figure 7.1 shows that batch allocation reduces the cost per object, when

the object is small in size; i.e. the amount of memory that needs to be initialised is small.

For the smallest object considered in the above experiment, the cost reduces by over 65%

(from 616 cycles to 207), when allocation is done in batches of 10 or more objects. When

allocating small kernel objects the dominant cost is the start-up cost, and by allocating in

batches this cost gets amortised over the number of objects.

When the size of the object grows, batch allocation becomes less effective. This is be-

cause the predominant cost of creating a larger object is that of object initialisation, which

does not change with the number of object allocated, making batch allocation ineffective.

Additionally, note that the normalised cost increases with the number of objects allo-

cated when the size of the object itself is large. For example, if the object is 8KB, then the

normalised cost grows beyond 1 around the point when 8 objects are allocated per retype

operation. For a 4KB object this point is around 16 objects per retype. This effect is caused

by trashing the L1 data cache of the KZM-ARM11 processor.

Hybrid Allocators

Most systems adopt hybrid allocation techniques; usually a slab allocator running on top of

a buddy system or similar allocation layer. The basic idea is to use different allocators for

objects of different size — a buddy system for large objects and a slab allocator running

on top of this layer managing memory for smaller objects. For example the FreeBSD zone

allocator runs on top of a page allocator. When needed, it requests memory from the page

allocation layer and uses that memory to slab allocate smaller objects.

Such a hybrid allocator can be implemented using the seL4 kernel memory manage-

ment interface. The first layer will deal with Untyped memory objects. Starting with a

large parent Untyped object this layer will keep on splitting the Untyped objects until a

suitable size is reached. The slab allocator, depending on the objects it wants to allocate

may required for different sized Untyped objects which is then used to allocate pools of

other kernel objects.

101

7.1.2 Prototype Allocator
A slab allocator, with a few simplifications, is implemented for seL4. This allocator is used

as the underlying kernel memory manager for all the experiments I report in this chapter.

An in-depth analysis of this allocator is presented in Chapter 8. Here I brief on the

relevant parts of its implementation to aid the analysis of the performance measurements

reported in this chapter which were obtained using this allocator in the back-end to manage

kernel objects.

The allocator starts with access to some number of large Untyped memory objects and

few small Untyped memory objects. Small Untyped objects are 4KB in size and cover

regions of memory that cannot be used to implement large objects (which are 1MB) due

to alignment requirements — the region covered by an Untyped object needs to be size

aligned.

The allocator has two layers. The first layer is responsible for managing Untyped ob-

jects and the second layer manages all other (typed) kernel objects.

The first layer, when the need arises, retypes a large Untyped memory objects into 256

small Untyped objects and populates the object pool. Similarly, when a particular typed

object pool is empty, the allocator requests for a suitably sized Untyped object (either

a large or a small) from the first layer and repopulate the pool using that memory. All

subsequent requests are satisfied from the objects in a particular pool and objects are only

allocated when the pool is empty and when there is a pending request.

7.1.3 Memory Overhead of Untyped Capabilities
The memory overhead depends on system structure and construction. Though the focus of

seL4 is on reasoning about and control of memory allocations and not minimising mem-

ory consumption, here I present a basic theoretical analysis of some selected scenarios to

illustrate overheads.

The seL4 model incurs two types of memory overheads. First, to confer the authority

over any kernel object, one requires a capability. I call such a capability an object capabil-

ity. The use of object capabilities is common to all capability based systems (for example,

EROS [Sha98] and L4.sec [Kau05b]). Thus, I exclude them from the discussion here.

However, note that each seL4 capability consumes 2 extra machine words to store the

CDT information. The information in the CDT is central for the proposed memory man-

agement scheme.

Second, object capabilities in seL4 are created using Untyped capabilities (see Sec-

tion 4.3 for more details). This process introduces an additional overhead to seL4 based

systems when compared with other capability based systems. In this section, I present a

basic theoretical analysis of the memory overhead due to Untyped capabilities.

The analysis presented here is based on the prototype allocator introduced in Sec-

tion 7.1.2. In addition, I briefly comment on the suitability of other allocation schemes

for a seL4 based system.

In summary, the prototype allocator uses a slab (like) allocation scheme to manage ker-

nel objects. For each object type the allocator maintains a pool, out of which the requests

are served. If the pool is empty, the allocator selects, depending on the size of the object to

be allocated, a suitable Untyped object—either a 4KB or 1MB—creates kernel objects and

populates the pool. For example, if Endpoint object pool is empty, the allocator creates 256

Endpoint object capabilities using a 4KB Untyped object and populates the pool. Thus, the

102

additional overhead (ignoring the object capabilities) is the memory consumed to confer

the authority over the Untyped object.

Authority over an Untyped object is conferred using a capability. A capability con-

sumes 4 machine words within the kernel — that is, 16bytes on a 32bit architecture. Fur-

thermore, seL4 does not enforce any constraints on the placement of an Untyped object

within an address space and its size. Thus, when it is required to minimise the memory

overhead of an address space, one can avoid having intermediate page-table levels that are

typically required to match the object size with its placement within an address space. As

a result, to confer authority over a 4KB region, seL4 requires, at best (i.e. if one selects to

avoid intermediate page-table levels) additional 16bytes; an overhead of 0.4% compared to

the memory region. For a larger Untyped object the overhead reduces to 0.001%.

The prototype allocator refrains from creating Untyped objects smaller than 4KB — the

amount of memory required to allocate a Frame object (on ARM). This restriction guaran-

tees that any Untyped object can be used to allocate at least one Frame. Consequently, the

maximum memory overhead due to Untyped capabilities is 0.4%.

Further, the prototype allocator keeps the Untyped capabilities contiguous in CSpace.

Thus, the resource manager only needs two machine words to track the available memory

regions (e.g. start address and a count). For a slab allocator that does not reuse the memory

(to implement a different object type) the above information alone is sufficient to bookkeep

Untyped objects; upon receiving a request for a particular object type, the resource man-

ager picks the next Untyped object, allocate and populate the corresponding object pool

and update its internal bookkeeping. When all the small Untyped objects are consumed,

the resource manager creates another set of small Untyped objects such that these new

capabilities are contiguous.

In comparison to a slab allocator, a buddy allocator would consume a lot more memory.

This increase is due to the intermediate Untyped objects created by dividing the region

into halves and the user-level bookkeeping required to track these intermediate objects.

Ignoring the user-level bookkeeping, to allocate 256, 16byte objects — the smallest object

size of seL4 — using a 4KB Untyped object a buddy allocator requires 8 splits and a

total of 510 Untyped capabilities in those 8 levels. To explain the above computation, in

each ith level one requires 2i number of Untyped capabilities. By adding all the Untyped

capabilities in each intermediate level (i.e. 28 + 27 + 26.... + 21) we get 510. With each

capability costing 16bytes, this is an unacceptable overhead of almost 200% (compared to

the total region of memory). Even though the overhead can be reduced by reducing the

size of Untyped objects, seL4 mechanisms are not totally conducive for buddy allocation.

I envisage seL4 user-level managers to use slab or a hybrid allocation scheme to reduce the

memory overhead of splitting large Untyped objects into small regions.

As such, depending on the allocation scheme, the seL4 memory model may introduce

moderate to high memory overheads. But in return the model provides a mechanism to

reason about and enforce memory management policies.

7.1.4 Cost of Revoking Memory
Possession of the parent UM capability that was used to allocate kernel objects provides

sufficient authority to delete those objects. By calling the revoke operation on the parent

capability, user-level resource manager can remove all the CDT descendants. Recall from

our discussion in Chapter 4 that any capability that points to an object that resides within

the memory region covered by the parent UM capability is a CDT descendant of the UM

103

Object type Single master Additional cost Additional cost

object per-master objects per-slave copy

AsyncEndpoint 458 204 180

CNode (16 slots) 867 609 180

Endpoint 454 204 180

TCB 589 341 180

UM (4KB) 346 96 180

Frames (4K) 452 200 180

PageTable 454 202 180

PageDirectory 459 211 180

Table 7.2: Cost of reusing memory by calling revoke on the parent UM capability

capability. Once the revoke operation is completed, the memory region covered by the

parent UM object can be used to allocate other kernel objects. Moreover, when this revoke

operation removes the last capability to an object, the kernel deactivates the object and

breaks all internal dependencies between the deactivated object and others.

The cost of reusing memory from a parent UM object depends on several factors; (a)

the number of objects which is equal to the number of master capabilities created by the

previous retype, (b) the type and the status of the allocated objects and (c) the number of

copies made from master capabilities.

The number of master copies determines the number of objects that need to be de-

stroyed in the revocation path and the destruction itself depends on the type and the status

of the object. The number of copies made from the master ones increases the number of

capabilities that needs to be removed.

Under normal operation, a resource server will attempt to reuse a region of memory

only when the current object(s) in the region are inactive and no longer required — a

resource server will reclaim memory from a TCB object once the corresponding thread has

exited, memory from an Endpoint object will be reclaimed when all messages destined to

it are served, and so on.

Table 7.2 summarises the number of machine cycles required to reuse the memory

from the parent UM when the previously allocated objects are in an inactive state. All

numbers presented in this table are averaged over 500 iterations and the distributions had a

maximum coefficient of variation of 3%. The first column of the table shows the number of

machine cycles required to complete the revocation when there is only one inactive object

of the given type and a single (master) capability pointing to it; which includes the cost of

starting the revoke operation, destroying the object and removing the last capability that

was pointing to the destroyed object. The second column shows the number of additional

cycles required for destroying and removing the last capability reference to an inactive

object. The difference between these two columns (roughly 250 cycles) is the fixed cost

of invoking a revoke operation. The final column of the table shows the cost of revoking a

copy of a master capability.

Out of these numbers, the only stand out is the relatively high cost of destroying a

CNode. Even though the CNode being destroyed is inactive (i.e. contains no capabilities),

unlike other objects, CNodes do not provide a simple test to affirm this. As such, the

kernel needs to check each CNode slot, and affirm that there are no valid capabilities and

therefore no CDT references from other CNodes to slots in the one being destroyed. The

104

Object type Number of cycles

AsyncEndpoint 339

CNode (16 slots) 752

Endpoint 332

Frame (4KB) 2111

PageTable 2138

PageDirectory 15550

TCB 543

UM (4KB) 318

UM (16KB) 318

Table 7.3: The cost of recycling kernel objects.

limited bookkeeping provision within the CNode capability is used to store the information

required for the guarded lookup — which is in the performance critical path, rather than

storing metadata required for the relatively infrequent destroy operation.

In contrast, the status of other kernel objects can be established either by examining

the object — in the case of two Endpoints objects, and TCBs, or by examining their ca-

pability — in the case of UM, Frame, PageTable and PageDirectory objects. This is an

implementation choice rather than a consequence of the model.

7.1.5 Cost of Recycling Kernel Objects
To support slab style allocators, the kernel facilitates reuse of the same object in a different

context via the recycle operation.

The possession of the master capability to an object is sufficient authority to recycle

the object. Recall the definition of a master capability — a capability returned by the re-

type method is called a master capability. By calling the recycle operation on the master

capability a resource manager can remove all the CDT children of the master, break de-

pendencies between the recycled object and the other objects in the system and reinitialise

the object.

Before looking at the performance measurements, the difference between revoke and

recycle is worth mentioning. The revoke operation, when performed on a capability re-

moves all its CDT children. If these removed capabilities are the only remaining reference

to an object, then revoke will delete the object, breaking any dependencies other objects

may have with the deleted object. This situation only occurs when revoke is performed on a

parent UM object. For all other typed objects revoke will only remove a set of capabilities

and leave the object as it is. Recycle on the other hand, removes all the CDT children of the

capability, breaks all the dependencies the object may have with others and re-initialises

the object.

Table 7.3 shows the number of machine cycles required to recycle an object of the

given type. Similar to our previous measurements, the numbers shown in this table are

averaged over 500 iterations and all the distributions had a coefficient of variation less than

2%. For the same reason mentioned in the previous section, the object being recycled is

in an inactive state. Moreover, only the master capability points to the recycled object —

there are no (slave) copies made from the master capability that needs removing. If there

are slaves, similar to previous case, the cost increases on an average by 180 cycles per child

105

capability.

Recycling a smaller object—for example an Endpoint or a TCB—is cost effective than

newly creating a single object from a parent UM. As I mentioned earlier, the cost of cre-

ating a smaller object is predominately the start-up cost of retype, as oppose to object

initialisation cost. In comparison to retype, recycle is light weight, resulting in better per-

formance.

On the other hand, for large objects such as Frames and Pagetables, there is no sig-

nificant difference between the cost of recycling and allocating from a parent UM. The

predominant cost in this case is the initialisation cost, which is constant in both cases.

7.1.6 Different Management Policies
There are number of policies and techniques a resource manager could apply when man-

aging physical memory. seL4 mechanisms are powerful enough to enforce a variety of

policies and common memory allocation techniques can be implemented reasonably easily

and with varying degrees of efficiency.

An example system configuration is shown in Figure 7.2. In this figure running directly

on top of seL4 is the initial resource manager. As I explained earlier, it is the responsibility

of the initial resource manager to enforce a suitable, domain-specific policy among the

different subsystems that constitute the system; the initial resource manager for instance,

may chose to enforce a static partitioning policy over physical memory by enforcing the

invariants we identified in Chapter 5 on the distribution of typed and UM capabilities. Or

it may chose a dynamic ballooning [Wal02] algorithm to provide physical memory for the

subsystem.

Each subsystem resource manager is free to implement a suitable policy over the re-

sources it receives from the initial resource manager. However, the freedom a subsystem

resource manager has in selecting a policy depends on the policy of the initial resource

manager; for instance, if the policy enforced by the initial resource manager is dynamic

then subsystem resource managers working above it cannot make strong availability guar-

antees. Therefore, a subsystem resource managers can only refine the policy to suit the

needs to that particular subsystem.

In this manner, a seL4 system supports a hierarchy of resource managers, with each

resource manager in the hierarchy refining the policy enforced by the top-level managers

to suite the needs of the applications it manages.

Moreover, seL4 supports diverse concurrent policies via different resource managers

implementing diverse policies on the UM memory objects under their control.

Conceptually, this hierarchy can be arbitrarily large — bounded by the maximum depth

of the CDT tree which is conceptually, arbitrarily large. However, due to the limited storage

space in CNode slots, the maximum depth in seL4::Pistachio is 128. This is obviously not

a conceptual limitation, but an implementation decision to reduce to size of capability

storage. Chapter 8 analyses the implementation and the performance of a system with

hierarchical resource managers. In this prototype system the maximum depth reached was

four. Thus, I believe 128 is not a serious limitation for any real system.

7.1.7 Limitations
All seL4 objects are fairly coarse grained and reasonably long-lived. As such, the perfor-

mance overhead due to the allocation model is negligible. But, in particular, for systems

106

Figure 7.2: Example system with diverse resource management policies implemented by

user-level resource managers.

that require allocation and de-allocation of memory at a rapid rate — for example, man-

aging buffers on run-time for a giga-bit ethernet driver — the model will be inefficient.

However, techniques such as ring-buffers [dBB08a, dBB08b] can be used make objects

long-lived and thereby reduce the run-time allocations.

Moreover, the allocation scheme requires that all objects are statically sized — the

memory requirement must be known at the time of creating the object. Implications of this

requirement on kernel services is discussed in Section 4.6.

7.2 Cost of Capabilities
The seL4 memory management scheme and the protection model is based on kernel ob-

jects and capabilities that confer authority to obtain services from them. As such, every

kernel operation, without exception, requires at least one capability for authority to ob-

tain the service. Consequently, the capability lookup operation — locating the capability

corresponding to user-provided CapIndex— has a significant impact on the performance.

In this section, I investigate the temporal overhead associated with locating a capability

and the cost of maintaining a capability address space. The impact of these overheads on

primitive kernel operations is analysed in the next section (see Section 7.3).

7.2.1 Layout of a CSpace
Before we turn our attention to performance numbers, an overview of the structure of

CSpace is warranted. For a comprehensive discussion of the CSpace refer to Chapter 4.

A CSpace is a local, 32bit, logical address space of capabilities. The kernel itself does

not provide an abstraction of a CSpace instead it provides the CNode object type. CSpaces

are formed by connecting CNodes to one another forming a directed graph.

Each CNode decodes a part of the most significant bits of an address. In addition to

translating bits via indexing, the decoding method also uses a guarded-page-table [LE96]

like short-cut mechanism to reduce the resources (both temporal and spatial) required to

decode all bits via many levels of CNodes. Each CNode capability, among other informa-

tion, contains data required for the guarded shortcut — 16 bits of provision for a guard and

5 bits for guard size. A single CNode, therefore, can strip 16 bits of non-zero most signifi-

cant bits from an address via the guard in addition to bits decoded via indexing. However,

107

in the case where the guard is zero, the kernel allow its size to be 31 bits (maximum number

with 5 bits).

Recall that every CNode must at least translate one bit via indexing — this restriction

guarantees the termination of translations even in the presence of loops in the CNode graph.

Consequently, if need be, even the smallest CNode is sufficient to decode the whole 32-bit

address — 31 bits from the guard and 1 bit by indexing. This layout allows for an efficient

representation of small address spaces.

The address translation terminates after decoding at most 32 bits. The process can

also terminate early successfully if a slot identified by indexing contains a non-CNode

capability (or cause an exception if the slot is empty). The translations that terminate after

decoding 32 bits, I term bit terminated and the ones that terminate early object terminated.

The selection of a guarded page-table structure to implement the CSpace is an imple-

mentation choice rather than a requirement of the model. The selection is motivated by

the attractive properties of guarded page-tables over multilevel page-tables — they can

efficiently map even a sparsely populated address space [Elp99], and provides flexibility

in selecting a suitable CSpace layout which can be adjusted dynamically when the load

changes. For example, a client application in a client server setup that has only a few capa-

bilities in its address space (about 2 to 16 in practise), can use a single CNode as its CSpace

stripping off the unused address bits using the guard. A server on the other hand, given the

large number of capabilities it manages, would prefer a two-level tree. If the need arises,

the server can add more levels to the tree, reduce the guard in top-level CNode and thereby

expand the address space on demand. Still, if there is an object the server needs fast access

to, then it can leverage the characteristics of the translation mechanism — it can copy that

capability to the top-most CNode and setup a single-level, object-terminated lookup.

7.2.2 Capability Lookup Cost
Given its importance for the overall performance of the system, the capability lookup is

implemented in hand-optimised assembly code. Moreover, the data structure implementing

a capability; in particular the layout and the contents of the CNode-capability were hand-

crafted to minimise the work that must be done during the lookup. These data structure

optimisations and the lookup algorithm, which is based on the algorithm in [LE96], is

ARM-specific — they are based on the instructions provided by ARM, but opaque external

to the kernel.

The measurements are obtained by instrumenting the capability lookup code within the

kernel. The cycle counter is reset at the start of the lookup and the value is read once the

lookup terminates. An additional measurement is taken by resetting the cycle counter and

reading its value immediately afterwards to factor out the cost of resetting and reading the

counter itself. The difference of the two measurements is taken as the cost of a lookup and

the reported numbers are the average over 1000 runs. For cold-cache measurements, the

corresponding cache was flushed just before starting the measurement.

The number of machine cycles required to locate a capability for different CSpace

configurations and different termination modes is shown in Table 7.4. The first column of

the table shows the number of CNodes (levels) visited before the lookup terminates and

the mode of termination. The second column is the number of cycles required in the best

case — when both the data and instruction caches are hot. The last two columns shows the

number of cycles required when the data cache is cold and when both data and instruction

caches are cold, respectively.

108

Levels Termination method Hot caches Cold D-cache Cold I & D caches

1 bit terminated 19 61 100

1 object terminated 25 64 119

2 bit terminated 48 100 141

2 object terminated 54 109 161

3 bit terminated 72 139 180

3 object terminated 79 148 200

Table 7.4: Performance of capability lookups

The difference in lookup cost for different termination methods stems from the imple-

mentation. The current algorithm is biased towards single-level, bit-terminated lookups.

In the best case — bit-terminated lookup in a single level tree — the overhead incurred

due to indirection through capabilities is negligible. From a system construction point of

view, a single level CSpace with 2 to 16 slots in the node is sufficient for most applica-

tions; in particular for clients in a classical client-server based architecture. Since every

CNode can be made to bit-terminate by adjusting the guard, a client application can gen-

erally expect to have best case performance from the above table — a 19-cycle overhead

in the system-call path. For severs, on the other hand, a single-level tree is insufficient

and in general would use a two-level tree. This is mainly because they manage a large,

sparsely populated address space that needs to grow and shrink on demand. The cost of

this flexibility is the modest overhead introduced by the two-level lookup — an overhead

of 48 cycles in the best case is added to the system call.

In a classical client-server architecture, servers (in particular the ones that would require

a two-level tree) generally perform heavy-weight operations. Clients usually send a light-

weight request (via IPC) and the actual operation is done in the server context. These heavy

weight operations amortise the modest overheads servers experience.

However, the best case numbers depend on the behaviour of the cache. Figure 7.3

shows the cost of a single-level, bit-terminated lookup under a realistic system load. These

measurements are taken from a system running a para-virtualised Linux kernel (and few

other system servers) on top of seL4::Pistachio. The Linux kernel is running the lm-
bench [MS96] benchmarking suite and the measurements are obtained by instrumenting

the lookup code in the seL4::Pistachio kernel. Lmbench exercises various OS services of

the Linux kernel. In providing these different services, the Linux kernel accesses different

regions of its capability address space and therefore stresses the data cache.

The X axis of the figure is the number of machine cycles and the Y axis shows the

cumulative percentage. The results of this experiment show that 52% of the time, the cost

was 19 cycles and 72% of the time the lookup terminated with 24 (26% deviation from the

best case) cycles or less. I believe this is an acceptable overhead for most kernel operations.

A server managing a large, sparsely populated CSpace that needs to grow and shrink

on demand will prefer a two-level tree over a single-level one. For a such a server, based

on the results of Table 7.4, the best case is a 48-cycle overhead in the system call path. To

investigate how this overhead varies under a realistic workload, I repeat the above exper-

iment for a bit-terminated, two-level lookup. The results of this experiment is shown in

Figure 7.4. In this figure, the X axis shows the number of machine cycles taken from the

lookup, and the Y axis gives the cumulative percentage.

However, unlike a single-level tree, the results do not show the best case under a real-

109

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80

P
er

ce
n

ta
g

e

Machine Cycles

Figure 7.3: The variation of capability lookup cost for a single-level CSpace under a real-

istic workload. The X axis shows the number of machine cycles and the Y axis shows the

cumulative percentage.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 60 70 80 90 100 110 120 130 140

P
er

ce
n

ta
g

e

Machine Cycles

Figure 7.4: The variation of capability lookup cost for a two-level CSpace under a realistic

workload. The X axis shows the number of machine cycles and the Y axis is the cumulative

percentage.

110

istic load. Under the workload considered, the best case was 62 machine cycles and with

75% of lookups terminating under 75 cycles (up to 56% deviation from the best case).

This overhead is not a major drawback for two reasons. First, capability lookup cost is

not a complete overhead. In capability-based access control a capability with the appropri-

ate rights is sufficient authority to perform an operation — once the capability is located

and tested for the correct permissions (usually an AND operation), the operation can pro-

ceed without any further checks. Because of this, the cycles spent in locating a capability,

or at least some of it, are gained elsewhere. This however, is only true when comparing to

a kernel which enforces some sort of control over who can perform what operation. Most

kernels enforce some control of this sort, and if they do not, this is essentially the price for

security.

Secondly, as mentioned earlier, servers, in particular the ones that would benefit from a

two-level CSpace tree, have a tendency to perform heavy-weight operations. Examples of

such operations include forking threads, paging clients, file system management and so on.

These heavy-weight operations amortise the cost they incur due to the two-level tree. I fur-

ther substantiate this claim in Section 7.3 by investigating the effects these overheads have

on the primitive operations of the kernel and in Chapter 8 by examining the performance

of a para-virtualised Linux server.

If the overhead is not acceptable to the server, then it can trade the flexibility offered

by a two-level tree in terms of the ability to grow and shrink on demand with the better

performance of a single-level tree. Furthermore, if a server has only a few performance

critical objects that require fast lookups, these capabilities can be copied to the top-most

CNode of the CSpace, causing an object termination at the first level and still have the

flexibility of a two-level tree.

7.2.3 Managing a CSpace
The management of a CSpace is performed by invoking a CNode capability. The posses-

sion of a capability to the root CNode of a CSpace allows the management of all CNodes

that constitute a 32-bit address space rooted at that CNode.

To invoke a CNode capability, the CNode capability itself must be mapped at a bit-
terminated slot in the manager’s CSpace — the ability to manage a CSpace is not inherent,

but explicit.

Broadly speaking, the kernel provides operations to add and remove capabilities. There

are two main operations for adding capabilities — imitate and mint — and two operations

for removing — delete and revoke. I already discussed these operations in Chapter 4. To

recall: both mint and imitate create copies of existing capabilities — imitate creates a CDT

sibling with equal rights and mint creates a CDT child with lesser access rights. Delete

removes a single capability from the system while revoke deletes all the CDT children of a

given capability. The operations that adds capabilities to a CNode requires (at least) Grant
right in the CNode capability.

When creating a new client application, a server will allocate a single CNode to use

as the CSpace of the client. Then, the server will populate the client’s CSpace with the

required authority for the client to run. In most cases the server will delegate part of the

authority it possesses over an object to the client. Partial delegations are facilitated by the

mint operation —- the server can mint a copy of the capability it possess (in its two-level

tree) to the client’s single-level CSpace. If the resource is exclusive to a client, the server

uses the imitate operation rather than mint. If a server wants to stop a particular service

111

Operation Cycles Source tree Destination tree

mint 518 2-level 1-level

imitate 518 2-level 1-level

delete 438 2-level NA

revoke 510 2-level NA

New CSpace 1794 2-level 1-level

Table 7.5: Performance of CSpace management operations

then it can use the revoke operation to remove all capabilities that it handed out to clients

to obtain that service. The delete operation, on the other hand, removes a single capability,

and therefore stops a single client from obtaining the service. In this section, I investigate

the performance of these CSpace operations assuming a classical client-server setup.

Table 7.5 shows the performance of CSpace management operations. The numbers

shown in the table are averaged over 500 iterations and all the distributions has a coefficient

of variation less than 2%.

The first set of results in this table show the cost of minting and imitating a capability

from a two-level CSpace tree (typically the server) to that of a single-level (the client).

The next set of results show the cost of deleting and revoking capabilities from a two-

level tree. Note that in both cases, the capability removed, is not the last capability to the

object; as such on object destruction occurs. Unlike the delete operation, revoke removes

the set of child capabilities. So, its performance depends on the number of descendants.

The number shown in the table is the cost of revoking a single child and for each additional

child the cost increases linearly by 180 cycles per child.

The final set of results in Table 7.5 shows the cost of creating a new, single-level CSpace

tree and populating it with two existing capabilities. The new CSpace contains 16 capa-

bility slots, out of which only the first two slots are populated. The number shown above

is the total cost; including the cost of creating CNodes via retype and the cost of minting

two capabilities. The created CSpace corresponds to that of a typical client. In a typi-

cal application scenario, a client starts its execution with only two capabilities mapped to

a single-level tree—allowing it to send and receive messages to a sever. The rest of the

address space is populated on demand by the server based on messages from the client.

The size and the number of mappings required in a CSpace are highly context depen-

dent. In one extreme, some applications will not require a CSpace at all; illustrative ex-

ample is clients of a para-virtualised guest operating system. The clients themselves have

no knowledge of and therefore do not make any seL4 system calls. When these clients

trap into kernel with a system call number which is not handled by seL4, the kernel gen-

erates and sends an exception IPC to the exception handling endpoint registered within the

TCB. Besides the authority to send exception IPCs and receive replies — both of which is

conferred via capabilities registered in the TCB, these clients exercise no seL4 authority.

Thus, their CSpace is empty. On the other extreme, native seL4 applications may require

(depending on the type of services they provide), a large number of capabilities.

Since L4 does not have a notion of a capability address space, it is not possible to

directly compare these numbers. Conceptually, mint and imitate are akin to the map oper-

ation of memory pages, which costs 939 cycles on L4.

112

Operation seL4::Pistachio L4 Description

IPC 202 217 IPC between two clients

IPC 232 217 IPC between client and sever

IPC 260 217 IPC between two servers

Table 7.6: Cost of IPC operation.

7.3 Performance of Kernel Primitives
To examine the performance impact of the use of capabilities in the system call path, I mea-

sure the performance of commonly used kernel operations in seL4, with different CSpace

configurations and compare the numbers with those obtained for L4. Some L4 system

calls do not have a directly related counterpart in seL4. There are two reasons for this

divergence. Firstly, seL4 exports all its in-kernel memory management decisions to user-

level resource managers; which requires more interactions with the kernel as opposed to

L4 where the kernel manages its own memory. Secondly, seL4 introduces capabilities and

a capability address spaces (CSpace) which requires additional management, which is not

present in L4. As such, I compare the cost of performing similar operations, rather than

system calls.

All numbers reported are obtained for the KZM-ARM11 development board using the

CPU cycle counter with a hot cache. The ARM the cycle counter, however, is not acces-

sible from user-level. Thus, to obtain cycle counts, I introduced two additional system

calls to both kernels — one to reset the cycle counter and the other to stop and read its

value. When taking a measurements, the benchmarking code first resets the counter and

reads its value immediately afterwards. Then it resets the counter, performs the bench-

mark and reads the value. The difference between the two values is taken as the cost of

the operations. For reasons I discuss below, numbers reported are the average over 1024

runs. In the case of seL4, the kernel objects are managed by the user-level kernel resource

manager introduced in Section 7.1.2. As mentioned earlier, this resource manager uses

slab allocation to mange seL4 kernel objects. At the start of each benchmark, all kernel

object pools required to run the benchmark are empty — in other words, objects required

for the benchmark are allocated during the benchmark, and therefore the allocation cost

is included in the measurement. When a particular object is requested, resource manager

allocates, depending on the object type, some two-to-the-power number of objects and

populates the corresponding pool. If a pool is not empty all requests are satisfied from the

objects in this pool and new objects are allocated only when there is a request while the

pool is empty. By taking the average over 1024 runs I guarantee that all objects allocated

during the benchmark are used.

Similar to the previous analysis, I envisage a two-level CSpace tree in a server context

and a single-level tree for a client.

In the following subsections, I investigate the performance of three important subsys-

tems of the seL4 kernel. Section 7.3.1 examines the performance of the IPC subsystem.

Thread-related operations and their performance is investigated in Section 7.3.2. Finally,

Section 7.3.3 analyses the performance of the virtual memory management interface.

113

7.3.1 IPC operation
Table 7.6 compares the cost of an IPC message of similar size under different CSpace con-

figurations. The shown measurements are averaged over 1000 iterations and the maximum

coefficient of variation for any measurement is less than 1%.

Both the kernels use hand-optimised assembly code to deliver the message and the

entire message fits in CPU registers.

The difference between the three IPC numbers shown in the table is based on the

CSpace configuration; both the IPC partners in the first set are clients using a single-level

CSpace tree, in the second set one of the partners is a server with a two-level CSpace tree

and the other a client and the final set is the cost of communication between two servers.

There is no significant difference between the cost of seL4 IPC and that of L4. In fact, if

both IPC partners are clients, then seL4 outperforms L4 by 7%. Recall that if need be, seL4

design allows any CSpace to be a single-level; servers use two-level trees for convenience

rather than a necessity. Even if a server uses a two-level tree, when communicating with a

client that resides in a single-level CSpace the overhead is just 7%; which is acceptable in

most cases.

The cost of communication between two servers however, is relatively high — 20%

overhead compared with L4.

7.3.2 Thread Operations
The results in Table 7.7 shows the cost of thread-related operations. The measurements

shown here are averaged over 500 iterations and the maximum coefficient of variation

for any measurement is less than 1%. Unlike the IPC experiment, where I used different

CSpace configurations, all seL4 numbers are obtained in a server context. The first set

of numbers in this table compares the cost of thread operations. This set of operations

requires no allocation of kernel objects. The second set compares the cost of creating new

execution units and requires allocation of kernel objects via the retype method.

The exchange register system call sets a thread’s CPU registers. The set priority system

call allows one to modify the priority of a thread. In these two experiments, the two systems

show no significant performance difference. In the case of exchange registers, the slight

variation of the two numbers stems mainly from the fact that seL4 provides access to more

registers than L4.

The second set of numbers inTable 7.7 shows the cost of creating a “unit of execution”.

By unit of execution I mean either a thread or a process. The first number in this set is the

cost of creating a thread in the same process — within the same address space, or spaces in

the case of seL4. A thread in seL4 has two address spaces associated with it — a CSpace for

capabilities and a VSpace for virtual memory access. In contrast, L4 thread has only one

address space for virtual memory access. To avoid any confusion, note that newer versions

of OKL4 kernels have a capability address space associated with a thread, but this is not

the case for the one used for benchmarking. The second number is the cost of creating a

separate, single threaded process — a single thread in a different address space(s). Before

examining the numbers I explain the kernel primitives required to complete the operations.

A privileged thread in L4 can create another thread using the ThreadControl system call

or another address space using the SpaceControl system call. The ThreadControl system

call provides an interface to both, allocating and configuring a thread to run in some address

space. One of the arguments (the spaceID) of ThreadControl specifies the address space

in which the newly created thread should reside. The spaceID provided to ThreadControl

114

must be to an existing address space. When the address space is already in existence a

single system call (ThreadControl) is sufficient to create another L4 thread. To create a

new process on the other hand, the privileged server needs two interactions with the kernel

— first to creates a new address space using SpaceControl and then another to create a

thread within that address space using ThreadControl.

Note that both operations, ThreadControl and SpaceControl, are privileged, in that only

a privileged thread is authorised to perform them. Other system servers in L4 need to obtain

these services from the privileged server. The L4 numbers shown in the table are obtained

within the context of the privileged thread.

In contrast, creating a seL4 thread, even in the same address space, requires more inter-

actions with the kernel. These additional interactions stem for the explicit kernel memory

management of seL4. Since kernel memory is explicitly allocated, the server needs addi-

tional interactions with the kernel to allocate the TCB objects using the retype method be-

fore configuring them to run in some address space. The number of additional interactions

depends on the allocation technique used by the user-level server creating these threads.

L4 uses an in-kernel slab-allocator to manage sub-page sized objects such as TCBs. Recall

that the prototype allocator used for these experiments also uses slab allocation, making

the comparison fair. The seL4 server requests a TCB object from this allocator and then

configures it to execute in the same address space as the server’s, using the seL4 Thread-
Control primitive. The seL4 number is the total cost of the operation, including the time

spent for allocation.

The first measurement in the third set of numbers in Table 7.7 compares the cost of

creating a thread in the same address space. For this operation, the two kernels show no

significant difference. Even though seL4 warrants more interactions with the kernel due to

its explicit memory management scheme, the performance of the operation is roughly the

same as L4’s.

The last measurement in Table 7.7 compares the cost of creating a process. First, note

that this operation is expensive on both systems. This high cost is fundamental — it stems

from zeroing the relatively large (16KB) first-level page directory. Second, note that seL4

process creation is more expensive than that of L4. The main reason for this difference

is the capability address space — to create a seL4 process, one needs to create a separate

CSpace in addition to the VSpace. A L4 process, in contrast, has only one address space for

virtual memory. Each seL4 process created in this experiment has access to a single-level

CSpace implemented using a CNode with 16 slots. As I mentioned earlier, 16 capabilities

are in general sufficient for most client applications. Because of the need to create an

additional address space, the process creation in seL4 is more expensive.

These experiments show no evidence of significant performance degradations due to

exporting the decisions on in-kernel memory allocations to user-level servers. Moreover,

the capability mechanism used by the protection system does not add any significant, direct

overheads to the system call path. However, the introduction of the capability address

space (CSpace) introduces more management overhead since there are two address spaces

to manage.

7.3.3 Performance of VSpace Operations
To measure the temporal efficiency of the virtual memory (VM) interface, I ran a set of

micro benchmarks on the seL4::Pistachio kernel, using a two-level CSpace tree. As men-

tioned, a typical seL4 server will use a two-level tree to implement its CSpace. The seL4

115

Operation seL4::Pistachio L4 Description

Exchange registers 385 354 set the register set of a thread

Set priority 323 311 change the priority of a thread

Thread creation 2671 2720 create a thread in same address space

Process creation 30453 29097 create a process

Table 7.7: Performance of thread operations.

numbers for these macro-benchmarks are compared with the numbers for performing sim-

ilar operations on L4.

A summary of the experiments to investigate the performance of the VM interface is

given in Table 7.8. These benchmarks are selected based on the work presented by Apple

and Li [AL91]. In this paper, authors investigate several algorithms that make use of user-

level page-protection techniques and, importantly to our context, identify a set of kernel

primitives required for implementing such techniques. The selection of the micro bench-

marks for this experiment is derived based on these primitives, with few modifications to

factor out the effects of other kernel operations and to highlight the strong and weak points

of seL4’s VM interface.

In [AL91], Apple and Li identified and measured the cost of the following kernel prim-

itives:

TRAP: handle page-fault in user mode

PROT1: decrease the accessibility of a page

PROTN: decrease the accessibility of N pages

UNPROT: increase the accessibility of a page

DIRTY: return a list of dirtied pages since the previous call

MAP2: map the same frame (physical page) at two different virtual addresses at two dif-

ferent levels of protection in the same address space

The TRAP cost measures the cost of handling a page fault in user-mode. Both seL4

and L4 translate page faults into IPC massages (called page-fault IPC) and propagate them

to a server registered with the thread to handle the exceptions. The server then handles the

page fault by installing a mapping and replying back to the faulting thread with another

IPC to make the thread blocked on the fault runnable. To factor out the cost of IPC, I break

TRAP into two parts — MAP measures the cost of installing a mapping and TRAP-IPC
measures the cost of the IPC operations.

As mentioned, the MAP operation of L4, is privileged — only a privileged server is

allowed to perform it. Others need to request MAP operations (usually through another

IPC) from the privileged server. The L4 measurements presented in this section are taken

for a privileged server, and therefore without the proxy cost.

The interfaces provided by seL4 and L4 are different from one another, in that seL4

requires the resource manager to explicitly allocate and install second-level page tables

(of the ARM two-level page-table structure) required for mapping the page. The seL4

kernel notifies the resource manager of the second-level page-table status in the page-fault

IPC. In contrast, L4 allocates these page tables implicitly as and when the need arises. To

investigate the effects of explicit management I introduce two variants to MAP — MAP-
NO-L2 is the cost of a mapping when the second-level page table required for installing it

116

Benchmark name Description

MAP-VALID-L2-X page mapping of size X, required page table is present.

MAP-NO-L2-X page mapping of size X, required page table is not present.

TRAP-IPC cost of exporting page-fault handling to user-level.

PROT1 decrease the accessibility of a page.

PROTN decrease the accessibility of a N pages.

UNPROT increase the accessibility of a page.

Table 7.8: Summary of the operations performed to investigate the performance of the VM

management interface.

is not present, and MAP-VALID-L2 is the cost of a mapping when the second-level page

table required for installing it is already present.

There is a subtle difference between the two VM interfaces that needs investigation.

This differences is not conceptual, rather a design decision motivated by various fac-

tors. The VM interface of L4 supports fpage mappings — an arbitrary 2n-sized page.

Though, it is conceptually possible within the proposed model, the current implementation

of seL4::Pistachio only supports mappings that are of hardware-supported page sizes —

a design choice made to simplify the VM interface and thereby reduce the effort required

in verification. I investigate the impact of this design choice by measuring the cost of

mapping memory objects of two different sizes. In the presentation, I distinguish them by

adding a suffix to the MAP operation.

Both L4 and seL4 do not provide information about dirty pages and therefore I omit

this benchmark from the experiment. One can track dirty pages by installing read-only

mappings and observing the generated page faults. Moreover, MAP2 is no difference to

MAP in both kernels and hence dropped from the benchmarks.

The performance of seL4 and L4 for the operations summarised in Table 7.8 are re-

ported in Table 7.9. The first column of Table 7.9 is the benchmark and the final two

columns give the performance of seL4 and L4 respectively.

The MAP-VALID-L2-X operations show the cost of inserting mappings for a memory

object of different sizes (X) when the second-level page table required for the mapping

is present. When mapping a 4KB memory object, seL4 has an advantage over L4. This

improvement is mostly due to the simplified VM interface of seL4 compared to the fpage

based mapping primitive of L4. However, the fpage scheme is efficient when mapping

memory objects that are not of a hardware defined size — for example, when mapping

a 8KB object L4 outperforms seL4 by 11%. In L4, one can map a 8KB fpage with a

single system call (as long as the physical memory frames are also contiguous and size

aligned). In seL4 on the other hand, the operation requires two system calls to install two

4KB objects. As I mentioned earlier, the simplified interface is not a direct result of the

model but a design decision to keep the kernel interface simple. If need be, the seL4 VM

interface can be modified to support fpage semantics.

The second result in Table 7.9 measures the cost of inserting a mapping of 4KB, but

in contrast to the former, the second-level page table required for placing the mapping is

not present. I explain how the two kernels handle this scenario. The L4 kernel implicitly

allocates a page table from its heap, installs it and then proceeds to complete the mapping.

The seL4 kernel, on the other hand, does not allocate any memory implicitly. The page-

fault IPC message generated by seL4 contains information on whether or not a second-level

117

Benchmark seL4 L4

[cycles] [cycles]

MAP-VALID-L2-4KB 1109 1766

MAP-VALID-L2-8KB 2218 1966

MAP-NO-L2-4KB 4621 4370

TRAP-IPC 600 987

PROT1 1379 1816

PROTN 1379 * N 1816 * N

UNPROT 1379 1816

Table 7.9: Cost of VSpace operations.

page table is present to cover the region in which the page fault took place. If a page table

is not present, the user-level handler needs to allocate a page table, using some allocation

technique and then install the page table and the page mapping. The seL4 VM interface

allows the installation of a page table and a page mapping through one interaction — a

single seL4 system call is sufficient to install the page table and the page mapping. In

these experiments, similar to the previous ones, kernel objects required for performing an

operation is managed using the allocator described in Section 7.1.2.

When the second-level page table required for completing the mapping is not present,

seL4 is marginally (about 5%) slower than L4.

The cost of TRAP-IPC is relatively high for L4. The page-fault IPC path of L4 is

relatively unoptimised compared to that of seL4. Moreover, note that for both kernels, a

page-fault IPC is more expensive than those IPC costs reported in Section 7.3. A page-

fault IPC takes a different code path (implemented in C) to that taken by a normal IPC

(implemented in assembly).

In both systems, PROT1 — reducing the privileges of a page — is implemented by in-

stalling a mapping over the existing. Thus, PORT1 shows similar characteristics to MAP-

VALID-L2-4KB. Note that the second-level page table required when performing the oper-

ation is always present. PROT1 is slightly more expensive than a MAP operation because

of having to flush the TLB for the previous mapping. Both kernels leverage the tagged

TLB of ARM11 to optimise TLB flushes. Similar to PROT1, UNPROT is implemented by

reinstalling a mapping and therefore shows similar characteristics.

In L4, the performance of PROTN benchmark (reduce the privileges of N pages) de-

pends on the layout of the protected pages. If the pages are contiguous, a single fpage

mapping would suffice but if they are not, then we need to perform PROT1 operation N

times. For seL4, either case requires N number of PROT1 operations. The reported ex-

periment is conducted assuming PROTN is protecting non-contiguous pages. It should be

noted that, similar to the case of MAP of contiguous pages, L4 will have better performance

owing to the reasons I described earlier.

As it can be seen from these numbers, there is no significant difference between the

VM interfaces provided by the two kernels. In some cases, seL4 has a slight performance

advantage over L4, mainly due to its simplified VM interface. This is not a direct con-

sequent of the proposed memory management model, but a design decision motivated by

other factors. Exporting the allocation of second-level page tables required for installing

a mapping to user-land shows no significant impact on performance, as long as users are

aware of the in-kernel resource status.

118

7.4 Summary
Based on our analysis thus far, the proposed memory allocation model and its associated

capability protection model do not add significant overheads to the primitive kernel opera-

tions.

System call authorisation via capabilities does not cause undue overheads. However,

the introduction of a capability address space introduces additional overhead to process

creation, because of having to create (and maintain) another address space.

Exporting the management of all in-kernel memory to user-level resource managers

increases the cost of some kernel operations marginally (around 5%).

However, it remains to be seen whether the model imposes any performance implica-

tions at a macro level. In the next chapter, I investigate the macro-level performance of the

model.

119

Chapter 8

Performance Evaluation

Having investigated the formal security properties of the proposed scheme and its micro-

level performance characteristics in previous chapters, I now turn to a practical application

of the security theorem and further extend the performance analysis to a macro level using

a complex, realistic resource manager.

This chapter investigates the macro-level performance of a realistic resource manager

(a paravirtualised Linux kernel) running on seL4::Pistachio, restricted to a spatial partition

using the results of the formal analysis in Chapter 6. The performance of this resource

manager is compared to three other configurations of itself; (a) executing native on top

of the hardware, (b) executing as a (virtualised) user-level resource manager without any

restrictions on its kernel memory consumption, and (c) executing as a user-level resource

manager with similar restrictions to spatial partitioning, but enforced by a privileged server

monitoring the execution. The measurements obtained from the first system indicate the

baseline cost of an operation. The second system represent the raw cost of virtualisation,

i.e. without any security enforcement and the final system compares the seL4 costs against

another commonly used security enforcement technique.

The formal security analysis in Chapter 6 demonstrates that the model is sufficient to

enforce spatial partitioning (see Theorem 2). Theorem 2 confirms that by enforcing a set

of restrictions on the initial distribution of capabilities, it can be guaranteed that a resource

manager cannot gain access to any more kernel memory regions than what was conferred

to it in the initial state, in any future state. In other words, the resource manager will be

spatially partitioned and this partitioning will hold in all states derived from the initial. The

restrictions that need to be enforced on the initial capability distribution to guarantee the

partitioning of a resource manager is given in Section 6.4.2. I recap these restrictions in

Section 8.1.

The resource manager selected for these experiments is a para-virtualised, Linux-2.6.23

kernel, running as a user-level application, managing the resources of native Linux appli-

cations. Hereafter, I call this port of the Linux kernel seL4::Wombat and the software

configuration seL4::Wombat system. The implementation of seL4::Wombat is based on

Wombat [LvSH05]. Section 8.1 examines the implementation of seL4::Wombat system

and in particular discusses the implementation of seL4::Wombat and Iwana — a resource

management library which acts as a glue layer between the Linux kernel and seL4.

For macro benchmarking, I use the AIM9 [AIMa] and the lmbench [MS96] benchmark-

ing suites. These benchmark suites exercise OS services such as memory management,

IPC, file IO, signal delivery, float point handling, networking and so on.

To evaluate the performance of the seL4 model, I compare the performance numbers

120

of the above benchmarks with those obtained for three other similar system configurations

— with the L4/Iguana system and with the Wombat::Insecure system, and with the native
Linux kernel running on same hardware.

Both, L4/Iguana and Wombat::Insecure systems execute Linux-2.6.23 kernel as a de-

privileged, para-virtualised user-level application. The two systems differ in that they pro-

vide different levels of security guarantees; the L4/Iguana system enforces a strict limit on

the amount of kernel memory consumed by the Linux subsystem while Wombat::Insecure

attempts no such control. Section 8.2 and Section 8.3 introduces the configuration of

L4/Iguana and Wombat::Insecure respectively.

All experiments reported here were conducted on a KZM-ARM11 evaluation board,

which comprises an ARM1136JF-based [ARM05], (FreescaleTM i.MX31) processor run-

ning at 532MHz, an unified L2 cache of 128KB and with 128MB DDR RAM.

8.1 seL4::Wombat
Figure 8.1 shows the software components that constitute the seL4::Wombat system. Run-

ning directly on top of seL4::Pistachio is the initial resource manager; responsible for boot-

strapping the rest of the system components and enforcing the system-level policy between

them.

The system consists of two main components; a timer server and a seL4::Wombat

server. The seL4::Wombat component is a paravirtualised Linux kernel, running as a

user-level application on top of seL4::Pistachio, providing the abstractions for Linux ap-

plications (which are not shown in the figure). The timer server delivers periodic ticks to

seL4::Wombat.

In this context, there are two important considerations the initial resource manager

needs to address: (a) can seL4 mechanisms be used to enforce the system-level policy? and

(b) if so, what invariants should be followed while bootstrapping the system?. Both these

questions should ideally be answered within a formal framework similar to that developed

in Chapter 5 by doing a formal analysis like the one presented in Chapter 6.

For this experiment, the system-level policy the initial resource manager is to enforce

is spatial partitioning [Rus99]. This policy guarantees that seL4::Wombat cannot access

any region of physical memory beyond what was initially given to it by the initial resource

manager.

Recall that in Chapter 6, I have done a formal analysis of the seL4 security model and

affirmed that seL4 mechanisms are sufficient to enforce spatial partitioning. Moreover, the

proof also identified a set of invariants the initial resource manager needs to enforce on the

distribution of initial capabilities (see Section 6.4.2) for the enforcement. These invariants

are as follows:

• There should not be any GrantIPC channel between any two threads in different

spatial partitions (a GrantIPC channel is an IPC channel that allows the propagation

of a capability),

• writable CNodes and writable page tables cannot be shared between threads in dif-

ferent spatial partitions, and

• a capability with Grant authority to the TCB of a thread cannot be placed in another

thread’s possession if the latter is in a different spatial partition.

In the seL4::Wombat system, the initial resource manager enforces spatial partitioning

by enforcing the above invariants on the initial capability distributions while bootstrapping

121

Figure 8.1: The seL4::Wombat system.

the two components. However, when enforcing the above invariants, the initial resource

manager makes two simplifications: (a) it does not share CNodes or page tables between

seL4::Wombat and the timer server, even though it is possible to share read only ones, and

(b) it does not place a TCB capability of a thread in the others CSpace.

The timer server runs as separate process from seL4::Wombat; i.e. uses a separate

CSpace and VSpace. Its CSpace contains capabilities to two endpoints; one for receiv-

ing timer requests from seL4::Wombat and the other to send timer ticks to seL4::Wombat

via IPC, and two capabilities for receiving and acknowledging the timer interrupts gen-

erated by the hardware. Its VSpace contains the required mappings for accessing timer

hardware, executing code and a special page called the summary page, mapped at a prede-

fined location which contains a summary of the capabilities in the CSpace.

The timer server generates periodic ticks for seL4::Wombat. Optionally, one could

incorporate the timer server into seL4::Wombat directly and let Linux manipulate the as-

sociated hardware directly. This option was dropped to keep the system configuration

comparable to L4/Iguana, in which the timer server may provide ticks for more than one,

mutually untrusted servers.

Compared to the timer server, the address space of seL4::Wombat is more complex.

However, this complexity is managed by the Iwana library, and outside of the initial re-

source manager. The motivation here is to keep the initial resource manager; the one re-

sponsible for enforcing the policy, as simple as possible. Thus, if need be, it can be verified

against the invariants we have identified.

The initial resource manager bootstraps seL4::Wombat in much the same way as the

timer server. It starts by creating a new CSpace and a VSpace. Then populates each with

the appropriate authority. Among other operations, seL4::Wombat is authorised to manip-

ulate both of its own address spaces (CSpace and VSpace). When bootstrapping, the initial

resource manager performs a minimal configuration — just enough for seL4::Wombat to

start executing, and when it does, seL4::Wombat exercises its authority to manipulate its

address spaces to configure them in a suitable manner. In addition to the authority over

address spaces, seL4::Wombat is granted some number of Untyped memory objects (8MB

in total) which it uses to allocate seL4 kernel objects as and when the need arises, two

endpoint capabilities to communicate with and receive timer ticks from the timer server, a

capability to its own VSpace allowing it to manipulate the VSpace, and few Frame capabil-

ities to memory mapped IO regions depending on what devices it is allowed to access. Its

122

VSpace only contains mappings for executing the code and accessing the summary page.

Once these components are bootstrapped, the initial resource manager exits from the

system and it is the responsibility of the subsystem resource managers to use the resources

they received in a suitable manner.

8.1.1 Iwana— Best-Effort Allocator
Iwana is a simple, best-effort allocator that acts as a glue layer between seL4::Pistachio and

Linux. It can be viewed as a library OS running in the same process (uses the same VSpace

and CSpace) as seL4::Wombat. It provides two main services. Firstly, it is responsible for

bootstrapping the Linux subsystem. Secondly, it manages all seL4 kernel objects required

for the functionality of Linux.

The rationale behind using such a two-stage bootstrapping process is to reduce the

complexity of the initial resource manager — the critical component in terms of enforcing

isolation. By recalling the formal analysis in Chapter 6, note that the enforcement of isola-

tion is dependent only on the behaviour of initial resource manager. This approach reduces

the functionality of initial resource manager to a bare minimum — statically subdividing

capabilities in its possession between the system components. The actual bootstrapping

of the component, which has the potential to be complex, is kept outside of the critical

component.

This reduction of complexity means there is a potential to formally verify the imple-

mentation correctness of the initial resource manager. While there is ongoing research on

the above topic, it falls outside the scope of this thesis.

For its functionality, Iwana needs knowledge about its address-space configuration. As

an illustrative example, it needs to know how much Untyped memory it has access to and

where these capabilities are mapped in its CSpace, and so on. Some of this information is

known by convention and the rest, in particular the amount of physical memory it can ac-

cess and where Untyped capabilities are mapped, is passed to Iwana by the initial resource

manager by storing this information in the summary page, mapped at a known address.

Initially, Iwana reads this information, updates its internal bookkeeping structures and

then turns to bootstrapping the Linux kernel. Bootstrapping Linux includes the follow-

ing steps: first, it creates a contiguous region of virtual memory, backed by (4K) Frame

objects, which the Linux kernel perceives as its heap. The size and the starting address

of this region is predefined. To create this region, Iwana creates the required number of

CNodes (for allocating the Frames), Frame objects and second level page-tables required

for mapping Frames in a VSpace. Then, it maps each Frame to its VSpace such that the

virtual page number can be used to compute the address of the corresponding Frame ca-

pability (by adding an offset). When handling page faults, the Linux page-fault handler

generates “physical” addresses within its heap — in the case of seL4::Wombat addresses

within the above region. The above mapping scheme provides an efficient way of locating

the corresponding Frame capability.

In addition to managing the Linux heap, Iwana provides access to memory mapped IO

regions for Linux device drivers; provided it received the Frame capability to the IO region

from the initial resource manager.

The architecture-dependent part of the Linux kernel is replaced with calls into Iwana,

which implements these operations by managing appropriate seL4 kernel objects.

123

Object Management

The allocation strategy used by Iwana is slab allocation. Internally, Iwana keeps pools of

different object types and when a particular pool is empty (except for free CNodes slots)

it populates the pool by allocating a number of corresponding objects. However, the free-

CNode-slots pool is never allowed to run dry.

CNode slots play a crucial role in object allocation— to allocate any object, including

CNodes, Iwana needs free CNode slots (see Chapter 4 for more details). Thus, without

free CNode slots, Iwana cannot allocate any object. To avoid this situation, Iwana uses

a low-water mark for free CNode slots — the number of CNode slots is never allowed

to fall below a certain level, provided there are Untyped objects to allocate them from.

Moreover, CNode slots are given precedence over all other objects. Before allocating a

batch of objects to populate a pool, Iwana checks whether this allocation would take the

CNode slots below the above low water mark. If so, it allocates CNode slots, and only then

proceeds to allocating the other object type.

The decision to use slab allocation is based on two main observations. First, the Linux

kernel consumes more than one instance of an object type. Thus, allocating more than one

object instance is not an undue over commitment of memory. Second, based on the micro-

level measurements (see Section 7.1.1), allocating a batch of objects reduces the allocation

cost per object.

When Linux no longer needs a particular resource, it returns the corresponding kernel

object(s) to Iwana. Once an object is released, Iwana re-initialises the object by performing

a recycle operation and returns it to the corresponding object pool.

Except for CNodes — that are allocated automatically when the number of free nodes

falls below a certain level — Iwana allocates other kernel objects on a first-come-first-

serve basis, provided it still has unused Untyped objects in its possession. Moreover, under

normal operation, it never reclaims objects forcibly from Linux — an object is recycled

and used in a different context only when Linux releases it.

However, when Iwana is under heavy memory pressure — that is when it has used

all its Untyped memory objects — it resorts to forcibly deleting already allocated objects

and reusing that memory for new objects in a systematic manner. Before introducing the

memory reusing strategy, I explain the motivation behind it.

Most servers, in particular servers such as Linux, internally track sufficient informa-

tion to reconstruct the configuration of the underlying kernel objects that implement the

abstraction they provide. For example, the Wombat server internally maintains shadow

page tables for the address spaces it manages. These tables, together with the bookkeeping

within Iwana (information on how heap address relate to Frame capabilities) is sufficient

to reconstruct the corresponding seL4 page tables. I call such objects cache-able.

Though it is inefficient — because of the potentially large amount of work required

to reconstruct the object state once the original is thrown away — the state of a cache-

able kernel objects can be thrown away at any point, and reconstructed from the user-level

state. Iwana leverages this observation — when it is under heavy memory pressure, Iwana

reclaims memory from cache-able objects and reuses it to implement the requested ob-

ject type (which again can be a cache-able type). For implementing this algorithm, Iwana

tracks, in a first-in-first-out (FIFO) structure, the Untyped capabilities used for allocat-

ing cache-able kernel objects. I call these Untyped capabilities reclaimable. When faced

with memory pressure it removes a capability from the reclaimable set, calls revoke on

that parent Untyped capability and thereby deletes all the cache-able objects allocated in

that memory region and then reuses the parent Untyped object to implement the newly

124

requested object type.

In the current implementation, Iwana treats only the PageTable as cache-able. This is

because in comparison, PageTables are relatively easy to reconstruct. The motivation for

using a FIFO structure for tracking reclaimable Untyped objects is to introduce some form

of fairness — every cache-able object remains in memory for some period of time before

the memory is reclaimed. Depending on the context, one can employ a different structure.

The idea of cache-able objects is similar but not identical to the kernel memory man-

agement model employed in systems such as the Cache kernel [CD94], EROS [SSF99]

and HiStar system [ZBWKM06]. Iwana’s allocation policy is dynamic: it switches from

being a static allocator to a cache like scheme only under memory pressure. If sufficient

memory resources are available objects are not reclaimed until they are no longer required,

thus improving the performance. Under heavy memory pressure, it switches to the cache-

like scheme where the performance is suboptimal because of the potentially large cost in

reconstructing the object, and unpredictable because any cache-able object can be deleted

at an unknown time.

When both the initial Untyped object pool and the reclaimable pool are empty, Iwana

denies all subsequent requests which requires memory allocation.

Note that Iwana is only one example of a best-effort allocator. If need be, a different

allocator can replace Iwana, depending on the requirements of the system it caters for, it

can even be a static allocator similar to the initial resource manager. A seL4 system can

support a stack of such allocators, with each allocator receiving resource from the one be-

low and catering the requirements of the system it manages. The system supports diverse,

co-existing policies by means of different allocators. It can support hierarchical policies

by stacking these allocators — for instance, seL4::Wombat system is such a hierarchical

approach. The initial resource manager uses a static allocation scheme and Iwana, using

the resources it receives from the initial resource manager, supports a best-effort allocation

scheme. I believe these mechanisms are powerful enough to cater the resources manage-

ment requirements of most systems.

Benchmarking setup

The results of the benchmarks reported below are measured when Iwana is operating under

low memory pressure. That is to say that measurements were taken before the allocation

policy of Iwana changes to the caching scheme. This is done to make the comparison

between the seL4::Wombat and L4::Wombat comparable.

8.2 L4/Iguana System
Similar to seL4::Wombat system, L4/Iguana system is a microkernel-based system. The

underlying microkernel in the case of L4/Iguana is the OK Labs L4 kernel (version 2.1-
dev.35) which is based on L4-embedded [NIC05].

Part (a) of Figure 8.2 shows the software configuration of L4/Iguana. Iguana [ERT]

is a small, capability-based operating system that runs in user-mode on top of L4. In

conjunction with L4, it provides and enforces the underlying resource management policy

for Wombat [LvSH05] — a para-virtualised, port of Linux 2.6.23 kernel. Hereafter, I call

the Linux version running on top of L4/Iguana L4::Wombat.
The authority to obtain kernel services that require the allocation of kernel metadata is

centralised in Iguana — any kernel service that may require the allocation of kernel meta-

125

Figure 8.2: Wombat system configurations.

data must be made through, and therefore is monitored by, Iguana. Through this mecha-

nism, Iguana enforces a strict limit over the physical memory consumption of L4::Wombat.

In addition to Iguana and L4::Wombat, there are few other servers in the system pro-

viding different services to L4::Wombat. The configuration and the functionality of these

servers is similar in both systems.

8.2.1 Spatial Partitioning
The above two systems differ in that they use different mechanisms to enforce the policy.

In L4/Iguana, the policy is enforced by centralising the authority to perform sensitive op-

erations (in our case operations that may require allocation of physical memory within the

kernel) in Iguana.

In this regards, the functionality of Iguana is conceptually analogous to that of system
domain in Nemesis [Han99], Domain0 in Xen [BDF+03] or the Supervisory VM in De-
nali [WSG02]. In all the above systems, the authority to perform sensitive operations is

centralised in the particular “trusted” application and as such, others are required to proxy

all such requests to the “trusted” application which monitors and enforces the policy.

The main advantage of this scheme is that the kernel memory management policy is

implement at user-level. Thus, the policy can be modified by modifying the user-level

monitor, as opposed to the kernel. For example, one can change the system-level policy

from spatial partitioning to a best-effort, first-come-first-server policy by modifying the

monitor, as opposed to the kernel. As mentioned in Chapter 3, kernel modifications are

undesirable for a formally verified kernel. The main disadvantages in this approach is that

there is a temporal overhead incurred due to indirection through the “trusted” application.

In contrast, the seL4::Wombat system enforces the policy by controlled delegation of

authority — seL4::Wombat can directly use the UM capabilities in its possession as it sees

fit. Moreover, by enforcing the invariants identified by the proof at the time of bootstrap-

ping, we can guarantee that seL4::Wombat cannot use any region of physical memory other

than what is explicitly authorised by the initial resource manager . This approach elimi-

nates the proxy cost and the need for run time checking and dynamic bookkeeping required

in the previous case for enforcing the policy.

Further note that in comparison to L4/Iguana, seL4::Wombat system provides addi-

tional control over the physical memory consumption of seL4::Wombat — by distributing

UM capabilities appropriately we can not only limit the amount of physical memory con-

sumed by the Linux subsystem, but also the regions of physical memory it may consume.

The Linux subsystem can only access a memory regions explicitly allocated to it; thus en-

126

Benchmark Category Lmbench AIM9

Resource management all reported all reported

Communication reported reported

File system reported reported

CPU performance not reported not reported

Table 8.1: Summary of the sub-benchmarks included in the results.

forcing spatial partitioning. On the other hand, the L4/Iguana system, cannot control the

location of allocated kernel memory — the kernel implicitly selects the memory location

for an allocation within its heap. As such, L4/Iguana can only limit the amount of memory

consumed by the Linux subsystem. The ability to control the region of memory where the

object will reside is desirable for a system attempting to enforce a cache colouring scheme

to improve real-time predictability [LHH97] or control the memory placement in NUMA

machines [MPO08, VDGR96, AJR06] or multi-core machine [CJ06, ZDS09] to improve

performance.

This analysis only consider a spatial partitioning policy. However the results can be

generalised to other useful policies.

8.3 Wombat::Insecure system
The software configuration of Wombat::Insecure system is shown in part (b) of Figure 8.2.

Similar to our previous two systems, the Wombat::Insecure system is a microkernel-based

system running the Linux 2.6.23 kernel as a para-virtualised user-level application. Here-

after, I call this port of the Linux kernel Wombat::Insecure.

In contrast to the previous systems, Wombat::Insecure system does not attempt to con-

trol the physical memory consumption of the Wombat::Insecure. As and when the need

arises, Wombat::Insecure directly calls the underlying microkernel which simply grants the

request if the microkernel’s heap is not already exhausted — making it trivial for Wom-

bat::Insecure to launch a denial-of-service attack against the other applications running on

the system. This system represents the base cost of virtualisation.

The L4::Insecure is a modified version of the same L4 kernel used in the L4/Iguana

system. The only difference between the two kernels is that L4::Insecure allows any appli-

cation to perform operations that may require allocation of kernel memory in contrast to

L4 where it is centralised.

8.4 Results
This section reports the results of lmbench [MS96], and AIM9 [AIMb] benchmark suites

on the four Linux configurations — seL4::Wombat, L4::Wombat, Wombat::Insecure and

native Linux.

The AIM9 benchmark was used in the singleuser configuration and with each test con-

figured to run for 2S. The benchmark consists of 58 sub-tests that exercise OS services

such as the IPC mechanism, file IO networking and hardware operations such as function

calls, integer/float-point operation. Similar to AIM9, lmbench also contains a number of

tests that measures the performance of different OS subsystems as well as CPU operations.

127

As shown in Table 8.1 the tests included in the two benchmarking suites can be cate-

gorised into four main groups. Results of all the tests that require allocation of memory

within the kernel (be it Linux kernel or the underlying microkernel) are reported. Only a

representative set of tests, that examines the communication subsystem and file system are

reported. The tests that measure the performance of CPU operations (such as float divi-

sion, addition, multiplication) are not relevant to our context and therefore omitted from

the results reported below.

To avoid any IO latencies not imposed by the OS, all benchmarks was run inside a

RAM disk. All experiments reported here were conducted on the KZM-ARM11 evaluation

board, which comprises an ARM1136JF-based, (FreescaleTM i.MX31) processor running

at 532MHz, with an unified L2 cache of 128KB and with 128MB DDR RAM. All software

was compiled with a gcc 3.4.4 cross compiler.

8.4.1 Lmbench Results
Lmbench system latency and bandwidth results are shown in Table 8.2. In this table, the

columns named seL4, Secure, Insecure and Native show the performance of seL4::Wombat,

L4::Wombat, Wombat::Insecure and native Linux kernel, respectively. The last two columns

show the relative performance gain of seL4::Wombat with respect to Wombat::Insecure (In-
secure) and L4::Wombat (Secure) respectively. The first part of the table shows the latency

of various tests in the benchmark suite and the second part shows the memory bandwidth

of various lmbench tests.

Of these systems, seL4::Wombat and L4::Wombat enforce a precise control over the

amount of memory consumed by the para-virtualised Linux kernel; in the former case

by controlling the initial distribution of authority and in the latter by using a privileged

server that monitors system calls proxy through it. The third system, Wombat::Insecure

does not attempt any such control — it characterises the baseline cost of running a para-

virtualised kernel on top of L4, without any attempt to control the resource consumption

of the guest kernel. Finally, the native Linux numbers characterise the penalty associated

with virtualisation — how does virtualisation effects the system performance. Below, I

analyse the performance of the three virtualisation platforms, and latter comment on the

cost associated with virtualisation.

The first set of results in latency shows the latency of operations that require allocation

of physical memory within the kernel. These numbers show the performance benefits of

the proposed memory management scheme — seL4 improves the performance of these

tests by at least 25% compared to L4::Wombat which enforces a similar (but even less

restrictive) policy.

By decentralising kernel memory management, seL4 eliminates the need for Linux to

proxy these requests through the privileged Iguana server to the underlying microkernel in

order to enforce the policy over the physical memory consumption of Linux subsystem.

This improves performance in two ways. First, it eliminates two IPC messages and hence

two context switches required for sending the request to Iguana and the reply message from

Iguana. Second, it eliminates the need for maintaining bookkeeping information within

Iguana required for making an informed decision. When Linux makes a request, Iguana

needs to make a decision on whether or not to allow it. In order to make this decision,

it needs to maintain bookkeeping information on the current resource allocation state of

Linux. Removing the need for mediating microkernel system calls in order to enforce the

policy has a significant performance advantage.

128

seL4 Secure Insecure Native Gain (Insecure) Gain (Secure)

Latency [μs] [μs] [μs] [μs] % %

pagefault 10.88 16.71 13.98 6.03 22.2 34.9

fork 1225 1753 1248 700 1.8 30.1

exec 1361 1961 1396 897 2.5 30.6

shell 10810 14516 11211 8993 3.6 25.5

null (syscall) 2.09 2.29 2.31 0.5 9.5 8.7

open (syscall) 16.25 17.01 16.78 12.71 3.2 4.5

fifo 26.1 30.54 30.12 14.71 13.3 14.1

pipe 27.58 30.73 30.74 23.74 10.3 10.3

signal (install) 4.39 4.34 4.34 2.21 -0.5 -1.2

signal (catch) 6.56 6.54 6.66 4.59 1.5 -0.3

semaphore 6.68 6.86 6.96 4.98 4 2.6

tcp 5.02 5.15 5.15 3.04 2.6 2.6

unix 43.23 45.03 45.04 27.67 4 4

connect 109.9 119.3 121.3 96.5 9.4 7.9

Bandwidth [MB/s] [MB/s] [MB/s] [MB/s] % %

pipe 124.4 106.8 107.2 150.8 16.1 16.5

tcp 40.95 34.1 33.6 51 21.9 21.1

unix 96.35 85.61 85.52 126.2 12.7 12.5

mem rd 485.7 485.7 485.7 485.7 0 0

Table 8.2: Results of lmbench benchmarking suite. The first four columns show the perfor-

mance of seL4::Wombat, L4::Wombat, Wombat::Insecure and Native Linux respectively.

The last two columns shows the percentage performance gain of seL4::Wombat compared

to Wombat::Insecure and L4::Wombat respectively.

129

Except for pagefault latency, the performance of seL4 and Insecure for benchmarks

that require the allocation of physical memory within the kernel is, in most cases similar.

The slight variations are mainly caused by noise in measurements and the different levels

of optimisations within the two kernels.

The only standout in this group of numbers is the handling pagefault latency, where

seL4 outperforms Insecure by 20%. Recall that the same observation was made in Sec-

tion 7.9, when comparing the performance of the seL4 virtual memory (VM) interface

with that of L4. The L4 VM interface is much more abstract than that provided by seL4.

L4 facilitates fpage mappings — an arbitrary two-to-the-power-sized page. Depending on

the fpage, L4 modifies multiple page-table entries and, if required, allocates and constructs

second-level page-table structures. In contrast, the VM mechanism of seL4 is closer to

that of the underlying hardware interface; it only allows mappings of the hardware pro-

vided frame sizes. This simplification, however is not a result of the proposed memory

allocation model, but an implementation decision to make the kernel simpler. If need be,

there is no conceptual barrier for introducing fpage like VM primitive to seL4. In sum-

mary, the L4 virtual memory interface is a generic abstraction whereas the seL4 interface

merely provides protected access to page tables. As such, the operation of installing a

frame, in particular when the size is equal to that of hardware-protected frame size, seL4

is faster (see Table 7.9). Moreover, this simplified interface has natural synergy with what

the Linux kernel expects.

The second group of latency benchmarks and the bandwidth benchmarks do not re-

quire microkernel memory allocation and therefore, there is no mediation cost (in the case

of L4::Wombat) in completing these operations. All three Linux instances can handle these

operations without requesting services from another server, so there is no mediation over-

head. The performance of these benchmarks is mostly sensitive to the cost of exception
IPC. When an application traps into the microkernel with a system call number which the

kernel does not handle, the kernel generates and sends an exception IPC to the Linux server

for it to emulate a Linux system call for the trapping application. For these benchmarks,

seL4 exhibits much more modest gains. These modest gains are due to the different lev-

els of optimisations in the exceptions IPC paths. These results are slightly biased towards

seL4 as it has a hand-optimised exception IPC path completely written in assembly, versus

L4 which relies on a partial hand-optimised assembly path coupled with optimised C for

exception IPC on ARM11. The deviations in the performance for these measurements are

caused by implementation — there is no fundamental reason for such a difference.

Now I compare the performance of seL4 with native Linux. Depending on the bench-

mark, seL4 shows modest to high performance overheads. If the benchmark is a light-

weight operation within the Linux kernel, seL4 shows high performance degradation whereas

for heavy-weight operations the overhead is modest. For example, consider the two system

call latency tests in Table 8.2. For a null system call the overhead is 318% but for the

open system call it reduces to 28% and for shell it further reduces to 20%. When handling

a native Linux system call, the virtualised system requires at least two IPC messages —

the exception IPC up-call to the Linux server and the reply message from the server to

the client. If this communication cost is high compared to that of the operation performed

within the Linux kernel (which is the case with null system call), seL4 exhibits a high

overhead. But for bulkier operations within the Linux kernel the above communication

cost becomes insignificant and hence seL4 exhibits a modest percentage overhead.

To validate this claim further, I used the pipe bandwidth test of lmbench with different

chunk sizes and the results are shown in Figure 8.3. The X axis of this figure shows the

130

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 6 8 10 12 14 16

N
o

rm
al

is
ed

 B
an

d
w

id
th

log(Chunk Size)

Figure 8.3: The variation of pipe bandwidth of seL4, normalised to native Linux.

chunk size in a log scale and the Y axis shows the normalised bandwidth of seL4. For

smaller chunks seL4 has high overheads— its bandwidth is only 25% of native. But for

higher chunks, the bandwidth improves to 89% of native.

These overheads, however, are not central to the core of this thesis. They stem from the

exception handling mechanism of the microkernel.

Xen-Based Virtualisation

Having analysed the overheads associated with running a para-virtualised OS on seL4, let

us now examine how seL4-based virtualisation compares to other virtualisation platforms.

There are a number of different systems that support para-virtualisation. To limit the

scope, I selected one of the commonly used virtualisation platforms — Xen [BDF+03], as

a representative instance of a different virtualisation technique.

Unfortunately, to date, Xen does not run on ARM11-based platforms (there are plans

to support ARM11 in the 2nd quarter of 2009 [Com]). Therefore, a direct comparison of

performance numbers is not possible. However, the Xen numbers reported for other ARM-

based processor, in particular numbers reported for ARM9 (v5 architecture) based systems,

can be used for a fair comparison by understanding the architectural differences between

the two processors and how those differences would effect the given implementation.

Hwang et al. [HSH+08] reports performance of a Xen port (based on Xen 3.0.2) for

an ARM926EJ-S [ARM04] based system. Using the same terminology used by the above

authors, I call this Xen version Xen on ARM. Similar to our experiments, they host a para-

virtualised Linux 2.6 kernel on Xen on ARM and measure the performance by running the

lmbench benchmarking suite. Even though a direct comparison between the performance

numbers is infeasible due to the architectural differences of the CPUs, we can compare

the relative slowdown caused by the two systems to understand how they measure-up as

virtualisation platforms. By relative slowdowns I mean the ratio between the cost of an

operation in the para-virtualised system and that of the native Linux on same hardware —

the performance normalised to the native.

131

Benchmark Xen on ARM seL4

Latency Ratio Ratio

fork+exit 3.46 1.75

exec 3.38 1.51

semaphore 1.77 1.44

unix 1.70 1.56

syscall (write) 1.85 1.91

Bandwidth Ratio Ratio

pipe 0.89 0.89

unix 0.88 0.76

mem (rd) 1.04 1

Table 8.3: Normalised performance of lmbench tests for seL4::Wombat, and Xen on ARM.

By comparing the ratios, as opposed to say the measured latency of an operation, we

can factor out, to some extent, the architectural differences. Then, with an insight of the

architectural differences and how these differences may effect implementation and perfor-

mance, we can use the normalised performances to get a fairly accurate picture of how the

two systems compares to one another.

Architecture wise the main difference between ARM9 (v5 architecture) and ARM11

(v6 architecture) is the cache — ARM v5 processors has a virtually indexed and virtually

tagged cache in contrast to the physically tagged cache of ARM v6 processors. For cache

consistency, an ARM v5 processors requires a cache flush on every context switch, making

context switching highly expensive compared to ARM v6. This architectural difference

has a major impact on virtualisation when the guest OS and its applications are residing

in different address spaces — every system call from a guest application will cause two

context switches — from the application to the guest OS, and back. This context switching

adds significant overheads to the guest’s system call performance.

Xen on ARM avoids such context switching, by mapping the guest OS into the virtual

address space of the guest’s application and uses the ARM domain protection mechanism to

protect the guest OS from its applications. Therefore, a system call from a guest application

does not cause a address space switch, but a domain switch. A context switch only occurs

when switching from one guest OS to another — which is not included in lmbench. This

implementation keeps the main architectural difference between ARM v5 and ARM v6

outside of the critical path for the benchmarks.

The normalised performance for lmbench tests for seL4::Wombat and Xen on ARM

is given in Table 8.3. The normalised performances for Xen on ARM is directly taken

from [HSH+08].

The first set of numbers in this table compares the normalised performance of latency

benchmarks. Except for fork and exec the two systems show similar slowdown due to

virtualisation.

In the case of fork and exec, seL4::Wombat’s performance is far better than Xen on

ARM. This is because, Xen on ARM keeps the guest OS mapped in every application’s

address space, making process creation and deletion expensive — one needs to map and

delete the guest OS, to the newly created or from now deleted, address space. Moreover,

all map and delete operations (similar to seL4) require hypercalls into Xen. seL4::Wombat

on the other hand, since context switching is not prohibitively expensive on ARM v6,

132

Test name seL4 Secure Insecure Native Gain Gain

(Insecure) (Secure)

[OPs/s] [OPs/s] [OPs/s] [OPs/s] % %

fork test 478 367 451 979 5.8 30.0

exec test 145 112 136 208 7 30

shell rtns 1 98 78 94 149 4.3 25.6

brk test 156144 142651 145915 333333 7 9.5

mem rtns 1 299732 229970 261213 493297 14.7 30.3

page test 19889 14915 16457 52438 20.9 33.3

create-clo 34000 31640 31738 65672 7.5 7.1

disk src 8869 8909 8886 13993 -0.2 -0.4

dir rtns 1 35300 35564 35619 89054 -0.9 -0.7

sync disk cp 4798 4876 4871 9425 -1.5 -1.6

sync disk rw 6192 6238 6229 13155 -0.6 -0.7

sync disk wrt 6179 6301 6232 13152 -1.3 -1.9

Table 8.4: Results of AIM9 benchmarking suite. The seL4, Secure, Insecure and Native

columns show the performance of seL4::Wombat, L4::Wombat, Wombat::Insecure and Na-

tive Linux respectively. The last two columns shows the percentage performance gain of

seL4::Wombat compared to Wombat::Insecure and L4::Wombat respectively.

keeps the guest OS and its applications in separate address spaces, reducing the number of

mappings required to complete above tests. This difference is motivated from architectural

factors — it is unfair to compare this set of numbers.

The second set of numbers in the Table 8.3 compares the performance of bandwidth

benchmarks. There are no significant differences between the two systems for these bench-

marks.

In summary, seL4::Wombat and Xen on ARM shows similar performance. However,

unlike Xen on ARM, the seL4::Wombat system provides a strong formal guarantee on the

amount of kernel memory a guest OS may consume.

8.4.2 AIM9 Benchmark Suite
Results of AIM9 benchmarking suite for the four Linux configurations — seL4::Wombat,

L4::Wombat, Wombat::Insecure and Native Linux is shown in Table 8.4. The first col-

umn of this table gives the test name as it appears in the AIM9 suite. The following four

columns show the performance of seL4::Wombat, L4::Wombat, Wombat::Insecure and Na-

tive Linux respectively. The last two columns show the performance gain of seL4::Wombat

when compared with L4::Wombat and Wombat::Insecure.

Each test in the AIM9 suite runs for a fixed amount of time, performing a particular

operation and measures the average number of operations per second. Results in the above

table, with the exception of file system test, are obtained by running each test for 10s. File-

system test results are obtained by running each test only 5s. The limitation here is the

amount of ram available for the ram disk — there is not enough ram disk space to run these

tests for 10s.

Similar to the previous table, the first set of numbers in this table shows the perfor-

mance of the tests that required allocation of physical memory with in the operating sys-

133

tem. While most AIM9 test names are straightforward, some others need explanation.

The shell rtns 1 test measures the number of shell scripts that can be executed per sec-

ond and the mem rtns 1 measures the number of dynamic memory operations per second.

Similar to our previous observation, for these tests, with the exception of brk test, seL4

demonstrates performance benefits by enforcing the policy via controlled decentralisation

of resource management and thereby reducing the proxy cost.

The brk test, in contrast, shows no significant performance gain. This test modifies

the data segment by performing a brk() system call, however it never touches that mem-

ory. Upon receiving the exception IPC generated by the above system call, the Linux

server modifies its internal shadow page tables and bookkeeping structures accordingly

and replies back to the client. Moreover, because the client does not touch that memory,

the Linux server does not modify the actual page tables within the microkernel — this is

done on a page fault. As such, the brk test does not provide the opportunity to use the

seL4’s kernel memory management scheme. The slight performance gain seen for this

test essentially stems for the different levels of code optimisations rather than a conceptual

difference.

The second set of results in the table shows the performance of file-system-related

operations that do not require allocation of physical memory within the kernel. Out of

these tests, create-clo measures the number of file creations and closes per second, disk src
measures directory searches per second and dir rtns 1 measures directory operations per

second. The remaining three tests, namely, sync disk cp, sync disk rw and sync disk wrt
measure the number of disk copies, synchronous-random disk writes and synchronous se-

quential disk writes performed per second. These tests do not require any allocation of

metadata within the microkernel and thus have no mediation via proxy. Consequently, they

do not show the presence or absence of mediation overheads for the three para-virtualised

systems. The performance of these benchmarks is sensitive to the memory layout of the

RAM disk. The slight differences in performance for the three systems stems from differ-

ent cache-hit ratios.

8.5 Summary
The results reported in this chapter show that the proposed memory allocation model causes

no significant performance degradation. Furthermore, the proposed model’s ability to en-

force a system-level policy by controlling the delegation of authority yields better perfor-

mance when compared to a similar system configuration that enforces the same policy (but

with less restrictions) via mediation and shows similar performance to a system attempting

no such control over the amount of kernel memory consumption of an application. Finally,

seL4’s performance as a virtualisation platform is similar to that of Xen on ARM platform.

134

Chapter 9

Conclusion

In-kernel memory allocation to support kernel services has a direct or indirect effect on the

security and efficiency of the overall system. If there is a mismatch between the security

policy enforced for user-level applications and the kernel’s memory management policy, a

malicious application may exploit this to circumvent system security.

Existing approaches to in-kernel memory management, with the exception of caching-

based schemes, do not provide a clear relationship between the kernel’s internal behaviour

and the externally visible (API) protection model. Existing protection models only focus

on the API level, with the tacit assumption that kernel’s internal behaviour does not un-

dermine the properties enforced at the API level. As such, one cannot use the protection

model to affirm that a given application cannot circumvent the system’s security policy by

exploiting the in-kernel memory allocations. Caching-based approaches make providing

temporal guarantees difficult if not impossible — limiting the application domains of the

high assurance kernel. Moreover, the traditional approach of modifying the kernel’s mem-

ory management scheme to suit the application domain invalidates any formal assurance

made about the implementation correctness of the kernel and requires a significant effort

to reestablish refinement proofs.

Ideally, a general purpose, high-assurance security kernel should have a unified protec-

tion model that facilitates both the enforcement and reasoning about the enforcement of

different policies. This protection model should not only capture the behaviour of the API

but also that of the kernel internals.

This thesis proposed a novel, systematic approach to managing the in-kernel memory

of a high-assurance small kernel. The proposed model eliminates all implicit memory

allocations from within the kernel. All memory, without exception, is controlled explic-

itly and precisely through an externally visible, capability-based API. As such, reasoning

about and enforcing in-kernel memory management policies boils down to reasoning about

and enforcing policies on the dissemination of capabilities. Further, the thesis proposes a

formal model of authority by extending the take-grant model to control dissemination of

capabilities. The extensions proposed to the take-grant model makes it feasible to rea-

son about in-kernel memory consumption of an application, which is not possible in the

original model.

Since all policy decisions on in-kernel memory management are done by suitably au-

thorised user-level applications, one can enforce different policies simply by modifying

user-level code, rather than the assured kernel code. The model supports diverse manage-

ment policies to co-exist on the same system, by means of different user-level resource

managers.

135

The proposed extension to the take-grant model unifies kernel memory management

with the externally-visible, capability-based access-control mechanism. Thus, the pro-

posed protection model makes it feasible to apply capability-based, take-grant protection

to precisely control and reason about the memory consumption of an application. Unlike

the classic model, the extended version facilitates reasoning about, and if required, con-

trolling the precise amount of memory an application may directly or indirectly consume

by analysing and controlling the distribution of capabilities.

I have developed a formal specification of the proposed protection model using the

interactive theorem prover Isabelle/HOL. The formal analysis carried out on this model

affirms that it is capable of enforcing at least two useful policies—spatial partitioning and

isolation. All the formalisms, specifications and proofs that constitute the above analysis

are machine-checked in the Isabelle/HOL theorem prover.

Moreover, the formal analysis carried out on the extended model shows that the pro-

posed extension preserves the decidability of the classic take-grant model. This work

demonstrates that it is feasible to extend the capability-based, take-grant protection to con-

trol the in-kernel memory resources while preserving the decidability of take-grant.

Formally connecting the proposed protection model with the kernel implementation

and thereby formally connecting the proved properties with the deployed kernel is beyond

the scope of this thesis. A related project called L4.verified is working towards achieving

such a formal connection. The thesis only presents an informal connection between the

kernel API and the proposed protection model.

Performance measurements carried out on a prototype kernel implementing the pro-

posed memory-allocation model demonstrates that exporting all in-kernel memory alloca-

tions to user-land applications incurs only a small performance penalty in our experiments.

At a micro-level, the performance of the prototype kernel is approximately equal to that of

a kernel with similar functionality but with a kernel-integrated, implicit memory-allocation

scheme.

The macro-level performance characteristics of the proposed model were analysed by

using the prototype kernel as a hypervisor to support, and to enforce strict control over the

memory consumption of a para-virtualised Linux kernel. Results of standard OS bench-

marking suites were compared with two similar hypervisors setups — one which does not

attempt any control over the amount of kernel memory the guest OS may consume (Wom-
bat::Insecure), and a setup which enforces a strict limit on the amount of kernel mem-

ory by intercepting and monitoring system calls (L4::Wombat). Both Wombat::Insecure

and L4::Wombat setups use an implicit, in-kernel memory allocator to manage the ker-

nel memory allocations. Comparisons show similar performance compared to the Wom-

bat::Insecure system, and shows significant improvements over the L4::Wombat setup for

operations where memory allocation is in the critical path, and similar performance when

it is not. These performance improvements are the result of replacing the required privi-

leged, controlling intermediary with the proposed capability-based protection model that

facilitates fine-grained delegation and enforcement of spatial isolation.

In summary, the proposed memory management scheme and the associated protection

model provides the following advantages: (a) a direct relationship between the API-level

security model and in-kernel memory consumption, (b) makes it possible to reason about

and enforce different policies on in-kernel memory consumption based on authority dis-

tribution, (c) different memory management policies can be enforced by modifying the

user-level applications, rather than modifying the formally assured kernel, (d) facilitate,

fine-grained, user-level management of kernel memory, and (e) modest to no performance

136

degradation when compared to a counterpart with a in-kernel management policy.

137

Bibliography

[ABB+86] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard

Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel founda-

tion for UNIX development. In Proceedings of the 1986 Summer USENIX
Technical Conference, pages 93–112, Atlanta, GA, USA, 1986.

[AFOTH06] Jim Alves-Foss, Paul W. Oman, Carol Taylor, and Scott Harrison. The

MILS architecture for high-assurance embedded systems. International
Journal on Embedded Systems, 2:239–247, 2006.

[AIMa] Aim benchmarks. http://sourceforge.net/projects/aimbench.

[AIMb] Aim9 benchmarks. http://www.caldera.com/developers/community/
contrib/aim.html.

[AJR06] Joseph Antony, Pete P. Janes, and Alistair P. Rendell. Exploring thread

and memory placement on NUMA architectures: Solaris and Linux, Ultra-

SPARC/FirePlane and Opteron/HyperTransport. In High performance com-
puting, volume 4297 of Lecture Notes in Computer Science, pages 338–352,

Berlin Heidelberg, December 2006. Springer.

[AL91] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs.

In Proceedings of the 4th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 96–107,

1991.

[APJ+01] Mohit Aron, Yoonho Park, Trent Jaeger, Jochen Liedtke, Kevin Elphin-

stone, and Luke Deller. The SawMill framework for VM diversity. In

Proceedings of the 6th Australasian Computer Systems Architecture Con-
ference, Gold Coast, Australia, January 2001. IEEE CS Press.

[ARG89] V. Abrossimov, M. Rozier, and M. Gien. Virtual memory management

in Chorus. In Proceedings of Workshop on Progress in Distr. Operating
Sys. and Distributed System Management, page 15, Berlin, Germany, 18-19

1989. Springer-Verlag (LNCS).

[ARM04] ARM Ltd. ARM926EJ-S Technical Reference Manual, 4th edition, 2004.

[ARM05] ARM Ltd. ARM1136JF-S and ARM1136J-S Technical Reference Manual,
R1P1 edition, 2005.

[AS90] P. E. Ammann and R. S. Sandhu. Extending the creation operation in the

schematic protection model. In proc. 6th Anual Computer Security Appli-
cations, pages 340–348, Tucson, AZ, USA, March 1990. IEEE Comp. Soc.

138

http://sourceforge.net/projects/aimbench
http://www.caldera.com/developers/community/

[AS91] P. E. Ammann and R. S. Sandhu. Safety analysis for the extended schematic

protection model. In proc. IEEE Symp. Research in Security and Privacy,

pages 87–97. IEEE Comp. Soc., May 1991.

[AS92] P. E. Amman and R. S. Sandhu. Implementing transaction control expres-

sions by checking the absence of rights. In 8th Annual Computer Security
Applications Conference, pages 131–140, December 1992.

[AW88] Mark Anderson and Chris S. Wallace. Some comments on the implementa-

tion of capabilities. The Australian Computer Journal, 20(3):122–33, 1988.

[BA03] Michael D. Bennett and Neil C. Audsley. Partitioning support for the L4

microkernel. Technical Report YCS-2003-366, Dept. of Computer Science,

University of York, 2003.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of

virtualization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 164–177, Bolton Landing, NY, USA, October

2003.

[BDM99] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers:

A new facility for resource management in server systems. In Proceedings
of the 3rd USENIX Symposium on Operating Systems Design and Imple-
mentation, pages 45–58, New Orleans, LA, USA, February 1999. USENIX.

[BFF+92] Alan C. Bromberger, A. Peri Frantz, William S. Frantz, Ann C. Hardy, Nor-

man Hardy, Charles R. Landau, and Jonathan S. Shapiro. The KeyKOS

nanokernel architecture. In Proceedings of the USENIX Workshop on Mi-
crokernels and other Kernel Architectures, pages 95–112, Seattle, WA,

USA, April 1992.

[BH70] Per Brinch Hansen. The nucleus of a multiprogramming operating system.

Communications of the ACM, 13:238–250, 1970.

[Bir98] R. S. Bird. Introduction to Functional Programming Using Haskell.
Prentice-Hall, 2nd edition, 1998.

[Bis81] Matt Bishop. Hierarchical take-grant protection systems. SIGOPS Oper.
Syst. Rev., 15(5):109–122, 1981.

[Bis84] Matt Bishop. Practical Take-Grant Systems: Do They Exist? PhD thesis,

Dept. of Computer Sciences, Purdue University, West Lafayette, May 1984.

[Bis96] Matt Bishop. Conspiracy and information flow in the take-grant protection

model. Journal of Computer Security, 4(4):331–360, 1996.

[Bis02] Matthew A. Bishop. The Art and Science of Computer Security. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[Bis03] Matt Bishop. Computer Security: Art and Science. Addison-Wesley,

Boston, USA, 2003.

139

[BKW94] Kavita Bala, M. Frans Kaashoek, and William E. Weihl. Software prefetch-

ing and caching for translation lookaside buffers. In Proceedings of the
1st USENIX Symposium on Operating Systems Design and Implementation,

pages 243–253, Monterey, CA, USA, 1994. USENIX/ACM/IEEE.

[BL73] D.E. Bell and L.J. LaPadula. Secure computer systems: A mathemati-

cal model. Technical Report MTR-2547, Vol 2, MITRE Corp., Bedford,

MA, November 1973. Reprinted Journal of Computer Security, 4(2,3), pp.

239263, 1996.

[BL76] D.E. Bell and L.J. LaPadula. Secure computer system: Unified exposition

and Multics interpretation. Technical Report MTR-2997, MITRE Corp.,

March 1976.

[Bon94] Jeff Bonwick. The slab allocator: An object-caching kernel memory allo-

cator. Boston, MA, USA, Winter 1994.

[Boy09] Andrew Boyton. A verified shared capability model. In Gerwin Klein, Ralf

Huuck, and Bastian Schlich, editors, Proceedings of the 4th Workshop on
Systems Software Verification SSV’09, Electronic Notes in Computer Sci-

ence, pages 99–116, Aachen, Germany, June 2009. Elsevier. To appear.

[BS79] Matt Bishop and Lawrence Snyder. The transfer of information and author-

ity in a protection system. In Proceedings of the 7th ACM Symposium on
Operating Systems Principles, pages 45–54, New York, NY, USA, 1979.

ACM Press.

[BSP+95] Brian N. Bershad, Stefan Savage, Przemysław Pardyak, Emin Gün Sirer,

Marc E. Fiuczynski, David Becker, Craig Chambers, and Susan Eggers.

Extensibility, safety and performance in the SPIN operating system. In

Proceedings of the 15th ACM Symposium on Operating Systems Principles,

pages 267–284, Copper Mountain, CO, USA, December 1995.

[CD94] David R. Cheriton and K. Duda. A caching model of operating system

functionality. In Proceedings of the 1st USENIX Symposium on Operating
Systems Design and Implementation, pages 14–17, Monterey, CA, USA,

November 1994.

[CJ06] Sangyeun Cho and Lei Jin. Managing distributed, shared L2 caches through

OS-level page allocation. In MICRO 39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 455–468,

Washington, DC, USA, 2006. IEEE Computer Society.

[CKS08] David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state

monads and scalable refinement. In Otmane Ait Mohamed, César Mu noz,

and Sofiène Tahar, editors, Proceedings of the 21st International Confer-
ence on Theorem Proving in Higher Order Logics, volume 5170 of Lec-
ture Notes in Computer Science, pages 167–182, Montreal, Canada, August

2008. Springer.

[Com] Xen Open Source Community. Xenarm. http://wiki.xensource.com/
xenwiki/XenARM. Last visited 2008-02-10.

140

http://wiki.xensource.com/

[Coy] Coytos web site. URL http://www.coyotos.org/. Last visited 10.04.2009.

[CYC+01] Andy Chou, Jun-Feng Yang, Benjamin Chelf, Seth Hallem, and Dawson

Engler. An empirical study of operating systems errors. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles, pages 73–88,

Lake Louise, Alta, Canada, October 2001.

[Dac93] Marc Dacier. A Petri Net representation of the take-grant model. In pro-
ceedings of the Computer Security Foundations Workshop VI (CSFW ’93),
pages 99–108, Washington - Brussels - Tokyo, June 1993. IEEE.

[dBB08a] Willem de Bruijn and Herbert Bos. Beltway buffers: avoiding the OS traffic

jam. In 27th IEEE International Conference on Computer Communications
(INFOCOM 2008), Phoenix, Arizona, April 2008.

[dBB08b] Willem de Bruijn and Herbert Bos. PipesFS: Fast Linux I/O in the Unix

tradition. ACM Operating Systems Review, 42(5):55–63, July 2008.

[Den76] Dorothy. E. Denning. A lattice model of secure information flow. Commu-
nications of the ACM, 19:236–242, 1976.

[DJ01] Jörg Desel and Gabriel Juhás. “What is a Petri Net?”. Lecture Notes in
Computer Science, 2128:1–25, 2001.

[dL05] Benot des Ligneris. Virtualization of Linux based computers: The Linux-

VServer project. Annual International Symposium on High Performance
Computing Systems and Applications, 0:340–346, 2005.

[dRE98] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-
Oriented Proof Methods and their Comparison. Number 47 in Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University

Press, 1998.

[Dub98] Rohit Dube. A comparison of the memory management sub-system in

FreeBSD and Linux. Technical Report CS-TR-3929, Department of Com-

puter Science, University of Maryland, College Park, MD20742, September

1998.

[DVH66] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multipro-

grammed computations. Communications of the ACM, 9:143–155, 1966.

[EGK95] Dawson R. Engler, Sandeep K. Gupta, and M. Frans Kaashoek. AVM:

Application-level virtual memory. In Proceedings of the 5th Workshop on
Hot Topics in Operating Systems, pages 72–77, May 1995.

[EH01] Antony Edwards and Gernot Heiser. Secure OS extensibility needn’t cost

an arm and a leg. In Proceedings of the 8th Workshop on Hot Topics in
Operating Systems, page 168, Schloss Elmau, Germany, May 2001.

[EKD+07] Kevin Elphinstone, Gerwin Klein, Philip Derrin, Timothy Roscoe, and Ger-

not Heiser. Towards a practical, verified kernel. In Proceedings of the 11th
Workshop on Hot Topics in Operating Systems, pages 117–122, San Diego,

CA, USA, May 2007.

141

http://www.coyotos.org/

[EKE07] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. Veri-

fied protection model of the seL4 microkernel. Technical Report NRL-

1474, NICTA, October 2007. Available from http://ertos.nicta.com.au/
publications/papers/Elkaduwe GE 07.pdf.

[EKE08] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. Verified pro-

tection model of the seL4 microkernel. In Jim Woodcock and Natarajan

Shankar, editors, Proceedings of VSTTE 2008 — Verified Software: Theo-
ries, Tools and Experiments, volume 5295 of Lecture Notes in Computer
Science, pages 99–114, Toronto, Canada, October 2008. Springer.

[EKK06] Kevin Elphinstone, Gerwin Klein, and Rafal Kolanski. Formalising a high-

performance microkernel. In Rustan Leino, editor, Workshop on Verified
Software: Theories, Tools, and Experiments (VSTTE 06), Microsoft Re-

search Technical Report MSR-TR-2006-117, pages 1–7, Seattle, USA, Au-

gust 2006.

[EKV+05] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey,

David Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert

Morris. Labels and event processes in the Asbestos operating system. In

Proceedings of the 20th ACM Symposium on Operating Systems Principles,

pages 17–30, New York, NY, USA, 2005. ACM.

[Elp99] Kevin Elphinstone. Virtual Memory in a 64-bit Microkernel. PhD thesis,

School of Computer Science and Engineering, University of NSW, Sydney

2052, Australia, March 1999. Available from publications page at http:
//www.disy.cse.unsw.edu.au/.

[ERT] ERTOS. Iguana user manual. Available from http://ertos.nicta.com.au/
software/kenge/iguana-project/latest/userman.pdf.

[FB96] Jeremy Frank and Matt Bishop. Extending the take-grant protection system.

Technical report, Department of Computer Science, University of California

at Davis, 1996.

[FN79] Richard J. Feiertag and Peter G. Neumann. The foundations of a provably

secure operating system (PSOS). In AFIPS Conference Proceedings, 1979
National Computer Conference, pages 329–334, New York, NY, USA, June

1979.

[Fre06] FreeBSD Documentation Project. FreeBSD Architecture Handbook, 2006.

http://www.freebsd.org/doc/en/books/arch-handbook/.

[Gli84] Virgil D. Gligor. A note on denial-of-service in operating systems. IEEE
Trans. Softw. Eng., 10(3):320–324, 1984.

[Han99] Steven M. Hand. Self-paging in the Nemesis operating system. In Pro-
ceedings of the 3rd USENIX Symposium on Operating Systems Design and
Implementation, pages 73–86, New Orleans, LA, USA, February 1999.

USENIX.

142

http://ertos.nicta.com.au/
http://www.disy.cse.unsw.edu.au/
http://ertos.nicta.com.au/
http://www.freebsd.org/doc/en/books/arch-handbook/

[Har84] Michael A. Harrison. Theoretical issues concerning protection in operating

systems. Technical report, Berkeley, CA, USA, 1984.

[Har85] Norman Hardy. KeyKOS architecture. ACM Operating Systems Review,

19(4):8–25, October 1985.

[Hat97] Les Hatton. Reexamining the fault density-component size connection.

IEEE Software, 14(2):89–97, 1997.

[HBG+06] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.

Tanenbaum. MINIX 3: A highly reliable, self-repairing operating system.

ACM Operating Systems Review, 40(3):80–89, July 2006.

[HBG+07] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.

Tanenbaum. Failure resilience for device drivers. In DSN ’07: Proceed-
ings of the 37th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pages 41–50, Washington, DC, USA, 2007.

IEEE Computer Society.

[HE03] Andreas Haeberlen and Kevin Elphinstone. User-level management of ker-

nel memory. In Proceedings of the 8th Asia-Pacific Computer Systems Ar-
chitecture Conference, volume 2823 of Lecture Notes in Computer Science,

Aizu-Wakamatsu City, Japan, September 2003. Springer Verlag.

[HHL+97] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg,

and Jean Wolter. The performance of μ-kernel-based systems. In Proceed-
ings of the 16th ACM Symposium on Operating Systems Principles, pages

66–77, St. Malo, France, October 1997.

[Hil92] Dan Hildebrand. An architectural overview of QNX. In Proceedings of the
USENIX Workshop on Microkernels and other Kernel Architectures, pages

113–126, Seattle, WA, USA, April 1992.

[HPHS04] Michael Hohmuth, Michael Peter, Hermann Härtig, and Jonathan S.

Shapiro. Reducing TCB size by using untrusted components — small ker-

nels versus virtual-machine monitors. In Proceedings of the 11th SIGOPS
European Workshop, Leuven, Belgium, September 2004.

[HR75] Michael A. Harrison and Walter L. Ruzzo. On protection in operating sys-

tems. In Proceedings of the 5th ACM Symposium on Operating Systems
Principles, pages 14–24. ACM, 1975.

[HR78] M. Harrison and W. Ruzzo. Monotonic protection systems. In R. DeMillo,

D. Dobkin, A. Jones, and R. Lipton, editors, Foundations of Secure Compu-
tation, pages 337–365. Academic Press, New York, USA, 1978. Monotonic

HRU.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection

in operating systems. Communications of the ACM, pages 561–471, 1976.

[HSH+08] Joo-Young Hwang, Sang-bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-

Min Ryu, Seong-Yeol Park, and Chul-Ryun Kim. Xen on ARM: System

143

virtualization using Xen hypervisor for ARM-based secure mobile phones.

In Proceedings of the 5th IEEE Consumer Communications and Networking
Conference, pages 257–261, Las Vegas, NV, USA, January 2008.

[HT05a] Michael Hohmuth and Hendrik Tews. The VFiasco approach for a verified

operating system. In Proceedings of the 2nd Workshop on Programming
Languages and Operating Systems, July 2005.

[HT05b] Michael Hohmuth and Hendrik Tews. The VFiasco approach for a verified

operating system. In Proceedings of the 2nd Workshop on Programming
Languages and Operating Systems, Glasgow, UK, July 2005.

[IAD07] Information Assurance Directorate. U.S. Government Protection Profile
for Separation Kernels in Environments Requiring High Robustness, June

2007. Version 1.03. http://www.niap-ccevs.org/cc-scheme/pp/pp.cfm/
id/pp skpp hr v1.03/.

[IBM02] IBM K42 Team. Utilizing Linux Kernel Components in K42, August 2002.

Available from http://www.research.ibm.com/K42/.

[Inc] Sun Microsystems Inc. Solaris resource manager 1.0 (white paper). http:
//www.sun.com/software/white-papers/wp-srm/. Last visited 2008-02-

10.

[Kau05a] Bernhard Kauer. L4.sec implementation — kernel memory management.

Dipl. thesis, Dresden University of Technology, May 2005.

[Kau05b] Bernhard Kauer. L4.sec implementation: Kernel memory management.

Diploma thesis, Chair for Operating Systems, Dresden University of Tech-

nology, May 2005.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David

Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-

ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.

seL4: Formal verification of an OS kernel. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, Big Sky, MT, USA, October

2009. ACM.

[Kle09] Gerwin Klein. Operating system verification — an overview. Sādhanā,

34(1):27–69, February 2009.

[Lam71] Butler W. Lampson. Protection. In Proceedings of the 5th Princeton Sym-
posium on Information Sciences and Systems, pages 437–443, Princeton

University, March 1971. Reprinted in ACM Operating Systems Review,

8(1), January 1974, pp 18–24.

[Lam73] Butler W. Lampson. A note on the confinement problem. Communications
of the ACM, 16:613–615, 1973.

[Lan81] Carl E. Landwehr. Formal models for computer security. ACM Comput.
Surv., 13(3):247–278, 1981.

144

http://www.niap-ccevs.org/cc-scheme/pp/pp.cfm/
http://www.research.ibm.com/K42/
http://www.sun.com/software/white-papers/wp-srm/

[LE96] Jochen Liedtke and Kevin Elphinstone. Guarded page tables on MIPS

R4600 or an exercise in architecture-dependent micro optimization. ACM
Operating Systems Review, 30(1):4–15, January 1996.

[LES+97] Jochen Liedtke, Kevin Elphinstone, Sebastian Schönberg, Herrman Härtig,

Gernot Heiser, Nayeem Islam, and Trent Jaeger. Achieved IPC performance

(still the foundation for extensibility). In Proceedings of the 6th Workshop
on Hot Topics in Operating Systems, pages 28–31, Cape Cod, MA, USA,

May 1997.

[LHH97] Jochen Liedtke, Hermann Härtig, and Michael Hohmuth. OS-controlled

cache predictability for real-time systems. In Proceedings of the Third IEEE
Real-Time Technology and Applications Symposium (RTAS ’97), pages

213–227, Montreal, Canada, June 1997. IEEE.

[Lie93] Jochen Liedtke. Improving IPC by kernel design. In Proceedings of the
14th ACM Symposium on Operating Systems Principles, pages 175–188,

Asheville, NC, USA, December 1993.

[Lie95] Jochen Liedtke. On μ-kernel construction. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles, pages 237–250, Cop-

per Mountain, CO, USA, December 1995.

[Lie96] Jochen Liedtke. Towards real microkernels. Communications of the ACM,

39(9):70–77, September 1996.

[LIJ97] Jochen Liedtke, Nayeem Islam, and Trent Jaeger. Preventing denial-of-

service attacks on a μ-kernel for WebOSes. In Proceedings of the 6th Work-
shop on Hot Topics in Operating Systems, pages 73–79, Cape Cod, MA,

USA, May 1997. IEEE.

[LM82] Abe Lockman and Naftaly H. Minsky. Unidirectional transport of rights

and take-grant control. IEEE Trans. Softw. Engin, 8(6):597–604, November

1982.

[LS77] R. J. Lipton and L. Snyder. A linear time algorithm for deciding subject

security. J. ACM, 24(3):455–464, 1977. Original Take-grant paper.

[LvSH05] Ben Leslie, Carl van Schaik, and Gernot Heiser. Wombat: A portable

user-mode Linux for embedded systems. In Proceedings of the 6th
Linux.Conf.Au, Canberra, April 2005.

[MBKQ96] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S.

Quarterman. The Design and Implementation of the 4.4BSD Operating Sys-
tem. Addison-Wesley, 1996.

[McL85] J. McLean. A comment on the ‘basic security theorem’ of Bell and La-

Padula. IPL: Information Processing Letters, 20, 1985.

[Min84] Naftaly H. Minsky. Selective and locally controlled transport of privileges.

ACM Trans. Program. Lang. Syst., 6(4):573–602, 1984.

145

[MPO08] Memory placement optimization. opensolaris.org/os/community/
performance/mpo overview.pdf, 2008. Last visited 2008-02-10.

[MS96] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance

analysis. In Proceedings of the 1996 USENIX Annual Technical Conference,

San Diego, CA, USA, January 1996.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, August 1990.

[MYHH08] H. Min, S. Yi, J. Heo, and J. Hong. Slab-based memory management

scheme for sensor operating system. In T. F. Gonzalez, editor, Proceed-
ings of Parallel and Distributed Computing and Systems, Orlando, Florida,

USA., November 2008. ACTA Press.

[Nem00] University of Cambridge Computer Laboratory. The Nemesis System Doc-
umentation, 2nd edition, January 2000.

[NF03] Peter G. Neumann and Richard J. Feiertag. PSOS revisited. In 19th Annual
Computer Security Applications Conference, Las Vegas, December 2003.

[NIC05] National ICT Australia. NICTA L4-embedded Kernel Reference Manual
Version N1, October 2005. http://ertos.nicta.com.au/Software/systems/
kenge/pistachio/refman.pdf.

[NPW02] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[Nuu95] Esko Nuutila. Efficient transitive closure computation in large digraphs.

PhD thesis, Helsinki University of Technology, June 1995.

[Ope] Open Kernel Labs. OKL4 community site. http://okl4.org.

[osU08] Heise open source UK. Kernel log: More than 10 million lines

of Linux source files. http://www.heise-online.co.uk/open/
Kernel-Log-More-than-10-million-lines-of-Linux-source-files--/
news/111759, October 2008. Visited Feb. 2009.

[PT04] Daniel Price and Andrew Tucker. Solaris zones: Operating system sup-

port for consolidating commercial workloads. In Proceedings of the 18th
USENIX Large Installation System Administration Conference, Atlanta,

GA, USA, November 2004.

[RDH+96] John Rosenberg, Alan Dearle, David Hulse, Anders Lindström, and Stephen

Norris. Operating system support for persistent and recoverable computa-

tions. Communications of the ACM, 39(9):62–69, September 1996.

[RF97] Dickon Reed and Robin Fairbairns. Nemesis Kernel Overview, May 1997.

[RMSK00] John Reumann, Ashish Mehra, Kang G. Shin, and Dilip Kandlur. Virtual

services: a new abstraction for server consolidation. In ATEC ’00: Proceed-
ings of the annual conference on USENIX Annual Technical Conference,

pages 10–10, Berkeley, CA, USA, 2000. USENIX Association.

146

http://ertos.nicta.com.au/Software/systems/
http://okl4.org
http://www.heise-online.co.uk/open/

[Rus81] John M. Rushby. Design and verification of secure systems. In Proceedings
of the 8th ACM Symposium on Operating Systems Principles, pages 12–21,

1981.

[Rus99] John Rushby. Partitioning for safety and security: Requirements, mecha-

nisms, and assurance. NASA Contractor Report CR-1999-209347, NASA

Langley Research Center, June 1999. Also to be issued by the FAA.

[San88] Ravinderpal Singh Sandhu. The schematic protection model: Its defini-

tion and analysis for acyclic attenuating schemes. Journal of the ACM,

35(2):404–432, April 1988.

[San92a] R. S. Sandhu. The typed access matrix model. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 122–136. IEEE, 1992.

[San92b] R. S. Sandhu. Undecidability of safety for the schematic protection model

with cyclic creates. J. Comput. Syst. Sci, 44(1):141–159, 1992.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security, 3(1):30–50, February 2000.

[SESS96] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith.

Dealing with disaster: Surviving misbehaved kernel extensions. In Pro-
ceedings of the 2nd USENIX Symposium on Operating Systems Design and
Implementation, pages 213–228, November 1996.

[SFS96] Jonathan S. Shapiro, David F. Faber, and Jonathan M. Smith. State caching

in the EROS kernel—implementing efficient orthogonal peristence in a pure

capability system. In Proceedings of the 5th IEEE International Workshop
on Object Orientation in Operating Systems, pages 89–100, Seattle, WA,

USA, November 1996.

[Sha98] Jonathan S. Shapiro. EROS Object Reference Manual, 1998.

[Sha99] Jonathan S. Shapiro. EROS: A Capability System. PhD thesis, University

of Pennsylvania, 1999.

[Sha03] Jonathan S. Shapiro. The practical application of a decidable access model.

Technical Report SRL-2003-04, SRL, Baltimore, MD 21218, November

2003.

[SJV+05] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J. L. Griffin,

and L. van Doorn. Building a MAC-based security architecture for the Xen

open-source hypervisor. In 21st Annual Computer Security Applications
Conference, 2005.

[SLQP07] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A tiny

hypervisor to provide lifetime kernel code integrity for commodity OSes. In

Proceedings of the 16th ACM Symposium on Operating Systems Principles,

pages 335–350, Stevenson, WA, USA, October 2007.

147

[Sny81] Lawrence Snyder. Theft and conspiracy in the Take-Grant protection

model. Journal of Computer and System Sciences, 23(3):333–347, Decem-

ber 1981.

[SP99] Oliver Spatscheck and Larry L. Petersen. Defending against denial of ser-

vice attacks in Scout. In Proceedings of the 3rd USENIX Symposium on
Operating Systems Design and Implementation, New Orleans, Louisiana,

February 1999.

[SPHH06] Lenin Singaravelu, Carlton Pu, Hermann Härtig, and Christian Helmuth.

Reducing TCB complexity for security-sensitive applications: Three case

studies. In Proceedings of the 1st EuroSys Conference, pages 161–174,

Leuven, Belgium, April 2006.

[SS92] R. S. Sandhu and G. S. Suri. Non-monotonic transformation of access

rights. In Proceedings of the IEEE Symposium on Security and Privacy,

pages 148–163, 1992.

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast

capability system. In Proceedings of the 17th ACM Symposium on Oper-
ating Systems Principles, pages 170–185, Charleston, SC, USA, December

1999.

[SSJ+05] Shahriari, Sadoddin, Jalili, Zakeri, and Omidian. Network vulnerability

analysis through vulnerability take-grant model (VTG). In ICIS: Inter-
national Conference on Information and Communications Security (ICIS),
LNCS, 2005.

[Sto81] Michael Stonebraker. Operating system support for database management.

Communications of the ACM, 24:412–418, 1981.

[SW00] Jonathan S. Shapiro and Samuel Weber. Verifying the EROS confinement

mechanism. In IEEE Symposium on Security and Privacy, pages 166–181,

Washington, DC, USA, May 2000.

[Szm01] Cristan Szmajda. Calypso: A portable translation layer. In K. Elphin-

stone, editor, 2nd Workshop on Microkernels and Microkernel-based Sys-
tems, Lake Louise, Alta, Canada, October 2001.

[TC04] Andrew Tucker and David Comay. Solaris zones: Operating system support

for server consolidation. In Proceedings of the 3rd USENIX Virtual Machine
Symposium (USENIX-VM), 2004.

[TKH05] Harvey Tuch, Gerwin Klein, and Gernot Heiser. OS verification — now!

In Proceedings of the 10th Workshop on Hot Topics in Operating Systems,

pages 7–12, Santa Fe, NM, USA, June 2005. USENIX.

[TLFH96] P. Tullmann, J. Lepreau, B. Ford, and M. Hibler. User-level checkpointing

through exportable kernel state. In IWOOOS ’96: proc 5th International
Workshop on Object Orientation in Operating Systems, pages 85–88, Wash-

ington, DC, USA, 1996. IEEE Computer Society.

148

[TP98] Jonathon Tidswell and John Potter. A dynamically typed access control

model. In Proceedings of the 3rd Australian Conference on Information
Security and Privacy, July 1998.

[TP01] Jonathon Tidswell and John Potter. A graphical definition of authorization

schema in the DTAC model. In Proceedings of the sixth ACM symposium
on Access control models and technologies, pages 109 – 120, 2001.

[VDGR96] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Op-

erating system support for improving data locality on CC-NUMA compute

servers. In ASPLOS-VII: Proceedings of the seventh international confer-
ence on Architectural support for programming languages and operating
systems, pages 279–289, New York, NY, USA, 1996. ACM.

[VEK+07] Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler, Maxwell Krohn,

Cliff Frey, David Ziegler, Frans Kaashoek, Robert Morris, and David

Mazières. Labels and event processes in the Asbestos operating system.

ACM Trans. Comput. Syst., 25(4):11–53, 2007.

[vR01] Rik van Riel. Page replacement in Linux 2.4 memory management. In

Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Con-
ference, pages 165–172, Berkeley, CA, USA, 2001. USENIX Association.

[Wal02] Carl A. Waldspurger. Memory resource management in VMware ESX

server. In Proceedings of the 5th USENIX Symposium on Operating Sys-
tems Design and Implementation, Boston, MA, USA, 2002.

[WCC+74] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pol-

lack. HYDRA: The kernel of a multiprocessor operating system. Commu-
nications of the ACM, 17:337–345, 1974.

[Whe01] David A. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/,
2001.

[WSG02] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and per-

formance in the Denali isolation kernel. In Proceedings of the 5th USENIX
Symposium on Operating Systems Design and Implementation, Boston,

MA, USA, December 2002.

[Wu90] M. S. Wu. Hierarchical protection systems. In IEEE Symposium on Security
and Privacy, pages 113–123, Los Alamitos, Ca., USA, April 1990. IEEE

Computer Society Press.

[YTR+87] Michael Young, Avadis Tevanian, Richard Rashid, David Golub, Jeffrey Ep-

pinger, Jonathan Chew, William Bolosky, David Black, and Robert Baron.

The duality of memory and communication in the implementation of a mul-

tiprocessor operating system. In Proceedings of the 11th ACM Symposium
on Operating Systems Principles, pages 63–76, 1987.

[ZBWKM06] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David

Mazières. Making information flow explicit in HiStar. In Proceedings of the
7th USENIX Symposium on Operating Systems Design and Implementation,

pages 263–278, Berkeley, CA, USA, 2006. USENIX Association.

149

http://www.dwheeler.com/sloccount/

[ZDS09] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page

coloring-based multi-core cache management. In Proceedings of the 4th
EuroSys Conference, Nuremberg, Germany, April 2009.

[ZLN05] Xinwen Zhang, Yingjiu Li, and Divya Nalla. An attribute-based access

matrix model. In SAC ’05: Proceedings of the 2005 ACM symposium on
Applied computing, pages 359–363, New York, NY, USA, 2005. ACM.

150

	Title Page - A Principled Approach To Kernel Memory Management
	Thesis/Dissertation Sheet
	Related publications
	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Chapter 2 - RelatedWork
	Chapter 3 - Managing Kernel Memory
	Chapter 4 - Conceptual Model
	Chapter 5 - Formal Model of Authority
	Chapter 6 - Formal Analysis of the Protection Model
	Chapter 7 - seL4::Pistachio
	Chapter 8 - Performance Evaluation
	Chapter 9 - Conclusion
	Bibliography

