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method, with the U-Net++ in the first stage and the U-Net in the second. More convolutional blocks are added after the input and before the output layers 
of the multi-stage approach to better extract the low- and high-level features. A new concatenation-based fusion structure, which is incorporated in the 
architecture to allow deep supervision, helps to increase the depth of the network without accelerating the gradient-vanishing problem. Then, more 
convolutional layers are added after each concatenation of the fusion structure to extract more representative features. The proposed network is 
compared with the U-Net, U-Net++ and two-stage U-Net (TS-U Net) on the neck dataset, with the results indicating that it outperforms the others. In the 
second approach, an explicit attention method, in which the attention is performed through a ROI evolved from ground truth via dilation, is proposed. It 
does not require any additional CNN, as does a cascaded approach, to localize the ROI. Attention in a CNN is sensitive with respect to the area of the 
ROI. This dilated ROI is more capable of capturing relevant regions and suppressing irrelevant ones than a bounding box and region-level coarse 
annotation, and is used during training of any CNN. Coarse annotation, which does not require any detailed pixel wise delineation that can be performed 
by any novice person, is used during testing. This proposed ROI-based attention method, which can handle compact and similar small multiple classes 
with objects with large variabilities, is compared with the automatic A-Unet and U-Net, and performs best. 
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Abstract

Whiplash, cervical dystonia (CD), neck pain and work-related upper limb disor-

der (WRULD) are the most common diseases in the cervical region. Headaches,

stiffness, sensory disturbance to the legs and arms, optical problems, aching in the

back and shoulder, and auditory and visual problems are common symptoms seen

in patients with these diseases. CD patients may also suffer tormenting spasticity

in some neck muscles, with the symptoms possibly being acute and persisting for a

long time, sometimes a lifetime. Whiplash-associated disorders (WADs) may occur

due to sudden forward and backward movements of the head and neck occurring

during a sporting activity or vehicle or domestic accident. These diseases affect

private industries, insurance companies and governments, with the socio-economic

costs significantly related to work absences, long-term sick leave, early disability

and disability support pensions, health care expenses, reduced productivity and

insurance claims. Therefore, diagnosing and treating neck-related diseases are

important issues in clinical practice.

The reason for these afflictions resulting from accident is the impairment of the

cervical muscles which undergo atrophy or pseudo-hypertrophy due to fat infiltrat-

ing into them. These morphological changes have to be determined by identifying

and quantifying their bio-markers before applying any medical intervention. Vol-

umetric studies of neck muscles are reliable indicators of the proper treatments

to apply. Radiation therapy, chemotherapy, injection of a toxin or surgery could

be possible ways of treating these diseases. However, the dosages required should

be precise because the neck region contains some sensitive organs, such as nerves,

blood vessels and the trachea and spinal cord.
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Image registration and deep learning-based segmentation can help to deter-

mine appropriate treatments by analyzing the neck muscles. However, this is a

challenging task for medical images due to complexities such as many muscles

crossing multiple joints and attaching to many bones. Also, their shapes and

sizes vary greatly across populations whereas their cross-sectional areas (CSAs)

do not change in proportion to the heights and weights of individuals, with their

sizes varying more significantly between males and females than ages. Therefore,

the neck’s anatomical variabilities are much greater than those of other parts of

the human body. Some other challenges which make analyzing neck muscles very

difficult are their compactness, similar gray-level appearances, intra-muscular fat,

sliding due to cardiac and respiratory motions, false boundaries created by intra-

muscular fat, low resolution and contrast in medical images, noise, inhomogeneity

and background clutter with the same composition and intensity. Furthermore, a

patient’s mode, position and neck movements during the capture of an image cre-

ate variability. However, very little significant research work has been conducted

on analyzing neck muscles.

Although previous image registration efforts form a strong basis for many med-

ical applications, none can satisfy the requirements of all of them because of the

challenges associated with their implementation and low accuracy which could be

due to anatomical complexities and variabilities or the artefacts of imaging devices.

In existing methods, multi-resolution- and heuristic-based methods are popular.

However, the above issues cause conventional multi-resolution-based registration

methods to be trapped in local minima due to their low degrees of freedom in their

geometrical transforms. Although heuristic-based methods are good at handling

large mismatches, they require pre-segmentation and are computationally expen-

sive. Also, current deformable methods often face statistical instability problems

and many local optima when dealing with small mismatches. On the other hand,
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deep learning-based methods have achieved significant success over the last few

years. Although a deeper network can learn more complex features and yields bet-

ter performances, its depth cannot be increased as this would cause the gradient

to vanish during training and result in training difficulties. Recently, researchers

have focused on attention mechanisms for deep learning but current attention

models face a challenge in the case of an application with compact and similar

small multiple classes, large variability, low contrast and noise. The focus of this

dissertation is on the design of 3D-3D image registration approaches as well as

deep learning-based semantic segmentation methods for analyzing neck muscles.

In the first part of this thesis, a novel object-constrained hierarchical regis-

tration framework for aligning inter-subject neck muscles is proposed. Firstly,

to handle large-scale local minima, it uses a coarse registration technique which

optimizes a new edge position difference (EPD) similarity measure to align large

mismatches. Also, a new transformation based on the discrete periodic spline

wavelet (DPSW), affine and free-form-deformation (FFD) transformations are ex-

ploited. Secondly, to avoid the monotonous nature of using transformations in

multiple stages, a fine registration technique, which uses a double-pushing system

by changing the edges in the EPD and switching the transformation’s resolutions,

is designed to align small mismatches. The EPD helps in both the coarse and

fine techniques to implement object-constrained registration via controlling edges

which is not possible using traditional similarity measures. Experiments are per-

formed on clinical 3D magnetic resonance imaging (MRI) scans of the neck, with

the results showing that the EPD is more effective than the mutual information

(MI) and the sum of squared difference (SSD) measures in terms of the volumet-

ric dice similarity coefficient (DSC). Also, the proposed method is compared with

two state-of-the-art approaches with ablation studies of inter-subject deformable

registration and achieves better accuracy, robustness and consistency.
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However, as this method is computationally complex and has a problem han-

dling large-scale anatomical variabilities, another 3D-3D registration framework

with two novel contributions is proposed in the second part of this thesis. Firstly,

a two-stage heuristic search optimization technique for handling large mismatches,

which uses a minimal user hypothesis regarding these mismatches and is compu-

tationally fast, is introduced. It brings a moving image hierarchically closer to

a fixed one using MI and EPD similarity measures in the coarse and fine stages,

respectively, while the images do not require pre-segmentation as is necessary in

traditional heuristic optimization-based techniques. Secondly, a region of inter-

est (ROI) EPD-based registration framework for handling small mismatches using

salient anatomical information (AI), in which a convex objective function is formed

through a unique shape created from the desired objects in the ROI, is proposed. It

is compared with two state-of-the-art methods on a neck dataset, with the results

showing that it is superior in terms of accuracy and is computationally fast.

In the last part of this thesis, an evaluation study of recent U-Net-based convo-

lutional neural networks (CNNs) is performed on a neck dataset. It comprises 6 re-

cent models, the U-Net, U-Net with a conditional random field (CRF-Unet), atten-

tion U-Net (A-Unet), nested U-Net or U-Net++, multi-feature pyramid (MFP)-

Unet and recurrent residual U-Net (R2Unet) and 4 with more comprehensive

modifications, the multi-scale U-Net (MS-Unet), parallel multi-scale U-Net (PMS-

Unet), recurrent residual attention U-Net (R2A-Unet) and R2A-Unet++ in neck

muscles segmentation, with analyses of the numerical results indicating that the

R2Unet architecture achieves the best accuracy. Also, two deep learning-based

semantic segmentation approaches are proposed. In the first, a new two-stage

U-Net++ (TS-UNet++) uses two different types of deep CNNs (DCNNs) rather

than one similar to the traditional multi-stage method, with the U-Net++ in the

first stage and the U-Net in the second. More convolutional blocks are added
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after the input and before the output layers of the multi-stage approach to better

extract the low- and high-level features. A new concatenation-based fusion struc-

ture, which is incorporated in the architecture to allow deep supervision, helps

to increase the depth of the network without accelerating the gradient-vanishing

problem. Then, more convolutional layers are added after each concatenation of

the fusion structure to extract more representative features. The proposed net-

work is compared with the U-Net, U-Net++ and two-stage U-Net (TS-UNet) on

the neck dataset, with the results indicating that it outperforms the others. In

the second approach, an explicit attention method, in which the attention is per-

formed through a ROI evolved from ground truth via dilation, is proposed. It does

not require any additional CNN, as does a cascaded approach, to localize the ROI.

Attention in a CNN is sensitive with respect to the area of the ROI. This dilated

ROI is more capable of capturing relevant regions and suppressing irrelevant ones

than a bounding box and region-level coarse annotation, and is used during train-

ing of any CNN. Coarse annotation, which does not require any detailed pixel wise

delineation that can be performed by any novice person, is used during testing.

This proposed ROI-based attention method, which can handle compact and sim-

ilar small multiple classes with objects with large variabilities, is compared with

the automatic A-Unet and U-Net, and performs best.
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Chapter 1

Introduction

Whiplash, cervical dystonia (CD), work-related upper limb disorder (WRULD)

and neck pain are the most common diseases in the cervical region [8–10]. Whiplash

covers a range of injuries caused by the sudden acceleration and deceleration as-

sociated with a motor vehicle accident. Its symptoms include neck pain, stiffness,

headaches, aches in the back and shoulder, sensory disturbances to the legs and

arms, and auditory and visual problems [11]. CD is another prevalent neurological

condition in the cervical musculature which causes tormenting spasticity in some

muscles [10]. The estimated prevalence of significant episodes of neck pain in an

affected person’s lifetime is 40 to 70 per cent [12]. Furthermore, neck pain results

in significant socio-economic costs related to healthcare expenses, work absences,

reduced productivity and insurance claims [13–15]. It also affects governments and

other industries which have to pay sufferers long-term sick leave as well as early

disability and disability support pensions. More than 430,000 people claimed com-

pensation for whiplash injuries in the United Kingdom in 2007 [14]. Another study

by the state insurance regulatory authority in NSW, Australia, revealed that, since

2007, 46% of compulsory third-party health insurance claims in that state were for

whiplash-associated disorders (WADs) [15], with almost half these patients never

completely recovering and almost a quarter suffering a chronic pain-related dis-

ability [16]. Patients may present with either acute pain, particularly as a result

of trauma such as that experienced in a motor vehicle accident, or more chronic

pain. The cervical muscles of a whiplash patient undergo pseudo-hypertrophy or

1
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atrophy in different inter-vertebral levels [9, 17]. The cost of WRULDs has been

estimated at between 0.2 and 0.5 percent of the gross national products (GNPs)

of countries in the EU [18]. As neck pain is rated the 4th most serious of 291

disorders in the Global Burden of Disease Study (2010) [19], in order to apply

appropriate medical interventions, muscle modeling is required to identify the lo-

cations of morphological variations in the cervical region which contains many

other sensitive organs, such as blood vessels, nerves, the trachea and spinal cord.

Therefore, the diagnosis and treatment of neck-related diseases are important in

clinical practice.

Although image registration for the neck region and segmentation of the neck

muscles will help a doctor analyze these muscles in order to apply proper medi-

cal intervention, none of the existing registration and segmentation methods can

handle the related challenges, such as the anatomical variability, compactness,

intra-muscular fat and background clutter in medical images and their low reso-

lution and contrast. Therefore, this dissertation focuses on designing image reg-

istration algorithms for neck regions and segmentation methods for neck muscles

to overcome these issues.

The remainder of this chapter is organized as follows: in Section 1.1, the rea-

sons for analyzing neck muscles are explained; in Section 1.2, the roles of medical

image registration and deep learning-based semantic segmentation are described;

in Section 1.3, the challenges of and motivation for this research are discussed; in

Section 1.4, the contributions of this study are provided; in Section 1.5, an outline

of this thesis is presented; and, in Section 1.6, the publications related to this

dissertation are listed.
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1.1 Necessity for Neck Muscles Analysis

In some types of neck pain, although the cervical muscles appear on magnetic

resonance (MR) images to undergo pseudohypertrophy due to fat infiltrating into

them or atrophy, these changes are inconsistent between the muscles and verte-

bral levels [8, 9, 17]. Elliott et al. [9] acquired relatively larger cross-sectional areas

for the semispinalis capitis, multifidus, splenius capitis, sternocleidomastoid and

deep cervical flexors’ cervical muscles, and smaller ones for the semispinalis capitis

and semispinalis cervicus muscles from whiplash patients than healthy individu-

als. Bismil and Bismil [20] found that a whiplash event may damage the trapezius

muscle through muscle contraction. In clinical practice, physicians often have to

identify which neck muscle is affected and where to apply chemotherapy, radio-

therapy or laser therapy for chronic neck pain and other neck-related disorders.

However, these treatments require high precision in terms of focusing on only the

affected regions, otherwise healthy cells and organs may be damaged. The muscles

require the injection of a botulinum toxin into them to decrease their amounts of

shrinkage and alleviate the pain due to CD [10], with the dose dependent on the

sizes of these muscles which are difficult to determine.

A physician needs to know the exact positions as well as the amounts of dis-

turbance of the neck muscles, which their shapes and sizes help to determine, in

order to apply the proper medical treatment(s) and plan the correct dosage(s) of

medication(s) to reduce their side-effects. Therefore, it is necessary to visualize

the muscles in a 3D view using MR imaging (MRI) or computed tomography (CT)

which provides volumetric images of a patient in a stack of 2D images, with in-

consistencies possibly caused by the measurement method used rather than the
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marker [8]. Firstly, quantifying the muscles’ sizes and fat infiltrations using cross-

sectional measures obtained from single 2D image slices of selected vertebral levels

are not representative of 3D muscle measurements [21]. Secondly, when using 2D

quantification methods, the data may suffer from errors associated with the ef-

fects of a partial volume and the alignment of an axial slice relative to the cervical

spine [22]. Therefore, before the use of muscles’ sizes and fat infiltrations as reli-

able markers for neck pain can be verified or refuted, volumetric studies of neck

muscles are required.

Generally, in clinical practice, an analysis of neck muscles is conducted man-

ually which is time-consuming and tedious, suffers from inter- and intra-operator

variabilities and is unsuitable for large-scale data [23]. Therefore, an automatic

analysis is essential to enhance efficiency and reduce the amount of manual labor

required.

1.2 Roles of Medical Image Registration and Deep

Learning-based Segmentation

Image registration [24–26] is a basic image-processing technique whereby two or

more images are aligned by keeping one stationary (called a fixed image) and mov-

ing another (called a moving image) towards it [27]. It has many applications in

different domains, such as remote sensing, industrial imaging and medical imag-

ing [28]. This dissertation focuses on the medical imaging domain which has a

range of applications, as discussed below.

• Image-guided procedures: they generally require the three phases of pre-

operative planning, intra-operative execution and post-operative assessment [29].



Chapter 1. Introduction 5

Although pre-operative imaging is performed for surgical planning, diagnosis

and intra-operative guidance, these images cannot be used due to a patient’s

movements during surgery whereas intra-operative imaging can help to mon-

itor up-to-date information. However, to determine spatial relationships,

image registration between pre- and intra-operative images is required.

• Multi-modal fusion: different modalities have different capabilities to show

different information and the images obtained from them could have geomet-

rical mismatches due to a patient’s motions, devices’ artefacts or calibration

errors. To fuse two images to better understand the physiology of a disease,

they are registered for alignment.

• Motion determination: the physiological motions of organs are determined

using image registration for therapy monitoring and diagnosis [30].

• Change detection: morphological changes over time are detected through

registration and can be used for diagnosis and therapy, for example, hormone

therapy, rheumatoid arthritis, multiple sclerosis, Alzheimer’s disease and

morphological changes due to surgical interventions.

• Distortion correction: geometrical distortions in an imaging system can be

corrected.

• Atlas construction: the population average of an anatomical organ can be

created from a group of individuals using image registration.

• Atlas alignment: the population average can also be registered using the

standard space for analysis, for example, the Talairach space.

• Segmentation: the labels from one image can be transferred to another sub-

ject image by transformation which provides segmentation, with multi-atlas

segmentation currently popular.
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A deep learning-based segmentation approach has huge potential in computer-

aided diagnosis (CAD) as it can provide better accuracy than other segmentation

methods, such as template matching, deformable model fitting, edge detection,

clustering-based algorithms and threshold-based techniques. It is considered the

primary option for medical image segmentation due to its promising capabili-

ties [31]. However, segmentation is considered as a pre-requisite step for quantify-

ing any anatomical organ and pathology. A quantitative measurement has clinical

parameters related to shapes and volumes that are used to determine the planning

of treatments and proper dosages.

1.3 Challenges of and Motivation for Current

Research

Medical image analysis is generally a challenging task due to the anatomical vari-

ability, low resolution and contrast, noise, inhomogeneity and organ diffusion in an

image. The registration and segmentation of individual cervical muscles obtained

from medical images is more difficult because of the muscles’ complex anatomies

and changing spatial relationships as they pass through the spine [32, 33]. There

are large and complex small mismatches in neck data as, in the small, narrow

region of the neck, the 27 muscles that control the movements of the cervical

spine are compactly arranged (see Figure 1.1) and their intricate relationships

make them difficult to identify accurately. Also, similar muscles have background

clutter with similar intensities while the variable quantities of fat present in and

between them make their boundaries challenging to demarcate, as shown in Fig-

ure 1.1. This may be further complicated by a patient’s unconscious movements
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M1 

 

1-3 from left: C:\Users\z3486224\OneDrive - UNSW\PhD Codes seperated\SCVPVI-3D-
affine(DataComparison2.m) 

P2 Slice20 P6 Slice26 P53 Slice10 

Background Clutter Intra-muscular Fat M2 M3

M4 M5 

M6 M1 M5 M4 Compact Muscles 

Figure 1.1: Challenges involved with neck muscles in MRI: compact and similar
objects (left); background clutter (2nd from left); intra-muscular fat (3rd from

left); and six neck muscles considered in this dissertation denoted as M1, M2, M3,
M4, M5 and M6, respectively (right).

Left Fig: C:\Users\z3486224\OneDrive - UNSW\PhD Codes seperated\
SCVPVI-3D-affine(DataComparison3.m)

Right Fig: C:\Users\z3486224\OneDrive - UNSW\PhD Codes seperated\
SCVPVI-3D-affine(DataComparison2.m)

P2,P33,P39 Intramuscular fat
Used:P2; slice:17

 Between P61 & P3; Slice-22 

Figure 1.2: Neck MRI (composite form - anatomical variabilities between two
individuals overlaid in green and magenta bands; gray regions - both images have
same intensity; and green and magenta regions - images have different intensities.

(e.g., swallowing and breathing) during an image-scanning process which can de-

teriorate the images’ quality. Moreover, the anatomical variabilities of individuals’

neck muscles (Figure 1.2) are significantly greater than those of other parts of their

bodies.

A good automatic medical image registration algorithm should have certain

properties: firstly, high accuracy for measuring the amount of alignment between

two images; secondly, robustness for handling image noises and large degrees of

anatomical variability; thirdly, good computational speed for executing the rele-

vant algorithm. Although the computational speed does not matter for some ap-

plications, others require a fast algorithm, for example, an intra-operative image



Chapter 1. Introduction 8

guidance system; and, finally, topology preservation for continuity of the transfor-

mation function with one-to-one mapping and inverse consistency.

In the past, many registration methods that considered the above properties

for tackling the challenges in many medical applications were proposed, with the

most widely used multi-resolution free-form deformation (FFD) methods [34–37].

However, they cannot completely avoid local minima due to the low degrees of free-

dom of geometrical transformations available and the monotonous types of trans-

formations in multiple stages. Information theoretic-based methods are popular in

mono- and multi-modal applications [38–40]. However, global information-based

approaches are less sensitive to local deformations and often encounter the mis-

correspondence problem due to their lack of distinctiveness which is more acute in

neck data because of the compactness and similar appearance of neck muscles. To

avoid this, researchers have attempted to calculate a local approach and use it with

weights to compute the final objective function by summation [39–42]. However,

local methods are computationally expensive, face statistical instability problems

and ignore anatomical information which is crucial for guiding correspondence de-

tection. While a feature-based registration method establishes correspondences

through high-order anatomical information [27, 43, 44], often, some features are

partially invariant which causes mis-registration. Although some of its descriptor-

type features show distinctive characteristics, its performance faces challenges for

scenarios involving large anatomical variations as it embeds undesired information

and cannot fully suppress the influence of contrast enhancement. Also, it is inca-

pable of providing distinctiveness in the case of similar patches located near each

other. In fact, some features are more suitable for natural than medical image

analysis.

Although many techniques for handling large mismatches have been proposed
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[45–47], it has been shown that conventional continuous and discrete optimization-

based registrations are not successful [48]. A heuristic-based method can provide

a wide range of solutions but requires possible intuitive approaches [49–52]. Also,

despite having high accuracy, as it is necessary to pre-segment both the fixed

and moving images, this compromises automatism which is not feasible in all

applications. In addition, it is computationally expensive because it calculates an

attribute vector for each driving voxel in both images. In extensions of heuristic-

based methods[53–58], local spatial intensity histograms have been used to make

their algorithms suitable for general applications. However, these histograms face

the problem of statistical power instability.

As, to date, there is no registration algorithm that can tackle the challenges

of neck muscles and satisfy the properties of a good registration method, there is

room for performance enhancement. This dissertation attempts to overcome these

issues.

Like registration algorithms, many deep learning-based segmentation methods

for the medical domain have been proposed. In particular, the U-Net [6] archi-

tecture is popular in biomedical applications and has attained remarkable success

due to its flexibility [59] and, over the last few years, rapid advances have been

based on it [60]. However, this approach has some limitations. Firstly, it reduces

the resolutions of feature maps due to its consecutive operations of pooling and

striding convolution while its detailed spatial information is beneficial for dense

predictions. Secondly, although a deeper network can learn more complex features

and yield a better performance, the depth of the U-Net cannot be increased as

this causes the gradient to vanish increasingly during training and results in train-

ing difficulties. Recently, attention-based models have been studied extensively

and there are many cascaded ones for different applications, such as abdominal
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CT [61], cardiac CT [62], cardiac MRI [63], colorectal tumor [64] and left ven-

tricle [65] segmentation, and lung nodule detection [66]. However, these models

use excessive computational resources and repetitively extract similar low-level

features. Recently, some automatic attention models [7, 67–71] were proposed.

Sometimes, the performance of unsupervised automatic attention is worse than

that of a mechanism without attention while an attention map may be affected

by noise and cause incorrect attention. However, supervised automatic attention

cannot focus on the region of interest (ROI) in an application with compact and

similar small multiple classes with large variabilities and low levels of contrast due

to region-level coarse supervision. As, in such a complex case, more fine guided

attention is required to handle the challenges involved, there are some options for

performance improvement using a U-Net approach and attention-based models

which are attempted in this study.

1.4 Contributions of This Research

The main objective of this study is to develop an automatic robust 3D-3D im-

age registration algorithm, with high accuracy, for analyzing neck muscles. An-

other purpose is to design an automatic deep learning-based semantic segmenta-

tion method for a neck dataset. The key contributions of this dissertation are

summarized below.

• In the first part of this research, a novel object-constrained hierarchical

registration framework for aligning inter-subject neck muscles is presented.

Firstly, to handle large-scale local minima, it uses a coarse registration tech-

nique which optimizes a new edge position difference (EPD) similarity mea-

sure to align large mismatches. Also, a new transformation based on the
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discrete periodic spline wavelet (DPSW), affine and FFD are exploited. Sec-

ondly, to avoid the monotony of using transformations in multiple stages,

a fine registration technique for aligning small mismatches, which uses a

double-pushing system by changing edges in the EPD and switching trans-

formation resolutions, is designed. The EPD helps both the coarse and fine

techniques to implement object-constrained registration via controlling the

edges which is not possible using traditional similarity measures. Experi-

ments are performed on clinical 3D MRI scans of the neck, with the results

showing that the EPD is more effective than the mutual information (MI)

and sum of squared difference (SSD) measures in terms of the volumetric

dice similarity coefficient (DSC). Also, the proposed method is compared

with the diffeomorphic Demons [2] and SyN [3] state-of-the-art approaches

with ablation studies of inter-subject deformable registration. It achieves

better accuracy, robustness and consistency than uts competitors, with an

average volumetric DSC of 0.7029 compared with those of 0.6654 and 0.6606

for the Demons and SyN algorithms, respectively.

• In the second part of this study, two novel contributions for the inter-subject

deformable registration problem in a neck MRI application are presented.

Firstly, a two-stage heuristic search optimization technique for handling large

mismatches using a minimal user hypothesis, which is computationally fast,

is proposed. This optimization brings a moving image hierarchically closer

to a fixed one using MI and EPD similarity measures in the coarse and fine

stages, respectively. Of particular note is that the images do not require

pre-segmentation. Secondly, a ROI EPD-based registration framework for

handling small mismatches using salient anatomical information, in which

a convex objective function is formed through a unique shape created from

the desired objects in the ROI, is proposed. This method is compared with
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two state-of-the-art algorithms on the MRI neck dataset, with the results

showing that it is superior in terms of accuracy.

• In the last part of this thesis, an evaluation study of recent U-Net-based

convolutional neural networks (CNNs) is performed on the neck dataset. It

comprises 10 recent models, including the U-Net [6], U-Net with a condi-

tional random field (CRF-Unet) [72], attention U-Net (A-Unet) [7], nested

U-Net or U-Net++ [73], multi-feature pyramid (MFP)-Unet [74] and re-

current residual U-Net (R2Unet) [75]. Networks with more comprehensive

modifications are also evaluated, including the multi-scale U-Net (MS-Unet),

parallel multi-scale U-Net (PMS-Unet), recurrent residual attention U-Net

(R2A-Unet) and R2A-Unet++, for neck muscles segmentation. Analyses

of the numerical results indicate that the R2Unet [75] architecture achieves

the best accuracy. Also, two deep learning-based semantic segmentation ap-

proaches are proposed. In the first, a new two-stage U-Net++ (TS-UNet++)

uses two different types of deep CNNs (DCNNs) rather than one similar to

the traditional multi-stage one, that is, the U-Net++ in the first stage and

U-Net in the second. Convolutional blocks are added after the input and be-

fore the output layers of the multi-stage one to better extract the low- and

high-level features. A new concatenation-based fusion structure is incorpo-

rated in this architecture to enable deep supervision. Convolutional layers

are added after each concatenation of this structure to extract more repre-

sentative features. In the second approach, an explicit attention method in

which the attention is performed through a ROI evolved from the ground

truth via dilation is proposed. It does not require any additional CNN to

localize the ROI as does a cascaded approach because attention in a CNN is

sensitive to the area of a ROI. The dilated ROI is capable of capturing more

relevant regions and suppressing irrelevant ones than a bounding box and



Chapter 1. Introduction 13

region-level coarse annotation. It is used during the training of any CNN

and for coarse annotation, which does not require any detailed pixel-wise

delineation that can be performed by a novice person, during testing.

1.5 Organization of Thesis

This dissertation is organized as follows.

Chapter 2 begins with a discussion of different CAD techniques used in med-

ical applications. Then, the basics of image registration with a classification of

its process obtained from the literature and a review of each class together with

their pros and cons discussed. Then, the background to the classification of deep

learning-based semantic segmentation is presented. Also, a related literature re-

view of each class of deep learning-based segmentation with its advantages and

disadvantages is provided.

In Chapter 3, a 3D-3D deformable registration framework using a novel

DPSW-based transformation and EPD-based similarity measure for a dataset with

neck MRIs is proposed. This method is compared with state-of-the-art ones with

ablation studies of inter-subject deformable registrations.

In Chapter 4, another 3D-3D deformable registration framework using a

two-stage heuristic search and ROI-based EPD is presented. It is fast and handles

anatomical variabilities more efficiently than other methods using novel techniques.

In Chapter 5, three different types of deep learning-based semantic segmenta-

tion analyses are described: the first evaluates existing methods for the application

of neck muscles segmentation; the second proposes a new TS-UNet++ semantic
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segmentation method; and the third develops a new explicit dilated ROI-based

attention approach for a deep learning-based semantic segmentation method.

In Chapter 6, the conclusion of this thesis and directions for further research

are presented.

1.6 List of Publications and Award

Some findings obtained from this research study have been published, and oth-

ers are in the pipeline for publication in the international conference papers and

journal articles listed below.

Conference Papers

• Abdulla Al Suman, Md. Asikuzzaman, Alexandra Louise Webb, Diana M.

Perriman and Mark Richard Pickering, “Inter-Subject Image Registration of

Clinical Neck MRI Volumes using Discrete Periodic Spline Wavelet and Free

form Deformation,” Digital Image Computing: Techniques and Applications

(DICTA), 10–13 December. 2018, Canberra, Australia. (Based on Chapter

3).

• Md. Asikuzzaman, Abdulla Al Suman, and Mark Richard Pickering,

“EPD Similarity Measure and Demons Algorithm for Object-Based Mo-

tion Estimation,” Digital Image Computing: Techniques and Applications

(DICTA), 10–13 December. 2018, Canberra, Australia.

• Abdulla Al Suman, Yash Khemchandani, Md. Asikuzzaman, Alexandra



Chapter 1. Introduction 15

Louise Webb, Diana M. Perriman, Murat Tahtali and Mark Richard Picker-

ing, “Evaluation of U-Net CNN Approaches for Human Neck MRI Segmen-

tation,” Digital Image Computing: Techniques and Applications (DICTA),

29 November–2 December. 2020, Melbourne, Australia.(Based on Chapter

5 of sections: 5.1.2, 5.2.3, 5.3.1, 5.4.1).

Journal Articles

• Abdulla Al Suman, Md. Asikuzzaman, Alexandra Louise Webb, Diana

M. Perriman, Murat Tahtali and Mark Richard Pickering,“A Deformable
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Chapter 2

Background and Related Work

This dissertation focuses on image registration and deep learning-based semantic

segmentation techniques. This chapter begins with a discussion of computer-aided

diagnosis (CAD) techniques used in medical applications. Section 2.2 describes

the basics of an image registration algorithm and also presents a classification of

existing image registration algorithms with their corresponding merits, demerits

and backgrounds as well as a relevant literature review. Section 2.3 provides a

review of the literature on different deep learning-based semantic segmentation

techniques and, finally, Section 2.4 concludes this chapter.

2.1 Computer Aided Diagnosis (CAD) Techniques

CAD plays an important supporting role for doctors, radiologists and other med-

ical professionals in clinical applications, with many techniques available, such as

lesion detection, segmentation, disease classification, object recognition and atlas-

based segmentation. It uses the objects’ shapes, sizes, textures and inter-object

organization in medical images and has potential future applications in pathology

using machine learning algorithms.

Medical image registration is considered a vital technique for medical image

16
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analysis [76]. It has many applications in CAD, such as surgical planning, estab-

lishing the spatial relationships between a patient’s pre- and intra-operative infor-

mation, analyzing temporal changes, conducting image-guided therapy, assessing

brain degeneration in Alzheimer patients, detecting changes in tumors following

radiation therapy and studying lung cancer, cross-modality image fusion, atlas con-

struction, distortion correction, population and many other neurosciences. Also,

anatomical labels can be transferred automatically from one subject to another

using image registration.

Many medical image segmentation methods have been presented in the liter-

ature, such as template matching, deformable model fitting, edge detection and

learning-based approaches. However, deep learning-based semantic segmentation

techniques have recently revolutionized medical image analysis due to their huge

success [59]. Segmentation is a first step in CAD [77] and has various applications,

such as analyzing pathology, planning treatment and monitoring the progression of

disease [78]. It also helps the understanding of the physiologies and characteristics

of diseases [78].

2.2 Image Registration

Image registration is a process that establishes the spatial correspondences be-

tween two images [48] which is normally considered an ill-posed problem. In it,

two or more images are aligned by keeping one stationary (called a fixed image)

and moving the other (called a moving image) towards it, as shown in Figure 2.1. A

geometric transformation between these images is estimated by optimizing a sim-

ilarity measure. Therefore, a registration algorithm has three main components:
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What is Image Registration?

Finding the geometric transform that spatially aligns two images.
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Figure 2.1: Schematic of image registration process

a geometrical transformation; similarity measure; and optimization. Figure 2.2

illustrates the operational flow of a registration algorithm.

Images can be taken from the same or different sensors, with these registrations

called mono-modal and multi-modal, respectively. The images can be 2D or 3D

and called 2D-2D, 3D-3D and 2D-3D (if one is 2D and another 3D) registrations.

2.2.1 Geometrical Transformations

The choice of transformation has a large effect on the registration process [48],

with the most appropriate one not known as a prior [79], and also influences

the alignment [48]. A transformation model is selected so that it is close to the

underlying deformation required [29], with one that has both translation and

rotation, and preserves the distances among points called a rigid body [30]. A

transformation which considers the rigid body as sub-set and has shear and scale

changes is called affine and matches parallel lines to parallel lines [30].
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Figure 2.2: Diagram of operational flow of image registration algorithm

On the contrary, models which map straight lines to curves are called non-rigid

transformations and can be classified as parametric or function representations and

non-parametric or physically-based models. The former have lower degrees of free-

dom than the latter and their solution spaces can be modeled by parameters [29].

2.2.1.1 Parametric Models

Expanded basis functions are used in this type of transformation to model de-

formation, with the displacement field a combination of these functions and their

corresponding coefficients, which are called the transformation parameters, in the

image domain [30]. The number of parameters represents the number of degrees

of freedom of the transformation model on which the computational complexity

and capability to model spatially varying local deformations depend; in particu-

lar, more parameters result in greater computational complexity and more local



Chapter 2. Background and Related Work 20

spatially varying deformations. The basis functions are derived from either ap-

proximation theory or interpolation, with those from the former smoother than

those from the latter. There are many types of basis functions in the literature,

such as radial basis functions, elastic body splines, free-form deformations, signal

representations and locally affine models, with a radial basis function and B-spline

more stable than the others [30].

1) Radial basis functions (RBFs) are a significant family of interpolation

strategies [48] in which the distance from a known sample is used to estimate

the value at an interpolation point. An evaluation of RBFs as a transformation

in non-rigid image registration can be found in [80] and landmark-based medi-

cal image registration used RBFs in [81–84]. There are several families of RBFs,

such as thin-plate splines (TPS) [85–90], multi-quadratics [91, 92], Wendland func-

tions [84, 93, 94], Wu [95] and Buhmann [96]. TPSs and multi-quadratics support

global deformations [87, 89] whereas the Wendland, Wu [95] and Buhmann [96]

functions support local ones.

2) Elastic body splines (EBSs), which use interpolation and approximation

theory and may also exploit physical models, were proposed by Davis et al. [97].

The splines are obtained from the solution of the Navier-Cauchy equilibrium equa-

tion when forces are applied to an isotropic homogeneous elastic body and their

support is global. An extension of the EBS using a Gaussian function (Gaussian

EBS) of the distance from a landmark in order to impose local deformations was

proposed in [98]. Another extension through an approximation strategy incor-

porates errors in landmark displacements [99]. Also, EBSs were used to handle

anisotropic landmark localization errors by exploiting the Tikhonov regularization

scheme in [100].
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3) Free-form deformations (FFDs) were first introduced for computer graph-

ics [101, 102] and later popularized in the medical image analysis community when

combined with a cubic-B spline [103–106]. The deformations are designed using

a tensor product of a 1D cubic-B spline which has compact support for the capa-

bility to design fine and smooth deformations. It supports smooth deformations,

simple models, and topology preservation with regularized FFD.

Significant developments of FFDs have been introduced, such as multi-level

B-splines in [107] and non-uniform rational B-splines (NURBS) in [108] in an adap-

tive fashion. Multi-level B-splines were also used with an activating sparse subset

of control points in [109]. A symmetric version of FFDs was presented in [110]

and an inverse consistent extension of them in [111]. Sotiras and Paragios [112]

proposed another symmetric FFD technique by incorporating an invertibility of

mappings through discrete labeling. FFDs were applied in group-wise registration

through hard constraints in [113–116] and by exploiting splines in the temporal

axis in a spatial-temporal domain in [117–119]. An investigation into using lower-

order B-spline functions to preserve the smoothness of deformations through a

random perturbation technique was proposed in [120]. Different resolution levels

of FFDs were used simultaneously for transformation and data in [121] and a FFD

was extended by adding extra degrees of freedom near discontinuities to handle

sliding motions in [34]

4) Signal representation formulates the basis functions as Fourier and wavelet

ones which are commonly used in signal processing and a multi-resolution scheme

of deformation fields can be obtained from them which is a desirable property for

medical image registration.

Fourier-based basis functions were used in non-linear registration in [122, 123]

although they are not efficient for image registration as they are localized in only
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the frequency domain [124]. On the contrary, as wavelet-based basis functions are

localized in both the frequency and spatial domains, they are more suitable for

designing local deformations.

A wavelet-based deformation model was used in a multi-resolution manner

to deal with coarse-to-fine mismatches in [79, 125]. Topology-preserving regis-

trations using a non-orthogonal Riesz basis of polynomial splines were proposed

in [126–128] using a multi-resolution approach. In them, topology-preservation is

performed using hard linear constraints in 2D and constrained optimization with

user-specified bounds for Jacobian in 3D.

5) Locally affine models enable locally linear deformations which are classified

as piece-wise affine and poly-affine models. The former divide an image into shaped

regions and apply an affine transformation on each. They have good invertibility

inside regions but discontinuous deformations on the boundaries. To handle the

discontinuous problem, fuzzy regions are used in poly-affine-based models to yield

smooth deformations at the interfaces. Piece-wise affine models were used in [129–

134] and poly-affine ones in [135, 136].

2.2.1.2 Non-parametric Models

Non-parametric transformation models provide dense deformations for every pixel

which are normally derived from physical models deduced from continuum me-

chanics theory and are controlled by regularizations in the manner like the natural

characteristics of permissible deformations. These models are considered to have

sub-categories of elasticity, fluid flow, diffusion and diffeomorphisms.

1) Elasticity model: in this model, an elastic body is used to design the de-

formation model, with the deformations described by the Navier-Cauchy Partial
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Differential Equation (PDE) in linear models and an image-matching criterion act-

ing as an external deformation force. The displacements were inferred using the

finite element method (FEM) in a variational setting in [137]. Symmetric regis-

tration using linear elasticity as a regularization constraint was proposed in [122].

Geometric characteristics were incorporated in a linear elastic model with spa-

tially varying elasticity parameters in [138]. Large deformations were estimated

in an inverse consistent framework using a linear elastic model in [139]. However,

as linear elastic models are not successful for handling large deformations, many

non-linear models have been proposed [140–142], with topology preservation guar-

anteed in them. Non-linearity was incorporated through the St Venant-Kirchoff

elasticity energy as well as log-Euclidean metrics in [140] and log-transformation

and log-normal distributions in [141].

2) Fluid flow model: in this model, a deformation is considered a viscous fluid

propelled by the Navier-Stokes equation, with these models capable of recover-

ing large deformations intrinsically due to the deformation rate-dependent strain.

Christensen et al. [143, 144] applied a viscous fluid flow model after a linear elastic

one to align large deformations. It was also applied in an atlas-enhanced regis-

tration setting in [145] and in a multi-modal registration with mutual information

(MI) in [146]. Chiang et al. [147] applied this model for the registration of dif-

fusion tensor images with an inverse-consistent and symmetric Kullback-Leibler

divergence (KLD) as a matching criterion.

3) Diffusion model: in this model, a diffusion equation is used to model defor-

mations with regularization implemented through the convolution of a Gaussian

kernel, which is the Green’s function of the diffusion equation, that smooths the

deformation field to preserve the topology and cancel the noise effect.
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Thirion [148] proposed a Demons method, inspired by Maxwell’s Demons ap-

proach, to exploit diffusion regularization, with the smoothness of the displacement

field controlled by the width of a Gaussian kernel. In this method, the demon forces

are calculated for every demon and used to update the transformation. They can

be calculated in different ways, such as considering all of an image’s elements as

demons using an optical flow constraint, tri-linear interpolation or regularization

through Gaussian filtering. Fischer and Modersitzki[149] proposed an extension

of Thirion’s Demons algorithm to a fast registration one by linearizing a diffusion

PDE. Pennec et al. [150] employed a Demons algorithm with energy minimization

and replaced Thirion’s force by a second-order gradient descent (GD) on the sum

of squared differences (SSD). Symmetric Demon forces-based image registration

with an efficient second-order minimization (ESM) was used in [151, 152] with

Gaussian smoothing regularization separated from the matching term.

Vercauteren et al. [153] incorporated a diffeomorphic property in the Demons

algorithm through a compositional update rule and exponential map of the up-

dated field which ensured diffeomorphism. Later, a symmetric property was

incorporated into the algorithm through averaging the forward and backward

forces [154]. Stefanescu et al. [155] proposed an adaptive smoothing algorithm

using the knowledge of tissues and Peyrat et al. [156] registered multi-channel

time-series images.

4) Diffeomorphism model: in this model, non-parametric transformations gen-

erally do not guarantee topology preservation as the deformations of physical

models can be restrained in the diffeomorphic space. Diffeomorphic deforma-

tions can be achieved by modeling velocity over time with respect to the Lagrange

transport equation, with the velocity field restrained by a regularization term.

Beg et al. [157] proposed the large deformation diffeomorphic metric mapping
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(LDDMM) method that uses the physics of mechanical motion which is a popular

diffeomorphic registration approach and has attracted the attention of many reg-

istration researchers for various applications, for example, brain tissue registration

and segmentation [3, 158, 159], diffusion tensor imaging [160] and registration of

histological and MR volumes [161]. However, as it is not symmetric, several meth-

ods for incorporating a symmetric property have been proposed, as in [3, 162]. The

LDDMM has high memory and computational requirements due to its calculation

of the velocity field over time and slow convergence of the GD optimization.

Although efficient optimization is an option for reducing computational com-

plexity, researchers have tried to simplify the calculation of diffeomorphisms by de-

creasing the numbers of degrees of freedom using stationary velocity fields [2, 163]

which do not require the numerical integration of time-varying fields.

2.2.2 Similarity Measures

Similarity measures quantify the alignments between fixed and moving images, are

also known as dissimilarity criteria, matching criteria and distance measures, and

are a significant part of any registration approach. They are classified into the

two main categories of feature- and intensity-based methods [164]. However, there

are also some hybrid methods which are rarely used in medical image registration

applications [165]. The following sub-sections describe the three main similarity

measure methods.

2.2.2.1 Feature-based Methods

These methods quantify the alignment of corresponding features in fixed and mov-

ing images considering the landmark information. These features may include
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points, corners, edges, blob-like regions, lines, curvatures, contours and many

more, and are also known as points of interest, landmarks and key-points. These

methods are computationally efficient because the features can be calculated before

registration and this bypasses their re-calculation in every optimization iteration.

Furthermore, a calculation may be performed on only the locations of an image’s

features [166] which do not change due to deformations. These methods have four

steps: extracting features; generating feature descriptors; matching the features

in two images; and estimating the transformation parameters [167].

Feature detection and extraction are the important first steps in feature-based

methods. The quality of the matching of detected features depends on their de-

scriptors which should be capable of distinguishing between close candidate fea-

tures [48]. While moving images undergo deformations in every optimization iter-

ation, the descriptors should be invariant to these deformations.

There are many techniques in the literature for identifying features. A struc-

ture tensor’s information was used to identify corners and edges in [168] and points

of interest in [169], with many extensions aimed at encoding invariance. An eval-

uation of corner and point detectors was performed in [170]. An alternative ap-

proach using the Laplacian of Gaussian with different sizes of Gaussian kernels

for detecting blob-like regions was proposed in [171, 172]. Lowe [173] developed

a scale-invariant feature transform (SIFT) algorithm for detecting feature points

using a scale-space representation which rejects spurious points using local Hessian

information. Many extensions of this method have evolved. The gradient location

and orientation histogram (GLOH) was proposed in [174] for reducing the dimen-

sionality of the SIFT using principal component analysis (PCA), which employs

a log-polar pattern for spatial sampling. Bay et al. [175] proposed the speeded-up

robust features (SURF) using a Haar wavelet in the ROI. However, there are very
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few applications of feature extraction using the SIFT in medical image analysis.

Cheung and Hamarneh [176] applied their extension of the SIFT on CT and

MR images. Han [177] implemented an extension of the SURF in a 3D hybrid reg-

istration framework, with a 3D SIFT used in an ultrasound volume [178], CT [179]

and optical coherence tomography (OCT) images [180].

The correspondence between fixed and moving images for features used to

register the images can be established in two ways. Firstly, the closeness or dis-

tance of the descriptor is used to match images and the Euclidean distance to

rank potential matches. Different strategies are applied to match images based on

their ranks, for example, evaluating the ratio between the distances of the near-

est and second-nearest neighbors in the feature space [176, 177, 180]. Secondly,

structural or geometric constraints are used as in graph matching. Leordeanu and

Hebert [181] proposed a spectral technique that exploits pair-wise constraints to

preserve pair-wise geometry. Duchenne et al. [182] applied spectral matching to

higher-order constraints.

Also, the spatial transformation between estimating two point sets can be used

to match images. In this case, the sets are considered rather than every point-to-

point explicit assignment which is similar to correspondence matching. A spatial

transformation can be estimated in two ways. Firstly, using the known correspon-

dences which are mainly global linear ones and either exact or inexact. In an exact

case, a smooth transformation is searched to find the exact correspondences while,

alternatively, a compromise between smoothness and matching is desired. Also,

non-rigid transformations can be estimated in the case of known correspondences.

The Procrustes analysis is a well-known method for matching point sets [183, 184]

and exact and inexact matching methods are provided in [185]. Secondly, un-

known correspondences are used to estimate spatial transformations. However, as
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these methods are more challenging and robust to outliers and missing correspon-

dences, they estimate mainly non-rigid transformations. Point sets are considered

as probability distributions for minimizing the distance measured between them.

Gaussian mixture models (GMMs) were used in different ways in [186–189]. Using

signed distance functions is another way of representing geometric information to

accomplish non-rigid registration. This approach was used with the SSD in [190]

and MI in [191].

Some methods consider both the correspondences and transformations in an

iterative manner. The iterative closest point (ICP) is a popular approach based

on the closest distance correspondences, with many variants proposed to improve

it [192]. It was used in FFD estimations in [193] and low-order transformations

in [194].

2.2.2.2 Intensity-based Methods

These methods are based on the intensities of the images and use the whole im-

age domain. Selecting the appropriate similarity measure is a difficult task which

depends on the application and it is desirable for it to have a convexity prop-

erty that supports the optimization process. However, convexifying a similarity

measure may lead to a less realistic solution as the application may be naturally

non-convex [48]. A similarity measure should be high for the same tissue classes

and low for dissimilar ones. Generally, these methods are classified into two cate-

gories: 1) mono-modal; and 2) multi-modal.

1) Mono-modal methods can be classified as intensity- and attribute-based,

with the images obtained from the same type of imaging device.
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Intensity-based methods depend on the intensity relationship between two

images for which it is assumed that the same anatomical objects have similar in-

tensities. The SSD, sum of the absolute differences (SAD), correlation coefficient

(CCoef), correlation ratio (CR) and cross-correlation (CCor) are the most com-

monly used mono-modal similarity measures. The choice of intensity difference-

based method (SSD or SAD) depends on the noise in the two images, with lower

values better for good registration. The CCoef [195], CR [196] and CCor [3] are

used for linear relationships between fixed and moving images [164], with higher

values preferable for good matching.

Attribute-based methods use standard similarity measures with the geomet-

ric structures of objects. They overcome the ambiguous matching problem of

intensity-based approaches and reduce the local minima of optimization. Shen and

Davatzikos [197] proposed attribute vectors for voxels using a geometric moment to

impose a more distinctive property of the voxels so that the number of local minima

is reduced and better accuracy achieved, with the number of voxels with attribute

vectors increased during the algorithm’s progression. However, this method re-

quires pre-segmentation to incorporate spatial local information. Xue et al. [198]

removed the pre-segmentation requirement by using Daubechies wavelets to pop-

ulate the attribute vectors. Shen used boundary information and local histograms

to make an attribute’s vector rotation- and translation-invariant [199]. Also, lo-

cal frequency representations obtained from Gabor filters [200] and symmetric

alpha stable filters [201] can be used to encode local information. The frequency

representations can be obtained from different orientations and scales. Liao and

Chung [201] showed that symmetric alpha stable filters outperform Gabor filters.

Myronenko and Song [202] exploited the residual complexity (RC) to encode com-

plex spatially varying intensity distortions in residual images.
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2) Multi-modal methods: obtain images from multiple imaging devices and are

more challenging than mono-modal methods due to the devices’ different char-

acteristics. Applying information theoretic-based methods and converting multi-

modal problems to mono-modal ones are the two main approaches for handling

this challenge.

MI is a popular information theoretic-based method. In terms of two images,

it is defined as the amount of information they contain about each other [203]

which increases with registration alignment and decreases with mis-registration.

There are two main categories of MI-based registration methods: non-parametric

entropy estimation-based MI calculations which are used for multi-modal registra-

tion [204, 205]; and histogram entropy estimation-based ones [206]. However, as

MI is not overlap-invariant, it may lead to mis-registration. To tackle this problem,

Studholme et al. [207] proposed normalized MI (NMI) and Cahill et al. [208] later

developed an appropriate invariant of NMI as NMI was not completely overlap-

invariant.

Researchers have tried to use statistical criteria for image registration. Roche

et al. [209] applied the CR as a similarity measure of the valid functional depen-

dence of the intensities of two images. Different divergence measures have been

used in multi-modal registration, such as the KLD [210] and Jensen-Shannon di-

vergence (JSD) [211]. He et al. [212] exploited the Jensen-Renyi divergence (JRD)

for image registration. The KLD was generalized in [213] based on reformed Bessel

functions and performed better than a standard divergence.

As all the above methods use a single-pixel joint probability model, the same

criterion may be implemented for the process of image warping in registration [214],

for example, shaded artefacts may cause a registration to fail. Also, as global MI is

less sensitive to local deformations and often provides mis-correspondences, local
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context was introduced to tackle this problem. Hermosillo et al. [196] used local

probability distribution functions for MI, CCoef and CR. Karaçali [215] applied a

deterministic approach for the MI, joint entropy and marginal entropy over local

spherical regions. Some other local versions of MI are regional MI (RMI) [216],

conditional MI (CMI) [217] and spatially encoded MI (SEMI) [218].

Encoding spatial information is another way of introducing local context and

results in a higher-order entropy. Rueckert et al. [214] applied second-order MI

using a 4D-histogram with local information incorporated through feature ex-

traction. Holden et al. [219] incorporated Gaussian-scale space derivatives as

an additional information channel for high-dimensional MI. However, a higher-

dimensional criterion faces the problem of insufficient samples. Also, prior seg-

mentation is used to perform tissue classification and assists the design of robust

registration. Studholme et al. [220] exploited threshold-based region segmenta-

tion to calculate separate entropies for each region. However, local MI faces the

problem of the instability of statistical power and is computationally expensive.

Converting a multi-modal registration to mono-modal can alleviate the prob-

lems with the former and can be performed by either simulating one modality

based on another or mapping both modalities to a third common domain.

The first process can be achieved by modeling the imaging procedure using

machine learning techniques to estimate the intensity relationship. Cao et al. [221,

222] proposed bi-directional image synthesis methods using machine learning to

simulate the differences between MRI and CT pelvic images in a prostate cancer

radiation therapy application. Roche et al. [223] predicted ultrasound (US) images

from MR using the MR gradient and intensity information. Wein et al. [224]

simulated US images obtained from CT using the physical theory of US.
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The second process extracts the local geometrical information from both im-

ages to create new images for which Maintz et al. [225] used morphological tools.

Haber and Modersitzki [226] exploited the intensity gradient information to ex-

tract the borders of anatomical structures while Butz and Thiran [227] applied

edge information. Other geometrical information used in multi-modal registration

are Gabor filter outputs, the probability of a vessel’s presence, local frequency rep-

resentations, etc. Lee et al. [228] proposed a supervised learning-based similarity

measure using a support vector machine for multi-modal image registration.

2.2.2.3 Hybrid Methods

These methods have the advantages of both feature- and intensity-based methods

and avoid their limitations. Based on their inclusion of features, they are classified

as: 1) initialization-; 2) constraint-; and 3) coupled-based approaches.

1) Initialization-based methods: as they use the features and intensity informa-

tion in an independently sequential way, they can be considered multi-stage meth-

ods. Generally, feature-based techniques are initially applied for coarse alignment

and then intensity-based ones for fine alignment. Landmark information was used

for hybrid registration in [229, 230] for coarse alignment. Surface information is

another way of aligning images in hybrid methods in which surface matching is

performed either before or after intensity-based registration [231, 232]. The out-

puts from the registration of segmented structures were further refined through

intensity-based registration in [233].

2) Constraint-based methods: they use one type of information independently

in the first step and a constraint in the second to estimate correspondences. They
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are more robust than initialization-based methods because they preserve corre-

spondences, with the constraint either soft or hard.

In soft constraint methods, constraints are applied point-wise. Papademetris et al. [234]

used a matching criterion which ensured point correspondences in a deformation

field. Rohr et al. [235] exploited the local CCoef with point correspondences to

register electrophoresis images.

Joshi et al. [236] proposed hard constraints through geometric correspon-

dences. They initially established correspondences between cortical gray matter

and gray surfaces via sulcal constraints and then used a harmonic map to prop-

agate the correspondences into a whole cortical volume. They applied a hard

constraint to ensure no deformation of the previously registered surfaces.

3) Coupled-based methods: in them, the feature and intensity information

is considered simultaneously in a single objective function. Cachier et al. [237]

proposed a universal energy function for brain registration in an iterative man-

ner with the three steps of intensity, feature and both of them simultaneously.

Joshi et al. [238] used a surface- and intensity-based similarity measure and mapped

from an interior brain volume to a sphere. Sotiras et al. [115] proposed a simul-

taneous feature-intensity registration method for two images using two sets of

landmarks to estimate their correspondences and a FFD to map between them.

Honnorat et al. [239] developed a coupled similarity measure for a guide-wire track-

ing problem. This approach was also used with a diffeomorphic Demons algorithm

in [240, 241].
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2.2.3 Optimization

The optimal transformation which best aligns two images is achieved by maxi-

mizing or minimizing their similarity measure, a process called optimization. It

is considered an ill-posed multi-dimensional problem which optimizes a similarity

measure with respect to the transformation parameters. Generally, optimization

methods for medical image registration are classified in three categories based on

the nature of their variables, that is continuous, discrete and miscellaneous.

2.2.3.1 Continuous Optimization Methods

In these methods, the variables take real values and the objective functions are

differentiable [48]. Some frequently used for medical image registration are the

GD, conjugate gradient (CG), Powell’s conjugate directions, quasi-Newton (QN),

Gauss-Newton (GN), Levenberg-Marquardt (LM) and stochastic GD approaches.

All are unconstrained but some can also be applied for a constrained transforma-

tion.

A GD algorithm optimizes the objective function by decreasing the energy

and requires a gradient calculation in each iteration. It has been used in many

medical image registration applications and has two variants [242]. The first uses

a decaying step size and the second an inexact line search. The LDDMM exploited

a GD method in [157, 243] and a FFD registration in [103].

CG methods have better convergence rates than GD ones. In them, the search

direction is the conjugate of that of the previous iteration. Some examples of medi-

cal image registration using CG optimization are in [236, 244]. Tustison et al. [245]
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proposed applying this optimization in FFD registration using a pre-conditioned

gradient scheme.

Powell’s conjugate directions method minimizes the objective function in the

conjugate direction without using gradient information, with the initial direction

set along the basic vectors and each parameter of a transformation optimized along

the independent axis. It has been applied for low degrees of freedom [206, 210, 246]

and is gradient-free but may fail even for moderately difficult problems.

QN methods exploit the previous iterations’ information to achieve better

convergence and use an inverse Hessian matrix for the search direction. The Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) and Davidon–Fletcher–Powell (DFP) are

the two main algorithms used, with the former more efficient than the latter.

These approaches for image registration can be found in [119, 188, 217].

A Gauss-Newton method optimizes the objective function in the form of the

SSD function values which is common in mono-modal image registration. It calcu-

lates the Hessian matrix using the Jacobian and ignores derivatives of more than

the first order. Demons registration also uses this optimization method [2, 151, 153]

as do some other applications for image registration [247, 248]. Zikic et al. [249]

recently proposed a pre-conditioning scheme-based GN method for improving con-

vergence.

The Levenberg-Marquardt algorithm is fast and its speed and stability can be

controlled by varying a weighting factor. It has been applied in many well-known

image registration applications [79, 105, 125]. Thevanez and Unser [250] proposed

an efficient optimization approach based on the LM algorithm for MI registration.

Stochastic GD methods are used to reduce the computational burden of the

previous deterministic gradient methods using approximations of the gradient.
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There are three types depending on the approximation process [242], that is, the

Kiefer-Wolfowitz (KW), simultaneous perturbation (SP) and Robbins and Monro

(RM) approaches, with the RM one performing best. These methods are normally

applied in transformations with relatively low degrees of freedom, with some ex-

amples for image registration provided in [114, 204, 205].

2.2.3.2 Discrete Optimization Methods

These methods are constrained and their variables take discrete values. The three

types used for image registration are graph-based, belief propagation (BP) and

linear-programming (LP).

Graph-based methods are in accordance with the max-flow min-cut principle.

Tang and Chung [251] proposed graph cuts based on non-rigid image registration

and So et al. [252, 253] used them based on discrete optimization with MI for

non-rigid brain image registration.

A BP method is based on local messages passing between nodes in the graph

with backtracking which requires a large amount of storage. Yang et al. [254] used

constant-space BP for stereo matching and Heinrich et al. [255] applied BP in

non-rigid registration to recover respiratory motion. Shekhovtsovetal et al. [256]

proposed a non-rigid image registration by decomposing a graph into two layers

which reduces the number of operations required to update messages.

LP methods solve LP relaxations which is difficult. FastPD is an approach

that exploits primal and dual LP relaxations and is used in image registration to

model grid-based displacements in [257, 258]. Sequential tree-reweighted (TRW-

S) message passing is another LP relaxation used for various image registration

problems [259, 260].
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2.2.3.3 Miscellaneous Optimization Methods

In some cases, continuous and discrete methods cannot provide solutions while

heuristic and metaheuristic ones can produce large solution spaces but not guaran-

tee optimal solutions. Greedy and evolutionary algorithms are the two main types

of algorithms used in image registration. The former require plausible solutions

and are intuitive and gradient-free, with some described in [50, 199]. Evolutionary

algorithms, which are driven by evolution and the theory of natural selection, are

used mainly in linear registration and have shown slow convergence. Practical

implementations of them can be found in [261].

2.3 Deep Learning-based Segmentation

These techniques have revolutionized segmentation tasks as they have remarkable

segmentation accuracy [59] and are now a well-established robust and primary ap-

proach for image segmentation [31], with their success possibly due to advances in

hardware. Researchers have focused strongly on deep learning-based segmentation

in the past few years, with many different architectures applied [77]. The most

common are the convolutional neural network (CNN), fully convolutional network

(FCN), U-Net, convolutional residual network (CRN), recurrent NNs (RNNs) and

attention-based CNN.

2.3.1 Convolutional Neural Network (CNN)

With its development, a CNN has become a feasible method for segmenting med-

ical images [262]. It consists of a stack of layers, with the first layer called the
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input and the last the output. The input is connected to an input image which

has neurons equal to number of pixels. Each neuron works on a particular area

of the previous layer’s output which is known as the receptive field. The inter-

mediate layers between the input and output ones are convolutional and use the

previous layer’s output as input. Each layer has a fixed number of filters which

work as feature extractors through a convolutional operation using the previous

layer’s output, with each convolutional layer followed by activation and batch nor-

malization ones. The activation layer imposes non-linearity on the network to

establish non-linearity between its inputs and outputs. Depending on the design,

there may be pooling layers after some convolutional ones which reduce the size of

the convolution’s output. Finally, the fully connected layers extract high-label fea-

ture abstractions and then the weights of the filters’ kernels are optimized during

back-propagation in the training phase [263].

CNNs have been applied in medical image segmentation by many researchers in

different ways, with image patches-based deep learning methods used in the early

days [60]. Ciresan et al. [264] proposed a sliding window strategy and patches-

based deep learning method for segmenting neuronal membranes from microscopic

images. Zhang et al. [265] developed a CNN for 2D image segmentation using mul-

tiple modalities as input channels which are better than single-ones. Bar et al. [266]

used a transfer learning technique which borrows low-level features from a model

pre-trained on a dataset and another dataset was also used to extract high-level

features fused with the low-level ones to segment objects in the latter dataset.

A 2.5D approach is another method for segmenting 3D images using 2D labeled

data in three orthogonal planes [267, 268]. It has the advantages of richer spatial

information and less computational time than 3D, and uses three separate CNNs

for each plane. Roth et al. [268] considered planes as the channels of an input
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image. Moeskops et al. [269] proposed a 2.5D approach with a single model for

segmenting multiple organs (brain, breast and cardiac) with different modalities.

Although it obtains better results than 2D, some researchers [78] believe that it is

not the optimal solution due to the possibility of there being many different views

of 3D data. Also, there is a conflict between the isotropic kernels and anisotropic

behavior of a 3D image [270].

A 3D CNN is more capable of extracting better 3D features than a 2.5D

approach since 3D kernels can learn more organized, oriented and precise features.

It is constructed by replacing each 2D module in a 2D CNN by a corresponding 3D

one. Urban et al. [271] proposed the first 3D CNN for brain tumor segmentation

which was followed by Kamnitsas et al. [272] who developed a dual-pathway multi-

scale 3D CNN and achieved an average DSC of 0.66. Dou et al. [273] proposed a

fast 3D CNN using a set of 3D kernels with spatially shared weights.

2.3.2 Fully Convolutional Network (FCN)

An FCN, which was developed by Long et al. [274], replaces the last fully connected

layer by a fully convolutional one and supports dense predictions. Its design

enables pixel-wise predictions of an entire image in one forward pass and also

combines high-resolution activation maps with up-sampled outputs to yield better

localization performances. Nie et al. [275] showed that an FCN performs better

than a CNN using the same dataset.

An FCN was used in a 2.5D approach for segmenting multiple organs [276, 277]

and in a 3D method [278]. Roth et al. [279] proposed a hierarchical 3D FCN for

multi-organ segmentation to improve the accuracy for small organs.
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Also, an FCN was applied in a cascaded format to increase the accuracy of

a coarse-to-fine approach which enables multi-scale implementation using differ-

ent kernel sizes. Christ et al. [280] applied an cascaded 3D FCN for liver lesion

segmentation with 3D conditional random fields (CRFs). This method can be

applied in both series and parallel ways but the latter has more computational

complexity [78, 281]. A cascaded method is also used to handle the problem of

class imbalance, in which segmentation accuracies are low for small objects, by

implementing a hierarchical coarse-to-fine approach using two FCNs, where the

second network focuses on the boundary.

An FCN can be used in a multi-stream architecture [31, 77] to accept input

images in diverse forms, such as multi-resolution and multi-modal, for the same

anatomical organ. This enables the variabilities of anatomical structures to be

handled through maximizing the contextual information. Zeng and Zheng [282]

proposed a multi-stream technique using an 3D FCN for the multi-modal seg-

mentation of a MR image of an isointense infant brain with multi-scale deep su-

pervision. A multi-resolution (multi-scale) technique can handle variable sizes of

objects with a fixed receptive field [78, 283] as can using a sliding window strategy

over an entire image [283] since the objects in different multi-resolution images

necessitate different parameters. Multi-stream methods are also used to detect

multiple organs.

2.3.3 U-Net

The U-Net, which was introduced by Ronneberger et al. [6], is one of the most

well-known architectures, based on an FCN, for medical image analysis. It has two
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architectural novelties: firstly, it has equal numbers of down- and up-sampling lay-

ers; and, secondly, it has skip connections between these layers which concatenate

their features and uses the full context of an image in one forward pass.

Many extensions of the U-Net for medical image segmentation have been pro-

posed [73–75, 284, 285] and applied in many applications [4, 7, 72]. Zhou et al. [73]

proposed the U-Net++ by decreasing the semantic gap between the feature maps

of the encoder and decoder of the U-Net through dense nested skip connections.

It provides better segmentation accuracy than the U-Net and wide U-Net for 3D

CTs of chest nodules, nuclei microscopic images, liver CTs and polyp colonoscopy

videos. Alom et al. [75] proposed the R2Unet which ensures better feature rep-

resentation than the U-Net with the same number of parameters and yields as

good results for segmenting retinal blood vessels, skin cancers and lung lesions.

Moradi et al. [74] developed the MFP-Unet by exploiting a feature pyramid to

extract feature maps from all the blocks of an expanding path in a semantic layer

for a segmentation procedure instead of the last block as does the U-Net. It

performs excellently for echocardiographic segmentation, better than the U-Net,

U-Net++, deeplabv3, an anatomically constrained NN (ACNN) and a stacked

hourglass (SHG) network. Song et al. [284] proposed the U-NeXt which has at-

tention up-sampling blocks in the expansion path and spatial pyramid pooling in

the skip connections. Also, jumping connections are used to connect the convo-

lutional layers to generate multi-scale features. Zhang et al. [285] developed the

Z-net for prostate segmentation using a multi-level feature technique and modified

the U-block by adding an additional convolutional layer. Also, the feature maps

are cropped before the pooling layer and concatenated after this layer’s feature

maps. Tang et al. [4] proposed a multi-stage U-Net for segmenting skin lesions

by integrating a contextual information fusion structure (CIFS), which combines
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the low-level features in a multi-scale feature space, with a weighted Jaccard dis-

tance loss function, that alleviates the gradient-vanishing problem, to improve the

network’s performance.

The U-Net was extended for 3D image segmentation by Çiçek et al. [286]

to perform 3D segmentation using 2D annotation. Kleesiek et al. [287] used a

3D U-Net for brain extraction by stripping the skull and using a mixing layer in

conjunction with two convolutional layers in the up-sampling path to overcome the

localization problem. Zeng et al. [288] applied multi-level deep supervision with

a 3D U-Net by dividing the up-sampling path into low, middle and upper levels,

with the de-convolutional blocks in the low and middle levels used to generate

the same resolution of the input to enhance the final result. Another popular 3D

variant of the U-Net called the V-Net proposed by Milletari et al. [289] replaces

the requirement for pooling layers in the down-sampling path by re-designing the

convolutional layers through appropriate selections of the stride and kernel size.

Gibson et al. [290] developed an extension of the V-Net that integrates multi-scale

and larger receptive fields for multi-organ segmentations of abdominal CTs.

2.3.4 Convolutional Residual Networks (CRNs)

Although deeper networks are good for improving learning capacity, they face

problems of the gradient vanishing and accuracy being degraded. He et al. [291]

proposed a deeper network by introducing a residual one to tackle these problems

using skip connections to feed every few layers rather than feed the stacked layers

consecutively. Yu et al. [283] extended the basic CRN to a fully convolutional

residual network (FCRN) to predict pixel-wise for melanoma segmentation and

recognition. Kawahara et al. [292] proposed a very deep FCRN with 50 layers using

global and local contextual features for skin lesion segmentation which performed
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better than the VGG-16. Chen et al. [293] implemented a 3D CRN for brain MRI

using VoxRes modules with small convolutional kernels and stride two for the

convolutional layers to reduce the input’s resolution and capture a larger receptive

field.

2.3.5 Recurrent Neural Networks(RNNs)

An RNN uses recurrent connections to memorize the last input’s pattern [31].

This notion was derived from the fact that the anatomical objects in a volumetric

image are distributed over multiple slices, that is, there is a correlation between

successive slices. Generally, in an RNN, two parts that work on an input slice are:

firstly, any type of CNN which extracts intra-slice information; and, secondly, the

RNN itself which extracts inter-slice information.

The long short-term memory (LSTM) [294] method is an popular RNN. The

standard one takes vectorized inputs which hinders its application for medical im-

age segmentation due to its loss of spatial information. Therefore, researchers have

proposed convolutional LSTM (CLSTM) [295, 296] for tackling this problem by ex-

ploiting a convolutional operation instead of vector multiplication. Chen et al. [270]

proposed a bi-directional CLSTM (BDCLSTM) with a modified U-Net for z+ and

z− directions which performs better than a pyramid LSTM [297] in which six

directions (x+, x−, y+, y−, z+ and z−) are considered. Another variation of the

LSTM is the gated recurrent unit (GRU) in which memory cells are excluded [298].

Xie et al. [299] used an clockwork RNN (CW-RNN) to segment a muscle’s perimy-

sium. It has long-term dependency using fewer parameters and a 5 percent better

accuracy than the U-Net [264]. Xia et al. [72] proposed a segmentation method for

paraspinal muscles using the U-Net with CRF as an RNN with multi-data training

in MRI for the L4-L5 and L5-S1 spinal levels.
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2.3.6 Attention-based CNNs

These models have recently been investigated extensively in the deep learning

community to more effectively use intermediate feature maps [69]. They focus on

the relevant parts of the input without additional supervision and have also been

applied in semantic segmentation [69, 300].

Cascaded-based attention models, in which multi-stage CNNs are used to guide

attention, have been applied in different medical applications. One stage is used

to localize the ROI and another for dense predictions. Some use a bounding box to

guide attention in the dense prediction stage during training which is called hard

attention. Roth et al. [61] used holistically nested convolutional networks (HNNs)

in three orthogonal views to generate a 3D bounding box by fusing their prob-

ability maps, and then two additional separate realizations of HNNs to segment

a pancreas inside the box. Payer et al. [62] used a CNN to find the center of a

bounding box around a ROI for use later to construct a fixed-size bounding box to

crop the ROI and up-sample for the training dataset followed by a 3-stage segmen-

tation CNN focusing on the ROI. Khened et al. [63] proposed a ROI extraction

process using spatial-temporal variation statistics and a circular Hough transform

for deep learning-based cardiac segmentation to reduce the computational and

memory requirements. Huang et al. [64] used the backbone encoder of the U-Net

to select the ROI of a colorectal tumor and combined it with the decoder for seg-

mentation. Ngo et al. [65] combined a level set (active contour model) method

with two deep belief networks (DBNs) (deep learning) to segment a left ventricle

in the MICCAI 2009 challenge dataset (45 MRIs), with one used to locate the

ROI and the other to delineate the target objects. Then, a level set optimizes the

ROI using the delineation as an evolutionary constraint. However, their method is

only semi-automatic as manual selection is used to obtain the initial target volume.
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Liao et al. [66] used a modified U-net with two modules to obtain the probability of

lung cancer. The first module defines a 3D region for all suspicious nodules which

is refined by the second one in which the possibilities of cancer in the refined nod-

ules are determined. Then, these possibilities are combined through a leaky noisy

OR gate to obtain a subject’s final probability of having cancer. Guan et al. [301]

proposed a three-branch attention-guided CNN for the classification of thoracic

diseases. In it, a global image and local region are used to train the global and

local CNN branches, respectively, which are finally concatenated through a fusion

branch, with a ResNet-50 and DenseNet-121 considered the backbone of the CNN

in their architecture. A hard attention model via the global branch is used to

generate a heat map which extracts the local context through a mask inference

process. Pesce et al. [300] proposed a visual attention network using a bounding

box for detecting pulmonary lesions by exploiting a few annotated X-rays and a

huge number of weakly labeled images. This model consists of two architectures:

the first extracts saliency maps from the convolutional layers and then calculates

the localization error and back-propagates it along with the softmax classification

error; and the second is a recurrent attention model which learns small portions of

an image via reinforcement learning. Zhou et al. [302] used an iterative process to

increase segmentation accuracy by exploiting a bounding box. In this approach,

there are two models for training, a coarse-scale one which uses an entire image

as input and a fine-scale one which is a ROI cropped by the bounding box with

a zoomed-in view, and uses them iteratively during testing. This process is com-

putationally expensive as cascaded models use excessive computational resources

and repetitively extract similar low-level features.

Another popular attention-based model is the mask region-based CNN (Mask-

RCNN). He et al. [303] proposed it by extending the faster R-CNN in which a
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branch detects object instances and generates a bounding box like a segmenta-

tion mask. It outperforms other methods for many computer vision tasks and re-

searchers have also tried to use it for medical image segmentation. Vuola. et al. [304]

proposed an ensemble model by combining the U-Net and Mask-RCNN for nuclei

segmentation, with the ensemble one outperforming both the others. They found

that the Mask-RCNN can find the bounding box accurately but its segmenta-

tion performance is worse than that of the U-Net. Johnson. et al. [305] used the

Mask-RCNN with ResNet-50 and ResNet-101 models as the backbone of a feature

pyramid network to segment cell nuclei from microscopic images.

Some automatic attention models have been proposed recently. They avoid

the cascaded approach and focus automatically on the ROI during training and

implicitly suppress unwanted regions. They can be classified as supervised [71] and

unsupervised [7, 67, 69] methods. However, the latter sometimes perform worse

than those without an attention mechanism while the former use external super-

vision through coarse annotation. Schlemper et al. [7] proposed an unsupervised

attention gate (AG) for focusing structures automatically during the training of

CNNs which can implicitly suppress irrelevant regions and concentrate on task-

specific salient features using a grid-based gating technique to look at local regions.

When evaluated on classification and segmentation applications, it achieves better

accuracy than base architectures. However, sometimes the gate cannot focus on

the ROI, particularly for applications with compact multiple classes with large

variabilities and low levels of contrast.
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2.4 Summary

In this chapter, firstly, the different techniques used in CAD for different medical

applications are discussed. Image registration and deep learning-based semantic

segmentation are the two most important of many techniques, such as detection,

classification and recognition, for medical image analysis. Then, the basic elements

required for the design of a good image registration algorithm, such as geomet-

rical transformation, a similarity measure and optimization, which are carefully

selected, are described. In the literature, many registration algorithms have been

developed by designing transformations, similarity measures and optimization for

2D and 3D images. The geometric transformations used in existing methods are

discussed and classified in two main categories: parametric; and non-parametric

models. The former is further classified into five main types based on RBFs, EBSs,

FFDs, signal representations and locally affine models. On the other hand, the

latter are further classified into four main types based on elasticity, fluid flow,

diffusion and diffeomorphism. The similarity measures in existing registration al-

gorithms are categorized as three main types: feature- and intensity-based and

hybrid methods, with the intensity-based ones further classified as mono-modal

and multi-modal. Alternatively, the hybrid ones are classified as initialization-,

constraint- and coupled-based methods. Finally, continuous, discrete and miscel-

laneous optimization methods are discussed, with the continuous ones popular in

medical image registration. Also, deep learning-based segmentation methods are

described, with their most common architectures CNNs, FCNs, the U-Net, CRNs,

RNNs and attention-based CNNs. The U-Net-based ones are popular in biomed-

ical image segmentation applications and attention-based models have recently

been studied extensively in the deep learning community.
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Although previous image registration efforts form a strong base for many med-

ical applications, none can satisfy the requirements of all applications due to some

challenges associated with their implementation and low accuracy which could be

due to anatomical complexities and variabilities or the artefacts of imaging devices.

Therefore, to tackle the complexity and variability of neck muscles, in Chapter 3,

a novel object-constrained hierarchical 3D-3D registration framework for aligning

inter-subject neck muscles is proposed. Firstly, to handle the large-scale local

minima of optimization, the framework uses a coarse registration technique which

optimizes a new edge position difference (EPD) similarity measure to align large

mismatches. Also, a new transformation based on the discrete periodic spline

wavelet (DPSW), and affine and FFD transformations are exploited. Secondly, to

avoid the monotony of using transformations in multiple stages, a fine registra-

tion technique for aligning small mismatches is designed. It uses a double-pushing

system that changes the edges in the EPD and switches the resolutions of the

transformations. The EPD helps both coarse and fine techniques to implement

object-constrained registration via controlling edges which is not possible using

traditional similarity measures. However, this method still has some limitations

in terms of computational complexity and the handling of large-scale anatomi-

cal variabilities. To overcome these problems, another 3D-3D registration frame-

work with two novel contributions is proposed in Chapter 4. Firstly, a two-stage

heuristic search optimization technique for handling large mismatches which uses

a minimal user hypothesis regarding large mismatches and is computationally fast

is introduced. This optimization brings a moving image hierarchically closer to a

fixed one using MI and an EPD similarity measure in the coarse and fine stages,

respectively, while the images do not require pre-segmentation as is necessary in

traditional heuristic optimization-based techniques. Secondly, a ROI EPD-based
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registration framework for handling small mismatches using salient anatomical in-

formation (AI), in which a convex objective function is formed through a unique

shape created from the desired objects in the ROI, is proposed. Finally, in Chapter

5, three different types of deep learning segmentation-based analysis and method-

ological propositions in a neck muscles segmentation application are presented.

In the first analysis, an evaluation of U-Net-based architectures for neck muscles

segmentation, including 10 recent models, is conducted, with the numerical results

indicating that the R2Unet architecture achieves the best accuracy. In the second

analysis, a new two-stage U-Net++ (TS-UNet++), which uses two different types

of deep CNNs (DCNNs), the U-Net++ in the first stage and U-Net in the second,

rather than a traditional multi-stage one is proposed. More convolutional blocks

are added after the input and before the output layers of this multi-stage method

to better extract both low- and high-level features. A new concatenation-based fu-

sion structure is incorporated in the architecture to enable deep supervision, with

more convolutional layers added after each concatenation to extract more repre-

sentative features. In the third analysis, an explicit attention method in which the

attention is performed through a ROI evolved from the ground truth via dilation

is proposed. It does not require any additional CNN to localize the ROI, as does a

cascaded approach, because attention in a CNN is sensitive to the area of a ROI.

The dilated ROI is capable of capturing more relevant regions and suppressing

irrelevant ones than a bounding box and region-level coarse annotation. It is used

during the training of any CNN whereas coarse annotation, which does not require

any detailed pixel-wise delineation that can be performed by any novice person,

is used during testing.



Chapter 3

A Deformable 3D-3D

Registration Framework using the

Discrete Periodic Spline Wavelet

and Edge Position Difference

Conventional multi resolution-based registration methods trap in local minima

due to their low degree of freedom geometrical transforms. This Chapter presents

a novel object-constrained hierarchical registration framework for aligning inter-

subject neck muscles. First, to handle large scale local minima, the proposed

framework uses a coarse registration technique, which optimizes the new edge po-

sition difference (EPD) similarity measure, to align large mismatches. Also, a new

transformation based on the discrete periodic spline wavelet (DPSW), affine and

free-form-deformation (FFD) transformations are exploited. Second, to avoid the
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monotonous nature of using transformations in multiple stages, a fine registra-

tion technique is designed for aligning small mismatches. This technique uses a

double-pushing system by changing edges in the EPD and switching transforma-

tion resolutions. The EPD helps in both coarse and fine techniques to implement

object-constrained registration via controlling edges, which is not possible when

using traditional similarity measures. Experiments are performed on clinical 3D

magnetic resonance imaging (MRI) scans of the neck, with the results showing that

the EPD is more effective than the mutual information (MI) and sum of squared

difference (SSD) measures in terms of the volumetric dice similarity coefficient

(DSC). Additionally, the proposed method is compared with the state-of-the-art

diffeomorphic Demons and SyN approaches with ablation studies in inter-subject

deformable registration. The proposed method achieves better accuracy, robust-

ness and consistency than the reference methods, with an average volumetric DSC

of 0.7029 compared to 0.6654 and 0.6606 for the Demons and SyN methods, re-

spectively.

The rest of this chapter is organized as follows. An introduction is presented in

Section 3.1. Related work is discussed in Section 3.2, the details of the deformable

3D-3D registration method is described in Section 3.3, Section 3.4 presents the

experimental procedure and results, and Section 3.5 and Section 3.6 provide a

discussion and conclusion, respectively.

3.1 Introduction

Registration methods generally attempt to find a global minimum and avoid local

ones, but cannot avoid all local minimums due to the many that are classified

as small-scale dips and large-scale basins [306]. Escaping from basins is vital as
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they yield large mis-registrations and usually occur in large initial mismatch sce-

narios. Conversely, dips yield small mis-registrations occurring in small mismatch

scenarios and occur more often. Neck medical data contain both scenarios dis-

cussed above. Conventional multi resolution-based registration methods [34–37]

cannot avoid basins and dips completely due to the lower available degree of free-

dom of the geometrical transformation used and the monotonous application of

the same transformations in multiple stages. Information theoretic-based meth-

ods have been widely used for 3D-3D medical image registration [38–40]. However,

global information theoretic-based methods are less sensitive to local deformation

and often encounter mis-correspondences due to the lack of distinctiveness of the

similarity measure (SM). Due to the compactness and similar appearance of neck

muscles, the problem of mis-correspondences is more acute in neck data. Further,

local information theoretic-based methods are computationally expensive and face

statistical instability problems. In addition, information theoretic-based methods

ignore anatomical information, which is crucial for guiding correspondence detec-

tion and registration. The feature-based registration methods establish correspon-

dence through high-order anatomical information [27]. However, some features are

often partially invariant in images with a different appearance, which is common in

clinical applications. Some descriptor-type features show distinctive characteris-

tics; nevertheless, they face challenges to performance in scenarios involving large

anatomical variation.

A coarse-to-fine 3D-3D registration approach for dealing with the neck’s high

level of variability is proposed in this chapter. It uses a hybrid registration frame-

work divided into coarse and fine mismatch correction sections to handle the basins

and dips, respectively, and exploits the diffeomorphic Demons algorithm in its last

stage to boost alignment. The coarse and fine sections reduce the chances of be-

coming stuck in basins and dips, respectively, the latter through its double-pushing
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system. This method makes the following four key contributions:

• In this multistage framework, multiple 3D transformations at the coarse level

are used in multiple stages for large mismatches, which are usually of different

types. Therefore, they can push basins from different directions with greater

angle differences, as opposed to similar transformations in conventional multi

resolution methods, thereby reducing the chance of becoming stuck in basins.

• A novel discrete periodic spline wavelet (DPSW)-based 3D transformation,

which requires fewer parameters than the free-form-deformation (FFD) ap-

proach but has similar benefits, is developed in the coarse section. It reduces

the burden of optimization and provides variations at the global level with

no stretching or shrinking effect, unlike a discrete cosine (DC) transform,

which is popular in video coding.

• The framework incorporates a new SM called the edge position difference

(EPD), which uses a modified 3D Chamfer distance transform algorithm.

Since it uses the edges of an object, it provides an opportunity to tune

through multiple stages using different sets of edges. It aligns the neck’s

trunk using the same set of strong edges in the multistage coarse section

and, gradually, incorporates the weaker ones for the muscles and other small

objects in the fine section. It can do object-wise alignment through multi-

ple transformations, whereas traditional multi resolution methods use SM

methods that are incapable of object-wise alignment.

• A double-pushing system is designed for the fine section to reduce the chance

of becoming stuck in dips, which occur more often than basins, whereas a
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single-pushing system is used in most multi resolution methods. The double-

pushing system yields small deformations formed through changing the num-

ber of edges of the EPD and the resolution levels of the transformation, rather

than changing only the latter, as in traditional multi resolution techniques.

The EPD, mutual information (MI) and sum of squared difference (SSD) SMs

are compared using the affine transformation and the EPD achieves good accu-

racy for a clinical dataset. Additionally, the proposed method is compared with

the diffeomorphic Demons [2] and SyN [3] algorithms, which are state-of-the-art

registration approaches, and outperforms various other non-rigid registration al-

gorithms [307]. The volumetric dice similarity coefficient (DSC) is computed for

a real clinical 3D MRI dataset using the proposed, diffeomorphic Demons and

SyN methods, with the proposed method achieving a substantial improvement in

accuracy.

3.2 Related Work

Image registration [24, 308, 309] is a basic image-processing technique whereby two

or more images are aligned by keeping one stationary (called a fixed image) and

moving another (called a moving image) towards it [27]. It comprises a geometri-

cal transformation, similarity measure and optimization, with 3D-2D registration

currently being developed commercially and rigid registration [310] practically

available [311]. Inter-subject registration (ISR) in 3D, a kind of deformable image

registration [56], is a key challenge due to anatomical variability [311] preventing

uniformity. Although much work on 3D-3D ISR has been conducted in the last two
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decades, mainly on brain images, its accuracy is not clinically acceptable, with spe-

cialists considering that further research must yet be undertaken [311, 312]. More-

over, 3D-3D ISR often faces some problems compared to 2D-2D registration. First,

the optimization becomes difficult as more parameters are required for geometrical

transformation. Second, more dips and basins are encountered due to the higher-

dimensionality. Third, the computational cost becomes expensive. Finally, the SM

faces discontinuity in intensity problems along out of plane directions, since most

medical imaging modalities keep spacing between the slices. Most studies on 3D-

3D ISR have focused on optimization [36, 307, 313], local regularization [314, 315],

multi resolution FFD [34, 35] and the application of the diffeomorphic log-demons

algorithm [45, 316] to 3D-3D ISR. The most recently developed competitive reg-

istration algorithms are the multi resolution FFD and diffeomorphic log-demons

approaches. Hua et al. [34] proposed a 3D-3D deformable registration for handling

discontinuities by adding extra degrees of freedom to a multi resolution framework

using a parameter up-sampling method that required segmenting a target image

to determine discontinuities and allowing more time to optimize additional pa-

rameters. Sun et al. [120] proposed a random perturbation technique for a multi

resolution nonlinear registration framework for 3D-3D and 2D-2D applications us-

ing a lower-order B-spline, retaining the same smoothness as a higher-order spline

to reduce the execution time. However, in terms of accuracy, it could not perform

well in other clinical applications. Sun et al. [121] proposed another 3D-3D simul-

taneous multi resolution strategy in which different resolutions of the spline and

data were used together to improve performance, but their method was dependent

on a parameter whose value varies for different applications.

Overall, conventional multi resolution methods use only the coarse resolution

levels of a transformation to resolve large mismatches. These are not sufficient

to achieve proper correction, since, when the optimization process is stuck in a
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basin, to escape easily, it must be pushed in a specific direction depending on the

particular basin. However, consecutive resolution levels in multiple stages of multi

resolution methods have almost the same characteristics with different directions

and small variations in angle but are considered different transformations. There-

fore, consecutive coarse levels may not thrust in the required direction for some

basins because of their small angle variations. Large angle variations among mul-

tiple transformations in multiple stages may be required so that a transformation

can push basins in the appropriate directions. The optimization process will not

face any difficulty to determine the optimal direction because the multiple trans-

formations are not applied simultaneously rather they are applied consecutively as

each stage of the algorithm is performed. Therefore, as traditional multi resolution

methods cannot push in the required direction for some basins, they are unable

to avoid all the basins. Further, these methods try to tackle small mismatches,

which cause dips more frequently, by changing only the fine resolution levels of

a transformation in multiple stages with the same SM and optimization, and are

thus incapable of eliminating all of them.

Feature-based registration methods have been applied in 3D-3D ISR due to

their use of anatomical information, which helps to find correspondence detection

effectively. There are many types of features in the registration literature, such as

histogram of oriented gradient (HOG) [317], gradient location and orientation his-

tograms (GLOH) [318], scale-invariant feature transform (SIFT) [44] and speeded

up robust features (SURF) [43]. The gradient information-based features are par-

tially invariant [27], which causes mis-registration. The SIFT and SURF methods

require the same features to be detectable in both fixed and moving images, which

is not possible in neck MRI data as the muscles are very compact and images

are obtained with different acquisition protocols. In fact, SIFT and SURF are
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more suitable for natural image analysis than medical image analysis. The RAN-

dom SAmple Consensus (RANSAC) algorithm is often used in conjunction with

feature-based registration methods to filter out excellent matches. For example,

Kahaki et al. [319] proposed a local intensity maxima feature-based registration

method for in vivo time lapse microscopy images. They used a two-step feature

matching procedure in which features are initially matched coarsely and then the

matching features are refined through RANSAC. The iterative closest point (ICP)

algorithm is a popular method in shape registration [320–322], which has high ac-

curacy for point set registration. A 3D Canny edge-based objective function is used

in medical image registration for pose estimation and shape reconstruction [323],

multi-modal geometric matching [324] and respiratory motion correction [325].

A self-similarities-based feature called a modality-independent neighborhood de-

scriptor (MIND) [326] was proposed to provide distinctive correspondences in the

objective function by incorporating information from the neighborhood pixels. It

showed better results in cases of similar local structural patterns in small regions

than other SMs. However, its performance can be limited in cases of large local

anatomical variation. Further, it cannot hide the influence of contrast enhance-

ment and embeds unwanted information.

3.3 Deformable 3D-3D Registration Model

3.3.1 Overview

A diagram of the operational flow of the proposed hybrid registration framework is

displayed in Figure 3.1. As a pre-processing step, all the original fixed and moving

MRI volumes are trimmed and interpolated to volumes of 128× 128× 128 voxels,
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Figure 3.1: Proposed hybrid registration framework in which gradient descent
(GD) and Gauss-Newton gradient descent (GNGD) optimization techniques are

used. The same set of edges is used in the coarse section by the different
registration stages. Different sets of edges are used in the fine section by the

different stages. The geometrical transformations are separable (not composite),
since each stage takes input from the previous stage. The labels Affine-EPD,

DPSW-EPD, Coarse-EPD and Fine-EPD are used to describe the experimental
results in Section 3.4.

since they contain some unwanted information. The volume of interest is selected

as the volume between the C1 and C7 vertebral levels, which represent the top and

bottom vertebrae of the neck and are the landmarks most commonly used to assess

muscle morphometry [9]. The processed volumes are then manually delineated to

obtain the ground truths, as discussed in detail in Section 3.4. The framework is

divided into coarse and fine sections. All the geometrical transformations at the

different stages in Figure 3.1 are separable, since each stage uses the registered

moving volume of the prior stage as its moving volume and the same fixed volume

used by the prior stage as its fixed volume. Thus, the transformations are obtained

separately from the framework. To describe experimental results in Section 3.4,

the following labels have been assigned for different stages of the algorithm: Affine-

EPD, DPSW-EPD, Coarse-EPD and Fine-EPD.

3.3.1.1 Coarse Section

All the stages in this section use the same strong edges of the MRI volumes to

align the neck’s trunk and the boundaries of other large objects. In each stage,
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the geometrical transformation is changed to avoid basins and, importantly, ob-

tain a good alignment. Other elements, such as the SM or optimization method,

could also be changed in each stage. A local minimum is considered for a specific

combination of the transformation, SM and optimization. The affine, the DPSW

and the coarsest level of the FFD are used as transformations to combat basins.

Therefore, multiple transformations can attack the optimization from different

directions using large angle variations to pull out from basins.

3.3.1.2 Fine Section

In this section, five stages are used to obtain fine deformations. This section

helps to reduce the chance of the optimization algorithm converging to a dip. As

dips occur more frequently than basins and could cause the optimization to be

stuck at any stage, a double pushing system has been designed to combat dips.

The double pushing system is implemented by changing the transformation and

SM simultaneously at every stage. The transformation change is performed by

using different levels of the spline in the FFD. The SM change is accomplished

by using the attributes of the EPD which allow different sets of edges to indicate

different ranges of values. Different sets of edges for specific volume pairs are

used for different stages. These sets of edges are changed gradually from strong

to weak. The strong edges are a subset of the set of weaker edges. The first

four stages in this section use coarse to fine levels of the spline for the FFD

with corresponding different sets of strong to weak edges, respectively. The fine

deformations are achieved by using the weak sets of edges and the fine levels of

the spline. The strong sets of edges and the coarse levels of the spline are used to

correct coarse deformations. The gradual change protects the framework against

mis-correspondences. Finally, the Demons algorithm [2, 148] is applied in the fifth
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stage of the fine section to correct more fine mismatches. Actually, the stages

before Demons bring the moving volume closer to the fixed volume which helps

Demons to align more effectively than when only using the Demons method.

3.3.2 Geometrical Transformation

The choice of transformation has a large effect on the registration process [48],

with the most appropriate one not known a prior [79]. In the registration process,

the transformation parameters are estimated using an optimization technique,

with the number of them referred to as the deformation’s degrees of freedom.

In neck muscles application, the registration needs to be performed between the

MRI volumes of two different individuals’ necks; this cannot be achieved using

only an affine or rigid transformation because both have a limited number of

parameters. Therefore, an elastic transformation with a higher degree of freedom is

required to tackle the morphological complexity and variability of the population.

However, to deal with the neck’s variability, a mixture of affine, DPSW and FFD

transformations is used to align the neck’s trunk first by exploiting the advantages

of the EPD. The same strong edges that correspond mainly to the neck’s trunk are

used to correct a coarse mismatch with a different transformation. This is because

a good deformation cannot be achieved through a single transformation.
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In this study, considering F (x, y, z) and I(x′, y′, z′) as fixed and moving vol-

umes, respectively, their coordinates are involved in elastic registration as follows:

x′i = xi +

P/3∑
k=1

mkϕk(xi, yi, zi)

y′i = yi +

2P/3∑
k=P/3+1

mkϕk(xi, yi, zi)

z′i = zi +
P∑

k=2P/3+1

mkϕk(xi, yi, zi)

(3.1)

where mk are the motion parameters, k is the parameter index, P is the total

number of motion parameters and ϕk are the basis functions for the complex

mapping, given as:

ϕk(xi, yi, zi) = ϕk+P/3(xi, yi, zi) = ϕk+2P/3(xi, yi, zi). (3.2)

There are many types of basis functions in the literature, including polynomial,

Fourier, radial, B-spline, DC and wavelet. Of these, the Fourier, B-spline and

wavelet functions support a multi resolution decomposition that provides a coarse-

to-fine representation of the displacement field. Hence, these basis functions are

usually used in medical image registration. However, wavelet basis functions can

achieve a local deformation more effectively than Fourier basis functions due to

their localization in both the frequency and spatial domains [327]. The DPSW

and FFD transformations will be described in Section 3.3.2.1 and Section 3.3.2.2.

3.3.2.1 Discrete Periodic Spline Wavelet

The Cai-Wang [328] wavelet is used, which is compactly supported, in the proposed

DPSW-based basis functions and a fourth-order B-spline as a scaling function. The
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wavelet is arranged in a periodic form with the center of the main lobe translated

to a coordinate origin.

The fourth-order B-spline is defined as:

φ(x) =
1

6

4∑
a=0

(
4

a

)
(−1)a(x− a)3+ (3.3)

where, for any integer (n):

xn+ =


xn if x ≥ 0

0 otherwise.

(3.4)

Then, the spline wavelet is:

ψ(x) =
−3

7
φ(2x) +

12

7
φ(2x− 1)− 3

7
φ(2x− 2). (3.5)

The DPSW-based basis functions are:

ϕk(xi, yi, zi) = ϕk+P/3(xi, yi, zi) = ϕk+2P/3(xi, yi, zi)

= ψλ(xu)ψλ(yv)ψλ(zw)

(3.6)

where k = 2su + sv + w + 1, u, v, w = 0, 1, 2, · · · , s − 1, s = 3

√
P
3

and ψλ() is the

DPSW.

The supports are 4 and 3 for the spline and spline wavelet respectively, as

shown in Figure 3.2, with the periodic spline wavelet generated by considering the

wavelet as one period. The proposed 3D basis functions are generated from the

fifth resolution of the wavelet using a point-to-point multiplication of the 1D func-

tions, whereas the FFD uses a tensor product of the 1D non-periodic third-order



Chapter 3. A Deformable 3D-3D Registration Framework using Discrete Periodic
Spline Wavelet and Edge Position Difference 63

spline to generate basis functions. The DPSW-based transformation requires fewer

parameters than the spline or B-spline-based wavelets to represent local deforma-

tions. Specifically, one basis function in the DPSW can represent local deforma-

tions over an entire image, whereas the B-spline or spline wavelet cannot, since

they require more parameters to represent the same level of local deformation for

a whole image, which places a burden on the optimization process. In particular,

for a 128× 128× 128 image, a B-spline-based transformation requires 15, 27 and

51 parameters for the fifth, fourth and third resolutions, respectively, while the

DPSW uses only 24 parameters for all resolutions. Although DC-based basis func-

tions can obtain local deformations over an entire image and are widely popular

in video and various image-processing applications [329], they cause shrinking and

stretching in several parts of the image. There are two reasons for these effects.

First, the parameterizations in the available DC-based basis functions do not use

the full cycle of a cosine wave within a cubical image support, whereas multiple

cycles of the periodical spline wavelet are used in the DPSW-based basis functions,

which have greater variations in values, as shown in Figure 3.3. Registrations are

also performed using the DPSW and DC on the 3D MRI volumes shown in Fig-

ure 3.4 and obtain stretching effects in the latter’s results. Second, there is a lower

span in the negative lobe of the spline wavelet with regularization when compared

to the cosine one.

3.3.2.2 Free Form Deformation

The fourth-order B-spline as defined in (3.3) is used in the FFD-based basis func-

tions to obtain smoother local deformations than those in the traditional FFD
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Figure 3.2: (a) 1D B-spline and (b) spline wavelet. The supports of the B-spline
and spline wavelet are 4 and 3, respectively.
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Figure 3.3: (a) 1D cosine and (b) periodic spline wavelet within an image
support of 128× 128× 128. Basis functions in discrete cosine

ϕk(xi, yi, zi) = cos
(
(2xi+1)πu

2M

)
cos
(
(2yi+1)πv

2N

)
cos
(
(2zi+1)πw

2O

)
. In discrete periodic

spline wavelet, ϕk(xi, yi, zi) = ψλ(xu)ψλ(yv)ψλ(zw), where M , N and O are the
volumetric image’s dimensions. The wave and wavelet are at the coarsest scale

resolution level for the image support.

using the third-order B-spline, with the basis functions:

ϕk(x) =
L∑

j=R

2−j
Nj/2∑

t=−Nj/2

Φ(2−jx− t2j)

Nj ≡ 2−jN = 2−j(Nx, NyNz)

t = (tx, ty, tz),x = (x, y, z)

(3.7)
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Figure 3.4: Registration results for two magnetic resonance imaging volumes
using discrete cosine- and discrete periodic spline wavelet-based basis functions,

showing a stretching effect in one slice of the former. The edges of the fixed image
are superimposed in red over the unregistered and registered moving images. The
registration is performed in 3D-3D, but the results are shown in 2D by taking one

image from the 3D volume.

where t is the translation index, j is the resolution level, R is the starting resolution

level, L is the maximum resolution level and Φ() is the basis functions. As L

depends on the volume’s size, the number of parameters for a resolution level is

(2−jN + 1) × 3 if N = Nx = Ny = Nz and the 3D basis functions use the tensor

product of the 1D spline, given by:

Φ = φ(2−jx− tx2j)φ(2−jy − ty2j)φ(2−jz − tz2j). (3.8)
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3.3.3 EPD Similarity Measure

As the SM is another significant part of the registration process, in the proposed

method, a new measure called the EPD is leveraged in the proposed coarse-to-fine

registration framework to accomplish alignments in both the coarse and fine levels.

This measure is based on the hierarchical Chamfer matching algorithm [330] and

determines the distance between the corresponding edges in two images. The

EPD is not exactly the same as root mean square (RMS), Euclidean distance or

closest distance which are commonly used in shape matching. First, the EPD uses

the arithmetic mean of Chamfer values of the moving image at the position of

edges in the fixed image. Second, the Chamfer distance uses an approximation

of the Euclidean distance to calculate distance from a pixel to the nearest edge.

Third, the edge points of the fixed image may map to Chamfer values which

may correspond to different edges other than the edge in the fixed image. One

of the most popular intensity-based SMs in the literature is the MI measure.

However, it is not suitable for neck MRI datasets in which multiple muscles are

near each other and have similar compositions, with large deformations between

subjects. Therefore, using a MI-based SM causes mis-registrations between MRI

volumes. Conversely, the EPD is a feature-based SM that uses the edges of the

muscles and the neck’s trunk. In this registration technique, every edge pixel in

a moving image contributes to a registration error with a value proportional to

the distance to its closest edge in the reference image. Therefore, the edges of

overlapping images are attracted to each other, which leads the EPD SM to have

better registration accuracy than the MI measure, as justified in Section 3.4.3.

Moreover, the EPD supports coarse-to-fine tuning because it uses edges that are

controllable by selecting their detection thresholds. Consequently, since it is more

suitable than the MI, this new SM is used in the proposed framework.
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To calculate the EPD, first, edge volumes of the moving I and fixed F volumes

(EI and EF , respectively) are calculated using a canny edge detector, with a

value of 1 corresponding to an edge; otherwise, the value is 0. The strong or

weak edges are selected by choosing thresholds in the canny edge detector, which

assists in designing a double-pushing system for combating dips in the fine section

of the registration framework. Then, the locations of the edges (β) in EF are

calculated and the distance transform volume (C) from EI is determined using

the 3D Chamfer distance transform method. This transform is an approximation

of the Euclidean distance transform, in which each value of a voxel represents a

distance to the closest edge in the edge volume. Finally, the EPD S, which is the

arithmetic mean of the values of the voxels in the β positions, is calculated as:

S(mk) =
1

3T

∑
(x,y,z)∈β

C(x′, y′, z′) (3.9)

where T is the total number of edge voxels in β, 3 is used to compensate local

distance in the Chamfer distance.

Figure 3.5 presents an example of a MRI slice with its corresponding edge

image and the latter’s Chamfer distance image, obtained from a 3D MRI volume

using the 3D Chamfer distance algorithm with local distances of d1 = 3, d2 =

4 and d3 = 5 [1]. However, if there are no edges in some consecutive slices of a 3D

volume or some local 3D regions of it, infinity remains in the border voxels of the

cubical support. Therefore, the original 3D Chamfer distance transform algorithm

is modified, as described below.
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Figure 3.5: (a) Magnetic resonance imaging slice. (b) Edge image of (a). (c)
Chamfer distance image of (b). The binary and Chamfer distance images are

calculated for a 3D image but the results are shown in 2D.
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Figure 3.6: (a) Auxiliary schematic diagram for modified 3D Chamfer distance
algorithm (voxels of the same color use the same mask modified from the

original [1], with O slices in volume and each red number meaning a special
condition corresponding to the modified mask). (b) Mask for special condition 3
of (a). The masks are used during traversing for the specified slices in the text

boxes.
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3.3.3.1 Modified Three-Dimensional Chamfer Distance Transform Al-

gorithm

To tackle the problem mentioned above regarding the boundary voxels, two for-

ward and two backward passes are used rather than only two passes as in the

original algorithm. The new algorithm handles the other voxels similarly to those

in the original algorithm. The boundary voxels of the last and first slices are pro-

cessed separately in the first forward and backward passes, respectively. The masks

of the original algorithm are changed according to the positions of the boundary

voxels and are used in the proposed algorithm, with Figure 3.6 (a) showing their

modified positions and Figure 3.6 (b) showing the modified mask for special condi-

tion 3. There are five special conditions in the first forward and backward passes,

and four in the second ones. The framework is summarized in Algorithm 1.

3.3.4 Transformation Parameters Optimization

Optimizing a registration is considered ill posed and is actually a multidimen-

sional problem that maximizes or minimizes the SM with respect to the transfor-

mation parameters. Generally, optimization methods for medical image registra-

tion are classified into three categories: continuous, discrete and miscellaneous.

The first category includes GD, conjugate gradient, Powell’s conjugate directions,

quasi-Newton, Gauss-Newton (GN), Levenberg-Marquardt and stochastic GD ap-

proaches, the second includes graph-based, belief propagation and linear program-

ming techniques and the third includes greedy and evolutionary algorithms. The

Powell’s conjugate directions and stochastic GD methods have been applied for

transformations with low degrees of freedom [48], while evolutionary algorithms,

which are used mainly in linear registration, have shown slow convergence. Hence,
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Algorithm 1 Modified 3D Chamfer distance transformation.
Input EI, Q.
Output C.

1: Initialize d1 = 3,d2 = 4 and d3 = 5, obtain dimensions M , N and O from EI
and pre-allocate output matrix (C) with the same dimensions as EI by zeros.

2: for r = 1 : O do
3: for p = 1 : M do
4: for q = 1 : N do
5: Update C by Q where the value of EI is zero, and by zero otherwise.
6: end for
7: end for
8: end for
9: for r = 2 : O do

10: for p = 2 : M do
11: for q = 2 : N do
12: if p < M ∧ q < N then
13: Update C according to forward mask in Figure 17 in [1].
14: else if r = O then
15: for p = 1 : M do
16: for q = 1 : N do
17: if p = 1 ∧ q = 1 then
18: Update C according to the first special condition in Figure 3.6.
19: else if p = 1 ∧ 1 < q < N then
20: Update C according to the second special condition in Fig-

ure 3.6.
21: else if p = 1 ∧ q = N then
22: Update C according to the third special condition in Fig-

ure 3.6.
23: else if 1 < p < M ∧ q = 1 then
24: Update C according to the fourth special condition in Fig-

ure 3.6.
25: else if p = M ∧ q = 1 then
26: Update C according to the fifth special condition in Figure 3.6.
27: end if
28: end for
29: end for
30: end if
31: end for
32: end for
33: end for
34: for r = O − 1 : 1 do
35: for p = M − 1 : 1 do
36: for q = N − 1 : 1 do
37: Update C as first forward pass using backward mask in Figure 17 in [1]

and special conditions 6, 7, 8, 9 and 10 in Figure ?? for the first slice.
38: end for
39: end for
40: end for
41: Return C
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GN and GD approaches have been used in many medical image registration ap-

proaches. In this application of mono modal registration, the GNGD method is

used because the EPD involves summing the function values.

The optimization procedure required to find mk is described as follows:

∂S

∂mk

= 0. (3.10)

To minimize S, it is necessary to estimate its values in a small neighborhood

of mk, as:

∂

∂mk

S(mk + ∆m) = 0 (3.11)

where ∆m is a vector added to mk in each iteration.

The value of ∆m is determined using the first-order Taylor series approxima-

tion, as:
∂

∂mk

[
S(mk) + S ′(mk)∆m

]
= 0

⇒∇S(mk) +∇2S(mk)∆m = 0

⇒∆m = −∇S(mk)
(
∇2S(mk)

)−1
.

(3.12)

The gradient ∇S(mk) is calculated as:

∇S(mk) =
∂S

∂x′
∂x′

∂mk

+
∂S

∂y′
∂y′

∂mk

+
∂S

∂z′
∂z′

∂mk

=
∑
β

(
∂C

∂x′
∂x′

∂mk

+
∂C

∂y′
∂y′

∂mk

+
∂C

∂z′
∂z′

∂mk

) (3.13)

where ∂C
∂x′

, ∂C
∂y′

and ∂C
∂z′

are the spatial gradients of C, while ∂x′

∂mk
, ∂y′

∂mk
and ∂z′

∂mk
are

obtained from corresponding transformation basis functions (ϕk) in equations (3.6)

and (3.7).
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The Hessian matrix ∇2S(mk) in equation (3.12) is defined in the GN opti-

mization technique as:

∇2S(mk) = J(mk)J(mk)
T (3.14)

where J(mk) is the Jacobian of C(x′, y′, z′), calculated as:

Jb,c(mk) =
∂C(x′, y′, z′)

∂mk

, for (x′, y′, z′)εβ (3.15)

where b is the parameter indices and c is the position index of β. Finally, the vector

∆m is obtained from equation (3.12), which is used to update the transformation

parameters as follows:

ml+1
k = ml

k + ∆m. (3.16)

As most of the elements in the fine resolution’s basis functions are zero in the

FFD transformation, most of those in the Hessian matrix become zero, since this

matrix is calculated by multiplying the spatial gradients of C and basis functions

in the β positions, making it impossible to invert the matrix. Therefore, this

matrix is omitted in the FFD transformation, which changes the optimization to

a GD method.

3.4 Experimental Procedure and Result Analy-

sis

3.4.1 Data and Annotations

The experiments were performed on neck MR images as part of a larger study

of neck pain undertaken at the Australian National University (ANU) Medical
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Table 3.1: Demographic data and magnetic resonance imaging scanner
parameters.

Patient
index

Age
(years)

Weight
(kg)

Height
(m)

Repetition
time (s)

Echo
time (s)

Acquisition
date (yyyymmdd)

PT-1 29 57 1.61 746 15 20140106
PT-2 19 59 1.65 737 15 20141216
PT-3 25 57 1.67 827 15 20131217
PT-4 20 56 1.55 750 15 20141212
PT-5 32 59 1.64 766 15 20141202
PT-6 23 45 1.60 827 15 20140922
PT-7 23 61 1.72 827 15 20141113
PT-8 27 61 1.62 827 15 20141124
PT-9 24 75 1.75 949 15 20140120
PT-10 27 57 1.65 777 15 20141201
PT-11 32 43 1.50 827 15 20141209

School. The study had ethics approval from the Human Research Ethics Commit-

tees of the ANU and Australian Capital Territory Health, with written informed

consent from all participants. T1 SE axial spin echo MR images with voxel spac-

ings of 0.8594 mm× 0.8594 mm× 4 mm and sizes of 256× 256× 45 were acquired

using a 3 Tesla Skyra scanner (Siemens, Erlangen, Germany) and then cropped

and interpolated to 128 × 128 × 128. Data from 11 participants collected at dif-

ferent times using different MRI machine settings were used in this experiments.

The participants’ demographics and the MR sequence parameters for each scan

are shown in Table 3.1.

An ANU graduate-entry medical student, with a degree in anatomy, manually

delineated the right and left sternocleidomastoid, semispinalis capitis and splenius

capitis muscles between the C1 and C7 vertebral levels. These segmentations were

validated and edited by two medical experts from the ANU Medical School and

Canberra Hospital. A MATLAB graphical user interface was developed for this

research for segmentation which allowed the use of as many vertices as necessary

to capture small details of the contours of these muscles. The contours of a slice
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Figure 3.7: Annotated contours of an axial magnetic resonance image. Different
colors are used for each separate muscle due to annotation convenience; however,

the same color is used for symmetric muscles.
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Figure 3.8: Comparison of performances of the edge proposition difference
(EPD), mutual information (MI) and sum of squared difference (SSD) similarity
measures from the affine registration experiments. (a) Registration accuracies of

110 cases for each muscle (higher volumetric dice similarity coefficient [DSC]
values are better). (b) Registration accuracies of

110 cases× 6 muscles = 660 DSCs for all muscles combined. The 110 cases are
assessed by considering all other patients’ images as moving and a specific

patient’s image as fixed for the total 11 patients in the neck dataset.

from an MRI volume are shown in Figure 3.7.
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Table 3.2: Results obtained for the edge proposition difference (EPD), mutual
information (MI) and sum of squared difference (SSD) measures from the affine
registration experiments in terms of volumetric dice similarity coefficient (DSC)
(DSC values for patient-1 [PT-1] fixed and others considered moving; left and
right sternocleidomastoid, left and right semispinalis capitis, and left and right

splenius capitis muscles denoted as Muscles 1, 2, 3, 4, 5 and 6, respectively, where
higher values indicate better performances, with maximum value 1, and best DSC

in each column marked in bold).

Muscles Methods
Patient Index

PT-2 PT-3 PT-4 PT-5 PT-6 PT-7 PT-8 PT-9 PT-10 PT-11

Muscle-1
EPD
MI
SSD

0.6065
0.1164
0.4402

0.7807
0.2530
0.6611

0.6460
0.1558
0.4899

0.6302
0.4991
0.6667

0.6052
0.0000
0.4147

0.7394
0.1648
0.5345

0.6736
0.0374
0.5122

0.4837
0.2903
0.5044

0.6719
0.6577
0.5696

0.4375
0.2877
0.5597

Muscle-2
EPD
MI
SSD

0.6677
0.2782
0.5315

0.6917
0.3932
0.5892

0.6869
0.4868
0.6216

0.6477
0.4466
0.3935

0.5771
0.0620
0.0557

0.6315
0.5772
0.1850

0.7034
0.2519
0.1438

0.4408
0.1406
0.4108

0.4446
0.1889
0.2115

0.5067
0.3623
0.1518

Muscle-3
EPD
MI
SSD

0.6566
0.2801
0.6094

0.7023
0.3503
0.6444

0.6408
0.3942
0.5412

0.6883
0.4633
0.6545

0.6687
0.0246
0.5705

0.5482
0.5589
0.5786

0.5142
0.3559
0.5344

0.4342
0.4906
0.3541

0.5483
0.5248
0.5076

0.7090
0.3192
0.6350

Muscle-4
EPD
MI
SSD

0.6530
0.1734
0.6291

0.8179
0.0951
0.7201

0.8127
0.5216
0.7415

0.7368
0.1663
0.6476

0.7407
0.0367
0.4828

0.5065
0.0716
0.6871

0.7731
0.0227
0.3924

0.7850
0.3761
0.7843

0.7163
0.6859
0.5742

0.6897
0.0316
0.7063

Muscle-5
EPD
MI
SSD

0.5957
0.3895
0.6735

0.6485
0.1673
0.5573

0.7734
0.5672
0.5804

0.6030
0.1929
0.6017

0.6659
0.0201
0.5458

0.5480
0.7845
0.5497

0.4160
0.5572
0.5629

0.5483
0.2099
0.3798

0.3643
0.4460
0.4132

0.6128
0.0149
0.5171

Muscle-6
EPD
MI
SSD

0.5715
0.2454
0.6221

0.6392
0.0000
0.3390

0.6899
0.3181
0.5980

0.7135
0.0515
0.5914

0.6785
0.0028
0.5183

0.6094
0.0789
0.6797

0.6098
0.0000
0.3375

0.6559
0.1309
0.5769

0.6488
0.6678
0.5769

0.5939
0.0000
0.6169

3.4.2 Evaluation Metric

To evaluate registration results, the DSC is used due to its popularity in medical

image research. The DSC is expressed as:

DSC(g, s) =
2 | g ∩ s |
| g | + | s | (3.17)

where g is the annotation contour and s is the transformed contour, with the

volumetric DSC for each muscle calculated separately.
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Table 3.3: Results obtained for the edge position difference (EPD), mutual
information (MI) and sum of squared difference (SSD) from the affine registration
experiments in terms of volumetric dice similarity coefficient (DSC) (mean DSC
values for all fixed volumes calculated over all moving ones; values in the first
column were obtained from Table 3.2 by taking row-wise mean; bold values

indicate better results).

Muscles Methods
Patient Index Overall

meanPT-1 PT-2 PT-3 PT-4 PT-5 PT-6 PT-7 PT-8 PT-9 PT-10 PT-11

Muscle 1
EPD
MI
SSD

0.6275
0.2462
0.5353

0.5917
0.3039
0.3908

0.5074
0.3120
0.5488

0.5405
0.3962
0.4130

0.5049
0.2572
0.5259

0.5302
0.0872
0.4682

0.6147
0.3915
0.5321

0.5612
0.3190
0.5834

0.4828
0.2117
0.4034

0.5671
0.2101
0.5340

0.2790
0.3472
0.3778

0.5279±0.1784
0.2802±0.2242
0.4830±0.1717

Muscle 2
EPD
MI
SSD

0.5998
0.3188
0.3294

0.4415
0.2760
0.6381

0.5638
0.2375
0.4362

0.4677
0.3193
0.5346

0.4632
0.3174
0.5474

0.5953
0.1225
0.5959

0.4988
0.2912
0.5204

0.6455
0.3964
0.5360

0.5607
0.1417
0.5208

0.5179
0.1232
0.4433

0.2945
0.2607
0.4228

0.5135±0.2025
0.2550±0.2100
0.5023±0.1860

Muscle 3
EPD
MI
SSD

0.6111
0.3762
0.5630

0.6154
0.2637
0.4443

0.6963
0.3370
0.6250

0.6096
0.2879
0.6457

0.6010
0.2737
0.5138

0.6399
0.0422
0.6146

0.5831
0.2919
0.6097

0.6151
0.3689
0.5740

0.4905
0.3842
0.3737

0.5754
0.2312
0.5873

0.3638
0.3693
0.6285

0.5819±0.1652
0.2933±0.2311
0.5618±0.1493

Muscle 4
EPD
MI
SSD

0.7232
0.2181
0.6365

0.5359
0.3325
0.5497

0.6593
0.3179
0.5745

0.6420
0.2657
0.6823

0.5560
0.4075
0.5506

0.5701
0.2111
0.6335

0.5295
0.3753
0.6241

0.6434
0.4436
0.5704

0.7401
0.2464
0.6172

0.5666
0.0660
0.5559

0.3636
0.2820
0.6150

0.5936±0.1632
0.2878±0.2175
0.6009±0.1377

Muscle 5
EPD
MI
SSD

0.5776
0.3350
0.5381

0.5708
0.2070
0.3616

0.6270
0.3469
0.5057

0.5954
0.2882
0.5267

0.5716
0.2379
0.5008

0.5504
0.0460
0.5777

0.5745
0.2305
0.5363

0.4961
0.3654
0.4796

0.4823
0.2789
0.3715

0.4958
0.1664
0.4865

0.3816
0.2218
0.5299

0.5385±0.1771
0.2476±0.2409
0.4922±0.1479

Muscle 6
EPD
MI
SSD

0.6411
0.1495
0.5457

0.5297
0.2725
0.4419

0.5596
0.1831
0.3016

0.6137
0.2312
0.5025

0.6045
0.3378
0.4660

0.4046
0.0857
0.4922

0.5887
0.3578
0.5285

0.5006
0.2470
0.4744

0.5841
0.1900
0.4920

0.4673
0.0299
0.4183

0.3459
0.1308
0.5387

0.5309±0.1922
0.2014±0.2185
0.4729±0.1548

Overall
mean

EPD
MI
SSD

0.6300
0.2740
0.5247

0.5475
0.2759
0.4711

0.6022
0.2891
0.4987

0.5781
0.2981
0.5508

0.5502
0.3052
0.5174

0.5484
0.0991
0.5637

0.5649
0.3230
0.5585

0.5770
0.3567
0.5363

0.5568
0.2421
0.4631

0.5317
0.1378
0.5042

0.3381
0.2686
0.5188

0.5477±0.1820
0.2609±0.2252
0.5188±0.1648

3.4.3 Numerical Results Analysis

The experiments were performed on a HP z230 tower workstation with a 16 GB

RAM and 3.40 GHz Intel(R) Core(TM) i7-4770 processor running the Windows 7

operating system using MATLAB, and C and C++ MEX programming. A canny

edge detector with sigma 1.5 was used to calculate the edge image for the EPD

similarity measure. The lower and higher threshold pairs of 0.1, 0.9; 0.08, 0.7;

0.04, 0.4; 0.01, 0.2 and 0.001, 0.1 were selected in the 5th, 4th, 3rd, 2nd and 1st

resolution levels of the FFD registration respectively. The threshold pair 0.1, 0.9

was also used with affine and DPSW registrations.



Chapter 3. A Deformable 3D-3D Registration Framework using Discrete Periodic
Spline Wavelet and Edge Position Difference 77

3.4.3.1 Comparison of the EPD, MI and SSD Similarity Measures

Affine EPD, affine MI and affine SSD registrations were performed on the dataset

to compare the EPD, MI and SSD similarity measures. The affine MI registrations

were performed using advanced normalization tools (ANTs). For each fixed pa-

tient, the other 10 patients were considered moving, giving a total of 11×10 = 110

cases (registrations). Table 3.2 shows the experimental results obtained for affine

registrations, which are the DSC values for 10 of the 110 cases for the six muscles

in which PT-1’s volume was considered fixed and the others moving. Similar ta-

bles were constructed for the other patients. The bold values, which represent the

highest DSC in each column, indicate that the EPD has the highest DSC in eight

cases and the MI and SSD each in only one. It is also clear that the PT-2 case

has the lowest best value, with best DSCs for the EPD, MI and SSD of 0.8179,

0.7845, and 0.6735 respectively. Overall, the EPD achieved better accuracy than

the MI and SSD.

Table 3.3 shows the mean and overall mean DSCs for all the fixed volumes

of the affine registration. The last column represents the final means of the 110

cases and the last three rows display the means of 10 cases when considering

the other 10 patients as moving. The table indicates that the EPD has better

registration accuracy than the MI and SSD for the nine patients, and the SSD

has better accuracy than EPD and MI for the two patients, EPD achieving a

final DSC of 0.5477, which is significantly better than the MI’s 0.2609 and the

SSD’s 0.5188. This large difference in DSC values proves that the MI similarity

measure is not suitable for this dataset and, therefore, for the proposed coarse-

to-fine framework. Although the accuracy of the SSD is close to that of EPD, it

can not provide object-wise alignment. Therefore, EPD has been selected as the

similarity measure for the proposed method. Although the volumetric DSCs for
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Table 3.4: Parameter settings for SyN [3] and Demons [2] registrations in our
neck dataset. The SyN and Demons registrations were conducted through ANTs

and MATLAB, respectively. Multistage registrations were used in the SyN
method, in which the rigid, affine and SyN geometrical transformations used the
same smoothing sigmas, shrink factors, and convergence, except that SyN used

different convergence. The metric CC means cross-correlation.

Parameter SyN [3] Demons [2]

Script antsRegistrationSyN.sh imregdemons.m
Dimension 3 3
Pyramid levels - 3
Iterations - 100x100x100
Transformations Rigid[ 0.1 ], Affine[ 0.1 ] -
Metric MI[F,I,1,32,Regular,0.25 ] -
Smoothing sigmas 3x2x1x0vox 1
Shrink factors 8x4x2x1 -
Convergence [ 1000x500x250x100,1e-6,10 ] -
Transformation SyN[ 0.1,3,0 ] -
Metric CC[F,I,1,4 ] -
Convergence [ 100x70x50x20,1e-6,10 ] -

EPD are better than for the other methods, its values are not in the excellent range

because strong edges were used to align the volumes coarsely. The coarse alignment

is further refined through the latter multiple stages in the proposed method. These

results are obtained using only the single stage ”Affine-EPD” from the proposed

framework. The EPD yields mediocre results in some circumstances such as PT-

11. There could be two possible reasons. First, the patient is demographically and

anatomically more different than the other patients. Second, there may be some

noise or intensity inhomogeneity problems. These problems can be eliminated by

using the proposed complete framework.

To investigate further, box plots are used to statistically analyze the experi-

ments. Figure 3.8 exhibits the registration accuracies obtained by the EPD, MI
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Deformation field Generation: 

C:\Users\z3486224\OneDrive - UNSW\PhD Codes\Codes_1st Idea\Course_fine section J-
Draft_Used_WrongMuscleData\Deformation_Field_generation.m 

SN=65;% Slice number 
load('Patient-3CI128128128-MRI.mat') 
load('RegisteredDeformationFieldF3M13_1stJournalProposed.mat') 
figure(4);imagesc(RV_FFD3(:,:,SN)), colormap(gray(256));axis off; 
figure(5);imagesc(RV_FFD4(:,:,SN)), colormap(gray(256));axis off; 
 
EI087 = edge(V(:,:,SN),'canny',[0.08 0.7],1.5); 
figure(55);imagesc(EI087), colormap(gray(256));axis off; 
  
EI044 = edge(V(:,:,SN),'canny',[0.04 0.4],1.5); 
figure(44);imagesc(EI044), colormap(gray(256));axis off; 
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Figure 3.9: Axial deformation fields and edge maps of an inter-subject case for
different sets of edges using different sets of thresholds with different resolution
levels of the spline: (a) edge map with lower and higher thresholds pair of 0.08
and 0.7, (b) deformation field of (a) using 4th resolution level of spline, (c) edge
map with thresholds pair of 0.04 and 0.4, (d) deformation field of (c) using 3rd

resolution level of spline.

and SSD for each muscle separately (see Figure 3.8(a)) and combined (see Fig-

ure 3.8(b)). Figure 3.8(a) indicates that the EPD has better median DSCs than

the MI and SSD for four muscles, and the SSD is better for the other two muscles.

In addition, the maximum DSCs for EPD are higher than for the MI and SSD

measures for all muscles except for Muscle-5 when using MI.

Similarly, Figure 3.8(b) reveals that the EPD has better overall median and

maximum DSCs for all the muscles combined (0.5866 and 0.8627, respectively)

than the MI (0.2430 and 0.8441, respectively) and the SSD (0.5484 and 0.8220,

respectively).

3.4.3.2 Performance Comparison

Strong and weak sets of edges were used to obtain coarse and fine level deformation.

Figure 3.9 shows edge maps and the corresponding deformation fields for an inter-

subject registration case using strong and weak sets of edges. These maps illustrate

a coarse displacement field for the strong set and a fine displacement field for the

weak set. To evaluate the effectiveness of every stage of the proposed method,
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the volumetric DSC was calculated for one of the inter-subject registrations at

every stage. Figure 3.10 shows the 2D visual results at different stages of the

proposed registration method with a corresponding volumetric DSC value. It

can be seen from Figure 3.10(c) that the required deformations are very large

across subjects. Every stage gradually aligns the two images as indicated by the

alignment of the vertebra, muscles and neck trunk with the superimposed edges.

The effectiveness of some stages is more clearly visible in some other inter-subject

registration cases. The rising trend of volumetric DSC proves the effectiveness

of every stage in the proposed framework. Figure 3.11 shows the corresponding

coronal views for the patient shown in Figure 3.10. The sagittal views have not

been shown due to anterior information loss caused by inhomogeneity problems

with the MRI scanner. However, this view exhibits similar alignment improvement

with every stage as in the axial views. Figure 3.12 shows the results in terms of

muscles contours of different methods compared with the ground truths. It can

be seen that the proposed method’s contours are more fairly matched than for the

SyN and Demons algorithms.

The full proposed method was compared for the 110 inter-subject cases with

Coarse-EPD and Fine-EPD using volumetric DSC. Other stages were excluded for

presentation convenience. The ISR was also performed using the diffeomorphic

Demons [2, 148] and SyN [3] methods on this dataset for the 110 cases. The two

methods are powerful and popular registration algorithms considered as a gold

standard in the deformable registration field. ANTs and MATLAB were used for

implementing the SyN and diffeomorphic Demons, respectively. The parameter

information for the SyN and diffeomorphic Demons is shown in Table 3.4. Table 3.5

shows the mean and overall mean volumetric DSCs for all the fixed volumes of

the proposed, diffeomorphic Demons [2], SyN [3], Coarse-EPD and Fine-EPD

registrations. Tables 3.3 and 3.5 were generated in a similar way. The overall mean
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(h) DSC = 0.7782 
DSC=0.006218 

(b) (a) 

Figure 3.10: Axial visual results of one of the 110 inter-subject registration
cases to show the effectiveness of every stage of the proposed framework, as shown

in Figure 3.1, in terms of the volumetric DSC value. It should be noted that,
although the registration is performed between the two 3D MRI volumes, the

results are illustrated in 2D for presentation convenience. (a) fixed image,
(b) moving image before registration, (c) moving image before registration with

superimposed fixed image’s edges; superimposed fixed image’s edges on the
moving image after (d) Affine-EPD stage, (e) DPSW-EPD stage, (f) Coarse-EPD

stage, (g) Fine-EPD stage and (h) final stage (proposed method).

values in the last column represent the final means for the 110 cases and those

in the last five rows represent the means for the 10 cases considering the other

10 patients as moving. The proposed method clearly yields better registration

accuracy than the others for nine of the 11 participants, whereas Demons [2]

and SyN [3] yield good accuracies for only one each of the 11 participants. The

proposed method achieves a final DSC of 0.7029, significantly better than those

of the Demons (0.6654) and SyN (0.6606), with the overall mean volumetric DSC

values obtained for five muscles higher by the proposed method than others, except

for Muscle 2 by SyN. However, the rising trend of final DSC values in the Coarse-

EPD and Fine-EPD stages indicate that the stages before the Demons stage in the
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P 3 Fixed P 13 Moving     Slice 80 (Coronal View) 
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Figure 3.11: Coronal visual results for the same case shown in Figure 3.10. It
should be noted that, although the registration is performed between the two 3D

MRI volumes, the results are illustrated in 2D for presentation convenience.
(a) fixed image, (b) moving image before registration, (c) moving image before
registration with superimposed fixed image’s edges; superimposed fixed image’s
edges on the moving image after (d) Affine-EPD stage, (e) DPSW-EPD stage,

(f) Coarse-EPD stage, (g) Fine-EPD stage and (h) final stage (proposed method).

proposed method bring the moving volumes closer to the fixed volume which helps

Demons to align more effectively than when only the Demons method is used.

Figure 3.13 shows the results obtained from the statistical analysis of the pro-

posed, diffeomorphic Demons, SyN, Coarse-EPD and Fine-EPD experiments for

each muscle separately (see Figure 3.13(a)) and combined (see Figure 3.13(b)).

Figure 3.13(a) indicates that the proposed method has better median and maxi-

mum DSCs than the others for Muscles 1, 4, 5 and 6, whereas the SyN algorithm

performs better for Muscles 2 and 3.

Similarly, Figure 3.13(b) reveals that the proposed method has better over-

all median and maximum volumetric DSCs for all the muscles combined (0.7385
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Figure 3.12: Comparison of visual results in terms of muscles contours among
proposed, Demons [2] and SyN [3] methods with ground truths: (a) axial view

and (b) coronal view.

and 0.9075, respectively) than the diffeomorphic Demons (0.7215 and 0.8680, re-

spectively) and SyN (0.7137 and 0.8940, respectively) methods. Moreover, the

diffeomorphic Demons method has more outliers (53) than the proposed method

(20) and SyN (32) for all the muscles combined.

To perform a complete analysis, the Hausdorff distance (HD) was also used as

a distance error metric. Figure 3.14 shows the HD results for all muscles combined.

It reveals that the proposed method has better median HD (5.7446mm) than the

SyN (6.0000mm) and diffeomorphic Demons (5.9161mm) methods.

Finally, the experimental results and analyses reveal that the proposed method

outperforms the diffeomorphic Demons and SyN algorithms in terms of registration

accuracy and consistency.
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Table 3.5: Registration results obtained from inter-patient neck magnetic
resonance imaging experiments in terms of volumetric dice similarity coefficient

(DSC) (proposed method compared with diffeomorphic demons [2], SyN [3],
Coarse-EPD, and Fine-EPD; mean DSC values for all fixed volumes calculated

over all moving ones; bold values indicate better results).

Muscles Methods
Patient Index Overall

meanPT-1 PT-2 PT-3 PT-4 PT-5 PT-6 PT-7 PT-8 PT-9 PT-10 PT-11

Muscle 1

Coarse-EPD
Fine-EPD
Proposed
SyN [3]

Demons [2]

0.7021
0.7166
0.7338
0.7447
0.6582

0.6946
0.7111
0.7213
0.7661
0.7409

0.6721
0.6940
0.7379
0.6745
0.7140

0.6339
0.6568
0.7043
0.6193
0.6887

0.6530
0.6784
0.6942
0.6424
0.4601

0.6332
0.6646
0.7207
0.7641
0.6704

0.7226
0.7452
0.7272
0.7646
0.7761

0.7519
0.7677
0.7613
0.6981
0.6707

0.3440
0.3603
0.7362
0.5699
0.6900

0.3745
0.7099
0.7321
0.6230
0.3251

0.5119
0.5321
0.7668
0.6501
0.7031

0.6413±0.1841
0.6614±0.1843
0.6943±0.1814
0.6833±0.1609
0.6452±0.2226

Muscle 2

Coarse-EPD
Fine-EPD
Proposed
SyN [3]

Demons [2]

0.6913
0.7137
0.7585
0.7410
0.7180

0.5885
0.6054
0.6848
0.7842
0.6932

0.5868
0.5968
0.6515
0.6612
0.6879

0.6668
0.6909
0.7429
0.7453
0.6928

0.6140
0.6539
0.6617
0.6627
0.5462

0.6500
0.6536
0.6608
0.7311
0.6815

0.5890
0.6024
0.6781
0.7376
0.7014

0.7058
0.7201
0.6363
0.7263
0.7064

0.6639
0.6787
0.6751
0.6100
0.6667

0.6608
0.6792
0.6850
0.6650
0.4987

0.3934
0.4094
0.7202
0.5546
0.6100

0.6227±0.1515
0.6381±0.1532
0.6818±0.1409
0.6926±0.1650
0.6548±0.1757

Muscle 3

Coarse-EPD
Fine-EPD
Proposed
SyN [3]

Demons [2]

0.7359
0.7560
0.7853
0.7413
0.7539

0.6286
0.6381
0.6802
0.6422
0.6345

0.6721
0.6922
0.7618
0.7389
0.7580

0.7635
0.7753
0.7920
0.7089
0.7113

0.5946
0.6264
0.6429
0.6652
0.4718

0.7126
0.7192
0.7347
0.7942
0.7062

0.7483
0.7647
0.7840
0.7872
0.7827

0.7574
0.7750
0.8113
0.7653
0.7718

0.6025
0.6250
0.7895
0.6932
0.7601

0.6854
0.6985
0.7043
0.5610
0.6839

0.5534
0.5624
0.7544
0.5668
0.7605

0.6812±0.1310
0.6973±0.1311
0.7422±0.1133
0.6967±0.1546
0.7086±0.1396

Muscle 4

Coarse-EPD
Fine-EPD
Proposed
SyN [3]

Demons [2]

0.7345
0.7526
0.7888
0.7536
0.7645

0.7224
0.7370
0.7461
0.6927
0.7307

0.6570
0.6795
0.7308
0.6874
0.7467

0.6846
0.6973
0.7394
0.7411
0.4160

0.6365
0.7021
0.7197
0.6790
0.7356

0.7276
0.7438
0.7504
0.7845
0.7820

0.6519
0.6627
0.7777
0.7594
0.7222

0.7017
0.7222
0.6832
0.7354
0.7704

0.6500
0.6765
0.7586
0.7239
0.7418

0.7644
0.7582
0.7812
0.5537
0.7630

0.5770
0.5908
0.8002
0.6435
0.6933

0.6885±0.1053
0.7058±0.1058
0.7427±0.1087
0.7049±0.1560
0.7100±0.1534

Muscle 5

Coarse-EPD
Fine-EPD
Proposed
SyN [3]

Demons [2]

0.6922
0.7096
0.7175
0.6476
0.6507

0.4634
0.4815
0.5519
0.5036
0.5561

0.6602
0.6831
0.7107
0.7029
0.6640

0.6849
0.7102
0.7593
0.6234
0.6804

0.5576
0.5771
0.5811
0.6191
0.4492

0.6530
0.6729
0.6960
0.7102
0.6511

0.7000
0.7204
0.7460
0.7233
0.7342

0.6528
0.6731
0.7746
0.6198
0.7221

0.5327
0.5560
0.7088
0.5718
0.6643

0.5980
0.6217
0.6220
0.4791
0.5914

0.5197
0.5348
0.7009
0.4823
0.7251

0.6122±0.1347
0.6330±0.1369
0.6842±0.1291
0.6076±0.1737
0.6444±0.1730

Muscle 6

Coarse-EPD
Fine-EPD
Proposed
SyN [3]

Demons [2]

0.6490
0.6620
0.6613
0.5907
0.6072

0.6509
0.6741
0.7443
0.5620
0.6093

0.5746
0.5951
0.6576
0.4523
0.6327

0.6034
0.6278
0.7022
0.6189
0.6457

0.5617
0.5892
0.6716
0.6120
0.4061

0.6285
0.6551
0.6640
0.6454
0.6718

0.5754
0.5952
0.7089
0.7128
0.7202

0.6036
0.6136
0.6531
0.5745
0.6895

0.4906
0.5154
0.6392
0.5277
0.6271

0.5622
0.5904
0.6107
0.5163
0.6080

0.5059
0.5210
0.6808
0.5479
0.7018

0.5824±0.1328
0.6035±0.1310
0.6721±0.1233
0.5782±0.1716
0.6290±0.1740

Overall
mean

Coarse-EPD
Fine-EPD
Proposed
SyN [3]
Demons [2]

0.7008
0.7184
0.7409
0.7031
0.6921

0.6247
0.6412
0.6881
0.6585
0.6453

0.6371
0.6568
0.7084
0.6529
0.6979

0.6728
0.6931
0.7400
0.6761
0.6942

0.6251
0.6300
0.6475
0.6467
0.4582

0.6719
0.6924
0.6925
0.7383
0.6861

0.6645
0.6818
0.7370
0.7475
0.7494

0.6955
0.7120
0.7200
0.6866
0.7138

0.5473
0.5686
0.7179
0.6161
0.6964

0.6248
0.6635
0.6848
0.5663
0.5748

0.5102
0.5251
0.7372
0.5742
0.7106

0.6380±0.1463
0.6565±0.1464
0.7029±0.1375
0.6606±0.1704
0.6654±0.1772

3.5 Discussion

A deformable 3D-3D fully automatic registration framework using a novel DPSW

transformation and modified 3D Chamfer distance transform of the EPD was de-

veloped. The empirical outcomes demonstrated that the proposed method outper-

formed the well-established diffeomorphic Demons [2, 148] and SyN [3] algorithms

in terms of accuracy and consistency. Also, interestingly, the proposed framework
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Figure 3.13: Comparison of performances of proposed, diffeomorphic
Demons [2], SyN [3], Coarse-EPD and Fine-EPD methods. (a) Registration

accuracies of 110 cases for each muscle (higher volumetric dice similarity
coefficient [DSC] values are better). (b) Registration accuracies of

110 cases× 6 muscles = 660 DSCs for all muscles combined. The 110 cases are
assessed by considering all other patients’ images as moving and a specific

patient’s image as fixed for the total 11 patients in our neck dataset.

was robust in terms of input volumes because it worked on multiple MRI scanner

settings. In particular, the same thresholds were used in the EPD SM for the

input volumes with different repetition and echo times, which is common when

acquiring MR images in clinical practice.

The computational time required to register two neck volumes was calculated

for the EPD, SSD, MI, proposed, Demons [2] and SyN [3] methods. These times

are shown in Table 3.6. Although, some parts of the proposed method were im-

plemented using C/C++ MEX coding, the computational time of the proposed

method could be reduced if the full code was implemented in C/C++. The pro-

posed method is slower than the Demons algorithm but has better accuracy. The

low computational time for Demons was due to the professional implementation

of this algorithm in MATLAB.

The experiments in this work were conducted on real clinical neck MRI data.

The proposed registration framework was thoroughly evaluated against well-recognized
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deformable registration methods [2, 3, 148] applied to this dataset, and obtained

a better overall mean DSC value, confirming its effectiveness. The reasons for the

consistently enhanced accuracy of the proposed method are as follows:

• A conventional multi resolution registration method attempts to avoid large-

scale basins in the function to be optimized, using only the coarse reso-

lution levels of the spline. This approach has limited success because of

the monotonous SM and optimization. In this work, the framework was

constructed based on the novel notion that correct deformations cannot be

obtained through a single transformation due to the constraints placed on

the parameters of the geometrical transformation. This approach brings the

floating volume nearer to the reference one by applying multiple transfor-

mations, optimizations and SMs. However, if an exact deformation is near

a transformation, it cannot be obtained if the same stage is used repeat-

edly because it becomes trapped in a local optimum of the SM, to escape

from which a different SM and optimization approach is required. In the

past, FFD-based registrations attempted to escape large-scale basins by ex-

ploiting multi resolution versions of the B-spline with the same SM and

optimization. However, they did not succeed due to the similar characteris-

tics of the different B-spline resolutions. In this work, completely different

combinations were used in each stage of the coarse section to align the neck’s

trunk first, which avoids large-scale basins in the optimization function and

provides good alignment.

• A registration process can frequently become stuck due to dips in the opti-

mization function, rather than basins [37]. Although all the multi resolution
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techniques using the B-spline have tried to avoid these, they could not miti-

gate all their effects because they considered only variations of the spline res-

olution and the nature of their cost functions was non-convex [34, 120, 121].

For this framework, a double-pushing system was designed in the fine section

to prevent dips yielding small deformations and to reduce the chance of be-

coming stuck in dips. The first process in this system involved changing the

edges of the EPD from the strongest to weakest, while the second involved

altering the resolution of the spline. Therefore, this framework obtained

better accuracy by avoiding more dips.

• The negative lobe of the spline wavelet provides an implicit regularization in

the transformation and, therefore, a smooth deformation. The DPSW has

fewer parameters than the FFD, which facilitates the optimization process

to avoid large-scale basins and improves matching.

• The EPD provides an opportunity to achieve an alignment through multiple

stages for the same objects or edges. Therefore, tuning an alignment can be

performed object-wise, a capability not available using any other SM.

Although a limitation of this work is the lack of explicit regularization, which

normally introduces a parameter that imposes a burden on the user, in this frame-

work, the DPSW was preferred, which provides an implicit regularization and

obtains smooth transformations through the fourth-order spline.

3.6 Conclusion

In this research, a registration framework was proposed with different combinations

of transformations, optimizations and SMs with a new transformation DPSW
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Figure 3.14: Comparison of performances of proposed, diffeomorphic
Demons [2], SyN [3], Coarse-EPD and Fine-EPD methods on our neck dataset in
hausdorff distance (HD) in mm (lower values are better) for all muscles combined
for 110 cases× 6 muscles = 660 HDs. The 110 cases are assessed by considering

all other patients’ images as moving and a specific patient’s image as fixed for the
total 11 patients.

Table 3.6: Computational time to register our dataset using the EPD, SSD, MI,
proposed, Demons [2] and SyN [3] algorithms on our computer for a single case.

The affine transformation is used for the EPD, SSD and MI registration. The MI
and SyN [3] are implemented through advanced normalization tools (ANTs).

Methods Time (minutes)

EPD 3.21
SSD 24
MI 2.21

Proposed 33
Demons [2] 0.81
SyN [3] 69.95

and a modified 3D Chamfer distance transform algorithm. The DPSW requires

fewer parameters than the FFD to represent similar local deformations, which

decreases the burden on the optimization process. The framework enhances the

probability of finding the global minimum by reducing the effects of basins and



Chapter 3. A Deformable 3D-3D Registration Framework using Discrete Periodic
Spline Wavelet and Edge Position Difference 89

dips, with outcomes obtained from experiments on real clinical datasets confirming

its effectiveness.



Chapter 4

Two-stage Heuristic Search and

Region of Interest-based Edge

Position Difference Similarity

Measure for Neck MRI

Registration

Although traditional heuristic optimization-based techniques achieve good results

when handling large mismatches, they require pre-segmentation on both the fixed

and moving images and are computationally expensive. On the other hand, cur-

rent deformable methods often face statistical instability problems and many local

optima when dealing with small mismatches. Also, they ignore anatomical in-

formation (AI) which is important for detecting correspondences. This chapter

investigates the inter-subject deformable registration problem in a neck MRI ap-

plication and provides two novel contributions, the practical merits of which are

demonstrated in the experimental results. Firstly, it propose a two-stage heuristic

search optimization technique for handling large mismatches, using a minimal user

hypothesis about the large mismatches, which is computationally fast. The opti-

mization brings a moving image hierarchically closer to a fixed one using mutual

information (MI) and edge position difference (EPD) similarity measures in coarse

90
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and fine stages respectively. Of particular note is that the images do not require

pre-segmentation. Secondly, a region of interest (ROI) EPD-based registration

framework for handling small mismatches using salient AI in which a convex ob-

jective function is formed through a unique shape created from the desired objects

in the ROI is proposed. The proposed method is compared to two state-of-the-

art methods on a neck MRI dataset, with the results showing that the proposed

method is superior in terms of accuracy.

The rest of this chapter is organized as follows: an introduction is presented

in Section 4.1; details of our registration method are presented in Section 4.2; in

Section 4.3, the experimental procedure and analyses of the results are provided;

and, finally, a discussion and conclusion are presented in Section 4.4.

4.1 Introduction

In order to tackle the two major challenges of handling large and small mismatches,

many deformable registration methods have been proposed in the literature. A

recent review of them can be found in [48] but, as few published works consider

neck medical images, this chapter deals with these mismatches using different novel

techniques. In the following sections, the challenges, current solutions and their

limitations, and proposed approaches for overcoming them are discussed.

4.1.1 Handling Large Mismatches

In the literature, although many techniques for handling large mismatches be-

tween subjects have been proposed [45–47], it has been shown that conventional

continuous and discrete optimization-based registrations cannot achieve this [48].
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Although heuristic-based methods can provide a wide range of solutions, they

require possible solutions to be intuitive. They were used in [49–52] to register

brain medical images, whereby the authors approximated a sequence of the en-

ergy function by selecting the driving voxels hierarchically. Initially, they used a

few driving voxels, typically located on landmarks, through prior segmentation of

both the fixed and moving images. These voxels have distinctive attribute vectors

and more are added as the algorithm progresses. One heuristic search algorithm

is known as the hierarchical attribute-matching mechanism for elastic registra-

tion (HAMMER). Although its accuracy is high for registering inter-subject brain

MRIs, as its main limitation is that it requires pre-segmentation of both fixed

and moving images, it compromises automatic registration which is not feasible

in all applications. Also, it is computationally expensive because it calculates an

attribute vector for each driving voxel in both images which is gradually increased

to the total number of voxels in a volume. Each attribute vector comprises edge

types, a geometric moment and image intensity. In extensions of the HAMMER

algorithm [53–58], local spatial intensity histograms have been used to calculate

a different type of attribute vector for each point in the fixed and moving im-

ages, which makes the algorithm suitable for general applications. However, local

histograms face the problem of statistical power instability.

In order to deal with the above limitations in the neck MRI dataset, a new,

totally different, two-stage heuristic optimization technique is proposed that uses

the MI and EPD similarity measures as well as a translation transformation. It

automatically brings a moving image closer to a fixed one in a rapid and efficient

way. Initially, MI is applied on the coarse scale as it is not good for fine-scale

matching, especially of compact or similar compositional objects in medical im-

ages, due to its low sensitivity to small translational changes between two images.

Then, the EPD is used for fine-scale alignment as it considers the salient edges of
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objects which are very sensitive to small changes. The two-stage heuristic search

does not require the pre-segmentation of any image in the registration process

and only minimal user interaction in terms of approximating large mismatches

in a specific application, such as of the neck, brain, cardiac region, etc., which

are very easy to determine. The proposed heuristic optimization is fast for two

reasons: firstly, it does not require calculations of the attribute vectors which is

very time-consuming; and, secondly, it requires fewer iterations due to using a

coarse-to-fine step size. Only the in-plane translations are optimized for large mis-

matches of these parameters, unlike the HAMMER algorithm which optimizes all

the parameters of an affine transformation.

4.1.2 Handling Small Complex Mismatches

To confront small complex mismatches, many registration methods have been pro-

posed. The objective function is a constituent element in an image registration

process, with a suitable one being a crucial part of image registration for achieving

accurate deformations [48, 331]. Usually, the objective function is defined in terms

of the point-to-point or region-to-region correspondences between two images, an

assumption which is reliable in the case of a linear intensity relationship between

the images. However, this relationship is non-linear for magnetic resonance (MR)

and multi-modal images as the former experience space-variant intensity distor-

tions. Several methods proposed to tackle the non-linearity problem have incorpo-

rated local orientation features instead of intensities [39, 331, 332], most of which

can be classified in the following two major groups.
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4.1.2.1 Spatially Region-weighted Scheme

The registration methods in this group place more importance on some regions

than others by using a weighting scheme, with the objective function being a

weighted sum of the local similarity measures. Although MI and its variants are

widely used in image registration, global MI is less sensitive than its local counter-

part to local deformations and often provides mis-correspondences. This problem

is more acute in the case of neck muscles in MRIs because similar muscles are

compactly grouped together. To avoid this, researchers have attempted to cal-

culate local MI and use it with weights to compute the final objective function

by summation [39–42]. Studholme et al. [41] used regional labels with an inten-

sity joint histogram as an extra channel to calculate regional MI (RMI). This

method divided the image into overlapping squares and is robust to variations in

local intensity. Another similarity measure called localized MI (LMI) [42] used

random partitioning around the stochastic points. Both the RMI and LMI used

the same weight inside a sub-region. In contrast, the conditional MI (CMI) [333]

used a spatial distribution function to assign weights to the voxels with respect to

their distances from the center of the relevant sub-region. Its experimental results

showed that it performed better than the RMI and LMI similarity measures but

all three are computationally expensive as they used sums of the local measures.

To tackle computational complexity, a spatially encoded MI (SEMI) approach [39]

used a hierarchical weighting scheme by exploiting a Gaussian function and divid-

ing an image into spheres as well as local gradient ascent optimization to reduce

the computational time. However, global convergence was deteriorated in this ap-

proach. Rivaz et al. [40] proposed a self-similarity α-MI (SeSaMI) metric which

exploited local structural information via weighted gradient information and was

implemented through a weighted graph. However, although it is invariant to local
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affine intensity distortions and rotations, it is computationally expensive due to

its multi-dimensional features.

All the local MI-based similarity measures, such as RMI, LMI, CMI, SEMI

and SeSaMI, face the problem of statistical instability and are computationally

expensive. Also, they often ignore anatomical information (AI) which is crucial

for guiding the detection and registration of correspondences. Albeit their registra-

tion results are better than those for global MI, finding accurate correspondences

remains difficult due to the many local optima in deformable registrations. More-

over, some other metrics also include local structural information such as local

entropy [332] and spatially region-weighted correlation ratio (SRWCR) [38]. The

method in [332] used entropy images to avoid the effect of intensity variations at

corresponding locations in different images. It exploits the sum of squared dif-

ferences (SSD) of the entropy images as the objective function and is sensitive

to noise due to the histograms being derived from small patches. Gong et al.

[38] proposed a SRWCR metric using a three-dimensional (3D) joint probability

density function which incorporated a spatial information channel using a cubic

B-spline spatial distribution function with intensity channels.

4.1.2.2 Encoding Objects’ Local Positions and Shapes

The registration methods in this group embed local AI in the objective func-

tion. A similarity measure called the modality-independent neighborhood descrip-

tor (MIND) [326], which includes local structural information and information of

neighborhood pixels in the vector representation of each pixel, obtains good regis-

tration results. However, although it provides distinctiveness, it embeds undesired

information and cannot fully suppress the influence of contrast enhancement. Also,

it is incapable of providing distinctiveness in the case of similar patches located
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near each other, such as neck muscles and cardiac ventricles. Another descriptor

called the self-similarity context (SSC) [334] was proposed to eliminate the prob-

lems of the MIND measure. It is robust to noise as it considers six-neighborhood

patches for self-similarities instead of only the center one, as the MIND does,

but also responds weakly to variations in contrast. Li et al. in [331] embedded

local phase features in the MIND measure which rely on the auto-correlation of

local structures. Cao et al. in [27] extracted AI from two modalities to guide

the detection of correspondences through normalized cross-correlation (NCC) in

a multi-modal registration problem. They used computed tomography (CT) and

MRI for correspondences of bone and soft tissue regions respectively.

All the methods, described in the two groups above, treat local regions with

special consideration and incorporate local structural information in the objective

function to attempt to make it convex by introducing distinctiveness.

In the proposed method, edge features are also used as local structural infor-

mation but local regions are treated in a totally different way from partitioning a

whole image into regions and assigning a different weight to each region which is

similar to the spatially region-weighted scheme. A unique shape is formed from

only the targeted objects to introduce distinctiveness into the objective function,

to make it convex, as the aim is to segment specific muscles in an atlas-based ap-

plication from MRIs with intensity distortions. This technique is called a region of

interest (ROI)-based registration that focuses on only the targeted objects because,

in most medical image segmentation problems, the application is related to the

segmented objects. Also, this ROI-based image registration approach can estimate

transformations more efficiently and accurately than a whole-image approach [27]

because the ambiguity of a similarity measure is less for a ROI than for a global

image. The EPD is used as a similarity measure in this process because it can use
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salient AI which is crucial for image matching and is sensitive to small geometric

transformations. Although a global EPD may face a mis-correspondence prob-

lem, the ROI-based approach does not because of the small amount of geometrical

transformation of the unique shape. The main contributions of this chapter are

summarized below.

• A new heuristic search-based optimization technique in which an approxi-

mation of large mismatches is required for a new application. The search is

fully automatic in the same application as it is not required to be conducted

again for any new subjects. In this search, an image is warped within a range

with a specific step size to find the best correspondence. It avoids many local

minima and significantly increases accuracy. It is computationally fast and

does not require any pre-segmentation as do traditional heuristic methods.

• This heuristic search concept is extended to a novel coarse-to-fine approach

using two stages to align images more effectively, whereby the first stage

uses MI for coarse alignment and the second, the EPD, to correct global fine

mismatches.

• A novel ROI-based registration is proposed for aligning local fine mismatches.

As it helps to avoid many local minima by concentrating on specific regions,

it improves registration accuracy. It imposes distinctiveness in the objective

function by forming a unique shape to help the optimization process. Its

processing is computationally fast and it estimates transformations more

efficiently and accurately than global registration.

• A coarse-to-fine approach-based framework using the heuristic search and

ROI-based approaches, as well as other registration stages. As these stages

are also computationally fast, the overall computational time of the frame-

work is low with improved accuracy.
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Figure 4.1: Proposed inter-subject framework of MRI-to-MRI registration based
on two-stage heuristic search and ROI EPD. These two main components

indicated by red boxes, with MRI slices used for only presentation purposes as
they are MRI volumes.

• This proposed framework and two state-of-the-art methods are applied for

the challenging neck muscle segmentation task and their performances are

compared. The evaluation results show that the proposed approach achieves

a substantially better performance than its state-of-the-art competitors.

4.2 Proposed Registration Framework

4.2.1 Overview

The proposed registration framework consists of two main components, a two-stage

heuristic search and ROI EPD registration, as shown in Fig. 4.1. Let F (x) : ΩF ⊂

RD 7→ R be a fixed image and M(x′) : ΩM ⊂ RD 7→ R a moving one, where D = 3

represents their dimensions, x ∈ RD are the images’ coordinates and Ω a closed

domain. The geometrical transformation is considered as W(x, µ) : ΩF × RP 7→
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ΩM , where µ ∈ RP represents the vector of the transformation parameters and P

the total number of parameters.

The two-stage heuristic search resolves the large or global mismatches using the

MI and EPD similarity measures in its coarse and fine levels respectively. Details

of this optimization step are described in Section 4.2.2. The affine stage removes

the remainder of the coarse mismatches. Details of the affine EPD registration are

provided in [308]. As it is difficult to achieve the required deformations by a single

transformation in a non-linear application, the same set of edges is used in both

the affine and second stages of the heuristic search so that the same objects are

targeted for alignment through multiple transformations. In this case, the strong

edges are used so that the neck’s trunk and large muscles are aligned first. In

the local matching part, firstly, a non-rigid registration aligns the fine mismatches

using the diffeomorphic demons (D.Demons) [2] algorithm as this registration is

computationally inexpensive and supports invertibility of the transformation. Sec-

ondly, the ROI-based EPD registration removes the rest of the small mismatches

in the targeted regions by exploiting local AI using a spline-based geometrical

transformation. This estimates the local transformation which is more effective

than a global estimation and also avoids many local minima by neglecting major

parts of the images. The ROI-based EPD registration algorithm is described in

Section 4.2.3.

4.2.2 Two-stage Heuristic Search-based Optimization

When there is a large misalignment between two images, traditional continuous

and discrete optimization methods have limited success, a problem that becomes

more acute in the case of 3D medical images. Heuristic search-based optimiza-

tion methods can manage this situation as they can be used before continuous
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or discrete optimization to correct large mismatches. In the neck dataset, there

are large in-plane translational mismatches among individuals. To resolve this

problem, a new two-stage hierarchical heuristic search-based optimization that

uses MI, EPD similarity measures and translational transformations, as shown in

Fig. 4.2, is adopted. It requires an approximate intuitive hypothesis to mitigate

any possible large misalignment for a specific application that is easy to obtain

for a specific dataset. This optimization has a great impact on the registration

framework as it reduces the local minima by decreasing variations between the

fixed and moving images. A traditional translation-based registration method op-

timizes all the transformation parameters which results in a poor match because

it treats all the parameters equally irrespective of the amounts they contribute to

the overall number of mismatches between two images. On the other hand, the

proposed heuristic search-based approach optimizes only the in-plane translation

parameters.

The hypothesis regarding large mismatches is that, as they are estimated once

for a specific application and do not need to be estimated again for any new images

in the same application, proposed heuristic search algorithm can be considered a

fully automatic one. A specific application means one that can be used to register

neck muscles, brain organs, thigh muscles, and pelvic and heart organs. This

hypothesis could depend on the dataset’s demographics and image acquisition

settings. A smaller sub-hypothesis is estimated from the main hypothesis. In the

proposed two-stage heuristic search, the MI is used in the first stage with a large

translation step-size and the main hypothesis for aligning the coarse mismatches.

To align the large-scale fine mismatches, the EPD is used in the second stage with

a small translation step size and the sub-hypothesis. The first stage brings the

moving volume closer to the fixed one and then the second aligns the rest of the

large mismatches. The MI is used before the EPD in the heuristic search because
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Figure 4.2: Two-stage heuristic search-based optimization. The stages marked
by red boxes use same transformation (W1). The translations TMI

x and TMI
y are

varied between main hypothesis values (Tmhx and Tmhy respectively) with step size

Smh and translations TEPDx and TEPDy are varied between sub-hypothesis values

(T shx and T shy respectively) with step size Ssh. Conditions for main and

sub-hypotheses Tmhx > T shx and Tmhy > T shy respectively with step condition
Smh > Ssh.

it can perform well for alignment in the coarse level as it is an intensity-based

similarity measure whereas the EPD can do this in the fine level as it is a feature-

based, specifically an edge-based, measure. The MI is incapable of matching well

in the fine level because neck muscles have almost a similar intensity which results

in a local statistical instability problem. Therefore, the MI faces ambiguity when

aligning two MRIs during a small translational change. However, during a large

change, it can align them, because, as the neck’s trunk is almost the same for

all individuals and extends over nearly all the image, it does not encounter any

statistical instability problem. On the contrary, the EPD is not used during a

large translational change in order to avoid false correspondence as, in some cases,

the outer strong edge of the moving MRI may correspond to the inner strong edge

of the fixed image. However, when the moving image is closer, the chance of false

correspondence is greatly reduced.

Since the large mismatches are due to in-plane translations, the translational
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transformation W1, which is used in our heuristic search in both stages, is compu-

tationally fast and expressed as

x′ = x+ Tx

y′ = y + Ty

z′ = z + Tz

(4.1)

where (x, y, z) and (x′, y′, z′) represent the coordinates of the fixed and moving

images respectively and (Tx, Ty, Tz) the translations to the corresponding coordi-

nates.

The parameter vector of W1 is µ1 = {Tx, Ty, Tz} and becomes µ1h = {Tx, Ty}

for the heuristic search optimization due to the large mismatches of in-plane trans-

lations. The numbers of parameters for optimization and transformation using

heuristic search-based optimization depend on the nature of the dataset, with the

objective function for its first stage

µ̂1hMI = argmax
µ1hMI

MI(F,M ◦W1) (4.2)

where µ1hMI represents the parameters vector for the MI stage which is subject to

the main hypothesis.

Let the main hypothesis be Tmhx and Tmhy with a step size of Smh and the

translations varied in the first stage as

TMI
x = −Tmhx : Smh : Tmhx

TMI
y = −Tmhy : Smh : Tmhy

(4.3)

The translations are varied between the negative and positive values of the
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main hypothesis to make the search symmetric and the objective function for the

second stage of the heuristic search is

µ̂1hEPD = arg min
µ1hEPD

EPD(F,M ◦W1) (4.4)

where µ1hEPD represents the parameters vector for the EPD stage which is subject

to the sub-hypothesis.

Let the sub-hypothesis be T shx and T shy with a step size of Ssh, where Tmhx >

T shx , Tmhy > T shy and Smh > Ssh make the heuristic search a hierarchical optimiza-

tion. The translations are varied in the second stage using equation (4.3).

The parameters vector for the heuristic search optimization is the concatena-

tion of µ̂1hMI and µ̂1hEPD since both stages are considered cascaded and given

as

µ1h = µ̂1hMI(µ̂1hEPD) (4.5)

The EPD similarity measure, which is feature-based and computationally ef-

ficient, is used in the second stage of the heuristic search as well as in the affine

and ROI-based registration stages of the framework. It uses the edges of images

as features and is intended to reduce the distances of the corresponding edges be-

tween two images. The numerical measure of the EPD is calculated by averaging

the pixel values of the chamfer distance transform of one image at the positions

of the superimposed edge points of the other. The chamfer distance transform

is an approximation of the Euclidean distance transform, where each pixel value

represents the approximate distance to its nearest edge in an image. The chamfer

distance image is generated using the 3D HCMA algorithm [330]. The chamfer

distance image and the corresponding edge image are shown in Fig. 4.3. Some

additional merits and aspects of the EPD are discussed in Section 4.2.3 and it is
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Algorithm 2 Two-stage heuristic search algorithm

Input F , M , Tmhx , Tmhy , T shx , T shy , Smh, Ssh.
Output µ̂1hMI , µ̂1hEPD.

1: Initialize Smax and µ̂1hMI .
2: for TMI

x = −Tmhx : Smh : Tmhx do
3: for TMI

y = −Tmhy : Smh : Tmhy do
4: Update TMI

x and TMI
y in µ̂1hMI .

5: Warp M .
6: Calculate MI(S) using warped M and F .
7: if S > Smax then
8: Update Smax by S.
9: Save corresponding TMI

x in tx and TMI
y in ty.

10: end if
11: end for
12: end for
13: Update µ̂1hMI by tx and ty.
14: Warp M by µ̂1hMI to get VMI .
15: Repeat statements 1-13 to minimize EPD using VMI , F , T shx , T shy and Ssh.
16: Return µ̂1hMI ,µ̂1hEPD.

mathematically expressed as

S(µk) =
1

3T

∑
(x,y,z)∈β

C(x′, y′, z′) (4.6)

where β denotes the list of edge points in the fixed image (F ), C is the cham-

fer distance image of the moving image (M) and T is the total number of edge

voxels in β. The value of 3 in equation 4.6 compensates the unit distance in the

chamfer distance transform, with the proposed heuristic search-based optimization

algorithm described in Algorithm 2.

4.2.3 ROI-based EPD Registration

After the two-stage heuristic approach and non-rigid registrations are performed,

most of the large mismatches are removed while the small ones remain. To elim-

inate small local mismatches, a novel ROI-based EPD registration algorithm is
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Figure 4.3: Proposed ROI-based EPD registration process. Although
two-dimensional (2D) images are shown in flowchart for representational

convenience, all operations are performed in 3D MRI with gradient descent
optimization and FFD geometrical transformation.

proposed, with the ROI selected using the ground truth available in atlas-based

segmentation methods. These methods use manual boundary segmentation infor-

mation of the anatomical organs of individuals in the database to segment them

in a new individual’s medical image [335, 336].

The EPD, which is a geometric type-matching criteria, is used in the proposed

ROI-based registration process for the following reasons. Firstly, the EPD can

exploit AI from medical images whereas intensity-based similarity measures, such

as the MI, NCC and SSD, cannot use AI which is crucial for robust correspondence

matching. Secondly, it can detect AI in even smaller regions and does not face
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the problem of local statistical instability whereas MI and NCC do [39]. In the

proposed approach, AI is extracted in the form of morphological shapes which,

although sometimes not complete for neck muscles in medical images, help to

guide local correspondences. Thirdly, the MI, NCC and SSD are incapable of

providing a measure for distinguishing muscles in a neck dataset in the ROI where

those with similar intensities remain close to each other. In particular, the MI

or local MI, NCC and SSD may provide mis-correspondences for neck muscles in

MRIs due to their compactness and similar intensity whereas the ROI EPD can

provide distinguishing values because the shapes inside the ROI form the unique

shape shown in Fig. 4.3. Finally, the distinguishing nature of the ROI EPD creates

a convex objective function for the registration process which provides leverage to

the optimization.

Some other popular geometric types of matching criteria, such as the scale-

invariant feature transform (SIFT) and speeded-up robust features (SURF) could

be considered alternatives to EPD, require detection of key points in the im-

ages. However, medical images typically do not have sufficient details for accurate

key-point detection which make the SIFT and SURF methods unsuitable for our

application.

Moreover, the ROI-based EPD has advantages over a global EPD-based ap-

proach. It can avoid most of the local minima faced by a global EPD approach as

it only uses the edges located inside the ROI. As a result, the optimization process

can easily find the optimum value of the EPD for the edges in the ROI and hence

provide better alignment.

A flowchart of the proposed ROI-based EPD registration is shown in Fig. 4.3.

A spline-based free form deformation (FFD) model is used to obtain an estimated

deformation field and the ground truth of the fixed MRI volume to generate a
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binary mask of the muscles inside the ROI. The fixed volume can be considered

an atlas (an individual with known muscle boundaries) and the moving image

represents a new individual whose neck muscles are required to be segmented.

After registration is completed, the muscle boundaries are transferred from the

fixed volume to the moving volume since the exploited transformations in the

proposed framework in Fig. 4.1 are inversely consistent. The binary mask is dilated

by a square structuring element so that it can properly extract all the necessary

anatomical shapes from the binary edge volume of the fixed volume generated using

a canny edge detector. If no dilation is performed, some necessary shapes may be

missed. Then, the volumes of the dilated mask and binary edge are multiplied to

obtain an extracted shape from the edge volume to guide the registration to find

local deformations.

The muscles inside the ROI are considered to be a unique shape rather than

separately because parts of a muscle’s contour can easily mis-correspond with

another muscle’s contour owing to the almost similarly shaped muscles that are

close to each other in the neck. Although parts of this shape may also mis-

coincide, the percentage will be less than that of the individual muscle’s shape

due to the former’s larger size. Therefore, the real coincident parts of the unique

shape will dominate in the numerical value of the EPD. As a result, this shape can

provide better alignment than separate muscles and, moreover, considering all the

muscles together, rather than separately, in the ROI process makes the algorithm

computationally less expensive.

The binary edge volume is also calculated from the moving one and then the

chamfer distance transform volume (C(x′, y′, z′)) is generated. The locations of

the edge voxels (βROI) are calculated from the extracted binary shape volume,
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Algorithm 3 ROI-based EPD registration process

Input F , M , labels.
Output µ̂4ROI.

1: Initialize µ̂0
4ROI , maximum iteration number imax = 100 LT = 0.0002, σ = 1.5

and UT = 0.25.
2: Calculate edge volume from F .
3: Generate binary mask from the labels.
4: Dilate the mask by 7 pixels.
5: Extract edges for ROI using the mask and edge volume.
6: Calculate βROI from the extracted edges.
7: Warp M0 using µ̂0

4ROI .
8: for i = 1 : imax do
9: Calculate edge volume (EM) from M .

10: Calculate Chamfer distance volume CM
W from EM .

11: Calculate EPD using CM
W and βROI .

12: Update µ̂4ROI using Gradient-descent optimization and FFD with CM
W and

βROI .
13: Warp moving volume: M i = D(M i−1, µ̂i4ROI).
14: end for
15: Return µ̂4ROI .

with the ROI EPD value expressed as

SROI(µ4ROI) =
1

3N

∑
(x,y,z)∈βROI

C(x′, y′, z′) (4.7)

where N is the total number of edge voxels in βROI and µ4ROI is the parameters

vector of the ROI-based EPD registration.

The SROI measure is optimized using the gradient descent optimization algo-

rithm [243] and then the objective function is computed as

µ̂4ROI = arg min
µ4ROI

SROI(F,M ◦W4) (4.8)

where W4 is the geometrical transformation of the ROI-based EPD registration.

The overall ROI-based EPD registration process is described in Algorithm 3

in which it should be noted that the chamfer distance volume is updated in every
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iteration.

4.3 Experiments and Results

The experiments for this work were performed on a HP z230 tower workstation

with a 3.40 GHz Intel(R) Core(TM) i7-4770 processor and 16 GB RAM running

the Windows 10 operating system. The major parts of the framework were im-

plemented using MATLAB and minor ones through interfacing C and C++ with

MATLAB via a MATLAB executable (MEX).

4.3.1 Data and Pre-processing

A sample of patients was selected by the Canberra Imaging Group at the John

James Calvary Hospital, Canberra, Australia to study whiplash injury of the neck.

Ethics approval to conduct the study was obtained from the Office of Research

Integrity of the Australian National University (ANU), Australia, and Health Di-

rectorate of the Australian Capital Territory (ACT) Government, Australia. In-

formed consent was obtained from the patients whose ages, weights and heights

ranged from 19 to 35 years, 45 to 121 kg and 1.5 to 1.9 m respectively. A 3

Tesla Skyra (Siemens, Erlangen, Germany) MRI scanner was used to capture ax-

ial T1-weighted spin echo MRIs with sizes of 256 × 256 × 45 and voxel spacings

of 0.8594 mm× 0.8594 mm× 4 mm for each patient’s cervical region. The images

were collected using the following scanner settings: echo time of 15 to 16 ms, repe-

tition time of 750 to 1120 ms and a 100 cm2 phase field of view. Nineteen patients

for these experiments were selected from the ongoing study, with images cropped
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Table 4.1: Parameter settings for symmetric image normalization (SyN) [3] and
D.Demons [2] registrations on the neck dataset conducted through ANTs and

MATLAB respectively. Multi-stage registrations were used in the SyN method in
which the rigid, affine and SyN geometrical transformations used the same

smoothing sigma values, shrink factors and convergence.

Parameter
Name

SyN [3] D.Demons [2]

Script antsRegistrationSyN.sh imregdemons.m
Dimension 3 3
Pyramid level - 3
Iterations - 100x100x100
Transformations Rigid[ 0.1 ], Affine[ 0.1 ] -
Metric MI[F,I,1,32,Regular,0.25 ] -
Smoothing sigmas 3x2x1x0vox 1
Shrink factors 8x4x2x1 -
Convergence [ 1000x500x250x100,1e-6,10 ] -
Transformation SyN[ 0.1,3,0 ] -
Metric CC[F,I,1,4 ] -
Convergence [ 100x70x50x20,1e-6,10 ] -

to avoid unnecessary regions and interpolated to 128 × 128 × 128 pixel volumes.

Intensity inhomogeneity correction was not performed for the images.

The interpolated volumes of the left sternocleidomastoid (Muscle 1), right ster-

nocleidomastoid (Muscle 2), left semispinalis capitis (Muscle 3), right semispinalis

capitis (Muscle 4), left splenius capitis (Muscle 5) and right splenius capitis (Mus-

cle 6) cervical muscles were then segmented manually by an ANU medical student

and used as the ground truth. Delineations were performed by a MATLAB graph-

ical user interface (GUI) designed specifically for this study and later validated by

two other senior medical experts from the ANU. The GUI enabled the MRIs to be

segmented in 2D with as many vertices as necessary to achieve smooth contours.
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4.3.2 Results Analysis

The main and sub-hypotheses were empirically determined for the dataset as

Tmhx = 8, Tmhy = 14 and Smh = 2, and T shx = 3, T shy = 4 and Smh = 1 re-

spectively. The dilation in the ROI EPD registration was performed by a square

structuring element with a width of 7 pixels in the 3D binary volume. The reg-

istration results were evaluated numerically using the volumetric dice similarity

coefficient (DSC) and hausdorff distance (HD). Higher DSC and lower HD values

are desirable for good registration results.

The inter-subject registration was performed by keeping one patient fixed and

the others moving, and this approach was repeated for all the patients in the

dataset. Therefore, the possibilities for one fixed image was 18 and, for the 19

patients, was 342. To assess the effect of the two-stage heuristic search-based

optimization and ROI-based EPD registration on the proposed framework, exper-

iments were performed without these techniques and denoted as ’Without Heuris-

tic’ and ’Without ROI’ respectively. The proposed method was evaluated against

two state-of-the-art deformable registration methods, Symmetric Image Normal-

ization (SyN) [3] and diffeomorphic Demons (Demons) [2]. The SyN algorithm

was implemented using advanced normalization tools (ANTs) [337] on a Linux

platform via a virtual box using Ubuntu version 18.04 and the Demons algorithm

used was the one available in MATLAB version R2017b. The ANTs is a well-

recognized library for medical image registration and segmentation while the SyN

algorithm uses an initial moving transform, with rigid-MI and affine-MI linear

registrations for initialization. Details of the parameter settings for the SyN and

Demons registrations are shown in Table 4.1, with the script from the ANTs used

for good-quality deformable registration.
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Fig. 4.4 shows visual result of the proposed method compared to the Demons

and SyN methods for one of the 342 cases. The initial mis-alignment is very high

as shown in Fig. 4.4(c). The proposed method matches the boundaries of the

muscles better than other methods. Specifically, the sternocleidomastoid muscles’

boundaries are aligned more accurately than others. Fig. 4.5 shows a visual re-

sults comparison in the coronal plane for the proposed, Demons and SyN methods

for one of the 342 cases. It exhibits similar alignment improvement for the pro-

posed method over other methods as for the axial visual results. Fig. 4.6 exhibits

the visual results in terms of muscles contours for the different methods, when

compared with the ground truths, in both the axial and coronal views. The pro-

posed method’s contours are more fairly matched when compared to the other

algorithms.

Fig. 4.7 displays the registration accuracy for the DSC on the neck MRI data by

the proposed, without heuristic, without ROI, Demons [2] and SyN [3] methods

for all muscles separately (Fig. 4.7(a)) and combined (Fig. 4.7(b)). Fig. 4.7(a)

shows that the proposed method is significantly better than the without heuristic,

without ROI and state-of-the-art methods for all the muscles. Fig. 4.7(b) shows

that the proposed method substantially outperforms the other compared methods.

It is clear that the two-stage heuristic search-based optimization and ROI-based

EPD has great effect on the registration performance.

Fig. 4.8 exhibits the registration accuracy in HD (mm) on the neck MRI

data by the proposed, without heuristic, without ROI, Demons [2] and SyN [3]

algorithms for all muscles separately (Fig. 4.8(a)) and combined (Fig. 4.8(b)).

Fig. 4.8(a) shows that the proposed method performs better than the others for

all the muscles except for Muscle 4 and Muscle 6. The proposed, without heuristic

and without ROI exhibit almost similar performance except for some more outliers
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Figure 4.4: Comparison of axial visual results of one of the 342 inter-subject
cases. It should be noted that, although the registration is performed between the

two 3D MRI volumes, the results are illustrated in 2D for presentation
convenience. (a) fixed image, (b) moving image before registration, (c) moving
image before registration with fixed image’s edges superimposed; fixed image’s
edges superimposed on the moving image after (d) Proposed, (e) Demons, (f)

SyN. The Demons and SyN are state-of-the-art deformable registration methods.

in the without heuristic method. However, the proposed method performs much

better in terms of the DSC than the without heuristic and without ROI methods.

Fig. 4.8(b) shows that the proposed method also performs better than the other

methods in terms of the HD. The samples in the without heuristic method are

more dispersed than the proposed method which shows that the heuristic search

not only increases the accuracy but also the consistency of the model.

Table 4.2 provides the overall mean and median DSC and HD values for the

proposed, without heuristic, without ROI, proposed in Chapter-3, Demons [2] and

SyN [3] methods. The median values are obtained from Fig. 4.7(b) and Fig. 4.8(b).
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Figure 4.5: Comparison of coronal visual results of one of the 342 inter-subject
cases. It should be noted that, although the registration is performed between the

two 3D MRI volumes, the results are illustrated in 2D for presentation
convenience. (a) fixed image, (b) moving image before registration, (c) moving
image before registration with fixed image’s edges superimposed; fixed image’s
edges superimposed on the moving image after (d) Proposed, (e) Demons, (f)

SyN. The Demons and SyN are state-of-the-art deformable registration methods.

This table shows that the proposed method significantly outperforms the other

methods in both metrics.

4.3.3 Computational Complexity

The computational times for the compared methods to register two volumes were

also calculated, as shown in Table 4.3. These times show that the proposed method

is sufficiently fast and, although slower than the Demons algorithm, has better
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Figure 4.6: Comparison of visual results in terms of muscles contours among
proposed, Demons [2] and SyN [3] with ground truths: (a) axial view and (b)

coronal view
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Figure 4.7: Registration results using the proposed algorithm, without heuristic,
without ROI, Demons [2] and SyN [3] on the neck MRI data in volumetric dice

similarity coefficient (DSC) (higher values are better). The without heuristic and
without ROI versions refer to the proposed framework excluding the two-stage

heuristic search-based optimization and ROI-based EPD registration respectively.
(a) all muscles separately for the 342 test cases; (b) all muscles combined for

342 cases× 6 muscles = 2052 DSCs.

accuracy. The low computational time for the Demons algorithm can also be

attributed to the professional implementation in MATLAB.
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Figure 4.8: Registration results using the proposed, without heuristic, without
ROI, Demons [2] and SyN [3] algorithms. For the Hausdorff distance (HD) in mm
(lower values are better). The without heuristic and without ROI methods consist

of the proposed framework after excluding the two-stage heuristic search-based
optimization and ROI-based EPD registration respectively. (a) all muscles

separately for the 342 test cases; (b) all muscles combined for
342 cases× 6 muscles = 2052 HDs.

4.4 Discussion and Conclusion

An automatic 3D-3D deformable registration framework using novel two-stage

heuristic search and ROI-EPD techniques was developed. It outperformed the

two state-of-the-art methods, Demons [2] and SyN [3], on a real clinical neck MRI

dataset in terms of the DSC and HD. Also, the proposed method was reasonably

fast compared to these approaches, (Table 4.3). Its execution time could be fur-

ther reduced if it was implemented entirely in the C++ language using optimized

coding. It was proven to be robust as it performed well on clinical data with

inhomogeneity and different MRI scanner settings.

As the heuristic search brought a moving volume closer to the fixed volume

from which it was far away, the overall registration performance increased more

than without it. The two-stage heuristic search helped to align large mismatches

whereas traditional optimization methods failed to achieve convergence in these
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Table 4.2: Overall registration performance in the neck MRI dataset using the
proposed, without heuristic, without ROI, proposed in Chapter 3, Demons [2] and

SyN [3] methods over 2052 samples.

Methods Mean DSC Median DSC Mean HD Median HD

Proposed 0.6982 ± 0.1462 0.7391 7.3022 ± 4.7583 5.9161
Without Heuristic 0.6812 ± 0.1503 0.7228 7.6233 ± 5.3345 6.0828

Without ROI 0.6892 ± 0.1537 0.7346 7.4100 ± 4.8445 6.0000
Proposed in Chapter-3 0.6649 ± 0.1677 0.7145 8.1349 ± 5.5490 6.4031

Demons [2] 0.6487 ± 0.1885 0.7144 7.4312 ± 4.3719 6.1644
SyN [3] 0.5575 ± 0.2566 0.6446 7.8884 ± 5.1996 6.5574

cases. The proposed search was fast as it was gradient-free and did not require

searching over a large range. Also, it used an intensity-based similarity measure in

its coarse level and a feature-based one in its fine level, with the latter greatly re-

ducing the computational complexity, along with the translational transformation

which was also fast to compute. Furthermore, as the two-stage heuristic search

found an optimum transformation within a predefined set of plausible solutions,

it reduced the time complexity. Moreover, it required negligible user interaction

compared with conventional heuristic search methods as it was not necessary for

a user to interact with a specific application for a new image. This resulted in

a single application of the algorithm being fully automatic. Although interaction

would be required for a new application, it would be very easy as the user would

be required to know only approximate prior knowledge of the large mismatches

in the dataset, not the pre-segmentation of objects. Alternatively, conventional

heuristic search methods require comprehensive user interaction in terms of the

pre-segmentation of objects on both registration images. If a new image in the

same application has to be registered, it is required to have pre-segmentation.

Furthermore, the heuristic search greatly reduced local minima by minimizing the

number of targeted large mismatches which helped the framework more effectively

align the images in its subsequent stages using continuous or discrete optimization

methods.
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Table 4.3: Computational time to register two volumes using the proposed,
proposed in Chapter 3, Demons [2] and SyN [3] algorithms.

Methods Time (minutes)

Proposed 2.26
Proposed in Chapter-3 33
Demons [2] 0.81
SyN [3] 69.95

An ROI-based registration was used in the proposed framework because it can

estimate transformations more effectively and accurately than a whole-image reg-

istration [27]. Also, it detects correspondences more accurately and robustly than

a global one because it only needs to search small regions. Furthermore, it is com-

patible with our practical domain as, for example, controlling a large population

is much more difficult than controlling a small one and whole-image registration is

more difficult. Also, as specific organs are required to segment in clinical applica-

tions to analyze diseases, ROI-based registration is consistent with relevant clinical

motives. Due to the ROI-based EPD’s capabilities to exploit AI in small regions,

not face local statistical instability problems and provide distinguishing values

owing to its unique shape inside the ROI, it increases good alignment even using

coarse levels of a spline-based transformation which reduces the computational

time. On the other hand, traditional multi-resolution methods use finer levels of

the spline to deal with small mismatches and are computationally expensive. Also,

some other conventional registration methods try to deal with small mismatches

using the sum of the local measures with local optimization and are computa-

tionally expensive [39]. Furthermore, the proposed ROI-based EPD registration

considers all the objects simultaneously which enables fast computation.

The proposed method was applied on 19 clinical neck MRIs for experimental

validation. Generating the 3D ground truth was a time-consuming task. Further
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studies of a larger neck dataset and other clinical scenarios to validate our pro-

posed method will be ongoing using diverse datasets. More research is required

to investigate applications of this method to neck pain and, thereby, medical in-

terventions such as radiation therapy, chemotherapy and injection dosages. A fine

resolution of the FFD transformation could also be examined with local gradient

descent optimization using the ROI-based EPD algorithm.



Chapter 5

Deep Learning-based Neck

Muscles Segmentation

In this chapter, deep learning-based segmentation methods using three different

types of methodological propositions are presented and analyzed for the applica-

tion of neck muscles segmentation.

In the first analysis, evaluations of U-Net architecture-based approaches for

neck muscles segmentation are presented. Numerous versions of the U-Net ar-

chitecture have emerged for the task of medical image segmentation due to their

significant success over the last few years for semantic medical image segmentation.

10 versions of the U-Net convolutional neural network (CNN) are analysed, 6 direct

(U-Net, CRF-Unet, A-Unet, MFP-Unet, R2Unet and U-Net++) and 4 modified

(R2A-Unet, R2A-Unet++, PMS-Unet and MS-Unet) methods. The modifications

are inspired by recent multi-scale and multi-stream techniques for deep learning

algorithms. T1-weighted MR images of the distal ends of the C3 vertebrae of 45

subjects are used in the evaluations. An analysis of the numerical results indicates

that the R2Unet architecture achieves the best accuracy.

The following research paper has been accepted based on this chapter of sections: 5.1.2,
5.2.3, 5.3.1, 5.4.1

• Abdulla Al Suman, Yash Khemchandani, Md. Asikuzzaman, Alexandra Louise Webb,
Diana M. Perriman, Murat Tahtali and Mark Richard Pickering, “Evaluation of U-Net
CNN Approaches for Human Neck MRI Segmentation,” Digital Image Computing: Tech-
niques and Applications (DICTA), 29 November–2 December. 2020, Melbourne, Aus-
tralia.
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In the second analysis, a new two-stage U-Net++ (TS-UNet++) architecture

that uses two different types of deep CNNs (DCNNs) rather than a traditional

multi-stage network is proposed. It uses the U-Net++ in the first stage and

the U-Net in the second. Extra convolutional block is added before the output

layer of the multi-stage network to better extract the high-level features. A new

concatenation-based fusion structure is incorporated in this architecture to enable

deep supervision. More convolutional layers are added after each concatenation

of the fusion structure to extract more representative features. The performance

of this proposed method on a neck dataset is compared with those of the U-Net,

U-Net++ and two-stage TS-UNet ones, with the results indicating that it provides

the best performance.

In the third analysis, an explicit attention method in which the attention is

performed through a region of interest (ROI) evolved from the ground truth via

dilation is proposed. It does not require any additional CNN, such as a cascaded

one, to localize the ROI. Attention in a CNN is sensitive. This dilated ROI is

capable of capturing more relevant regions and suppressing irrelevant ones than

a bounding box and region-level coarse annotation. The dilated ROI is used

during the training of the CNN and coarse annotation, which does not require

any detailed pixel-wise delineation that can be undertaken by a novice person,

during testing. When compared with the automatic attention U-Net (A-Unet)

and U-Net methods, this proposed ROI-based attention network provides better

performance.

The remainder of this chapter is organized as follows: Section 5.1 presents a rel-

evant literature review for each analysis; the image acquisition and pre-processing

stages as well as the corresponding methodology for each analysis is presented
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in Section 5.2; Section 5.3 presents the experimental numerical results; and Sec-

tion 5.4 contains the discussion and conclusions.

5.1 Introduction

5.1.1 Evaluation of U-Net CNN Approaches

There are many medical image segmentation methods in the literature, such as:

template matching, deformable model fitting, edge detection and learning-based

approaches. However, deep learning-based techniques have revolutionized segmen-

tation tasks [59]; in particular, the U-Net [6] architecture is popular for biomedical

image segmentation and has achieved remarkable success due to its flexibility [59].

Over the last few years, there have been rapid advances based on it for medical

and natural image segmentations [60]. To choose the best algorithms for further

research, a comparative study of the many U-Net-based approaches is required.

In this chapter, an evaluation of U-Net-based approaches is presented for the

application of neck muscles segmentation in MRIs. These approaches include

direct and modified models, with the former based on slight variations in the U-

Net architecture (no major architectural change) and the latter on the integration

of some recent techniques for deep learning-based segmentation.

Deep learning-based segmentation for cell segmentation was recently evaluated

by Caicedo et al. [338] who considered 5 strategies: deep learning (U-Net, Deep-

Cell), classical machine learning (Random Forest) and classical image processing

(advanced and basic CellProfiler) for segmenting the cell nuclei in fluorescent im-

ages. In their experiments, they used 200 images with 23, 165 manually annotated
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nuclei. The performances of the Random Forest and advanced and basic CellPro-

filer methods were found to be worse than those of the deep learning strategies.

Hansch et al. [339] compared the 2D U-Net, 2D ensemble U-Net and 3D U-Net

techniques for parotid gland segmentation from a head and neck computed to-

mography (CT) in the 2015 Medical Image Computing and Computer-assisted

Intervention (MICCAI) challenge. The 2D ensemble U-Net was actually a com-

bination of three 2D U-Nets arranged in parallel to work on sagittal, coronal and

axial patches, respectively, from which predictions of the individual 2D models

were combined through a majority voting rule.

In this chapter, 10 popular deep learning-based segmentation models, 6 direct

(U-Net, CRF-Unet, A-Unet, MFP-Unet, R2Unet and U-Net++) and 4 modified

(R2A-Unet, R2A-Unet++, PMS-Unet and MS-Unet) are evaluated, for neck mus-

cles segmentation, using the T1-weighted MRIs selected from the distal ends of

the C3 cervical levels of 45 subjects. The dice similarity coefficient (DSC) and

directional Hausdorff distance (DHD) are used to analyze the results. Brief de-

scriptions of the models and an explanation of the modifications incorporated are

provided in Section 5.2.3. The codes for the models have been made available to

the public by the corresponding authors. This study will help further research by

the medical image segmentation community.

5.1.2 Multi-stage-based Deep Learning

The U-Net architecture has some limitations. Firstly, it reduces the resolution of a

feature map due to its consecutive operations of pooling and striding convolution

whereas detailed spatial information is beneficial for dense predictions. If high

resolution is maintained, it does not accelerate and makes optimization difficult.

Secondly, although a deeper network can learn more complex features and yield
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a better performance, the depth of the U-Net cannot be increased due to its

gradient disappearing with an increasing depth during training which results in

training problems.

Bi et al. [340] proposed a multi-stage fully convolutional network (FCN) method

for skin lesion segmentation. They also introduced a parallel integration technique

for combining the outputs of the stages. Tang et al. [4] presented a multi-stage

U-Net (MS-Unet) with a contextual information fusion structure (CIFS) to com-

bine low- and high-level features in a multi-scale feature space for skin lesion

segmentation. This architecture has some advantages. Firstly, it can provide a

coarse-to-fine approach for segmentation in which the early stages can produce

coarse and localization information, which is refined in the later stages. Secondly,

distinctive additional features can be learned, which may not be possible when

using a single stage . Thirdly, the depth can be increased without the gradient

vanishing through fusing features from multiple stages to provide an additional

information flow. Finally, it has the benefits of a large training dataset even when

used on a small one.

Inspired by Bi et al. [340] and Tang et al. [4], a new two-stage U-Net++ (TS-

UNet++) using two different types of DCNNs is proposed. This network is applied

on a multi-class neck muscles segmentation task and makes use of the following

three key contributions.

• The U-Net++ is used in the first stage and U-Net in the second.

• Extra convolutional block is added before the output layer of the multi-stage

to better extract its high-level features.

• A new concatenation-based fusion structure is incorporated in its architec-

ture to enable deep supervision.
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• More convolutional layers are added after each concatenation of the fusion

structure to extract more representative features.

The proposed method is compared with the U-Net, U-Net++ and TS-UNet

approaches on the neck dataset using the DSC and DHD metrics, with the results

indicating that it outperforms these competing approaches.

5.1.3 ROI-based Attention

Attention-based models have recently been studied extensively in the deep learning

community to more effectively use intermediate feature maps. There are many

cascaded attention models for different applications, such as abdominal CT [61],

cardiac CT [62], cardiac MRI [63], colorectal tumor [64] and left ventricle [65]

segmentations. For lung nodule detection in [66], one stage is used to localize the

ROI and another for dense predictions. Some cascaded models use a bounding

box to guide attention in the dense prediction stage during training. Example

applications of this approach include: medical report generation [341, 342], text

classification [343], disease classification [301], lesion detection [300] and pancreas

segmentation [302]. This is called hard attention, with some models using the

first stage to find the parameters of the bounding box for the prediction stage [61,

62]. However, cascaded models require excessive computational resources and

repetitively extract similar low-level features.

Recently, some automatic attention models [7, 67–71] without cascaded schemes

have been proposed. They automatically focus on structures during the training

of the CNNs and implicitly suppress irrelevant regions. These methods can be

further classified as supervised [71] and unsupervised [7, 67, 69] attention mecha-

nisms. The performance of unsupervised attention may be worse than that of an
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approach without an attention mechanism and its attention map may be affected

by noise which causes incorrect attention. A supervised attention mechanism uses

external supervision through an explicit region-level coarse annotation as well as

self-attention which performs better than only self-attention [344]. However, as

supervised attention cannot focus on the ROI in a complex case of compact and

similar small multi classes with large variabilities and low contrast, finer guided

attention is required to handle the challenges involved.

An explicit attention method in which the attention is performed through a

ROI evolved from the ground truth via dilation is proposed. It does not require any

additional CNN like a cascaded method to localize the ROI as attention in a CNN

is sensitive to the ROI’s area. This dilated ROI can capture more relevant regions

and suppress irrelevant ones when compared to bounding box or region-level coarse

annotation. The dilated ROI is used during the training of the CNN whereas coarse

annotation, which does not require any detailed pixel wise delineation and can be

undertaken by a novice person, is used during testing. When the proposed ROI-

based attention method is compared with the A-Unet and U-Net ones using the

DSC and DHD, it provides the best performance.

Table 5.1: Demographics data and parameters of the MRI scanner.

Patient

index

Age

(years)

Weight

(kg)

Height

(m)

Repetition

time (s)

Echo

time (s)

Acquisition

date (yyyymmdd)

PT-1 29 57 1.61 746 15 20140106

PT-2 19 59 1.65 737 15 20141216

PT-3 25 57 1.67 827 15 20131217

PT-4 20 56 1.55 750 15 20141212

Continued on next page
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Table 5.1 – continued from previous page

Patient

index

Age

(years)

Weight

(kg)

Height

(m)

Repetition

time (s)

Echo

time (s)

Acquisition

date (yyyymmdd)

PT-5 32 59 1.64 766 15 20141202

PT-6 23 45 1.60 827 15 20140922

PT-7 23 61 1.72 827 15 20141113

PT-8 27 61 1.62 827 15 20141124

PT-9 24 75 1.75 949 15 20140120

PT-10 27 57 1.65 777 15 20141201

PT-11 32 43 1.50 827 15 20141209

PT-12 30 121 1.78 1120 16 20140315

PT-13 30 105 1.78 1140 15 20140526

PT-14 22 70 1.75 827 15 20150305

PT-15 28 69 1.70 843 15 20140311

PT-16 27 53 1.72 827 15 20140709

PT-17 31 90 1.80 1100 16 20141103

PT-18 27 71 1.67 1110 15 20141113

PT-19 27 52 1.65 827 15 20140510

PT-20 25 80 1.58 827 15 20140417

PT-21 29 68 1.78 827 15 20140711

PT-22 27 50 1.55 827 15 20140701

PT-23 23 77 1.92 1070 15 20140331

PT-24 29 69 1.79 827 15 20131223

PT-25 22 74 1.58 941 15 20140912

PT-26 27 72 1.60 1080 15 20140215

Continued on next page
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Table 5.1 – continued from previous page

Patient

index

Age

(years)

Weight

(kg)

Height

(m)

Repetition

time (s)

Echo

time (s)

Acquisition

date (yyyymmdd)

PT-27 19 60 1.70 827 15 20140828

PT-28 25 75 1.80 827 16 20141121

PT-29 35 90 1.63 755 15 20150302

PT-30 24 64 1.67 864 15 20140602

PT-31 26 102 2.18 1110 15 20140508

PT-32 25 84 1.80 827 15 20141201

PT-33 34 56 1.58 827 15 20141117

PT-34 22 97 1.71 1110 15 20141119

PT-35 34 75 1.63 901 15 20150220

PT-36 28 69 1.70 843 15 20140311

PT-37 28 75 1.75 848 15 20140827

PT-38 30 80 1.80 1120 16 20140516

PT-39 36 52 1.64 827 15 20140701

PT-40 34 70 1.75 898 15 20141020

PT-41 18 68 1.87 827 15 20140721

PT-42 34 110 1.94 857 15 20140611

PT-43 29 84 1.87 1070 15 20140311

PT-44 28 59 1.65 827 15 20131204

PT-45 29 67 1.72 1020 15 20140603
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5.2 Methods and Materials

5.2.1 Image Acquisition and Pre-processing

The dataset was adopted from an ongoing larger study entitled “Characterizing

whiplash injury using magnetic resonance imaging” conducted by the Australian

National University (ANU) Medical School with ethics approval granted. It con-

sists of 45 patients (28 females and 17 males) aged from 18 to 36 years, weighing 50

to 100 kilograms and with heights of 1.5 to 1.8 meters. All the subjects, who were

suffering neck pain, provided written informed consent to participate in the exper-

iments, with their personal identifying information removed prior to the research

being conducted. The data was obtained from multiple medical centers over a two-

year period using 3 Tesla MR scanners (Siemens, Skyra, Erlangen, Germany) with

different MRI protocols. Table 5.1 shows the dataset’s demographics information

and MRI scanner’s parameters. Examples of the very large anatomical variabilities

are shown in Figure 5.1, with many more similar and different scenarios found in

the neck dataset. Although the images were initially different in their spatial res-

olutions, intensity ranges and levels of contrast, they were later normalized. Axial

T1-weighted spin echo images with sizes of 256× 256 were obtained from between

each participant’s occiput and T1 vertebral levels (45 slices, each with a repetition

time of 746-1140 ms, echo time of 15-16 ms, slice thickness of 4 mm, inter-slice

gap of 4 mm, flip angle of 70◦, pixel bandwidth of 300 Hz/pixel and percent phase

field of view of 100). As the images were collected using different MRI protocols,

the inhomogeneity of their MRI intensities was corrected individually by varying

the parameters of the multiplicative intrinsic component optimization (MICO)

method [345]. Five blinded and independent students from the ANU’s medical

school, with extensive training on cervical spine anatomy, manually segmented
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Fig: Data set challenges,  
15,41,1,7,36

3671 41
Figure 5.1: Anatomical variations in the neck dataset (images of different

individuals)

Atlas

Fig: Atlas at top of C3 level

Ground TruthMICO CorrectedRaw Image

Figure 5.2: Axial MRIs at the top of the C3 spinal level showing inhomogeneity
correction, population average and ground truth

each image’s left and right muscles (sternocleidomastoid, semispinalis capitis and

splenius capitis) at the top of the C3 vertebral level using a Matlab graphical user

interface (GUI) specially constructed for this study. Later, their annotations were

validated by two other anatomical experts from the medical school. The segmenta-

tion masks using six colors for the six muscles (yellow (M1), cyan (M2), red (M3),

magenta (M4), blue (M5) and green (M6)) of each patient are shown in the last

column in Figure 5.2. The inhomogeneity-corrected and ground-truth images were

aligned with a population average using an affine transformation and edge posi-

tion difference (EPD) similarity measure-based registration technique [308]. The

image of the population average was generated using a registration algorithm, as

described in Section 5.2.2.1. Figure 5.2 shows a raw MR image, its MICO-corrected

version, the population average for this study and the ground-truth segmentation

for one subject.
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Figure 5.3: Registration framework for generating population average

5.2.2 Calculation of Population Average

In order to train a CNN efficiently, there should be few variations among the train-

ing images. Therefore, the training images are required to align with a reference

one (also called a population average or atlas). It is the average of all the aligned

training ones with respect to an initial reference one selected from them, based

on criteria which should be common to the maximum number of images in the

training dataset, and is calculated using a registration framework.

Some candidate images are selected as the initial reference image based on a

rough visual inspection of their common criteria. The shapes of a neck’s trunk,

upper black shade and muscles as well as information on their positions relative

to the horizontal and vertical axes and depths of their subcutaneous fat are con-

sidered as the criteria for observations. These criteria are: round, elliptical and

angular shapes for a neck’s trunk and high, low and medium for the depths of

the subcutaneous fat. Then, a score is recorded for each criterion by visually in-

specting all the training images. Finally, the scores of all the candidate images are

compared and the initial reference one selected from those with the highest scores.
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5.2.2.1 Registration Model

Once the initial reference image is selected, a registration model is required to align

all the training images with the initial reference one. Designing this model for a

neck dataset is very difficult because it contains very large anatomical variabilities,

as can be seen in Figure 5.1, and the deformations necessary for the images to

align are very complex and large; in particular, variations in the depth of the

subcutaneous fat, irregular shapes of the neck’s trunk and the top black region are

the main hindrances.

To tackle the challenge of large variabilities, a multi-stage registration frame-

work was developed, as shown in Figure 5.3. This framework is similar to the

registration method proposed in chapter 4 except that the last stage is absent.

This last stage requires the ground which is not possible in this scenario. The

images registered from it are then co-registered using a different non-linear reg-

istration method called diffeomorphic demons (D.Demons) [2] in which heuristic,

linear and non-linear registration stages are used. The heuristic stages, which

tackle very large deformations as traditional continuous or discrete optimization-

based registration algorithms, are limited to these deformations [48]. Heuristic or

greedy optimization approaches can be found in [54, 58]. However, in this frame-

work, which is intuitive and gradient-free, a heuristic approach is implemented

using different transformations and SMs. The MI-based stage corrects coarse mis-

matches but cannot correct fine ones due to its statistical instability in local regions

whereas the EPD-based stage does so as it is feature-based and performs well in

local regions. The MI heuristic registration is used before the EPD one, with

the former good for matching globally and the latter locally, with translational

and rigid transformations used. Different types of transformations are helpful for

avoiding local minima during the registration process while the affine registration,
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which is used to combat global differences among subjects, is adopted from the

paper in [308]. Finally, the D.Demons non-linear registration handles complex

deformations resulting from the algorithm [2].

5.2.3 DCNNs for Evaluation

Deep learning-based segmentation methods have recently been shown to achieve

more promising results than traditional techniques in medical image segmentation

applications; in particular, the U-Net [6] architecture is a popular approach due

to its good performance. Many researchers have tried to improve its performance

by integrating additional techniques into its original architecture. Some recent

prominent U-Net-based networks, including the U-Net [6], U-Net with a condi-

tional random field (CRF-Unet) [72], attention U-Net (A-Unet) [7], nested U-Net

or U-Net++ [73], multi-feature pyramid (MFP)-Unet [74] and recurrent residual

U-Net (R2Unet) [75] are evaluated through experiments. Also, networks with more

comprehensive modifications, including the multi-scale U-Net (MS-Unet), parallel

multi-scale U-Net (PMS-Unet), recurrent residual attention U-Net (R2A-Unet)

and R2A-Unet++, are evaluated for neck muscles segmentation.

The A-Unet is included in this evaluation study because its attention gate

can automatically increase the prediction accuracy and sensitivity of any model

by concentrating on target structures and neglecting irrelevant regions. It demon-

strates better accuracy than the U-Net for two 3D CT abdominal datasets [7] while

the CRF-Unet uses CRFs as recurrent neural networks [346]. A CRF establishes

spatial constraints among labels to reduce false labeling which occurs due to local

minima in training and image noise, and increases segmentation accuracy in nat-

ural images and medical images [59, 72]. The MFP-Unet uses a feature pyramid

to extract feature maps from all the blocks of an expanding path in a semantic



Chapter 5. Deep Learning-based Neck Muscles Segmentation 134

layer for a segmentation procedure instead of the last block as does the U-Net.

The MFP-Unet performs excellently for echocardiographic segmentation, better

than the U-Net, U-Net++, deeplabv3, an anatomically constrained neural net-

work (ACNN) and a stacked hourglass (SHG) network [74]. The R2Unet ensures

better feature representation than the U-Net with the same number of parameters

and yields good results compared with those of the SegNet and U-Net for seg-

menting retinal blood vessels, skin cancers and lung lesions [75]. The U-Net++

decreases the semantic gap between the feature maps of the encoder and decoder

of the U-Net through dense nested skip connections. It provides better segmenta-

tion accuracy than the U-Net and wide U-Net for 3D CTs of chest nodules, nuclei

microscopic images, liver CTs and polyp colonoscopy videos [73].

A multi-scale strategy is integrated with the U-Net in a serial and parallel

way because it has shown good performances for anatomical variabilities and the

dataset contains neck MRIs with muscles of various sizes and shapes [78]. It

encodes both local and global contexts, textures and shapes. In the MS-Unet, it

is implemented in a U-Net architecture using kernels of different sizes in different

blocks of contracting and expanding paths. Another popular way of implementing

a multi-scale technique is in the multi-stream architecture [78, 347, 348] used

in the PMS-Unet to enable the processing of a large context through different

resolutions of input images without increasing the receptive fields, thereby reducing

the memory and computational requirements of DCNNs. Three pathways with

different kernel sizes are decoupled and merged in the contraction path for the

first 3 convolutional blocks of the U-Net and replicated in the expanding path

for the 7th and 8th ones of the PMS-Unet. Also, this multi-stream concept is

extended for the two different networks in the R2A-Unet++ in which the R2A-

Unet and U-Net++ are considered different pathways and merged in the output
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Fig: Two stages Deep CNN
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Figure 5.4: The two-stage U-Net++ (TS-UNet++) architecture with a
multi-level fusion structure (MLFS) used in stage 2

layer. Furthermore, an attention gate is integrated with the R2Unet in the R2A-

Unet to boost the prediction performance.

The networks are trained using a combination of the loss function of cross-

entropy and the dice coefficient in a multi-data training technique [72] in which

both a gradient magnitude and images are used, that had shown improved perfor-

mances. Also, batch normalization and ReLU activation are applied in each layer

after convolution.

5.2.4 TS-UNet++

Figure 5.4 shows the proposed TS-UNet++ architecture. It has two stages rather

than multiple ones like the MS-UNet [4], which makes it memory-efficient. It

uses the U-Net++ instead of the U-Net in its first stage and, at each layer, batch

normalization and ReLU activation are applied after convolution. The architec-

ture is trained by the loss function of the combination of a dice coefficient and

cross-entropy in an end-to-end learning manner. Gradient-magnitude images of

corresponding images with data augmentation are used during training to improve

the learning efficiency [72] as they help the architecture to extract salient features

quickly.
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An additional convolutional block is inserted in the architecture between the

U-Net with a multi-level fusion structure (MLFS) and output layer. This block can

be considered as better for extracting information about the high-level semantics

of an output feature map. This also makes the network deeper and wider without

accelerating the problem of the gradient vanishing as in the traditional U-Net in

which it is proportional to the number of convolutional blocks. This is possible due

to the two stages in the architecture, whereby the network learns more representa-

tive features and performs better. There are two reasons for the vanishing of the

gradient not increasing. Firstly, both stages of the network use the input images

directly and, secondly, the network re-uses the feature maps from the first stage

through fusing them with those from the second via concatenation. Although

this fusion does not incur information loss, if the feature maps are repeatedly

convolved in the same encoding path with deeper layers, the vanishing-gradient

problem becomes acute.

A multi-stage-based CNN method has some advantages. Firstly, it can be

considered to have many learners, each of which learns different additional features

whereas their fused output may not be obtained by a single learner. Secondly,

it can provide a coarse-to-fine approach for segmentation. Thirdly, it has the

capability to boost training data by learning from images as well as the results of

previous stages. Finally, it can control high-level semantic information obtained

from multiple stages for effective segmentation. In the proposed TS-UNet++,

two different types of learners with different capabilities, rather than the same

as those in a traditional multi-stage method [4, 340], are used. This approach

is adopted because, although the same types of learners may extract different

additional features in multiple stages, these features may be almost similar or

only subtly different. In contrast, differences may be large if different types of

learners are used in a multi-stage technique and result in a better performance.
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Fig: MLFS
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Figure 5.5: Multi-level fusion structure (MLFS) integrated with U-Net (feature
information encoded from U-Net++ and U-Net in multi-scale fashion)

The proposed method uses the U-Net++ in the first stage and U-net in the second.

It is not possible to use the opposite order of learners or have both of them as

U-Net++ due to the architectural complexity of the U-Net++ which can yield

a significantly better performance than the U-Net and provide good distinctive

additional features and high-level semantic information. The reason for this is

the fusing of the semantically similar feature maps of the encoder and decoder.

Actually, the U-Net++ network reduces the semantic gap between these feature

maps through using nested and dense skip connections which gradually enrich the

encoder’s high-resolution feature maps to rich ones of the decoder. As a result,

the network can learn fine-grained details of foreground objects more effectively

and simplify the learning task.

The MLFS is implemented in the proposed method through concatenation,

rather than addition as occurs in a traditional multi-stage method [4], as it does

not incur any information loss which enables deep supervision [59]. It also helps
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to propagate the gradient easily which simplifies the training and combines multi-

level features hierarchically, as shown in Fig. 5.5. To deepen the proposed model,

another convolutional layer is added after each MLFS concatenation which does

not worsen the gradient-vanishing problem because it obtains information from two

sources via its concatenation while the TS-UNet++ can learn more representative

features. However, the number of convolutional layers added should be limited

according to the number of information sources in the concatenation.

5.2.5 Dilated-ROI Attention

The proposed dilated-ROI attention method is simple and effective for increasing

the accuracy of semantic segmentation. In this method, any DCNN for semantic

segmentation can be used as a backbone network while the training images are

cropped for the ROI using dilated ground truths generated by a morphological

dilation operation that exploits a square structuring element. Selecting the dilation

pixels (DPs) (the width of the square) is an important aspect of this method since

any DCNN for semantic segmentation is sensitive to the input features. If a

DCNN is trained using a full input image, its unnecessary features generate some

undesired values during testing which act as noise during the prediction stage and,

consequently, the softmax layer produces false semantic labels. Therefore, the ROI

selected encompasses all the boundaries of the desired objects and avoids extra

regions by keeping an appropriate margin of distance.

Fig. 5.6 shows the types of images which can be used to train a semantic

DCNN, with the middle and right-hand ones generated by 15 and 20 DPs, respec-

tively. To obtain better semantic accuracy, the middle image is preferred because

it includes all the desired muscles with decent margins of distance. On the other

hand, the right-hand one covers some additional regions with extra features which
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produce some scattered values that result in a false probability distribution in the

output image.

Previous attention-based models used a bounding box or region-level coarse

annotation to select the ROI, neither of which can select the regions required for

the dilated-ROI process because: firstly, the muscles are not fully aligned either

horizontally or vertically; secondly, the shape of the bounding box can be either

square or rectangular which cannot optimally encompass the muscles due to their

blobbed shapes; and thirdly, if a region-level coarse annotation is not performed

carefully, excessive regions will be enclosed. Therefore, these methods may not

produce better semantic segmentation than the dilated-ROI attention method.

Also, the testing images are cropped to have similar margins to those of the

training ones in order to maintain symmetry. As this matches the network’s train-

ing pattern, the performance of the network will improve. In this case, as any

novice person can undertake this task with a small period of training by an anatom-

ical expert, coarse annotation will be achieved with a minimal amount of labor

and in less time because detailed pixel-wise annotation is not required, thereby

reducing the annotation’s cost and time. This part could also be conducted using

a registration technique in which the contours of the desired objects can be easily

transferred from an atlas of a visually similar person or through exploiting the

output from another semantic DCNN.

The loss function, batch normalization, activation and multi-data technique

for the models’ training are performed in a similar manner to those in sections 5.2.3

and 5.2.4 except that the dataset’s images are not aligned with the average of the

population.
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Figure 5.6: Types of images in the training dataset ( Dilation pixels (DPs)
indicate the widths of the structuring elements for the morphological dilation

operation)

5.2.6 Implementation

The CNNs were trained on a NVIDIA GeForce GTX Titan Linux GPU (12 GB)

using TensorFlow and Keras, and an Adam optimizer with a 0.001 learning rate.

The images were divided into 30 training, 5 validation and 10 testing ones with

almost gender equality. The number of epochs and batch size were set to 1500

and 5, respectively, during training. Online data augmentation was performed

through an affine transformation (rotation, translation, shearing and scaling) and

the nearest fill mode for the image and mask. The models were initialized by

drawing weights from a 0-centered truncated normal distribution.

5.3 Results and Analyses

The deep learning based semantic segmentation methods in this Chapter were

developed for 2D images. On the other hand, the proposed registration algorithms

in Chapter 3 and 4 were developed for 3D images. Therefore, the registration

methods cannot be compared directly with the segmentation methods.
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5.3.1 Evaluations

The DSC and DHD metrics [349] were used to quantitatively analyze the segmen-

tation results. The DHD metric was used because the DSC ignores the positions

of the pixels which are important in segmentation. Table 5.2 shows the average

DSC and DHD values achieved by the models and it can be seen that the U-

Net++ yielded the best results in terms of the DSC with an overall mean of 0.89.

Although the A-Unet obtained better results than the U-Net for two 3D CT ab-

dominal datasets, it achieved a lower overall mean DSC than most of the models.

On the other hand, the A-Unet and R2Unet models produced better overall mean

DHDs, each with a value of 1.89. It is also noticeable that the PMS-Unet provided

relatively good performances in terms of both metrics with overall DSC and DHD

mean values of 0.88 and 1.90, respectively. Considering both evaluation measures

when comparing performances, it can be said that the R2Unet outperformed the

others. Of the muscles, M1 obtained the best results from both metrics for almost

all the models, possibly because of its larger size.

To further analyze the A-Unet, R2Unet, U-Net++ and PMS-Unet models, the

visual segmentation results for some test patients are shown in Fig. 5.7. It can be

seen that the R2Unet was better than the other models and, although there were

some scattered labels and holes for the M1 muscle (cyan), all the other muscles’

boundaries were quite smooth except for a few holes and additional false labeling.

5.3.2 TS-UNet++

The TS-UNet++ model was compared with state-of-the-art approaches such as

the U-Net [6], U-Net++ [5] and two-stage U-Net (TS-UNet) [4]. The TS-UNet
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Table 5.2: Average DSC and DHD values for models with best results in the
‘Overall’ column in bold

Networks M1 M2 M3 M4 M5 M6 Overall

D
S
C

U-Net 0.94±0.03 0.86±0.03 0.91±0.05 0.85±0.07 0.86±0.04 0.86±0.06 0.88±0.06
CRF-Unet 0.94±0.04 0.86±0.04 0.91±0.04 0.85±0.05 0.84±0.04 0.85±0.06 0.88±0.06

A-Unet 0.93±0.03 0.86±0.04 0.91±0.05 0.85±0.06 0.84±0.06 0.85±0.06 0.87±0.06
MFP-Unet 0.93±0.03 0.86±0.05 0.90±0.05 0.85±0.06 0.84±0.05 0.87±0.04 0.88±0.06

R2Unet 0.92±0.03 0.86±0.04 0.93±0.03 0.85±0.08 0.86±0.04 0.85±0.07 0.88±0.06
U-Net++ 0.94±0.03 0.86±0.04 0.93±0.03 0.86±0.06 0.86±0.05 0.86±0.06 0.89±0.06
R2A-Unet 0.94±0.03 0.85±0.06 0.92±0.04 0.84±0.07 0.86±0.06 0.85±0.06 0.88±0.07

R2A-Unet++ 0.92±0.04 0.86±0.05 0.90±0.04 0.85±0.06 0.87±0.04 0.86±0.06 0.88±0.05
PMS-Unet 0.94±0.03 0.86±0.03 0.92±0.03 0.85±0.06 0.86±0.05 0.85±0.08 0.88±0.06
MS-Unet 0.94±0.03 0.85±0.04 0.90±0.04 0.84±0.07 0.84±0.06 0.85±0.06 0.87±0.07

D
H

D
(m

m
)

U-Net 1.49±0.26 1.93±0.27 1.60±0.59 2.26±0.52 2.21±0.37 2.23±0.37 1.95±0.52
CRF-Unet 1.49±0.26 1.96±0.26 1.72±0.36 2.36±0.46 2.26±0.28 2.33±0.26 2.02±0.46

A-Unet 1.56±0.41 1.83±0.26 1.56±0.60 2.13±0.43 2.04±0.36 2.20±0.42 1.89±0.50
MFP-Unet 1.51±0.15 1.83±0.26 1.64±0.55 2.36±0.50 2.38±0.39 2.18±0.38 1.98±0.52

R2Unet 1.67±0.32 1.76±0.33 1.51±0.15 2.10±0.52 2.09±0.38 2.20±0.38 1.89±0.45
U-Net++ 1.46±0.27 1.89±0.38 1.54±0.47 2.25±0.57 2.08±0.27 2.37±0.40 1.93±0.53
R2A-Unet 1.63±0.19 2.03±0.41 1.50±0.50 2.27±0.51 2.17±0.31 2.24±0.32 1.97±0.49

R2A-Unet++ 1.70±0.63 2.11±0.35 1.56±0.24 2.19±0.35 2.28±0.34 2.38±0.34 2.04±0.50
PMS-Unet 1.39±0.28 1.91±0.26 1.59±0.42 2.20±0.39 2.19±0.32 2.13±0.28 1.90±0.45
MS-Unet 1.42±0.30 2.07±0.35 1.62±0.52 2.28±0.54 2.32±0.37 2.19±0.35 1.98±0.54

is a network in which the U-Net is used in both the first and second stages and

no convolutional block is added before the output layer. Table 5.3 shows the

average DSC and DHD values for the test images obtained by the comparative

methods. The TS-UNet++ performed better than the others in terms of both

metrics and would improve if more stages were incorporated. It can be conjectured

that the convolutional layers added in a multi-stage manner with concatenation

of the feature maps in a multi-level feature space can capture more high-level and

abstract features for multi-class dense prediction problems.

In Fig. 5.8, the visual results for the five images randomly selected from the

test dataset are displayed. The predictions more finely match the contours of the

ground truths for the TS-UNet++ than for the other methods. Although there

are some small under- and over-segmentations for the TS-UNet++, there are no

holes as there are for the TS-UNet [4] for P4, U-Net++ [5] for P5 and U-Net [6] for
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Figure 5.7: Visual segmentation results for MRIs and ground truths for A-Unet,
R2Unet, U-Net++ and PMS-Unet models (columns represent different patients
denoted as P1, P2, P3, P4 and P5), with extracted contours from ground truths

indicated by gray lines superimposed on the automatic segmentation results

P4 and P5. Moreover, there are no large over-segmentations for the TS-UNet++

as for the TS-UNet [4] for P3 and P4, U-Net++ [5] for P1 and U-Net [6] for P2

and P3.



Chapter 5. Deep Learning-based Neck Muscles Segmentation 144

Table 5.3: Comparison of performances of two-stage U-Net++ (TS-UNet++)
and baseline CNNs with best results in the ‘Overall’ column in bold

Models M1 M2 M3 M4 M5 M6 Overall

D
S

C

TS-UNet++ 0.94±0.03 0.87±0.03 0.94±0.03 0.86±0.08 0.87±0.06 0.87±0.05 0.8911±0.06
TS-UNet [4] 0.94±0.03 0.85±0.04 0.92±0.03 0.85±0.06 0.86±0.05 0.86±0.06 0.8806±0.06
U-Net++ [5] 0.94±0.03 0.86±0.04 0.93±0.03 0.86±0.06 0.86±0.05 0.86±0.06 0.8863±0.06

U-Net [6] 0.94±0.03 0.86±0.03 0.91±0.05 0.85±0.07 0.86±0.04 0.86±0.06 0.8797±0.06

D
H

D
(m

m
) TS-UNet++ 1.55±0.31 1.92±0.35 1.27±0.29 2.15±0.50 2.17±0.33 2.08±0.39 1.8574±0.50

TS-UNet [4] 1.56±0.40 1.98±0.31 1.60±0.57 2.34±0.55 2.28±0.32 2.31±0.38 2.0134±0.54
U-Net++ [5] 1.46±0.27 1.89±0.39 1.54±0.47 2.25±0.57 2.08±0.27 2.37±0.40 1.9321±0.53

U-Net [6] 1.49±0.26 1.93±0.27 1.60±0.59 2.26±0.52 2.21±0.37 2.23±0.37 1.9534±0.52

5.3.3 Dilated-ROI Attention

To understand the effect of the dilated-ROI attention mechanism, the U-net [6]

DCNN model was evaluated on the neck MRI dataset using four different cases:

without attention; with dilated-ROI attention by 15 DPs; with dilated-ROI at-

tention by 20 DPs; and with automatic attention (A-Unet). Table 5.4 shows the

average DSC and DHD values for the test images obtained from the comparative

methods. The U-Net with dilated-ROI attention by 15 DPs performed the best of

all the others in terms of both metrics. Although the A-Unet was superior on the

abdominal CT dataset for pancreas segmentation, it was worse than the without

attention mechanism which may have been due to the complexity involved in the

neck dataset or the attention model causing incorrect attention. Also, the area of

the ROI affected the accuracy as the performance of the U-Net with dilated-ROI

attention by 20 DPs was worse than that of the U-Net with dilated-ROI attention

by 15 DPs.

In Fig. 5.9, the visual results for the five images randomly selected from the

test dataset are presented. It can be seen that the predicted labels for the U-Net

with dilated-ROI attention by 15 DPs are more closely matched than the others.
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Figure 5.8: Visual results for multi-class neck muscles segmentations of five
different patients (P1, P2, P3, P4 and P5) (first row original images, second

corresponding manual segmentations and following automatic segmentations of
two-stage U-Net++ (TS-UNet++), two-stage U-Net (TS-UNet) [4], U-Net++ [5]
and U-Net [6], with contours extracted from ground truths denoted by gray lines

superimposed on automatic segmentation results)

5.4 Discussion and Conclusion

5.4.1 Evaluations

In this study, 10 different versions of the U-Net deep learning segmentation method

(6 original and 4 modified) were evaluated using the DSC and DHD metrics on
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Table 5.4: Average DSC and DHD values for U-Net without attention [6], with
dilated-ROI attention by 15 DPs, dilated-ROI attention by 20 DPs and automatic

attention (A-Unet) [7], with best results in the ‘Overall’ column in bold

Models DP M1 M2 M3 M4 M5 M6 Overall

D
S

C

U-Net [6] - 0.94±0.04 0.88±0.04 0.93±0.04 0.86±0.06 0.88±0.03 0.87±0.05 0.8954±0.05
U-Net 15 0.95±0.04 0.90±0.04 0.94±0.03 0.90±0.04 0.85±0.05 0.89±0.05 0.9056±0.06
U-Net 20 0.95±0.04 0.90±0.03 0.94±0.05 0.89±0.05 0.87±0.05 0.88±0.06 0.9028±0.05

A-Unet [7] - 0.95±0.04 0.87±0.04 0.92±0.05 0.86±0.06 0.88±0.04 0.86±0.06 0.8900±0.06

D
H

D
(m

m
) U-Net [6] - 1.46±0.27 1.85±0.26 1.32±0.23 2.18±0.50 2.25±0.23 2.30±0.31 1.8936±0.50

U-Net 15 1.38±0.30 1.89±0.33 1.42±0.28 2.10±0.42 2.27±0.37 2.04±0.37 1.8518±0.49
U-Net 20 1.42±0.28 1.89±0.36 1.41±0.45 2.22±0.43 2.26±0.32 2.19±0.35 1.8974±0.52

A-Unet [7] - 1.44±0.34 1.98±0.42 1.47±0.21 2.22±0.41 2.21±0.32 2.22±0.38 1.9254±0.49

manually delineated neck muscles. The modified models were based on recent

popular techniques for machine learning, such as multi-stream and multi-scale

approaches. This type of study is unprecedented in the deep learning-based seg-

mentation literature and, although its scale is small, it will be beneficial for the

deep learning-based medical image segmentation community.

The main finding from this study was that the performances of the models

were quite similar except for the R2Unet which achieved slightly better accuracy

in terms of both metrics. Although it has been reported in the literature that the

performances of some of the models were better on other medical datasets, that

was not the case for the neck dataset; in particular, the A-Unet’s performance was

worse than that of the U-Net in terms of the DSC but was superior when using CT

data for pancreatic segmentation. This might have been for two reasons; firstly, the

neck MRI data were more complex due to the compactness, similar compositions

and small sizes of the muscles, specifically, the M3-M6 muscles which had adjoining

boundaries whereas the pancreas was comparatively large and not as compact;

and, secondly, the same hyper-parameters were used for all the models which

may not have been optimal for the A-Unet. However, all the other models may

also have performed better if the hyper-parameters were optimized. Therefore,

there is no recommendation to use any particular model at this stage as further
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Figure 5.9: Visual segmentation results obtained from the dilated-ROI attention
experiments for five different patients (P1, P2, P3, P4 and P5) (first row original

images, second corresponding manual segmentations and following rows
automatic segmentations of U-Net without attention, with dilated-ROI attention
by 15 DPs, with dilated-ROI attention by 20 DPs and the A-Unet, respectively,
with contours extracted from ground truths denoted by gray lines superimposed

on the automatic segmentation results)
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research regarding their hyper-parameters and other issues needs to be conducted.

In future, some additional networks with more data for other spinal levels will be

analyzed using more evaluation measures and a diverse dataset for 3D learning.

5.4.2 TS-UNet++

A two-stage DCNN using the U-Net and U-Net++ in a cascaded manner with deep

supervision and end-to-end learning was proposed. In this method, convolutional

layers were added to extract more high-level features which avoided the gradient-

vanishing problem of the traditional DCNN due to the fusing of feature maps that

combined multiple sources of information through concatenation in a multi-level

space. The experimental evaluation showed that the TS-UNet++ yielded state-

of-the-art results for neck muscles segmentation. In future, this model will be

evaluated using public and large-scale datasets with many other medical segmen-

tation applications.

5.4.3 Dilated-ROI Learning

A simple and effective dilated-ROI-based attention mechanism is proposed. As

DCNNs for semantic segmentation are sensitive to learning features in terms of

feeding image regions, any automatic attention-based approach is not suitable for

all applications. In future, this method will be made fully automatic through

using either a registration technique or another DCNN output to select the ROI

for testing images.



Chapter 6

Conclusions and Future

Directions

This chapter presents the major findings and contributions of this research in

Section 6.1 as well as an outline of potential extensions of it in Section 6.2.

6.1 Conclusions

In this thesis, new 3D-3D non-rigid image registration and deep learning-based

semantic segmentation methods for supporting analyses of neck diseases in order to

apply proper medical interventions were presented. This study will assist medical

doctors in diagnosing these diseases by helping them understand the sizes and

shapes of neck muscles. These methods can be applied for image-guided surgery

and therapeutic processes as well as determinations of the proper doses of toxin

injections. The important findings and developments are summarized below.

• In Chapter 3, a novel object-constrained hierarchical registration framework

for aligning inter-subject neck muscles is proposed. Firstly, to handle large-

scale local minima, a coarse registration technique, which optimizes the new

EPD similarity measure, is used to align large mismatches. Also, a new

transformation based on the DPSW, affine and FFD transformations are

149
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exploited. Secondly, to avoid the monotony of using the same transfor-

mations in multiple stages, a fine registration technique for aligning small

mismatches, which uses a double-pushing system by changing edges in the

EPD and switching the transformation’s resolutions, is designed. The EPD

helps both the coarse and fine techniques to implement object-constrained

registration via controlling edges which is not possible using traditional sim-

ilarity measures. Also, a modified 3D chamfer distance transformation al-

gorithm is developed for the EPD. Experiments are performed on clinical

3D MRI scans of the neck, with the results showing that the EPD is more

effective than the MI and SSD measures in terms of the volumetric DSC.

The proposed method is compared with two state-of-the-art approaches with

ablation studies of inter-subject deformable registration and achieves better

accuracy, robustness and consistency.

• However, the above framework is computationally complex and has diffi-

culty handling large-scale anatomical variabilities. To overcome these prob-

lems, another 3D-3D registration framework with two novel contributions

is proposed in Chapter 4. Firstly, a two-stage heuristic search optimization

technique for handling large mismatches, which uses a minimal user hypoth-

esis regarding these mismatches and is computationally fast, is introduced.

It brings a moving image hierarchically closer to a fixed one using MI and

EPD similarity measures in the coarse and fine stages, respectively, while the

images do not require pre-segmentation as is necessary in traditional heuris-

tic optimization-based techniques. Secondly, a ROI EPD-based registration

framework for handling small mismatches using salient anatomical informa-

tion, in which a convex objective function is formed through a unique shape

created from the desired objects in the ROI, is proposed. It is compared with
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two state-of-the-art methods on the neck dataset, with the results showing

that it is superior in terms of accuracy and is computationally fast.

• In Chapter 5, an evaluation study of recent U-Net-based CNNs is performed

on the neck dataset. It comprises 6 recent models, the U-Net, CRF-Unet,

A-Unet, U-Net++, MFP-Unet and R2Unet, and 4 networks with more com-

prehensive modifications, the MS-Unet, PMS-Unet, R2A-Unet and R2A-

Unet++, for neck muscles segmentation, with analyses of the numerical re-

sults indicating that the R2Unet architecture achieves the best accuracy.

Also, two deep learning-based semantic segmentation approaches are pro-

posed. In the first, a new TS-UNet++ algorithm uses two different types

of deep CNNs (DCNNs) rather than one, as is the case for the traditional

multi-stage approaches, with the U-Net++ in the first stage and the U-Net

in the second. More convolutional blocks are added after the input and be-

fore the output layers of this multi-stage method to better extract the low-

and high-level features. A new concatenation-based fusion structure, which

is incorporated in the architecture to allow deep supervision, helps to in-

crease the depth of the network without accelerating the vanishing gradient

problem of a traditional CNN. More convolutional layers are added after each

concatenation of the fusion structure to extract more representative features.

This network is compared with the U-Net, U-Net++ and TS-UNet on the

neck dataset, with the results indicating that it outperforms the others. In

the second approach, an explicit attention method, in which the attention is

performed through a ROI evolved from the ground truth via dilation, is pro-

posed. It does not require any additional CNN, as does a cascaded approach,

to localize the ROI. Attention in a CNN is sensitive with respect to the area

of the ROI. This dilated ROI is more capable of capturing relevant regions

and suppressing irrelevant ones than a bounding box and region-level coarse
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annotation and is used during the training of any CNN. Coarse annotation,

which does not require any detailed pixel wise delineation and can be per-

formed by a novice person, is used during testing. This ROI-based attention

method can handle compact and similar small multiple classes with objects

with large variabilities. It is compared with the A-Unet and U-Net, and

performs the best.

6.2 Future Works

Although the proposed registration and segmentation methods obtain good accu-

racy, it is still possible to improve their levels of accuracy, robustness and compu-

tational complexity for which the following aspects could be further investigated.

• The framework proposed in Chapter 3 could be validated using some public

brain and lung datasets using a more theoretical insight into DPSW. Also,

some other optimization methods, such as stochastic ones, could be explored

and other evaluation metrics applied. Furthermore, the size of the neck

dataset could be increased for experimental analyses.

• A fine resolution of the FFD transformation in Chapter 4 could be examined

using local gradient descent optimization for the ROI-based EPD algorithm.

Also, regularization could be imposed inside the objective function to confirm

the smoothness of the transformation.

• Other spinal levels than those in Chapter 5 could be analyzed to validate the

effectiveness of the proposed methods. The 2D models could be transformed

to corresponding 3D ones for which it would be necessary to generate 3D

ground truths. The explicit ROI-based attention model could be made fully
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automatic using either a registration technique or another DCNN output to

select the ROI for testing images.

• In general, the registration methods could be implemented in C++ with a

GPU to speed up their execution times. Also, other neck muscles could be

investigated and the inhomogeneity of the MRI corrected to obtain better

performances of the proposed methods.

• An investigation could be conducted to translate the proposed methods to

the clinical domain, with the developed models integrated in commercial-

ized software. The registration methods could be used in radiation therapy

applications in which a patient could be immobilized in an almost identical

position during the pre-operative and treatment imaging stages.
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medical image segmentation in multiple modalities,” in International Con-

ference on Medical Image Computing and Computer-Assisted Intervention,

2016, pp. 478–486.



Bibliography 190

[270] J. Chen, L. Yang, Y. Zhang, M. Alber, and D. Z. Chen, “Combining fully

convolutional and recurrent neural networks for 3d biomedical image seg-

mentation,” in Advances in neural information processing systems, 2016,

pp. 3036–3044.

[271] J. Kleesiek, A. Biller, G. Urban, U. Kothe, M. Bendszus, and F. Hamprecht,

“Ilastik for multi-modal brain tumor segmentation,” Proceedings MICCAI

BraTS (brain tumor segmentation challenge), pp. 12–17, 2014.

[272] K. Kamnitsas, L. Chen, C. Ledig, D. Rueckert, and B. Glocker, “Multi-

scale 3d convolutional neural networks for lesion segmentation in brain mri,”

Ischemic stroke lesion segmentation, vol. 13, p. 46, 2015.

[273] Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P.-A. Heng, “3d deeply

supervised network for automated segmentation of volumetric medical im-

ages,” Medical image analysis, vol. 41, pp. 40–54, 2017.

[274] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for

semantic segmentation,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 3431–3440.

[275] D. Nie, L. Wang, Y. Gao, and D. Shen, “Fully convolutional networks

for multi-modality isointense infant brain image segmentation,” in 2016

IEEE 13Th international symposium on biomedical imaging (ISBI), 2016,

pp. 1342–1345.

[276] X. Zhou, T. Ito, R. Takayama, S. Wang, T. Hara, and H. Fujita, “Three-

dimensional ct image segmentation by combining 2d fully convolutional net-

work with 3d majority voting,” in Deep Learning and Data Labeling for

Medical Applications, 2016, pp. 111–120.



Bibliography 191

[277] X. Zhou, R. Takayama, S. Wang, T. Hara, and H. Fujita, “Deep learning of

the sectional appearances of 3d ct images for anatomical structure segmen-

tation based on an fcn voting method,” Medical physics, vol. 44, no. 10, pp.

5221–5233, 2017.

[278] P. Hu, F. Wu, J. Peng, Y. Bao, F. Chen, and D. Kong, “Automatic abdom-

inal multi-organ segmentation using deep convolutional neural network and

time-implicit level sets,” International journal of computer assisted radiology

and surgery, vol. 12, no. 3, pp. 399–411, 2017.

[279] H. R. Roth, H. Oda, Y. Hayashi, M. Oda, N. Shimizu, M. Fujiwara, K. Mi-

sawa, and K. Mori, “Hierarchical 3d fully convolutional networks for multi-

organ segmentation,” arXiv preprint arXiv:1704.06382, 2017.

[280] P. F. Christ, M. E. A. Elshaer, F. Ettlinger, S. Tatavarty, M. Bickel, P. Bilic,

M. Rempfler, M. Armbruster, F. Hofmann, M. D’Anastasi et al., “Automatic

liver and lesion segmentation in ct using cascaded fully convolutional neural

networks and 3d conditional random fields,” in International Conference on

Medical Image Computing and Computer-Assisted Intervention, 2016, pp.

415–423.

[281] H. Zhang, Z. Kyaw, J. Yu, and S.-F. Chang, “PPR-FCN: Weakly supervised

visual relation detection via parallel pairwise R-FCN,” in Proceedings of the

IEEE International Conference on Computer Vision, 2017, pp. 4233–4241.

[282] G. Zeng and G. Zheng, “Multi-stream 3d fcn with multi-scale deep super-

vision for multi-modality isointense infant brain mr image segmentation,”

in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI

2018), 2018, pp. 136–140.



Bibliography 192

[283] L. Yu, H. Chen, Q. Dou, J. Qin, and P.-A. Heng, “Automated melanoma

recognition in dermoscopy images via very deep residual networks,” IEEE

transactions on medical imaging, vol. 36, no. 4, pp. 994–1004, 2016.
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and challenges in deformable image registration: From image fusion to com-

plex motion modelling,” Medical image analysis, vol. 33, pp. 145–148, 2016.

[313] S. Klein, M. Staring, and J. P. Pluim, “Evaluation of optimization methods

for nonrigid medical image registration using mutual information and b-

splines,” IEEE transactions on image processing, vol. 16, no. 12, pp. 2879–

2890, 2007.
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