
Optimal Operation and Maximal Hosting Capacity of High-
Renewable Islanded Microgrids

Author:
Liu, Daichen

Publication Date:
2022

DOI:
https://doi.org/10.26190/unsworks/24492

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/100785 in https://
unsworks.unsw.edu.au on 2024-05-01

http://dx.doi.org/https://doi.org/10.26190/unsworks/24492
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/100785
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


 

 
 

 

 

 

OPTIMAL OPERATION AND MAXIMAL 

HOSTING CAPACITY OF HIGH-

RENEWABLE ISLANDED MICROGRIDS 
 

Daichen Liu 
 

A thesis submitted in partial fulfilment 

of the requirements for the degree of 

 

Doctor of Philosophy 

 

 

 

School of Electrical Engineering and Telecommunications 

Faculty of Engineering 

June 2022 



 

I 
 

DECLATRATIONS 

 



 

II 
 

PUBLICATIONS STATEMENT 

 



 

III 
 

ABSTRACT 

With the advancement of technology, renewable power generators such as solar photovoltaics 

and wind turbines have become cost-effective and competitive compared to traditional generators. 

On the other hand, carbon emission issues have been globally focused, promoting development 

of renewable energy. Meanwhile, microgrids have been widely constructed with increasing 

installation of distributed generators including microturbines and renewable power generators. 

Challenges from intermittent and uncertain renewable sources, low operating efficiency as well 

as system stability in the islanded mode still exist for microgrid operation and renewable hosting 

capacity assessment. To address these unsolved issues, it is worth developing advanced optimal 

operation and hosting capacity maximization approaches for high-renewable microgrids, which 

are presented in this thesis. 

For microgrid operation, economic efficiency, solution robustness and system stability are 

major concerns to be addressed. In order to achieve cost-effective operation, firstly a new 

stochastic optimal power flow (OPF) is proposed for islanded microgrids. A linear network 

operating model which can be used in the OPF problem is specifically developed, while 

uncertainties of photovoltaic power and loads are addressed by Monte Carlo simulation. Secondly, 

an improved OPF method with a new iterative solution algorithm is proposed to enhance the 

accuracy of network operating model and the computing speed. Besides, an advanced 

probabilistic modelling method is adapted to present real-time uncertainties in the OPF method. 

Thirdly, a novel stochastic OPF method with consideration of tie-line switching from the grid-

connected to the islanded mode while the main grid in contingency is proposed. Security 

constraints to guarantee the system stability in the islanded mode are formulated. Moreover, a 

Benders decomposition based solution algorithm is developed, to efficiently solve the OPF 

problem with a master problem and a sub-problem which formulate the grid-connected and the 

islanded modes, respectively. Fourthly, a renewable hosting capacity maximization approach for 

an islanded microgrid, considering system frequency deviation, is proposed. An advanced 
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sensitivity region based optimization method is proposed to address the uncertainties of wind 

power and loads, thus obtaining a robust solution. 

The proposed methods have been successfully demonstrated and compared with existing works. 

Simulation results have verified their feasibility and effectiveness. 
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Chapter 1 INTRODUCTION 

1.1 Distributed Generation 

Distributed generation (DG) is a category of distributed energy resource (DER), and it is 

defined by Institute of Electrical and Electronics Engineers (IEEE) [1] as “generation of 

electricity by facilities that are sufficiently smaller than central generating plants so as to allow 

interconnection at nearly any point in the power system.” Summarized by [2], there are various 

definitions of DG, given by International Council on Large Electric Systems (CIGRE), 

International Conference on Electricity Distribution (CIRED) and International Energy Agency 

(IEA). It can be seen that two major differences exist in voltage level and capacity scale of DG, 

while the established consensus on DG is the small scale and the location near consumers.  

The authors of [3] categorize DG based on whether it is renewable. Typical non-renewable 

DG devices include reciprocating engine, microturbine, combustion gas turbine, while typical 

renewable DG devices (DERs) include solar photovoltaic (PV), wind turbine (WT), fuel cell, 

micro-hydro, geothermal and biomass. In the following two sections, microturbine is briefly 

introduced as a representative of non-renewable DG devices, while PV and WT are compactly 

introduced as predominant renewable DG. 

1.1.1 Microturbine 

As Fig. 1.1 shows, the mechanism of a microturbine is converting the thermal energy 

generated by burning fuel to the mechanical energy that drives the turbine with a gas flow. Then, 

the turbine motion makes the small-size generator generate controllable electric power. Since the 

exhaust gas temperature is high, microturbine can be used to establish a cogeneration or combined 

heat and power (CHP) system. The thermal efficiency of microturbine is generally about 30%, 

while the capacity range is from 20 kW to 500 kW [4].  
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Figure 1.1. Schematic Diagram of a Single-shaft Microturbine [5]. 

The number of microturbine shafts determine its classification [5]. The microturbine is 

presented in Fig. 1.1 is a single-shaft one which means its power turbine and air compressor share 

the same shaft. This design ensures that it is simple to generate power, which is the most 

prominent advantage. The disadvantage of microturbine is that its AC power frequency is very 

high, ranging from 1500-4000 Hz. This is because its electric generator is directly coupled with 

the power turbine whose rotating speed is between 50000-120000 rpm. Therefore, a power 

conditioner is essential for synchronizing the power frequency to 50 or 60 Hz.  

A two-shaft microturbine is shown in Fig. 1.2. In this microturbine, the processes of 

compressing air and power generation are separated. An additional power turbine is utilized for 

this purpose, while the turbine connected with a combuster is only coupled with the air 

compressor. A gear box is installed for adjusting the rotation speed to a lower level than the 

compressor shaft, ranging from 3000-3600 rpm. This design promises that the AC power 

generated is with a lower frequency than that of a single-shaft microturbine, eventually to 50 or 

60 Hz. Compared with a single-shaft one, a two-shaft microturbine is more expensive, caused by 

the more complex manufacturing and the more maintenance demand. However, a two-shaft 

microturbine is easier to be integrated into a power system for no requirement of power electronics 

interface.  
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Figure 1.2. Schematic Diagram of a Two-shaft Microturbine [5]. 

1.1.2 Solar and Wind Energy 

Solar energy is in a form of DC power generated by PV cells. Discrete PV cells are arranged 

in series and then in parallel, forming a module, to increase their output voltage and current. For 

connecting to an electrical power system, an inverter is essential to convert the DC power into 

AC power for practical use. The factors influencing the PV output power include solar irradiance, 

temperature, humidity, PV module cooling, humidity, and surface condition [6]. The solar 

irradiance is the most decisive factor among those, as Fig 1.3 from [7] shows the PV output 

voltage and current are affected by solar irradiance (𝐺𝑇).  

 

Figure 1.3. Variation in I–V Curve When Solar Irradiance Value Changes [7]. 
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The major advantage of PV is environmentally friendly since there is no pollution and 

greenhouse gas emission during the power generation process. Besides, with the advanced 

development of PV technologies, the efficiency of power generation has been continuously 

increasing, while the manufacturing costs are continuously decreasing, given by [8], [9]. This fact 

enhances economic competitiveness of PV installation and utilization. However, unpredictability 

and intermittency of the power generation majorly caused by the irradiance bring challenges and 

risks to power system operation.  

The mechanism of a WT is firstly converting kinetic energy of wind into mechanical energy 

of its rotor, then converting the mechanical energy into electricity with a proper generator. The 

relationship between the wind speed and the output power is shown in Fig. 1.4 from [10]. Three 

critical wind speeds are cut-in wind speed, rated wind speed, and cut-off wind speed, which are 

used to determine the output power.  

 

Figure 1.4. Wind Power Generation Function [10]. 

Cut-in wind speed is the minimum wind speed at which a WT can generated electrical power. 

Rated wind speed is the minimum wind speed at which a WT can generate the rated power. 

Cut-off wind speed is the maximum wind speed which a WT can withstand.  

The advantages of wind energy are similar to those of solar energy, including the 

environmentally friendly, renewable and sustainable features. Compared with PV, the capacity of 

a single WT can be much larger. For example, the capacity of Sierra onshore WT manufactured 

by GE is 3 MW [11]. As the main drawback, the wind energy is also stochastic, uncertain, and 

intermittent. 
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1.2 Microgrid 

Microgrid, as a technical concept, is firstly introduced in [12] and [13] as a reliable operation 

platform for DERs. The benefits of microgrid, such as economical savings, a proper solution for 

renewable integration and enhancing grid resilience, have been recognized. the scale of microgrid 

is changing from <1 MW to 2–10 MW, and even 60–100 MW in the recent years [14].  

In [15], microgrid is defined by CIGRE working group C6.11 as below. 

Microgrids are electricity distribution systems containing loads and distributed energy 

resources, (such as distributed generators, storage devices, or controllable loads) that can be 

operated in a controlled, coordinated way either while connected to the main power network or 

while islanded. 

On the other hand, the definition given by IEEE in [16] provides the main features of a 

microgrid. A microgrid is composed by a set of interconnected loads, a certain number of DERs 

and managed with hierarchical control schemes. Besides, microgrids have a clear electric 

boundary which can be considered as a local electric power system [17]. Most of microgrids are 

connected to upstream area electric power systems of distribution level by the point of common 

coupling (PCC). For the main utility grid, these grid-connected microgrids are regarded as 

individual autonomous entities, which are capable of operating in grid-connected and island 

modes as well as seamless transition between two modes. Some microgrids are always isolated 

from the main grid, and only operate in the islanded mode, which can be named stand-alone or 

islanded microgrids. Comparing the two definitions, [16] further involves the operation modes. 

The microgrids can significantly assist development of smart grid. For the smart grid 

construction, typical challenges include renewable energy integration, bidirectional 

communication systems, ineffective utilization of DG, as well as insufficient grid infrastructure 

and storage [18]. At the same time, the essential requirements for microgrids, helping the smart 

grid development, are summarized by [19] as follows.  

1. Supply main local load and exchange energy with main utility grid. 

2. Capable of handling intermittent renewable energy sources (RESs). 
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3. Capable of measuring critical parameters of the grid (voltage, current, active and 

reactive power, load demand) with smart meters and sensors.  

4. Secure and reliable communication among system components. 

Since a microgrid can be defined as an autonomous entity with a series of requirements to be 

qualified. There are noteworthy aspects of microgrid planning and operation. In the microgrid 

planning and operation, economic efficiency, system stability and reliability as well as 

environmental concern can be optimization objectives [16]. To achieve an efficient design, load 

and renewable output power forecasting, DER configuration, power balancing, operating 

constraints, system self-protection capability for system faults are all essential in consideration. 

In the following two sub-chapters, literature review on the existing works of grid-connected and 

island microgrids is presented. 

1.2.1 Grid-Connected Microgrid 

In [20], an optimal power flow (OPF) method for a grid-connected microgrid with PV units 

and batteries is proposed to obtain an economically optimal solution, with forecast of PV output 

power and load. In [21], the authors present an economic dispatch (ED) algorithm for microgrids. 

Dispatchable and non-dispatchable DG units are considered, the output power of dispatchable DG 

is optimized to realize an economical operation. In [22], the authors focus on control strategy for 

energy storage systems (ESSs) in a grid-connected microgrid. The non-dispatchable DG output 

power and user load demand are predicted by an advanced prediction algorithm which integrates 

weather and electricity market information. With predicted data, a mixed integer linear 

programming problem is formulated and solved over a rolling horizon window. In [23], an energy 

management problem with two targets, which are providing reliable power supply for local loads 

and participating in utility grid frequency regulation, is proposed. The microgrid modelled in [23] 

is composed of non-dispatchable DG units, ESSs, deferrable loads and uncontrollable loads. The 

uncertainties of renewable output power and loads are considered in energy management system 

(EMS) optimization and solved by a chance constrained programming method. In [24], a two-

layer EMS for a microgrid which consists of batteries and supercapacitors is proposed. The 

degradation of the hybrid energy storage devices is premeditated. The system operating cost is 
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minimized on the first layer while the power fluctuations caused by forecasting errors is 

minimized on second layer. In [25] and [26], a dynamic economic dispatch algorithm based on 

quadratic programming is proposed for minimizing operating cost of a microgrid with PVs, 

batteries, and loads, by optimizing the state of charge (SOC) of batteries. In [27], a group of 

interconnected grid-connected microgrids are operated together, while the power exchange 

among the microgrids is incentivized over the power exchange with the main utility grid. A multi-

objective problem, minimizing the costs for buying electricity from local microgrids and utility 

grid, minimizing the peak shaving cost, maximizing profits by selling electricity to local 

microgrids and utility grid, is solved using a compromise programming approach. In [28], a 

dispatch optimization problem for a microgrid is modelled with considering economic 

performance, gas emission, peak shaving, and load curve smoothing, and it is solved in a 

decentralized framework. The output power of renewable DG and loads are also considered and 

addressed. In [29], a robust control method for a grid-connected microgrid is proposed to 

minimize the overall economic cost under the worst case of load and PV power output. In [30], 

the authors introduce an energy management and system control method for a grid-connected 

microgrid, considering two energy storage operation modes dependent on whether the sum of 

available PV output power can cover the load demand. Besides, a strategy of power sharing 

according to the SOC of batteries is adopted for reducing charge/discharge rates during long-term 

operation.  

From the above literature review, it can be clearly found that since the power mismatch 

caused by the non-dispatchable DG devices (such as PV and WT) and the load demand can be 

addressed by the power exchanged with the main utility grid, dispatchable DG devices may not 

be implemented in a grid-connected microgrid in most instances. The major target of grid-

connected operation research is economic enhancement with a reasonable operation and control 

strategy on the microgrids. 

1.2.2 Islanded Microgrid 

In [31], a two-layer energy management approach of an islanded microgrid is proposed while 

dispatchable DG units, RES, ESS, interruptible loads and rigid loads are considered. The objective 

for the islanded operation mode is to maximize contentment rate of load supply with the minimum 
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cost. In [32], an EMS designed for a microgrid located in a remote area, operating only in the 

islanded mode, is proposed to minimize the fuel cost of dispatchable diesel generator. The control 

variables include diesel generator set points, on-off states and SOC of batteries, while the forecast 

of renewable output power and load demand is the input data for this EMS. In [33], a centralized 

EMS for a multi-party microgrid is introduced, while power balance is used as a constraint in 

optimization for maintaining microgrid stability. In [34], the authors focus on microgrid islanded 

operation caused by the main grid fault during natural disasters. The objective is to maximize the 

critical loads to be picked up after unexpected islanded operation, while the automatic switches 

determine the line open/closed state and the load connected/disconnected state to form a new 

topology of microgrid. Similarly, the authors of [35] focus on load restoration during unscheduled 

islanded operation. Compared to [34], the uncertainties of islanded operation duration and output 

power of RES are considered and formulated via a stochastic optimization problem. In [36], a 

stochastic optimal planning method for a stand-alone microgrid is proposed. The variables to be 

optimized include the number and type of WTs and diesel generators, the capacity of PVs, the 

type and placement of batteries as well as the capacity of converters for batteries. There are 

multiple objectives such as minimizing the net present cost and the pollutant emission, and the 

multi-objective optimization problem is solved by Non-dominated Sorting Genetic Algorithm II 

(NSGA Ⅱ). The authors of [37] study networked microgrids planning considering contingent 

islanded operation. Compared with [36], second-order conic programming constraints of power 

flow are applied to obtain bus voltages and line currents which are restricted in practice. Besides, 

due to involving integer variables, a Benders decomposition technique is adopted to solve this 

mixed integer second-order conic programming problem. The authors of [38] consider switching 

between grid-connected mode and islanded mode, aiming at preventing load shedding. An 

adaptive robust optimization method with a column-and-constraint generation algorithm is 

utilized to deal with uncertainties caused by renewable output power and grid connection 

condition. Similar to [38], islanding is also considered as an uncertainty in [39] and [40]. From 

an uncertainty-consideration point of view, the authors of [39] develop multistage stochastic 

optimization to deal with the islanding uncertainty, while improving microgrid multi-period 

islanding criterion is introduced in [41] for reducing computing burdens. In [40], a model for 

determining islanding occurrence probability is proposed. The concept of the model is similar to 
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Bernoulli experiment, while islanding is treated as “success” of the experiment. Stage and step 

are time units of the model, and each stage consists of a certain number of steps. Once islanding 

occurs at any step, it lasts till the end of current stage. In [42], an EMS for islanded microgrid 

including various DG units, ESSs, critical and flexible loads is proposed. A chance-constrained 

model is used to formulate the power balance conditions for allowing specified small-probability 

power unbalance to occur, which can benefit maximizing economic costs.  

From the above literature review, the topics for islanded microgrid research can be classified 

as planning and operation of islanded microgrid, and the unexpected switch between grid-

connected and islanded modes. It can find the different objectives in terms of economic, technical 

and environment benefits. In addition, the features the above literatures have in common are 

considering the uncertainties caused by renewable power outputs, loads and operation mode states. 

It is worth noting that these uncertainties adversely affect islanded operation efficiency and even 

stability and security. Various optimization approaches such as stochastic optimization and robust 

optimization, are normally utilized to deal with the uncertainties.  

 

1.3 Power Flow Models 

A power flow model plays an important role in a power system planning of operation problem, 

normally used as equality constraints in the optimization problem for estimating the network 

operating conditions. The results including bus voltages, branch currents and power flows gained 

by the power flow model are expected to be kept within limits. In this sub-chapter, two widely 

used power flow models are introduced and discussed in terms of accuracy and computing 

complexity. 

1.3.1 Dist-Flow 

Distribution load flow, as known as Dist-Flow, is firstly proposed in [43]. Its core idea is to 

calculate the power values in a recursive manner. The structure of a radial network can be 

illustrated as Fig. 1.1.  
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Figure 1.5. One-line Diagram of Radial Distribution Network (Used for Dist-Flow). 

The power flow equations from sending end 𝑖 to receiving end 𝑖 + 1 are written as follows. 

𝑃𝑖+1 = 𝑃𝑖 − 𝑟𝑖
𝑃𝑖

2 + 𝑄𝑖
2

𝑉𝑖
2 − 𝑃𝐿𝑖+1 (1.1) 

𝑄𝑖+1 = 𝑄𝑖 − 𝑥𝑖

𝑃𝑖
2 + 𝑄𝑖

2

𝑉𝑖
2 − 𝑄𝐿𝑖+1 (1.2) 

𝑉𝑖+1
2 = 𝑉𝑖

2 − 2(𝑟𝑖𝑃𝑖 + 𝑥𝑖𝑄𝑖) + (𝑟𝑖
2 + 𝑥𝑖

2)
𝑃𝑖

2 + 𝑄𝑖
2

𝑉𝑖
2  (1.3) 

Herein, 𝑟𝑖 and 𝑥𝑖 are resistance and reactance of the line from bus 𝑖, 𝑃𝑖 and 𝑄𝑖  are active 

and reactive power of the line from bus 𝑖, and 𝑉𝑖 is the bus voltage at the sending end 𝑖. Besides, 

𝑃𝐿𝑖+1 and 𝑄𝐿𝑖+1 are active and reactive power of the loads. By assuming that the loads of all 

buses are constant, once 𝑃𝑖, 𝑄𝑖 , 𝑉𝑖 are obtained, 𝑃𝑖+1, 𝑄𝑖+1, 𝑉𝑖+1 can be further calculated via 

(1.1) - (1.3). It is noted that 𝑃0, 𝑄0, 𝑉0 are the key data to be known (or estimated) at the beginning 

of the calculation, so that other values can be obtained by applying (1.1) - (1.3) successively. 

Since the calculation begins with first node and ends with last node, this model can be named as 

a forward update model.  

There is also a backward update model denoted by (1.4) - (1.7).  

𝑃𝑖−1 = 𝑃𝑖 + 𝑟𝑖
𝑃𝑖

′2 + 𝑄𝑖
′2

𝑉𝑖
2 + 𝑃𝐿𝑖 

(1.4) 

𝑄𝑖−1 = 𝑄𝑖 + 𝑥𝑖

𝑃𝑖
′2 + 𝑄𝑖

′2

𝑉𝑖
2 + 𝑄𝐿𝑖 

(1.5) 

𝑉𝑖−1
2 = 𝑉𝑖

2 + 2(𝑟𝑖𝑃𝑖 + 𝑥𝑖𝑄𝑖) + (𝑟𝑖
2 + 𝑥𝑖

2)
𝑃𝑖

2 + 𝑄𝑖
2

𝑉𝑖
2  (1.6) 

𝑃𝑖
′ = 𝑃𝑖 + 𝑃𝐿𝑖, 𝑄𝑖

′ = 𝑄𝑖 + 𝑄𝐿𝑖  (1.7) 
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This backward update model requires calculating the sending end results with the receiving 

end known inputs. Hence, the data of the last node needs to be known (or estimated).  

However, when utilizing the above equations as constraints in an optimization problem, the 

quadratic parts as non-convex terms are obstacles for solution efficiency, leaving an issue of 

computing complexity. 

As the quadratic terms are the power losses through the branch lines, they are much smaller 

than their corresponding power flows. The approximated equations for (1.1) - (1.3) are further 

developed by ignoring the branch power losses as below. 

𝑃𝑖+1 = 𝑃𝑖 − 𝑃𝐿𝑖+1 (1.8) 

𝑄𝑖+1 = 𝑄𝑖 − 𝑄𝐿𝑖+1 (1.9) 

𝑉𝑖+1
2 = 𝑉𝑖

2 − 2(𝑟𝑖𝑃𝑖 + 𝑥𝑖𝑄𝑖) (1.10) 

Furthermore, simplification for (1.10) is essential to linearize the quadratic terms. This work 

is done by the authors of [44]. By assuming (𝑉𝑖
2 − 𝑉0

2) ≈ 0, it is reasonable to get 𝑉𝑖
2 ≈ 𝑉0

2 +

2𝑉0(𝑉𝑖 − 𝑉0). With this assumption, (1.10) is linearized as follows. 

𝑉𝑖+1 = 𝑉𝑖 −
(𝑟𝑖𝑃𝑖 + 𝑥𝑖𝑄𝑖)

𝑉0
 (1.11) 

Thus, a linearized Dist-Flow model is formed by (1.8), (1.9) and (1.11). 

The Dist-Flow models are widely used in power system optimization problems. In [45], the 

authors relax the original Dist-flow equations to inequalities and transform them into a second-

order cone form for a distribution system OPF problem. In [46], (1.8)-(1.10) are applied to an 

operation problem whose objective is to minimize the active power required by a distribution 

system over discrete time steps by controlling PV inverters and energy storage devices. In [10], 

[47] and [48], the linearized model proposed by [44] is adopted as power flow constraints in 

optimization problems. The authors of [10] focus on a long-term DG planning problem, 

developing a probability-weighted robust optimization with a new solution algorithm. In [47], a 

planning problem for enhancing distribution network resilience is formulated with the linearized 
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Dist-Flow constraints. In [48], the linearized Dist-Flow model is used in a voltage/var control 

problem.  

The main reason that they choose the linearized model is to reduce the computing burdens, 

thus making the problems solvable to commercial solvers, which is regarded as an advantage of 

the Dist-Flow model. However, such approximations to the original model may lead to large 

errors, causing low accuracy issues.  

It is worth noting that the Dist-Flow model requires a slack bus and it is suitable for planning 

and operation optimization problems of grid-connected microgrid. However, it does not work for 

problems of islanded microgrid.  

1.3.2 Direct Load Flow 

The direct load flow model is firstly proposed by [49] with two effective matrices based on 

the network topology and branch impedances, i.e., bus-injection to branch-current (BIBC) matrix 

and branch-current to bus-voltage (BCBV) matrix. 

1 2 3 4 5

6

B1 B2 B3 B4

B5

I2 I4I3 I5

I6

 

Figure 1.6. One-line Diagram of Radial Distribution Network (Used for Direct Load Flow). 

The basic concepts of this direct load flow model are demonstrated in Fig. 1.6. Herein, B and 

I represent branch currents and bus injection currents, respectively. The complex power of the 

load at bus i is denoted by 𝑆𝑖 = 𝑃𝑖 + 𝑗𝑄𝑖. Then, the bus injection current is denoted by (1.12). 

With Kirchhoff’s Current Law, the branch currents can be calculated by (1.13) and the parameter 

matrix is defined as the BIBC matrix. 

𝐼𝑖 = (
𝑃𝑖 + 𝑗𝑄𝑖

𝑉𝑖
)∗ (1.12) 
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[
 
 
 
 
𝐵1

𝐵2

𝐵3

𝐵4

𝐵5]
 
 
 
 

=

[
 
 
 
 
1 1 1 1 1
0 1 1 1 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

[
 
 
 
 
𝐼2
𝐼3
𝐼4
𝐼5
𝐼6]

 
 
 
 

 

[𝐵] = [𝐵𝐼𝐵𝐶][𝐼] 

(1.13) 

For a radial network, its BIBC matrix is determined by its topology. The procedure to derive 

the BIBC matrix is introduced as the following two steps. 

Step 1: For a radial n-bus distribution network, there are 𝑛 − 1 branches in total. Since there 

is no bus injection current at the first bus, the BIBC matrix is a (𝑛 − 1) × (𝑛 − 1) matrix. For 

convenience, set all elements of the BIBC matrix equal to 0 at the beginning. 

Step 2: Sequences of BIBC rows and columns represent the sequences of branches and buses, 

respectively. The matrix is formed column by column. For the 𝑖𝑡ℎ column (for the (𝑖 + 1)𝑡ℎ 

bus), if the current flows into the first bus from the (𝑖 + 1)𝑡ℎ bus through the 𝑗𝑡ℎ branch, the 

element at the 𝑖𝑡ℎ column and the 𝑗𝑡ℎ row of the BIBC matrix is set to 1. Otherwise, it is still 

equal to 0.  

After calculating the branch currents with the BIBC matrix, the branch voltage variation over 

branch 𝑗 is calculated by (1.14). With the voltage of bus 1 as a reference, the other bus voltages 

can be calculated by applying (1.14) successively. For all the buses, a BCBV matrix can be 

formulated based on this progress and shown in (1.15).  

∆𝑉𝑗 = 𝐵𝑗𝑍𝑗 (1.14) 

 

[
 
 
 
 
𝑉1 − 𝑉2

𝑉1 − 𝑉3

𝑉1 − 𝑉4

𝑉1 − 𝑉5

𝑉1 − 𝑉6]
 
 
 
 

=

[
 
 
 
 
𝑍12 0 0 0 0
𝑍12 𝑍23 0 0 0
𝑍12 𝑍23 𝑍34 0 0
𝑍12 𝑍23 𝑍34 𝑍45 0
𝑍12 𝑍23 0 0 𝑍36]

 
 
 
 

[
 
 
 
 
𝐼2
𝐼3
𝐼4
𝐼5
𝐼6]

 
 
 
 

 

[∆𝑉] = [𝐵𝐶𝐵𝑉][𝐵] 

(1.15) 
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The BCBV matrix is formulated by transposing the BIBC matrix and then replacing 1 with 

the corresponding branch impedances.  

With these two matrices, branch currents and bus voltages are efficiently obtained with 

system parameters. However, 𝑉𝑖 in (1.12) is not known at the beginning of calculation process. 

To address this obstacle, 𝑉𝑖
0 is assumed to be a certain value at the beginning. Then, the bus 

voltages are calculated by (1.12)-(1.15) and used to update 𝑉𝑖 for the next round of calculation 

with (1.12)-(1.15). This is an iterative process which terminates until 𝑉𝑖
𝑘, the result of the kth 

iteration, is approximately equal to 𝑉𝑖
𝑘−1.  

The direct load flow model is adopted in [50]-[54]. In [50], a multi-objective optimization 

model with distribution network reconfiguration is proposed and solved by a heuristic method. 

The direct load flow model is an internal program for obtaining bus voltages and branch currents 

of the system. The authors of [51] propose a loss allocation method for a multi-participant 

distribution network, while the direct load flow model is used to calculate the total power loss 

across the network. In [52], the direct load flow model is utilized for obtaining bus voltages in a 

voltage regulation model for a distribution network. In [53], the authors propose a linear power 

flow algorithm with proper approximation based on the direct load flow model, and then apply it 

to control flexible energy resources for guaranteeing customer service quality. The authors of [54] 

propose a new power flow method with the direct load flow model, and then apply it to a planning 

problem which optimizes placement and sizing of ESSs.  

Compared to the Dist-Flow model, the direct load flow model has the higher accuracy as one 

advantage. However, such the iterative process required can result in computing complexity and 

burdens in the optimization problems. Besides, the direct load flow model is also not suitable for 

the islanded microgrid operation either. 

 

1.4 Optimization Methodologies  

From the literature review in Chapter 1.2, uncertainties caused by intermittent renewable 

power generation and load power consumption need to be carefully addressed. In this sub-chapter, 

two optimization methodologies to address uncertainties are briefly introduced and discussed.  
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1.4.1 Stochastic Optimization 

A conventional deterministic optimization model can be expressed as follows. There is no 

consideration of uncertainties. 

𝑚𝑖𝑛 𝑓(𝑥) (1.16) 

s.t.                     ℎ(𝑥) = 0 

 𝑔(𝑥) ≤ 0 

 

To consider uncertainties, a vector 𝜉  is defined to present possible realization of the 

uncertainties and then a stochastic optimization model is formulated as follows. 

min𝑓(𝑥, 𝜉) (1.17) 

s.t.                     ℎ(𝑥, 𝜉) = 0 

 𝑔(𝑥, 𝜉) ≤ 0 

 

Since the realization 𝜉 is unknown, the minimization function and constraints cannot be 

clearly defined. Thus, a large number of scenarios is generated to present the realization of the 

uncertainties, thus forming a scenario-based stochastic optimization model. The occurrence 

probability of each scenario can be calculated according to probability density function. A general 

scenario-based stochastic optimization is formulated as below. 

𝑚𝑖𝑛 ∑𝜌𝑠

𝑠∈𝑆

𝑓(𝑥, 𝜉𝑠) (1.18) 

s.t.                     ℎ(𝑥, 𝜉𝑠) = 0, ∀𝑠𝜖𝑆 

                       𝑔(𝑥, 𝜉𝑠) ≤ 0, ∀𝑠𝜖𝑆 

 

Herein, 𝜉𝑠  is a certain scenario of uncertainty realization, while 𝜌𝑠  is the corresponding 

occurrence probability. Hence, the objective of (1.18) becomes an expectation corresponding to 

the probability density function (PDF) of uncertainties, while the consolidation of all the scenarios 

is considered in the constraints. This guarantees the solution of stochastic optimization is robust 

against all the scenarios.  
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In [55], a stochastic optimization method is applied for a security-constrained unit 

commitment problem to address uncertainties caused by load forecasting errors, transmission line 

faults and generation unit faults. The authors of [56] propose a two-stage stochastic program for 

unit commitment. The first stage aims to obtain commitment decisions, while the second stage is 

a stochastic optimization based dispatch for dealing with uncertainties of loads and available 

generation capacities. In [57], a stochastic optimization method is utilized to address wind energy 

uncertainty in an expansion planning model of a stand-alone microgrid. A stochastic optimization 

method is used to solve a distribution system energy management problem in [58] and a microgrid 

optimal operation problem in [59]. The authors of [60] develops a two-stage stochastic 

optimization method an EMS of microgrid with plug-in electric vehicles, aiming at minimizing 

power loss, while location of electric vehicle, vehicle battery capacity and electricity consumption 

per km are considered as uncertainties.  

It is worth noting that stochastic optimization methods have some drawbacks. The first one 

is inaccurate PDF or non-existent PDF. An inaccurate PDF leads to a non-optimal solution 

without solution robustness. Another drawback lies in that a large number of scenarios cause 

heavy computing burdens. If a scenario reduction method is adopted for mitigating the computing 

burdens, a much less robust solution may be obtained.  

1.4.2 Sensitivity Region Method 

In [61], the authors introduce a sensitivity region (SR) method for assessing the robustness 

of design solution. Its mechanism can be described as that a candidate solution 𝒙0 is gained by 

a deterministic optimization with a certain realization of uncertainty 𝒑0, the robustness of 𝒙0 is 

evaluated and an indicator is sent to the deterministic optimization to obtain a better solution with 

the higher robustness. This progress is a bi-level solution approach and shown in Fig. 1.7. 
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Figure 1.7. Bi-level Solution Approach to Robust Optimization. 

In the lower level problem, the variation of objective result is caused by the changed 

realization of uncertainty (Δ𝒑) while Δ𝑓0 is the maximal acceptable variation of objective result. 

A set of Δ𝒑 which meets the condition 
|∆𝑓|

∆𝑓0
− 1 = 0 forms a region in a normalized Δ𝒑 space, 

named as a SR. The area is defined as the robustness (or sensitivity) of the design solution 𝒙0. 

Since it is hard to find the mathematical formulation of the SR, the Euclidean distances from all 

the points located at the bound of SR to the origin, denoted as 𝑅𝑓(∆𝒑), are calculated. The point 

with the shortest distance 𝑅 is regarded as the worst case of the design solution, which is used 

to further enhance the robustness of 𝒙0. For example, if the Δ𝒑 space is a two-dimension space, 

all possible values of Δ𝒑 form a rectangle which is further normalized to a square, and its 

circumcircle radius is 𝑅𝐸. A robustness index is determined as 𝜂 =
𝑅

𝑅𝐸
 which is expected to be 

enlarged enough. This bi-level optimization model can be solved by a heuristic algorithm such as 

a genetic algorithm (GA). The robustness indices of individuals directly influence offspring 

generation in the GA.  

In [62], a SR method is applied for a microgrid planning problem where STATCOMs are 

installed for enhancing voltage stability, while load and wind power are regarded as uncertainties.  

 

 𝑚𝑖𝑛 𝑓(𝒙, 𝒑𝟎) 

s.t.            𝑔(𝒙, 𝒑𝟎) 

ℎ(𝒙, 𝒑𝟎) 

𝜂 ≥ 𝜀 

 

𝑚𝑖𝑛 𝑅𝑓(∆𝒑) = [∑|∆𝑝𝑘 |
𝑞

2

𝑘

]
1
𝑞  

s.t.        
|∆𝑓|

∆𝑓0
− 1 = 0 

∆𝑓 = 𝑓(𝒙0, 𝒑0 + ∆𝒑) − 𝑓(𝒙0, 𝒑0) 

 

𝒙0 𝑅 
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Despite the SR method has the advantages of wide applicability and adjustable robustness 

degree, its disadvantage is also obvious in terms of computing complexity. However, this method 

can be used for planning problems and assessment of long-term system performance.  

 

1.5 Hosting Capacity 

DG penetration growth is driven by a variety of factors, such as environmental concern, 

economic effectiveness and policy [63]. From an environmental perspective, renewable DG 

devices play an important role in reducing greenhouse gas emissions. Stated by [64], European 

countries agree on increasing investment in renewable energy. From an economic perspective, 

DG units are economically advantageous over constructing long transmission lines and large 

power plants. Besides, Singapore invests significantly in renewable energy for saving lands. 

Moreover, renewable DG devices contribute to the construction of energy security for those 

countries whose energy severely depends on imports.  

However, the growth of DG penetration also adversely influences the system performance. 

Overvoltage, decline in power quality, thermal overloading in transmission lines and transformers, 

and protection equipment faults are typical issues. Hence, it is necessary to carefully determine 

new DG integration. On the other hand, it is imperative to evaluate the system maximum bearable 

DG integration, which bring in the concept of hosting capacity of a network. The definition of 

HC is given in [65] as “the amount of distributed generation, integrated into the power system, 

above which the system performance becomes unacceptable.” 

In [66], the authors apply ESSs, reactive power compensation sources and network 

reinforcement strategies to realize increased performance in integrating large-scale renewable DG 

units. A multi-stage stochastic optimization method is developed to optimize the support 

measures and renewable DG integration jointly. In [67], a probabilistic assessment method of 

hosting capacity, considering uncertainties caused by PV, WT and load, with a sparse grid 

technique is proposed. This method demonstrates its benefit of a fast-computing speed, compared 

to a conventional Monte Carlo simulation based method. The authors of [68] improve DG hosing 

capacity with network reconfiguration. Voltage control by on-load tap-changing transformers, 
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DG power factor control and power curtailment as well as dynamic reconfiguration with remotely 

controlled switches are utilized. A mixed integer non-linear OPF model is formulated, then 

several relaxions are applied for reducing the computing burden. In [69], the authors introduce a 

concept, i.e., interval overvoltage probability, to evaluate the overvoltage risk which is caused by 

uncertainties of load and PV in a three-phase distribution network. The uncertainties are addressed 

with affine arithmetic and interval arithmetic while their results are validated with compared to 

that of a conventional stochastic method. In [70], the authors propose a stochastic optimization 

method of hosting capacity to deal with the uncertainties including load, the PV power output 

corresponding to solar irradiation, and PV location. In [71], a multi-objective optimization for 

maximizing PV hosting capacity and minimizing voltage deviation is proposed. Smart inverter 

control, PV and battery energy storage system (BESS) optimal placement, sizing and dispatch are 

utilized in the optimization model. 

It is essential to assess and enhance renewable power hosting capacity of a power system, but 

there is not any report demonstrating model or method for high-renewable islanded microgrid, 

leaving a research gap. 

  

1.6 Research Problem Statement 

From Chapters 1.2-1.5, some imperative research problems can be found, in terms of 

microgrid operation, system stability and optimization method, as well as hosting capacity 

assessment and maximization. The research problems which would be solved by this thesis are 

summarized as follows. 

Firstly, the two introduced power flow models are not suitable for islanded microgrid OPF 

and other power flow calculation methods have to relax or approximate the models when used for 

optimization constraints. Thus, there is a significant research point for developing an efficient 

islanded microgrid OPF method with a suitable power flow model. Besides, uncertainties of load 

and renewable DG should also be addressed by this OPF method, and an effective uncertainty 

scenario sampling method is expected. 
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Secondly, a contingency of the main grid, resulting in a sudden disconnection to a microgrid 

can impair the microgrid internal operation, i.e., the islanded microgrid operation, leading to 

system instability and operating constraint violations. Hence, a security-constrained model for the 

situation of tie-line switching from the grid-connected to the islanded operation mode is of 

research significance. Besides, due to the model complexity, a new solution algorithm is expected 

to be developed.  

Thirdly, the islanded microgrid hosting capacity maximization is limited by the operating 

constraint violations caused by the uncertainties. On the other hand, since the stochastic 

optimization method cannot guarantee solution robustness on both objective and constraints, a 

new method for dealing with the uncertainties is worth being developed. Besides, the system 

frequency deviation is a vital indicator for islanded microgrid operation. Therefore, it should be 

a significant optimization objective as well when assessing the islanded microgrid hosting 

capacity. 

 

1.7 Research Contributions  

The emphasis of this thesis is the optimal operation of an islanded microgrid with controllable 

and non-controllable DG units for minimizing the system operating cost and maximizing the 

hosting capacity while preventing violations of the operating constraints with full consideration 

of the uncertainties. Firstly, a stochastic OPF method for an islanded microgrid has been 

developed and improved with high computing efficiency. This OPF method has been further 

extended for fully considering the tie-line switching between the grid-connected and islanded 

operation modes, while a new solution algorithm has been developed to handle the coupling 

constraints of the two modes. This OPF method is also the basis for a hosting capacity 

maximization problem. A SR based optimization method which can guarantee solution robustness 

on both objective and constraints as well as adjust robustness level quantitatively has been 

established. In the comprehensive case study, numerical simulation results have validated the 

efficiency and advantages of the proposed models and methods, in comparison with the existing 

ones.  
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The contributions of this thesis can also be categorized as follows. 

Contributions to OPF method  

1. A stochastic OPF method for an islanded microgrid based on a backward forward sweep 

(BFS) power flow calculation method. 

2. A stochastic OPF method addressing tie-line switching from the grid-connected to 

islanded mode of a microgrid and guaranteeing system stability and operating security. 

Contributions to Optimization Model 

1. An optimization model for renewable generation hosting capacity of an islanded 

microgrid, with the system frequency deviation considered as an objective. 

2. A SR based optimization model to quantify the solution robustness on both objective 

and constraints. 

Contributions to Solution Algorithm 

1. An enhanced solution algorithm for the proposed stochastic OPF method. 

2. A Benders decomposition based solution algorithm to address the coupling constraints 

of grid-connected and islanded modes. 

3. An effective solution algorithm solving the SR based optimization model while 

involving the islanded microgrid power flow calculation. 

 

1.8 Thesis Outline  

In Chapter 1, the background of DG and microgrid is briefly introduced, showing the related 

existing issues given by the literature. Then, two widely used power flow models and two 

optimization approaches to deal with uncertainties are introduced, while the literature review 

shows their application conditions. Furthermore, the concept of hosting capacity is introduced 

and the research gaps are discussed. At the end of Chapter 1, the research motivations and 

contributions, as well as the thesis outline are given.  
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In Chapter 2, a stochastic OPF method for islanded microgrid considering droop control of 

microturbines is proposed and presented. A linear power flow model is utilized to formulate 

network operating constraints of OPF. Besides, non-linear operating constraints are linearized to 

reduce computing burdens. Then a stochastic optimization method is applied for handling 

uncertainties caused by load and PV power generation. Last, the results obtained by the proposed 

OPF method is verified by a real-time test. 

In Chapter 3, based on the OPF method proposed in Chapter 2, an enhanced method for 

islanded microgrids is developed with a new solution algorithm. Besides, a probabilistic 

modelling method is developed for representative scenario sampling to deal with uncertainties in 

the stochastic optimization method. Compared to that of Chapter 2, the stochastic OPF method of 

Chapter 3 can achieve a faster computing speed, better for practical use.  

In Chapter 4, tie-line switching from the grid-connected to the islanded mode is identified as 

the main problem to address. Grid-connected OPF and islanded OPF models are formulated and 

then coupled in the development of a new security-constrained OPF method. To solve the 

developed complex optimization problem, a Benders decomposition based solution algorithm is 

proposed with applying a stochastic optimization method to deal with the uncertainties. In case 

study, the effective convergence of the proposed OPF method, the robustness and security checks, 

in comparison with conventional methods, are demonstrated. 

In Chapter 5, maximizing the hosting capacity of an islanded microgrid is modelled as an 

optimization problem with minimizing the system frequency deviation as well. A SR based 

optimization method is developed for dealing with uncertainties of renewable generation and load. 

Herein, two robustness indices are defined to quantify solution robustness on both objective and 

constraints. In case study, the convergence of the solution process and the solution robustness are 

tested, and the sensitivity analysis is carried out, verifying the high efficiency of the proposed 

hosting capacity maximization method. 

In Chapter 6, conclusions of this thesis and future works are given.  
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The relationship among Chapters 2-5 is described in Figure 1.8. As it shows, the work of 

Chapter 3 is developed from the work of Chapter 2, while Chapters 4-5 are based on Chapters 2-

3. 

Chapter 2

Stochastic OPF: Three 

Loops for Data Update

Chapter 3

Enhanced Stochastic 

OPF: One Loop for 

Data Update 

Chapter 4

Stochastic OPF for 

Switching from Grid-

connected to Islanded

Chapter 5

Sensitivity Region Based 

Hosting Capacity 

Maximization for Islanded  

Microgrids  

Figure 1.8. Relationship Among Chapters 2-5.  
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Chapter 2 STOCHASTIC OPTIMAL POWER FLOW FOR 

ISLANDED MICROGRIDS CONSIDERING DROOP 

CONTROL 

Renewable power generators such as photovoltaic (PV) panels penetrate fast in islanded 

microgrids where microturbines can provide droop control to keep the system reliable and stable. 

However, renewable power generation is highly intermittent and uncertain, impairing microgrid 

operation. To address the uncertainty issue, this chapter proposes a stochastic optimal power flow 

(OPF) approach for islanded microgrids considering droop control of the microturbines. In this 

OPF, microturbine generation set points are optimized to minimize the total operating cost while 

keeping operating constraints. Moreover, frequency and voltage droop control functions of the 

microturbines are modelled in the OPF. Monte Carlo sampling and a backward reduction method 

are applied to generation scenarios which model uncertainty realization in stochastic optimization 

formulation. Accordingly, a solution algorithm based on the backward forward sweep (BFS) 

algorithm is developed to solve the proposed stochastic OPF problem. The proposed stochastic 

OPF is tested on an islanded microgrid system with real-time uncertainty realization simulation 

and the results show high operation reliability under the uncertainties.  

 

2.0 Nomenclature 

A. Sets and Indices 

𝐾, 𝑘 The set and the index of scenarios 

𝑖, 𝑗 The index for microgrid buses 

t The index for iterations 

 

B. Parameters 

𝑎 The cost parameters of generation ($/kW) 
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𝑏 The penalty cost of load shedding ($/kW) 

𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 Operating voltage lower/upper limit (p.u.) 

∆𝑓𝑚𝑎𝑥 Maximal frequency deviation limit (p.u.) 

∆𝑈𝑟,𝑚𝑎𝑥 Maximal reference bus voltage deviation limit (p.u.) 

𝑚𝑝, 𝑚𝑞 Coefficients of frequency droop and voltage droop 

𝑉0 Reference voltage (p.u.) 

𝑃𝐿𝑖, 𝑄𝐿𝑖 Active/reactive load demand at Bus I (kW/kVar) 

𝑆𝐺𝑖,𝑚𝑎𝑥 Generator thermal capacity (kVA) 

𝛾 The node incidence matrix of microgrids  

𝑍𝑏𝑟𝑎𝑛𝑐ℎ The branch impedance matrix (p.u.) 

𝜀 Termination threshold 

𝜌𝑘 The probability of scenario k 

 

C. Variables 

𝐶𝑔 Generation cost ($) 

𝐶𝑙𝑠 Load shedding cost ($) 

𝑃𝐺𝑖, 𝑄𝐺𝑖 Real-time generator active/reactive power output at Bus I (kW/kVar) 

𝑃𝐺0𝑖, 𝑄𝐺0𝑖 Set point of generator active/reactive power output at Bus I (kW/kVar) 

𝑃𝑖, 𝑄𝑖 Active/reactive power injection at Bus I (kW/kVar) 

𝑃𝑝𝑣𝑖 PV power generation at Bus I (kW) 

𝐼𝑛𝑜𝑑𝑒 Bus injection current (A) 

𝐼𝑏𝑟𝑎𝑛𝑐ℎ Branch current (A) 

𝑉𝑟 Reference bus voltage (p.u.) 

𝑉  Bus voltage (p.u.) 

∆𝑃𝐺𝑖, ∆𝑄𝐺𝑖 Real-time generator active/reactive power output variation at Bus I (kW/kVar) 

∆𝑈 Branch voltage drop (p.u.) 

∆𝑓 Frequency deviation (p.u.) 

∆𝑈𝑟 Reference bus voltage deviation (p.u.) 

LS Load shedding percentage (%) 

𝑃𝑙𝑠𝑖  Shed power load demand at Bus I (kW) 
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2.1  Introduction 

With the development of renewable energy sources (RESs) such as PV generation systems, 

microgrids become increasingly attractive as they support an efficient platform to integrate RESs. 

Microgrids have economic and technical advantages such as cost-efficient energy management, 

reliable and flexible operation and self-healing ability. Microgrids can exchange power with the 

main grid in the grid-connected mode or support the local loads independently in the islanded 

mode. Normally, the islanded mode aims to minimize the total operating cost while keeping the 

system reliable and stable and the grid-connected mode aims to maximize the profits for the 

operators due to transactions with the main grid [72].  

 Considering these two aims, OPF methods for microgrids have been developed as a research 

focus. The works of [73], [74] propose a two-stage decision process where the first stage is unit 

commitment and the second stage is an OPF model. The OPF in [73], [74] is nonlinear 

programming which may lead to low efficiency of the optimization and even failure to solve. In 

[75], [76], the OPF model with frequency considered aims to minimize the unsupplied load 

demand and the distributed generator operating cost. The authors of [75], [76] use a set of 

linearization formulation to convert the nonlinear OPF into a linear programing problem with 

complicated linearization process. In the above works, the high non-linearity of the OPF models 

bring a challenge for microgrid operation. 

To conquer this challenge, a direct load flow method is developed in [49]. This method can 

linearly compute microgrid power flow with network topology and parameters which can be 

expressed as two matrices, i.e., bus-injection to branch-current matrix (BIBC) and branch-current 

to bus-voltage matrix (BCBV). These two matrices can be formed offline, which can efficiently 

simplify the OPF model and reduce the computing time. However, this original direct load flow 

is not suitable for islanded microgrids since the droop-based generator and system frequency 

cannot be modeled. The work of [77] reforms the direct load flow with integrating generator droop 

control into the power flow problem. More importantly, this work develops a BFS algorithm to 

solve the droop-based islanded microgrid power flow problem. A significant advantage of BFS 

is that the frequency is computable which enables to consider the droop-based OPF. In addition, 

adding frequency constraint can be implemented in a droop-based OPF. The BFS algorithm uses 
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frequency calculation to update the droop control results and it updates bus voltage until 

converging to a threshold. Furthermore, ref. [78] modifies the BFS based power flow with AC 

load deviations caused by frequency. It is also verified in [78], the BFS base power flow method 

can be also further developed into an OPF model. Thus, the non-linearity issue can be solved by 

the BFS based OPF model.  

Besides, as the RESs penetrate fast in power systems, uncertainty degree increasingly impairs 

the islanded microgrid operation, leading to issues such as over/under voltage and large frequency 

deviations. Ref. [41], [79] consider the islanding uncertainty issues including islanding time and 

duration standpoints in the OPF model, but without considering system operating constraints such 

as bus voltage limits. On the other hand, the uncertain renewable power generation also negatively 

impacts the operating costs in microgrids [80]. To address the uncertainties, stochastic 

optimization methods which model the uncertainties as scenarios provide an efficient way. The 

stochastic optimization is applied by [55] to solve security-constrained unit commitment 

problems with load uncertainty scenario modelling. In [81], a stochastic model is used to model 

the intermittent RESs such as wind power.  Furthermore, [82] applies this method for microgrid 

energy management problems with modelling the intermittent RESs in scenarios. In [83], the 

method proposed in [78] is developed to a stochastic power flow. It can be proved by these works 

that applying the stochastic optimization method to deal with microgrid system uncertainties is 

efficient. 

However, the BFS based PF for islanded in microgrid [77] has not been developed with the 

stochastic optimization model to address the uncertainties, leaving a research gap.  

Based on the above literature review, the uncertainty issues have not been efficiently solved 

in the islanded microgrid operation. Thus, this chapter proposes a stochastic OPF method utilizing 

droop-based BFS power flow. The uncertainties of load demand and PV power are considered in 

this OPF through a small number of scenarios. The proposed stochastic OPF is verified by a test 

on an islanded microgrid system with real-time uncertainty realization simulation.  
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2.2 Droop Control Based Optimal Power Flow 

2.2.1 Objective Function and Constraints  

2.2.1.1 Objective Function 

The objective of this OPF problem is to minimize the total operating cost consisting of the 

generation and the load shedding penalty cost. The generation and load shedding costs are 

presented by (2.1) and (2.2) respectively. The overall objective function is further formed by (2.1) 

and (2.2) as (2.3). 

𝐶𝑔 = ∑𝑎 × 𝑃𝐺𝑖 
(2.1) 

𝐶𝑙𝑠 = ∑𝑏 × 𝑃𝑙𝑠𝑖 
(2.2) 

min𝐶𝑔 + 𝐶𝑙𝑠 (2.3) 

2.2.1.2 Power Flow Constraints 

The power flow constraints are a set of equations representing the relationship between 

variables and system parameters. These constraints are used for power flow calculation procedure 

and they are modelled as the follows.   

𝑃𝐺𝑖 = 𝑃𝐺𝑖0 + ∆𝑃𝐺𝑖, ∆𝑃𝐺𝑖 = 
∆𝑓

𝑚𝑝𝑖
, ∀𝑖 (2.4) 

𝑄𝐺𝑖 = 𝑄𝐺𝑖0 + ∆𝑄𝐺𝑖, ∆𝑄𝐺𝑖 = 
∆𝑈𝑟

𝑚𝑞𝑖
 , ∀𝑖 (2.5) 

𝑃𝑖 + 𝑄𝑖 = (𝑃𝐺𝑖 + 𝑗𝑄𝐺𝑖) − (1 − 𝐿𝑆)(𝑃𝐿𝑖 + 𝑗𝑄𝐿𝑖) + 𝑃𝑝𝑣𝑖, ∀𝑖 (2.6) 

𝐼𝑛𝑜𝑑𝑒𝑖 =
𝑃𝑖 − 𝑗𝑄𝑖

𝑉𝑖
∗ , ∀𝑖 (2.7) 

𝐼𝑏𝑟𝑎𝑛𝑐ℎ = [𝐵𝐼𝐵𝐶]𝐼𝑛𝑜𝑑𝑒 (2.8) 

∆𝑈 = [𝐵𝐶𝐵𝑉]𝐼𝑏𝑟𝑎𝑛𝑐ℎ (2.9) 
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𝑉 = 𝑉𝑟 − ∆𝑈 (2.10) 

∆𝑓 =  −𝑚𝑝𝑒𝑞 [𝑃𝐿𝑖 − 𝑃𝐺𝑖0 + 𝑅𝑒 (∑𝑈𝑖𝐼𝑖𝑗
∗ )] , ∀𝑖 (2.11) 

∆𝑈𝑟 = −𝑚𝑞𝑒𝑞 [𝑄𝐿𝑖 − 𝑄𝐺𝑖0 + 𝐼𝑚(∑𝑈𝑖𝐼𝑖𝑗
∗ )] , ∀𝑖 (2.12) 

𝑉𝑟 = 𝑉0 − ∆𝑈𝑟 (2.13) 

Equations (2.4) and (2.5) describe frequency droop control by active power generation and 

the voltage droop control by the reactive power generation of microturbines. The real-time power 

generation output consists of the base output which is determined by the set point and the real-

time output variation which is determined by the droop control functions. 

Eq. (2.6) calculates the power injection at each bus which consist of microturbine power 

generation, PV power generation and load demand with shedding implemented. Then based on 

the power injection, the injection current at each bus is calculated by (2.7).  

The branch current is calculated by (2.8) based on the bus injection current with the help of 

the BIBC matrix. Then, the branch current is further used to compute branch voltage drop with 

the help of the BCBV matrix in (2.9). BIBC matrix and BCBV matrix are derived by the node 

incidence matrix of the microgrid 𝛾  which describes the relationship between buses and 

branches. The node incidence matrix is a 𝑁𝑏 × 𝑁 matrix. 𝑁𝑏 is the number of branches and 𝑁 

is the number of buses. The elements of the node incidence matrix are defined as: 

1) 𝑛𝑏𝑖 = 1, when the current of branch b leaves bus i; 

2) 𝑛𝑏𝑖 = −1, when the current of branch b flow toward bus i; 

3) 𝑛𝑏𝑖 = 0, when no connection exists between branch b and bus i. 

For a pure radial system, 𝑁𝑏 = 𝑁 − 1. To make the node incidence matrix reversible, the 

column of reference node which provides the reference voltage for the system in the backward 

process is eliminated. The reason is that the reference node is not used in BFS power flow 

backward process. With the node incidence matrix, BIBC and BCBV are derived as the follows 

respectively.  
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BIBC = (𝛾−1)𝑇 (2.14) 

BCBV = 𝛾−1𝑑𝑖𝑎𝑔(𝑍𝑏𝑟𝑎𝑛𝑐ℎ) (2.15) 

Eq. (2.10) computes the bus voltage with reference bus voltage and the branch voltage drop.  

The system frequency deviation and the reference bus voltage deviation are calculated by 

(2.11) and (2.12). Herein, 𝑅𝑒(∑𝑈𝑖𝐼𝑖𝑗
∗ )  presents the outflow active power of bus i, while 

𝐼𝑚(∑𝑈𝑖𝐼𝑖𝑗
∗ ) expresses the outflow reactive power of bus i. Since the frequency deviation and the 

reference bus voltage deviation are both global variables, it requires a global droop coefficient to 

compute them when there are multiple generators existing in the system. The function of global 

frequency droop coefficient is denoted as the follows. 

𝑚𝑒𝑞 =
1

∑
1
𝑚𝑖

𝑑
𝑖=1

 
(2.16) 

Hence, the frequency deviation and the reference bus voltage deviation are both computable 

by assuming all the generators located are at the reference bus.  

 Last, the reference bus voltage is obtained by (2.13) considering the deviation. 

2.2.1.3 Operation Constraints 

The OPF model also considers operation constraints. Including voltage constraints, 

frequency deviation limits, generator thermal capacity and load shedding limits.  

𝑉𝑚𝑖𝑛 ≤ √𝑉𝑟𝑒𝑎𝑙
2 + 𝑉𝑖𝑚𝑎𝑔

2 ≤ 𝑉𝑚𝑎𝑥 (2.17) 

−∆𝑓𝑚𝑎𝑥 ≤ ∆𝑓 ≤ ∆𝑓𝑚𝑎𝑥 (2.18) 

−∆𝑈𝑟,𝑚𝑎𝑥 ≤ ∆𝑈𝑟 ≤ ∆𝑈𝑟,𝑚𝑎𝑥 (2.19) 

√𝑃𝐺𝑖
2 + 𝑄𝐺𝑖

2 ≤ 𝑆𝐺𝑖,𝑚𝑎𝑥 (2.20) 
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𝐿𝑆𝑚𝑖𝑛 ≤ LS ≤ 𝐿𝑆𝑚𝑎𝑥 (2.21) 

Constraints (2.17), (2.18) and (2.20) set the limits for each bus voltage, the frequency 

deviation and the reference bus voltage deviation, respectively. Constraint (2.21) indicates that 

the generator power outputs must be limited within the thermal capacity. It is limited by (2.22) 

that the load shedding percentage should be within the allowed range. 

Remarks 

Since both constraints (2.17) which can be re-modeled in a complex number form with 

quadratic calculation and (2.20) are quadratic inequality which increase computing burden of 

optimization. As (2.20) can be considered as the area of a circle whose radius is 𝑆𝐺𝑚𝑎𝑥  and 

(2.17) is equivalent to the area between a small circle whose radius is 𝑉𝑚𝑖𝑛 and a large circle 

whose radius is 𝑉𝑚𝑎𝑥 . Hence, in order to linearize (2.17) and (2.20), an inner approximation 

method is applied where the circles are approximated as inscribed regular polygons of circles. 

Accordingly, some linear constraints which present the edges of the polygons replace the circle 

constraints, which is demonstrated in Fig. 2.1. Therefore, (2.17) is linearized as a set of 

inequalities as shown in (2.22) and (2.23). 𝑉𝑥 and 𝑉𝑦 are the real and imaginary parts of 𝑉. Set 

A is for the lower-bound polygon while set B is for the upper-bound polygon.  

𝑉𝑦 ≥ 𝑎𝑖𝑉𝑥 + 𝑑, 𝑖 ∈ 𝐴 (2.22) 

𝑉𝑦 ≤ 𝑏𝑖𝑉𝑥 + 𝑒𝑖, 𝑖 ∈ 𝐵 (2.23) 

Since there is only the upper bound in (2.20), the linearized constraints for (2.20) is denoted 

as (2.24).  

𝑄𝐺 ≤ 𝑐𝑖𝑃𝐺 + 𝑓𝑖, 𝑖 ∈ 𝐶 (2.24) 

Hence in constraints (2.22), (2.23) and (2.24) substitute (2.17) and (2.20) in the OPF model. 
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Figure 2.1. Inner Approximation Demonstration for Thermal Capacity. 

2.2.2 Proposed Optimal Power Flow 

In the modified BFS power flow process, the power flow variables including the bus voltages, 

the frequency deviation and the reference bus voltage deviation are continually calculated and 

updated. The OPF procedure is presented in Fig. 2.2. 

As the bus voltage is firstly used for obtaining bus injection current in (2.7), then from (2.8) 

to (2.10), the bus voltage is deduced from the bus injection current. The frequency deviation and 

the reference bus voltage deviation have similar condition and they can be calculated by (2.11) 

and (2.12). The updated frequency deviation and reference bus voltage deviation are used to 

update the power flow and bust voltage through (2.4)-(2.6). This indicated the basic update 

procedure. 

At the beginning, it is essential to assign initial values to ∆𝑈, ∆𝑓 and ∆𝑈𝑟 to start the OPF 

algorithm. The initial values of ∆𝑈, ∆𝑓 and ∆𝑈𝑟 are all set as 0. After the first iteration, the 

results of current OPF will be used for next iteration. To distinguish the values obtained from last 

iteration and the variables of current iteration, this chapter introduces index t representing 𝑡th 

iteration. Hence, in the OPF process, the variables obtained in the 𝑡th iteration can be updated as 

the initial values in the (𝑡 + 1)th iteration.  

After the calculation and optimization of each iteration, ∆𝑈𝑡 ,  ∆𝑓𝑡  and ∆𝑈𝑟   are 

compared with the with their values in the last iteration for determining whether to update the 

values or not. The three above variables are updated until they are converged within preset 

termination thresholds. 
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Figure 2.2. OPF Flow Chart. 

 

In order to guarantee the convergence and enhance the converging speed, the variable 

updating process is divided into three loops. The innermost loop is for branch voltage drop while 

the middle loop and outer loop are for the frequency deviation and the reference bus voltage 

Yes 

Yes 

Yes 

No

No

∆𝑈𝑡 − ∆𝑈𝑡−1 ≤ 𝜀𝑈 ? 

∆𝑓𝑡 − ∆𝑓𝑡−1 ≤ 𝜀𝑓? 

∆𝑈𝑣,𝑡 − ∆𝑈𝑣,𝑡−1 ≤ 𝜀∆𝑈𝑣
 ? 

End 

∆𝑈𝑡+1 = ∆𝑈𝑡 
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(2.4) (2.5) (2.6) 
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(2.13) and (2.18) to (2.22) 

Obtain the results of OPF 

∆𝑓𝑡 ∆𝑈𝑣,𝑡   ∆𝑈𝑡 
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Initialize 

Assume ∆𝑓0 = 0,  

∆𝑈𝑣,0 = 0, ∆𝑈0 = 0 

No 

∆𝑓𝑡+1 = ∆𝑓𝑡 

∆𝑈𝑣,𝑡+1 = ∆𝑈𝑣,𝑡 
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deviation, respectively. In branch voltage drop loop, firstly the OPF is implemented and only the 

branch voltage drop is updated. In this loop, ∆𝑈𝑡 is compared with ∆𝑈𝑡−1 while the frequency 

deviation and the reference bus voltage deviations are not considered. If the error is more than the 

threshold, ∆𝑈𝑡  is used as ∆𝑈𝑡−1  for the OPF of next iteration. If the error is less than the 

threshold, then the process enters the middle and the outer loops where only the frequency 

deviation and the reference bus voltage deviation are to be updated. By doing so, the updating 

process can converge at a faster speed. 

This OPF is linear programming which can be efficiently solved by linear solvers. 

 

2.3 Stochastic Optimization 

2.3.1 Stochastic Model 

This chapter applies the stochastic optimization model to fully consider the uncertainty in the 

proposed droop control based OPF. In this model, this chapter considers the uncertainties caused 

by the load demand and PV output power. This chapter assumes the uncertainties have a finite 

number of realizations (scenarios) 𝜉𝐾. The objective function in stochastic model is denoted as 

𝑚𝑖𝑛  ∑ 𝜌𝑘

𝐾

𝑘=1

𝑓(𝑃𝐺0, 𝐿𝑆, 𝜉𝑘) (2.25) 

s.t.                 𝑔(𝑥, 𝑢, 𝜉𝑘) = 0, ∀𝑘𝜖𝐾 (2.26) 

ℎ(𝑥, 𝑢, 𝜉𝑘) ≤ 0, ∀𝑘𝜖𝐾 (2.27) 

𝑓(𝑃𝐺0, 𝑙𝑠, 𝜉𝑘) is an OPF sub-model described in Chapter 2.2 based on scenario k with 

probability 𝜌𝑘 . (2.26) and (2.27) denote the equality and inequality constraints under all the 

realization scenarios. The purpose of this objective function is to consider all the uncertainty 

scenarios in the OPF model. For each scenario of the uncertain load demand and PV power, the 

operation constraints are modelled for the specified variables in this scenario. Hence, the decision 

variables are optimized to guarantee feasible operation for all the scenarios, i.e., the operation is 
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reliable for all the uncertainty realization. The total cost is the weighted sum of the cost of each 

scenario.  

 

2.3.2 Scenario Construction and Reduction 

In order to efficiently simulate the uncertainty of load demand and PV power, an assumption 

is proposed that the load demand and PV power are subject to two normal distributions 

𝑁1(𝜇1, 𝜎1
2), 𝑁2(𝜇2, 𝜎2

2) [82]. This chapter utilizes Monte Carlo sampling to generate a large 

number of scenarios for load demand and PV power. To reduce the computing burden, scenario 

reduction scheme is utilized to reduce the scenario number. In this chapter, a backward reduction 

method [84][85] is applied. The principle of the reduction technique is to eliminate redundant 

scenarios and aggregate similar scenarios. A brief description of the backward reduction is 

presented below.  

Step 1: S is the initial set of scenarios. The distance between two scenarios is defined as, 

𝐷𝑚𝑛 = √(𝑉𝑠
𝑚 − 𝑉𝑠

𝑛)2,𝑚 ≠ 𝑛. (2.26) 

Compute the distances of all scenario pairs 

Step 2: For each scenario 𝜉𝑚, find the nearest scenario 𝜉𝑑. Hence 𝐷𝑚𝑑 = min (𝐷𝑚𝑛). 

Step 2: For all the pairs of scenarios obtained from step 2, multiply the probability of 𝜉𝑚 to 

min (𝐷𝑚𝑛) to obtain, 

𝑃𝐷𝑚𝑑 = 𝜌𝜉𝑚 × 𝑚𝑖𝑛 (𝐷𝑚𝑛). (2.27) 

Step 3: Find the pair of scenarios which has the minimum 𝑃𝐷𝑚𝑑′. 

Step 4:  Delete the scenario 𝑑′ to construct a new set of scenarios and add its probability to the 

nearest scenario. 

Step 5 Repeat step 2 to 4 until the number of deleted scenarios meets the reduction requirement. 
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2.4 Case Study 

2.4.1 Test System 

The proposed stochastic OPF method is tested on an IEEE 33-bus system [43]. The one-line 

diagram is shown in Fig. 2.3. As this is a test for microgrids islanded mode, the connection 

between Bus 1 and the substation is cut off. A microturbine with capacity of 3.5 MVA is located 

at Bus 6. The PV systems which are aggregated PV panels are located at Buses 9, 11, 13, 21, 22, 

27, 25, 27 and 29 while their predicted mean active power outputs are 150 kW. The total load 

demand is predicted as 3.715 MW and 2.3 MVar. The reference voltage 𝑉0 is 1 p.u. and 𝑉𝑚𝑖𝑛 

and 𝑉𝑚𝑎𝑥 are set as 0.9 p.u. and 1.1 p.u. The limits of the frequency deviation and reference bus 

deviation are set as [-0.1, 0.1] p.u. and [-0.02, 0.02] p.u., respectively. The dispatch interval is set 

as 15 minutes, i.e., OPF decisions are updated every 15 minutes.  

This simulation is conducted on a 64-bit PC with 3.40-GHz CPU and 16 GB RAM using 

Yalmip [86] toolbox in the MATLAB platform. The proposed stochastic OPF is solved by 

GUROBI solver [87]. 

 

Figure 2.3. One-line Diagram of IEEE 33-bus Microgrid. 

2.4.2 Stochastic OPF Results 

Firstly, this chapter generates a set of scenarios by Monte Carlo sampling. In this sampling, 

normal probability distribution is used and the predicted values are set as the mean values. Besides, 

the standard deviation is set as 10% of the predicted value for the PV power generation and 3% 
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for the load demand. The sampling generates 800 scenarios which are regarded as the initial set. 

Then, the backward reduction method which is introduced in Chapter 2.3.2 is applied to reduce 

the initial set to a small set of 100 representative scenarios. The scenario distribution statistics of 

the initial and the reduced sets is demonstrated in Fig. 2.4. Although the scenarios are significantly 

reduced, the probability distributions are quite similar. In addition, a real-time performance 

simulation will be applied to verify whether the reduced scenarios can efficiently present the 

uncertainty realization in Chapter 2.4.3. 

 

 

Figure 2.4. Scenarios Distribution Statistics. 

Then, with the 100 representative scenarios, the proposed stochastic OPF is carried out to 

obtain the optimal set points of the microturbine generation and the load shedding decision. After 

all the deviations are reduced within the termination thresholds, the optimization process is 

terminated. The optimized set points of the microturbine generation 𝑃𝐺0 is 1.51 MW and 𝑄𝐺0 

is 2.07 MVar and the load shedding percentage 𝐿𝑆 is optimized as 10.42%. 

The microturbine generates active and reactive power which consist of the set point base 

power and the real-time variation. For some scenarios, with the real-time variations, the total 

generation of the microturbine can be up to 2.51 MW and 2.27 MVar, which still operates within 

the thermal capacity. Besides, the load shedding percentage is also within its limits. Thus, for 
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these representative scenarios, there are always solutions, indicating operation reliability under 

uncertainties. 

In terms of the computing efficiency, the solver time is 43.676 seconds which is fully 

compatible for on-line use.  

2.4.3 Real Time Performance 

To verify the efficiency of the stochastic OPF, a real-time simulation is implemented. Firstly, 

a 15-min real-time case where PV power generation and load demand are randomly realized is 

generated. The real-time PV power output is shown in Fig. 2.5. Then, with the OPF results 

obtained in Chapter 2.4.2, the BFS power flow [77] is implemented to obtain the system operation 

results under this real-time case. The results of the frequency deviation, the reference bus 

deviation and the voltages at Buses 18 and 33 are illustrated in Fig. 2.6-2.9. 

 

Figure 2.5. Real-time PV Power Output. 

 

Figure 2.6. Frequency Deviation. 
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Figure 2.7. Reference Bus Voltage Deviation. 

 

Figure 2.8. Voltage at Bus 18. 

 

Figure 2.9. Voltage at Bus 33. 

It can be seen from Fig. 2.6-2.9 that all the operating results are kept within the allowed limits. 

As the PV power generation and the load demand vary in real time, the microturbine can generate 

varying power with the droop control functions in which the set points are optimized in the 
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proposed OPF, to keep the operating constraint satisfied. Thus, this simulation verifies that the 

proposed stochastic OPF method can efficiently consider the uncertainty real-time realization 

through the 100 representative scenarios, such that the results lead to operation reliability under 

the uncertainties.  

 

2.5 Conclusion 

In this chapter, a stochastic OPF method for islanded microgrid considering droop control of 

the microturbines is proposed. The OPF model is developed based on the BFS droop-based OPF 

with linearization to improve the computing efficiency. To deal with the uncertainties, a stochastic 

model with a backward scenario reduction technique is applied to achieve a stochastic OPF model. 

The proposed method is tested on an islanded microgrid system which is based on the IEEE 33-

bus system. The test results verify that the proposed stochastic OPF method can achieve reliable 

microgrid islanding operation under uncertainties without any operating constraint violation. 
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Chapter 3 ENHANCED STOCHASTIC OPTIMAL POWER 

FLOW METHOD FOR ISLANDED MICROGRIDS UNDER 

UNCERTAINTIES 

With development of renewable energy sources (RESs), microgrids have been applied more 

widely since they are more suitable platforms for distributed generation (DG). Considering 

emergencies encountered by the main grid can force microgrids to be switched from grid-tied 

mode to islanded one, a fast and effective optimal power flow (OPF) method for islanded 

microgrids is imperative to minimize operational cost and keep network operational constraints. 

Thus, this chapter proposes a new OPF approach which is based on a linear power flow method 

with high computing efficiency. In this OPF approach, microturbine setpoints and load shedding 

rates are optimized to minimize the total system operational cost. Besides, uncertainties of 

renewable power generation and loads are formulated by a probabilistic state generation method 

and solved by a stochastic optimization. Thus, this chapter finally proposes a new stochastic OPF 

approach for islanded microgrids under uncertainties, and its high computing efficiency and 

accuracy is validated by simulations. 

 

3.0 Nomenclature 

A. Sets and Indices 

𝑘, 𝑛𝑏 Index and set of buses  

𝑖, 𝑛𝑔 Index and set of microturbines  

𝑀, 𝑁 Predefined number of uncertainty states. 

𝑅 Sets of OPF results  

 

B. Parameters 

𝑎 Generation cost parameters($/kW) 

𝑏 Load-shedding cost parameters ($/kW) 
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𝑚𝑝, 𝑚𝑞 Droop control coefficients used in P-f and Q-V functions 

𝑚𝑝𝑒𝑞 , 

𝑚𝑞𝑒𝑞 

Equivalent droop control coefficients for the islanded microgrid 

𝑃𝐿𝑘 , 𝑄𝐿𝑘 Load active/reactive power consumption at bus k (kW/kVar) 

𝑉0 Nominal voltage (per unit) 

𝜌𝑠 Probability of scenario s 

𝑩𝑪𝑩𝑽 Branch current to branch voltage drop matrix 

𝑩𝑰𝑩𝑪 Bus current to branch current matrix  

𝜀 Termination threshold  

 

C. Variables 

𝐶𝑔 Cost of microturbine power generation ($) 

𝐶𝑙𝑠 Penalty cost of load shedding ($) 

𝑃𝐺𝑖, 𝑄𝐺𝑖 Real-time microturbine active/reactive power output (kW/kVar) 

𝑃𝐺𝑖
0 , 𝑄𝐺𝑖

0  Microturbine active/reactive power output setpoint (kW/kVar) 

∆𝑃𝐺𝑖, 

∆𝑄𝐺𝑖 

Deviation of real-time microturbine active/reactive power output (kW/kVar) 

𝑃𝑘 , 𝑄𝑘 Active/reactive power injection at bus k (kW/kVar) 

∆𝑈 Deviation of bus voltage (per unit) 

∆𝑓 Deviation of system frequency (per unit) 

∆𝑈𝑟 Deviation of reference bus voltage (per unit) 

ls Load shedding rate (%) 

𝐼𝑛𝑜𝑑𝑒 Injection current at a bus (A) 

𝐼𝑏𝑟𝑎𝑛𝑐ℎ Current through a branch (A) 

𝑉𝑟 Reference bus voltage (per unit) 

𝑉  Bus voltage (per unit) 

(. )∗ Conjugate of complex number. 

 

3.1 Introduction 

Growing penetration of RESs provides a high potential of constructing microgrids which can 

supply local loads by themselves. By reducing relying on large-scale coal-fired generation, such 
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highly RES-penetrated microgrids can efficiently contribute to reducing greenhouse gas emission 

and achieving carbon neutrality [88]. 

However, serious natural disasters such as storms, typhoons and blizzards have significantly 

adverse impacts on the resilience of the power systems. For example, the South Australia blackout 

in September 2016 caused by two almost simultaneous tornadoes resulted in loss of electricity 

supply for 850,000 customers [89]. In February 2021, the Texas blackout caused by the severe 

storms demonstrated another example of heavy economic loss and significant inconvenience for 

customers. Meanwhile, sufficient RESs can recover power generation once weather events end, 

enhancing the microgrid ability to work independently in an islanded operation mode [13]. 

Moreover, as the work [90] concluded that microgrids working as independent entities during 

faults of the main grid are also able to strengthen the resilience of the power system. 

Recently, researchers have paid attention to the prospect of applying microgrids for 

enhancing the power system resilience. In [91], an algorithm based on risk assessment and 

defensive islanding control is developed to mitigate cascading effects caused by extreme weather 

conditions. The concept of defensive islanding control is to determine which branches are actively 

disconnected during contingency to keep the system secure. Similarly, enhancing the main grid 

resilience by an islanding approach is investigated in [92]. On the other hand, since grid-tied 

microgrids can be considered as distribution loads for the upstream network, there is naturally a 

high probability of disconnecting microgrids while the main grid is undergoing emergency [93]. 

The recent work [94] considers probable tie-line switching after system contingency and proposes 

a security-constrained OPF for microgrids. Thus, in response to deal with the islanded operational 

conditions of the microgrids, a fast and effective OPF approach for islanded microgrids is 

imperative. 

In [95], the authors propose a multi-stage energy management method for an islanded 

microgrid. An energy management optimization problem is formulated and decomposed into a 

unit commitment problem and an OPF problem which are the first stage and the second stage 

respectively. However, this nonlinear programming OPF problem cannot be directly or efficiently 

solved by commercial solvers. In [96], an OPF model for microgrids is developed, which is still 

a non-convex programming problem. To efficiently solve non-convex optimization problems, 
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semidefinite programming methods with proper relaxation techniques can be used [97]. In 

addition, in [98], the authors adopt generalized Benders decomposition to solve an OPF model 

where the non-linear terms are treated as complex number variables. Then, replacing the mixed 

integer non-linear problem, two quadratically constrained quadratic problems are modelled and 

solved iteratively. Because of inevitable non-convex or non-linear terms in these power flow 

models, the above works relax or linearize the power flow constraints, which may lose accuracy 

of network models. 

From the above literature review, most of the OPF methods for microgrids, such as branch 

flow based and conventional AC power flow based methods, have to be relaxed or linearized to 

promise the convexity by approaches like semi-finite programming. 

On the other hand, in [49], a backward forward sweep (BFS) algorithm with a linear branch 

flow model is developed for power flow problems in distribution networks. In addition, this 

algorithm is applied to solve power flow problems for islanded microgrids by the authors of [77]. 

It is indicated that this algorithm can efficiently calculate power flow for islanded microgrids with 

high accuracy. Furthermore, the work [77] modifies the BFS algorithm with three iterative loops 

to achieve a fast convergence speed. However, this kind of iterative algorithm cannot be directly 

used as constraints in OPF problems. 

Considering the high accuracy and fast convergence speed, a new OPF method based on this 

modified BFS algorithm is proposed, which can avoid the non-convex and non-linear issues in 

the conventional OPF methods. It is worth noting that a new solution algorithm for the OPF 

problem is developed to achieve high computing speed and accuracy. Moreover, considering the 

uncertainties from loads and renewable power generation, an efficient stochastic optimization 

method with probabilistic state generation is adopted. Thus, this chapter eventually proposes a 

new stochastic OPF method for islanded microgrids, which can efficiently minimize operational 

cost with accurate network models while keeping network operational constraints satisfied under 

the uncertainties. 

The contributions of Chapter 2 are described in Question 3. In Chapter 3, the stochastic OPF 

proposed in Chapter 2 is further developed.  
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On one hand, the iteration method of BFS OPF is improved, including data update 

mechanism and convergence criterion. In Chapter 2, three loops are occupied by three sets of data, 

reference bus voltage deviation, frequency deviation and bus voltage drop. In Chapter 3, they are 

updated together by computing PF with the results gained in the optimization of each iteration. 

Besides, the convergence criterion of OPF proposed in Chapter 2 is substituted by the 

optimization results, which means once the optimization results of two iterations is nearly equal 

the iteration will terminate.  

On the other hand, the probabilistic model is also improved according to [100] to reduce the 

number of scenarios. With these two improvements, the OPF proposed in Chapter 3 is with higher 

accuracy and lower computing time, verified in Chapter 3.4. 

 

3.2 OPF For Islanded Microgrid 

With the BFS algorithm given in [77], this chapter proposes a new OPF method for islanded 

OPF to minimize operational cost and keep network operational constraints by optimizing 

microturbine power generation setpoints and load shedding rates. Load shedding is used to keep 

system stability, and it is considered to develop a general OPF model. 

3.2.1 OPF Formulation  

The OPF for islanded microgrids is formulated in the following compact model. 

min𝑓(𝑥, 𝑢) = 𝐶𝑔 + 𝐶𝑙𝑠 (3.A) 

s.t.                    𝑔(𝑥, 𝑢) = 0 (3.B) 

ℎ(𝑥, 𝑢) ≤ 0 (3.C) 

The objective function (3.A) of this OPF model is to minimize the total operational cost 

composed of generation cost of microturbines and penalty cost of load shedding. The generation 

cost is modelled as (3.1) and the load shedding cost, which is determined by load shedding rate 

decision 𝑙𝑠, is modelled as (3.2) below. 
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𝐶𝑔 = ∑𝑎 × 𝑃𝐺𝑖  
(3.1) 

𝐶𝑙𝑠 = 𝑏 × (1 − 𝑙𝑠) × ∑𝑃𝐿𝑘 (3.2) 

In addition, (3.B) presents a set of linear power flow equations and (3.C) is a set of 

inequalities as microgrid operational constraints. 𝑥, 𝑢 are decision variables and state variables, 

respectively. The constraints (3.B) and (3.C) will be elaborated in next two sections. 

3.2.2 Islanded Microgrid Power Flow Algorithm 

The BFS power flow algorithm is linear programming with iterations, which can significantly 

reduce the computational burden. The power flow model for islanded microgrids is expressed as 

follows. This chapter considers photovoltaics (PVs) as renewable power generation and others 

can also be used without affecting the high efficiency of the BFS algorithm. 

𝑃𝐺𝑖 = 𝑃𝐺𝑖
0 + ∆𝑃𝐺𝑖, ∆𝑃𝐺𝑖 = 

∆𝑓0
𝑚𝑝𝑖

 , ∀ 𝑖 ∈ 𝑛𝑔 (3.3) 

𝑄𝐺𝑖 = 𝑄𝐺𝑖
0 + ∆𝑄𝐺𝑖, ∆𝑄𝐺𝑖 = 

∆𝑈𝑟0

𝑚𝑞𝑖
 , ∀ 𝑖 ∈ 𝑛𝑔 (3.4) 

𝑃𝑘 + 𝑗𝑄𝑘 = (𝑃𝐺𝑖 + 𝑗𝑄𝐺𝑖) − (1 − 𝑙𝑠)(𝑃𝐿𝑘 + 𝑗𝑄𝐿𝑘) + 𝑃𝑝𝑣𝑘 , ∀𝑖 ∈ 𝑛𝑔, ∀𝑘 ∈ 𝑛𝑏 (3.5) 

𝐼𝑛𝑜𝑑𝑒𝑘 =
𝑃𝑘 − 𝑗𝑄𝑘

𝑉𝑘
∗   , ∀𝑘 ∈ 𝑛𝑏 (3.6) 

𝑰𝒃𝒓𝒂𝒏𝒄𝒉 = [𝑩𝑰𝑩𝑪] 𝑰𝒏𝒐𝒅𝒆 (3.7) 

∆𝑼 = [𝑩𝑪𝑩𝑽] 𝑰𝒃𝒓𝒂𝒏𝒄𝒉 (3.8) 

𝑽 =  𝑽𝒓 − ∆𝑼 (3.9) 

∆𝑓 = (−𝑚𝑝𝑒𝑞) [𝑃𝐿𝑘 − 𝑃𝐺1
0 + 𝑅𝑒 (∑𝑈1𝐼1𝑘

∗ )] ,  

∀𝑖 ∈ 𝑛𝑔, ∀𝑘 ∈ 𝑛𝑏 

(3.10) 

∆𝑈𝑟 = (−𝑚𝑞𝑒𝑞) [𝑄𝐿𝑘 − 𝑄𝐺1
0 + 𝐼𝑚 (∑𝑈1𝐼1𝑘

∗ )],   (3.11) 
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∀𝑖 ∈ 𝑛𝑔, ∀ 𝑘 ∈ 𝑛𝑏 

𝑉𝑟 = 𝑉0 − ∆𝑈𝑟 (3.12) 

𝑚(.)𝑒𝑞 =
1

∑
1

𝑚(.)𝑖

𝑑
𝑖=1

,   ∀𝑖 ∈ 𝑛𝑔 (3.13) 

Equations (3.3) and (3.4) are expressions of output power of microturbines, consisting of 

setpoints (𝑃𝑔𝑖
0 ,  𝑄𝑔𝑖

0 ) and variations responding to droop control (∆𝑃𝑔𝑖
0 ,  ∆𝑄𝑔𝑖

0 ) which are 

calculated with the droop coefficients. In the chapter, both P-f and Q-V droop control functions 

are considered. In (3.5), the bus injection power is determined by predicted values of loads and 

PV output power as well as the load shedding rate 𝑙𝑠.  

In addition, equations (3.6) to (3.9) compute bus injection current, branch current, bus voltage 

with deviation. BIBC and BCBV are the network parameter matrices consisting of system 

information such as topology and branch impedances [49]. It is noted that the 𝑉𝑘
∗ in (3.6) is the 

value from the last iteration, and it is used as a parameter in the current iteration of the BFS 

algorithm. In (3.7)-(3.9), the symbols in the bold type mean the vectors of the corresponding 

variables of currents and voltages.  

Moreover, the microgrid frequency deviation is calculated with system equivalent droop 

coefficient 𝑚𝑝𝑒𝑞 in (3.10). The reference bus voltage 𝑉𝑟 which is the benchmark for computing 

the other buses’ voltages is computed by (3.11) and (3.12). Because of an islanded microgrid 

operation mode, there is no slack bus. However, this chapter selects a bus with the main 

microturbine as the reference bus for power flow calculation. Hence, it is essential to obtain the 

difference between the reference bus voltage and the nominal one, i.e., ∆𝑈𝑟 in (3.11). 

Last, (3.13) expresses computing the equivalent droop coefficient for the whole system with 

all the droop coefficients of the microturbines installed in the microgrid. More detailed 

information for this power flow model can be found in [77]. 

With these equations (3.3) to (3.13), a BFS Algorithm for islanded microgrids is developed 

as below. 
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Step 1 Calculate bus injection power by (3.3) (3.4) (3.5) with ∆𝑓0, ∆𝑈𝑟0  

Step 2 Calculate bus voltage deviation by (3.6) (3.7) (3.8) with 𝑉𝑘
∗, and bus voltage 𝑉 by 

(3.9) 

Step 3 Calculate frequency deviation ∆𝑓 and reference bus voltage deviation ∆𝑈𝑟 by 

(3.10) and (3.11) 

Step 4 Check if |
𝑉𝑘 −𝑉𝑘

∗

𝑉𝑘
∗ | ≤ 𝜀 ? 

Yes: Go to Step 5. No: Return to Step 1 with replacing 𝑉∗  by 𝑉 

Step 5 Check if |
∆𝑓−∆𝑓0

∆𝑓0
| ≤ 𝜀 ? 

Yes: Go to Step 6. No: Return to Step 1 with replacing ∆𝑓0 by ∆𝑓 

Step 6 Check if |
𝑉𝑟−𝑉𝑟0

𝑉𝑟0
| ≤ 𝜀 ? 

Yes: Go to Step 7. No: Return to Step 1 with replacing ∆𝑈𝑟0 by ∆𝑈𝑟 

Step 7 End 

 

3.2.3 Operational Constraints 

In the OPF model, this chapter considers the following microgrid operational constraints. 

𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥 (3.14) 

𝑃𝐺𝑖
2 + 𝑄𝐺𝑖

2  ≤ 𝑆𝐺𝑖.𝑚𝑎𝑥
2  (3.15) 

−∆𝑓𝑚𝑎𝑥 ≤ ∆𝑓 ≤ ∆𝑓𝑚𝑎𝑥 (3.16) 

−∆𝑈𝑟,𝑚𝑎𝑥 ≤ ∆𝑈𝑟 ≤ ∆𝑈𝑟,𝑚𝑎𝑥 (3.17) 

𝑙𝑠𝑚𝑖𝑛 ≤ 𝑙𝑠 ≤ 𝑙𝑠𝑚𝑎𝑥 (3.18) 
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The microgrid operational constraints include the bus voltage limit in (3.14), the microturbine 

power capacity limit in (3.15), the frequency deviation limit in (3.16), the reference bus voltage 

deviation limit in (3.17) as well as load shedding limit in (3.18). These constraints can ensure the 

islanded microgrids are operated securely and reliably. 

3.2.4 Proposed OPF Method 

To solve an OPF problem more efficiently for islanded microgrids, this chapter proposes a 

new method based on the modified BFS power flow algorithm, which is introduced below. 

As the initial values 𝑉𝑘
∗, ∆𝑓0 and ∆𝑈𝑟0 used in (3.3) (3.4) and (3.6) are not accurate with 

errors, leading to that the OPF result is not actually optimal. Hence, it is essential to develop a 

new and efficient iterative algorithm to reduce the errors to an acceptable magnitude. In [77], each 

set of 𝑉𝑘
∗, ∆𝑓0 and ∆𝑈𝑟0 requires one loop to reach its own convergence. However, the overall 

number of iterations is the product of three loops, which results in long program computing time. 

As a result, the OPF method based on these three loops is computationally expensive. To 

overcome the computing challenge, this chapter aims to improve the convergence progress by 

updating all three sets of 𝑉𝑘
∗, ∆𝑓0 and ∆𝑈𝑟0 simultaneously in a new OPF loop and checking 

the overall convergence on the OPF result instead. The flowchart of the proposed OPF method is 

demonstrated in Fig. 3.1.  

As Fig. 3.1 shows, in this OPF loop, the first step is to run the OPF model (3.A)-(3.C) with 

initial values 𝑉𝑘
∗ , ∆𝑓0  and ∆𝑈𝑟0  and obtain the results, i.e. microturbine output active and 

reactive power and load shedding rate as a vector 𝑅𝑡. t means the tth iteration. Then, the relative 

gap of 𝑅𝑡 is calculated by comparing the current result with that in the last iteration. In the first 

iteration, this chapter sets 𝑅0 as a vector of zero. If any gap of two corresponding values of 𝑅𝑡−1 

and 𝑅𝑡 is greater than a preset termination threshold, BFS Algorithm is applied to calculate and 

update 𝑉𝑘
∗, ∆𝑓0 and ∆𝑈𝑟0 simultaneously. Last, the updated 𝑉𝑘

∗, ∆𝑓0 and ∆𝑈𝑟0 are used for 

the OPF model in the next iteration. The above OPF loop is repeated until the gap of 𝑅𝑡 

converges to the threshold. Thus, with the help of 𝑅𝑡 , three sets of the initial values can be 

updated simultaneously, to enhance the computing speed. 



 

50 
 

Initialize 
*

0 00, 0, 1r kf U V =  = =

Run OPF (3.A) (3.B) (3.C)  

and Obtain Optimal 

End

Run BFS algorithm with OPF 

results

Update 

  

*

0 0, ,r kf U V 

Yes

1| ( - )/ | ?
tt tR R R−  

0 0, ,Gi GiP Q ls

No

 

Figure 3.1. Proposed OPF Method for Islanded Microgrids. 

 

3.3 Stochastic OPF With Probabilistic Models 

Based on the proposed OPF method, a stochastic optimization method [99] is applied to 

address uncertainties of renewable power generation and loads. With their probability density 

functions (PDFs), the uncertainties are modelled as presentative scenarios by a probabilistic state 

generation method [100] to generate scenarios. Thus, a stochastic OPF method is developed for 

islanded microgrids.  

3.3.1 Stochastic OPF Formulation 

Firstly, the uncertainties concerned in the OPF problem are PV output power and loads. By 

reforming (3.A) into a general stochastic programming model, a stochastic objective function is 

modelled as (3.19). 

𝑚𝑖𝑛𝐸𝜉[𝑓(𝑥, 𝜉)] (3.19) 

Herein, 𝑥 is the set of decision variables, and 𝜉 indicates uncertainty realizations. 𝑓(𝑥, 𝜉) 

is the subproblem of (3.19) under the certain uncertainty realization 𝜉 , while 𝐸𝜉  is the 

expectation of 𝑓(𝑥, 𝜉). The above general stochastic programming model can be transformed 

into an equivalent deterministic model (3.20) with finite realization scenarios, 𝜉1, 𝜉2, 𝜉3, …, 𝜉𝑠 

and their probabilities of occurrence 𝜌1 , 𝜌2 , 𝜌3 , …,  𝜌𝑠 . Here, 𝑠  is the serial number of a 

scenario and S means a set of these scenario numbers. 
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𝑚𝑖𝑛 ∑𝜌𝑠

𝑠𝜖𝑆

𝑓(𝑥, 𝜉) (3.20) 

3.3.2 Probabilistic State Generation 

Conventionally, Monte Carlo sampling methods are applied to generate random scenarios 

and then reduce them with forward or backward scenario reduction methods, thus enhancing the 

computing efficiency by using representative scenarios in stochastic programming problems 

[101]. However, the scenario reduction methods are also computationally expensive if a large 

number of scenarios to be merged into the remaining. Considering the scenario reduction time, 

even with the limited representative scenarios, the OPF efficiency can be significantly impaired. 

To address this issue, this chapter adopts a probabilistic state generation method developed in the 

recent work [100]. This method for the renewable power uncertainty consideration in Chapters 3 

and 4 are verified to be effective in [100]. Besides, the probabilistic modelling of Chapters 3 and 

4 can also be effective when the probabilistic density function is changed. 

Both PDFs for the PV power and loads are assumed as Gaussian distribution in this chapter. 

𝑃𝑢 which represents the value of uncertainty is divided into 𝑀 states according to the PDF of 

the uncertainty with the limits 𝑃̅𝑚
𝑢 and 𝑃𝑚

𝑢 for the state m. Equation (3.21) calculates the mean 

value of this uncertainty state as the representative value of the interval [𝑃̅𝑚
𝑢, 𝑃𝑚

𝑢]. 

𝑃𝑚
𝑢 =

∫ 𝑃𝑢𝑃𝐷𝐹
𝑃𝑚

𝑢

𝑃𝑚
𝑢 𝑑𝑃𝑢

∫ 𝑃𝐷𝐹
𝑃𝑚

𝑢

𝑃𝑚
𝑢 𝑑𝑃𝑢

, 𝑚 = 1,2,3,… ,𝑀 

(3.21) 

The PDF of the uncertainty is also used to calculate the occurrence probability of the state m, 

which is shown as (3.22). 

𝜌𝑚
𝑢 = ∫ 𝑃𝐷𝐹

𝑃𝑚
𝑢

𝑃𝑚
𝑢

𝑑𝑃𝑢, 𝑚 = 1,2,3,… ,𝑀 

(3.22) 

Using this method, a set of M PV power states, expressed by 𝑆𝑃𝑉 = {𝑃𝑚
𝑃𝑉 , 𝜌𝑚

𝑃𝑉}, and a set of 

N load states, presented by 𝑆𝐷 = {𝑃𝑛
𝐷, 𝜌𝑛

𝐷} can be generated. Then, the above separate sets 𝑆𝑃𝑉 

and 𝑆𝐷 used to form a combined set by (3.23), (3.24) and (3.25). 
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𝑆 = {(𝑃𝑚
𝑃𝑉 , 𝑃𝑛

𝐷), 𝜌𝑠} (3.23) 

𝜓𝑃𝑉 = {𝑃𝑚
𝑃𝑉}, 𝜓𝐷 = {𝑃𝑛

𝐷}, 

{(𝑃𝑚
𝑃𝑉 , 𝑃𝑛

𝐷)} = 𝜓𝑃𝑉 × 𝜓𝐷 

(3.24) 

𝜌𝑠 = 𝜌𝑚
𝑃𝑉 × 𝜌𝑛

𝐷 , ∀(𝑃𝑚
𝑃𝑉 , 𝑃𝑛

𝐷) (3.25) 

{(𝑃𝑚
𝑃𝑉 , 𝑃𝑛

𝐷)}  means a combined state and 𝜌𝑠  is its corresponding joint occurrence 

probability. The detailed introduction of this probabilistic state generation method can be referred 

to [16]. By using this method, a total number (𝑀 × 𝑁) of the combined states are applied as the 

representative scenarios for the proposed stochastic OPF model (3.20) while modifying (3.B) and 

(3.C) under all the representative scenarios. 

3.4 Case Study 

3.4.1 Test System 

A 33-bus distribution network originally from [43] is used as a qualified islanded microgrid 

for operation/control tests [78]. The network topology with microturbines (labelled “G” with 

circles) and PVs (labelled “PV” with squares) is shown in Fig. 3.2. The loads are increased to the 

total active and reactive power consumption of 7.43MW and 4.60MVar. 

G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

26 27 28 29 30 31 32 33

23 24 25

G G

G

G

PV PV PV

PV PV

PV

PV

Reference 
bus

PV

 

Figure 3.2. Microgrid System for Case Study. 
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Five microturbines are utilized in this islanded microgrid, and their parameters are presented 

in Table 3.1. In addition, 8 PV power generation units are located in the islanded microgrid as 

shown in Fig. 3.2, and their predicted active power outputs are all set as 100 kW. 

Table 3.1 Microturbine Parameters 

Microturbine 

No. 

Bus 

No. 

Capacity 

(MVA) 

P-f Coefficient 

(per unit) 

Q-V Coefficient 

(per unit) 

1 1 2 -0.04 -0.04 

2 6 1 -1 -1 

3 13 1.5 -0.2 -0.1 

4 25 1.2 -0.5 -0.3 

5 33 1.4 -0.2 -0.2 

According to [78], bus 1 is selected as the reference bus for the OPF method while the 

nominal voltage is set as 1 per unit Moreover, 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are 0.95 per unit and 1.05 per 

unit, respectively. The allowed ranges of reference bus voltage deviation and system frequency 

deviation are set as [-0.04, 0.04] per unit and [-0.02, 0.02] per unit. In addition, the allowed load 

shedding range is [0, 20%]. This OPF method is applied for a short dispatch interval, depending 

on the grid code, e.g., 15 minutes. 

Note that any parameters of network, DG and operational limits can also be used without 

affecting the simulation effectiveness. 

The termination threshold 𝜀 is set as 0.001. 

This simulation is carried out on a 64-bit operating system with AMD Ryzen 3700x CPU and 

16 GB RAM. The toolbox YALMIP [86] is used for simulation coding in MATLAB.  In this 

chapter, the GUROBI solver [87] is used to solve the OPF problem.  

3.4.2 Uncertainty Probabilistic States 

In this chapter, PV output power and loads are both assumed to fit to Gaussian probability 

distribution. The means of their PDFs are set to 1 (100% of predicted values), while the standard 

deviation of loads is 0.04 and that of PV power is 0.05. With the method introduced in Chapter 

3.3.2, the loads and PV output power are modelled into 4 and 8 probabilistic states, respectively. 

The PDFs of loads and PV power (red and blue curves) as well as the proposed state intervals 

(black lines) are presented in Fig. 3.3. Then, using (4.22), occurrence probabilities of these states 
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are calculated and demonstrated in Fig. 3.4. These states finally construct 32 combined states with 

joint probabilities, which are used as representative scenarios of uncertainty realization in the 

proposed stochastic OPF model. 

 

Figure 3.3. Probability Density: (a) Load; (b) PV Output. 

 

Figure 3.4. State Occurrence Probability: (a) Load; (b) PV Output. 

 

3.4.3 Performance of Proposed OPF Method 

With the above uncertainty representative scenarios, the proposed stochastic OPF method is 

implemented to optimize decision variables and minimize the total operational cost. To indicate 

the high efficiency of the proposed method, an existing OPF method [102] which is based on the 

three loops of the efficient power flow algorithm [77] is also implemented for comparison. The 

optimized power setpoints of microturbines are illustrated in Fig. 3.5. The OPF results of these 

two methods are shown in Table 3.2. 
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Figure 3.5. Microturbine Setpoints by Two Methods: (a) Active Power; (b) Reactive Power. 

 

Table 3.2 OPF Results 

Method Proposed Three-Loop 

Based 

Number of Iterations  9 36 

Solver Time (s) 1.046 4.438 

Shed Loads (MW) 1.033 1.085 

Objective ($) 23.770 24.023 

From Fig. 3.5, it is seen that the optimized power setpoints are somewhat different and the 

active power outputs of the proposed method are slightly less, leading to the less generation cost.  

Moreover, as can be seen from Table 3.2, the GUROBI solver time of the proposed OPF 

method is significantly less than that of three-loop based method, which indicates that computing 

efficiency of the proposed method is extremely high. 

For the shed loads, the proposed method achieves less values to reduce the penalty cost. Thus, 

the objective obtained by the proposed OPF method is less than that of the three-loop based 

method. 

In order to further check the accuracy of the OPF methods on the system operational 

conditions, the efficient BFS algorithm [77] is implemented to get power flow results as 

benchmark. Then, compared to the benchmark, the mean absolute percentage error (MAPE) of 

the frequency deviations, all the bus voltages and the reference bus voltages obtained by these 

two methods are calculated by (3.26)-(3.27) and shown in Table 4.3. 

𝐴𝑃𝐸𝑠 = |
𝑅𝑒𝑠𝑂𝑃𝐹,𝑠 − 𝑅𝑒𝑠𝑃𝐹,𝑠

𝑅𝑒𝑠𝑃𝐹,𝑠
| , ∀𝑠 (3.26) 
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𝑀𝐴𝑃𝐸 =
1

𝑆
∑𝐴𝑃𝐸𝑠

𝑆

𝑠=1

 
(3.27) 

Table 3.3 Absolute Percentage Errors 

Method  Proposed Three-Loop 

Based 

MAPE of ∆𝒇 (%) 0.0012 0.90 

MAPE of 𝑽 (%) 0.000005 0.51 

MAPE of 𝑽𝒓 (%) 0.000003 0.53 

Since the MAPE and Max-APE of the proposed OPF method is significantly small, it is 

concluded that the proposed method is almost consistent with the power flow results accurately 

considering the operational conditions with the optimized decision variables. 

In conclusion, the proposed OPF method can efficiently minimize the total operational cost 

for the islanded microgrid at a fast speed. 

3.4.4 Monte Carlo Simulation Results 

In this section, the OPF results obtained by the proposed OPF method are tested with 1800 

random scenarios generated by Monte Carlo sampling which are used as uncertainty realizations. 

These scenarios follow the same Gaussian probability distribution given in Chapter 3.4.2. The 

BFS algorithm is used to complete power flow for these scenarios and the operational conditions 

are checked. 

For these scenarios, all of the bus voltages are within the constraints, and only 0.28% 

scenarios incur violations for the system frequency deviation. Thus, it is indicated with the 

stochastic optimization with the probabilistic state generation, a highly robust solution against 

uncertainty realizations can be obtained. 

 

3.5 Conclusion 

This chapter proposes a new stochastic OPF method for islanded microgrids with a new 

solution algorithm. 
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Via the numerical simulations, it is validated that the proposed method can obtain an optimal 

decision of microturbine generation setpoints at a fast computing speed. In addition, the obtained 

solution is highly robust against uncertainty realizations of renewable power generation and loads. 

The proposed method can outperform the existing method in terms of optimum and computing 

efficiency. 
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Chapter 4 STOCHASTIC SECURITY-CONSTRAINED 

OPTIMAL POWER FLOW FOR A MICROGRID 

CONSIDERING TIE-LINE SWITCHING 

With the rapid development of microgrid, its tie-line switching from grid-connected to 

islanded mode is a topic worth discussing for considering both main grid resilience and microgrid 

security. In this chapter, a stochastic security-constrained optimal power flow (OPF) method is 

proposed to deal with these conditions under high uncertainties. Firstly, a linear load flow model 

and a backward forward sweep (BFS) algorithm are applied to present microgrid power flow with 

reduced computing burdens. Secondly, with consideration of tie-line switching from grid-

connected to islanded operation mode, a security-constrained OPF problem for a microgrid is 

proposed to minimize operating cost and by optimizing microturbine setpoints and load shedding 

coefficient. To promise stable islanded operation after disconnection from the main grid, a 

Benders decomposition method is developed to decouple the OPF problem into a grid-connected 

master problem and an islanded sub-problem and then solve them iteratively with Benders cuts 

to guarantee microgrid security after tie-line switching. Last, a stochastic optimization method 

with probabilistic modelling is adopted to address the uncertainty issue caused by renewable 

energy sources (RESs) and loads. The proposed stochastic security-constrained OPF method has 

been verified with high computing efficiency and robust security via comprehensive numerical 

simulations. 

 

4.0 Nomenclature 

A. Sets and Indices 

𝑏, 𝐵 Index and set of microgrid branches 

𝑘, 𝑛𝑏 Index and set of microgrid buses 

𝑖, 𝑛𝑔 Index and set of microturbines 
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B. Parameters 

𝑎𝑖, 𝑏𝑖 Cost parameters of power generation ($/kW) 

𝑐 Price of power exchange with main grid ($/kW) 

𝑑𝑘 Penalty cost of load shedding ($/kW) 

𝐼𝑏𝑟𝑎𝑛𝑐ℎ,𝑏
𝑚𝑎𝑥  Maximum current limit of branch b (A) 

𝑚𝑝, 𝑚𝑞 Coefficients of frequency droop and voltage droop 

𝑚𝑝𝑒𝑞 , 

𝑚𝑞𝑒𝑞 

Equivalent coefficients of frequency droop and voltage droop for the whole 

system 

𝑃𝐿𝑘 , 𝑄𝐿𝑘 Active/reactive load at bus k (kW/kVar) 

𝑆𝐺𝑖
𝑐𝑎𝑝

 Power capacity of microturbine i (kVA) 

𝑉0 Substation voltage in grid-connected mode, and nominal voltage in islanded 

mode (p.u.) 

𝜌𝑠 Probability of scenario s 

()𝑚𝑖𝑛/𝑚𝑎𝑥 Minimum/Maximum limit for variables 

𝑩𝑪𝑩𝑽 Branch current to branch voltage drop matrix 

𝑩𝑰𝑩𝑪 Bus current to branch current matrix 

C. Variables 

𝑃𝐺𝑖, 𝑄𝐺𝑖 Real-time microturbine active/reactive power output (kW/kVar) 

𝑃𝐺𝑖
0 , 𝑄𝐺𝑖

0  Setpoint of microturbine active/reactive power output (kW/kVar) 

𝑃𝑔𝑟𝑖𝑑 Active power from main grid to microgrid (kW) 

𝑃𝑃𝑉𝑘 Photovoltaic active power generation at bus k (kW) 

∆𝑃𝐺𝑖, 

∆𝑄𝐺𝑖 

Real-time microturbine active/reactive power output variation (kW/kVar) 

𝑃𝑘 , 𝑄𝑘 Active/reactive power injection at bus k (kW/kVar) 

∆𝑼 Vector of bus voltage deviations (p.u.) 

∆𝑓 System frequency deviation (p.u.) 

∆𝑉𝑟 Reference bus voltage deviation (p.u.) 

𝐿𝑆 Load shedding rate (%) 

𝑰𝒏𝒐𝒅𝒆 Vector of bus injection currents (A) 

𝑰𝒃𝒓𝒂𝒏𝒄𝒉 Vector of branch currents (A) 

𝐼𝑏𝑟𝑎𝑛𝑐ℎ,𝑏 Current of branch b (A) 
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𝑉𝑟 Reference bus voltage (p.u.) 

𝑽𝒓 Vector of 𝑉𝑟 (p.u.) 

𝑉𝑘 Bus voltage at bus k (p.u.) 

𝑽 Vector of bus voltages (p.u.) 

𝑥0,𝑥1 All the state variables of grid-connected OPF and islanded OP, respectively 

𝑢0, 𝑢1 All the controllable variables of grid-connected OPF and islanded OPF, respectively 

𝑦0, 𝑦1 All the variables (both state and controllable) of grid-connected OPF and islanded 

OPF, respectively 

 

4.1 Introduction 

RESs, such as solar and wind power, enhancing the microgrid ability to work independently, 

provide a broad prospect of developing microgrids as a suitable platform for these RESs [13]. 

However, the RESs are significantly affected by severe weather events, such as typhoons and 

storms, which is challenging resilience of the power system. Some extreme circumstances can 

lead to blackouts including the South Australia blackout in 2016 [89], causing tremendous 

economic loss. 

To cope with contingent disturbances and uncertainties of renewable power generation, it is 

essential to provide effective operation frameworks and methods for microgrids to minimize the 

economic loss during contingency and guarantee operational security under uncertainties. The 

authors of [21][103][41] propose economic dispatch (ED) models to minimize operating cost. 

These ED models consider power balancing within microgrids and operation constraints of 

system components such as distributed generators and energy storage systems (ESSs). The 

authors of [21] take a grid-connected mode and a steady islanded mode of microgrids into account. 

An ED model for an AC/DC hybrid microgrid considering controllable loads including electric 

vehicles is developed by [103]. In [41], grid-connected and islanded operation modes are 

integrated into one optimization problem with a Benders decomposition method, where the grid-

connected operation is formulated as a master problem and the islanded operation is a sub-

problem. The Benders cuts generated by the islanded operation problem can guarantee that the 

microgrid can securely react to unknown disturbances from the main grid. To this end, the 

Benders decomposition method shows advantages in guaranteeing system security. However, the 
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above works do not consider microgrid network models and corresponding network operation 

constraints. 

On the other hand, OPF methods have been widely applied for microgrid operation. In the 

following literature review, several microgrid OPF methods reported in recent years are briefly 

described and discussed. In [104], a grid-connected microgrid OPF method is presented with 

focus of optimizing energy storage devices, considering renewable power generation and loads 

as fixed power injection. The authors of [74] develop a two-stage optimization method for energy 

management of islanded microgrids, where the first stage is a unit commitment problem while 

the second stage is an unbalanced three-phase OPF problem. The unit commitment problem which 

is mixed integer programming and the nonlinear OPF problem are separately solved. The work 

of [95] is based on [74]. The first-stage unit commitment problem is extended to a robust 

optimization problem which is solved by primal cutting plane decomposition for addressing 

uncertainties of RESs. A distributed OPF method for microgrids is introduced in [96]. The 

original OPF model in this paper is a non-convex problem and it is further reformed by relaxing 

power flow constraints. Moreover, the authors of [96] make great efforts to transform a 

centralized optimization problem to a distributed one with predictor corrector proximal 

multipliers. It is worth noting that the above models are non-linear programming problems which 

are intractable.  

For a purpose of solving non-linear microgrid OPF problems, semi-definite programming 

and second order cone programming methods have been recently applied. The OPF problem for 

unbalanced three-phase systems proposed in [97] is formulated from an originally non-linear 

problem by a semidefinite programming method. In addition, in [76], a generalized optimal 

operation method for both grid-connected and islanded modes is proposed, where the nonlinear 

terms are reformed into second order conic constraints. In [75], mathematical models of objective 

function, power flow, distributed generators, and battery systems are linearized or approximated, 

thus making the optimization problem easily solvable. In [98], a generalized Benders 

decomposition method is utilized to solve a non-linear OPF problem. In this method, non-linear 

components in the OPF model are extracted as complex number variables, while the original 

mixed integer non-linear problem is decomposed into quadratically constrained quadratic 
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subproblems. By using the Benders decomposition method, the intractable optimization problems 

can be solved, such that this method is expected for microgrid OPF problems. 

However, from the above literature review, there is a research gap, i.e., optimization models 

considering tie-line switching from the grid-connected to the islanded operation mode are not 

well developed. Thus, when the main grid suffers from contingency, the microgrid operation 

cannot be optimized after sudden disconnection from the main grid for a secure islanded operation 

purpose.  

Considering the main grid in contingency, efficient models of islanded microgrid power flow 

are imperative. Due to no slack bus and system frequency fluctuations, the conventional power 

flow model cannot be used for islanded microgrids. To this point, power flow algorithms specific 

for islanded microgrids have become a research focus. In [105] and [106], the distribution 

generation (DG) with highest rating is selected as slack bus then conventional power flow is 

applied. In [107], the authors take Newton trust regions to solve the nonlinear power flow problem. 

In [108], a modified Newton Raphson algorithm is proposed for the islanded microgrid power 

flow. These power flow algorithms all include non-linear terms which aggravate the computing 

burden when they are involved in OPF problems. Recently, in [77] and [78], two linear power 

flow models for radial or weakly meshed islanded microgrids considering droop control are 

proposed. Considering their high computing efficiency, these power flow methods are expected 

to be adapted in islanded microgrid OPF problems. 

Besides, to address uncertainties caused by RESs and loads, stochastic programming methods 

can be used for microgrid OPF problems [99]. In order to enhance the computing speed of 

stochastic programming, a probabilistic modelling method is introduced by [100] to generate 

representative scenarios of uncertainty realizations. Thus, a stochastic OPF method with 

probabilistic modelling is expected. 

In summary, the research gaps are found in the literature, e.g., low efficiency of conventional 

OPF methods, no consideration of tie-line switching from the grid-connected to the islanded mode, 

and heavy uncertainties of renewable power generation. To fill these research gaps, this chapter 

proposes a new stochastic security-constrained OPF method for microgrids. The major 

contributions of this chapter include the following.  
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1. A new OPF problem for microgrids is formulated with consideration of tie-line 

switching from the grid-connected to the islanded mode while the main grid in contingency. 

2. A new Benders decomposition based solution algorithm is developed to solve the 

proposed OPF problem, thus guaranteeing the system security. 

3. A stochastic programming method with probabilistic modelling is applied for the 

proposed security-constrained OPF method to deal with uncertainties.  

The remainder of this paper is organized as follows. Chapter 4.2 introduces mathematical 

formulations of microgrid OPF in both grid-connected and islanded modes. Chapter 4.3 presents 

integration of two OPF problems with security constraints and a new Benders decomposition 

based solution algorithm. Chapter 4.4 extends the deterministic OPF model to a stochastic one 

with probabilistic modelling to deal with uncertainties. Chapter 4.5 carries out numerical 

simulations of the proposed OPF model with different tests and demonstrates results. At last, 

Chapter 4.6 concludes the whole paper. 

 

4.2 Optimal Power Flow for Microgrid 

In this section, firstly, two microgrid OPF models for the grid-connected and the islanded 

operation modes are developed, respectively. Then, a BFS algorithm is introduced in this section, 

for solving the proposed microgrid OPF models. 

4.2.1 Grid-Connected OPF Model 

4.2.1.1 Objective Function 

The objective of grid-connected OPF aims to minimize the total operating cost. The objective 

function is formulated as below. 

𝑓𝑔𝑐 = 𝑚𝑖𝑛 ∑(𝑎𝑖𝑃𝐺𝑖
0 + 𝑏𝑖) + 𝑐𝑃𝑔𝑟𝑖𝑑

𝑖∈𝑛𝑔

 
(4.1) 

This objective function consists of the power generation cost of each microturbine (𝑎𝑖𝑃𝐺𝑖
0 +

 𝑏𝑖) and the power exchange cost with the main grid 𝑐𝑃𝑔𝑟𝑖𝑑. 
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4.2.1.2 Power Flow Constraints  

To fully consider the system operating conditions, this chapter applies the direct load flow 

model introduced in [49] as follows.  

𝑃𝑘 + 𝑗𝑄𝑘 = (𝑃𝐺𝑖
0 + 𝑗𝑄𝐺𝑖

0 ) − (𝑃𝐿𝑘 + 𝑗𝑄𝐿𝑘) + 𝑃𝑝𝑣𝑘 , 𝑖 ∈ 𝑛𝑔, 𝑘 ∈ 𝑛𝑏 (4.2) 

𝑰𝒏𝒐𝒅𝒆𝒌 =
𝑃𝑘 − 𝑗𝑄𝑘

𝑉𝑘
  , 𝑘 ∈ 𝑛𝑏 (4.3) 

𝑰𝒃𝒓𝒂𝒏𝒄𝒉 = [𝑩𝑰𝑩𝑪 ]𝑰𝒏𝒐𝒅𝒆 (4.4) 

∆𝑼 = [𝑩𝑪𝑩𝑽] 𝑰𝒃𝒓𝒂𝒏𝒄𝒉 (4.5) 

𝑽 =  𝑽𝒓 − ∆𝑼 (4.6) 

𝑃𝑔𝑟𝑖𝑑 = 𝑅𝑒(𝑉0 𝐼𝑏𝑟𝑎𝑛𝑐ℎ 1
∗) − 𝑃𝐺1 (4.7) 

Eq. (4.2) indicates active and reactive power injections at bus k, which are composed by 

microturbine output power, loads and photovoltaic (PV) output power. (4.3) calculates the current 

injection at bus k. Branch current and branch voltage drop are calculated by (4.4) and (4.5), 

respectively. BIBC and BCBV are two matrices derived based on the network topology, and the 

details of how to derive these two matrices can be found in [49]. (4.6) is used to calculate the bus 

voltage by the reference voltage 𝑉𝑟  minus the branch voltage drop. In this chapter, for grid-

connected operation mode, 𝑉𝑟 is equal to 𝑉0, since the root bus, i.e., bus 1 is connected to the 

main grid via the substation.  

Particularly, with Fig. 4.1 for illustration, (4.7) calculates the active power exchanged 

between the microgrid and the main grid, i.e., 𝑃𝐺𝑟𝑖𝑑. It is noted that a positive value of 𝑃𝐺𝑟𝑖𝑑 

indicates the main grid supplies power to the microgrid, while a negative value means the main 

grid generates power to the main grid. Herein, 𝑉0 is the substation voltage of the microgrid in 

the grid-connected mode. With the neglectable voltage drop, it is assumed that the voltage of bus 

1 is equal to 𝑉0. Besides, 𝐼𝑏𝑟𝑎𝑛𝑐ℎ1 is the current through the branch starting from bus 1, which 

connects bus 1 and bus 2 in the illustration figure. Moreover, 𝑅𝑒(𝑉0𝐼𝑏𝑟𝑎𝑛𝑐ℎ 1
∗) means the active 

power through the branch starting from bus 1. The microturbine installed at bus 1 is defined as 
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MT1, and 𝑃𝐺1 indicates the real-time active power generated at bus 1. Since droop control is not 

applied in the grid-connected mode, 𝑃𝐺1 is a constant power output setpoint in the OPF. Based 

on the Kirchhoff law, the active power from bus 1 to bus 2, i.e., 𝑅𝑒(𝑉0𝐼𝑏𝑟𝑎𝑛𝑐ℎ 1
∗) is the sum of 

𝑃𝐺1 and 𝑃𝐺𝑟𝑖𝑑, so that eq (4.7) holds.  

Eq. (4.2)-(4.7) can be used as power flow constraints in an OPF problem for the grid-

connected operation mode. Detailed explanation of the direct load flow model can be found in 

[49].  

Main Grid

Substation

Bus 1 Bus 2

MT1

Microgrid

 

Figure 4.1. Illustration for Active Power Exchange in Grid-Connected Mode. 

4.2.1.3 Operation Constraints 

This OPF model involves the follow operation constraints. 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑘 ≤ 𝑉𝑚𝑎𝑥  , 𝑘 ∈ 𝑛𝑏 (4.8) 

−𝐼𝑏𝑟𝑎𝑛𝑐ℎ,𝑏
𝑚𝑎𝑥 ≤ 𝐼𝑏𝑟𝑎𝑛𝑐ℎ,𝑏 ≤ 𝐼𝑏𝑟𝑎𝑛𝑐ℎ,𝑏

𝑚𝑎𝑥 , 𝑏 ∈ 𝐵 (4.9) 

𝑃𝐺𝑖
0 2

+ 𝑄𝐺𝑖
0 2

 ≤ 𝑆𝐺𝑖
𝑐𝑎𝑝 2

, 𝑖 ∈ 𝑛𝑔 (4.10) 

The operation constraints (4.8) and (4.9) represent the bus voltage requirement and the 

transmission line capacity limit. (4.10) is the microturbine power capacity limit.  

In this grid-connected OPF model, microturbine power output setpoints 𝑃𝐺𝑖
0  and 𝑄𝐺𝑖

0  are 

the control variables. 

𝑃𝐺𝑟𝑖𝑑 

𝑃𝐺1 

𝑉0 𝑅𝑒(𝑉0𝐼𝑏𝑟𝑎𝑛𝑐ℎ1
∗) 
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4.2.2 Islanded OPF Model 

4.2.2.1 Objective Function 

The objective of islanded OPF also aims to minimize the total operating cost as follows. 

𝑓𝑖 = 𝑚𝑖𝑛 ∑(𝑎𝑖𝑃𝐺𝑖 + 𝑏𝑖)

𝑖∈𝑛𝑔

+ ∑ 𝑑𝑘𝐿𝑆 ∙ 𝑃𝐿𝑘

𝑘∈𝑛𝑏

 
(4.11) 

Herein, 𝐿𝑆 is the load shedding rate (%), as one control variable in the microgrid islanded 

operation mode. Thus, 𝐿𝑆 ∙ 𝑃𝐿𝑘  is the load shed at bus 𝑘 , and 𝑑𝑘𝐿𝑆 ∙ 𝑃𝐿𝑘  calculates the 

corresponding load shedding penalty cost.  

In addition to the microturbine power generation cost (𝑎𝑖𝑃𝐺𝑖 + 𝑏𝑖), the objective function 

of the islanded OPF also takes the load shedding penalty cost 𝑑𝑘𝐿𝑆 ∙ 𝑃𝐿𝑘 into account. 

4.2.2.2 Droop Control Functions 

To control the system frequency and the bus voltages, droop control functions are enabled in 

the microturbines. The droop control functions are formulated as below. 

𝑃𝐺𝑖 = 𝑃𝐺𝑖
0 +  

∆𝑓

𝑚𝑝𝑖
  , 𝑖 ∈ 𝑛𝑔 (4.12) 

𝑄𝐺𝑖 = 𝑄𝐺𝑖
0 + 

𝑉𝑘 − 𝑉0

𝑚𝑞𝑖
  , 𝑖 ∈ 𝑛𝑔 (4.13) 

The microturbine real-time power outputs (𝑃𝐺𝑖 and 𝑄𝐺𝑖) are sum of the constant setpoints 

(𝑃𝐺𝑖
0  and 𝑄𝐺𝑖

0 ) and the real-time variations responding to the frequency and voltage deviations. 

In (4.12) and (4.13), 𝑚𝑝𝑖  and  𝑚𝑞𝑖  are active power and reactive power droop gains of 

microturbine 𝑖, respectively. When the system frequency and the local bus voltages vary, the 

microturbine power outputs respond to the corresponding deviations of the system frequency and 

the bus voltages. 

4.2.2.3 Power Flow Constraints 

Considering varying system frequency and reference bus voltage, a power flow model from 

[77] is used as constraints in the optimization problem and shown below. 
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𝑃𝑘 + 𝑗𝑄𝑘 = (𝑃𝐺𝑖 + 𝑗𝑄𝐺𝑖) − (1 − 𝐿𝑆)(𝑃𝐿𝑘 + 𝑗𝑄𝐿𝑘) + 𝑃𝑝𝑣𝑘 , 𝑖 ∈ 𝑛𝑔 , 𝑘 ∈ 𝑛𝑏 (4.14) 

𝑰𝒏𝒐𝒅𝒆𝒌 =
𝑃𝑘 − 𝑗𝑄𝑘

𝑉𝑘
  , 𝑘 ∈ 𝑛𝑏 (4.15) 

𝑰𝒃𝒓𝒂𝒏𝒄𝒉 = [𝑩𝑰𝑩𝑪] 𝑰𝒏𝒐𝒅𝒆 (4.16) 

∆𝑼 = [𝑩𝑪𝑩𝑽] 𝑰𝒃𝒓𝒂𝒏𝒄𝒉 (4.17) 

𝑽 =  𝑉𝒓 − ∆𝑼 (4.18) 

∆𝑓 = (−𝑚𝑝𝑒𝑞)[𝑃𝐿1 − 𝑃𝐺1
0 + 𝑅𝑒 (∑𝑈1𝐼1𝑗

∗ )] (4.19) 

∆𝑉𝑟 = (−𝑚𝑞𝑒𝑞)[𝑄𝐿1 − 𝑄𝐺1
0 + 𝐼𝑚(∑𝑈1𝐼1𝑗

∗ )] (4.20) 

𝑉𝑟 = 𝑉0 − ∆𝑉𝑟 (4.21) 

𝑚(.)𝑒𝑞 = (∑𝑚(.)𝑖
−1)−1 (4.22) 

Models (4.14)-(4.18) share the same meanings with (4.2)-(4.6). It is worth noting that 

emergency load shedding is considered in islanded microgrid operation and the loads are 

determined by the shedding rate 𝐿𝑆. The system frequency deviation is determined in (4.19) by 

multiplying the system equivalent active power droop gain 𝑚𝑝𝑒𝑞 and the summed active power 

variation at reference bus (bus 1). Similar with (4.19), the reference bus voltage drop ∆𝑈𝑟 is 

calculated in (4.20) by multiplying the system equivalent reactive power droop gain 𝑚𝑞𝑒𝑞 and 

the summed reactive power variation at reference bus. Herein, the microturbine installed at bus 1 

is defined as MT1, and 𝑃𝐺1
0  and 𝑄𝐺1

0  are the active power and reactive power output setpoints. 

Besides, due to an islanded microgrid, the reference bus voltage 𝑉𝑟 is not equal to the default 

value 𝑉0, but it is required to be updated by (4.21). Last, (4.22) shows the calculation of the 

equivalent system droop gains.  

Eq. (4.14)-(4.22) can be used as power flow constraints in an OPF problem for the islanded 

operation mode. 
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4.2.2.4 Operation Constraints 

This OPF model involves the follow operation constraints. 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑘 ≤ 𝑉𝑚𝑎𝑥  𝑘 ∈ 𝑛𝑏 (4.23) 

−𝐼𝑏𝑟𝑎𝑛𝑐ℎ,𝑏
𝑚𝑎𝑥 ≤ 𝐼𝑏𝑟𝑎𝑛𝑐ℎ,𝑏 ≤ 𝐼𝑏𝑟𝑎𝑛𝑐ℎ,𝑏

𝑚𝑎𝑥 , 𝑏 ∈ 𝐵 (4.24) 

𝑃𝐺𝑖
2 + 𝑄𝐺𝑖

2  ≤ 𝑆𝐺𝑖
𝑐𝑎𝑝 2

   , 𝑖 ∈ 𝑛𝑔 (4.25) 

−∆𝑓𝑚𝑎𝑥 ≤ ∆𝑓 ≤ ∆𝑓𝑚𝑎𝑥 (4.26) 

−∆𝑉𝑟,𝑚𝑎𝑥 ≤ ∆𝑉𝑟 ≤ ∆𝑉𝑟,𝑚𝑎𝑥 (4.27) 

In addition to the constraints in the grid connected OPF, (4.23) to (4.25), there are three new 

operation constraints. Moreover, (4.26) and (4.27) limit the system frequency and the reference 

bus voltage. 

In this islanded OPF model, the real-time microturbine power outputs 𝑃𝐺𝑖 and 𝑄𝐺𝑖 as well 

as the load shedding rate 𝐿𝑆 are the control variables. In addition, it is noted that the islanded 

OPF model is not for an independent problem, but it is treated as response of the microgrid to 

disconnection from the main grid during a contingency. Thus, when the power system encounters 

a contingency, the microgrid automatically switches from the grid-connected to the islanded mode 

with the islanded OPF decision. Hence, the control variables in the grid-connected OPF model, 

i.e. 𝑃𝐺𝑖
0  and 𝑄𝐺𝑖

0  must be considered as constants in the islanded OPF model. 

4.2.3 Backward Forward Sweep Algorithm 

The above two OPF models require update of system operating condition state variables, i.e., 

the bus voltages for the grid-connected OPF, as well as the bus voltages, the system frequency 

and the reference bus voltage for the islanded OPF. By applying a BFS algorithm, these values 

are calculated iteratively until they converge. This algorithm can be presented as follows. 

Step 1 Calculate all of system operating condition state variables with the determined control 

variables. 
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Step 2 Check the convergence of the bus voltages. If the errors are beyond the convergence 

threshold, then update the bus voltages and return to Step 1. If the errors are under the convergence 

threshold, the bus voltages are kept. 

Step 3 Check the convergence of the system frequency.  If not converging, then, update the 

system frequency and return to Step 1; otherwise keep the current system frequency.  

Step 4 Check the convergence of the reference bus voltage. If not converging, then, update 

the reference bus voltage and return to Step 1; otherwise keep the current reference bus voltage 

and terminate the algorithm.  

Depending on the numbers of the system operating condition state variables, the grid-

connected OPF only requires one loop for the bus voltages, while the islanded OPF requires three 

loops. The details of this algorithm can be found in [102]. 

 

4.3 Security-Constrained OPF for A Microgrid 

Based on the OPF models for the grid-connected and the islanded operation modes, a 

security-constrained OPF model is firstly formulated. The OPF model aims to minimize 

generation cost in a microgrid working in the grid-connected mode with full consideration of tie-

line switching into the islanded mode with load shedding, which forms an optimization problem. 

Additionally, a coupling constraint is developed and used for the microgrid automatic 

disconnection. 

Then, to solve this security-constrained OPF problem, this chapter proposes a Benders 

decomposition based solution algorithm which involves the BFS algorithm for microgrid power 

flow calculation. This algorithm can guarantee a feasible solution of the secure operation by 

Benders cuts while ensuring optimality by minimizing the total operating cost covering generation 

and emergency load shedding. 

4.3.1 Security-Constrained OPF Model 

When system contingency occurs, microgrids can automatically disconnect from the main 

grid to keep supplying power to local loads. However, during this process, the islanded microgrids 
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may become unstable, due to possible large power imbalances. To guarantee system security for 

the microgrids after disconnection, tie-line switching from the grid-connected to the islanded 

mode is expected to be considered and modelled in the microgrid OPF. Thus, this chapter 

proposes a security-constrained OPF model considering tie-line switching, which is formulated 

as an optimization problem. 

The objective is to minimize the total operating cost for both grid-connected and islanded 

operation modes. Hence, the grid-connected cost 𝑓0(𝑥0, 𝑢0) corresponding to (4.1) and the 

islanded cost 𝑓1(𝑥1, 𝑢1) corresponding to (4.11) are premeditated and combined together. Both 

grid-connected and islanded OPF models are used to formulate the following security-constrained 

OPF model with full consideration of tie-line switching process. 

𝑚𝑖𝑛𝑓𝑔𝑐(𝑥0, 𝑢0) + 𝑓𝑖(𝑥1, 𝑢1) (4.28) 

s.t.                   𝑔0(𝑥0, 𝑢0) = 0 (4.29) 

ℎ0(𝑥0, 𝑢0) ≤ ℎ0
𝑚𝑎𝑥 (4.30) 

𝑔1(𝑥1, 𝑢1) = 0 (4.31) 

ℎ1(𝑥1, 𝑢1) ≤ 𝜇 ∙ ℎ0
𝑚𝑎𝑥 (4.32) 

|𝑢1 − 𝑢0| ≤ 𝜀𝑚𝑎𝑥 (4.33) 

Herein, 𝑥  and 𝑢  represent state variables and controllable variables, respectively, and 

subscripts 0 and 1 means the grid-connected and islanded modes, respectively. Equality constraint 

set (4.29) presents the power flow constraints (4.2)-(4.7) and inequality constraint set (4.30) 

denotes the operation constraints (4.8)-(4.10) in the grid-connected mode. Similarly, (4.31) and 

(4.32) express the equality constraints (4.12)-(4.22) and inequality ones (4.23)-(4.27), 

respectively, for the islanded mode. It is noted that 𝜇 in (4.32) is a coefficient which determines 

how much the operation constraints in the islanded mode are allowed to be relaxed. 

In addition, due to tie-line switching from the grid-connected mode to the islanded one, the 

microturbines adjust power generation heavily to reduce the deviations of system frequency and 
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bus voltages by droop control functions. To this end, constraint (4.33) is called coupling 

constraints which aims to prevent unrealistic tie-line switching movements from the grid-

connected mode to the islanded one. The following constraint (4.34) is developed and used as 

(4.33) to limit the active power ramping limit of the microturbines. 

|𝑃𝐺𝑖 − 𝑃𝐺𝑖
0 | ≤ ∆𝑃𝐺𝑚𝑎𝑥   𝑖 ∈ 𝑛𝑔 (4.34) 

4.3.2 Benders Decomposition Solution Method 

In the proposed problem (4.28)-(4.33), the OPF models of the grid-connected and the 

islanded operation are combined with the coupling constraints to consider the tie-line switching 

movement, thus guaranteeing security by solving this problem.  

As the proposed problem involves variables of two OPF models, these models can be 

considered as ‘complicating constraints’ [109]. Once ‘complicating constraints’ occur in an 

optimization problem, it means the outcome of one problem affects the solution to another 

problem. Generally, it is hard to minimize (4.28) with complicating constraints, and Benders 

decomposition methods are introduced to solve the proposed problem. In Benders decomposition, 

the original problem is decomposed into a master problem and a sub-problem, while the master 

problem does not include the complicating constraints [110]. Firstly, the master problem is solved 

and the solution indicating the optimized variables is given to the sub-problem. If the sub-problem 

is infeasible, a feasibility cut is generated and added to the master problem. Otherwise, the upper 

and lower bounds are checked for whether convergence is reached. When these two bounds do 

not converge, an optimality cut is generated and added to the master problem. The master problem 

and the sub-problem are solved iteratively until convergence. 

Therefore, a modified Benders decomposition method is developed, and it is specific for the 

proposed security-constrained OPF problem considering tie-line switching. In this method, the 

OPF problem (4.28)-(4.33) is divided into a master problem for the grid-connected OPF and a 

sub-problem for the islanded OPF. In addition, this method generates feasibility cuts to consider 

conditions of possible tie-line switching in the grid-connected master problem. Key steps of this 

method are introduced as follows. 

Step 1 - Optimize the grid-connected OPF master problem. 
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𝑚𝑖𝑛 𝑓𝑔𝑐(𝑥0, 𝑢0) (4.35) 

s.t.                   𝑔0(𝑥0, 𝑢0) = 0 (4.36) 

ℎ0(𝑥0, 𝑢0) ≤ ℎ0
𝑚𝑎𝑥 (4.37) 

By solving this master problem (4.35) to (4.37), a set of 𝑢0  which consists of all the 

setpoints of microturbines is obtained without considering islanded operating conditions. The 𝑢0 

is regarded as constant 𝑢0
𝑟 in the later sub-problem. 

Step 2 - Check feasibility of the islanded OPF sub-problem with the results 𝑢0
𝑟 as parameters, 

by solving the dual problem. 

The islanded OPF sub-problem is formulated below. 

𝑚𝑖𝑛𝑓𝑖(𝑥1, 𝑢1) (4.38) 

s.t.                   𝑔1(𝑥1, 𝑢1) = 0 (4.39) 

ℎ1(𝑥1, 𝑢1) ≤ 𝜇 ∙ ℎ0
𝑚𝑎𝑥 (4.40) 

|𝑢1 − 𝑢0
𝑟| ≤ 𝜀𝑚𝑎𝑥 (4.41) 

The aim of this step is checking the feasibility of islanded OPR problem when disconnecting 

from the main grid. If the sub-problem is feasible then the current 𝑢0
𝑟 is the solution of the whole 

security-constrained OPF problem and the algorithm is terminated. Otherwise, the operation 

constraint (4.40) or the coupling constraint (4.41) cannot be fulfilled, a feasibility cut is required 

to be generated. 

To check the feasibility of the sub-problem (4.38)-(4.41), its dual problem is formulated and 

solved. First, the islanded OPF sub-problem is reformed into the following matrix form.  

minℎ𝑡𝑦1 (4.42) 

s.t.                   𝑳𝑦0
∗ + 𝑵𝑦1 = 𝑤 (4.43) 
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𝑱𝑦0
∗ + 𝑲𝑦1 ≤ 𝑣 (4.44) 

Here, 𝑦0
∗  is the result set of all the variables gained in Step 1, i.e., 𝑥0  and 𝑢0 , while 𝑦1 

represents all the variables of islanded OPF sub-problem, i.e., 𝑥1 and 𝑢1. 

A dual problem is then formulated as follows. 

max[(𝑱𝑦0
∗ − 𝑣)𝑇𝜑 + (𝑤 − 𝑳𝑦0

∗)𝑇𝜔] (4.45) 

s.t.              𝑲𝑇𝜑 − 𝑵𝑇𝜔 + ℎ = 0, 𝜑 ≥ 0 (4.46) 

Here, 𝜔 and are 𝜑 dual variables for constraints (4.43) and (4.44), respectively. If the dual 

problem is feasible, then the primal problem (4.42)-(4.44) is feasible and this Benders 

decomposition progress will end If the dual problem is unbounded, this means the primal problem 

is infeasible and a feasibility cut is required. 

Step 3 - Generate a feasibility cut for master problem. 

A Benders feasibility cut is generated when the dual problem is unbounded. For generating 

this feasibility cut, the primal problem is relaxed to ensure that a relaxed sub-problem (RSP) is 

always feasible. The RSP programming is expressed as follows. 

min𝟏𝑇𝑅𝑒𝑙  (4.47) 

s.t.                   𝑳𝑦0
∗ + 𝑵𝑦1 = 𝑤 (4.48) 

𝑱𝑦0
∗ + 𝑲𝑦1 ≤ 𝑣 + 𝑬 ∙ 𝑅𝑒𝑙 (4.49) 

Herein, 1 is a vector of 1 and 𝑬 is an identity matrix. 𝑅𝑒𝑙 means the matrix of the relaxed 

variables added to the right side of (4.49) for constraint relaxation. It is obvious that there is 

always a set of 𝑅𝑒𝑙 allowing feasibility of the Rstochastic programming. Thus, the dual variables 

of (4.49) are defined as 𝜑1 and the objective of Rstochastic programming can be obtained as 

𝟏𝑇𝑅𝑒𝑙𝑟. 

With the dual variables, a feasibility cut is generated below. 
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1𝑇𝑅𝑒𝑙𝑟 + (𝑦0 − 𝑦0
∗)𝑇𝑱𝑇𝜑1

𝑟 ≤ 0 (4.50) 

Therefore, Step 3 generates feasibility cuts for the master problem (4.35)-(4.37) until the sub-

problem (4.38)-(4.41) is feasible.  

Step 4 – Reformulate the grid-connected OPF master problem with the generated feasibility 

cut. 

The feasibility cut (4.50) is added and the grid-connected OPF master problem is 

reformulated as follows. 

𝑚𝑖𝑛𝑓𝑔𝑐(𝑥0, 𝑢0) (4.35) 

s.t.                   𝑔0(𝑥0, 𝑢0) = 0 (4.36) 

ℎ0(𝑥0, 𝑢0) ≤ ℎ0
𝑚𝑎𝑥 (4.37) 

Feasibility cut: 

𝟏𝑇𝑅𝑒𝑙𝑟 + (𝑦0 − 𝑦0
∗)𝑇𝑱𝑇𝜑1

𝑟 ≤ 0 

(4.50) 

In this problem, the new feasibility cut is used as a constraint.  

Compared to step 1, it is found that only the feasibility cut is adopted. This is because this 

security-constrained OPF problem aims to optimize the cost of grid-connected mode while 

guaranteeing islanded constraints without violation. In fact, when the sub-problem (4.38)-(4.41) 

is feasible and solved, the solution is naturally optimal without optimality cuts required.  

The whole process of the developed Benders decomposition method is shown in Fig. 4.2 and 

its convergence will be analysed in Chapter 4.5- Case Study.  
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Optimize (4.35)-(4.37) 

Start

Generate a feasibility cut 

(4.50) with (4.47)-(4.49)

Check feasibility of (4.45) (4.46)

Update grid-connected 

OPF with (4.50)

End

Unbounded

Feasible

 

Figure 4.2. Flowchart of Benders Decomposition Method. 

 

4.3.3 Solution Algorithm for Security-Constrained OPF  

With the modified Benders decomposition method, a new solution algorithm is developed 

for the proposed security-constrained OPF problem considering tie-line switching from grid-

connected to islanded mode. This algorithm utilizes and combines the modified Benders 

decomposition method and the BFS algorithm. 

The modified Benders decomposition method is applied as an inner loop to solve the grid-

connected and the islanded OPF problems, as well as generate feasibility cuts. However, this loop 

cannot guarantee OPF results, since the microgrid operating conditions are changing. Thus, an 

outer loop that applies the BFS algorithm to update the microgrid operating conditions is adopted. 

In this outer loop, four sets of variables, i.e., islanded bus voltages, islanded system frequency, 

islanded reference bus voltage and grid-connected bus voltages, are updated and checked for 

convergence. It is noted the bus voltages in both islanded and grid-connected modes may not 

completely converge, due to mutual impacts among such a large number of bus voltages in 

networks. However, despite the bus voltage variations, the objectives can be fully converged, 
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which implies an unchanged solution in terms of the optimization objective. Therefore, this 

chapter also checks the objectives in both islanded and grid-connected modes as alternative 

convergence criteria when the bus voltages cannot fully converge. 

The whole Benders decomposition based solution algorithm is illustrated as a flowchart in 

Fig. 4.3.  

Initialize

Default

Update t=t+1

Benders

decomposition

  Islanded mode bus voltage or 

(3.38) value converged ?

  Islanded mode frequency (3.19) 

converged ?

  Islanded mode reference voltage 

(3.20) converged ?

   Grid connected mode bus 

voltage or (3.35) converged ?

Update islanded 

bus voltage

Update frequency

Update reference 

bus voltage

Update grid 
connected bus 

voltage

End

yes

yes

yes

yes

no

no

no

no

 

Figure 4.3. Solution Algorithm for Security-Constrained OPF. 
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4.4 Stochastic Security-Constrained OPF 

For addressing uncertainties of renewable power generation and load demand, a stochastic 

programming method is adopted for the proposed security-constrained OPF problem. The 

uncertainties are considered as determinate scenarios which are generated with their probability 

distributions through a probabilistic modelling approach [100]. Thus, a stochastic security-

constrained OPF problem is finally developed in this chapter. 

4.4.1 Stochastic Programming Model 

To deal with uncertainties of PV power generation and loads, scenario-based stochastic 

programming methods can be used. The basic model of scenario-based stochastic programming 

is introduced in this sub-section.  

Firstly, the general stochastic programming has the following objective function. 

𝑚𝑖𝑛𝐸𝜉[𝑓(𝑥, 𝑢, 𝜉)] (4.51) 

Herein, 𝑢 is the set of control variables, 𝑥 is the set of state variables and 𝜉 indicates 

certain realization of uncertainties. Under the certain realization of 𝜉, 𝑓(𝑥, 𝑢, 𝜉) is treated as the 

objective of a deterministic problem with 𝜉 as parameters. 𝐸𝜉 is the expectation of 𝑓(𝑥, 𝑢, 𝜉). 

Then, the above objective function can be transformed with realization scenarios, and a 

scenario-based stochastic programming model can be formulated as follows. 

𝑚𝑖𝑛 ∑𝜌𝑠

𝑠𝜖𝑆

𝑓(𝑥, 𝑢, 𝜉𝑠) (4.52) 

s.t.                 𝑔(𝑥, 𝑢, 𝜉𝑠) = 0, ∀𝑠𝜖𝑆 (4.53) 

ℎ(𝑥, 𝑢, 𝜉𝑠) ≤ 0, ∀𝑠𝜖𝑆 (4.54) 

In this model, a set of realization scenarios, 𝜉1, 𝜉2, 𝜉3 , …, 𝜉𝑠  are generated, while their 

probabilities of occurrence are 𝜌1 ,  𝜌2 , 𝜌3 , …,  𝜌𝑠 . 𝑆  represents a set of scenario numbers 

composed by 𝑠 which is the serial number of each scenario. 
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Minimization of the probability weighted objective function is presented by (4.52), while 

(4.53) and (4.54) denote the equality and inequality constraints under all the realization scenarios. 

4.4.2 Probabilistic Modelling of Uncertainties 

Conventionally, scenarios are generated by Monte Carlo sampling techniques and reduced to 

an acceptable number by scenario reduction methods [101]. However, since each realization 

scenario corresponds to a unique group of constraints, the conventional Monte Carlo sampling 

techniques will cause heavy computing burdens. Besides, the reduction methods will reduce the 

accuracy of the scenarios for representing the uncertainty probability distribution. To improve the 

efficiency of the proposed stochastic OPF method, a direct scenario-generating approach 

introduced in [100] is applied.  

With the probability density function (PDF) of the uncertainty, the value of the uncertainty 

𝑃𝑢 is divided into a number of 𝑀 states with limits 𝑃̅𝑚
𝑢 and 𝑃𝑚

𝑢 for the state m. The mean of 

this state is computed as (4.55), which is treated as the value of the interval of [𝑃̅𝑚
𝑢, 𝑃𝑚

𝑢]. 

𝑃𝑚
𝑢 =

∫ 𝑃𝑢𝑃𝐷𝐹
𝑃𝑚

𝑢

𝑃𝑚
𝑢 𝑑𝑃𝑢

∫ 𝑃𝐷𝐹
𝑃𝑚

𝑢

𝑃𝑚
𝑢 𝑑𝑃𝑢

, 𝑚 = 1,2,3,… ,𝑀 

(4.55) 

Then, the occurrence probability of state m defined as 𝜌𝑚
𝑢  is also derived from the PDF of 

the uncertainty as below. 

𝜌𝑚
𝑢 = ∫ 𝑃𝐷𝐹

𝑃𝑚
𝑢

𝑃𝑚
𝑢

𝑑𝑃𝑢, 𝑚 = 1,2,3,… ,𝑀 

(4.56) 

Through this approach, a set of PV power generation states with the total number M, 𝑆𝑃𝑉 =

{𝑃𝑚
𝑃𝑉 , 𝜌𝑚

𝑃𝑉}, and a set of load states with the total number N, 𝑆𝐷 = {𝑃𝑛
𝐷 , 𝜌𝑛

𝐷} can be generated. 

Based on these two sets, a combined set of all PV power generation and load states is formed as 

follows. 

𝑆 = {(𝑃𝑚
𝑃𝑉 , 𝑃𝑛

𝐷), 𝜌𝑠} (4.57) 
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{(𝑃𝑚
𝑃𝑉 , 𝑃𝑛

𝐷)} = 𝜓𝑃𝑉 × 𝜓𝐷 ,  

𝑤ℎ𝑒𝑟𝑒 𝜓𝑃𝑉 = {𝑃𝑚
𝑃𝑉}, 𝜓𝐷 = {𝑃𝑛

𝐷} 

(4.58) 

𝜌𝑠 = 𝜌𝑚
𝑃𝑉 × 𝜌𝑛

𝐷 , ∀(𝑃𝑚
𝑃𝑉 , 𝑃𝑛

𝐷) (4.59) 

{(𝑃𝑚
𝑃𝑉 , 𝑃𝑛

𝐷)} represents a set of combined states calculated by the Cartesian product of the 

sets 𝜓𝑃𝑉 and 𝜓𝐷. Its corresponding joint occurrence probability is 𝜌𝑠. By using this approach, 

a number (M× 𝑁) of combined states as uncertainty realization scenarios are used in the stochastic 

OPF model (4.52)-(4.54). Besides, 𝑀 and 𝑁 are expected to be selected as small as possible to 

avoid heavy computing burdens for the stochastic OPF method. Details of this probabilistic 

modelling approach can be found in [100]. 

4.4.3 Formulation of Stochastic Security-Constrained OPF 

Lastly, with the scenario-based stochastic programming model (4.52)-(4.54) and the 

uncertainty realization scenarios generated as (4.57)-(4.59), the final stochastic security-

constrained OPF is formulated into the following model. 

𝑚𝑖𝑛 ∑𝜌𝑠[𝑓
𝑔𝑐(𝑥0, 𝑢0, 𝜉𝑠) + 𝑓𝑖(𝑥1, 𝑢1, 𝜉𝑠)]

𝑠𝜖𝑆

 (4.60) 

s.t.               𝑔0(𝑥0, 𝑢0, 𝜉𝑠) = 0, ∀𝑠𝜖𝑆 (4.61) 

ℎ0(𝑥0, 𝑢0, 𝜉𝑠) ≤ ℎ0
𝑚𝑎𝑥 , ∀𝑠𝜖𝑆 (4.62) 

𝑔1(𝑥1, 𝑢1, 𝜉𝑠) = 0, ∀𝑠𝜖𝑆 (4.63) 

ℎ1(𝑥1, 𝑢1, 𝜉𝑠) ≤ 𝜇 ∙ ℎ0
𝑚𝑎𝑥, ∀𝑠𝜖𝑆 (4.64) 

|𝑢1 − 𝑢0| ≤ 𝜀𝑚𝑎𝑥 , ∀𝑠𝜖𝑆 (4.65) 

Compared to the deterministic model (4.28)-(4.33) given by Chapter 4.3.1, this stochastic 

security-constrained OPF model makes the objective function as well as all the constraints hold 

under all the uncertainty realization scenarios. 
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In this model, all the scenarios 𝑠 are contained in the set 𝑆 as (4.57), 𝜉𝑠 presents each 

combined state (𝑃𝑚
𝑃𝑉 , 𝑃𝑛

𝐷) from (4.58) and the occurrence probability 𝜌𝑠 is calculated by (4.59). 

The combined states 𝜉𝑠 are involved in the objective function (60) and all the constraints except 

the coupling constraint, i.e. (4.61)-(4.64). Since (4.33) only contains the control variables, the 

corresponding constraint in the stochastic programming, i.e. (4.65), does not contain the 

combined states 𝜉𝑠. However, (4.65) also holds under all the scenarios. 

The Benders decomposition based solution algorithm developed in Chapter 4.3.3 still works 

for this stochastic security-constrained OPF model.  

 

4.5 Case Study 

4.5.1 Test System Description 

A 33-bus distribution system [43] is used as a microgrid in this chapter for case study. It is 

indicated by [77] that this system is suitable for microgrid tests. The predicted active and reactive 

loads are scaled up to 7.43 MW and 4.60 MVar, respectively. There are five microturbines 

installed in the system and their parameters are shown in Table 4.1. Besides, there are eight PV 

systems connected to buses 9, 11, 13, 21, 22, 25, 27 and 29 respectively, and the predicted power 

generation of each PV system is 243kW. 

The price for the energy bought from the main grid is set as 61.7 $/MWh [111]. The 

microturbine generation cost parameters according to [112] are shown in Table 4.2. The load 

shed-ding cost is set as 200 $/MWh. 

Table 4.1 Microturbine Parameters 

Microturbine 

No. 

Bus 

No. 

Capacity 

(MVA) 

Frequency Droop 

Coefficient (p.u.) 

Voltage Droop 

Coefficient 

(p.u.) 

1 1 2 -0.04 -0.04 

2 6 1 -1 -1 

3 13 1.5 -0.2 -0.1 

4 25 1.2 -0.5 -0.3 

5 33 1.4 -0.2 -0.2 
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Table 4.2 Generation Cost Parameters 

Microturbine No. 1 2 3 4 5 

Generation Cost 

($/MWh) 
169.5 186.5 176.3 180.5 177.1 

Bus 1 is treated as the reference bus for both grid-connected OPF (master problem) and 

islanded OPF (slave problem). Moreover, 𝑉𝑚𝑖𝑛  and 𝑉𝑚𝑎𝑥  are 0.95 p.u. and 1.05 p.u., 

respectively. The branch current limit 𝐼𝑏𝑟𝑎𝑛𝑐ℎ,𝑏
𝑚𝑎𝑥  is assumed equal for the whole system as 650A. 

In the islanded mode, the limits of the system frequency deviation and the reference bus voltage 

deviation are set as [-0.02, 0.02] p.u. and [-0.04, 0.04] p.u. In this chapter, the maximal allowed 

percentage of load shedding 𝑙𝑠𝑚𝑎𝑥 is set as 20%. The operation period is set as 30 minutes which 

is practical [113]. 

This simulation is conducted on a 64-bit PC with 4.10GHz CPU and 64 GB RAM utilizing 

YALMIP [86] toolbox in MATLAB platform. The proposed stochastic security-constrained OPF 

problem is solved by GUROBI solver [87]. 

4.5.2 Probabilistic Model of Uncertainties 

Gaussian PDF is used for both PV power generation and loads. The means are set to the 

predicted values and the standard deviations are 0.05 for PV power generation and 0.04 for loads, 

respectively. The applied PDFs are presented in Fig. 4.4.  

Using (4.55) and (4.56), the values of states and the corresponding occurrence probabilities 

states can be obtained. Moreover, since the standard deviation of PV power output is larger than 

that of loads, its state number is determined twice of the load demand one. Hence, the loads are 

divided into 4 states while that of PV power generation is divided into 8 states. 𝑃𝑚
𝑢 and 𝜌𝑚

𝑢  of 

loads and PV power generation are shown in Fig. 4.5. 

These states are then combined to generate (4.57)-(4.59) and used in the stochastic OPF 

model (4.60)-(4.65). 
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Figure 4.4. Probability Density: (a) Load; (b) PV Output. 

 

Figure 4.5. State Occurrence Probability: (a) Load; (b) PV Output. 

4.5.3 Convergence Performance 

Using the modified Benders decomposition method developed in Chapter 4.3.2, the proposed 

stochastic security constrained OPF problem is solved for the further operating condition update. 

The upper bound is the objective value given by (4.28)-(4.33) while the sub-problem (4.38)-

(4.41) is feasible. The lower bound is the result obtained by the optimization problem reformed 

by (4.35) to (4.37). The algorithm converges when the gap between the upper and lower bounds 

is reduced to an acceptable level. This convergence progress is the inner loop of the whole 

Benders decomposition based solution algorithm. 

With the solutions provided by the modified Benders decomposition method, the operating 

conditions are updated by the Benders decomposition based solution algorithm as Fig. 4.3 shows. 

In detail, the values of the system frequency deviation, the objective and the reference bus voltage 

in the islanded mode for each iteration of the outer loop are demonstrated in Fig. 4.6-4.8, 

respectively. 
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Figure 4.6. Convergence Progress of Frequency Deviation. 

 

Figure 4.7. Convergence Progress of Objective Value. 

 

Figure 4.8. Convergence Progress of Reference Bus Voltage. 

Firstly, it is that the initial values of ∆𝑓 , 𝑉𝑟  and 𝑉𝑘  can be estimated in advance for 

reducing iteration times. These sets of initial values are obtained by running grid-connected and 

islanded OPF independently. Eq. (4.19) indicates that the system frequency deviation is actually 

caused by the total active power imbalance.  

Then, by using an estimated frequency deviation given by (4.19), the system frequency 

deviation only drifts within a small range shown by Fig. 4.6, which implies that the sum of ∆𝑃𝐺𝑖 
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can be estimated at the beginning of the algorithm. Similarly, in Fig. 4.7, the OPF objective value, 

which is determined by 𝑃𝐺𝑖 and 𝐿𝑆, also varies within a small range. It indicates that the total 

active power required for the system can also be estimated at the beginning of the algorithm. 

However, the reference bus voltage 𝑉𝑟 has heavier oscillations compared to other iterative 

values, which implies the sum of ∆𝑄𝐺𝑖  is oscillating according to Eq (4.20). The reason is 

because the proposed method sets two system operating conditions to judge whether the innermost 

bus voltage loop is converged or not, as shown in Fig. 4.3. In detail, when the objective value is 

converged, the bus voltages may be still oscillating. Due to droop control, ∆𝑄𝐺𝑖 is oscillating 

and so is the reference bus voltage 𝑉𝑟. Finally, the convergence of 𝑉𝑟 occurs when the sum of 

∆𝑄𝐺𝑖  does not change much. On the other hand, in terms of the optimization model, the 

fundamental reason for this phenomenon is that it is hard to determine the reactive power outputs 

since they are not involved in the objective function. 

Once 𝑉𝑟 is becoming constant after the 13th iteration as shown in Fig. 4.8, the frequency 

deviation and the objective values immediately tend to converge within 3 iterations as shown in 

Fig. 4.6 and 4.7. 

The proposed solution algorithm takes 21 iterations to reach convergence with the total solver 

time of 175.6 seconds. Since the proposed OPF method is designed for a 30-minute operation 

period, the solver time is fully compatible for practical online use. 

4.5.4 Optimization Results 

Applying the Benders decomposition based solution algorithm introduced in Chapter 4.3.3. 

The optimized objective (3.35) is 534.23$, which is efficiently minimized by the proposed OPF 

method. The microturbine setpoints considering islanded mode are optimized and presented in 

Fig. 4.9.  

With considering the possible islanded operation mode, the microturbines No.1 and No.5 

have high active power generation setpoints, while the No.2 and No.3 have high reactive power 

setpoints. Generating active power by microturbines in the grid-connected mode is used for 

avoiding the breakout due to the ramping limits while tie-line switching to the islanded mode. In 

addition, the reactive power is used for voltage regulation when the microgrid becoming islanded. 
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When the microgrid disconnects from the main grid, the frequency decreases with negative 

frequency deviations as shown by Fig. 4.6. Under this condition, the frequency droop control 

works and all the microturbines generate more active power than the setpoints. 

 

Figure 4.9. Optimized Microturbine Setpoints. 

4.5.5 Robustness Check for Grid-Connected Model 

To check the solution robustness for the grid-connected operation mode, 1000 scenarios are 

randomly by Monte Carlo sampling with the PDFs given in Chapter 4.5.2. These scenarios are 

used generated as uncertainty realizations to test the performance of the proposed stochastic OPF 

method with probabilistic modelling. For comparison, a conventional deterministic OPF method, 

which optimizes the microturbine setpoints for the grid-connected mode with only the predicted 

mean values of the uncertainties, is applied and tested by the same 1000 scenarios. It is noted that 

this conventional method does not consider the possible islanded mode during the optimization 

progress. The result indices, such as the average operating cost, the average and the maximal 

absolute bus voltage deviations, as well as the constraint satisfaction rate for all the 1000 scenarios, 

are obtained and given in Table 4.3. 

Table 4.3 Robustness Check for Grid-Connected Mode 

Method 
Conventi

onal 
Proposed 

Average Operating Cost ($) 348.62 588.89 

Average Absolute Voltage 

Deviation (p.u.)  
0.0309 0.0258 

Maximal Absolute Voltage 

Deviation (p.u.) 
0.0635 0.0542 

Constraint Satisfaction Rate (%) 52.8% 98.2% 
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From the result comparison table, it is seen that even though the average operation cost is 

higher, the proposed stochastic OPF method outperforms the conventional one on the other three 

indices. It is worth noting that the maximal voltage deviation of the proposed method is slightly 

out of the allowed range, while that of the conventional method is far from the allowed 0.05 p.u. 

Moreover, the proposed method can achieve a remarkably high robustness degree against 

uncertainty realizations, with the higher constraint satisfaction rate than the conventional method.  

Considering that it is imperative to keep the operation constraints and reduce the bus voltage 

deviations, a sacrifice on the operating cost is acceptable. Thus, the proposed stochastic OPF 

method is highly suggested. 

4.5.6 Security Check for Islanded Mode 

At last, assuming that there is a contingency in the main grid, the microgrid will automatically 

switch to the islanded operation mode. To check the security of the microgrid operation during 

this tie-line switching action, this applies the 1000 uncertainty realization scenarios generated in 

Chapter 4.5.5 to test the islanded microgrid operation performance with the microturbine setpoints 

obtained by the proposed stochastic security-constrained OPF method. For comparison, the 

conventional grid-connected OPF method which does not consider the possible islanded mode is 

applied as well. 

The proposed stochastic security-constrained OPF method can satisfy all the operation 

constraints under all the 1000 scenarios, which validates full operation security under the 

condition of tie-line switching to the islanded mode. However, the conventional method can only 

achieve secure operation for 3.1% of the uncertainty realization scenarios.  

Therefore, considering that the system operation security is the priority and requires a 100% 

guarantee, the proposed stochastic security-constrained OPF method is superior for practical use. 

 

4.6 Conclusion 

In this chapter, a new stochastic security-constrained OPF problem for microgrids is 

formulated with consideration of tie-line switching from the grid-connected to the islanded mode. 
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Then, this chapter develops a Benders decomposition based solution algorithm to solve this 

problem. 

Via numerical simulations, firstly, the convergence of the proposed solution algorithm is 

demonstrated. Then, with comparison with the conventional method, the high solution robustness 

and fully operation security of the microgrid is validated. Thus, the proposed stochastic security-

constrained OPF method can efficiently address the uncertainty and the security issues when 

considering microgrid tie-line switching from the grid-connected to the islanded mode. 
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Chapter 5 SENSITIVITY REGION BASED OPTIMIZATION 

FOR MAXIMIZING RENEWABLE GENERATION 

HOSTING CAPACITY OF AN ISLANDED MICROGRID 

Renewable energy based distributed generators are key components in islanded microgrids. 

However, their power intermittency and uncertainty may impair power quality and cause system 

operating constraint violations. It is imperative to evaluate and maximize the hosting capacity of 

an islanded microgrid for renewable generation. Besides, conventional optimization methods 

focus on improving the solution robustness on constraints under uncertainties but ignoring that 

on the optimization objective. To address these unsolved issues, a sensitivity region (SR) based 

optimization method for maximizing renewable generation hosting capacity of an islanded 

microgrid is proposed. This chapter firstly proposes an optimization model considering microgrid 

frequency variation and microturbine droop control functionality. Secondly, SR and feasibility-

SR are adopted to quantify solution robustness against uncertainties of renewable generation and 

load. It is expected to enlarge these two regions to cover all the possible uncertainty realizations, 

thus providing robust solutions. Last, this chapter develops an SR based optimization method with 

a new solution algorithm. Through comprehensive numerical simulations, the proposed SR based 

hosting capacity maximization method is verified with high solution robustness on both objective 

and operating constraints. 

 

 

5.1 Introduction 

Increasing countries have committed to changing their energy structure for reducing carbon 

emission and building a sustainable energy future [64]. To achieve targets of decarbonization, 

installations of renewable distributed generations (DGs) such as wind turbines (WTs) and 

photovoltaics (PVs) continue growing at a rapid speed. Such renewable DGs can contribute to 
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supplying cost-effective and clean energy in microgrids, especially islanded microgrids of rural 

areas or islands [114].  

From the perspective of microgrid operation, increasing penetration of renewable generation 

cause various problem, such as network operating constraint variations, and power quality issues 

[65]. Hosting capacity of a network for renewable generation has become a timely focus in 

research. The hosting capacity can be defined as the maximum renewable generation can be 

injected into a network while keeping network operating constraints. The authors of [115] propose 

a hosting capacity evaluation method with active distribution network management schemes, 

which applies on-load tap changers and static var compensators to maximize the hosting capacity 

without technical limit violation. In [116], a hosting capacity assessment method considering load 

and renewable power uncertainties via distributionally robust optimization is proposed. 

Furthermore, the work of [117] aims to coordinate various devices including capacitors, voltage 

regulators, branch switches and DG inverters to maximize the hosting capacity via a mixed integer 

nonlinear model solved by a genetic algorithm (GA). The work [118] formulates an optimization 

model for maximizing renewable generation hosting capacity and minimizing total energy 

consumption in a distribution system considering thermal smart loads. In [119], the authors 

propose an economic dispatch model considering the power balance between supply and demand, 

to maximize PV hosting capacity of a distribution network. In [120], the authors consider 

maximizing hosting capacity as one of multiple objectives in a battery energy storage system 

(BESS) planning problem. The work of [121] further optimizes BESS allocation in an unbalanced 

three phase distribute network to maximize the hosting capacity, with an advanced robust 

optimization method. These existing works focus on distribution networks, and it is imperative to 

assess and maximize the hosting capacity of an islanded microgrid. 

    On the other hand, for microgrids, optimal allocation of DGs has been studied in 

literature to enhance economic and technical benefits. In [122], the authors optimize DG 

placement in a grid-connected microgrid to minimize multiple costs. The work of [123] considers 

dynamic line rating conditions, which depend on seasonal temperatures, in a DG planning model. 

The authors of [124] optimize both DG allocation and microgrid topology via a two-step solution 

procedure. It is indicated by the literature that the optimal DG planning can improve technical 
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and economic benefits for microgrids. However, it is worth noting that these optimization models 

of grid-connected microgrids do not suit for islanded microgrids where system frequency/voltage 

control is essential to be considered and addressed by microturbines. Recently, in [125], the 

authors aim to maximize PV hosting capacity for an off-grid industrial microgrid with BESS 

considering post-fault recovery. This method applies commercial simulation software with an 

iterative algorithm to validate the hosting capacity step by step, which is not a mathematical 

optimization model. 

    Due to increasing beneficial renewable DGs, it is the time to maximize the hosting 

capacity of a droop-controlled islanded microgrid with an accurate power flow model and network 

operating constraints, which has never been reported in the literature. The emerging power flow 

models of islanded microgrid considering droop control are proposed by [77] and [78], and an 

optimal power flow model is further developed by [94]. These models allow development of 

maximizing hosting capacity of an islanded microgrid which is this chapter’s focus. 

Uncertainties of non-dispatchable renewable generation (e.g., wind power) and load have 

significantly adverse impacts on microgrid operation, which are expected to be considered and 

addressed in optimization models. Two mainstream methods for addressing the uncertainty issues 

are introduced below. 

In [126], the authors apply a stochastic programming (SP) method with a large amount of 

uncertain PV power generation scenarios following beta probability distribution. To alleviate the 

heavy computing burden of SP caused by the numerous scenarios, a fast backward scenario 

reduction method [55] or a probabilistic modeling method [100] can be used to reduce the number 

of scenarios. Such scenario-based SP methods are used in the DG planning problems [82] and 

[127], and in the hosting capacity maximization problem [66], with specific probability 

distribution functions for various uncertainties. For these SP models, it is difficult to select the 

efficient number of uncertainty scenarios. A small number of scenarios may lead to failure in 

guaranteeing network operating constraints, while a large number may lead to curse of 

dimensionality. 

Apart from the SP, robust optimization (RO) is another method to address uncertainties. In 

[129] and [122], RO methods are applied for minimizing the costs of DG investment and 
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javascript:;


 

91 
 

microgrid operation by modeling multiple uncertainties into uncertainty sets. Moreover, the 

authors in [130] introduce a resilient planning model considering natural disasters where uncertain 

disasters and sequential impacts are addressed by a RO method. The RO methods can solve the 

problems with high computing efficiency. However, the optimization solutions obtained under 

the worst case of typical uncertainty realization are over-conservative. To this end, a probability-

weighted RO method [10] can be applied to reduce the solution conservativeness, only if long-

term uncertainty probability is available or assumable. 

The SP and RO methods can deal with uncertainties to keep network operating constraints. 

However, besides achieving solution robustness on the constraints, it is expected to keep the 

expected objective under uncertainty realizations, which presents solution robustness on the 

objective [62]. To this point, uncertainty impacts to the hosting capacity have not been addressed, 

leaving a significant research gap. To enhance the solution robustness on the objective, a 

sensitivity region (SR) method is developed in [61] and it aims to make the expected objective 

only vary within an acceptable range. Furthermore, this method is expanded with a feasibility 

sensitivity region (FSR) [131] to guarantee operating states within limits. This work also defines 

an index to directly assess the solution robustness. It is worth noting that these SRs can quantify 

the solution robustness on the objective and constraints under uncertainties. Thus, they are 

expected to be enlarged to cover all possible uncertainty realizations, so that a fully robust solution 

can be obtained. It is sensible and essential to develop a SR based optimization method for 

maximizing the renewable generation hosting capacity of an islanded microgrid. 

To address the unsolved issues mentioned above, this chapter proposes a hosting capacity 

maximization model for an islanded microgrid, and develops a SR based optimization method to 

guarantee solution robustness on both objective and operating constraints. The main contributions 

of this chapter are summarized as follows. 

To address the unsolved issues mentioned above, this chapter proposes a hosting capacity 

maximization model for an islanded microgrid, and develops a SR based optimization method to 

guarantee solution robustness on both objective and operating constraints. The main contributions 

of this chapter are summarized as follows. 
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1) An optimization model is proposed to maximize the renewable generation 

hosting capacity of an islanded microgrid considering system frequency variation 

and microturbine droop control functionality. 

2) SR and FSR are adopted to quantify the solution robustness on objective and 

constraints, respectively, against uncertainties of renewable generation and load.  

3) A SR based optimization method is developed to obtain a robustly maximal 

hosting capacity under the uncertainties. Accordingly, a new solution algorithm 

is proposed. 

The remainder of this chapter is organized as follows. Chapter 5.2 presents mathematical 

formulation of maximizing renewable generation hosting capacity of an islanded microgrid 

(taking WT as an example of renewable DG in this chapter). Chapter 5.3 introduces the SR and 

FSR concepts for the uncertainty modelling, as well as two robustness indices. Chapter 5.4 

presents a SR based optimization method and a new solution algorithm. Chapter 5.5 demonstrates 

numerical simulations of the proposed hosting capacity maximization method with 

comprehensive tests and analysis results. At last, Chapter 5.6 concludes the whole chapter. 

 

5.2 Maximizing Hosting Capacity of An Islanded Microgrid 

Considering WT as the renewable DG, this chapter aims to maximize the hosting capacity of 

an islanded microgrid for the uncertain wind power. Other types of renewable DG such as PVs 

can also be considered when necessary. It is noted that the system frequency and bus voltages 

fluctuate, and they are expected to be controlled within secure ranges. This chapter also takes the 

practice that dispatchable microturbines are enabled with droop control functionality for both 

frequency and voltage control in the islanded microgrid. To provide better power quality, it is 

necessary to minimize the system frequency deviation of the islanded microgrid. Thus, this 

chapter proposes a multi-objective optimization model which maximizes the hosting capacity and 

minimizes the system frequency deviation simultaneously. This chapter adapts a droop-controlled 

microgrid power flow model to obtain the microgrid operating conditions and verify them within 

the secure ranges. 
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5.2.1 Droop-Controlled Microgrid Power Flow 

The direct load flow method [49] is efficient for radial microgrids, and dummy buses can be 

used to allow this method working for weakly meshed microgrids. Based on this method, a further 

droop-controlled power flow model is developed in [77], and it is adapted for estimation of 

islanded microgrid operating condition.  

Distributed energy resources including microturbines should provide both frequency and 

voltage control services in power systems [1]. In islanded microgrids, frequency-active power 

(freq-watt) and voltage-reactive power (volt-var) droop control functions are generally enabled in 

microturbines [77]-[78]. In this chapter, microturbines are capable of providing both freq-watt 

and volt-var droop control. It is noted that other control functions such as voltage-active power 

(volt-watt) function can also be considered and used if necessary 

Firstly, due to system frequency and bus voltage variations, the adjustments on active and 

reactive power outputs ∆𝑃𝑗
𝑀𝑇 and ∆𝑄𝑗

𝑀𝑇 are directly calculated by (5.1) and (5.2), respectively. 

Then, they are added to the optimized power setpoints 𝑃𝑗
𝑀𝑇,0 and 𝑄𝑗

𝑀𝑇,0
 by (5.3) and (5.4). Here, 

𝑃𝑗
𝑀𝑇   and 𝑄𝑗

𝑀𝑇 present the total active and reactive power outputs of the microturbine at bus 𝑗, 

𝑚𝑝𝑗  and 𝑚𝑞𝑗  are frequency and voltage droop coefficients of the microturbines. 𝐹  is the 

system frequency and 𝐹0 is the nominal value. 

 

∆𝑃𝑗
𝑀𝑇 =

∆𝐹

𝑚𝑝𝑗
, ∀𝑗 (5.1) 

∆𝑄𝑗
𝑀𝑇 = 

∆𝑉𝑗

𝑚𝑞𝑗
 , ∀𝑗 (5.2) 

𝑃𝑗
𝑀𝑇 = 𝑃𝑗

𝑀𝑇,0  +  ∆𝑃𝑗
𝑀𝑇 , ∀𝑗 (5.3) 

𝑄𝑗
𝑀𝑇 = 𝑄𝑗

𝑀𝑇,0  +  ∆𝑄𝑗
𝑀𝑇 , ∀𝑗 (5.4) 

Secondly, the apparent power injection 𝑃𝑗 + 𝑗𝑄𝑗 at bus 𝑗 is calculated by (5.5) with the 

microturbine power 𝑃𝑗
𝑀𝑇 + 𝑗𝑄𝑗

𝑀𝑇, wind power generation 𝑃𝑗
𝑊𝑇 and load 𝑃𝑗

𝐿𝐷 + 𝑗𝑄𝑗
𝐿𝐷, while 
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the current injection 𝐼𝑗
𝑛𝑜𝑑𝑒 from bus 𝑗 is calculated by (5.6). 𝑉𝑗

∗ denotes the conjugate of the 

bus voltage 𝑉𝑗. 

𝑃𝑗 + 𝑗𝑄𝑗 = (𝑃𝑗
𝑀𝑇 + 𝑗𝑄𝑗

𝑀𝑇) + 𝑃𝑗
𝑊𝑇 − (𝑃𝑗

𝐿𝐷 + 𝑗𝑄𝑗
𝐿𝐷), ∀𝑗 (5.5) 

𝐼𝑗
𝑛𝑜𝑑𝑒 =

𝑃𝑗 − 𝑗𝑄𝑗

𝑉𝑗
∗ , ∀𝑗 (5.6) 

Thirdly, the bus voltages 𝑉𝑗 expressed by a vector 𝑽 are calculated through (5.7)-(5.9). 

Here, 𝑰𝒃𝒓𝒂𝒏𝒄𝒉 stands for the vector of branch current, ∆𝑽 for the vector of the bus voltage 

deviation to the reference bus voltage. BIBC and BCBV are two the parameter matrices derived 

based on the microgrid topology and branch impedances, while the details are introduced in [49]. 

𝑽𝑟 denotes the vector of reference bus voltage 𝑉𝑟. 

𝑰𝒃𝒓𝒂𝒏𝒄𝒉 = [𝑩𝑰𝑩𝑪] 𝑰𝒏𝒐𝒅𝒆 (5.7) 

∆𝑽 = [𝑩𝑪𝑩𝑽] 𝑰𝒃𝒓𝒂𝒏𝒄𝒉 (5.8) 

𝑽 = 𝑽𝒓 − ∆𝑽 (5.9) 

Further, the system frequency drop ∆𝐹 is calculated in (5.10) by multiplying the system 

equivalent active power droop coefficient 𝑚𝑝𝑒𝑞  and the total active power imbalance at the 

reference bus. Similarly, the reference bus voltage drop ∆𝑉𝑟 is obtained in (5.11) by multiplying 

the system equivalent voltage droop coefficient 𝑚𝑞𝑒𝑞 and the total reactive power imbalance. 

The subscript 𝑟  indicates the reference bus. Functions 𝑅𝑒(𝑧)  and 𝐼𝑚(𝑧)  are used for 

obtaining the real and imaginary parts of a complex number 𝑧, respectively. 

∆𝐹 = 𝑚𝑝𝑒𝑞 [𝑃𝑟
𝑙𝑜𝑎𝑑 + 𝑅𝑒 (∑𝑉𝑟𝐼𝑟

𝑏𝑟𝑎𝑛𝑐ℎ∗) − 𝑃𝑟
𝑀𝑇,0] (5.10) 

∆𝑉𝑟 = 𝑚𝑞𝑒𝑞 [𝑄𝑟
𝑙𝑜𝑎𝑑 + 𝐼𝑚(∑𝑉𝑟𝐼𝑟

𝑏𝑟𝑎𝑛𝑐ℎ∗) − 𝑄𝑟
𝑀𝑇,0] (5.11) 

These system equivalent droop coefficients can be computed as below. 
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𝑚(.)𝑒𝑞 = (∑𝑚(.)𝑗
−1 )−1 (5.12) 

The bus connected to the main microturbine is expected to be chosen as the reference bus 

which is treated as the slack bus of the islanded microgrid system. It is worth noting that in an 

islanded microgrid the voltage of this slack bus is varying rather that assumed as a constant in a 

grid-connected microgrid. Hence, the reference bus voltage 𝑉𝑟  is required to be updated as 

follows. 𝑉0 is the nominal voltage, i.e., 1 p.u.  

𝑉𝑟 = 𝑉0 − ∆𝑉𝑟 (5.13) 

The system frequency 𝐹 can be updated by 𝐹0 − ∆𝐹. 

The above models are conducted iteratively to obtain the islanded microgrid operating 

conditions, including the system frequency and the bus voltages, until the changes of system 

frequency and reference bus voltage decreases into the pre-set thresholds. The detailed iteration 

process can be referred to [94]. 

5.2.2 Optimization Model 

5.2.2.1 Objective Function 

This chapter considers multiple objectives including maximizing the hosting capacity of an 

islanded microgrid and minimizing the system frequency deviation caused by uncertainties. The 

hosting capacity is defined as the maximum amount of wind power that can be injected at all 

candidate buses simultaneously. It can be an assessment result for further system operation or 

wind turbine planning purposes. The objective function is formulated as follows. 

𝑚𝑖𝑛 {− ∑ 𝑃𝑗
𝑊𝑇

𝑗∈𝑀

, |∆𝐹|} (5.14) 

Herein, 𝑃𝑗
𝑊𝑇 means the rating power of WT installation at bus 𝑗. 𝑀 is the set of candidate 

buses where WTs can be installed to inject power into the microgrid. “−” is used to convert the 

maximization objective of wind power generation into a minimization one. ∆𝐹 is the system 

frequency deviation which is obtained by (5.10). |∆𝐹| is the absolute system frequency deviation. 



 

96 
 

To guarantee effectiveness, this multi-objective function can be addressed by a weighted sum 

multi-objective programming method [132]. while 𝜉 is a multiplier determined according to total 

load of the microgrid.  

5.2.2.2 Operating Constraints 

Being obtained by the droop-controlled power flow model, the microgrid operating 

conditions must meet all the following secure operating constraints. 

Constraint (5.15) indicates that the apparent power output of microturbine with the droop 

control should be less than the rated power. 

𝑃𝑗
𝑀𝑇2

+ 𝑄𝑗
𝑀𝑇2

≤ (𝑆𝑗
𝑀𝑇)

2
, ∀𝑗. (5.15) 

The network operating constraints are formulated as below for bus voltage in (5.16), for 

current injection in (5.17) and for branch current in (5.18). Herein, 𝑉𝑚𝑖𝑛/𝑚𝑎𝑥, 𝐼𝑗
𝑐𝑎𝑝

 and 𝐼𝑗
𝑏,𝑐𝑎𝑝

 

denote the corresponding operating limits. 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥, ∀𝑗 (5.16) 

−𝐼𝑗
𝑐𝑎𝑝

≤ 𝐼𝑗
𝑛𝑜𝑑𝑒 ≤ 𝐼𝑗

𝑐𝑎𝑝
, ∀𝑗 (5.17) 

−𝐼𝑗
𝑏,𝑐𝑎𝑝

≤ 𝐼𝑗
𝑏𝑟𝑎𝑛𝑐ℎ ≤ 𝐼𝑗

𝑏,𝑐𝑎𝑝
, ∀𝑗 (5.18) 

Overall, the objective function (5.14) subject to the constraints (5.15)-(5.18) forms the 

proposed multi-objective optimization problem, maximizing the hosting capacity and minimizing 

the system frequency deviation, with the power flow model (5.1)-(5.13) for operating condition 

estimation. In this optimization problem, the control variables include microturbine power 

setpoints 𝑃𝑗
𝑀𝑇,0

 and 𝑄𝑗
𝑀𝑇,0 . In this optimization problem, the control variables include 

microturbine power setpoints 𝑃𝑗
𝑀𝑇,0

 and 𝑄𝑗
𝑀𝑇,0 . 

It is worth noting that the proposed optimization model aims to assess and maximize the 

hosting capacity of an islanded microgrid under a specific operating condition. With the 
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maximized hosting capacity, this chapter aims to provide an insight into how much wind power 

can be injected in an islanded microgrid. To this point, the hosting capacity as a useful assessment 

result can further be used for both short-term operation and long-term planning problems. 

With assumption that the power factor of each bus is constant, the reactive power load 𝑄𝑗
𝑙𝑜𝑎𝑑 

can be calculated with the active power load 𝑃𝑗
𝑙𝑜𝑎𝑑. However, it is noted that 𝑃𝑗

𝑊𝑇 and 𝑃𝑗
𝑙𝑜𝑎𝑑 

are uncertainty variables which significantly impact the optimized objective and the operating 

constraints. 

In the following two sections, SR concepts and a new SR based optimization method are 

proposed to obtain a robust solution for the proposed optimization problem under the uncertainties. 

 

5.3 Sensitivity Region and Robust Index 

To address the uncertainty impacts on the objective function and constraints simultaneously, 

SR concepts and two robustness indices are introduced and utilized.  

The proposed hosting capacity maximization problem can be expressed in a general 

optimization form as (5.19)-(5.21). 

𝑚𝑖𝑛  𝑓(𝒙, 𝒑) (5.19) 

   s.t.                 𝐺(𝒙, 𝒑) ≤ 0 (5.20) 

 𝐻(𝒙, 𝒑) = 0 (5.21) 

Herein, 𝑓  is the objective function. 𝒙  and 𝒑  are the vectors of control variable and 

uncertainty variable, respectively. G and H present the inequality constraints (5.15)-(5.18) and 

equality constraints (5.1)-(5.13), respectively. It is noted that H is specifically for the islanded 

microgrid power flow model. For the proposed hosting capacity maximization problem, the 

control variables include the output power setpoints of microturbines, and the uncertainty 

variables are the load and the wind power generation. 
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5.3.1 Principle of Sensitivity Region 

Firstly, 𝒙0 is a solution of control variables, while 𝒑0 represents the expected values of 

uncertainty. 𝑓(𝒙0, 𝒑0) is regarded as an expected objective result. It is obvious that 𝑓 changes 

with varying 𝒑, and a maximum acceptable changing amount of 𝑓 is denoted as ∆𝑓0. When a 

variation of uncertainty ∆𝒑  realizes, the change in the objective ∆𝑓(𝒙0, 𝒑0, ∆𝒑)  can be 

calculated as the follows. 

∆𝑓(𝒙0, 𝒑0, ∆𝒑) = 𝑓(𝒙0, 𝒑0 + ∆𝒑) − 𝑓(𝒙0, 𝒑0) (5.22) 

For testing the sensitivity of 𝒙0  to the objective, a set of ∆𝒑 centering at 𝒑0  can be 

defined to ensure ∆𝑓(𝒙0, 𝒑0, ∆𝒑) less than or equal to ∆𝑓0, as the follows. 

𝑆(𝒙0, 𝒑0) = {∆𝒑 ∈ 𝑅2: [∆𝑓(𝒙0, 𝒑0, ∆𝒑)]2 ≤ [∆𝑓0]
2} (5.23) 

Taking a 2-dimension space of ∆𝒑 (there are two kinds of uncertainty variable) as an 

example, 𝑆(𝒙0, 𝒑0) can form a SR as Fig. 5.1 shows. 

There are three different types of points describing the uncertainty realization cases. Point A 

is right at the edge of the SR, which means the variation of uncertainty 𝒑 at Point A causes the 

change in the objective ∆𝑓(𝒙0, 𝒑0, ∆𝒑) equal to the acceptable amount ∆𝑓0. Points B and C 

represent the variations of uncertainty cause the changes in the objective smaller and larger than 

the acceptable amount, respectively. Obviously, this SR represents the area of the points like 

Points A and B, meeting the constraint (5.30). 

Point A

Point C
Point B

 

Figure 5.1. Sensitivity Region. 
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For all the uncertainty realization cases within the SR, the objective varies within the 

acceptable amount regarding the expected result. It is regarded that the SR can quantify the 

solution robustness on the objective. Hence, it is expected to enlarge the SR to cover all the 

possible uncertainty realization cases, thus enhancing the solution robustness on the objective. 

5.3.2 Worst-Case Sensitivity Region 

It is hard to measure the size of SR which generally has an asymmetric and irregular shape. 

However, a worst-case scenario of SR can be identified based on the most sensitive direction, 

such that the size of the worst-case SR (WCSR) demonstrated in Fig. 5.2. can be assessed. 

Sensitivity 

Region

 Worst-Case 

Sensitivity Region

Most Sensitive 

Direction 

 

Figure 5.2. Worst-case Sensitivity Region. 

As Fig. 5.2 shows, firstly, the most sensitive direction of the SR, which indicates the shortest 

distance from the edge to 𝒑0, is obtained. Then, with this distance as the radius, a circle centering 

at 𝒑0  is drawn as the WCSR. Thus, to calculate the radius of the WCSR, the following 

optimization model is formulated to be solved. 

min𝑅𝑓(∆𝒑) = [∑|∆𝑝𝑘|𝑞
2

𝑘

]
1
𝑞 

(5.24) 

s.t.                        
|∆𝑓|

∆𝑓0
− 1 = 0 (5.25) 

∆𝑓 = 𝑓(𝒙0, 𝒑0 + ∆𝒑) − 𝑓(𝒙0, 𝒑0) (5.26) 
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This objective function (5.24) aims to find the minimal Euclidian distance from the boundary 

of SR to the origin, i.e., 𝒑0. Besides, 𝑞 in (5.24) is the value to determine the distance norm for 

the solution robustness evaluation. It can be selected as 2 as suggested by [61]. Constraints (5.25) 

and (5.26) ensure that the point leading to the radius of the WCSR is located at the boundary of 

SR. 

5.3.3 Feasibility Sensitivity Region and Worst Case 

The above SR concept can be extended to form a FSR for assessing the solution robustness 

on the constraints. 

Firstly, for a solution 𝒙0 and the nominal values of uncertainty 𝒑0, (5.20) can be written as 

the follows. 

𝑔𝑛(𝒙𝟎, 𝒑𝟎) ≤ 0, ∀𝑛  (5.27) 

Herein, index 𝑛 denote the nth constraint in (5.20).  

Secondly, with a variation of uncertainty ∆𝒑, the following constraint should be held to keep 

the solution robustness.  

𝑔𝑛(𝒙𝟎, 𝒑𝟎 + ∆𝒑) ≤ 0, ∀𝑛  (5.28) 

Then, all the points of ∆𝑝 which fulfill (5.28) can form an area which is defined as an FSR. 

This FSR can quantify the solution robustness on the constraints. 

Similarly, a worst-case FSR (WCFSR) can be identified based on the most sensitive direction 

and the nearest point on the boundary. An example of FSR and its WCFSR are illustrated in Fig. 

5.3. 
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Sensitivity 

Region
 Worst-Case 

Sensitivity Region

Worst-Case Feasibility  

Sensitivity Region

 Feasibility 

Sensitivity 

Region

 

Figure 5.3. Worst-case Feasibility Sensitivity Region. 

In this example, the WCFSR is larger than the WCSR. It is noted that the WCFSR can be 

smaller than or equal to the WCSR, depending on the coverage of the FSR and the SR. 

An optimization model is formulated to obtain the radius of FWCSR as the follows. 

min𝑅𝑔(∆𝒑) = [∑|∆𝑝𝑘|𝑞
2

𝑘

]
1
𝑞 

(5.29) 

s.t.                 max
𝑔

{𝑔𝑛(𝒙0, 𝒑0 + ∆𝒑)}  = 0 (5.30) 

𝐻(𝒙0, 𝒑0 + ∆𝒑) = 0 (5.31) 

This objective function (5.29) aims to find the minimal Euclidian distance from the boundary 

of FSR to the origin, i.e., 𝒑0. Constraint (5.30) ensures all the inequalities under the cases with 

∆𝒑. Constraint (5.31) calculates the islanded microgrid power flow. 

5.3.4 Robustness Index 

It is expected to enlarge the WCSR and WCFSR to cover all the possible realization cases of 

uncertain wind power generation and load. Two robustness indices are introduced to assess 

whether the WCSR and WCFSR are large enough. 

As mentioned, ∆𝒑 space is two-dimensional of uncertain WT output power and load. The 

expected values of uncertainty are further defined as ∆𝑝1,0 and ∆𝑝2,0 for the wind power and 
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load, respectively. The uncertainty varying ranges can also be predicted as [∆𝑝𝑘
𝑚𝑖𝑛 , ∆𝑝𝑘

𝑚𝑎𝑥], 

symmetric centering at the expected values. The uncertainty variables of wind power ∆𝑝1 and 

load ∆𝑝2 are predicted to realize within the corresponding ranges. A tolerance region can be 

formed with normalized ranges [∆𝑝𝑘
𝑚𝑖𝑛∗, ∆𝑝𝑘

𝑚𝑎𝑥∗]  as a square covering all the possible 

realization cases, as shown in Fig.5.4.  

Exterior 

Circle 

Normalized 

Tolerance Region

Radius of 

Exterior Circle

 

Figure 5.4. Normalized Tolerance Region. 

To ensure a robust solution on both objective and constraints, the allowed WCSR and 

WCFSR should be larger than or equal to the exterior circle of the tolerance region. The radius of 

this exterior circle is defined as 𝑅𝐸 . Then, two robustness indices for the objective and the 

constraints respectively can be defined as follows.  

𝜂𝑓 =
𝑅𝑓

𝑅𝐸
 (5.32) 

𝜂𝑔 =
𝑅𝑔

𝑅𝐸
 (5.33) 

Herein, 𝑅𝑓 and 𝑅𝑔 are the radii of WCSR and WCFSR, respectively, which are obtained 

by (5.24) and (5.29). 

These two indices 𝜂𝑓 and 𝜂𝑔 are expected greater than or equal to the corresponding pre-

defined robustness targets 𝜂𝑓
𝑇 and 𝜂𝑔

𝑇. By setting the robustness targets as 1, it means the WCSR 

and WCFSR can cover the tolerance region, thus achieving a robust solution on both objective 

and constraints. In addition, by setting the robustness targets as different values, the optimization 
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priority and the solution robustness can be adjusted according to operator expectations. Sensitivity 

analysis on the robustness targets is given in Chapter 5.5.6. 

5.4 Sensitivity Region Based Optimization Method 

With the SR concepts and the robustness indices given in Chapter 5.3, a SR based 

optimization method is developed for maximizing the renewable generation hosting capacity of 

an islanded microgrid. An optimization model is formulated first, followed by a new solution 

algorithm which contains the islanded microgrid power flow and the assessment of the robustness 

indices. 

5.4.1 Sensitivity Region Based Optimization Model 

This chapter proposes to minimize the objective (5.14), while satisfying the constraints and 

keeping the two robustness indices 𝜂𝑓 and 𝜂𝑔 greater than or equal to the robustness targets 

𝜂𝑓
𝑇 and 𝜂𝑔

𝑇, respectively. A SR based optimization model is formulated and introduced as follows. 

𝑚𝑖𝑛  𝑓(𝒙, 𝒑0) (5.34) 

 s.t.                       𝐺(𝒙, 𝒑0) ≤ 0 (5.35) 

𝐻(𝒙, 𝒑0) = 0 (5.36) 

𝜂𝑓 ≥ 𝜂𝑓
𝑇 (5.37) 

𝜂𝑔 ≥ 𝜂𝑔
𝑇 (5.38) 

Objective function (5.34) is formulated by (5.14) with 𝒙 including the control variables, i.e., 

𝑃𝑗
𝑀𝑇,0

 and 𝑄𝑗
𝑀𝑇,0

, and 𝒑0 for the mean values of the uncertain load and wind power generation. 

Inequality constraint (5.35) is formed by (5.15)-(5.18) and the islanded microgrid power flow 

model (5.1)-(5.13) is expressed as (5.35). Constraints (5.37) and (5.38) indicated the requirements 

for the robustness indices on the objective and constraints. 
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It is noted that the proposed SR based optimization method uses the uncertainty varying 

ranges (introduced in Chapter 5.3) to cover all the uncertainty realizations rather than specified 

profiles of uncertainty.  

 

5.4.2 Solution Algorithm 

It is impossible to directly solve the above optimization problem, due to the subproblems 

(5.24)-(5.26) and (5.29)-(5.31) for calculating the radii of WCSR and WCFSR, as well as the 

iterative process of the islanded microgrid power flow. Thus, using the GA framework [133], this 

chapter develops a new solution algorithm.  

This solution algorithm is iterative with the following key steps including generating 

solutions, conducting the islanded microgrid power flow, checking the constraints and the 

robustness indices. 

Step 1: A series of GA parameters are set, including population size, maximum generations, 

crossover fraction and mutation rate.  

Step 2: The first generation is initialized according to the variable bounds. 

Step 3: The individuals providing feasible solutions 𝒙0 which can be obtained by (5.34) are 

applied with checking the constraints (5.35)-(5.36). In detail, the islanded microgrid power flow 

(5.1)-(5.13) is conducted to get the system frequency, bus voltages and line currents. These state 

variables are checked if they meet the constraints (5.15)-(5.18).  

Step 4: If an individual has any constraint violations, a penalty is added to the individual’s 

objective. For this individual, all out-of-bound absolute values of (5.15)-(5.18) are obtained, and 

the largest value is set as 𝐸𝑚𝑎𝑥. Then, the penalty for this individual is calculated as 𝑃𝑒𝑛1 =

𝐴1 × 𝐸𝑚𝑎𝑥 + 𝐵1. Here, 𝐵1 is a constant number to differentiate the individuals with constraint 

violations from the others. Go to Step 5 for the feasible individuals. 

Step 5: The radius of WCFSR 𝑅𝑔 is obtained by (5.29)-(5.31), the robustness index 𝜂𝑔 is 

evaluated and checked if 𝜂𝑔 ≥ 𝜂𝑔
𝑇. The radius of WCSR 𝑅𝑓 is obtained by (5.24)-(5.26), the 

robustness index 𝜂𝑓 is evaluated and checked if 𝜂𝑓 ≥ 𝜂𝑓
𝑇.  
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Step 6: If an individual does not meet the required feasibility design (i.e., 𝜂𝑔 ≥ 𝜂𝑔
𝑇 ) or 

objective design (i.e., 𝜂𝑓 ≥ 𝜂𝑓
𝑇 ), a penalty is added to the individual’s objective. Under this 

condition, the penalty is calculated as 𝑃𝑒𝑛2 = 𝐴2 × max {(𝜂𝑔
𝑇 − 𝜂𝑔), (𝜂𝑓

𝑇 − 𝜂𝑓)} + 𝐵2. Herein, 

𝐵2 is a constant number to differentiate the individuals with unsatisfying designs from the others. 

Go to Step 7 for the individuals which meet the required feasibility and robustness designs. 

Step 7: The termination criterion, i.e., the minimal fitness value does not change, is checked. 

If the termination criterion is not fulfilled, offspring is generated based on all the individual 

objectives and go to Step 3; otherwise, the algorithm is terminated with an optimized solution. 

The whole solution algorithm is demonstrated in Fig. 5.5. 

GA parameter setting

Initialize first generation

Satisfy termination criterion?

End
Generate offspring based on all the individual 

objective results

Yes
No

Conduct islanded microgrid power flow (5.1)-

(5.13)

Satisfy all constraints (5.15)-(5.18)?

Calculate the radius for constraints (5.15)-(5.18)

Yes

Calculate the radius for objective function (5.14)

                     Satisfy 
                        and

Save the objective result

Yes

No

No

Add penalty in 

objective

     For each individual:

?

 

Figure 5.5. Solution Algorithm for Sensitivity Region Based Optimization. 
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5.5 Case Study 

5.5.1 Test System Description  

In this chapter, a 33-bus distribution system [43] is modified as an islanded microgrid, by 

setting Bus 1 as the reference bus without connected to the up-stream network.  

33-bus system is a widely used standard system for microgrids [77]-[78]. Besides, according 

to [49], the determining factor for effectiveness of BFS is whether the BIBC and BCBV of a 

system can be obtained. In another word, it depends on the system’s topology rather than system’s 

scale. If the system is radial or weakly meshed, its BIBC and BCBV are available. The method 

for obtaining two matrixes of a weakly meshed system is proposed in [49]. In [51], the BFS 

method is used to calculate power loss of a weakly meshed distribution network, which verifies 

the method of [49].  

Another problem caused by system scale is the computing time. Since the algorithms 

proposed in Chapters 2-4 are solved by commercial solver (Gurobi) and their solver time are much 

lower than 15 minutes. (The solver time of most time-consuming algorithm, introduced in Chapter 

4 is 175.6 seconds) A larger system will not cause unacceptable solver time. For the algorithm 

proposed in Chapter 5, since the hosting capacity maximization is not time pressed, the proposed 

algorithm can also be expanded for large-scale systems. Besides, the GA program running time 

can be significantly reduced by parallel computing 

The network topology is demonstrated in Fig. 5.6. This system has been widely used for 

microgrid operation and control tests [77][78][94]. The allowed voltage range is [0.9, 1.1] p.u. In 

addition, the line current limit is 650 A. 
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Figure 5.6. Test Network Topology. 

Five microturbines are installed in the system with the mark “G” and their parameters are 

given in Table 5.1. Using eq. (5.12), the system equivalent frequency/voltage droop coefficients 

is -0.0345 p.u. Since Bus 1 is the reference bus, the microturbine at this bus is regarded as the 

main generator for the islanded microgrid power flow calculation. 

Table 5.1 Microturbines Parameters 

Microturbine 

No. 

Bus 

No. 

Capacity 

(MVA) 

Frequency 

Droop 

Coefficient 

(p.u.) 

Voltage 

Droop 

Coefficient 

(p.u.) 

1 1 1.4 -0.1 -0.1 

2 6 1.4 -0.25 -0.25 

3 13 1.4 -0.15 -0.15 

4 25 1.4 -0.3 -0.3 

5 33 1.4 -0.2 -0.2 

The candidate buses of WT installation are Buses 1, 6, 9, 12, 18, 22, 25, 27, 30, 33, marked 

with red color. 

The candidate buses of wind power injection are Buses 1, 6, 9, 12, 18, 22, 25, 27, 30, 33, 

marked with red color in Fig. 5.6. Note that selection of candidate buses depends on renewable 

source location and adequacy [134], system operating limits on locations, and even sensitivity to 

system operating performance [135]. The proposed hosting capacity maximization method is 

generic to any given set of candidate buses. To validate the applicability of the proposed method, 
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in Section 5.5.8, three additional cases of candidate buses are given for the hosting capacity 

maximization. 

For the proposed solution algorithm, 𝐴1 and 𝐵1 are set as 5000 and 1000, while 𝐴2 and 

𝐵2 are set as 2000 and 5. For the GA, the individual number is set as 200 and the crossover rate 

is 0.8. The termination criterion that the average relative change in the minimum fitness values 

over 50 continuous generations is less than or equal to 1×10-4 is set. 

The numerical simulation is conducted on a 64-bit PC with 4.10GHz CPU and 64 GB RAM 

utilizing the GA toolbox on MATLAB platform. 

5.5.2 Uncertainty Parameters 

The predicted peak loads of active and reactive power are 4.64 MW and 2.88 MVar, 

respectively. The predicted load variation ranges are from 60% to 100% of the peak values. 

On the other hand, it is assumed that the WTs can generate power from 0% to 100 % of the 

rating power. 

∆𝑝1 and ∆𝑝2 are defined as the variations of load and wind power, respectively, such that 

∆𝒑 is on a two-dimensional space. The robustness targets 𝜂𝑓
𝑇 and 𝜂𝑔

𝑇 are set as 1 to achieve a 

full robust solution. It is noted that the variation ranges of loads and wind power must be 

normalized to form a square tolerance region as shown in Fig. 5.4. 

Since the WT rating power 𝑃𝑗
𝑊𝑇  in (5.14) does not have any variations under the 

uncertainties, the objective robustness is only considered and to be guaranteed on the 

minimization of system frequency deviation. Thus, for constraint (5.25), the maximum acceptable 

changing amount ∆𝑓0 is set as 6 % of the expected system frequency under the mean condition. 

5.5.3 Verification of Algorithm Convergence 

Using the proposed solution algorithm, the SR based optimization problem (5.34)-(5.38) is 

solved by 131 generations of GA. The convergence processes of the minimum fitness value 

among all the individuals and the minimum robustness index are presented in Fig. 5.7 and Fig. 

5.8, respectively. It is noted that the fitness value is the sum of objective (5.14) and the penalty if 

any for each individual. For the first two generations, all the individuals lead to constraint 
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violations so that the fitness values are very large. Thus, the minimum fitness values of the first 

two generations are not presented in these two figures. In other words, from the third generation, 

there is at least one individual which does not have any penalty, i.e., one feasible solution can be 

obtained. 

 

Figure 5.7. Convergence Process of Best Fitness Value. 

 

Figure 5.8. Convergence Process of Minimum Robustness Index. 

 

 
Figure 5.9. Average distance of individuals. 
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As Fig. 5.7 shows, since the third generation, there is no constraint violation under the mean 

condition. After the third generation the proposed solution algorithm optimize the microturbine 

power setpoints to maximize the hosting capacity and minimize the system frequency deviation. 

There is no oscillation in the convergence process of the optimization. Considering the 

mechanism of GA, most advantaged individuals are treated as elites and passed to the next 

generation. Relatively suboptimal individuals are selected as parents to produce children with 

crossover. Hence, once some individuals occur in a centered feasible region, their advantages 

guarantee that they have much more offspring. As a result, the proposed algorithm leads a sharp 

drop from -0.9814 to -1.4823 during the generations from 3 to 9. Hereafter, the downtrend 

continues with only small changes. It can be seen in Fig. 5.7 that the minimum fitness value is 

gradually reduced and the relative change over 50 continuous generations is reduced to the 

termination criterion at the 69th generation, indicating the convergence. 

Fig. 5.8 intuitively illustrates the searching process to enlarge the robustness indices, where 

the robust index presented is the smaller one of 𝜂𝑔 and 𝜂𝑓. It can be seen that the convergence 

oscillates heavily until the 60th generation. The reason is that the proposed solution algorithm uses 

the fitness value to check the performance and constraint violations of individuals first, and then 

considers the penalty caused by the unsatisfied robustness indices. Thus, the individuals with 

small fitness values have the robustness indices in the large range. After the 60th generation, the 

algorithm intensively enlarges the robustness indices. At the 69th generation, these robustness 

indices are eventually greater than or equal to the robustness targets (set as 1), fulfilling the 

constraints of the required designs, i.e., (5.37) and (5.38). This also verifies the convergence. 

In addition, Fig. 5.9 shows the average distance of all the individuals, which indicates the 

algorithm convergence process as well. It is noted that the average distance increases after the 

30th generation, since the algorithm alternatively enlarges 𝜂𝑓 and 𝜂𝑔, making the penalty 𝑃𝑒𝑛2 

increasing and fluctuating. 

From the above convergence result, it can be concluded that the proposed solution algorithm 

can effectively solve the SR based optimization problem (5.34)-(5.38) with the robustness indices 

larger than or equal to the targets. 
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5.5.4 Optimization Results 

With the proposed SR based optimization method, the maximized hosting capacity of this 

islanded microgrid is 1.573 MW. The allowed maximal wind power generation of each candidate 

bus is shown in Fig. 5.10. 

For comparison, a conventional stochastic programming method is applied. It is assumed that 

wind power generation and loads follow continuous uniform distribution. 1000 scenarios are 

generated by Monte Carlo sampling and then reduced to 50 presentative scenarios via a backward 

reduction technique [55]. The allowed maximal wind power generation obtained by this 

conventional method is also shown in Fig. 5.10. 

To guarantee full solution robustness on both the objective of minimizing the system 

frequency deviation and the network operating constraints, the proposed method significantly 

reduces the allowed wind power generation at buses 6 and 27. Besides, the proposed method 

makes the allowed wind power generation more evenly distributed across the network. 

Moreover, the optimized microturbine power output setpoints are also demonstrated for 

comparison in Fig. 5.11. 

 

Figure 5.10. Allowed Maximal Wind Power Generation. 
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Figure 5.11. Optimized Microturbine Setpoints: a) Active Power; b) Reactive Power. 

 

From this figure, the total active and reactive power outputs determined by the proposed 

method are higher than those of the stochastic one, despite the local differences. 

It can be concluded that since the proposed SR based optimization method aims to ensure the 

solution robustness, the islanded microgrid relies more on the droop-controlled microturbines 

with the compromised hosting capacity. 

5.5.5 Verification of Solution Robustness 

To verify the advantage of the proposed SR based optimization method on solution 

robustness, a robustness test is conducted with simulation of uncertainty realization. 

By using Monte Carlo sampling, 5000 scenarios are generated as the cases of uncertainty 

realizations. Then, two sets of optimized microgrid operation are tested under these uncertainty 

realization cases. The test results including the average, minimum and maximum values of the 

system frequency as well as the operating constraint satisfaction rate (the case number of no 

constraint violation to all the cases) are presented in Table 5.2. 

Table 5.2 Solution Robustness Test 

Method 
SR based  

Optimization 

Stochastic  

Programming 

Average Frequency (Hz) 1.0005 1.002 

Minimum Frequency (Hz) 0.9419 0.9344 

Maximum Frequency (Hz) 1.0581 1.0685 

Constraint Satisfaction Rate (%) 100 98.54 
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Firstly, for the objective of minimizing the system frequency deviation, the microgrid 

operation optimized by the proposed method can make the frequency closer to 1 p.u. with a 

smaller variation range. This indicates the high efficiency of the proposed method in keeping the 

system frequency deviation less changing under the uncertainties. In comparison, the 

conventional SP method cannot provide solution robustness on the objective. 

Secondly, the proposed SR based optimization method can ensure no violation to any 

operating constraint under the uncertainties, thus achieving the full solution robustness. Although 

the SP method with sufficient presentative scenarios can also improve the solution robustness on 

the operating constraints, it cannot provide the full solution robustness.  

In short summary, the proposed SR based optimization method can maximize the hosting 

capacity of an islanded microgrid where the optimized operation is robust on both objective and 

operating constraints against the uncertainties. 

5.5.6 Sensitivity Analysis on Robustness Indices 

As mentioned in Chapter 5.3.4, the proposed SR based optimization method can adjust the 

optimization priority and the solution robustness degree by changing the robustness targets 𝜂𝑓
𝑇 

and 𝜂𝑔
𝑇. With the smaller robustness targets, the optimization results will be more radical but with 

the lower constraint satisfaction rate. Oppositely, the larger robustness targets will lead to more 

conservative optimization results. 

In this sub-section, different values are set to the robustness targets and then the hosting 

capacity is maximized accordingly. With the 5000 Monte Carlo sampled scenarios, the 

performance of the optimized microgrid operation under the uncertainty realizations are simulated 

and compared. The maximized hosting capacities and the simulation results under the uncertainty 

realizations are given in Table 5.3. 

Table 5.3 Simulation Results with Different Robustness Targets 

𝜂𝑓
𝑇 and 𝜂𝑔

𝑇 0.8 0.9 1 1.1 

Hosting Capacity (MW) 2.43 1.97 1.57 1.20 

Average Frequency (Hz) 1.0006 1.0005 1.0005 1.0004 

Minimum Frequency (Hz) 0.9275 0.9350 0.9419 0.9483 
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Maximum Frequency (Hz) 1.0725 1.0650 1.0581 1.0517 

Constraint Satisfaction Rate (%) 96.42 99.22 100 100 

 

Firstly, as the robustness targets increase, the hosting capacity is reduced, indicating the 

solution conservativeness is increased as a drawback. On the other hand, as the robustness targets 

decrease from 1, the hosting capacity is further enhanced. With the robustness targets of 0.9, the 

hosting capacity of the proposed SR based optimization method is similar to that of the 

conventional SP method. 

Secondly, via the Monte Carlo simulations, the system frequency variation range is tightened 

by a large value of 𝜂𝑓
𝑇 . As this robustness target on the objective increases, the WCFSR is 

enlarged. This means the proposed optimization method can prepare a robust solution against a 

larger region of uncertainty realization, to keep the objective varying within the allowed range. 

In other words, the solution has the higher capability of keeping the objective less varying. For 

the solution with a larger 𝜂𝑓
𝑇, because the uncertainty realizations must be within the power rating 

of WT and within the predicted range of loads, i.e., the region of uncertainty realization is kept 

constant, the system frequency variation is reduced to a smaller range. 

Thirdly, the constraint satisfaction rate is 100%, indicating full solution robustness on the 

constraints, when the robustness target 𝜂𝑔
𝑇 is set greater than or equal to 1. This is because the 

WCSR is large enough to cover all the uncertainty realizations. On the other hand, once this 

robustness target is smaller than 1, uncovered uncertainty realizations will cause constraint 

violations, leading to the constraint satisfaction rate less than 1. Compared to the conventional SP 

method, even taking 0.9 as the robustness targets, the constraint satisfaction rate of the proposed 

method is higher. The constraint satisfaction rate suffers an accelerated drop as the robustness 

target 𝜂𝑔
𝑇 decreases from 1. 

Based on the above analysis, it is noted that using large robustness targets 𝜂𝑓
𝑇 and 𝜂𝑔

𝑇 can 

efficiently enhance solution robustness, while leading to conservative solutions. To guarantee full 

solution robustness on both the objective and the operating constraints, the robustness targets 𝜂𝑓
𝑇 

and 𝜂𝑔
𝑇 are expected to be set as 1. However, if a few constraint violations and compromised 
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system frequency variations are accepted, 0.9 can also be considered for practical use, which leads 

to a further improved hosting capacity result. 

It is an advantage that the optimization priority and the solution robustness can be adjusted 

to the operator expectations by selecting different robustness targets. 

 

5.5.7 Sensitivity Analysis on GA Settings 

Given different GA settings, the proposed SR based optimization method is applied to 

maximize the hosting capacity of this islanded microgrid. The settings as well as the optimization 

results are shown in Table IV. Setting 1 is the initial one used in Chapters 5.5.3 to 5.5.6. Compared 

to the initial setting, the crossover rate is increased and decreased in Settings 2 and 3, respectively, 

while the population is increased and decreased in Settings 4 and 5. 

Table 5.4 Optimization Results with Different GA Settings 

Setting No. 1 2 3 4 5 

Crossover Rate 0.8 0.9 0.7 0.8 0.8 

Population 200 200 200 300 100 

Hosting Capacity 

(MW) 

1.573 1.570 1.569 1.570 1.570 

 

The hosting capacity results with the five different settings are almost same, which verifies 

the proposed method can find the optimum. The affects from the GA settings can be ignored. 

It is noted that a GA is utilised in the developed solution algorithm, since it is compatible 

with the SR based optimization method and the power flow model of droop-controlled islanded 

microgrid. It can provide local optima, and an advanced heuristic algorithm can be considered to 

improve optimality. 

5.5.8 Different Cases of Candidate Buses 

To validate applicability of the proposed method as well as evaluate impacts of wind power 

injection candidate buses on hosting capacity maximization results, three additional study cases 

of different candidate bus selections are applied. All the cases are shown in Table 5.5, and Case 

1 is the initial one used in Chapters 5.5.3 to 5.5.7. Cases 1 and 2 have 10 candidate buses, while 
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Cases 3 and 4 have 7 candidate buses. Some of candidate buses are common among the different 

study cases. 

Table 5.5 Study Cases of Different Candidate Buses 

Study 

Cases 
Candidate Buses 

Number of 

Candidate 

Buses 

Case 1 1, 6, 9, 12, 18, 22, 25, 27, 30, 33 10 

Case 2 1, 6, 10, 13, 17, 21, 25, 27, 31, 33 10 

Case 3  6, 12, 18, 22, 25, 30, 33 7 

Case 4 1, 9, 12, 22, 25, 27, 30 7 

The simulation results including the hosting capacity and the optimized power setpoints of 

microturbines under the different study cases are given in Table 5.6. 

Table 5.6 Optimization Results under Different Study Cases 

Study 

Cases 

Hosting 

Capacity 

(MW) 

𝑃1
𝑀𝑇,0

 

(MW) 

𝑃6
𝑀𝑇,0

 

(MW) 

𝑃13
𝑀𝑇,0

 

(MW) 

𝑃25
𝑀𝑇,0

 

(MW) 

𝑃33
𝑀𝑇,0

 

(MW) 

Case 1 1.573 0.599 0.976 0.506 0.531 0.336 

Case 2 1.564 0.627 0.422 0.593 0.519 0.794 

Case 3 1.569 0.599 0.704 0.619 0.498 0.525 

Case 4 1.570 0.595 0.672 0.470 0.770 0.441 

The hosting capacity results under these cases have only slight differences, while the 

optimized power setpoints are quite different. The main reason is that in this islanded microgrid, 

the hosting capacity can be maximized by optimizing the operation of the five microturbines 

which have sufficient capacities. Besides, according to [135], the microturbines are at the most 

sensitive buses, which can efficiently reduce the impacts of different candidate bus selections on 

the hosting capacity result. Thus, the microturbine capacities and locations play a key role in 

improving the hosting capacity of the islanded microgrid. 

This simulation also validates the proposed SR based optimization method is generic for 

different study cases, indicating the high applicability. 
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5.6 Conclusion 

In this chapter, firstly, a hosting capacity maximization model for an islanded microgrid is 

proposed, where system frequency variation and microturbine droop control functionality are 

fully considered. Then, SR and FSR are introduced to quantify solution robustness against 

uncertainties of renewable generation and load. Last, this chapter develops a SR based 

optimization method with a new solution algorithm. A comprehensive case study is conducted to 

verify the efficiency of the proposed model, method and algorithm.  

In case study, the convergence of the proposed solution algorithm, the performance of the 

optimized solution, and the solution robustness are verified in sequence. The numerical simulation 

results denote high efficiency of the proposed model, method and algorithm. Besides, sensitivity 

analysis is conducted for the robustness targets. Overall, the advantages including the effective 

SRs for performance assessment under the uncertainties, the robust microgrid operation solution 

for the maximal hosting capacity, and the adjustment ability between the solution robustness and 

conservativeness can be brought. 

Therefore, this chapter achieves an efficient SR based optimization method for maximizing 

the renewable generation hosting capacity of an islanded microgrid. 

In future works, advanced heuristic algorithms like ant colony optimization and particle 

swarm optimization algorithms can be used for the proposed SR based optimization method. 
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Chapter 6 CONCLUSIONS AND FUTURE WORKS 

With the emerging technology development, renewable distributed generation (DG) is not 

only environmentally friendly but also economically competitive. However, they are not 

efficiently integrated into power systems due to their non-controllable characteristics. Microgrid 

is an appropriate platform for renewable DG. Since a microgrid cannot exchange power with the 

main grid in an islanded mode, the operating issues in an islanded microgrid which are caused by 

uncertainties of renewable distribution generation and load are more likely to occur with higher 

impacts.  

This thesis focuses on the optimal operation and renewable hosting capacity maximization 

for high-renewable islanded microgrids. A series of models and methods are proposed and 

presented, while efficient optimization tools and solution algorithms are developed and validated. 

This thesis is concluded with the following achievements.  

1. Minimal operating cost of an islanded microgrid with microturbine droop control. 

2. Minimal operating cost with full consideration of uncertainties of load and renewable 

power generation, thus guaranteeing operating constraint satisfaction.  

3. Stable and secure operation of a microgrid under the condition of tie-line switching from 

the grid-connected to islanded mode, while minimizing operating cost. 

4. Efficient solution algorithm to address the coupled constraints when considering tie-line 

switching in the optimization model, with high computing efficiency. 

5. Maximal renewable hosting capacity of an islanded microgrid while minimizing system 

frequency deviation.  

6. Effective sensitivity region (SR) model with indices to quantify solution robustness on 

both objective and constraints under uncertainties. 

7. Efficient solution algorithm to maximize the hosting capacity while keeping high 

solution robustness indices.  
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Based on the above research outcomes and considering the limitations, further works can be 

done as follows. 

1. All models and methods proposed in this thesis are designed for a single-phase microgrid. 

In the future, they can be extended for three-phase unbalanced systems.  

2. Since energy storage systems (ESSs), such as batteries and electric vehicles, further 

improve flexibility of microgrid operation, they will be considered in the future works 

of the islanded microgrid operation and planning. 

3. More power system performance indicators can be treated as optimization objectives, 

such as voltage stability, bus voltage deviation, capital cost and gas emission. 

4. Some smart sampling schemes like Latin Hypercube Sampling Quasi-Monte Carlo 

method will be applied to reduce the scenarios. 

5. Renewable DG control, such as inverter control will be considered. 
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