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Abstract

After Cboe launched the VIX and its corresponding derivatives, investors have maintained
a high level of interest in this unique index. Unlike indices that focus on asset prices,
the VIX can reflect investors’ subjective expectations of the market by incorporating
varying volatility into the calculation. However, in the past literature, the prices of the
VIX derivatives have often been just obtained from models with fixed parameters [1]
or considered only the long-term volatility of the asset price [2]. Also, we find sparse
discussions on the compatibility of the VIX valuation process with modifications of time
series stochastic models, such as the regime switching and the subordinator method. At
last, we note little literature specifically mentions hedging VIX derivatives and the relevant
strategy-obtaining process. To address these issues, we explore the pricing and hedging
of VIX derivatives in this thesis, using the VIX European call option as an example. In
the pricing process covered in Chapters 3-4, we incorporate the regime switching factor
into the continuous 4/2 model and discretize the model based on Heston-Nandi’s idea
in combination with various modifications, to improve the model’s capture of various
volatility and changes in the market environment. After comparing the results obtained
by the saddlepoint method, we find that those modifications significantly improved the
quality of the model, increasing the accuracy of the pricing results and allowing the model
to adapt to a more general market environment. In Chapter 5, we hedge the VIX options
based on the GARCH framework using a local quadratic hedging approach. After taking
advantage of the GARCH model, we optimize the method of obtaining option hedging
strategies by reducing the weights of stochastic simulations and reducing the number of
simulations required while enhancing the model accuracy.
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Chapter 1

Introduction

When people talk about a security or market index, people tend to analyze it from two

aspects, which are the price curve and the volatility. Due to the presence of volatility,

different assets are assigned different potential/apparent risks. This makes investors not

always chase high-yielding assets, but turn to portfolio investments that contain both

risky and risk-free assets. Volatility is a statistical measure of the spread of asset gains

and losses, also described as “risk” When the volatility of an asset is high, the change

in the price of the investments can be dramatic. This means that investors holding such

risky assets are likely to suffer significant losses in a short period. In contrast, less volatile

assets are also relatively less risky. The magnitude of volatility is determined by various

market factors, such as asset type, market period, unexpected events, etc.

In financial research and model construction, volatility is often measured as a function of

the variance associated with asset prices or their returns, such as daily return, beta index or

Volatility Index as detailed in this thesis. We can divide them into two categories, historical

volatility and implied volatility. As a retrospective indicator, historical volatility measures

volatility by assessing price changes over time. Historical volatility will be greater over

this period if there is some apparent or potential economic event that caused a dramatic

change in the capital markets. By contrast, when the effects of this event dissipate,

historical volatility will return to its original level. The advantage of this indicator is
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CHAPTER 1. INTRODUCTION

that its value is relatively simple to calculate, and its modelling techniques are relatively

sophisticated. But it also has an obvious drawback: it does not tell investors what to do

before future volatility arrives and this makes the indicator difficult to apply.

Consequently, another indicator, implied volatility, has been introduced as a popular tool

for those investors who will keep a close eye on the future. As a forward indicator, implied

volatility offers investors a way to predict the future volatility of assets. Because implied

volatility represents expectations of potential future volatility, it tends to be generalised

from the price of the options in the market, rather than looking back at past asset prices.

Among the various alternatives for implied volatility, the Volatility Index introduced by

Cboe is one of the measures that has received the most attention in recent studies.

After being introduced by Cboe Global Market in 1993, the Volatility Index (VIX) has

proven its practical value with its prediction of the stock market and relevant derivatives.

As a real-time market index, VIX expresses the expectation of traders for the next 30

days. The VIX tends to rise when a large price swing happens in the market and stays

at a low and stable value when the market eases upward in a prolonged bull market

(Lin 2017) [3]. Initially, VIX only considered the options on the S&P 100 index and

then was modified by Cboe by considering the S&P 500 index (Carr and Wu 2007) [4].

The current VIX is an index of options prices across all strikes in a given time interval,

constructed by maturities with average weights that vary deterministically over time. In

March 2004, Cboe introduced VIX futures and then launched the VIX option in February

2006. These derivatives became popular quickly with remarkable trading volume growth

over time as they offer the forecast traders a mechanism to invest volatility of the S&P 500

directly without considering the price changes, dividends, and interest of the underlying

assets. This development takes researchers’ motivation to construct models to reproduce

the dynamic of VIX and predict its further volatility. This thesis focuses on the pricing

and hedging of VIX call options over different maturity time with varying strikes.

Generally, the VIX is simulated in two methods by previous papers. The first method

mentioned by Zhang and Zhu (2006) [5] expresses the value of VIX as a square root of the

realised variance of S&P index(SPX). This method taking advantage of the relationship

2



of the SPX and the VIX is implemented on those models which are constructed with

the joint dynamics of SPX and its instantaneous daily variance over time. The second

method considers the instantaneous daily variance of the return only. It calculates VIX

as the annualised arithmetic average of the expected daily variance under the risk-neutral

measure (Wang,2016) [1]. This thesis prefers the first approximation to model construction

because it distinguishes the CIR-type from the flip CIR-type of stochastic volatility in

different models.

While the prices of the underlying assets and their returns are difficult to predict directly,

their corresponding volatilities are highly predictable(Bollerslev, et al. 1994) [6]. Hence, it

is natural to implement this phenomenon to price and hedge relevant derivatives by con-

sidering correlations of the financial indexes and their volatility. As an efficient alternative

solution to simulate heteroscedasticity over time, stochastic volatility has been regarded

as a popular concept in mathematical financial market analysis after the assumption of

constant volatility is broken. Some tractable stochastic volatility models were developed

in Hull and White (1987) [7] and Heston(1993) [8] have been proven accurate models in

real-world market performance.

Although the success of the Heston model is supported by the literature for its reproducing

Characteristics and clear financial meaning parameters (Grasselli 2017) [9], some real-

world data calibration revealed some limitations. To remedy this shortcoming of this

model, an inverse CIR model structure is developed with the power of variance being

3/2(Heston 1997) [10]. Empirical research has revealed that this improvement provides

the model with the ability to capture short-term high fluctuations. For example, Drimus

(2011) [11] compared the predictive performance of the original Heston model and the

3/2 model on the short-term variance. As a result, the 3/2 model offers a sharp skew

for terms when the instantaneous variance grows remarkably while the Heston model

flattens the skew. Nonetheless, the Heston model still provides a relatively good fit for

moderate market fluctuations and remains a benchmark for financial predictable models

in the stochastic volatility field. To make a general model that fits all conditions, Grasselli

(2017) [9] offered the 4/2 model by combining the two kinds of variance processes of the

3



CHAPTER 1. INTRODUCTION

Heston model and the 3/2 model. In this way, the process of variance comes from the

overlap of the CIR process and flipped CIR process with weights calibrated from market

data.

One of the aims of this thesis is to improve the 4/2 model by adding the regime-switching

factor and offer its closed-form solution to the value of corresponding options whose prices

are expressed as tail expectations and approached by the saddlepoint method. The moti-

vation for this improvement is that the original model mentioned above is assuming that

the parameters are constant throughout business time. However, this assumption is not

easily satisfied because fluctuations in financial markets naturally affect its parameters.

This fact gives us a reason to raise an alternative model structure, the regime-switching

framework. The regime-switching models reflect the market trend effect by varying pa-

rameters changed following market statements such as boom and bust caused by the trade

of investors or other economic activities. An obvious disadvantage of this approach is that

it is difficult to observe the underlying rules of parameter variation. One possible solution

is to divide the interval in the financial index, defining that the market is in a specific

statement when the value of the financial index is in a specific interval. Lee (2007) [12]

conducted an empirical experiment to test the advantages of regime-switching models over

traditional models for prediction.

Although there is growing literature on the application of regime-switching models to

different financial problems, this technique is not often used in the context of pricing VIX

options [13]. As a well-known approximation method, the saddlepoint method is used in

pricing options under stochastic volatility with regime-switching models. Following this

method, the option prices can be obtained directly by solving the first order saddlepoint

differential equation and taking it into the relevant saddlepoint approximation. After being

introduced by Daniels (1954) [14], the saddlepoint approximation is widely used since most

financial derivatives have non-standard density functions that make the calculation of the

expectation of the underlying asset very difficult. Consequently, this issue can be solved

perfectly with the saddlepoint method. Based on this idea from the literature, we plan

to gain the regime-switching 4/2 model by incorporating some fixed parameters into the

4



regime switching types and then approach the closed-form solution of the price of the VIX

call option by the alternative saddlepoint method with the modified cumulative probability

function and the regime-switching matrix.

On the other hand, those financial stochastic models based on Heston’s idea represent

volatility through current spot market parameters when the model considers the variance

to be instantaneous. This requirement raises the problem that some parameters are diffi-

cult to obtain, such as the variance of volatility. Discrete-time Generalised Autoregressive

Conditional Heteroskedasticity model(GARCH) is a practical candidate for dealing with

continuous-time dilemmas because it does not require any current spot parameters. As

a standard application to this class, Heston and Nandi (1993) [8] provided a closed-form

GARCH option model to describe the iterative process of log returns and their volatility.

Because the instantaneous variance is not explicit to traders, the GARCH model does not

imply an immediate conflict. Instead, this model assumes that the log returns are derived

from the risk-free rate and that the value of the conditional variance is determined by its

historical performance. The moment generating function (MGF) is also available since a

closed-form is provided. Therefore, we can use the saddlepoint method to solve the tail

expectations of option prices by extending the MGF of the conditional variance to the

MGF of the VIX.

Another disadvantage of continuous-time models based on the Heston type is that these

models do not accurately describe trading periods and volumes. They assume that market

participants operate uniformly and evenly. That is not true because the trade frequency

expressed as the volume, often varies during the trade time. This fact leads to a regular

period in processes corresponding to underlying assets. However, traditional continuous-

time models constructed by real time and standard Brownian motions cannot describe

those periods, which typically follow the non-Gaussian distribution. To deal with the

problem of non-normality, we draw on Shirvani’s approach of introducing a dependent

model in the process of modelling for asset returns and used the subordinator to generate

commercial times instead of real times [15].

After Clark (1973) [16] used it in financial modelling to describe continuous-time time

5



CHAPTER 1. INTRODUCTION

variation in the cotton futures market, the subordination process, also called random time

change, is widely used in finance. This approach, while maintaining the original process

X(T ), assumes that the time T driving this process obeys some time-varying distribution

T (t). This approach allows the original model to adapt to more market situations and

capture more market characteristics, such as the heavy-tailed phenomenon. Aguilar and

Kirkby (2021) [17] considered time subordination to stochastic processes in several market

models to test whether the introduction of these subordinator captures complex phenom-

ena such as volatility aggregation or long memory. Janczura and WyAlomanska(2011) [18]

analysed three models of different diffusion distributions, presented the similarities and

differences between the models and pointed out their main characteristics. Buchmann et

al. derive an overall model by subordinating multivariate Brownian motion to a subor-

dinator model. The excellent characteristics of the multivariate class allow such models

to be applied to option pricing based on PIDEs or tree methods. Finally, they performed

pricing using European and American options on two assets.

This thesis introduces the 4/2 GARCH model with its subordination modification based

on the traditional Heston Nandi model. This model combines the advantages of a discrete

model framework that is more practical to implement in real-world fundamental markets

and the adaptability of the 4/2 model to the volatility of different magnitudes and periods.

Moreover, because of the utilisation of subordination, this model can periodically vary its

time parameters based on a specific distribution to simulate different trading volumes and

trading periodic phenomena.

After introducing the valuation of financial derivatives on the VIX, it was natural to wonder

if we could hedge these derivatives. A hedging is a strategic portfolio whose intention is

to reduce the risk of adverse price volatility of an underlying asset. For this purpose, the

value of such a portfolio tends to move in the negative correlations of the hedged asset in

order to be used to offset losses arising from volatility in the prices or returns of the hedged

asset. Therefore, unlike constructing a portfolio for profit, when investors decide to build

a hedged asset portfolio, they pay for insurance to prevent the hedged asset from suffering

a great financial loss from an unexpected event. While this action does not usually reduce

6



the probability of this contingency occurring, its impact will be kept within acceptable

limits by this portfolio after the worst case happens.

We can demonstrate the construction and effectiveness of a hedged portfolio with a simple

example. An investor is preparing to order a turkey for Thanksgiving to celebrate the

holiday. As can be expected, the price of turkeys will rise dramatically on Thanksgiving

Day due to the high demand. Therefore, if the investor buys the turkey on Thanksgiving

Day, he will pay extra money due to market volatility.

Being a visionary, this investor reserves the turkeys in advance at a relatively reasonable

price by paying a deposit. In this way, he gains the right to buy the turkey on Thanksgiving

Day at that price. With this move, the upper bound of the investor’s Thanksgiving budget

has been fixed in advance, regardless of how the cost of the turkey changes in the market.

Of course, rights, unlike obligations, can be waived in unfavourable circumstances. If,

on Thanksgiving Day, the turkey drops significantly below the predetermined price due

to over-stocking at the mall, etc. Then the investor also has the option to forfeit the

previously acquired rights and instead purchase the turkey at the current market price.

This example illustrates the process of hedging and reveals the critical issue of hedging:

whether the losses avoided by the hedge cover the cost of the hedge. Whether the right to

hedge is executed at maturity time or not, the cost of hedging is unavoidable. Therefore,

after estimating the value of the asset, the evaluation of the hedging cost will be the key

task.

The cost of hedging varies depending on the hedging method. For example, if delta hedging

is implemented, the investor needs to hold the same number of derivatives corresponding to

the hedged asset, such as options and futures, in order to achieve delta-neutral and offset

the full risk caused by its unexpected volatility. Despite the simplicity and reliability

of this hedging method, it is not easy to consistently achieve a delta-neutral statement.

Traders must constantly trade the derivatives in hand to make the hedging strategy real

time and effective. Trading too frequently, especially with expensive derivatives such as

options, raises the cost of hedging and makes hedging meaningless. If the asset volatility

7



CHAPTER 1. INTRODUCTION

does not come as expected, the unnecessary hedging cost will be a significant loss.

To compensate for this drawback, the quadratic hedging method is chosen to hedge the

VIX options in this thesis. Quadratic hedging produces a martingale measure with optimal

variance. It makes the initial capital position of the hedge equal to the expectation of the

discounted option cash flows taken under this measure(Secomandi 2022) [19]. The last

part of this thesis discusses the hedging work of the corresponding options by minimising

the quadratic risk. From past research, little literature focuses on the hedging of VIX

derivatives under the GARCH framework, while this framework has been widely used

for option pricing. To fill this gap, recent studies have estimated the parameters with

information from both the underlying asset and its conditional volatility under risk-neutral

measures. In this thesis, we investigate the hedging of VIX options with the discrete-

time Heston–Nandi GARCH model and discuss the simplification of the closed-form of

strategy on the properties of the GARCH model. This simplification allows us to obtain a

more accurate hedging strategy with fewer Monte Carlo experiments than the traditional

quadratic hedging approach.
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Chapter 2

Literature and background

In this section, we focus on some of the models that will be used in this thesis and their

corresponding hedging methods. These methods and models will be used in combination

in the following sections to address the valuation and hedging of VIX derivatives.

2.1 Continuous-time stochastic model

2.1.1 Heston model

We begin our model construct with a basic continuous-time stochastic volatility model

proposed by Heston (1993) [8]. This model was presented to correct the bias caused by the

assumption of normality in the traditional Black-Scholes model. In fact, in the assumptions

of the conventional model, stock returns are often considered to be normally distributed

and the mean and the variance are constant to its long-term stable value. However, this

assumption often does not hold in real markets. Motivated by this fact, Heston suggested

a closed-form solution, the Heston model, in which conditional volatility is correlated with

the spot stock prices to capture the bias that arises from such correlation. Because it can

accurately capture the dynamics of spot prices and deviations in the distribution of spot

9
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returns, the Heston model has the feature of correcting for deviations caused by option

pricing. By this method, one can characterise the option models with the dynamics of

spot price and conditional volatility.

Although there are some assumptions to be satisfied, we still use the risk-neutral measure

for all option pricing and hedging work. This is because compared to historical measures,

risk-neutral measures take into account price drift caused by risk aversion and are more

suitable for calculations of strong volatility assets such as derivatives. Since European

options are priced and hedged under EMM , we skip the measure transformation in this

chapter and directly introduce the Heston model in risk-neutral form. Given a risk-neutral

probability space (Ω,F ,Q) with an information filtration Ft where t ∈ (0, T ). Heston

introduced the following model

dSt =rStdt+
√
VtStdZ1

dVt =k(θ − Vt)dt+ σ
√
VtdZ2

(2.1.1)

In the model, the conditional volatility is also called Cox-Ingersoll-Ross (CIR) process that

was first developed by Cox, Ingersoll, and Ross (1985) [20] for imparting interest rate to

stochastic modelling. With this process, the volatility possesses a mean-reverting structure

as k represents the mean-reversion speed and θ represents the long-term volatility.

As a result, Heston presented a stochastic model for volatility-varying assets. Compared

with the traditional Black-Scholes method, this model is versatile enough to describe stock

options, bond options, and currency options (Heston 1993) [8] and capture most bias dur-

ing the option pricing. The Correlation between conditional volatility and the stock price

is necessary to capture the biases. However, the empirical test of Mikhailov and Noegel

(2003) [21] revealed that the Heston model may not capture the biased fully, especially

for short maturities. The diffusion power of the volatility 1
2 performed inaccurately in

some literature. It is because the Heston model is difficult to capture short-term high

volatility dynamics (Jones 2003) [22]. These considerations motivated one to develop a

more advanced model that would compensate for this disadvantage.

10
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2.1.2 3/2 model

Therefore, we introduced a 3/2 stochastic volatility model to solve the problem in the He-

ston model mentioned in the previous subsection. This model inherits the mean-reverting

structure but raises the power of vt on the second stochastic differential equations to make

the process of Vt non-affine. The 3/2 model was first extended to the application of this

model to options and swaps. According to Lewis’s study, the diffusion power of Vt is nearly

1.3 instead of 0.5, supporting the application of the 3/2 model. The study of Carr and

Sun (2007) [4] showed some works on the model effectiveness of different powers of Vt and

obtained the conclusion that the numerical results of the non-affine structure are more

accurate than those of affine structure implemented in the CIR process.

Given a general probability space (Ω,F ,P) with an information filtration Ft where t ∈

(0, T ). The 3/2 model is built by multiplying an extra Vt to the conditional volatility

process dynamics of the Heston model as follows

dSt =rStdt+
√
VtStdZ1

dVt =Vt[k(θ − Vt)dt+ σ
√
VtdZ2]

(2.1.2)

To make the conditional volatility of this model the same structure as that of the Heston

model, we let V̂t = 1
Vt

, k̂ = kθ and σ̂ = −σ. With this change, the model becomes

dSt =rStdt+ 1√
V̂t

StdZ1

dV̂t =k̂(θ − V̂t)dt+ σ̂

√
V̂tdZ2

(2.1.3)

Because of the power increment, the 3/2 model offers extreme paths to present short-term

instantaneous volatility. Drimus (2011) [11] showed that when the instantaneous variance

increases, the short-term biases turn to be flat in the Heston model, but the short-term

biases turn to be sharp in the 3/2 model. This numerical result means that the Heston

model incorrectly outlines the variance smiles in a market with the high-pressure market.

11
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2.1.3 4/2 model

The long-term market performance of the original Heston model has proven to be a useful

tool for the S&P 500 and its derivative indices such as the VIX. However, empirical research

also revealed its shortcomings in capturing short-term volatility because the power of the

conditional variance is 1
2 , which leads to the error of downward-sloping volatility of the

variance smile(Drimus 2011) [11]. Since the volatility term is flipped to the denominator,

this process mimics the fast reverts process that occurs when volatility goes up and down.

The motivation to maintain good performance over short and long business periods led us

to consider combining the original Heston model with the 3/2 model. Thanks to Grasselli

(2017) [9], who provided an effective model to implement this idea, called the "4/2" model.

dSt =rStdt+ (a
√
Vt + b√

Vt
)StdZ1

dVt =k(θ − Vt)dt+ σ
√
VtdZ2

(2.1.4)

2.2 Discrete motivation and GARCH model

After addressing the inability of the Heston model to capture short-term high volatility,

we look at another problem with this model: the unobservable continuous parameters.

Because of that, continuous-time stochastic volatility models are usually hard to imple-

ment and test with real-world market data. Although the literature assumes that those

parameters are known and often gives an experimental one, it is not possible to extract the

volatility variable precisely from the discrete observations of the spot asset price from the

total conditional variance change in continuous-time stochastic volatility models(Heston

1993) [8]. At the same time, the calculation of the model’s implied volatility would become

very tedious: the current value of implied volatility can only be obtained by calculating

a large amount of other option price information. Therefore, one realistic idea of model

modification is to overcome the difficulty in obtaining the parameters of the continuous-

time stochastic model but keeping the variance variation of time in the Heston model.

One candidate is the GARCH model.
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Option pricing under a GARCH model is a popular method in modern financial analysis.

In 1995, Duan introduced a solid theoretical foundation based on the locally risk-neutral

valuation relationship to price options under GARCH models (Duan 1995) [23]. Heston

and Nandi introduced a closed-form option pricing formula for a spot asset whose vari-

ance and its asset itself follow a GARCH(p, q) process. It provides option formulas for

stochastic volatility models that are easier to calculate than previous approaches, while

the model can be valued based entirely on observable historical data. In keeping with

the idea of Heston’s continuous-time stochastic volatility model, the correlation between

volatility and returns in this model is similar to that of the Heston model, but with reduced

observation requirements. Instead of requiring investors to keep an eye on current mar-

ket conditions to update returns and volatility in real time, this model allows investors

to price options by using historical data. Here we apply its simplest but most useful

branch, GARCH(1, 1) model to assume the log asset price and conditional variance in the

risk-neutral measurement as follows:

Rt = rt + λht +
√
htz

∗
t

ht = ω + βht−1 + α(z∗
t−1 − δ∗

√
ht−1)2

(2.2.1)

where

z∗(t) = z(t) + (λ+ 1
2)
√
h(t)

δ∗ = δ + λ+ 1
2

In the first SDE of (2.2.1), Rt is the log return of the underlying assets’ spot price such as

Rt = log St
St−1

. Because this model is built under a risk-neutral measure, rt represents the

risk-neutral interest rate at time t. The second assumption of the GARCH(1, 1) model is

considered z∗(t) to be standard normally distributed. The second SDE of (2.2.1) introduces

ht as the conditional variance of the log return between the time interval bounded by

t and t − 1. After the measure modification, the GARCH model gains the ability to

yield a closed-form solution for European options prices and capture the kurtosis and

fat tail characteristics of returns distribution in the real world market. Furthermore, the

autoregressive structure of the model describes the leverage effect and persistence of the

conditional variance.
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Following Heston’s similar approach, we transformed the continuous-time Heston model

into a discrete version, the Heston-Nandi model. We could derive a discrete version of the

4/2 model based on the continuous-time 4/2 model and GARCH(1,1) model. we assume

the new model follows two statements,

1. The underlying asset price logarithm return and the conditional variance h(t) follow

the autoregressive process,

Rt =rt + λht − 1
2ht + (a

√
ht + b

1√
ht

)zt

ht =ω + βht−1 + α(zt−1 − δ
√
ht−1)2

(2.2.2)

where rt is the risk-neutral interest rate for time intervals and zt is a standard normal

distribution. ht is the conditional variance of the logarithm return for time intervals and

is known from the information set at time t. All those three variables are updated by

discrete innovation steps and kept constant in the time interval.

2. The value of a call option with a one-time interval fits the Black–Scholes-Rubinstein

formula with spot price following the conditional log-normal distribution.

2.3 Subordinator and regime switching

2.3.1 Subordinator

Whether continuous or discrete models are implemented, the innovation dynamics of the

log return and conditional variances are always assumed to be standard Brownian diffusion

processes. However, Rachev rejected this hypothesis in 2005 and noted that asset returns

exhibit asymmetries and fat tails(Rachev et al. 2005) [24] that one cannot model the time

series spot value(in both continuous-time and discrete-time model) by using traditional

standard Brownian diffusion with the real world time like data. Based on this finding, it

seems questionable to simply define the innovation part of returns and variance iteration

as standard Brownian motions.
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2.3.2 Lévy subordinator

A classic solution to this problem that arises in the model analysis is to introduce a

subordinated process to describe the so-called "business time" that corresponds to the

update of financial information and trade behaviours. The subordinated process in finance

defines a random time change like Y (t) = X(T (t)) assuming two processes T and X are

independent of each other. This change was first used by Clark (1973) [16] to replace

Brownian motion to capture skews and fat-tail during pricing model construction and

Carr implemented this modification to the options field in 2003(Carr et al. 2003). [25].

Following this modification, it is evident that finding a suitable subordinator according to

the relevant processes is crucial work. In this thesis, we analyze the Brownian diffusion

with the Lévy subordinator such as the gamma subordinator.

2.3.2 Lévy subordinator

A stochastic process G(t) is said to be a homogeneous Lévy process with G(0) = 0 and with

independent increments over time intervals that do not overlap. Moreover, the increment

only depends on the difference in time but is independent of the initial spot time. This

property is sometimes referred to as the stationary increment. A Lévy process G(t) with

non-decreasing trajectories is called a Lévy subordinator which is regarded as a business

time used to record the upcoming information and trade behaviours. If we apply a typical

Lévy subordinator, gamma subordinator, to the traditional Heston Nandi model, the

model becomes

RG = rG + λhG − 1
2hG +

√
hGzG

hG = ω + βhG−1 + α(zG−1 − δ
√
hG−1)2

(2.3.1)

where G(t) follows the gamma process with its Lévy density

G(t;α, β) = αe−βt

t
1t>0

15



CHAPTER 2. LITERATURE AND BACKGROUND

2.4 Regime switching

Another questionable assumption of the traditional stochastic model is that the stochastic

process of the underlying asset remains constant throughout the business time. This

means that the parameters used in the process of estimating the prices of assets and their

relationship between the log returns and their conditional variances remain unchanged

But this assumption does not correspond to the actual market situation. For example,

the regime dependence in the VIX index could be expressed as a continuous-time Markov

chain. Using the historical VIX value, Guo and Wohar (2006) [26] provided the statistical

evidence of two structural breaks, demonstrating that market volatility varies over time.

A possible method to endogenize this time variation into the stochastic process is the

Markov regime switching model implemented by Hamilton (1990) [27] to express the U.S.

economic cycle characterised by a periodic transition from boom to bust and vice versa.

This model is popular in stochastic model construction because it can capture extra mar-

ket trends by switching the models’ crucial parameter values between different market

statements.

The reason for the switching is comprehensive which may be the result of different volumes

of trades, emotional volatility of the traders, an external event significant enough to cause a

market jump, or other financial cases. Following the empirical study, Elliott et al. (2007)

[28] offered a price approximation of the volatility derivatives under a Markov regime

switching model modified from the original Heston model. Vo (2009) [29] discussed the

effect of applying the regime switching factors in the crude oil market and figured out that

regime switching improvement of original models performed better in curving the actual

market volatility. In this thesis, this model is used to implement the parameter switches

between regimes with different market statements. Specifically, this model modifies the

original 4/2 model by improving the conditional variance of the underlying assets by a

market statement coefficient decided by a two-state Markov chain whose states represent

different statements of the market, named the Markov regime switching 4/2 model.

16



2.4.1 4/2 Regime switching model

2.4.1 4/2 Regime switching model

Following Elliott et al. (2007) [28], we adopt the regime switching modification on the orig-

inal stochastic volatility model and transfer it into a continuous-time Markov-modulated

stochastic volatility model.

Firstly, we assume the market dynamics follows a continuous-time finite-state observable

Markov chain Mt with state-space S = {s1, s2, s3. . .sN }. Each element of the state-

space represents a kind of market condition like “boom” or “depression”. Accordingly,

the dynamics of a Markov chain is expressed by the N-by-N matrix A with each element

aij , where i, j ∈ (1, 2, . . .N) under the historical probability measure P. In this way, aij

describes the intensity of transition from the state i to state j, satisfying aij ≥ 0 if i̸=j and

ΣN
i=1aij = 0 (Elliott and Lian 2013) [30]. Furthermore, Elliott has shown that the Markov

chain has a semi-martingale representation:

MT = M0 +
∫ T

0
A′ ·Mtdt+DT (2.4.1)

where DT is a RN martingale with respecting to the filtration generated by MT under

the historical probability measure P and A′ is the transpose of A. In this session, we only

assume that the long-term variance θ switches according to the state of the indicator Mt

for simplification, which means

θt =< θ⃗,Mt > (2.4.2)

where θ⃗ is the state space of long-term variance and <,>denotes the scalar product in

RN . In this way, the traditional 4/2 model turns to

dSt = rStdt+ (a
√
Vt + b√

Vt
)SdZ1

dVt = k(θt − Vt)dt+ σ
√
VtdZ2

(2.4.3)
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2.4.2 Saddlepoint method and its approach to VIX derivatives

From the above definition, the price of the European VIX call option can be expressed as

a right-hand tail expectation under a risk neutral measure like EQ[V IX −K]+. Then our

subsequent work is to find an analytic solution to approaching this expectation, if possible.

Various approximation methods in the literature have been adopted to find this type of tail

expectation such as the Edge-worth expansion and the method of steepest descents. This

section introduces the background of the saddlepoint approximation that is commonly

recognised improved from the steepest descent method and applies it to approach the tail

expectation. Although this method may sound like it was invented for statistical tasks,

it does exist in many areas of scientific research. When CGF is known, one can obtain

the closed-form of the tail probabilities of the distributions and their expectation. By this

method Lugannani and Rice (1980) [31] offered a closed-form of the tail probabilities under

the Gaussian assumption. Wood et al. (1993) [32] improved the saddlepoint approximation

with a non-normal distribution and obtained a better approximation when the Gaussian

assumption is not satisfied. Rogers and Zane (1999) [33] used it to research the underlying

asset price by solving its cumulative distribution function and then applied the result to

calculate the price of a European option. Glasserman and Kim (2009) [34] applied this

method to approach the analytic approximation of the cumulative distribution functions

of an affine jump-diffusion process.

The core of this method is constructed by approximating the conditional expectation (tail

expectation):

C(Y, t) = e−r(T −t)Et
Q[(Y −K)+] (2.4.4)

where

Et
Q[(Y −K)+] = 1

2πi

∫ r+i∞

r−i∞

ek(z)−zK

z2 dz r ∈ (0, α+) α+ > 0
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T AND ITS CALL OPTION

here Y is the underlying asset which we are interested in, T and K are the delivery time

and strike price, k(z) is the cumulant generating function (CGF) of Y . There are several

methods to solve this integral like the Lugannani-Rice formula, the frozen method local

quadratic method and so on. In this thesis, we prefer the alternative saddlepoint method

for the complication of the VIX call option closed-form solution which we will offer in this

section.

2.5 The closed-form solution of the V IX2
T and its call option

Unlike other options, the VIX option, which originated in 2006, uses the Cboe Volatility

Index as its underlying asset. If we follow the original method, we need to solve the

equation

C(V IXT , t) = e−r(T −t)EQ
t [(V IXT −K)+] (2.5.1)

That means we need to find the CGF of VIX itself. However, the V IX is so complex that

we can hardly find a closed-form solution of its CGF directly. We noticed that there is

always a linear relationship between V IX2
T and VT in both the 3/2 model and the tradi-

tional Heston model. Rationally, we guess that there may exist a similar affine structure

that expresses V IX2
T by a linear form of VT . The approach of V IX2

T by implementing the

Ito formula on the underlying assets and solving its expectation till time t is expressed as

follows:

V IX2 = 1
τ

lim
N→∞

ΣN
i=1E

Q
T [(log STi

STi−1
)2] (2.5.2)

where τ = 30
365 . For the first part of this integral, we consider the process ekTVT which

satisfies the following SDE:

19



CHAPTER 2. LITERATURE AND BACKGROUND

dekTVT = ekT (kθdT + σ
√
VTdZ

2
T ) (2.5.3)

From that, we obtain:

EQ
T [Vs] = ek(T −s)Vt + θ(1 − ek(T −s)) (2.5.4)

Thus, we could express (2.13) as: set the initial time t as 0 and solve the second part of

the integral in (2.13) and the approximate affine structure of V IX2 will be shown as

V IX2
T ≈ a2(1 − e−kτ )

kτ
VT + a2θ(1 − ((1 − e−kτ )

kτ
))

+2ab+ 1
τ
b2
∫ T +τ

T
EQ

T [ 1
Vs

]ds
(2.5.5)

As the closed-form expression of its CGF is known, we could implement the saddlepoint

method to approximate the tail expectation. By following these steps, the closed-form

of option pricing models of the VIX with initial time 0, delivery time T and strike K is

presented as:

C(V IXT , T ) = e−rTEQ
0 [(V IXT −K)+]

= e−rTEQ
0 [(
√
V IX2

T −K)+]
(2.5.6)

To obtain the results of the option price, we should discuss how to obtain the tail expec-

tation with a known cumulant generating function (CGF) first, then present the method

of approaching that CGF. By the definition of the tail expectation,

E[(
√
X −K)+] =

∫ ∞

K2

√
Xp(X)dX (2.5.7)
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where p(X) is the probability density function of X. The analytical closed-form expression

of this tail expectation was offered by Kowk and Zheng (2014) [2], as:

EQ
0 [(
√
V IX2

T −K)+] = 1
4
√
πi

∫ r+i∞

r−i∞

ek(ẑ)+g(ẑ)

ẑ3/2 dẑ r ∈ (0, α+) (2.5.8)

where k(z) is the CGF of the V IX2
T and analytic in some open vertical strip {z ∈ C :

α− < Rez < α+} with α− < 0 and α+ > 0, g(z) = log(1 − erf(
√
zK) . ẑ is the positive

root of the alternative saddlepoint equation

k′(ẑ) + g′(ẑ) − 3
2ẑ = 0. (2.5.9)

2.6 VIX derivatives quadratic hedging

In the last decade, discrete model-based stock pricing models have become popular such as

the GARCH model mentioned above. This motivated one to consider the hedging model

of the relevant pricing model. The core of hedging is to replicate the terminal payoff of the

underlying assets by introducing a portfolio consisting of risky and risk-free assets with

suitable strategies. A standard example is hedging a VIX call option with the expiration

date T, strike price K, and its payoff function H = (V IXT −K)+. Following this example,

the strategies that hedge the contingent claims of the option dynamically during the whole

trade time is introduced by a Ft process. As investors are trying to reduce the sensitivity

of their assets to market volatility, the total gain of a good hedging strategy should be

close to H as possible. Moreover, as no further information is offered at t = 0, the relevant

strategies do not depend on any cash flows other than initial costs in the option hedging

process.

Another point that we should note about the discrete hedging of the GARCH model is that

achieving a full hedging statement during the whole trade time is impossible as hedging

21



CHAPTER 2. LITERATURE AND BACKGROUND

strategies will not change till the next discrete time interval arrived. Naturally, instead

of finding a hedging portfolio that perfectly replicates the payoff function, we would like

to introduce a hedging strategy that can minimise a particular measure of the difference

between contingent claims and the value of the hedging portfolio. One popular measure

of this aspect is quadratic hedging risk. Several approaches for minimising the quadratic

hedging measure have been introduced in the literature, Laurent (1999) [35] outlined the

results and developments in the area of hedging contingent claims in incomplete markets.

Schweizer (1995) [36] identified the optimal strategy with the smallest variance of net loss

H −Gt(θ). Currently, there are two main quadratic hedging methods used for quadratic

hedging risk measures and their corresponding optimal strategies. One of them is called

"global quadratic hedging" and suggests minimising the total risk. Its strategy is self-

financing so its cumulative cost process is constant. However, following the existence and

the uniqueness of a total risk-minimizing strategy discussed by Schweizer (1995) [36], in

such a condition where bounded mean-variance trade off of asset prices is not available, the

total risk-minimizing strategy may not exist. The other is to control the local incremental

cost of risk hedging, called "local quadratic hedging". This strategy no longer needs self-

financing condition but is mean-self-financing. Thus, the cumulative cost process is a

martingale in historical measure P.

Considering the inevitable set of difficulties that arise when applying continuous-time

stochastic models above, this thesis uses the discrete-time frame as the basis for pricing and

hedging. In this frame, stock price information is updated at fixed time points t ∈ 1, 2, 3...

with the same intervals. We then follow the definition of portfolios strategy mentioned by

Schweizer and Martinis (1998) [37] as φt = (θt, ηt) where θt represent the number of risky

assets held at time t and ηt is the number of the risk-free asset(bond) held at time t. This

frame also assumes that traders cannot modify their stock strategies in parallel with stock

price changes, i.e., that strategy changes have a lag, even though the lag can be infinitely

close to zero. That means the traders keeps their strategies unchanged during (t − 1, t]

and the number of stocks θt is Ft−1-measurable when t ≥ 1. On the other hand, under

the local quadratic hedging strategy we choose in this thesis, bonds are always modified

in parallel with the stock to automatically balance the total price of the hedged portfolios.
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Therefore, the number of bonds ηt is Ft and held unchanged during [t, t+ 1).

Because no trade happens before t = 1, we define ϕ0 = (0, V0) where V0 is the initial value

of the hedging portfolio. Following these initial conditions, the value of the portfolio is

defined as

Vt = θtXt + ηt (2.6.1)

and its discrete cumulative gain from initial time 1 up to time t is

Gt(θ1, θ2...θt) = ΣT
u=1θu∆Xu (2.6.2)

where ∆Xu = Xu −Xu−1.

At last, the discrete cost process will be defined as

Ct = Vt −Gt

= Vt −
t∑

u=1
θu∆Xu.

(2.6.3)

Following the above definitions, we can then define quadratic hedging in an incomplete

market environment that is raised by discrete trade restrictions from the real world. In

fact, in an incomplete market environment, regardless of what hedging method we use and

how much it costs, we can never fully hedge the potential risk in future. Therefore, there

are two main options for hedging: 1, to achieve the minimum exposure at an appropriate

hedging cost such as the quadratic hedging mentioned in this thesis. 2, to achieve the min-

imum hedging cost in a reasonable exposure such as quantile hedging. In 1995, Schweizer

introduced self-financial hedging to deal with the risk control problem in the incomplete

market of the real world measure(Schweizer 1995) [36]. A self-financing hedging strategy

is a hedging strategy that always maintains Vt = V0 +Gt during the total business time.

According to the definition of cost process, this hedging strategy always keeps the cost

process constant, i.e. Ct = V0. Under the premise that the cost process is unchanged, the

goal of this strategy is to minimise the quadratic loss between contingent claims HT and

hedging portfolio VT at maturity time T . This loss is represented as a hedging risk Rt

expressed as

23



CHAPTER 2. LITERATURE AND BACKGROUND

Rt = E[(HT − VT )2|Ft], (2.6.4)

and the hedging proposed is

arg min
(V0,θ)∈R×Θ

Rt (2.6.5)

where Θ represents the set of all feasible self-financing trading strategies at time t. Since

this hedging is performed to deal with the quadratic criterion, known as the global

quadratic hedging error, this hedging is called global quadratic hedging (Heath et al.

2001) [38].

Local quadratic hedging is another quadratic hedging mentioned by Schweizer in 1988 [39]

first which discards the self-financing rules. It no longer requires the hedging strategy cost

process to be constant but imposing Vt = Ht by modifying the risk-free asset ηt at time t.

Because of this, its hedging purpose is to minimise the squared increment in hedging cost

caused by strategy modification like

arg min
(Vt,θ)∈R×Θ

E[(Ct+1 − Ct)2|Ft]. (2.6.6)

Although some literature says that local is inferior to global because it minimises the

risk arising from all future time increments and not only the next one (Augustyniak,

2017) [40], the local model is more suitable for hedging in the GARCH when we consider

some characteristics of this model: given t statement variables, the GARCH looks forward

and simulates future processes of stocks return and volatility but ignore the initial state

variables such as S0 and h0. The parameters of GARCH are also only used to estimate

future processes and cannot be used for backward projection of previous steps. This

makes it impossible to use the GARCH model only to obtain information before t from
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the current statement when it is not quite observable. Compared with the global one, the

local hedging focuses on the stepwise increments from the current time to the next one-

time spot and is independent with of all information before t. Furthermore, The stepwise

iteration property of the GARCH model coincides with the stepwise minimisation property

of local hedging.
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SWITCHING APPROXIMATION BY THE SADDLEPOINT METHOD

Chapter 3

Pricing VIX call option in a 4/2

model with a regime switching

approximation by the saddlepoint

method

3.1 Introduction

Many esteemed scholars have done plenty of research on the “change” over a long period.

Just like the change of tactics is driven by the opponent, market fluctuation is full of

uncertainty. Unlike others who focus on the underlying assets, some traders with unique

views on future market volatility or risk intend to make their judgements and predictions

with financial derivatives. To catch the change and measure the volatility, a good market

index is necessary for those special traders. The Volatility Index (VIX) has been considered

the world’s premier barometer of equity market volatility since it was introduced by the

Chicago Board Options Exchange in 1993. Compared with the other Indexes displaying

the objective statements of the market, the VIX Index reflects investors’ opinions and

26



3.1. INTRODUCTION

attitudes towards future market volatility subjectively, which means it could be regarded

as the market’s "fear gauge".

Considering the excellent performance of the VIX, the Chicago Board Options Exchange

launched the Volatility Index (VIX) future plan in March 2004 and VIX options in Febru-

ary 2006 as its derivatives to markets. Compared with constructing relative portfolios

following the weights calculated, directly investing in VIX derivatives allows the investors

to spend less and have a better risk-control ability. Unexpectedly, the trade volume of

those derivatives increased remarkably in the last decades. As a result, increasing papers

have been published to improve the accuracy of the VIX derivatives pricing approximation.

Zhang and Zhu (2006) [5] produced a closed-form approximation of VIX futures under the

Heston’s stochastic volatility framework(Heston 1993) [8]. Sepp (2008) [41] developed

an analytical methodology for pricing and hedging options by employing the generalised

Fourier transform for swaps on the realised volatility and variance and options on these

swaps. Lian and Zhu (2013) [42] presented an exact solution for VIX option prices under a

stochastic volatility model with simultaneous jumps in asset prices and volatility. Zhu and

Lian (2011) [43] provided a closed-form exact solution for the pricing of discrete-sampled

variance swaps and volatility swaps.

In 2015, Lin et al. developed a 4/2 stochastic volatility plus jumps model and obtained

a closed-form solution for the joint Fourier-Laplace transform so that the VIX derivatives

can be priced. Combing the classic Heston model with the 3/2 model, one could get a

new stochastic volatility model called the “4/2 model” as the instantaneous volatility part

structured as a
√
Vt + b√

Vt
with given constants a and b. Then, they utilised the model to

make a parameter consistently framework VIX derivatives and gained the approximated

prices. To figure out the merits of the 4/2 model, they tested their model with the Heston

model and the 3/2 model and compared their different performances in practice. The

result illustrated that the 4/2 model indeed has an “overall performance” in pricing VIX

derivatives and fits more general market status.

However, parameters should be inconsistent and changeable during the whole monitored

time. To ensure the accuracy of the approximation, we should consider the volatility of
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parameters with the volatility of target derivatives themselves. One of the useful methods

to show the parameter volatility is assuming that the parameters switch from different

regimes as time pass. The regime switching model is the stock parameters switching

among a finite number of states depending on the time. The market regimes could reflect

the state of the underlying economy, the general mood of investors in the market or other

economic factors (Zhang and Chan 2016) [44]. However, little work has been done about

pricing the VIX derivatives in the context of regime switching models, while Vo (2009) [29]

found reliable evidence of regime switching in the market, which supposed that the regime

switching stochastic volatility model may result in a more accurate pricing approximation

as it reflects more information on the market. To fill this gap, it is meaningful to modify

the consistent 4/2 model by adding the regime switching factors.

This thesis aims to take the regime switching factor into the 4/2 model and launch a

suitable modified closed-form solution of the VIX option pricing approximation which

transfers the value of derivative prices into tail expectations. To make the whole evalu-

ation process more operational, we prefer the saddlepoint method which was suggested

by Daniels (1954) [14]. The structure and steps of this chapter are planned as follows:

First, we build a consistent 4/2 model and contribute the closed-form solution for the

call option price. This part will be mentioned in section 2. Second, we introduce the

saddlepoint method and apply it to solve the tail expectation which represents the option

price in section 3. Then, we change the consistent parameters into the regime switching

ones, resulting in a 4/2 regime switching model and work out a comprehensive closed-form

solution of option prices and offer their approximated method. These works will be done

in section 4. In section 5 and 6 we will make a numerical test and discuss the conclusion

of this method.

3.2 The 4/2 model and its martingale judgement

In this section, we introduce the 4/2 model which includes both CIR and flipped CIR

components in its instantaneous variance. From previous work, we find that the Heston
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model takes the instantaneous variance as a mean-reverting squared Bessel process and

performs well on the long-term stable market situation, while the subsequent the 3/2

model which is the inverse of a CIR process capturing the short-term market volatility

better. Naturally, one will consider if we could produce a model which contains components

reflecting both the short- and long-term volatility. Thus, as a combination of the classic

Heston model and the 3/2 model, the 4/2 model assumes that the instantaneous variance

is linearly related to
√
Vt and 1√

Vt
, where Vt expresses the instantaneous variance of the

model based on CIR component at time t. Considering that the 4/2 model is based on

two classic models which could both be solved by saddlepoint methods, it is meaningful to

apply saddlepoint methods to this model during the solution processing. In this chapter,

we focus on taking the saddlepoint method to calculate the call option price of the 4/2

model. For simplification, we apply the 4/2 model without jump to describe the variance

process Vt of underlying asset price St as follows:

dSt = rStdt+ (a
√
Vt + b√

Vt
)StdZ1

dVt = k(θ − Vt)dt+ σ
√
VtdZ2

(3.2.1)

where r is determined as the risk-free interest rate, θ is the long-term variance, k is the

mean-reverting rate, σ is the volatility of variance, dZ1 and dZ2 are correlated Wiener

processes with constant correlation parameter ρ in the risk-neutral measure Q. In fact,

by taking a or b zero, we could recover (3.2.1) into the 3/2 model and Heston model

respectively. Correspondingly, (3.2.1) involves both the volatility processes of the Heston

model and the 3/2 model. Specially, when we take a = 0 and νt = 1/Vt and the second

equation of (3.2.1) becomes:

dνt = νtkν(θν − νt)dt+ σννt
3/2dZ2 (3.2.2)

where

kν = kθ − σ2, σν = k

(kθ − σ2) , σν = −σ.

In that way, (3.2.2) simulates the volatility process of the 3/2 model and composes the

whole 3/2 model when we take a = 0. On the other hand, it is obvious that the 4/2 model
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could be transferred into the Heston model when we just let b = 0. Thus, we could say,

the volatility of the 4/2 model is driven by both the Heston and the 3/2 components.

Similar to other stochastic volatility models, the 4/2 model also needs to be implemented

in a given risk-neutral measure to ensure no arbitrage during the trades. However, we

should handle it carefully because the risk-neutral measure Q may not exist under the

3/2 model framework (Lewis 1999) [45]. Lewis defined that the risk-neutral measure is

not applicable when the discounted asset price S̃t = Ste
−rt is a strict local martingale

in the measure Q. Thus, to determine if the risk-neutral measure exists, we could check

whether S̃t is a true martingale (not a local martingale). Generally, we could make the

Feller non-explosion test for Vt for both the risk-neutral probability measure and historical

probability measure to see whether the local martingale conditions are met. Lin and Li

(2017) [3] proved that the discounted stock price S̃t is a true martingale, if and only if

2kθ ≥ σ2 ≥ 2kθ + 2ρσb (3.2.3)

Proof : From Grasselli (2017) [9], we transfer (3.2.1) from risk-neutral measure to historical

measure by a measure change :

dẐ2 = dZ2 − ρ(a
√
Vt + b√

Vt
)dt (3.2.4)

where Ẑ2 presents a standard Brownian motion under the historical measure. With this

change, Vt in (3.2.1) could be expressed as:

dVt = [k(θ − Vt) − ρσ(aVt + b)]dt+ σ
√
VtdZ2. (3.2.5)

Grasselli mentioned, the discounted asset price is a local martingale if (3.2.5) meets the

Feller condition as
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2kθ + 2ρσb ≥ σ2 (3.2.6)

and the Feller condition is satisfied with the risk-neutral measure when

2kθ ≥ σ2 (3.2.7)

Therefore, the discounted asset price S̃t is a true martingale when the σ2 is valued just in

the range pointed out above.

3.3 The closed-form solution of VIX call option and its ap-

proach

An option is a right to purchase or sell an asset or derivatives at a specific price in a specific

period. As the call option and put option follow put-call parity and have similar solution

processes, we will just talk call option which represents the buyer part of the option in

the remainder of this chapter. Without loss of the generality, we consider the call option

price C(Y, t) as a conditional expectation (tail expectation):

C(Y, t) = e−r(T −t)Et
Q[(Y −K)+] (3.3.1)

where

Et
Q[(Y −K)+] = 1

2πi

∫ r+i∞

r−i∞

ek(z)−zK

z2 dz r ∈ (0, α+) α+ > 0]

and Y is the underlying asset which we are interested in, T and K are the delivery time

and strike price, k(z) is the cumulant generating function (CGF) of Y . There are several

methods to solve this integral like the Lugannani-Rice formula, the frozen method local

31



CHAPTER 3. PRICING VIX CALL OPTION IN A 4/2 MODEL WITH A REGIME
SWITCHING APPROXIMATION BY THE SADDLEPOINT METHOD

quadratic method and so on. In this chapter, we prefer the alternative saddlepoint method

for the complication of the VIX call option closed-form solution which we will offer in this

section.

3.3.1 The closed-form solution of the V IX2
T and its call option

Unlike other options, the VIX option, which originated in 2006, uses the Cboe Volatility

Index as its underlying asset. If we follow the original method, we need to solve the

equation

C(V IXT , t) = e−r(T −t)EQ
t [(V IXT −K)+] (3.3.2)

That means we need to find the CGF of VIX itself. However, the V IX is so complex

that we can hardly find a closed-form solution of its CGF directly. We noticed that

there is always a linear relationship between V IX2
T and VT in both the 3/2 model and

the traditional Heston model. Rationally, we guess that there may exist a similar affine

structure that expresses V IX2
T by a linear form of VT . At last, the approach of V IX2

T

by implementing the Ito formula on the underlying assets and solving its expectation till

time t is expressed as follows:

V IX2 = 1
τ

lim
N→∞

ΣN
i=1E

Q
T [(log STi

STi−1
)2]

≈ 1
τ

lim
N→∞

ΣN
i=1(a2EQ

t [VTi−1 ] + b2EQ
T [ 1
VTi−1

] + 2ab)△Ti

=
∫ T +τ

T
(a2EQ

T [Vs] + b2EQ
T [ 1
Vs

] + 2ab)ds

(3.3.3)

where τ = 30
365 . For the first part of this integral, we consider the process ekTVT which

satisfies the following SDE:

dekTVT = ekT (kθdT + σ
√
VTdZ

2
T ). (3.3.4)
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From that, we obtain:

EQ
T [Vs] = ek(T −s)Vt + θ(1 − ek(T −s)). (3.3.5)

Thus, we could express (3.3.3) as: set the initial time t as 0 and solve the second part of

the integral in (3.3.3) and the approximate affine structure of V IX2 will be shown as

V IX2
T ≈ a2(1 − e−kτ )

kτ
VT + a2θ(1 − ((1 − e−kτ )

kτ
)) + 2ab+ 1

τ
b2
∫ T +τ

T
EQ

T [ 1
Vs

]. (3.3.6)

Thus, the crucial work of figuring out the approximated expression of V IX2 is to find

the solution of
∫ T +τ

T EQ
T [ 1

Vs
]ds. By using proposition 8.1. of Chan and Platen’s work

(2015) [46] and taking parameter p to be 0 and keeping β1 > 0, we have

E[
∫ T

0

1
Vs
ds] = − d

dµ

1
2vV0

m e
− b1V0

γ(eb1T −1)
+b1mT

( b1e
b1T

(eb1T − 1)γ )

× ( b2
1V0

γ2sinh2( b1T
2 )

)v/2 Γ(β1)
Γ(1 + v)1F1(β1, 1 + v,

b1V0
γ(eb1T − 1))

(3.3.7)

where

dVT = (a1 − b1VT )dt+
√

2γVTdWt

β1 = 1 +m+ v/2,m = 1
2(a1/γ − 1), v = 1

γ

√
(a1 − γ)2 + 4µγ

Without loss of generality, we could regard the integral
∫ T +τ

T EQ
T [ 1

Vs
]ds as the minus result

of
∫ T +τ

0 EQ
T [ 1

Vs
]ds and

∫ T
0 EQ

T [ 1
Vs

]ds and imply the formula above separately, expressing the

closed-form of V IX2 by (3.3.6) and (3.3.7). As the closed-form expression of its CGF is

known, we could implement the saddlepoint method to approximate the tail expectation.

By following these steps, the closed-form of option pricing models of the VIX with initial

time 0, delivery time T and strike K is presented as:
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C(V IXT , T ) = e−rTEQ
0 [(V IXT −K)+]

= e−rTEQ
0 [(
√
V IX2

T −K)+]
(3.3.8)

To obtain the results of the option price, we should discuss how to obtain the tail expec-

tation form E[(
√
X −K)+] with a known cumulant generating function (CGF) first, then

present the method of approaching that CGF. By the definition of the tail expectation,

E[(
√
X −K)+] =

∫ ∞

K2

√
Xp(X)dX (3.3.9)

where p(X) is the probability density function of X. If we have known the CGF of X,

we could obtain the analytical closed-form expression of this tail expectation according to

Kowk and Zheng’s work in 2014 [2] like :

EQ
0 [(
√
V IX2

T −K)+] = 1
4
√
πi

∫ r+i∞

r−i∞

ek(ẑ)+g(ẑ)

ẑ3/2 dẑ r ∈ (0, α+) (3.3.10)

where k(z) is the CGF of the V IX2
T and analytic in some open vertical strip that owns

the range {z ∈ C :α− < Rez < α+} with α− < 0, α+ > 0 and g(z) = log(1 − erf(
√
zK).

ẑ is the positive root of the alternative saddlepoint equation

k′(ẑ) + g′(ẑ) − 3
2ẑ = 0 (3.3.11)

3.3.2 The approach of V IX2
T CGF

Since we have set up the closed-form solution of the VIX call option and its approximation,

it is feasible to figure out the closed-form of the CGF of V IX2
T . Considering that V IX2

T

could be expressed as an affine structure of VT , we should gain the closed-form CGF of

VT first and figure out the CGF of V IX2
T by the linear transform. Thanks to Chan and

Platen who offered the affine structure of the governing dynamics equation of Vt [46], we

are able to obtain the CGF closed-form of VT in the analytic form:
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EQ
0 [ezVT ] = B(z;T )V0 + γ(z;T ), Rez < α+, α+ > 0 (3.3.12)

where

B(z;T ) = 2kz
σ2(1 − ekT )z + 2kekT

γ(z;T ) = −2kθ
σ2 log(1 + σ2z

2k (e−kT − 1))

where α+ is determined by requiring the arguments of the above logarithm terms to be

greater than zero. Considering the affine structure of V IX2
T and variance process VT , we

are able to derive the CGF of V IX2 as k(z)

k(z) = logEQ
0 (ezV IX2

T )

= βz + EQ
0 [eαzVT ]

= βz +B(αz;T )V0 + γ(αz;T ), Rez < α+

(3.3.13)

where

α ≈ a2(1 − e−kτ )
kτ

β ≈ a2θ(1 − ((1 − e−kτ )
kτ

)) + 2ab+ b2

τ
EQ

0 [
∫ T +τ

0

1
Vs
ds] − b2

τ
EQ

0 [
∫ T

0

1
Vs
ds]

3.4 Regime switching

As we mentioned before, we need to consider the short- and long-term situations of the

market and make the model more general. However, we find that the Heston model, the

3/2 model and the 4/2 model all assume that the parameters are consistent during the

whole monitored time as common models implicitly ignore long-term or wider economic

factors that may influence the volatility dynamics (Elliott and Lian 2013) [30]. To fill this

gap, we attempt to modify the traditional model by adding the regime switching factor.

Combining stochastic volatility models with regime switching allows us to take the short-

term price dynamics effect into the whole pricing approximated process. Several empirical
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works have shown that the regime switching factor contributes obviously to the market

dynamics and fits the “real-world” market better. Following Elliott et al. (2007) [28], we

adopt the regime switching modification on the original stochastic volatility model and

transfer it into a continuous-time Markov-modulated stochastic volatility model.

First, we assume the market dynamics follows a continuous-time finite-state observable

Markov chain Mt with state-space S = {s1, s2, s3. . .sN }. Each element of the state-

space represents a kind of market condition like “boom” or “depression”. Accordingly,

the dynamics of a Markov chain is expressed by the N-by-N matrix A with each element

aij , where i, j ∈ (1, 2, . . .N) under the historical probability measure P. In this way, aij

describes the intensity of transition from the state i to state j, satisfying aij ≥ 0 if i̸=j

and ΣN
i=1aij = 0 (Elliott and Lian 2013). Furthermore, Elliott has shown that the Markov

chain has a semi-martingale representation:

MT = M0 +
∫ T

0
A′ ·Mtdt+DT (3.4.1)

where DT is a RN martingale with respecting to the filtration generated by MT under

the historical probability measure P and A′ is the transpose of A. In this section, we only

assume that the long-term variance θ switches according to the state of the indicator Mt

for simplification, which means

θt =< θ⃗,Mt > (3.4.2)

where θ⃗ is the state space of long-term variance and <,> denotes the scalar product in

RN . In this way, the traditional 4/2 model turns to

dSt = rStdt+ (a
√
Vt + b√

Vt
)SdZ1

dVt = k(θt − Vt)dt+ σ
√
VtdZ2.

(3.4.3)
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As the model changed, we need to figure out a new CGF, which fit the regime switching

conditions. Following the previous work applied to the Heston model offered by Zhang

and Chan (2016) [44], we let Fv
0 and FM

0 be the natural filtration decided by the Brownian

motion factor and the regime switching factor till time t. If the information about the

regime switching factor presented by the Markov chain till time T is known, the CGF with

a regime switching factor of the variance process CGFVT (z;T, V0|FM
T ) should be

CGFVT (z;T, V0|FM
T ) = B(z;T )V0 + Γ(z;T ), Rez < α+ (3.4.4)

where

B(z;T ) = 2kz
σ2(1 − ekT )z + 2kekT

Γ(z;T ) =
∫ T

0
< kθ⃗B(z; t),Mt > dt.

However, under the condition that the evaluated time t = 0, the information from the

evaluated time to the delivery time T is unknown to us. That means, instead of FM
T ,

the information of regime switching conditions we could collect belongs to the natural

filtration FM
0 . Thus, the CGF of VT till time t is

CGFVT (z;T, V0|FM
0 ) = EQ[CGFVT (z;T, V0|FM

T )|FM
0 ∨ Fv

0 ]

= B(z;T )V0 + EQ[
∫ T

0
< kθ⃗B(z; t),Mt > dt|FM

0 ∨ Fv
0 ].

(3.4.5)

From (3.4.5), we could find that the crucial point of solving the CGF of VT is solving the

core calculation EQ[
∫ T

0 < kθ⃗B(z; t),Mt > dt|FM
0 ]. From Elliott and Lian (2013) [30], the

core calculation part could be expressed as

EQ[
∫ T

0
< kθ⃗B(z; t),Mt > dt|FM

0 ∨ Fv
0 ] =< Φ(z, T )M0, I > (3.4.6)

where

Φ(z, T ) = A′T + diag{kθ⃗ 2
σ2 log[1 + σ2z

2k (e−kT − 1)]},

I = (1, 1 . . . 1) in RN and A′ is the transpose of A.
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After obtaining the closed-form of Vt’s CGF, we naturally consider the CGF of V IX with

a regime switching till the time T . Just like (3.3.13), the CGF of V IX with a regime

switching till T could be expressed as an affine structure of VT CGF.

k(z) = logEQ
0 (ezV IX2)

= β(θ)z + logCGFVT (αz;T, V0)

= β(θ)z +B(αz;T )V0+ < Φ(αz, T )M0, I >, Rez < α+

(3.4.7)

From (3.4.7), β contains the regime switching parameter θ so that we could refer to the

method of gaining the closed-form expression of Vt’s CGF and assume that the information

till time T is known first. As the regime switching factor is only included in the CGF of

V IX, the price of the call option of the regime switching model could be expressed as

EQ
0 [(

√
V IX2 −K)+|FM

T ∨ Fv
T ] = EQ[EQ

T [(
√
V IX2 −K)+]|FM

0 ∨ Fv
0 ]

= 1
4
√
πi

∫ r+i∞

r−i∞

eE
Q[k(ẑ)|FM

0 ∨Fv
0 ]+g(ẑ)

ẑ3/2 dẑ
(3.4.8)

where

r ∈ (0, α+)

We need to calculate EQ[k(ẑ)|FM
0 ∨ Fv

0 ] if we want to approximate the option price shown

in (3.4.8) similarly as evaluating the CGF of Vt, we need to figure out the expectation

under the natural filtration FM
0 . Thus, the CGF of VIX with a regime switching factor

till time T evaluated at time 0, krs(ẑ) is

krs(ẑ) = EQ[EQ[k(ẑ)|FM
T ]|FM

0 ∨ Fv
0 ]

= EQ[
∫ T

0
< k(ẑ; t, θ⃗, V IX),Mt > dt|FM

0 ∨ Fv
0 ]

=< Φvix(ẑ;T, θ⃗, V IX)M0, I >

(3.4.9)

where

Φvix(ẑ;T, θ⃗, V IX) = A′T + diag{k(ẑ;T, θ⃗, V IX)}

At last, similarly to the approach method for consistent parameters VIX model offered by

Kowk and Zhang (2017) [2], the first order approximation of the call option price under
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the 4/2 regime switching model could be approximated as:

[EQ
0 (V IX −K)+] ≈

√
2ekrs(ẑ)+g(ẑ)− 3

2 log(ẑ)

4
√
π[k′′

rs(ẑ) + g′′(ẑ) + 3
2ẑ2 ]

(3.4.10)

where ẑ is the positive real root of the alternative saddlepoint equation (3.3.11).

Also, the higher order form of this approximation can be obtained by performing the

Taylor expanding of ekrs(z)+g(z)− 3
2 log(z) up to the corresponding order near the estimated

saddlepoint ẑ. As an example, the second-order form of this approximation obtained by

the fourth-order Taylor expansion on the above exponential is presented as follows:

[EQ
0 (V IX −K)+] ≈

√
2ekrs(ẑ)+g(ẑ)− 3

2 log(ẑ)

4
√
π[k′′

rs(ẑ) + g′′(ẑ) + 3
2ẑ2 ]

×
(

1 + 1
8
k′′′′

rs (ẑ) + g′′′′(ẑ) + 9
ẑ4

[k′′
rs(ẑ) + g′′(ẑ) + 3

2ẑ2 ]2
− 5

24
[k′′′

rs(ẑ) + g′′(ẑ) − 3
ẑ2 ]2

[k′′
rs(ẑ) + g′′(ẑ) + 3

2ẑ2 ]3

)
.

(3.4.11)

There is no doubt that this form of approximation becomes more accurate as the order

increases. We note, however, that even the second order form of the approximation already

requires the fourth-order derivative of the saddlepoint equation, k′′′′
rs (z). The potential

computational complexity of the fourth-order derivatives can be very high, given that we

are estimating in the framework of the regime switching model. After balancing the model

accuracy and computational complexity, we acknowledge that the higher order forms of

the approximation are able to increase the accuracy of the option pricing model, but do

not perform the corresponding numerical test in the next section.

3.5 Numerical test

In this section, we present numerical examples for VIX call option prices with different

delivery time and strikes by using the saddlepoint approximation method. In each com-

bination of time and strike, we test the approximation under both the regime switching
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parameter value

V0 0.872

k 3.46

p 0.82

σ 0.14

a 1.5

b 0.01

r 0.08

θ⃗ [0.009,0.004]

M0 [1,0]

A

 3 −3

−5 5


Table 3.1

framework and the non-switching one. Then, we figure out the accuracy of the regime

switching model by comparing the numerical result with Monte-Carlo simulation ones. Al-

though the regime switching model can accommodate a variety of shifts in market states,

to keep the test straightforward, we assume that the market in which this option is issued

has only two states, one defined as a boom and the other defined as a bust. The numerical

test in this section assumes this market that starts in a boom state and may switch to a

depressed state in the whole business time. In this case, due to price depression caused

by the market state switch, the final European VIX call option price in this market is

lower than the corresponding option price that would have remained in the boom state.

In addition, we choose a delivery time of 0.7 to 0.9 so that the long-term volatility included

in the 4/2 model can be reflected and distinguished from the short-term volatility. All

other parameters needed in the calculation process are given in Table 3.1, the calculation

results are shown in Table 3.2 and the accuracy issues are demonstrated in Table 3.3.

Obviously, it is difficult to find a market that fits our assumptions in the financial data.

For the lack of market information, this section uses Monte Carlo simulations with 10000
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strike
T 0.7 0.8 0.9

switch constant switch constant switch constant
0.07 0.1807 0.1956 0.1828 0.20025 0.1845 0.2049
0.11 0.1387 0.1532 0.1409 0.15785 0.1421 0.1625
0.15 0.09709 0.1111 0.09921 0.11575 0.1000 0.1204
0.19 0.05646 0.06908 0.05854 0.07372 0.05789 0.07836

Table 3.2

strike
T 0.7 0.8 0.9

switch MC error switch MC error switch MC error
0.07 0.1807 0.1802 0.277 0.1828 0.1811 0.939 0.1845 0.1818 1.485
0.11 0.1387 0.1403 1.140 0.1409 0.1412 0.212 0.1426 0.1423 0.211
0.15 0.09709 0.1005 3.393 0.09921 0.1018 2.544 0.1009 0.1024 1.465
0.19 0.05646 0.0606 6.832 0.05854 0.062 5.581 0.06016 0.0626 3.898
0.23 0.0212 0.0207 2.415 0.02284 0.0224 1.964 0.02406 0.0227 5.991

Table 3.3

repetitions as true values for verification and the results were listed as "MC" in the table.

During the Monte Carlo test, we implemented a traditional Heston simulation method

and modified the original model by adding a parameter ϵ which is valued at 1 or 0. The

frequencies of 1 and 0 are produced by the Monte Carlo matrix A to simulate the regime

switching statements. In this way, we could express the regime switching Monte Carlo

model for the value of VIX as

V IXn = a2(1 − e−kτ )
kτ

Vn − (b
2(1 − e−kτ )

kτ
− 2b2) 1

Vn
−

b2θ(1 − (1 − e−kτ )
kτ

) 1
Vn

2 + a2θ(1 − (1 − e−kτ )
kτ

) + 2ab
(3.5.1)

z is a standard normal random variable, δ is the step length of time in the test, the value

of θsimu is picked from θ state-space and decided by the simulated results of ϵ in each step

and the value of Vn could be obtained by the Milstein method (Platen 2010) [47] which is

used to approximate numerical solution of a stochastic differential equation.

From table 2, we figure out that the prices of the call option calculated from the regime

switching 4/2 stochastic volatility model are obviously different from their non-switching

counterparts in each time-strike combination. This numerical result corresponds to our

41



CHAPTER 3. PRICING VIX CALL OPTION IN A 4/2 MODEL WITH A REGIME
SWITCHING APPROXIMATION BY THE SADDLEPOINT METHOD

expectation that the price of the option in a state switching market is lower than option

prices in a market that remains unchanged. A more likely reason for this is that boom

markets have greater trade volume and trade frequency than a state switching market,

so asset prices in this market will be given higher volatility, causing investors to expect a

greater rise in the VIX, which in turn enhances the price of the corresponding call option.

The results also show that when delivery time T gets close to 1(one whole year), the price

of the VIX option also increases, as longer business hours bring greater uncertainty and

higher VIX values.

From table 3, we show the accuracy of the regime switching model by the error%. We

find that the relationship between error and delivery time was not significant. However,

in every delivery time, an increase in strikes always leads to an increase in error%. One

possible reason for this is that when the strikes gradually increase, the value of the price

is so low that a very small inaccuracy can lead to a large error%.

3.6 Conclusion

We have extended the 4/2 model in a regime switching framework and approached first

order numerical results. In order to capture both short and long-term price dynamics

effects of the market volatility, we adopt the regime switching method to reflect the short

dynamics factor and apply the 4/2 model to describe the long-term effects. To ensure that

the discounted stock price is a true harness under the risk-neutral measure, we examine

the Feller condition to ensure this. Subsequently, we introduce an alternative saddlepoint

method by which the price of VIX options expressed by a tail expectation could be priced.

Then, we take a numerical test and point out that the 4/2 model with regime switching

provides a different approximated value from the original model and show its accuracy by

comparing the approached results with simulation values from the Monte-Carlo method.

Summarising all findings, the introduction of the regime switching factor leads to a signifi-

cant improvement in VIX option pricing approximations, suggesting that regime switching

helps in accuracy issues and describes the market trend “more truly”.
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3.6. CONCLUSION

Finally, several works remained in this chapter, and we expect to solve them in the fu-

ture. For example, we have not yet found a way to simplify the calculation of the higher

order closed-form of pricing or to numerically approach the higher order derivatives of the

saddlepoint equation, preventing us from effectively improving the accuracy of the model

by increasing the order of the approximation. Furthermore, a non-Gaussian saddlepoint

method should be offered as none can ensure whether the VIX follows the normal distri-

bution. These topics deserve more attention and will be aspects and subjects of future

work.
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Chapter 4

Generalisation of the GARCH

model and its application to the

pricing of VIX call options

4.1 Introduction

As time goes by, the modern financial market becomes more and more mature and diversi-

fied. Not only the assets themselves but also the derivatives and volatility could be priced

by those advanced traders who believe they have special predictability on the trends of

individual stocks, portfolios or even the total market. As a real time index of traders’ ex-

pectation of market trends, Volatility Index(VIX), which has been calculated by Chicago

Board Options Exchange since 1993, expresses the traders’ subjective feelings about risk

when making financial decisions. However, the definition and criteria for the VIX were

not fixed from the beginning. For example, in 1993, the Cboe used the S&P100 rather

than the S&P500 to obtain the value of VIX. The calculation methods of VIX vary but

are usually based on the volatility of the underlying asset or derivative. After the VIX

was recognised and widely used by many investors, Cboe launched VIX futures and VIX
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options in 2004 and 2006 respectively.

One of the common methods to calculate the VIX derivatives is the Heston method which

is provided by Heston in 1993. He purposed that the volatility of the relevant assets

is continuous over time and follows the Cox–Ingersoll–Ross process(CIR). Following this

assumption, the volatility is related to the current spot prices which are instantaneous.

Much of the literature demonstrates the superiority of this model but also signals some

shortcomings of this model in the empirical tests. For example, some parameters like ξ,

describing the variance of instantaneous volatility Vt, is hard to gain accurately as we

cannot just separate the variance factor of the total change of the volatility as the time

trend and jumps also contribute to the complete change of Vt. This model flaw is not only

present in the Heston model but is prevalent in all continuous-time financial models. On

the other hand, the way of the Heston model that describes the volatility does not capture

the changing curve well when it runs into short-term and dramatic fluctuations led by

some sudden market events. In this condition, the skew of the Heston model goes flat, but

the real-world skew of volatility should steepen as the Vt increases. At last, the original

Heston model assumes the diffusion terms of asset price and its volatility follow standard

Gaussian distribution. But the empirical work has shown that curve of densities of return

and volatility are both fat tails compared with the Gaussian distribution. Therefore, the

main objective of this chapter is to propose modified stochastic models that can solve the

above problem by combining various modelling techniques.

Regarding the first problem, we can introduce some popular discrete stochastic models,

inherit their modelling ideas and bring some modifications to extend them. Discrete-time

Generalised Autoregressive Conditional Heteroskedasticity models(GARCH) are good can-

didates for this part. Heston and Nandi offered a GARCH type model which describes the

evolution of log return and its volatility. Instead of implying the instantaneous variance

which is continuous but not so practical to traders, the GARCH model assumes that the

logarithm return is derived by the increment over time and the change of conditional vari-

ance decided by its historic paths and spot innovation term. Furthermore, Heston offered

the risk-neutral modification of this model and the closed-form of the moment generation
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function(MGF) of the conditional variance. This makes it possible to price the option of

VIX by transferring it to a tail expectation and applying the saddlepoint which will be

mentioned in section 5.

After considering the shortcomings of the continuous-time stochastic model, we will pro-

ceed to the problem of the Heston model’s inability to correctly capture short-term fluc-

tuations. To overcome the wrong skew exhibition and some other limitations, Heston

(1997) [10] presented the 3/2 model and assume the Vt follows the flipped CIR process

because it could return to the long variance faster when the magnitude of volatility is

high. These characteristics coincide with empirical research and real market performance.

Bakshi et al. (2006) [48] ran a numerical test to simulate the dynamics of a Constant

Elasticity of Variance volatility and compare it with both the Heston model and the 3/2

model. From this work, the coefficient of the diffusive power is about 1.3, closer to the

3/2 model(1.5) than the Heston model(0.5). But we still agree that the Heston model

performs well in stress-free and long-period conditions. To make a general model that fits

all conditions, Grasselli (2017) [9] offered the 4/2 model by combining the two kinds of the

Vt processes of the Heston model and the 3/2 model. In this way, the process of Vt comes

from the overlap of the CIR process and flipped CIR process with weights calibrated from

market data. In Section 5, this chapter will combine the 4/2 model constructed by Gras-

selli and Heston’s discretization method for the 1/2 model to construct the 4/2 GARCH

model.

The last issue planned to be discussed is the varying business time. The empirical studies

indicate that the probability distribution of the innovation term may not follow Gaussian

much and own fat tails. This is because there are some assets and derivatives that are

affected by market cycle and trading volume, and their innovation terms exhibit different

characteristics from the standard normal distribution. This fact violates the Gaussian as-

sumption of the Black-Scholes family model, impairing the predicted ability of the original

model by unexpected drifting. To address the effects and capture the fat tail of the return,

we could implement a random time subordinator to take place of the constant time in the

model.
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The structure of the chapter is as follows. Section 2 will present a GARCH framework

of the Heston-Nandi model with its VIX option structure. We will introduce GARCH

the 4/2 model and its moment generating function(MGF) for the saddlepoint method in

the third section. Section 4 introduced the subordinators and the saddlepoint method is

implemented in section 5. The last two sections contain the empirical test with a typical

subordinator and briefly summarise this chapter.

4.2 Pricing VIX derivatives under GARCH framework

In a statistical field, heteroskedasticity tends to indicate that the volatility of the resid-

uals does not follow an invariant constant, but varies with time. It allows us to reduce

forecast errors and improve the accuracy of future forecasts by taking into account the

residuals from the previous value. As a natural generalisation of the ARCH (Autoregres-

sive Conditional Heteroskedasticity) process, GARCH and its modified models are widely

used to analyze time series data concerning exchange rates, stock prices, etc. Introduced

by Bollerslev (1986) [6], the GARCH model assumed that the volatility of the residu-

als follows an ARMA (autoregressive moving average) process with parameters p and q

which control the contribution rate of historic conditional variance to leverage terms and

innovation terms of current conditional variance. Then, Heston developed a closed-form

option pricing formula for the spot assets following a specific GARCH(p, q) process with

the log return correlated with its conditional variance(Heston 2000) [49]. In this chapter,

we implement its simplest but most useful branch, GARCH(1,1) model. This model as-

sumes that both the leverage terms and innovation terms of the conditional variance in

the present moment are only related to the value of its previous step.

4.2.1 VIX description in GARCH(1, 1) model

Since the GARCH models are based on the discrete framework, it is necessary to define the

discrete time first. In this chapter, we assume that the stock price information is updated
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at fixed time points t ∈ 1, 2, 3... with the same intervals. This means that all stochastic

processes develop in a probability space (Ω,F ,P) with an information filtration Ft. When

the business time reaches the moment t, we assume that all traders have access to all public

information at the same time and make rational decisions based on this information.

In GARCH (1,1) model, the log return Rt follows the following process in the physical

measurement:

Rt = rt + λht +
√
htzt

ht = ω + βht−1 + α(zt−1 − δ
√
ht−1)2.

(4.2.1)

In this first equation, Rt is the log return of spot price St, rt is the risk-free interest

rate, λ is a coefficient for the risk premium, zt is a standard normal distribution which

drives the price volatility caused by stochastic factor. This equation relates the logistic

regression to its conditional variance, arguing that the change of the log return is a joint

result of fluctuations in the interest rate and conditional variance. In the second equation,

ht could be regarded as an instantaneous conditional variance at time t and formed as

a function of previous information which could be observed in the explicit window. Two

positive parameters α and β represent the drift and leverage coefficient which are constants

in this assumption. In addition, we note that the innovation term of ht has a negative

shock, which is to express the negative correlation between return and variance, which is

consistent with Black’s findings in 1976 [50].

Before moving on to assets and relative derivatives pricing work, we need to transfer the

governing equations into risk-neutral measure Q because the purpose of this chapter is to

use the model to value the option. Duan (1995) [23] and Heston (1997) [10] provided ways

to transform the risk-neutral form of the GARCH model respectively as:

z∗(t) = z(t) + (λ+ 1
2)
√
h(t)

δ∗ = δ + λ+ 1
2 .

(4.2.2)

In this way, the risk-neutral GARCH (1,1) model turns out to be

Rt = rt − 1
2ht +

√
htz

∗
t

ht = ω + βht−1 + α(z∗
t−1 − δ∗

√
ht−1)2.

(4.2.3)
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4.2.2 Definitions of VIX under GARCH model

Starting from 1989, a series of approximations on price volatility derivatives and hedging

volatility risk has been gradually proposed. A popular method of approximating the VIX

options constructs the value of V IX2 by an affine structure of associated volatility. In this

way, the expression V IX2 is V IX2 = avt + b with a and b depending on the parameter

values of applied financial models. As a description of market varying, volatility can often

be expressed by a variety of commercial indexes or derivative prices so the definition of

a and b in this form, too. Therefore, the definition of VIX also varies with not only

the reference index and derivatives but also the structure of VIX itself. For example,

Hao and Zhang (2013) [51] applied a practical V IX2 form which associates its value

with the expected daily variance introduced by Cboe. This form expresses the VIX as

the annualised average of expected daily variance under a risk-neutral measure. It first

defines an implied volatility Vt(n) as:

Vt(n) = 1
n

n∑
i=1

EQ[hT +i|Ft]. (4.2.4)

In this form, n tends to be taken as 22 (trading days of a month), as the VIX is an

indicator of volatility for the next coming month. Then, the value of V IX2 is described

as an annualised variance transformed from Vt(n) that:

V IX2
t = 252 × Vt(22). (4.2.5)

According to Wang’s (2011) [52] proof, if the conditional variance ht follows the Heston-

Nandi model, then Vt(n) can be further expressed as:

Vt(n) = (1 − Γ(n))h̄+ Γ(n)ht+1 (4.2.6)

where

h̄ = w + α

1 − β − αδ2
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and

Γ(n) = 1 − (β − αδ2)n

n(1 − β − αδ2)

V IX2
t = 1

n
EQ[V art+n

t |Fs] (4.2.7)

where 0 < s < t and the discrete realised variance is defined as :

V art+n
t =

n∑
i=1

(RT +i)2.

After defining the V IX2, we move on to the derivatives of the VIX, namely the VIX

options. In this chapter, we use the VIX European call option as an example to show the

method of obtaining the closed-form of the derivative prices. To see this, we consider a

call option on VIX, with the terminal payoff (V IXT − K)+. This option form indicates

that this option will expire at time T with an expiration value max[V IXT −K, 0]. Given

the above conditions, this pricing formula of a European VIX call option, C(t, T ) with

strike K can be written as:

C(t, T ) = e−r(T −t)EQ[(V IXT −K, 0)+|Ft]. (4.2.8)

The next work is to expand the realised variance into an affine form of ht and obtain the

value of this tail expectation by the saddlepoint method. Considering that the purpose

of this chapter is to compute the option price in the 4/2 GARCH model, these two parts

will be carried out after the introduction of the 4/2 GARCH model.

4.3 Expression of VIX option under 4/2 GARCH frame-

work

The long-term market performance of the original Heston model has proved that it is a

utility tool for S&P 500 and its derivative index such as VIX. But the empirical research
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also revealed its shortage of capturing the short-term volatility as the power of the con-

ditional variance is 1
2 , which will lead to downward-sloping volatility of variance smiles in

mistake(Drimus 2011) [11]. Furthermore, Bakshi (2006) [48] simulated the dynamics of a

Constant Elasticity of Variance (CEV) volatility and approximated the power of variance

term, resulting in 1.3 nearly. Both of these two simulations suggest that we need to find

an advanced way to express the variance part in governing equations. To solve this block,

Heston (1997) [10] offered an inverse CIR volatility process named the "3/2 model". As

the volatility term is flipped to the denominator, this process mimics the fast reverting

phenomenon when the volatility fluctuates widely. The motivation of keeping good perfor-

mance for both short- and long-term business periods makes us consider a combination of

the original Heston model and the 3/2 model. Thanks to Grasselli (2017) [9], who offered

an effective model to realise this idea named the "4/2" model.

In this section, we present the 4/2 model in a discrete framework and consider it with the

GARCH model, based on the idea of Grasselli (2017) [9] who presented the continuous-time

4/2 model. This model combines the diffusion terms of the Heston-Nandi model and its

flip type just like the 3/2 model. The derivation of this model starts from the continuous-

time 4/2 model and is obtained by a discrete process. In the discrete model, we note that

not only the parameters of the diffusion term change (from √
vt to a√

vt +b/
√
vt), but also

the parameters of its leverage term change and are also related to a, b. This model, which

inherits the advantages of the Heston-Nandi model, makes the power of the diffusion term

adjustable, allowing the model to be adapted to the more generalised underlying asset and

its derivatives.

4.3.1 Structure of 4/2 GARCH model

The original continuous-time 4/2 model describes the following two processes
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dSt =rStdt+ (a
√
Vt + b√

Vt
)StdZ1

dVt =k(θ − Vt)dt+ σ
√
VtdZ2.

(4.3.1)

From those equations, we find that the diffusion term of this model combines the Heston

model type and the 3/2 model. Parameters a and b are implemented to make the volatility

of variance fit the real market situation in both the short- and long-term. After the

modification of the flip CIR factor, this model owns a similar variance process with the

Heston model but keeps the flip
√
Vt coming from the 3/2 model to capture the short-term

volatility correctly.

Following a similar way Heston transfers the continuous-time Heston model into a discrete

version, the Heston-Nandi model. We can derive a discrete version of the 4/2 model

through Heston’s process of discretizing the continuous-time Heston model to a Heston-

Nandi model. With the distribution of St in 4/2 model, the expression of logarithm of St

follows:

dlogSt =(r − 1
2(a2vt + b2

vt
+ 2ab))dt+ (a

√
vt + b

1
√
vt

)dZ1
t . (4.3.2)

The discrete form of the above equation is written as :

Rt = log
St+1
St

≈ (r − 1
2(a2vt + b2

vt
+ 2ab))∆t+ (a

√
vt + b

1
√
vt

)∆Z1
t . (4.3.3)

As the discrete form of Rt is obtained in the 4/2 model, we assume the log return Rt and

its conditional variance ht in the GARCH 4/2 model follow discrete stochastic processes

like:

Rt =rt − 1
2(a2ht + b2

ht
+ 2ab∆t) + (a

√
ht + b

1√
ht

)z∗
t

ht =ω + βht−1 + α(z∗
t−1 − δ∗

√
ht−1)2.

(4.3.4)

Because this model is for option pricing, we present the risk-neutral version of the GARCH

4/2 model and keep the meaning of the symbols in the Heston-Nandi model. Similar to
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the process described by the Heston-Nandi model, variables in this model are updated by

discrete time steps and kept constant in each time interval.

To have the same properties, the 4/2 model also inherits the normality assumption of

the Heston-Nandi model. This assumption claims that the value of a call option with a

one-time interval fits the Black–Scholes-Rubinstein formula with spot price following the

conditional log-normal distribution. We keep the second assumption of the Heston-Nandi

model (2000) [49]. It reveals that even the governing model is discrete with steps, but it

has a continuous-time stochastic process in each time interval. This assumption ensures

that we could discretize the 4/2 model by a similar method to Heston’s.

Because the 4/2 model contains the volatility term of the 3/2 model, we need to consider

the Heston trap that the volatility may reach zero and become negative during the auto-

aggressive process. Normally, one could limit the volatility by the Feller condition. But

the Feller condition is only available for the CIR process and hard to meet in the real

market. Hence, we implement another method that reflects the value of volatility when it

passes through zero by taking its absolute value. Following this idea, the new process of

conditional model ht turns out to be:

ht = |ω + βht−1 + α(zt−1 − δ
√
ht−1)2|. (4.3.5)

4.3.2 Cumulant generating function of 4/2 GARCH model

In this chapter, we introduce an affine structure to express V IX2 as a conditional variance

ht. This structure is introduced in this section and is used in the construction of the CGF

for V IX2 for application in the saddlepoint method for solving the tail expectation. Before

presenting the affine structure, we discuss the CGF of ht first.

According to the solution of Wang (2017) [1], the semi-closed-form for moment-generating

function of the forward conditional variance atm time intervals from now ht+m is expressed

as an exponential structure as following:
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EQ[ezht+m |Ft] = f(z,m, ht) = eC(z,m)+H(z,m)ht (4.3.6)

where,

C(z,m) = C(z,m− 1) − 1
2 log(1 − 2αH(z,m− 1)) + ωH(z,m− 1)

H(z,m) = βH(z,m− 1) + αδ∗H(z,m− 1)
1 − 2αH(z,m− 1)

with the initial condition as:

C(z,m) = 0

H(z,m) = z.

Then, the CGF of ht, Kh(z) is expressed as the power part of this exponential structure

that:

Kh(z) = C(z,m) +H(z,m)ht. (4.3.7)

In addition, this form offers a method to calculate the risk-neutral conditional expectation

of ht+m under the filtration Ft like :

EQ[ht+m|Ft] = E′
Q[ezht+m |Ft]|z=0. (4.3.8)

After we get the CGF of ht, we move on to the CGF of V IX2 under the 4/2 GARCH

model by associating the CGF of ht with the relations of ht and the VIX. From (4.3.3),

we figure out the square of log return as :

(Rt+1)2 = (rt + λht − 1
2(a2ht + b2

ht
+ 2ab∆t) + (a

√
ht + b

1√
ht

)zt)2

≈ (a2ht + b2

ht
+ 2ab∆t)z2.

(4.3.9)

Here z is the standard normal distribution and the higher order(> 1) of ∆t is ignored. This

approximation loses some of its precision, but greatly reduces the calculation difficulty and
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avoids estimating the value of h2
t and its reciprocal. Once the square of log return is figured

out, the value of V IX2
T can be expressed as an expectation of a function relevant with ht

that:

V IX2
T = 1

n

n∑
i=1

EQ[(RT +i)2|Ft]

≈ 1
n

Σn
i=1(a2EQ

t [hT +i−1] + b2EQ
t [ 1
hT +i−1

] + 2ab∆t).
(4.3.10)

Using this method, we transform the value of V IX2
T into the affine structure of the ex-

pectation of ht and its reciprocal. However, it is more to approach the expectation of
1
ht

, as the process and distribution that 1
ht

follows is unknown. Therefore, we use Taylor

expansions to transform the expectation of 1
ht

into a linear form of E[ht] as :

EQ
s [ 1
ht

] ≈ 2
hs

− 1
h2

s

EQ
s [ht] (4.3.11)

where s < t presents the last time for updating explicit market information.

Combining the two transformations above, we can value V IX2
T as:

V IX2
T ≈ 1

n
Σn

i=1(a2EQ
t [hT +i−1] + b2EQ

t [ 1
hT +i−1

] + 2ab∆t)

≈ 1
n

Σn
i=1((a2 − b2

h2
t

)EQ
t [hT +i−1] + 2b2

ht
+ 2ab∆t)

= (a2 − b2

h2
t

)VT (n) + 2b2

ht
+ 2ab∆t

(4.3.12)

where VT (n) is defined in (4.2.6). Then we are able to derive the CGF of V IX2, k(z) as

follows:

k(z) =logEQ
0 (ezV IX2

T )

=βz +Kh(αz)

=βz + C(αz;T − t) +H(αz;T − t)ht

(4.3.13)
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where

α ≈ (a2 − b2

h2
t

)Γ(n)

β ≈ 2b2

ht
+ 2ab∆t+ (a2 − b2

h2
t

)(1 − Γ(n)h̄)

and Γ follows the definition of (4.2.6).

4.4 Model modification by business time

In addition to adjusting the powers of the innovation terms, we can also start with the

distribution of the innovation terms themselves and modify the business time by sub-

ordinators. Carr and Wu (2003) [25] mentioned that in addition to stochastic volatility,

market returns are also influenced by a number of other factors, such as the non-normality

of non-volatility and the negative correlation between returns and their volatility. They

further observe that the operations in market trading are not a uniform pass-through pro-

cess; instead, the number and frequency of trades may fluctuate over time. In a GARCH

model, we can reflect this market characteristic by varying the iteration rate of the model.

High-volume and high-frequency trades will speed up the iteration rate and shorten the

time interval of each iteration. Low-volume trades slow down the iteration rate of the

model and lengthen the corresponding time interval. This method of changing the time

rate to suit the market conditions is called the stochastic clock or business time.

4.4.1 Introduction of subordinator

After Clark (1973) [16] in the first application of continuous-time stochastic to financial

modelling to estimate futures prices, several common subordinated processes that were

applied to fit periods with different characteristics have been introduced in literature like

α − stable, compound Poisson and gamma. Finding a suitable subordinator allows us

to draw relatively accurate conclusions about the processes described by the time series

models. Before selecting a subordinator, we briefly review the main properties of the
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distribution corresponding to the subordinated process. We first consider the general def-

inition of subordinated processes that are followed by subordinators. We know that both

the Heston model and the GARCH model use standard Brownian motion for their diffu-

sion term Zt. When this process is modified as a subordinated process, the subordinated

Brownian motion is represented as:

ZG = Z(G(t)) (4.4.1)

where Z(t) represents the standard Brownian motion and G(t) is the subordinator that

follows a given distribution. Through this subordinated process, the real time and business

time are linked: G(t) changes the rate of time and thus affects the rate of evolution of the

innovation term, even if the distribution of the term remains unchanged (still in standard

Brownian motion).

In fact, a subordinated process is a non-negative Lévy process. This process has three

characteristics: Lévy process L(t) is a stochastic process that satisfies the following re-

quirement, 1), L(0) = 0; 2), L is an independent and stationary increment process. 3), L

is continuous on its domain. This integral operator, also known as the Lévy measure, has

different forms depending on the distribution of business time.

In a probability space P, the description of the subordinated process comes from the fol-

lowing aspects: distribution function (density function) f(x), Lévy measure v(dx), char-

acteristic function Ψ(z, t) = E[eizx] and Lévy exponent ψ = logΨ(z, 1). By using this

process to replace the original Brownian motion in the equation, the improved stochastic

differential equation is able to describe more general and complex volatility characteristics.

4.4.2 Construction of the 4/2 GARCH model with subordinator

To transform a process that follows real time into a process that follows business time, we

first choose a subordinator G = G(t), t > 0 and then define G(0) = 0 with its trajectories

only taking non-negative values. In the practical market, the G is regarded as the business

time, flowing differently with the real time, t. As a stochastic process, the innovation rate
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of the G is decided by the information gained between the real time intervals. Usually, the

time-modified function g(G) is gained from the time-relative function f(t) of the original

process by an integral as:

g(G) =
∫ t

0
f(s)p(s)ds (4.4.2)

where p(s) is the rule of G such as the closed-form of a stochastic process or the probability

density function of well-known distributions.

Thus, based on the above notation and definitions, we introduce the 4/2 GARCH model

which could be modified as:

RG = rG + λhG − 1
2hG + (a

√
hG + b

1√
hG

)zG

hG = ω + βhG−1 + α(zG−1 − δ
√
hG−1)2.

(4.4.3)

Also, when the real-time based option price C is obtained, we can express the option price

based on the business time as:

CG(t, T ) =
∫ T

t
C(hG, G)p(G)dG. (4.4.4)

In the empirical experiment section, we prefer to use a technically popular modification,

gamma subordinator as a general example to show how the choice of subordinator affects

the pricing of underlying assets or derivatives.

4.5 Solution of the VIX options pricing

As the closed-form expression of its CGF is known, we could implement the saddlepoint

method to approximate the tail expectation. By following these steps, the closed-form

of option pricing models of the VIX with initial time 0, delivery time T and strike K is
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presented as:

C(V IXT , T ) =e−rTEQ
0 [(V IXT −K)+]

=e−rTEQ
0 [(
√
V IX2

T −K)+].

(4.5.1)

To obtain the results of the option price, we should discuss how to obtain the tail expec-

tation form E[(
√
X −K)+] with a known cumulant generating function (CGF) first, then

present the method of approaching that CGF. By the definition of the tail expectation:

E[(
√
X −K)+] =

∫ ∞

K2
[
√
Xp(X)dX] (4.5.2)

where p(X) is the probability density function of X. Now the CGF of V IX2 is available

only if the CGF of volatility is known.

4.5.1 The approach of V IX2
T CGF

In this section, we will obtain the CGF of VIX based on equations (4.3.6) and (4.3.15),

after which one could approximate the price of option continually by the tail expectation

Ct = e−r∆tE[(St − K)+] like characteristic method or saddlepoint method. Thanks to

Heston (1993) [8], we have had a closed -form moment generation function(MGF) of the

conditional variance ht+n under the Heston-Nandi model framework when p = q = 1 like:

ek(z) = EQ
t [ezht+n ] = eA(t;n,z)+B(t;n,z)ht (4.5.3)

where,

A(t;n, z) = A(t;n− 1, z) +B(t;n, z)htω + zr − 1
2 log(1 − 2αB(t;n− 1, z))

B(t;n, z)) = αδ∗B(t;n− 1, z))
1 − 2αB(t;n− 1, z)) + βB(t;n− 1, z)).

Because we only consider the GARCH(1,1) model in this chapter, the initial conditions

follow:
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A(T ; 0, z) = B(T ; 0, z) = 0.

4.5.2 Saddlepoint methods to VIX option

In this section, we discuss this work using the saddlepoint method in solving for option

prices. The basic principle of the saddlepoint method is to use the CGF to find the

approximate result of the tail probability and further obtain an approximation of the

option valuation. In effect, we calculate the option price by inverting the Fourier formula

to approximate the principal contribution of the integral by choosing a "perfect" profile

(Rogers and Zane 1999) [33]. In applying the saddlepoint method, we can often find a

closed-form solution based on the parameters of the stochastic process. This allows us to

quickly change the calculation results by transforming the parameters without the need

for additional numerical simulations in the presence of changing market conditions.

One of the more popular saddlepoint methods in the literature is the generalised Lugannini-

Rice approximation proposed by Wood et al. (1993) [32], which can accommodate a wide

variety of model diffusion terms simultaneously, whether they are standard normal or not.

However, we note that this method is cumbersome and not directly applicable to the

P (
√
X > K) case. This difficulty drives us to find a more straightforward way to obtain

a closed-form solution for this tail probability, even though it may have more restrictions.

Since we have made the same assumption of normality as the Heston-Nandi model in the

construction of the 4/2 model, we can directly follow the idea of Kowk and zheng (2014) [2]

and represent the alternative saddlepoint method that:

EQ
t [(
√
V IX2

T −K)+] = 1
4
√
πi

∫ r+i∞

r−i∞

ek(ẑ)+g(ẑ)

ẑ3/2 dẑ r ∈ (0, α+) (4.5.4)

where g(z) = log(1 − erf(
√
zK) and ẑ is the positive root of the alternative saddlepoint
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equation:

k′(ẑ) + g′(ẑ) − 3
2ẑ = 0. (4.5.5)

4.6 Back to GARCH (p, q)

4.6.1 Existence of long-term memory in conditional variance

In previous sections, we discussed some modifications and extensions of the GARCH(1,1)

type model. Previous studies have also focused on GARCH (1, 1) models, while less

research has been done on GARCH(p, q) models and even less work has been done on

valuation and hedging with GARCH (p, q) models. Barone (2008) [53] proposed a new

method for options pricing based on GARCH models with filtered historical innovation

but in the iteration of the conditional variance ht only the information from the previous

step ht−1, i.e., the GARCH(1, 1) model, is implemented. Hsieh (2006) [54] scrutinised

and tested the Heston-Nandi model [49] and the Duan’s NGARCH model [23] that has

a conditional variance iteration process like ht = β0 + β1ht + (zt − γ)2β2ht to determine

whether there is a cost to restricting model in the affine family.

There are two possible reasons for the choice of GARCH(1, 1): 1, the current conditional

variance ht is less influenced by the conditional variance of the previous 2 steps than

ht−1; 2, the GARCH(p, q) model greatly increases the complexity of the model, and the

gain does not match the increase in its computational cost in computational accuracy.

In addition to these two reasons, we note that no literature systematically describes how

to select or model the values of p and q, and there is little literature that treats p and

q as random values rather than constants. However, by studying the persistence of the

conditional variance of the U.S. stock return index, Crato (1994) [55] found evidence of the

existence of long-term memory in its conditional side. In his tests of long-term memory

in the conditional variances, ht of GARCH (p, q) can be expressed as an infinite-sum form
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as:

ht = ω +
∞∑

i=1
δiX

2
t−i (4.6.1)

where Xt is the spot time observations that ht = E(X2
t |Ft−1). Also, he mentioned that

these findings suggest that later researchers should make the model flexible enough to

experience the effects of long-term memory and dependence in the modelling process.

Based on this motivation, it is suggested that in the process of pricing and hedging under

the GARCH model framework, we should properly consider and test whether the variance

has long-term memory and model for this result.

4.6.2 Selection of p and q in GARCH(p, q) model

As mentioned before, in the original GARCH(p, q) model, p and q are determined as

constants from the beginning by other conditions. However, as the information is updated

at each time node t, the long-term memorability of its model may change. At this point,

we should try to adjust the model so that the backward iterative process of the model can

change with whether the conditional variance depends on the earlier steps’ values. It is

meaningful to make p and q from constants to some random variables that follow some

processes.

In this section, we use the non-stationary Poisson process as an example and assume that

p and q fit different parameters of the non-stationary Poisson process. Unlike the Poisson

process which has a fixed λ and a uniform mean, the non-stationary Poisson process owns

an unfixed intensity λ(t). If p and q follow these processes, the leverage terms and the

innovation terms of the conditional variance actually become compound non-stationary

Poisson processes. This modification turns the GARCH(p, q) model in historic measure

to be:

Rt = rt + λht +
√
htzt

ht = ω +
p(t)∑
i=1

βiht−i +
q(t)∑
i=1

αi(zt−i − δi

√
ht−i)2

(4.6.2)
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where p(t) and q(t) are Poisson distributed with intensity λp(t) and λq(t). Following this,

the means and probability mass functions of these two variables are

mi(t) =
∫ t

0
λi(s)ds

fi(k) = emi(t)mi(t)k

k! k ≥ 0; i = {p, q}.
(4.6.3)

At this point, we can control the distribution of p and q by determining the λi(t). We will

use a hyperbolic cosine function used by Hong (1995) [56] in his study of earthquake occur-

rence in subsequent empirical experiments and simulate the Increasing Mean-Occurrence

statement, corresponding to the financial case where the long-term memory dependence

of the conditional variance becomes more robust as the number of iterations increases.

4.6.3 Direct generation of long-term memory parameters

Next, we discuss a more generalised model where not only p and q, but even αi, βi

and δi, change with time. In fact, switching different parameters according to different

market conditions are widely accepted means of model improvement. A proven solution

born from this idea is the regime switching GARCH model. Previous studies found that

variance may produce structural changes in the course of market volatility forecasting.

Different parameter structures will allow the variance to persist over different ranges until

the following change in parameter structure arrives. However, the traditional GARCH

model does not capture this property of the variance because it always assumes that the

conditional variance is based on iterative changes in the same parameter structure. This

allows GARCH models that use high positions as starting points for forecasting to be

excessive, and vice versa. Based on this reality, a better idea for model improvement is

the introduction of Markov regime switching factors into traditional GARCH models.

Without loss of generality, we use the GARCH model that switches between two regimes

as an example. This is not only because it is the simplest form of the regime switching

model, but also because the states of the market tend to be dichotomous: high and
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low, frequent and episodic, boom and bust. In each regime, we apply a separate set of

parameters framework for the iterative process of variance and decide at each discrete point

in time whether to make a regime switching or not (typically this decision is modelled by a

state transition matrix.) The effectiveness of this improvement was reported by Klaassen

(2002) [57] as he generated an additional source of volatility persistence and thus improves

the flexibility in describing the volatility persistence of shocks. Based on the regime

switching GARCH(1, 1) model proposed by him, this section integrates the GARCH(p, q)

model with the regime switching factor and proposes parameter vector structure switching

based on the state transition matrix.

Before introducing the regime switching GARCH model, we need to first define the relevant

regimes and paths that the volatility follows. Also, we need to decide how the regimes are

switched between each other, i.e., the expression of the Markov transition matrix. As we

mentioned previously, we assume that this model switches between two regimes only. To

express this process, we introduce two regimes, rh and rl and supposed that the conditional

variance follows two different distributions and parameters in two different regimes. Next,

we define the path pt as a series of regimes that generate over time like:

pt = (r1, r2...rs...rt), rs ∈ {rh, rl}. (4.6.4)

Thus, generating a new regime statement for the next time step based on the previous

regime has only two possible outcomes: keeping the previous regime or switching to an-

other regime. Therefore, we define the probability that a process in regime rh remains in

this regime in the next step as ph and specify pl with a similar definition. Based on the

above definitions, we assume that the regime switching is based on the following Markov

state transition matrix:

M =

 ph 1 − ph

1 − pl pl

.
We can now discuss the method of constructing the regime switching GARCH model
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under different information observations. We first discuss the best case, in which regime

information is recorded from the beginning. This means that we can obtain the exact

probability of the regime at moment t, based on historical path information, i.e., P (rt) =

P (rt|pt−1). In this case, the conditional variance process of traditional GARCH(p, q) will

be developed as:

ht = ωrt +
p∑

i=1
βrt

i ht−i +
q∑

i=1
αrt

i (zt−i − δrt
i

√
ht−i)2. (4.6.5)

From the equation we can see that under the regime rt, we apply the parameter structure

{ωrt , βrt
i , α

rt
i , δ

rt
i } which is determined by empirical experiment before modelling.

However, in modelling based on historical data, it is difficult to distinguish whether the

generation of historical volatility is due to different regimes or determined by other rea-

sons. Therefore, we cannot distinguish the contribution of different factors to the historical

volatility from the market data. Based on this fact, Gray (1996) [58] improved this model

so that it no longer relies on the full path, but on the time information Ft−1. In his

model, instead of trying to obtain full information about the volatility path, Gray made

the conditional variance process from an iteration of past values to an iteration of past

expectations. With this improvement, we only need to find the expectation of past volatil-

ity based on the last step information to approach the current volatility iteration process.

The conditional variance process based on this improved GARCH(p, q) model is:

ht = ωrt +
p∑

i=1
βrt

i E[ht−i|F⊔−∞] +
q∑

i=1
αrt

i (zt−i − δrt
i

√
E[ht−i|F⊔−∞])2. (4.6.6)

Finally, Klaassen [57] showed that the current regime can also contribute to the estimation

of the expectation of the past variance. Following this line of thought, we put information

about the current regime into the expectation condition as well and describe the regime

switching GARCH(p, q) model as follows:

ht = ωrt +
p∑

i=1
βrt

i E[ht−i|F⊔−∞, rt] +
q∑

i=1
αrt

i (zt−i − δrt
i

√
E[ht−i|F⊔−∞, rt])2. (4.6.7)
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4.7 Numerical experiment

In this chapter, we conduct a series of mathematical experiments to show the effect of

different model modifications on the pricing results. The thing we want to convey is

that with model modification, we can adapt the original discrete GARCH model to a

broader market environment, account for more market factors, more accurately describe

the distribution of prices and volatility, and obtain more optimal conclusions. We first

consider some adjustments to the GARCH (1,1) model and then consider the GARCH

(p, q) model cases. In conducting the Empirical experiment, we first give the parameters

of the original model, the GARCH (1, 1) model. All model modifications are made on

these model parameters. In addition, in the subsequent modelling process, we provide

only the corresponding modified parameters and keep the other parameters consistent,

which allows us to compare the impact of different models on option pricing. For ease of

understanding, we do not give the parameters in the form of tables or lists but put them

directly into the model to allow the evolution of the model to be observed more intuitively.

Because the object of our pricing work is VIX European options, we specify the parameters

directly under EMM as the price of the option needs to be evaluated under this measure

as a benchmark to make the results meaningful. The initial adjusted stock price is set to

be S0 = 100, and the initial conditional volatility is set to be h0 = 2 × 10−4. Then we

implement a risk-neutral type of GARCH model with parameters used as follows:

Rt = 7.69 × 10−5 − 1
2ht +

√
htz

∗
t

ht = 2.31 × 10−6 + 0.682ht−1 + 2.85 × 10−6(z∗
t−1 − 365.25

√
ht−1)2

(4.7.1)

where z∗
t = zt + 2.52

√
ht and long stable volatility h̄ = 2.85 × 10−4. The pricing claim is

set as a European VIX call option such as Ht = EQ[(V IXT −K)+|Ft] with a strike range

from 0.04 to 0.2, and maturity of T = 22 (business days of a month). This is because

after one month of iterations through this model, the conditional volatility will be very

close to the long-term volatility. This makes the latter option prices perform similarly to

one-month values. Moreover, to facilitate our comparison of the option pricing results of
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the original Heston-Nandi model with the model containing the subordinator, we assume

that the diffusion term z∗ of the original GARCH model follows the standard Brownian

motion.

4.7.1 The comparison of the 4/2 model and the Heston-Nandi model

One of the improvements to the GARCH (1, 1) model in this chapter is to adapt it from

a fixed diffusion term to a flexible one containing ht and its flip. Therefore, in the option

pricing process of the 4/2 model, we vary only a and b, but the rest of the parameters are

the same as in the Heston-Nandi model. The pricing results are as follows:

VIX option pricing with varying volatility characteristics
K 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000

Heston 0.2590 0.2354 0.2180 0.1981 0.1772 0.1580 0.1363 0.1159 0.0980
a= 1.5 b=.0005 0.5405 0.5193 0.4999 0.4806 0.4615 0.4397 0.4192 0.4005 0.3811
a= 1 b=.0005 0.3342 0.3201 0.3030 0.2841 0.2620 0.2379 0.2160 0.1977 0.1777
a= 1.5 b=.001 0.5146 0.4835 0.4681 0.4525 0.4214 0.4281 0.3922 0.3912 0.3374
a= 1 b=.001 0.2942 0.2728 0.2495 0.2356 0.2158 0.1921 0.1749 0.1532 0.1315

Table 4.1

Table 4.1 shows the performance of option pricing under different model parameter con-

structions. We can see that the pricing results through the Heston-Nandi model are

smaller than the pricing results through the 4/2 GARCH model for the same time steps

and strikes. It is because short-term volatility is considered in the pricing process through

the 4/2 GARCH model. This suggests that the 4/2 model captures more of the volatility

characteristics than the Heston model. Also, we observe the impact of changes in long-term

volatility and short-term volatility weights on the VIX value. For example, with a fixed

long-term volatility weight a, a larger short-term volatility weight b leads to a decrease in

the value of the VIX. One possible explanation is that short-term volatility has less impact

on overall future volatility relative to long-term volatility, so a more significant proportion

of short-term volatility instead represents a more stable future market in investors’ views.

This also explains why a significant weighting of long-term volatility would significantly

increase the value of the VIX and raise the price of VIX call options. Overall, table 4.1
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reflects the superior performance of the 4/2 model compared to the Heston model, while

also providing guidance on the impact of short- and long-term volatility on the final VIX

through the change in a and b. We show this more visually in the following figure:

Figure 4.1: option pricing performance in varying model parameters

4.7.2 The Comparison of real time and the gamma subordinator

In the previous section, we mentioned that we would use the gamma subordinator as

an example to illustrate the impact of business time on the valuation results, which is

different from the real time. Here we give the distribution of the gamma subordinator as

G ∼ γ(k = 0.5, η = 1). We then show the results of the pricing option in both the real

time and the business time frameworks in the following table:

VIX option pricing in the framework of different diffusion
K 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

real time 0.259 0.235 0.218 0.198 0.177 0.158 0.136 0.116 0.098
gamma sub 0.183 0.167 0.151 0.135 0.119 0.103 0.087 0.072 0.056

Table 4.2

From Table 4.2, we can find that after the gamma subordinator is applied to the GARCH

4/2 model, the prices of its options are smaller than those of the GARCH 4/2 model
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with Brownian motion as its diffusion term under different strikes. This shows that the

diffusion terms that follow different distributions can greatly affect the pricing results,

confirming once again that even under the same parameters, different business time rates

caused by market factors such as trading periods and trading volume can greatly affect

the final pricing results of the underlying asset and derivatives. Similarly, we provide a

figure to show their performance,

Figure 4.2: option pricing performance in different time systems

4.7.3 The Performance of GARCH(p, q) with p and q following non-

stationary Poisson processes

Finally, we show the effect of p and q as stochastic variables on option pricing results by

randomising p and q through non-stationary Poisson processes. This process allows us

to vary the Poisson distribution followed by p and q to simulate the change of volatility

memory factor in time. Here, we assume that the long-term memory of volatility becomes

progressively more substantial over time. This means that at the beginning time, p and

q are more likely to randomise to smaller values, and as iterative steps increase, the

probability of p and q taking more significant values increases. After fixing K = 0.1, the

option pricing results of this model over time compared with GARCH (1, 1) are exhibited
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in table 4.3.

VIX option pricing in stochastic p&q GARCH model vs GARCH(1,1)
steps 4 6 8 10 12 14 16 18 20 22

GARCH(p, q) 0.188 0.205 0.223 0.242 0.263 0.284 0.308 0.333 0.359 0.387
GARCH(1,1) 0.171 0.174 0.175 0.178 0.18 0.183 0.185 0.188 0.191 0.195

Table 4.3

As the table above demonstrates, because the incremental effect of the conditional variance

more than the last step on the current value is taken into account, the GARCH(p, q) model

driven by the non-stationary Poisson process has a larger conditional variance than that

of the original GARCH(1,1) model, and thus a higher VIX value. We further find that as

the effect of the long-term memory grows with time, the stochastic simulated results for

p and q gradually increase and the option pricing results change from linear to convex.

This process stimulates the iterative process for those volatilities whose long-term memory

effect grows with time. The difference between this process and GARCH (1, 1) in option

pricing can be observed in the figure below.

Figure 4.3: VIX Option prices under in in stochastic p&q GARCH model vs GARCH(1,1)
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4.8 Conclusion

In this thesis, we mention the problem of pricing VIX options under various changes to the

model: for the GARCH(1, 1) model, we introduce the 4/2 model modification and con-

siders different business times(subordinator); for the GARCH(p, q) model, we randomise

p and q that make them follow non-stationary Poisson processes and discuss the regime

switching technique, too. In these modifications, we perform empirical experiments on 4/2

GARCH models, subordinator GARCH models and stochastic (p, q) GARCH models by

applying the saddlepoint method to approximate VIX European call option prices. Pre-

vious work shows that despite the widespread implementation of VIX and its derivative,

there are few relevant methods for pricing its options, let alone generalised model modi-

fications. In the future, the market environment will naturally become more complicated

with the usage of more advanced financial products. This makes it difficult for traditional

GARCH models to be applied to future markets. Therefore, these chapters outline a series

of improvements and extensions to the GARCH model that will enable future investors

to utilise these improvements and extensions in their financial models, thereby improv-

ing the accuracy of their pricing tools or adapting them to more complicated financial

environments.
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Chapter 5

A GARCH-based method for

Obtaining local quadratic hedging

strategies for VIX Call options

5.1 Introduction

In the financial market, the risk of certain financial derivatives is often high relative to

the underlying asset. It makes it particularly important to study the hedging aspects

of these financial derivatives. In this chapter, we will give an example of one of these

representative financial derivatives, VIX options, for hedging. We know that the VIX

has been an index-based instrument reflecting market volatility and investors’ subjective

mindset since its introduction by Cboe in 1993. It predicts future volatility sharpness

mainly by way of measuring potential implied volatility. A high VIX value signals the

onset of dramatic market volatility and vice versa. Unlike those investors who invest in

the underlying asset, investors who invest in VIX options are more likely to profit from

high volatility (call options). Such profits are necessarily accompanied by greater risk, so

hedging VIX options and developing related strategies is a meaningful financial modelling
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practice.

Several methods have been implemented for pricing the VIX option and its other deriva-

tives to obtain the numerical simulation results or analytic results outside of hedging.

Wang and Daigler (2011) [52] investigated the pricing performance of VIX option models

by testing three representative VIX option models. Lin and Chang (2009) [59] derived a

VIX option model that considers the price processes of SPX according to the literature,

showing that state-dependent jumps in prices and volatility both play crucial roles in VIX

options pricing. Sepp(2008) [41] discussed the positive volatility skew observed in the

implied volatility of VIX options and capture this feature by a jump-diffusion model. By

introducing a jump, Baldeaux et al. [60] generated an implied volatility model that fits

short-term index options perfectly, demonstrating the advantage of a purely diffusive 3/2

model in capturing implied volatility in VIX options. Simon’s study (2017) [61] examined

VIX options trading strategies based on historical market data about VIX futures. Their

study indicated that an increase in the volatility of the underlying VIX futures contract

will cause the implied volatility of VIX options to trend upward, allowing long VIX options

strategies to benefit greatly.

All of the above literature discusses and approaches the VIX option within a continuous-

time model. In these models, the price and the current volatility of the underlying stock

are expressed as stochastic differential equations, which contain several unobserved pa-

rameters. The Heston model, for example, requires that the variance of the variance be

provided in the process of conditional variance. But the stochastic variation of the wave

caused by the variance is difficult to isolate from the volatility variation alone, which makes

the simulation of this parameter tricky. In addition, in real markets, trades take time to

complete. This makes it impossible for trading behaviour to be instantaneous. Therefore,

discrete models tend to be more practical in real markets. Heston and Nandi (2000) [49]

modified the original Heston model(Heston 1993) [8] by discretizing it according to the

generalised autoregressive conditional heteroskedasticity (GARCH) model introduced by

Bollerslev in 1986 [6], named the Heston-Nandi model. By relating the spot price of a

stock to itself and to the historical path of volatility, this model describes the development

73



CHAPTER 5. A GARCH-BASED METHOD FOR OBTAINING LOCAL
QUADRATIC HEDGING STRATEGIES FOR VIX CALL OPTIONS

of cost as a function of the minimising of volatility and the correlation between volatility

and spot prices.

Even though much work has been done in the literature on the pricing of the VIX option

and its related trading strategies, very little has been written about hedging this derivative.

Considering that the VIX option is also a type of derivative, hedging is a natural thing to

do. However, we find that most of the previous literature has focused on pricing studies

of VIX options, with little mention of hedging such derivatives. To fill this gap, the

motivation of this chapter is to hedge VIX options based on other financial derivatives to

fill the gap in this area of research.

Since there has been relatively little previous research on hedging VIX options, we first

need to find a suitable hedging method for this derivative. Several methods are proposed

to hedge the number of potential payoffs caused by the option exercise. Different hedging

methods are applied to assets and derivatives that follow different processes and distribu-

tions. Since the underlying derivative in this chapter is the VIX option and is assumed

to follow the GARCH(1, 1) model, this chapter applies quadratic hedging as a hedging

method for this option. Quadratic hedging is a method of controlling risk by minimising

hedging errors over time. There are two types of strategies depending on whether they

are self-financing: global quadratic hedging and local quadratic hedging. Considering a

stochastic process X and its call option payoff function H = (XT −K)+, the principal goal

is finding a self-financial strategy minimising E[(H−GT −V0)2]. As a practical approxima-

tion, quadratic hedging is implemented as an approximate replication of option cash flows

based on self-trading policies (Follmer and Sondermann 1986) [62]. Even if typically used

for European options, for which the option exercise policy is given, a simple adaptation of

the model of Secomandi and Yang (2021) [63] made it possible to apply quadratic hedging

to options for which an exercise policy needs to be determined. In particular, Secomandi

and Yang (2022) [19] extended the conditional quadratic hedging proposal of Secomandi

for assets with a single cash flow on a fixed date, such as European options, to assets

distinguished by streams of cash flows, of which American options are a particular case.

As it is mentioned, the model implemented in this chapter assumes that the volatility
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before pricing spot time does not affect the estimated results and that the volatility and

stock price are autoregressive. These conditions make the original global quadratic hedg-

ing fit model inadequate. As an alternative hedging method, the local risk-minimization

quadratic was introduced by Schweizer first (Schweizer 1988) [39]. Compared with global

quadratic hedging, local risk-minimization hedging doesn’t require self-financing condi-

tions but controls the value of ηt to ensure Vt = Ht during the business time t. Therefore,

this hedging strategy is produced by a series of steps of local optimisations whose goals

are to minimise the incremental cost in each time interval.

Based on the above, the objective of this chapter is to hedge European VIX call options

under the assumption that the log return and its conditional variance follow the Heston-

Nandi model [49]. Finally, we improve the simulation process to obtain the hedging

strategy. For the denominator part of the hedging strategy, we give the approximate

semi-closed-form directly based on the characteristics of the Heston Nandi model. For the

numerator part of the strategy, we use the transition probability matrix to enhance the

accuracy of the numerical simulation. Finally, we solve for the semi-closed-form chunks of

the strategy using the saddle-point method.

The rest of the chapter is structured as follows, in section 2 we introduce some preliminaries

and definitions; in section 3 we provide the Decomposition of the hedging strategy; in

section 4 we present the semi-closed-form of some of the decomposed chunks according to

the GARCH(1, 1) model; in section 5 the remaining chunks will be simulated according to

a transition probability matrix. Numerical experiments and conclusions will be presented

in sections six and seven.
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5.2 Preliminaries of quadratic hedging

5.2.1 Notations and definition

The purpose of this chapter is to find a suitable quadratic hedging strategy Φt = (θt, ηt)

to deal with the European VIX call option. Before talking about the hedging method, we

will define a series of notations and basic research frameworks.

No matter whether the models are built in continuous or discrete type, they are commonly

set on a probability space (Ω,F ,P) with an information filtration Ft where t ∈ (0, T ). A

hedging portfolio contains a risky asset Sr
t and a risk-free asset Br

t traded in an arbitrage-

free market that is not affected by trading frictions, Typically, Sr
t represents the stopping

price of a specific stock that follows a stochastic process mentioned above and Br
t represent

the spot price of a fixed income financial products like bond follows a deterministic process.

As the prices of those financial products only grow over time with constant interest rate r,

the process to Br
t is expressed as Br

t = exp(rt). To avoid repeated discounting operations,

we use the price of a risk-free asset as a discounted numéraire. Hence, we define the

adjusted price of one unit risk-free asset Bt = Br
t /B

r
t = 1 and St = Sr

t /B
r
t to eliminate

the inherent increment of prices caused by time. The measure P represents the real-world

(historical) probability measure and Q represents the equivalent martingale measure that

Q≈P with St being a local martingale in this measure. Without other definitions, all

subsequent work is done in this measure. At last, we define the value of a T-maturity

contingent claim we want to hedge and the European VIX option, C(ht, t), where ht

represents the conditional volatility at time t.

Considering a series of unavoidable difficulties arising from the application of continuous-

time models for real transactions, this chapter uses the discrete-time framework as the

basis for pricing and hedging. In this framework, stock price information is updated at

fixed time points t ∈ 1, 2, 3... with the same intervals. We then follow the definition of

portfolios strategy mentioned by Schweizer and Martinis (1999) [64] as φt = (θt, ηt) where

θt represents the number of the risky asset (stock) held at time t and ηt is the number of
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the risk-free asset (bond) held at time t. This framework also assumes that traders cannot

modify their stock positions in parallel with stock price changes, i.e., that strategy changes

have a lag, even though the lag can be infinitely close to zero. That means the traders keep

their strategies unchanged during (t−1, t] and the number of stocks θt is Ft−1-measurable

when t ≥ 1. On the other hand, under the local quadratic hedging strategy we choose in

this chapter, bonds are always modified in parallel with the stock to automatically balance

the total price of the hedged portfolios. Therefore, the number of bonds ηt is Ft and held

unchanged during [t, t+ 1).

Because no trade happens before t = 1, we define ϕ0 = (0, V0) where V0 is the initial value

of the hedging portfolio. Following these initial conditions, the value of the portfolio is

defined as

Vt = θtXt + ηt (5.2.1)

and its discrete cumulative gain from initial time 1 up to time t is

Gt(θ1, θ2...θt) = ΣT
u=1θu∆Xu (5.2.2)

where ∆Xu = Xu −Xu−1.

At last, the discrete cost process will be defined as

Ct = Vt −Gt

= Vt −
t∑

u=1
θu∆Xu.

(5.2.3)

5.2.2 Selecting a hedging strategy for the GARCH model

Following these definitions, we can then define the local quadratic hedging into an incom-

plete market environment that is raised by discrete trades restricted from the real world.

The local quadratic hedging is not a perfect replication model as its inevitable risk Rt

is always beyond zero. In fact, in an incomplete market environment, no matter what

hedging method we use and how much it costs, we can never fully hedge the potential risk

in future. Therefore, there are two main options for hedging: 1, to achieve the minimum
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exposure at a reasonable hedging cost such as the quadratic hedging mentioned in this

chapter. 2, to achieve the minimum hedging cost in an exposure such as the quantile hedg-

ing, Schweizer (1995) [36] introduced self-financing hedging to deal with the risk control

problem in the incomplete market of the real world measure. The goal of this strategy is

to minimise the quadratic error between contingent claims HT and hedging portfolio VT

at maturity time T . Then the hedging risk Rt is expressed as

Rt = E[(HT − VT )2|Ft], (5.2.4)

and the objective of hedging is

arg min
(V0,θ)∈R×Θ

Rt (5.2.5)

where Θ represents the set of all feasible self-financing trading strategies at time t. Since

this hedging is performed to deal with the quadratic criterion, known as the global

quadratic hedging error, this hedging is called global quadratic hedging (Schweizer, 2001)

[38].

Local quadratic hedging is another quadratic hedging mentioned by Schweizer in 1988

first which discards the self-financing rules. It no longer requires the hedging strategy cost

process to be constant but imposing Vt = Ht by modifying the risk-free asset ηt at time t.

Because of this, its hedging purpose is to minimise the squared increment in hedging cost

caused by strategy modification like

arg min
(Vt,θ)∈R×Θ

E[(Ct+1 − Ct)2|Ft] (5.2.6)

Although some literature says that the local model is inferior to the global one because

it minimises the risk arising from all future time increments and not only the next one

(Augustyniak 2016) [40], the local model is more suitable for hedging in the GARCH when

we consider some characteristics of this model: given t statement variables, the GARCH

just looks forward and simulates future processes of stocks return and volatility but ignore

the initial state variables such as S0 and h0. The parameters of GARCH are also only

used to estimate future processes and cannot be used for backward projection of previous

processes. This makes it impossible to use the GARCH model only to obtain information

before the moment t from the current statement when it is not quite observable. Compared
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with the global one, local hedging focus on the stepwise increments from the current time

to the next one-time spot and is independent of all information before t. The stepwise

iteration property of the GARCH model also coincides with the stepwise minimisation

property of local hedging.

5.3 Decomposition of local hedging approach

After the choice of hedging, the next step is to figure out its solution form. In the previous

literature, the analytical solution is difficult to obtain because of the complexity of the

hedging approach. However, in the GARCH model, this problem has been solved to some

extent. As a motivation for this section, we will propose an analytical solution for local

hedging based on conditional expectations and the transition matrix.

Following the definition above, local quadratic hedging develops strategies based on Vt =

Ht by modifying the risk-free asset ηt at time t and its hedging purpose is to minimise the

squared increment in hedging cost. Because the contingent claims to be hedged is a VIX

option, the hedging is set in an EMM measure Q. Then what we need to do is minimise

the expectation of the quadratic increment of the cost process EQ[(Ct − Ct−1)2|Ft−1] by

determining θt and ηt−1 based on the information till t− 1. Following the decomposition

of Schweizer (1988) [39] to the expectation of quadratic increment, we note that

E[(Ct − Ct−1)2|Ft−1] = E[(Vt − Vt−1 − θt∆Xt)2|Ft−1]

= E[(Vt − Vt−1 − θt∆Xt)|Ft−1]2 + V ar[(Vt − Vt−1 − θt∆Xt)|Ft−1]

= (E[(Vt − Vt−1 − θt∆Xt)|Ft−1])2 + V ar[(Vt − θt∆Xt)|Ft−1].

(5.3.1)

By the previous definition, the number of risk-free unit assets ηt−1 is relevant only with

the current values of stock prices and the underlying contingent claim. So it cannot affect

the value of the second part of (5.3.1). This fact makes the determination of ηt−1 relatively

simple: we only need to approach the first half of the formula to the minimum. By this

79



CHAPTER 5. A GARCH-BASED METHOD FOR OBTAINING LOCAL
QUADRATIC HEDGING STRATEGIES FOR VIX CALL OPTIONS

idea, ηt−1 is modified to make E[(Vt − Vt−1 − θt∆Xt)|Ft−1] = 0 so it is determined as

ηt−1 = E[Vt − ∆θtXt−1 − θtXt|Ft−1] (5.3.2)

After (5.3.2) holds, the value of the expectation of quadratic increment is determined only

by the second part of (5.3.1). The second part could be minimised if and only if

Cov(Vt − θt∆Xt,∆Xt) = 0. (5.3.3)

By using the Doob decomposition, the number of stocks that an investor should hold after

adopting this hedging strategy can be obtained in a backward iterative form like

θt = E[Vt∆Xt|Ft−1]
V ar[∆Xt|Ft−1] (5.3.4)

We note that the denominator of (5.3.4) is the variance of the stock price increment. In

the GARCH model, it can be further expressed as

V ar[∆Xt|Ft−1] = V ar[Xt −Xt−1|Ft−1] = V ar[Xt|Ft−1] (5.3.5)

here we discuss the conditional volatility of Xt which is not commonly mentioned in the

GARCH type model as the previous literature usually cares about the conditional volatility

of log return, ht. However, we can still approach (5.3.5) the GARCH model processes.

The numerator of (5.3.4) is the conditional expectation of the product of the stock price

increment and the value of the underlying contingent claim. According to the definitions

and iterated rule, the expectation can be rewritten as follows

E[Vt∆Xt|Ft−1] =E[E[H|Ft](Xt −Xt−1)Ft−1]

=E[E[H(Xt −Xt−1)|Ft]Ft−1]

=E[H(Xt −Xt−1)|Ft−1]

=E[HXt|Ft−1] − E[H|Ft−1]Xt−1

(5.3.6)

The second half of (5.3.6) is a linear transformation of the underlying contingent claim

under Ft−1 as the value of Xt−1 is known at this filtration. But the first part is much more
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complicated than it is described as the analytical closed-form of the product of two unob-

served stochastic processes. It is not relatively approachable. In the previous literature,

this expectation was often simulated by the Monte Carlo simulation. However, because

the prices of stock prices are path-dependent, obtaining accurate results typically requires

a particularly large number of experiments. Alternatively, we implement an approximate

analytical solution based on the transition probability matrix to solve this problem.

5.4 Heston-Nandi model and its application in pricing op-

tion

This section reviews a closed-form of a specific GARCH model introduced by Heston and

obtains the conditional expectation of stock volatility and the tail expectation of the VIX

option by saddlepoint method.

5.4.1 Definition of Heston-Nandi model

We consider the model under the physical measure P with its probability space (Ω,F ,P).

Following a specific GARCH(p, q) model introduced by Heston and Nandi (2000) [49], we

decide the log-return of the stock spot price by these two equations.

Rt = rt + λht +
√
htzt

ht = ω +
p∑

i=1
βiht−i +

q∑
i=1

αi(zt−i − γi

√
ht−i)2

(5.4.1)

where rt is the risk-free compounded interest rate at the time t defined in the last section.

zt is a standard normal distribution that presents the innovation of the conditional variance

ht. This chapter assumes the underlying asset follows the GARCH(p, q) model of the first

order case that p = q = 1 and the risk-free interest is a constant r. Furthermore, this
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model will also be used to simplify the Monte-Carlo simulation of the quadratic hedging

process.

Commonly, the VIX option is pricing under a risk-neutral measure Q. Under the modifi-

cation of Heston, the risk-neutral version of GARCH(1, 1) is presented as

Rt = r − 1
2ht +

√
htz

∗
t

ht = ω + βht−1 + α(z∗
t−1 − γ∗

1

√
ht−1)2

(5.4.2)

where,

z∗
t = zt + (λ+ 1

2)
√
ht

γ∗
1 = γ1 + λ+ 1

2

(5.4.3)

To ensure the innovation factor z∗
t keeps normally distributed, the price of the VIX call

option in one period (t − 1, t) is often assumed to follow the Black–Scholes-Rubinstein

formula.

Once the processes of the GARCH model are decided, we can now figure out the ap-

proximation of (5.3.5). By definitions, we note that R(t) = log(Xt) − log(Xt−1) and the

conditional variance of R(t) is expressed as ht. Thus, the conditional variance of log(Xt)

under filtration Ft is obtained as

V ar[log(Xt)|Ft−1] = V ar[R(t)] = ht. (5.4.4)

Here the conditional variance is a varying random variable, which is exactly what the

heteroskedasticity model shows. However, in order to get a deterministic value when

formulating the strategy, we need to fix the denominator component of the number of

stocks, θt, as a constant. One of the approaches is using the conditional expectation of ht

as a fixed approximation to the conditional variance of Rt. Therefore, the variance of log

return under the filtration Ft−1 becomes

E[ht|Ft−1] ≈ V ar[Rt|Ft−1] = V ar[log(Xt)|Ft−1]. (5.4.5)

Next, we perform a first-order Taylor expansion on log(Xt) under the same filtration to

obtain
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log(Xt) ≈ log(E[Xt|Ft−1]) + Xt − E[Xt|Ft−1]
E[Xt|Ft−1] . (5.4.6)

If we find the expectation for both sides of the above equation, we have

E[log(Xt)|Ft−1] ≈ log(E[Xt|Ft−1]). (5.4.7)

By the process of Rt, we note that the conditional expectation of log(Xt) can be expressed

as

E[log(Xt)|Ft−1] ≈ log(Xt−1) + r + λE[ht|Ft−1]. (5.4.8)

Here we omit the expectation of the diffusion part because it has a negligible impact on

the final result and can significantly reduce the computational complexity. Similarly, we

find that the variance between the two sides satisfies

V ar[log(Xt)|Ft−1] ≈ V ar[Xt|Ft−1]
E[Xt|Ft−1]2 . (5.4.9)

Combining these results, we obtain the expression of the conditional variance of Xt under

Ft−1 as

V ar[Xt|Ft−1] ≈ E[ht|Ft−1] × E[Xt|Ft−1]2

≈ E[ht|Ft−1] × e2E[log(Xt)|Ft−1]

≈ E[ht|Ft−1] × e2(log(Xt−1)+r+λE[ht|Ft−1]).

(5.4.10)

So far, we have given the approximate closed-form of the denominator part of the hedging

strategy θ based on the GARCH(1, 1) model provided by Heston-Nandi. About the nu-

merator part of the strategy, we note that it consists of an expectation of the product of

a discount price and an underlying derivative with its expectation. Regarding the target

derivative expectation, we can find an approximation by the saddle point method. As for

the first half of the numerator, we need to find another technique.
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5.4.2 Approach the semi-closed-form of call option price

In this section, we discuss the approach to the conditional expectations of ht and the un-

derlying derivative H being hedged to further reduce the need for Monte Carlo simulation

for strategy formulation and to improve the stability of the model. We first discuss the

conditional expectation of the conditional variance ht because of its relatively low com-

plexity. Although there is a range of methods to solve this conditional expectation, given

that the cumulant generating function(CGF) of ht will also be used later when solving

the underlying derivative, the properties of CGF are chosen here to obtain this expecta-

tion. We implement a semi-closed-form for moment generating function(MGF) introduced

by Zhang (2016) [44] which assumed the MGF of ht is related to its historic value and

expressed as an exponential structure

E[ezht+m |Ft] = f(z,m, ht) = eC(z,m)+H(z,m)ht (5.4.11)

where

C(z,m) = C(z,m− 1) − 1
2 log(1 − 2αH(z,m− 1)) + ωH(z,m− 1)

H(z,m) = βH(z,m− 1) + αδ∗H(z,m− 1)
1 − 2αH(z,m− 1)

(5.4.12)

with the initial condition as

C(z,m) = 0

H(z,m) = z
(5.4.13)

Then, the CGF of ht, k(z) is expressed the logarithm of MGF that

Kh(z) = C(z,m) +H(z,m)ht (5.4.14)

According to the properties of MGF, we can approach the conditional expectation of ht+1

under the filtration Ft by setting z to 0 after deriving MGF regarding z as

E[ht+1|Ft] = dE[ezht+1 |Ft]
dz

|z=0 (5.4.15)
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We then discuss the pricing of the underlying derivative, the VIX European call option.

From Cboe’s definition of a VIX derivative, a VIX call option is constructed as the tail

expectation of the difference between the VIX value and a given strike price

C(V IXT , t) = e−r(T −t)E[(V IXT −K)+|Ft] (5.4.16)

From this model, one naturally wonders how to predict the value of V IXT under Ft. In

the previous section, since we are not using the original Heston or GARCH model, but

apply the modelling approach that relates the value of VIX to the process of Rt or St. As

the original Heston-Nandi model is used as an example in this section, we can consider the

approach mentioned by Hao and Zhang (2013) [51] and express the value of V IX2 with

expected daily variance like

V IX2
t = 252 × Vt(22) (5.4.17)

where 252 is the annual factor and Vt(n) represents the annualised average of expected

daily variance under a risk-neutral measure as

Vt(n) = 1
n

n∑
i=1

EQ[hT +i|Ft] (5.4.18)

In this form, we took the average daily expectation of 22 trading days in a month and

multiplied it by an annual factor to obtain the value of V IX2. According to Wang (2006),

this daily variance expectation can be further expressed as ht+1 in affine structure as

follows

Vt(n) = (1 − Γ(n))h̄+ Γ(n)ht+1 (5.4.19)

where h̄ represents the long-term stable volatility as

h̄ = w + α

1 − β − αδ2

and

Γ(n) = 1 − (β − αδ2)n

n(1 − β − αδ2) .
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As the semi-closed-form expression of its CGF is known, we further express the option as

an approximation of the tail expectation of the square root of V IX2 as

C(V IXT , T ) =e−rTEQ
0 [(V IXT −K)+]

=e−rTEQ
0 [(
√
V IX2

T −K)+]

(5.4.20)

and then apply the alternative saddlepoint method according to Kowk and Zheng’s work

in 2014 [2] and obtain the analytical closed-form expression of this tail expectation as

EQ
0 [(
√
V IX2

T −K)+] = 1
4
√
πi

∫ r+i∞

r−i∞

ek(ẑ)+g(ẑ)

ẑ3/2 dẑr ∈ (0, α+) (5.4.21)

where k(z) is the CGF of the V IX2
T and g(z) = log(1 − erf(

√
zK), ẑ is the positive root

of the alternative saddlepoint equation

k′(ẑ) + g′(ẑ) − 3
2ẑ = 0. (5.4.22)

5.5 Transition probability matrix simulation for twist part

After gaining the semi-closed-form part of the strategy, we now focus on the simulation

part, the expectation of the product of the discount price Xt and its underlying derivative

H. Duan (2001) [65] proposed a Markov Chain method for valuing American options

under the GARCH model and prove that it works well for the GARCH option pricing

framework as an alternative numerical method. Following this idea, we approach the ex-

pectation E[HXt|Ft−1] by a transition probability matrix that describes the transition

process of the product between different states. To apply the method of transition prob-

ability matrix to the simulation, we need to assume that the processes of the discounted

price and conditional volatility follows a binary discrete process and transition in finite

states. Therefore, we define the discounted price has m states [X(1), X(2), X(3)...X(m)]

and the conditional volatility has n different states [h(1), h(2), h(3)...h(n)] in this binary

system (X(i), h(j)) where i ∈ 1...m and j ∈ 1...n. Before further discussing the transition

probability matrix, we also need to remove the time trends in this system. We note that
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even when modelled under the risk-neutral measure, Xt still tends to grow over time due

to the presence of the risk-free rate. This makes the iterative process of Xt consisting of

a combination of state transfer and time trend contributions. Therefore, when simulating

this bivariate discrete process, we remove the time trend to generate a new discount price

variable X∗
t

X∗
t = Xte

−(r− 1
2 h̄)∆t (5.5.1)

and use it for the state transition simulation. In addition, since the conditional variance

ht under the risk neutrality measure no longer contains the time trend, we did not make

any modifications to it and used a bivariate system (X∗(i), h(j)) for the subsequent state

transfer process with similar definitions. After the binary system is settled, we next

consider two questions: how each state is defined, and the probability that this bivariate

system will enter this state at the next step.

After removing the time trend, the logarithm of X∗
t is located in intervals centred by

logX∗
t−1 and settled symmetrically as [logX∗

t−1−∆logX∗, logX∗
t−1+∆logX∗] where ∆logX∗

is relevant to the expectation of the conditional volatility ht at time t− 1 and defined as

∆logX∗ =

√
E[ht|Ft−1](m− 1)

2 . (5.5.2)

To represent m different statements of the discounted price logX∗(i), the overall interval

should be divided into m cells C(i) with discounted prices locating in the centre

logX(i)∗ = logX∗
t−1 − ∆logX∗ + ∆logX∗ 2i− 2

m− 1

C(i) = [logX∗
t−1 − ∆logX∗ + ∆logX∗ 2i− 3

m− 1 , logXt−1 − ∆logX∗ + 2∆logX∗ 2i− 1
m− 1]

(5.5.3)

where

i = 2...m− 1

C(1) = [−∞, logX∗
t−1 − ∆logX∗ + 2∆logX∗ 2i− 1

m− 1]

C(m) = [logX∗
t−1 − ∆logX∗ + 2∆logX∗ 2i− 3

m− 1 ,∞, ].
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Similarly, the conditional volatility interval is defined as [ht−1 − ∆h, ht−1 + ∆h] where the

determination of ∆h is based on the dispersion of the logarithm of the conditional variance

(Duan 2001) [65] such as

∆h = log[eht−1 +
√
n− 1

2 σh] − ht−1 (5.5.4)

where σh is the standard deviation of the conditional volatility ht. For the logarithm of

the conditional variance, the cells of conditional volatility are defined as

h(j) = ht−1 − ∆h+ ∆h2j − 2
n− 1

D(j) = [ht−1 − ∆h+ ∆h2j − 3
n− 1 , ht−1 − ∆h+ 2∆h2j − 1

n− 1 ]
(5.5.5)

where

j = 2...n− 1

D(1) = [−∞, ht−1 − ∆h+ 2∆h2j − 1
n− 1 ]

D(n) = [ht−1 − ∆h+ 2∆h2h− 3
n− 1 ,∞].

(5.5.6)

After defining the states of the two variables in this binary system, we combine these

states and assume that the transfer of these state combinations obeys a transfer probability

matrix. we define the joint stochastic processes of X∗(i) and h(j) from t − 1 to t as a

mn×mn transition probability matrix

P =



p(11, 11) ... p(11, ij) ... p(11,mn)

p(12, 11) ... p(12, ij) ... p(12,mn)
... . . . ... . . . ...

p(ij, 11) ... p(ij, ij) ... p(ij,mn)
... . . . ... . . . ...

p(mn, 11) ... p(mn, ij) ... p(mn,mn)


.

The element of this matrix p(ij, kl) represents the transition probability matrix from time-

volatility statement (i, j) to statement (k, l) during a one-time interval. With the results
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of the product in each statement, the conditional expectation of the product of the option

price H and the underlying asset price X∗
t is simulated as

E[HX∗
t |Ft−1] =

m∑
i=1

n∑
j=1

H(X(k), h(l))X(k)p(ij, kl). (5.5.7)

The next step seems to be that we need to find complex probability transfer networks for

m × n. But we note that in the GARCH(1, 1), once Rt(obtained by Xt and Xt−1) and

ht−1 are known, the value of ht is deterministic. The transfer probabilities provided by

Duan [65] also consider only the conditional probability of adjusted discounted price and

expressed the transition probability under risk-neutral measure Q as

p(ij, kl) =Pr{Xt = X(k)|Xt−1 = X(i), ht−1 = h(j)}

=Pr{Lij(k) < Z < Lij(k + 1)}.
(5.5.8)

Till now, we can simulate the product of adjusted discounted price and the conditional

variance by this transition probability matrix and apply it to approach the numerator part

of the hedging strategy after returning the time trend to the simulation results.

5.6 Numerical experiment

This section introduces two types of the numerical experiment to show the hedging perfor-

mances of the traditional Monte Carlo simulation and the semi-closed-form approximation

to the hedging strategy. All the experiments are conducted under the EMM measure as

the price of the option needs to be evaluated under Q as a benchmark to make the results

meaningful. All the parameters used for experiments are also adjusted for the risk-neutral

measure.

Both Monte Carlo simulations and semi-closed-form approximation are applied to 1000

paths of daily stock price and its relevant volatility simulation following the GARCH(1, 1)
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model mentioned in section 3. We refer to the parameters estimated by Wang (2017) [1]

based on returns/VIX observations from March 2004 to December 2013. After making

the necessary adjustments, we set the initial adjusted stock price to be S0 = 1 and the

initial conditional volatility to be h0 = 2 × 10−4. Then we implement a risk-neutral type

of GARCH model with parameters used as follows

Rt = −1
2ht +

√
htz

∗
t

ht = 1.43 × 10−6 + 0.9952ht−1 + 1.4468 × 10−6(z∗
t−1 − 390.73771

√
ht−1)2

(5.6.1)

where z∗
t = zt + 4.283 and long-term stable volatility h̄ = 2.9990 × 10−4.

The hedging claim is set as a European VIX call option such as Ht = EQ[(V IXT −K)+|Ft]

with strike ranging from 0.03 to 0.13, and maturity of T = 22 (a month). This is because

after one month of iterations through this model, the conditional volatility will be very

close to the long-term volatility. This makes the latter option prices and hedges perform

similarly to one-month values. On the other hand, because of the use of discounted

subordinator, the annualised risk-free rate is 0.

To ensure two methods are applied on the same grounds, the hedging experiments are

all conducted by the same bonds and stocks when the strike price and maturity of the

hedging claim are given. The hedging performance is obtained by the cumulative amount

and compared the simulated results in terms of both average and 99% quantile. We first

observe the hedging of different strategies against different strikes after half a month (11

days) and then observe the performance of the two hedging strategies over the whole

business time with a fixed strike. To avoid small probability events, we performed this

numerical experiment one hundred times and then exhibit the average of the results in the

following tables.

From the table.1, we observe that the improvement in hedging effectiveness resulting from

semi-closed-form local quadratic hedging under Q becomes more prominent when the

options are in-the-money but perform similarly when their strikes reach the at-the-money

interval. At small strikes, the averages of the square of the cost increment to maintain
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Average perform of cost increment of 11th daily hedging
K 0.03 0.05 0.07 0.09 0.11 0.13

OP 0.114 0.103 0.092 0.082 0.071 0.061
MC(10^-4) 37.55 32.84 27.06 24.08 25.22 44.78
CF(10^-4) 3.91 4.04 3.85 3.92 5.54 32.57

Table 5.1

Average perform of cost increment for Strike K=0.07
t(business time) 1 4 7 10 13 16 19 22

OP 0.094 0.094 0.095 0.095 0.095 0.097 0.098 0.101
MC(10^-4) 24.84 31.8 31.47 27.78 28.16 36.71 36.98 44.93
CF(10^-4) 3.83 3.43 3.22 3.33 3.97 7.72 14.89 29.73

Table 5.2

Ht = Vt for the strategy developed by the semi-closed-form method is approximately 10.4%

of the Monte Carlos’. The advantage of this method becomes smaller as the strike value

increases. When the strike reaches 0.11, the mean of squared increment cost simulated

by the semi-closed-form method is about 22% of that of the Monte Carlo’s. When the

strike reaches the money bar, the mean of squared increment costs of the two methods

gradually converges. Table 2. reveal the relationship between business time and hedging

effectiveness improvement. Similar to the trend of strikes, the hedging performance of the

semi-closed-form method has a more significant advantage relative to the Monte Carlo

method when the business time t is small. For the same number of iterations, the square

cost increment for the semi-closed-form method to reach the local quadratic hedge is only

15%−20% of that of the Monte Carlo’s. This advantage is gradually lost after t increases.

The difference in the average square cost increment between the two methods is within

50% when t reaches 22(number of business days of one month).

99% quarter perform of cost increment for Strike K=0.07
Freq 1 4 7 10 13 16 19 22
OP 0.094 0.094 0.095 0.095 0.095 0.097 0.098 0.101

MC(10^-4) 209.49 208.53 168.94 227.41 276.82 642.79 1974.01 3531.86
CF(10^-4) 29.85 18.36 7.59 23.12 61.68 85.56 292.28 584.60

Table 5.3
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99% quarter perform of cost increment of 11th daily hedging
K 0.03 0.05 0.07 0.09 0.11 0.13

OP 0.114 0.103 0.092 0.082 0.071 0.061
MC(10-4) 150.04 32.84 27.06 249.06 249.06 312.75
CF(10-4) 14.76 4.04 3.85 65.25 65.25 331.04

Table 5.4

From Tables 3. and 4., we remark that the 99% quantile hedging cost has a similar profile

to the average hedging cost in the fits of the semi-closed-form method and the Monte Carlo

method. At times when strike and business time t are relatively small, the semi-closed-

form method has a clear advantage: over 1000 experiments, the 99% quantile hedging

cost induced by the semi-closed-form method is 10% − 15% of that of the Monte Carlo

method. As the strike gradually approaches the at-the-money situation, or as the business

time tends to 1 month, the hedging cost advantage induced by the different methods

diminishes.

5.7 Conclusion

This chapter studied the effects of different simulations of local quadratic hedging strategies

with GARCH models by scaling its square increment errors and conducting a numerical

test to reveal the method’s sophistication. The result addressed some crucial properties

of the two methods: (i) The average incremental cost of reaching a hedging strategy with

the semi-closed-form method is smaller than that of the Monte Carlo method for the

same number of simulations. (ii)In the extreme case (99% quantile), the semi-closed-form

method demonstrates a similar advantage. (iii)This advantage diminishes at high strike

values and near maturity time, but the opposite result does not occur. In summary, we

can conclude that the semi-closed-form method to obtain a hedging strategy for VIX call

options in the framework of the GARCH model will outperform the Monte Carlo method

for the same fitting cost. The advantage of this fitting method mainly comes from the

full use of the conditional variance of the GARCH model and the reasonable fitting of

the Brownian motion in the innovation factor these are ignored by the traditional Monte
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Carlo method. This neglect dramatically increases the number of experiments required

to achieve the same fitting accuracy, allowing investors with quadratic hedging based on

GARCH models to obtain a more stable and accurate hedging strategy.

In future research, it would be an interesting direction to introduce this simulation method

into more hedging under an extended GARCH model and optimise their approxima-

tion processes. We note that the GARCH model has many extension branches, such

as EGARCG and NGARCH, which change the structure of the model, and subordinator

GARCH and regime switching GARCH, which change the meaning of the parameters.

Even, in short-term large market shocks, the introduction of 3/2 of the 1
vt

variable in the

SDE of log return Rt. Hence, how the method of this chapter can be applied to these

extended models based on the original GARCH model will be a meaningful research topic

in future work. Finally, due to the complexity of the semi-closed-form of the CGF, the

Semi-closed-form hedging method for each path is extremely computationally intensive,

which in turn prevents us from simulating this method in large times. In future research,

we expect to improve the efficiency of this hedging method by approximating the option

prices more simply while controlling the loss of accuracy.
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Chapter 6

Conclusion and Future Directions

6.1 Solution to problems

This thesis investigates the problem of pricing and hedging VIX derivatives under different

characteristics of stochastic models and generalises the traditional model. In general, we

have the following conclusions. 1, In the family of continuous-time models, the regime

switching method has better compatibility with the more popular 4/2 models nowadays.

The integration of these two models makes its results, the regime switching 4/2 methods,

both able to control the power of the diffusion term and to adapt to the relevant parameter

changes under different periods, making this model more relevant to the financial process

described. 2, This thesis explores new discrete financial models by discretizing the 4/2-

continuous-time model into GARCH type by a technique like the Heston-Nandi model.

The 4/2 GARCH model generated by this approximation inherits the power-adjustable

property of the traditional 4/2 model in terms of the diffusion factor, but also possesses

the ease of implementation of the GARCH model. 3, By numerical integration, this thesis

combined some common subordinator and 4/2 GARCH models, making the combined

model adaptable to the different distributions of business time generated due to changes

in trading volume or trading period. 4, on the properties of the GARCH model, this

thesis proposes more specific hedging methods and simulations for VIX derivatives under
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the GARCH framework. The previous Monte Carlo model does not make full use of the

relevant characteristics of the GARCH model in the simulation of the strategy of quadratic

hedging. The simulation method of hedging strategies suggested in this thesis utilises

the state transfer matrix to obtain better hedging strategies than the traditional Monte

Carlo method within the same number of simulations. Corresponding to the abstract and

introduction, the main contribution of this thesis is to modify and expand on existing

stochastic financial models for specific models. While retaining the advantages of those

stochastic models, we exploit the potential of these modifications and extensions in terms

of model optimisation. Some meaningful ideas are provided for subsequent researchers and

investors to improve the existing financial measurement tools in the future. In addition, the

saddlepoint method plays an important role in this thesis as a core method for determining

the values of the derivatives.

6.2 Unresolved issues and future research directions

During this thesis research, we left some questions to be solved, while submitting some

possible research directions on these questions. 1, The derivatives used in the examples

and numerical experiments in this thesis are European VIX call options. But European

call options are only one of the simplest derivatives. Therefore, whether the pricing and

hedging methods involved in this thesis are feasible for other financial derivatives deserves

further research. 2, In addition to the construction method of VIX used in this thesis,

there are other methods of obtaining the value of VIX based on forward contracts, etc. 3,

Future research could discuss and compare the accuracy of different VIX definitions for

pricing and hedging methods and overcome the computational efficiency issues caused by

the higher order estimation of VIX options. However, in some financial models, solutions

of higher order forms can lead to very complex semi-closed-forms. This often makes the

computation time unacceptably long. Therefore, future researchers can consider some

better approximation methods to reduce this error. 4, This thesis only discusses the

application of local quadratic hedging in VIX derivatives, but this does not mean that
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global hedging is not relevant for VIX derivatives. In fact, in most of the literature,

global hedging approaches are closer to the expected hedging needs than local hedging.

Therefore, a possible research direction is to perform global hedging or more complex

hedging of VIX derivatives. 5, Last but not least, to subject the volatility to controlled

factors while blocking other influences, we only considered and simulated the model in a

laboratory data environment. This means that the performance of our models and their

extensions in the real market data environment is unknown, even if they performed well in

the laboratory data environment. An important future work is to identify suitable market

data sets, apply the financial models and their extensions in this thesis to these data sets,

and check their performance in the real market data environment.
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