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LIST OF SYMBOLS 
 

A Cross section of the midship section 

as Cross section of a stiffener )aa(
51 ss −  

B Breadth of the midship section 

b Flange width of the stiffener 

c.o.v. Coefficient of variance = standard deviation/mean value 

D Depth of the midship section 

Dx Variance of a random variable, x 

fx(x) Probability density function of the random variable, x 

Fx(x) Distribution function of the random variable, x 

h Double bottom height of the midship section; also stiffener web height 

Ix Moment of inertia of the midship section about X-axis; also used for stiffener 

INA Moment of inertia of the midship section about neutral axis 

IY Moment of inertia of the stiffener about Y-axis 

IXY Product moment of inertia of the stiffener about XY-axis 

ix1 Moment of inertia of the stiffener about centroidal x1-axis 

iy1 Moment of inertia of the stiffener about centroidal y1-axis 

ix1y1 Centroidal product moment of inertia 

is Centroidal moment of inertia of stiffener about a horizontal axis (Figure D1) 

l Subscript for the lower limit of a random variable 

MS Still water bending moment amidships 

MW Wave induced bending moment amidships 

MT Total bending moment amidships = MS+MW 

R Resistance moment of the midship section = σY.Z 

S Load effect moment of the midship section = MT 

SX Static moment of a cross section about X-axis 

SY Static moment of a cross section about Y-axis 

T Exposure time following the coating breakdown, years 

t Shell plate thickness, t1-t5 respectively at deck, tanktop, outer bottom, side 

shell and bilge corner 

tf Flange thickness of stiffener, tf1-tf5 

tw Web thickness of stiffener, tw1-tw5 

u Subscript for the upper limit of a random variable 

Vx First moment of area of the midship section about X-axis 
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X Vector of basic variables, (x1,x2,…)T 

x Value of a basic variable 

xc Distance of stiffener centroid from Y-axis (xc1-xc5) 

yc Distance of stiffener centroid from X-axis (yc1-yc5) 

yd Distance of the midship section neutral axis from deck = y  

yk Distance of the midship section neutral axis from keel = yD −  

Z Elastic section modulus of the midship section at the deck level 

δ Average annual corrosion wear (mm/yr) 

δT Total corrosion wear over a period T, years 

σ Standard deviation of a random variable 

σY Yield strength of the material 

θ Angle between x1-axis and the horizontal axis through the centroid of a 

stiffener 

φ Angle between two adjacent stiffeners in the bilge (Figure A2) 
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OF HULL GIRDER MIDSHIP SECTION 

 
Dr M Chowdhury 
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Sydney, 2052, Australia 
 

1. General Introduction 
 
In recent years significant progress has been made in the computation of loads that act on 
a structure and the strength of an as-built structure. It has long been known that both of 
these quantities are random variables. Therefore, the problem of structural design is 
essentially a problem which should involve the theory of probability at the design stage. In 
the fields of aerospace and civil engineering the methodology was proposed by Pugsley 
(1955) and Freudenthal (1956) during the mid-fifties. Following these works a number of 
researchers in the field of structural design including naval architects contributed towards 
the probabilistic methods of design. 
 
However, in the routine design of structures a simple, deterministic approach is still 
popular and useful. For example, ship structural design is based on classification society 
rules. One of the main aspects of ship structural design is to determine the required mid-
ship section modulus to prevent yielding against the applied loading. Implicit in this method 
are two quantities. The total bending moment amidships, MT with two components, still 
water bending moment, MS, and the wave-induced bending moment, MW.  It is obvious that 
the wave-induced bending moment is a random variable (St Denis and Pierson 1953), but 
the still water bending moment is also a random variable although it does not seem so 
obvious (Hughes, 1988).  On the other hand, the resistance bending moment is the 
product of material yield strength, σY and the elastic section modulus, Z, both of which are 
also random variables. For the sake of simplicity we assume that a random variable may 
be defined by its mean and variance. It may be mentioned that although a normal or 
Gaussian probability distribution is directly defined by mean and variance, it is not the only 
possible type of distribution.  The other types such as log-normal and Type I asymptotic 
extreme value are also defined by these two parameters (Ochi, 1990). 
 
Other probability distributions might be more appropriate, even if only the mean and 
variance are known (Melchers 1999). The philosophy in the classification society rule is to 
magnify the total bending moment by a ‘factor’ and reduce the material yield strength by 
another ‘factor’ to come up with an allowable stress.  And then obtain the required elastic 
section modulus amidships simply by dividing the former by the latter. 
 
However, essentially the factors are to be applied on the mean values of the variables 
because the actual value of a random variable, by definition, is never known. Therefore, in 
this approach of design the mean strength of the hull girder is set to higher magnitude than 
the mean load effect. But in real life the actual strength of some ships may be much 
smaller than the mean value predicted at the design stage; particularly when aged. On the 
other hand the wave-induced component of bending moment may be larger than predicted 
at the design stage. This is true if the value used in design is based on a period lesser 
than the design life of the vessel. For example, a ship operating along the North Atlantic 
route is likely to experience a probable extreme significant wave height of 19.17m over an 
exposure period of 10 years. Whereas, the same ship is likely to experience a significant 
wave height of 20.20m over an exposure of 20 years which may be its design life (Ochi 
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1978). Essentially, the load effect increases with time whereas the strength decreases with 
time due to corrosion and other environmental degradation of the structure among other 
factors. 
 
Consequently, a ship designed on this basis may be quite safe when built and put into 
service, but not so safe when aged, or may be even unsafe.  Therefore, it is necessary to 
investigate the total bending moment and the resistance moment as functions of time. 
 
In this work it is intended to develop a procedure or a working tool to derive the probability 
distribution of the resistance moment as a function of age taking into consideration of the 
corrosion wastage.  A similar approach to derive the probability distribution of the load 
effect or total bending moment as a function of age may be derived but will not be 
elaborated in the present work. 
 
It may be mentioned that the actual failure of a ship will involve progressive failure of 
components which are also affected by age but the detailed calculations are too 
complicated at design stage. 
 
 
2. Formulation of the Overall Problem 
 
The overall problem here is to define statistically the probability of failure, pf, of the hull 
girder midship section by yielding at any given age, taken into consideration of the 
corrosion wastage. 
 
At this point it is desirable to distinguish between two types of variables. The variables 
such as principal dimensions of ships, plate thicknesses, stiffener scantlings, material yield 
strength etc. will be termed as Basic Variables, .n,,.2,1i;xi K=  On the other hand, still 
water bending moment, MS wave-induced bending moment MW, midship section modulus, 
Z etc. will be termed as Design Variables which are, in fact, functions of two or more basic 
variables. 
 
In its most generalised form the overall problem may be expressed as 
 
 [ ] ∫ ∫ ≤

=≤=
0)x(G xf xd)(f0)(GPrp XX K  (2-1) 

 
where 
 
 ( ) ;x,,x,x T

n21 K=X  vector of n basic variables 
 
and 
 
 0)(G =X   is the limit state equation;  
  0)(G ≤X  indicates unsafe domain in the n-dimensional basic variable 

space. 
 ( )Xxf  is the joint probability density function (pdf) for the n-dimensional vector 

X of basic variables. 
 
It may be pointed out that ( )XG  is almost always a nonlinear function of xi.  There are two 
levels of serious difficulties in finding pf from this formulation in any realistic structural 
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problem having ten or more basic variables.  First difficulty is to derive the joint pdf, ( )Xf  
especially allowing for the statistical dependency of variables and the second difficulty is to 
carry out the multiple integration in a highly nonlinear domain. Limited success has been 
achieved with relatively small number of basic variables (Melchers, 1999). 
 
Therefore, we would concentrate our efforts on a somewhat restricted formulation in terms 
of Design variables: 
 
 Let us define two design variables: 
 
  S = Load effect 
  R = Structural resistance 
 
In the present problem 
 
 WST MMMS +==  (2-2) 
and 
 
 YR .ZMR σ==  (2-3) 
 
Therefore, the limit state equation becomes  
 
 ( ) SRS,RG −=  (2-4) 
 
The integration domain is now a simple linear function in 2-dimensional space. 
 
The probability of failure is now defined as 
 

 
( )[ ]

[ ]
( )∫ ∫

≤−
=

≤−=
≤=

0)sr(
rs

f

drdss,rf

0)SR(Pr
0S,RGPrp

 (2-5) 

 
Strictly speaking the random design variables R and S are not statistically independent; at 
least the principal dimensions are common basic variables in the calculations of MS, MW 
and Z. But the variance of these basic variables are quite small and consequently 
dependence of R and S is rather weak. 
 
We hereby assume R and S statistically independent to re-arrange Equation (2-5) as 
follows 
 

 ( ) ( ) ( ) ( )∫ ∫ ∫ ∫
∞

−∞=

≤

−∞=

∞

−∞=

≥

−∞=
==

s

sr

r r

rs

s RSsRf drrfdssfdssfdrrfp  

 

or ( ) ( ) ( )[ ] ( )drrfrF1dssfsFp Rr Ss SRf ∫∫
∞

−∞=

∞

−∞=
−==  (2-6) 

 
These are the well-known convolution integrals established long ago in the field of 
structural reliability analysis. 
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3. Evaluation of the Probability of Failure, pf 
 
3.1 Integration of the Convolution Integrals 
 
For a few types of distributions ( )rfR  and ( )sfS  it is possible to carry out the integration 
analytically. For example, either both ( )rfR  and ( )sfS  normal or both log-normal.  In case 
both are normal it may be shown (Melchers 1999) that: 
 

 
( )

( )
( )β−Φ=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

σ+σ

μ−μ−
Φ= 2/12

S
2
R

SR
fp  (3-1) 

 
where ( )Φ  is the standard normal distribution function extensively tabulated in texts. 
 
Here 2

RR,σμ  and 2
SS,σμ  are the mean and variance of the resistance, R and load effect, S 

respectively and β is called the safety index and is defined as: 
 

 
( ) 2/12

S
2
R

SR

σσ

μμ
β

+

−
=  (3-2) 

 
Nevertheless, if the distributions of R and S are available the integration of Equation (2-6) 
may be carried out numerically (Dahlquist and Björk, 1974; Davis and Rabinowitz, 1975) 
for all types of distribution.  Analytical solutions are only possible for normal and log-
normal distributions. 
 
3.2 Transformation of the pdfs of R and S into pdfs of more usual Design 

Variables 
 
In Equation (2-2) load effect, S is shown to be the sum of two other more common design 
variables MS and MW for which it is assumed that the pdf’s are available.  Then by using 
the theory of transformation of variables (Ochi, 1978) it can be shown that: 
 

 ( ) ( ) ( ) ( ) ( )∫ ∫
∞ ∞

−=−=
0 0 MMMMS dxxsfxfdyyfysfsf

WSWS
 (3-3) 

 
where x, y are the dummy variables. 
 
Therefore, once ( )

SMf  and ( )
WMf  are derived we may use Equation (3-3) to form 

( )sfS  to be used in the convolution integral. 
 
Similarly from Equation (2-3) where R is expressed as a product of two common design 
variables Z and σY we may write: 
 

 ( ) ( ) ( ) ( ) ( )dxx/rfxf
x
1dyyfy/rf

y
1rf

YY σZ0σZ0R ∫∫
∞∞

==  (3-4) 
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Again x, y are the dummy variables and ( )rfR  may be found from Equation (3-4) provided 
( )Zf  and ( )

Y
fσ  are available.  Usually the integrations are to be carried out 

numerically even if ( )
Y

fσ  and ( )Zf  are normal.  Derivation of ( )
Y

fσ  and ( )Zf  are 
shown in Section 4. 
 
3.3 Sample Space of a Random Variable 
 
In the present problem if only the magnitudes of still water and wave-induced bending 
moments are considered irrespective of sagging and hogging conditions then all basic and 
design variables are non-negative quantities. The sample space is the range of real 
numbers which the random variable may ever assume.  Fortunately, most continuous 
distribution types useful in the structural reliability analyses have sample spaces ∞<≤ x0 . 
Examples include log-normal, Rayleigh, Weibull etc. But some other useful distribution 
types have the sample space ∞<<∞− x . This category includes the Gumbel’s asymptotic 
Extreme Value distribution Type I and most important of all the Normal or Gaussian 
distribution. 
 
To avoid x taking an unrealistic negative value it is necessary to use a Truncated 
distribution for the second category. 
 
3.4 Truncated Distributions 
 
Let the original distribution be: 
 
 ( ) ∞<<∞− x;xfx  
 
Let the truncated distribution be: 
 
 ( ) ux xxxxf ≤≤

**
; l  

 
where ux  and lx  are the upper and lower limits of the subspace 

*
x . 

 
By definition of the probability-density-function: 
 

 ( ) ( ) ( ) ( ) ( )dxxfdxxfdxxfdxxf1dxxf u

u

u x

x x xx
x

xx
x

x *x ∫ ∫ ∫∫∫
∞

∞−

∞

∞−
++===

l

l

l

 (a) 

 

or ( )
( ) ( ) ( )∫ ∫ ==

−
u ux

x

x

x *x
u

x 1dxxf
xFxF

dxxf
l ll

 (b) 

 
where ( )xF  is the cumulative distribution function of x. 
 
Finally from (b) 
 

 ( ) ( )
( ) ( )lxFxF

xfxf
u

x
*x −

=  (3-5) 
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3.5 A Special Case – Truncated Normal Distribution: ∞<≤ x0  
 
By introducing a linear transformation of variables, namely σμ−= )X(Y , it can be easily 
shown that 
 

 ( ) ( )
( ) ( )

( ) ( )∞<≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ

μ−
−

σπσμΦ
=

σμΦ
= x0

2
xexp

2/
1

/
xfxf 2

2
x

*x  (3-6) 

 
where ( )Φ  is the standard normal distribution and in the present context ( )σμΦ /  is quite 
close to unity. 
 
In Section 4, Equation (3-6) will be used to define the probability density function of the 
midship section modulus, Z. 
 
 
4. Derivation of the Probability Density Functions ( )

Y
fσ  and ( )Zf  

 
To carry out the integrations in Equation (3-4) it is necessary to form the probability density 
functions ( )

Y
fσ  and ( )Zf .  For the material yield strength it is assumed to be a log-

normal distribution given as 
 

 ( ) ( ) ( )∞≤≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= Y2

2
Y

Y
Yσ σ0

σ2
μσnexp

σπ2σ
1σf

Y

l  (4-1) 

 
Here the logarithm of the random variable σY is normally distributed with mean 

( )YσnEμ l=  and ( )Y
2 σnvarσ l= . 

 
Unlike ( )

Y
fσ  for which μ and σ are readily available, the mean and variance are to be 

computed to form ( )Zf  because ( )XZZ =  is a function of a number of basic variables, 
such as midship section geometry, plate thicknesses and stiffener scantlings.  Moreover, 
( )XZ  is a nonlinear function of these variables making it difficult to compute the mean μZ 

and variance 2
Zσ .  In the following section approximate expressions are derived for μZ and 

2
Zσ  to form ( )Zf . 

 
4.1 Approximation of the Function ( )XZ  and its Mean and Variance 
 
The derivation of an accurate expression of ( )XZ  for a typical midship section where 

( )Tn21 x,x,xX K=  is given in Appendix A. 
 
By a Taylor series expansion of a general multivariate function about the mean values of 
the independent variables, xi –  
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( ) ( ) ( )

( )( ) termsorderhigher
xx
Zxxxx

2
1

x
ZxxxZxZ

x
ji

2n

1i

n

1j
jjii

x
i

n

1i
ii

+
∂∂

∂
−−+

∂
∂

−+=

∑∑

∑

= =

=  (4-2) 

 
This series is approximated by its linear form as 
 

 ( ) ( ) ( ) x

n

1i i
ii x

ZxxxZxZ ∑
= ∂

∂
−+≅  (4-3) 

 
Ivanov (2001a) and the present author noted that the contributions of the second and third 
terms in subsequent calculation of mean and variance of Z is well below 1%. 
 
From this approximate expression of Z the mean and variance are: 
 
 ( )xZZofMean Z =μ=  (4-4) 
 
and 
 

 2
x

n

1i

2
i

2
Z

i
σaσZofVariance ∑

=
==  (4-5) 

 

where Zofderivativepartial
x
Za x

i
i =

∂
∂

=  with respect to xi and evaluated at the mean 

value of ii xx = .  It is to be noted that Eqn (4-5) is valid only if all xi are statistically 
independent, which is assumed in this analysis. 
 
Eqns (4-4) and (4-5) are commonly known as First Order Second Moment (FOSM) 
approximation and is an accepted method. To evaluate the variance, 2

Zσ  it is necessary to 

calculate the partial derivatives 
xix

Z
∂
∂  with respect to all xi. 

 
A method has been given in Appendix B to derive expressions for these derivatives. 
 
Ivanov (1982, 1984, 1987, 1991) has shown that the shipbuilding structural profiles follow 
normal distribution.  It is assumed that the midship section modulus also follow the normal 
distribution.  The truncated version is: 
 

 ( )
( )

( ) ( )∞≤≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= z0

σ2
μzexp

σπ2σ/μΦ
1zf 2

z

2
z

zzz
z  (4-6) 

 
Since the midship section modulus is a function of over 20 other random variables, this 
assumption is also validated by the Central Limit theorem. 
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Finally, substituting Equations (4-1) and (4-6) in Equation (4-5) the integration may be 
carried out numerically to obtain ( )rfR , the probability density function for the resistance 
moment, R. 
 
Similarly, knowing the pdfs of ( )

sMf  and ( )
wMf  it is possible to complete the integration 

in Equation (3-4) to derive ( )sfS , the probability density function for the load effect or total 
bending moment amidships. 
 
And finally, Equation (2-6) may be used to estimate the probability of failure, pf of the hull 
girder midship section by yielding. 
 
 
5. Effect of Corrosion Wastage 
 
After the breakdown of protective coating the effect of corrosion is to reduce the 
thicknesses of shell plates and stiffeners. This will, in turn, alter the Equations (4-4) and (4-
5) which are based on mean and variance of the basic variables xi. 
 
The rates of corrosion losses are discussed in Appendix C.  The corrosion rates which are 
expressed as its mean and variance are used to calculate the time dependent mean and 
variance of xi as follows. 
 
5.1 Mean and Variance of Shell Plate Thicknesses 
 
Based on empirical corrosion model where the mean and standard deviation are given as 
average annual rates (mm/yr) the time-dependent values of the deck, tanktop and outer 
bottom plating, ti, are: 
 
 Mean: ( ) ( ) T,Vii δ0tTt −=  (5-1) 
 
where  i = 1,2,3 represent deck, tanktop and outer bottom respectively, and 
 
  T = exposure time in years after coating breakdown 
 
  a,VT,V δTδ ⋅=  (5-2) 
 

a,Vδ  is the average corrosion loss per year in the vertical direction and T,Vδ  is the total 
loss over T years. 
 
Variance: ( ) ( ) ( )2T,V

2
t

2
t σ0σTσ

ii
+=  (5-3) 

 
where  a,VT,V σTσ ⋅=  (5-4) 
 
and a,Vσ  and T,Vσ  are the standard deviations of corrosion loss per year and total over T 

years respectively. Also ( )0ti  and ( )0σ2
ti

 are the mean and variance of ti at T=0.  The 

corresponding equations for the side shell are: 
 



 12

  ( ) ( ) T,W44 δ0tTt −=  (5-5) 
 
and  ( ) ( ) ( )2T,W

2
t

2
t σ0σTσ

44
+=  (5-6) 

 
again  a,WT,W δTδ ⋅=  (5-7) 
 
and  a,WT,W σTσ =  (5-8) 
 
The subscript ‘w’ indicates corrosion loss in horizontal direction. In this formulation 
distinction is made for corrosion losses in the vertical and horizontal direction (Ivanov 
2001a, b) but this distinction may be ignored. Then, Equations (5-1) to (5-4) will be valid 
for all plating including the bilge corner which is part vertical, part horizontal.. Alternatively, 
based on Melchers phenomenological corrosion model which gives mean and variance 
directly as functions of time the following changes are to be made: 
 
  )t(ciT,WT,V =δ=δ  (5-9) 
 
where ci; i=1-4 is explained in Appendix C. 
 
Similarly, ( )tcT,WT,V σ=σ=σ  (5-10) 
 
Notice that Tt ≡  is the exposure period in years followed by the coating breakdown. 
 
In the following it is assumed that aa,Wa,V δδδ ==  and aa,Wa,V σσσ == . 
 
5.2 Mean and Variance of Four Basic Variables related to Stiffeners 
 
In the present work the stiffeners are defined by four ‘basic’ variables: cross-sectional area 
as, centroidal moment of inertia is, and location of the centroid xc and yc.  The number of 
stiffeners n are treated as fixed.  But strictly speaking these geometric properties are not 
the ‘basic’ variables for the stiffeners and each one is a function of other variables.  Those 
are, in fact, web height and thickness, flange width and thickness and various fillet radii of 
the rolled sections.  Ivanov (2001a, 2003b) from the American Bureau of Shipping gave a 
detailed account of accurately computing all geometric properties of various shipbuilding 
structural profiles.  Ivanov also presented a method of calculating the time-dependent 
mean and variance of these geometric properties based on empirical values for corrosion 
losses.  More recently Chowdhury (2006) has revisited Ivanov’s method to predict 
probability of reduction of geometric properties of structural profiles as the ship ages.  In 
addition to Ivanov’s empirical values of corrosion loss based on past measurements, 
Chowdhury has introduced the more recent corrosion models of Paik et. al. (2003) and 
Melchers (2001).  Readers should consult these references for details.  However, for the 
sake of completeness the procedure to calculate time dependent mean and variance of as, 
is, xc, yc, of inverted angle or L-profiles is given in Appendix D.  Appendix E gives the time 
dependent values of the stiffener basic variables. 
 
5.3 Summary of Calculation Procedures for fz(Z) 
 
1. Read the initial (T=0) inputs: the mean values and variances or coefficients of 

variances (c.o.v) of the geometric variables (B, D, h), the shell plate thicknesses (t1-
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t5) and six scantling variables (h, b, tw, tf, R1 and R2) for each of the five sets of 
angle bar stiffeners. 

 
2. Modify the above mean values and variances by incorporating the corrosion losses.  

For shell plate thicknesses use the equations developed in section 5.1 and for 
stiffeners use Appendix E.  At this stage ignore reduction in the geometric variables 
(B, D, h) due to corrosion wear. 

 
3. Calculate the stiffener geometric properties and their mean values and variances 

using Appendix D and Appendix E. 
 
4. Calculate the midship section modulus and other geometric properties together with 

their partial derivatives using Appendix A and Appendix B respectively. 
 
5. Calculate the mean and variance of the section modulus using Equations (4-4) and 

(4-5).  Finally construct the time-dependent probability density function of the 
midship section modulus using Equation (4-6). 

 
6. By using the time dependent probability density functions, )Z(fz , it is possible to 

predict the probabilities of reduction of midship section modulus at any period of 
exposure, T. 

 
The procedures may be repeated for any value of T. 
 
Sample calculations are summarised in Appendix F. 
 
 
6. Results and Discussion 
 
The results of a sample calculation are given in Appendix F.  The entire calculations are 
very conveniently carried out by Excel spreadsheets.  Once the formulas developed in the 
test are entered into the spreadsheet for a selected midship section it is only necessary to 
change the exposure period, T, for any chosen corrosion model.  We used T = 5, 10, 15 
and 20 years as exposure period.  In this exercise we tried three corrosion models in order 
of severity; Paik et al. ‘severe’, Ivanov and Melchers’ model.  The mean values and the 
standard deviations of the midship section modulus are presented in Table F2. 
 
It is observed that almost all geometric properties such as cross-sectional area, first and 
second moment of areas and section modulus are linear functions of the exposure period, 
T.  This is true both for the stiffeners cross-section and the midship section.  However, the 
standard deviations of these geometric properties are not linear functions of T; instead it 
increases more rapidly with exposure period. 
 
Although the data in Table F2 are useful in writing the truncated normal distribution of Z as 
required in Eqn (4-6) we went one step further.  Using the truncated distribution it is easy 
to predict the probabilities or ‘likelihood’ of reduction of magnitudes of midship section 
modulus with exposure period, T.  These results are presented in Table F3.  For practicing 
engineers, for which this methodology is proposed, it is considered more convenient to 
make this prediction in qualitative terms, such as ‘unlikely’, ‘likely’ or ‘most likely’ 
scenarios. 
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In future, it will be worth finding empirical relationships between the geometrical properties 
and the corrosion data and period of exposure.  The main issue here will be to investigate 
whether the scantlings of the midship section affect this relationship. 
 
In addition, it should also be useful to examine the issues of accuracy of this model against 
more accurate nonlinear models.  But with any such nonlinear model there will be 
difficulties in terms of numerical solution of constrained optimisation problems with too 
many variables (Melchers, 1999). 
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APPENDIX A 
 

Derivation of the Elastic Section Modulus, Z 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1:  Idealized midship section of a ship 
 

The above figure represents a simplified midship section of a ship showing the plates and 
stiffeners. The bilge corner is idealised as quarter circles with radius, h (Figure A2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2:  Stiffeners at the bilge corner 
 
We define the basic variables, xi as follows: 
 
Geometric variables:  B=x1,   D=x2,   h=x3. 
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We now label the deck, inner bottom/tanktop, outer bottom, two side shells and two bilge 
corners as regions 1, 2, 3, 4 and 5 respectively.  These region numbers will be used as 
subscripts for identification purposes. 
 
Plate thickness:   t1=x4,   t2=x5,   t3=x6,   t4=x7   t5=x8 
 
The geometric properties of an inverted angle section is derived in Appendix D. 
 
Stiffeners cross sectional areas:  as1=x9,   as2=x10,   as3=x11,   as4=x12,   as5=x13 
 
Referred to Figure D1 in Appendix D: 
 
Stiffener centroidal locations:  yc1=x14,   yc2=x15,   yc3=x16, xc4=x17,   yc5=x18 
 
Note:  xc4 will be considered negative if the flange tip of the shell stiffeners are pointing 

upward [Equation (A-2) and (A-3)]. 
 
Stiffener centroidal moments of inertia:  is1=x19,   is2=x20,   is3=x21,   is4=x22,   is5=x23 
 
Here 5si  is the average value of the centroidal moments of inertia of stiffeners at the bilge 
corner. 
 
In addition, we also specify the number of stiffeners in each region as n1, n2, n3, n4 and n5 
respectively on deck, tanktop, inner bottom, one side shell and one bilge corner 
respectively.  In the present formulation 231i −= , altogether 23 basic variables defining 
the midship section modulus. 
 
Midship Cross-Sectional Area, A 
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First Moment of Area about X-X 
 
The X-X axis passes through the centre of deck plating (Figure A1) 
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Moment of Inertia about X-X Axis, Ix 
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Location of the Neutral Axis, NA 
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Moment of Inertia about the Neutral Axis, INA 
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Midship Section Modulus, Z 
 
There are two values of Z corresponding to yd and yk; but in practice deck-side section 
modulus is usually smaller of the two.  Hence we choose 
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where A, Vx and Ix are all defined in terms of the basic variables. 
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APPENDIX B 
 

Partial Derivatives of Z With Respect to Basic Variables, xi 
 

Differentiating Equations (A-9) partially with respect to any basic variable, xi we obtain: 
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and the prime indicates partial differentiation with respect to a basic variable, xi. 
 
Therefore, in addition to the three geometric properties A, Vx, Ix all we need are their partial 
derivatives with respect to any basic variable, xi to calculate Zi.  These derivatives are 
listed below. 
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Similarly, 
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APPENDIX C 
 

Probabilistic Models for Corrosion Loss 
 
For time-dependent reliability assessment of ship structures it is essential to have 
mathematical models which provide mean and standard deviation of corrosion losses as 
function of exposure time. 
 
Work on corrosion loss prediction may be broadly classified into two groups: 
 
(1) Empirical model – based on past data or measurements of corrosion wastage. 
(2) Phenomenological model – derived with some physical basis of the corrosion 

mechanisms involved. 
 
Some early empirical models include Southwell and Alexander (1970) and Reinhart and 
Jenkins (1972).  But the most recent work which is highly relevant to this study is due to 
Paik, et al. (2004) and is adopted here. 
 
Early phenomenological models include Evans (1966), Cernov and Ponomarenko (1991), 
among others. Most recently Melchers (2003a and 2003b) suggested a more refined 
model to take into account all probable corrosion phases – kinetic, diffusion, and two 
anaerobic corrosion processes. In this paper Melchers also discussed all known factors 
that affect corrosion behaviour but in the end retained the effect of seawater temperature 
as the most predominant factor. This model is more complicated and include nonlinear 
nature of corrosion loss versus exposure time in phases 2 and 3. 
 
Empirical Corrosion Wastage Model 
 
Paik et al., 2004 proposed a model based on extensive measurements of seawater ballast 
tanks of large oil tankers and bulk carriers.  In this model it was assumed that corrosion 
begins after the break-down of protective coating.  According to this source a 5-year 
coating life is considered to represent undesirable situation, that is, poor handling and 
maintenance.  More realistic coating life may be around 10 years.  But accurate estimate 
of coating life is not considered here; the main issue is the period of exposure, T years 
following the coating breakdown. 
 
After analysing data collected from nearly 2000 locations the final recommendations are as 
follows: 
 
The average or most probable values are: 
 

Coating Life, Tc 
(yr) 

Mean Thickness Loss 
(mm/yr) 

Standard Deviation 
(mm/yr) 

5 0.0466 0.0378 
7.5 0.0579 0.0479 
10 0.0823 0.0758 

 
The upper bound representing 95% band the possible severe corrosion values are: 
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Coating Life, Tc 

(yr) 
Thickness Loss 

(mm/yr) 
Standard Deviation 

(mm/yr) 
5 0.1469 0.0314 

7.5 0.1938 0.0426 
10 0.2894 0.0644 

A few observations about this empirical model. 
 
(1) In this model the corrosion loss was mostly measured by the technique of ultrasonic 

thickness measurements. This implies that the measurements were made at 
several points within a single plating and the average corrosion loss is recorded. 

 
(2) The measured data permitted a linear model implying that the annualised corrosion 

rate is constant and not a function of exposure period as is the case for the other 
model. 

 
(3) It is observed that the average corrosion rate approximately follows Weibull 

distribution. 
 
(4) Some classification societies nowadays specify the Nominal Design Corrosion 

Values (NDCV).  For example, ABS (2000) suggests that the nominal design 
corrosion margin for coated seawater ballast tank plates needs to be in the range of 
1.0-1.5mm for a 20-25 year service life, with routine coating maintenance assumed.  
This corresponds to the most probable value proposed here. But for severe 
corrosion cases, NDCV may need to be in the range of 3.5-4.5mm as reflected in 
the values given above for this condition. 

 
Phenomenological Corrosion Wastage Model 
 
Melcher’s model is proposed for general corrosion of mild and low alloy steels under fully 
aerated at-sea immersion conditions as measured by weight loss.  The work reported 
herein is based entirely on corrosion weight losses reported for coupons and may not be 
true indication of corrosion in ship structures. Moreover, the numerical coefficients are 
derived on the basis of a limited number of observations over a short time period. As such, 
this model is not appropriate in the present context. 
 
However, there are not many published data on the true phenomenological corrosion 
models which are readily usable.  Therefore, this model will be used with some 
modifications as shown below. 
 
The notion of coating protection period will be maintained and use the data from this model 
for the entire design life of the vessel.  This is not unreasonable because within a short (3-
4 year) period the corrosion loss stabilises to a uniform rate under anaerobic condition. 
 
The corrosion loss-exposure time model proposed is shown in the figure below. 
 
The model is defined by six parameters: three slopes ro, ra and rs; period of transition from 
aerobic to anaerobic phase and two loss measurements ca and cs.  These six parameters 
are sufficient to uniquely define the curve, but additional equations had to be derived to 
calculate the corrosion loss at any exposure period. 
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In this model phases are:  1-kinetic, 2-oxygen diffusion, 3-initial SRB (sulphate reducing 
bacteria) and 4-final and steady state SRB controlled phase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C1:  Phenomenological corrosion model (Melchers 2003a) 
 
By analysing the limited amount of available data and some field measurements Melchers 
gave the following expressions to determine the six parameters: 
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where T=seawater temperature, °C. 
 
But as mentioned above these equations are not sufficient to calculate the mean (total) 
corrosion loss, c(t) mm, at any exposure period t, year.  The present author has developed 
the additional equations on the assumption that second order polynomials may be used to 
represent nonlinear phases 2 and 3. 
 
Summary of Calculations 
 
After calculating the six parameters for any given seawater temperature, T°C the mean 
corrosion losses may be calculated from the following equations. 
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Here the subscripts on c(t) indicate the corrosion phase. In the above equations the 
expressions for the intermediate quantities in terms of six parameters are: 
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The standard deviation as a function of time is given by: 
 

 ( ) ( )
a

c t
tT0003.0006.0t +=σ  (C-4) 

 
In all these equations, t = net exposure period in year after coating breakdown. 
 
It should be noted that in the main text ‘T’ is used to represent exposure time in years not 
‘t’ as is used here. 
 
The main difference of this model with the empirical model is that in phases 2 and 3 the 
corrosion rates (mm/yr) are not constant.  Moreover, the phenomenological model 
suggests much larger rates in phase 1 and at the beginning of phase 3; onset of anaerobic 
phase.  But the rate is stabilised to a constant rate after phase 3 and continues indefinitely. 
 
It is interesting to make some comparison of the two models.  Assuming the seawater 
temperature to be 15°C, the coating life 5 years and the ship design life 25 years: 
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 Empirical Phenomenological 
The mean corrosion loss 
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1.35 mm 

 
The standard deviation 
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0.12 mm 

 
It appears that the phenomenological loss prediction is about 50% more than the most 
probable value of the empirical model.  On the other hand, the standard deviations are 
much higher in the empirical model. 
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APPENDIX D 
 

Geometric Properties of an Inverted Angle 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D1: An inverted angle stiffener section (Ivanov 2001a) 
 
This section is defined by six basic variables; h, b, tw, tf, R1 and R2.  The following 
geometric properties are based on Ivanov (2001a). 
 
Cross-Section, as 
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Static Moment about X-axis, Sx 
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Hence, 
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Static Moment about Y-axis, SY 
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Hence, 

 
s

Y
c a

Sx =   (D-5) 

 
Moment of Inertia about X-axis, Ix 
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Hence, the centroidal moment of inertia 
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Moment of Inertia about Y-axis, IY 
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Hence, the centroidal moment of inertia 
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Product Moment of Inertia, IXY 
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Hence, the centroidal product moment of inertia 
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Centroidal Moment of Inertia about a Horizontal Axis 
 
For deck, inner bottom and outer bottom where the stiffener webs are vertically orientated, 

1xs ii = .  Similarly for the side shells where the stiffener webs are horizontally oriented, 

1ys ii = .  But in the bilge corners the stiffener webs are neither vertical nor horizontal and 
the general expression for the centroidal moment of inertia about Cs-axis (see Figure D1) 
may be given as 
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and 1j =  indicate the bilge stiffener closest to tank top. 
 
Mean and Variance of xc, yc, and is 
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Mean of xc : ( ) )5D.(Eqn:xxx cc −=  (D-16) 
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and the prime indicate partial differentiation with respect to 61j:x j −= . 
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Derivatives with respect to the basic variables 
 
There are six cross-sectional properties, as, SX, SY, IX, IY and IXY expressed as functions of 
six basic variables: h=x1, b=x2, tw=x3, tf=x4, R1=x5 and R2=x6.  Therefore, 6×6=36 partial 
derivatives are required to evaluate the mean and variance of as, is, xc and yc. 
 
These derivatives are listed below. 
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Derivatives of SX 
 

 ( ){ } ( )2
1

2
2fww

x'
1,x RR

4
1ttbht

h
SS −⎟

⎠
⎞

⎜
⎝
⎛ π
−+−+=

∂
∂

=  (2,1) 

 

 ( ) f
f

ff
x'

2,x t
2
thtth2

2
1

b
SS ⎟

⎠

⎞
⎜
⎝

⎛ −=−=
∂
∂

=  (2,2) 

 

 ( ){ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ −−=−−=
∂
∂

= f
f

2

ff
2

w

x'
3,x t

2
th

2
htth2h

2
1

t
SS  (2,3) 

 

eg. ( )( ) ( )2
1

2
2fw

f

x'
4,x RR

4
1thtb

t
SS −⎟

⎠
⎞

⎜
⎝
⎛ π
−−−−=

∂
∂

=  (2,4) 

 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π

−+−⎟
⎠
⎞

⎜
⎝
⎛ π
−−=

∂
∂

= 2
11f

1

x'
5,x R

46
53Rth

4
12

R
SS  (2,5) 

 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π

−−−⎟
⎠
⎞

⎜
⎝
⎛ π
−=

∂
∂

= 2
22f

2

x'
6,x R

46
53Rth

4
12

R
SS  (2,6) 

 



 33

Derivatives of SY 
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Derivatives of IX 
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Derivatives of IY 
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Derivatives of IXY 
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APPENDIX E 
 

Time Dependent Mean and Variance of Stiffener Basic Variables 
 

Ivanov (2001a) has discussed the complexity of shape of a shrunk cross section of a 
profile. 
 
However, based on the assumption of uniform corrosion it is possible to write the basic 
variables as a function of time T and corrosion wear δ.  Maintaining continuity at the 
boundary edges these expressions are: 
 

  

( )

)0(R)T(R

and
2
1)0(R)T(R

)0(t)T(t
)0(t)T(t

2
1)0(b)T(b

2
1)0(h)T(h

22

T,V11

T,Vff

T,Www

T,WT,V

T,V

=

δ−=

δ−=

δ−=

δ+δ−=

δ−=

 (E-1) 

 
where T is the exposure period and δV,T and δW,T are the total corrosion loss over T years, 
along vertical and horizontal direction respectively. 
 
Using Equation (E-1) the mean and variance of the stiffener basic variables are: 
 
Means: 

  

( )

)0(R)T(R

and
2
1)0(R)T(R

)0(t)T(t

)0(t)T(t
2
1)0(b)T(b

2
1)0(h)T(h

22

T,V11

T,Vff

T,Www

T,WT,V

T,V

=

δ−=

δ−=

δ−=

δ+δ−=

δ−=

 (E-2) 

 
where a bar implies the mean value of the basic variables. 
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Variances: 

  

( )

)0()T(

and
4
1)0()T(

)0()T(

)0()T(
4
1)0()T(

4
1)0()T(

2
2R

2
2R

2
T,V

2
1R

2
1R

2
T,V

2
tf

2
tf

2
T,W

2
tw

2
tw

2
T,W

2
T,V

2
b

2
b

2
T,V

2
h

2
h

σ=σ

σ+σ=σ

σ+σ=σ

σ+σ=σ

σ+σ+σ=σ

σ⋅+σ=σ

 (E-3) 

 
As usual, a,wT,Wa,wT,Wa,vT,Va,VT,V σTσandδTδ,σTσ,δTδ ==== . 
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APPENDIX F 
 

Sample Calculations 
 

The following calculations are based on an idealised midship section described below. 
 
Scantling Data (Mean Values) 
 
(a) Midship section geometric variables: 
  m20B = , m10D = , m1h =  
 
(b) Shell plate thicknesses: 
  mm16ttttt 54321 =====  
 
(c) Inverted angle stiffeners: 
  cm20h = , cm8b = , mm15tw =  
  mm15t f = , mm15R1 = , mm18R2 =  
 All 5 sets of stiffeners are assumed to be of same scantlings given above. 
 
(d) Number of stiffeners: 
  9n1 = , 9n2 = , 8n3 = , 4n4 = , 2n5 =  
 Notice that the subscripts indicate the regions:  1, 2, 3, 4 and 5 for deck, tank-top, 

outer bottom, side shell and the bilge corner respectively.  4n , 5n  are for one side 
only. 

 
(e) In the following calculations, 3 girders were also assumed to be placed in between 

the tank-top and outer bottom.  No new scantling variable was introduced by 
assuming all three girders are of symmetric I-shape with overall depth = h (double-
bottom height) and web thickness = 3t  (thickness of outer bottom).  Also flange 
width = hc1  and flange thickness = 32tc ;  where 0.40c1 =  and 1.5c2 =  are the 
adjustable inputs.  These girders are not shown in Figure A1. 

 
Scantling Standard Deviations 
 
Geometric variables : m1.0B =σ , m05.0D =σ , m005.0h =σ  
 
Shell plates : mm40.0t =σ  for all. 
 
Stiffener scantlings : cm1.0h =σ , cm05.0b =σ , mm40.0

wt =σ , 

   mm20.0
ft =σ , 0.0

21 RR =σ=σ  
 
Corrosion Data for Loss of Thickness 
 
Three alternative sources were considered.  Ivanov’s arbitrary values, Paik’s ‘severe’ 
values with intermediate coating life I 5.7Tc =  years) and Melchers’ phenomenological 
data.  These data are given in Table F1. 
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TABLE F1 
 

Corrosion model Corrosion wear 
mm/year 

Standard deviation 
mm/year 

Paik et al. 
‘severe’ 

1938.0a,v =δ  0.0426 

Ivanov 
10.0
10.0

a,w

a,v

=δ

=δ
 

04.0
04.0

a,w

a,v

=σ

=σ
 

Melchers* 

5T =  : 0954.0a,v =δ  
10T =  : 0767.0a,v =δ  
15T =  : 0747.0a,v =δ  
20T =  : 06735.0a,v =δ  

006.0a,v =σ  

 
* In this model the total corrosion losses were found for T = 5, 10, 15 and 

20 years using the appropriate equations given in Appendix C.  The 
equivalent average annual value is then taken as inputs shown above. 

 
 

TABLE F2 
Mean values and standard deviations of the midship section modulus, Z 

 
Years of 

exposure, T Parameters Paik et al. 
‘severe’ Ivanov Melchers 

Mean of Z 4.1712 m3 4.1712 m3 4.1712 m3 

T = 0 
zσ  0.0798 m3 0.0798 m3 0.0798 m3 

Mean of Z 3.9169 m3 4.040 m3 4.0460 m3 
T = 5 

zσ  0.0884 m3 0.0876 m3 0.0796 m3 
Mean of Z 3.6625 m3 3.9087 m3 3.9699 m3 

T = 10 
zσ  0.1113 m3 0.1084 m3 0.0800 m3 

Mean of Z 3.4083 m3 3.7775 m3 3.8937 m3 
T = 15 

zσ  0.1417 m3 0.1362 m3 0.0808 m3 
Mean of Z 3.1541 m3 3.6463 m3 3.8176 m3 

T = 20 
zσ  0.1758 m3 0.1677 m3 0.0819 m3 

 
 
Comment:  The section modulus and most other section properties are near-perfect linear 
functions of T in any corrosion model where the annual average wear is constant, as in the 
cases of Ivanov and Paik.  In the case of Melchers, Z tends to be linear after T ≈ 10 years.  
However, the standard deviation, zσ  is always non-linear with respect to T. 
 
Estimation of Probabilities of Reduction in Z 
 
The objective here is to predict the probability of Z falling below a specified percentage at 
any given period of exposure, T.  For example, after 10 years of exposure what is the 
probability that Z will fall, say, below 95% of its original value? 
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The relevant equation is: 
 

 
( )

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ

μ−
−

σπσμΦ
= 2

z

2
z

zzz
z

2
zexp

2
1)Z(f  (4-6) 

 

Noting that in Table F2 the minimum value of 18Z

zz

z ≅
σ

=
σ
μ  (for T = 20 in Paik’s model), 

which corresponds to ( ) 0.1Zz =μΦ .  Hence Eqn (4-6) in this situation reduces to 
truncated normal distribution: 
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ

μ−
−

σπ
= 2

z

2
z

z
z

2
)Z(exp

2
1)Z(f  (E-1) 

 
Now we non-dimensionalise Z as follows: 
 

 
)0(Z
)T(Zz =    and   

)0(Z
)T(Z

z
σ

=σ  (E-2) 

 
Then introduce the following well-known linear transformation: 
 

 
z

k zzy
σ
−

=    (E-2) 

 
where z,z σ  = non-dimensionalised mean and standard deviation at any T 
 kz  = specified fraction of Z. 
 
Finally 
 
 { } )y(zzPr k Φ=≤  (E-2) 
 
where )y(Φ  =standard normal distribution tabulated extensively for positive values of y. 
 
If y is negative, )y(1)y( Φ−=−Φ . 
 
A Sample Calculation 
 
Take T = 10 yr in Ivanov’s model.  It is required to estimate the probability of Z falling to 
95% or below of its original value.  Note that here 95.0zk = . 
 

From Table F2 : 937.0
1712.4
9087.3

)0(Z
)10(Zz ===   and 

   026.0
1712.4
1084.0

z ==σ  
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Then standardised normal variable, 
z

k zzy
σ
−

=  

     500.0
026.0

937.095.0
=

−
=  

 
Hence { } 6915.0)50.0(95.0zPr =Φ=≤ . 
 
Therefore, after 10 years of coating breakdown the probability of the section modulus, Z 
falling below 95% of its original value is 69.15%.  Repeating the calculation based on 
Paik’s ‘severe’ corrosion model, this probability shoots from 69.15% to 99.65%;  almost a 
certainty. 
 
Probability estimates based on all three models are briefly summarised below. 
 

TABLE F3 
Probability of midship section modulus falling 

below a certain percentage of the original value 
 

z(T) ≤ 95% z(T) ≤ 90% z(T) ≤ 85% Exposure 
period, T Paik Ivanov Melchers Paik Ivanov Melchers Paik Ivanov Melchers

5 0.5080 0.1894 0.1475 0.0330 0.0060 0.0 0.0 0.0 0.0 

10 0.9965 0.6915 0.4640 0.7950 0.0778 0.004 0.147 0.0 0.0 

15 1.0 0.9131 0.8325 0.9927 0.4320 0.042 0.834 0.045 0.0 

20 1.0 0.9706 0.962 0.9997 0.7400 0.219 0.987 0.277 0.005 

 
 
The results given in Table F3 above are also presented graphically in Figures F1-F3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F1:  Paik et al. severe corrosion model 
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Figure F2:  Ivanov’s empirical corrosion model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F3:  Melchers’ phenomenological corrosion model 
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An Alternative Way of Interpreting Probability 
 
It is agreed that the probabilities may be qualitatively described as follows. 
 
 Less than 5% = ‘unlikely’ 
 50% or more = ‘may be’ 
 66% or more = ‘likely’ 
 90% or more = ‘most likely’ 
 About 100% = ‘certainly’ 
 
Then the probabilities in Table F3 will transform into Table F4. 
 

TABLE F4 
Qualitative probability of reduction of midship section modulus 

 
z(T) ≤ 95% z(T) ≤ 90% z(T) ≤ 85% Exposure 

period, T Paik Ivanov Melchers Paik Ivanov Melchers Paik Ivanov Melchers

5 maybe unlikely unlikely unlikely unlikely unlikely unlikely unlikely unlikely 

10 certainly likely “ likely “ “ “ “ “ 

15 “ most 
likely likely certainly “ “ likely “ “ 

20 “ “ most 
likely “ likely “ most 

likely “ “ 

 
Note: Using Melchers’ corrosion model it is ‘unlikely’ that the section modulus will fall 

below 90% at T = 20 years.  Similarly, it is ‘unlikely’ that the section modulus will 
drop below 85% at T = 20 using the Ivanov model. 

 


