
l0 Sparse signal processing and model selection with
applications

Author:
Seneviratne, Seneviratne

Publication Date:
2012

DOI:
https://doi.org/10.26190/unsworks/15967

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/52431 in https://
unsworks.unsw.edu.au on 2024-05-01

http://dx.doi.org/https://doi.org/10.26190/unsworks/15967
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/52431
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au










I lovingly dedicate this thesis to my husband Indika, my parents,

sister and brother, for their endless love, support and

encouragement.



Acknowledgements

It is impossible to overstate my gratitude to my supervisor Profes-

sor Victor Solo. I have been extremely fortunate to receive guidance

from such an experienced, knowledgable and inspirational individual

who has supported me throughout my thesis with patience and un-

derstanding.

I am eternally indebted to my loving husband, Indika, who helped me

to be positive through many difficult times. I appreciate the sacri-

fices he made for me and my studies during our lives in two different

countries.

I am sincerely grateful to my parents, sister and brother who always

believed in me even when I did not. Their kind loving words never

failed to lift my spirits.

Next I would like to thank my dear friends Ms. Mitra Bahadorian and

Dr. Borislav Savkovic, who has been my friends since the commence-

ment of my Ph.D. studies. I am so privileged to have such generous,

selfless, caring friends and I do not know how I would have made

through these years without them.

I would also like to extend my gratitude to all the other friends that

I made since I came to study at UNSW. I am fortunate to have such

caring friends and I will always reflect back fondly at the times we

had together.

This thesis was partly funded by the International Telecommunication

Union (ITU) and the Australian Research Council (ARC). Finally I

thank the School of Computer Science and Engineering for providing

me with access to a computer cluster to do my simulations.



Abstract

Sparse signal processing has far-reaching applications including com-

pressed sensing, media compression/denoising/deblurring, microarray

analysis and medical imaging. The main reason for its popularity is

that many signals have a sparse representation given that the basis is

suitably selected. However the difficulty lies in developing an efficient

method of recovering such a representation.

To this aim, two efficient sparse signal recovery algorithms are de-

veloped in the first part of this thesis. The first method is based on

direct minimization of the l0 norm via cyclic descent, which is called

the L0LS-CD (l0 penalized least squares via cyclic descent) algorithm.

The other method minimizes smooth approximations of sparsity mea-

sures including those of the l0 norm via the majorization minimization

(MM) technique, which is called the QC (quadratic concave) algo-

rithm.

The L0LS-CD algorithm is developed further by extending it to its

multivariate (V-L0LS-CD (vector L0LS-CD)) and group (gL0LS-CD

(group L0LS-CD)) regression variants. Computational speed-ups to

the basic cyclic descent algorithm are discussed and a greedy version

of L0LS-CD is developed. Stability of these algorithms is analyzed

and the impact of the penalty parameter and proper initialization on

the algorithm performance are highlighted. A suitable method for

performance comparison of sparse approximating algorithms in the

presence of noise is established. Simulations compare L0LS-CD and

V-L0LS-CD with a range of alternatives on under-determined as well

as over-determined systems.



The QC algorithm is applicable to a class of penalties that are nei-

ther convex nor concave but have what we call the quadratic concave

property. Convergence proofs of this algorithm are presented and it

is compared with the Newton algorithm, concave convex (CC) proce-

dure, as well as with the class of proximity algorithms. Simulations

focus on the smooth approximations of the l0 norm and compare them

with other l0 denoising algorithms.

Next, two applications of sparse modeling are considered. In the first

application the L0LS-CD algorithm is extended to recover a sparse

transfer function in the presence of coloured noise. The second uses

gL0LS-CD to recover the topology of a sparsely connected network of

dynamic systems. Both applications use Laguerre basis functions for

model expansion.

The role of model selection in sparse signal processing is widely ne-

glected in literature. The tuning/penalty parameter of a sparse ap-

proximating problem should be selected using a model selection cri-

terion which minimizes a desired discrepancy measure. Compared to

the commonly used model selection methods, the SURE (Stein’s unbi-

ased risk estimator) estimator stands out as one which does not suffer

from the limitations of other methods. Most model selection crite-

rion are developed based on signal or prediction mean squared error.

The last section of this thesis develops an SURE criterion instead for

parameter mean square error and applies this result to l1 penalized

least squares problem with grouped variables. Simulations based on

topology identification of a sparse network are presented to illustrate

and compare with alternative model selection criteria.
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Chapter 1

Introduction

Sparse signal approximation aims at using a minimum number of elementary sig-

nals from a dictionary to find a good approximation of a signal of interest. Sparse

regression is widely used in many engineering, statistics, and applied mathemat-

ics applications. Section 1.1 discusses some applications which motivated the

development of sparse signal processing. Then sections 1.2 to 1.5 defines spar-

sity, discusses measures of sparsity and presents an overview of commonly used

algorithms for sparse modeling.

Recently, multivariate and group regression variants of sparse signal estima-

tion problems have gained a lot of interest. Sections 1.6 and 1.7 gives an intro-

duction to them and presents the motivation for their development.

Any regularization method requires the selection of a regularization penalty

parameter. Many model selection criteria have been developed to select these

parameters by comparing competing models using various discrepancy measures.

Section 1.8 gives an overview of the commonly used model selection criteria along

with the advantages and disadvantages of each method. Finally section 1.9 gives

and outline of this thesis and section 1.10 gives the list of its contributions.

1.1 Sparse Modeling

The Nyquist-Shannon sampling theorem states that a bandlimited analog signal

can be exactly represented from its samples if it is sampled uniformly at a rate
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at least twice as fast as the signal’s highest frequency. This theory has enabled

analog signals to be processed using digital signal processing tools. However in

many applications sampling at the Nyquist rate results in a high volume of data,

which makes it difficult to process, transmit or store signals. This generates the

need for a more efficient method of signal representation.

It has been found that many media (images [142, 276], audio [185], video [272])

signals can be approximated by a sparse representation with respect to suitably

selected bases. Widely used media encoding standards such as JPEG [184] and

JPEG-2000 [232] exploit this fact to compress images. Both standards represent

the images using a new coordinate system (base) which results in sparse coordi-

nates which are then processed to encode the image. JPEG relies on the discrete

cosine transform (DCT) [229] while JPEG-2000 relies on the discrete wavelet

transform (DWT) [134]. Other image processing problems such as image denois-

ing [41, 59] and image deblurring [46, 60] also relies on sparse representations of

images.

In applications such as medical imaging [129, 139] and radar imaging [186, 13]

signal acquisition can be dangerous, expensive or difficult. This has motivated

compressed sensing [47, 27] which uses fewer measurements than what is de-

manded by traditional sampling theory. Provided that the signal is compressible,

i.e. it has a sparse representation with respect to a known base, compressed sens-

ing provides a way to recover the signal using few linear functionals. Although

compressed sensing enables the recovering of signals using fewer measurements,

it comes at a price. When traditional sampling theory is used, signals can be

recovered by applying simple linear reconstruction formulas. However, the task

of recovering a signal from reduced measurements require nonlinear, relatively

expensive reconstruction techniques.

The concept of sparse signal approximation is widely used in many more appli-

cations such as oceanic engineering [132], antennas and propagation [1], machine

learning [94], support vector machines [17], blind source separation [133, 81],

modeling of natural languages [84, 210], face recognition [262], microarrays [182]

etc.

The task of finding a sparse model of a signal can be cast as a problem of

finding the sparse solution of a system of linear equations. Consider the following

2



1.1. Sparse Modeling

linear regression model,

yn×1 = sn×1 + ε = Xn×pβp×1 + ε =

p∑
j=1

x(j)βj + ε. (1.1)

In applications such as media compression, y is the media signal being compressed

and in applications such as signal denoising and medical imaging, y is the noisy

data or measurement vector. s is the noise free signal and X is the regression

matrix, dictionary or base with respect to which we seek a sparse approximation

of s. Throughout this thesis references have to be made to both rows and columns

of matrices such as X. So the following compact notation is used,

X = [xrc] = [x(1), . . . , x(d)] =

⎡
⎢⎢⎣

xT
[1]
...

xT
[p]

⎤
⎥⎥⎦ .

The columns of X are often referred to as predictors or atoms. In many cases

it is assumed that X is column scaled, so that ‖x(j)‖ = 1; it is well known that

this improves the numerical conditioning of the X matrix [14]. β is the vector of

regression coefficients or parameters. ε is the noise which corrupted the original

signal s. In a sparse approximation problem y and X are known and the objective

is to estimate β or to recover the noise free signal s. The parameter estimate is

denoted as β̂ and the signal estimate is denoted as ŝ = Xβ̂.

The term sparse representation is often used in noise free systems and when

y = ŝ and the term sparse approximation is used in noisy systems thus y � ŝ.

Two error terms can be defined for the latter; signal estimation error (s− ŝ) and

residual (y − ŝ). Signal estimation error cannot be directly calculated since s is

unknown.

Since in practice almost all problems are noise affected this thesis is focussed

on sparse approximation of noisy signals.
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1.2 Dictionaries

The properties of the dictionary vary greatly depending on the application. In

regression problems the number of samples (n) is greater than the number of pre-

dictors (p), thus the resulting systems are over-determined. In inverse problems

however the dictionaries are over-complete, thus the number of samples is less

than the number of predictors, and the resulting systems are under-determined.

Using a dictionary which comprises of the minimum number of basis vectors

is usually only adequate to sparsely represent a small class of signals. Thus over-

complete dictionaries are formed using a carefully chosen set of redundant basis

vectors such that one general dictionary can represent a larger class of signals.

Popular over-complete dictionaries are steerable wavelets, segmented wavelets,

Gabor dictionaries, multiscale Gabor dictionaries, curvelets, contourlet, wedgelet,

bandlet etc. [59, 36].

The choice of the dictionary that sparsifies the signals is crucial for the success

of sparse representation [194]. In general, the choice of a proper dictionary can be

done either by building a dictionary based on a mathematical model of the data

or by selecting a dictionary from a set of candidates using dictionary learning

techniques [141, 239, 173].

[172] provided a key contribution to the area of dictionary learning by training

a dictionary for sparse representation of small image patches collected from a

number of natural images. This inspired a series of subsequent works which

were mostly focused on statistical training methods. These methods were either

based on Maximum Likelihood estimation [130] or Maximum A-Posterior (MAP)

estimation [124].

Popular dictionary learning techniques are MOD (method of optimal direc-

tions) [65, 66], union of orthobases [128], generalized PCA (principal component

analysis) [258] and the K-SVD algorithm [3, 59]. Theoretical guarantees of the

uniqueness of over-complete dictionaries are given in [2]. Uniqueness depends on

the quantity and nature of the data set and the sparsity of the desired represen-

tation.

Although over-complete dictionaries have the advantage of being able to rep-

resent a wide variety of signals, the solution to an under-determined system of
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equations is not unique. So additional constraints are needed to recover the best

suited representation of the signal s. As mentioned above many applications

require a sparse representation of s.

1.3 Goals of Sparse Modeling

Definition I: Sparsity - A vector or a matrix is called sparse when most of its

coefficients are zero.

Thus finding a sparse representation of s with respect to X is equivalent to

representing s as a linear combination of few columns of X i.e. β̂ has few non-

zero coefficients. Given y and X the goals of a sparse modeling problem can be

formally presented as follows,

1. Sparsity - The solution (β̂) to equation (1.1) should have fewer non-zero

coefficients than the min(n, p), where n is the length of y and p is the

number of predictors.

2. Reconstruction Error

• Signal Reconstruction Error- Linear combination of the selected

atoms should provide the best approximation of the signal s.

• Parameter Reconstruction Error- Estimate of the coefficient vec-

tor (β̂) should resemble the original coefficient vector (β) as closely as

possible.

These two objectives may contradict each other. Signal reconstruction error

can generally be reduced when more atoms are used for the approximation but

this reduces the sparsity of the solution. Thus some tradeoff has to be made, and

it is usually determined by the regularization tuning parameter.

1.4 Measures of Sparsity

Although the qualitative definition of sparsity seem simple and straightforward,

a universally accepted quantitative measurement of this concept does not exist.
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A sparse measure (diversity measure) is a mapping of a vector or a matrix to a

real number such that its value decreases as the sparsity increase i.e. number of

non-zero coefficients decrease. Many measures of sparsity have been used in the

literature and there is a debate on the properties that they should have. Consider

a sparse vector β of length p with elements βj, j = 1, · · · , p. Fourteen commonly

used measures of sparsity are listed below,

l0 : ‖β‖0=�{j, βj �= 0}=
∑

I(βj �= 0), (1.2a)

lγ0 : ‖β‖0,γ = �{j, |βj| > γ}, (1.2b)

lq : ‖β‖q =
(∑

|βj|q
)1/q

, 0 < q < 1 (1.2c)

l1 : ‖β‖1 =
∑

|βj|, (1.2d)

THγ,b
0 :

∑
tanh

( |βj|b
γ

)
, γ > 0, b > 0, (l0 approximation) (1.2e)

Gγ
0 :

∑(
1− e−β2

j /2γ
2
)
, (l0 approximation) (1.2f)

sqrtγ1 :
∑√

β2
j + γ2 − γ, (l1 approximation) (1.2g)

LCγ
1 : γ

∑
ln cosh

(
βj

γ

)
, (l1 approximation) (1.2h)

log :
∑

log (|βj|+ γ)− log (γ) , (1.2i)

Kurtosis : κ4 =

∑
β4
j(∑

β2
j

)2 (1.2j)

Gini : 1− 2
∑ β{j}

‖β‖1

(
p− j + 1

2

p

)
(1.2k)

HG :
∑

ln β2
j (Gaussian entropy) (1.2l)

HS :
∑

β̄j ln β̄j, where β̄j =
β2
j

‖β‖2 (Shannon entropy) (1.2m)

uθ : min
i=1,··· ,p−�pθ�+1

β{i+�pθ�−1} − β{i}
β{p} − β{1}

(1.2n)

s.t. �pθ� �= p (1.2o)

l0 simply counts the number of non-zero coefficients and I(·) is the indicator

function. Sparsity measures uθ and Gini are calculated after rearranging the
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data in the ascending order such that, β{1} ≤ β{2} ≤ · · · ≤ β{p}. The Gini

Index was originally proposed in economics as measure of the inequality of wealth

[136, 43, 85]. The kurtosis measures the peakedness of a distribution and uθ

measures the smallest range which contains a certain percentage of the data. All

except seven sparsity measures (l0, l1, HG, HS, κ4, uθ and Gini) depend on tuning

parameters.

THγ,b
0 and Gγ

0 are smoothed approximations of the l0 norm. To see this,

consider firstly THγ,b
0 with b=1 (this argument is valid as long as b > 0),

βj = 0 : tanh

( |βj|
γ

)
= 0,

βj �= 0 : lim
γ→0

tanh

( |βj|
γ

)
= lim

γ→0

1− e−
2|βj |

γ

1 + e−
2|βj |

γ

= 1.

Now consider Gγ
0 ,

βj = 0 : 1− e−β2
j /2γ

2

= 0,

βj �= 0 : lim
γ→0

1− e−β2
j /2γ

2

= 1.

Similarly sqrtγ1 and LCγ
1 are smoothed approximations of the l1 norm. First

consider sqrtγ1 ,

βj = 0 :
√
β2
j + γ2 − γ = 0,

βj �= 0 : lim
γ→0

√
β2
j + γ2 − γ = |βj|.

Now consider LCγ
1 ,

βj = 0 : γ
∑

ln cosh

(
βj

γ

)
= 0,

7



1.4. Measures of Sparsity

βj > 0 : lim
γ→0

γ ln cosh

(
βj

γ

)
= lim

γ→0
γ ln

⎛
⎝e

βj
γ + e−

βj
γ

2

⎞
⎠ ,

= lim
γ→0

γ ln

⎛
⎜⎜⎝
e

βj
γ

(
1 + e−

2βj
γ

)
2

⎞
⎟⎟⎠ = βj + lim

γ→0
γ

(
ln

(
1 + e−

2βj
γ

)
− 1

)
= βj

βj < 0 : lim
γ→0

γ ln cosh

(
−|βj|

γ

)
= lim

γ→0
γ ln

⎛
⎝e−

|βj |
γ + e

|βj |
γ

2

⎞
⎠ ,

= lim
γ→0

γ ln

⎛
⎜⎜⎝
e

|βj |
γ

(
1 + e−

2|βj |
γ

)
2

⎞
⎟⎟⎠= |βj|+ lim

γ→0
γ

(
ln

(
1 + e−

2|βj |
γ

)
−1

)
= |βj|

Properties of these sparsity measures are discussed in [114, 119, 191, 188].

In a financial setting [43] presents four properties that a measure of inequality

of wealth distribution should have. Since measuring the distribution of wealth

should have similar properties to measuring the energy distribution of coefficients,

these properties were adapted by the signal processing community [191, 114].

1. Robin Hood - (Daltons 1st Law) Robin Hood decreases sparsity. Steal-

ing from the rich and giving to the poor, decreases the inequity of wealth

distribution (assuming you do not make the rich poor and the poor rich).

2. Scaling - (Daltons modified 2nd Law) Sparsity is scale invariant. Mul-

tiplying wealth by a constant factor does not alter the effective wealth

distribution.

3. Rising Tide - (Daltons 3rd Law) Adding a constant decreases sparsity.

Give everyone a trillion dollars and the small differences in overall wealth

are then negligible.

4. Cloning - (Daltons 4th Law) Sparsity is invariant under cloning. If you

have a twin population with identical wealth distribution, the sparsity of

wealth in one population is the same for the combination of the two.
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Two additional favorable properties of a measure of sparsity have been introduced

in [191] and developed further in [114].

5. Bill Gates - Bill Gates increases sparsity. As one individual becomes

infinitely wealthy, the wealth distribution becomes as sparse as possible.

6. Babies - Babies increase sparsity. Adding individuals with zero wealth to

a population increases the sparseness of the distribution of wealth.

[114] and [191] have both recommended Gini index as it is the only measure that

satisfies all six criterion given above. [119] suggests that kurtosis should not be

used and recommend THγ,b
0 for measuring sparseness in noisy data.

Figure 1.1: Measures of sparsity as a function of component amplitude

The l0 measure is severely criticized in all three articles for the following

reasons,
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1. The magnitude of non-zero elements is ignored (violate properties 1 and 5

listed above).

(a) An infinitesimally small value is treated the same as a large value.

Thus the presence of noise makes the l0 measure completely inappro-

priate.

(b) A change in the value of a non-zero element does not change the value

of the l0 norm measure. When a coefficient changes slightly, a corre-

sponding change in the value of the sparsity measure is expected based

on the importance of the particular coefficient to the overall sparsity.

l0 does not show this property.

2. The derivative of the measure contains no information and majority of the

optimization methods fail when the l0 norm is used.

The first allegation is ill founded in the sparse regression setting. Generally

the importance of a coefficient is not measured by its value but rather by its

contribution to the signal approximation, i.e. to minimizing the mean squared

error ‖y−Xβ̂‖2 or residual. Furthermore when the l0 norm is used in combination

with the least squares criterion the first problem of the above list can be eliminated

because the least squares term will generate amplitude dependence. This will be

further investigated in section 1.5.

The second point is the major reason for the lack of popularity of the l0 norm.

Due to its discrete non-convex nature, finding a global minimum of a criterion

including an l0 term is NP hard [162, 44, 164]. Thus smooth functions such as

THγ,b
0 and Gγ

0 have been used with the aim of approximating the l0 norm.

Measures of sparsity as a function of component amplitude are given in figure

1.1. All the measures except for Shannon entropy minimize at zero. Shannon

entropy prefer components to be at a non-zero value less than 1. This quality

of the Shannon entropy to produce concentrated non sparse solutions has been

previously observed by [188]. Gaussian entropy does not have an upper or lower

bound. The log function (1.2i) is generally used as an approximation of l0. How-

ever it does not have an upper bound, thus it cannot be a true approximation of

the l0 norm. It is best viewed as a sparsity measure in its own right. lq with q
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close to zero closely approximates the l0 norm. However lq is non convex and as q

approaches zero the criterion has many local minimum. Thus it becomes difficult

to find the global minimum of such a function.

1.5 Sparse Modeling Algorithms

In a noise free system, a sparse solution to equation (1.1) can be obtained by

optimizing the following criterion,

min
β

f(β) s.t. y = Xβ. (1.3)

where f(β) is one of the sparsity measures given in section 1.4. In a noisy system

finding a sparse solution to the linear system of equations is not so straight-

forward. However an approximate solution can be achieved by incorporating

sparsity measures given in section 1.4 with the least squares criterion. Thus the

goals presented in section 1.3 can be achieved by optimizing one of the following

three criteria,

min
β

f(β) s.t. ‖y −Xβ‖2 ≤ ε, (1.4a)

min
β

‖y −Xβ‖2 s.t. f(β) ≤ k, (1.4b)

min
β

‖y −Xβ‖2 + h f(β), (1.4c)

where ε, k and h are tuning parameters. The least squares term ‖y − Xβ‖2
measures the residual and f(β) promotes sparsity. The relevant tuning parameter

determines the relative emphasis given to the two terms of the criterion. Methods

of tuning parameter selection will be discussed in section 1.8. Although the l0

norm by itself is insensitive to the values of the coefficients, amplitude dependance

is provided by the least squares term. Thus as stated in section 1.4 the criticism

of the l0 norm, given in [119, 191, 114] are irrelevant in the sparse regression

setting.

Criteria (1.4b) and (1.4c) are the most popular forms used in the literature.

(1.4a) and (1.4b) are constrained criteria and (1.4c) is a penalized criterion. In

11



1.5. Sparse Modeling Algorithms

other words (1.4c) is a qualitative dual of (1.4a) and (1.4b). If f(β) is convex then

we can establish a quantitative equivalence between the solutions of the different

forms of the criterion [24]. However when f(β) is non convex establishing a formal

quantitative duality is not straightforward and may not hold.

An overview of existing sparsity producing algorithms are presented next.

1.5.1 Exponential and Randomized Search Methods

For a general X matrix, when f(β) = l0, the only known method for finding

the global minimum of any of the above mentioned criteria (1.4a)-(1.4c) is via

exponential search methods such as exhaustive search, branch and bound [163]

etc. Exponential search methods have gained popularity in the area of feature

selection [95, 45], they have the advantage of having high accuracy but at the

cost of high complexity which increases exponentially with the number of predic-

tors. Thus these methods are impractical for large scale problems. The signal

processing community has developed some interest in these methods [234, 235]

but due to the computational burden they have failed to gain much popularity.

Random search methods such as simulated annealing [122, 26] and genetic al-

gorithms [106, 86, 87] attempt to find optimal solutions by searching in a random

fashion. They are designed to escape local minima and their complexity is gener-

ally low. The accuracy of these algorithms are high [255, 212] provided that the

control parameters are properly selected but the choice of such parameters is not

straightforward. Random search methods have been applied on isolated signal

processing applications [231] but they have not managed to gain much interest.

1.5.2 Greedy Methods

Greedy pursuits such as forward selection(FSEL), backward elimination (BELM)

[53, 57, 155], CLEAN [105, 201] and orthogonal matching pursuit (OMP) [240,

244, 246] are classical methods used to solve linear inverse problems. They it-

eratively refine the sparse solution by identifying one or more coefficients that

can be added, removed or refined to improve the estimation in the least squares

sense. Traditionally these algorithms are stopped with an ad-hoc stopping rule.
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The CLEAN algorithm [105, 201] is widely used in astronomy and it can be

traced back to 1930s [224, 233]. This same algorithm has been rediscovered by

the signal processing community and is referred to as matching pursuit (MP)

[145]. A modified CLEAN algorithm that can perform l1 denoising was presented

in [220].

OMP is closely related to the CLEAN algorithm. At each iteration the coef-

ficients are selected using the same principles as the CLEAN algorithm but the

estimate and the error signal (residual) are calculated in a different manner.

FSEL is also known as orthogonal least squares (OLS) [35]. Unlike CLEAN

and OMP, FSEL selects the coefficients that has the largest partial correlation

with the residual and like OMP, at each iteration, the estimate β is calculated

by orthogonally projecting y on to the predictors of the active set. An overview

of FSEL, CLEAN and OMP is given in appendix 2.A.

Instead of adding predictors to the active set, BELM starts by estimating β

using all the predictors and then removes ones that have the smallest contribution

to reconstruction error at each iteration.

Hybrid methods such as Efroymson’s algorithms [155] have been introduced

with the hope of capturing the benefits of both FSEL and BELM. Other vari-

ants include adding, removing or refining more than one predictor at a time and

weighting the predictors, giving larger weights to predictors which are more likely

to be part of the active set.

Stagewise orthogonal matching pursuit (StOMP) [52], and compressive sam-

pling matching pursuit (CoSaMP) [166] are improvements of the OMP algorithm.

In contrast to OMP, StOMP and CoSaMP allows many coefficients to enter the

model at each iteration. Furthermore StOMP terminates after a fixed number

of iterations. However as discussed in section 2.11.4 these algorithms can only

support a limited sparsity range.

1.5.3 Optimization Methods

These algorithms are based on optimizing a constrained (1.4b) or penalized (1.4c)

least squares formulation. The f(β) = l0 penalty is the most appropriate as it

is a direct measure of sparsity thus it promotes maximum sparsity. However as
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mentioned in section 1.4 the discrete, non-convex nature of the criterion poses the

greatest difficulty in finding its global minimum. Thus other measures of sparsity

have gained more popularity.

1.5.3.1 l1 Norm

One can approximate the l0 norm by a convex penalty, with the l1 norm (1.2d)

being the most common. Due to its convexity there is a direct relationship be-

tween the penalized and constrained versions of the criterion [24, 175, 267]. The

l1 norm is used by many algorithms such as [6, 236, 36, 56, 74, 278]. The most

famous of which are the least absolute shrinkage and selection operator (LASSO)

[236] and least angle regression (LARS) algorithm [56]. These have gained pop-

ularity because (1.4b) or (1.4c) with f(β) = l1 norm can be easily solved using

either a quadratic programming approach [236, 249, 267], homotopy approaches

[175], coordinate wise optimization [73] or gradient projection method [70]. A

variant of these methods is the non-negative garrotte [25] which starts with the

least squares estimate and then scales it by a vector obtained by solving an l1

constrained least squares criterion.

Many workers have researched the performance of sparse approximation with

the l1 norm. Initial studies on noiseless systems showed that under certain con-

ditions the solution to (1.3) with f(β) = l0 can also be obtained by using the l1

norm [50, 49]. Similarly [48] presents conditions for noisy systems where the so-

lution to (1.4a) with f(β) = l0 can be obtained by using the l1 convex relaxation.

[281, 267, 242] gives criteria under which l1 penalized or constrained least squares

solution selects the true model, i.e. the support set of the estimate is the same

as that of the original coefficient vector.

However [68] have shown that the l1 norm penalty produces biased estimates

since its derivative does not vanish for large values of the coefficients. Therefore

coefficients with large values are favored by the l1 norm penalty. Variations of the

l1 norm such as the clipped l1 penalty and smoothly clipped absolute deviation

(SCAD) are introduced to overcome this drawback [68, 8, 67]. Furthermore the

conditions under which the l1 norm perform well are somewhat limited and it

has been shown in many instances that its solutions are of low sparsity and
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therefore undesirable [76, 189, 190]. Simulation results given in section 2.11.5

further confirms this.

1.5.3.2 lq Norm

Incorporation of the lq norm into regression was first explored by [126, 72]. Bridge

regression involves optimizing (1.4c) with f(β) =
∑ |βj|q for q ≥ 0 [72]. This

encompasses ridge regression (q = 2), which was introduced by [104, 103], the l1

penalty, which was discussed above and the l0 penalty as special cases. Although

[72] pointed out that it is desirable to optimize with respect to q they did not

provide an algorithm to solve bridge regression for any value of q.

Ridge regression (q = 2) produces a solution to an ill-conditioned inverse

problem with reduced variance compared to that of an ordinary least squares

solution, however its solutions are non-sparse. [74] has presented an algorithm

for optimizing bridge regression for q ≥ 1 where the tuning parameter and q are

chosen using generalized cross-validation. It has been shown that the performance

can be improved by variably selecting q in the open range (∞, 1] rather than

keeping it fixed at q = 2 or q = 1.

In bridge regression sparsity of the estimate is promoted when 0 < q ≤ 1.

However the resulting optimization problem is no longer convex when q < 1.

The main interest of this penalty is that it is a quasi smooth approximation of

the l0 norm when q tends to zero. A simplex search algorithm was presented to

solve (1.3) with f(β) = lq norm in [126]. In a series of papers [91, 90, 188] focal

under-determined system solver (FOCUSS1) algorithm was developed which uses

a re-weighed norm minimization technique to apply the lq penalty on noiseless

systems. The regularized FOCUSS algorithm [187] extended this concept to noisy

systems. An algorithm based on majorization minimization technique for solving

(1.4c) with f(β) =
∑ |β|q, 0 < q < 1 is given in [150].

The performance of the lq norm on noiseless systems was studied in [31, 32, 71].

They have shown that in compressed sensing fewer measurements are needed to

reconstruct a sparse signal when the lq norm is used than would be expected with

the l1 norm. They have also derived the conditions under which the performance

1The p tuning parameter of FOCUSS is referred to as q in this thesis.
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1.5. Sparse Modeling Algorithms

of the lq norm can be guaranteed and these conditions are less restrictive than that

of the l1 norm. The performance of the lq norm on noisy systems was studied

in [108, 195]. [108] derived the conditions under which the lq norm penalized

least squares solution recovers the true model and [195] have shown that the lq

norm with q < 1 provides better theoretical guarantees in terms of stability and

robustness than the l1 norm.

1.5.3.3 Smoothed Approximations of l0 Norm

Alternatively the l0 norm can be approximated by a differentiable function. The

Gγ
0 function (1.2f) is used to approximate the l0 norm in [158, 159] where a gra-

dient based method is used to find the minimum. This idea is further developed

in [115, 117] which uses the same approximation but presents a better structured

algorithm to find the solution (IALZ). However all these algorithms handle noise

in an ad-hoc manner. [116] presents a vector version (JLZA) of [117], and the

derivation given there can support noise. The log penalty (1.2i) and THγ,b
0 func-

tion (1.2e) are other common smoothed approximations of the l0 norm, although,

as indicated in section 1.4, the log penalty is better regarded as a sparsity measure

in its own right. The log penalty is discussed in [269, 28] and the THγ,b
0 function

is used in [16].

1.5.3.4 Direct Iterative Minimization

The other approach is direct iterative minimization of (1.4b) or (1.4c) with f(β) =

l0. An iterative procedure based on alternating projections (AP) is presented

in [147] and it concentrates on solving the l0 constrained least squares criterion.

Landweber based iterative hard thresholding (IHT) algorithm have been proposed

in [100] and later developed by [20].

Two different IHT algorithms have been presented in [20]. One algorithm

minimizes the l0 penalized least squares criterion (pIHT) while the M-sparse-

IHT algorithm minimizes an l0 constrained least squares criterion (cIHT). pIHT

is presented as an algorithm to refine the solution found with methods such as

matching pursuit or basis pursuit denoising. The authors of [20] have dismissed

pIHT as being much inferior to the cIHT algorithm. Section 2.11.5 shows how
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they can be made comparable. The cIHT algorithm was further developed in [19]

and a method of increasing its speed is given in [18].

1.5.4 Bayesian Methods

In Bayesian terms, most of the algorithms based on sparsity measures discussed

above can be viewed as performing standard MAP estimation using a fixed,

sparsity-inducing prior. The sparse Bayesian learning algorithms [271, 238] use a

parameterized prior and learn the prior as opposed to MAP methods that use a

fixed prior. Bayesian methods are not used in this thesis and will not be discussed

any further.

1.6 Multivariate Regression

Multivariate sparse regression is also known as sparse representation of multiple

measurement vectors or as the joint sparse recovery problem. Multivariate over-

determined regression has a long history in statistics [202, 7] while the under-

determined case has had much less attention particularly in a sparse setting. The

sparse version has been motivated by applications such as neuromagnetic inverse

problems [89], direction-of-arrival estimation [116], channel equalization [69], and

array processing [118] where the multivariate regression problem naturally arises.

Although the computational burden of multivariate regression is higher than the

scaler version, it has been shown that the prediction accuracy of the estimates can

be greatly improved by simultaneously optimizing multiple measurement vectors.

A number of sparse scalar regression algorithms have been extended to the

multivariate case. Simultaneous orthogonal matching pursuit (SOMP) is pre-

sented in [245, 93]. Algorithms that minimize multivariate versions of the penal-

ized or constrained least squares criterion were also developed. [241] and [144]

presents algorithms based on the vector l1 norm and [40] presents that of the vec-

tor lq norm which is called the regularized M-FOCUSS algorithm. The vector l0

norm is approximated by a vector Gγ
0 function in [116] which develops the JLZA

algorithm. The ReMBo algorithm [157] converts the multivariate regression to a

scalar regression by randomly combining the measurement vectors. The perfor-
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mance of multivariate regression algorithms have been compared under various

conditions [34, 62, 257] but most of the work has been done on noiseless systems.

1.7 Regression of Grouped Variables

Many problems of economics [165], neuroscience [23, 37] and biology [261, 75] can

be cast as a network topology identification problem which requires sparse regres-

sion of grouped variables. Application to topology identification of a sparsely con-

nected network will be addressed in chapter 5. Other applications which require

regression of grouped variables include sparse channel estimation [274], cognitive

spectrum sensing [42], colour imaging [143] etc.

Therefore many scalar regression algorithms have been extended to handle

group sparsity. Group sparse versions of greedy algorithms include extensions

of matching pursuit [274, 63], clustered orthogonal matching pursuit [197] and

cycling orthogonal least squares [151]. Groups sparse versions of l1 and lq norm

optimization methods have also been developed. Group LASSO [278] is a very

common algorithm used in regression of grouped variables. Group versions of

LARS and non-negative garrotte have also been developed in [278]. Other group

sparse algorithms that optimize the l1 norm is given in [64, 63] and extension of

the FOCUSS algorithm is given in [143].

1.8 Model Selection

As shown in section 1.5 the optimization criterion (1.4a)-(1.4c) of a regularization

problem require selection of a penalty or tuning parameter. The least squares

term of these criteria promote prediction accuracy and f(β) promotes sparsity.

The tuning parameter determines the emphasis given to the two terms, thus it

determines the sparsity of the estimate. Therefore the model that is fitted to the

observed data will then depend on the value of the tuning parameter.

The performance of competing models can be assessed using a discrepancy

measure of some kind. The definition of the discrepancy will vary depending

on the requirements of the application. Model selection criteria for selecting the
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tuning parameters are typically based on minimizing an estimate of the desired

discrepancy [135].

Tuning parameters can be discrete e.g. model dimension, iteration count or

continuous e.g. threshold level. Model selection criteria can be broadly divided

into two categories; nonparametric methods and model based methods also known

as covariance penalties [135]. Only some of the model selection criteria can handle

both discrete and continuous tuning parameters.

1.8.1 Nonparametric Methods

Cross-validation, bootstrap techniques and L-curve are nonparametric methods.

In cross-validation [161, 228] the data are subdivided into two parts, one part

is used for estimation and the other part is used for validation. This method

has been widely applied, especially to linear problems. However for nonlinear

problems cross-validation is computationally intensive because it involves solving

the whole inverse problem for all possible divisions of the data set. Generalized

cross-validation which is a rotation-invariant version of ordinary cross-validation

is presented in [263, 88]. Bootstrap methods [54] generate an estimator of the

expected discrepancy by resampling. However [38] have shown that the bootstrap

criterion has a downward bias and [55] have shown that model based methods per-

form better than cross-validation and bootstrap methods. The L-curve method

originated in [156] and was later developed by [97, 98]. The L-curve method has

gained popularity partly because it is computationally cheap. However it has

been heavily criticized in [96, 260].

1.8.2 Model Based Methods

Mallows’s Cp [146], Akaike’s information criterion (AIC) [4], the Bayesian in-

formation criterion (BIC) [200] (which is generally the same as the minimum

description length (MDL) principle [192]) and Stein’s unbiased risk estimator

(SURE) [226] are model based selection criteria. Unlike the nonparametric meth-

ods Cp, AIC and BIC can usually only handle discrete tuning parameters. In the

applications given in this thesis we are able to overcome that problem. These

methods are computationally cheap but are biased because they assume that the
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data are generated from a model in the model class being fitted. This is rarely

the case in practice. More recently generalizations and modifications of these

criterion have been developed which include risk inflation criterion (RIC) [79],

covariance inflation criterion (CIC) [237] and Cauchy prior modification of BIC

[120].

Mallows’s Cp, AIC, BIC, RIC and CIC select the best model for the linear

regression model (1.1) contaminated by Gaussian noise with known variance (ε ∼
N(0, σ2I)) by optimizing a model selection criterion of the form,

‖y − μ̂‖2 + λdσ2. (1.5)

where μ̂ = Xβ̂ and d is the number of non-zeros in β̂. The first term promotes

the goodness of fit and the second term penalizes the complexity of the fitted

model while λ > 0 determines the trade off between the two terms. Mallows’s

Cp and AIC set λ = 2, BIC set λ = log(n), RIC set λ = 2 log(p) and CIC

set λ = 4
∑d

j=1 log(n/j)/d. However when the penalty parameter λ is fixed

the resulting criterion is effective and consistent only under specific conditions

thus limiting its applicability [204, 282, 209]. For instance when λ is large the

criterion is likely to perform well when the size of the true model is small or the

true model is sparse. Thus attempts have been made to adaptively select the

penalty parameter according to the application [80, 207, 206], however as shown

in [277] it is not clear whether this is a successful method. [205] combines a class

of modeling procedures into a unified framework with the hope of combining the

strengths of different modeling procedures.

1.8.3 SURE

SURE is a model based selection criterion and it does not suffer from the limi-

tations of the model selection criterion discussed so far. Unlike the other model

based methods it can handle continuous as well as discrete tuning parameters and

although it makes some assumptions SURE does not assume that fitted model is

the same as the operating model. SURE is computationally cheap and it does not

require iteration. It is an exact method in that it does not use any approximations

such as Taylor series expansion or linearization.
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SURE was introduced by [226] and was first used as a tuning parameter se-

lection method by [51, 110]. Subsequently [213] suggested that SURE could have

wide applicability and it was applied to a range of ill-conditioned inverse prob-

lems such as optical flow [167, 168, 208], nonparametric signal estimation [218],

anisotropic diffusion [216, 217], total variation denoising [215], rank selection PCA

[251, 250] support vector machines [219] and image processing [138, 149]. Other

work includes [61]. All the existing literature on SURE is based on the signal

(prediction) mean squared error. Chapter 6 develops a model selection criterion

based on parameter mean squared error via SURE.

1.9 Thesis Outline

Chapter 2 is based on l0 denoising. The first half of this chapter investigates

the ability of existing algorithms to perform l0 denoising. FSEL, CLEAN and

OMP are possible candidates for l0 denoising because these algorithms reduce the

l0 penalized least squares (L0LS) criterion at each iteration provided a proper

stopping rule is selected. However this chapter shows that their estimates are not

guaranteed to satisfy the optimality conditions of a local minimum of the L0LS

criterion. Despite indications in the noise free case to the contrary in [187], there

seem to be a belief in the literature that regularized FOCUSS with q = 0 does l0

denoising. This chapter shows that this is also false.

In the second half of this chapter a novel algorithm based on cyclic descent to

minimize the L0LS criterion is developed, which is called L0LS-CD (l0 penalized

least squares via cyclic descent). Then it is extended to the multivariate (V-

L0LS-CD) and group (gL0LS-CD) regression variants. Computational speed ups

are discussed and a greedy version of L0LS-CD is developed. Stability of these

algorithms are analyzed and simulations compare L0LS-CD and V-L0LS-CD with

alternatives. and The following publications relate to this chapter.

A. J. Seneviratne and V. Solo, ”On Exact L0 Denoising,” Submitted to

IEEE Transactions on Signal Processing.

A. J. Seneviratne and V. Solo, ”On Vector L0 Penalized Multivariate Re-

gression,” in Proc. IEEE International Conference on Acoustics, Speech
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and Signal Processing, Kyoto, Japan, 2012, pp. 3613-3616.

B. Cassidy, V. Solo and A. J. Seneviratne, ”Grouped L0 Least Squares Pe-

nalised Magnetoencephalography,” in Proc. IEEE International Symposium

on Biomedical Imaging, Barcelona, Spain, 2012, pp. 868-871.

Chapter 3 develops an algorithm based on the majorization minimization

technique which can optimize the least squares criterion penalized with any

penalty obeying the quadratic concave property defined in chapter 3. We call

it the QC (quadratic concave) algorithm. Convergence analysis of the QC algo-

rithm is provided and it is compared with the Newton algorithm, concave convex

(CC) procedure, as well as with the class of proximity algorithms. The material

is closely related to the following publication.

V. Solo and A. J. Seneviratne, ”The Quadratic Concave Algorithm,” in

preparation for submission to IEEE Transactions on Signal Processing.

Chapter 4 is based on an application of sparse modeling. A method for

sparse transfer function estimation in the presence of coloured noise is developed.

Unlike most previous sparse transfer function estimation methods, this approach

via Laguerre polynomials guarantees stability of the fitted transfer functions. Also

unlike previous methods the new procedure can handle coloured noise. Both l1

and l0 penalized procedures are discussed. The material covered in this chapter

is based on the following publication.

A. J. Seneviratne and V. Solo, ”Sparse Coloured System Identification with

Guaranteed Stability,” in Proc. IEEE Conference on Decision and Control,

Honolulu, Hawaii, 2012, pp. 2826-2831.

Chapter 5 is also based on an application of sparse modeling. Here the

problem of identifying the topology of a sparsely connected network of dynamic

systems is addressed. The goal is to identify the links, the direction of information

flow and the transfer function of each dynamic system. The output of each system

is affected by the incoming data of the directly connected systems and noise. In

contrast to the related existing work, causal Laguerre basis functions are used to
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expand the transfer functions and l0 penalty is used to enforce sparsity. Since the

network is sparsely connected the system topology is estimated using gL0LS-CD.

This chapter is based on the following publication.

A. J. Seneviratne and V. Solo, ”Topology Identification of a Sparse Dynamic

Network,” in Proc. IEEE Conference on Decision and Control, Honolulu,

Hawaii, 2012, pp. 1518-1523.

Chapter 6 develops a model selection criterion. Any regularization method

requires the selection of a regularization penalty parameter. Many model selec-

tion criteria have been developed to compare competing models using various

discrepancy measures. Most model selection methods are focused on signal mean

squared error i.e. prediction mean squared error. This chapter develops a model

selection criterion based on parameter mean squared error via SURE. Then it is

applied to group LASSO. Simulation results based on topology identification of

a sparse network are presented to illustrate and compare with alternative model

selection criteria. This chapter is based on the following publication.

A. J. Seneviratne and V. Solo, ”Parameter Based Model Selection for the

Group LASSO via SURE,” Submitted to IEEE Transactions on Signal Pro-

cessing.

1.10 Contributions

1. Chapter 2: l0 denoising.

• L0LS-CD algorithm - minimizes the l0 penalized least squares criterion

via cyclic descent.

• Multivariate (V-L0LS-CD) and group (gL0LS-CD) regression variants

of L0LS-CD.

• Convergence analysis of the L0LS-CD algorithm.
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• Discussion of computational speed-ups to the basic cyclic descent al-

gorithm and the development of a greedy version of L0LS-CD.

• Investigate the ability of existing algorithms to perform l0 denoising.

• Establish a suitable method for performance comparison of sparse ap-

proximating algorithms in the presence of noise.

• Comparison of the performance of the L0LS-CD and V-L0LS-CD al-

gorithms with a range of sparse algorithms, on under-determined and

over-determined systems, highlighting the importance of proper tun-

ing parameter selection and initialization.

2. Chapter 3: QC algorithm.

• QC algorithm - minimizes the least squares criterion penalized with

any quadratic concave penalty via majorization minimization tech-

nique.

• Convergence analysis of the QC algorithm.

• Comparison of the QC algorithm with the Newton algorithm, con-

cave convex (CC) procedure, as well as with the class of proximity

algorithms.

• Comparison of the performance of the QC algorithm with respect to

two penalties that approximate the l0 penalty (Gγ
0 , TH

γ,b
0 ).

3. Chapter 4: Application of sparse modeling - transfer function estimation.

• SCSI algorithm - method for sparse transfer function estimation on

systems with coloured noise via cyclic descent.

• This method guarantees the stability of the estimated model by the

use of Laguerre basis functions.

• Comparison of the l0 norm and l1 norm variants of the SCSI algorithm.

4. Chapter 5: Application of sparse modeling - network topology identification.

24



1.10. Contributions

• Development of a method of topology identification of a sparsely con-

nected network via gL0LS-CD with Laguerre basis functions for model

expansion.

• Comparison of gL0LS-CD and group LASSO algorithms based on this

application.

5. Chapter 6: Parameter Based Model Selection via SURE.

• Development of a general SURE criterion for parameter mean square

error.

• This result is applied to obtain an SURE criterion for parameter mean

square error of the l1 penalized least squares problem with grouped

variables.

• Comparison of this criterion with other model selection criteria by a

simulation based on topology identification of a sparse network.
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Chapter 2

l0 Denoising

The importance and motivation behind sparse modeling was given in section 1.1.

Many sparse modeling problems can be posed as finding a sparse solution to a

linear regression model (1.1). This thesis is based on finding sparse solutions to

systems with noise and the goals of sparse approximation are given in section

1.3. These goals can be achieved by optimizing one of the criterion (1.4a)-(1.4c)

with an appropriate sparsity measure. An overview of commonly used sparsity

measures was given in section 1.4.

The l0 norm has been widely criticized in literature, mainly for not being

dependent on the amplitude of the coefficients. As discussed in section 1.4 these

allegation are not relevant in the sparse regression setting as the least squares

term in the optimization criterion provides the amplitude dependance. Thus in

sparse regression the l0 penalty is the most favorable as it is a direct measure of

sparsity and therefore would promote more sparsity.

Optimizing one of the criterion (1.4a)-(1.4c) with f(β) = l0 norm is called l0

denoising. However finding a global minimum to such a criterion is known to be

NP hard, thus an exhaustive search is the only guaranteed method known so far.

This is the main reason for the unpopularity of the l0 norm.

This chapter is based on l0 penalized least squares (L0LS) criterion and its

multivariate and grouped variable variants. The scalar L0LS criterion is devel-

oped in section 2.1 and the conditions for its local minimum are given in section

2.1.1. Sections 2.2 to 2.4 investigates the ability of existing algorithms to perform

l0 denoising. Section 2.5 develops a cyclic descent based algorithm to optimize

26



2.1. l0 Penalized Least Squares (L0LS)

the L0LS criterion which we call L0LS-CD (l0 least squares via cyclic descent1)

followed by termination criterion and computational speed-ups. Two different

variation of the L0LS-CD algorithm is also developed in this chapter. Vector

l0 penalized least squares (V-L0LS) criterion is developed in 2.6 and variant of

L0LS-CD that can handle multivariate regression (V-L0LS-CD2) is developed in

section 2.7. Similarly l0 penalized least squares criterion for grouped variables

(gL0LS) is given in section 2.8 and section 2.9 develops a variant of the L0LS-CD

algorithm to handle grouped variables (gL0LS-CD). Non-trivial stability analysis

is developed in section 2.10. Simulation results are presented in sections 2.11 and

2.12. Conclusions are in section 2.13.

2.1 l0 Penalized Least Squares (L0LS)

The aim is to find a sparse solution to the linear regression problem (1.1) by

optimizing the scale free l0 penalized least squares criterion,

‖y −Xβ‖2
σ2

+ h0‖β‖0, (2.1)

where σ2 is the noise variance. This chapter assumes that the X matrix is column

scaled, so that ‖x(u)‖ = 1. As mentioned in chapter 1, this will improve the

numerical conditioning of the X matrix. If we multiply across by σ2 we can

replace h0 by h = h0σ
2. This removes σ2 but makes it clear that h is then scale

dependent. We then obtain (1.4c) with f(β) = l0 norm,

J(β) = ‖y −Xβ‖2 + h‖β‖0. (2.2)

In this thesis minimizing J(β) is referred to as the L0LS problem.

1A cyclic descent l0 algorithm has been described in [153] but it differs from ours as discussed
below.

2[203] was based on this algorithm.
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2.1.1 Conditions for a local minimum

Since J(β) is not even differentiable it is not immediately obvious how to find

conditions for a local minimum. For the l1 penalized least squares problem this

was done by [6] (which predates [236]). In a very neat piece of analysis, building

on work of [243], the conditions for, local minimum of J(β) were given by [20],

as follows,

Theorem I: Optimality Conditions [20].

Define the index sets Γ0 = {j : β̇j = 0}, Γc = {j : β̇j �= 0} and set γ̇j =

xT
(j)(y −Xβ̇). Then β̇ is a local minimum of J(β) iff,

(Ia) |γ̇j| ≤
√
h, j ∈ Γ0.

(Ib) γ̇j = 0, j ∈ Γc.

(Ic) |β̇j| ≥
√
h, j ∈ Γc.

Note that from (Ib), β̇ is just the least squares estimate of β using only the indices

specified in Γc.

2.2 pIHT

The pIHT algorithm developed in [20] can find a local minimum of J(β), thus

does l0 denoising. Landweber iteration based pIHT calculates new values for all

the coefficients at each iteration. The coefficient vector is updated only after all

p new coefficients are calculated.

βk = H√
h(β

k−1 +XT (y −Xβk−1)),

where k is the iteration counter and H√
h is the element wise hard thresholding

operator,

H√
h(βu) = βuI(|βu| >

√
h),

where βu is the uth coefficient of the β vector. pIHT is discussed further below.
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2.3. Regularized FOCUSS with q=0

2.3 Regularized FOCUSS with q=0

Despite indications in the noise free case to the contrary in [187], there seems to

be a belief that regularized FOCUSS with q = 0 does l0 denoising. The following

proof shows that it does not solve the L0LS problem; rather it solves an entropy

penalized least squares problem.

We need only to provide a counter example and to do this the simple case

where X = I is sufficient. The regularized FOCUSS algorithm then reduces to,

βk
u =

|βk−1
u |2−q

|βk−1
u |2−q + h

yu, 1 ≤ u ≤ p.

We deduce sgn(βk
u) = sgn(yu) and so the iteration becomes,

|βk
u| =

|βk−1
u |2−q |yu|

|βk−1
u |2−q + h

, (2.3)

= |βk−1
u | |yu|

Dk−1
u

.

where Dk−1
u = |βk−1

u |+ h/|βk−1
u |1−q. For q = 0 we have,

Dk−1
u = |βk−1

u |+ h

|βk−1
u | ,

and it is easily seen that this has a minimum at
√
h of value 2

√
h. Thus Dk−1

u ≥
2
√
h. Thus,

|βk
u| ≤ |βk−1

u | |yu|
2
√
h
,

≤
( |yu|
2
√
h

)k−1

|β0
u|.

so if |yu| < 2
√
h we find |βk−1

u | → 0. On the other hand from (2.3), |βk
u| < |yu| so

|βk−1
u | is a bounded sequence and so must have at least one limit point.

From (2.3), if the sequence converges it will be to a fixed point which obeys
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2.4. Other Candidate Algorithms

(for q = 0),

|βu| = |βu|2|yu|
|βu|2 + h

,

⇒ |βu|2 + h = |βu||yu| (2.4)

This quadratic equation has solutions,

|βu| = |yu| ±
√
y2u − 4h

2
� Ψ±(|yu|)

So there are only 2 possible limit points. However we already saw |βk−1
u | < |yu|

so both limit points can be reached.

So the solution is I(|yu| ≥ 2
√
h)Ψ(|yu|). However the L0LS problem minβ ‖y−

β‖2 + h
∑p

1 I(βu �= 0) has solution yuI(|yu| >
√
h), which is clearly not the same.

So regularized FOCUSS with q = 0 does not converge to the solution of the L0LS

problem. In fact for |β| > 0 it is easily seen that (2.4) is the optimality condition

for the minimizer of 1
2
‖y − β‖2 + h

∑p
1 log |βu|.

This observation may be regarded as an extension to the noisy case, of the

connections made in [188] with Gaussian entropy (
∑p

1 log |βu|) in the noise free

case.

2.4 Other Candidate Algorithms

FSEL, CLEAN and OMP are widely used algorithms in sparse signal approxi-

mation. They are initialized with β0 = 0 and at each iteration they select a new

index to be included in the active set. They differ in the method by which they

select the new index and by the way they update the estimate and the residual.

For the sake of completeness the outline of these algorithms are presented in

section 2.A.

At the kth iteration, given the estimate βk and residual ek, let Xk be the k

columns of X that are already selected. After another iteration we have βk+1 and

ek+1. The newly selected column added to the active set at the k + 1th iteration
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is given respectively by,

CLEAN, OMP: x(û) : û = arg.max
u/∈Γk

c

|γk
u|

FSEL: x(û) : û = arg.max
u/∈Γk

c

|γk
u|

Δk

where γk
u = xT

(u)e
k, Γk

c = {j : βk
j �= 0} and where

FSEL, OMP: Δ2
k = 1− ρT (Xk,TXk)−1ρ,

ρ = xT
(û)X

k.

CLEAN: Δk = 1.

The update of the energy of the error signal for FSEL, CLEAN and OMP is given

by,

‖ek+1‖2 = ‖ek‖2 − (xT
(û)e

k)2

Δ2
k

(2.5)

Now we compute the change in J(β). We have,

J(βk+1) = Jk+1 = ‖ek+1‖2 + h
∑

I(βk+1
u �= 0)

Since one new component is added to the active set at each iteration in all three

algorithms, we find, via (2.5)

Jk+1 − Jk = ‖ek+1‖2 − ‖ek‖2 + hI(βk+1
û �= 0)

= −(xT
(û)e

k)2

Δ2
k

+ h

Thus J(β) is reduced while (xT
(û)e

k)2/Δ2
k > h. Therefore provided we stop when

|xT
(û)e

k| ≤ √
hΔk, FSEL, CLEAN and OMP algorithms reduce J(β) at each

iteration. Thus these algorithms are possible candidates for l0 denoising under

this stopping rule.

Such a stopping rule does not correspond to the ad-hoc conditions used to

terminate FSEL, CLEAN and OMP [246]. One might hope then that this new
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stopping rule would allow these algorithms to converge to a local minimum of

J(β).

Here a simple example is given to show that OMP estimates do not satisfy

the L0LS optimality conditions given in section 2.1.1. Consider the following X

matrix and β� vector,

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0.5 0.5

0 1 0 0 0.5 0 0

0 0 1 0 0.5 0 0.7071

0 0 0 1 0 0.5 0.5

0 0 0 0 0.7071 0.7071 0

⎤
⎥⎥⎥⎥⎥⎥⎦

β� =
[
0 0 0.6211 0 0 0.7015 0

]T
Assume the noise is Gaussian with zero mean and variance σ2 = 0.0878. From

(1.1), y = [0.1887 − 0.3646 0.6496 − 0.3241 0.4610]T . Set h = 0.125, then

OMP produces the following estimate when stopping rule |xT
(û)e

k| ≤ √
hΔk is

used,

β̂ =
[
0 −0.6906 0.3236 0 0.6520 0 0

]T

However
√
h = 0.3536. Thus (Ic) of the optimality conditions is violated. There-

fore OMP do not do l0 denoising. Similar examples can be given for FSEL and

CLEAN.

2.5 L0LS-CD

Cyclic descent has been used to solve the l1 penalized least squares in [74, 278, 73,

183]. Here cyclic descent is applied to (2.2). While the idea of using cyclic descent

to minimize (2.2) seems to have been in the folklore, we know of no published

work.

The basic concept of this iterative procedure is to fix all the coefficients of β at

their current value except for one and minimize the criterion with respect to the

selected coefficient. Once the new value of the selected coefficient is calculated, β
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is updated immediately and then the criterion is minimized with respect to the

next coefficient.

This is the major difference between cyclic descent and Landweber itera-

tion based algorithms. Cyclic descent is like a classic Gauss-Seidel algorithm

where new coefficient values are used immediately to update the next coefficient.

Landweber is like a classic Jacobi algorithm where new coefficient values are

not used to update the estimate until the new values of all the coefficients are

calculated. Because of this L0LS-CD is expected to be faster than pIHT.

From (2.2), elementary algebra gives, for any pair β, βo

J(β) =J(βo)− 2(β − βo)Tγo + (β − βo)TXTX(β − βo)

+ h

p∑
1

I(βj �= 0)− h

p∑
1

I(βo
j �= 0). (2.6)

where γo = XT (y − Xβo). Given the iterate k, factor k = lp + u where l is an

integer and 1 ≤ u ≤ p. Thus at iterate k − 1, coefficient u− 1 was updated and

the next iterate will update the coefficient with the index u.

Set γk−1
u = xT

(u)(y−Xβk−1). From (2.6) the change in the value of the criterion

at consecutive iterations is given by,

ΔJk =J(βk)− J(βk−1)

=− 2Δk
uγ

k−1
u + (Δk

u)
2 + hI(βk

u �= 0)− hI(βk−1
u �= 0), (2.7)

where Δk
u = βk

u − βk−1
u . Denote Jk−1

u = I(βk−1
u �= 0).

To minimize J(βk) two cases must be considered.

If βk
u = 0,

ΔJk = 2βk−1
u γk−1

u + (βk−1
u )2 − hJk−1

u ,

= (βk−1
u + γk−1

u )2 − (γk−1
u )2 − hJk−1

u . (2.8)

If βk
u �= 0, differentiation leads to the minimum being achieved at Δk

u = γk−1
u .
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So that,

βk
u = βk−1

u + γk−1
u , (2.9)

and

ΔJk = −(γk−1
u )2 + h− hJk−1

u . (2.10)

When comparing the two cases, it is clear that βk
u = 0 is the minimizer if,

(βk−1
u + γk−1

u )2 − (γk−1
u )2 − hJk−1

u < −(γk−1
u )2 + h− hJk−1

u

≡ (βk−1
u + γk−1

u )2 < h

≡ |βk−1
u + γk−1

u | <
√
h

We additionally have to make a choice as to how to define βk
u when |βk−1

u +γk−1
u | =√

h. Because then both βk
u = 0 and βk

u = βk−1
u + γk−1

u deliver the same value for

ΔJk. Here the choice is made as follows.

When |βk−1
u + γk−1

u | = √
h then,

if βk−1
u �= 0 set βk

u = βk−1
u + γk−1

u ,

if βk−1
u = 0 set βk

u = 0.

We shall see that these choices deliver lemma D given in section 2.10. To sum

up we now have the following update1.

If βk−1
u �= 0 set

βk
u = (βk−1

u + γk−1
u )I(|βk−1

u + γk−1
u | ≥

√
h). (2.11)

If βk−1
u = 0 set

βk
u = γk−1

u I(|γk−1
u | >

√
h). (2.12)

For future reference (2.11) and (2.12) are written as,

βk
u = A(βk−1

u , γk−1
u ). (2.13)

1Note that this update differs from that in [153]
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Also in the sequel, notation Iku,< = I(|βk−1
u + γk−1

u | < √
h) etc. will be used for

simplicity. From (2.8), (2.10) and (2.13) the change in the criterion is then given

as follows.

If βk−1
u �= 0

ΔJk =[(βk−1
u + γk−1

u )2 − (γk−1
u )2 − h]Iku,< − (γk−1

u )2Iku,≥,

=[(βk−1
u + γk−1

u )2 − h]Iku,< − (γk−1
u )2. (2.14)

If βk−1
u = 0

ΔJk =[(βk−1
u + γk−1

u )2 − (γk−1
u )2]Iku,≤ + [h− (γk−1

u )2]Iku,>,

=[h− (γk−1
u )2]Iku,>. (2.15)

|βk−1
u +γk−1

u | and √
h are real numbers, therefore the event |βk−1

u +γk−1
u | = √

h

happens with zero probability. Therefore for practical purposes the L0LS-CD

update (2.13) is equivalent to,

βk
u = (βk−1

u + γk−1
u )I(|βk−1

u + γk−1
u | ≥

√
h). (2.16)

The L0LS- CD algorithm can be summarized as follows.

L0LS-CD algorithm:

(i) Select β0 and set iteration counter k = 1.

(ii) Decompose k = lp+ u, where l is an integer and 1 ≤ u ≤ p.

(iii) Calculate γk−1
u = xT

(u)(y −Xβk−1).

(iv) Update βu from (2.16).

(v) Increment k by one and repeat from step (ii) until the termination criterion

is met.

The above derivation assumes that ‖x(j)‖ = 1, j = 1, ..., p. By following the

same argument, the L0LS-CD update when ‖x(j)‖ �= 1, j = 1, ..., p is,

βk
u = (βk−1

u + αk−1
u )I(‖x(u)‖|βk−1

u + αk−1
u | ≥

√
h), (2.17)
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where αk−1
u = γk−1

u /‖x(u)‖2. Criterion J(β) has multiple local minimum thus

proper initialization is crucial for the L0LS-CD algorithm. Initialization of the

algorithm will be discussed in section 2.11.3. It can be terminated when J(βk)−
J(βk+1) ≤ tolerance or when the algorithm reaches a local minimum such that

both conditions (Ia) and (Ib) of section 2.1.1 are met.

2.5.1 Speed Ups

Since the β vector is updated each time a new coefficient is calculated the num-

ber of computations needed to calculate γk
u can grow extremely high. Here two

different updates are presented to reduce the amount of required computations.

(i) For under-determined systems the method introduced in [73] is most effec-

tive. Expand γk
u as follows,

γk
u = (y −Xβk)Tx(u),

= yTx(u) −
∑
j∈Γk

c

xT
(j)x(u)β

k
j , (2.18)

where Γk
c = {j : βk

j �= 0}. Thus γk
u can be computed as a linear combination

of inner products yTx(u) and xT
(j)x(u). Initially compute the inner products

of each column of X with the y vector. Then each time an index j enters

the Γc set, the inner product of x(j) with all the columns of X need to be

computed.

(ii) For over-determined systems, denote the residual at the kth iteration as

ek = y −Xβk. Initialize with e0 = y −Xβ0 and then update according to,

ek = ek−1 + (βk−1
u − βk

u)x(u), (2.19)

then γk
u = xT

(u)e
k.

2.5.2 Greedy L0LS-CD

An interesting variation of the shooting algorithm (which is just L1LS-CD) [74]

is presented in [183] called active-shooting. Although L0LS-CD converges much
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faster than pIHT, its speed can be further improved by incorporating the idea

of active-shooting. However it was observed that if the idea presented in [183]

is applied directly to L0LS-CD it actually increases the execution time of the

algorithm. Thus this idea was modified as follows.

This method involves keeping track of the active set of the L0LS-CD algorithm

at each iteration. This process is continued until the active set of two consecutive

iterations become identical. After that instead of sequentially updating all the

coefficients only the coefficients in the active set are updated until the local min-

imum condition (Ib) is met. Finally the complete β vector has to be updated to

check if the active set changes. If the active set remains the same the algorithm

can be terminated and if not the process has to be repeated from the beginning.

Greedy L0LS-CD algorithm:

(i) Run the L0LS-CD algorithm and at each iteration update the active set

Γk
c = {j : βk

j �= 0}.

(ii) When Γk
c = Γk+1

c , from the next iteration onwards update only the coeffi-

cients in the active set until the local minimum condition (Ib) is met.

(iii) Update the complete β vector, j = 1, ..., p according to (2.16). If the active

set changes go back to step i. If not return the current β as the final

estimate.

The reduction in the computational speed that can be obtained by this greedy

version increases as the sparsity increases. This is expected because, as the size

of the active set approaches the number of coefficients in the β vector, the effec-

tiveness of the greedy L0LS-CD algorithm reduces.

2.6 Vector l0 Penalized Least Squares (V-L0LS)

Scalar regression discussed above involve a single measurement vector and pro-

duces a single sparse coefficient vector. In contrast multivariate regression consid-

ers multiple measurement vectors simultaneously and generates coefficient vectors

with a shared sparsity profile. An introduction to multivariate regression and an

overview of existing algorithms was given in section 1.6.
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Linear regression model (1.1) can be extended to the multivariate case as

follows,

y(c) = Xβ(c) + ε, c = 1, . . . , d.

Similar to the scalar regression model, y(c) is a n dimensional measurement vector,

Xn×p is a regression matrix or dictionary and β(c) is a p dimensional coefficient

vector. When d measurement vectors are collected together we can rewrite this

as,

Yn×d = Xn×pBp×d + E, (2.20)

where Yn×d = [y(1), . . . , y(d)], Bp×d = [β(1), . . . , β(d)] and d < n. This is a multi-

variate regression model. Since both rows and columns of B needs to be referred

in the sequel the following compact notation is used,

B = [βrc] = [β(1), . . . , β(d)] =

⎡
⎢⎢⎣

βT
[1]
...

βT
[p]

⎤
⎥⎥⎦ ,

and similarly for Y and X matrices. Since the coefficient vectors have the same

sparsity profile the resulting B matrix is row sparse. To promote row sparsity, the

measures of sparsity discussed in section 1.4 has to be extended to the multivariate

setting as follows:

Vector l0 : ‖B‖r,0 = � {j, ‖β[j]‖r �= 0} =
∑

I(‖β[j]‖r �= 0), (2.21a)

Vector lq : ‖B‖r,q =
(∑

‖β[j]‖qr
)1/q

, 0 < q < 1, (2.21b)

Vector l1 : ‖B‖r,1 =
∑

‖β[j]‖r, (2.21c)

Vector Gγ
0 :

∑(
1− e−‖β[j]‖2r/2γ2

)
, (2.21d)

where r is a positive value and β[j], a d dimensional vector, is the jth row of

the B matrix. Generally r > 1 since the objective is to recover a row sparse

matrix and sparsity is not enforced within a non-sparse row. Vector l1 sparsity
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measure (2.21c) is used in [241, 144, 257]. [241] set r to ∞, [144] use r = 2 and

[257] compare the properties of (2.21c) with r = 1 and r = 2. Vector lq sparsity

measure (2.21b) with r = 2 is used in [40] and vector Gγ
0 sparsity measure (2.21d)

with r = 2 is used in [116]. Next section develops an algorithm to minimize the

following vector l0 penalized least squares (V-L0LS) criterion.

J(B) =
d∑

c=1

‖y(c) −Xβ(c)‖2 + h‖B‖r,0. (2.22)

This thesis considers ‖B‖r,0 with r = 2. The optimality conditions of J(B) can

be derived in a similar manner to that of the L0LS criterion developed in section

2.1.1 and is given in [203].

The vector l0 criterion was used previously in another context in [253]; it

removes complete rows of B in one go. It should not be confused with the scalar

l0 penalty
∑p

1

∑d
1 I(βrc �= 0) which only removes individual elements of B.

2.7 V-L0LS-CD

The L0LS-CD algorithm introduced in section 2.5 can be easily extended to

minimize the V-L0LS criterion. Similar to equation (2.6), from (2.22), elementary

algebra gives, for any pair B, Bo,

J(B) =J(Bo) +
d∑

c=1

[−2(β(c) − βo
(c))

Tγo
(c) + (β(c) − βo

(c))
TXTX(β(c) − βo

(c))
]

+ h

p∑
1

I(‖β[j]‖ �= 0)− h

p∑
1

I(‖βo
[j]‖ �= 0). (2.23)

where γo
(c) = XT (y(c) − Xβo

(c)). Similar to the L0LS-CD algorithm, given the

iterate k, factor k = lp + u where l is an integer and 1 ≤ u ≤ p. Set γk−1
uc =

xT
(u)(y(c) −Xβk−1

(c) ). Unlike the L0LS-CD algorithm, which updates a single coef-

ficient at an iteration, the V-L0LS-CD algorithm updates an entire row of the B

matrix in an iteration. Thus from (2.23) the change in the value of the criterion
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at consecutive iterations is given by,

ΔJk =J(Bk)− J(Bk−1)

=
d∑

c=1

[−2Δk
ucγ

k−1
uc + (Δk

uc)
2
]
+ hI(‖βk

[u]‖ �= 0)− hI(‖βk−1
[u] ‖ �= 0),

=− 2Δk
[u]γ

k−1,T
[u] + ‖Δk

[u]‖2 + hI(‖βk
[u]‖ �= 0)− hI(‖βk−1

[u] ‖ �= 0), (2.24)

where Δk
uc = βk

uc − βk−1
uc , Δk

[u] = βk
[u] − βk−1

[u] and γk−1
[u] = xT

(u)(Y − XBk−1).

Repeating the argument given in section 2.5, the V-L0LS-CD update becomes,

If ‖βk−1
[u] ‖ �= 0 set

βk
[u] = (βk−1

[u] + γk−1
[u] )I(‖βk−1

[u] + γk−1
[u] ‖ ≥

√
h). (2.25)

If ‖βk−1
[u] ‖ = 0 set

βk
[u] = (γk−1

[u] )I(‖γk−1
[u] ‖ >

√
h). (2.26)

As discussed in section 2.5, ‖βk−1
[u] +γk−1

[u] ‖ and
√
h are real numbers, therefore

the event ‖βk−1
[u] + γk−1

[u] ‖ =
√
h happens with zero probability. Therefore for

practical purposes the V-L0LS-CD updates (2.25) and (2.26) are equivalent to,

βk
[u] = (βk−1

[u] + γk−1
[u] )I(‖βk−1

[u] + γk−1
[u] ‖ ≥

√
h). (2.27)

Similar to the L0LS-CD algorithm, proper initialization is vital to the V-L0LS-

CD algorithm and this will be addressed in section 2.12. V-L0LS-CD can be

terminated using similar termination criterion as that of the L0LS-CD algorithm.

2.8 l0 Penalized Least Squares of Grouped Vari-

ables (gL0LS)

As mentioned in section 1.7 some applications require regression of grouped vari-

ables. If the coefficient vector is partitioned intom groups β = [β̄T
1 , · · · , β̄T

j , · · · , β̄T
m]

T

and the size of the jth partition is pj, then
∑m

j=1 pj = p. Then the linear regression
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model (1.1) can be modified to handle grouped variables,

y =
m∑
j=1

Xjβ̄j + ε, (2.28)

where Xj is a n × pj column wise matrix partition of the regression matrix cor-

responding to the β̄j coefficient group. Here the Xj partitions are assumed to be

orthonormalized, thus XT
j Xj = Ipj , j = 1, · · · ,m.

Sparsity measures discussed in section 1.4 does not promote group sparsity.

They can be extended to suite regression of grouped variables as follows,

Group l0 : |||β|||r,0 = � {j, ‖β̄j‖r �= 0} =
∑

I(‖β̄j‖r �= 0), (2.29a)

Group lq : |||β|||r,q =
(∑

‖β̄j‖qr
)1/q

, 0 < q < 1, (2.29b)

Group l1 : |||β|||r,1 =
∑

‖β̄j‖r, (2.29c)

where r > 1 with r = 2 being the most common choice. Three algorithms that

minimize group l1 penalized least squares with r = 2 is given in [278]. Group l1

sparsity measure with r = 2 is also used in [64, 63] and group lq sparsity measure

with 0 < r < 2 is used in [143]. l0 penalized least squares criterion (2.2) can be

modified to promote group sparsity (gL0LS) as follows,

J̄(β) = ‖y −Xβ‖2 + h|||β|||r,0. (2.30)

Next section develops an algorithm to minimize J̄(β) with r = 2.

2.9 gL0LS-CD

Similar to the extension of the L0LS-CD algorithm to multivariate regression in

section 2.7, this section develops its extension to grouped variables which will be

referred to as gL0LS-CD(group l0 penalized least squares via cyclic descent). For
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any pair β, βo the difference in the value of J̄(β) is given by,

J̄(β) =J̄(βo)− 2(β − βo)Tγo + (β − βo)TXTX(β − βo)

+ h
m∑
1

I(‖β̄j‖ �= 0)− h
m∑
1

I(‖β̄o
j ‖ �= 0). (2.31)

where γo = XT (y − Xβo). Unlike L0LS-CD, gL0LS-CD updates a group of

coefficients at each iteration. Thus given the iterate k, factor k = lm + u where

l is an integer and 1 ≤ u ≤ m. From (2.31) the change in J̄(β) at consecutive

iterations is given by,

ΔJ̄k =J̄(βk)− J̄(βk−1)

=− 2Δ̄k,T
u γ̄k−1

u + ‖Δ̄k
u‖2 + hI(‖β̄k

u‖ �= 0)− hI(‖β̄k−1
u ‖ �= 0), (2.32)

where γ̄k−1
u = XT

u (y − Xβk−1) and Δ̄k
u = β̄k

u − β̄k−1
u . Repeating the argument

given in section 2.5, the gL0LS-CD update becomes,

If ‖β̄k−1
u ‖ �= 0 set

β̄k
u = (β̄k−1

u + γ̄k−1
u )I(‖β̄k−1

u + γ̄k−1
u ‖ ≥

√
h). (2.33)

If ‖β̄k−1
u ‖ = 0 set

β̄k
u = (γ̄k−1

u )I(‖γ̄k−1
u ‖ >

√
h). (2.34)

As discussed in sections 2.5 and 2.7, ‖β̄k−1
u + γ̄k−1

u ‖ and
√
h are real numbers,

therefore the event ‖β̄k−1
u + γ̄k−1

u ‖ =
√
h happens with zero probability. Therefore

for practical purposes the gL0LS-CD updates (2.33) and (2.34) are equivalent to,

β̄k
u = (β̄k−1

u + γ̄k−1
u )I(‖β̄k−1

u + γ̄k−1
u ‖ ≥

√
h). (2.35)

The gL0LS-CD algorithm is used in the sparse network topology application

discussed in chapter 4 where it will be compared with group LASSO.
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2.10 Stability Analysis

The convergence analysis is far from straightforward. The criterion is not convex

so no easy analysis is possible. More generally the global convergence theorem

of [148, 137, 125] fails because J(β) is not continuous in β nor is the update

(2.13) closed. The methods of [247] also do not apply for related reasons. Also

the results of [153] do not apply since they require the penalty be differentiable.

So something different is needed and the approach of [252] is followed to some

extent.

Although the development of the L0LS-CD algorithm supports both over-

determined and under-determined systems, the stability analysis given here ap-

plies only to over-determined systems. The simulation results given in section

2.11.5 will show that the L0LS-CD algorithm can be successfully applied to under-

determined systems. Thus the stability analysis of the L0LS-CD algorithm on

under-determined systems is open for future research.

This analysis proceeds in several stages. First the fixed points of (2.13) are

identified. Then a fundamental descent lemma is developed and the convergence

analysis then follows.

For the L0LS-CD update (2.13), denote the set of limit points by ΓL, the set

of fixed points by ΓF and the set of stationary points by ΓS.

2.10.1 Stationary Points of L0LS

Lemma L1. The stationary points of L0LS are isolated.

Proof. This is a consequence of Theorem I(c) as follows. If two stationary

points have the same non-zero set Γc then since the solution to γu = 0, u ∈ Γc is

unique the two stationary points coincide.

If two stationary points differ in at least one zeroed coefficient then the non-

zeroed coefficient obeys (Ic) and so the two stationary points cannot be connected.

There are no other possibilities and the result follows.
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2.10.2 Fixed Points of L0LS-CD

The fixed points are obtained by setting βk
u = βk−1

u in (2.13), denote fixed points

of L0LS-CD as βf , yielding,

if βf
u �= 0 set

βf
u = (βf

u + γf
u)I(|βf

u + γf
u | ≥

√
h), (2.36)

if βf
u = 0 set

βf
u = γf

uI(|γf
u | >

√
h) = 0. (2.37)

where γf
u = xT

(u)(y −Xβf ). Then for 1 ≤ u ≤ p,

(a) From (2.37), u ∈ Γ0 iff, |γf
u | ≤

√
h.

(b) From (2.36), u ∈ Γc iff, β
f
u = (βf

u + γf
u) ⇒ γf

u = 0,

(c) From (2.36), u ∈ Γc iff, |βf
u + γf

u |≥
√
h ⇒ |βf

u |≥
√
h.

Thus any finite limit point of L0LS-CD obeys the optimality conditions of The-

orem I.

We have thus established:

Lemma L2. The fixed points are stationary points i.e. ΓF ⊆ ΓS.

2.10.3 Descent Lemma

Write (2.14) and (2.15) compactly as,

ΔJk = −D(βk−1
u , γk−1

u ), (2.38)

where D(β0
u, γ

0
u) ≥ 0 is given by,

(Da) if β0
u �= 0

D(β0
u, γ

0
u) =(γ0

u)
2 + [h− (β0

u + γ0
u)

2]I(|β0
u + γ0

u| <
√
h),

44



2.10. Stability Analysis

(Db) if β0
u = 0

D(β0
u, γ

0
u) = [(γ0

u)
2 − h]I(|γ0

u| >
√
h).

We now have the following fundamental property.

Lemma D. D(β0
u, γ

0
u) ≥ 0 and if β1

u = A(β0
u, γ

0
u) then D(β0

u, γ
0
u) = 0 ⇒ β1

u =

β0
u.

proof The fact that D ≥ 0 follows by inspection of the definition. For the

main part of the lemma there are two cases.

Case I : β0
u �= 0.

From Da we obtain γ0
u = 0 and either :

(Ia) Iu,< = 0 ≡ Iu,≥ = 1 or

(Ib) Iu,< = 1 and (β0
u + γ0

u)
2 = h.

For (Ia), |β0
u + γ0

u| ≥ √
h so |β0

u| ≥ √
h. Also we get from the update

β1
u = β0

u + γ0
u = β0

u.

For (Ib), |β0
u + γ0

u|<
√
h which contradicts (β0

u + γ0
u)

2=h.

So only (Ia) can occur and we get β1
u = β0

u as required.

Case II : β0
u = 0.

From Db we obtain either:

(IIa) |γ0
u| ≤

√
h or

(IIb) |γ0
u| >

√
h.

For (IIa) the update gives β1
u = 0 = β0

u.

For (IIb) we also get |γ0
u| = h which is a contradiction so that (IIb) cannot

occur.

So we can only have (IIa) and so we get β1
u = β0

u as required.

2.10.4 Boundedness

We introduce a rank condition.

Condition R. XTX has full rank.

Lemma L3. ΔJk = Dk → 0 and under condition R, ‖βk‖ is bounded.

Proof. Iterating the descent lemma gives 0 ≤ Jk ≤ J(β0) < ∞. Thus Jk is a

bounded non-increasing sequence and so must have a finite limit say J∞. Thus
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Dk = ΔJk = Jk − Jk−1 → J∞ − J∞ = 0. Also Jk bounded ⇒ βk bounded

provided condition R holds.

2.10.5 Convergence of Iterate Differences

Lemma L4. Under condition R, βk
u − βk−1

u → 0.

Proof. We apply Lemma L3. Set Sk−1
u = βk−1

u + γk−1
u . We have Dk → 0 and

so

I(βk−1
u �=0)[(γk−1

u )2+[h−(Sk−1
u )2]I(|Sk−1

u |<
√
h) → 0

I(βk−1
u = 0)[(γk−1

u )2 − h]I(|γk−1
u | >

√
h) → 0

There are two cases.

Case I: I(βk−1
u = 0) → 0 and case II: I(βk−1

u = 0) → 1. We consider each in

turn.

Case I. I(βk−1
u = 0) → 0.

Now given ε > 0 we can find ko so that for all k ≥ ko, I(β
k−1
u = 0) < ε. But

this means I(βk−1
u = 0) = 0 for all k ≥ ko. So βk−1

u �= 0 for all k ≥ ko. So

I(βk−1
u �= 0) = 1 for all k ≥ ko. Thus (γ

k−1
u )2 → 0 and either (Sk−1

u )2 → h or

I(|Sk−1
u | < √

h) → 0. But since (γk−1
u )2 → 0 this means either (βk−1

u )2 → h

or I(|βk−1
u | < √

h) → 0.

In the latter sub-case we can find k1 ≥ ko so that for all k ≥ k1, I(|βk−1
u | <√

h) = 0. Then for all k ≥ k1, β
k
u = βk−1

u + γk−1
u and so βk

u − βk−1
u → 0.

In the other sub-case there is a problem if |βk−1
u | increases to √

h. But we

now show this cannot occur. If e.g. |βka−1
u | < √

h then |βka
u | = 0 since

γk−1
u → 0; but then βka+1

u = 0 and indeed βka+r
u = 0 for all r ≥ 0. This

contradicts |βk−1
u | → √

h.

We can thus conclude that for some k2 ≥ k1 we have for all k ≥ k2, |βk−1
u | ≥√

h. And so βk
u = βk−1

u + γk−1
u and so again βk

u − βk−1
u → 0.

Thus the result is established for case I.
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Case II. I(βk−1
u = 0) → 1.

We can now find ko so that for all k ≥ ko, β
k−1
u = 0. But then βk

u−βk−1
u = 0

for all k ≥ ko and the result is established in case II.

The proof is complete.

2.10.6 Limit Points of L0LS-CD

Lemma L5. Under condition R, the limit points of L0LS-CD are fixed points

i.e. ΓL ⊆ ΓF .

Proof. From Lemma L3 (βk−1
u , βk

u) is bounded and so has at least one limit

point. Let (β−
u , β

+
u ) be one such limit; then we can find a subsequence k′ with

(βk′−1
u , βk′

u ) → (β−
u , β

+
u ). However by Lemma L4, βk′

u −βk′−1
u → 0 and so β+

u = β−
u

and so the limit point is a fixed point and the result is established.

2.10.7 Connectedness

Lemma L6. Under condition R, the set of limit points of L0LS-CD is a compact

connected set.

Proof. We use Ostrowski’s theorem [176]. Namely if ‖βk − βk−1‖ → 0 and βk

is bounded then ΓL is a connected set. The first part follows from L4 and the

second part from L3.

2.10.8 Convergence of Iterates

Theorem II. Under condition R, the iterates converge to a stationary point.

Proof. By L5, ΓL ⊆ ΓF . By L2, ΓF ⊆ ΓS. By L1, ΓS consists of isolated

points. Thus ΓL consists of isolated points. But by L6, ΓL is compact and

connected. So ΓL must consist of a single point. And so the iterates must

converge to it.

2.11 L0LS-CD Simulation

Several issues need to be addressed before comparing the performance of L0LS-

CD with other existing algorithms. Thus section 2.11.1 discusses performance
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measures, section 2.11.2 discuss the choice of h and section 2.11.3 discuss L0LS-

CD initialization. Finally section 2.11.4 present simulation setup followed by

section 2.11.5 which present simulation results comparing the performance of

L0LS-CD with other algorithms.

2.11.1 Performance Measures

A method of evaluating the performance or a measure of the desirability of an

estimate has to be established before comparing the performance of sparse regres-

sion algorithms. Although sparse regression has been a topic of great interest,

very little attention has been paid on performance measures of sparse estimates,

especially when the measurement vector is contaminated by noise. Thus there

are no universally accepted performance measures.

Establishing performance measures for sparse estimates in noisy systems is

not straightforward. In noiseless systems it is reasonable to expect the estimate

to be identical to the original coefficient vector. This expectation is practical only

on very mildly noisy systems because information gets drowned in noise.

Goals of sparse approximation are given in section 1.3. Expecting accuracy

and sparsity at the same time is tricky because a little sacrifice in one aspect

normally tends to improve the other. Thus the choice of the performance mea-

sure will depend on the requirements of the application. Applications based on

prediction will be more concerned about the estimated signal μ̂ = Xβ̂ rather

than the atoms in the active set of β̂. In contrast applications such as topology

identification of a sparse network or identifying active sensors of a sensor network

will be more concerned about the model of the estimate.

Thus this thesis uses three kinds of performance measures to compare the

performance of sparse regression algorithms. Given h let us denote the estimate

as β̂h and the true coefficient vector as β�.

(i) Signal mean squared error (MSEμ),

MSEμ = ‖X(β̂h − β�)‖2/‖Xβ�‖, (2.39)

This is relevant to prediction.
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(ii) Parameter mean squared error (MSEβ),

MSEβ = ‖β̂h − β�‖2/‖β�‖2. (2.40)

This is relevant to estimating β.

(iii) Selection of the correct model.

Introduce Γ0 = {j : β�
j = 0}, Γc = {j : β�

j �= 0}, Γ̂0 = {j : β̂h,j = 0} and

Γ̂c = {j : β̂h,j �= 0}. Thus we can define,

Number of true positives (TP) = dim(Γc

⋂
Γ̂c)

Number of false positives (FP) = dim(Γ0

⋂
Γ̂c)

Number of false negatives (FN) = dim(Γc

⋂
Γ̂0)

Number of true negatives (TN) = dim(Γ0

⋂
Γ̂0)

where dim( ) represent the dimension of the set. Now we can define,

True positive rate (TPR) =
TP

TP + FN
(2.41)

False positive rate (FPR) =
FP

FP + TN
(2.42)

which are important performance measures depicting the accuracy of the

selected model.

Sparsity of the estimate and the speed of the algorithm are also major con-

siderations when analyzing the effectiveness of an algorithm.

2.11.2 Selection of h

While the performance measures presented in section 2.11.1 can be calculated in

a simulation, they cannot be computed in practice because β� is unknown. Had

this been a possibility we could have selected h such that the estimate gives the

optimum value of a selected performance measure.

Proper selection of h is widely neglected in the literature. [20] have dismissed

pIHT as inferior compared to cIHT as a result of improper selection of the penalty
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parameter, as demonstrated below in section 2.11.5. [116] sets h = 3 for a range

of signal to noise ratios (SNR) and [187, 40] used the L-curve method to select

the penalty parameter. Since the L-curve method has been severely criticized in

[96, 260], it is not considered in this thesis.

The value of h determines the sparsity of the estimate and therefore its model.

An introduction to model selection criteria was given in section 1.8. Although

SURE based criteria have been developed to select h in an l1 penalized least

squares problem, no such method exists for algorithms that use other sparsity

measures.

Bayesian information criterion (BIC) [200, 135, 123] is a model selection crite-

rion that is used widely but it is generally used to select discrete tuning parame-

ters. Since the value of h determines the number of non-zero coefficients retained

by the algorithm, this enables us to use BIC to select h. When noise variance σ2

is known,

min
h

BIC =
‖y −Xβ̂h‖2

σ2
+ r ln(n), (2.43)

where r is the number of non-zero coefficients of β̂h i.e. r = dim(Γ̂c). If the

variance of noise is unknown then,

min
h

BIC = ln

(
‖y −Xβ̂h‖2

n

)
+

r

n
ln(n), (2.44)

Denote the minimizer of BIC by ĥ. It is then more logical to compare the per-

formance using,

MSEμ = E[‖X(β̂ĥ − β�)‖2/‖Xβ�‖2],
MSEβ = E[‖β̂ĥ − β�‖2/‖β�‖2].

These MSE’s are estimated by averaging over many repeats. Similarly we can

redefine the sets needed to calculate the TPR and FPR as, Γ̂0 = {j : β̂ĥ,j = 0}
and Γ̂c = {j : β̂ĥ,j �= 0}.

It should be noted that BIC is not suitable for model selection when the model
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space is large. Instances where BIC fails are shown in chapter 6 and in [251]. The

BIC criterion has been extended to handle large models in [33]. However in the

simulations presented in this thesis BIC worked well, thus method developed in

[33] was not employed.

2.11.3 L0LS-CD Initialization

Since L0LS-CD terminates at a local minimum of J(β), the initialization of the

algorithms has a significant impact on its performance. The following four types

of initializations were considered and their impact on over-determined and under-

determined systems were analyzed.

(i) All zero initialization (β0 = 0).

(ii) Random starting vectors [i.e. Gaussian with zero mean and unit variance].

(iii) OMP estimate.

(iv) L1LS (l1 penalized least squares) estimate.

L0LS-CD estimates for over-determined systems seem to depend very little on

the initialization. This is especially true for high sparsity levels. Extensive sim-

ulations suggest that all zero initialization is the best choice for over-determined

systems.

Unlike over-determined systems the estimates of under-determined systems

seem to depend heavily on the choice of initialization. Extensive simulations

suggest that initialization with L1LS estimates produces the best results.

2.11.4 Scalar Regression Simulation Setup

For the scalar regression simulations the data was generated as follows. The

entries of the X matrix are independent Gaussians with zero mean and unit

variance. The columns of X were scaled to have unit norm ‖x(j)‖ = 1, j =

1, . . . , p.

Denote the number of nonzero coefficients as r, then sparsity = 1 − r/p, for

over-determined systems and sparsity = 1− r/n, for under-determined systems.
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It is important to note that sparsity is lower bounded by 0.5 for under-determined

noiseless systems [90]. Since the estimate of a noisy system cannot perform better

than that of a noiseless system, range of sparsity was limited to 0.5 - 1 for under-

determined systems. The coefficient vector β� was generated by placing r non-zero

values at random locations in a p dimensional vector. The non-zero values were

selected using one of three different probability distributions as follows,

(i) Gaussian distribution with zero mean and unit variance.

(ii) Laplace distribution with the zero mean and diversity set to 2.

(iii) Bernoulli distribution with outcomes [1,-1] with probability of each event

set to 0.5.

The y vector was calculated from (1.1), where the noise vector ε is Gaussian

with zero mean and variance σ2. The variance of the noise depends on the SNR,

SNR =
‖Xβ�‖2
nσ2

. (2.45)

Note that here we do not use the traditional definition of SNR as the logarithmic

decibel scale is not used. For a given X and β� an initial set of simulations were

done to select h using BIC (2.44) for each algorithm. Then a separate set of

simulations were done to compare the performance of the algorithms. At this

stage the selected value of h was kept fixed at each iteration unlike in [187].

L0LS-CD was compared with L1LS (estimate of which is the same as that of

LASSO since l1 is convex), regularized FOCUSS [187], pIHT [20], cIHT (over-

determined [20], under-determined [21]) OMP and CoSaMP [166]. L1LS was

optimized using cyclic descent as in [74, 278]. As recommended by the authors

of [187] q was set to 0.8 for regularized FOCUSS.

The development of the IALZ algorithm presented in [115, 117] does not

support noise. However systems with noise are considered in the simulations

of [115, 117] and the noise is handled in an ad-hoc manner by adjusting the

algorithm termination threshold according to the SNR, thus IALZ is not included

in the preceding simulations. Although the vector version, JLZA [116] supports

noise, when the vector length was set to 1 its performance degraded dramatically.
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Its performance may be improved with a different configuration of its tuning

parameters but this is a separate study by itself and will not be attempted in this

thesis.

As mentioned in chapter 1, CoSaMP [166] cannot support low sparsity levels.

If r is the expected number of non-zero entries in the estimate, CoSaMP requires

finding the pseudoinverse of a sub matrix of X which can have up to 3r columns.

In order for this sub matrix of X to have full rank in under-determined systems,

r has to be less than n/3. Denote the residual as ek, CoSaMP calculates a signal

proxy (vector of residual correlations), XT ek and then selects the indices of the

2r largest-magnitude components. For this to be possible in over-determined

systems r has to be less than p/2.

As recommended in [20], pIHT was initialized with the output of OMP,

β0 = βOMP . cIHT was initialized as β0 = βOMP for over-determined systems

and as β0 = 0 for under-determined systems as recommended by [20] and [21]

respectively. L0LS-CD was initialized with all zeros (β0 = 0) and with the output

of L1LS (β0 = βl1) to show the importance of proper initialization.

2.11.5 L0LS-CD Performance Comparison

The algorithms were compared on over-determined as well as under-determined

systems. For each system, n, p and SNR were first kept fixed and r was varied

to show the performance with varying sparsity and then n, p and r were kept

fixed and SNR was varied to show the performance with varying noise levels. X

is kept fixed throughout the simulation. For each sparsity level 20 β vectors were

generated and for each β vector 50 y vectors were generated. The median of the

results were considered for performance comparison.

Under-determined Systems: First consider under-determined systems.

Set n = 50, p = 128, SNR = 10 and vary r from 5 to 25 (CoSaMP cannot

support r > 16). Refer figure 2.1 for the performance of the algorithms with

varying sparsity when the non-zero values of β� were drawn from a Gaussian dis-

tribution. Regularized FOCUSS and L1LS has the highest TPR. However they

also have a very high FPR. So these algorithms produce estimates with low spar-

sity and they are unable to identify the correct model, thus undesirable. L0LS-CD
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with β0 = βl1 produce the next highest TPR while maintaining the lowest FPR.

Regularized FOCUSS and L1LS produces the lowest MSEμ and MSEβ however

as discussed above their estimates have very low sparsity. L0LS-CD with β0 = βl1

has the next lowest MSEμ and MSEβ particularly at low sparsity levels. Its very

clear from all the plots that L0LS-CD with β0 = βl1 is far superior to L0LS-CD

with β0 = 0. Thus it is clear that proper initialization is very important.

Refer figures 2.2 and 2.3 for the performance of the algorithms with varying

sparsity when the non-zero values of β� were drawn from Laplace and Bernoulli

distributions respectively. The performance of the algorithms in figure 2.2 seem

identical to that of figure 2.1. As shown in figure 2.3 the performance of OMP,

pIHT and CoSaMP seem to degrade when the non-zero values of β� were drawn

from a Bernoulli distribution. However L0LS-CD with β0 = βl1 continues to

outperform the others.

Figure 2.1: Performance comparison of L0LS-CD by the variation of the perfor-
mance measures as a function of sparsity in an under-determined system with
n = 50, p = 128, SNR = 10 and non-zero values of β� drawn from a Gaussian
distribution.

To compare performance of algorithms at various noise levels, set n = 50,

p = 128, r = 15 and vary SNR from 30 to 3. Refer figure 2.4 for the results when

the non-zero values of β� were drawn from a Gaussian distribution. Similar to
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Figure 2.2: Performance comparison of L0LS-CD by the variation of the perfor-
mance measures as a function of sparsity in an under-determined system with
n = 50, p = 128, SNR = 10 and non-zero values of β� drawn from a Laplace
distribution.

Figure 2.3: Performance comparison of L0LS-CD by the variation of the perfor-
mance measures as a function of sparsity in an under-determined system with
n = 50, p = 128, SNR = 10 and non-zero values of β� drawn from a Bernoulli
distribution.
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figure 2.1, although regularized FOCUSS and L1LS has the highest TPR it also

has the highest FPR and thus they are undesirable. L0LS-CD with β0 = βl1 has

the second highest TPR while maintaining the lowest FPR, MSEμ and MSEβ.

When an Laplace distribution was used to generate the β� vector, the results

seem identical to figure 2.4. Similar to the observation in figure 2.3, the perfor-

mance of OMP, pIHT and CoSaMP degraded when a Bernoulli distribution was

used to generate the β� vector. In both cases L0LS-CD with β0 = βl1 outper-

formed the others. Refer appendix 2.B for the figures showing the performance of

the algorithms with varying SNR when the β� vector was generated using Laplace

and Bernoulli distributions.

Although the authors of [20] state that cIHT has superior exact recovery ca-

pabilities compared to pIHT, it is apparent from figures 2.1, 2.2 and 2.4 that

when h is selected properly pIHT has lower FPR than that of cIHT while main-

taining similar TPR. Thus when h is selected properly pIHT has the potential

of producing superior results to cIHT in terms of exact recovery. However when

Bernoulli distribution is used to generate the β� vector the performance of pIHT

drops dramatically as shown in figure 2.3.

Figure 2.4: Performance comparison of L0LS-CD by the variation of the perfor-
mance measures as a function of SNR in an under-determined system with n =
50, p = 128, r = 15 and non-zero values of β� drawn from a Gaussian distribution.
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Over-determined Systems: To observe the performance of the algorithms

at varying levels of sparsity, set n = 128, p = 50, SNR = 10 and vary r from 5 to 40

(CoSaMP cannot support r > 25). To observe the performance of the algorithms

at various levels of noise, set n = 128, p = 50, r = 15 and vary SNR from 30 to 3.

Figures 2.5 and 2.6 show the performance of the algorithms at various levels of

sparsity and SNR when the β� vector was generated using a Gaussian distribution.

It is clear from figures 2.5 and 2.6 that the properties of the algorithms when

applied to over-determined systems is noticeably different from that of under-

determined systems. Similar to under-determined systems JLZA, regularized

FOCUSS and L1LS all produce undesirable, low sparse estimates with very high

FPR. CoSaMP produce estimates with high MSEμ and MSEβ. However unlike

in under-determined systems L0LS-CD, pIHT, cIHT and OMP produce similar

results. These four algorithms seem to be compatible when applied to over-

determined systems, but their performance is clearly different when applied to

under-determined systems. L0LS-CD, pIHT, cIHT and OMP produce estimates

with lowest MSEμ and MSEβ while maintaining the lowest FPR and moderately

high TPR. This again emphasizes the fact that pIHT and cIHT can produce

comparable results when h is selected properly. All the algorithms performed in

a similar manner when Laplace and Bernoulli distributions were used to generate

the β� vector and these results are given in appendix 2.B.

2.12 V-L0LS-CD Simulation

The performance measures of scalar sparse regression discussed in section 2.11.1

can be easily extended to multivariate regression. Given the value of h denote

the estimate as B̂h and the original coefficient matrix as B�, then

MSEμ = E

(∑d
j=1 ‖X(β̂(j),ĥ − β�

(j))‖2∑d
j=1 ‖X(β�

(j))‖2

)
,

MSEβ = E

(∑d
j=1 ‖β̂(j),ĥ − β�

(j)‖2∑d
j=1 ‖β�

(j)‖2

)
,
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Figure 2.5: Performance comparison of L0LS-CD by the variation of the perfor-
mance measures as a function of sparsity in an over-determined system with n
= 128, p = 50, SNR = 10 and non-zero values of β� drawn from a Gaussian
distribution.

Figure 2.6: Performance comparison of L0LS-CD by the variation of the perfor-
mance measures as a function of SNR in an over-determined system with n = 128,
p = 50, r = 15 and non-zero values of β� drawn from a Gaussian distribution.
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where β̂(j),h and β�
(j) are the j

th columns of B̂h and B� respectively. Similarly the

sets needed to calculate TPR and FPR can be redefine as, Γ0 = {j : ‖β�
[j]‖ = 0},

Γc = {j : ‖β�
[j]‖ �= 0}, Γ̂0 = {j : ‖β̂[j],ĥ‖ = 0} and Γ̂c = {j : ‖β̂[j],ĥ‖ �= 0}. Similar

to section 2.11.2 ĥ is selected using a modification of the BIC criterion as follows,

ĥ = min
h

BIC =

∑d
j=1 ‖y(j)−Xβ̂(j),h‖2

σ2
+ ṙd ln(nd), (2.46)

where ṙ is the number of non-zero rows in B̂, i.e. ṙ = dim(Γ̂c). Here the noise

vectors (columns of matrix E) are considered to be independent of each other

(correlation matrix =σ2I).

After extensive simulations, similar to that discussed in section 2.11.3, the best

initialization for V-L0lS-CD was found to be the minimizer of V-L1LS criterion.

2.12.1 Multivariate Regression Simulation Setup

For all the multivariate regression simulations the data was generated similar to

that of scalar regression. Here only under-determined systems are considered

since as shown in section 2.11.5 estimation in an over-determined system is more

straightforward.

The dictionary X is created as given in section 2.11.4. Sparsity of B for an

under-determined system is 1 − ṙ/n, where ṙ is the number of non-zero rows

of B. The locations of the non-zero rows were selected from a discrete uniform

distribution and the non-zero rows were created by entries from a Gaussian ran-

dom variable with zero mean and unit variance. In scalar regression simulations,

we investigated how the performance of algorithms get influenced by the prob-

ability distribution of the non-zero entries of the coefficient vector. As shown

in the simulation results of section 2.11.5 this did not have a considerable effect

on algorithm performance. Thus only Gaussian distribution is considered in the

multivariate regression simulations.

For a given X, B and SNR value the Y was generated from (2.20), where E

contain noise vectors of zero mean and variance σ2. σ2 depends on the SNR level

and the noise vectors are assumed to be independent from each other (correlation
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2.12. V-L0LS-CD Simulation

matrix =σ2I).

SNR =

∑d
j=1 ‖Xβ�

(j)‖2
ndσ2

.

Similar to the scalar simulation setup 2.11.4 a preliminary set of simulations

were done to get ĥ by BIC. ĥ is then used in a second set of simulations to

study the algorithm performance which is kept fixed at each iteration within an

algorithm unlike in [40].

V-L0LS-CD was compared with vector l1 penalized least squares (V-L1LS)

[144], regularized M-FOCUSS [40], JLZA [116](tuning parameter settings recom-

mended in [116] were used) and SOMP [245]. V-L1LS is introduced in [144], but

is solved by second order cone programming; instead cyclic descent (V-L1LS-CD)

was used here. Since the criterion is convex, both algorithms will produce the

same answer. As stated in [40], p was set to 0.8 and at the end of the algorithm,

Y was orthogonally projected on to the atoms selected by the algorithm. [40]

perform hard thresholding of the estimates of regularized M-FOCUSS so that the

sparsity of the estimates would equal that of the original B matrix. This step

was omitted here as the sparsity of the original B matrix is generally unknown.

Similar to the simulations performed in section 2.11, V-L0LS-CD was initialized

with all zeros B0 = 0 as well as with the estimate of V-L1LS-CD B0 = Bl1 to

show the importance of initialization.

2.12.2 V-L0LS-CD Performance Comparison

For the simulations discussed in this section dimensions similar to [40]; n = 20,

p = 30 were used. X was kept fixed throughout the simulation.

First the variation of the performance measures with sparsity were investi-

gated. Set d = 3 and SNR= 10 and vary k from 2 to 10. For each sparsity

level 50 B matrices were generated and using each B matrix 100 Y matrices were

generated. Results are given in figure 2.7.

Similar to L1LS in scalar regression simulations, V-L1LS-CD has the highest

TPR and the highest FPR. This means that V-L1LS-CD like L1LS produces

estimates with very low sparsity and is thus undesirable. V-L0LS-CD with B0 =
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2.12. V-L0LS-CD Simulation

Figure 2.7: Performance comparison of V-L0LS-CD by the variation of the per-
formance measures as a function of sparsity in a multivariate under-determined
system with n = 20, p = 30, d = 3 and SNR = 10.

Figure 2.8: Performance comparison of V-L0LS-CD by the variation of the perfor-
mance measures as a function of SNR in a multivariate under-determined system
with n = 20, p = 30, d = 2 and ṙ = 7.
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2.13. Conclusion

Bl1 has the next highest TPR while maintaining the lowest FPR. Furthermore

V-L0LS-CD with B0 = Bl1 has the lowest MSEμ and MSEβ specially towards

the lower sparsity levels. Although JLZA and regularized FOCUSS had poor

performance in the scalar regression setting its performance is greatly improved

in multivariate regression. However in this example V-L0LS-CD with B0 = Bl1

is superior to the others.

Secondly the variation of the performance measures with SNR were investi-

gated. Set d = 2, k = 7 and vary SNR from 30 to 3. Results are given in figure

2.8.

Similar to the earlier example V-L1LS-CD has very high FPR and V-L0LS-

CD with B0 = Bl1 has the lowest FPR. Furthermore V-L0LS-CD with B0 = Bl1

has the lowest MSEμ and MSEβ.

From both these examples it is clear that when considered individually V-

L1LS-CD produces very low sparsity results with very high FPR and V-L0LS-CD

with B0 = 0 produces results with very low TPR. However when V-L0LS-CD is

initialized with V-L1LS-CD estimate it produces the best results.

2.13 Conclusion

This chapter discussed exact l0 denoising and presented a cyclic descent based

algorithm (L0LS-CD) to minimize the l0 penalized least squares criterion. Issues

of computational speed were addressed and a greedy method was proposed to

enhance speed. Importance of proper initialization, convergence and the stability

of the algorithm was also investigated. The impact of the penalty parameter on

the performance of the algorithm was illustrated. Simulation results show that

L0LS-CD produce superior results in terms of sparsity, MSEμ, MSEβ and model

selection when applied to under-determined systems. In over-determined systems

L0LS-CD, pIHT, cIHT and OMP produce comparable results while outperform-

ing JLZA, regularized FOCUSS, L1LS and CoSaMP.

Two variants of the L0LS-CD algorithm was also developed in this chapter.

V-L0LS-CD was developed for multivariate regression and gL0LS-CD can handle

grouped variables. The simulation results show that similar to the performance

of L0LS-CD, V-L0LS-CD initialized with the estimate of V-L1LS-CD produces
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superior results when compared with existing algorithms. The performance of

gL0LS-CD will be analyzed in the context of sparse network topology identifica-

tion application in chapter 4.

2.A Appendix: FSEL, CLEAN and OMP

This section gives an overview of the widely used greedy algorithms FSEL, CLEAN

and OMP. FSEL and OMP will be discussed first, followed by the CLEAN algo-

rithm.

In FSEL and OMP estimate of β in each iteration is calculated as the least

squares estimator over the current active set. Suppose k columns of X have

already been chosen; collect these into a matrix Xk and denote the set of indices

of the active set as Γk
c . let z be the new column being added and denote Xk+1 =

[Xk, z]. Denote M = Xk,TXk, which is invertible for over-determined systems

and for under-determined systems with k < rank(X). The ordinary least squares

estimator is then,

βk = M−1Xk,Ty ⇒ Mβk = Xk,Ty (2.47)

Partition the updated least squares estimator as β̂ =
(
βk+1

b

)
. Since zT z = 1 the

normal equations are then

(
M Xk,T z

zTXk 1

)(
βk+1

b

)
=

(
Xk,Ty

zTy

)
(2.48)

Expanding the equations out, denoting ρ = Xk,T z and using (2.47) gives

Mβk+1 + ρb = Mβk (2.49)

ρTβk+1 + b = zTy (2.50)

Using (2.49) we find,

βk+1 = βk −M−1ρb (2.51)
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2.A. Appendix: FSEL, CLEAN and OMP

Then substituting (2.51) in (2.50) we get

ρTβk + b(1− ρTM−1ρ) = zTy

b = (zTy − ρTβk)/d (2.52)

where d = 1 − ρTM−1ρ. But note that zTy − ρTβk = zT (y − Xkβk) = zT ek so

that b = zT ek/d. The error signal is,

ek+1 = y −Xk+1β̂

= y − [Xk, z]

(
βk+1

b

)
= y −Xkβk+1 − zρ

= y −Xk(βk −M−1ρb)− zb

= y −Xkβk − b(z −XkM−1ρ)

= ek − b(z −XkM−1ρ) (2.53)

The prior error signal energy is

‖ek‖2 = ‖y −Xkβk‖2

= ‖y − [Xk, z]

(
βk

0

)
‖2

= ‖y −Xk+1β̂ +Xk+1

(
β̂ −

(
βk

0

))
‖2

= ‖ek+1‖2 +
(
β̂ −

(
βk

0

))T

Xk+1,TXk+1

(
β̂ −

(
βk

0

))
= ‖ek+1‖2 + ε
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However

ε = (βk+1,T − βk,T , b)Xk+1,TXk+1

(
βk+1 − βk

b

)

= b2(−ρTM−1, 1)

(
M ρ

ρT 1

)(−M−1ρ

1

)

= b2(−ρT + ρT ,−ρTM−1ρ+ 1)

(−M−1ρ

1

)
= b2(1− ρTM−1ρ)

= b2d

= (zT ek)2/d

Thus

‖ek+1‖2 = ‖ek‖2 − (zT ek)2/d (2.54)

2.A.1 FSEL

(i) From (2.54) we can see that the energy of the error signal is minimized

when (zT ek)2/d is maximized. Thus given Xk, βk and ek, find

û = arg.max
u/∈Γk

c

|xT
(u)e

k|
Δu

,

where Δu =
√

1− ρTu (X
k,TXk)−1ρu =

√
du, ρu = Xk,Tx(u).

Set z = x(û), γ = zT ek, ρ = Xk,T z,Δ = Δû and d = Δ2. NB. For initial

step take βk = 0 ⇒ ek = y and Δu = 1.

(ii) Stop if the stopping criterion is met. If not continue.

(iii) Get b from (2.52), βk+1 from (2.51) and ek+1 from (2.53).

(iv) Update ek = ek+1, βk =
(
βk+1

b

)
and return to (i)

2.A.2 OMP

OMP differs from FSEL only in the method of selecting the next index. So the

OMP algorithm is the same as that presented in 2.A.1 with step (i) changed as
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follows,

Given Xk, βk and ek, find û = arg.max
u/∈Γk

c

|xT
(u)e

k|,
Set z = x(û), γ = zT ek, ρ = Xk,T z,Δ = Δû and d = Δ2 .

2.A.3 CLEAN

Unlike FSEL and OMP clean algorithm does not orthogonally project the signal

over the active set. At each iteration the β vector and the error signal is updated

in a different way thus it does not follow the format given above. Initialize the

algorithm with β0 = 0.

(i) Given X, βk and ek, find û = arg. max
u/∈Γk−1

c

|xT
(u)e

k|.

Set z = x(û) and γ = zT ek.

(ii) Update βk+1 = βk+αγδû and ek+1 = ek−αγz where α is a gain factor and

δû is a vector of 0s but with 1 in position û [220].

(iii) Stop if the stopping criterion is met. If not return to (i).

Generally the gain factor α = 1 since it gives the fastest convergence. However

as long as 0 < α < 2 the algorithm will converge [220]. Expression for the energy

signal is as follows,

‖ek+1‖2 = ‖ek‖2 − α(2− α)γ2. (2.55)

2.B Appendix: L0LS-CD Performance Compar-

ison Continued

Section 2.11.5 gives results of a simulation that compares the performance of the

L0LS-CD algorithm with other scalar regression algorithms. These simulations

investigate how the performance of algorithms is affected by the distribution of

the non-zero entries of the coefficient vector at various sparsity and noise levels.

Due to the large volume of simulation results, some of the results are included in

this appendix to improve the readability of section 2.11.5.
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2.B. Appendix: L0LS-CD Performance Comparison Continued

Figure 2.9: Performance comparison of L0LS-CD by the variation of the perfor-
mance measures as a function of SNR in an under-determined system with n =
50, p = 128, r = 15 and non-zero values of β� drawn from a Laplace distribution.

Figure 2.10: Performance comparison of L0LS-CD by the variation of the perfor-
mance measures as a function of SNR in an under-determined system with n =
50, p = 128, r = 15 and non-zero values of β� drawn from a Bernoulli distribution.
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2.B. Appendix: L0LS-CD Performance Comparison Continued

Figure 2.11: Performance comparison of L0LS-CD by the variation of the per-
formance measures as a function of sparsity in an over-determined system with
n = 128, p = 50, SNR = 10 and non-zero values of β� drawn from a Laplace
distribution.

Figure 2.12: Performance comparison of L0LS-CD by the variation of the per-
formance measures as a function of sparsity in an over-determined system with
n = 128, p = 50, SNR = 10 and non-zero values of β� drawn from a Bernoulli
distribution.
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2.B. Appendix: L0LS-CD Performance Comparison Continued

Figure 2.13: Performance comparison of L0LS-CD by the variation of the per-
formance measures as a function of SNR in an over-determined system with n =
128, p = 50, r = 15 and non-zero values of β� drawn from a Laplace distribution.

Figure 2.14: Performance comparison of L0LS-CD by the variation of the perfor-
mance measures as a function of SNR in an over-determined system with n = 128,
p = 50, r = 15 and non-zero values of β� drawn from a Bernoulli distribution.
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Chapter 3

Quadratic Concave Algorithm for

Sparsity

The motivation behind sparse signal processing and its vast array of applications

were outlined in the introduction chapter. As mentioned in section 1.5 optimizing

the least squares criterion penalized with a non-quadratic penalty is one of the

most successful methods of sparse modeling. Optimizing the l0 penalized least

squares (L0LS) criterion was addressed in chapter 2.

Due to the discrete non-convex nature of the l0 norm, finding the global min-

imum of L0LS is NP hard. Thus the l0 norm is commonly replaced by smoothed

penalties as mentioned in section 1.5.3.3. Such smooth approximations are also

available for other penalties such as the l1 norm.

All of the algorithms discussed and developed in chapters 1 and 2 are con-

centrated on optimizing a criterion with a particular penalty. Few papers have

developed generic algorithms that can handle a class of penalty functions. A fam-

ily of non-convex penalties which can be decomposed as a difference of convex

functions (DC) is considered in [76] which then uses DC programming [107] to

optimize the criterion. The resulting iterative algorithm solves a convex weighted

LASSO problem at each iteration. Since the negative of a convex function is

concave, we could regard this as a problem of minimizing a sum of a convex and

a concave function [279]. Drawback of this method is that many penalties can-

not be decomposed as DC functions. Group of non-smooth, possibly non-convex
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3.1. Class of Quadratic Concave Penalties

penalties are considered in [273] which develops a method based on proximity

algorithms [39].

Majorization minimization (MM) algorithm was first introduced by [174] and

then later developed by [127]. The acronym MM first appears in [112] and it

has been used in many statistical applications [113]. [20] has used it to optimize

L0LS and [150] has used MM technique to optimize an lq penalized least squares

criterion. This chapter develops an algorithm that can optimize least squares

criterion penalized with a penalty that have what we call the quadratic concave

property based on the MM technique. It is called the QC (quadratic concave)

algorithm. The class of penalties QC supports is more general than that of

[76, 273].

Section 3.1 introduces the class of quadratic concave penalties that will be

considered in this chapter along with their properties. Section 3.2 gives the

informal development of the algorithm followed by a comparison with a Newton

algorithm. A formal development follows in section 3.3. Convergence analysis is

provided in section 3.4. Simulations are in section 3.5 and conclusions in section

3.6.

3.1 Class of Quadratic Concave Penalties

Smooth approximations of sparse penalties has a long history including work in

the image processing literature [77, 78, 131, 227] where the penalty is on a gradient

rather than an amplitude as here. Denote ρ(β) as the smooth approximating

penalty. The algorithm developed in this chapter can handle any penalty ρ(β)

which adhere to the following properties.

(i) ρ(β) is differentiable.

(ii) ρ(β) is quadratic concave i.e. ρ(β) = κ(β2) where κ(·) is concave.

Examples of smooth approximating penalties ρ(·) and their properties are

collected in table 3.1. In the sequel a fundamental role is played by the weight

function ω(β) = ρ′(β)/β so these are also listed.
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3.1. Class of Quadratic Concave Penalties

Table 3.1: Smooth Approximations to Sparse Penalties and their Properties.

Penalty Approximation ρ(·) ρ′(β) ω(·) ρ′′(β) Source

l1
√
β2 + γ2 − γ β√

β2+γ2

1√
β2+γ2

1√
β2+γ2

− β2

[β2+γ2]3/2
[259]

l1 γ ln cosh(β
γ
) tanh(β

γ
)

tanh(β
γ
)

β
1
γ
(1−tanh2(β

γ
)) [199]

l0 1− e
− β2

2γ2 β
γ2 e

− β2

2γ2 1
γ2 e

− β2

2γ2 1
γ2 e

− β2

2γ2 − β2

γ2 e
− β2

2γ2 [159]

- log(
√
β2+γ2)−log(γ) β

β2+γ2
1

β2+γ2 - [269, 270]

Note that the first two entries of table 3.1 have non-decreasing ρ′(β) and are

thus convex. The third and fourth entries are neither convex nor concave. The

algorithm developed below can handle all these cases.

The fifth column of table 3.1 gives the second derivative of ρ(β). When ρ′′(β)

exists, it has the form ω(β)− β2ψ(β) and ω(·), ψ(·) are both non-negative. This

feature is crucial in our ensuing informal discussion of convergence given in section

3.2. The formal convergence analysis does not require the existence of a second

derivative.

When the second derivative exists this structure is general as follows. Inspec-

tion of the smoothed approximations in the table 3.1 yields the following crucial

observation,

ρ(β) = κ(β2), (3.1)

where κ(x) is concave, thus ρ(β) is quadratic concave. Then ρ′(β) = 2βκ′(β2) so

that ω(β) = 2κ′(β2) which by inspection is greater than 0 in each case. We can

now write ρ′(β) = βω(β). Then

ρ′′(β) =ω(β) + βω′(β) = ω(β) + 4β2κ′′(β2),

=ω(β)− β2ψ(β), (3.2)
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where,

ψ(β) = −4κ′′(β2) ≥ 0, (3.3)

since κ(x) is concave.

This chapter develops an algorithm to optimize least squares criterion penal-

ized by a quadratic concave penalty. Thus the criterion is given by (1.4c) with

f(β) = ρ(β),

J(β) = ‖y −Xβ‖2 + hρ(β). (3.4)

[180, 179] have considered a class of functions which has the same structure as the

quadratic concave penalties discussed above. However [180, 179] do not consider a

penalized procedure and do not have the algorithm developed below. Reweighted

l2 penalty discussed in [270] is a generalization of the log function given in table

3.1, however there are no convergence theorems; just an informal discussion of

convergence. The reweighted l1 penalty discussed in [28, 270] is not smooth and

thus falls outside of the framework discussed above.

3.2 Informal Development of the QC Algorithm

This section presents a heuristic development of the algorithm assuming ρ(β) is

twice differentiable. In particular it will be compared with a Newton algorithm

to emphasis its superiority.

3.2.1 Derivation

The first order optimality condition or Euler equation of (3.4) is,

dJ

dβ
= 0 = −XT (y −Xβ) + hdiag(ω(βu))β. (3.5)

The form of this equation immediately suggests a fixed point iteration,

βk+1 = M−1
k XTy, (3.6)
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3.2. Informal Development of the QC Algorithm

where

Mk = XTX + hWk, (3.7)

and Wk = diag(ω(βk
u)). Note that Mk is positive definite.

3.2.2 Informal Analysis

If (3.4) is differentiated again and use the result in (3.2) we obtain,

d2J

dβdβT
= XTX + h(Wk −Qk), (3.8)

where Qk = diag((βk
u)

2ψ(βk
u)) and is positive semi-definite. Now consider the

Taylor series,

J(βk+1) = J(βk) +
∂J

∂βk

T

Δk +
1

2
ΔT

k

d2J

dβkdβk,T
Δk + o(‖βk‖2), (3.9)

where Δk = βk+1 − βk. Using (3.5) and (3.6),

dJ

dβk
= (XTX + hWk)β

k −XTy

= −(XTX + hWk)(β
k+1 − βk)

= −MkΔk. (3.10)

Now denote Jk+1 = J(βk+1), Jk = J(βk) and put (3.8) and (3.10) in (3.9) to

yield,

Jk+1 − Jk = −ΔT
kMkΔk +

1

2
ΔT

k (Mk −Qk)Δk,

= −1

2
ΔT

k (Mk +Qk)Δk. (3.11)

so that we get, locally, a guaranteed reduction in J(·) unless Δk = 0. It is very

interesting to compare this with the Newton algorithm which using (3.7) and
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(3.8) clearly has the form,

βk+1 = βk − (Mk −Qk)
−1 dJ

dβk

= βk − (Mk −Qk)
−1(Mkβ

k −XTy)

= (Mk −Qk)
−1[XTy −Qkβ

k] (3.12)

The corresponding change in the criterion is then,

Jk+1 − Jk = −1

2
ΔT

k (Mk −Qk)Δk. (3.13)

We now see that the Newton algorithm is inferior in two ways. Firstly since

Mk − Qk is not guaranteed to be positive definite, the Newton algorithm may

stall. Secondly even if it does not, the update is not guaranteed to reduce the

value of the criterion. We have a remarkable situation where an MM algorithm

is superior to the Newton algorithm.

3.3 Formal Development of QC Algorithm

Section 3.3.1 will review briefly the idea of MM algorithms and then section 3.3.2

will develop the QC algorithm formally. Unlike the informal analysis, here ρ(β)

is only required to be differentiable.

3.3.1 MM Algorithms

The MM principle, which goes back to [174], is a principle for deriving iterative

algorithms to minimize (or maximize) a criterion of interest. An MM algorithm is

guaranteed to not increase (decrease) the criterion at each step. A very readable

survey is available in [113] and more recently [275].

The idea is the following [113]. Let J(β) be the criterion of interest and let

βk be the estimate at the kth iterate. Suppose we can find a bivariate functional

M(β|βk) which obeys the following two properties.

(i) M(β|βk) ≥ J(β) for all β ( M(β|βk) Majorizes J(β) ).

75
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(ii) M(βk|βk) = J(βk).

Thus M(β|βk) lies above J(β) and is tangent at βk. Then we generate iterates

as follows,

βk+1 = arg.min
β

M(β|βk). (3.14)

We then find,

J(βk+1) = M(βk+1|βk) + [J(βk+1)−M(βk+1|βk)]. (3.15)

But from (3.14), the first term is less than M(βk|βk) while the second is less than

0. We thus find,

J(βk+1) ≤ M(βk|βk) = J(βk). (3.16)

which demonstrates the required non-increase.

The question of course is how to construct the majorizing functional. Unlike

the EM algorithm there is no principled way to do this. Rather there is a growing

body of methods and [113] gives some of them and one of those is relevant here.

Consider the Taylor series,

J(β) = J(βk) +
∂J

∂βk

T

(β − βk) +
1

2
(β − βk)T

∂2J

∂β∗∂β∗
(β − βk), (3.17)

where β∗ is an intermediate value between βk, βk+1. Now suppose we can find a

bound H on the Hessian such that H − ∂2J
∂β∂β

is positive semi-definite for all β.

Then we can take

M(β|βk) = J(βk) +
∂J

∂βk

T

(β − βk) +
1

2
(β − βk)TH(β − βk), (3.18)

And indeed we have M(β|βk) ≥ J(β) for all β. As well as M(βk|βk) = J(βk).

Thus the QC iterate will be

βk+1 = βk +H−1 ∂J

∂βk
. (3.19)
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Using this result appendix 3.A shows that proximity algorithms of [39] are MM

algorithms. Also [225] has recognized the concave-convex (CC) procedure as an

MM algorithm, and a proof is given in appendix 3.B for completeness.

But it turns out in problem (3.4) such a β free bound cannot be found. Rather

a β dependent bound W (β) is available. But drawing on the more sophisticated

argument of [109] and the additive nature of (3.4) criterion, it is possible never-

theless to construct an MM algorithm.

3.3.2 QC Algorithm: Formal Development

Now it is formally shown that the algorithm developed in section 3.2 is indeed an

MM algorithm. First introduce the condition,

Condition 1: ω(θ) is decreasing in θ.

Lemma L7. Since ρ(β) = κ(β2), ω(θ) is decreasing iff κ(|θ|) is strictly

concave.

Proof. ρ′(β) = 2βκ′(β2). Thus ω(β) = 2κ′(β2). And so ω(β) is decreasing

iff κ(|β|) is strictly concave.

When ρ(·) is twice differentiable we already saw in (3.2) that concavity of

κ(·) is equivalent to ψ(·) ≥ 0. Crucial to our discussion is the following lemma

inspired by the method in [109].

Lemma L8. let θ be a scalar. Given a reference value θ̂ introduce the

function,

V (θ|θ̂) = ρ(θ̂) +
1

2
ω(θ̂)(θ2 − θ̂2). (3.20)

Clearly V (θ̂|θ̂) = ρ(θ̂). Further, provided condition 1 holds, V (θ|θ̂) ≥ ρ(θ)

for all θ.

Proof. Put d(θ) = V (θ|θ̂) − ρ(θ̂). Then d(−θ) = d(θ) and d(θ̂) = 0. We

have to show d(θ) ≥ 0. Next

d′(θ) = θ(ω(θ̂)− ω(θ)). (3.21)
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Since d(θ) is an even function we now need only consider θ > 0. There are

two cases.

If 0 < θ̂ < θ then ω(θ̂) > ω(θ) ⇒ d′(θ) ≥ 0. Integrating this gives

d(θ)− d(θ̂) ≥ 0 ⇒ d(θ) ≥ 0.

If 0 < θ < θ̂ then ω(θ̂) < ω(θ) ⇒ d′(θ) ≤ 0. Integrating this gives

d(θ̂)− d(θ) ≤ 0 ⇒ d(θ) ≥ 0. The proof is complete.

This result is used to construct a majorizing function for (3.4). Indeed using

the lemma L8 consider that

M(β|βk) =
1

2
‖y −Xβ‖2 + h

p∑
1

V (βu|βk
u)

≥ 1

2
‖y −Xβ‖2 + h

p∑
1

ρ(βu) = J(β).

M(βk|βk) =
1

2
‖y −Xβk‖2 + h

p∑
1

ρ(βk
u) = J(βk)

So M(β|βk) is a majorizing function. Further setting d
dβ
M(β|βk) = 0 yields

0 = −XT (y −Xβ) + hWkβ

⇒ β = βk+1 = (XTX + hWk)
−1XTy, (3.22)

which is exactly our earlier update (3.6) and exhibits it as an MM update. Thus

J(βk+1) ≤ J(βk). Similar to the L0LS-CD algorithm, QC can be terminated

when J(βk) − J(βk+1) ≤ tolerance. Initialization of QC with respect to smooth

approximations of the l0 penalty is discussed in section 3.5.

3.4 Convergence

Although the development of the QC algorithm supports both over-determined

and under-determined systems, the stability analysis given here applies only to

over-determined systems. The QC algorithm can be successfully applied to under-

determined systems as shown by simulation results in section 3.5. Thus the
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stability analysis of QC in under-determined systems is open for future research.

Note that M(β|βk) is quadratic in β and so obeys an exact second order

Taylor series. We have,

M(β|βk) =
1

2
‖y −Xβ‖2 + h

p∑
1

ρ(βk
u) +

h

2
[βTWkβ − βk,TWkβ

k]

⇒ dM(β|βk)

dβ
= −XT (y −Xβ) + hWkβ

= Mkβ −XTy

⇒ d2M(β|βk)

dβdβT
= Mk = XTX + hWk

Thus since M(βk+1|βk) = Jk+1 and M(βk|βk) = Jk we find,

Jk+1 = Jk −ΔT
kMk(β

k+1 − βk) +
1

2
ΔT

kMkΔk,

= Jk − 1

2
ΔT

kMkΔk,

≤ Jk − 1

2
ΔT

kX
TXΔk,

Introduce,

Condition 2: XTX has full rank.

Result I. Under conditions 1 and 2 as m → ∞,

(a) Jk converges to a limit J∞ ≥ 0.

Proof. We have 0 ≤ J(βk) ≤ J(β(0)). Thus Jk is a bounded sequence which

is non-increasing and so must have a limit say J∞. Thus Jk+1 − Jk →
J∞ − J∞ = 0.

(b) Δk = βk+1 − βk → 0.

Proof. Let σ be the smallest eigenvalue of XTX then,

1
2
σ‖Δk‖2 ≤ 1

2
ΔT

kX
TXΔk = Jk+1 − Jk → 0. Thus Δk → 0.

(c) The limit points of the βk sequence form a compact connected set.

Proof. In view of (b) this follows from Ostrowski’s theorem [176].

79



3.5. Simulations

(d) The limit points are stationary points of J(β).

Proof. In view of (b) any limit point β∗ must obey,

β∗ = (XTX + hW (β∗))−1XTy ⇒ dJ
dβ
|β∗ = 0.

Essentially the same algorithm is developed in [111] and is also recognized

as being an MM algorithm. However there is a fundamental and significant

difference between [111] and the present results. QC algorithm is derived and

analyzed under conditions 1 and 2, whereas [111] have the extremely stringent

requirement that ρ(·) be concave; this would rule out three of our four cases listed

in table 3.1. Thus under the results of [111] the QC algorithm can only be used

in very restrictive circumstances. Whereas our results show it to be of very wide

applicability.

3.5 QC Simulation

Although smooth approximations of the l1 penalty are supported by the QC

algorithm, only the approximations of the l0 penalty will be considered in this

section. Performance of the QC algorithm will be analyzed based on the Gγ
0

penalty (1.2f) which will be called QC-G0,γ and the THγ,b
0 penalty (1.2e) with

b = 2 which will be called QC-TH0,γ .

As shown in section 2.11.5 most algorithms performed well on over-determined

systems, thus only under-determined systems are considered here. However it

should be noted that the QC algorithm can be applied to over-determined sys-

tems. Simulations were set up in a similar way as that of L0LS-CD performance

comparison simulations given in section 2.11. X, y and β were generated in the

same way with SNR = 10, n = 50, p = 128 and the same performance measures

were used.

L0LS-CD and the other algorithms considered in section 2.11 required the

selection of h. Smooth approximation penalties require selection of at least one

more tuning parameter, e.g. γ for the Gγ
0 and THγ,b

0 penalties. Thus unlike the

algorithms considered in section 2.11, QC algorithm require selection of two or

more tuning parameters. Here the tuning parameters are selected using BIC. The
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3.5. Simulations

BIC criterion is the same as that given in section 2.11.2, however it is minimized

with respect to two tuning parameters as opposed to just h in section 2.11.

Although the smooth approximations of the l0 norm have the advantage of

being differentiable they still have the drawback of having multiple local minima.

Thus similar to L0LS-CD, proper initialization is essential for the proper func-

tioning of the QC algorithm with l0 approximations. Thus a method similar to

that used in section 2.11.3 was employed. QC algorithm was initialized with all

zeros β0 = 0, output of L1LS β0 = βl1 and output of OMP β0 = βOMP to find

out the best method of initialization.

Many sparse approximating algorithms were compared with the L0LS-CD

algorithm in section 2.11.5 and L0LS-CD outperformed all of them. Thus the

performance of those algorithms will not be re-evaluated here. Since the smooth

approximations of the l0 norm is considered the performance of the QC algorithm

is compared with the l0 denoising algorithms L0LS-CD and pIHT. Scalar version

of JLZA algorithm is not considered here due to the issues mentioned in section

2.11.4.

Sparsity of the β vector was varied from 0.5 to 1 and 20 β vectors were

generated for each sparsity level. 20 y vectors were generated for each β vector.

Performance of QC-G0,γ is given in figure 3.1 and that of the QC-TH0,γ is given

in figure 3.2.

It is clear from figures 3.1 and 3.2 that proper initialization is vital for both

the Gγ
0 and THγ,b

0 penalties. Similar to the observation made in section 2.11.5

QC algorithm with both penalties seem to perform best when initialized with the

output of L1LS. Both penalties with β0 = βl1 have a higher FPR than L0LS-

CD. However at very low sparsity levels the TPR of L0LS-CD and pIHT drop

dramatically but QC algorithm with smooth approximations of the l0 penalty

manage to maintain comparatively higher TPR and therefore has lower MSEμ.

Thus in this simulation, the QC algorithm with smooth approximations of the l0

penalty outperform L0LS-CD only at low sparsity levels.

In section 2.11 and in the example given above the X matrix was generated

from independent Gaussians with zero mean and unit variance. The profile of the

singular values (SV) of such a matrix is given in figure 3.3(a). The SV profiles

of regression matrices in real world applications may not be so well behaved.
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3.5. Simulations

Figure 3.1: Performance comparison of QC-G0,γ by the variation of the perfor-
mance measures as a function of sparsity in an under-determined system with n
= 50, p = 128 and SNR = 10.

Figure 3.2: Performance comparison of QC-TH0,γ by the variation of the perfor-
mance measures as a function of sparsity in an under-determined system with n
= 50, p = 128 and SNR = 10.
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3.5. Simulations

Figure 3.3: Singular value profiles of X matrices.

Figure 3.4: Performance comparison of QC-G0,γ by the variation of the perfor-
mance measures as a function of sparsity in an under-determined system with n
= 50, p = 128, SNR = 10 and when X has singular value profile (d).
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Figure 3.5: Performance comparison of QC-TH0,γ by the variation of the perfor-
mance measures as a function of sparsity in an under-determined system with n
= 50, p = 128, SNR = 10 and when X has singular value profile (d).

Thus X matrices with three different SV profiles as given by figures 3.3(b), 3.3(c)

and 3.3(d) were generated and their columns of were scaled to have unit norm.

Simulation described above was repeated with the newly generated X matrices.

Profile 3.3(d) can be considered as an intermediate between profiles 3.3(b) and

3.3(c) as it has a range of SV with high values and a range with values close

to zero. Thus only the results of the simulation done with profile 3.3(d) will be

shown here. Performance of the QC algorithm on a system where the SV profile

of the X matrix is similar to that shown in 3.3(d) is given in figures 3.4 and 3.5.

Its clear from figures 3.4 and 3.5 that the performance of all the algorithms

degrade when many SVs of X are close to zero. However compared to L0LS-CD

and pIHT, QC algorithm with β0 = βl1 has much higher TPR while maintaining

low FPR and as a result its has the lowest MSEμ and MSEβ. Its MSEμ in

particular is much lower than the L0LS-CD and pIHT. Furthermore QC-G0,γ seem

to perform better than QC-TH0,γ . From these simulations it is clear that while

L0LS-CD is the best option for sparse estimation when few SVs of X are close to

zero, when this condition is not met QC algorithm with smooth approximations
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of the l0 norm is a better option.

3.6 Conclusions

This chapter developed an algorithm called QC, based on MM technique that can

optimize the least squares criterion penalized with a quadratic concave penalty.

Informal development of the QC algorithm showed that it locally reduces the

criterion at each iteration where as the corresponding Newton algorithm may not.

A novel MM functional is used and convergence and the stability of the algorithm

was also investigated. Simulation results show that when many singular values of

the X matrix is close to zero the algorithm developed in this chapter outperforms

L0LS-CD algorithm developed in chapter 2.

3.A Appendix: Proximity Algorithm as an MM

Algorithm

The proximity algorithm [39] aims to solve the following optimization problem:

minx J(x) = L(x) + R(x) where L(x) and R(x) are convex. Also R(x) is differ-

entiable with Lipschitz continuous gradient with Lipschitz constant λ i.e.

||∇R(x)−∇R(y)|| ≤ λ||x− y||

Now by the mean value theorem [9][Theorem 12.9] there exists ȳ lying between

x, y i.e. ȳ = tx+ (1− t)y for some 0 < t < 1 such that,

R(x) = R(y) + (x− y)T∇R(ȳ)

Adding and subtracting (x− y)T∇R(y) we find,

R(x) = R(y) + (x− y)T∇R(y) + (x− y)T [∇R(ȳ)−∇R(y)]

But convexity of R(·) ensures that for all x, y we have R(x) > R(y) + (x −
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y)T∇R(y). We thus conclude that,

(x− y)T [∇R(ȳ)−∇R(y)] ≥ 0

We can then conclude

0 ≤ (x− y)T [∇R(ȳ)−∇R(y)]

≤ ||x− y||||∇R(ȳ)−∇R(y)||
≤ ||x− y||λ||ȳ − y|| ≤ λ||x− y||2

Introducing the function

R(x, y) = R(y) + (x− y)T∇R(y) + λ||x− y||2

We thus conclude that R(x, x) = R(x) while R(x) ≤ R(x, y). It follows that

M(x, y) = L(x) + R(x, y) forms a majorization function for J(x). Thus we can

generate a sequence of MM iterates according to,

xk+1 = arg .min
x

M(x, xk)

= arg .min
x

L(x) +R(xk) + (x− xk)T∇R(xk) + λ||x− xk||2 (3.23)

= arg .min
x

1

λ
L(x) + ||x− xk +

1

2λ
∇R(xk)||2

= prox 1
λ
L(x

k − 1

2λ
∇R(xk))

where

prox 1
λ
L(y) = arg .min

x

1

λ
L(x) + ||x− y||2

is exactly the proximity opertor defined in [39]. And this MM algorithm is

then exactly the backward-forward splitting algorithm of [39][1.17] as claimed.

Further we now see that the proximity operator appears naturally as a result of

the quadratic majorization.

It also follows that the algorithms cited in [39] as examples of proximity
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algorithms are MM algorithms.

3.B Appendix: CC as an MM Algorithm

For the DC problem we have J(x) = L(x) − R(x) where L(x), R(x) are convex

and R(x) is differentiable. Thus as before R(x) ≥ R(y) + (x− y)T∇R(y) and so

as [225] observed,

M(x, y) = L(x)−R(y)− (x− y)T∇R(y)

is a majorizer for J(x). Since indeed M(x, y) ≥ J(x) while M(x, x) = J(x). The

MM iteration is then,

xk+1 = arg .min
x

L(x)− xT∇R(xk)

This may now be compared with (3.23) the difference being the quadratic

term due to the additive convexity as opposed to the subtracted convexity here.
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Chapter 4

Application: Sparse Coloured

System Identification

There has recently been growing interest in sparse transfer function estimation

[22, 214, 189, 190]. Such approaches could prove useful in hardware implemen-

tation by saving on elements corresponding to zeroed coefficients. Furthermore

enforcing sparsity on the estimates will reduce the variance and as a result in-

crease the reliability of the estimates. Estimating a sparse transfer function can

be posed as a problem of finding a sparse solution to a linear model such as (1.1).

An overview of existing sparse approximating algorithms is given in section 1.5

and new algorithms have been proposed in chapters 2 and 3.

The traditional basis for transfer function model expansion is the delay (shift)

operator. However due to its short memory, it is not suitable for systems with

rapid sampling, as this leads to a substantial increase in the order of the approx-

imated model [154, 264]. Recent work [140, 193, 198] has tried to overcome these

issues by applying sparse regression based methods such as non-negative garrotte

and LASSO, but unless one uses finite impulse response (FIR) models there is no

way to guarantee stability in the presence of sparsity. Thus we need to utilize a

more suitable basis for model expansion.

Discrete time orthonormal Kautz and Laguerre basis functions have gained

popularity in the area of system identification. Under mild regularity conditions

any transfer function can be represented by an expansion in terms of causal La-
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guerre or Kautz polynomials [170, 266]. The z transform of these functions have

a recursive structure and the stability of the estimated system can be guaran-

teed by pre-determining the locations of the poles of these functions. Compact

modeling can be achieved by placing the poles close to the dominant poles of the

actual system. The benefits of Kautz and Laguerre filters over the delay operator

in the context of system identification are given in [5, 102, 170, 266].

Since Kautz and Laguerre basis functions provide a non parametric means

of compact modeling of linear dynamic systems with guaranteed stability they

have been widely used in system identification [264, 171, 101, 177, 265, 169].

However most of the work has been concentrated on systems with white noise.

[121, 221, 196] have developed system identification algorithms with Laguerre

expansions that can handle coloured noise but the authors have not introduced

sparsity to the estimated system.

Although using Kautz and Laguerre filters for model expansion by itself re-

duces the order of the approximated model, further reduction in the number

of parameters have been accomplished by the incorporation of sparse regression

techniques. It has been shown in some applications such as fMRI [29], that spar-

sity is a natural occurrence when Laguerre basis functions are employed. [22]

has used a thresholding method and [189, 190] have used LASSO to reduce the

number of parameters used in the Laguerre expansion model. However none of

these system identification algorithms can support coloured noise. [214] deals

with coloured noise and proposes a l1 penalized criterion but no algorithm has

been presented.

This chapter presents a cyclic descent based algorithm for estimating both a

transfer function (modeled as a Laguerre expansion) and a coloured (autoregres-

sive) noise model. Both l1 and l0 penalized procedures are discussed to introduce

sparsity to the estimated model. The L0LS-CD algorithm developed in section

2.5 is used for the l0 penalized version and LASSO is used for the l1 version. Our

method can be easily extended to support Kautz filters.

The remainder of the chapter is organized as follows. Section 4.1 gives an

overview of the Laguerre filters and introduces the model that will be considered

in this chapter. Section 4.2 develops the criterion used for system identification

and section 4.3 gives a cyclic descent algorithm to optimize this criterion. Section
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4.4 discusses tuning parameter selection. Section 4.5 gives simulation results to

demonstrate the effectiveness of this approach and to compare the performance

of the two penalties that are considered. Section 4.6 concludes the chapter.

4.1 The Laguerre Models With Coloured Noise

Laguerre basis is a series of filters each comprising of a first order low-pass filter

and first order all-pass filters. A kth order discrete time Laguerre basis function

is expressed as,

φk(q, γ) =

√
1− γ2

1− γq−1

[
q−1 − γ

1− γq−1

]k−1

, (4.1)

where q is the shift operator. γ is a real value and is the decay factor of the

Laguerre filter. It must satisfy |γ| < 1 to ensure stability. It is important to set

γ centering the dominant time constants or resonant modes of the system to be

identified.

When identifying a system we must first expand it using a proper basis to

obtain a parametric representation of its transfer function. Since the Laguerre

basis functions form a complete orthonormal set [230] we can expand the transfer

function as follows,

G(q) =

∞∑
1

βkφk(q, γ), (4.2)

where G(q) is the transfer function to be estimated and βk are the system param-

eters. However with this prediction model an infinite number of parameters have

to be estimated. To make the task more feasible the representation is truncated

to obtain an approximate representation.

G(q) �
m∑
1

βkφk(q, γ), (4.3)

It has been shown in [15, 211] that with proper selection of γ a truncated Laguerre

representation can successfully approximate a system. Note the crucial feature
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that aside from the single tuning parameter γ the model is linear in the parameters

βk, k = 1, · · · ,m.

Consider a system observed in coloured noise:

yt = st + nt, t = 1, · · · , T, (4.4)

where yt is the measured output, st is the system output and nt is the coloured

noise. Using the Laguerre basis expansion the system output can be rewritten

as,

st =
m∑
1

βksk,t = xT
t β, (4.5)

where xT
t = [s1,t, · · · sm,t] and sk,t, k = 1, · · ·m are obtained by filtering the input

ut with Laguerre filters of order k, k = 1, · · ·m. The noise model is assumed to

be an autoregressive model of order p,

nt =

p∑
l=1

nt−lαl + εt = zTt α + εt, (4.6)

where zTt = [nt−1, · · · , nt−p] and εt is white noise. The model (4.3) can be rewrit-

ten in a matrix format as follows,

y = Xβ + n, (4.7)

where y = [y1, · · · , yT ]T , X = [x1, · · · , xT ]
T and n = [n1, · · · , nT ]

T . X matrix

can also be written as X = [S(1), · · · , S(m)], S(k) = [sk,1, · · · , sk,T ]T = φk(q, γ) ∗ u
where u = [u1, · · · , uT ]

T is the input signal.

The system parameters β and noise model parameters α are unknown and it

is our objective to estimate them.

4.2 Sparsity Criterion

Had the system been measured in white noise (nt = εt) then the system parame-

ters could have been estimated by optimizing a penalized least squares criterion
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such as (1.4c);

J = ||y −Xβ||2 + hf(β), (4.8)

where f(β) is one of the sparsity measures given in section 1.4. To handle systems

with coloured noise, criterion (4.8) has to be modified by replacing the first term

with a weighted least squares term.

J(α, β) = (y −Xβ)TΓ−1
α (y −Xβ) + hf(β), (4.9)

where Γα is the covariance matrix of the noise vector n. To gain a better in-

sight about the criterion (4.9) consider column wise Discrete Fourier Transforms

(DFT), ỹ, X̃, ñ of y, X and n respectively. Then (4.7) can be written as

ỹ = X̃β + ñ and the criterion (4.9) can be rewritten approximately as follows,

J(α, β) =

T−1∑
k=0

|ỹk −
∑m

1 s̃i,kβi|2
Fk

+ hf(β), (4.10)

where Fk = F (ωk), ωk = 2πk/T is the autoregressive spectrum and S̃(i) =

[s̃i,1, · · · , s̃i,T ]T is the DFT of S(i). The approximation gets better as T gets

larger. The spectrum of an autoregressive process of order p is given by,

Fk =
σ2∣∣∣1−∑p

l=1 αle
−j2πlk

T

∣∣∣2 =
σ2

|Ak|2 . (4.11)

Then (4.10) can be rewritten as,

J(α, β) =
T−1∑
k=0

|ỹk −
∑m

1 s̃i,kβi|2|Ak|2
σ2

+ hf(β). (4.12)

Also,
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∣∣∣∣∣ỹk −
m∑
1

s̃i,kβi

∣∣∣∣∣
2

|Ak|2 =
∣∣∣∣∣Ak

(
ỹk −

m∑
1

s̃i,kβi

)∣∣∣∣∣
2

=

∣∣∣∣∣
(
1−

p∑
1

αle
−jlωk

)(
ỹk −

m∑
1

s̃i,kβi

)∣∣∣∣∣
2

Thus the criterion (4.12) can now be rewritten as,

J(α, β) = L(α, β) + hf(β), (4.13)

where L(α, β) =
∑T

t

[
(yt−

∑p
1 αlyt−l)−(xt−

∑p
1 αlxt−l)

T
β
]2
. Note that L(α, β) can

be written in two equivalent ways,

L(α, β) =
T∑
t=1

[
yt,f − xT

t,fβ
]2
, (4.14)

where yt,f = yt −
∑p

1 αlyt−l and xt,f = xt −
∑p

1 αlxt−l. Also as,

L(α, β) =
T∑
t=1

(
n̂t −

p∑
1

αln̂t−l

)2

, (4.15)

where n̂t = yt−xT
t β. These two versions are useful in the cyclic descent algorithm

given in section 4.3. In this chapter both f(β) = l0 norm (1.2a) and f(β) = l1

norm (1.2d) will be considered,

J (0)(α, β) = L(α, β) + h
m∑
1

I(βi �= 0), (4.16)

J (1)(α, β) = L(α, β) + h
m∑
1

|βi|. (4.17)

Given y, u and γ the first step is to filter u with Laguerre filters of order

k, k = 1, · · · ,m to get S(k). However for this we need to know the initial conditions

of the system (u0, · · · u−(m−1)). Similarly at (4.15) we need to know the initial

values of system noise (n0, · · ·n−(p−1)). Since these are generally unknown, after
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calculating S(k) or n̂t, disregard the first d = max(m, p) data points and use only

the data points at t = d, · · · , T in the calculations.

4.3 SCSI Algorithm

Cyclic descent based SCSI (sparse coloured system identification) algorithm is

presented here to optimize criterion J (0)(α, β) and J (1)(α, β). Two version of

this algorithm are discussed; SCSI-L0 optimizes J (0)(α, β) and SCSI-L1 opti-

mizes J (1)(α, β). These criterion have to be optimized with respect to two vector

variables α and β. Thus the cyclic descent algorithm has two steps; α-step and

β-step. There is a closed form solution for the α-step but the solution for the

β-step requiters an iterative procedure.

4.3.1 SCSI-L0

α-step: Given βk−1 get αk

With β fixed we can calculate n̂t. Then L(α, β) is given by (4.15) and

arg.minα J
(0)(α, βk−1) = arg.minα L(α, βk−1). This problem is a linear re-

gression and αk is the least squares solution of (4.15).

β-step: Given αk get βk+1

With α fixed we can filter yt and xt, t = 1, · · · , T to get yf,t and xf,t. Then

L(α, β) is given by (4.14). J (0)(αk, β) becomes an l0 penalized least squares

criterion,

J (0)(αk, β) = ||yf −Xfβ||2 + h

m∑
1

I(βi �= 0),

where yf = [y1,f , · · · , yT,f ]T and Xf = [x1,f , · · · , xT,f ]
T . This can be solved

by the L0LS-CD algorithm given in section 2.5.

4.3.2 SCSI-L1

α-step: Given βk−1 get αk
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This step is the same as the α-step of SCSI-L0. Given β we can calculate n̂t.

Then L(α, β) is given by (4.15). arg.minα J
(1)(α, βk−1) = arg.minα L(α, βk−1).

Thus αk is the least squares solution of (4.15).

β-step: Given αk get βk+1

With α fixed calculate yf,t and xf,t. Then L(α, β) is given by (4.14).

J (1)(αk, β) becomes an l1 penalized least squares criterion,

J (1)(αk, β) = ||yf −Xfβ||2 + h

m∑
1

|βi|,

This can be solved by the LASSO [6, 236] algorithm.

To initialize the SCSI algorithm we need β0. For this, assume that the noise is

white (set α = 0) and find the least squares solution of (4.14). Since the expected

value of the coloured noise is zero (E[n] = 0) this is an unbiased estimate of β.

Once β0 is found, initialize the iteration count k = 1 and sequentially repeat

α-step and β-step until the termination criterion is met. Iteration count has to

be incremented by one after each step.

J (0)(αk, β) has many local minimum unlike J (1)(αk, β). So unlike L0LS-CD,

the estimate of LASSO does not depend on the initialization. Thus proper ini-

tialization is essential to guarantee minimization when optimizing J (0)(αk, β).

Initialize L0LS-CD with βk−1 at the kth iteration to ensure that the criterion

reduces its value at each β-step.

To terminate this algorithm, monitor the value of the criterion at each itera-

tion and terminate when Jk − Jk−1 <tolerance.

4.4 Tuning Parameter Selection

Many parameters need to be known in order to use the SCSI algorithm. Generally

system model order (m), noise model order (p), appropriate value for the decay

parameter (γ) and penalty parameter (h) are unknown.

Since l0 or l1 penalized least squares criterion is used to estimate the system

parameters (β), m can be set to its upper bound. L0LS-CD and LASSO promotes
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sparsity, thus it will zero out any unnecessary parameters of the β vector. The

actual order of the system can be identified by ignoring the zeros at the end of

the final estimate of β. p is also set to its upper bound.

To find out the best values of h and γ, run the SCSI algorithm for a range of

[h, γ] combinations. The best combination is found by the values which minimizes

the BIC criterion. Since the variance of noise is unknown in this application,

variant of (2.44) is used as the BIC criterion,

BIC = ln

(
L(α̂h,γ, β̂h,γ)

T − d

)
+

r

T − d
ln(T − d), (4.18)

where α̂h,γ and β̂h,γ are the output of the SCSI algorithm and r is the number of

non zero coefficients in β̂h,γ.

The dominant pole of a system can be identified with the knowledge of the

impulse response of the system. If a rough estimate of the suitable value of γ is

known a priori, the search can be restricted to its vicinity rather than searching

the whole range (−1 < γ < 1) for a suitable value. Range of h is [0, h̃] where h̃

is the minimum value of h that sets all β coefficients to zero.

4.5 SCSI Simulation

This section presents simulation results to demonstrate the performance of the

SCSI algorithm. To compare the performance of the l0 penalty and the l1 penalty,

both SCSI-L0 and SCSI-L1 algorithms were applied on the same set of data. Per-

formance measures MSEβ (2.40), TPR (2.41) and FPR (2.42) defined in section

2.11.1 is used in this application.

Consider a linear system represented by a Laguerre filter of order 7 with the

following parameters [1, 0.5, 0, 0.7, 0.1, 0, 0.6] and set the decay factor γ to 0.5.

The system was excited with white Gaussian input with zero mean and unit

variance (u ∼ N(0, 1)) and 250 data points (T = 250) were considered. Due to

the recursive structure of the Laguerre filters the system model can be efficiently

implemented as shown in figure 4.1 where L0(q, γ) =
√
1− γ2/1 − γq−1 and

H(q, γ) = q−1 − γ/1− γq−1.

96



4.5. SCSI Simulation

Figure 4.1: Block diagram of an efficient implementation of the system model by
exploring the recursive nature of Laguerre filters.

The noise model is assumed to be an autoregressive model of order 3 with pa-

rameters [1.2,−0.4625, 0.05625] such that its characteristic polynomial has roots

0.5, 0.45, 0.25, which are within the unit disk to ensure stability. The noise model

was excited with white Gaussian input with zero mean and σ2 variance such that

the SNR is 10. SNR is given by,

SNR =
||Xβ||2
||n||2 . (4.19)

Since the order of the system is unknown it was set to double the size of that

of the actual system (m = 14) and since the noise model order is assumed to be

known, p was set to 3. Since a rough idea about the location of the dominant

pole of the system is to be known a priori, γ was varied in the range of [0.3, 0.7]

in steps of 0.025. As described in section 4.4 the best value for h and γ are those

that produces estimates which minimize the BIC criterion (4.18).

The estimates of SCSI-L0 and SCSI-L1 are compared with the actual values

of the system and noise model parameters in table 4.1. We can clearly see that

SCSI-L1 estimates have many incorrectly identified non-zeros (high FPR). This

observation with regards to the l1 penalty has already been made in sections

2.11.5, 2.12.2 and in many other occasions [203, 189, 190]. In contrast SCSI-L0
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algorithm sets more coefficients to zero and the locations of the non-zeros align

with that of the original system (FP= 0). The estimated values of β, α and γ

by SCSI-L0 are very similar to the actual values of the system. Further more the

actual order of the system can be recovered by discarding the 7 zeros at the end

of β̂. However the actual order of the system cannot be obtained by SCSI-L1

estimates since even β̂13 is non zero.

Table 4.1: Comparison of the estimates of SCSI-L0 and SCSI-L1 with the actual
system and noise parameters

Actual SCSI-L0 Estimate SCSI-L1 Estimate
β1 1 1.0089 0.9885
β2 0.5 0.5249 0.4282
β3 0 0 -0.0286
β4 0.7 0.6741 0.6321
β5 0.1 0.1184 0
β6 0 0 0.0471
β7 0.6 0.5687 0.5074
β8 0 0 -0.1318
β9 0 0 0
β10 0 0 -0.0121
β11 0 0 0
β12 0 0 0
β13 0 0 0.0205
β14 0 0 0
α1 1.2 1.1758 1.1731
α2 -0.4625 -0.4735 -0.4625
α3 0.05625 0.0837 0.0763
γ 0.5 0.5 0.525

Figure 4.2 shows the variation of the coefficients of the β̂ vector as a function

of γ̂ in SCSI-L0. We can clearly see that the number of non zero coefficients

reduce dramatically at the vicinity of γ = 0.5. This further demonstrates that

proper selection of the decay parameter γ assists in the compact representation

of the system when using Laguerre functions for model expansion.

From these results we can clearly see that the SCSI algorithm can successfully

98



4.5. SCSI Simulation

Figure 4.2: Variation of the estimated system parameters (β̂) by SCSI-L0 as a
function of the decay factor (γ̂).

Figure 4.3: Performance comparison of SCSI-L0 and SCSI-L1 by the variation of
performance measures MSEβ, TPR and FPR as a function of sparsity of β�.
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identify the system model and the noise model when the data is corrupted by

coloured noise. Furthermore these simulation results are evidence that the l0

penalty promotes more sparsity and is more suitable than the l1 penalty.

The performance of SCSI-L0 and SCSI-L1 was further analyzed at different

levels of sparsity of β�. Sparsity was varied from 0.1 to 0.9 in steps of 0.1 and 150

β� vectors were generated per sparsity level by placing non zeros entries drawn

from a uniform distribution on the open interval (0, 1) at random locations of a

zero vector of length 10. The α vector, SNR and γ were kept the same as the

previous example and the input signal and the noise was also generated as stated

above. m was set to 10 to maintain the expected sparsity of the estimates. The

median of the performance indicators of the estimates of SCSI-L0 and SCSI-L1

are given in figure 4.3.

Although the TPR of SCSI-L1 is higher than that of SCSI-L0 it has also got a

very high FPR. Furthermore the MSEβ of SCSI-L0 is lower than that of SCSI-L1.

So the estimates of SCSI-L1 are non sparse and have a higher estimation error

and therefore SCSI-L0 is more desirable than SCSI-L1.

4.6 Conclusion

This chapter developed a cyclic descent based system identification algorithm

that recovers sparse transfer functions based on Laguerre basis functions with

system output measured in coloured noise. Unlike most other sparse approaches

to transfer function estimation the Laguerre approach guarantees stability. Two

competing criterion were developed based on the l0 penalty and the l1 penalty.

Simulation results show that the algorithm successfully recovers the system and

the noise models and that the performance of the criterion with l0 penalty is

superior to that with the l1 penalty.
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Chapter 5

Application: Sparse Network

Topology Identification

The problem of identifying the topology of a network of dynamic systems from

a time series data arises in applications in a vast array of disciplines such as,

economics [165], thermal dynamics [178], epidemiology [160], ecology [254], ge-

ology [12], sociology [268] and in biological examples such as metabolism [261],

genetic networks [75] and protein interaction networks [248]. Due to the growing

demand many methods of network topology identification have been developed

[23, 99, 11, 197, 151, 152].

Causal relationships between time series was first studied by Granger [92]

and has been widely used in economics since. The basic concept of Granger

causality is that if one time series (y) is caused by another time series (x) then

the knowledge of the past values of x improves the prediction of y compared to

only using past values of y. Granger causality of multivariate time series was first

explored within the framework of autoregressive models in electrophysiological

signal analysis [82, 83]. This was further developed with a graphical framework

in [58].

In a network of N dynamic systems, suppose that the output of each system

can be observed and that each corresponds to a time series. It is assumed that the

time series is a result of an underlying, unknown directed graph topology. The

output of each dynamic system is causally effected by the incoming data of the
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5. Sparse Network Topology Identification

directly connected nodes and system noise. If it is assumed that the network is

fully connected (every node causally influences every other node) the result would

be a very flexible model but it would also be over parameterized and estimation

problem will be ill-conditioned. Normally a network of dynamic system is sparsely

connected (a node is effected by only a few other nodes in the network), thus an

additional criterion of sparsity is incorporated to the estimation problem.

[256, 10, 181, 280] have utilized sparse regression techniques based on the l1

norm to identify a sparse network. However penalizing individual parameters

of the network model will result in many links each with few coefficients being

selected. To successfully recover a sparse network, parameters corresponding to

each link should be grouped and algorithms that focus on group sparsity should

be employed.

The group LASSO [278] algorithm was used to recover a sparse network in [23,

99] and [11] have reformulated the problem with a re-weighted iterative procedure.

Group sparse versions of greedy algorithms were used in [197, 151, 152] to recover

sparse networks. Clustered orthogonal matching pursuit was used in [197] and

cycling orthogonal least squares was used in [151, 152]. However all these methods

are applied using an autoregressive model framework.

Very high order autoregressive models are required to approximate systems

with rapid sampling. This issue is overcome by the usage of causal Laguerre

polynomial basis expansion to model transfer functions between two time series.

An overview of causal Laguerre basis functions is given in chapter 4.

In this chapter a network identification method with Laguerre basis functions

is developed. The sparse network is recovered with the use of gL0LS-CD algo-

rithm which was developed in section 2.9. gL0LS-CD is compared with group

LASSO in the simulations.

The remainder of this chapter is organized as follows. Section 5.1 introduces

the network model and section 5.2 develops the sparsity criterion for sparse net-

work recovery. Simulation results to demonstrate the effectiveness of this method

are given in section 5.3 and conclusions are in section 5.4.
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5. Sparse Network Topology Identification

5.1 Network Model

A network of dynamic systems can be represented by a directed graph as shown

in figure 5.1. Each dynamic system is represented by a node and each causal

dependance is represented by a link with an arrow. The output (time series) of

each dynamic system can be observed. Each time series (xi) can be modeled as

follows,

xi
t = Gi,i(q)x

i
t−1 +

∑
j∈Ai

Gi,j(q)x
j
t−di,j

+ eit, (5.1)

where xi
t and eit are the output and system noise of node i at time t respectively,

Gi,j(q) and di,j are the transfer function and transmission delay between node i

and j respectively, q is the forward shift operator and Ai is the set of indices of

the parent nodes of node i. A graphical representation of the model of a single

node is given in figure 5.2.

Figure 5.1: Directed graph of a network of 7 dynamic systems

Since the topology of the network is unknown we do not know Ai of (5.1).

Thus we assume that the network is fully connected and use sparse regression
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5. Sparse Network Topology Identification

Figure 5.2: Model of a single node within a network of dynamic systems

techniques to recover Ai. Thus the general model of a node is given by,

xi
t =

N∑
j=1

Gi,j(q)x
j
t−di,j

+ eit, (5.2)

where N is the total number of nodes in the network. Transfer functions Gi,j has

to be expanded using a proper basis. So far in the literature the delay operator

is used as the basis. Then equation (5.2) can be rewritten as,

xi
t =

N∑
j=1

m∑
k=1

βi,j,kq
−kxj

t−di,j
+ eit. (5.3)

Here m is set to its upper bound such that the highest order transfer function

of the network can be accommodated. An introduction to model expansion with

Laguerre basis functions is given in section 4.1. Thus the equation (5.2) can be

rewritten with the Laguerre basis expansion as follows,

xi
t =

N∑
j=1

m∑
k=1

βi,j,kφk(q, γi,j)x
j
t−di,j

+ eit. (5.4)

Equations (5.3) and (5.4) can be written in matrix regression form as follows,

yi = X iβi + ei, (5.5a)
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where

yi = [xi
t, · · · , xi

t−p]
T , (5.5b)

βi = [βi,1,1, · · · , βi,1,m, βi,2,1, · · · , βi,N,m]
T , (5.5c)

ei = [eit, · · · , eit−p]
T , (5.5d)

also X i contains filtered signals as follows,

X i = [Hi,1, Hi,2, · · · , Hi,N ], (5.5e)

Hi,j =

⎡
⎢⎢⎣

ϕi,j,1,t ϕi,j,2,t · · · ϕi,j,m,t

...
...

. . .
...

ϕi,j,1,t−p ϕi,j,2,t−p · · · ϕi,j,m,t−p

⎤
⎥⎥⎦ . (5.5f)

If the delay operator was used then,

ϕi,j,k,t = q−kxj
t−dj

= xj
t−dj−k, (5.5g)

else, if the Laguerre basis functions were used then,

ϕi,j,k,t =

√
1− γ2

i,j

1− γi,jq−1

[
q−1 − γi,j
1− γi,jq−1

]k−1

xj
t−dj

. (5.5h)

5.2 Sparsity Criterion

In (5.5c) the coefficients corresponding to each link can be grouped1 as βi =

[βi,T
1 , · · · βi,T

N ]T where βi
j = [βi,j,1, · · · , βi,j,m]

T ,. Each column-wise partition Hi,j

of X i in (5.5e) corresponds to the βi
j groups. Here all the groups are of the same

size but it need not be so. If the N partitions of βi is of size mj then the length

of βi is n =
∑N

j=1 mj, and the partitions of X i, Hi,j will have the corresponding

number ofmj columns. Similar to section 2.8, the group l0 penalized least squares

1Should not be confused with the notation used in chapter 2 for grouped variables.
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criterion for (5.5a) can be given as follows,

J (0)(βi) = ||yi −X iβi||2 + h
N∑
j=1

I(||βi
j|| �= 0), (5.6)

gL0LS-CD algorithm developed in section 2.9 can be used to optimize J (0)(βi).

Similarly the group l1 penalized least squares criterion for (5.5a) is as follows,

J (1)(βi) = ||yi −X iβi||2 + h

N∑
j=1

||βi
j||. (5.7)

Here the penalty is a mixture of l1 and l2 norms and is the sum of the lengths of

the partitions of βi. The group LASSO algorithm given in [278] can be used to

optimize J (1)(βi). An overview of group LASSO will be given in section 6.2.1.

The Criteria J (0)(βi) and J (1)(βi) promote group sparsity but do not encour-

age sparsity within the groups. Once the topology of the network is identified

the transfer function can be further refined by the following criterion,

J̄ (0)(β̄i) = ||yi − X̄ iβ̄i||2 + h
n̄∑

j=1

‖β̄i
j‖0, (5.8)

or by,

J̄ (1)(β̄i) = ||yi − X̄ iβ̄i||2 + h
n̄∑

j=1

‖β̄i
j‖1, (5.9)

where β̄i is composed of βi
j, j ∈ Ai, X̄

i is composed of Hi,j, j ∈ Ai, n̄ = |Ai| and
|Ai| is the cardinality of the set. J̄ (0) can be optimized by the L0LS-CD algorithm

given in section 2.5 and similarly J̄ (1) can be optimized by LASSO [6, 236].

5.3 Network Topology Simulation

This section simulate a network of interconnected dynamic systems to generate

time series data and then estimate the network topology using the identification

method developed in this chapter. To compare the performance of the l0 and l1
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penalties, both J (0)(βi) and J (1)(βi) criteria were optimized on the same set of

data. Two networks studied in previous literature [23] are considered here and

they are given in figure 5.3. The output of each node is driven by its own past

values as well as the output of its parent nodes.

Figure 5.3: Network topologies from existing literature.

To implement the network each transfer function was represented using an

autoregressive model. Order of all the models were set to 5 and the coefficients

were taken from a Gaussian normal distribution with zero mean and 0.04 variance.

Only the stable realizations were selected.

The networks were excited with Gaussian random noise with zero mean and

0.01 variance. 30 realizations of such networks were generated with p = 300 time

samples recorded at each node. The time series were then filtered to generate

the X i, i = 1, · · · , N matrices as given in (5.5e)-(5.5h). Transmission delays di,j

and decay factors of the Laguerre filters γi,j have to be known for (5.5h). di,j

was set to 1 and all the decay factors were set to a fixed value for the whole

network γ̂. Any mismatch in the decay factor will simply result in few additional

terms being included in the estimated system. Since the appropriate value for γ̂

is unknown a range of values −1 < γ̂ < 1 were considered and the best value for

γ̂ was selected using the BIC criterion. Since the variance of noise is unknown, a

variant of (2.44) is used as the BIC criterion,

BIC = ln

(
N∑
i=1

‖yi −X iβi
γ̂,h‖2

p

)
+

r

pN
ln(pN),

where r is the total number of non zero coefficients in all the βi
γ̂,h vectors. For
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each value of γ̂, X i, i = 1, · · · , N matrix was generated and gL0L-CD and group

LASSO were applied to individual nodes. A range of values were considered for

the penalty parameter 0 < h < ĥ, where ĥ is the minimum value of h that sets all

the estimates to zero (βi = 0). The best value of h for each node was selected with

BIC. Variation of BIC of a single node with respect to h and γ̂ is given in figure

5.4. As shown in figure 5.4, BIC is minimized in the vicinity of γ = 0 which is

expected as the original system was based on a multivariate autoregressive model.

The probability of each link of networks ’a’ and ’b’ being identified by gL0LS-

CD and group LASSO are given in tables 5.1 and 5.2 respectively.

Figure 5.4: Variation of BIC criterion at a single node as a function of the decay
factor (γ̂) and the penalty parameter (h).

The 8 links that exsist in network ’a’ are given by the first 8 rows of table

5.1 and both gL0LS-CD and group LASSO successfully identify these links with

high probability. However from the last 3 rows we can see that group LASSO

selects more links than what actually exist in the network. gL0LS-CD does not

show this property (FP = 0).
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Table 5.1: Probability of each link of network ’a’ being identified by gL0LS-CD
and group LASSO

Link gL0LS-CD (%) group LASSO(%)
1 → 1 90 83.33
2 → 1 90 90
2 → 2 73.33 73.33
4 → 2 83.33 76.67
1 → 3 93.33 93.33
2 → 3 86.67 90
3 → 3 70 86.67
4 → 4 80 70

3 → 1 0 6.67
4 → 1 0 10
4 → 3 0 53.33

The links that exist in the original network ’b’ are given in table 5.2. Similar

to the earlier example both algorithms identify these links with high probability.

However similar to the earlier observation, group LASSO selects links that does

not exist in the original system such as ’3 → 2’, ’6 → 2’, ’1 → 3’, ’4 → 3’, ’6 → 3’,

’2 → 6’, ’7 → 6’, ’1 → 7’, ’2 → 7’, ’5 → 7’, ’6 → 7’ with probabilities ranging

from 3.33% to 16.67%. gL0LS-CD does not select any link that does not exist in

the original network.

This tendency of the l1 penalty to have high false positives in its estimates was

previously observed in sections 2.11.5, 2.12.2, 4.5. [23] have derived conditions

under which group LASSO consistently estimates the sparse network. From the

simulation results we can clearly see that gL0LS-CD is superior to group LASSO

as its estimates are more sparse and as it is less likely to select links that does not

exist in the original network. In other words gL0LS-CD works even when group

LASSO fails.
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Table 5.2: Probability of each link of network ’b’ being identified by gL0LS-CD
and group LASSO

Link gL0LS-CD (%) group LASSO(%)
1 → 1 90 83.33
5 → 1 73.33 76.67
2 → 2 80 80
4 → 2 76.67 70
7 → 2 93.33 90
2 → 3 80 90
3 → 3 93.33 93.33
5 → 3 73.33 76.67
7 → 3 96.67 93.33
4 → 4 76.67 53.33
5 → 5 83.33 66.67
4 → 6 90 70
5 → 6 80 70
6 → 6 90 66.67
3 → 7 96.67 90
4 → 7 90 86.67
7 → 7 76.67 86.67

5.4 Conclusion

This chapter discusses a method for topology identification of a sparse network

of dynamic systems from the time series data collected by measuring the output

of each node in the presence of noise. The transfer function were expanded

using Laguerre basis functions and gL0LS-CD algorithm was used to estimate

the network topology. BIC was used to select the penalty parameter h and

the decay parameter γ. It is clear from the simulation results that the method

presented in this chapter successfully identifies the topology of the network and

gL0LS-CD is superior to group LASSO in recovering sparse estimates of a linear

inverse problem with grouped variables.
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Chapter 6

Parameter Based Model

Selection via SURE

The optimization criterion (1.4a) - (1.4c) used in sparse approximation involves

the selection of a tuning/penalty parameter. The value of the penalty parameter

determines the sparsity of the estimate. Many competing models can be derived

by varying the value of the penalty parameter.

As mentioned in the section 1.8 the performance of the competing models

are measured using some discrepancy measure. However discrepancy measures

generally cannot be directly calculated. Thus model selection criteria have been

developed to select the value of the penalty parameter that corresponds to the

best model with respect to some discrepancy measure. Model selection criteria

typically select this value by minimizing an estimate of a selected discrepancy

measure.

An overview of model selection criteria is given in section 1.8 and SURE stands

out as a model selection criterion which does not suffer from the limitations of

the other model selection methods. SURE was introduced by [226] and has been

used in a wide range of applications as a tuning parameter selection method

[208, 215, 217, 218, 250, 219, 138, 149, 61]. All the model selection criteria

discussed in section 1.8 focuss on minimizing signal or prediction mean squared

error (MSEμ) (2.39). This chapter develops a model selection criterion for over-

determined systems based on parameter mean squared error (MSEβ) (2.40).
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As mentioned in section 1.5 LASSO which solves the l1 penalized least squares

criterion is one of the most commonly used algorithms in sparse regression. The

importance of selecting a proper penalty parameter when solving this criterion

has had little treatment. The SURE criterion for MSEμ for the special case of

orthogonal regressors was developed in [278] and extended in [56]. SURE for

MSEμ for the LASSO was presented in [283] while [223] derives SURE for MSEμ

for the group LASSO. This chapter develops SURE for MSEβ for the group

LASSO. This seems to be the first time SURE has been used to deal with MSEβ.

The remainder of this chapter is organized as follows. Section 6.1 develops the

general SURE criterion for MSEβ. In section 6.2 this result is applied to obtain

SURE for MSEβ for the l1 penalized least squares problem with grouped variables.

Section 6.3 presents simulation results based on a sparse network application,

comparing the SURE criterion for MSEβ with other model selection criteria. The

application used in this simulation was introduced in chapter 5. The conclusion

is in section 6.4.

6.1 SURE for Parameter Mean Squared Error

Consider the linear regression model (1.1) introduced in section 1.1. Denote

μn×1 = Xn×pβp×1 as the noise free signal and consider the noise to be Gaussian

with zero mean ε ∼ N(0, σ2I). In the context of interest of this thesis, given y

and X, the parameter vector β is estimated using a regularization method which

requires the selection of a penalty or tuning parameter (h). For a given value

of h denote β̂h and μ̂h = Xβ̂h as the estimated coefficient/parameter vector and

estimated signal respectively. Then the signal mean squared error is given by,

MSEμ = Rμ,h = E‖μ− μ̂h‖2K , (6.1)

where K is a given weighting matrix. The parameter mean squared error is given

by,

MSEβ = Rβ,h = E‖β − β̂h‖2Γ, (6.2)
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where Γ is also a given weighting matrix. It should be noted that when MSEμ

and MSEβ were used as performance measures for sparse estimation they were

normalized, however they need not be so when used for model selection. We have

to find the h that minimizes Rβ,h. Since β is unknown it is not possible to directly

calculate Rβ,h so the idea is to find an unbiased estimator of Rβ,h and minimize

that instead.

We now proceed to a derivation of SURE for Rβ,h. SURE relies on representing

the data in a signal plus noise form e.g. y = μ + ε. Then SURE produces an

unbiased estimator of Rμ,h = E‖μ − μ̂h‖2. So this traditional setup would not

work for our purposes.

The problem has to be transformed so that the signal becomes β. To do this,

begin with the least squares estimator of an over-determined system,

z = (XTX)−1XTy = (XTX)−1XT (Xβ + ε),

= β + (XTX)−1XT ε,

= β + w, (6.3)

where w ∼ N(0,Ω), Ω = σ2(XTX)−1. This transformation has achieved our aim

but at a cost. We now have pseudo-data z = signal(β)+ noise(w) but the noise

has a covariance matrix σ2(XTX)−1.

We now proceed to derive SURE for this new model. Add and subtract z

inside (6.2) to obtain,

Rβ,h = E‖z − β̂h − (z − β)‖2Γ = E‖eh − w‖2Γ, (6.4)

where eh = z − β̂h. Expanding gives,

Rβ,h = E‖eh‖2Γ − 2E(eThΓw) + E‖w‖2Γ. (6.5)

Now E‖w‖2Γ does not depend on h so it can be dropped. An estimator of the first

term is ‖eh‖2Γ. The middle term can be expanded as,

E(eThΓw) = E(eThΓ(z − β)) =

∫
eThΓ(z − β)p(z)dz, (6.6)
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where p(z) is the probability density of z. Since w ∼ N(0,Ω), from (6.3) z ∼
N(β,Ω), thus

p(z) =
e−

1
2
(z−β)TΩ−1(z−β)

(2π)
n
2 |Ω| 12 , (6.7)

so that ∂p/∂z = −Ω−1(z − β)p(z). Thus we can write,

E(eThΓw) = −
∫

eThΓΩ
∂p

∂z
dz. (6.8)

Integrating by parts gives

E(eThΓw) = −[eThΓΩp(z)]
∞
−∞ +

∫
trace

(
ΓΩ

∂eTh
∂z

)
p(z)dz. (6.9)

Since p(z) decays exponentially it is reasonable to assume that eThp(z) vanishes

at ±∞. Thus the first term of (6.9) vanishes and we can obtain,

E(eThΓw) =

∫
trace

(
ΓΩ

∂eTh
∂z

)
p(z)dz,

= E

(
trace

(
ΩΓ

∂eh
∂zT

))
. (6.10)

So introducing R̂β,h = ‖eh‖2Γ − 2
(
trace

(
ΩΓ ∂eh

∂zT

))
, we see that R̂β,h + ‖w‖2Γ is an

unbiased estimator of Rβ,h and we can choose h as the minimizer of R̂β,h. R̂β,h is

the SURE for Rβ,h. From the definition of eh we can also write,

R̂β,h = ‖eh‖2Γ + 2

(
trace

(
ΩΓ

∂β̂h

∂zT

))
− 2trace(ΩΓ) (6.11)

The last term does not depend on h and so can be dropped. Still the resulting

expression will be referred to as SURE for Rβ,h. When Γ = I and Ω = σ2(XTX)−1

we obtain,

R̂β,h = ‖eh‖2 + 2σ2

(
trace

(
V
∂β̂h

∂zT

))
(6.12)
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where V = (XTX)−1. Note that as with all SURE formulae we can have β̂h to

be an arbitrary nonlinear function of z.

6.2 l1 Penalized Least Squares with Grouped

Variables

6.2.1 Group LASSO Preview

This section gives an overview of the group LASSO problem [278]. Consider the

case similar to the network topology identification problem discussed in chapter

5, where elements of β vector are partitioned as β = (βT
1 , . . . , β

T
g )

T , into g groups

with dimension dim(βu) = pu. The X matrix has the corresponding partitions

X = [X(1), . . . , X(g)]. It is assumed that the regressors are centered and column

scaled such that XT
(u)X(u) = Ipu . Group LASSO estimates β by minimizing the

following penalized least squares criterion discussed in section 5.2,

J(β) =
1

2
‖y −

g∑
1

X(u)βu‖2 + h

g∑
1

‖βu‖ (6.13)

Kuhn-Tucker conditions for the optimal solution of (6.13) for 1 ≤ u ≤ g are [6],

[278],

−XT
(u)(y −Xβ) +

hβu
√
pu

‖βu‖ = 0, ‖βu‖ �= 0

‖ −XT
(u)(y −Xβ)‖ ≤ h

√
pu, ‖βu‖ = 0

and this leads to the solution,

β̂h,u = (1− αu)HuSu, 1 ≤ u ≤ g, (6.14)

where Hu = H(‖Su‖ − h
√
pu), H(·) is the Heaviside step function, αu =

h
√
pu

‖Su‖
and,

Su=X
T
(u)(y−Xβ̂h+X(u)β̂h,u)=XT

(u)(y−Xβ̂h)+β̂h,u (6.15)
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(6.14) must be solved iteratively as in [278] by cyclic descent.

6.2.2 Derivation of SURE for Rβ,h for the Group LASSO

From (6.12) we can see that we need to find trace
(
V ∂β̂h/∂z

T
)

but there is

apparently a problem because from (6.14) and (6.15) it appears that β̂h is a

function of y not z. Fortunately this problem can be overcome with the following

device. Add and subtract Xz inside (6.15) to get,

Su = XT
(u)(y −Xz +Xz −Xβ̂h) + β̂h,u

= XT
(u)(Xz −Xβ̂h) + β̂h,u (6.16)

since z is the ordinary least squares estimator, XT
(u)(y−Xz) = 0. Now (6.14) be-

comes an implicit equation whose solution β̂h,u will be a function of z as required.

Since (6.14) gives the solution to (6.13) using the chain rule we can write,

∂β̂h,u

∂zT
=

∂β̂h,u

∂ST
u

∂Su

∂zT
(6.17)

From (6.16) we can derive,

∂Su

∂zT
= XT

(u)X −XT
(u)X

∂β̂h

∂zT
+

∂β̂h,u

∂zT
(6.18)

Using Dirac delta function δ(·), define δu = δ(‖Su‖ − h
√
(pu)), then from (6.14),

∂β̂h,u

∂ST
u

=(1− αu)HuIpu + (1− αu)δu
d‖Su‖
dST

u

Su − h
√
pu

d1/‖Su‖
dST

u

HuSu

=(1−αu)HuIpu+(1−αu)δuŜuS
T
u+αuHuŜuŜ

T
u (6.19)

where

Ŝu =
d‖Su‖
dST

u

=
d(ST

u Su)
1/2

dST
u

=
Su

‖Su‖ ,
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Note that Ŝu is a unit vector. The second term of (6.19) vanishes and we obtain,

∂β̂h,u

∂ST
u

= Hu[(1− αu)Ipu + αuŜuŜ
T
u ] (6.20)

Substituting (6.18) and (6.20) in (6.17) for 1 ≤ u ≤ g we get,

∂β̂h,u

∂zT
=Hu[(1− αu)Ipu + αuŜuŜ

T
u ]×

[
XT

(u)X −XT
(u)X

∂β̂h

∂zT
+

∂β̂h,u

∂zT

]
(6.21)

Introduce D = block diagonal (Δu) with Δu = HuIpu(1−αu)+HuαuŜuŜ
T
u . Then

we can rewrite this as,

∂β̂h

∂zT
= D

[
XTX −XTX

∂β̂h

∂zT
+

∂β̂h

∂zT

]

=
[
I −D +DXTX

]−1
DXTX. (6.22)

Thus,

trace

(
V
∂β̂h

∂zT

)
= trace

(
V
[
I −D +DXTX

]−1
DXTX

)
,

= trace
([

I −D +DXTX
]−1

DXTXV
)
,

= trace
([

I −D +DXTX
]−1

D
)
= τh,

since XTXV = I. From (6.12) SURE for Rβ,h for group LASSO now becomes,

R̂β,h = ‖eh‖2 + 2σ2τh. (6.23)

This expression can actually be simplified further. Introduce Γ0 = {u : β̂u =

0} = {u : Hu = 0}, Γc = {u : β̂u �= 0} = {u : Hu = 1}. Denote gh = dim (Γc) = �

groups with non-zero parameters. Then reorder the entries of D such that the
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indices u ∈ Γc come first as follows,

D =

(
Dch 0

0 0(p−ch)×(p−ch)

)
,

where Dch is a block diagonal matrix of dimension ch × ch, ch =
∑gh

1 pu and

p =
∑g

1 pu. Thus,

I −D +DXTX =

(
Ich −Dch 0

0 Ip−ch

)
+

(
Dch 0

0 0(p−ch)×(p−ch)

)(
XT

c Xc XT
c X0

XT
0 Xc XT

0 X0

)

where the columns of X have been reordered and then partitioned it to conform

with D. Continuing,

I−D+DXTX=

(
Ich−Dch+DchX

T
c Xc DchX

T
c X0

0 Ip−ch

)

The inverse of this block triangular matrix is easily seen to be,

(I−D+DXTX)−1 =

(
M−1

ch
−M−1

ch
DchX

T
c X0

0 Ip−ch

)

where Mch = Ich−Dch+DchX
T
c Xc. Thus,

τh = trace

((
M−1

ch
−M−1

ch
DchX

T
c X0

0 Ip−ch

)(
Dch 0

0 0

))

= trace(M−1
ch

Dch)

To simplify further consider that,

Δu = Hu(Ipu(1− αu) + αuŜuŜ
T
u )

= Hu[(1− αu)(I − ŜuŜ
T
u ) + ŜuŜ

T
u ]

Since I − ŜuŜ
T
u and ŜuŜ

T
u are orthogonal to each other, we deduce that, Δ

1
2
u =

Hu[
√

(1− αu)(I − ŜuŜ
T
u ) + ŜuŜ

T
u ]. Now define D

1
2
ch = blockdiag Δ

1
2
u . Using this
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we can write,

τh = trace(M−1
ch

Dch)

= trace((D
1
2
ch(Ich−Dch+D

1
2
chX

T
c XcD

1
2
ch)D

− 1
2

ch )−1Dch)

= trace(M̄−1
ch

Dch) (6.24)

where

M̄ch = Ich−Dch+D
1
2
chX

T
c XcD

1
2
ch . (6.25)

Furthermore,

XkD
1
2
ch = [X(1), . . . , X(ch)]blockdiagΔ

1
2
u ,

= [X(1)Δ
1
2
1 , . . . , X(ch)Δ

1
2
ch ].

The block diagonal entries of M̄ch are thus, M̄uu = I−Δu+Δ
1
2
uXT

(u)X(u)Δ
1
2
u = I−

Δu +Δu = I. And off block diagonal entries of M̄ch are, M̄uv = [Δ
1
2
uXT

(u)X(v)Δ
1
2
v ].

Putting all this together we first compute M̄−1
ch

= [Nuv]. Then from (6.24),

τh = trace(M̄−1
ch

Dch) =
∑gh

1 trace(NuuΔu). Since Hu = 1, u ∈ Γc,Δu = (1 −
αu)(I − ŜuŜ

T
u ) + ŜuŜ

T
u . Thus,

τh =

gh∑
1

(trace(Nuu)(1− αu) + αuŜ
T
uNuuŜu) (6.26)

Collecting these results together we have:

Result I: Provided M̄ch is invertible, SURE for Rβ,h for group LASSO is given

by R̂β,h = ‖eh‖2 + 2σ2τh, eh = z − β̂h = (XTX)−1XTy− β̂h where β̂h is obtained

by solving (6.14) by cyclic decent. Also τh is given in (6.26) where Ŝu = Su/‖Su‖
and Su is defined in (6.15). Further [Nuv] = M̄−1

ch
while M̄ch is defined in (6.25).

Note that the required computations are modest.

Note the special cases:

(i) pu = 1. Then τh =
∑gh

1 Nuu(1−αu +αu) =
∑gh

1 Nuu. Thus R̂β,h = ‖eh‖2 +
2σ2

∑gh
1 Nuu.
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(ii) XTX = I. Then Muv = 0, u �= v, thus M̄ch = I ⇒ Nuu = Ipu ⇒ τh =∑gh
1 pu(1− αu) + αu.

For comparison SURE for Rμ,h for group LASSO [223] with K = I is given

by,

R̂μ,h = ‖ e ‖2 + 2σ2(ch − ρh), (6.27)

where e = y − μ̂h and,

ρh =

gh∑
1

(trace(Nuu)αu − αuŜ
T
uNuuŜu). (6.28)

Conditions to ensure the invertibility of M̄ch is given in [223].

6.3 Group LASSO Model Selection Simulation

Topology identification of a sparsely connected network of dynamic systems was

introduced in chapter 5. As discussed in section 5.1 recovering the topology of

a network using time series data inherently involves sparse regression of grouped

variables. In this section data is generated by simulating a network of dynamic

systems as given in section 5.1 and the topology is estimated by optimizing (6.13)

using group LASSO. Here a finite impulse response (FIR) model is used for for

model expansion. Similar results can be obtained with Laguerre basis functions.

The performance of hβ the minimizer of R̂β,h is compared with with hμ the

minimizer of R̂μ,h and hBIC the minimizer of BIC in estimating hb the minimizer

of Rβ,h.

Usually BIC is used to select discrete tuning parameters. However, as men-

tioned in previous chapters, the value of h determines the number of non zero

coefficients retained by the algorithm, thus enabling us to use BIC to select h.

A network with 10 nodes was simulated and each node was connected to 6

randomly selected nodes. The order of all autoregressive models were set to 5 and

the system parameters (β) were drawn from a normal distribution with 0 mean

and 0.04 variance. Then the location of the poles of the overall network were
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analyzed to ensure stability. The network was excited with Gaussian random

noise with 0 mean and 0.01 variance and n = 300 time samples recorded at each

node which makes up the yi vectors.

The matrix X in (5.5e), (5.5f) was generated and then the columns were

centered such that the mean is 0. Hi,j partition of X was orthonormalized

(HT
i,jHi,j = Im, j = 1, . . . , N). For a selected stable network 500 yi vectors were

generated and the coefficient vector (β̂i
h) was estimated using group LASSO at

each node for a range of h values.

Rβ,h, Rμ,h, R̂β,h (6.23), R̂μ,h (6.27), and BIC [200, 135, 123] were calculated

for each estimate and their corresponding minimizers hb, hm, hβ, hμ, hBIC were

found. Note when calculating Rβ,h and Rμ,h the original system parameters (β)

have to be scaled to overcome the effects of the orthonormalization of the Hi,j

partitions. Since group LASSO is applied at each node, only the results of one

node will be shown here. The results of other nodes are similar.

Figure 6.1: Histograms of hb, hβ, hμ and hBIC when estimating the connectivity of
a single node over 500 realizations of a network with 10 nodes with 6 connections
per node.
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The histograms of the h that minimized the three model selection criteria is

compared with that of hb in figure 6.1. The histograms of hb and hβ follow the

same pattern and they are centered around the same region. The histogram of hβ

has slightly wider distribution than that of hb. This is expected due to the noise

in the system. The histogram of hμ does not have the same center as that of hb.

The histogram of hBIC has a very wide distribution and most of the minimum

has occurred at h = 0, thus in this application BIC is unfavorable. The relative

deviation was calculated as follows,

Deviationh = Dh =
median(h)−median(hb)

median(hb)
,

where h is one of hβ, hμ, hBIC . The deviations were found to be Dhβ
= 0, Dhμ

= 0.9804 and DhBIC
= 2.9412. Thus hβ is a better estimate of hb.

Figure 6.2: Model selection criterion as a function of h when estimating the
transfer function of a single node within a network of 10 nodes with 6 connections
per node, averaged over 500 replications.

The functional dependance of the model selection criterion with h averaged
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over 500 replications is given in figure 6.2. The functional dependance of Rβ,h and

Rμ,h are also displayed for comparison. The value of R̂β,h is different from that of

Rβ,h because the terms that did not depend on β̂h were dropped in the derivation

of R̂β,h. However we can clearly see that R̂β,h follows the same pattern as Rβ,h.

The minimum of Rβ,h and R̂β,h were reached at 0.0128 and the minimum of Rμ,h

and R̂μ,h were reached at 0.0253. We can clearly see that hm is different from hb.

Further more hβ is superior to the minimizers of other model selection criterion

when estimating hb. From figure 6.1 and 6.2 we can see that in this example BIC

fails in selecting an appropriate h.

6.4 Conclusion

This chapter derived a general expression of SURE for MSEβ in a regression prob-

lem with possibly non linear estimation of the regression coefficients. Previous

work gave SURE for MSEμ. This result was then applied to obtain SURE for

MSEβ for group LASSO. Simulation results for a network topology problem show

the accuracy of the model selector as well as its superiority when compared to

other model selection methods such as SURE for MSEμ and BIC in obtaining

an estimate with minimum MSEβ. In this application BIC in particular exhibits

very poor behavior.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The aim of this thesis was twofold. First it extended the understanding of the

l0 norm in sparse signal processing by unmasking some myths, developing novel

algorithms and by comparing them with alternative sparse algorithms. It also

addressed some issues of model selection.

Chapter 1 outlined the wide range of applications which motivated the devel-

opment of sparse signal processing and gave an overview of the available sparse

modeling algorithms. It presented a detailed discussion about sparsity measures

and their properties. The l0 norm is severely criticized in the literature as being

unsuitable for sparse signal processing. These criticisms were rebutted in this

chapter.

Novel sparse algorithms were developed in chapters 2 and 3. Chapter 2 was

based on direct minimization of the l0 norm (l0 denoising). First it investigated

the ability of existing algorithms to perform exact l0 denoising. Then it developed

the L0LS-CD algorithm and its multivariate (V-L0LS-CD) and group (gL0LS-

CD) regression variants. The L0LS-CD algorithm minimizes the l0 penalized

least squares via cyclic descent. Non-trivial stability analysis of the L0LS-CD

algorithm was developed. Issues of computational speed and initialization were

addressed and the impact of penalty parameter on the performance of the algo-

rithm was illustrated. Simulation results showed that L0LS-CD and V-L0LS-CD

outperformed other existing algorithms.
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Chapter 3 was based on smooth approximations of sparsity measures including

those of the l0 norm. The QC algorithm developed in chapter 3 can minimize

the least squares criterion penalized with any penalty with the quadratic concave

property via the majorization minimization (MM) technique. Since the common

smooth approximations of the l0 norm are quadratic concave functions, the QC

algorithm is applicable. This chapter presents the convergence analysis of the

QC algorithm. An interesting comparison shows that QC minimizes the criterion

even when the Newton algorithm fails. Simulation results showed that when

many singular values of the regression matrix are close to zero, the QC algorithm

outperformed L0LS-CD and pIHT algorithms.

Chapters 4 and 5 were based on applications of sparse modeling. Chapter

4 developed the SCSI algorithm which is a sparse transfer function estimation

method for systems with coloured noise. Laguerre basis functions were used

for model expansion which guarantees stability unlike existing methods. SCSI

simulations further confirms that L0LS-CD outperforms L1LS.

Chapter 5 was based on topology identification of sparsely connected networks

of dynamic systems. The transfer functions were expanded using Laguerre basis

functions and gL0LS-CD was used for topology identification. Simulation results

shows that gL0LS-CD outperforms group LASSO.

Although sparse signal processing has attracted a lot of attention, the im-

portance of model selection has been widely neglected. Most model selection

criterion are based on the signal or prediction mean squared error. Chapter 6

develops an SURE criterion instead for parameter mean square error and ob-

tains the estimator for l1 penalized least squares problem with grouped variables.

Simulations based on a network topology problem showed the accuracy of this

method as well as its superiority compered to other methods.

In conclusion this thesis has made a significant contribution to the area of

sparse signal processing and model selection. Future avenues for research related

to the topics discussed in this thesis are listed below.
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7.2 Future Work

1. Chapter 2: l0 denoising.

• L0LS-CD, V-L0LS-CD and gL0LS-CD were developed for systems

with white noise. These methods can be extended to handle coloured

noise. SCSI-L0, developed in chapter 4 is a special instance of this

in the context of system identification. A general method to handle

coloured noise can be developed by following a similar principle.

• So far SURE criteria have been developed for the l1 norm. SURE for

MSEμ and MSEβ for L0LS can be developed.

• This thesis presents the stability analysis of L0LS-CD on over-determined

systems. This analysis can be extended to under-determined systems.

• So far L0LS-CD has been applied to the application of sparse trans-

fer function estimation and gL0LS-CD has been applied to the appli-

cations of magnetoencephalography and network topology identifica-

tion. It would be interesting to analyze the performance of L0LS-CD,

V-L0LS-CD and gL0LS-CD in the context of other sparse modeling

applications.

• In [30] gL0LS-CD is applied to individual time samples separately.

It would be interesting to extend gL0LS-CD to incorporate temporal

correlation.

2. Chapter 3: QC algorithm.

• The QC algorithm can also be extended to handle coloured noise.

• The QC algorithm is more general and has a wider scope than pre-

sented in chapter 3. QC has been extended to handle noisy indepen-

dent component analysis (ICA) in [222].

• The stability analysis of the QC algorithm can be extended to support

under-determined systems.

• So far QC is applied to each time sample of noisy ICA separately.

It would be interesting to extend this method to introduce temporal

continuity.
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3. Chapter 4: Application of sparse modeling - transfer function estimation.

• SCSI algorithm estimates a stable, sparse transfer function. How-

ever the estimated noise model is non-sparse. SCSI algorithm can be

extended to enforce sparsity to the noise model, however this would

require the noise model to be changed because stability cannot be

guaranteed if sparsity is enforced on an autoregressive model.

• Many tuning parameters have to be selected for the SCSI algorithm.

In chapter 4 these were selected using BIC. SURE criterion can be

developed for this purpose.

4. Chapter 5: Application of sparse modeling - network topology identification.

• Stability of a multiple input multiple output system is quite com-

plicated specially when sparsity is enforced. Although the method

presented in chapter 5 can successfully identify the topology of the

network it cannot guarantee the stability of the estimated network.

Developing a method that can enforce sparsity on to the network links,

as well as to the transfer functions of individual links, while guarante-

ing stability will be an interesting avenue for future work.

5. Chapter 6: Parameter Based Model Selection via SURE.

• Although SURE is superior to the other model selection criteria it was

not used in the simulations of chapters 2-5 because it needs further

development. So far the SURE criterion has only been developed for

the l1 penalized least squares problem. Thus SURE can be extended

to handle other sparsity measures.

127



References

[1] R. Adams, Y. Xu, and F. Canning. Sparse pseudo inverse of the discrete

plane wave transform. IEEE Transactions on Antennas and Propagation,

56:475–484, 2008. 2

[2] M. Aharon, M. Elad, and A. Bruckstein. On the uniqueness of overcomplete

dictionaries, and a practical way to retrieve them. Linear Algebra and its

Applications, 416:4867, 2006. 4

[3] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for design-

ing overcomplete dictionaries for sparse representation. IEEE Transactions

on Signal Processing, 54:4311–4322, 2006. 4

[4] H. Akaike. Information theory and an extension of the maximum likelihood

principle. In Proc. IEEE Second International Symposium on Information

Theory, pages 267–281, 1973. 19

[5] H. Akcay and B. Ninness. Rational basis functions for robust identification

from frequency and time-domain measurements. Automatica, 34:1101–1117,

1998. 89

[6] S. Alliney and S. A. Ruzinsky. An algorithm for the minimization of mixed

l1 and l2 norms, with application to bayesian estimation. IEEE Transactions

on Signal Processing, 42:618 – 627, 1994. 14, 28, 95, 106, 115

[7] T. W. Anderson. An introduction to multivariate statistical analysis. Wiley,

New York, 1958. 17

[8] A. Antoniadis and J. Fan. Regularization of wavelet approximation. Journal

of the American Statistical Association, 96:939–967, 2001. 14

128



REFERENCES

[9] T. Apostol. Mathematical Analysis. Addison-Wesley, New York, 1974. 85

[10] A. Arnold, Y. Liu, and N. Abe. Estimating brain functional connectivity

with sparse multivariate autoregression. In Proc. 13th ACM International

Conference on Knowledge Discovery and Data Mining, pages 66–75, San

Jose, California, USA, 2007. 102

[11] M. Ayazoglu, M. Sznaier, and N. Ozay. Blind identification of sparse dy-

namic networks and applications. In Proc. IEEE Conference on Decision

and Control, pages 2944–2950, Orlando, FL, USA, 2011. 101, 102

[12] J. S. Bailly, P. Monestiez, and P. Lagacherie. Modelling spatial variability

along drainage networks with geostatistics. Mathematical Geology, 38:515–

539, 2006. 101

[13] R. Baraniuk and P. Steeghs. Compressive radar imaging. In Proc. IEEE

Radar Conference, pages 128–133, Waltham, MA, U.S.A., 2007. 2

[14] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics: Identify-

ing Influential Data and Sources of Collinearity. Wiley, New Jersey, 1980.

3

[15] H. J. W. Belt and A. C. Den Brinker. Optimality condition for truncated

generalized laguerre networks. International Journal of Circuit Theory and

Applications, 23:227–235, 1995. 90

[16] C. R. Berger, J. Areta, K. Pattipati, and P. Willett. Compressed sensing - a

look beyond linear programming. In Proc. IEEE International Conference

on Acoustics, Speech and Signal Processing, pages 3857–3860, Las Vegas,

Nevada, U.S.A., 2008. 16

[17] J. Bi, K. P. Bennett, M. Embrechts, C. M. Breneman, and M. Song. Di-

mensionality reduction via sparse support vector machines. The Journal of

Machine Learning Research, 3:1229–1243, 2003. 2

[18] T. Blumensath. Accelerated iterative hard thresholding. Signal Processing,

92:752–756, 2009. 17

129



REFERENCES

[19] T. Blumensath and M. E. Davies. Iterative hard thresholding for com-

pressed sensing. Applied and Computational Harmonic Analysis, 27:265–

274, 2009. 17

[20] T. Blumensath and M.E. Davies. Iterative thresholding for sparse approx-

imation. Journal of Fourier Analysis and Application, 14:629–654, 2008.

16, 28, 49, 52, 53, 56, 71

[21] T. Blumensath and M.E. Davies. Normalized iterative hard thresholding:

Guaranteed stability and performance. IEEE Journal of Selected Topics in

Signal Processing, 4:298–309, 2010. 52, 53

[22] P. Bodin and B. Wahlberg. Thresholding in high order transfer function

estimation. In Proc. IEEE Conference on Decision and Control, pages

3400–3405, Florida, USA, 1994. 88, 89

[23] A. Bolstad, B. D. Van Veen, and R. Nowak. Causal network inference

via group sparse regularization. IEEE Transactions on Signal Processing,

59:2628–2641, 2011. 18, 101, 102, 107, 109

[24] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004. 12, 14

[25] L. Breiman. Better subset regression using the nonnegative garrote. Tech-

nometrics, 37:373384, 1995. 14

[26] S. P. Brooks, N. Friel, and R. King. Classical model selection via simulated

annealing. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 65:503–520, 2003. 12

[27] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact

signal reconstruction from highly incomplete frequency information. IEEE

Transactions on Information Theory, 52:489–509, 2006. 2

[28] E. J. Candès, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by

reweighted l1 minimization. Journal of Fourier Analysis and Applications,

14:877–905, 2008. 16, 73

130



REFERENCES

[29] B. Cassidy, C. J. Long, C. Rae, and V. Solo. Identifying fMRI model

violations with lagrange multiplier tests. IEEE Transactions on Medical

Imaging, 31:1481–1492, 2012. 89

[30] B. Cassidy, V. Solo, and A. J. Seneviratne. Grouped L0 least squares pe-

nalized magnetoencephalography. In Proc. IEEE International Symposium

on Biomedical Imaging, pages 868–871, Barcelona, Spain, 2012. 126

[31] R. Chartrand. Exact reconstruction of sparse signals via nonconvex mini-

mization. IEEE Signal Processing Letters, 14:707–710, 2007. 15

[32] R. Chartrand and V. Staneva. Restricted isometry properties and noncon-

vex compressive sensing. Inverse Problems, 24:1–14, 2008. 15

[33] J. Chen and Z. Chen. Extended bayesian information criteria for model

selection with large model spaces. Biometrika, 95:759–771, 2008. 51

[34] J. Chen and X. Huo. Theoretical results on sparse representations of

multiple-measurement vectors. IEEE Transactions on Signal Processing,

54:4634–4643, 2006. 18

[35] S. Chen, S. A. Billings, and W. Luo. Orthogonal least squares methods and

their application to non-linear system identification. International Journal

of Control, 50:18731896, 1989. 13

[36] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by

basis pursuit. SIAM Review, 43:129–159, 2001. 4, 14

[37] X. Chen, Z. J. Wang, and M. J. McKeown. fMRI group studies of brain

connectivity via a group robust lasso. In Proc. IEEE International Confer-

ence on Image Processing, pages 589–592, Hong Kong, China, 2010. 18

[38] H. Chung, K. Lee, and J. Koo. A note on bootstrap model selection crite-

rion. Statistics and Probability Letters, 26:35–41, 1996. 19

[39] P. Combettes and V. Wajs. Signal recovery by proximal forward-backward

splitting. Multiscale Modeling and Simulation, 4:1168–1200, 2005. 71, 77,

85, 86

131



REFERENCES

[40] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado. Sparse solu-

tions to linear inverse problems with multiple measurement vectors. IEEE

Transactions on Signal Processing, 53:2477–2488, 2005. 17, 39, 50, 60

[41] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by

sparse 3-d transform-domain collaborative filtering. IEEE Transactions on

Image Processing, 16:2080–2095, 2007. 2

[42] E. DallAnese, J.-A. Bazerque, H. Zhu, and G. B. Giannakis. Group sparse

total least-squares for cognitive spectrum sensing. In Proc. IEEE 12th In-

ternational Workshop on Signal Processing Advances in Wireless Commu-

nications, pages 96 –100, San Francisco, California, U.S.A., 2011. 18

[43] H. Dalton. The measurement of the inequity of incomes. Economic Journal,

30:348–361, 1920. 7, 8

[44] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations.

Constructive Approximation, 13:57–98, 1997. 10

[45] J. Doak. An evaluation of feature selection methods and their application

to computer security. University of California at Davis, Tech Report CSE-

92-18, 1992. 12

[46] W. Dong, L. Zhang, G. Shi, and X. Wu. Image deblurring and super-

resolution by adaptive sparse domain selection and adaptive regularization.

IEEE Transactions on Image Processing, 20:1838–1857, 2011. 2

[47] D. L. Donoho. Compressed sensing. IEEE Transactions on Information

Theory, 52:1289–1306, 2006. 2

[48] D. L. Donoho. For most large underdetermined systems of equations,

the minimal l1-norm near-solution approximates the sparsest near-solution.

Communications On Pure and Applied Mathematics, 59:907–934, 2006. 14

[49] D. L. Donoho and M. Elad. Optimally sparse representation in gen-

eral (nonorthogonal) dictionaries via l1 minimization. In Proc. National

Academy of Sciences of the United States of America, pages 2197–2202,

2003. 14

132



REFERENCES

[50] D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decom-

position. IEEE Transactions on Information Theory, 47:2845–2862, 2001.

14

[51] D. L. Donoho, I. M. Johnstone, J. C. Hoch, and A. S. Stern. Maximum

entropy and the nearly black object. Journal of the Royal Statistical Society.

Series B, 54:41–81, 1992. 21

[52] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck. Sparse solution of under-

determined systems of linear equations by stagewise orthogonal matching

pursuit. IEEE Transactions on Information Theory, 58:1094–1121, 2012.

13

[53] N. R. Draper and H. Smith. Applied Regression Analysis. Wiley, New York,

1966. 12

[54] B. Efron. Bootstrap methods: another look at the jackknife. The Annals

of Statistics, 7:1–26, 1979. 19

[55] B. Efron. The estimation of prediction error: covariance penalties and

cross-validation. Journal of the American Statistical Association, 99:619–

642, 2004. 19

[56] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.

Annals of Statistics, 32:407–499, 2004. 14, 112

[57] M. A. Efroymson. Stepwise regression-a backward and forward look. In

Proc. Eastern Regional Meetings of the Institute of Mathematical Statistics,

1966. 12

[58] M. Eichler. Granger causality and path diagrams for multivariate time

series. Journal of Econometrics, 137:334–353, 2007. 101

[59] M. Elad and M. Aharon. Image denoising via sparse and redundant repre-

sentations over learned dictionaries. IEEE Transactions on Image Process-

ing, 15:3736–3745, 2006. 2, 4

133



REFERENCES

[60] M. Elad, M.A.T. Figueiredo, and Yi Ma. On the role of sparse and re-

dundant representations in image processing. Proceedings of the IEEE,

98:972–982, 2010. 2

[61] Y. C. Eldar. Generalized SURE for exponential families: Applications to

regularization. IEEE Transactions on Signal Processing, 57:471–481, 2009.

21, 111

[62] Y. C. Eldar and H. Rauhut. Average case analysis of multichannel sparse

recovery using convex relaxation. IEEE Transactions on Information The-

ory, 56:505–519, 2010. 18

[63] Y.C. Eldar, P. Kuppinger, and H. Bolcskei. Block-sparse signals: Uncer-

tainty relations and efficient recovery. IEEE Transactions on Signal Pro-

cessing, 58:3042–3054, 2010. 18, 41

[64] Y.C. Eldar and M. Mishali. Robust recovery of signals from a structured

union of subspaces. IEEE Transactions on Information Theory, 55:5302–

5316, 2009. 18, 41

[65] K. Engan, S. O. Aase, and J. Hakon Husoy. Method of optimal directions for

frame design. In Proc. IEEE International Conference on Acoustics, Speech

and Signal Processing, page 24432446, Phoenix, Arizona, USA, 1999. 4

[66] K. Engan, B. D. Rao, and K. Kreutz-Delgado. Frame design using

FOCUSS with method of optimal directions (MOD). In Proc. Norwegian

Signal Processing Symposium, page 6569, Sem Gjesteg̊ard, Asker, Norway,

1999. 4

[67] J. Fan. Comment on wavelets in statistics: A review by a. antoniadis.

Italian Journal of Statistics, 6:97–144, 1997. 14

[68] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood

and its oracle properties. Journal of the American Statistical Association,

96:1348–1360, 2001. 14

134



REFERENCES

[69] I. J. Fevrier, S. B. Gelfand, and M. P. Fitz. Reduced complexity decision

feedback equalization for multipath channels with large delay spreads. IEEE

Transactions on Communications, 47:927–937, 1999. 17

[70] M. Figueiredo, R. Nowak, and S. Wright. Gradient projection for sparse

reconstruction: Application to compressed sensing and other inverse prob-

lems. IEEE journal of selected topics in signal processing (Special Issue on

Convex Optimization Methods for Signal Processing), 1:586–598, 2007. 14

[71] S. Foucart and M.-J. Lai. Sparsest solutions of underdetermined linear

systems via lq-minimization for 0 < q ≤ 1. Applied and Computational

Harmonic Analysis, 26:395–407, 2009. 15

[72] I. Frank and J. Friedman. A statistical view of some chemometrics regres-

sion tools. Technometrics, 35:109–148, 1993. 15

[73] J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani. Pathwise coordinate

optimization. Annals of Applied Statistics, 1:302–332, 2007. 14, 32, 36

[74] W. J. Fu. Penalized regression: the bridge versus the lasso. Journal of

Computational and Graphical Statistics, 7:397–416, 1998. 14, 15, 32, 36, 52

[75] T. S. Gardner, S. Shimer, and J. J. Collins. Inferring microbial genetic

networks. ASM News, 70:121–126, 2004. 18, 101

[76] G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals

with a certain family of nonconvex penalties and DC programming. IEEE

Transactions on Signal Processing, 57:4686–4698, 2009. 15, 70, 71

[77] D. Geeman and G. Reynolds. Constrained restoration and the recovery

of discontinuities. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 14:367–383, 1992. 71

[78] D. Geeman and C. Yang. Nonlinear image recovery with half-quadratic

regularization. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 4:932–946, 1995. 71

135



REFERENCES

[79] E. I. George and D. P. Foster. The risk inflation criterion for multiple

regression. The Annals of Statistics, 22:1947–1975, 1994. 20

[80] E. I. George and D. P. Foster. Calibration and empirical bayes variable

selection. Biometrika, 87:731–747, 2000. 20

[81] P. Georgiev, F. Theis, and A. Cichocki. Sparse component analysis and

blind source separation of underdetermined mixtures. IEEE Transactions

on Neural Networks, 16:992–996, 2005. 2

[82] W. Gersch. Spectral analysis of EEG’s by autoregressive decomposition of

time series. Mathematical Biosciences, 7:205–222, 1970. 101

[83] W. Gersch. Causality or driving in electrophysiological signal analysis.

Mathematical Biosciences, 14:177–196, 1972. 101

[84] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and M. Moo-

nen. Sparse linear prediction and its applications to speech processing.

IEEE Transactions on Audio, Speech, and Language Processing, 20:1644–

1657, 2012. 2

[85] C. Gini. Measurement of inequality of incomes. The Economic Journal,

31(121):124–126, 1921. 7

[86] D.E. Goldberg. Genetic Algorithm in Search, Optimization, and Machine

Learning. Addison Wesley, 1989. 12

[87] D.E. Goldberg. Genetic and evolutionary algorithms come of age. Commu-

nications of the ACM, 37:113–119, 1994. 12

[88] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a

method for choosing a good ridge parameter. Technometrics, 21:215–223,

1979. 19

[89] I. F. Gorodnitsky, J. S. George, and B. D. Rao. Neuromagnetic source

imaging with FOCUSS: a recursive weighted minimum norm algorithm.

Electroencephalography and Clinical Neurophysiology, 95:231–251, 1995. 17

136



REFERENCES

[90] I. F. Gorodnitsky and B. D. Rao. Sparse signal reconstruction from limited

data using FOCUSS: A re-weighted minimum norm algorithm. IEEE

Transactions on Signal Processing, 45:600 – 616, 1997. 15, 52

[91] I.F. Gorodnitsky and B.D. Rao. A recursive weighted minimum norm algo-

rithm: Analysis and applications. In Proc. IEEE International Conference

on Acoustics, Speech and Signal Processing, pages 456–459 vol.3, Minneapo-

lis, Minnesota, U.S.A., 1993. 15

[92] C. W. J. Granger. Investigating causal relations by econometric models and

cross-spectral methods. Econometrica, 37:424–438, 1969. 101

[93] R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheynst. Atoms of

all channels, unite! average case analysis of multi-channel sparse recovery

using greedy algorithms. The Journal of Fourier Analysis and Applications,

14:655–687, 2008. 17

[94] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms

for sparse matrix factorization. IEEE Transactions on Parallel and Dis-

tributed Systems, 8:502–520, 1997. 2

[95] Y. Hamamoto, S. Uchimura, Y. Matsuura, T. Kanaoka, and S. Tomita.

Evaluation of the branch and bound algorithm for feature selection. Pattern

Recognition Letters, 11:453–456, 1990. 12

[96] M. Hanke. Limitations of the l-curve method in ill-posed problems. BIT

Numerical Mathematics, 36:287–301, 1996. 19, 50

[97] P. C. Hansen. Analysis of discrete ill-posed problems by means of the l-

curve. SIAM Review, 34:561–580, 1992. 19

[98] P. C. Hansen and D. P. O’Leary. The use of the l-curve in the regulariza-

tion of discrete ill-posed problems. SIAM Journal on Scientific Computing,

14:1487–1503, 1993. 19

[99] S. Haufe, K. Müller, G. Nolte, and N. Krämer. Sparse causal discovery
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