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ABSTRACT

This study develops an integrated framework to empirically test a class of 

equilibrium models of the term structure of interest rates in the Australian context: 

(i) Cox, Ingersoll and Ross (1985), (ii) Vasicek (1977); and (iii) a generalised 

version of Cox, Ingersoll and Ross (1985), first introduced in this study.

The research involves an examination of the following specific issues:

(i) to what extent the empirical implications of these models are supported 

by the Australian bond market; and

(ii) which model performs best in terms of goodness of fit and 

predictiveness.

To examine these issues, the study develops an integrated estimation 

methodology capable of incorporating zero coupon and coupon paying bonds, 

which was used in two distinct phases of the research design:(i) A new technique 

based upon Chebyshev polynomials is designed to generate zero-coupon term 

structures from a limited number of coupon paying bonds; (ii) The second the stage 

is concerned with estimating, testing, and ranking the following three models: CIR 

(1985), generalised CIR, and Vasicek (1977), using all available zero-coupon and 

coupon-paying Australian bonds from 1985 to 1992.

The main results of the study may be summarised as follows:

(i) The newly introduced Chebyshev polynomial based curve fitting



technique performs best relatively to the differential equation based Nelson-

Siegel model.

(ii) While the instantaneous spot rate in equilibrium models is the 

predominant and driving factor in bond pricing it consistently underestimates 

its two closest observed rates, the cash rate and 13-week Treasury Note 

rate. However, the underestimation is removed when model rates of 13- 

week maturity are compared with 13-week Treasury Note rates, indicating 

that the biasedness is probably caused by the lack of an observed 

instantaneous spot rate.

(iii) There is mild support for the models’ implication of parameter stability.

(iv) On the basis of performance criteria the generalised CIR model, first 

introduced in this study, is the best performer although it is also the most 

computationally difficult.

(v) The tested models display considerable multicollinearity, a characteristic 

consistently recognised in this literature.

In conclusion, the study found empirical support for equilibrium models of 

the term structure of interest rates in Australia.
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The term structure of interest rates, commonly defined as the relationship 

between times to maturities and yields on default free bonds, is a topic that attracts 

intensive research in finance and economics. The history of this research dates back 

to the end of the 19th century1 and was based upon some ad-hoc characterisations 

of the notion of expectation in financial markets while current research views bonds 

as financial assets and concentrates on developing: (i) conditions for the pricing of 

these bonds that are consistent with equilibrium in financial markets (partial 

equilibrium) or the whole economy (general equilibrium); or (ii) conditions for the 

existing term structure to evolve over time such as to preclude arbitrage 

opportunities. These theories of the term structure are known as equilibrium and 

preference free respectively and they form the paradigm of modern2 term structure 

research in the last twenty years. The models that feature most prominently in this 

literature include equilibrium models by Vasicek (1977), Cox, Ingersoll and Ross 

(1985), and the preference free model by Heath, Jarrow and Morton (1992).

1.1 MOTIVATION, RESEARCH ISSUES AND SCOPE OF INVESTIGATION

As with any scientific endeavour, theoretical developments entail empirical 

verification. In contrast to the testing of traditional theories of the term structure, 

tests of modern term structure models are limited in number and these have been

1 See Irving Fisher (1896).

2 The term ’modern’ is used here to differentiate these models from the so-called traditional 
theories based upon some ad-hoc characterisation of expectations.

2



carried out with mostly US data3. The choice between equilibrium theories and 

preference theories largely depends upon the focus of interest. If pricing derivatives 

on the assumption that the existing term structure is in equilibrium is of primary 

interest, then testing preference free theories will be a natural step. While the 

assumption may be questionable, the empirical verification of the no-arbitrage 

condition to ensure the ensuing term structures to be consistent with the initial term 

structure would constitute a separate study in its own right. However, our primary 

interest in this thesis lies in the term structure that can be both related to economic 

factors and consistent with either the financial markets or the economy in 

equilibrium.

A review4 of the empirical evidence of equilibrium theories reveals that: (i) 

there are substantially different and conflicting results across models; (ii) there is 

evidence of significant parameter instability, inconsistent with the specification of 

equilibrium theories; and (iii) assessing the validity of model performance becomes 

a difficult task since there is a serious lack of a comprehensive comparative study 

of competing models. These problems provide the principal motivation for 

undertaking an empirical investigation of some of the most prominent equilibrium 

models in the existing literature: Vasicek (1977), Cox, Ingersoll and Ross (1985b) - 

hereafter CIR - and an extended version of the CIR model, first introduced in this 

study.

One of the functions of a theory of the term structure, including equilibrium

3 To our knowledge, there are three empirical studies of modern term structure models on 
Australian data. These include a published paper by Chiarella, Mackenzie and Pham (1992) and two 
unpublished working papers by Chiarella, Lo and Pham (1990), and Hathaway (1988).

4 See Chapter 2, Section 2.4.4.

3



theories, is to estimate the unobserved term structure using existing information. In 

this respect, the theory performs a function similar to that of the popular practice of 

fitting the yield curve using existing coupon bond prices. This curve fitting is based 

upon the no-arbitrage condition in an efficient bond market, namely the price of a 

coupon bond must equal the conditional expectation of the present value of its 

coupons and terminal face value. While the theoretical underpinning of curve fitting 

is insufficient to explain what determines the shape and level of the term structure, 

it is adequate for the purpose of interpolating unobserved interest rates from 

observed interest rates. Interpolation5 is also one of the functions of theories of 

term structure. In this respect, curve fitting may be viewed as a naive model which 

shares a similar purpose and which is easier to estimate. That, perhaps, is where 

the analogy ends because while term structure theories explain and predict how the 

current and future term structures are determined by economic variables, curve 

fitting treats the current term structure as a ’black box’ which has to be uncovered 

at each point in time using ex-post bond prices. By definition a curve-fitted term 

structure tracks ex-post data better than an economic based model. This property is 

exploited to generate term structures (from a limited number of bonds) to act as 

benchmarks to judge the estimated equilibrium models. Thus, in the absence of 

sufficient observed zero coupon bonds6 a generated curve can be considered an 

’almost surely observed’ term structure which may be used to assess an equilibrium

5 While a term structure is estimated from a limited number of observed maturities, it is 
anticipated that interest rates corresponding to unobserved maturities may be inferred from this 
curve.

6 In Australia there are only three zero coupon bonds, namely, 5-week, 13-week and 26-week 
Treasury Notes.
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model in so far as goodness of fit and model predictiveness are concerned.

Given the objectives outlined above, the study develops an integrated 

estimation methodology - capable of incorporating all zero coupon and coupon 

paying bonds - that enables the empirical work to be carried out in two distinct 

phases:

(i) A new curve fitting technique based upon Chebyshev polynomials is 

introduced to utilise all observed bond prices from 1985 to 1992 to construct 

daily term structures;

(ii) Estimation and analysis of equilibrium models by Vasicek (1977), Cox, 

Ingersoll, and Ross (1985b), and a generalised version of Cox, Ingersoll, 

and Ross (1985b) are carried out with a view to ranking these models on the 

basis of two criteria: (a) empirical support for the implications of the 

models; and (b) goodness of fit and predictive contents.

1.2 CONTRIBUTIONS OF THIS STUDY

In view of the substantially different and often conflicting evidence found in 

existing studies of equilibrium models and the serious lack of comparisons across 

competing models especially in the Australian context, a major contribution of this 

thesis is to provide a remedy in this regard.

Specifically this study makes several contributions in two broad categories: 

(1) contributions to the empirical literature, especially Australian, of equilibrium 

term structure of interest rates; and (2) contributions to the estimation 

methodology.

(1) Contributions to the literature
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(a) It offers the first comparative analysis of the empirical 

verification of equilibrium models in the Australian context.

(b) The original Cox, Ingersoll and Ross (1985b) model is 

generalised and its numerical estimation presents an alternative to the 

closed form solution to stochastic differential equations. In many 

respects the numerical method is substantially more flexible in that it 

is less restricted by assumed forms of the interest rate process and 

volatility function.

(c) It provides a theoretical basis for pricing interest rate derivative 

securities in Australia in place of ad-hoc yield curve fitting.

(2) Contributions to the estimation methodology

(a) It introduces a curve fitting technique based upon Chebyshev 

polynomials which effectively removes two commonly encountered 

econometric difficulties in term structure estimation, namely, 

maturity dependent errors and multicollinearity caused by the 

mismatch of coupon payment dates.

(b) The bond pricing functions of equilibrium models are both highly 

nonlinear and multiplicative in parameters. Existing methods of 

estimation assumes additive disturbances which are less appropriate 

for bond prices. Hence, a multiplicative type of error is introduced. 

This specification is both consistent with the nature of the pricing 

functions and is significantly more accurate than additive errors.

(c) It introduces a minimisation procedure based upon nonlinear 

regression that incorporates zero-coupon and coupon paying bonds,
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hence significantly increases the degrees of freedom and accuracy of 

estimation.

1.3 OUTLINE OF SUBSEQUENT CHAPTERS

Chapter 2 reviews the literature of the term structure of interest rates. It 

begins by providing a careful analysis of traditional expectations theories and then 

proceeds to examine modern bond pricing theories (equilibrium theories and 

preference free theories). Finally an appraisal of the three main strands of theories 

of the term structure (traditional, equilibrium and preference free) is given. 

Throughout the review, the theoretical underpinning of the models, the empirical 

methodology applied in testing these models and the evidence therefrom are 

critically analysed and presented. In particular, two common methods of estimation, 

generalised method of moments (GMM) and nonlinear least squares, are compared 

and contrasted.

Chapter 3 presents the empirical methodology which is used in this thesis 

and a description of the data set. The first part of this chapter summarises the 

method of estimation used in this study, nonlinear regression, which numerically 

solves for the vector of the parameters of tested models by minimising the sum of 

squares of the deviations of the observed bond prices from their theoretical (model 

generated) prices. The hypotheses of each tested model and the criteria for model 

selection are then outlined. The second part presents the methodology of yield 

curve fitting and introduces a new numerical method based upon Chebyshev 

polynomials. The chapter concludes with a description of the data set supplied by 

the Reserve Bank of Australia.

7



Chapter 4 presents the empirical results of the two statistical models, 

Nelson-Siegel (1987) and Chebyshev polynomials. This is followed by an analysis 

and discussion of the results, which ultimately leads to the choice of the Chebyshev 

polynomial based model to be used as benchmark to judge the performance of 

equilibrium models.

Chapter 5 presents and discusses the empirical results of the general 

equilibrium Cox, Ingersoll and Ross (1985) model, and then examines the statistical 

properties of its parameters with a view to (i) determining the extent to which well 

the model conforms to its theoretical prescriptions in the Australian empirical 

context; and (ii) determining its performance against the benchmarks generated by 

the Chebyshev polynomial based model. This estimation and investigative 

methodology is again applied to a generalised version of the Cox, Ingersoll and 

Ross model, first introduced in this study, and the Vasicek (1977) model. The 

empirical results are presented in Chapter 6 and Chapter 7 respectively. The overall 

results of Chapters 4, 5, 6 and 7 are placed in perspective in Chapter 8 where a 

comparison of the models is made. Then Chapter 9 summarises the objectives, 

issues of investigation, contributions of the study, and suggests areas of future 

research.

8



CHAPTER 2
REVIEW OF THE LITERATURE

2.1 PRELIMINARIES ......................................................................................... 10

2.2 TRADITIONAL THEORIES ...................................................................... 12
2.2.1 Expectations Theory......................................................................... 13
2.2.2 Liquidity Preference Theory........................................................... 16
2.2.3 Preferred Habitat Theory................................................................. 17
2.2.4 Concluding remarks on traditional theories................................... 18

2.3. MODERN BOND PRICING THEORIES ................................................  19
2.3.1 Partial Equilibrium Models ........................................................... 20
2.3.2 General Equilibrium Models........................................................... 38
2.3.3 Preference free models...................................................................  62
2.3.4 Australian evidence of modern bond pricing ................................ 65

2.4 SUMMARY AND CONCLUDING APPRAISAL .................................... 67
2.4.1 Traditional theories ......................................................................... 67
2.4.2 Equilibrium theories......................................................................... 68
2.4.3 Preference free models...................................................................  69
2.4.4 Justification for an empirical inquiry of equilibrium theories in

the Australian context...................................................................  69

9



Theories have been advanced to explain the shapes and levels of the term 

structure of interest rates over time. The history of the study of this subject has 

been long and voluminous. These theories, however, can be categorised into two 

major strands paralleling their historical evolutions: traditional and ’modern’. The 

first group consists of theories known as theories of expectations, liquidity 

preference and preferred habitat. The ’modern’ group grew out of the development 

of continuos time finance by Black-Scholes and Merton era in the early 1970’s 

when techniques of forming arbitrage portfolios and the application of stochastic 

differential equations to derive equilibrium asset pricing relationships were extended 

to default free bonds.

The major aim of this chapter is to review the literature relevant to the 

objectives of this thesis. The chapter is organised as follows: Section 1 reviews 

basic concepts and interest rate mathematics while Section 2 contains a brief 

description of the traditional theories. Section 3 then concentrates on the modern 

theories and Section 4 concludes the chapter.

2.1 PRELIMINARIES

The objective of this section is to develop some common definitions of 

terms and notation to facilitate the ensuing discussion. To simplify the notation we 

shall construct a reference framework under certainty using the default free zero 

coupon bond as the building block. This can be achieved without loss of generality 

and can be easily adapted to coupon paying bonds, each of which can be viewed as 

a portfolio of zero coupon bonds.

10



By definition a discount bond pays $1 at maturity and no coupon; hence we

have:

P(T,T) = 1 (1)

The yield to maturity, y(t, T), is the continuously compounded rate of return that 

the discount bond earns between t and T. Thus,

P(r,T) exp[(r - t) yd, n] = 1 (2)

or

y(t, T) InP(t, T) 
CT -t)

(3)

The instantaneous spot rate of interest, r, is the yield to maturity of a bond 

maturing instantly:

rtf) - yd, i) (4)

The forward rate of return, f(t,T), is the return implied in current prices for some 

future time. Thus, f(t,T) is the return on an investment P(t, T) for an instant after 

T:

f(t D = - dPfr.TVdr (5)
j ’ P(t, T)

Under certainty all securities must earn the same rate of return, tvT:

dP(t, T) 1 
FT P(t, T) = lit) (6)

or
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dP(t, T) 
dT

r(t) P(t, T) = 0 (7)

The unique solution to (7) under the boundary conditions, 

P(T, T) = 1 , P(t,T) > 0 , is

P(t, T) = exp (8)

Then substituting (8) into (3) yields:

T

y(t, T) = _L_ Jr(5)^ (9)

It can be seen that the instantaneous forward rate, instantaneous spot rate, and 

instantaneous yield to maturity are equal:

f(t, t) = r(t) = y(t, t) <10)

The term structure of interest rates is then defined as the yield to maturity 

on default free bonds as a function of their time to maturity.

2.2 TRADITIONAL THEORIES

The common thread underlying the traditional theories is that expectations 

play a central role in determining the term structure. Over time it has been 

proposed that other factors may also be at work. The preference for liquidity, 

which is assumed to grow out of the imbalance between investors wanting to
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borrow long and lenders lending short, gives rise to a possible liquidity premium1 

for long-term bonds. Further, bond markets may be segmented by preferences for 

chosen maturities such that each class of investors choose to stay within its 

’preferred habitat’.

2.2.1 Expectations Theory

In a riskless economy the term structure of interest rates entails the 

following no-arbitrage equilibrium relationships2: (i) the instantaneous forward rate 

for date T equals the instantaneous spot rate for time T;

At,D = rT (ID

(ii) the return of holding a long term bond at time t which matures at time T equals 

the return on rolling over a series of short term bonds from time t to time T;

= (l^)(l+r,.,)...(l*rr.,) (12)

and (iii) the realised return on any bond at any time equals 1 plus the prevailing 

riskless rate

P(t*l'T> = ur (13)
P(t,T)

In an uncertain economy these relationships need to be modified. It is then 

natural to think of the market’s expectations about future interest rates as a way to 

characterise the term structure under uncertainty. This idea was initially suggested 

by Fisher (1896), subsequently refined by Hicks (1939) and Lutz (1940), and has

1 Cox, Ingersoll and Ross (1981) interpret this as a risk premium.

2 See Ingersoll (1987, pp.388-9).
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come to be known as the expectations theory of interest rates. Over time various 

concrete formulations of the theory have emerged but two of the most basic and 

identifiable forms have been expressed as follows: (i) the expected one-period rate 

of return on holding an n-period bond equals the one period riskless spot interest 

rate; and (ii) forward rates implied in the current term structure equal expected 

future spot rates. Cox, Ingersoll and Ross (1981) (CIR hereafter) study the 

theoretical validity of the expectations theory in the context of arbitrage equilibrium 

and find these various forms to be inconsistent. To prevent arbitrage opportunities, 

equilibrium is characterised by an equality among expected holding period returns 

of all default-free bonds over ah holding periods. For example, the return on any 

series of investments over the period to to tn must have the same expectation:

E
P(jtvT,)P(t1J1)...P{tn,Tn)

P(t0Jy)P{tvT2)...P{tn_vTn)
(14)

CIR use Jensen’s inequality3 to show that equation (14) generally leads to an 

internal contradiction. This contradiction, however, no longer exists if the expected 

holding returns are equal for only one specific holding period. It is then natural to 

specify the next shortest period as this specific period. Equilibrium is then 

characterised by

dP(Y,t,T)
P(Y,t,T)

rt dt (15)

This version of the expectations theory is named the local expectations 

hypothesis and is the only specification consistent with arbitrage equilibrium.

3 See Cox, Ingersoll and Ross (1981 ,pp.769-799). An explanation of Jensen’s inequality can be 
found in Ingersoll (1987, p. 16).
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Equation (15) contains no risk premium as if risk neutrality were assumed. CIR 

(1981), however, demonstrate that this is not necessarily the case and that there are 

two other cases where a default-free bond would not require a premium: (i) locally 

certain consumption in a single good pure exchange economy; and (ii) state 

independent Bernoulli-logarithmic utility of consumption in a production-exchange 

economy. Both these cases seem to contradict observed human behaviour.

In the literature, the version of the expectations theory characterised by zero 

term premium has come to be known as the pure expectation theory or PET and is 

usually attributed to Fisher (1930) or Lutz (1940). It is based upon risk neutrality 

or special cases of risk preferences which may not reflect actual investment 

behaviour. Despite the lack of realism, the idea of expectations and recently the 

popular view that expectations are rational, hold a great deal of appeal in applied 

research. In fact, applied researchers have rarely taken the zero-risk premium 

prediction seriously4 and when it is decisively rejected by evidence, alternative 

theoretical justification for the expectations theory is sought.

Campbell (1986) provides the theoretical justification for those versions of 

the expectations theory which are studied in the empirical literature. He constructs 

a general equilibrium example to show that both the holding period term premium 

and the forward premium are constant instead of being zero as in the CIR 

economy. The key difference is that the instantaneous variances of the underlying 

sources of uncertainty are constant through time rather than proportional to a state 

variable as prescribed by CIR (1981). He then shows that the versions of the

4 Shiller and McCulloch (1987, p.27)
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expectations theory which have been formulated in the empirical literature are not 

necessarily incompatible with each other and with arbitrage pricing equilibrium. 

These non-zero term premium versions constitute what is called the expectations 

theory, in contrast to the zero term premium pure expectation theory.

The empirical literature is extremely voluminous and has a long history. A 

detailed survey of this literature, which is presented in Appendix A (section AI), 

leads to some identifiable generalisations. The crucial factor is how to model 

expectations. Various methods have been used, including the perfect foresight 

model, the error learning model, the rational expectations theory, and surveys of 

interest-rate expectations. The pure expectations theory is decisively rejected. 

Moreover, the rational expectations theory has replaced the error-learning model as 

the dominant paradigm and it has spawned a wealth of research. Evidence produced 

within the rational expectations framework, however, has been largely inconsistent 

with its predictions. Furthermore the empirical evidence indicates that: (i) forward 

rates are not good forecasts of expected future spot rates, especially at the short 

end of maturity spectrum; (ii) the term premia are positive and tend to increase, 

though not monotonically, with maturity; and (iii) the term premia are positively 

related to the level of interest rates.

2.2.2 Liquidity Preference Theory

In the liquidity preference theory investors demand a risk premium for 

holding long term bonds as risk is perceived to increase with maturity. Hence, 

Hicks (1939) suggests that forward rates should exceed subsequent spot rates with 

the difference, known as the liquidity premium increasing with maturity. The 

reason is that borrowers want to finance long to match the long term nature of their
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investments but lenders want to lend short because of liquidity considerations and 

the perceived risk of long- term securities. A weakness of this theory is that the 

persistence of the one-sided spectrum of maturities and the consequential positive 

premium5 are hard to explain in actively arbitraged markets. The empirical 

evidence, (see Appendix A (section All)), is inconclusive. This could be attributed 

to the theory being refuted by observed data or the problem of modelling 

expectations6.

2.2.3 Preferred Habitat Theory

The preferred habitat theory originated with Culbertson (1957) who argued 

that markets are segmented and hence arbitrage across markets is limited. Hedging 

against risk, which is the primary force determining the term structure is primarily 

concerned with matching the maturity of the liability side of a portfolio of 

investments with that of its assets. Lenders and borrowers who want to avoid 

capital and income risk prefer instruments with maturities matching their 

investment horizons and are reluctant to leave their ’preferred habitat’.

Modigliani and Sutch (1966, 1967) integrated the notion of market 

segmentation with rational expectations to allow for negative or positive liquidity 

premia which should not be systematically tied to maturity. They claim that their 

theory blends pure expectation, liquidity preference and market segmentation. This 

theory is characterised by two distinctive features: (i) the term premia could be 

positive or negative reflecting the excess demand for, or supply of, loans

5 This also implies that securities of different maturities are not perfect substitutes.

6 See Appendix A (section AI) for a discussion of alternative models of expectations.
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corresponding to the maturity characterising the habitat; and (ii) the expected 

current return on an n-period bond is equal to the one period rate plus the expected 

capital gain. However, the expected capital gain is assumed to be proportional to 

the expected fall in the long interest rate. Hence the spread between the short and 

long rate should primarily be determined by the long rate. Drawing on Keynes 

(1936) and De Leeuw (1965), Modigliani and Sutch contend that expectations of 

long rates are determined by two factors: (i) long rates tend to regress to a normal 

level (approximated by some average of the long rates in the past); and (ii) recent 

trends in interest rates. These two influences are then combined in an Almon lag 

structure to model expectations. The long rate is then rewritten as a combination of 

the lag structure, representing expectations, and other variables representing term 

premia. Theoretically, a main criticism of this model is that the separation of term 

premia and expectations is arbitrary and implausible. The empirical evidence, (see 

Appendix A, section AIII), supporting it is modest.

2.2.4 Concluding remarks on traditional theories

Theoretically, a major weakness of the traditional theories is that they are 

not developed as a result of the utility maximisation process subject to either 

market clearing constraints or less stringently to a no-arbitrage condition. Rather 

the theories are put forward as a series of propositions that interest rates are 

determined by expectations. Although it is possible to find some form of market 

equilibrium consistent with some of these propositions, the lack of a integrated 

theoretical foundation7 provides little guidance to empirical testing. Thus, the

7 Shiller and McCulloch (1987) refer to traditional theories as "heuristic theoretical models"
(p.60).
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empirical literature contains mixed and often conflicting evidence. The Australian 

evidence, which is presented in Appendix A (section IV), is no exception8. In sum, 

the empirical literature has generated more questions9 than answers.

The new class of theories, which will be reviewed in the next section, 

contain all the elements of the traditional theories, namely rational expectations and 

risk preferences. Yet the issue of equilibrium under uncertainty is explicitly 

accounted for by introducing uncertainty into bond price dynamics via the 

incorporation of one or more Wiener processes. In this sense, the theory of the 

term structure constitutes a fully integrated component of the theory of dynamic 

asset pricing10.

2.3. MODERN BOND PRICING THEORIES

In this section we review partial equilibrium (in the bond market) and 

general equilibrium (in the economy at large) bond pricing models which grew out 

of the Merton-Black-Scholes era in the early 1970s11.

A default-free bond is considered an asset in the representative consumer’s 

portfolio of investments. He/she is assumed to maximise the sum of his/her 

expected utilities of consumption over time. A necessary condition for a maximum

8 See Appendix A (section AIV) for a detailed survey of Australian contributions to the testing of 
the traditional theories of the term structure.

9 Some of these questions are : (i) why do the term premia vary?; and (ii) what is the correct way 
to describe the relationship between the term premia and other economic variables? More unresolved 
issues are listed in Shiller and McCulloch (1987, pp.60-61).

10 The unifying characteristic of this theory is a valuation equation which states that the price of a 
claim is equal to the product of the conditional mathematical expectation of its future payoff and the 
marginal rate of substitution of current and future consumption of the representative investor.

11 Specifically, the pricing of a risky asset is governed by a partial differential equation which is 
the end result of imposing a no-arbitrage condition on a riskless portfolio of assets.
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is the marginal utility of consuming the proceeds at time t from selling the bond is 

equal to the marginal disutility of the expected loss of future consumption at time 

t+1. This equality of the marginal rate of substitution of utilities must hold for all 

assets in the portfolio and at all times12. Uncertainty is introduced by one or more 

Wiener processes and Ito calculus is used to relate the driving force of the term 

structure to the price of a default-free bond. By varying the term to maturity the 

arbitrage-free bond price will determine the entire term structure.

2.3.1 Partial Equilibrium Models

2.3.1.1 Introduction

In this framework it is assumed that the term structure is driven by a state 

variable, usually specified to be the spot interest rate13, resulting in a one-factor 

term structure model. As the equilibrium condition used is that of no-arbitrage, 

these models are called partial equilibrium. Although more factors can be 

incorporated we shall start with a single-factor model to facilitate the exposition.

2.3.1.2 Theory

The stochastic process of the spot interest rate is specified to be a Wiener 

process:

dr = a(r,t)dt + o(r,t)dz

where a(r,t) and o(r,t) are called the drift rate and volatility rate of the process

12 See Samuelson and Merton (1969), Merton (1971), Rubinstein (1976), Lucas (1978), and 
LeRoy (1982).

13 A further subclassification of partial equilibrium models is on whether they use bond price, P(t, 
T), or forward rate, f(t, T), as the driving forces for the interest rate dependence. For example, Ball 
and Torous (1983), and Heath, Jarrow and Morton (1992) start from an assumed process for P(t, T) 
and f(t, T) respectively. See also Appendix B.
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respectively, and dz(t) are the increments of a Wiener process z(t) such that dz(t) 

~ N(0,\fdt~) . If the price of a default-free bond, P(r, t, T), is assumed to be a

function of the spot interest, time and time to maturity, and by Ito’s lemma it must 

also follows the same type of process14:

-H = \i (r, t, T)dt + s ( r, t, T ) dz 07)
P(t, T)

where

n(r,t,T)

dP 3P— + a— 
dt dr

1**1
2 dr2 (18)

s(r ,t,T)
(19)

We now form a portfolio of such bonds, V, with weights Wj and w2 

corresponding to maturity dates T1? T2 respectively and such that w2 = 1 - Wj. 

The return on this portfolio is:

_ = \wxti(j,t,Tx) + w2/x(r,r,r2)] dt + [w15(r,t,7’1) + w2s(r,t,T2) ] dz (2°)

which can be made non-stochastic by intertemporally choosing the weights such 

that:

(r,t,T{) + w>2s (r,t,T2) =0 (21)

The stochastic process describing the dynamic evolution of the portfolio V then 

becomes:

14 An exposition of Ito’s calculus can be found in Hull (1993).
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(22)

It is clear that at any point in time the portfolio is riskless from time t to t + dt 

and hence it must earn the risk free rate over that period, that is:

XL = rdt (23)
V

From (20), (21) and (22) we then obtain the no-arbitrage condition between two 

bonds of different maturity:

n(r,t,T{)-r _ n(r,t,T2)-r f24)
s(r,t,Tx) s(r,t,T2)

Hence o - r)/s is independent of maturity and the no-arbitrage condition can be 

written as

OIL = X (25)

The left hand side of (25) is the ratio of the excess return over the variance rate of 

a bond of maturity Tr This ratio is commonly denoted by X and is known as the 

market price of interest rate risk. It has to be satisfied by bonds of all maturities for 

there to be no arbitrage in the bond market.

Substituting the definitions of n(r,t,T) and s(r,t,T) of equations (18) and (19) 

into equation (25) yields the following partial differential equation for the pricing of 

the pure discount bond:

'a2(r,t,T)^l * [a(r,t,n-Mr,tMr,t,T)\?l * - rP = 0 (26)
2 dr1 or ot

In order to solve this equation the following additional conditions are

XL = [w,/x(r,/,7’1) + w2n(r,t,T2)yt

22



required: (i) 0 < t < T; \ r \ < oo; (ii) P(r,t,t) = 1; and (iii)

lim P( r, t, T) = 0 . The first condition means that the spot interest rate must be
r~*oo

bounded. The second condition means that the price of an instantly maturing pure 

discount bond is 1 while the third condition means that the price of a pure discount 

bond as r -* oo approaches zero.

The above general framework underlies a number of single-factor and two- 

factor models where the factors may be the instantaneous spot rate and the rate of 

inflation (Richard (1978)) or the instantaneous spot rate and the yield on a console 

bond which pays coupons continuously (Brennan and Schwartz (1979)). The major 

models in this group are now reviewed.

2.3.1.2(a) One Factor Models

A summary of one-factor models is provided in Table 1. These models 

assume that the term structure is driven by a single factor such as the spot interest 

rate, r. Thus Vasicek (1977) assumes that a (r,t) = k(6 - r), \(r,t) = X and o (r,t) 

= a, where k may be interpreted as the adjustment speed of the spot rate as it 

reverts to the long-run equilibrium rate, 6. This process characterises the 

fluctuations of r about 6. The assumption of a constant market price of risk is 

implied by the continuous time CAPM with logarithmic utility of consumption 

functions15. Thus, the resulting process of the spot rate is :

dr = K(6-r)dt + adz

while the solution to the stochastic differential equation for bond prices implied by 

the no-arbitrage condition is:

15 See Dothan (1977), pp.61-2.
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(28)P{t,s,r) = exp 1 (1 -e •“(7'-'>)(/J( °°) -r) -(J-t)R( oo) - _ (1 -e ”"<7'-'))2 
K 4k3

where R vasi(o°)16 is the yield on a very long bond as T -» oo :

a2 (29)

Like Vasicek (1977), Dothan (1977) also assumes a constant market price of 

risk, \{r,t) = A. However, he assumes a proportional process for the short rate:

dr = ordz. (30)

The resultant bond price P(r,t,T) solution is a decreasing convex function of the 

spot rate, r, time to maturity, r = T-t, and an increasing concave function of the 

variance rate of the spot rate, o2.

The only difference between Dothan (1977) and Vasicek (1977) is in the 

specification of the dynamics of the spot interest rate. Both assumptions of the 

dynamics are plausible but a disadvantage of the Vasicek model is that interest rates 

can become negative. Dothan (1977) overcomes this problem by assuming that the 

stochastic term has a standard deviation proportional to r, implying a log-normal 

distribution for r. It should be noted, however, that the Vasicek model may be a 

reasonable approximation to reality as the probability of negative interest rates

16 Note that X in the Vasicek model is defined to be positive (see Vasicek (1977, equation (14)). 
To make it consistent with X in the CIR model, a negative sign is placed in front of X in equation 
(29).
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is small. In any case the issue of superiority of one model over the other has to be 

settled empirically17.

2.3.1.2(b) Multi-factor Models

Table 2 provides a summary of multifactor models. Apart from the belief 

that one factor is sufficient to determine the term structure, the choice of one factor 

is essentially one of modelling convenience. In this section we shall review a 

number of two-factor models. Richards (1978) developed a two-factor model based 

upon the real rate of interest, R, and the current rate of inflation, 7r. The dynamics 

of these factors are modelled by:

dR = -a(R-R')dt + oR RmdzR (31)

dir = -c(ir-ir’)dt + oT niadzT (32)

where a and c are the speeds of adjustment of R and tt to their long-run equilibria 

R* and 7r* respectively; oR R]l2 and arir112 are the volatilities of the changes in 

the real rate of interest and the rate of inflation respectively.

The market prices of risk of R and 7r are assumed to be increasing functions 

of R and tv respectively:

17 Only the Vasicek model has been tested empirically. See Munnik and Schotman (1994).
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(R,T,t) = XffR1/2 (33)

K (^,7T,0 = A^1'2 (34)

Given these assumptions and applying to this two factor world the condition of no 

riskless arbitrage between bonds of different maturities, Richards derives a formula 

which relates the price of discount bonds to the real rate of interest, the anticipated 

rate of inflation, and the market prices of interest and inflation risks. A weakness 

of this model is that it introduces two utility dependent parameters, 

namely Xr and X* , into the valuation formula, which complicates considerably 

the empirical estimation of the model.

Brennan and Schwartz (1979,1980,1982) assume that bond prices are driven 

by the spot interest rate, r, and long interest rate, 2, and that r and 2 are modelled 

by a joint stochastic process:

dr = /?,(r,l,t)dt + ijl(r,l,t)dzl (35)

dl = (32(r,l,t)dt + r] 2(r,l,t)dz2 (36)

where dzj and dz2 are Wiener processes with E(dzj) = E(dz2) = 0 and E[dz1dz2] = 

pdt where p is the correlation between dz{ and dz2 . Furthermore /3j(.) and j32(.) 

are the expected instantaneous rates of change in the spot and long-term rates of 

interest respectively, ri^.) and r|2(.) are the instantaneous variance rates of the 

changes in r and 2, and p is the instantaneous correlation between the unanticipated 

changes in r and 2. The model as specified by equations (35) and (36) relates 

changes in each interest rate to changes in the other interest rate and to its own 

level. A specific form of equations (35) and (36) is chosen for the purpose of 

estimation:
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dr = [ax+bx(£-r)\dt + roxdzx (37)

d£ = £(a2+b2+c2£)dt + £o2dz2 (38)

where a,, bj, a2, b2, c2, o1 and o2 are constants. This formulation is based upon the 

following assumptions: (i) the instantaneous standard deviation of each interest rate 

is proportional to its level; (ii) the drift of the spot interest rate reflects the 

tendency of the spot rate to regress to the long interest rate; and (iii) the market 

price of risk of the long interest rate is a linear function of r and £. The resultant 

partial differential equation includes two market prices of risk, \x and X2, 

corresponding to the spot rate and long rate respectively. Assuming that £ is the 

rate of a console bond, which is a traded asset, then X2 can be expressed in terms 

of a2, b2, r and £ and thus does not appear in the bond pricing equation:

1 d2P
2 dr2

2 d2p
~drdiPViV2

l
+ _ d2P 2 dPm , .

-^2 + ^-(/31-X1r;1) +
2 dl2 dr

dP „ 
dt

dP, 2/2
irMl +1 - rl)

(39)

However, while the model does not have a closed form solution, it can be 

estimated numerically.

Schaefer and Schwartz (1984) build upon the earlier work of Brennan and 

Schwartz (1979,1980,1982) by specifying the console rate and the spread between 

the console rate and the short rate as the state variables. Employing an empirically 

supported observation that these two state variables are orthogonal they simplify the 

bond pricing partial differential equation. However, this still does not yield a closed 

form solution. Instead, an approximate solution is found.

Langetieg (1980) develops a model of the term structure characterised by 

multi stochastic factors with joint elastic random walk (or Ornstein-Uhlenbeck)
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processes and where the instantaneous riskless rate of interest is a linear 

combination of these factors. A general solution is obtained but an explicit and 

practical solution is only possible for special distributions, namely those stochastic 

processes of the underlying state variables specified by Vasicek (1977), Dothan 

(1977), Cox, Ingersol and Ross (1985), and Richards (1977). Theoretically this 

model encompasses an arbitrary number of economic factors that are related to the 

term structure but practically only a single-factor or two-factor version can be 

implemented.

Multifactor modelling is an attempt to overcome the sparsity of information 

contained in one factor models and the difficulty of correctly identifying such a 

factor. Theoretically, it presents a prima facie stronger case as a richer set of 

information is being used. The cost, however, is mathematical and computational 

complexity.

2.3.1.3 Empirical evidence

In this section we review the empirical tests of the Vasicek one-factor and 

Brennan-Schwartz two-factor models, the only two partial equilibrium models that 

have been tested to date. The overall objective of these tests is to ascertain how 

well the models fit the data. The Vasicek model yields a model bond price formula, 

equation (28), which can be applied directly to cross-sections of observed bond 

prices. Alternatively, a time series regression can be implemented, using a discrete 

analogue to equation (27)18. The data in the latter case would consist of a time 

series of an observed proxy for the instantaneous spot interest rate.

Table 3 provides a summary of the empirical evidence of partial equilibrium 

models. Using daily observations of the one-month Amsterdam InterBank Offered

18 See Sanders and Unal (1988)
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Rate for the 1985-1991 period and actively traded Dutch Government Bonds for 

1989-1990, Munnik and Schotman (1994) estimated equations (27) and (28) of the 

Vasicek model. They find that: (i) the model provides a good fit for bond prices 

(the average pricing error is 0.18 guilder per 100 guilder par bond); (ii) the mean 

reversion parameter, k, and the volatility parameter, o2, behave erratically; (iii) in 

many cross sections o2 falls to zero and a lower bound for o2 is set at 10'5 which 

was attained in more than half of the sample times. The effect of the lower bound 

on the fit of the model was checked and found to be negligible19 ; and (iv) the 

model is overspecified20 so that without significantly affecting the goodness of fit 

of the model we can set one of the structural parameters (k, 0, o2) at some 

"reasonable" value and optimise over the others. A weakness of this study is that it 

does not provide out-of-sample verification of the estimated model. Thus, the issue 

of model accuracy and parameter stability remains unexplored.

The testing of the Brennan-Schwartz model involves three steps: (i) linear 

regression is applied to the stochastic processes of the spot rate and long rate to 

yield estimates of the coefficients of the processes; (ii) these estimates are then used 

in the partial differential equation to yield P(r,l,\,t,T) which is the model price of a 

pure discount bond maturing in r periods, r = T-t, when the two interest rates are 

r and £, and X is the appropriate market price of risk parameter; and (iii) X is 

determined by minimising the sum of squared differences between observed bond 

prices and model prices.

Brennan and Schwartz (1979) numerically solve equation (39) and then 

compare predicted bond prices with observed bond prices and estimated yields from

19 For example a lower bound of 103 could have been set without significantly reducing the 
goodness of fit of the model, indicating that the likelihood function is very flat.

2(1 A symptom of overparameterisation is the near singularity of the Hessian.

31



Partial Equilibrium Models: Empirical Evidence



Partial Equilibrium Models: Empirical Evidence

R em arks

D oes not p rov ide  a benchm ark  w ith  w hich  to 

com pare  the estim ated  m odel o f  the term  
structu re . C om parison  is only  ind irec t v ia the 
p red ic tion  o f  bond  re tu rns

R esults ind icate e ith er m arket ineffic iency , 
m odel m isspecifica tion , o r data  e rro rs

Focus o f  study  is on  p ric ing  op tions hence it 
does no t repo rt how  w ell the B rennan  & 
Schw artz p red ic ted  bond  prices

F ind ings

A th ird  factor is p resen t 
in add ition  to the long 
and short rates
T hree  factors p red ic t 
bond  re tu rns w ith  lesser
e rro rs than  tw o factor

A th ird  factor is found  
to affect bond  prices 
S trong re la tion  betw een  
bond  p rice  e rro rs and 
subsequent bond  re tu rn s

Increased  accuracy  o f  
p ric ing  op tions re la tive  
to the B lack & Scholes 
(1973) m odel

D ata

M onth ly  observations o f  
30 day C anadian
B ankers’ A cceptances 
and average  y ields on 
C anadian  bonds w ith
m atu rities  in excess o f
25 years (1964-1979) 
Q uarterly  prices o f  126 
C anadian bonds (1964- 
1979)

M onth ly  data  in C R SP 

(U S) G overnm ent Bond 
F ile  (1958-1979)

C R SP G overnm en t Bond 
F ile (1970-1982)
D aily observations o f  
call and pu t op tions on
US G overnm en t Bonds 
and T reasu ry  Bills 
(1982-1983)

M ethodo logy

N um erica lly  so lv ing  
bond  p rice  partia l 
d iffe ren tia l equation  
F ac to r analysis o f  bond  
p rice  e rro rs
F ocussing  on 

p red ic tin g  bond  re tu rns 
cond itiona l on the
fac to rs recovered  from  
bond  p rice  e rro rs

R ep lica tes B rennan  & 
Schw artz  (1980)

R eplicates  B rennan  & 
Schw artz  (1980) to 
estim ate the term
struc tu re

~
 

1
-8

 
o

 
" 

g
uT3O

"O 
.—

i 
o

•a 
2 

o 
73 

-0
§ 

s 
-c 

“ 
S

T3 ID 
•*—*

-
 

N
£ 

£
 

d 
5

d 
>

N
£ 

C
 

c 
5

d 
>

N
 
a
g

i2 
«

s
s
.

d 
£ 

^
 

fc 
o

<D
£
 

*5
22 

-g
a 

-g 
% 

s 
g

H
CQ 

cn
QQ 

cA
ffl 

w
 

d 
<: 

d
 

§

-ad

_
 

N
g 

tJ
c 

£ oo
g 

£
1d 

>
 

OO

• 
^

 
N

\q 
%

C/}
a 

0 
-g

.a 
§ 

-g 
on

CQ 
CO 

w
cq 

“8 
</j 

w

C
O

C
O



predicted bond prices with actual yields. Hence, they use a linear regression of 

actual values on predicted values to test the hypothesis of unbiased prediction which 

requires a zero intercept and unity slope. As proxies for the spot interest rate and 

the long-term interest rate they use yields on 30-day Canadian Bankers’ 

Acceptances and average yields to maturity on Government of Canada bonds with 

maturities in excess of 10 years. Both series are monthly data and extend from 

January 1964 to December 1976. Quarterly prices of 101 Government of Canada 

bonds from January 1964 to January 1977 are used to estimate the market price of 

risk, \j. Brennan and Schwartz (1979) found a slope coefficient of 0.93 for bond 

prices and 0.79 for yields to maturity, while the intercepts are significantly 

different from zero. Overall, the evidence can be described as weak, at best. In 

fact, Brennan and Schwartz (1979) concede that there are other factors that may 

affect the term structure, and that their work should be seen as a " first step". In 

addition, further work is required within their model to improve on the 

specification and estimation of the interest rate processes and the market price of 

risk. The latter, being utility dependent, will prove to be a major hurdle in 

estimating any bond pricing equation.

Brennan and Schwartz (1980) extend their 1979 paper with a more detailed 

empirical analysis of the intertemporal stability and predictive ability of the 

assumed stochastic process for interest rates and the statistical analysis of the 

estimated market price of risk due to the uncertainty of the short rate. In addition, 

the focus is on predicting bond returns on the basis of the factors recovered from 

bond pricing errors. The data include a sample of 126 Government of Canada 

bonds from January 1964 to April 1979 and yields on 30-day Canadian Bankers’ 

Acceptances and average yields to maturity on Government of Canada bonds with
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maturities in excess of 25 years. The quarterly bond prices and monthly yields are 

used to estimate the market price of risk and the stochastic processes of the interest 

rates respectively. The pricing errors (model prices less observed prices) are factor 

analysed and the results suggest the presence of a third factor in addition to the 

long and short rates21. Using a model incorporating these three factors to predict 

bond returns leads to smaller errors (measured by root mean squared errors, 

RMSE) than models incorporating only the long and short rates. The market price 

of risk parameter, Xl5 is found to be much smaller than the value reported in their 

1979 paper, the discrepancy being attributed to a different sample size of bonds and 

a different method of estimation. Nevertheless, in both papers this parameter does 

not have a substantial impact on the estimated model. A major weakness of the 

Brennan and Schwartz (1980) study is that it does not provide a benchmark with 

which to compare the estimated model of the term structure. An indirect test, 

namely the contribution of the model to uncovering the factors, is not sufficient to 

demonstrate how well the proposed model captures the forces that determine the 

shape of the term structure. Besides, it is well known that factor analysis can only 

produce ’blind’ factors. Further interpretation is needed to identify the economic 

content of the uncovered factors.

Brennan and Schwartz (1982) replicate the Brennan and Schwartz (1980) 

study on US government bond data from 1964 to 1979. Again, a third factor 

appears to be present in explaining bond prices. They also found a strong relation 

between bond price errors and subsequent bond returns, and suggests that this could 

be due to either market inefficiency, inadequacy of the model, or data errors.

Dietrich-Campbell and Schwartz (1986) use the two-factor Brennan-

21 It should be noted that factor analysis assumes constant coefficients and hence is not appropriate 
for an intertemporal model,
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Schwartz model to price American call and put options on US government bonds 

and Treasury Bills from November 21, 1982 through October 31, 1983. As the 

study focuses on options the authors do not report how well the Brennan-Schwartz 

model performs in predicting bond prices. However it does contribute to increased 

accuracy of predicted option prices relative to the Black-Scholes model (1973). The 

performance of the term structure model depends upon that of the option pricing 

models.

2.3.1.4 Concluding remarks on partial equilibrium models

There are many similarities between the Black-Scholes option pricing model 

and the partial equilibrium models of the term structure of interest rates. The 

former assumes that the economy (which includes the stock price dynamics and the 

market price of risk) has reached equilibrium. An option is a derivative security 

whose value depends only on the stock price dynamics and time. To preclude 

arbitrage profits the option has to be priced in a prescribed manner relative to the 

stock price dynamics and the market price of risk. In this sense the Black-Scholes 

model is a partial equilibrium model. The relationship between a partial equilibrium 

term structure model and its state variable(s) bears close resemblance to that 

between an option and its underlying asset. Thus, to price the bond in this arbitrage 

framework it is necessary to assume that the economy has reached equilibrium and 

this gives rise to the equilibrium state variable(s). That, perhaps, is where the 

analogy ends. To price a pure discount bond where the state variable is, for 

example, an interest rate is much more difficult than pricing an option written on 

an underlying stock. As the stock is a traded asset, and hence its price is observed, 

it can be combined with the option to create a riskless portfolio. In contrast the 

specified interest rate is not a market traded security, and hence cannot be used in
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forming portfolios. The Black-Scholes riskless portfolio also eliminates the market 

price of risk of the stock in the final partial differential equation. The market price 

of risk of the interest rate cannot be similarly eliminated. As a result, to price the 

bond it is necessary to specify both the state variable(s) and the market price(s) of 

risk of the state variable(s), one dimension more than is required by the Black- 

Scholes technology.

The preceding survey of the empirical testing of partial equilibrium models 

leads to the following observations:(i) because the bond pricing equation, in both 

the closed form or the partial differential equation form, is highly non-linear, 

computation is extremely difficult while the market price of risk and the speed of 

adjustment are highly unstable. Yet they do not seem to have a substantial impact 

on estimated bond prices; (ii) most studies find that the model being tested 

produces small within-sample bond price errors; and (iii) though a third factor has 

been found to determine the term structure, the first factor appears to explain the 

largest percentage of the total variance of the residual errors22

To sum up, partial equilibrium models are based upon a number of 

assumptions: (i) the economy in equilibrium; (ii) state variables modelled by 

Markov processes; (iii) bond price is a function of state variables. Then the use of 

the no-arbitrage argument leads to a bond pricing partial differential equation which 

may or may not have a closed form solution. Empirically, there are problems in 

regard to the choice of the state variable(s) to be included in the model and the 

functional form of the market price(s) of risk. These problems are mostly resolved 

by expediency rather than economic rationale. Further, there is no guarantee that a 

dynamics chosen for a state variable will be consistent with an economy in

22 Factor analysis by Brennan and Schwartz (1980) reports the first factor accounts for 83.5% of 
the total variance of the bond pricing errors.
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equilibrium.

2.3.2 General Equilibrium Models

2.3.2.1 Introduction

Table 4 provides a summary of general equilibrium models. In this class of 

models, the term structure of interest rates is an integral part of the equilibrium 

theory of dynamic asset pricing. Some distinguishing features of this theory are: (i) 

the real (production) and financial (exchange) markets are endogenised; (ii) all 

participants are rational and utility maximising; (iii) individuals have time-additive 

state-independent utility functions exhibiting linear risk tolerance23, and hence 

there exists a representative agent for the constructed economy; and (iv) uncertainty 

is introduced by modelling state variables as diffusion processes.

2.3.2.2 Theory

The genesis of general equilibrium models of the term structure lies in Cox, 

Ingersoll and Ross (1985a, 1985b). While CIR (1985a) lays the general equilibrium 

foundations for contingent claim valuations, CIR (1985b) applies the general theory 

developed in CIR (1985a) to the pricing of default free bonds, thus bringing the 

term structure of interest rates into the unified general equilibrium theory of 

dynamic asset pricing.

23 Specifically these utility functions include power functions and negative exponential functions. 
For further details see Huang and Litzenberger (1988, Ch.5).

38



General Equilibrium Models

O .2 
t



General Equilibrium Models

H
 

a .5

mmd.D
-

(N—4J
*3)csa>CQ<Da>03

£I?o<'*Z

o



The CIR general equilibrium valuation model, CIR (1985a), is based upon 

the following assumptions: (i) there is a single good which can be allocated to 

consumption or investment; (ii) the production possibilities consist of a set of linear 

activities, and production processes are characterised by constant returns to scale; 

(iii) there are markets for a variety of contingent claims to the amounts of goods 

where these claims are securities whose returns are functions of the individual’s 

wealth, W, and the state of technology (T); and (iv) individuals have identical 

preferences and allocate wealth (W) among the set of production processes, 

contingent claims, and the amount to be borrowed or lent at the instantaneous risk 

free rate, r.

The representative consumer is assumed to maximise a lifetime objective 

function of the following form:

e \ ' 6f[C(5),rw,i]^ (4°)

where t' is the terminal date and C(s) is the consumption flow at time 5. 

Equilibrium at the individual level is achieved by solving the lifetime utility 

function for the optimal consumption, C* , the optimal proportion (of wealth) 

invested in the production processes, a* , and the optimal proportion invested in the 

contingent claims, b* . The expected returns on the production processes, a, the 

expected returns on the contingent claims, denoted (3, and the riskfree interest rate, 

r, are given at the individual level. Equilibrium at the economy level determines a, 

(3, and r, the total production plan, and the total consumption plan, and requires 

that the net supply of contingent claims and riskless lending be zero.

In the above general equilibrium setting CIR (1985a) show that the price of 

any contingent claim , F, must satisfy the partial differential equation:
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hvar W)Fm * £ (cov W,Y)Fyy
^ i= 1

YF>

1 = 1

r(W,Y,t)W - C-(W,Y,t)} 

J — J
W,Y)-^(-^l)(cov YPY;.) 

•'w y'=i ‘'w

(41)

+ F, -r(W,Y,t)F + 6(W,y,0 = 0

where r(W,Y,t) is the equilibrium instantaneous interest rate, J(W,Y,t) the indirect 

utility function, the expected change in the ith state of technology, and <5(W,Y,t) 

the payout flow received by the security. The subscripts to F and J denote partial 

derivatives.

Under suitably chosen assumptions CIR( 1985b) show that equation (41) can 

be reduced to one that describes the dynamics of a pure discount bond, P(r,t,T) 

under the following restrictions. The utility function U(C,s) is of the constant 

relative risk aversion class (CRRA), namely U (C,s) = exp {-ps) (0-1)/y, where 

p is the time discount parameter and y describes the level of risk aversion for the 

representative agent. For this class of utility functions the price of bonds does not 

depend upon wealth.

If the single state variable (instantaneous interest rate) is of the square root 

process type and the utility function is logarithmic then equilibrium entails the 

following relationships:

dr = K(6-r)dt + o\[7dz (42)

X* = (43)
o

where k, 6, o2 and X are constants and X* is the market price of risk of the 

instantaneous interest rate. For positive k, and 6 this process is the continuous time
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version of an autoregressive process of order 1 which tends to regress elastically to 

its central location, 0. k is the speed of adjustment towards 0. The speed of 

adjustment k toward 0 is such that k or the time to maturity of the bond tends to 

infinity then the conditional expected interest rate tends to 0 and the conditional 

variance of the interest rate tends to zero. In this framework 0 can be interpreted as 

the long run equilibrium of the instantaneous interest rate.

The above assumptions enable us to write down a specialised form of the 

partial differential equation (41) for the price of a pure discount bond:

h?rPn + [k0-(k+A)>-]p + P, - rP = 0 (44)

This partial differential equation, (44), has a closed form solution:

P(r,t, T) = (45)

where

A(t, D =

B{t, D =

y = ((k+A)2+2c72)1/2

2yexp [(k+a +y)(T-t)/2\
(7 +k+A)(exp(7(T-0) -1) +27

2(exp(7(r-Q)-l)
(y+K +\)(exp(7 (T-t) -1) +27

(46)

Equations (45) and (46) constitute what has become known as the Cox, 

Ingersoll and Ross (hereafter CIR) model of the term structure of interest rates. 

The model has the following properties:

(i) the bond price is a decreasing convex function of 0;

(ii) the bond price is an increasing concave (decreasing convex) function of 

k if the interest rate is greater (smaller) than 0;
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(iii) the bond price is an increasing concave function of the market price of 

risk, X;

(iv) the bond price is an increasing concave function of the interest rate 

variance, a2;

(v) interest rates can reach zero if o2 > 2nd but negative interest rates are 

precluded;

(vi) the term premium, defined as the arithmetic expected rate of return less 

rate of interest ( = \rPJP) of a given maturity discount bond, is of uniform 

sign for all states of the world;

(vii) the term premium is of uniform sign for all maturities of discount 

bonds;

(viii) the yield curve24 can only have three shapes25: uniformly rising if r 

< Rcir (oo), declining if r > k6/(k + \), and humped for intermediate values 

of r;

(ix) expected interest rates with respect to time are monotonically 

converging to 6 given that k > 0;

(x) the yields on bonds of different maturities are perfectly correlated as 

they are all related to the single source of risk in the model, namely the 

state of technology; and

(xi) as T approaches infinity the yield to maturity approaches a constant, and 

hence is independent of the current spot interest rate:

24 The yield to maturity, R(r,t,T), is defined by exp[-(T-t)R(r,t,T)] = P(r,t,T).

25 This means the CIR term structure precludes cyclical behaviour.
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(47)

Although the CIR model is derived in terms of real interest rate, it is 

equally derivable in terms of nominal interest rates by means of the no-arbitrage 

argument (see Brown and Dybvig, (1986)) and assuming that inflation follows the 

same dynamics as the spot interest rate, namely the square root process. The 

nominal version is more empirically tractable than the real version as nominal 

prices are available whilst real prices generally need further transformation via an 

inflation index which can conceivably distort the observable data.

Longstaff’s model (1989) is cast in the CIR framework except that the 

stochastic process of the short rate is specified to be non-linear in the drift term. 

This process has come to be known as "double square root" process:

The non-linearity assumption is made to overcome a weakness in the CIR model, 

which only allows for essentially three types of yield curves, monotonically 

increasing, monotonically decreasing, and humped. All the other assumptions 

underlying the CIR model are retained by Longstaff (1989). As a result the partial 

differential equation governing the price of a pure discount bond is:

Define r = T - t as the maturity of the bond then the closed form solution to (49) 

is:

dr = K(d-\fr)dt + o\frdz (48)

2 dr2 4 dr dt
(49)

P(r,r) = A(t )exp(5(r )r+C(r (50)

where
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A(t) =
1 Cq

1 -c0exp(YT)

i
i

exp c i +c2t+
c3+c4eyrl2

5(7) 2X~y+ 2y 

a2 a^l -c0e7T)

C(T) = 2k(2X+y)(1 -eyT'2)2 
7^(1 -cQeyT)

7 = \/T4X2+2 a2)

c0 = (2X+7)/(2X-7)

C, = -^l(4X+7)(2X-7)
7 <r

2X+7 _ /d

4k2
73a2

-8Xk2
y^o2

y

(2X2-(j2)

(2X+y)

(51)

Longstaffs model (1989) has the following properties:

(i) the double square root process has conditional mean and conditional 

variance :

E[rt\r\ = r + 0^/4 
Varfrjr] = o2{rt+o1t2l8)

(ii) as r -> oo the steady state distribution of the interest rate is

/

exp
V

\

/

(52)

(53)

with mean equal cj4/8/c2, and variance equal 5a8/64/c4; and
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(iii) the yield to maturity as r -» oo is

= k2/y2 - (Y - 2*)/4>0 (54)

which is independent of the current interest rate.

Longstaff(1992) shows that when the condition that r is inaccessible to zero, 

that is when o2 < 2k6 , the equilibrium bond price is unique and the behaviour of 

P(r,r) as r -» 0 is implicitly specified by the fundamental valuation equation (49). 

However, when r is accessible to zero there are many possible equilibrium 

solutions to the fundamental valuation equation. He provides three examples: (i) an 

absorbing equilibrium where the short term interest rate is absorbed at zero if it 

reaches zero; (ii) an unrestricted equilibrium where the interest rate process returns 

immediately to positive values if it reaches zero; and (iii) an empirical equilibrium 

where boundary conditions on the bond price at r = 0 can be directly imposed. For 

example, a boundary condition must imply non-negative forward rates for there to 

be no arbitrage opportunities.

Longstaff’s model (1989) has been criticised by Beaglehole and Tenney 

(1992) who argue that equation (50) is not the solution to the problem being posed. 

This error is due to the failure to properly account for a boundary condition. 

Specifically, the formula does not satisfy the condition that the derivative of the 

bond price with respect to r must approach zero as r approaches zero. Instead, 

when 0+ then dP/dr ^oo . This implies that the expected return of the 

discount bond at r = 0 is not necessarily the same as the limiting return as r 0+. 

Equation (50), however, is correct in a model economy in which the variable r is
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not reflected (i.e. absorbed) at r = 026. Beaglehole and Tenney (1992) show that 

the Longstaff formula is a special case of their model whose state variable, r, is 

modelled by an Ornstein-Uhlenbeck process:

dr = (d-K.r)dt + odz ^5)

where 6, k and a are positive parameters.

Both the CIR and Longstaff models are driven by a single state variable 

which may not be sufficient to capture the driving force(s) of the term structure. 

Thus, Longstaff and Schwartz (1992) have proposed a two-factor model within the 

CIR framework which includes the short-term interest rate and the volatility of the 

short term interest rate. Following CIR (1985a) it is assumed that there is one 

physical good which is produced by a single constant-returns-to-scale technology. 

The returns on physical investments, denoted dQ/Q, are assumed to be driven by 

two economic factors (state variables), X and Y . While X only drives expected 

returns, Y drives both expected returns and production volatility. The rationale for 

this specification is that expected returns and production volatility are not 

necessarily perfectly correlated. The assumed process is:

^ = (liX+6Y)dt+o\/Ydz1 (56)

where ^, 6, and o are positive constants. The two state variables are specified as 

follows:

26 Beagonhole and Tenney also note that the Longstaff economy is characterised by low and 
nonstationary interest rates. Hence t-statistics tend to be unreliable.

48



(57)
dX = {a~bX)dt + c\[Xdz2 

dY = (d-eY)dt + f\[Ydz3

where a, b, c, d, e, f > 0 and z2 is uncorrelated with Z\ and z3 as the factor X is 

specified to only drive expected returns and not production volatility. Given this 

framework, Longstaff and Schwartz obtain a pricing formula for the discount bond 

which is a function of three variables r, V, and r = T-t, and six parameters.

The strength of the Longstaff and Schwartz (1992) model is that it combines 

the general equilibrium feature with a richer set of information. This can be best 

seen by comparing its features with those of partial equilibrium models.

According to CIR (1985b, p.397-398, section 5), pricing a bond requires 

specifying : (i) a state variable which drives the bond price; (ii) the stochastic 

process of the variable; and (iii) the exact form of the factor risk premium. In the 

CIR general equilibrium framework all these are endogenously determined whilst in 

the arbitrage derivation there are some problems. For example, denote II{r,t,T) as 

the excess expected return on a bond of maturity date T. Then an arbitrage driven 

equilibrium requires Tl{r,t,T) to be of the form:

n (r,t,T) = iKr,t,ndP(r’!'T) (58)dr

One of the problems with this no-arbitrage equilibrium condition is that 

there is no guarantee that there is some underlying general equilibrium that is 

consistent with both (i) and (ii) above27. Further, to be consistent with general 

equilibrium the choice of the functional form of \p is restricted. For example, CIR 

(1985b) provide an example where \p(r,t) = \p0 + \r. This linear form of the risk

27 According to Harrison and Kreps (1979) this problem may be solved by viewing models that 
admit no arbitrage as preference free.
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premium is reasonable but the CIR model, in fact, guarantees arbitrage profits (see 

CIR (1985b, p.398)). Thus, the advantages of general equilibrium modelling, and 

hence disadvantages of partial equilibrium, include: (i) the general equilibrium 

model can be completely specified to be internally consistent; and (ii) it allows 

predicting the changes in the term structure (CIR (1985b, p.398)) consistent with 

the changes in the general equilibrium of the economy.

2.3.2.3 Empirical Methodology and Evidence

Table 5 provides a summary of the empirical evidence of the general 

equilibrium models. The nominal CIR model can be derived by the no-arbitrage 

argument (see Brown and Dybvig (1986)). The justification for this approach lies in 

the desirable properties of the interest rate process, namely no negative nominal 

interest rates. Gibbons and Ramaswamy (1993, p.7) opine that testing the CIR 

model with nominal prices would show how robust it is with respect to a 

misspecification of the interest rate process. Moreover CIR (1985b, p.405) note 

that "the interest equation and the fundamental valuation equation have exactly the 

same form when all variables are expressed in nominal terms as when all variables 

are expressed in real terms" . This means the pricing formula is as applicable to 

nominal as well as real prices of bonds.

Empirical testing of general equilibrium models have taken two routes: 

cross-sectional regression and generalised methods of moments (hereafter GMM). 

The first was pioneered by Brown and Dybvig (1986) and the latter by Gibbons and 

Ramaswamy (1993). If the error term is assumed to be normally distributed then 

cross-sectional regression is equivalent to maximum likelihood estimation and hence 

its statistical inference is stronger than that of non-parametric GMM. The GMM 

approach, on the other hand, does not require that the error term distribution be
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specified. However, large sample theory is employed to generate confidence 

regions for parameter estimates. Furthermore the GMM estimators and their 

standard errors are consistent even in the presence of heteroskedasticity, serial 

correlation and correlation across maturities28.

28 See Longstaff and Schwartz (1992), p.1276.
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2.3.2.3(a) Cross sectional regression

The observed price of a zero-coupon bond i, defined by P (r, t, T) , is 

written as a sum of the price given by the model under 

consideration, P (r, t, T) , and an error term, et :

P, (r, t,T) = A (r, t, D + e, (59)

If the error term is assumed to be independent and identically distributed, then 

maximum likelihood estimates of the parameters of the model can be obtained from 

a cross-section of bonds of varying maturities and which are traded at a given point 

in time. This method, which places no intertemporal restrictions on the parameters 

of the model, is similar to the cross-sectional estimation of the Black-Scholes 

implied standard deviation, ISD. The ISD methodology is now well accepted and 

volatility change well recognised. Thus, the justification for Brown-Dybvig’s 

methodology, discussed below, rests on the same ground.

Brown and Dybvig (1986) rearrange the CIR bond pricing formula as 

follows:

P(r,t,T) = A (t, T)exp (-B (t, T)) (60)

where for r = T-t
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A(t,T) =

B(t,D

<t>i = [(K+Xy+lo1}1'2 

4>2 = (k+X+0j)/2

^exp (</>2r) 
<A2[exp(0jT)—1]

exp(0jT)-l 
^[exp^.r) - !]+</>,

</>3 = IkO/o2

(61)

From these parameters, the long term yield Rcir(oo) and the volatility of the short 

term rate, a2, are expressed as:

*dr(°°) = (0i~02)03

a2 = 2[(/)102-02]

(62)

The estimation methodology involves applying nonlinear least squares procedures to 

a cross section of prices of U.S. Treasury issue at a point in time to obtain 

maximum likelihood estimates of r, </>,, 02, and <£3 . The model has one variable, r, 

and four parameters, k, X, 0, and o, but k, 6 and X cannot be separately 

identified29. Consequently, this methodology only estimates r, <f>lt </>2, <f>3 and 

hence R(r,t,oo) and a2. While the parameters provide a snapshot of a single term 

structure at a given point in time, a time series can be obtained by repeating the 

cross sectional regression over time. The main findings of Brown and Dybvig 

(1986) are: (i) the CIR variance, a2, is much more volatile than that estimated from 

a weekly time series of Treasury Bills with 13 weeks to maturity; (ii) the CIR 

model systematically overestimates the short rate, r, relative to the Treasury Bill 

rate with at most 14 days to maturity; and (iii) analysis of the residuals indicates

29 Inspection of equations (60) and (61) confirms that it is overidentified.
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the model is misspecified in the context of the data30.

A major weakness of this methodology is an inherent weakness associated 

with non-linear statistical models, that is, the estimates of the parameters are 

generally biased31. Further, as only asymptotic properties of the estimates are 

known, hypothesis testing is only valid asymptotically.

Brown and Schaefer (1994) test the CIR model, using the Brown-Dybvig 

methodology, on British Government Index-Linked bonds. Estimation is 

implemented in two ways: unconstrained and constrained. The former places no 

constraints on the parameters in weekly cross section estimates of the model whilst 

the latter requires parameters, other than the short rate, to be constant across 

quarters and years. The main findings are: (i) the estimated long term zero coupon 

yield, RL, is stable and the implied volatility of the spot rate is consistent with its 

time series estimate counterpart; (ii) estimates of other parameters, namely r, k + A, 

k6, and a2, are often highly correlated and highly unstable over time; and (iii) the 

mean pricing error for most bonds is less than £0.2 per approximately £100 price. 

While the pricing errors are small relative to bond prices the instability of 

parameter estimates is a symptom of multicollinearity (see Maddala (1992, Ch.7). 

However, the strength of the Brown and Schaefer (1994) study lie in : (i) the data 

set which is, in a sense, ’real’ so that the modelling of inflation is no longer 

necessary; and (ii) the constraining of k + X, k6, and a2 to be constant which is both 

consistent with model specification and an attempt to reduce the convergence 

difficulty in highly non-linear estimation.

30 Using the cross-sectional methodology of Brown and Dybvig, Munnik and Schotman (1992) test 
the CIR model on Dutch daily Government bond prices from 1989 to 1990. They report a good fit for 
bond prices. The average pricing error is 0.18 guilder (par bonds are normalised to 100 guilder). 
Further the mean reversion parameter, k, and the volatility parameter o2 behave erratically.

31 See Judge et al (1985, p. 209).
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Barone, Cuoco, and Zautzik (1991) apply the Brown-Dybvig and Brown- 

Schaefer approach to a sample of Italian Treasury bonds traded on the secondary 

market from December 30, 1983 to December 31, 1990. The parameter estimates 

are 4>}, <t>2, <t>3, r, Rcir (oo), or1'2, 6, and k. The last two, 6 and k, are estimated 

separately by assuming a zero risk premium, \=032. However, Barone, Cuoco, 

and Zautzik (1991) differ from previous studies in that : (i) daily data are used; and 

(ii) the error term is assumed to be proportional to the derivative of bond price 

with respect to yield to maturity33. They find that: (i) the mean value of the 

distribution of the differentials between actual and theoretical bond prices is not 

significantly different from zero; (ii) the spot rate moves closely with the yield of 

three-month Treasury bills; and (iii) the implied volatilities, or112, are reasonably 

close to the standard deviations calculated from the time series of the instantaneous 

rate. The other parameters, Rar (oo) , 0, and k, become more stable over time, 

reflecting a larger number of bonds being used in the estimation.

2.3.2.3(b) Generalised method of moments (GMM)

A recent approach in model specification testing is based on the idea that 

correct specification requires that random quantities, which are functions of the 

error terms, should have zero expectations (or moments) conditional upon some 

information set (see Newey (1985), Tauchen (1986), Hansen (1982), Hansen and 

Singleton (1982)). These specification tests are known as conditional moments tests.

Historically the method of moments is one of the oldest methods of 

estimation. Using the law of large numbers the moment of any distribution can be

32 Assuming zero risk premium is incorrect because the objective of the CIR study is to model the 
term structure of interest rates under uncertainty.

33 This implies that the errors in the prices of short-term bonds are smaller than those in long
term bonds.
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estimated by the corresponding sample moment of independent drawings from the 

distribution. The generalisation of this method is based upon two facts: (i) both 

conditional and unconditional moments can be used; and (ii) moments may depend 

upon unknown parameters and conditional moment tests can be used not only for 

model specification but also in estimating parameters. Thus, setting the population 

moments (which are functions of parameters) equal to their sample counterparts and 

then solving the resulting system of moment equations would yield point estimates 

of the parameters34. Applying this method to estimating the parameters of bond 

pricing models involves deriving the theoretical unconditional moments of yields 

and then setting them equal to their sample moments.

The requirement that the theoretical unconditional moments be zero can be 

written as:

E(8Ti(P,T,@)) = 0 i = (63)

where gT((/>,T,J3) is the yield of a bond P of maturity r and ]3 is the k-vector 

of parameters of the model under consideration.

Substituting the sample moments for their theoretical moments gives:

= 0 i=l,...,k (64)
n T=i

GMM seeks a vector J3 , called the GMM estimator of J3 ,(in the sample of 

data) that makes the LHS of equation (64) as close as possible to zero. The 

advantage and popularity of the GMM estimation is that it simultaneously corrects 

the problems of heteroskedasticity, serial correlation, simultaneity bias 

(E(X*e)^0), and measurement bias. Furthermore, it is distribution free. The

34 Clearly we need as many moment equations as there are parameters.
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disadvantage is that being not based upon the normal distribution, GMM statistical 

tests are weak.

Gibbons and Ramaswamy (1993) were the first to apply the GMM 

methodology to test the CIR model. Their test focused on the holding period real 

return) relative, defined as 1 IP(r,r), where P(r,r) is the CIR price of a discount 

bond in real terms. From this definition the first conditional moment can be written 

as:

£,(l/P(/-,T)) = A(T)'eBfr)r <65)

By iterated expectations the conditional moment can then be written as 

unconditional moment:

/,(r,/3) = E(VP(T,r))-A(T)-'E [eSWr] = 0 <66)

Similarly, higher moments are derived and equated to their corresponding empirical 

moments to yield the vector of parameter estimates of the CIR model, namely 

t (k,o2,\,d) .

The data used by Gibbons and Ramaswamy (1993) include monthly 

observations of U.S. Treasury bill prices and the Consumer Price Index. From 

these two sources the holding period real return relatives were constructed for each 

month and for maturities of 30 and 90 days. All the parameter estimates, k, a2, X, 

and 6, are found to be more than two standard errors away from zero while X was 

found to be negative and consistent with a positive risk premium as predicted by 

the CIR theory35.

There are several problems in applying the GMM in tests of the CIR model:

35 The sample period was further divided into two subsamples (1/64-9/79, 10/79-12/83). The 
estimates of the parameters change in magnitude but remain statistically significant.
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(i) the problem of overlapping observations36 becomes worse with coupon paying 

bonds as the maturity of the bonds increase and this places a heavy burden on the 

algorithm that searches for the parameter estimates37; and (ii) at the end of each 

month it was usually not possible to find Bills of exactly 30, 90, 180, and 345 days 

to maturity so that relative yields were interpolated from bills maturing in the 

surrounding dates.

To sum up, the data arrangement required by the GMM methodology is not 

observable and some form of data construction is needed. Longstaff (1989) 

estimates the parameters of both his double square root model and the CIR square 

root model using the generalised method of moments. The data used to estimate k, 

6, o2 and X, for the square root model and k, a2, and X, for double square root 

model consist of average yields to maturity of two-, three-, four-, and five-month 

U.S. Treasury bills over the 1964-1986 period. The parameter estimates enable the 

computation of the theoretical yields implied by both models for longer term U.S. 

Treasury bills. Longstaff (1989) then compares these theoretical yields with 

observed U.S. Treasury bills with maturities of six to twelve months over the same 

period. The comparison shows that the Longstaff model outperforms the CIR model 

in capturing the level and variation of the term structure over this spectrum. 

However, in both models the biases, defined as the difference between model yields 

and actual yields, show that actual pricing is more complex than can be accounted

36 Coupon payments of various bonds do not fall on the same dates so that observations of coupon 
payments are not time-aligned. This gives rise to the problem of multi-collinearity.

37 In fact, even with such short term maturities the authors pointed out that ’the data in the series 
involve adjacent observations that have overlapping intervals over which the returns are computed" 
(Gibbons and Ramaswamy (1986, p. 16-17)). Initially real return relatives were calculated for 
maturities of 30, 90, 180 and 345 days but the consideration of overlapping observations led them to 
finally use only bills of 30 and 90 days to maturity. The exclusion of coupon paying bonds at longer 
maturities mean that a richer set of information is not being utilised.

59



for by single state variable models.

Using the GMM methodology Longstaff and Schwartz (1992) test their two- 

factor and CIR one-factor models on U.S. Treasury bill yields with maturities 

ranging from three months to five years over the June 1964 - December 1989 

period. While the Longstaff and Schwartz model cannot be rejected by the data the 

CIR model is rejected at the 10 percent level38.

2.3.2.4 Concluding remarks on general equilibrium models

One of the significant contributions of the general equilibrium approach to 

term structure research is that it integrates this area into the equilibrium theory of 

dynamic asset pricing. The significance should be seen in the general framework of 

the purpose of scientific inquiry, namely, to explain (financial) phenomena. In this 

perspective, the general equilibrium approach is well rooted in the foundation of 

financial economics and its received concepts of market clearing and utility 

maximisation. In sum, the general equilibrium models are based on economic 

theory.

At the practical level a major disadvantage of the general equilibrium 

approach is the difficulty in treating the market price of risk. Either it has to be 

inferred from market prices or be specified a priori. If the first route is taken then 

the term structure has to be inverted, and this is not easy computationally because 

the bond pricing formulae are highly nonlinear and the spot rate and the bond price 

process parameters are not independent of the market price of risk. Alternatively, 

specifying the market price of risk as a function of the state variable(s) necessarily 

involves some measure of arbitrariness and could lead to models inconsistent with 

general equilibrium that admit arbitrage opportunities. Another empirical problem

38 The p-values for the Longstaff and Schwartz and CIR models are 0.652 and 0.064 respectively.
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is that statistical tests in non-linear estimation are only asymptotically correct 

because only asymptotic properties of the parameter estimates are generally 

available (Judge et al (1985, p.209 )).

Turning to the relative merits of cross sectional regression and GMM as 

alternative empirical methodologies in tests of general equilibrium models, it is not 

possible to establish the superiority of one methodology to the other. While the 

requirements of GMM are less stringent than those of cross sectional regression, 

GMM tests are less powerful as they focus on over-identifying the tested model39. 

Furthermore the null hypothesis of the GMM approach is tested against an 

unspecified alternative so that if it is rejected, little is known about what goes 

wrong. The choice between the two methodologies is largely dictated by the 

emphasis on the short-term or entire spectrum of the term structure40. The data 

required by GMM are usually not available in a readily observed form, and have to 

be constructed to be of approximately equally spaced intervals, such as months or 

years.

On balance, the evidence shows that the CIR model and its variants provide 

a reasonably good fit on within-sample data. Furthermore, the spot rate appears to 

be the most important factor41, while other parameters of the model, k, 6, A, have 

much less impact and are possibly negligible. A major weakness of the studies is

39 Over-identifying is necessary to test restrictions of the model, thereby making the estimators 
more consistent but statistical tests become less powerful.

40 Cross sectional tests make use of bond prices with the full range of maturities and frequencies 
while GMM tests focus on the data set constructed by Fama (1984) and maintained by CRSP. The 
CRSP data set consists of U.S. Treasury bill and Treasury Bond yields. These yields are based on the 
average of bid and ask prices for these securities with maturities ranging from one month to eleven 
months, then from one year to 5 years.

41 The t statistics are always significant.
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the lack of out-of-sample validation.

2.3.3 Preference free models

In addition to explaining the term structure of interest rates, models of the 

term structure have been used extensively in pricing derivatives where one of the 

inputs is the existing term structure. Whether the current term structure is in 

equilibrium is debatable but there certainly is a strong interest and practice in using 

the information in the current term structure to price derivative assets. The class of 

models which concentrates on the current term structure has come to be known as 

preference free models. While Appendix B contains a detailed survey of the theory 

and empirical evidence this section provides a general discussion of these models 

based on Heath, Jarrow and Morton (1992), hereafter HJM, undoubtedly the most 

important piece of work in preference free modelling of the term structure.

We begin by highlighting the difference between equilibrium and preference 

free models. Equilibrium models are usually based upon a specified stochastic 

process for the short rate and a specified form for the market price of risk from 

which the yield curve or term structure is deduced. The parameters of the models 

are chosen to reflect market data as closely as possible. Preference free models are 

analogous to the Black-Scholes methodology of pricing options where equity is 

determined exogenously. Within the preference free framework, information 

implied by the initial term structure (including traders’ preferences) is taken as 

exogenous. No-arbitrage conditions are then imposed to determine how the initial 

term structure evolves. It is important to note that in the Black-Scholes framework 

no risk preference is needed to price options. Similarly, no risk preference is 

needed to price interest rate derivatives because the risk preference is already 

incorporated into the observed term structure. However, to take the analogy a step
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further, risk preferences are clearly needed if one wishes to price equity. Similarly, 

risk preferences are also needed to price bonds. Therefore regardless of how the 

underlying asset is priced, via an equilibrium based model such as Cox Ingersoll 

and Ross (1985) or a preference free model such as or Heath, Jarrow and Morton 

(1992), a risk preference is clearly implicit. Thus, Jamshidian (1990) argues that "it 

is more fruitful to regard the preference-free approach as the evaluation of 

contingent-claims prices in terms of the yield curve. Stated in this way, it is 

irrelevant whether the "given" term structure is generated from an equilibrium 

model or is obtained from the market with an essentially arbitrary shape". 

Furthermore as no-arbitrage is a necessary condition of the equilibrium approach, it 

is a subset of the preference free approach.

HJM take the initial forward rate structure as given and then specify how it 

would evolve over time to preclude arbitrage opportunities. This is achieved by 

recognising a link between the drift and volatility of the specified forward rate 

process42:

n

ot(t,T) = -]T a,(J,7)
j=i

7,(0 - o(J,v)dv (67)

where ot(t,T), o{t,T) and 7 are the drift, volatility of the instantaneous forward rate 

and the market price of risk respectively. The subscript i refers to the random 

factor i, i =

A constraint of the HJM model is that " the bond price process, spot rate 

process, and the market price of risks cannot be chosen independently" (HJM 

(1992, p.88-89). Furthermore, to characterise the term structure relative to an

42 This is the no-arbitrage condition.
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earlier date requires knowledge of the entire path the spot rate followed in reaching 

the present value. In addition to the path being non observable, the HJM spot rate 

process is in general non-Markov (Hull (1993, pp.400-401), which makes the HJM 

model very slow computationally. In short, the theoretical generality of the HJM 

model is a major strength but additional structure needs to be imposed at the 

practical level.

The ultimate objective of the preference free approach is to price derivatives 

given the existing term structure of interest rates. As relative pricing does not 

depend upon knowledge of the utility foundation of the underlying asset, modelling 

the term structure is then reduced to developing no-arbitrage conditions for the 

current term structure to evolve over time. These conditions impose little 

restriction, and hence, the approach is far more general than the equilibrium 

approach at the theoretical level. The generality, however, implies that a preference 

free model is incapable of being implemented unless additional restrictions are 

imposed on the volatility function of the state variable(s)43, the forward rate, spot 

rate, or bond price. The issue of specification criteria of the volatility structure 

remains unsettled and, hence an active area of research.

Empirically, the testing of preference free models is still very limited in 

number and mostly relies on GMM, a non-parametric procedure. Hence, only weak 

statistical results are obtained. A related problem44 is that all the extant empirical 

studies have used only short-term T-Bills45, and thus ignore the long-term

43 See Appendix B for choices of state variables in preference free modelling.

44 The data requirement of the GMM methodology is not observable and some form of data 
construction is needed.

45 The CRSP bond file consists of cross-sections of monthly bond prices of approximately one- to 
twelve-month and one- to five-year maturity. The use of cross sections of bonds of unequal time to 
maturity would induce a problem of serial correlation.
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spectrum of the term structure.

2.3.4 Australian evidence of modern bond pricing

Empirical testing of modern bond pricing in the Australian financial markets 

is confined to three studies46: Chiarella, Pham and Mackenzie (1990), Chiarella, 

Lo and Pham (1989) and Bhar (1993). Chiarella, Pham and Mackenzie (1990) 

provide a test of the Brennan-Schwartz two- factor model. Specifically, it evaluates 

the assumed discrete version of the joint interest rate process for the spot and long 

rates, equations (37 and (38), by estimating it under varying market conditions in 

Australia from September 1964 to February 1987. In the absence of data on 

individual bonds the bond pricing valuation, equation (39), was applied to a 

Government bond index and the pricing errors, the predicted index less observed 

index, were found to be biased upwards. As Chiarella, Pham and Mackenzie (1990) 

did not perform a regression of predicted values on actual values it is not possible 

to compare their results with the US and Canadian studies of Brennan and Schwartz 

(1979, 1980, 1982) and Dietrich-Campbell and Schwartz (1986). A serious 

weakness of the Chiarella, Mackenzie and Pham (1989) study is that the estimation 

is performed on one bond, namely the index, and hence the market price of risk 

cannot be estimated directly from a cross-section of bonds. A cross-sectional 

approach would reveal a more reliable indicator of risk preferences than a single 

bond. Chiarella, Lo and Pham (1989) were the first Australian study to test the CIR 

model by applying the Brown-Dybvig method of cross-sectional estimation to a set 

of monthly Treasury bond data from January 1978 to December 1987. The spot 

rate, r, the long rate, RL and the variance of the spot rate process implied by the

46 An unpublished Australian study by Hathaway (1988) tests a mean reverting interest dynamics 
where the long-term equilibrium spot rate is an exponentially weighted average of the past spot rates 
(Ingersoll(1987),pp.407-409). As this study does not test any term structure model per se it is outside 
the scope of investigation of this thesis.
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model, or{12, are compared to their close counterparts estimated from historical 

series. Generally the results are mixed for the entire period. The model-implied 

spot rate is found to be an unbiased estimator of the yield on 90 day Treasury 

Notes and 90 day bank accepted bills47. On the other hand, while the long rate 

consistently underestimates the yield on 15 year Treasury bonds, their trends move 

in close correspondence. Furthermore, the implied variance is not a good predictor 

of its time-series estimate from the observed Treasury note and bank bill yields. 

However, the Chiarella, Lo and Pham (1989) study suffers from a serious 

weakness in that the coupon aspect of the bonds is not properly accounted for48 so 

that the model is largely tested on a wrongly transformed set of observations.

Bhar (1993) replicates the Ho and Lee’s (1990) study on a sample of 90-day 

Bank Bill futures options traded on the Sydney Futures Exchange (SFE) over a 

period of five weeks. Consistent with the findings of Ho and Lee (1986), Bhar 

(1993) found : (i) the Ho and Lee model perform better than the Black (1976) 

model in terms of mean squared residuals; and (ii) it exhibits no bias with respect 

to moneyness and time-to-maturity. The absence of bias is an improvement on 

many prior studies on pricing biases of the Black (1976) and Black-Scholes (1973) 

models. The finding that the Ho and Lee (1990) model is superior to the Black 

(1976) model tends to confirm the conjecture that incorporating stochastic interest 

rates into option pricing models leads to better fit to observations49.

All the Australian studies are preliminary and the first two, Chiarella, Pham

47 The spot rate implied by the CIR model is compared with two observed proxies, 90-day Bank 
bills for the pre-1980 period and 91-day Treasury notes for the post-1980 period.

48 A coupon bond is equivalent to a portfolio of zero-coupon bonds where a coupon payment is 
considered the face value of such bonds. Chiarella, Lo and Pham (1989) wrongly equate the price of 
a coupon bond with the present value of its face value, thus ignoring the effect of coupon payments.

49 See also Harrison, Pham and Sim (1992).
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and Mackenzie (1990) and Chiarella, Lo and Pham (1989) contain weaknesses. 

Specifically, these include: (i) failure to make use of bonds of all maturities; (ii) 

observed coupon bonds are not properly transformed into zero-coupon bonds; and 

(iii) absence of zero-coupon bonds precluding the verification of long-term 

theoretical interest rates. Hence, further research is necessary to address these 

issues.

2.4 SUMMARY AND CONCLUDING APPRAISAL

This section summarises the salient features of the three main developments 

in the study of the term structure (traditional theories, equilibrium theories and 

preference free theories) and discusses their weaknesses and strengths. The section 

concludes with justifications for the thesis.

2.4.1 Traditional theories

The key theoretical feature of the traditional theories is that expectations 

play a central role in determining the level and shape of the term structure of 

interest rates. The crucial factor then is how to model expectations. The current 

accepted view is that expectations are rational. Although these theories are 

consistent with the utility maximising behaviour of a representative agent, the 

utility foundation remains restricted to risk neutrality which, in turn, implies zero 

risk premia.

Empirically, the zero risk premia hypothesis has been rejected decisively 

and the empirical literature is concerned with uncovering the determinants of the 

risk premium and confirming that the risk premium changes with time. However, 

there is a lack of consensus on why the risk premium changes over time. In sum, 

studying the term structure in the traditional framework represents a snapshot of an
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important problem. Although it may not provide a totally satisfactory answer, it 

certainly has enriched our understanding of many aspects of the problem. The 

effort is, thus, not wasted.

2.4.2 Equilibrium theories

The equilibrium theories include models based upon general and partial 

equilibrium theories, where the common feature is that bond prices of all maturities 

satisfy a partial differential equation. Partial equilibrium models ensure no-arbitrage 

conditions in the bond market while general equilibrium models require bond prices 

to be consistent with the general equilibrium economy as well. In the latter 

framework bond pricing is considered an integrated part of asset pricing. A distinct 

advantage of equilibrium models is that it follows the traditional methodology of 

developing theories in finance of seeking to explain the relationship between bonds 

of different maturities and how bonds are priced in such a way as to be consistent 

with the assumed behaviour of a representative utility maximising investor. 

However, a disadvantage is the possibility that the assumed behaviour and utility 

functions fail to reflect actual behaviour and preferences. This issue can only be 

settled empirically.

The empirical literature, however, remains limited despite the theoretical 

developments. The evidence surveyed in this chapter indicates some limited support 

for the general usefulness of these models. In terms of implementation the partial 

equilibrium models are more flexible while the general equilibrium models require 

a well chosen utility function and the market price of risk to yield a formula. This 

requirement may be so restrictive and arbitrary that the chosen measures do not 

lend themselves easily to economic interpretation.

2.4.3 Preference free models
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Unlike the equilibrium (partial or general) theories which seek to price 

discount bonds50 given investors’ preferences, preference free models are 

developed for the ultimate purpose of pricing interest rate derivatives. Hence, 

preference free models focus on the current term structure and set the condition for 

the evolution of the subsequent term structures such that arbitrage is precluded. The 

advantage of this framework is its generality and hence it includes equilibrium 

models as special cases while the disadvantage is the difficulty of implementation 

unless additional structure is imposed. Further, the HJM spot rate process which 

characterises the initial term structure is, in general, non-Markov and this would 

significantly increase the level of computation.

2.4.4 Justification for an empirical inquiry of equilibrium theories in the Australian 

context

Our survey indicates that, relative to the traditional theories, empirical 

verification of the modern theories remains sparse, especially in Australian 

research. Theoretically the modern theories are consistent with the general theory 

of asset pricing, and hence belong to the main stream of finance. However, it is not 

possible to demonstrate a clear-cut superiority of one class of theories over 

another51. It would be more appropriate to say that these theories represent 

different ways of investigating a problem that continues to attract the attention of 

finance researchers. Each has its own strengths, weaknesses and purpose of 

inquiry. In a nutshell, the traditional theories focus on how the term structure is 

affected by expectations, however defined; the equilibrium theories seek to model

50 Hence the term structure because of the one to one relation between the price of the discount 
bond and its underlying spot rate.

51 There has been a consistent effort to ’rehabilitate’ the traditional theories. See Campbell (1986), 
Froot (1989), McCulloch (1993).
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the term structure in the context of economic theory, and the preference theories 

seek to price interest rate derivatives assuming the current term structure is in 

equilibrium. Current term structure research, however, is undoubtedly dominated 

by the modern theories - equilibrium and preference free theories. While these two 

strands of modern theories pose distinct and justifiable research questions, our 

focus lies in the equilibrium theories, namely the purpose of our inquiry is to 

ascertain whether the observed term structure is consistent with these theories. If a 

positive answer to this question emerges from this study, then it will be a natural 

step to embark on a test of preference free theories and then the pricing of 

derivatives. Thus, the scope of a study that includes both these theories would go 

beyond the normal limit of a thesis project. Consequently, in this thesis we 

concentrate on the equilibrium theories while leaving the preference theories to 

future research.

The literature survey in this chapter suggests several reasons for undertaking 

an empirical examination of equilibrium models: (i) equilibrium models of the term 

structure remain an important and integrated part of the existing interest rate 

literature; and (ii) Australian studies of the equilibrium theories are both limited in 

number and deficient in methodology (see section 2.3.4); hence the validation of 

these theories in Australian bond markets justifies further research. The present 

study addresses itself to the difficulties that confront previous Australian studies. 

Specifically, the innovations include: (i) a new method of term structure fitting

based upon the Chebyshev polynomials is used to overcome the limited range of 

zero-coupon yields which hinders the verification of theoretical rates; (ii) bonds of 

all maturities are used to incorporate as much information as possible into the 

estimation; (iii) the empirical method introduces an alternative specification of the
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error term, the multiplicative error, which is both consistent with the models and 

which reduces the non-linearity of the tested models. Finally, two of the three 

models tested, Vasicek (1977), CIR (1985), represent the most influential studies in 

this literature while the third model, a generalisation of the CIR model, has not 

been proposed and tested previously. Thus, the range of the tested models 

represents the most comprehensive empirical study of equilibrium models in 

Australia. The empirical methodology to implement this inquiry is the subject 

matter of the next chapter.

71



CHAPTER 3
EMPIRICAL METHODOLOGY AND DATA

3.1 CROSS SECTION REGRESSION METHOD ...........................................  74

3.2 MODELS TO BE TESTED ......................................................................... 80
3.2.1 Vasicek (1977) Model .................................................................... 81
3.2.2 CIR Model....................................................................................... 84
3.2.3 Generalised CIR Model.................................................................... 85

3.3 YIELD CURVE FITTING ............................................................................ 93
3.3.1 Survey of yield curve fitting............................................................ 94
3.3.2 Chebychev polynomial based method ...........................................  99

3.4 MODEL SELECTION....................................................................................... 103

3.5 DESCRIPTION OF THE DATA SET ............................................................105

3.6 CONCLUSION.................................................................................................. 106

72



The objective of this chapter is to present the empirical methodology and the 

data used to estimate and test the bond pricing models. Chapter 2 discusses in detail 

the two empirical methods which have been used to test modern bond pricing 

models: nonlinear regression and generalised method of moments (GMM)1. 

Nonlinear regression is adopted for this thesis for three main reasons: (i) it makes 

use of the entire spectrum of bond maturity; (ii) if the errors are found to be 

normally distributed then nonlinear regression is equivalent to maximum likelihood 

estimation; hence the power of its statistical tests tends to be stronger than that of 

GMM; and (iii) limitations of Australian data makes it impossible to overidentify 

the system of empirical moments2, an essential feature of GMM estimation.

As the focus of this thesis is the testing of partial and general equilibrium 

models of the term structure of interest rates the following models are chosen: (i) 

Vasicek’s (1977) partial equilibrium model; (ii) CIR’s (1985) general equilibrium 

models; and (iii) a generalised CIR model. Vasicek’s (1977) partial equilibrium 

model is chosen over the models proposed by Dothan (1977), Richards (1977) and 

Brennan and Schwartz (1977) because, without a drift term, Dothan’s (1977) 

interest rate process is not as general as Vasicek’s while the Richards (1977) and 

Brennan and Schwartz (1977) two factor models face serious empirical problems3

1 See Chapter 2.

2
The CIR model, for example, has four parameters and hence needs more than four observed 

zero coupon prices while only three such prices are observed.

3 See Chiarella, Pham and Mackenzie (1992) and Chapter 2 for details.
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in the Australian context. For example, Richards (1977) and Brennan and Schwartz 

(1977, 1982) introduce two market prices of risk, the inflation rate and the long 

rate respectively, which are not traded securities and hence incapable of being 

measured. CIR (1985b) is the pioneering equilibrium model while Longstaff (1989) 

model is flawed4.

While the relative performance of a model is usually determined by a 

comparison of the predicted values from the model with observations, no zero- 

coupon bond term structures exist beyond the 180 day maturities. Hence it is 

necessary to generate the term structure of interest rates from observed coupon 

paying bonds to provide a benchmark of comparison. In this respect a curve fitting 

exercise was implemented using the Nelson and Siegel (1989) model and 

Chebychev polynomials.

The chapter is organised as follows. The general framework of estimation 

using cross-sectional regression is introduced in Section 1 while a more detailed 

description involving each of the tested models is given in Section 2. Section 3 

describes the curve fitting using the Nelson and Siegel model and Chebychev 

polynomials. Criteria for model selection is discussed in Section 4. Then the data is 

described in Section 5 and Section 6 concludes the chapter.

3.1 CROSS SECTION REGRESSION METHOD

In general the cross section regression method involves minimising the sum 

of squared errors of the sample of zero-coupon bond prices where error is defined 

as the difference between the theoretical (model-generated) zero-coupon price and

4 See Chapter 2.
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the observed zero-coupon bond price. While the models of the term structure of 

interest rates are built on zero-coupon bonds, most observed bonds are coupon

paying. As a coupon paying bond denoted i, i = can be viewed as a

portfolio of zero-coupon bonds denoted j, j = to estimate the parameters of

the theoretical zero-coupon bond model by means of the observed coupon paying 

bonds involves nesting the coupon payments (treated as zero coupon bonds) within 

the observed coupon paying bonds. To illustrate the minimisation process we use 

the following notation:

Pt = observed coupon paying bond, i = ;

A( a , x, r ) = model price for the ith coupon paying bond, i =

Pz( a, x, r ) = zero-coupon bond price at coupon paying time j =

t = t - tQ = maturity of payment j;

rn = maturity of coupon paying bond i;

ts = time to settlement from today (t0);

m = number of coupon paying bonds;

n = number of coupons of each coupon paying bond;

C(t^) = coupon payment for maturity r, ;

x = vector of variables of the model price function; 

a = vector of the parameters of the model being tested; 

et = error of the i,h coupon paying bond;

The model price of the ith coupon paying bond at time 0 (today) is then given by
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n i (i)A( 2- £ > T, ) = £ C(r; ).PZ( 2, i, Tj )
' Pj & X, T, )

As the bond data used in this study are quoted at time 0 (today) for settlement

at a settlement date by multiplying the bond price at time 0 with the future value of 

a zero discount bond at settlement time, s.

To estimate a model of the term structure it is necessary to solve for the 

vector of the parameters of the model, a , by minimising the sum of squared 

errors associated with m coupon paying bonds:

where w, is the weight of coupon bond i, i = 1,..., m.

Heteroskedasticity is a common problem in cross-section data and is well 

recognised in the econometric literature but unless its form is known ’there is no 

’best’ way to test for and model heteroskedasticity’ (Judge, et al (1985), p.454). 

Thus, despite there being many methods to correct for this problem, they tend to be 

ad-hoc (Gujarati (1988), p.338, 341) and usually the choice is based on estimation 

convenience (Judge et al (1985, p.455). White’s general heteroskedasticity test was 

conducted on unweighted nonlinear regression estimates of the term structure and it 

confirms the presence of heteroskedasticity with respect to bond maturity. To

5 Settlement dates vary according to bond maturities: following the purchase date settlement is 
effected the next day for bonds under 5 years of maturity, and 7 days for bonds of 5 years and over

dates5, the function of the term —7---------- Y is to obtain the future bond price
pz\ Ts )

Min £ w I p - p( a, x, r„ ) I = Min £ w. J 
a i=i a i=i

(2)
a j=i
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correct for heteroskedasticity nonlinear regression was weighted by duration, a 

measure of the average life of a bond. As duration gives greater weight to those 

cash payments which have larger present values it is a better indication of risk than 

maturity6.

The minimisation problem given by (2) is expressed in terms of bond prices 

and is the standard formulation in the existing literature for estimating modern bond 

price models. An alternative minimisation program to (2) can be built around the 

logarithmic form of observed prices and model prices:

m

Min^
Q- j=i

(3)

where vi = In P - In P.
Pt( a, x,Tn )

The use of the logarithmic form can be justified in the following way. The 

minimisation can be performed in terms of either zero-coupon bond yields or zero- 

coupon bond prices. These are referred to as yield norm and price norm 

respectively. While the price norm has been used by other authors, including 

Brown and Dybvig (1986), the yield norm has not been used in previous research. 

Yet there is no a priori reason for the superiority of one norm over the other. In 

fact, being in percentage form, the yields are a more sensitive set of data than the 

prices (in dollars), and there is evidence that the yield norm would be, on average,

6 Empirically Brennan and Schwartz (1983) show that duration is a good measure of bond return 
variability while theoretically Schaefer and Schwartz (1987) propose to model bond return variability 
by duration.
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more accurate than the price norm (Diament (1993)). Further, If u is normally 

distributed then bond price is lognormal, a desirable property which entails non

negative prices.

The price of a zero coupon bond can be written in continuous compounding 

as:

P = C e('yT) (4)
Z

where y is the yield, r is the maturity of the bond, and C is a coupon payment 

which is both the only payment and final face value. Alternatively, rearranging (4) 

and taking the logarithm gives:

-ln( PJ C) = y t (5)

The yield, y, in (5) is the quantity to be estimated with an error term rj:

- ln( Pz / C ) = ( y + rj ) r (6)

An ^-coupon paying bond, denoted P , can be written as a portfolio of n zero 

coupon bonds and to avoid clustering of notations we assume, without loss of 

generality, that the bond is valued at the first coupon payment date,

P, = jr eO’-U-'i c (jj ) (7)
j=1

so that (7) may be approximated by

p, =

n

E c (Tj ) e(~y '• ’ -nr
(8)

The term 77 r in (8) may be viewed as weighted errors where the weights are the 

durations of zero-coupon bonds. Taking the logarithm of (8) gives:
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In P = In P . + y) r (9)

While the LHS of equation (9) may be regarded as an observation of In Pt the RHS 

consists of its theoretical model, In Pj , and an error term. Hence equation (9) is a 

regression with In P as the logarithm of the estimated model price and rj t as 

the error term. Equation (9) then may be viewed as an empirical version of 

equation (7).

An alternative justification for the yield norm lies in the specification of the 

form of the error. The functions that underlie the models to be estimated have the 

following common form:

P (r, t, D = A(t, T) e-B« T)r <10)

While the conventional approach is to add an additive error term to (10), the 

nonlinear nature of (10) may justify a multiplicative error. While the variables, 

A(t,T) and B(t,T), enter multiplicatively, implying that each depends upon the levels 

of the other variables, the additivity of the error means that each is independent of 

all the others. The multiplicative nature of the models described by (10) may then 

justify specifying an error term to be proportional to the levels of the variables and 

hence a multiplicative error would be appropriate. The additive error form of (10),

P (r, t, T) = A(t, T) e~B{t'T)r + et (11)

may be converted to a multiplicative error by re-writing (10) as:

P (r, t, T) = A(t, D e(~m-11 r) 0 * *') <12)

where u, is additive and i.i.d. so that u, enters (12) multiplicatively. If the fit is
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good then u, would be small and ( 1 + ut ) is approximately equal to exp(u, ). 

Hence, (12) is re-written as:

P (r, t, T) = A(t, T) e('B0'71 r> e“- (13)

Taking the logarithm of (13) yields:

In P (r, t, T) = In A(t, T) - B(t, T) r + ut (14)

Equation (14) may be interpreted as the empirical version of equation (10). To sum 

up, the logarithmic norm is proposed because: (i) it has not been used in previous 

research; (ii) it is consistent with the multiplicative nature of model (11); (iii) the 

nonlinearity of the models to be estimated can be reduced by the logarithmic form; 

and (iv) if the error term, ut, is normally distributed then bond price is lognormal 

and hence is always constrained to be non-negative. In addition to being consistent 

with observations the non-negativity of bond prices also facilitates the search 

process in the minimisation program.

3.2 MODELS TO BE TESTED

This section describes the tests of individual models within the general 

framework of the minimisation program specified by (2) and (3). The overall aim is 

to estimate the vector of parameter estimates, a ,and then establish how well the 

models describe the term structure. While the models to be tested imply that their 

parameters are constant, the issue of the duration of the time period remains an 

empirical question. Hence, the estimation process is implemented over various time 

intervals and under various specifications of the behaviour of model parameters: (i) 

daily estimation where all the individual parameters are allowed to vary freely, (ii)
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quarterly estimation where only the short rate is allowed to vary from day to day 

while all the remaining parameters are held fixed;and (iii) semi-annual estimation 

where all the parameters are held fixed while the short rate varies from day to day. 

This scheme of time division was also adopted7 by Brown and Schaeffer (1993).

As argued in section 3.1 both the logarithmic norm and price norm are used 

in the estimation. Once it can be established that one norm is superior8 to the other 

then results from the superior norm will be reported.

3.2.1 Vasicek (1977) Model

3.2.1.1 Structure of the model

Vasicek (1977) model is characterised by: (i) the stochastic process of the 

spot rate; (ii) the bond pricing equation; and (iii) the long term yield (R(oo)) which 

are given by equations (15), (16) and (17) respectively.

dr = K(d-r)dt + adz

P(t,s,r) = exp 1(1 -<? -«T-»)(R(<x)-r)-(T-t)R(<x)-—(l -e 
K 4 K3

(16)

K 2
o2 (17)

The vector of the parameter estimates of the Vasicek model, a , consists of r,
~vasi

7 Unaware of Brown and Schaeffer (1993), the author used the same idea to test the stability of 
model parameters in 1992.

8 Criteria for model selection are explained in Section 3.5
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k, o and (6 - X)9 where r is the instantaneous short rate, k is the speed of 

adjustment of the short rate to its equilibrium 6, o is the volatility of the change in 

the short rate, and - X is the market price of risk. Hence, the parameter vector to 

be estimated (by both the logarithmic and price norm) is re-written as:

a
— vasi

r
K
o

0-X

(18)

3.2.1.2 Hypotheses

An overall empirical implication is that the parameters are constant over 

time while individual parameters may be either negative, or positive or both. For 

example, the market price of risk, - X, is negative while the spot rate may be either 

positive or negative owing to the assumed form of the volatility function. The 

implied signs of Vasicek parameters are summarised in Table 3.1.

9 As noted in Chapter 2, the parameter X in the Vasicek model is defined to be positive (see 
Vasicek (1977, equation (14)). To make it consistent with X in the CIR model a negative sign is 
placed before Vasicek X.
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TABLE 3.1

Empirical implications of Vasicek model

X

Parameter Sign Remarks

r +/- Assumed form of volatility function allows for negative 
real rate of interest

K + Mean reversion requires positive speed of adjustment

o + Risk factor

6 - X +/- Long run spot rate, 6, is positive while market price of 
risk, - X, is negative

Kasi(°°) +/- Value of long rate depends upon relative values of all 
parameters

TABLE 3.2

Empirical implications of CIR model

Parameter Sign Remarks

r + Assumed form of volatility function precludes negative 
spot rate

a + Risk factor

k6 + Speed of adjustment and long term spot rate are both 
positive

K + X +/- k is positive, X is negative

(«>) + Long term rate includes k, 6, a, X
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3.2.2 CIR Model

3.2.2.1 Structure of the model

The CIR model is characterised by: (i) the stochastic interest rate process; 

(ii) the bond pricing equation; and (iii) the long term yield which are given by 

equation (19), (20), and (22) respectively.

dr = k (6 - r)dt + o^^dz (19)

where k is the speed of adjustment of r to its equilibrium level 6 and or1/2 is the 

volatility of the change in r;

P(r,t,T) = A(t,T)eB(,T>' (20>

where

A(t,T) s

y = ((/c+X)2+2o2)1/2

27exp[(/< + X +y)(T-t)/2] 
(y+K +X)(exp(7(T-0) -1) +2y

2(exp(7(r-f))-l)
(7 +k +X)(exp(7 (T-t) -1) +27

(21)

and

Rcir( “) =
2k6

7+k+X
(22)

As (20) is overidentified k cannot be estimated separately from 6 and X. Hence the 

vector of parameter estimates consists of r, o, k6 and k + X:
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a
—cir

(23)
r 
o 

kO 
k+X

3.2.2.2 Hypotheses

An implication of the CIR model is that r, o and kO are positive. While the market 

price of risk, X, is theoretically negative the sign of k + X cannot be predicted 

without the knowledge of the relative sizes of k and X. Further, all the parameters 

are assumed to be constant over time. These hypotheses are summarised in Table 

3.2.

3.2.3 Generalised CIR Model 

3.2.3.1 Structure of the model

The closed form solution to the CIR bond pricing equation results from the 

assumption that the change in the instantaneous rate of interest follows the square 

root process. The rationale of this assumption is not based on economics but 

technical convenience10. A generalisation of the interest rate process would lead to 

the model performing better (in the mean squared error sense). Thus, it is proposed 

that the stochastic interest rate process and the market price of risk be of the form:

dr = k(6 - r)dt + or^dz (24)

and

X* = XrVa (25)

where both (3 and y are positive. If (3 and y are not statistically different from 0.5 

then it is evidence that the CIR model is well specified with respect to the data

10 CIR (1985b) use this particular process because a closed form solution to the differential 
equation is already in existence (see Feller (1951)).
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used in the estimation. As (24) and (25) depart from the CIR specification the bond 

price can no longer be given by (20). Instead it has to be recovered from the 

numerical solution of a partial differential equation. In the general estimation 

framework of this study, the vector of parameter estimates becomes:

a
—gar

where the subscripts denote partial derivatives.

For the case of the single state variable, r, the CIR fundamental valuation 

equation11 is given by:

PT(H - XV) + Pt + (l/2)(a*)2Prr - rP = 0 (27)

where /x = k(6 - r) and X* = Xr7. Then the fundamental equation becomes:

Pt[k(0 ~ r) - XrV] + Pt + (1/2)(<t^ )2 P„ - rP = 0 (28)

The process of estimating a consists of three stages: (i) the first and 

second order partial derivatives are estimated; (ii) the derivative estimates are 

substituted into the partial differential equation to solve for an array of bond prices; 

and (iii) the array of bond prices is used in the minimisation program (2) or (3) to 

yield the vector of parameter estimates, a . The method of explicit finite 

difference12 is used to estimate a jr . While implicit finite difference is usually 

considered more stable, the scheme of difference adopted in this study is based

11 See Cox, Ingersoll and Ross (1985, p. 393).

12 See Brennan and Schwartz (1978) and Courtadon (1991) in Figlewski, Silber and 
Subrahmanyam, eds., (1991).

(26)
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upon Chiarella (1991, pp. 189-192) and the conditions suggested by Hill and 

Dewynne (1987) to overcome the problem of instability and slow convergence13.

The essential steps are explained in detail below:

(i) Estimating the partial derivatives Pr, Prr and P,

We construct a lattice of (a) a time dimension ranging from time t = 0 to the 

maturity of a bond, t = T\ and (b) an interest rate dimension ranging from rmin = 

0% to a maximum, say rmax = 200%.

Taylor’s expansion of the bond price P(r, t) at the point (r, t) is given by:

P(r+h,t) = P(r,t)+h—+—h2^L^-+—h3^-^-+0(h4) (29)
dr 2 dr2 6 dr3

P(r-h,t) = P(rj)-h—+}-h1—-hii—+0(hi) (30)
dr 2 dr2 6 dr3

where h = Ar . Adding (29) to (30) yields a finite difference approximation of the 

second derivative, Prr :

d2P = P(r+h,t)-2P(r,t)+P(r-h,t) +0(h4) (31)
dr2 h2

which can be approximated, in finite difference form, by:

d2P | = Pj+ij ~ ^Pjj + Pj-1, y (32)
dr2 " h2

where PIJ is the finite difference approximation of P(r,t) at the point r = rmin + ih

13 In a commercial environment the issue of computational cost would be more important than in 
an academic environment. We faced no computational constraint at the University of New South 
Wales.
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and t = s + jk.

Subtracting (30) from (29) yields a finite difference approximation of Pr:

dP = P(r+h,t)-P(r-h,t) ^nihl) (33)
dr 2 h

or in finite difference form:

dP | _ " pi-uj (34)
dr'iJ 2 h

The time difference approximation can be obtained by expanding P(r, t-k) around 

P(r, t) where k = At:

P(r, t-k) = P(r, 0 - k2L + Oik1)
at

(35)

which implies:

dP _ P(r, 0 - P(r, r-A:)
0(|*|) (36)

or in finite difference form:

dP \ = P' J ~ P‘ i-' (37)
dt Ui k

(ii) The approximations for the partial derivatives are substituted in the fundamental 

equation (28) to yield:
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p -P
» + l, j ■

)

i±/[«(0-r)-X/-V«]
P -P

i,J iJ-\

1 *_ P , -2P +P
L(o r13)2 l+l'J_______ LL_____'±1 -rP = 0
2 h1 IJ

Rearranging the terms which are functions of P, hl , PhlJ , Ptj and Pi+1J 

the following system of equations:

P = aP + bP + cP1 i,j-1 U i-lj UL ij i + l,

where

a B__A]

T2 2h
P'-i, j

b = 2 kB
IP

c k A B
2h + h2

A = K(d-r)-\ryr3

(38)

we have

(39)

(40)

(41)

(42)

(43)
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or in matrix form14:

where

B = -(orp )2 
2

(44)

p = E P
7-1 ^ 7

(45)

A.
1.7-1

P
' 2, 7-1

N-2, 7-1
3

tv-1 , y-i

b c 
a b c

a b c 
a b

(46)

N-2, j
3
AM, y

(iii) The system of N-l equations (45) is solved for a bond price, for example an 

observed price of a 13-week Treasury Note, by stepping back from t = T to t = 0

14 At the boundaries where r = 0 and r = maximum, only the forward difference equation is

dP Pi+1 “ P,used to approximate Pr , ie: ---- = ——1-------£ . This explains why the top row and bottom
dr h

row of E have only two terms.
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using P(T,T) = 1. Denoting this bond price as P , and repeating the process for 

an array of observed bond prices, then substitute these solved prices into the 

minimisation program (2) and (3) to solve for the vector of parameters, a .

3.2.3.2 Hypotheses

The market price of risk, A, is necessarily negative while all the other parameters 

are positive. Furthermore, all the parameters are specified to be constant over time. 

A summary of the parameters and their empirical implications are given in Table 

3.3. The generalised CIR model converges to the CIR model if the two parameters, 

7 and (3, are not statistically different from 0.5.
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TABLE 3.3

Empirical implications of generalised CIR model

Parameter Sign Remarks

r + Assumed form of volatility function precludes negative
interest rate

K + Mean-reverting speed of adjustment

6 + Long run equilibrium spot rate

o + Risk factor

P + Volatility is positively proportional to spot rate (see (24))

X ~ Market price of risk

y + Market price of risk is proportional to spot rate (see (25))
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3.3 YIELD CURVE FITTING

While equilibrium theories provide the theoretical underpinning of the term 

structure, there exists a strand of literature known as yield curve fitting which is 

primarily concerned with measuring the term structure from observed coupon 

bonds. The theory of yield curve fitting is largely based upon the notion that bond 

price is equal to the expected value of its coupons and terminal face value in an 

arbitrage-free market:

n C
E — tr 1 +

FV
r, a + c, r

(47)

where P is observed bond price, C is coupon payment, rt and rn are

discount rates for bonds maturing at time t and n respectively, and FV is

bond face value.

While equation (47) does not possess the strong theoretical foundation 

underlying equilibrium theories its usefulness has long been recognised where there 

is a need to extrapolate or interpolate discount rates from existing maturities. 

Equation (47) may be called a naive model of the term structure. One of the 

criteria of judging the adequacy of a theory of the term structure is how well it 

approximates existing bond prices. In this respect the equilibrium models and the 

naive model share a common objective of fitting existing bond prices as accurately 

as possible. Hence their performance can be compared using the goodness-of-fit 

criterion. In essence, yield curve fitting is a mathematical approximation exercise; 

and hence, in an ex-post sense, it is expected to perform better than equilibrium 

theories. A hypothesis then can be postulated:
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HI: Fitted term structures perform better than equilibrium models by the goodness 

of fit criteria.

An implication of this hypothesis is that, if accepted, the naive model is 

preferred where the primary interest lies in the maximum accuracy of 

approximating the unobserved term structure in order to price fixed income 

securities or interest rate derivatives. The naive model, however, has to be fitted on 

a daily basis as its theoretical underpinning does not allow for forecasting over 

time. Thus, for the practical purpose of the day-to-day needs, the naive model may 

be viewed as an alternative to equilibrium models. Toward the objective of testing 

the above hypothesis we begin by reviewing the general framework of yield curve 

fitting in the existing literature in Section 3.4.1, then in Section 3.4.2 a new 

methodology is proposed which overcomes some of the weaknesses found in the 

existing literature.

3.3.1 Survey of yield curve fitting

The early studies of yield curve fitting typically consisted of free hand 

smoothing and some form of regression of observed bond yields on their 

corresponding maturities15 (see Durand (1942), Bradley and Crane (1973), Echols 

and Elliot (1976), Cohen, Kramer, and Waugh (1966)). While yield curves are 

useful they are not term structures unless all the expected future rates are equal. 

McCulloch (1971, 1975) was first to suggest a methodology which involves the 

estimation of the discount function (the present value of $1 repayable at time t) to

15 For example, Cohen, Kramer, and Waugh (1969) specify the yield to maturity, (y(r), as a 
function of maturity,r, maturity squared, and the square of the logarithm of maturity:

y(r) = a 4- br + c (logr)2

94



yield the term structure16. The operations of this estimation methodology are best 

seen in the following exposition.

The price of a coupon paying bond can be written as the sum of the present 

values of its coupon payments and its face value:

n,
p, = Y,C,D(o +100 D(n) (48)

t=1

where P, is the price of bond i, C{ is the coupon payment of bond i, D(t) is the 

discount factor (present value of $1) at time t and nt is bond Vs remaining term to 

maturity.

To illustrate the solution to the discount function D(t) we assume there are 

three bonds maturing at dates 1, 2 and 3 so that equation (48) can be written out 

as:

"Cj + 100 0 0 D{ 1) >,"

,p + o o o D{ 2) = Pi

1

oP oP + o o
1__

_ DO) _ P3_

The discount function can then be calculated as long as there is at least a 

bond maturing for each payment date to ensure the non-singularity of the matrix of 

payments. The estimation of the discount function, D(t), in equation (49) is usually 

implemented by cross-sectionally regressing the bond prices on the RHS of 

equation (49) against the coupons on the LHS. In practice, bonds do not mature at 

the same dates and the coupon payment dates vary from one bond to another (the

16 In discrete time the discount function (present value of $1 payable at time t) is (1 + r)~ ’ 
where r is the rate of interest appropriate for discounting $1 at time t. Obviously estimated 
discount functions at different t’s yield an estimated term structure.
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problem of mismatch of payment dates) so that there are more payment dates than 

bonds. As cross-section regression can only provide point estimates of D(t), some 

form of interpolation is needed to smooth the discontinuities and to interpolate 

outside the sample maturities17. The technical basis of this curve fitting exercise is 

Weiertrass’ Approximation Theorem18 which states that there is a class of 

functions that may approximate any continuous function over a specified interval 

with an arbitrarily small degree of error. Examples of these functions are 

polynomials and spline functions (see McCulloch (1971), Vasicek and Fong (1982), 

Shea (1984, 1985)). For example, McCulloch (1971, 1975) assumes that coupons 

are paid continuously and then chooses a cubic spline19 in t:

D{t) = a0 + axt + a2tz + a3t3 + bxdx{t-txf +...+ bkdk(t-tk)3 (50)

where tlf tk are chosen knot points, dk = 0 if t < tjt dk — 1 if t > tjf a0, a]f 

a3 and bbk are parameters to be estimated.

Thus, the estimation of the continuous discount function, D(t), is usually 

implemented by cross-sectional regression of (49) with the restriction on D(t)

17 The problem of discontinuities of the discount function artificially causes the zero-coupon 
bond rates (derived from the estimated discount factors) to change dramatically from one period to 
another. The smoothness of the term structure is necessary if the term structure is to be used for 
maturities other than those included in the sample. Consequently, a common solution to the 
problems of discontinuities and smoothing is to fit a smooth curve through the estimated discount 
factors.

18 See Phillips, G.M. and P.J. Taylor (1973).

19 Exponential spline has been suggested by Vasicek and Fong (1982) and Chambers, Carlton 
and Waldman (1984) but it was criticised by Shea (1984, 1985) as not performing any better than 
ordinary spline techniques. Mcullock (1971) uses quadratic spline which results in ’knuckles’ in the 
forward rate curve, which is corrected in McCulloch (1975) by requiring the discount function to be 
twice continuously differentiable, hence the cubic spline is chosen.
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specified by (50).

The voluminous literature on fitting various polynomials to a set of observed 

yields or bond prices has not reached a consensus on the best functional form and 

the degree of smoothing. Langetieg and Smoot (1989) tested twenty two functional 

forms on a sample of US Treasury bill, Bond, and Note prices from July 1973 to 

June 1981. They recommend a simple linear methodology for reasonably accurate 

measurements and a nonlinear methodology for greater accuracy. As nonlinear 

estimation is more accurate it is adopted for our purpose of constructing the 

’observed’ term structure. In particular, two nonlinear methods are implemented: 

(i) modified Nelson and Siegel’s (1987) method and a new method based on 

Chebychev polynomials. Although in general there is no economic rationale for 

curve fitting, Nelson and Siegel’s (1987) model is based upon technical 

considerations which are also consistent with observed properties of the term 

structure. The new method is proposed to overcome the weaknesses found in 

Nelson and Siegel’s (1987) model.

Nelson and Siegel’s (1987) method is well known for its ’parsimonious’20 

characterising of the yield curve in that it is capable of generating a range of shapes 

of the yield curve with a relatively small number of parameters. They assume that 

the instantaneous forward rate, f(t), is a solution to a second order differential 

equation with equal roots:

20 Parsimony is a desirable characteristic of modelling. Obviously the goodness of fit can be 
increased by increasing the number of explanatory variables (see Judge et al, (1985), p.862). Other 
things being equal, a model with a smaller number of variables is preferred.
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f(t,T) = 0o + l31expl-(T-t)/k]+l32((T-t)lk.exp[-(T-t)lk]) (51>

where (30, 0Jt P2, and k are constants. Then the yield to maturity, y(t, T), is the

average of the forward rates:

T-t| flx)dx (52)

The resulting function from the integration in (52) is

y(t,T) = /V(i31+02)[l-exp (-(T-t)/k)]/[(T-t)/k] (53)

which is also linear in coefficients, given k.

To apply regression, equation (53) is rewritten in the form:

y(T-t) = a+b{\-exp(-(T-t)lk}/[(T-t)/k\ + cexp[-(T-t)lk] (54)

Recognising the relationship between (zero coupon) bond price and yield to 

maturity, Pz = exp[-y(T-t). (T-t)], then the coefficients a, b and c are estimated by 

nonlinear least squares21 with the minimisation programs (2) and (3) over a grid of 

values of k. These coefficients then determine the term structure of interest 

rates22. It should be noted that Nelson and Siegel (1987, p.478) use linear least 

squares to estimate equation (54) directly on (zero-coupon) Treasury bills data. As 

such data is usually limited to very short term maturities, coupon paying bonds 

with longer maturities are excluded from their estimation. In our case, equation

21 Note that in this case P is the zero-coupon bond price whose yield to maturity y(t, T) is also 
its spot rate. Hence, an array of y(t, T) over (t, T) is the term structure.

22 In the minimisation program given by (2) and (3) each coupon payment is considered a zero 
coupon bond. Hence the yield to maturity, y(T-t), is also the spot rate of a zero coupon bond of 
maturity (T-t).

98



(54) is incorporated into (1) and (2) which is then estimated by nonlinear least 

square on coupon paying bonds data; hence, making it possible to use a much 

larger observed data set.

A major theoretical weakness of Nelson and Siegel’s (1987) model is the 

arbitrary choice of a second order differential equation with equal roots as this 

forms a very small set of differential equations that may describe the term 

structure. While our nonlinear regression method improves upon Nelson-Siegel’s 

ordinary least squares a new method is proposed in the next section to overcome 

some common econometric problems in term structure fitting.

3.3.2 Chebychev polynomial based method

In this section we propose a new method of fitting the term structure based 

upon Chebychev polynomials. While the technical properties of Chebychev 

polynomials as an approximation of functions are well known, they have not 

previously been applied to term structure estimation. Moreover, we estimate the 

inverse of the discount function, the so called cumulator, which is broadly 

consistent with existing theories of the term structure. Apart from having a 

theoretical base, the proposed method overcomes most, if not all, of the estimation 

difficulties of the traditional methods.

To simplify the exposition we assume no taxes. Unlike current practice, we 

estimate the inverse of the discount function23 at time t, denoted (1 + Y*) . The 

function Y* is related to the discount function, D(t), and the annualised yield to 

maturity (compounded semi-annually), denoted y„ by the following relationships:

23 The use of the inverse of the discount function is largely for programming convenience.
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(55)y; i

1 +D(t)

uy.i
K (56)

yt = 2[(i+y;)1/2f-i] (57)

As the discount function is the present value of $1, its inverse, (1 + Y*) , is the

value at time t of $1 invested at time 0 for t > 0 so that Y* > 0 for positive

interest rates. Y* is named the interest cumulator because it adds up the interest

amounts over the period from time 0 to time t.

The interest cumulator has the following desirable properties: (i) Because an

investment for a zero time earns a zero return, hence Y0* = 0 ; (ii) As investing

for a longer period earns more returns for positive nominal interest rates, 
dY*

hence —— > 0 ; and (iii) While the discount function is monotonically

decreasing, the interest cumulator is monotonically increasing.

To estimate the cumulator and hence the zero coupon term structure by 

means of (55) to (57), we use the framework of the minimisation program (2) and 

(3) while incorporating Chebychev polynomials into the model price of the coupon 

paying bond, P ( <1, A? ) • Chebychev polynomials which have been used 

extensively for curve fitting in engineering and science, possess two particularly 

desirable properties which improve the econometrics of yield curve fitting: (i) the 

error of a Chebychev polynomial approximation is uniformly distributed over the 

specified range unlike many other polynomials where the error can vary wildly
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over some specified range; and (ii) the Chebychev polynomials form an orthogonal 

set. These two properties effectively remove two commonly encountered problems 

in term structure estimation: (i) As bond price and yield data errors are dependent 

upon maturity (the longer the maturity, the larger the error), the even distribution 

property neutralises this source of errors; (ii) Being fixed, coupons cause 

multicollinearity which is rectified by the orthogonality property.

As the time range of the Chebychev variable, x, is (-1, 1), bond maturity, r 

= T - t, may be converted to this range by the following relationship:

x = (58)

where

7max = longest maturity at time t 

rmin = shortest maturity at time t 

The Chebychev polynomials are given by the recurrence relation:

T0 = 1

Tj(x) = x

Tj(x) = 2xTj_j(x) - TjJx) j = 2, 3, 4,... (59)

then the parameter estimates of the cumulator are the solution to the minimisation 

problem:

Min ^
Cl i=i

w.
I P, - Pi (a, x,Tn )

2 (60)
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c
+

100 (61)
pi = E

“ i +y;

Y* = aQ + axTx{x) + ... + akTk(x) v*1)

where P, is the observed price of bond i, C is the coupon payment, m is the

number of coupon paying bonds, a = {a0 , ax , ... ak} is the vector of the

Chebychev parameters, and n is the number of coupon payments in each coupon
dYt*

paying bond such that Y0 = 0 , ----- >0 for t > 0.
dt

The monotonically increasing property of the interest cumulator is ensured 

by the use of the Chebychev series constrained within the range [-1, 1]. To monitor 

the behaviour of the Chebychev series in tracking the cumulator, our minimisation 

program verifies that each step of the estimated Chebychev series is always 

monotonically increasing.

Our method has a number of advantages over both Nelson and Siegel’s 

(1987) method and the traditional splining and regression method: (i) it partly 

overcomes the problem of arbitrary degree of smoothing in that it does not require 

specifying a functional form and a degree of differentiability; (ii) by using 

nonlinear least squares it circumvents the problem of the number of payments 

exceeding the number of bonds24; (iii) unlike McCulloch (1971, 1975) we do not 

need to assume that coupons are paid continuously, (iv) the minimisation program 

given by (2) and (3) makes use of the entire range of available data; and (v) the

24 Linear least squares require inversion of the matrix of payments (see equation (49). If the 
number of payments exceed the number of bonds, the coupon payment matrix is singular and non 
invertible.
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interest cumulator function is well behaved with respect to time.

While the Chebychev polynomial method has a number of practical 

advantages its merit has to be settled empirically by a comparison with the Nelson- 

Siegel model.

3.4 MODEL SELECTION

The testing of a number of term structure models raises a natural question: 

what is the best model ? It should be noted that it is not appropriate to compare a 

curve-fitted model with a theoretical and economic model. Thus, model ranking in 

this thesis will be carried out in two distinct stages: (i) the Nelson-Siegel model and 

the Chebyshev polynomial are compared to determine the best fitted model which 

then serves as the ’observed’ term structure; and (ii) the equilibrium models are 

then compared with this ’observed’ term structure.

A variety of measures are used to measure model comparative performance. 

A common set of statistics, known as information criteria, are calculated for each 

of the models while in the analysis of individual models, other additional model 

selection criteria will be used. These revolve around the idea of minimum mean 

bond pricing errors where error is defined as observed price less model generated 

bond price. Where observed interest rates and model generated interest rates are 

available the quantity of mean rate errors is also calculated. Furthermore, model 

comparison also distinguishes between within-sample errors and out-of-sample (or 

predictive) errors. While model selection is based upon standard econometric tools, 

these are slightly re-defined to reflect the particular requirements of our tests or to 

exploit unique features of the data set.

Although model selection criteria are largely developed for linear models
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Akaike and Schwartz information criteria are commonly used in nonlinear 

models25. The general thrust of the information criteria is based upon the notion 

that the adequacy of approximation is measured by the distance of the ’model of 

reality’ and the true distribution of the random variable of interest (see Judge et al 

(1985), pp. 869-875). The formulae of the Akaike and Schwartz information 

criteria are developed on the basis of the notion of minimising this distance (see 

SHAZAM (1993), p. 13):

2kAkaike information criterion (log AIC) = lno2 + —

Schwartz criterion (log SC) = Ind2 +

m
( residual )2

where a2 = —----------------- and N is the number of observations.
N

A common and popular measure of the goodness of fit of a model is 

adjusted R2 while its predictive power is measured by the Theil’s inequality and 

the components of the inequality: error due to bias, error due to variation and error 

due to covariation (see Theil (1961, 1966)). The formulae of these measures are 

given by:

Theil’s inequality: U =

Bias proportion: UM =

E (p-p)
, £4
(p-py

1 _ Ti

Variance proportion:
(SpSp)

^E (r-rr
23 See Maddala, G.(1992), pp.500-501.

104



Covariance proportion: CP
2(1 -r)sp sp

jjL (PrPf

where P is the observed series, P is the predicted series, sP and sp are the 

variances of the observed and predicted series respectively, P and P are the 

means of the observed and predicted series respectively, and N is the number of 

observations. A perfect prediction implies the following set of values:

U = 0 and for U > 0, the ideal distribution is UM = Us = 0, and if = 1 

3.5 DESCRIPTION OF THE DATA SET

The daily data used for the estimation of the models in this thesis consists 

of: (i) 13-week and 26-week Treasury Note rates; (ii) Commonwealth Government 

bonds; and (iii) 5-week Treasury Note rates. While the first two categories cover 

the period from 2 January 1985 to 30 December 1992, the last category was first 

available on November 13, 1991 and hence only covers the period from November 

1991 to December 1992.

The bond data are in the form of press releases issued by the Reserve Bank 

of Australia at 5.00 pm from Monday to Friday. These releases consist of bonds 

traded on the secondary markets by 18 dealers designated as Reporting Bond 

Dealers. These bond dealers are active in the market for Commonwealth 

Government bonds and report their transactions each day by 3.00 pm to the 

Reserve Bank. Further, under the arrangement set up in 1985 the Bank dealt only 

with these dealers26 in buying and selling Government bonds of more than one

26 The practice of dealing only with the Reporting Bond Dealers was discontinued in November 
1991. Instead, the Bank deals with any member of the Reserve Bank Information and Transfer 
System (RITS) whose current membership exceeds 50.
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year to maturity. Thus, the press releases represent the trading of the most active 

bonds each day. Given the thinness of the secondary bond market in Australia and 

the need to have a reasonable sample size for estimation, those days with less than 

four traded bonds are excluded. A list of the Reporting Bond Dealers and the 

distribution of the bond data are given in Tables 3.3 and 3.4 respectively.

To obtain proxies for the short term theoretical rates we use the 11 AM 

cash rate and 13 week Treasury Note rate27 which, perhaps, are their closest 

observed counterparts. Further, the cash rate is not used in the estimation, a 

comparison between the 11 AM cash rate and the theoretical rate shows the 

extrapolative power of the estimated model.

3.6 CONCLUSION

The objective of this chapter is to describe the empirical methodology and 

the data used in the estimation, testing and ranking of models of the term structure 

of interest rates. While hypothesis testing verifies the consistency of model 

restrictions and implications with the data, model selection is based upon Akaike 

and Schwartz information criteria, the goodness of fit statistics and the relative 

predictive powers of the tested models. The lack of observed zero-coupon bonds 

outside the range of 5-week, 13-week and 26-week maturities provides the 

motivation to fit the term structure by means of two numerical methods, the 

Nelson-Siegel method and a new method based on Chebyshev polynomials. The 

term structure generated by the better of these two models will be used as a 

benchmark to judge equilibrium models’ performance.

27 5-week Treasury Notes were introduced on November 13, 1991 while other observed rates 
were available for the period 02/01/1985 - 30/12/1992.
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Table 3.3

Reporting Bond Dealers (15 October 1991)

Australia and New Zealand Banking Group Ltd
Australian Gilt Securities
Bain Capital Markets Ltd
Bankers Trust Australia Ltd
Citibank Ltd
Commonwealth Bank of Australia 
County NatWest Australia Capital Markets Ltd 
Fay, Richwhite Securities Ltd 
FBA (Discount) Ltd
Merrill Lynch International (Australia) Ltd 
National Australia Bank Ltd
National Mutual Life Association of Australasia Ltd
Potter Warburg Discount Ltd
Rothschild Australia Securities Ltd
SBC Dominguez Barry Ltd
Schroders Australia Ltd
JB Were & Son
Westpac Banking Corporation

Table 3.4

Distribution of bond data 
(1985-1992)

Maturity (Years) Number of bonds Percentage

Maturity < 3 13740 30.21

3 < Maturity < 5 7302 16.06

5 < Maturity < 10 18105 39.81

10 < Maturity < 15 5566 12.24

15 < Maturity 764 1.68

Note: It should be noted that on any given day in the sample a cash rate, a 13-week Treasury Note rate, 
and a 26-week Treasury Note rate are available from 2 January 1985 to 30 December 1992. 
Furthermore, since November 1991 a 5-week Treasury Note rate is also available. Hence, these rates are 
not included in this distribution.
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In this chapter we present the empirical results of fitting the term structure 

of interest rates by means of the Nelson-Siegel (1987) and the Chebyshev 

polynomial models. The objective of this exercise is twofold: (i) to determine the 

better of these two statistical models; and (ii) to use the better model to provide 

(zero-coupon) interest rates where no such observed rates are available. Toward 

this end, the chapter is organised as follows. Sections 4.1 and 4.2 briefly 

recapitulate the estimation procedures for both statistical models. Sections 4.3 and 

4.4 present the empirical results of the estimation of the Nelson-Siegel model and 

Chebyshev model respectively. This is followed by a comparison of the two models 

in section 4.5. A sample of the fitted term structures on a given day are presented 

in Section 4.6, then Section 4.7 concludes the chapter.

4.1 ESTIMATION PROCEDURES

As the estimation procedure is explained in detail in Chapter 3 only the 

general structure1 is given here to capture the particular properties of these two 

models. In a nutshell the estimation problem is to estimate the parameter 

vector, a , of the theoretical2 bond pricee, Pj (a, (T-t)) , on a set of observed 

coupon paying bonds, P , i =1, 2, 3, ...,m , by minimising the sum of weighted 

residuals between the observed and theoretical prices:

1 Full details are given in Chapter 3.

2 The term theoretical bond price in this chapter denotes an assumed functional form for the
bond price. It is not ’theoretical’ in the sense of CIR or Vasicek price.
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(1)Min Y
a i=i

w.i P - P1 i 1 i
Min

a E wie'
i=i

where ej = P - P and vv is the weight of coupon paying bond i, i = 1,..., 

m.

As each theoretical coupon paying bond consists of n coupon payments,

C, , j = 1, 2, 3, n , it can be viewed as a portfolio of n theoretical zero 

coupon bonds P, } , j = 1, 2, 3, n ,

^ = E c, hi fe- (2)
i-1

Thus, substituting equation (2) into equation (1) and implementing the minimisation 

procedure yield the estimates of the parameter vector, a , of the theoretical zero 

coupon bond price, P . , y = 1, 2, 3, « .

Alternatively, a multiplicative residual may be defined as 

vt - In P, - In P and hence an alternative procedure may be implemented to 

minimise the sum of the multiplicative residuals:

m
MinY

a i=i

(3)

Minimisation procedures (1) and (3) are referred to as the price norm and 

logarithmic norm respectively. These general procedures will be used to estimate 

the vector of parameters of Nelson-Siegel and Chebyshev models.

4.1.1 Nelson-Siegel model

The empirical version of the Nelson-Siegel model is given by
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y(t, T) = a + b [ 1 - exp(-(T - r) / /:) ] 
(T^tj/k

c exp(-(T-t)/k) (4)

where y(r, T) , being the interest rate of a zero coupon paying bond is related to 

its price by

Pz J [an<, (T-tj) = exp ((T-t) y(T,t)) (5)

Thus, substituting (2) and (5) into (1) and (3) and implementing the minimisation 

process yield the vector of the parameter estimates of the Nelson-Siegel model:

a = [a,b,c,k]
~ns

4.1.2 Chebyshev polynomial based model

The Chebyshev polynomial relations are given by:

T = 1 1 o 1

Tx (x) = x (6)

Tj (x) = 2xTjA(x) - r_2(x) ; j = 2, 3, 4, ...

while bond prices are related to the interest cumulator3 * by the following relations:

C

i+y;
100

uy:
(7)

Y* = a0 + aj^x) + ... + (8)

where Pt is the observed price of bond i, C. is the coupon payment, x is (T-t)/B, 

B is the arbitrarily chosen upper bound on all observed bond maturities, 

= {a0 , ax , ... ak} is the vector of the Chebyshev parameters, and n is the 

number of coupon payments in each coupon paying bond such that

3 See Chapter 3, section 3.3.
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, dY,Y0 = 0 , __L>0 for t > 0.
dt

Substituting equations (6), (7) and (8) into (1) and (2) and then 

implementing the minimisation program yields an estimated vector of parameter of 

the Chebyshev model:

—Ch ~ ,a2 ’^3]

4.2 LOGARITHMIC NORM AND PRICE NORM

Both the price norm (1) and the logarithmic norm (3) estimation procedures 

are implemented on each day of the data set from January 2, 1985 to December 30, 

1992. While the Chebyshev method is estimated with a range of coefficients from 2 

to 7, and the degree of accuracy in terms of the sum of squared residuals increases 

with the number of coefficients, it was decided to use results based upon 4 

coefficients to provide a common basis of comparison with the 4-parameter Nelson 

and Siegel model. For each daily cross sectional regression, two information 

criteria (Akaike and Schwartz) are calculated. On the basis of these criteria, 

namely the better model possessing the lower Akaike and/or Schwartz statistic, the 

logarithmic norm outperforms the price norm and hence only the results from the 

former are reported (see Table 4.1).

112



Table 4.1

Distribution of information criteria of logarithmic and price norm
Daily cross-sections

Akaike Criterion Schwartz Criterion

Nelson-Siegel Log Norm Price Norm Log Norm Price Norm

Mean -4.4722 -2.4148 -3.2876 -2.2302

Standard
deviation

0.1617 0.146 0.1617 0.146

Chebyshev

Mean -5.8978 -3.3829 -5.7237 -3.3432

Standard
deviation

0.148 0.1528 0.148 0.1528

Note:
The information criteria are based on minimising the residual sum of squares; hence the smaller the 
criteria the better the model.
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4.3 EMPIRICAL RESULTS OF NELSON AND SIEGEL MODEL

This section presents the results from the estimation of the Nelson-Siegel 

model in three main areas: (i) parameter estimates; (ii) diagnostic statistics of the 

estimation process in terms of the distribution and heteroskedasticity of the 

residuals; and (iii) predictive4 powers of Nelson-Siegel interest rates.

4.3.1 Distribution of Nelson-Siegel parameter estimates

The distribution of the Nelson-Siegel parameters are presented in Table 4.2 

while their time series are graphed in Figs. 4.1 - 4.4. It is important to distinguish 

between the time series significance of these parameters and their cross sectional 

significance. The former shows their variability over time and in the absence of an 

economic based dynamic theory, parameters are likely to behave randomly. This 

seems reasonable as it implies the inability of forecasting future term structures. 

The cross-sectional significance of a parameter on the other hand reveals the extent 

to which it contributes to a term structure at a given point in time. Thus, its 

significance is evidence of a well specified function.

The time series behaviour of parameters, a, b, and c reveals that while they 

are not stable as implied by the model it is reasonable to conclude that they vibrate 

within a band characterised by their respective means (see Table 4.2 and Figs. 4.1- 

4.4). In other words, while the hypothesis of parameter constancy is rejected, it can 

be argued that these parameters wander around some fixed value and the 

fluctuations may be regarded as stochastic errors. The minimisation procedure is

4 Predictive in the Theil’s sense (see Chapter 3), that is, a comparison of observed rates at time 
t with rates generated (by the model) at the same time t. It does not imply prediction in the sense of 
generating rates at time t + n by means of parameters estimated for time t. This is because the 
Nelson-Siegel and Chebyshev models are curve fitting techniques and hence do not have predictive 
contents based upon economic theory.
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Table 4.2

Distribution of the parameters of the Nelson-Siegel model

a b c k

Mean 0.106876 0.034076 -0.01376 3.835002

Variance 0.003285 0.020231 0.007102 12.49471

Standard deviation 0.057315 0.142236 0.084274 3.534786

Skewness -8.81735 7.891165 -3.71887 0.596292

Kurtosis 154.9733 132.7028 32.58109 -1.38758

Minimum -1.1816 -0.41289 -0.99499 0.5

Maximum 0.273746 3.110633 0.307398 9

Range 1.455345 3.523521 1.302385 10.92982

Coefficient of variation 0.53628 4.174057 -6.12529 0.921717

LCL for Mean 0.104351 0.02781 -0.01747 3.679289

UCL for Mean 0.109401 0.040342 -0.01005 3.990715

LCL for Variance 0.00309 0.019028 0.00668 11.75168

UCL for Variance 0.0035 0.021553 0.007566 13.31086

Notes:
LCM = lower confidence limit at 95 % 
UCL = upper confidence limit at 95 %
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Fig. 4.2

Nelson-Siegel parameter b (1985-92)
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Fig. 4.4

Nelson-Siegel parameter k (1985-92)
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performed over a grid of values of k to produce the overall best fit for an optimal 

combination of a, b, c, and k. Fig. 4.4 shows the time series of optimal values of 

k, that is, those values that yield the smallest sum of squared errors. As there is no 

a-priori economic reason for its dynamic behaviour, k fluctuates randomly. Nelson- 

Siegel (1987) were first to test their model and report the range of k of (10, 365) 

while in this study it is (2,9) with steps equal to 0.5. It is not possible to infer from 

this discrepancy as the basis of their estimation is linear and yield while ours is 

nonlinear and price. Furthermore, our procedure is capable of incorporating coupon 

paying bonds which increase the data set substantially.

4.3.2 Distribution of f-statistics of Nelson-Siegel parameter estimates

On each daily cross section the four parameters, a, b, c, k, and their 

corresponding statistics are calculated. While the Wald5 statistics (which tests the 

hypothesis that all the four parameters are simultaneously zero) are all significant at 

1% level of significance each individual parameter does not always share the same 

level of significance. Hence, Table 4.3 gives a distribution of these ^-statistics and 

the proportions of the sample in which they are significant. Equation (4) implies 

that as bond maturity, (T-t), gets large, y(t, T) tends to a while it tends to a + c 

as bond maturity gets small. Thus, a and a + c are interpreted as having the long 

term and short term influence on the term structure respectively6. It is clear that 

these parameters (a, b, c) fluctuate erratically and are not constant as implied by 

the model (see Table 4.2, Fig. 4.1 and Fig. 4.3). It should be noted that a

5As the Wald statistic is significant for each and every daily cross section, it is not tabulated.

6 In this respect the Nelson-Siegel (1987) model shares the same prediction as the CIR (1985b) 
model.
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dominates c as the mean values of a and c are 0.106876 and -0.01376 respectively 

(see Table 4.2) and the negativity of c implies that the long term influence, a + c, 

is less than the short term influence. Thus the term structure is expected to hump 

down as maturity increases. Furthermore, parameter a is significant for most of 

the cross sections (see Table 4.3). Overall, parameter a is the dominant force in 

Nelson-Siegel term structures. In this respect it is similar to the dominant role of 

the instantaneous spot rate in CIR, and generalised CIR, and Vasicek models7.

4.3.3 Diagnostic statistics

This section presents the diagnostic statistics of the estimation with respect 

to the distribution and heteroskedasticity of the residuals (see Table 4.4). These 

statistics show whether the minimisation procedure meets some conventional 

properties of estimation. On the whole the residuals appear normally distributed for 

55 per cent and 70 per cent of the sample at the 1 per cent and 5 per cent 

significance level respectively. This result is particularly important because it shows 

the extent to which our nonlinear regression estimation is equivalent to maximum 

likelihood, and hence parameter estimates share the desirable asymptotic properties 

of the maximum likelihood estimator. In a similar vein the problem of 

heteroskedasticity is largely solved by using bond durations as weights in 

minimisation program (1) or (3). The results are particularly significant with 83 per 

cent and 89 percent of the sample significant at the 1 per cent and 5 per cent 

respectively. It is well known that heteroskedasticity leads to inefficient estimation

n
Reported in Chapters 5, 6, 7 respectively.
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and biased variances of the estimates8, thus invalidating the tests of significance. 

The general absence of heteroskedasticity reinforces the Wald9 tests and t-tests on 

the model parameter estimates.

4.3.4 Analysis of the predictiveness of Nelson-Siegel zero coupon rates

This section reports the goodness of fit of Nelson-Siegel short-term rates (1 

day, 5 week, 13-week, 26-week) vis-a-vis the series of observed Treasury Notes 

rates of corresponding maturities (see Table 4.5). It should be noted that these 

observed series are not of equal length as 5-week Treasury Notes were only issued 

toward November 1991 and the one day rate is the 11 AM hour cash rate. The 

goodness of fit is exceptionally good in terms of R2 and various mean error 

measures. The Theil’s statistics are of mixed quality in that the inequality 

coefficient is close to zero but the breakdown into the bias, variation and 

covariation is far from the ideal which requires zero bias and variation and unitary 

covariation. The inequality, being close to zero, means that there is no systematic 

bias and the model is well specified while the bias, being relatively large, implies 

that the observed series fluctuated considerably more than the predicted series. The 

covariation, despite being different from unity, is less worrisome because it is 

expected that the predicted series is never perfect.

8 See Gallant (1987, Chapters 1 and 2).

9 The hypothesis (under the Wald test) is that the four parameters are simultaneously equal to 
zero. The Wald statistics (though not reported in the chapter) is always significant for each and 
every daily cross section.
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Table 4.3

Distribution of r-statistics of Nelson-Siegel model

Parameter Significance level Sample proportion

a
1% 0.85

5% 0.86

10% 0.87

b
1% 0.36

5% 0.39

10% 0.42

c
1% 0.29

5% 0.33

10% 0.37

k 1% 0.28

5% 0.32

10% 0.36

Table 4.4

Diagnostic tests of Nelson-Siegel residuals

1985-1992

NS Model Significance level Sample Proportion

Normality Test
1% 0.55

5% 0.15

Heteroskedasticity
1% 0.83

5% 0.06
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Table 4.5

Predictiveness of Nelson-Siegel short-term rates

1 Day 5 Week 13 Week 26 Week

Correlation
coefficient

0.9889 0.87509 0.99411 0.9933

Correlation
coefficient
squared

0.9781 0.76578 0.98826 0.98664

Root mean 
squared error

7.3343E-03 5.6358E-03 5.6169E-03 4.5023E-03

Mean absolute
error

5.5369E-03 2.5622E-03 4.1013E-03 3.369E-03

Mean error 5.1945E-03 2.5018E-03 3.9037E-03 2.178E-03

Regression 
coefficient of 
actual on 
predicted

1.01318 0.82956 1.05076 1.04166

Theil’s 
inequality* 
coefficient 
(1966)

5.4167E-02 8.5457E-02 4.2449E-02 3.4881E-02

Theil’s 
inequality* 
coefficient 
(1961)

2.7617E-02 4.3516E-02 2.157E-02 1.761E-02

Fraction of error 
due to bias

5.016E-01 1.9706E-01 4.8302E-01 2.3407E-01

Fraction of error 
due to different 
variation

1.2872E-02 9.072E-03 1.07E-01 1.1054E-01

Fraction of error 
due to 
difference 
covariation

4.8553E-01 7.9387E-01 4.0999E-01 6.5539E-01

Note: * While this inequality is defined differently in Theil (1961), equation (2.20), p.32) and Theil 
(1966, equation (4.1), p. 28) it conveys a similar concept.
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4.4 EMPIRICAL RESULTS OF CHEBYSHEV MODEL

Results from the estimation of the Chebyshev model are presented to highlight three 

areas: (i) parameter estimates; (ii) diagnostic statistics of the estimation process in 

terms of the distribution and heteroskedasticity of residuals; and (iii) relative 

predictiveness10 of the Chebyshev interest rates with reference to the observed 

rates.

4.4.1 Distribution of Chebyshev parameters

Table 4.6 reports the distributions of the Chebyshev coefficients while their 

time series are graphed in Figs. 4.5 - 4.8. Parameter a0 is most important in terms 

of: (i) absolute size with mean equal to 2.09815 (see Table 4.6); and (ii) total 

significance in cross sectional estimation (see Table 4.7). It is not possible, 

however, to identify the economic content of this parameter.

4.4.2 Distribution of Lstatistics of Chebyshev model

The Wald* 11 statistics and parameter a0 are significant at 1% level of 

significance for all cross sections while parameters cij, a2 and a3 are highly 

significant for most of the cross sections (see Table 4.7). Overall the Chebyshev 

parameters are significant for larger proportions of the sample than those of the 

Nelson-Siegel model; for example, parameter a0 is significant for every cross 

section (see Table 4.7) in contrast to only 87 per cent for the Nelson-Siegel model 

(see Table 4.3).

10 In the Theil’s sense (see footnote 4 ).

11 The Wald statistics which test the hypothesis that all parameters are simultaneously zero are 
consistently significant at 1 % for each and every daily cross section.
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Table 4.6

Distribution of the Chebyshev parameters

an a, a,

Mean 2.098185 0.407106 0.026526 -0.01063

Variance 1.834643 0.152631 0.006824 0.000701

Standard
deviation

1.35449 0.39068 0.082606 0.026471

Skewness 1.57591 2.076778 0.13918 -2.9958

Kurtosis 2.091356 4.713533 4.778179 17.59844

Minimum 0.424727 -0.26032 -0.39953 -0.34924

Maximum 7.300791 2.276414 0.48322 0.071586

Range 6.876064 2.536735 0.882746 0.420827

Coefficient of 
variation

0.645553 0.959651 3.114131 -2.48976

LCL for Mean 2.038152 0.389791 0.022865 -0.01181

UCL for Mean 2.158217 0.424422 0.030188 -0.00946

LCL for 
Variance

1.724905 0.143501 0.006416 0.000659

UCL for 
Variance

1.95525 0.162665 0.007272 0.000747

Note: LCL s lower confidence limit at 95 %
UCL = upper confidence limit at 95 %
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Fig. 4.5
Chebyshev parameter a0 (1985-92)
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Table 4.7

Distribution of t-statistics of Chebyshev parameters

Parameter Significance level Sample proportion

^0
1% 1.00

5% 1.00

10% 1.00

ai

1% 0.96

5% 0.97

10% 0.98

a2

1% 0.32

5% 0.39

10% 0.46

a2 1% 0.36

5% 0.43

10% 0.50
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4.4.3 Diagnostic statistics

In this section we present the diagnostic statistics of the Chebyshev 

estimation with respect to the distribution and heteroskedasticity of the residuals. 

The statistics in Table 4.8 confirm the normal distribution and homoskedasticity of 

the residuals for a very high proportion of the cross sections. The results mean that 

the nonlinear regression of the Chebyshev model is asymptotically maximum 

likelihood and hence Chebyshev estimates share the properties of maximum 

likelihood estimator.

4.4.4 Analysis of the predictiveness of Chebyshev zero coupon bond rates

The performance of the Chebyshev rates and their observed rates of 

corresponding maturities is analysed in this section. While the overall goodness of 

fit is comparable with that of the Nelson-Siegel model, of particular significance is 

the fit of the 5 week Treasury Note rates which show the Chebyshev model 

outperforming the Nelson-Siegel model with an R2 of 91 per cent (see Table 4.9, 

third row, third column) in contrast to 76.58 per cent (see Table 4.5, third row, 

third column).
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Table 4.8

Diagnostic tests of Chebyshev residuals

NS Model Significance level Sample Proportion

Normality Test 
(Jarque-Berra)

1% 0.66

5% 0.80

Heteroskedasticity
(White)

1% 0.94

5% 0.97
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Table 4.9

Predictiveness of the Chebyshev model

1 day 5 week 13 week 26 w

Correlation
coefficient

0.9876 0.95395 0.99789 0.99634

Correlation
coefficient
squared

0.9753 0.91001 0.99578 0.99268

Root mean 
squared error

7.2E-03 3.5E-03 4.0E-03 3.2055E-03

Mean absolute
error

5.68E-03 2.4E-03 3.2E-03 2.4954E-03

Mean error 4.6E-03 1.9E-03 2.9E-03 1.0197E-03

Regression 
coefficient of 
actual on 
predicted

1.01133 0.93657 1.0508 1.04054

TheiPs inequality
coefficient
(1966)*

5.32E-02 5.35E-02 3.01E-02 2.48E-02

TheiPs inequality
coefficient
(1961)*

2.71E-02 2.71E-02 1.52E-02 1.24E-02

Fraction of error 
due to bias

4.1903E-01 2.8399E-01 5.2018E-01 1.0199E-01

Fraction of error 
due to different 
variation

1.2912E-02 2.6173E-03 1.8585E-01 1.8398E-01

Fraction of error 
due to difference 
covariation

5.6806E-01 7.1339E-01 2.9396E-01 7.1492E-01

Note: * see Note, Table 4.5
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4.5 COMPARATIVE ANALYSIS OF CHEBYSHEV AND NELSON-SIEGEL 
MODELS

Results of a comparative analysis of Nelson-Siegel and Chebyshev models to 

determine the better model are reported in this section. This assessment is based 

upon the Akaike and Schwartz information criteria12 and mean pricing errors13 

which show that the Chebyshev model outperforms the Nelson and Siegel model 

(see Tables 4.10 and 4.11). For example, the Chebyshev model displays smaller 

mean pricing errors in 1985, 1987-91, and over the entire period, 1985-92 (see 

Table 4.11). In addition, the diagnostic statistics (Tables 4.4 and 4.8) and the 

goodness of fit statistics (Tables 4.5 and 4.9) also indicate that the Chebyshev 

model is better than the Nelson-Siegel model in that both the means of the former’s 

Akaike and Schwartz criteria are smaller and the former outperforms the latter in 

69 percent of the cross-sections(see Table 4.10). Consequently, for the purpose of 

constructing the term structure of interest rates by means of observed coupon 

paying bonds, the Chebyshev model is the preferred model to provide those 

unobserved long term (zero-coupon) rates to act as benchmarks for the equilibrium 

model rates of corresponding maturities.

4.6 A SAMPLE OF CHEBYSHEV AND NELSON-SIEGEL TERM 
STRUCTURES

In this section a snap shot of the term structures generated by the Nelson- 

Siegel and Chebyshev models is provided (see Fig. 4.9, Fig. 4.10, and Fig. 4.11).

12The smaller are these statistics the better the model.

13 Pricing error is defined as observed bond price less price fitted by either Chebyshev 
polynomials or Nelson-Siegel model.
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Table 4.10

Distribution of information criteria

Overall performance under logarithmic norm

Mean Akaike criterion Mean Schwartz criterion

Nelson-Siegel -4.4722 -3.2876
(0.1617) (0.1617)

Chebyshev -5.8978 -5.7237
(0.148) (0.148)

Distribution of cross-sectional performance Percentage of daily cross 
sections in sample set

Nelson-Siegel outperforms Chebyshev 31

Chebyshev outperforms Nelson-Siegel 69

Note: As the Akaike and Schwartz criteria are based upon minimising the residual sum of squares the 
smaller these statistics the better the model. Furthermore, they differ by a constant, hence their standard 

errors (in parentheses) are equal.
Table 4.11

Comparative analysis of mean pricing errors per $100 bond

Chebyshev Nelson-Siegel

1985* 0.43024 0.44127

1986 0.47108 0.46988

1987* 0.44065 0.46214

1988* 0.35833 0.37728

1989* 0.31263 0.36469

1990* 0.19081 0.22526

1991* 0.09859 0.13471

1992 0.14335 0.11805

1985-92* 0.305711 0.32416

Note: ’denotes the year(s) in which the Chebyshev model displays smaller mean pricing errors than the 
Nelson-Siegel model.
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Several observations may be made. Firstly, the Chebyshev curve (see Fig. 4.10) is 

much more flexible in tracking the variations of observations while the Nelson- 

Siegel shape (see Fig. 4.9), being controlled by its underlying particular differential 

equation, is more restricted. This is particularly accentuated for maturities beyond 

the maximum observed maturity14. Secondly, in the range of observed maturities, 

the difference between the two models is smaller than that outside them (see Fig. 

4.11). For example, the maximum difference (see Fig. 4.11) is in the order of 30 

basis points.

4.7 CONCLUSION

This chapter documents the empirical evidence of constructing the term 

structure of interest rates by means of two statistical models: the Nelson-Siegel and 

Chebyshev polynomials models. The evidence indicates that the specification of a 

multiplicative residual in the estimation model led to improvement in accuracy. 

Furthermore, the nonlinear regression estimation used in this chapter is 

asymptotically maximum likelihood so that all the tests enjoy the strength of a 

maximum likelihood estimator. Lastly, while the goodness of fit of both these 

models is high in absolute terms, the Chebyshev model has an edge over the 

Nelson-Siegel model and hence will be used as a benchmark in the testing of the 

equilibrium models.

14Approximately 9.5 years on 20 December 1990.
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The objective of this chapter is to present and discuss the results of the 

empirical estimation of the CIR model undertaken in this study. The two major 

issues we shall address ourself to are: (i) empirical support for parameter stability 

as implied by the model; and (ii) goodness of fit and predictiveness of the model. 

Toward this end, various statistical aspects of parameter estimates are explored 

together with several investigations undertaken to deepen our understanding of the 

behaviour of the model in the Australian context. The chapter is organised as 

follows. Sections 5.1-5.5 are concerned with the results and goodness of fit of 

estimates of the parameters, r, a\fr , k6, k+0, and the long term yield, Rcir{oo) . 

Section 5.6 then provides a snapshot of cross-sectional results in the form of graphs 

of a typical CIR term structure and its deviations from observations. Finally, to 

conclude the chapter, a summary of general results about the model as a whole is 

given in Section 5.7

Model estimation is implemented using unconstrained and constrained 

nonlinear regression where the error functions are expressed in terms of bond 

prices and the logarithm of bond prices1. Unconstrained daily regression allows all 

the model parameters, including the spot rate, to vary freely while constrained 

regression keeps the parameters fixed, except the spot rate, over each quarterly and 

semi-annual interval. In Chapter 3 it is argued that the logarithmic norm, based 

upon the multiplicative error, is more accurate. Comparing the information

1 For justification for the two types of estimation see Chapter 3.
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criterion statistics2 of each and every cross-section regression confirms the 

superiority of the logarithmic norm3. The results in distributional form are 

presented in Table 5.1. As the logarithmic norm is first proposed in this study, no 

evidence in previous research is available for comparison or contrast. The 

evidence, however, is consistent with the a priori arguments for the appropriateness 

of the logarithmic norm4. Consequently, the results reported in this chapter are 

based upon the logarithmic norm. Furthermore the homoskedasticity and normality 

tests as shown in Table 5.2 imply that the nonlinear regression procedure adopted 

is equivalent to maximum likelihood5 for the majority of the cross sections. Hence, 

it possesses all the desirable properties of maximum likelihood estimators (see 

Green (1993, pp. 305-307)). The null hypothesis of the White test is 

homoskedasticity and the test statistic is asymptotically distributed as x2 with k-1 

degrees of freedom where k is the number of regressors (see Green(1993, pp. 392- 

393)) while the null hypothesis of the Jarque-Berra test is normality and the test 

statistic has a x2 distribution with two degrees of freedom (see Kmenta (1986, pp. 

265-267)). These tests are applied to all cross sections6 and the proportions of days

2 See Judge et al (1985, p. 242 and Chapter 21) and Maddala (1992, p. 500-501) who argue 
that Aikake’s information criterion (AIC) is commonly used (at least in nonlinear models). Schwartz 
criterion is developed within the Baysian framework. Information criteria are based upon minimising 
the residual sum of squares; thus, among competing regression models the one with the minimum 
criteria statistic is preferred.

3 For the case of the superiority of the logarithmic norm see Chapter 3.

4 See Chapter 3.

5 See Green (1993, pp. 305-307).

6 While parameters o, k , 6, and X are constrained to be constant in each quarterly and 
semi-annual cross section, the spot rate, r, is allowed to vary from day to day. Hence the White and 
Jarque-Berra tests are also applied from day to day for quarterly and semi-annual estimations.
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where they are significant are shown in Table 5.2. For example, using daily 

estimation where all the parameters, including the spot rate r, vary from day to 

day, the normality and homoskedasticity hypotheses cannot be rejected for 65.5% 

and 85.16% of the daily cross sections respectively at a 1% level of significance 

(see row 3 and 5 and column 3 of Table 5.2).
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Table 5.1

Distribution of information criteria of logarithmic and price norm
Daily cross-sections

Akaike Criterion Schwartz Criterion

Log Norm Price Norm Log Norm Price Norm

Mean -2.5788 -1.4955 -2.3942 -1.3109

Standard
deviation

0.1721 0.1662 0.1721 0.1662

Note:
The information criteria are based on minimising the residual sum of squares; hence the smaller the 
criteria the better the model.

Table 5.2

Normality and heteroskedasticity tests of regression residuals

Daily Quarterly Semi
annual

Significance
level

Proportion 
of cross- 
sections

Proportion 
of cross- 
sections

Proportion 
of cross- 
sections

Normality Test 
(Jarque-Berra)

1% 0.6550 0.8576 0.8121

5% 0.7854 0.8822 0.8872

Heteroskedasticity
(White)

1% 0.8516 0.7579 0.7804

5% 0.9245 0.8475 0.8680

Note:
The entry 0.8576(column 4, row 3) means that at 1% level of significance the regression residual is 
normally distributed for 85.76% of the total quarterly cross sections (the spot rate is allowed to vary 
from day to day while the other parameters, a, k6 and k + \, are kept fixed over each quarter). Similarly 
the entry 0.7579 (column 4, row 5) means that at 1 % level of significance the regression residual is 
homoskedastic for 75.79% of the total quarterly cross sections. Other entries are interpreted accordingly.
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5.1 ESTIMATES OF SPOT RATE

5.1.1 Distributional statistics

Spot rate estimates are presented in Tables 5.3(a) and 5.3(b) while Figs. 

5.1(a) and 5.1(b) provide a visual contrast of the differences between the spot rate 

and its two closest observed counterparts in terms of maturity, the cash rate7 and 

the 13-week Treasury Note (TN) rate. It is worth noting that the estimated CIR 

spot rate tends to underestimate these observed rates (by approximately 1.6% - 

1.8%) as evidenced by the predominantly positive differences between observed 

rates and CIR rates (see Figs. 5.1(a) and 5.1(b)). This difference is then regressed 

on the level of the observed cash rate or Treasury Note rate , which indicates that 

the underestimation is positively related to the level of the observed rates (see 

Table 5.3(d)).

While the CIR spot rate tends to track the 13-week TN rate slightly better 

than the cash rate as the mean difference between the TN rate and the spot rate is 

smaller than the mean difference between the cash rate and the spot rate (see Table 

5.3(c)), the high t-values indicate the CIR spot rate significantly underestimates 

both these observed rates. Apparently the CIR rate tracks the 13-week TN rate 

better, probably due to the fact that the 13-week TN rate is less influenced by the 

Reserve Bank’s money market operations than the cash rate. Furthermore, 

estimates of the spot rate are not significantly affected by the method of estimation, 

constrained or unconstrained. Thus in Table 5.3(b) the distributional statistics 

across daily, quarterly and semi-annual intervals are essentially similar. This is

7 The cash rate is the overnight funds rate among financial institutions and is influenced by 
monetary policy considerations.
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further supported by the t-values which cannot reject the hypothesis that the means 

of the spot rate under the three methods of estimation are equal.

Lastly, among the CIR parameter estimates the spot rate is always 

significant8 at each and every (daily, quarterly, semi-annual) cross section. Thus, 

consistent with the specification of the model, it is the driving force of the CIR 

term structure.

8 The r-statistic underlying the hypothesis that the spot rate is 0.0 always exceed 5.00; and 
hence they are not tabulated.
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Table 5.3(a)

Daily estimates of CIR spot rate

Mean Std Min Max

1985 0.13406 0.012461 0.11796 0.18498

1986 0.14011 0.015686 0.11080 0.17635

1987 0.12512 0.014464 0.09986 0.16386

1988 0.11729 0.012908 0.09563 0.14438

1989 0.16290 0.009202 0.13970 0.17754

1990 0.13385 0.014014 0.10580 0.17047

1991 0.09636 0.012419 0.06735 0.11474

1992 0.05979 0.008355 0.04949 0.09503

1985-92 0.12148 0.031649 0.049489 0.18498
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Table 5.3(b)

Distribution of CIR spot rate 
Daily, quarterly and semi-annual estimates 

(1985-1992)

t-value Daily Quarterly Semi-annual

Mean 1.2148E-01 1.2532E-01 1.2092E-01

Std 3.1649E-02 3.3906E-02 2.9663E-02

Minimum 4.9489E-02 4.5641E-02 4.5415E-02

Maximum 1.8498E-01 2.1162E-01 1.8444E-01

H0 (d, q) 0.85

H0 (d, sa) 0.46

H0 (q, sa) 0.52

Notes:
(a) Hn (d, q) is the null hypothesis that the mean of daily estimates of CIR spot rate is equal to the mean 
of its quarterly estimates;
(b) H0 (d, sa) is the null hypothesis that the mean of daily estimates of CIR spot rate is equal to the mean 
of its semi-annual estimates;
(c) H0 (q, sa) is the null hypothesis that the mean of quarterly estimates of CIR spot rate is equal to the 
mean of its semi-annual estimates.
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Table 5.3(c)

Differences between observed TN rates and CIR spot rate
(1985-1992)

13-week TN rate 
less CIR spot rate

Cash rate less
CIR spot rate

Mean 0.016162 0.018171

Standard deviation 3.12E-04 3.75E-04

f-value3 51.74* 48.31*

f-valueb 4.10*

Notes:

a The null hypothesis is that the mean of (observed rate less theoretical rate) is 0.0. 
h The null hypothesis is that the mean of the series (13-week TN rate less r) is equal to the mean of the 
series (cash rate less r).
' Significant at 1 %.

Table 5.3(d)

Regression of cash rate, 13-week Treasury Note rate and CIR spot rate
(1985-1992)

Dependent
variable

Independent
variable

Intercept Reg Coef R2 DW

Diff cash3 Level of 
cash rate

0.6748E-02 0.0472 0.0126 2.00

f-value 20.30* 3.78*

Diff_tnb Level of TN
rate

0.1726E-04 0.0864 0.3807 2.30

f-value 0.067 9.28*

Notes:
* significant at 1 %
aDiff_cash = cash rate less CIR spot rate
hDiff_tn = 13-week Treasury Note rate less CIR spot rate
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Fig. 5.1(a)

Difference between cash rate and CIR spot rate
Rate difference

850109 860103 861229 871223 881222 891227 901221 911218 921230

Note: Rate difference = cash rate less CIR spot rate

Fig. 5.1(b)

Difference between 13-week TN rate and CIR spot rate 

Rate difference

Note:
Rate difference = 13-week TN rate less CIR spot rate
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5.1.2 A test of the unbiasedness of 13-week CIR interest rates

Section 5.1.1 shows that the CIR spot rate significantly underestimates the 

cash rate and 13-week Treasury Note rate. This result is probably due to the fact 

that the comparison is not strictly valid as the spot rate and the observed rates are 

not of similar maturity. To address this mismatch of maturity we use 13-week 

Treasury Note rates to explore whether the 13-week CIR rates are unbiased 

estimates of these observed rates. The investigation is implemented by regressing 

the CIR rates on the observed rates and then testing the hypothesis that the intercept 

and the gradient of the regression equation are equal to 0.0 and 1.0 respectively:

robs = “ + 0res, + 6 (1)

where robs is the observed 13-week Treasury Note rate and rest is the estimated 

13-week CIR rate. The null hypothesis is a = 0.0 and 0 = 1.0.

In particular, the unbiasedness of the 13-week CIR interest rates9 is 

assessed by: (i) regressing observed 13-week Treasury Note rates on day t against 

13-week CIR interest rates based upon parameter estimates on day t; and (ii) 

regressing observed 13-week Treasury Note rates on day t + one month against 13- 

week CIR interest rates calculated for day t + one month using parameter values 

estimated on day t. The first regression is equivalent to within-sample validation as 

it uses the information embedded in the sample of observations on day t while the 

second regression is equivalent to out-of-sample validation, in a temporal sense, as 

it uses the information embedded on day t to predict CIR interest rates on day t +

9 Assessment of goodness of fit of the CIR model for the entire term structure is provided in 
Section 5.5.
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one month. Results from the regression are presented in Tables 5.4(a) and 5.4(b) 

where on the basis of the F-statistics the null hypothesis that a - 0.0 and (5 = 1.0 is 

accepted. These results indicate that 13-week CIR interest rates are unbiased 

estimators of 13-week Treasury Note rates. This finding is a significant 

improvement over the finding in section 5.1.1 where the CIR instantaneous spot 

rate significantly underestimates the 13-week Treasury Note rate. The unbiasedness 

of the 13-week CIR rate may be attributed to: (i) the CIR rate being of similar 

maturity as the Treasury Note rate; and (ii) 13-week Treasury Notes are a popular 

market-driven short-term zero-coupon instruments at least within the sample period 

(1985-1992).
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Table 5.4(a)

Tests of unbiasedness of daily 13-week CIR rates of interest (1985-1992)

Observed
rate
(Dependent
variable)

Estimated
CIR rate
(Independent
variable)

a 0 F-
value

R2

13-week TN 13-week 0.97E-12
(0.10E-03)

0.9932
(0.40E-02)

1.40 0.9717

Notes:
(a) CIR rates are calculated for day t, using the parameters estimated on day t.
(b) The null of the F test is a = 0.0 and (3 = 1.0.
(c) **: Significant at 0.01 level.
(d) Standard errors are in parentheses.

Table 5.4(b)

Tests of unbiasedness of daily 13-week predicted CIR rates of interest (1985-1992)

Observed
rate
(Dependent
variable)

Estimated
CIR rate
(Independent
variable)

Oi 0 F-value R2

13-week TN 13-week 0.24E-11
(0.14E-
03)

0.9994
(0.57E-02)

0.42E-02 0.9354

Notes
(a) Predicted CIR rates are calculated for day t + one month, using the parameters estimated on day t.
(b) The null of the F test is a = 0.0 and (3 = 1.0.
(c) **: Significant at 0.01 level.
(d) Standard errors are in parentheses.
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5.1.3 Comparative analysis of the performance (predictiveness) of the CIR model

While the data cross-sections include bonds that vary from day to day with 

respect to coupon rate and maturity they all contain 13-week and 26-week Treasury 

Notes. This unique feature is exploited to examine how the CIR model performs 

relatively to a naive model of the term structure which assumes that interest rates 

remain constant10 over time. This is a direct test of the predictiveness of two CIR 

bond prices with respect to their observed prices. Essentially the question we seek 

to answer is " Will the CIR model estimated on day t and then used to predict the 

prices of 13-week and 26-week Treasury Notes on day t + n months outperform 

the naive model ?". The value of n is chosen to be one month and three months. 

While the choice is arbitrary, prediction in this time frame should give a reasonable 

indication of the robustness of the CIR model in view of the daily fluctuations in 

interest rates in the market place.

The criterion used to measure performance is the pricing error defined as 

the difference between the observed price and the estimated price.

For the naive model we have:

"naive P - Pobs,t + n obs,t (2)

where PEnaive is the pricing error under the naive model, Pohst the observed price 

at time t, Pobst+n the observed price at time t+n, and n is either 1 or 3 months. In 

other words, on day t Pohst is assumed to prevail at time t+n (under a constant 

interest regime) and is then compared with Pohs t+n which actually prevails at

10 This is a ’do nothing and cost-free’ model. Any constructed model should generally beat it to 
justify costs of prediction.
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time t+n.

For the CIR model we have

PE = P - P (3)

where PEar is the pricing error under the CIR model and PcirtJ+n is the CIR 

price predicted at time t to prevail at time t+n.

The results presented in Tables 5.5(a) and 5.5(b) indicate that over the 

entire sample period :(i) the mean errors of the CIR model are significantly smaller 

than those of the naive model. For example, the naive model and CIR model 

generate, on average, errors of $0.21 and $0.10 per $100 Treasury Note 

respectively (see Table 5.5(a), third row); and (ii) on the basis of the F-statistics11 

the null hypothesis that the mean squared errors of the naive model are smaller than 

those of the CIR model is decisively rejected. Thus, overall the CIR model 

outperforms the naive model.

11 It should be noted that in these two tables the ratio of two MSEs is F-distributed with degrees 
of freedom equal to the number of observations used in the calculation of the MSEs (see Johnson and 
Kotz (1970, Chapter 26).
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Table 5.5(a)

Comparative mean dollar pricing errors of $100 13-week Treasury Notes

One-month prediction Three-month prediction

Naive model CIR model Naive model CIR model

$0.21 -$0.10 $0.39 -0.14

t-value of PE 29.48 -9.59 33.32 -15.24

Hypotheses
H0 : MSEmlve < MSEcir

H, : MSEmi„ > MSEcir

H0 : MSEmive < MSEcir

Hi ■ MSE„alve > MSEar

F-value 4.41* 7.76*

Note: * Significant at 1%.

Table 5.5(b)

Comparative mean dollar pricing errors of $100 26-week Treasury Notes

One-month prediction Three-month prediction

Naive model CIR model Naive model CIR model

$0.35 -$0.12 $0.30 -$0.16

t-value of PE 28.97 -8.30 34.31 -20.27

Hypotheses H0 = MSE„al„ < MSEcir Hq • MSEnaive < MSEar

Ht : MSEnmve > MSEdr Hi '■ MSE„aive > MSEcir

F-value 15.12>* 4.59*

Note: * Significant at 1%.
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5.1.4 Comparison with previous studies

In this section estimates of the spot rate are compared with those reported 

by previous studies, in particular Brown and Dybvig (1986), Chiarella, Lo and 

Pham (1989), Barone et al (1991) and Munik and Schotman (1994) (see Table 

5.5(c)). Our finding that the spot rate underestimates the cash rate is inconsistent 

with Brown and Dybvig (1986) who used monthly U.S. Treasury Bill data to 

estimate parameters of the CIR. They found the CIR model systematically 

overestimating the implied short rate of return. However, their ’observed’ rate is 

the mean yield on US Treasury Bills with at most 14 days to maturity while our 

observed rate is the single daily cash rate. The cash rate is a more appropriate 

proxy for the instantaneous spot rate in terms of maturity. Furthermore the cash 

rate is observed while the mean yield is simply an average of observed yields. 

Munnik and Schotman (1994) reported that the CIR spot rate is very close to the 

observed one month Amsterdam Interbank Offered Rate although no statistical 

evidence is provided. Similarly Barone et al (1991) found the estimated spot rate 

highly correlated with three-month Treasury Bills in Italy. The issue of 

overestimation or underestimation, however, is not investigated by Barone et al and 

Munnik and Schotman (1994). Chiarella, Lo and Pham (1989) found that the CIR 

spot rate significantly underestimates the Australian 13-week Treasury Note rate for 

three years (1978, 1979, 1984) out of the ten-year period (Jan/1977-Dec/1987). For 

the three years which overlap with the sample set of this study (1985, 1986, 1987) 

Chiarella, Lo and Pham (1989) found overestimation which is inconsistent with our 

results. This inconsistency is most likely caused by the flaw in Chiarella, Lo and
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Pham’s estimation procedure12 which was noted in Chapter 2 of this thesis.

In sum, the mixed results of the CIR spot rate over-estimating or under

estimating an observed risk-free rate reported by this study and others may be 

attributed to the following factors: (i) different data sets; and (ii) choice of an 

(observed) proxy for the spot rate. In terms of the latter factor our choice of the 

cash rate is perhaps more appropriate owing to its shorter maturity. It is interesting 

to note that where the mismatch of maturity is rectified, the 13-week CIR rate is an 

unbiased estimator of the 13-week Treasury Note rate. As the issue of unbiasedness 

has not been considered in previous studies no comparison with previous research 

is possible.

12 These models are reviewed in detail in Chapter 2.

159



Table 5.5(c)

Comparison of estimates of CIR spot rates with observed rates

Study Market Observed rate Results

Brown &
Dibvig
(1986)

USA (1977- 
83)
Monthly data

Mean yield on T- 
Bills with at most 
14 days to 
maturity

CIR r
overestimates 
observed rate

Munnik &
Schotman
(1994)

Netherlands 
(1989-90) 
Monthly data

Amsterdam 
Interbank Offered 
Rate

CIR r is close 
to observed
rate

Baron et 
al (1991)

Italy (1983-90) 
Daily data

1 month, 3 
month interbank 
rate and 3 month 
T-Bill rate

CIR r is highly 
correlated with 
observed rates

Chiarella 
et al 
(1989)

Australia 
(1978-87) 
Monthly data

13-week T-Note
rate

CIR r
overestimates 
observed rate

This
chapter

Australia
(1985-92)
Daily data

Overnight cash 
rate

CIR r
underestimates 
observed rate
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5.2 ESTIMATES OF VOLATILITY

In this section estimates of the volatility of the CIR stochastic interest 

rate, o\[(r) are presented and discussed. As r is always significant and positive, 

attention will be concentrated on the parameter of volatility, namely o.

5.2.1 Distributional statistics and graphs

Basic statistics of estimates of o are presented in Tables 5.6(a), 5.6(b), 

5.6(c) and 5.6(d) while Figs. 5.2(a), 5.2(b), 5.2(c), and 5.2(d) graph the time 

series of these estimates. While daily estimates of o appear smaller than quarterly 

and semi-annual estimates, three pairwise tests of the null hypothesis that their 

means are equal indicate that it cannot be rejected at 1% level of significance (see 

Table 5.6(c)). Despite this, it is problematic to conclude that o is stable over time, 

considering some significant outliers of o displayed in Figures 5.2(a-d) which are 

due to: (i) the highly nonlinear nature of the CIR pricing formula13 which allows 

for substantial variations among its variables while the functional value remains 

stable under the minimisation process; and (ii) multicollinearity among the 

explanatory variables14. Multicollinearity is indeed the case as shown by Table 

5.6(e) where the correlations among the parameters are documented. The spot rate, 

however, is least correlated with the remaining parameters (see Table 5.6(e), 

second column) and hence is least unstable (see Section 5.1). Parameter instability 

in the CIR model has also been noted by Brown and Schaefer (1994) and Singh

13 Apparently the nonlinearity of the CIR formula and the multicollinearity have been a major 
source of instability in parameter estimates. Brown and Dybvig (1986) refer to zero and negative 
estimates of o which they excluded from their analysis (see Brown and Dybvig (1986, Table I, note 
a, p. 622)). See also Singh (1995) and Chan et al (1992).

14 See Johnston (1984, p.240).
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(1995), which is inconsistent with the model’s specification of constant parameters.

For each daily, quarterly and semi-annual cross-section a t test is conducted 

to assess the significance of o and consequently the proportions of the cross- 

sections in which o is significant are reported in Table 5.6(d). For example, at 1% 

level of significance 5.98% of the series of daily estimates of a are statistically 

different from zero. By constraining a to be fixed over quarterly and semi-annual 

estimation the degree of freedom in estimation is substantially increased15 and 

hence it is more likely to be significant than under daily estimation. For example, 

62.5% and 75% of the quarterly and semi-annual estimates of a are significant 

compared to 5.98% of the daily estimate series (see Table 5.6(d), third row). It is 

important to distinguish between the significance of cross-sectional a and time- 

series a. The former shows whether it is a significant factor in the pricing of a 

bond at a given time point while the latter shows how volatile the volatility factor 

is over time. Thus, the significance of time-series a does not impact on the pricing 

of bonds.

Generally while the CIR model is silent on the time frame, its volatility 

parameter is more significant over longer intervals of estimation.

15 With daily estimation the number of parameters to estimate is four (r, o, k6, k+X) for a 
sample of, say, 20 bonds while with quarterly estimation (66 trading days) the number of parameters 
consists of 66 spot rates and three parameters for a sample of approximately 1320 bonds (= 66 x 
20).
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Table 5.6(a)

Time series of daily estimates of a16

Mean Std Min Max

1985 0.05220 0.14362 1.0E-08 1.06329

1986 0.13356 0.31177 1.0E-08 1.07633

1987 0.06107 0.07912 1.0E-08 1.04764

1988 0.03459 0.04312 1.0E-08 0.18008

1989 0.04283 0.19337 2.0E-08 1.01761

1990 0.05551 0.13484 6.7E-04 0.96867

1991 0.01830 0.05247 0.08114 0.16553

1992 0.12803 0.14106 0.10336 0.39471

1985-1992 0.06546 0.16434 0.01033 1.07633

16 It is important to distinguish between the significance of cross-sectional a and time-series a. 

The former shows whether it is a significant factor in the pricing of a bond at a given time point 
while the latter shows how volatile the volatility factor is over time. Thus, the significance of time- 
series a does not impact on the pricing of bonds.
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Table 5.6(b)

Time series of daily estimates of CIR volatility, o \fr volatility)

Mean Std Min Max

1985 0.0180 0.0541 3.50E-09 0.4510

1986 0.0184 0.0540 3.49E-09 0.4500

1987 0.0556 0.1309 3.49E-09 0.4510

1988 0.0207 0.0305 3.64E-09 0.4240

1989 0.0117 0.0140 3.24E-09 0.0660

1990 0.0128 0.0680 3.80E-09 0.4140

1991 0.0251 0.0670 3.70E-09 0.3950

1992 0.0063 0.0160 0.0304 0.0519

1985-1992 0.0224 0.0644 0.0304 0.4516
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Table 5.6(c)

Distribution of estimates of o 
(1985-92)

<7

t-value DAILY QUARTERLY SEMIANNUAL

Mean 6.5469E-02 1.2688E-01 1.2244E-01

Std 1.6434E-01 2.3541E-01 2.4052E-01

Minimum 1.0336E-01 6.4598E-03 0.0

Maximum 1.0763 9.8731E-01 9.9484E-01

H0 (d, q) 1.47

H0 (d, sa) 0.98

H0 (q, sa) 0.03

Notes:
(a) H0 (d, q) is the null hypothesis that the mean of daily estimates of a is equal to the mean of the 
quarterly estimates;
(b) H0 (d, sa) is the null hypothesis that the mean of daily estimates of a is equal to the mean of the 
semi-annual estimates;
(c) H0 (q, sa) is the null hypothesis that the mean of quarterly estimates of a is equal to the mean of the 
semi-annual estimates.
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Table 5.6(d)

Proportions of estimates of a being significant over the sample period

Daily estimates Quarterly
estimates

Semi-annual
estimates

Significance
level

Sample
Proportion

Sample
Proportion

Sample
proportion

1% 0.0598 0.6250 0.7500

5% 0.1322 0.6250 0.7500

10% 0.2173 0.6875 0.7500

Note: The entry 0.6250 (third row, third column) means that at 1% level of significance 62.5 % of the 
32 quarterly estimates of a are different from zero. Other entries are interpreted similarly.

Table 5.6(e)

Correlation matrix of r, a, k + \ and kO

r o k6 kT A

r 1.000000

o 0.018264 1.0000

k6 0.290040 0.67657 1.0000

k T A 0.341350 0.56363 0.98547 1.00000
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Fig. 5.2(a) 

Daily estimates of a
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Figure 5.2(b)

Time series distribution of daily estimates of a\fr

,rU t I f ii llllillll J i Lb l i I ImaIM : ,fVi .l 11/1
850103 851209 861121 871103 881011 890928 900910 910820 920814

167



Fig. 5.2(c)

Quarterly estimates of CIR o
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Fig. 5.2(d)

Semi-annual estimates of a
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5.2.2 CIR volatility and time series volatility of estimates of 90-day TN rates

To investigate further the CIR spot rate volatility we examine its 

relationship with the 13-week Treasury Note series17. We choose 13-week 

Treasury Notes because of their complete series (1985-1992) and relatively short 

maturity. This exercise serves two purposes: (i) if the CIR volatility bears a close 

relationship with Treasury Note volatility then its evolution may be explained in 

terms of the volatility of Treasury Notes; and (ii) to the extent that 13-week 

Treasury Notes may be considered proxies for CIR spot rates then it is a natural 

step to examine their respective volatilities.

Following Brown and Dybvig (1986) the volatility of changes in the 

Treasury Note rate is measured by their monthly standard deviations while the daily 

estimates of CIR volatility are averaged over the corresponding month18. Results 

are presented and graphed in Table 5.7(a) and Figs. 5.3(a) and 5.3(b) respectively. 

While on average there is no significant difference between the means of the two 

volatility estimates on the basis of the f-statistic in Table 5.7(a), the evolutions of 

the two series display little resemblance (see Fig. 5.3(a) and Fig. 5.3(b)). Thus, to 

formally investigate whether the CIR volatility is an unbiased predictor of the 

Treasury Note volatility the following OLS regression is estimated:

17 Other series (5-week Treasury Notes, cash rate, 26-week Treasury Notes) are also used. 
Results are largely similar.

18 A moving monthly window approach was tried whereby a subsequent window is formed by 
discarding the first observation and adding an additional observation in the series. However, this 
approach introduces serial correlation for the regression and hence was not adopted.
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logs, = ce + (3 log scir + e (4)

where logs, and logscir are the logarithms of the volatilities of the TN and CIR 

interest rates respectively. The logarithmic form is used to circumvent the problem 

that the dependent variable, namely standard deviation, cannot take negative values. 

The null hypothesis is that o; and /3 are equal to 0.0 and 1.0 respectively. On the 

basis of the F test, the results of the OLS estimation in Table 5.7(b) decisively 

reject the hypothesis that CIR volatility is an unbiased estimator of Treasury Note 

volatility.
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Table 5.7(a)

Distribution of monthly average of CIR volatility ( o\fr ) and 
monthly average standard deviation of change in 13-week TN rate

t-value Monthly average of o\fr 
( Kir )

Monthly average of 
standard deviation of 
change in 13-week
TN rate ( St )

Mean 0.0230 0.0226

Std 0.0354 0.0190

Min 7.26E-06 2.10E-03

Max 0.2754 0.1207

Ho 0.1026

Note:
H0 is the null that the mean of monthly averages of CIR volatility is equal to the mean of monthly 
averages of standard deviation of change in 13-week TN rate.

Table 5.7(b)

Regression of the volatility of the change in TN rate on 
volatility of CIR

Dependent
variable

Independent
variable

a 0 F-value R2

logs, -4.09
(0.23)

0.1344E-02 
(0.036)

485.75 0.0138

Notes:
(a) Standard errors are in parentheses;
(b) The null of the F-test is that a = 0.0 and (3 = 1.0.
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5.2.3 Comparison with previous studies

The results of CIR volatility estimates and time series volatility estimates in 

this study and previous studies are presented in Table 5.7(c). It is remarkable that 

despite differences in data, sample periods and markets, volatility estimates in these 

studies are remarkably close. Moreover, with the exception of Brown and Dybvig 

(1986), the hypothesis that the CIR volatility is an unbiased estimator19 of the time 

series estimates is not supported. The inconsistency may be attributed to (i) Brown 

and Dybvig’s OLS estimation which uses the standard deviation of time series 

estimates as dependent variable20; (ii) their ad-hoc procedure of averaging daily 

estimates of CIR volatility to calculate monthly estimate of volatility; and (iii) the 

two series of estimates do not share a common maturity with CIR short rate being 

instantaneous while Treasury-Note rate being of 13-week duration.

It is significant to note that while the means of daily, quarterly and semi

annual estimates of o are not significantly different as shown by the r-values in 

Table 5.6(c), quarterly and semi-annual estimates of o are more likely to be 

significant than daily estimates (see Table 5.6(d)). This is due to the increase in the 

degrees of freedom of quarterly and semi-annual estimation (see Section 5.2).

19 They report an intercept not significantly different from zero and a slope not significantly 
different from unity and an R2 of 0.61.

20 OLS assumes that the dependent variable is normally distributed, hence capable of taking 
negative values while the standard deviation is non-negative.
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Table 5.7(c)

Comparison of CIR volatility and time series estimates

Study Market Mea
n

o^r

(%)

Mean
Std

(%)

Is CIR volatility 
unbiased predictor of 
time series estimates ?

Brown &
Dibvig (1986)

USA (1977-83) 
Monthly data

1.95a 2.26a Yes

Brown &
Schaefer
(1994)

UK (1984-89) 
Daily data

2.65b 2.33b No

Baron et al 
(1991)

Italy (1983-90) 
Daily data

2.05c 2.19T Not reported

Chiarella et al 
(1989)

Australia (1978- 
87)
Monthly data

2.95“ 3.16d No

This chapter Australia (1985- 
92)
Daily data

2.30 3.54 No

Sources:
a Calculated from Brown & Dibvig (1986, Table I); 
b Brown & Schaefer (1994, p. 28); 
c Barone et al (1991, Tables 3 and 5); 
d Calculated from Chiarella et al (1989, Tables 1 and 3).
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5.3 ESTIMATES OF THE LONG RATE, Rcir{oo)

Estimates of the CIR long-term yield are presented and discussed in this

section.

5.3.1 Distributional statistics and graphs

Distributional statistics of estimates of the long-term yield, Rcir(oo) , are 

presented in Tables 5.8(a) and 5.8(b) while the time series of the daily, quarterly 

and semi-annual estimates are graphed in Figs. 5.4(a), 5.4(b) and 5.4(c). The 

means of the estimates across the three modes of estimation show a long term yield 

in the region of 7% to 9 % (see Table 5.8(b), second row). In fact the mean in 

each year and over the whole sample period (1985-92) is not significantly different 

from 0.07521. Given the fluctuations of parameter estimates it is remarkable that 

the long term yield remains within a fairly tight band. The relatively high standard 

errors and hence low r-statistics of Rcir(oo) (see Tables 5.8(a) and 5.8(b)) suggest 

that the parameter estimates, a, k + X , k+6 on which Rcjr(oo) depends, are

mutually correlated22. This is indeed the case from Table 5.6(e). Further, as 

shown by their higher standard errors (see Table 5.8(b)), daily estimates fluctuate 

substantially more than quarterly and semi-annual estimates. This may be attributed 

to the larger degree of freedom in quarterly and semi-annual estimation23. Except 

for the means of daily and quarterly estimates, the r-statistics in Table 5.8(b) 

indicate that there is no significant difference in the means of daily and semi-annual

21 The r-statistic for this null hypothesis is 0.06.

22 See Gujarati (1988), pp. 292-293 or Johnston (1984), p.240.

23 As explained in Section 5.2, the degrees of freedom increase substantially when four 
parameters (r, a, k6, k+\) are to be estimated from a sample of bonds pooled over three months or 
six months.
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estimates; and the means of quarterly and semi-annual estimates. While these 

findings suggest that estimates of the long rate are sensitive to time interval, and 

hence cannot be a constant, evidence seems to suggest that they vary within a band 

of 7%-9% where the fluctuations may be considered stochastic errors.
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Table 5.8(a)

CIR long-term yield, Rar(oo)

Year Mean Std Min Max

1985 0.056338 0.086101 6.8E-07 0.68889

1986 0.083598 0.062342 1.2E-07 0.31656

1987 0.068680 0.061202 3.0E-08 0.46254

1988 0.069805 0.075848 0.0 0.89806

1989 0.106550 0.025904 3.3E-06 0.12641

1990 0.063262 0.072713 1.0E-08 0.45227

1991 0.089594 0.068503 7.5E-06 0.70372

1992 0.094120 0.031904 3.3E-04 0.14491

1985-92 0.078911 0.065720 0.0 0.89806

Table 5.8(b)

Distribution of CIR long-term yield, Rar(oo)

f-value DAILY QUARTERLY SEMIANNUAL

Mean 7.891E-02 8.932E-02 6.860E-02

Std 6.572E-02 1.354E-02 4.431E-02

Min 0.0 4.304E-02 1.030E-04

Max 8.980E-01 1.147E-01 1.299E-01

H0(d,q) 3.69**

H0(q,sa) 1.83*

H0(d,sa) 0.92

Notes:
(a) H0(d,q) is the null hypothesis that the mean of the daily estimates is equal to the mean of the 
quarterly estimates;
(b) H0(q,sa) is the null hypothesis that the mean of the quarterly estimates is equal to the mean of the 
semi-annual estimates;
(c) H0(d,sa) is the null hypothesis that the mean of the daily estimates is equal to the mean of the semi
annual estimates;
(d) *: significant at 5%; **: significant at 1 %
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Figure 5.4(a)

Daily estimates of CIR long-term yield, Rcir(oo) 
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Fig. 5.4(b)

Quarterly estimates of Rcir(oo)
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Fig. 5.4(c)

Semi-annual estimates of Rcir(oo)
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Table 5.8(c)

Comparison of estimates of CIR long term yield, Rcir(oo)

Study Market Mean R(oo) 

(%)
Stability

Brown &
Dibvig (1986)

USA (1977-83) 
Monthly data

10.3 la Not reported

Brown & 
Schaefer (1994)

UK (1984-89)
Daily data

2.50" Yes

Barone et al 
(1991)

Italy (1983-90)
Daily data

11.56c Not reported

Chiarella et al 
(1989)

Australia (1978-87) 
Monthly data

12.04d Not reported

This study Australia (1985-92) 
Daily data

7.89 Yes

Sources:

a Brown & Dibvig (1986, Table I); 
b Brown & Schaefer (1994, Table 6, p. 23); 
c Barone et al (1991, Table 3); 
d Chiarella et a! (1989, Table 2).
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5.3.2 Comparison with previous studies

While our numerical estimates of the long term yield differ from previous 

studies (see Table 5.8(c)) it is not possible to judge whether ours are more or less 

reasonable for the following reasons: (i) the long term yield being the internal rate 

of return of a discount bond of infinite maturity is not observed anywhere; and (ii) 

institutional differences exist among markets. It is, however, significant that the 

daily long-term yield in this study displays remarkable stability (see Fig. 5.5(a)) 

which is in agreement with Brown and Schaefer (1994). No other previous studies 

have explored this issue.

5.4 ESTIMATES OF k6 AND k + \

Estimates of the speed of adjustment, k, the equilibrium spot rate, 6, and the 

market price of risk, X, are presented and discussed in this section. As it is not 

possible to estimate these separately, results are presented in the form of k6 and 

K + X.

5.4.1 Distributional statistics, r-statistics and graphs

Distributional statistics, r-statistics and graphs of k6 and k + X are presented 

in Tables 5.9(a)-5.9(d) and Figs. 5.5(a)-5.5(f) respectively. The CIR model 

assumes that these quantities are constant while their signs24 are positive for kO 

and positive/negative for k + X. At first sight the evidence seems to indicate that 

they vary according to the interval over which the estimation is made. In particular, 

quarterly and semi-annual estimates display more extreme observations than daily

24 See Chapter 3.
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estimates (see Figs. 5.5(a)-5.5(f)). As the total numbers of quarterly and semi

annual estimates are 32 and 16 respectively, elimination of outliers means a large 

number of observations are discarded and hence this is not attempted. However, 

allowing for estimation errors it can be argued that the means of daily estimates of 

k6 in Table 5.9(a) and k + \ in Table 5.9(b) are not significantly different25 from 

0.02 in all years (see Table 5.9(a), second column). Similarly we can find other 

values26 from which quarterly and semi-annual estimates do not significantly 

deviate. Thus while estimates of k6 and k + X are sensitive to the sample period 

(daily, quarterly, semi-annual) they converge to some constants with stochastic 

errors. Furthermore, the signs of the estimates are consistent with the prescriptions 

of the model, namely k6 is invariably positive (see Table 5.9(a)) while k + \ is, on 

average, positive but also negative in some cross sections (see Table 5.9(b) and 

Fig.5.5(d)). Hence, overall the estimates can be said to be in broad agreement with 

the model. The results also contain some extreme estimates which are due to the 

nonlinear nature of the CIR formula. Furthermore, the predominant role of the spot 

rate27 in the formula allows for substantial variations of other parameters with 

little impact on bond price. On each cross-section (daily, quarterly, semi-annual) 

the statistical significance of kO and k + X is tested and the proportions of significant

25 For example, the null hypothesis that the population mean of kO is 0.02 while the best 
estimator of the population mean is 0.023288 and the standard deviation is 0.051199 (see Table 
5.9(a), last row), then the r-value for this null hypothesis is (0.023288 - 0.02)/0.051199 = 0.06. 
Similarly the t-statistic for k + X is 0.38.

26 The t-values for the null hypotheses that the means of the quarterly and semi-annual estimates 
are 0.10 and 0.017 are 1.91 and 0.047 respectively.

27 Estimates of the spot rate are always positive and closely track some observed rates such as 
the cash rate and 13-week Treasury Note rate (see section 5.1).
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estimates out of the total cross-sections at various levels of significance are reported 

in Table 5.9(d). For example, at 1% level of significance, k6 is significant for 

24.11 % of the whole number of cross-sections under daily estimation. The 

proportions of significant cross-sections under quarterly and semi-annual estimation 

are similarly interpreted. Again the low r-statistics indicate that these parameters 

are highly correlated28, which is indeed the case (see Table 5.6(e)). The 

implication is that while these quantities are important from a theoretical point of 

view, in practical terms they make little impact on bond price in comparison with 

the spot rate which plays a dominant role.

In summary, the CIR model assumes that k6 and k + A are constant and 

independent of time. While literally this assumption cannot be supported, the 

evidence29 (see Table 5.9(c)), on balance, suggests that, under the pairwise r-tests, 

(i) the means of k + A are equal under the three methods of estimation; and (ii) the 

means of k6 are equal under daily and semi-annual estimations only. Overall, these 

parameters are in broad agreement with model specifications.

28 See Gujarati (1988), pp. 292-293.

29 In the statistical sense that they differ from a certain constant with random errors.
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Table 5.9(a)

Daily estimates of k6

Year Mean Std Min Max

1985 0.013443 0.065231 2.00000E-08 0.85933

1986 0.048772 0.10673 1.00000E-08 0.83930

1987 0.011239 0.026897 0.00000 0.36399

1988 0.0083500 0.010532 0.00000 0.046412

1989 0.049593 0.033352 2.00000E-07 0.17931

1990 0.013934 0.031582 0.00000 0.18537

1991 0.016250 0.015341 3.40000E-07 0.053836

1992 0.024820 0.012981 0.000010880 0.053320

1985-92 0.023288 0.051199 0.0 0.085933

Table 5.9(b)

Daily estimates of k + A

Year Mean Std Min Max

1985 0.087311 0.48629 -0.040645 4.01108

1986 0.34866 0.76458 -0.070601 3.92082

1987 0.058310 0.20828 -0.116950 2.54957

1988 0.056166 0.11498 -0.124170 0.41071

1989 0.41865 0.23305 0.010477 1.20373

1990 0.10597 0.24310 -0.126050 1.26975

1991 0.12450 0.15550 -0.093239 0.49334

1992 0.14612 0.17617 -0.162780 0.49417

1985-92 0.16827 0.38406 -0.16278 4.01108
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Table 5.9(c)

Distribution of estimates of k6 and k + \ 
(1985-92)

k6

f-value DAILY QUARTERLY SEMIANNUAL

Mean 2.3288E-02 1.779327E-01 1.920465E-02

Std 5.1199E-02 4.06009E-02 4.281162E-02

Minimum 0.0 0.0 0.0

Maximum 8.5933E-01 2.0282318E-01 1.7558785E-01

H0(d,q) 21.27**

H0(d,sa) 0.38

H0(q, sa) 12.32**

k T A

f-value DAILY QUARTERLY SEMI-ANNUAL

Mean 1.6827E-01 9.767318E-02 1.1238595E-01

Std 3.8406E-01 2.4048834E-01 2.5114796E-01

Maximum 4.01108 1.45084023 9.8514925E-01

Minimum -1.6278E-01 0.0 0.0

H°(d,q) 1.62

H°(d,sa) 0.88

H°(q,sa) 0.19

Notes:
H0(d,q) is the null hypothesis that the mean of the daily estimates is equal to the mean of the quarterly 
estimates;
H0(q,sa) is the null hypothesis that the mean of the quarterly estimates is equal to the mean of the semi
annual estimates;
H0(d,sa) is the null hypothesis that the mean of the daily estimates is equal to the mean of the semi
annual estimates;
*: significant at 5 %
**: significant at 1 %
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Table 5.9(d)

Proportions of significant kO and k + \

DAILY QUARTERLY SEMI-ANNUAL

Significance
level

Sample
Proportion

Sample
Proportion

Sample
proportion

k6

1% 0.2411 0.6250 0.6875

5% 0.5167 0.6562 0.7500

10% 0.8318 0.6875 0.8125

K T\

1% 0.2734 0.5625 0.4375

5% 0.5796 0.5938 0.3750

10% 0.9186 0.6250 0.5000

Note:
The entry 0.6250 (third row, fourth column) means that at 1% level of significance 62.5 % of the 32 
quarterly estimates of k6 are different from zero. Other entries are interpreted similarly.

Table 5.9(e)

Comparison of estimates of k6 and k + \

Market kO K +A

Brown & Schaefer 
(1994)

UK (1984-89) 
Daily data

1.99E-03 -5.7E-02

This chapter Australia
(1985-92)
Daily data

2.3288E-02 1.6827E-01
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Fig. 5.5(a)

Daily estimates of k6
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Fig. 5.5(b)

Quarterly estimates of k6
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Fig. 5.5(c)

Semi-annual estimates of k6
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Daily estimates of k + \
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Fig. 5.5(e)

Quarterly k + \
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Fig. 5.5(f)

Semi-annual estimates of k + A
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5.4.2 Comparison with previous studies

Brown and Schaefer (1994) is the only study that reports estimates of k6 and 

k + \ (see Table 5.9(e)). While our estimates of k + X are larger than Brown and 

Schaefer’s (1994), on balance, ours are predominantly positive. As k and X are 

incapable of being estimated separately any further comparison is not meaningful. 

Turning to k.6, our positive estimates are consistent with both Brown and Schaefer’s 

(1994) and the CIR’s assumption that k and 6 are positive but the order is nearly 

eleven times that of Brown and Schaefer’s (1994). Apart from the fact that these 

parameters reflect local market features, a possible explanation for the difference is 

that their parameters are in real terms while ours are in nominal terms30. For 

example, the average of their real spot rate over the sample period (1981-1989) is 

3.16 per cent for the U.K. bond market while our nominal spot rate (1985-1992) is 

12.15 per cent31. Furthermore, the instability of their parameter estimates as 

observed by Brown and Schaefer (1994) suggests that any comparison across 

markets should be interpreted with caution especially when they cannot be 

estimated separately.

30 There are two versions of the CIR model (see Cox, Ingersoll, Ross (1985b)). The justification 
for estimating the nominal version is given in Chapter 2.

31 While the difference is substantial it should be pointed out the CIR model allows for the 
current spot rate to be either above or under its long run equilibrium, 6; hence the higher spot rate 
in Australia (even after allowing for inflation) does not suggest that k is higher in Australia.
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5.5 EXTENSION OF THE GOODNESS OF FIT AND PREDICTIVENESS OF

THE CIR MODEL 

5.5.1 Measurement

Section 5.1.3 examines the predictiveness of the CIR model by means of the 

pricing errors associated with 13-week Treasury Note rates. In this section the 

analysis is extended to the whole spectrum of the term structure in terms of two 

measures of the performance of the CIR model: price mean error and rate mean 

squared error32. Essentially these are designed to compare the predictions of the 

CIR model with observations. The observations include coupon bond prices and 

three zero-coupon Treasury Notes (5-week, 13-week and 26-week). The estimated 

CIR model is capable of generating coupon-bond prices as well as zero-coupon 

interest rates. To exploit this dual capacity for the purpose of comparison we need 

observed quantities in terms of prices and rates. While the former quantity is in the 

form of observed coupon bond prices the latter quantity has to be generated from 

the Chebyshev model as zero-coupon term structure is not observed except for the 

few short-term rates (5-week, 13-week and 26-week Treasury Note rates). Thus, 

the price error highlights the difference between the observed coupon bond price 

and the predicted CIR coupon bond price while the rate mean squared error 

concentrates on the difference between the zero-coupon CIR term structure and the 

zero-coupon Chebyshev term structure. It should be noted that these two measures 

are not directly transformable as the price error contains coupons while the rate 

error is related to zero-coupon rates.

32 The justification for using slightly different quantities will be given in this section.
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The price mean error is defined as

PMEty
1 "

-P )obs,t+j i,cir,t,t+j'
(5)

where P obs . is the observed bond price i at time t + j where j is either one 

month, three months or six months, P cir t . is the forecasted CIR price at time 

r33 to prevail at time t + j, PMEt+J is the price mean error at time t + j, and n is 

the number of bonds. The justification for using this form of price error is twofold: 

(i) conceptually, the pricing error is the average dollar error of pricing an 

approximately $100 bond; and (ii) the pricing error can be assumed to be normally 

distributed34 so that statistical tests of significance can be carried out35. 

Specifically three price errors are calculated to correspond to three forecasting 

periods: (i) for daily estimation we use the parameter values estimated on day t to 

calculate CIR predicted bond prices for day t + one month and then we compare 

these with observed bond prices on day t + one month; (ii) for quarterly estimation 

we use the parameters estimated for quarter j to calculate predicted CIR bond 

prices for each day in quarter j + 7; and (iii) for semiannual estimation the 

parameters estimated in half year k are used to calculate predicted CIR bond prices 

for each day of half-year k + 1. Thus daily, quarterly and semi-annual errors are 

strictly not comparable because while daily errors involve predicting prices in the

33 It should be noted that the parameters of the CIR model are estimated at time t and then used 
to predict bond prices at time t+j. Hence the errors between observed bond prices at time t+j and 
predicted bond prices at t+j are not regression errors.

34 Note that these errors are not regression errors and hence are not constrained to sum to zero.

The assumption of normality is reasonable in view of a large number of daily cross sectional 
regressions over 8 years from 1985 to 1992.
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next month, the quarterly and semi-annual errors result from predicting prices in 

the next three months and six months respectively. Obviously prediction in six 

months is more likely to result in greater errors than prediction in one month and 

three months.

The rate mean square error (MSE) is defined as

1 - 2Rate MSE, = (rchebyJ-rcir ,)
Yl i

where rcheb t , rar t and n are the Chebyshev, CIR rates of interest and the 

number of observed bonds respectively. The justification for using this form of rate 

error is twofold: (i) it is a common measure of goodness of fit; and (ii) the ratio of 

two MSEs is F-distributed36 so that significance tests can be carried out.

Conceptually, the rate MSE on day t is an indication of the average error of 

estimating the zero-coupon rates for coupon bonds observed on day t. Specifically, 

two rate MSEs are measured: (i) within-sample rate MSE where both interest rates, 

CIR and Chebyshev, are calculated up to and including the maximum observed 

maturity on day t\ and (ii) out-of-sample rate MSE where both interest rates are 

calculated, on day t, for maturities 10 years beyond the maximum observed 

maturity. As the average maturity of observed term structure is approximately 20 

years, the extension of 10 years would provide a maturity of 30 years, a time frame 

long enough to cover most long term asset pricing considerations. While the first 

measure, within-sample MSE, is a common measure of goodness of fit, the second 

measure, out-of-sample rate MSE, extends the goodness of fit of the CIR term

36 The degrees of freedom of this distribution are the numbers of observations used in the 
calculation of the two MSEs respectively (see Johnson and Kotz (1970, Chapter 26)).
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structure (with reference to the Chebyshev term structure) in the long term 

spectrum where no observations are used in its construction. Unlike price errors, 

rate MSEs, being calculated for day t using the parameters estimated for the same 

day, do not have predictive content across time because the Chebyshev term 

structure has no theoretical basis that predicts intertemporal parameter stability37.

Estimates of pricing and rate errors are reported in Tables 5.10(a) and 

5.10(b). In terms of minimising pricing errors the CIR model performs best when 

parameter values estimated on a daily basis are used (see Table 5.10(a)). For 

example, the CIR model underestimates the observed prices of $100 bonds by 

$1.29, $1.83, and $3.24 in predicting their prices in one month, three months and 

six months respectively by using the daily, quarterly and semi-annual parameter 

values estimated for day t. Further, the pairwise f-tests indicate that these predictive 

price mean errors (over one month, three months and six months) are significantly 

different while the F-test shows that out-of-sample MSEs are significantly larger 

than within-sample MSEs. These results are consistent with expectation.

Turning to rate errors, these are smaller within the maturity of the term 

structure based upon observed prices than those outside this maturity. In terms of 

root mean square errors, these are 1.6733E-03 and 7.5813E-03 or approximately 

16 and 75 basis points38. Thus, with reference to a zero-coupon term structure 

constructed from observed coupon bond prices, the CIR term structure deviates

37 There is no arbitrage argument underlying Chebyshev curve fitting, so its evolution over 
time is unknown. This essentially precludes pooling data across time to fit the term structure by 
means of Chebyshev polynomials. Therefore only daily Chebyshev term structures are estimated.

38 16 and 75 basis points are the squared roots of 2.8E-06 and 5.7476E-05 (see Table 5.10(b)).
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from this ’Chebyshev polynomial constructed’ term structure by an average error of 

16 basis points. In sum, this result confirms the expectation that within sample 

errors are smaller than out-of-sample errors.

5.5.2 Comparison with previous research

The price mean errors and rate MSEs reported in the preceding section 

measure the predictiveness and goodness of fit of the CIR model respectively. 

Furthermore, the method of calculating these errors has not been attempted in 

previous research. Hence, no comparison is possible, though the results in Table 

5.10(a) and 5.10(b) confirm that: (i) out-of-sample errors are larger than within- 

sample errors; and (ii) pricing errors are smaller under daily estimation. While 

pricing errors are also reported by Munnik and Schotman (1994) and Brown and 

Schaefer (1994) these errors are not compatible with ours. This is because their 

errors result from the objective of least square regression, namely the minimisation 

of the sum of square errors. Thus, their errors by design, tend to zero. In order to 

provide a comparison of similar quantities, our mean pricing errors (from 

regression) are reported in Table 5.10(c) together with the results of these studies. 

It can be seen that our regression pricing errors are consistent with previous 

research (see Table 5.8(c)) and that they are not statistically different from zero, 

the latter satisfying the requirement of least square estimation.
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Table 5.10(a)

CIR pricing errors per $100 bond 
(1985-1992)

Daily estimation Quarterly estimation Semi-annual
estimation

One-month
prediction

Three-month
prediction

Six-month
prediction

Price Mean 
Error

-$1.29 -$1.83 -$3.24

t-value -2.24 -3.86 -2.45

Hypothesis H0(d,q) H0(q, sa) H0(d,sa)

t-value 8.56 4.75 6.56

Notes:
(a) H0(d,q) is the null that the mean of daily pricing errors is equal to the mean of quarterly pricing 
errors;
(b) H0(q,sa) is the null that the mean of quarterly pricing errors is equal to the mean of semi-annual 
pricing errors;
(c) H0(d,sa) is the null that the mean of daily pricing errors is equal to the mean of semi-annual pricing 
errors.

Table 5.10(b)

Daily within-sample and out-of-sample rate MSEs 
(1985-1992)

Within sample rate MSE Out-of-sample rate MSE

Rate MSE 2.8E-06 5.7476E-05

Null hypothesis Out-of-sample rate MSE ^
Within-sample rate MSE

F-value 46.80*

Notes:
(a) * Significant at 0.01% (F-value for 120 degrees of freedom is 1.00 while our degrees of freedom are 
over 1900.
(b) Only daily MSEs are calculated because the Chebyshev polynomials are estimated daily only.
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Table 5.10(c)

Comparison of regression pricing errors

Market Regression pricing error
(Standard error)

Brown & UK £0.20
Schaefer (1994) Daily data (1984-89) (0.40)

Munik & Dutch 0.17 guilder
Schotman (1994) Daily data (1989-90) (0.04)

This chapter Australian -$0.25
Daily (1985-92) (0.22)

Notes:
(a) Mean regression errors are calculated by comparing observed prices on day t with CIR prices 
estimated for day t using the observed prices on day t. The objective of least square regression is to 
minimise the sum of these errors. In other words, the sum of errors tends to zero asymptotically.
(b) While the errors are in different currencies they result from fitting bonds of 100 units of respective 
currencies. Hence the errors can be interpreted as percentage of errors and are thus free from the 
exchange rate problem.
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5.6 A SAMPLE OF CIR, CHEBYSHEV TERM STRUCTURES AND

OBSERVED AND FITTED BOND PRICES

In this section a sample of daily CIR, Chebyshev term structures, CIR-fitted 

and observed bond prices are presented. While in the preceding sections only 

distributional results are reported, the graphs in this section provide a snapshot of 

of the ultimate aim, namely an estimated term structure. These graphs are chosen 

on the basis of their parameters being close to their means. For the purpose of 

comparison, each of the graphs describes some aspect of the term structure on the 

same day. Thus, Fig. 5.6(a) shows the sample of observed bonds and their CIR- 

estimated prices on 20/12/1990. As these two prices are visually indistinct, their 

pricing errors, defined as the difference between observed prices and estimated 

prices, are graphed in Fig. 5.6(b). The CIR term structure in Fig. 5.6(c) is 

constructed from the parameters estimated from the observed bond prices in Fig. 

5.6(a). Similarly, the Chebyshev and CIR term structures are graphed in Fig. 

5.6(d) while Fig. 5.6(e) highlights their differences with respect to maturity.

Generally speaking several conclusions can be drawn from these graphs: (i) 

the goodness of fit of the CIR model is exceptionally good with bond price errors 

in the maximum order of $0.30 per $100 bond or 0.3 per cent error (see Figs 

5.6(a) and 5.6(b)); (ii) while the maximum maturity of an observed bond on this 

day is 3495 days or more than 9.5 years (see Fig. 5.6(a)), the CIR and Chebyshev 

term structures extend well over this maturity; (iii) this extrapolation beyond 

observed bonds explains why the out-of-sample (beyond 9.5 years) rate errors are 

larger than within-sample rate errors though the maximum error corresponding to 

approximately 25 year maturity is under 0.4 per cent (see Fig. 5.6(e)); and (iv) the
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CIR term structure has the expected inverted U39 shape while the Chebyshev term 

structure, being the result of a curve-fitting technique, is more flexible (see Fig. 

5.6(d)). These conclusions are representative over the whole sample period as the 

mean regression errors is in the order of 25 cents per $100 bond (see Table 

5.10(c), last row)40.

39 This is one of the admissible shapes of the CIR model. For further details see Chapter 2.

40 In addition, adjusted R-squared for each estimation is well over 99 per cent.
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Fig. 5.6(a)

Observed and CIR-fitted dollar bond prices (20/12/1990)

Maturity Cy^ars}

_m_ i 'served | i es*_ Fitted bond pt

Fig. 5.6(b)

Dollar bond price errors (20/12/1990)

0 1 2 3 4 5 6 7 8 9 10 11

Maturity (Years)

Note: Bond price error is the difference between observed bond price and CIR-fitted bond price. The 
error is the dollar error per $100 bond.
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Fig. 5.6(c)

CIR Term Structure - Daily estimates - (20/12/90)

YearCs} to maturity

Fig. 5.6(d)

Chebyshev and CIR term structures - Daily estimates (20/12/1990)
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#
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Fig. 5.6(e)

Rate difference between Chebyshev and CIR term structures (20/12/1990)

0.003 1 3 5 7 9 11 13 15 17 19 21 23 25 27

Maturity CyearsD

Notes:
(a) A thousandth on the vertical axis is equal to 10 basis point or 0.1%;
(b) Rate difference = Chebyshev rate of interest less CIR interest rate.
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5.7 CONCLUSION

The overall objective of this chapter is to estimate the CIR model using 

daily bond price data from 1985 to 1992. Essentially we seek answers to two 

issues: (i) parameter stability as implied by the model; and (ii) model’s goodness of 

fit and predictive powers. Towards this end, estimation is implemented by means of 

unconstrained and constrained nonlinear regression where the error function is 

expressed in terms of bond prices and the logarithm of bond prices. While various 

results are reported, the following findings are the more significant:

Firstly, in terms of estimation methodology the logarithmic norm, first 

proposed in this study, outperforms the price norm, the standard used in current 

research.

Secondly, unconstrained (daily) regression is the most accurate method of 

estimation in contrast to constrained (quarterly and semi-annual) regression.

Thirdly, while the spot rate remains a dominant factor in the pricing of 

Australian bonds during the sample period (1985-1992), it significantly 

underestimates its two closest observed proxies, the cash rate and 13-week treasury 

Note rate. However, this underestimation is removed when a CIR generated rate of 

equal maturity is compared to the observed 13-week treasury Note rate; hence 

indicating that either overestimation or underestimation is probably due to the lack 

of an observed instantaneous spot rate.

Fourthly, an implication of the CIR model, namely constant long term yield, 

k6, and k+6 is broadly supported while the stability of the volatility parameter, o , 

remains problematic. Overall, the requirement of constant parameters can be 

compared to a similar assumption underlying the Black-Scholes model of option
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pricing, namely constant volatility. While this assumption has been decisively 

rejected empirically, it has not diminished the usefulness of the Black-Scholes 

model. In this perfective the same defence can be made with respect to the Cox- 

Ingersoll-Ross model.

Fifthly, the model’s goodness of fit using existing information is consistent 

with previous research while its predictive power beyond current time and observed 

bond maturity, first measured in this study, are consistent with expectations.

On balance our findings are broadly in agreement with previous research, in 

particular Brown and Dybvig (1986), Barone et al (1991), Munnik and Schotman 

(1994) and Brown and Schaefer (1992). Finally, while the CIR model cannot 

outperform the curve-fitting Chebyshev technique its deviation from the latter is 

remarkably small. On the basis of daily estimation, it could just substitute for a 

curve-fitting technique, yet retaining the qualities of a general equilibrium model.
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In this chapter results of the estimation of the generalised CIR model are

presented and discussed. The two major issues we shall address ourself to are: (i) 

empirical support for parameter stability as implied by the model; and (ii) goodness 

of fit and predictiveness of the model. Toward this end, various statistical aspects 

of parameter estimates are explored together with several investigations undertaken 

to deepen our understanding of the bahaviour of the model in the Australian 

context. While the general framework of Chapter 5 is retained, this chapter 

concentrates on highlighting the main empirical findings pertaining to the 

generalised model. In order to avoid repetition relevant references to Chapter 5 will 

be made where it is necessary.

The generalised CIR model1 is the solution to the following partial 

differential equation:

where the stochastic interest rate process, r, and the market price of risk, A*, are of 

the form:

The parameters of the model, a , are estimated by the method of explicit

dr dt 2 dr2
(1)

dr = k (6 - r)dt + or^dz (2)

A \ry (3)
o

See Chapter 3 for a complete derivation of this model.
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(4)

where r is the instantaneous interest rate, k is the speed of adjustment of r to 

its equilibrium 6, and o, (3, y are positive constants. If (3 and y are not statistically 

different from 0.5 then the generalised CIR model reverts to the CIR model. While 

both the price and logarithmic norms of estimation are implemented the latter is 

found to be superior3 (see Table 6.1). For example, the mean of the Aikake 

criterion for the logarithmic norm is -3.6767 while that of the price norm is - 

2.4696 (see Table 6.1, third row, second and third column). Hence only results 

from the logarithmic norm are reported. Furthermore the normality and 

heteroskedasticity tests of regression residuals (see Table 6.2) imply that the 

nonlinear regression procedure used in the estimation is, for the majority of the 

cross sections, equivalent to maximum likelihood estimation. For example, at 1% 

level of significance, 71.18% of the daily cross sectional regression errors are 

normally distributed while 77.15% are homoskedastic (see Table 6.2, third row, 

third column). It should be noted that while analytical results for linear regression

2 See Chapter 3 for full details of the method of explicit difference.

3 See Judge et al (1985, p. 242 and Chapter 21), and Maddala (1992, p. 500-501) who argue 
that Aikake’s information criterion (AIC) is commonly used (at least in nonlinear models). Schwartz 
criterion is developed within the Baysian framework. Information criteria are based upon minimising 
the residual sum of squares; thus, among competing regression models the one with the minimum 
criteria statistic is preferred. See also Chapter 5.
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estimators (concerning unbiasedness, consistency, and efficiency) are available, 

these are only valid in nonlinear regression in an asymptotic sense4.

The structure of this chapter essentially follows that of Chapter 5. Thus 

estimates of the spot rate and volatility are presented and discussed in Sections 6.1 

and 6.2 respectively while Section 6.3 is concerned with the remaining parameters, 

namely k, 6, A, and y. This is followed by an analysis of the goodness of fit and 

predictiveness of the model in Section 6.4. Then a sample of term structures 

generated by this model and the Chebyshev polynomial based technique are 

provided in Section 6.5. Finally, the chapter concludes in Section 6.6.

4 See Judge et al (1985) and Green (1993).

209



Table 6.1

Distribution of information criteria of logarithmic and price norm 
Daily cross-sections (1985-1992)

Akaike Criterion Schwartz Criterion

Log Norm Price Norm Log Norm Price Norm

Mean -3.6767 -2.4696 -3.4933 -2.2862

Standard
deviation

0.1724 0.1487 0.1724 0.1487

Note:
The information criteria are based on minimising the residual sum of squares; hence the smaller the 
criteria the better the model.

Table 6.2
Normality and heteroskedasticity tests of regression residuals

Daily Quarterly Semi
annual

Significance
level

Proportion 
of cross- 
sections

Proportion 
of cross- 
sections

Proportion 
of cross- 
sections

Normality Test 
(Jarque-Berra)

1% 0.7118 0.8249 0.8411

5% 0.7994 0.9231 0.9190

Heteroskedasticity
(White)

1% 0.7715 0.6210 0.6898

5% 0.8688 0.7707 0.8209

Note:
The entry 0.8249(column 4, row 3) means that at 1% level of significance the regression residual is 
normally distributed for 82.49% of the total quarterly cross sections (the spot rate is allowed to vary 
from day to day while the other parameters, a, k6 and k + \, are kept fixed over each quarter). Similarly 
the entry 0.6210 (column 4, row 5) means that at 1% level of significance the regression residual is 
homoskedastic for 62.10% of the total quarterly cross sections. Other entries are interpreted accordingly.
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6.1 ESTIMATES OF SPOT RATE r

6.1.1 Distributional statistics

Estimates of the generalised spot rates are presented in Tables 6.3(a) and 

6.3(b) while the differences between these estimates and their closest observed 

rates, the cash rate and 13-week Treasury Note rate are graphed in Figs. 6.1(a) and 

6.1(b). From these tables and graphs two observations can be made: (i) the 

generalised CIR spot rate is significantly less than both the cash rate and the 13- 

week Treasury Note rate (see Table 6.3(c)) as shown by the significant differences 

between the spot rate on the one hand, and the cash rate and 13-week Treasury 

Note rate on the other hand. Moreover this underestimation is somewhat related to 

the level of interest rates5 (see Table 6.3(d) as shown by the relatively low R2 

values ; and (ii) except for the significant difference between the mean of daily 

estimates and the mean of quarterly estimates, the estimates of the spot rate under 

the three methods are essentially similar (see Table 6.3(b)). In addition, regardless 

of the interval over which the spot rate is estimated it is always positive and 

significant for each and every cross section6. In this respect the spot rate remains 

the predominant force in the pricing of bonds, which is consistent with the 

specification that it drives the single factor model.

6.1.2 An unbiasedness test of 13-week generalised CIR rate

The underestimation of the cash rate and the 13-week Treasury Note rate by

5 To ascertain whether the underestimation is related to the level of interest rates, a regression 
is performed (see Chapter 5 and Table 6.3(d)).

6 Further, because the spot rate is always significant the Wald statistic to test the hypothesis that 
all the parameters, including the spot rate, is always significant. Results are not tabulated.
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the spot rate (see Section 6.1.1) may be attributed to the mismatch of maturity. To 

address this issue we use a common maturity of 13 weeks for generalised CIR rates 

and Treasury Note rates. This maturity is chosen owing to the availability of a full 

series of daily 13-week Treasury Note rates (1985-1992). The test of unbiasedness 

is carried out by regressing the Treasury Note rates against the generalised CIR 

rates and then testing the hypothesis that the intercept and the gradient of the 

regression equation are equal to 0.0 and 1.0 respectively:

r„bs = “ + Pres, + e (5)

where robs is the observed 13-week Treasury Note rate and rest is the estimated 

13-week generalised CIR rate. The null hypothesis is a = 0.0 and (3 = 1.0.

Results of this test are reported in Tables 6.4(a) and 6.4(b) where the F- 

statistics indicate that while 13-week generalised CIR rates are unbiased estimators 

of 13-week Treasury Note rates, predicted 13-week generalised CIR rates are not 

unbiased estimators of 13-week Treasury Note rates. This finding is not unexpected 

as predicted rates are calculated for day t + one month, using parameters estimated 

for day t. Thus, when CIR interest rates of the same maturity are compared within 

sample, the underestimation observed in section 6.1.1 no longer exists. Hence, it 

appears that the mismatch of maturity7 may be responsible for the underestimation 

of observed rates by the generalised CIR spot rate.

7 Mismatch of maturity refers to the fact that instantaneous CIR rates are compared with daily 
observed cash rates and 13-week Treasury rates.
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Table 6.3(a)

Daily estimates of generalised CIR spot rate

Mean Std Min Max

1985 0.12158 0.008427 0.10905 0.14298

1986 0.12399 0.008627 0.10564 0.14082

1987 0.11412 0.011536 0.094465 0.13613

1988 0.10686 0.010425 0.090729 0.12678

1989 0.13812 0.004997 0.12516 0.15100

1990 0.12133 0.009233 0.099709 0.13675

1991 0.087936 0.011013 0.063404 0.10509

1992 0.056381 0.006484 0.042858 0.06816

1985-92 0.10872 0.025840 0.042858 0.15100
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Table 6.3(b)

Distribution of generalised CIR spot rate 
Daily, quarterly and semi-annual estimates 

(1985-1992)

t-value Daily Quarterly Semi-annual

Mean 1.0872E-01 1.3124E-01 1.2104E-01

Std 2.5840E-02 1.113E-02 2.9388E-02

Minimum 4.2858E-02 1.1248E-02 4.7526E-02

Maximum 1.5100E-01 1.8696E-01 1.8037E-01

H0 (d, q) -2.41*

H0 (d, sa) -1.61

H() (q, sa) 0.04

Notes:
(a) H0 (d, q) is the null hypothesis that the mean of daily estimates of generalised CIR spot rate is equal 
to the mean of its quarterly estimates;
(b) H0 (d, sa) is the null hypothesis that the mean of daily estimates of generalised CIR spot rate is equal 
to the mean of its semi-annual estimates;
(c) H0 (q, sa) is the null hypothesis that the mean of quarterly estimates of generalised CIR spot rate is 
equal to the mean of its semi-annual estimates.
(d) *: significant at 1% level.
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Table 6.3(c)

Differences between observed TN rates and generalised CIR spot rate
(1985-1992)

90 -day TN rate - , Cash rate - r

Mean 0.015563 0.018171

Standard deviation 3.086E-04 3.75E-04

f value 50.42* 48.31*

C value 8.44*

Notes:

a The null hypothesis is that the mean of (observed rate less theoretical rate) is 0.0.
b The null hypothesis is that the mean of the series (13-week TN rate less r) is equal to the mean of the 
series (cash rate less f).
* Significant at 1 %.

Table 6.3(d)

Regression of spot rate and cash rate and 13-week Treasury Note rate and 
Generalised CIR spot rates (1985-1992)

Dependent
variable

Independent
variable

Intercept Reg Coef r DW

Diff cash3 Level of 
cash rate

-1.027E-02 0.1772 0.1791 2.12

f-value 0.7988 20.59*

Diff_tnb Level of TN
rate

-1.691E-02 0.2411 0.3708 1.95

f-value -1.4411 33.84*

Notes:
* significant at 1 %
aDiff_cash == cash rate less Generalised CIR spot rate
hDiff_tn = 13-week Treasury Note rate less Genralised CIR spot rate
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Fig. 6.1(a)

Difference between cash rate and generalised CIR spot rate

Rate difference
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Note: Rate difference = cash rate less generalised CIR spot rate

Fig. 6.1(b)

Difference between 13-week TN rate and generalised CIR spot rate 
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Note: Rate difference = 13-week TN rate less generalised CIR spot rate
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6.1.2 A test of the unbiasedness of 13-week CIR interest rate8

In this section we explore whether 13-week CIR interest rates are unbiased 

estimators of 13-week Treasury Note rates. The motivation for this inquiry is to 

address the issue of mismatch of maturities in Section 6.1.1 where the 

instantaneous generalised spot rate is compared with the cash rate and 13-week 

Treasury Note rate. This investigation is implemented by regressing the generalised 

CIR rates on the observed rates and then testing the hypothesis that the intercept 

and the gradient of the regression equation are equal to 0.0 and 1.0 respectively:

ro„s = “ + + £ (5)

where robs is the observed 13-week Treasury Note rate and rat is the estimated 

13-week genralised CIR rate. The null hypothesis is a = 0.0 and 0 = 1.0.

Results are presented in Table 6.4(a) and Table 6.4(b) where the F-statistics 

indicate that while 13-week generalised CIR rates are unbiased estimators of 13- 

week Treasury Note rates on the same day (see Table 6.4(a)), they are not unbiased 

estimators of 13-week Treasury Note rates one month ahead (see Table 6.4(b). The 

latter result is not unexpected as it requires generalised CIR rates to be predictors 

for future observed rates. The former result, however, addresses the issue that the 

underestimation reported in Section 6.1.1 is due to the mismatch of maturities.

8 For full details of the basis of this test see Chapter 5, Section 5.1.2.
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Table 6.4(a)

Test of unbiasedness of 13-week generalised CIR rates of interest

(1985-1992)

Observed rate Estimated CIR rate a & F- R2
(Dependent (Independent value
variable) variable)

13-week TN
rate

13-week 0.129E-10 
(0.149E-03)

1.247
(1.759E-01)

0.58 0.9364

Notes:
(a) CIR rates are calculated for day t, using the parameters estimated on day t\
(b) The null of the F test is a — 0.0 and (3 — 1.0;
(c) Standard errors are in parentheses.
(d) TN = Treasury Note

Table 6.4(b)

Test of unbiasedness of daily predicted 13-week generalised CIR rates of interest

(1985-1992)

Observed rate Estimated CIR rate ot (3 F- R2
(Dependent (Independent value
variable) variable)

13-week TN rate 13-week 0.316E-11
(0.197E-03)

1.4276
(0.102)

248.3* 0.8887

Notes
(a) Predicted CIR rates are calculated for day t + one month, using the parameters estimated on day t\
(b) The null of the F test is ex = 0.0 and (3 = 1.0;
(c) Standard errors are in parentheses;
(d) *: significant at 1% level;
(e) TN = Treasury Note.

218



6.1.3 Comparative analysis of the performance (predictiveness) of the generalised 

CIR model

In this section the performance of the generalised CIR model is assessed 

with reference to a naive model which assumes that interest rates remain constant 

over time9. The criterion used for this purpose is the pricing error defined as 

observed price less estimated price. Two pricing errors are calculated: (i) the error 

associated with the naive model; and (ii) the error associated with the generalised 

CIR model. To gain a perspective on the relative performance over maturities, each 

of these errors is estimated for two time points ahead of day t: one month and three 

months. The two observed securities chosen for this investigation are 13-week and 

26-week Treasury Notes which are zero-coupon bonds.

For the naive model we have:

J naive,!+n P ~ Pobs,t + n obs,t (6)

where PEnaive t+n is the pricing error under the naive model, Pohs t is the observed 

price at time t (assumed to remain constant over time), Pobst+n is the observed 

price at time t+n, and n is either 1 or 3 months.

For the generalised CIR model we have:

‘‘gcirj+n obs,t + n - Pgcir, t,t+n (7)

where PEgcirt+n is the pricing error under the generalised CIR model 

and Pgcirtt+n is the generalised CIR price predicted at time t to prevail at time 

t+n.

9 See Chapter 5 for further details.
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Results of the comparative errors are presented in Tables 6.5(a) and 6.5(b) 

where the errors under the generalised CIR are significantly less than the errors10 

under the naive model for two maturities, 13-week and 26-week, for which there 

are observed zero-coupon bond prices. For example, the dollar error of the 

generalised CIR model is $0.16 for predicting the price of a 13-week Treasury 

Note in one month’s time while the error associated with the naive model is $0.21 

(see Table 6.5(a), third row, second and third columns). Furthermore, the F- 

statistics show that the smaller errors are significant at the 1% level (see Tables 

6.5(a)-6.5(b)). Results with respect to 26-week Treasury Notes (see Table 6.5(b)) 

are similarly interpreted.

10 The ratio of two MSEs is F-distributed with degrees of freedom equal to the numbers of 
observations used in the calculation of the MSEs (see Chapter 5, section 5.1.3).
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Table 6.5(a)

Comparative mean dollar pricing errors of $100 13-week Treasury Notes

One-month prediction Three-month prediction

Naive model Generalised 
CIR model

Naive model Generalised
CIR model

$0.21 -$0.16 $0.39 -0.29

t-value of PE
29.48 -61.62 33.32 -42.07

Hypotheses H0 : MSEnmve < MSEgdr H0 . MSEnaive < MSEgcir

H, ■ MSEnai„ > MSEgcir H\ '■ MSEmive — MSEgt,ncir

F * -value
1.72** 1.81**

Notes:
* Ratio of two MSEs is F-distributed (see Johnson and Kotz(1970, Chapter 26));
** Daily data were used in calculating MSEs; hence the degrees of freedom exceed 1900. Note that with 
120 degrees of freedom F001 ,20 120 =1.53.
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Table 6.5(b)

Comparative mean dollar pricing errors of $100 26-week Treasury Notes

One-month prediction Three-month prediction

Naive
model

Generalised
CIR model

Naive
model

Generalised
CIR model

$0.35 -$0.09 $0.30 -$0.14

t-value of PE 28.97 -10.37 34.31 -24.47

Hypotheses H« ■ MSEnaiw < MSEgcir Ho : MSEnai„ < MSEgcir

Ht : MSEmi„ > MSEgdr H< '■ MSEm > MSEgcir

F * -value 15.12** 4.59**

Notes:
* Ratio of two MSEs is F-distributed (see Johnson (1970, Chapter 26);
** Daily data were used in calculating MSEs; hence the degrees of freedom exceed 1900. Note that with 
120 degrees of freedom FQ Q1 12Q 12Q =1.53.

222



6.1.4 Comparison with previous studies

Strictly speaking, this comparison is not valid because the generalised CIR 

model is first estimated in this study. However, the results in Table 6.5(c) are 

reproduced to provide a perspective on estimates of the instantaneous spot rate 

across different models. Thus, estimates of the generalised CIR spot rates 

significantly underestimates both the observed cash rate and 13-week T-Note rate. 

This finding is consistent with our estimates of the CIR spot rate (see Chapter 5) 

but inconsistent with Brown and Dybvig (1986) and Chiarella et al (1989). A 

difficulty in resolving this issue of overestimation or underestimation lies in the 

lack of an instantaneous observed rate. Thus the comparison is strictly not valid 

owing to the mis-match of maturity. Nevertheless the observed rates used in this 

study are closer to the instantaneous spot rate, in terms of maturities, than those 

used by previous studies. Furthermore when the mis-match of maturities is resolved 

by comparing 13-week generalised CIR rates and 13-week Treasury Note rates the 

former are unbiased estimators of the former (see Table 6.4(a)). This exercise of 

comparing model generated rates and observed rates of identical maturities is first 

attempted in this study. Hence comparison with previous research is limited.
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Table 6.5(c)

Comparison of estimates of CIR spot rates with observed rates

Study Market Observed rate Results

Brown &
Dibvig
(1986)

USA (1977-83) 
Monthly data

Mean yield on T- 
Bills with at most
14 days to 
maturity

CIR r
overestimates 
observed rate

Munnik &
Schotman
(1994)

Netherlands
(1989-90)
Monthly data

Amsterdam
Interbank Offered 
Rate

CIR r is close to 
observed rate

Baron et al 
(1991)

Italy (1983-90) 
Daily data

1 month, 3 month 
interbank rate and
3 month T-Bill
rate

CIR r is highly 
correlated with 
observed rates

Chiarella et 
al
(1989)

Australia (1978- 
87)
Monthly data

13-week T-Note
rate

CIR r
overestimates 
observed rate

Chapter 5:
CIR model

Australia (1985- 
92)
Daily data

Overnight cash 
rate
13-week T-Note
rate

CIR r
underestimates 
observed rates

This chapter: 
Generalised 
CIR model

Australia (1985- 
92)
Daily data

Overnight cash 
rate
13-week T-Note
rate

Generalised CIR r 
underestimates 
observed rates
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6.2 ESTIMATES OF VOLATILITY

Estimates of the volatility of the generalised CIR stochastic interest rate are 

presented and discussed in this section.

6.2.1 Distributional statistics and graphs

Basic estimates of the generalised CIR volatility and their distribution are presented 

in Tables 6.6(a)-6.6(e) while Figures 6.4(a)-6.4(d) graph the time series of these 

estimates. Several observations can be made: (i) daily estimates of a are 

significantly larger and more volatile than quarterly and semi-annual estimates (see 

Table 6.6(c)); (ii) estimates of o become more significant as more data are pooled 

over quarters and half years (see Table 6.6(d)); and (iii) over the whole sample 

period (1985-1992) generalised CIR volatility, or13 , is approximately one half of 

CIR volatility, o\[r , (see Table 6.6(e)).
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Table 6.6(a)

Daily estimates of o

Mean Std Min Max

1985 0.020265 0.012825 4.7E-05 0.05098

1986 0.010597 0.012801 9.89E-06 0.04829

1987 0.039277 0.033382 2.88E-06 0.18919

1988 0.027710 0.028285 2.4E-05 0.11803

1989 0.012622 0.013763 6.4E-05 0.10775

1990 0.029883 0.019400 1.35E-04 0.08947

1991 0.057964 0.022140 8.4E-03 0.11479

1992 0.10844 0.031365 2.06E-02 0.15900

1985-92 0.03844 0.038192 2.88E-06 0.18919

Note: The volatility of the generalised CIR model is or^ where a is a constant.
It is important to distinguish between the significance of cross-sectional a and time-series a. The former 
shows whether it is a significant factor in the pricing of a bond at a given time point while the latter 
shows how volatile the volatility factor is over time. Thus, the significance of time-series a does not 
impact on the pricing of bonds.
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Table 6.6(b)

Daily estimates of generalised CIR volatility, or15

Mean Std Min Max

1985 0.007015 4.37E-03 1.69E-05 0.01692

1986 0.003661 4.36E-03 3.60E-06 0.01613

1987 0.012792 1.08E-02 1.01E-06 0.06086

1988 0.008713 8.67E-03 8.48E-06 0.03625

1989 0.004716 5.18E-03 2.40E-05 0.04092

1990 0.010340 6.70E-03 4.84E-05 0.03087

1991 0.016922 6.49E-03 2.58E-03 0.034106

1992 0.025887 7.89E-03 4.41E-03 0.040361

1985-1992 0.011269 9.89E-03 1.01E-06 0.060857
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Table 6.6(c)

Distribution of estimates of o 
(1985-92)

a

t-value DAILY QUARTERLY SEMIANNUAL

Mean 0.03844 0.015055 1.2479E-02

Std 3.8192E-02 9.0229E-03 4.81E-03

Minimum 2.88395E-06 9.3629E-03 2.192E-03

Maximum 1.8919E-01 5.2959E-02 1.6517E-02

H0(d, q) 50.33

H0(d, sa) 39.51

H0(q, sa) 37.71

Note: H0 (d, q) is the null hypothesis that the mean of daily estimates of a is equal to the mean of its 
quarterly estimates;
H0 (d, sa) is the null hypothesis that the mean of daily estimates of o is equal to the mean of its semi
annual estimates;
H0 (q, sa) is the null hypothesis that the mean of quarterly estimates of a is equal to the mean of its 
semi-annual estimates.
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Table 6.6(d)

Significance proportions of /-statistics of generalised CIR a parameter

Daily Estimates Quarterly
Estimates

Semi-annual
Estimates

Significance
level

Sample
Proportion

Sample
Proportion

Sample
proportion

1% 0.0539 0.4375 0.5625

5% 0.1637 0.4375 0.5625

10% 0.1707 0.4375 0.5625

Table 6.6(e)

Comparison of estimates of generalised CIR volatility, orft , 
and CIR volatility, o\[r .

(1985-1992)

Mean Standard
deviation

Min Max

CIR
volatility*,

of

0.0224 0.0644 0.0304 0.4516

Generalised
CIR
volatility, 

or13

0.01127 9.89E-03 1.01E-06 0.06086

Note: * see Table 5.6(b), Chapter 5.
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6.2.2 Generalised CIR volatility and time series volatility of 90-day TN rates

In this section we investigate the relationship between generalised CIR 

volatility and volatility of 13-week Treasury Note rates11. If such a relationship 

exists then generalised CIR volatility can be used as a predictor for Treasury Note 

rate volatility. Thus, monthly estimates of Treasury Note rate changes are regressed 

against daily estimates of generalised CIR volatility averaged over the 

corresponding months:

log.?, = a. + @ log SgCjr + e (8)

where logs, and logs .f are the logarithms of the volatilities of the TN and 

generalised CIR interest rates. The null hypothesis is a = 0.0 and /? = 1.00. 

Distributional statistics and regression results are presented in Tables 6.7(a) and 

6.7(b) while the time series of generalised CIR volatility and Treasury Note 

volatility are graphed in Figs. 6.3(a) and 6.3(b).

On the basis of this evidence, generalised CIR rates are much less volatile 

than TN rates (see Table 6.7(a)and Figs. 6(a)-6(b)) and the hypothesis that 

generalised CIR volatility is an unbiased estimator of TN rate volatility is rejected 

(see Table 6.7(b) by the F-test.

11 See Brown and Dybvig (1986) and Chapter 5, section 5.2.2 for justification and elaboration.
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Table 6.7(a)

Distribution of monthly average of generalised CIR volatility ( or^ ) and 
monthly average of standard deviation of change in 13-week TN rate

t~
value

Monthly average of 
ar0

Monthly average of 
std of change in
13-week TN rate

Mean 0.011269 0.0226

Std 0.009890 0.019

Min 1.018E-06 2.1E-03

Max 0.060857 0.1207

5.25*

Note:
H0 is the null that the mean of monthly averages of generalised CIR volatility is equal to the mean of 
monthly averages of standard deviation of change in 13-week TN rate.
* significant at 1 %.

Table 6.7(b)

Regression of the volatility of the change in TN rate on 
volatility of generalised CIR

Dependent
variable

Independent
variable

Intercept Reg.
Coeff

F-
value

R2

s .gcir

0.0234
(0.33E-02)

-0.416
(0.2257)

59.58 0.1605

Notes:
(a) standard errors are in parentheses;
(b) The null of the F-test is that a = 0.0 and = 1.0.
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6.2.3 Comparison with previous studies

A comparison with previous studies on the issue of theoretical CIR volatility 

and TN volatility is presented in Table 6.7(c). The order of our result (1.13%) is 

about one half or one third of those reported by Brown and Dybvig (1986), Brown 

and Schaefer (1994), Chiarella et al (1989) and Chapter 5 where the original CIR 

model was tested. This inconsistency was considered in Chapter 5 and a number of 

reasons were offered (see section 5.2.3). In particular reference to this chapter, this 

low value is more likely to be caused by the form of the volatility function, or15 , 

where a in the present model is about one half of o in the CIR model (see Table 

6.6(e)) and /3 is greater than 0.5 (see section 6.3). A natural question is which form 

of the volatility function is best. As a specified volatility function bears on the 

overall performance and goodness of fit of the model, the answer has to be settled 

in favour of the volatility function of the model that performs best. This issue will 

be considered in Chapter 8 where all the tested models are assessed in a 

comparative perspective.

In addition, quarterly and semi-annual estimates of a are more likely to be 

significant than daily estimates (see Table 6.6(d)). This is due to the increase in the 

degrees of freedom as data are pooled (see Chapter 5).
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Table 6.7(c)

Comparison of Generalised CIR volatility" and time series estimates

Study Market Mean
(%)

Mean
Std

(%)

Is CIR 
volatility 
unbiased 
predictor of 
time series 
estimates ?

Brown &
Dibvig (1986)

USA (1977-83) 
Monthly data

1.95a 2.26a Yes

Brown &
Schaefer
(1994)

UK (1984-89) 
Daily data

2.65b 2.33b No

Baron et al 
(1991)

Italy (1983-90) 
Daily data

2.05c 2 797c: Not reported

Chiarella et al 
(1989)

Australia (1978- 
87)
Monthly data

2.95d 3.16“ No

Chapter 5:
CIR model

Australia (1985- 
92)
Daily data

2.30e 3.54e No

This chapter: 
Generalised
CIR model

Australia (1985- 
92)
Daily data

1.13' 0.99f No

Sources:
* Note that volatility of generalised CIR model is OT^ while volatility of CIR model is 0\JV ; 

a Calculated from Brown & Dibvig (1986, Table I); 
h Brown & Schaefer (1994, p. 28); 
c Barone et al (1991, Tables 3 and 5); 
d Calculated from Chiarella et al (1989, Tables 1 and 3); 
e Chapter 5 (Table 5.7(c); 
f Table 6.7(a).

236



6.3 ESTIMATES OF k, 6, 0, X, 7

The high correlation and instability of the variables of equilibrium models of 

the term structure are well recognised in the empirical literature12 in this area of 

research. A consequence of the correlation problem is the high standard errors of 

parameter estimates (or low t-statistics)13 while the instability problem throws 

doubt on the assumption of constant parameters underlying these models. Evidence 

of collinearity and instability of the CIR variables is presented and discussed in 

Chapter 5. These problems are exacerbated in the generalised CIR model by the 

presence of two additional parameters, 0 and 7. Hence only the cross-sectional t- 

statistics of 6, (5, and 7 are significant and reported14 (see Table 6.8(d)).

Summary statistics of daily, quarterly, and semi-annual estimates of k, 6, 0, 

X, 7 are presented in Tables 6.8(a)-6.8(c) while the time series of these estimates 

are graphed in Fig. 6.4(a)-6.4(r). These results indicate that:

Firstly, /3 and 7 are significantly different15 from 0.516 (see Tables 6.8(a)- 

6.8(c) and Fig. 6.4(d), Fig. 6.4(j), Fig. 6.4(p), Fig. 6.4(f), Fig. 6.4(1), and Fig. 

6.4(r)). This result implies that the generalised CIR model is distinct from the CIR 

model with respect to this sampling data.

Secondly, the speed of adjustment, k and the market price of risk, X, being 

positive and negative respectively during the sampling period, hence they are

12 See Longstaff (1989, ), Longstaff and Schwartz (1992, p.1278), Chan et al (1992), and 
Chapter 5.

13 See Johnstone (1984, p.240).

14 Note the difference between cross sectional and time series significance of parameter 
estimates. The former shows whether they are significant factors in the pricing of a bond at a given 
point in time while the latter shows how volatile they are over time. Thus, the significance of time 
series parameter estimates do not impact on the pricing of bonds.

15 The /“-statistics for the null hypotheses that (3 = 0.5 and 7 = 0.5 are 34.73 and 794.18 
respectively while the /-statistics for the cases of quarterly and semi-annual estimates of (3 and 7 are 
even much higher.

16 Under the CIR model /3 and 7 are 0.5.
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consistent with model specification (see Tables 6.8(b)-6.8(c) and Figs. 6.4(g), 

6.4(k), 6.4(m), 6.4(q»;

Thirdly, across all the three modes of estimation, the long run equilibrium 

spot rate, 6, vibrates around 10 percent (see Tables 6.8(a)-6.8(c), Figs. 6.4(b), 

6.4(h), 6.4(n)). In fact, in daily estimation, 6 appears to follow an oscillating 

process (see Fig. 6.4(b)).

Fourthly, all the remaining parameters are not stable or constant as specified 

by the model. In any event, both the CIR and generalised models are 

overparameterised, resulting in serious collinearity and instability of parameter 

estimates.

Lastly, comparison with previous research is limited as this generalised 

model is first estimated in this study.
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Table 6.8(a)

Summary statistics of daily parameter estimates

Mean Std Min Max
K 0.034846 0.034871 0.000051 0.461247

e 0.118155 0.026615 0.02018 0.214978

V 0.516026 0.020532 0.000003 0.672209
X -0.03176 0.026848 -0.1669 -3.3E-06

7 0.535279 0.029991 0.480407 0.710986

Table 6.8(b)

Summary statistics of quarterly parameter estimates

Mean Std Min Max
K 0.028244 0.026489 0.012886 0.120818
e 0.09696 0.014034 0.053193 0.145552
o 0.015055 0.009023 0.000936 0.052959

P 0.298261 0.007053 0.27783 0.311365
X -0.00552 0.003087 -0.01135 -0.00006

7 0.017137 0.007544 0.000724 0.021805

Table 6.8(c)

Summary statistics of semi-annual parameter estimates

Mean Std Min Max
K 0.04094 0.031761 0.012803 0.094845
6 0.096515 0.010411 0.063221 0.105306
a 0.012479 0.00481 0.002192 0.016517

& 0.296348 0.009718 0.265138 0.301679
X -0.00493 0.003196 -0.01206 -0.00031

7 0.020847 0.013162 0.002937 0.064514
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Table 6.8(d)

Significance proportions of f-statistics of generalised CIR parameters

Daily estimates

Significance
level

Sample
Proportion

Sample
Proportion

Sample
proportion

6

1% 0.2381 0.2500 0.3125
5% 0.5013 0.5312 0.5625
10% 0.8080 0.8750 0.9375

(3

1% 0.4987 0.5000 0.5625
5% 0.5827 0.6250 0.6250
10% 0.8371 0.8750 0.8750

y

1% 0.5099 0.5325 0.5625
5% 0.5791 0.6875 0.6250
10% 0.8642 0.9062 0.9375

240



Ka
pp
a 

of
 g

en
er
al

is
ed

 C
IR
 m

od
el

Fig. 6.4(a)

Daily estimates of k (1985-1992)

0.5

0.4

0.3

0.2

0 1

0
850102 851224 861219 871221 881223 891227 901218 920108 921223

Fig. 6.4(b)

Daily estimates of 6 (1985-1992)

241



Fig. 6.4(c)
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Daily estimates of y (1985-1992)
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6.4 EXTENSION OF THE GOODNESS OF FIT AND PREDICTIVENESS OF 
THE GENERALISED CIR MODEL17

6.4.1 Measurement

In this section we extend the measurement of the goodness of fit and 

predictiveness of the generalised CIR model to the whole spectrum of the term 

structure of interest rate by means of the price mean error and the rate mean square 

error. The former highlights the difference between the observed coupon bond 

price and the predicted generalised coupon bond price while the latter shows the 

difference between the zero-coupon generalised CIR term structure and the zero- 

coupon Chebychev term structure18. These measures are calculated using daily, 

quarterly and semi-annual estimates to ascertain which method of estimation is 

more accurate.

Results are presented in Tables 6.9(a) and 6.9(b) which confirm the 

expectation that daily estimation and within sample errors outperform longer-term 

estimation and outside sample errors respectively. In particular, the mean price 

errors are $0.43, $0.70, and $0.73 in predicting bond prices one month, three 

months, and six months ahead of a given day (see Table 6.9(a)). As bonds are of 

$100 denominations these errors can be interpreted as percentage errors. 

Furthermore, these errors are significantly different from each other, except the 

case of daily and six-month errors (see Table 6.9(a), last row). This rather 

paradoxical finding is the result of large variances of errors associated with the six- 

month prediction procedure.

17 See Chapter 5, section 5.5 for a detailed discussion of the rationale of the measures of 
goodness of fit and predictiveness.

18 The price mean error is restricted to the longest maturity of an observed coupon bond on a 
given day while the rate mean square error is extended to any maturity. Thus the former highlights 
the errors of the model relative to observed bond prices while the latter shows the errors relative to 
the Chebychev term structure. It should be recalled that the Chebychev term structure is a curve- 
fitted term structure.
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The mean rate errors are in the order of 11 and 75 basis points19for within- 

sample and out-of-sample20 sample term structures respectively. These figures are 

consistent with the expectation that within sample errors are smaller than out-of- 

sample errors.

6.4.2 Comparison with previous research

The errors reported in the preceding section have not been calculated in 

previous research. Hence, comparison is limited. The errors reported in the 

empirical literature of the term structure are regression errors which are, by design, 

forced to converge to zero. In order to provide a comparison consistent with this 

literature our regression errors are reported together with those of other studies in 

Table 6.9(c). Overall they are of the same order as those of previous studies.

19 These are the square roots of MSEs in Table 6.9(b). Thus 11 and 75 basis points are the 
square roots of 1.2908E-06 and 5.7476E-05.

20 Within sample errors are those calculated using the longest observed maturity of given days 
while out-of-sample errors while out-of-sample errors extend the longest maturity of an observed 
bond on any given day by ten years.
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Table 6.9 (a)

Generalised CIR pricing errors per $100 bond 
(1985-1992)

Daily
estimation

Quarterly
estimation

Semi-annual
estimation

One-month
prediction

Three-month
prediction

Six-month
prediction

Price Mean 
Error

$0.43 $0.70 $0.73

Hypothesis Hn(d,q) Hn(q,sa) Hn(d,sa)

t-value -4.35** -2.62** -0.23

Notes:
(a) H0(d,q) is the null that the mean of daily pricing errors is equal to the mean of quarterly pricing 
errors;
(b) H0(q,sa) is the null that the mean of quarterly pricing errors is equal to the mean of semi-annual 
pricing errors;
(c) H0(d,sa) is the null that the mean of daily pricing errors is equal to the mean of semi-annual pricing 
errors.
” Significant at 1 %.

Table 6.9(b)

Daily within-sample and out-of-sample rate MSEs 
(1985-1992)

Within sample rate MSE Out-of-sample rate MSE

Rate MSE 1.2908E-06 5.7028E-05

Null hypothesis Out-of-sample rate MSE ^
Within-sample rate MSE

F-value 44.53*

Notes:
(a) The null hypothesis is that within sample rate MSE is equal to out-of-sample rate MSE
(b) Only daily MSEs are calculated because the Chebyshev polynomials are estimated daily.
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Table 6.9(c)

Comparison of regression pricing errors

Market Regression pricing error 
(Standard error)

Brown & Schaefer UK £0.20
(1994) Daily data (1984-89) (0.40)

Munik & Schotman Dutch 0.17 guilder
(1994) Daily data (1989-90) (0.04)

Chapter 5: CIR Australian -$0.25
model Daily (1985-92) (0.22)

This chapter: Australian $0.22
Generalised CIR 
model

Daily (1985-92) (0.16)

Notes:
(a) Mean regression errors are calculated by comparing observed prices on day t with CIR prices 
estimated for day t using the observed prices on day t. Least square regression entails that the sum of 
these errors tend to zero asymptotically..
(b) While the errors are in different currencies they result from fitting bonds of 100 units of respective 
currencies. Hence the errors can be interpreted as percentage of prices and are thus free from the 
exchange rate problem.
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6.5 SAMPLES OF GENERALISED CIR, CHEBYCHEV TERM STRUCTURES, 
OBSERVED AND FITTED BOND PRICES.

In this section we present a sample of daily generalised CIR, Chebychev 

term structures, generalise CIR-fitted and observed bond prices on 20/12/1990 (see 

Figs. 6.5(a) - 6.5(f)). Generally speaking, several conclusions can be drawn from 

these graphs:

(i) Bond price errors are in the maximum order of $0.30 per $100 bond (see Figs. 

6.5(a)-6.5(b)), which are consistent with the errors measured by the CIR model 

(see Chapter 5);

(ii) The generalised CIR term structure extending beyond the maximum observed 

maturity of 9.5 years is humped shape (see Fig. 6.5(c)), hence also consistent with 

the implication of the generalised CIR model;

(iii) The errors relative to the Chebychev fitted term structure are consistent with 

the expectation that those outside the maximum observed maturity are larger than 

those inside (see Figs. 6.5(d)-6.5(e)); and

(iv) Even at the maturity of nearly 30 years the errors are relatively small at 

approximately 1.5 percent (see Fig. 6.5(e)).

On the whole the results for this given day are similar to those achieved by 

the CIR model described in Chapter 5.
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Fig. 6.5(d)

Chebychev and generalised CIR term structures (20/12/1990)
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6.6 CONCLUSION

The overall objective of this chapter is to estimate the generalised CIR 

model. A benefit of this exercise, inter alia, is to get separate estimates of those 

parameters that were not possible under the CIR model, in particular, the speed of 

adjustment, k, the equilibrium spot interest rate, 0, and the market price of risk, X. 

As in Chapter 5 we address ourself to two major issues: (i) empirical support for 

parameter stability as implied by the model; and (ii) goodness of fit and 

predictiveness of the model.

The empirical implementation is effected by means of non-linear regression 

which minimises the sum of bond price errors. The error is defined as either 

observed bond price less model price (price norm) or the logarithm of observed 

bond price less the logarithm of model price (logarithmic norm). Furthermore the 

nonlinear regression is applied in two modes: (i) unconstrained mode whereby all 

the model parameters vary from day to day; and (ii) constrained mode whereby 

only the spot rate, r, varies from day to day while other parameters are kept 

constant over either each quarter of a year or half of a year.

Several results are obtained:

Firstly, the logarithmic norm, first implemented in this study, is a better 

method of estimation than the price norm in terms of Akaike and Schwartz criteria;

Secondly, daily estimation performs best in terms of goodness of fit and 

hence is not unlike a curve fitting technique; yet retaining the qualities of an 

economic equilibrium model;

Thirdly, the 13-week generalised CIR rates are unbiased estimators of 13- 

week Treasury Note rates while the model spot rate significantly underestimates 

both the cash rate and the 13-week Treasury Note rate.

Fourthly, except for the spot rate, the model specifies constant parameters; 

in this respect the parameters are unstable and vary from one period to another; 

thus the model is misspecified although in quarterly and semi-annual estimations the
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instability is decidedly much less than in daily estimation. Collinearity, a symptom 

of overparameterisation, is even more severe than in the case of the generalised 

CIR model owing to the addition of two extra parameters.

While daily parameter fluctuations improve the accuracy of estimation, it is 

evidence of model misspecification. In this regard, it is not unlike the Black- 

Scholes model whereby increased accuracy by using implied standard deviation is 

inconsistent with the model’s assumption of constant variance.

On balance, while this model has not been estimated in previous research, 

the overall results are consistent with the CIR model, except that the level of 

accuracy of estimation of this model is slightly better, in terms of minimum errors. 

An additional advantage is that it provides measures of separate parameters which 

are, on the whole, of the right sign as specified by the model.
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In this chapter we present the empirical results of estimating the Vasicek 

model using Australian bond data from 1985 to 1992. The two major issues we shall 

address ourself to are: (i) empirical support for parameter stability as implied by the 

model; and (ii) goodness of fit and predictiveness of the model. Toward this end, 

various statistical aspects of parameter estimates are explored together with several 

investigations undertaken to deepen our understanding of the bahaviour of the model 

in the Australian context. The format of this chapter follows that of Chapter 5, 

hence only those results which are particularly relevant to the Vasicek model are 

highlighted while references to Chapter 5 are made whenever it is necessary. Thus, 

estimates of the model are presented, analysed and discussed in sections 7.1-7.5. A 

snap shot of the Vasicek term structure is provided in section 7.6 while section 7.7 

concludes the chapter.

The Vasicek model is given by the following bond pricing equation1 *,

P(t,s,r) = exp 1(1 -e oo)-r)-(T-t)R( oo) - ZL( 1 -e
K 4/c3

where the stochastic process of the spot rate is

dr = K(d-r)dt + odz

(1)

(2)

and, Rmsi (oo), the yield on a very long bond as T -» oo is

1 See Chapter 2 and/or Chapter 3 for details. Also as noted in Chapters 2 and 3, the parameter
X in the Vasicek model is positive, and to make it consistent with the CIR model, a negative sign is
placed before Vasicek X.
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Following the least square minimisation procedure presented in Chapter 3 the 

vector of parameter estimates are:

a
~ vast

r
K

a
d-\

(4)

As in Chapters 5 and 6 the estimation procedure includes: (i) constrained and 

unconstrained minimisation2; and (ii) price norm and logarithmic norm3. The 

logarithmic norm is found to be superior in terms of the Akaike and Schwartz 

criteria (see Table 7.1) while the normality and heteroskedasticity tests (see Table 

7.2) indicate that nonlinear least square estimation is equivalent to maximum 

likelihood4 for the majority of daily, quarterly and semi-annual cross sections. For 

example, the Akaike statistic5 for the logarithmic and price norms are -2.1671 and - 

2.1098 respectively (see Table 7.1, third row, second and third column). Similarly, 

at 1% level of significance, 73.88% of the daily cross sectional errors are normally 

distributed.

2 Under constrained minimisation k, a, and 6 - X are kept constant over quarterly and semi
annual subperiods while the spot rate is allowed to vary daily. Under unsconstrained minimisation all 
the four parameters, r, k, a, and 6 - X vary from day to day.

3 The sums of the price errors and the logarithms of the price errors are minimised under the 
price norm and logarithmic norm respectively.

4 Hence the nonlinear regression procedure implemented for this chapter has the desirable 
properties of maximum likelihood estimators (see Green (1993, pp. 305-307)). Furthermore, various 
properties of linear least square estimation are carried over to nonlinear least squares only in 
asymptotical sense.

5 The smaller the Aikake statistic the better the model.
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7.1 ESTIMATES OF SPOT RATES

7.1.1 Distributional statistics

Estimates of Vasicek spot rates and their distributional statistics are presented 

in Tables 7.3(a)-7.3(b). A comparison of these rates with their closest observed 

counterparts in the Australian financial market, the cash rate and 13-week Treasury 

Note rate, is provided in Tables 7.3(c)-7.3(d). A graphical presentation of the spot 

rate estimates and their proxies is given in Figs. 7. l(a)-7.1(c).

Several observations emerge from these tables and graphs. Firstly, while in 

theory the spot rate may be negative6 it is, in fact, positive for the entire sample 

period, (1985-92), (see Table 7.3(a)-7.3(b) and Fig. 7.1)). This is consistent with 

the conjecture that the case of negative nominal interest rate is rare for practical 

considerations. Secondly, constrained and unconstrained procedures of estimation 

(see Table 7.3(b)) reveal that daily and semi-annual rates are insignificantly different 

while quarterly estimates are significantly different from daily and semi-annual 

estimates; (iii) the Vasicek spot rate is not significantly different from both the cash 

rate and the 13-week Treasury Note rate (see Table 7.3(c))7. Thirdly, Vasicek spot 

rates are less than their observed closest proxies, cash rate and 13-week Treasury 

Note rate (see Table 7.3(c)) as indicated by high f-statistics (8.141 and 9.064). The 

difference between the two series (13-week Treasury Note rate less Vasicek spot 

rate) and (cash rate less Vasicek spot rate) is not significant, hence implying that the 

two observed rates are interchangeable.

6 Under the Vasicek model the specification that volatility is a constant gives rise to possible 
negative spot rates (see Chapter 2).

7 Unlike the CIR and Generalised CIR model the insignificant difference implies that there is 
no need to further investigate the relationship between the difference and the level of either the cash 
rate or the Treasury Note rate.
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7.1.2 A test of the unbiasedness of 13-week Vasicek interest rates8

Unlike the comparison of the instantaneous spot rate and 13-week Treasury 

Note, it is interesting to note that the 13-week Vasicek rate is an unbiased estimator 

of 13-week Treasury Note rate (see Tables 7.4(a) and 7.4(b)). In this case the 

maturities of the two rates are exactly matched and the unbiasedness is investigated 

by means of : (i) regressing observed 13-week Treasury Note rates on day t against 

13-week Vasicek interest rates based upon parameter estimates on day f; and (ii) 

regressing observed 13-week Treasury Note rates on day t -I- one month against 13- 

week Vasicek interest rates calculated for day t + one month using parameter values 

estimated on day t. It should be noted that the unbiasedness is also carried to 

predicted rates which are calculated out of the sample from which the model 

parameters are estimated.

8 See Chapter 5 for further details on the rationale of this test.
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Table 7.1

Distribution of information criteria of logarithmic and price norm
Daily cross-sections

Akaike Criterion Schwartz Criterion

Log Norm Price Norm Log Norm Price Norm

Mean -2.1671 -2.1098 -1.8411 -1.7838

Standard
deviation

0.2588 0.2452 0.2588 0.2452

Note:
The information criteria are based on minimising the residual sum of squares; hence the smaller the 
criteria the better the model.

Table 7.2

Normality and heteroskedasticity tests of regression residuals

Daily Quarterly Semi
annual

Significance
level

Proportion 
of cross- 
sections

Proportion 
of cross- 
sections

Proportion 
of cross- 
sections

Normality Test 
(Jarque-Berra)

1% 0.7388 0.7539 0.7955

5% 0.8359 0.8656 0.8861

Heteroskedasticity
(White)

1% 0.6250 0.4695 0.4886

5% 0.7881 0.6134 0.6176

Note:
The entry 0.7388(column 4, row 3) means that at 1% level of significance the regression residual is 
normally distributed for 73.88% of the total quarterly cross sections (the spot rate is allowed to vary from 
day to day while the other parameters, a, k and 6 - X, are kept fixed over each quarter). Similarly the 
entry 0.4695 (column 4, row 5) means that at 1% level of significance the regression residual is 
homoskedastic for 46.95% of the total quarterly cross sections. Other entries are interpreted similarly.
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Table 7.3(a)

Daily estimates of Vasicek spot rate

Mean Std Min Max

1985 0.12685 0.01241 0.10061 0.18048

1986 0.13269 0.01504 0.10684 0.17820

1987 0.12604 0.01727 0.08769 0.16214

1988 0.10827 0.01407 0.08362 0.15251

1989 0.16170 0.00772 0.14007 0.17067

1990 0.13278 0.01296 0.10814 0.16610

1991 0.09377 0.01390 0.04479 0.11454

1992 0.06049 0.00892 0.03496 0.07271

1985-1992 0.11812 0.03109 0.03496 0.18048

Table 7.3(b)

Distribution of Vasicek spot rate 
Daily, quarterly and semi-annual estimates 

(1985-1992)

t-value Daily Quarterly Semi-annual

Mean 1.1812E-01 5.9493E-02 1.2065E-01

Std 3.1091E-02 8.2584E-03 1.1843E-02

Minimum 3.4958E-02 3.959E-02 3.9462E-02

Maximum 1.8048E-01 7.3759E-02 8.1782E-02

H0 (d, q) 32.29"

H0 (d, sa) 1.12

H0 (q, sa) 7.97"

Notes:
(a) H0 (d, q) is the null hypothesis that the mean of daily estimates of CIR spot rate is equal to the mean 
of its quarterly estimates;
(b) H0 (d, sa) is the null hypothesis that the mean of daily estimates of CIR spot rate is equal to the mean 
of its semi-annual estimates;
(c) H0 (q, sa) is the null hypothesis that the mean of quarterly estimates of CIR spot rate is equal to the 
mean of its semi-annual estimates.
(d) *’ : significant at 1 %.
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Table 7.3(c)

Differences between observed TN rates and Vasicek spot rates
(1985-1992)

13-week TN rate - r Cash rate - r

Mean 0.014278 0.012885

Standard deviation 1.7538E-03 1.4215E-03

f-valuea 8.14 9.06

f-valueb 0.5240

Notes:

a The null hypothesis is that the mean of (observed rate less theoretical rate) is 0.0.
b The null hypothesis is that the mean of the series (13-week TN rate less r) is equal to the mean of the 
series (cash rate less r).
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Table 7.4(a)

Test of unbiasedness of daily 13-week Vasicek rates of interest (1985-1992)

Observed rate
(Dependent
variable)

Estimated 
Vasicek rate 
(Independent 
variable)

a 0 F-
value

R2

13-week TN 13-week 0.34E-09
(1.2E-05)

1.03192
(1.2E-03)

2.50 0.95376

Notes:
(a) Vasicek rates are calculated for day t, using the parameters estimated on day t.
(b) The null of the F test is a — 0.0 and (3 = 1.0.
(c) Standard errors are in parentheses.

Table 7.4(b)

Test of unbiasedness of daily 13-week predicted Vasicek rates of interest
(1985-1992)

Observed rate
(Dependent
variable)

Estimated
Vasicek rate
(Independent
variable)

Ot (3 F-
value

R2

13-week TN 13-week 0.45E-08
(3.1E-05)

1.03176
(3.1E-05)

0.85 0.92661

Notes
(a) Predicted Vasicek rates are calculated for day t + one month, using the parameters estimated on day t.
(b) The null of the F test is a. = 0.0 and (3 = 1.0.
(c) Standard errors are in parentheses.
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Fig. 7.1 (a)

Daily estimates of Vasicek spot rates
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Fig. 7.1 (b)

Difference between cash rate and Vasicek spot rate
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Fig. 7.1(c)

Difference between Treasury Note rate and Vasicek spot rate
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Note: Difference = Treasury Note rate less Vasicek spot rate
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7.1.3 Comparative analysis of the performance (predictiveness) of the Vasicek 

model

Essentially the question we seek to answer is " Will the Vascicek model 

estimated on day t and then used to predict the prices of 13-week and 26-week 

Treasury Notes on day t + n months, where n is either 1 or 3 months, outperform 

a naive9 model ?". The justification for this investigation is to exploit a feature of 

the data set that includes 13-week and 26-week Treasury Note rates on each and 

every day in the sample (1985-1992). The results are presented in Tables 7.5(a) 

and 7.5(b) which show that the Vasicek model significantly outperforms the naive 

model using the MSE criterion10. For example, the error associated with the 

Vasicek model in predicting the 13-week bond price one month in advance is $0.15 

while that of the naive model is $0.21 (see Table 7.5(a), second row, second and 

third column). Furthermore, the smaller errors are significant as shown by the F- 

statistics (see Tables 7.5(a) and 7.5(b)).

7.1.4 Comparison with previous research

A comparison of the Vasicek spot rate estimates and those of previous 

studies is given in Table 7.5(c). This shows the consistency of the results achieved 

across the three models tested in this study, CIR, generalised CIR, and Vascicek 

but these results are inconsistent with other studies* 11. Differences in sampling

9 A naive model assuming constant interest rates is a ’do nothing and cost nothing’ model. 
Hence on average it should outperform a theoretical model to justify costs. See Chapter 5 for further 
details.

10 The link between the F-statistic and the ratio of MSEs is explained in Chapter 5. See also 
Johnson and Kotz (1970, Chapter 26).

11 See Chapter 5 for a discussion of these issues.
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periods and local market conditions may explain the inconsistency with overseas 

studies (Brown and Dybvig (1986), Munik and Schotman (1994)) while the results 

in Chiarella et al (1989) are attributed to a flaw12 in their measurement.

12 See Chapter 2.
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Table 7.5(a)

Comparative mean dollar pricing errors of $100 13-week Treasury Notes

One-month prediction Three-month prediction

Naive model Vasicek
model

Naive model Vasicek
model

$0.21 -$0.15 $0.39 $0.36

t-value of PE
29.48 -31.59 33.32 9.30

Hypotheses H0 : MSEmm < MSEcir Hq . MSEnaive < MSEar

H, : MSEmi„ > MSEdr Hi '■ MSEmive > MSEar

F-value
1.96* 1.74*

Note: * Significant at 1% (F-value is 1.0 for degrees of freedom exceeding 120).
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Table 7.5(b)

Comparative mean dollar pricing errors of $100 26-week Treasury Notes

One-month prediction Three-month prediction

Naive model Vasicek
model

Naive model Vasicek
model

$0.35 $0.21 $0.30 -$0.26

t-value of PE
28.97 18.78 34.31 -4.81

Hypotheses
H0 = MSEm < MSEcir H0 . MSEnaive < MSEar

■ MSE„aivt > MSEdr Hx . MSEnaive > MSEar

F-value
2.77 * 1.33 *

Note: * Significant at 1% (F-value is 1.0 for degrees of freedom exceeding 120).
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Table 7.5(c)

Comparison of estimates of CIR spot rates with observed rates

Study Market Observed rate Results

Brown &
Dibvig
(1986)

USA (1977- 
83)
Monthly data

Mean yield on 
T-Bills with at 
most 14 days to 
maturity

CIR r
overestimates 
observed rate

Munnik &
Schotman
(1994)

Netherlands 
(1989-90) 
Monthly data

Amsterdam
Interbank
Offered Rate

CIR r is close to 
observed rate

Baron et al 
(1991)

Italy (1983-90) 
Daily data

1 month, 3 
month interbank 
rate and 3 
month T-Bill
rate

CIR r is highly 
correlated with 
observed rates

Chiarella et 
al
(1989)

Australia 
(1978-87) 
Monthly data

13-week T-Note
rate

CIR r
overestimates 
observed rate

Chapter 5: 
CIR model

Australia
(1985-92)
Daily data

Overnight cash 
rate
13-week T-Note
rate

CIR r
underestimates 
observed rates

Chapter 6: 
Generalised 
CIR model

Australia
(1985-92)
Daily data

Overnight cash 
rate
13-week T-Note
rate

Generalised CIR 
r underestimates 
observed rates

This
chapter:
Vasicek
model

Australia
(1985-92)
Daily data

Overnight cash 
rate
13-week T-Note
rate

Vasicek r 
underestimates 
observed rates
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7.2 ESTIMATES OF VOLATILITY

In this section estimates of the volatility of the Vasicek stochastic interest 

rate, a, are presented and discussed. It should be noted that a is the Vasicek 

volatility function while those of the CIR and generalised CIR models are a\fr 

and or13 respectively.

7.2.1 Distributional statistics and graphs

Basic statistics of estimates of o estimates are presented in Tables 7.6(a), 

7.6(b) and 7.6(c) while Figs. 7.2(a), 7.2(b) and 7.2(c) graph the time series of 

these estimates. Several observations can be made in respect of the evidence. 

Firstly, daily estimates of Vasicek volatility are, on average, significantly larger 

than quarterly and semi-annual estimates (see Table 7.6(b)). This implies that one 

of the assumptions of the model, namely constant volatility, is not supported and 

the larger daily estimates appear to confirm the conjecture that the specified form 

of volatility is sensitive to daily bond price changes. Part of the instability of the 

Vasicek volatility has been found to be caused by the multicollinearity of its 

variables13. This is, indeed, the case where the correlations among the variables 

are substantial (see Table 7.6(d)). Secondly, for each daily, quarterly and semi

annual cross-section a t test is conducted to assess the significance of o and 

consequently the proportions of the cross-sections in which o is significant are 

reported in Table 7.6(c). As expected, volatility estimates tend to be more 

significant under a longer period of estimation as the degree of freedom is 

substantially increased. Thus, at 10% of significance level, 50% of semi-annual

1 o

See Chapter 5 for more details.

276



estimates of o are significant in contrast to 8.37% and 31.25% of daily and

quarterly estimates (see Table 7.6(c), last row and last column).
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Table 7.6(a)
Time series of daily estimates of o

1985 0.20883 0.020109 0.219174 2.76824

1986 0.29256 0.013071 0.112599 2.61803

1987 0.12502 0.015253 0.208547 0.24327

1988 0.089689 0.012038 0.146028 0.74984

1989 0.047179 0.89651 0.29616 4.131966

1990 0.016489 0.034256 0.10007 0.14137

1991 0.025251 0.017217 0.000035 0.11152

1992 0.061991 0.020564 0.20793 0.16135

1985-92 0.056726 0.24057 0.000035 4.131966

Table 7.6(b)

Distribution of time series estimates of o 
(1985-92)

o

t-value DAILY QUARTERLY SEMIANNUAL

Mean 5.6726E-02 1.4459E-02 1.6988E-02

Std 2.4057E-01 1.5942E-02 1.5193E-02

Minimum 3.5E-05 7.1977E-03 4.365E-03

Maximum 4.131966 7.0576E-02 6.6178E-02

H0 (d, q) 6.91

H0 (d, sa) 5.99

Ho (q, sa) -0.53

Notes:
(a) H0 (d, q) is the null hypothesis that the mean of daily estimates of o is equal to the mean of the 
quarterly estimates;
(b) H0 (d, sa) is the null hypothesis that the mean of daily estimates of a is equal to the mean of the 
semi-annual estimates;
(c) H0 (q, sa) is the null hypothesis that the mean of quarterly estimates of a is equal to the mean of 
the semi-annual estimates.
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Table 7.6(c)

Proportions of estimates of o being significant over the sample period

Daily estimates Quarterly
estimates

Semi-annual
estimates

Significance
level

Sample
Proportion

Sample
Proportion

Sample
proportion

1% 0.0282 0.3125 0.25

5% 0.0484 0.3125 0.25

10% 0.0837 0.3125 0.50

Note: The entry 0.3125 (third row, third column) means that at 1% level of significance 62.5 % of the 32 quarterly estimates 

of a are different from zero. Other entries are interpreted similarly.

Table 7.6(d)

Correlation matrix of r, k, a, and 6 - X

r K o 6 - X

r 1.000000

K 0.95701 1.0000

a -0.41353 -0.41557 1.0000

e+\ -0.1578 -0.015664 0.22548 1.00000

279



Fig. 7.2 (a)

Daily estimates of Vasicek volatility

8*5010? 860124 061??* 071120 090210 091220 910114 920226 921227

Fig. 7.2 (b)

Quarterly estimates of Vasicek volatility

B60327 870331 910328 920311

Fig. 7.2 (c)

Semi-annual estimates of Vasicek volatility

8*50628 860630 870630 910628 920610
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7.2.2 Relationship between Vasicek volatility and the time series of volatility14 of 
13-week Treasury Note rate

In this section the volatility of the Vasicek model is further investigated to 

ascertain if it can act as an unbiased estimator for 13-week Treasury Note 

volatility. In this respect, the forecast of the volatility of an important short-term 

rate in Australia would be proof of the usefulness and validity of the Vasicek 

model. The results of this investigation are presented in Table 7.7(a) and graphed 

in Figs. 7.3(a)-7.3(b). It should be clear that these two measures are significantly 

different (see Table 7.7(a)). For example, the Vasicek volatility is nearly 3.5 times 

as large as its 13-week Treasury Note counterpart. The disparity is further shown 

in Figs. 7.3(a) and 7.3(b).

14 Note that the volatility of the spot rate is a in the spot rate process, dr = K(0-r) + odz. 
Hence the corresponding Treasury Note rate volatility is the standard deviation of the series of the 
differences of daily TN rates.

281



Table 7.7(a)

Distribution of monthly average of Vasicek volatility (a) and 
monthly average standard deviation of change in 13-week TN rate

t-value Monthly average of 
Vasicek a

Monthly average of std 
of change in 13-week
TN rate ( st )

Mean 0.0782 0.0226

Std 0.1072 0.019

Min 1.32E-04 2.1E-03

Max 0.6718 0.1207

H0 4.86"

Note:
(a) H0 is the null that the mean of monthly averages of Vasicek volatility is equal to the mean of monthly 
averages of standard deviation of change in 13-week TN rate;
(b) Significant at 1 %.
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Fig. 7.3(a)

Monthly Vasicek volatility
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Figure 7.3(b)

Monthly Treasury Note Volatility
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7.2.3 Comparison with previous studies

Estimates of the Vasicek volatility together with those of previous studies 

are presented in Table 7.7(b). While the mean of Vasicek volatility, 5.67% (see 

Table 7.7(b), last row, third column), appears much larger than those of other 

models (1.13%-2.95%), it should be noted that its specified form is o while those 

of the CIR and generalised CIR models are o\fr and or& respectively. If the 

value of Vasicek a is scaled by \fr as in the CIR model, it would be of a similar 

order15. Quarterly and semi-annual estimates of o are not significantly different 

and both are much smaller than daily estimates (see Table 7.7(b)). In addition, the 

proportions of significant estimates of a are higher than daily estimates (see Table 

7.7(c)). These results are largely attributed to the increase in the degree of freedom 

as o is kept constant over quarterly and semi-annual periods16.

15 With a = 0.0567 (see Table 7.6(a)) and the mean of the spot rate, 1.1812E-01 (see Table 
7.3(a)), this gives 0.0567*1.1812E-01 = 0.019487 or 1.94 percent, which seems consistent with the 
estimates of other studies (see Table 7.7(b), third column).

16 See Chapter 5.
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Table 7.7(b)

Comparison of CIR, Generalised CIR, and Vasicek volatility" 
and time series estimates

Study Market Mean
(%)

Mean
Std

(%)

Is CIR volatility 
unbiased predictor of 
time series estimates ?

Brown &
Dybvig (1986)

USA (1977- 
83)
Monthly data

1.95a 2.26a Yes

Brown &
Schaefer
(1994)

UK (1984-89) 
Daily data

2.65b 2.33b No

Baron et al 
(1991)

Italy (1983-90) 
Daily data

2.05c 2.797c Not reported

Chiarella et al 
(1989)

Australia 
(1978-87) 
Monthly data

2.95“ 3.16“ No

Chapter 5
CIR model

Australia
(1985-92)
Daily data

2.30e 3.54e No

Chapter 6 
Generalised
CIR model

Australia
(1985-92)
Daily data

1.13f 0.99f No

This chapter 
Vasicek model

Australia
(1985-92)
Daily data

5.67g 2.41g No

Sources:
* Note that volatility of generalised CIR model is OK15 while volatility of CIR model is oyf" ; 
a Calculated from Brown & Dibvig (1986, Table I); 
b Brown & Schaefer (1994, p. 28); 
c Barone et al (1991, Tables 3 and 5); 
d Calculated from Chiarella et al (1989, Tables 1 and 3); 
e Chapter 5 (Table 5.7(c);
' Chapter 6 (Table 6.7(a).
& This chapter (Table 7.5(b)).
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7.3 ESTIMATES OF VASICEK LONG RATE, Rvasi (oo)

Estimates of Vasicek long rate are presented in Tables 7.8(a)-7.8(b) and 

graphed in Figs. 7.4(a)-7.4(c). It is interesting to note that the estimated long rate 

is remarkably stable around the 11% level across three methods of estimation. For 

example, the t-statistics (see Table 7.8(b)) show that the daily, quarterly and semi

annual mean long rates are not significantly different. Hence, an implication of the 

model, namely the constancy of the long rate, is supported. Further, the long rate 

is always positive while in theory its sign can be negative (see eqn (5)):

e- a\ 1 a2 (5)

The positiveness of the long term rate implies the dominant value of 6 relatively to 

to other parameters, namely, a, X, and k.
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Table 7.8(a)

Daily estimates of Vasicek long term rate (1985-1992)

Mean Std Min Max

1985 0.12355 0.043867 0.001179 0.195512

1986 0.12866 0.026775 0.004169 0.199958

1987 0.11509 0.033673 0.000974 0.193497

1988 0.10466 0.028393 0.002057 0.195175

1989 0.10386 0.020587 0.003713 0.139237

1990 0.11376 0.031352 0.000019 0.193447

1991 0.10409 0.021158 0.016160 0.187085

1992 0.09791 0.014222 0.008383 0.124834

1985-1992 0.11145 0.046244 0.000019 0.199958

Table 7.8(b)

Distribution of Vasicek long term rate 
(1985-1992)

f-value DAILY QUARTERLY SEMIANNUAL

Mean 1.1145E-01 1.11352E-01 1.117732E-01

Std 4.6244E-02 2.7226E-02 1.976E-02

Min 1.9E-05 5.1332E-02 7.1429E-02

Max 1.99958E-01 1.54672E-01 1.38101E-01

Hn(d,q) 0.019

Hn(q,sa) -0.063

Hn(d,sa) -0.061

Notes:
(a) H0(d,q) is the null hypothesis that the mean of the daily estimates is equal to the mean of the 
quarterly estimates;
(b) H0(q,sa) is the null hypothesis that the mean of the quarterly estimates is equal to the mean of the 
semi-annual estimates;
(c) H0(d,sa) is the null hypothesis that the mean of the daily estimates is equal to the mean of the semi
annual estimates;
(d) *: significant at 5%; **: significant at 1%
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Fig. 7.4(a)

Daily Vasicek long term rate

890210 891220 91011* 920226 921223

Fig. 7.4(b)

Quarterly Vasicek long term rate

890329 BB0327 870331 980331 890331

Fig. 7.4(c)

Semi-annual Vasicek long term rate

860630 870630 880630 990690 900629 910628 92063C
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7.4 ESTIMATES OF k AND 6 - X17

Mean reversion assumed in the Vasicek model requires k to be a positive 

constant while a positive 6 is consistent with a equilibrium financial market in 

real18 terms. Further, the market price of interest rate ris k, - X, is necessarily 

negative. Thus, this section is concerned with an examination and analysis of the 

estimates of these parameters in the Vasicek model. The distributional statistics of k 

and 6 - X are summarised in Tables 7.9(a)-7.9(b) while the time series of these 

estimates are graphed in Figs. 7.5(a)-7.5(c). Several observations may be made:

Firstly, while k is stable in quarterly and semi-annual constrained estimation 

with their means in the order of 0.1 to 0.12 respectively, the mean of k for daily 

estimates is 0.3449 (see Table 7.9(a)) and is of the same order as those results 

reported by de Munnik and Schotman (1994, Table 2, p. 1009)19. While these 

estimates do not support the model’s assumption of constant parameters over time, 

it can be argued (see Chapter 5) that these estimates may be interpreted as 

fluctuations around a specified mean. Thus, for example, we cannot reject the 

hypothesis that quarterly and semi-annual k estimates converge to a mean of 0.1 

which may be seen as the underlying speed of adjustment while the deviations 

around this level are stochastic errors.

Turning to the significance of these estimates, it is clear (see Table 7.9(b)) 

that increasing the length of estimation periods leads to an increase in the

17
k is the speed of adjustment of the spot rate to its long run equilibrium, d while - X is the 

market price of interest risk.

18 The spot rate in the Vasicek model is real interest rate.

19 Their estimates of k are in the range of 0.503-0.596. Note that de Munnik and Schotman 
(1994) is the only previous study that tests the closed form Vasicek solution.
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significance20 of these parameter estimates. For example, at 1% level, daily 

estimates are significant for 27.92% of the daily cross sections while the 

proportions for quarterly and semi-annual estimates are 81.25% and 100% 

respectively (see Table 7.9(b), third row).

70 This is consistent with the increase in the degrees of freedom as data are pooled over 
quarterly and semi-annual periods (see Chapter 5).
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Table 7.9(a)
Distribution of estimates of k and 6 - A 

(1985-92)

K

r-value DAILY QUARTERLY SEMIANNUAL

Mean 3.449E-01 1.09915E-01 1.203E-01

Std 7.041E-01 2.9689E-02 2.9109E-02

Min 0.0 4.0626E-02 7.9665E-02

Max 8.5933 2.15508E-01 1.98163E-01

H0(d,q) 14.05**

H0(d,sa) 12.86**

H0(q,sa) -1.162

6 - X

DAILY QUARTERLY SEMI-ANNUAL

Mean 1.4548E-
01

1.2407E-01 1.23176E-01

Std 4.0019E-
02

2.4023E-02 2.2767E-02

Min 0.0 7.0576E-02 7.3175E-02

Max 2.998E-01 1.61363E-01 1.55536E-01

H0(d,q) 4.93

H0(d,sa) 3.87

H0(q, sa) 0.13

Notes:
H0(d,q) is the null hypothesis that the mean of the daily estimates is equal to the mean of the quarterly 
estimates;
H0(q,sa) is the null hypothesis that the mean of the quarterly estimates is equal to the mean of the semi
annual estimates;
H0(d,sa) is the null hypothesis that the mean of the daily estimates is equal to the mean of the semi
annual estimates;
*: significant at 5% 

significant at 1 %

291



Table 7.9(b)

Proportions of significant estimates of k and 6 - X

DAILY QUARTERLY SEMI-ANNUAL

Significance
level

Sample
Proportion

Sample
Proportion

Sample
proportion

K

1% 0.2729 0.8125 1.0

5% 0.4678 0.8750 1.0

10% 0.7309 0.9062 1.0

e - x 1% 0.2250 1.0 1.0

5% 0.2669 1.0 1.0

10% 0.3088 1.0 1.0

Note:
The entry 0.8125 (third row, fourth column) means that at 1% level of significance 81.25 % of the 32 
quarterly estimates of k are different from zero. Other entries are interpreted similarly.
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Fig. 7.5(a)

Daily estimates of k

850102 880124 861224 871120 890210 891220 910114 920226 921223

Fig. 7.5(b)

Quarterly estimates of k

860327 870331

Fig. 7.5(c)

Semi-annual estimates of k

860630 870630
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Fig. 7.6(a)

Daily estimates of 6 - X

Fig. 7.6(b)

Quarterly estimates of 6 - A

870331 880331 880311

Fig. 7.6(c)

Semi-annual estimates of 6 - X

880630 890630 900629
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7.5 EXTENSION OF GOODNESS OF FIT ANALYSIS

In this section the predictiveness of the Vasicek model for the entire 

spectrum of the term structure of interest rates is examined by means of the pricing 

errors and the rate mean square errors21 which make use of results of the 

Chebyshev curve-fitted term structures. This investigation departs from previous 

sections in that the performance of the entire term structure over the sampling 

period (1985-1992) is assessed. As only a few zero-coupon bonds are observed on 

a given day, term structures have to be constructed from coupon paying bonds. 

Thus, the methodology of curve fitting introduced in Chapters 3 and 4 is used for 

this purpose.

Estimates of the errors are reported in Tables 7.10(a)-7.10(c). Two 

observations may be made. Firstly, all the three errors are not statistically 

significantly different from each other (see Table 7.10(a)) although the daily errors 

tend to be smaller on average. For example, the model generates an error of $1.38 

in predicting a $100 bond one month in advance, or equivalently a percentage error 

of 1.38%. The low r-statistics (see Table 7.10(a)) associated with daily estimates on 

the one hand, and quarterly and semiannual estimates on the other, are due to high 

variances of daily errors over time. As there is no-priori reason for the dynamics of 

errors, the presence of high variances is indicative of the high risk of prediction by 

means of daily estimates of the Vasicek and Chebyshev polynomial based models.

Secondly, within-sample rate errors are significantly smaller than out-of- 

sample rate errors (see Table 7.10(b)) although in absolute terms the errors are

21See Chapter 5, Section 5.5 for a justification for the use of these two measures.
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relatively small. For example the mean errors in Table 7.10(b) are 2.428E-03 and 

1.148E-0222 or in the range of 24-115 basis points.

The pricing errors and rate MSEs reported in this section have not been 

attempted in previous research. Table 7.10(c), however, provides the mean of 

regression errors23 which can be compared with those of previous studies.

22 These are the square roots of 5.9E-06 and 1.32E-04 in Table 7.10(b).

23 Regression errors are not the same as our MSE in this section. The former is forced by least 
square regression to converge to zero while the latter does not have this constraint.
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Table 7.10(a)

Vasicek pricing errors per $100 bond 
(1985-1992)

Daily Quarterly Semi-annual
estimation estimation estimation

One-month Three-month Six-month
prediction prediction prediction

Price -$1.38 -$5.60 -$5.80
Mean
Error

Hypothesis H0(d,q) H0(q,sa) H0(d,sa)

t-value -1.40 -1.31 -1.40

Notes:
(a) H0(d,q) is the null that the mean of daily pricing errors is equal to the mean of quarterly pricing 
errors;
(b) H0(q,sa) is the null that the mean of quarterly pricing errors is equal to the mean of semi-annual 
pricing errors;
(c) H0(d,sa) is the null that the mean of daily pricing errors is equal to the mean of semi-annual pricing 
errors.

Table 7.10(b)

Daily within-sample and out-of-sample rate MSEs 
(1985-1992)

Within sample rate MSE Out-of-sample rate MSE

Rate MSE 5.9E-06 1.32E-04

Null
hypothesis Out-of-sample rate MSE ^ 

Within-sample rate MSE

F-value 9.66*

Notes:
(a) * Significant at 0.01 %;
(b) Only daily MSEs are calculated because the Chebyshev polynomials are estimated daily. (27).
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Table 7.10(c)

Comparison of regression24 pricing errors

Market Regression pricing error 
(Standard error)

Brown & UK £0.20
Schaefer (1994) Daily data (1984-89) (0.40)

Munik & Dutch 0.17 guilder
Schotman (1994) Daily data (1989-90) (0.04)

Chapter 5: CIR Australian -$0.25
model Daily (1985-92) (0.22)

Chapter 6: Australian $0.22
Generalised CIR 
model

Daily (1985-92) (0.16)

This chapter: Australian $0.63
Vasicek model Daily (1985-92) (0.19)

Notes:
(a) Mean regression errors are calculated by comparing observed prices on day t with CIR prices 
estimated for day t using the observed prices on day t. The objective of least square regression is to 
minimise the sum of these errors.
(b) While the errors are in different currencies they are the errors resulting from fitting bonds of 100 
units of respective currencies. Hence the errors can be interpreted as percentage of errors and are, thus, 
free from the exchange rate problem.

24 Mean regression errors are calculated by comparing observed prices on day t with CIR 
prices estimated for day t using the observed prices on day t. Least square regression entails that the 
sum of these errors tend to zero asymptotically.
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7.6 SAMPLES OF VASICEK, CHEBYSHEV TERM STRUCTURES, 
OBSERVED AND FITTED BOND PRICES

In this section a sample of daily Vasicek and Chebyshev term structures, 

Vasicek-fitted and observed bond prices on 20 December 199025 are presented 

(see Figs. 7.7(a)-(e)).

Two observations may be made:

Firstly, as observed and fitted bond prices (see Fig. 7.7(a)) are 

indistinguishable, the differences are magnified in Fig. 7.7(b) which shows the 

errors are in the range of at most $3 for $100 bonds.

Secondly, the humped shape of the Vasicek term structure (see Fig. 7.7(c)) 

is consistent with the prescription of the model that does not allow oscillations. The 

Chebyshev and Vasicek term structures are graphed in Fig. 7.7(d) which reveals: 

(i) the Vasicek term structure underestimates the Chebyshev fitted curve26; and (ii) 

the shape of the fitted curve is more flexible27. To highlight the differences 

between these two term structures, Fig. 7.7(e) indicates that rate errors increase 

with those maturities extending beyond 10 years, the maximum observed maturity.

7.7 CONCLUSION

The objective of this chapter is to report on and discuss the empirical results 

from estimating the Vasicek model in the Australian context. Five parameters are

2:5 The same date is chosen for the CIR, generalised CIR and Vasicek models in order to 
provide a comparative perspective.

26 As a curve fitting technique the Chebyshev term structure yields smaller errors and hence is 
closer to observed term structure (see Chapter 4).

27 This is as expected as a function of a fitted curve is to track the observations as closely as 
possible.
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estimated, namely the spot rate, r, the volatility, a, the speed of adjustment, k, the 

long rate, Rvasi (oo), the equilibrium spot rate and the market price of risk, 6 - X. 

These estimates are analysed and discussed in the chapter. Several results emerge 

from this investigation.

Firstly, while the spot rate underestimates its closest proxies, the cash rate 

and 13-week Treasury Note rate, this is probably due to the mismatch of maturity. 

In fact, when the mismatch is corrected, 13-week Vasicek interest rates are 

unbiased estimator of 13-week Treasury Note rates. The underestimation is 

consistent with the results obtained for the CIR model (Chapter 5) and generalised 

CIR model (Chapter 6).

Secondly, the volatility factor, a, the long rate, Rvasi (oo), the speed of 

adjustment, k, and the equilibrium spot rate, 6, are relatively stable for longer 

periods of estimation, namely quarterly and semi-annually. Basically this implies 

that as long as the period of estimation is increased there is a better chance of the 

parameter stability assumption being met. Overall, in terms of model goodness of 

fit, daily estimation is exceptionally good though not as accurate as a curve-fitting 

technique such as Chebyshev polynomials or Nelson and Siegel (1987). The model 

shares a common problem with the CIR (1985) and generalised CIR (Chapter 6) 

models, namely they are overparameterised and hence empirically leading to 

serious collinearrity and unstable parameter estimates. This problem is well 

recognised in the extant literature and our evidence adds to it.

Finally while there are minor disparities between this study and previous 

studies, our results are basically consistent with the published empirical research in 

the area.
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Fig. 7.7(a)

Observed and Vasicek-fitted bond prices
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Fig. 7.7(b)
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Note: Bond price error = Observed bond price less fitted bond price
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Fig. 7.7(c)

Vasicek Term Structure (20/12/90)

Fig. 7.7(d)

Chebyshev and Vasicek term structures (20/12/90)

Maturity C Years 9
Chebyshev Vas i c ek

Fig. 7.7(e)

Difference between Chebyshev and Vasicek term structures (20/12/90)
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Difference = Chebyshev rate less Vasicek rate
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In this study two classes of the term structure of interest rates are tested: 

curve-fitted and equilibrium models. Within the first class, two models are tested: 

the Nelson-Siegel model and a Chebyshev polynomial based model. The objective 

of this exercise is to generate zero-coupon term structures beyond the few observed 

zero-coupon rates (cash rate, 5-week, 13-week and 13-week rates). The Chebyshev 

polynomial based technique as applied to bond pricing is found to perform better 

than the differential equation based Nelson-Siegel model. Thus the term structures 

generated by this technique are used as ’observed’ term structures to assess the 

performance of economic equilibrium models which include the CIR, generalised 

CIR, and Vasicek models.

The basic objective of this chapter is to provide a comparative perspective 

the equilibrium1 models investigated in this study. Toward this end we reiterate the 

objectives of this investigation. Essentially we seek answers to the following 

questions: (i) to what extent do the implications of the models stand up to 

empirical validation? and (ii) how well do the models fit the data? This is the usual 

standard of goodness of fit analysis which may be carried within the sample period 

and/or beyond it.

This chapter is organised as follows. In the first section, the vectors of the 

models’ parameters and their empirical implications are briefly reiterated2. This is

1 As noted in Chapter 3, curve fitting models are introduced for the purpose of generating term 
structures against which equilibrium models are assessed. As the basis of curve fitting models are 
either mathematical or statistical, it would not be valid to compare them with equilibrium models. 
Hence, this task is not attempted in this study.

2 See Chapter 3 for full details.
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followed by a comparative analysis of the results and a conclusion.

8.1 VECTORS OF MODELS’ PARAMETERS AND THEIR EMPIRICAL 
IMPLICATIONS

The vectors of parameters that are tested are: CIR, generalised CIR and 

Vasicek.

a = r,o\fr ,k6 ,k + \
~cir 1 J

(1)

-gcir = [r,o,K,6,l3,\,y} (2)

ja ii Q * i (3)

It should be noted that the market price of risk, volatility and long term rate of 

interest differ among these models (see Table 8.1).
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Table 8.1

Market price of risk, volatility and long term rate 
CIR, generalised CIR and Vasicek models

CIR Generalised
CIR

Vasicek

Market price 
of risk \\fr

a

\ry
a

- A

Volatility
o\[7 or13

o

Long term 
rate 2k6/(y + k+ \) where

7 =((k + A)2 + 2 a2)1/2

not available

q o\ l a2
[7j
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8.2 TO WHAT EXTENT ARE ASSUMPTIONS ABOUT PARAMETER 
ESTIMATES SUPPORTED BY EVIDENCE?

An empirical implication of the above models is that the spot rate is a 

positive3 varying parameter, the market price of riska negative constant while other 

parameters are positive constants4.

A review of the empirical results for these parameters reveals the following:

Firstly, the spot rate is uniformly positive for the three models; this result is 

particularly meaningful for the Vasicek model which allows for negative interest 

rates owing to its specified form of volatility. In a practical sense it implies that the 

Vasicek model is relatively robust to nominal prices. Furthermore, the spot rate, 

found to be the predominant factor in bond pricing, is consistent with the 

specification of the models.

Secondly, the market price of interest rate risk cannot be estimated 

separately for the CIR and Vasicek models while for the generalised CIR this 

parameter varies more in daily estimation than in quarterly and semi-annual 

estimation. The evidence, however, supports a market price of risk with stochastic 

fluctuations around an underlying level.

Thirdly, the long-run equilibrium spot rate, 6, is estimated separately only 

for the generalised CIR model, and it vibrates around the 10 percent level in all 

three modes (daily, quarterly, semi-annual) of estimation. In the Vasicek model, a 

combined quantity 6 - A is estimated. If values of X are taken from the generalised

3 While in the real economy the Vasicek spot rate may be negative owing to the model’s 
assumption of constant volatility, a negative interest rate would be inconsistent with the nominal 
economy where the time value of money is positive.

4 See Chapter 3 for full details.
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model and added to these estimates of 6 - X, then the resultant 6 for the Vasicek 

model remains remarkably stable around the 11%-12% level.

Fourthly, estimates of o are more stable over quarterly and semi-annual 

intervals than daily intervals. Again it can be argued that these estimates fluctuate 

around a band of values and deviations from this band can be considered stochastic 

errors.

In sum, several general conclusions may be drawn.

Firstly, the spot rate is fairly similar (see Table 8.2) among the three 

models and across daily, quarterly5 and semi-annual estimation. An implication of 

this result is that the spot rate is the most important factor in these models.

Secondly, there is mild support for the positive constancy of parameters, 

other than the spot rate, in so far as these are estimated quarterly and semi

annually. Finally, all the three model estimates suffer from the problem of 

multicollinearity with the generalised CIR model being the worst affected owing to 

the largest number of parameters that are estimated separately. Thus, on the basis 

of empirical support for model prescription of parameters, there is not much 

difference among the models. Then a case may be made for the CIR model to be 

the preferred model owing to its sounder theoretical foundation6 on two grounds: 

(i) it is embedded in a rational utility maximising framework; and (ii) its volatility 

function precludes negative interest rates.

In the next section the criteria of model performance is applied to assess

5 Except for Vasicek quarterly spot rate (see Table 8.2).

6 Being a general equilibrium model and its specified form of volatility precludes negative 
interest rates.
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these three models.

8.3 COMPARATIVE MODEL PERFORMANCE

While both the price and logarithmic norms are used in the estimation 

process, the latter is found to be superior on the basis of the Akaike and Schwartz 

criteria reported in each of the chapters7 (including the Nelson-Siegel and 

Chebyshev models). In addition, pricing errors and rate MSEs are also calculated 

to assess model performance across the entire spectrum of the term structure even 

beyond the maximum observed bond maturity on each day. This is achieved by 

means of the Chebyshev curve-fitting technique. These results are summarised in 

Tables 8.3(a) and Table 8.3(b) which show the generalised CIR model to be the 

best performer8. Thus, in terms of both within-sample and out-of-sample accuracy, 

the generalised CIR model is the preferred model. Two technical qualifications, 

however, may be noted: (i) it is more computationally complicated as it involves 

solving a stochastic differential equation by means of numerical methods; and (ii) 

computation is considerably slowed down by a relatively flat objective function 

with seven variables.

8.4 CONCLUSION: WHICH MODEL IS BEST ?

We have assessed these models on the basis of (i) empirical support for their

7 Akaike and Schwartz statistics are reproduced here for the logarithmic form of estimation as 
they are found to be smaller than (or superior to) those of the price norm of estimation.

8 Note that it is not valid to compare curve-fitting models with equilibrium models. The former, 
by definition, must always perform better than economic models (see Chapter 3). Hence only the 
three economic models (CIR, generalised CIR, Vasicek) are assessed for their comparative 
performance.
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theoretical constructs; and (ii) (within-sample) model goodness of fit and (out-of- 

sample) predictiveness. With respect to the first criterion there is not much 

difference. With respect to the second criterion, the generalised CIR model 

outperforms its two competitors. On balance, the generalised CIR model serves two 

useful purposes: (i) it encompasses the CIR model as a special case; and (ii) its 

ability to discern all the parameters separately. In the final analysis, it boils down 

to the trade-off between complicated computation and increased accuracy.
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Table 8.2

Mean spot rates

Model Daily
estimation

Quarterly
estimation

Semi-annual
estimation

CIR 1.2148E-01
(3.1649E-02)

1.2532E-01
(3.3906E-02)

1.2092E-01
(2.9663E-02)

Generalised CIR 1.08872E-01
(2.5840E-02)

1.3124E-01 
(1.113E-02)

1.2104E-01
(2.9388E-02)

Vasicek 1.1812E-01
(3.1091E-02)

5.9493E-01
(8.2584E-03)

1.2065E-01
(1.1843E-02)

Note: Standard errors are in parentheses.

Table 8.3(a)

Akaike and Schwartz statistics of tested models

LOGARITHMIC NORM OF ESTIMATION

MEAN AKAIKE MEAN SCHWARTZ

CURVE FITTING MODELS

NELSON- -4.4722 -3.2876
SIEGEL (0.1617) (0.1617)

CHEBYSHEV -5.8978 -5.7237
(0.148) (0.148)

EQUILIBRIUM MODELS

CIR -2.5788 -2.3942
(0.1721) (0.1721)

Generalised CIR -3.6767 -3.4933
(0.1724) (0.1724)

Vasicek -2.1671 -1.8411
(0.2588) (0.2588)

Notes:
(a) Sources: Table 5.1 (Chapter 5), Table 6.1 (Chapter 6), and Table 7.1 (Chapter 7);
(b) A model is judged better by its smaller Akaike and Schwartz statistics (see Judge et al (1985));
(c) Standard errors are in parentheses. As the Akaike and Schwartz criteria differ from each other by a 
constant their standard errors are equal.
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Table 8.3(b)

Mean pricing errors and rate mean square errors

Model Mean pricing errors (per $100 bond)

One month 
prediction

Three month 
prediction

Six month 
prediction

CIR -$1.29 -$1.83 -$3.24

Generalised CIR $0.43 $0.70 $0.73

Vasicek -$1.38 -$5.60 -$5.80

Rate MSE

Within sample Out-of-sample

CIR 2.8E-06 5.7476E-05

Generalised CIR 1.2908E-06 5.7028E-05

Vasicek 5.9E-06 1.32E-04

Notes:
(a) Sources: Table 5. (Chapter 5), Table 6. (Chapter 6), Table 7.10(b) (Chapter &);
(b) As the Chebyshev model is chosen to be the better model than Nelson-Siegel. It is then used to 
generate the term structure against which errors of equilibrium models are calculated. Thus, no errors 
are calculated for the Nelson-Siegel model.
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9.1 MOTIVATION, OBJECTIVES AND RESEARCH ISSUES

This study develops an integrated framework to empirically test a class of 

equilibrium models of the term structure of interest rates in the Australian context: 

(i) Cox Ingersoll and Ross (1985b), (ii) Vasicek (1977); and (iii) a generalised 

version of Cox, Ingersoll and Ross (1985b).

The research involves an examination of the following specific issues:

(i) to what extent the empirical implications of these models are supported 

by the Australian bond market; and

(ii) which model performs best in terms of goodness of fit and 

predictiveness.

To date these issues have not been addressed specifically in the Australian literature 

on the theory of equilibrium term structure of interest rates. Previous research 

reveals that: (i) there are substantially different and conflicting results across 

models; (ii) there is evidence of significant parameter instability, inconsistent with 

the specification of equilibrium theories; and (iii) assessing the validity of model 

performance becomes a difficult task since there is a serious lack of a 

comprehensive comparative study of competing models. Consequently, this study 

develops an integrated framework in which these and other related issues are 

further examined and empirically tested.

The research design is implemented within an integrated estimation 

methodology in two distinct phases: (i) A new technique based upon Chebyshev 

polynomials is designed to overcome existing weaknesses in the area of curve 

fitting. The purpose of this exercise is to generate zero-coupon term structures from 

a limited number of coupon paying bonds; (ii) The second the stage is concerned
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with estimating the following thee models: CIR (1985b), generalised CIR, and 

Vasicek (1977) using an integrated framework that utilises all available (zero- 

coupon and coupon-paying) Australian bonds from 1985 to 1992. Then this is 

followed by an examination of parameter instability, goodness of fit, model 

predictiveness an related issues. Finally, a comparative perspective is then provided 

to enable the models to be ranked.

9.2 RESULTS

The main results of the study may be summarised as follows:

(i) The newly introduced Chebyshev polynomial based curve fitting 

technique performs best relatively to the differential equation based Nelson- 

Siegel model.

(ii) While the instantaneous spot rate in equilibrium models is the 

predominant and driving factor in bond pricing it consistently underestimates 

its two closest observed rates, the cash rate and 13-week Treasury Note 

rate. However, the underestimation is removed when model rates of 13- 

week maturity are compared with 13-week Treasury Note rates, indicating 

that the biasedness is probably caused by the lack of an observed 

instantaneous spot rate.

(iii) While constant parameters are implied they are found to be either 

unstable or fluctuating around a band of values with deviations which can be 

regarded as stochastic errors. Thus, at best there is mild support for the 

implication of parameter stability. In this regard the assumption of constant 

parameters is similar to that of constant volatility and interest rate
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underlying the Black-Scholes option pricing model. The fact that the Black- 

Scholes model continues to be the premier model in derivative security 

pricing in spite of the rejection of this assumption suggests that the next 

criterion of goodness of fit and predictiveness should be applied.

(iv) On the basis of performance criteria (revealed by both within-sample 

and out-of-sample statistics) the generalised CIR model, first introduced in 

this study, is the best performer although it is also the most computationally 

difficult.

(v) The tested models display considerable multicollinearity, a characteristic 

consistently recognised in this literature.

(vi) On balance, the equilibrium models may substitute for curve fitting on a 

daily basis, yet retaining the desirable qualities of economic models.

9.3 CONTRIBUTIONS

This study makes several contributions in two broad categories: (i) 

contributions to the empirical literature, especially Australian, of equilibrium term 

structure of interest rates; and (ii) contributions to the estimation methodology.

(i) Contributions to the literature

(a) It offers the first comparative analysis of the empirical 

verification of equilibrium models in the Australian context.

(b) The extension of the CIR model (1985b) provides an alternative 

with improved performance and the capacity to estimate separately 

those parameters that are combined by existing models.

(c) It provides a theoretical basis for pricing interest rate derivative
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securities in Australia in place of ad-hoc yield curve fitting.

(ii) Contributions to the estimation methodology

(a) It introduces an integrated estimation framework that incorporates 

zero-coupon and coupon paying bonds, hence significantly increases 

the degree of freedom, and accuracy of estimation.

(b) It introduces a curve fitting technique based upon Chebyshev 

polynomials which effectively removes two commonly encountered 

econometric difficulties in term structure estimation, namely, 

maturity dependent errors and multicollinearity caused by the 

mismatch of coupon payment dates.

(c) It introduces an alternative norm of nonlinear regression based 

upon the logarithm of the error, which is both more accurate and 

appropriate to the multiplicative nature of bond pricing formulae.

9.4 AREAS OF FUTURE RESEARCH

The present study can be extended in several directions: (i) the term 

structures generated by various tested models, including curve-fitted models, can be 

used as input in testing derivative pricing models; (ii) a data base of bond prices 

constructed in the fashion of Fama-Bliss (which does not exist at this stage) would 

enable a GMM test of these models in contrast to the cross-sectional nonlinear 

regression procedure undertaken in this study; and (iii) an empirical test of 

preference free models of the Heath-Jarrow-Morton type in the Australian context 

would be in order and would provide a basis for comparison with equilibrium 

models.
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AI. EXPECTATIONS THEORIES

The empirical literature is extremely voluminous and has a long history. 

Broad statements of the expectations theory, being couched in terms of 

expectations, cannot yield testable propositions without models of expectations. 

Three models have been proposed: (i) the perfect foresight model; (ii) the error 

learning model; and (iii) the rational expectations model.

Prior to the 1960s empirical studies concentrated upon the ability of the 

implied forward rates to predict expected future spot rates. The vehicle to test this 

proposition was the perfect foresight model which holds that expectations are not 

only held by the market but are also realised. Macauley (1938) studied the seasonal 

movement of call money rates and found that they anticipated this seasonal. Kessel 

(1965) repeated the exercise for the period 1959-61 using a different instrument, 

twenty seven and fifty five day bills. His results confirmed Macauley’s findings 

that market participants were able to forecast the seasonal in these rates. However, 

he found forward rates upward-biased forecasters in the case of six-month 

U.S.Treasury bills for the period from January 1959 to March 1962. Hickman’s 

(1942) comparison of actual spot rates with their predictors, the forward rates 

implied in the term structure, revealed that the forward rates did not successfully 

forecast the actual rates. Moreover, Culbertson (1957) found that the Treasury bills 

and long term Treasury bonds displayed wide differences in holding period yields 

during 1953. On balance, the major conclusions from these early studies are that 

forward rates are not good predictors of future spot rates at the short end of 

maturities and, forward premia are not zero on average.
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The mixed results of these early studies are due to their different 

instruments and periods chosen for analysis. Yet the predictions of the theory are 

independent of time and maturity. The major flaw in this early literature is the use 

of a perfect foresight of expectations. The theory posits the role of expectations but 

is silent on the accuracy of expectations.

Meiselman’s (1962) critique of the earlier tests noted that the expectations 

theory is cast in ex-ante terms while the tests used ex-post data. Consequently the 

theory can hold while investors might be wrong in forecasting future rates. Hence, 

one cannot infer anything about whether or not forward rates represent market 

expectations simply by comparing implied forward rates with the subsequently 

observed spot rates. Meiselman introduced a mechanical rule known as the error 

learning model, to model the process of expectation generation. Essentially 

expectations are revised in light of forecasting errors, defined as the actual one year 

rate in period t minus the forward rate forecast of a one-year bond beginning at 

time t as implied in the term structure one year earlier. Using this model of 

expectation formation and a sample of high grade annual corporate yields from 

1901 to 1954 he found evidence consistent with the pure expectation model in the 

form of a zero term premium.

Meiselman’s model has been tested with a variety of data by a number of 

researchers. Thus KesseTs (1965) test of the error learning model on 28 and 91-day 

Treasury bills for the periods 1959-62 and 1949-61 yielded positive term premia. 

Moreover, Buse’s (1967) replication of Meiselman’s regression model with annual 

data of British government securities for the period 1933-1963 found intercepts 

significantly different from zero. Furthermore, Van Horne’s (1965) study, using
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post-war US Treasury bond data, confirmed the presence of positive constants 

which are interpreted as risk premia.

One source of the mixed results can be attributed to different instruments 

and periods chosen for analysis. The model, however, suffers from some other 

more serious problems. For example, a zero intercept is consistent with both zero 

and non-zero term premium2. In addition, Nelson (1972) argues that the error 

learning rule belongs to a class of linear optimal forecasts (in the minimum mean 

squared error sense) which represent expectations as linear functions of past data. 

Hence, it is restrictive because the information set on which expectations are based 

consists only of the entire history of spot interest rates. Although changes in the 

spot rate may be useful in revising expectations, it is only one source of 

information. Further, as the statistical nature of the forecasting error is left 

unexplored3,it is not possible to infer whether information has been used in an 

unbiased and/or consistent manner. It is, however, the first model to explicitly infer 

expectations from observed data and it is close to the concept of rational 

expectations which has become an important paradigm in economics and finance.

The growing acceptance of the view that expectations are rational in the 

early 1970’s led to the development of the rational expectations theory of the term 

structure (see Modigliani and Sutch (1967), Modigliani and Shiller (1973), Shiller 

(1989)). The simplest form of this theory states that the yield to maturity on n- 

period bonds equals the weighted average of expected future one-period spot

2 Proof is given by Telser (1967), p.108.

3 Meilseman is not concerned with whether or not expectations are realised. The focus of his 
model is how expectations are generated.
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interest rates plus a constant term premium, 7rn, which can be interpreted 

equivalently as a forward or holding period premium4 :

r(t,T) = —— { r(t, t+1) + E. r(t+l, t+2)...E r(t+n-1, T) I + II (AT)
T-t

where Et is the expectations operator conditional on information available at time t, 

which includes all current and lagged interest rates. Another variant of the rational 

expectations hypothesis of the term structure is that all term premia are time 

invariant so that they only depend upon bond maturity and not time.

The rational expectations theory has been tested in at least two ways: (i) by 

regressing the actual change in ra-period spot rates, r(t+n, t+m+n) - r(t, t+m), on 

the predicted change, f(t, t+n, t+m+n) - r(t, t+m); where the slope coefficient is 

hypothesised to be 1.00 ; and (ii) checking for excess volatility of long-term 

interest rates. Shiller and McCulloch (1987) document the results from six major 

studies5 across three countries (the U.S., Canada and W.Germany) over a variety 

of sample periods. The evidence suggests the slope coefficients are well below 1.00 

and on some occasions display wrong signs. Further, forward rate forecasts of 

near-term changes in interest rates are poor but the forecasting power increases

4 The holding period term premium is the difference between the conditional expected holding 
period return and the spot interest rate:

nh=E,{ \n[P(t+l,T)/P(t,T)] }-r{t,t+\)

while the forward term premium, 7rf , is the difference between the forward rate and the and the 
expectation of the corresponding spot rate:

Uf = f(t,T)-E' (rT)

5 These studies include Shiller (1979), Shiller, Campbell and Schoenholtz (1983), Mankiw (1986), 
Fama (1984), Fama and Bliss (1986), and Shiller (1988).
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with the forecast horizon. This seems counter-intuitive.

On the issue of excess volatility Shiller ((1979), (1981), (1988)) and 

Singleton (1980) reported results which indicate the observed long-term interest 

rates are far more volatile than can be described by the rational expectation model. 

Other researchers (Flavin (1983), Marsh and Merton (1986), Kleidon (1988), 

among others) have disputed tests of excess volatility on the ground of their 

statistical significance given the generality of these tests. Some of the econometric 

problems have been overcome by the so-called second-generation tests6 which also 

found excess volatility. This issue remains difficult to explain in the context of the 

representative-consumer, frictionless market model7.

On balance, empirical tests tend to reject the implications of the pure 

expectations theory: (i) the term premium is zero; and (ii) the long-term rate is a 

weighted average of expected future spot rates. The rejection is not a major 

concern in the empirical literature which concentrates on the testable implications 

of the expectations theory. In fact, Roll (1970) and McCallum (1975) argue that the 

CAPM implies a holding premium which is proportional to the conditional 

covariance of the holding period yield and the market return. Variations of this 

premium may be caused by changes of this covariance over time and are consistent 

with the notion that the bond market processes information efficiently. In an 

equilibrium economy driven by the instantaneous interest rate Longstaff (1990) 

derived a term premium which depends upon the current level of the risk-free

6 See Gilles and Leroy (1991).

7 Gilles and Leroy (1991, p.787).
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interest rate. This term premium is time varying, yet consistent with the 

expectations hypothesis if the time frame for which the expectations hypothesis 

holds differs from the return measurement period. In particular, if the period over 

which the hypothesis is supposed to hold is shorter than that over which the bond 

returns are measured then there is a rich structure of variation of observable term 

premia. It should be noted that Longstaff (1990) only considers the case of the local 

expectations hypothesis which states that all bonds have the same expected returns 

over the next (shortest possible) holding period and these are equal to the 

instantaneous risk free rate of interest.

There is evidence of time variation in term premia at the short end of the 

spectrum as well as on long-term bonds (see Shiller (1979), Startz (1982), Shiller, 

Campbell and Schoenholtz (1983), Fama (1984), Mankiw (1986), Shiller (1988), 

Campbell (1986), Engel, Lilien, and Robins (1987), Shiller and McCulloch (1987), 

Froot (1989), and Simon (1989)). As the existence of time varying term premia has 

been well documented, another related issue of investigation is the relationship 

between the term premium and some variables other than spot and forward rates. 

Without guidance from theory, the level and volatility of interest rates have been 

chosen in the empirical literature.

It is argued that interest rates are mean reverting, thus implying a negative 

relationship between the level of interest rates and the term premium. This is 

because if interest rates are high and expected to fall then investors would demand 

a lower premium. Conversely, if interest rates are low and expected to rise, then 

investors would demand a higher premium. An alternative view [ Kessel (1965), 

Malkiel (1966), Nelson (1972)] assumes that bonds are near substitutes for money.
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When interest rates are low (high) the opportunity cost of holding money (and its 

substitutes) is low (high). Because of their liquidity short-term bonds are better 

substitutes for money than long-term bonds. Hence when interest rates rise the 

opportunity cost of holding long-term bonds is relatively higher than that of holding 

short-term bonds. In other words, the term premia of long-term bonds rise more 

than those of short-term bonds. As a result the net effect of an increase in interest 

rates is an increase in the term premia (long or short) in the forward rates implied 

in the term structure, and hence a positive relationship between the level of interest 

rates and the term premium.

In addition to the level of interest rates it is argued that the term premium is 

positively related to the volatility of interest rates but the consensus is far from 

being universally accepted8.

Instead of assuming that expectations are realised (as in perfect foresight 

model ) or rational, another strand of literature uses survey data of market 

participants’ interest expectations. Using quarterly surveys conducted by the 

Goldsmith-Nagan Bond and Capital Market Letter, Friedman (1979) found the term 

premium on three-month US Treasury bills to be positive on average, and for a 

given maturity, to vary positively with the level of interest rates. However, the 

findings of this study were limited to bonds of short maturities because of data 

availability. Froot’s (1989) study is based upon more recent data of these surveys 

which include both short-term Treasury bills and 30-year mortgage rates, and it 

tests a hypothesis implied by the expectations theory and rational expectations: the

8 See Van Horne (1990, p.122).
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forward premium is an efficient forecast of the future interest change. Froot found 

that the hypothesis was supported at the long-term maturities but rejected at the 

short-term maturities. It should be noted that Froot’s (1989) results rely on the 

assumption that the survey data accurately measures the market’s expectations9.

AIL LIQUIDITY PREFERENCE THEORY

Empirical tests of the theory have focused upon demonstrating the existence 

of the premium and uncovering its determinants. Strong support for the theory 

comes from Kessel (1965) who found positive premia in Treasury bills and long

term government securities over the 1921-1961 period. Fama (1976) attributes the 

premium to the uncertainty of inflation as there was a positive relationship between 

term premia and inflation. This finding is perhaps the first to relate the liquidity 

premium to the risk of inflation. Evidence from other studies is less encouraging 

and often accompanied by qualifications. Thus Connard (1966) found positive 

premia but these diminished rapidly beyond intermediate maturities. Furthermore 

McCulloch (1975) found positive premia but those for long-term loans were very 

inaccurate. More recently, Fama (1984) found that expected returns on longer-term 

bills exceed the returns on one-month bills but these expected returns tend to peak 

at eight or nine months and do not increase monotonically with maturity.

The level of interest rates has been suggested as another determinant of 

liquidity premia. Evidence of a positive relationship between liquidity premium and 

the level of interest rate is found in Kessel (1965), Connard (1966), and Cagan

9 There is a strand of literature that investigates the rationality of the market’s expectations 
contained in surveys of financial market participants (see Friedman (1979) and, Chan and Pham 
(1990)).
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(1956) while an inverse relationship is found in Malkiel (1965), Van Horne (1966), 

Nelson (1972). These conflicting results are due to the use of different types of 

interest rates and time periods.

AIII. PREFERRED HABITAT THEORY

Empirical tests of the preferred habitat theory are concerned with the effect 

on the term structure of changes of the relative supplies of securities of various 

maturities beyond the effect caused by expectations and risk-averse behaviour of 

lenders. Modigliani and Sutch (1966, p.587) found some support for the influence 

of national debt structure on the spread of the long and short rates. Their results, 

however, can only be described as ’...at best weak, even in a period in which the 

national debt was large both in absolute and relative size ’. Using a sample of 

Canadian government bonds with maturities varying between a few months and 

infinity, McCallum (1975) found a market structure consistent with the preferred 

habitat theory. His methodology consists of transforming bond prices into expected 

returns, from which measures of risk are calculated in the form of either a 

standard deviation of expected returns or systematic risk. Although risk tends to 

increase with maturity, it levels off after three years. However, other studies have 

failed to find support for this hypothesis (see Van Horne (1990), footnotes 27 and 

28, p.123).

AIV. AUSTRALIAN EVIDENCE

The four Australian contributions to the literature on traditional theories of 

the term structure of interest rates are all empirical: Dewald (1973), Block (1974), 

Juttner et al (1975) and Tease (1988). The sample period for the first three papers 

was characterised by stable interest rates, low turnover in the secondary bond
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market and extensive financial sector regulation while the focus of research was on 

the relative importance of expectations and the effects of regulatory activities of 

the monetary authorities on the term structure of interest rates.

Bloch (1974) tested the error learning model on annual and quarterly 

Commonwealth government bond yields for the period from March 1954 to 

September 1968. There were 11 regressions, each with 14 annual observations and 

52 regressions, each with 58 quarterly observations. Only four of the annual 

regressions and fifteen of the quarterly regressions display statistically significant 

slope coefficients. Compared to Meiselman’s results, support for the expectations 

theory is much weaker. A number of significant constant terms were found, 

indicating the presence of liquidity premiums, while the liquidity premium was a 

positive function of term to maturity. In sum, Bloch’s results provide limited 

support for both the pure expectations theory (zero term premium) and expectations 

theory (increasing term premium).

In a subsequent paper Juttner et al (1975) criticised Bloch’s (1974) study on 

the ground that Meiselman’s equation can be transformed into an equation 

consisting of only spot rates and hence the dependent and independent variables in 

Meiselman’s equation are determined by the difference of two terms containing spot 

rates. Consequently the results are biased in favour of the maintained hypothesis of 

a relationship between forward rates and subsequent spot rates.

Juttner et al (1975) apply spectral and cross-spectral analysis to study the 

interrelatedness between alternative pairs of interest rates and the nature of leads 

and/ or lags. They found evidence which would appear to lend support to the 

expectations theory in that rates on different securities are closely related and move
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together almost simultaneously. However, they attribute this finding to policy 

interventions by the monetary authorities who set the rates for different maturities 

by varying buy and offer prices. In other words, the Reserve Bank of Australia 

generated the rates which are consistent in a statistical sense with Meiselman’s 

model.

Dewald (1973) tested three competing hypotheses on two and ten year 

Commonwealth Government securities from 1952 through 1966: expectations, 

preferred habitat, and interest rate policy10 . He found marginally significant 

evidence in support of the preferred habitat theory. Interest rate movements were 

closely controlled at short maturities, but expectations played a more important role 

at longer maturities.

A more recent paper by Tease (1988) reassesses the role of expectations in 

Australian term structure research. This study differs from earlier work in at least 

three respects: (i) it investigates a period relatively free from policy intervention as 

a result of a number of developments in the financial markets* 11; (ii) Rational 

expectations are accepted as the proper way to model expectations; and (iii) the 

author uses a sample of 90 day and 180 day bank bills to test the expectations 

theory. The joint hypotheses of the expectations theory and a zero ( or a constant) 

risk premium could not be rejected. Thus, unlike empirical studies in the US which 

fail to support the expectations theory, Australian short term interest rates have 

behaved in a manner consistent with this theory after the introduction of the tender

10 The interest rate policy hypothesis is that the term structure is adjusted by both market forces 
and policy actions designed to achieve desired economic objectives.

11 The tender system of issuing Treasury notes and government bonds were introduced in 1979 
and 1982 and the Australian dollar was floated in 1983.
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system in 1979. However, a weakness of this study is that the data was confined to

the short-term maturity spectrum.
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The objective of Appendix B is to survey the theoretical developments of the 

preference free theory and the empirical testing1 of this theory.

BI. THEORY

Essentially there are three main approaches2 to constructing preference free 

models: (i) modelling bond prices ; (ii) modelling forward rates ; and (iii) 

modelling the short rate. As there is a one to one relationship between the bond 

price, the forward rate and the instantaneous spot rate, the choice of one variable 

over the others is a matter of convenience and belief in its driving force rather than 

economic rationale.

(i) Modelling bond prices

Using the information contained in the current term structure Ho and Lee 

(1986) were the first to impose the no-arbitrage condition on the evolution of 

subsequent term structures. They assume that the discount function defined as the 

equilibrium price of a discount bond, which at any given point in time, can only 

experience either an upward movement or a downward movement. Furthermore, 

Ho and Lee (1986) impose two conditions on their model: (i) no riskless arbitrage 

between bonds of different maturities; and (ii) path independence of the discount 

function which can depend only on the number of upstate or downstage movements 

but not on the sequence in which they occur.

1 Australian evidence on preference free theory is surveyed in Chapter 2 (section 2.3.4).

2 This classificatory framework is suggested by Hull and White (1992).
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The assumptions of path independence and no riskless arbitrage allow us to 

define a term structure at any future time given the current term structure. No 

riskless arbitrage means that it is possible to construct a portfolio of bonds of 

differing maturities which yields the same return as a one-period discount bond. 

More specifically, if the upward movement of bond price is large then so is the 

downward movement so that the weighted average of the movements is the same 

across all bonds. Path independence requires that the discount function obtained 

from an upward movement followed by a downward movement be the same as that 

obtained from a downward movement followed by an upward movement. The 

assumption of no riskless arbitrage is based on the market efficiency concept while 

the path independence assumption is to reduce the mathematical complexity of the 

model.

Central to the Ho and Lee model is the concept of a discount function of a 

discount bond of maturity T which pays $1 at the end of the Tth period. At each 

time n there exists a number of states of the world. A discount function, p\n\i) , 

is defined for each time n and state i for a discount bond of maturity T. This 

discount function completely describes the term structure of interest rates of the ith 

state at time n and the set of discount functions is said to form a binomial lattice if 

at any given time the discount function can experience only an upward or 

downward movement. The downward state is always denoted by the upward state 

less one. For example, p/"j and P-n) are the discount functions at time n for the 

upward and downward state respectively.

If at time n there is no expected change in interest risk then the discount 

function must be the same for the upward state and the downward state. Moreover
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it also equals the implied forward function F-n)(T) :

F-n)(T) = P-n+l)(T) = p/rr0 = T = 0,1,... (Bl)
Pin\l)

Uncertainty is modelled by the deviation of the discount function from the 

implied forward function in the following period. Furthermore, this deviation is 

caused by a shock factor which the authors call the purtabation function. There is a 

purtabation function for each of the upward state and downward states, denoted 

h(T) and h*(T) respectively. The lattice of the term structure movement is 

completely specified by the set of purtabation functions and the initial discount 

function P(T).

With the assumptions of no riskless arbitrage and path independence the 

purtabation functions can be expressed as:

h{ D 1
7T + (1 -7r)57

h'(T) bT
7T+(1 -7r)<57

(B2)

where 7r is interpreted as the implied binominal probability, in the sense of the 

’risk-neutral’ probability of Cox, Ross and Rubinstein (1979) model of binomial 

option pricing, and <5 is a perturbation function spread constant such that h(l) = 

1/(7r + (1 - 7r)<5). Thus ir and 6 are the parameters of interest volatility.

The Ho and Lee model was initially developed in discrete time. It has been 

shown to have an equivalent continuous version (Hull and White (1993), Hull 

(1993)) with spot rate process:
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dr = [Fl(0,t)+o2t]dt+odz (B3)

where F(0,t) is the instantaneous forward rate at time 0 for a bond maturing at time 

T and the subscript t refers to the derivative with respect to t. The price of the 

discount bond is:

P(t,T) = A(t,T)e 'r(r'') (B4)

where

\nA(t,T) = \n P(°,T) -(T-t) dlnP(°^-}_(?t(T-t)2 (B5)
P(0,t) dt 2

An advantage of the discrete or continuous Ho and Lee model is that it fits 

the current term structure exactly and it is analytically tractable. Its weaknesses are 

: (i) it allows for negative3 interest rates as the interest rate process has no mean 

reversion ; and (ii) the structure of the volatility function is rather inflexible 

because the forward rate and the spot rate have the same standard deviation, o, and 

the instantaneous standard deviations of all spot and forward rates are the same.

The volatility function of a preference free model needs to be specified 

carefully to maintain its consistency with the no arbitrage condition and to keep the 

computation manageable. Thus, Hull and White (1993) develop a theory of bond 

pricing based upon the assumed process of discount bond price given by

3 While negative real interest rate is possible, negative nominal interest rate is not.
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dP(t,T) = r(t)P(t,T)dt+v(t,T)P(t,T)dz (B6)

where v(t,T) is the volatility function of bond price differential4. The objective of 

the Hull and White (1993) study is to focus on the volatility function and to identify 

a necessary and sufficient condition for volatilities to be consistent with a Markov 

interest rate process where bond prices are lognormally distributed. It is desirable 

to specify a volatility structure that gives rise to a Markov process for the spot rate 

because a Markov process is far more tractable than a non-Markov process.

(ii) Modelling forward rates

The most important piece of work in preference free modelling of the term 

structure is undoubtedly Heath, Jarrow and Morton (1992) (hereafter HJM). It 

builds on Ho and Lee (1986) by taking the current term structure as given and 

derives the no arbitrage condition for the evolution of the subsequent term 

structures. However it expands the Ho and Lee (1986) model by allowing for more 

than one random variable and by demonstrating that it is possible to use an 

alternative information set, the forward rate volatility structure, to characterise the 

term structure. This change of state variable also facilitates the change from 

discrete time mathematics of Ho and Lee (1986) to continuous time mathematics. 

Moreover, as they specify the forward rate stochastic structure, rather than the zero 

coupon bond price stochastic structure, this allows volatilities to change for a fixed 

value of the bond at maturity. HJM also take the initial forward structure as given 

and then specify how it would evolve over time to preclude arbitrage opportunities. 

While the HJM model overcomes the difficulty of specifying the market price of

4 As v(t, T) is a function of t and T only, bond prices are lognormal.
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risk it introduces new ones. For example, it requires knowledge of the volatility 

structure for each maturity date whereas in equilibrium theories we need to specify 

the volatility of the spot rate which is equivalent to only one forward rate. It also 

requires knowledge of the entire initial forward curve, but this is not observable.

The uncertainty in the HJM economy is characterised by the probability 

space (ft,F,Q) where ft is the state space, F is the a-algebra representing 

measurable events and Q is a probability measure. The forward rate is defined as:

f(t,T) = -d\ogP(t,T)/dT (B7)

so that

P(t,T) = exp

The forward rates satisfy the process:

(B8)

Al,T) - AO,T) = |a(v,7»<iv

+ for all 0<t<T ; i=\,...,n

(B9)

where a(v,T,w) and o(v,T,w) are the drift and the volatility of the forward rate and 

w is a member of the state space ft. This forward rate process consists of n 

independent Brownian motions denoted by dWt for i = which determine the

stochastic fluctuations of the entire forward rate curve starting from a fixed initial 

curve f(0, T).

The spot rate process is similar to the forward rate process, except that both
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the time and maturity arguments vary simultaneously5:

r(t) = f)t,t) = f(0,t) + | oi(v,f)dv

+ ^ f ofv,t)dWfv) for 1 £[0,71'=> i

(BIO)

where n denotes n independent Brownian stochastic processes that characterise the 

entire forward rate curve. Similarly, the bond price process is described by the 

stochastic differential equation:

where

dP(t,T) = [r(t) + b(t,T)\P(t,T)dt
n

+ Y,“,(I,T)P(.t,T)dWHt) 
( = 1

(BID

aft, T) = -| aft, v)dv for i=l,...,n (B12)

and

n

b(t,T) e -\a(t,v)dv * (l/2)^a,(/,7)2 
J. i= 1

(B13)

Note that the drift term of the bond price process is expressed in terms of 

the drift and volatility terms of the forward rate process. The market price of risk 

is introduced into the analysis by assuming that it exists and is related to the drifts 

and volatilities of the forward rates in the following manner:

5 The spot rate is the instantaneous forward rate at t, i.e., r(t) = f(t,t).
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(B14)b(t,T) = Y. a,<.t,T)(-y,(t,S......Sn))
i=l

where y-t (t;Sj,...,Sn) is the market price of risk associated with the random factor 

Wj and the vector of bonds {Sj,...,Sn). The left hand side of (B14) is the 

instantaneous excess expected return on the bond maturing at date T over the risk

free rate while the right hand side is the sum of the market price of risk for factor i 

times the instantaneous covariance between the T-maturity bond’s return and the ith 

random factor for i = If equation (B14) holds then Girsanov’s theorem6

guarantees the existence of an equivalent martingale probability measure which is 

unique. Its uniqueness leads to the following results ( HJM (1992), Proposition 

3,pp.86-87): (i) a bond’s price depends on the forward rate drifts, the initial 

forward rate curve, and the forward rate volatilities; (ii) the market price of risk is 

equal across all bonds of all maturities; and (iii) there is a restriction of the forward 

rate drifts in order to guarantee the existence of a unique equivalent martingale 

probability measure, and this is known as the HJM no-arbitrage condition:

n

a(f,7) = o.(f,7)
i=l

If the volatility structure is chosen to satisfy (B15) then the market price of risk 

does not enter the bond pricing equation. This is the essence of their argument that 

" the bond price process, spot rate process, and the market price of risks cannot be 

chosen independently" (HJM (1992), p.88-89). To characterise the term structure

6 Girsanov (1960, pp. 285-301).

Y ,-(0 " f o ft,v)dv (B15)
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relative to an earlier date requires knowledge of the entire path the spot rate 

followed in reaching the present value. In addition to the path being non 

observable, the HJM spot rate process is in general non-Markov (Hull (1993), 

pp.400-401), which makes the HJM model very slow computationally. In short, the 

theoretical generality of the HJM model is a major strength but additional structure 

need be imposed at the practical level.

(iii) Modelling the spot rate

Hull and White (1990) extend the CIR interest rate process by adding a time 

dependent term, a(t), to the drift and by making the volatility and the mean 

reverting rate time dependent so that o{r,t) = o(t) and k = n(t):

dr = [a(t)+K(t)(d-r)]dt + o(t)r0dz (B16)

The stochastic process of equation (B16) incorporates those of the Vasicek model 

(1977) for (3 = 0 and Cox, Ingersoll and Ross (1985b) for (3 = 0.5. Hull and 

White (1990) apply the process specified by (B16) to the partial differential 

equation of CIR (1985a) which must be satisfied by any contingent claim that 

depends upon the short rate, r. Hence they derive two bond pricing formulae 

corresponding to the Vasicek interest process and CIR interest process, which are 

referenced to as the extended Vasicek and CIR models respectively. The extended 

Vasicek model is given by:
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P(r,t,T) = A(t,T)exp(-B(t,T)r)

B(t,T) [l-exp(-/c(r-0)]
(B17)

A(t,T) = exp B(t,T)-T+t) (/c0-cr/2) (rB(t,T)2
k2 4 K

0(0 = k(0# + a(t) - \(t)o(t)

while the extended CIR model is given by:

P(r,t,T) = A(t,T)exp(-B(t,r)r)

B(t,T) 2(ey^-l)
(7+0)(^(r-')-l)+27

A(t,D
2yeh^){T'l)/2

(7 +^)(e y{T~l) -1) +2y

2 <t>/(T (B18)

0(0 = K(t)d+a(t)

0(0 = ic(t)+\(t)o(t)

Essentially the Hull and White (1990) model is a version of the Ho and Lee (1986) 

model in continuous time with mean reversion. Thus, it overcomes the non-Markov 

problem of the HJM model and also allows a richer description of the volatility 

structure while preserving the analytical tractability of the Ho and Lee model.7

As noted previously the choice of an information set to characterise the term 

structure depends on the belief in what drives the term structure, namely the state 

variable. Thus, Black, Derman and Toy (1990) concentrate on modelling the spot 

rate and use the term structure to price bond options and to determine option hedge 

rations. The Black, Derman and Toy’s spot rate is assumed to: (i) drive the prices 

of all securities; (ii) be lognormally distributed8 ; and (iii) move through time in a 

binomial tree (in discrete time). This spot rate process has a continuous time

7 see Hull (1993), pp.398-410.

8 The lognormal assumption is made to preclude negative interest rates. This is particularly 
desirable from the practitioner’s point of view where nominal interest rates are non-negative.
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version9:

dlog(r) = [0(0 ~(f)(t)\ogr\dt+a(t)dz (B19)

where r is the local interest rate and o(t) depends on The current structure of 

long-term rates and their estimated volatilities characterise the current term 

structure as long as the tree of the spot rate goes out far enough into the future. 

The spot rate is inferred from the structure of yields of zero-coupon Treasury 

bonds and their volatilities such that the model’s term structure matches today’s 

current market term structure.

Generally assumptions underlying an economic model are guided by little 

more than common sense or some empirical facts. Thus, relaxing or varying a 

model’s assumptions is considered a valid exercise to determine the robustness of 

the model. In this context mean reversion is often desired for its perceived 

conformity to some notion of equilibrium. Hence the process (B19) is slightly 

modified by Black and Karasinski (1991) :

d(logr) = 0(O[log/x(Z) -\ogr]dt+o(t)dz (B20')

where /x(r) is the target rate of interest, is the mean reversion factor and a(t) is 

the local volatility of the local change in log(r)10. The modification is aimed at 

accounting for the adjustment of the spot rate to its target level. The Black, 

Derman and Toy model overcomes the problem of negative interest rate and the 

Black and Karasinski model incorporates mean reversion but both are not

9 The model is initially derived in discrete time.

1(1 fx(t) and 0(0 are allowed to vary deterministically through time.
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analytically tractable11.

If n(t) and <j>(t) are known (inputs) then the Black-Karasinski model will 

provide estimates of: (i) the current term structure; (ii) the current term structure 

volatility; and (iii) the cap curve which is the price of an at-the-money differential 

cap for each maturity)12. Alternatively /x(f), </>(£), and a(t) can be chosen to match 

known outputs, namely observed term structure, term structure volatility curve and 

cap curve.

The HJM’s (1992) and Hull and White’s (1990) characterisations of the 

preference free term structure are based on different information sets: the former 

requiring the forward rate structure while the latter requires the spot rate process. 

Jeffrey (1992) integrates these two characterisations into a partial differential 

equation representation and rederives the HJM no arbitrage condition assuming the 

spot interest rate is a single factor Markov process and the term structure is a 

function of this rate. Thus, he provides an alternative characterisation to HJM’s 

(1992) and Hull and White’s (1990). Further he suggests a class of forward rate 

volatility structures that are consistent with the preference free representation of the 

term structure. This class is characterised by the volatility of the forward rate at 

time t for date T and is proportional to the spot interest rate volatility at time t. 

Jeffrey demonstrates that if the HJM single-factor model is driven by a Markovian 

spot rate process, then it is not possible to arbitrarily choose the volatility structure 

or the functional forms of the initial forward rate structure. This implies that the

11 With the advance of computing power the appeal of a closed form solution is not crucial.

12 A differential cap pays at a rate equal to the difference (if positive) between the short rate and 
the strike price.
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Markovian spot rate based HJM framework does not have the same richness as the 

general equilibrium models13. In short, the generality of the preference free 

approach is seriously curtailed in terms of practical implementation. Jeffrey’s major 

contribution is that he provides a solution technique in the form of a non linear 

partial differential equation to characterise the preference free term structure if the 

spot rate (state variable) is Markovian. Thus, implementability is achieved at the 

expense of generality14.

BII. EMPIRICAL EVIDENCE

Empirical tests of preference free models are limited in number despite their 

popularity among capital market practitioners. As these models are specifically 

developed to price interest rate derivative securities it is appropriate to use market 

prices of these securities in empirical tests. This also implies that the models are 

usually tested with short-term data as traded interest rate options and futures 

characteristically have a maturity of less than a year. With the exception of one 

study15 where maximum likelihood is used , GMM appears to be the preferred 

technique.

Ho and Lee (1990) develop bond options and bond futures options models 

based upon Ho and Lee (1986). The futures option model is tested on 90-day

13 The choice of the forward volatility structure is restricted if the spot rate is Markovian. Of 
course, if the spot rate is non-Markovian (by assumption or observation) then term structure research 
would belong to a different paradigm of investigation, for example non-linear dynamics or chaos.

14 HJM do not provide a partial differential equation representation of the term structure because 
they do not preclude the possibility that the forward rate may be non-Markovian. They only provide 
an intertemporal relation, via the dynamics of the forward rate, among term structures that ensures no 
arbitrage if one starts at the current term structure.

15 The exception is Brenner (1989)
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Eurodollar futures options from April 10, 1985 to May, 1985. Estimates of the 

parameters 7r and 516 are significantly different from 1.0 with t-ratios in the order 

of 102 and 105 respectively. Compared to the Black (1976) futures option model Ho 

and Lee (1990) report smaller within-sample estimation errors (sum of the squares 

of the residuals) and absence of pricing biases with respect to moneyness and time 

to maturity. While the Black (1976) model assumes a constant risk free rate, the 

Ho and Lee (1990) incorporates interest movements of Ho and Lee (1986), and 

hence providing a better fit to the observations of options and futures.

Brenner (1989) tests an N factor HJM model for a class of HJM volatility 

functions on US Treasury bills using maximum likelihood estimation. He also 

recasts the CIR (1985b) and Vasicek (1977) models in terms of forward volatilities 

and then makes an empirical comparison of CIR, Vasicek and two HJM models 

based upon constant and exponentially decaying volatility. Brenner found: (i) one 

factor is sufficient in explaining short term T Bills; and (ii) HJM based models fit 

the data better than CIR and Vasicek models. Despite the results in favour of the 

HJM framework he also notes that ’the differences in the results could solely be the 

function of numerical estimation and precision problems’(Brenner(1989),p. 167). 

This is the twin problem of statistical robustness and computation in testing highly- 

nonlinear models. In particular, weaknesses of this study include: (i) the data are 

exclusively short term, and thus lose a great deal of information available in longer 

term bonds; and (ii) the data often violates the normality assumption (Brenner,

16 As usual the value of an option depends on its own parameters and those of the underlying 
asset. In this case 7r and 5 are the parameters of the term structure volatility. If ir = 1.0 or <5 = 1.0 
then there is no interest rate volatility. 7r and <5 are found by minimising the sum of the squares of the 
residuals where a residual is the difference between the market price and model price of a discount 
bond of a given maturity.
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p. 182) and hence the use of the maximum likelihood estimation method for model 

comparison is not valid.

As noted above, in the HJM framework the entire term structure is 

characterised by the initial term structure and the volatility structure of forward 

rates. As the volatility functions cannot be chosen arbitrarily, instead they have to 

be specified to be consistent with no arbitrage. HJM (1992) suggest a class of three 

such volatility functions which are discretised and tested by Thurston (1992) on a 

set of weekly U.S. T-Bill data from 15/2/68 to 30/5/91 using the Generalised 

Method of Moments17. One of these volatility functions is equivalent to that of the 

continuous time version of Ho and Lee18 (1986). Overall, Thurston (1992) reports 

that the Ho and Lee (1986) volatility function best fits the data. However, 

Thurston’s evidence should be judged in the non-parametric GMM estimation 

framework which yields weaker results than traditional statistical procedures.

17 In addition, Thurston (1992) also tests a square root volatility function suggested by Brenner 
(1989)

18 Ho and Lee (1986) is a discrete time model.
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