
Towards High-Level Specification, Synthesis, and
Virtualization of Programmable Logic Designs

Author:
Diessel, Oliver; Malik, Usama; So, Keith

Publication details:
Towards High-Level Specification, Synthesis, and Virtualization of
Programmable Logic Designs: Lecture Notes in Artificial Intelligence, Volume
2400
pp. 314-317
9783540440499 (ISBN)
0302-9743 (ISSN)

Event details:
Euro-Par 2002: 8th International Euro-Par Conference
Paderborn, Germany

Publication Date:
2002

Publisher DOI:
http://dx.doi.org/10.1007/3-540-45706-2_41

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39665 in https://
unsworks.unsw.edu.au on 2024-04-25

http://dx.doi.org/http://dx.doi.org/10.1007/3-540-45706-2_41
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39665
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Towards High-Level Specification, Synthesis, and

Virtualization of Programmable Logic Designs

Oliver Diessel, Usama Malik and Keith So

School of Computer Science & Engineering
University of New South Wales

UNSW Sydney NSW 2052
Australia

Abstract. Current FPGA design flows do not readily support high-
level, behavioural design or the use of run-time reconfiguration. Designers
are thus discouraged from taking a high-level view of their systems and
cannot fully exploit the benefits of programmable hardware. This paper
reports on our advances towards the development of design technology
that supports behavioural specification and compilation of FPGA designs
and automatically manages FPGA chip virtualization.

1 Introduction

A significant barrier to the wider adoption of reconfigurable computing is the
problem of mapping applications into circuit structures that can easily be im-
plemented on a given FPGA device. Ideally we should be able to describe the
desired functionality of hardware or its components, and have a compiler map
these specifications into effective logic allocations and reconfiguration schedules.
Being oriented towards static hardware configurations, current FPGA design
flows do not support such dynamic circuit design and configuration.

Our research aims to identify the key techniques and principles that under-
lie the design of suitable languages and compilers for the high-level design and
implementation of run-time reconfigurable applications. We are currently inves-
tigating how to model and express the parallelism inherent in FPGA circuits and
how to implicitly control run-time reconfiguration in an abstract and machine
independent manner.

For a number of reasons, we have so far focused on the use of a process algebra
as the high-level specification language [7]. Process algebras (PAs) are simple
yet powerful formalisms in which it is easier to explore fundamental language
issues than with hardware description languages and programming languages.
PAs are well-suited to the behavioural description of interacting finite state
machines, and as such can be used to model control-parallel and systolic FPGA
applications. Furthermore, there is the hope that a top-down, hierarchical, and
modular focus, as emphasized by a PA such as Circal, will aid logic synthesis
because ever more complex structures may be built through assembly, while the
effort required to design each module remains relatively constant.



Our approach differs from other efforts to develop high-level programming
languages for reconfigurable computing, which commonly augment sequential
languages such as C, C++, and Java with support for data-parallel operations
and hardware layouts [1, 6, 2, 9]. While such languages have been sucessfully
used to design efficient applications, they emphasize a signal-oriented view of
computation, do not allow concurrency to be expressed naturally, and they do
not attempt to target the run-time reconfigurable capabilities of the hardware.
Our goal is to model the capabilities of the hardware in order to have a well-
understood target for compilers that can exploit those capabilities and languages
that allow them to be expressed.

2 An FPGA interpreter for Circal

In [3] we described a compiler that derives and implements a digital logic repre-
sentation of high-level behavioural descriptions of systems specified using Circal.
At the topmost design level, the circuit is clustered into blocks of logic that cor-
respond to the processes (individual finite state machines) of a system. The
process logic blocks implement circuits with behaviours corresponding to the
component processes of the specification. Below the process level in the hierar-
chy, the circuits are partitioned into component circuit modules that implement
logic functions of minor complexity. The circuit modules are rectangular in shape
and are laid out onto abutting regions of the array surface, allowing signals to
flow from one module to another via aligned ports.

The current implementation of the compiler targets the Virtex chipset [10],
which is substantially more coarse-grained, operates at considerably higher fre-
quencies, and is availble in much greater logic densities than the original Xilinx
XC6200 target. Module placement follows a decomposition approach similar to
that of the XC6200-based compiler, albeit with an arrangement that utilizes the
fast logic cascade chains and the enriched routing fabric available on Virtex,
while taking into account that partial reconfiguration is column-oriented.

2.1 Developing support for run-time deployment of Circal models

The compiler may produce circuits that cannot be implemented because they
are too large for the available FPGA resource. We have therefore developed
support for automatically partitioning the circuit and swapping the resulting
partitions with those on chip so as to give the effect of having enough FPGA
area to implement circuits of any size.

The approach we are exploring is to insert a virtual hardware manager
(VHM) between the front-end of the compiler, which derives a hardware inde-
pendent representation of the circuit in a modularized form, and the back-end,
which maps and places these modules onto a particular FPGA. In doing so, we
preserve some off-line features of a compiler, and incorporate some of the on-line
functions of an interpreter. The VHM stores the circuits off-chip in a state tran-
sition graph form. When a new partition is needed, the module parameters for



the corresponding sub-graph are passed to the back-end for bitstream generation
and loading. The back-end makes use of the JBits API for configuring the device
[4].

The FPGA area is partitioned into regions that are reserved for holding the
logic for a single porcess. The area provided is large enough to implement the
logic for a single state in the worst case. We attempt to provide sufficient space
to map a sizable portion of the state transition graph by expanding the area
allocated to each process. At initialization, the VHM selects a sub-graph rooted
at the initial state for each process. The graph is traversed in a breadth-first
manner in order to identify the amount of logic that can be accommodated
on chip. To avoid backtracking, the search is guided by circuit size estimates
based on the number of transitions each included state adds to the sub-graph.
The identified sub-graph is then given to the back-end which maps it to the
FPGA. When a state transition leads to a state that lies on the boundary of the
implemented sub-graph, an exception is generated and the VHM selects a new
sub-graph rooted at the boundary state.

2.2 Example

Controller throttle

status 

cruise

signals

controls control
signals

setting
speed

Speed

Cruise 
Controller

StandBy

Cruising

InActive

Active

engineOff engineOn

engineOff

engineOff

resume

onaccelerator

brake

off
on

on

(a) (b)

Fig. 1. (a) A cruise control system; (b) Cruise Controller graph [5]

Figure 1(a) depicts a cruise control system for an automobile. The system
consists of a Cruise Controller and a Speed Controller. Inputs are provided by
sensors not shown in the diagram. In Figure 1(b) we model the Cruise Controller
process. Suppose the area avilable to this process suffices to implement the com-
plete transition logic for 2 states together with any outedges from these leading
to a boundary state. In that case, the initial partition includes the Inactive and
Active states, as well as the state flip-flop for the Cruising state. When the
Cruising state is entered, an exception is triggered, and a new sub-graph con-
sisting of the Cruising and Standby states is configured, together with a state
flip-flop for the Inactive state.

The Virtex compiler needs 7 columns and 5 rows of configurable logic blocks
(CLBs) to implement the complete state graph. The interpreter allows the first



partition to be implemented in 4 columns and 4 rows and the second partition
to be implemented in 5 columns and 4 rows. Reconfiguring the 5 columns takes
about 1.25ms on an XCV1000 chip, which contains 64 rows and 96 columns of
CLBs altogether. The time to generate the partition is likely to be larger.

Reconfiguration delays are expected to be amortized in practice by aligning
processes on top of each other. The stack of processes could thus be reconfig-
ured with a single frame update. In order to reduce the cost of generating the
partitions, they might be cached once generated in case they are to be used once
more.

3 Future Work

In its current form, Circal is suited to the specification of control-flow applica-
tions like logic controllers, protocols checkers, and cellular automata. In order
to fully exploit the capabilities of modern high density FPGAs, support for dat-
apath designs must be provided by Circal. One approach we intend to pursue is
to consider building a domain specific language into which the control features
developed with Circal are embedded.

References

1. M. Aubury, I. Page, G. Randall, J. Saul, and R. Watts. Handel-C Language Refer-
ence Guide. Oxford Univerity Computing Laboratory, Oxford, UK, Aug. 1996.

2. P. Bellows and B. Hutchings. JHDL — An HDL for reconfigurable systems. In
Pocek and Arnold [8], pages 175 – 184.

3. O. Diessel and G. Milne. A hardware compiler realizing concurrent processes
in reconfigurable logic. IEE Proceedings — Computers and Digital Techniques,
148(4):152 – 162, Sept. 2001.

4. S. A. Guccione and D. Levi. XBI: A java-based interface to FPGA hardware. In
J. Schewel, editor, Configurable Computing: Technology and Applications, Proc.
SPIE 3526, pages 97–102. SPIE – The International Society for Optical Engineer-
ing, Nov. 1998.

5. J. Magee and J. Kramer. Concurrency: State Models & Java Programs. Worldwide
Series in Computer Science. John Wiley & Sons, New York, NY, 1999.

6. O. Mencer, M. Morf, and M. J. Flynn. PAM–Blox: High performance FPGA design
for adaptive computing. In Pocek and Arnold [8], pages 167 – 174.

7. G. J. Milne. CIRCAL and the representation of communication, concurrency, and
time. ACM Transactions on Programming Languages and Systems, 7(2):270 – 298,
Apr. 1995.

8. K. L. Pocek and J. M. Arnold, editors. The 6th Annual IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM’98), Los Alamitos, CA, Apr.
1998. IEEE Computer Society Press.

9. G. Snider, B. Shackleford, and R. J. Carter. Attacking the semantic gap between
application programming languages and configurable hardware. In FPGA’01 Ninth
International Symposium on Field Programmable Gate Arrays, pages 115 – 124,
New York, NY, Feb. 2001. ACM Press.

10. Xilinx. Virtex 2.5V Field Programmable Gate Arrays. Xilinx, Inc., Oct. 2000.
Version 1.3.


