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Abstract

A fingerprint is a type of oriented texture on a fingertip with locally smooth

and intervening ridges and valleys. It is characterized to be both unique and

permanent, which makes it become the most practical and widely used biometric

technique since 1980s. Over the last decade, computer technology has facilitated

both the capturing and processing of fingerprint data. Therefore, automated fin-

gerprint identification and verification systems are widely used in commercial and

security applications, such as access control and denial operations, and criminal

identifications.

To narrow down the candidate list before matching, the theory of ‘fingerprint

indexing’ was developed. Fingerprint indexing uses feature vectors to describe

fingerprints. Through similarity preserving transformations, these feature vectors

form a multidimensional feature space, where similar fingerprints characterized

by similar features are arranged as neighbors in the feature space. For retrieval

or identification, the query fingerprint is mapped into a point in the same feature

space, and the neighboring fingerprints are compared one by one until a match

is found.

A number of fingerprint indexing schemes have been proposed based on dif-

ferent fingerprint features. However, most of these existing fingerprint indexing

schemes are not applicable to partial fingerprint identification. This is because

partial fingerprint images have some parts missing and the missing parts are

simply ignored (considered void). The resulting feature vector will therefore end

up having too many void entries and will subsequently lose its similarity to the

feature vector generated by the full fingerprint.

Therefore, it is extremely challenging to identify a partial fingerprint against

a large database due to the inability to narrow down the candidate list for partial

fingerprint verification. Furthermore, the traditional capture of fingerprints based
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on the contact of the finger on a solid plane results in partial or degraded images

due to improper finger placement, skin deformation, slippage and smearing, or

sensor noise from wear and tear of surface coatings. The development of latest

sensor technology allows us to acquire fingerprints with 3D fingerprint sensors.

The difference resulted from multi-type sensors significantly affects the charac-

teristics of the raw data, the extracted features and subsequently the indexing

performance. It is also a challenging issue to exploit proper features or indexing

algorithms for multi-sensor fingerprint indexing.

In this thesis, we aim to devise effective indexing schemes for partial fin-

gerprint identification against very large scale databases. Furthermore, we have

also acquired databases using multi-sensors and developed indexing techniques for

traditional 2D images and the 3D images of fingerprints that have been generated

by the new generation of touchless live scan devices. The main contributions of

this thesis are listed as follows:

• For partial fingerprint indexing, we propose to combine both local features

and global features. We design some novel features of minutiae triplets in

addition to some commonly used features to constitute the local minutiae

triplet features. Experiments carried out on FVC 2000 DB2a, FVC 2002

DB1a and NIST SD 14 demonstrate the performance improvement after

adding the new features to the minutiae triplet feature set. We then propose

to combine a reconstructed global feature and local minutiae triplet features

to improve the performance of partial fingerprint indexing. Specifically, the

minutiae triplet based indexing scheme and the FOMFE coefficients based

indexing scheme are applied separately to generate two candidate lists, then

a fuzzy-based fusion scheme is designed to generate the final candidate list

for matching. Experiments carried out on the public database NIST SD

14 show that the proposed approach can improve the performance that has

been achieved by individual partial fingerprint indexing algorithms before

fusion.

• We have collected a multi-sensor fingerprint database to investigate the

3D fingerprint biometric comprehensively. It consists of 3D fingerprints as

well as their corresponding 2D fingerprints captured by two commercial

fingerprint scanners from 150 subjects in Australia. Also, we have tested

the performance of 2D fingerprint verification, 3D fingerprint verification,
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and 2D to 3D fingerprint verification using different 3D images, such as

raw 3D images, contrast enhanced raw 3D images, cropped raw 3D images,

enhanced 3D images, and post-processed enhanced 3D images. The results

show that more work is needed to improve the performance of 2D to 3D

fingerprint verification and 3D fingerprint enhancement. In addition, the

database has been released publicly for research purposes since 2015.

• For multi-sensor fingerprint indexing, we propose a finer hash bit selection

method based on Locality-Sensitive Hashing (LSH) and Minutia Cylinder-code

(MCC). That is, we divide the hash bit vectors, selected by LSH using a

sliding window, into finer sub-vectors with certain fixed length, and then

convert these sub-vectors into numerical approximations for MCC indexing.

Also, we take into consideration another feature - the single maximum col-

lision for indexing and fuse the candidate lists produced by both indexing

methods to produce the final candidate list. Experimentations carried out

on our collected multi-sensor fingerprint database show that the proposed

indexing approach greatly improves the performance of fingerprint index-

ing. Evaluation was also conducted on some public benchmark databases

for fingerprint indexing, and the results demonstrate that the new approach

outperforms existing ones in almost all the cases.
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Introduction
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2 CHAPTER 1. INTRODUCTION

1.1 Overview

Fingerprint recognition has been the most practical and widely used biometric

technique since 1980s. Over the last decade, computer technology has facili-

tated both capturing and processing of fingerprint data. Therefore, automated

fingerprint identification and verification systems are widely used in commercial

and security applications, such as access control and denial operations, criminal

identifications, and the emerging bio-cryptography [1][2][3][4][5][6].

Fingerprint verification or authentication is the process used to verify whether

a fingerprint sample matches a specific fingerprint stored in a database. It is a

one-to-one matching. Fingerprint identification is the process used to identify an

unknown person by searching a fingerprint database for a match of the input.

It is the case of one-to-many comparisons which is commonly infeasible with

large databases of fingerprints. Figure 1.1 illustrates the process of fingerprint

identification.

Conventional fingerprint identifications from large databases are based on

classification techniques whereby fingerprints are first classified into several class-

es to reduce the search space. The U.S. national standards ANSI/NIST [11] has

classified 14 fingerprint pattern classes for automated fingerprint identification,

such as arch, loop and whorl (the main patterns are shown in Figure 1.2). Such

Figure 1.1: The process of fingerprint identification
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Figure 1.2: The main types of fingerprint pattern

exclusive classification based schemes have a fundamental drawback, namely that

more than 90% of the fingerprints belong to only three classes (loops and whorl)

due to the unevenly distribution of fingerprints. Hence the number of comparisons

required to perform within one of the super classes can still be very big. Further-

more, due to the small inter-class variance and the large intra-class variance, we

may have ambiguous fingerprints that are intrinsically difficult to classify even

by human experts.

To address these problems, the theory of ‘fingerprint indexing’ (also called con-

tinuous classification) was developed, whereby instead of classifying fingerprints
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Figure 1.3: Fingerprint features

into limited and predefined classes, fingerprint indexing techniques use feature

vectors to describe fingerprints. Fingerprint features are generally categorized

into three levels (see Figure 1.3):

• Level 1: global features that are the macrodetails of the fingerprint such as

friction ridge flows, singular points, and pattern type.

• Level 2: local features such as ridge skeletons, ridge bifurcations and endings

(namely minutiae). Minutiae are generally stable and highly distinctive.

• Level 3: very-fine features including ridge contours, sweat pores, dots, and
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Figure 1.4: Fingerprint indexing

incipient ridges whose robust extraction needs high-resolution images (1,000

ppi) compared to the current FBI standard of 500 ppi.

Through similarity preserving transformations, the feature vectors form a feature

space where similar fingerprints characterized by similar features are arranged as

neighbours in a multidimensional feature space. For retrieval or identification,

the query fingerprint is mapped into a point until a match is found (see Figure

1.4).

A number of fingerprint indexing schemes have been proposed. Lumini et

al. [21] first proposed the idea of indexing for fingerprint identification using the

orientation field. Cappelli et al. [14] used fingerprint prototype masks to gen-

erate feature vectors and studied several different strategies. Not only the level

one ridge features are primarily used for fingerprint indexing, some other features

have also been investigated. Bhanu and Tan [13] proposed to index fingerprints

using minutiae triplets. Boer et al. [12] investigated the use of the orientation

field, FingerCode and minutiae triplets as the input feature vectors and concluded

that the orientation field performs the best if only a single type of feature were

to be used. Wang et al. [8] proposed the FOMFE (a fingerprint orientation

model based on 2D Fourier expansion) model based fingerprint indexing algo-
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rithm, which has achieved the fastest feature generation speed and an excellent

searching performance. However, all these existing fingerprint indexing schemes

are not applicable to partial fingerprint identification. This is because partial

fingerprints have some parts missing and the missing parts are simply ignored

(considered void). The resulting feature vector will therefore end up having too

many void entries and will subsequently lose its similarity to the feature vector

generated by the full fingerprint.

Therefore, it is extremely challenging to identify a partial fingerprint against a

large database due to the inability of narrowing down the candidate list for partial

fingerprint verification. Furthermore, the traditional capture of fingerprints based

on the contact of the finger on paper results in partial or degraded images due

to improper finger placement, skin deformation, slippage and smearing, or sensor

noise from wear and tear of surface coatings. Contact-less biometric recognition

performed using three-dimensional (3D) fingerprint models has the advantage

of mitigating these problems. Therefore, recently there has been a major ini-

tiative supported by various government agencies for acquiring high quality 3D

fingerprints using different techniques [7][8].

1.2 Problem Statement

Most recently Yi Wang et al. [9] introduced the idea of model-based partial

fingerprint identification which has shown promising results. Encouraged by this

preliminary progress, this research aims to devise effective indexing schemes for

partial fingerprint identification against very large scale databases. Furthermore,

we plan to acquire databases and develop identification techniques for the new

generation of touchless live scan devices which generate 3D images of fingerprints.
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The details concerning these problems are as follows:

i).Algorithm design for partial fingerprint indexing

Conventional approaches assume that the blank areas of a partial fingerprint

provide no information and they solely rely on the available data of the partial

segments [10]. Unfortunately in most cases the available partial segments may

not contain enough ridge details to ensure the normal operational condition of the

matching process. As a matter of fact, it is observed that the matching error usu-

ally increases as the number of detected local features decrease [11]. The FOMFE

model [12] which uses the global feature for indexing cannot be directly appli-

cable to partial fingerprint identification, because the resulting FOMFE model,

when trained from a limited partial fingerprint segment, might not converge close

enough to the final FOMFE model which results from the full fingerprint data

training. We plan to incorporate local features such as minutiae that are available

in the partial fingerprint segment to improve the indexing performance. We will

also explore other possible features and advanced feature or decision fusion theory

for partial fingerprint indexing.

ii).Acquisition of a multi-sensor fingerprint database

One barrier to experimental validation and comparison of algorithms in new

biometric research areas is the lack of appropriate databases. To the best of our

knowledge, in the domain of fingerprint biometric, there has been no 3D full fin-

gerprint database with their corresponding 2D fingerprints publicly available. We

therefore intend to build a 3D fingerprint database for algorithm validation and

testing. The large size of the database will provide meaningful statistical analysis

and a truthful assessment of the performance of the state-of-the-art algorithms
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in this area. Also, we plan to collect samples of corresponding 2D fingerprints.

Our database can then serve as a standard database for developing identifica-

tion techniques for 2D to 3D images of fingerprints. The resolution of these

identification issues will require an innovative approach which will significantly

advance research in the area of biometrics. It will also lead to the development

of important commercial products.

iii).Algorithm design for multi-sensor fingerprint indexing

The difference resulted from multi-type (2D and 3D in this research) fingerprint

sensors significantly affects the characteristics of the raw data, the extracted

features and subsequently the indexing performance. Only limited research has

been carried out on the scale of impact [13][14] or non-linear distortion [15][16]

in multi-sensor matching. It is still a challenging issue to exploit proper features

or indexing algorithms for multi-sensor fingerprint indexing.

1.3 Thesis Contributions

This section summarizes the major contributions of this research.

• For partial fingerprint indexing, we proposed to combine both local features

and global features. We design some novel features of minutiae triplets in

addition to some commonly used features to constitute the local minuti-

ae triplet features. Experiments carried out on FVC 2000 DB2a, FVC

2002 DB1a and NIST SD 14 demonstrate the performance improvement

after adding the new features to the minutiae triplet feature set. We then

propose to combine the reconstructed global feature and local minutiae

triplet features to improve the performance of partial fingerprint indexing.
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Specifically, the minutiae triplet based indexing scheme and the FOMFE

coefficients based indexing scheme are applied separately to generate two

candidate lists, then a fuzzy-based fusion scheme is designed to generate

the final candidate list for matching. Experiments carried out on the pub-

lic database NIST SD 14 show that the proposed approach can improve

the performance that has been achieved by individual partial fingerprint

indexing algorithms before fusion.

• We have collected a 3D fingerprint database to investigate the 3D finger-

print biometric comprehensively. It consists of 3D fingerprints as well as

their corresponding 2D fingerprints captured by two commercial fingerprint

scanners from 150 subjects in Australia. We have also tested the perfor-

mance of 2D fingerprint verification, 3D fingerprint verification, and 2D

to 3D fingerprint verification using different 3D fingerprint images, such

as unraveled 2D equivalent images and the enhanced ones. The results

show that the cropped enhanced 3D images based on singular points can

achieve the best performance regarding 2D to 3D fingerprint verification,

and we choose those images as the standard 3D images for the subsequent

experiments. In addition, we released the database publicly in 2015.

• For multi-sensor fingerprint indexing, we propose a finer hash bit selection

method based on LSH. That is, we divide the hash bit vectors, selected by

LSH using a sliding window, into finer sub-vectors with certain fixed length,

and then convert these sub-vectors into numerical approximation for MCC

indexing. We also take into consideration another feature - the single max-

imum collision for indexing and fuse the candidate lists produced by both

indexing methods to produce the final candidate list. Experimentations car-
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ried out on our collected multi-sensor database (2D and 3D databases) show

that the proposed indexing approach greatly improves the performance of

fingerprint indexing. Evaluation was also conducted on some public bench-

mark databases for fingerprint indexing, and the results demonstrated that

the new approach outperforms existing ones in almost all the cases.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents the literature

review on state-of-the-art fingerprint indexing approaches and 3D fingerprint

technology. Chapter 3 presents the indexing approach for partial fingerprint.

Chapters 4 describes the 2D and 3D fingerprint databases we have collected and

analyzes the performance of 2D to 3D fingerprint recognition. The indexing

approach for multi-sensor fingerprints is illustrated in Chapter 5, and Chapter 6

summarizes this research and suggests some important problems to be solved in

the future.
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State-of-the-art fingerprint indexing methods can be classified into several

categories based on the features used in these approaches, such as global fea-

tures, local features, or the combination of these. This chapter first discusses

the state-of-the-art fingerprint indexing techniques, followed by a comprehensive

introduction to the latest 3D fingerprint technology.

2.1 Fingerprint Indexing Schemes

2.1.1 Fingerprint Indexing Based on Global Features

i).Orientation Field-Based Fingerprint Indexing

Lumini et al. [17] presented a new approach for continuous fingerprint classifica-

tion for the first time. The basic principle of their approach was the characteri-

zation of the fingerprints with vectors in a multidimensional space. In particular,

the directional image was calculated and registered in the same way and each fea-

ture vector was computed by using the Karhunen-Loeve (KL) transform which

mapped 1680-element vectors in a lower dimensional space. They compared two

different approaches for fingerprint classification and evaluated their capability

for latent fingerprint retrieval in large databases. Two different methodologies

for latent fingerprint retrieval were considered and implemented both with an

exclusive and continuous classification. The results obtained showed that better

performance could be achieved, in both the methodologies, through the continu-

ous approach.

Cappelli et al. [18] introduced a new approach to automatic fingerprint clas-

sification. The directional image was partitioned into ‘homogeneous’ connected

regions according to the fingerprint topology, thus giving a synthetic representa-
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tion which could be exploited as a basis for the classification. A set of dynamic

masks, together with an optimization criterion, were used to guide the parti-

tioning. At the same time, the adaptation of the masks produced a numerical

vector representing each fingerprint as a multidimensional point, which could be

conceived as a continuous classification. Experimental results carried out on the

most commonly used fingerprint databases showed that, with fingerprint retrieval

based on continuous classification, their method gave the best performance and

exhibited a very high robustness.

Jiang, Liu and Kot [19][20] proposed a fingerprint indexing scheme which used

orientation field as the main retrieval feature, and the dominant ridge distance

that had very low correlation with minutiae as an auxiliary feature. A new dis-

tance measure was also proposed that better quantified the similarity evaluation

between two orientation fields than the conventional Euclidean and Manhattan

distance measures. In addition, a variable search tolerance was introduced for

more efficient retrieval. Furthermore, they proposed to partition the data base in-

to clusters to avoid the exhaustive comparisons. This made the proposed method

applicable to large databases and comparable to the widely studied exclusive

classification in terms of the retrieval speed. Experiments and comparisons with

other approaches on the NIST database 4 showed the feasibility of the proposed

approaches. A problem of the proposed framework is its dependency on the

accuracy and robustness of the reference point detection. In fact, a substantial

portion of the retrieval errors is caused by the falsely or inconsistently detected

reference point due to poor fingerprint quality.

Liu et al. [21] proposed an efficient fingerprint indexing algorithm using the

registered orientation fields (OFs) as feature vectors to measure the similarity

of fingerprints. The registration was performed based on a novel feature of the
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fingerprint, namely local axial symmetry (LAS), which could correct the loca-

tion and direction estimation of a reference point. Experimental results showed

this indexing scheme could remarkably reduce the workload of the fingerprint

authentication system and its efficiency could be consistently promoted when the

training set grew larger.

Li et al. [22] proposed a fingerprint indexing approach employing three kinds

of symmetrical filters, which were the core type filter, the delta type filter and the

parallel type filter, to map the orientation fields of different fingerprints into three

different feature spaces. The magnitudes of the filters’ response were extracted

and a distance measure was formulated to compute the distance to each destina-

tion pattern for fingerprint indexing. The experimental results showed that the

proposed method was effective in performing fingerprint indexing. Furthermore,

the filters could be separated into two one-dimensional filters, which made the

feature extraction process very fast.

Liu et al. [23] proposed an invariant representation of orientation fields based

on a set of Polar Complex Moments (PCMs) for fingerprint indexing. PCMs were

capable of describing fingerprint orientation patterns including singular regions

and restoring spurious orientations in noisy fingerprints. Unlike most indexing

schemes using the raw orientation data, a set of rotation moment invariants were

derived from PCMs to form a compact feature vector, which was beneficial for

clustering-based fingerprint indexing. Experiments on NIST DB4 and FVC 2002

Db1a demonstrated the effectiveness of the proposed invariant representation

for fingerprint indexing. The PCMs-based features derived from orientation field

have low correlation with the ridge frequency and minutiae features of fingerprint,

which can be integrated to further improve the indexing performance.

In [12] Wang et al. proposed a fingerprint orientation model based on 2D
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Fourier expansions (FOMFE) in the phase plane. The FOMFE did not need

any prior knowledge of singular points. It was able to describe the overall ridge

topology easily, including the Singular Point regions, even for noisy fingerprints.

The FOMFE provided a detail description for orientation features, which en-

abled its profitable use in feature-related applications such as fingerprint indexing.

FOMFE coefficients were exploited to generate the feature vector for indexing,

whereas most indexing schemes used raw orientation data. Experiments conduct-

ed on a public databases showed that the proposed FOMFE could remarkably

increase the accuracy of fingerprint feature extraction and thus that of finger-

print matching. Furthermore, the FOMFE had a less-computational cost and

could work very effectively on large fingerprint databases.

ii).Singular Point-Based Fingerprint Indexing

Liu et al. [24] proposed an indexing approach based on SP correlation. SP

detection and direction estimation were achieved simultaneously by applying a

T-shape model to directional field (DF). The T-shape model revealed the intrinsic

nature of SPs including cores and deltas which broadly existed in fingerprint im-

ages but were seldom utilized in fingerprint indexing. Specifically, one main-axis

with corresponding confidence to a core, and three main-axes to a delta were

obtained. As a part of the T-shape model, the summation of all main-axes was

used to measure the candidate SPs confidence. Then the Minimum Average Cor-

relation Energy (MACE) filter, a kind of distortion-tolerant filter, was used to

synthesize templates and perform correlation computation to give the similarity

measurement. Further indexing was obtained by sorting the similarity between

the query image and all stored templates. Due to the feature detection process

being SP-based, this approach cannot deal with fingerprints that have no SPs,
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such as arch type ones.

2.1.2 Fingerprint Indexing Based on Local Features

i).Minutia-Based Fingerprint Indexing

Germain et al. [25], for the first time, proposed to use redundant combinations

of three minutiae points when forming indices in their Flash Framework. The

full index consists of nine components: the length of each side, the ridge count

between each pair, and the angles measured with respect to the fiducial side.

Later, Bebis et al. [26] proposed to use minutiae triangles of the Delaunay trian-

gulation for indexing. Given a minutiae triangle, they computed three invariants

which were then used to form a 3-dimensional index. The invariants were based

on the sides and angles of the minutiae triangle: l1
l3
, l2
l3
, and cos(A), where l1, l2

and l3 are the three sides of the triangle with the constraint l1 ≤ l2 ≤ l3, and A

is the angle between the smallest two sides l1 and l2. Then, the invariants were

quantized as in preprocessing. The resulting index was used to retrieve from the

database all the entries stored at the same index table location. To account for

noise, they also retrieved entries stored in a small neighborhood (i.e., a circle of

radius 2) around the indexed location. Experiments on their own collected ink

database showed that indexing could be implemented in a low-dimensional space

and achieve good performance.

Bir Bhanu et al. [27] presented a model-based approach, wherein novel fea-

tures of triangles formed by the triplets of minutiae were used as the basic repre-

sentation unit. The triangle features that were used are: its angles, handedness,

type, direction, and maximum side. Geometric constraints based on other char-

acteristics of minutiae were used to eliminate false correspondences. Experimen-
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tal results on live-scan fingerprint images of varying quality and NIST special

database 4 (NIST 4) have shown that the indexing approach efficiently narrows

down the number of candidate hypotheses in the presence of translation, rota-

tion, scale, shear, occlusion, and clutter. The performance of the above approach

when evaluated against another prominent indexing approach has shown that the

adopted model-based approach is better for both the live scan database and the

ink-based database NIST 4.

Jea et al. [28] proposed to index partial fingerprints before matching using sec-

ondary features of minutiae. For each central minutia, k nearest minutiae around

it were selected, and the secondary feature was formed by the central minutia

and any two of its neighboring minutiae. Therefore, there were C2
k secondary

features for each minutia. Then, secondary features were put into different bins

according to their neighbors properties and positions that were relative to the

central minutiae. They divided the space around a central minutia into several,

say 8, quadrants, and each of the two neighboring minutiae would belong to one

of the quadrants. When matching was performed, only the feature distances

of the secondary features within the same bin were examined. This improved

the matching speed significantly. The average number of times of matching was

reduced from 600 times to 47 times per feature.

X. Liang et al. [29] proposed a more accurate fingerprint indexing algorithm to

efficiently retrieve the top N possible matching candidates from a huge database.

This method is based on minutia neighbourhood structure (this structure contains

richer minutia information) and a more stable triangulation algorithm (low-order

Delaunay triangles, consisting of order 0 and 1 Delaunay triangles), which are

both insensitive to fingerprint distortion. The indexing features include minutia

detail and attributes of low-order Delaunay triangle (its handedness, angles, max-
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imum edge, and related angles between orientation field and edges). Experiments

on databases FVC2002 and FVC2004 show that the proposed algorithm consid-

erably narrows down the search space in fingerprint databases and is stable for

various fingerprints. When compared with other indexing approaches, the results

obtained by them have shown better performance, especially on fingerprints with

distortion.

Arun Ross et al. [30] extended the indexing framework based on minutiae

triplets by utilizing ridge curve parameters in conjunction with minutiae infor-

mation to enhance indexing performance. A 9-dimensional index space model

based on minutiae triplets of Delaunay triangulation and the associated ridge

curves was built: 3 features derived from the sides and maximum angle of the

triplet, and the other 6 features generated from fitting a quadratic curve to the

ridges associated with each triplet: each ridge curve was represented as a second

order curve parameterized by 3 coefficients. The ratio of these coefficients con-

structed 6 features. They demonstrated that the proposed technique facilitated

the indexing of fingerprint images acquired using different sensors. Experiments

on the publicly available FVC database confirmed the utility of the proposed

approach in indexing fingerprints.

Singh et al. [31] used level-2 minutiae features and level-3 pore features as

the parameters for fingerprint indexing. In their approach they formed a ‘Delau-

nay triangle’ using the minutia information as a first-step to generate minutiae

triplets. The indexing parameters were then computed, which included both

minutiae and pore information: average angle in minutiae triplet, triangle orien-

tation, triplet density, longest side in minutiae triplet, Min-Max distance between

minutiae points and k -nearest neighbor pores, and average distance of k -nearest

neighbor pores. The identification performance was further improved by incor-
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porating a Dempster Shafer theory based score fusion algorithm. Experimental

results on a high resolution fingerprint database showed that the proposed algo-

rithm improved the identification performance by at least 10% when compared

to previous fingerprint identification algorithms, which used level-2 fingerprint

features only.

Iloanusi et al. [32] proposed a new structure named ‘minutiae quadruplet’ for

the purpose of indexing. A minutia quadruplet was a quadrilateral formed from a

set of 4 minutiae points. Seven features from a minutia quadruplet were proposed

for indexing fingerprints: the first two features were the differences of two opposite

angles in the quadruplet, the second pair of features were the diagonals of the

quadruplet, the third pair of features were the heights of the inner parallelogram,

whose vertices were the midpoints of the sides of the quadruplet, and the last

feature was a composite global feature that combined the sides and the areas of

the quadruplet and the parallelogram. Minutiae quadruplets allowed the use of

features that were less sensitive to deformation as compared to minutiae triplets.

Experiments on fingerprints with spurious minutiae points and fingerprints with

missing minutiae showed that the technique was reasonably robust. The retrieval

strategy was computationally cheaper and the proposed algorithm had fewer

requirements for storage.

Cappelli et al. [33] proposed a hash-based indexing method based on minutia

cylinder-code (MCC) to speed up fingerprint identification in large databases.

MCC encoded the neighboring information of each minutia point into a fixed

length bit vector. Then the bit vector was indexed by means of Locality-Sensitive

Hashing (LSH). The similarity between two templates was counted by the number

of collisions of each pair of binary vectors. Experimentations carried out over

all the benchmark databases showed that in spite of the smaller set of features
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used (minutia position and direction only), the proposed approach outperformed

the existing ones in almost all of the cases. Details on MCC and LSH will be

introduced in Chapter 5.

Yuan et al. [34] proposed a novel fingerprint retrieval approach based on

minutiae triplet. In their approach, two techniques were designed to compensate

for the relatively weak discriminative power of minutiae triplet. The first was to

derive the number of matched minutiae polygons from matching information of

minutiae triplets, which offered additional information to evaluate the similarity

of two minutiae sets. The second one was to attach a one-bit flag to each of the

feature indices to enhance the matching precision. The features they employed

were: three sides of the triangle, three differences of orientations between two

consecutive vertices, and the handedness of the triangle. Experimental results

on FVC 2000, 2002, 2004 databases and NIST SD27 database showed that the

proposed approach efficiently narrowed down the number of candidate finger-

print images, and outperformed the state-of-the-art algorithms. Furthermore, it

showed the good performance on very difficult latent-to-roll filtering.

Similar to MCC, Vij et al. [35] developed a minutiae based feature repre-

sentation that was provably invariant to affine deformations and hence made it

applicable directly to minutiae based templates, but the representation avoided

the use of minutiae orientations to make the method applicable to the widest

variety of existing templates. The atomic unit of their representation was a

fixed-length descriptor for a minutia that captured its distinctive neighborhood

pattern in an affine-invariant fashion. For each minutia, the nearest n neighbors

of it were first calculated, then for each combination, m (m < n) points were

arranged in clockwise order. For every 4 consecutive points A,B,C,D in the

clock-wised m points, four features were calculated: the ratio of the areas of
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the triangles formed by minutiae triplets A,B,C and A,B,D, the ratio of the

lengths of the largest side of the triangles formed by minutiae triplets A,B,C and

A,B,D, the ratios of the median and minimum angles of the triangles formed

by minutiae triplets A,B,C and A,B,D. A weighted combination of these four

features was computed to get one final invariant value that described the local

arrangement of these m points. Experimental results showed that the algorithm

efficiently narrowed down the size of the database to be searched and was robust

under missing or spurious minutiae.

In [36][37], the authors proposed an indexing algorithm that used a new rep-

resentation of fingerprints, which was based on an extension of the Delaunay tri-

angulation, combined with a strategy that allowed to discard bad quality triplets.

Specifically, they used Delaunay triangles with higher order than 1 to build a set

of triangles that collected more geometric information. In the indexing stage, a

feature vector from each extended Delaunay triplet was extracted: triangle sign,

relative directions of the minutiae with respect to their opposite side, and ridge

counters between each segments. Exhaustive experimentation conducted on some

of the FVC and NIST datasets showed the high performance of their algorithm

regarding other solutions reported in literature.

Wang et al. [38] proposed a theoretical framework for systematically learning

compact binary hash codes and developed an integrative approach to hash-based

fingerprint indexing. Specifically, they built on the popular minutia cylinder-code

(MCC) and were inspired by observing that the MCC bit-based representation

was bit-correlated. Accordingly, they applied the theory of Markov random field

to model bit correlations in MCC. This enabled them to learn hash bits from

a generalized linear model whose maximum likelihood estimates could be con-

veniently obtained using established algorithms. They further designed a hier-
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archical fingerprint indexing scheme for binary hash codes, which combined the

merits of LSH and geometric hashing. In geometric hashing, they created an in-

teger array to construct a geometric dictionary. In particular, they implemented

the dictionary as a hash table container with the created integers as access keys.

The access keys of each dictionary encoded the global geometric configuration

from the view of a particular basis point. The matching of geometric dictionaries

mimicked geometric hashing in a micro way. The proposed Geo-LSH indexing

approach could effectively achieve superior identification accuracy and was more

robust in the presence of noise and missing points.

ii).Ridge-Based Fingerprint Indexing

Feng et al. [39] proposed an invariant-based fingerprint indexing scheme, where-

in the invariants were computed from ridges. In this approach, the role that a

minutia played was the reference of surrounding ridges. A minutia and surround-

ing ridges were combined to form a substructure. For two substructures in a

fingerprint, using one of them as the base, lots of invariants could be constructed

to describe the relations between them. Compared to minutiae triplets based

indexing algorithm, this algorithm carried more information. Promising results

were obtained on public database FVC2002 DB1 A.

2.1.3 Fingerprint Indexing Based on Hybrid Features

De Boer et al. [40] proposed a fingerprint indexing approach based on three

multiple fingerprint features, namely the registered directional field estimate,

Finger Code and minutiae triplets, and showed that indexing schemes that were

based on these features, were able to search a database more effectively than

a simple linear scan. The indexing scheme was constructed based on advanced
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methods of combining these features. They also developed a new indexing scheme

based on combining these features. It was shown that the new scheme resulted

in a considerably better performance than the schemes that were based on the

individual features or on more naive methods of combining the features, thus

allowing much larger fingerprint databases to be searched. The result compared

to a simple linear search, allowed the size of databases to be 100 times larger, while

maintaining the same FAR (False Acceptance Rate) and FRR (False Rejection

Rate).

Feng and Jain [41][42] proposed a multi-staged filtering system to reduce

the search space while retrieving the potential candidates for large-scale latent

fingerprint matching. In addition to minutiae, other features are incrementally

used based on the required time in manual feature marking. Those features

include reference points, ridge quality map, ridge flow map, ridge wavelength

map, and skeleton. Experiments on NIST SD 27 against a background of 10,258

rolled prints achieved a hit rate of 97.3% at a penetration rate of 39%. However,

this filtering scheme depends on the singular points in the partial fingerprint

segment, which might not exist.

Cappelli et al. [43] proposed a novel fingerprint retrieval method that com-

bined level-1 (local ridge-line orientations and frequencies) and level-2 (minutiae

positions and angles) features. For level-2 features, the Minutia Cylinder-Code

representation (MCC) was adopted to obtain a set of fixed-length invariant fea-

tures from minutiae. Various score-level and rank-level fusion approaches were

tested to combine the output of the level-1 and level-2 similarity measures. Sys-

tematic experiments were carried out over six publicly available datasets, compar-

ing the new retrieval approach with eighteen published retrieval methods and sev-

enteen exclusive classification techniques. The results were even better than was
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expected: the proposed Hybrid approach largely outperformed state-of-the-art

methods on all the datasets considered, including methods based on the same set

of features. The search speed was also very high and compared favorably with

other published methods.

Paulino et al. [44] proposed to use a fusion of level 1 and level 2 features to im-

prove the indexing performance. Firstly, orientation field in the neighborhood of

each minutia was encoded into a rotation- and translation-invariant fixed length

bit vector. The bit vectors were then indexed by means of Locality-Sensitive

Hashing (LSH). Then, conventional minutiae triplet based indexing was boost-

ed by incorporating rotation constraints. Orientation field indexing and triplet

indexing were fused with fingerprint indexing technique based on the Minutia

Cylinder-Code (MCC) representation, and this fusion was further boosted by

combining singular points and ridge period filtering. Experimental results car-

ried out on 258 latents in NIST SD27 against a large background database (267K

rolled prints) showed that the proposed approach outperformed state-of-the-art

fingerprint indexing techniques reported in the literature.

2.1.4 Fingerprint Indexing Based on Matching Scores and

Variable Score Threshold

Gyaourova and Ross [45] utilized match scores to index and retrieve fingerprint

images. The method relied on comparing a fingerprint with a small set of refer-

ence images and using the resulting match scores to derive an index code. The

proposed method can be applied to any biometric database irrespective of the

biometric trait or matcher being used. Furthermore, it generates a compact code

based on the evidence of a single impression of a finger. Thus, the proposed
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method has modest storage requirements.

Cappelli et al. [46] studied candidate list reduction criteria for fingerprint

indexing approaches. Two new reduction criteria (variable threshold on score

difference, and variable threshold on score ratio) were proposed and compared to

the traditional ones (fixed threshold, and top ranking). An ideal criterion was

also experimented with, to better understand the possible room for improvemen-

t. Systematic experiments were carried out on five publicly available datasets,

using two state-of-the-art indexers based on complementary features (orientation

and MCC). The results were even better than expected. The reduction criteria

proposed, although quite simple, allowed a significant reduction of the candidate

list in a closed-set scenario, with great improvement of the indexing performance.

2.1.5 Fingerprint Indexing Based on Other Features

Shuai et al. [47] proposed a fingerprint indexing and retrieval approach using

scale invariant feature transformation (SIFT), a widely used approach especially

for generic image retrieval. SIFT provides a large number of features over a wide

range of locations and scales, while the number of minutiae points appearing in

a plain fingerprint image impression is limited to a small number. Furthermore,

the number of SIFT feature points can be regulated by a set of parameters such

as the number of scales and octaves. Moreover, most of the minutiae points can

also be detected by SIFT interest point detector. A composite set of features

to form multiple impressions for the fingerprint representation was used to cope

up with the uncertainty of acquisition (e.g. partialness, distortion). In the pro-

cess of construction of the index, the use of the locality-sensitive hashing (LSH)

allowed to perform similarity probes, only by examining a small fraction of the

database. Experiments conducted on database FVC 2000 and FVC 2002 showed
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Table 2.1: Performance Comparison of Some Well-known Indexing Approaches on Cer-
tain Benchmark Databases – Hit Rate (%)@PR=10%

Features

Databases
NIST FVC

DB4 DB14 SD27 2000 2002 2004
db2 db1 db1

Global
OF Clustering [19] 89.5 - - 92.5 - -

FOMFE [12] - 98 - - 99.9 -
PCM of OF [23] 88 - - - 85 -

Local
Minutiae Triplets [27] 85.5 - - - - -
Minutiae Triplets [29] - - - - - 99

Minutiae Quadruplets [32] - - - - - 98
MCC [33] - 95 - - 99 -

Minutiae Triplets [34] - - - - - 80.7
MCC Bit Correlation [38] - 97 - - 99 -

Hybrid
- - 97.3 - - -

Type + SP + OF [41] @PR=39%
MCC+Minutiae [43] - 98.7 - - 100 -

Minutiae Triplets + MCC
+ OF Descriptor Indexing [44] - - 81.8 - - -

Others SIFT [47] 98 - - - - -

the effectiveness of the proposed fingerprint indexing approach.

Hartloff et al. [48] proposed a natural combination of fuzzy vault and indexing

fingerprints by storing information about paths to attain both security and fast

indexing. In particular, from the hashing perspective, they first converted the

minutia points into a set of paths and then applied the fuzzy vault to this latter

set. The path information stored were distances and certain angles, which were

invariant under translation and rotation. The experiments showed the acceptable

performance of the proposed method with respect to indexing, as well as matching

accuracy. In addition, it was shown that the algorithm had proper security

characteristics.

Jayaraman et al. [49] concentrated on the geometric properties of the principal

components of features to construct triplet based indexing technique. For each
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model in the database, Speeded Up Robust Feature (SURF) was used to extract

feature points. Then triangles were formed by the triplets of feature points. The

triangle features used were its angles. In the proposed indexing technique, mul-

tiple entries of the same feature were eliminated. It reduced both computational

and memory costs significantly. The geometric properties of principal components

of features were found to be robust to handle translation and rotation effects.

2.1.6 Summary

We have surveyed the state-of-the-art fingerprint indexing schemes in this sec-

tion. The performance of some well-known approaches to certain public bench-

mark databases is summarized in Table 2.1. Some other available techniques to

narrow down the candidate list for large databases are based on exclusive clas-

sification. We do not discuss them in detail but provide the following oft-cited

examples: geometric framework [50], eigenfeatures of ridge direction patterns

[51], multichannel[52], machine learning approaches [53], singularities [54][55].

2.2 3D Fingerprint Technology

Fingerprint acquisition, for several decades, has evolved from ink (rolled or plain)

to capacitive, ultrasonic, pyroelectric, thermal, and optoelectronic approaches.

Among these capture approaches, contact based methods detect the geometric

difference between contact and non-contact parts (e.g. ridges and valleys) of the

fingertips on a device. The optical approach, on the other hand, captures the

texture information of the fingerprint under examination.

Recent developments in fingerprint acquisition technology have resulted in

touchless 3D (three-dimensional) live scan, which uses one digital camera and
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several mirrors or more than one camera that surround the finger for acquisition of

a 3D fingerprint. Touchless biometric recognition performed using 3D fingerprint

models has the advantages of reducing problems related to the deformations of

the skin, dust on the sensor, and spoofing of latent fingerprints. Moreover, the

fingerprint area usable for the recognition is wider than the one captured by

traditional contact-based acquisition techniques. Therefore, the new generation

of touchless live scan devices that generate 3D representation of fingerprints has

been introduced to the market. A 3D single and ten fingerprint system that uses

shape from shading and stereovision based technique to obtain 3D fingerprints

in a non-contact fashion was developed by TBS North America [7]. Flashscan3D

LLC [8] and the University of Kentucky have developed a non-contact, 3D finger

scanning system, which can capture the 3D ridge-valley details of the fingertips.

To be compatible with existing 2D fingerprinting technology, there have been

many attempts to extend the traditional fingerprint identification methods to 3D

fingerprint identification. However, it is necessary to unroll the 3D fingerprint

images into 2D equivalent ones before matching. Available unrolling algorithms

can be divided into two categories - parametric and non-parametric - according

to whether a model is assumed for the finger surface or not. Parametric unrolling

algorithms assume that the finger surface can be represented as a parametric sur-

face, e.g., cylinder, tube or sphere. Unlike parametric methods, non-parametric

methods do not assume any models for the finger surfaces, instead, they directly

compute the corresponding pixels in the 2D equivalent fingerprint image from

the points in the 3D fingerprint model.

In this section, we investigated the 3D fingerprint technology comprehensively,

including the advantages of this new technology, various acquisition techniques

of 3D fingerprint images, the compatibility between 3D fingerprints and 2D fin-
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gerprints, and the possible research in the near future.

2.2.1 Comparison with 2D Fingerprint Technology

i).Disadvantages of 2D Fingerprint Technology

Traditional 2D fingerprinting technologies rely upon either applying ink (or other

substances) to the finger tip skin and then pressing or rolling the finger onto a

paper surface or touching or rolling the finger onto a glass (silicon, polymer,

proprietary) surface (platen) of a special device. In both cases, the finger is

placed on a hard or semi-hard surface, resulting in some disadvantages of the 2D

fingerprint scanning [56]:

• obligatory maintenance of a clean sensor or prism surface;

• uncontrollability and non-uniformity of the finger pressure on the device;

• permanent or semi-permanent change of the finger ridge structure due to

injuries or heavy manual labors;

• residues from the previous fingerprint capture;

• data distortion under different illumination, environmental, and finger skin

conditions;

• extra scanning time and motion artifacts incurred in technologies that re-

quire finger rolling.

ii).Advantages of 3D Fingerprinting

3D touchless fingerprint acquisition is a remote sensing technology to capture the

ridge-valley pattern which provides essential information for recognition. Com-
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pared with conventional fingerprinting, the advantages of 3D fingerprint scanning

and processing technology include:

• automaticity: 3D fingerprint devices can function independently of an

operator since the finger is aligned with real-time visual feedback, which

gives the user real-time feedback for correct placement of the finger. The

operator does not need to interact with the user unless there is a special

circumstance such as a physical deformity. Therefore, quality of the print

is no longer tied to the skills of the operator manipulating the acquisition.

Besides, enhanced segmentation can be done for multi-fingers capture [57].

• Image quality: Better image quality is achieved because there is no con-

tact of the print with the scanner to distort the image. Simultaneous acqui-

sition of both texture and ridge depth information [58] of fingers produces

higher quality fingerprint images, which can result in improved fingerprint

matching accuracy.

• Speed: 3D fingerprint scanners can achieve fast scanning (less than 1 sec-

ond). Some devices can scan ten prints simultaneously and allow for use in

high volume environments.

• Stability: 3D fingerprint devices can function consistently regardless of

dry, oily, or damaged fingertip surfaces, therefore, the failure to acquire

rates are very low.

• Compatibility: 3D fingerprints are flattened to produce 2D equivalent

fingerprints, which are consistent and compatible with existing databases

and matching programs.
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• Security: 3D fingerprinting is robust to clutter and fraud (e.g. latex over-

lays) because of the difficulties in faking 3D fingerprints. Besides, it can

reduce risk of transfer of microorganisms and communicable diseases.

• Low cost: The use of off-the-shelf commodity cameras and projectors,

whose performance is market driven, can help build low cost acquisition

systems. Besides, no cleaning is required, which can eliminate costs and

downtime associated with cleaning the platen of conventional contact based

scanners between users.

iii).Disadvantages of 3D Fingerprinting

Despite the advantages, 3D fingerprinting is a new technology, and there are some

drawbacks to it:

• the image resolution is not constant within the image and decreases from

the center to the image extremities.

• the contrast between the ridges and the valleys is low in fingerprint images.

• defocus and motion blurriness are acquired sometimes.

2.2.2 3D Fingerprint Acquisition Technology

A 3D fingerprint acquisition system is a combination of projector(s), camera(s)

and/or mirrors with calibrated positions. According to the number of cameras

used in the system and the illumination pattern, we classify the acquisition tech-

nology into several categories:
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i).Single Digital Camera

1. Single Image B.Y. Hiew et al. [59] proposed to use a digital camera to

acquire the fingerprint images with the size of 640*480. The captured raw

images will be normalized, segmented, enhanced and followed by the core

point detection. After the core point detection, the image is cropped again

into the size of 200*200 with the core point as the center. The normalized

images will then be proposed by the Gabor filters to extract features. Chul-

han et al. [60] introduced a hardware approach that used a camera and the

wavelengths of light. Also, they proposed a strong view difference image

rejection method using the distance between the core and the center axis

of the finger in order to overcome the 3D to 2D image mapping problem.

Apart from the above 3D fingerprint image acquisition method using a

single image, Ruggero et al. [61] proposed to simulate contactless finger-

print acquisitions performed in different light conditions by using different

hardware setups and image processing techniques. The method starts from

a simulated fingerprint image or a real fingerprint image captured using

a contact-based sensor. Well-known algorithms designed for fingerprint

recognition systems are applied to the input image in order to extract the

distinctive pattern of the ridges. Then, realistic effects such as noise, pores,

and incipient ridges are introduced. The next step is the estimation of the

3D structure of the ridges, which is then superimposed on a parametric

model of the finger shape, computed considering experimental measure-

ments of the average finger curvature. In order to improve the realism of

the simulated data, the lens focus blur is simulated. The model is then com-

pleted with the estimation of a realistic color pattern, obtained by applying
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a low-pass filter to a real contactless fingerprint image, and by adding the

properties of reflectance that match the ones of the human skin. Finally, a

virtual light source is used to illuminate the scene and make the details of

the ridges visible.

Disadvantages: Such acquisition methods cannot get the 3D model of the

fingerprint, some parts of the fingerprint region are in focus but some parts

are out of focus, and the effective region of the fingerprint is very limited.

2. Multi-Images Gil et al. [62] proposed to use a linescan camera and a

mechanical motion system to acquire the equivalent of a rolled fingerprint

collected by contact means. The system captures four high resolution im-

ages at different depths using polarization rotation and birefringence at

frame rate and with no moving parts. Then depth from focus is used to

generate a coarse 3D data file. The captured images are registered and

combined into a single high-resolution image with a resolution of 500 PPI

(points per inch). Finally the 3D data is used to create the equivalent of a

rolled fingerprint for comparison with standard fingerprint databases.

Pang et al. [63] used a photometric stereo 3D reconstruction system to

obtain 3D fingerprint data. The system comprises of a camera with a

resolution of 659 × 493 pixels and seven LED lamps mounted around it.

By synchronizing the camera and lamps, seven fingerprint images under

various lighting conditions can be captured within 0.2 second. Using the

calibrated lighting directions and image intensities in seven images, the

surface normal at each image point can be estimated by solving a nonlinear

equation. Finally, 3D models of fingerprints are obtained through surface

normal integration.
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Ajay et al. [64] developed a low-cost 3D fingerprint acquisition system us-

ing a single camera. Several finger images are acquired using a contactless

imaging setup and the average/expected distance between the camera and

the finger is around 10cm. Seven illumination sequence and the image ac-

quisition is synchronized and controlled by a computer using a very low-cost

imaging interface. The position of LEDs on the acquired images is calibrat-

ed. Each of these images is downsampled (after edge detection, boundary

scanning, down) to extract 500× 350 pixels region of interest (ROI). Once

the ROI images are extracted, 3D fingerprint surface is reconstructed using

the shape from shading technique.

ii).Two Cameras

Ruggero et al. [65] presented a novel methodology being able to obtain a 3D

reconstruction of the fingertip in less constrained conditions. The method is

based on a single two-view acquisition of the fingertip with the aid of a fixed

projected pattern. The finger is placed according to the depth of focus of the

cameras, and in the overlapping field of views. The proposed methodology can

be applied to a single acquisition composed by two frames, captured using a

synchronization trigger. The projected pattern is used in order to extract a set

of reference points in the two images, which are rapidly matched by using the

geometric information related to the pattern itself. The finger model is then

reconstructed by using the information related to a previous calibration of the

cameras. A novel algorithm is then used in order to remove the light pattern

from the captured images, and one input image is wrapped on the resulting 3D

model, obtaining a 3D pattern with a limited distortion of the ridges. Finally,

an enhancement method is applied to the texture of the 3D model in order to
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improve the visibility of the distinctive characteristics of the fingertip.

Yao et al. [66] presented a theoretical study to reconstruct a set of 3D minutiae

from two planar minutiae images captured by mobile devices. First, two finger-

print images were obtained by using two cameras with known relative positions

under the assumption that the images were obtained by cameras via orthogonal

projection and the minutiae did not contain angle information. Then two planar

minutiae sets were extracted from these two images to reconstruct 3D minutia

points.

iii).The Surround Imager

Geppy et al. [67] in TBS North America developed a 3D fingerprint acquisition

technology named the surround imager (SI). The device is a cluster of 3 or 5 cam-

eras located on a semicircle and pointing to its center, where the finger has to be

placed in a correct position so that it is completely contained in the field-of-views

of the cameras at the same time during the acquisition. Moreover, the device

contains a set of several green LED arrays and the large size has also been chosen

to dissipate the heat generated by the light system.

The Surround Imager provides a negative polarity representation of the finger-

print, i.e. the ridges appears to be brighter than the valleys. The image obtained

by the device contains also the structure of the valleys. The 3D reconstruction

procedure is based on stereovision and photogrammetry algorithms. Thus, the

exact position and orientation of each camera (camera calibration) with respect

to a given reference system is needed for further processing. The calibration is

done off-line, using a 3D target on which points with known positions are marked.

To facilitate the integration of the Surround Imager into existing systems, a 2D

version of the reconstructed fingerprint is also provided after the reconstruction.
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The computed 3D finger geometry can be used to virtually roll the fingerprint

onto a plane, obtaining a complete rolled-equivalent fingerprint of the acquired

finger.

iv).Structured Light Illumination (SLI)

The idea of SLI is to project a structured pattern of light onto the target surface

and extract the depth by the amount of deviation that the reflected light pat-

tern undergoes. Flashscan3D LLC. and the University of Kentucky [57][58][68]

[69] have developed the following non-contact 3D scanning systems that employ

structured light illumination (SLI).

1. SLI single Point Of View (POV) In the SLI single POV approach, the

scanner, which can simultaneously acquire 3D scans of all the five fingers

and the palm in high speed and fidelity, consists of a commercial off-the-shelf

projector to project the SLI patterns and a high resolution camera to cap-

ture the shape deformed SLI patterns reflected from the target being s-

canned.

The algorithm for fingerprint scanning is phase measuring profilometry

(PMP), which originates from the classical optical interferometry techniques

and can make a 3D scan of the human finger with sufficiently high resolution

so as to record 3D ridge depth information. Post processing of these scans

is performed later to virtually extract the finger and palm surfaces, and

create 2D flat equivalent images.

2. SLI Subwindowing In the SLI Sub-window technique, the scanner uses

a custom LED line source with a static SLI pattern and cameras operating

in subwindow mode rather than full-frame for increased frame rates.
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The hardware [70] consists of a simple projection system with an LED

based illumination module and a photographic slide with encoded sine wave

patterns. The projection system effectively projects a static image pattern

on a target surface. A small region of interest (ROI) of the pixel resolution in

the camera sensor is chosen. The ROI is called an image slice. Additionally,

the exposure time of the camera is set very low which limits the amount of

light available per frame but helps in capturing the 2D image slices at a very

high frame rate. Using the sub-window based approach, the 2D image slices

are captured at a much higher frame rate with the finger moving across the

projector and camera’s fields of view in a swipe like motion. The number of

image slices captured N, is based on the camera’s frame rate and the speed

at which the finger moves in the scan volume. The image slices are stitched

using an image registration algorithm to create an image mosaic of the full

fingerprint.

Full-hand scanners using SLI Subwindowing were also developed by Flash-

scan 3D LLC.. For this type of scanner, a total of four cameras capture

image slices for each finger. Multiple image-slices are captured by each

camera at a very high frame rate to span the length of a full hand (from tip

of the middle finger to the bottom portion of the palm). For a 3D full-hand

scan, a subject moves his/her hand in a vertical direction. The scanner has

a built-in proximity detector to turn on the LED line source and project a

static SLI pattern on to the target. Each camera only captures a portion

of the hand and all the cameras are hardware synced to capture the image

slices at the same time. Multiple image-slices for each camera are stitched

to create a mosaic of texture image of the hand portion in addition to

generating the phase map for 3D depth computation using the projected
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SLI pattern.

2.2.3 Compatibility with 2D Fingerprints

There are two ways to develop an Automatic Fingerprint Identification System

(AFIS) using 3D fingerprints: (1) 3D image based and (2) 2D flat equivalent

image based. The former requires to develop new feature extraction and matching

methods. The latter can make use of the existing algorithms for 2D fingerprint

processing after 3D fingerprint scans are unraveled into 2D flat equivalent ones.

The flattening approaches can be roughly classified into parametric and non-

parametric methods. While parametric methods try to project the 3D object onto

a parametric model, e.g., a cylinder, and then flatten the model, nonparametric

methods apply the flattening directly to the 3D object.

i).Parametric Methods

1. Cylindrical Model

Yi Chen et al. [71] [69] used a cylinder as the parametric model. Since a

cylindrical model is the closest model to the finger shape, it is a reasonable

choice for parametric unwrapping of 3D fingerprints. The transformation

in this method is often straightforward. The texture of the fingerprint is

projected onto the cylinder which surrounded the finger, and then the 2D

fingerprint is obtained by flattening the cylinder. Each point (x, y, z) in

the fingerprint is transformed to the cylindrical coordinate (θ, z), where

θ = tan−1(x/y).

Shortcomings: It does not preserve the relative distance between the

points on the fingerprint surface, which introduce a horizontal distortion to
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the flattened fingerprint.

2. Tube Model

Several algorithms to unravel 3D fingerprints into 2D equivalent images

using a tube model [68] [69] [62] [65] have been developed. The finger is

similar to a cylinder but tends to taper in radius toward the fingertip. So the

tubular fit algorithm fits a series of consecutive circles to the 3D fingerprint

cross section along its length. The fingerprint points are then associated

with a radius, angular value and their original Y coordinate based on each

consecutive circular cross section. Knowing the radius and angle of each

point allows the print to be rolled in a way mimicking the rolled print

process.

3. Fit Sphere Model

Another algorithm, the fit-sphere algorithm, was proposed [72] to reduce

the computational cost. The fit-sphere model relies upon best fitting a

sphere to the fingerprint scan where the original 3D data in Cartesian coor-

dinates is converted to the spherical coordinate (θ, ϕ, ρ). Then, fingerprint

ridges will be extracted from depth by applying a bandpass filter to the ρ

dimension, where the low-frequency, smooth contours of the finger surface

as well as high-frequency , noise fluctuations will be removed. That is, the

3D fingerprint surface was mapped onto a plane with minimal distortion.

Shortcomings: The curvature is not an exact fit to a typical finger, so

there is some projection error. While the algorithm does mimic flat finger-

print acquisition, the spherical fit algorithm does not mimic the rolled print

process.
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ii).Non-Parametric Methods

1. Spring Algorithm

The spring algorithm [73] first extracts the smooth surface of the 3D fin-

gerprint by smoothing the ridge and valleys by a weighted, non-linear, least

square algorithm. The weights are obtained by a Gaussian function. Then

the smoothed 3D surface is transformed to the 2D unrolled surface using the

springs algorithm [74]. The texture of the fingerprint (ridges and valleys)

is calculated by taking a difference between the original 3D surface and

the smoothed 3D surface. Therefore, the final, unrolled, 2D fingerprint is

obtained by putting the texture onto the unrolled surface which is extracted

by the springs algorithm.

Sara et al. [75] also adopted the spring algorithm to convert the 3D finger-

print surface into a 2D unrolled surface, however, the texture (ridges and

valleys) of fingerprint is computed by curvature analysis, particularly, the

points lying on ridge lines on the surface are extracted by Gaussian and

mean curvature.

Shortcomings: There are several challenges to the Spring algorithm, such

as the distortion effects of the finger tip that do not mimic rolled or flattened

prints. Besides, the Spring algorithm is numerically intensive.

2. Direct Sampling

In this method [71], the unwrapping directly applies to the fingerprint with-

out projecting it to a special model. The approach locally unfolds the finger

surface. In fact, a 3D fingerprint is divided into thin horizontal parallel sec-

tions and each section is unfolded separately. Linear interpolation is used to

obtain more slices between the main slices which results in a more smooth
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fingerprint. Finally, points are regenerated using linear interpolation for

each horizontal slice to map the slice from 3D to 2D. The regenerating of

the point for unwrapping starts from the center and goes to the nail side.

The non-parametric method generates better results than the parametric

method since it preserves the relative distance between minutiae in the

fingerprint.

Zhao et al. [76] took distortion into consideration when converting 3D fin-

gerprints into 2D equivalent fingerprints using direct sampling and proposed

a distortion model. The distortion model aims to simulate non-uniform

sampling rates caused by the nonuniform pressure across a plain finger-

print. For simplicity, two assumptions on plain fingerprint acquisition are

made: 1) The finger moves towards the fingerprint sensor along the direc-

tion perpendicular to the acquisition plane of the sensor. The point on

the finger surface which touches the acquisition plane first is defined as the

center of the obtained fingerprint. 2) No traction or torsion is applied to

the finger once it gets in contact with the acquisition plane. Under these

assumptions, the pressure reaches the maximum at the center and gradually

decreases as we approach the boundary of the fingerprint. Correspondingly,

the sampling interval gradually increases from the center to the boundary.

3. Valley-ridge Lines Extraction

Xufang et al. [63] developed an approach for directly extracting valley-ridge

lines from point-cloud-based 3D fingerprint models. First, the moving

least-squares (MLS) method was applied to fit a local paraboloid surface

and to represent the local point cloud area. On the basis of the fitting

surface, the 3D fingerprint surfaces curvature and curvature tensors were
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calculated. By referring to the curvatures, potential valley-ridge points

were detected. Through statistical means, those points were projected to

the most likely valley-ridge lines. Then, by growing the polylines that

approximate the projected points and removing the perturbations between

the sampled points, the 3D valley-ridge lines were obtained.

Advantages: This approach can directly extract the features of valley-ridge

lines without employing unwrapping, which converts 3D models to 2D but

introduces distortions.

2.2.4 Feature Extraction of 3D Fingerprints

Different from 2D fingerprints, 3D fingerprint models introduce some new fea-

tures, such as minutiae in 3D space. Therefore, feature detection and represen-

tation are crucial issues in 3D fingerprinting techniques.

i).Finger Surface Code

The shape index (SI) can be used to describe 3D surface using curvature infor-

mation. On 3D fingerprint surface, the SIs are concentrated in numeric values

representing fingerprint valley (0.25) and ridge (0.75) regions. The surface index

is therefore likely to be largely distributed in this zone. Therefore the encoding

scheme splits the fingerprint surface into five zones: cup, rut, saddle, ridge, cap.

The direction of the dominant principle curvature is portioned into six directions.

Rut and ridge zones are further divided. The resulting feature representation has

15 different values and therefore 4-bits can store resulting binary code for each

pixel. This binarized representation of a 3D fingerprint surface is referred to as

Finger Surface Code [64]. The matching score between two Finger Surface Codes

can be computed using their normalized Hamming distance.
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ii).3D Minutiae

The 2D fingerprint templates (x, y, θ) typically include position of the minutiae

(x, y) and the angle θ representing the orientation of the minutiae in 2D space.

This representation can be extended to include new (extended) features which

can more accurately localize such minutiae in 3D space. The 3D feature z can

represent the height of the vertex on the reconstructed 3D fingerprint surface

at position (x, y) while the ϕ can represent the minutiae orientation in spherical

coordinates with unit length 1. Such extended minutiae templates can more effec-

tively localize the minutiae in 3D space and referred as 3D minutiae (x, y, z, θ, ϕ)

[67][64].

iii).Ridge-valley Structure

Besides the coarse 3D representation of the fingerprint shape, the Surround Im-

ager [67] provides also a finer 3D description of the ridge-valley structure. The

entire 3D ridge-valley structure captured with a specific illumination can be well

represented by the image gray-levels, mapping each image pixel into a 3D space

{x, y, I(x, y)}, where I(x, y) represents the value of the gray-level of the finger-

print image I at position (x, y).

2.2.5 Summary

Non-contact 3D fingerprint technology is gradually replacing traditional finger-

print acquisition and recognition in many applications. Recent research on 3D

fingerprint biometric focuses on the acquisition of 3D fingerprint models, unwrap-

ping 3D fingerprints into 2D equivalent ones and using existing algorithms for 2D

to 3D fingerprint recognition. This section presents a comprehensive study of this
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new technology, mainly the acquisition of 3D fingerprints, the comparison and

compatibility of traditional 2D fingerprints and 3D fingerprints.
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CHAPTER 3. PARTIAL FINGERPRINT INDEXING: A COMBINATION

OF LOCAL AND RECONSTRUCTED GLOBAL FEATURES

3.1 Motivation and Contributions

A number of fingerprint indexing schemes based on all levels of features have

been proposed for both full fingerprint [17][18][27][40][12] and partial fingerprint

[41][42][34][44] indexing since 1997. However, the indexing techniques for full

fingerprint are not applicable to partial fingerprint identification because the

missing parts of a partial fingerprint are simply ignored (considered void). The

resulting feature vector will therefore end up having too many void entries and

will subsequently lose its similarity to the feature vector generated by the full

fingerprint. The filtering or indexing schemes for partial fingerprint either depend

on the singular points which are hardly found in the partial fingerprint segment,

or involve excessive computation on the minutiae information.

Most recently, Wang and Hu [9] applied their prior work, namely the FOMFE

model [12] to address partial fingerprint identification from another angle. In-

stead of extracting level 2 or level 3 features from the partial segment, the au-

thors proposed an analytical approach to reconstructing the global orientation

field (OF) by exploiting the global topological features. Specifically, they have

developed algorithms to extend the partial ridge flows smoothly into the unknown

segment while preserving the fidelity. This approach has shown very promising

results in reducing the size of candidate lists for matching when applied in fin-

gerprint indexing, and what is more, the information of singular points is not

necessary. Motivated by this progress, in this chapter we propose to combine the

estimated global feature and local minutiae information for partial fingerprint

indexing. Specifically, local minutiae triplets are utilized to complement FOMFE

coefficients based partial fingerprint indexing. For indexing based on minutiae

triplets, certain new features as well as some commonly used features are com-
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bined to form the feature vectors for indexing. For indexing based on the global

feature, orientation fields of partial fingerprints are reconstructed by FOMFE

model and Smooth Extension, then the coefficients of the FOMFE model are

used to form the feature vectors directly. The minutiae triplet based indexing

scheme and FOMFE coefficients based indexing scheme are applied separately

to generate two candidate lists for further processing. Before the generation of

the final candidate list, a training process is conducted on a small portion of

the query fingerprints to decide which candidate list tends to be more reliable.

Based on the reliability of the candidate list and the order of the candidates in

both lists, a set of fuzzy rules are derived to guide the fusion of the two can-

didate lists for generating the final candidate list. We have conducted a series

of experiments on several public databases to evaluate the performance of the

proposed scheme. For partial fingerprint indexing, the last 2000 F images in

NIST SD 14 are chosen as the template fingerprints, and their corresponding S

images are eroded to generate partial query fingerprints. Experimental results on

FVC 2000 DB2a and 2002 DB1a show that the minutiae triplet based indexing

can individually achieve better performance than state-of-the-art methods for full

fingerprint indexing, meanwhile, the minutiae triplet based indexing on partial

fingerprint database can be comparable to that on full fingerprint indexing if the

parameters are chosen properly. Experimental results on SD 14 show that the

proposed fusion method can improve the performance that has been achieved by

individual partial fingerprint indexing algorithms before fusion.

The main contribution of this work is threefold: (1) the formation of feature

vectors through noncollinear minutiae triangles enabled by incorporation of local

minutiae triplets can effectively index partial fingerprints; (2) the fusion scheme

designed for generating the final candidate list brings about an improvement
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in indexing performance, evidenced by a reduction in the penetration rate and

search space; (3) there is no dedicated partial fingerprint database available for

testing various algorithms. Although public latent fingerprint database is avail-

able [77], it is not suitable for testing certain characteristics, e.g., non-existence

of singular points. Also latent fingerprint database contains many elements such

as background noise and non-relevant textures where preliminary processing such

as fingerprint image separation is involved. It is infeasible to use such data for

partial fingerprint indexing testing as the impact of the preliminary processing

is inseparable. Our database has addressed this issue and will be made publicly

available to this research community.

The rest of this chapter is organized as follows. Section 3.2 elaborates on the

generation of the global feature, namely FOMFE coefficients, and local minuti-

ae triplet feature. The indexing scheme based on these features is proposed in

Section 3.3. Section 3.4 describes the fuzzy based fusion approach for generat-

ing the final candidate list. Experiments on a public fingerprint databases are

demonstrated in Section 3.5 and Section 3.6 concludes the whole work.

3.2 Feature Set

In this chapter, we develop a new indexing scheme which utilizes both global and

local features, namely the FOMFE coefficients and minutiae triplets, respectively.

3.2.1 Global Feature – FOMFE Coefficients

i).Raw Orientation Field

An Orientation Field (OF) consists of regularly spaced grids whose elements

represent the local average directions of fingerprint ridges. Therefore, it can
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(a) Raw orientation field
on a partial fingerprint
image

(b) Reconstructed orien-
tation field on the partial
fingerprint image

Figure 3.1: Orientation field before and after smooth extension

reveal the intrinsic features of ridge topology and is a rich information resource

for further fingerprint feature extraction and processing.

To obtain reliable fingerprint orientation fields, the most popular approach is

to use the gradients of gray intensity in the fingerprint image. In the proposed

method, the raw OF is evaluated by an improved gradient-based method [78].

The gray-scale image is first divided into blocks with an equal size of NB × NB

pixels, then the dominant orientation angle θ in each block is computed by a

weighted averaging scheme from four neighboring blocks. This approach has

been proven to be more robust against noise compared with other gradient-based

methods [78].

Orientation field data are often represented in cosine and sine terms and are

widely used as features for fingerprint indexing. The resulting phase representa-

tion exhibits intrinsic periodic characteristics, which does not satisfy the general

requirement of a Gaussian distribution in the dataset that is needed for similarity

preserving transformation such as Karhunen-Loeve (KL) transform. In [12], the
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proposed FOMFE model can provide a compact and comprehensive description

about the overall ridge topology.

ii).FOMFE Model [12]

By doubling orientation angles (θ), the orientation field of a fingerprint is trans-

formed into a vector field. In the FOMFE model, two bivariate trigonometric

polynomials are used to approximate the functions f = (fc, fs)
T . In a defined

two dimensional site S: (−l ≤ x ≤ l, −h ≤ y ≤ h), each phase function is

represented as

f(x, y) =
2k∑
i=0

2k∑
j=0

ςijψij(x, y) + ε(x, y) (3.1)

wherein k < +∞ ∈ N is the polynomial order, ςij are the real – valued model

coefficients, and ψij are the expansion functions. In fact, Eq. (1) is a truncated 2D

Fourier expansion, with Ψ = {ψij(x, y)} being the Fourier expansion set defined

in S. According to the inverse Fourier transform,

ςij =

∫
S

ψ̃ij(x, y)f(x, y) (3.2)

wherein Ψ̃ is the dual function of Ψ, Ψ̃ = {ψ̃ij(x, y)}. In practice f(x, y) is

replaced by the input phase data d(x, y) sampled at point (x, y), and d(x, y) =

(dc, ds)
T , dc = cosin(2θ), ds = sin(2θ).

The model coefficients ςij have been suggested as representation features for

indexing, which can avoid the problem of Gaussian distribution. Compared to raw

orientation field based approaches, the FOMFE model based fingerprint indexing

scheme demonstrated a significant penetration rate improvement and a much

faster speed in generating the feature space [12].
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iii).Smooth Extension [9]

To reconstruct the global feature of a partial fingerprint, the whole site S is

divided into two segments, the partial segment Ω and the unknown region χ,

that is, χ ∪ Ω = S. Define βS = {ςij|S} as the model coefficient set for the

global phase portrait to be reconstructed, βΩ = {ςij|Ω} as that evaluated from

the partial segment Ω, and βχ = {ςij|χ} as that evaluated from the unknown

region χ. Then, Eq. (3.2) is partitioned as

βS =
∑
S

ψ̃ijd(x, y)

= βΩ + βχ

=
∑
Ω

ψ̃ijd(x, y) +
∑
χ

ψ̃ijd(x, y)

(3.3)

The problem of partial fingerprint reconstruction is now converted to how to

retrieve the global representation βS from the partial evaluation βΩ subject to all

possible constrains imposed on βχ.

Assume that there are M phase samples dΩ in the partial fingerprint region,

Ω ⊂ S. Rewrite Eq. (3.1) in matrix notation, and the phase data in Ω can be

estimated by the following equation.

d̂Ω = ΨΩβS (3.4)

Accordingly,

βS = Ψ̃T
Ωd̂Ω +N(ΨΩ) (3.5)

wherein N(Ψ) is the null space [9] of data set Ψ.



52
CHAPTER 3. PARTIAL FINGERPRINT INDEXING: A COMBINATION

OF LOCAL AND RECONSTRUCTED GLOBAL FEATURES

In practice, the authors [9] proposed to extend fingerprint ridge flow trends

progressively into the unknown region χ. Assume ∆ is a small thin band encom-

passing the known region Ω(0) = Ω, and β(0) = βΩ is the coefficient estimation on

partial segment Ω. According to Eq. (3.4), the phase estimation of the expanded

small area is

d̂(x, y) = Ψ(x, y)β(0), ∀(x, y) ∈ ∆ (3.6)

Written in matrix notation, Eq. (3.6) is equivalent to d̂∆(x, y) = Ψ∆β
(0).

After the first expansion, Ω(1) = Ω(0)∪∆. Since the Fourier expansion set Ψ(x, y)

is readily evaluated at every point in the phase plane regardless of the position,

it is independent of the phase structure information in Ω(1).

To further expand the partial fingerprint into the unknown region χ, the

phase structure in the new available segment Ω(m+1) is updated upon the m-th

expansion, that is,

β(m+1) = β(m) + Ψ̃T
∆d̂∆, m = 0, 1, 2, · · · , t− 1 (3.7)

By iterating the computation of Eq. (3.6) and Eq. (3.7) t − 1 times, the

unknown region χ is finally filled with phase estimates. Figure 3.1 is a demon-

stration of the orientation field on a partial fingerprint image before and after

smooth extension.

After Smooth Extension, the orientations of the missing part can be estimated

step by step, and the final Fourier coefficients can be used as the feature vector

for continuous fingerprint indexing. However, the FOMFE model using the global

feature for the indexing method cannot be directly applied to partial fingerprint

identification, because the resulting FOMFE model when trained from a limited
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partial fingerprint segment might not converge close enough to the final FOMFE

model which comes from the full fingerprint data training. To address this issue

in a bid to improve the indexing performance, we decide to incorporate local

minutiae that are available in the partial fingerprint segment.

3.2.2 Local Feature – Minutiae Triplets

The features of a minutia extracted from a fingerprint image usually include its

coordinates (x, y), local ridge orientation θ and minutia type (ridge bifurcation or

ending denoted by 1 or 0). In our approach, a commercial fingerprint verification

software VeriFinger SDK [79] was adopted to extract minutiae information for

both full fingerprint images and partial fingerprint images, because the adaptive

image filtration algorithm VeriFinger hosts can eliminate noises, ridge ruptures

and stuck ridges for reliable minutiae extraction even from poor quality finger-

prints with a fast processing speed. What is more, the resulting minutiae are

sorted according to their y coordinates in an ascending order, which will benefit

the construction of minutiae triplets.

i).Feature Vector of Minutiae Triangles

Since Delauney triangles [36] would change greatly if several minutiae are miss-

ing, we employ the following feature set derived from each noncollinear minutiae

triangle for partial fingerprint indexing.

• Triangle handedness: Suppose P1, P2, P3 are the three minutiae to form

a triangle and their y coordinates are in an ascending order. We choose

P1 as the first vertex and use (xi, yi) to denote the coordinates of minutiae

Pi, i = 1, 2, 3. Define ϕ = (x2 − x1) × (y3 − y1) − (y2 − y1) × (x3 − x1). If
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ϕ > 0, P1, P2, P3 are in counter-clockwise order, then we set the vertices

as {P1, P2, P3}; otherwise, we order the vertices as {P1, P3, P2}. By this

means, we make sure that the vertices of all triangles are arranged in the

counter-clockwise direction.

• Lengths of each side: Suppose P1, P2, P3 are already in counter-clockwise

order. Let Zi = xi+jyi be the complex number (j =
√
−1) corresponding to

the coordinate (xi, yi) of Pi, i = 1, 2, 3. Define Z21 = Z2−Z1, Z32 = Z3−Z2,

and Z13 = Z1 − Z3. The length of each side is defined as {L1, L2, L3},

wherein L1 = |Z21|, L2 = |Z32|, and L3 = |Z13|.

• Triangle type: Suppose P1, P2, P3 are already in counter-clockwise order.

Let γ = 4γ1 +2γ2 + γ3, where γi is the type of minutiae Pi, i = 1, 2, 3. If Pi

is a bifurcation point, γi = 1, or else γi = 0. So γ ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

• Triangle position: Suppose P1, P2, P3 are already in counter-clockwise

order and the fingerprint image is aligned roughly. We divide the segment

into 4 equal-sized blocks. Similar to quadrant partition, we let 1 denote

the upper right block, 2 denote the upper left block, 3 denote the lower left

block and 4 denote the lower right block. Let ρi, i = 1, 2, 3 be the block

type of minutiae Pi, i = 1, 2, 3, ρi ∈ {1, 2, 3, 4}. Define ϱ = 100ρ1+10ρ2+ρ3

as the triangle position, then the number of triangle positions is 43.

• Orientation differences: Suppose P1, P2, P3 are already in counter-clockwise

order. Let θi be the local orientation of minutiae Pi, i = 1, 2, 3. We represent

orientation difference between each pair of adjacent vertices as αi, i = 1, 2, 3,

wherein α1 = θ2 − θ1, α2 = θ3 − θ2, and α3 = θ1 − θ3.
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The final feature set of a minutiae triangle is in the form of an eight tuple

{L1, L2, L3, γ, ϱ, α1, α2, α3}. Among these features, L1, L2, L3 and γ are the com-

monly used features of minutiae triplets for indexing [27][34], and α1, α2, α3 and

ϱ are the newly designed ones since they are simple, discriminative and easy to

obtain even with the singular areas missing.

ii).Geometric Constraints

To reduce the number of false correspondences obtained from querying the index-

ing space, some constrains on length and orientation difference are introduced.

• Relative length difference: Assume the length of each side of a triangle

formed by minutiae triplet does not change much in different impressions

of the same finger. Let L and L
′
be L1, L2, or L3 in a query image and a

template image, respectively. We constrain |L− L
′| < δL.

• Relative rotation: Assume the orientation difference does not change

much in different impressions of the same finger. Let α and α
′
be α1, α2,

or α3 in a query image and a template image, respectively. We constrain

|α− α
′| < δO.

3.3 Indexing Schemes

In a real fingerprint identification system that adopts continuous classification

for preselection, whether a match for a query fingerprint is found or not in the

database is determined by the results of the matching algorithm. Therefore,

the system’s inherent matching errors (false accept and false reject) will affect

the indexing system’s error rate (of finding a match). However, our purpose is

to assess the performance of different indexing schemes, so we can exclude the
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impact of different systems’ inherent matching errors and investigate the indexing

performance only. Specifically, since the query sample images and the template

images have already been paired up with the image indices in public databases,

we can get the position of the mated fingerprint in the candidate list by checking

their image indices only.

3.3.1 FOMFE Coefficients based Indexing

To obtain a raw OF with lower dimensions, we choose an orientation block size

NB for our indexing approach. Suppose the resolution of the fingerprint image is

W ×H. Thus there will be (W/NB)× (H/NB) blocks in a raw OF. In each block,

the phase portrait is governed by the same two trigonometric polynomials, whose

coefficients are concatenated to form the feature vector. Therefore the length of

the coefficient-based feature vector has nothing to do with the resolution of the

fingerprint image, but the trigonometric polynomial order k. The length of the

coefficient-based feature vector is represented by (2×k+1)2×2, which is several

times shorter than the length of an OF-based feature vector.

To generate the feature space, the FOMFE model is applied to every template

fingerprint image in the database and all the coefficient vectors form a feature

matrix. Different from template images, each sample image has to go through

smooth extension at first, and the final coefficient vector is combined with the

template feature matrix to form the total feature space.

To reduce dimensionality, Karhunen Loeve (KL) transform is conducted. New

feature vectors are truncated so that the feature vector length (FVL) can be re-

duced. The similarity between two fingerprints is measured by the Euclidean

distance between them in the new feature space. Finally, all the indices of the

template fingerprints will be sorted in the candidate list in ascending order ac-
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Figure 3.2: Procedure of FOMFE coefficients based indexing

cording to their distance to the query sample fingerprint image. The procedure

of FOMFE coefficients based indexing is shown in Fig 3.2.

3.3.2 Minutiae Triangle based Indexing

To reduce computational complexity, minutiae that are too close to their neigh-

bors are filtered out since triangles with a short side are too sensitive to distor-

tion. As mentioned before, certain distortion in the sides of triangles should be

allowed, so we adopt quantization to implement feature space clustering. During

the registration process, each triangle in a template image is characterized by an

eight-tuple vector, which means each fingerprint is viewed as a collection of points

distributed in the index space with each point characterizing an eight-dimensional

feature vector. Then, we quantize the triangles by the lengths of their three sides.

Suppose the maximum side of all the triangles in the database is Lmax, then the

indexing space is partitioned into (Lmax/δL)
3 clusters. Each of the points is
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Figure 3.3: Procedure of registration of minutiae triangle based indexing

assigned to one of the pre-defined clusters based on the quantization rule. This

process is repeated for every template fingerprint in the database. Thus, a cluster

in the index space will have a list of fingerprint indices that have at least one point

assigned to that cluster. Besides, the cluster also stores the remaining features in

the eight-tuple vector for further processing except for the lengths of each side,

they are {γ, ϱ, α1, α2, α3}.

During the query process, when a query sample fingerprint q is presented,

it is first represented as a set of points with eight-dimensional feature vectors.

Next, these points are mapped to individual clusters in the index space. A set of

possible matching indices corresponding to a small number of clusters are then

determined. After that, each point of the query fingerprint is further compared

with the possible matching points in the clusters, and those points that satisfy

the following requirements will be chosen:

• The triangle types γ and γ
′
are the same.
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Figure 3.4: Procedure of query of minutiae triangle based indexing

• The triangle positions ϱ and ϱ
′
are the same.

• |α− α
′| < δO.

Finally, the qualified indices are sorted in the candidate list by their occurring

frequency in descending order. The procedures involved in the registration and

query processes of minutiae triangle based indexing are shown in Figure 3.3 and

Figure 3.4, respectively.

3.4 Candidate Lists Fusion

In general, given a query fingerprint, the candidate list provided by fingerprint

indexing should be as short as possible, but it should contain, with a high prob-

ability, all fingerprints similar to the query. In previous research, two reduction

criteria were commonly explored: fixed threshold (only fingerprints with indexing

score higher than a fixed threshold are selected) and top ranking (a fixed number
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of candidates with highest scores are retained). In some studies, more complex

criteria to produce the candidate list have been proposed, but only with the aim

of combining multiple preselection techniques.

Actually, for each candidate list, the order only reflects the general similar-

ity, not the absolute probability of how similar the query fingerprint is to each

candidate fingerprint in the database. In our approach, we treat all the template

fingerprints as candidates and apply a fuzzy-based fusion scheme to the two can-

didate lists to generate a new candidate list for matching, because fuzzy logic

[80] deals with reasoning that is approximate rather than fixed and exact. Using

non-numeric linguistic variables, such as ‘near’, ‘far’, fuzzy logic can facilitate the

expression of our fusion scheme.

The proposed fuzzy-based candidate list fusion scheme is composed of two

stages: (a) the training stage for generating fuzzy rules and (b) the testing stage.

Assume all the template images are evenly distributed in the database. In the

training stage, a small portion of the query samples are indexed using the FOMFE

coefficients based scheme and the minutiae triangle based scheme, respectively,

then the average indexing performance (the penetration rate) is evaluated. If

the penetration rate of the FOMFE coefficients based indexing is lower than the

minutiae triangle based indexing, which means that the candidate list generated

by the FOMFE coefficients based indexing is more reliable, then the candidate list

generated by the FOMFE coefficients based indexing in the testing stage tends to

be reliable too, and its top K candidates can keep the original order in the new

candidate list; otherwise, the candidate list generated by the minutiae triangle

based indexing tends to be reliable in both the training and the testing stages,

and its top K candidates can be the top K candidates in the new candidate list.

The fuzzy set in the proposed method is defined as follows:
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• Three fuzzy sets, namely Low, Medium and High, are used to describe

the reliability of the candidate list generated by FOMFE coefficients based

indexing, which is denoted by RF .

• Three fuzzy sets, namely Top, Middle and Bottom, are adopted to depict

the position of each template at the two input candidate lists and the output

candidate list. For an arbitrary query fingerprint q, two candidate lists will

be generated. For any two template fingerprints qi and qj, their positions in

both candidate lists are represented by Pi−F , Pj−F ,Pi−T ,Pj−T , respectively,

and their positions in the new candidate lists are represented by Pi−C , Pj−C ,

respectively.

In the testing stage, for each query fingerprint, the order of all the template

fingerprints in the new candidate list will be decided by the following fuzzy rules:

• If RF is Medium, then K = 0;

• For a template fingerprint qi, if Pi−F and Pi−T are Top, then Pi−C is Top;

• For a template fingerprint qi, if Pi−F and Pi−T are Bottom, then Pi−C is

Bottom;

• For a template fingerprint qi, if Pi−F is Top and Pi−F ≤ K and RF is High,

then Pi−C = Pi−F ;

• For a template fingerprint qi, if Pi−T is Top and Pi−T ≤ K and RF is Low,

then Pi−C = Pi−T ;

• For a template fingerprint qi, if Pi−F is Top and Pi−F > K and RF is High

and Pi−T is Top, then Pi−C is Top;
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• For a template fingerprint qi, if Pi−F is Top and Pi−F > K and RF is High

and Pi−T is Bottom, then Pi−C is Bottom;

• For a template fingerprint qi, if Pi−T is Top and Pi−T > K and RF is Low

and Pi−F is Top, then Pi−C is Top;

• For a template fingerprint qi, if Pi−T is Top and Pi−T > K and RF is Low

and Pi−F is Bottom, then Pi−C is Bottom;

• For two template fingerprints qi and qj, if Pi−F , Pj−F ,Pi−T and Pj−T are

Middle and Pi−F < Pj−F and Pi−T < Pj−T , then Pi−C < Pj−C .

• For two template fingerprints qi and qj, if Pi−F , Pj−F ,Pi−T and Pj−T are

Middle and Pi−F < Pj−F and Pi−T > Pj−T and Pi−T > Pj−F , then Pi−C >

Pj−C .

• For two template fingerprints qi and qj, if Pi−F , Pj−F ,Pi−T and Pj−T are

Middle and Pi−F < Pj−F and Pi−T > Pj−T and Pi−T < Pj−F , then Pi−C <

Pj−C .

• For two template fingerprints qi and qj, if Pi−F , Pj−F ,Pi−T and Pj−T are

Middle and Pi−F > Pj−F and Pi−T > Pj−T , then Pi−C > Pj−C .

As shown in Figure 3.5, after applying the fuzzy rules on both candidate lists,

the new candidate list is generated as the final list.

3.5 Experiments

To evaluate the proposed partial fingerprint indexing approach, statistical exper-

iments have been carried out on several public databases. Section 3.5.1 describes

the databases and the tools used in our experiments. Section 3.5.2 demonstrates
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Figure 3.5: Fuzzy based fusion on the candidate lists

the experimental results of minutiae triplets based indexing on both full and

partial fingerprint database. Section 3.5.3 demonstrates the experimental results

of the proposed fusion indexing scheme on partial fingerprint database. Section

3.5.4 is the computational complexity analysis of the indexing scheme.

3.5.1 Database and Tools

Most of the published techniques for full fingerprint indexing have been evaluated

on FVC 2000 DB2a and FVC 2002 DB1a. FVC 2000 DB2a contains 800 finger-

prints from 100 subjects (8 impressions per subject) captured using a capacitive

fingerprint scanner. FVC 2002 DB1a also contains 800 fingerprints from 100 fin-

gers (8 impressions per finger), but it was captured using an optical fingerprint

scanner. In our experiment, we chose the first impression of each subject (100 in

total) to form the template database and the rest as the query samples (700 in
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total) for both FVC 2000 DB2a and FVC 2002 DB1a.

Related works on latent fingerprint matching or indexing have used NIST

special database 27 (SD 27) as the query image set, because SD 27 is the only

public database available containing mated latent and rolled fingerprints. Howev-

er, feature extraction in latent fingerprint images is manually done [42][44][34] and

is still a challenging problem due to the heavy background noise. We would have

to go through a segmentation process first if we want to get the region of interest

(ROI) of a latent fingerprint image, which is beyond the scope of this work. Since

the objective of our study is partial fingerprint indexing, we used another public

database NIST special database 14 (SD 14) [81] in our experiments.

NIST SD 14 is the de facto benchmark database for fingerprint classification

and indexing tests. It consists of 54000 ink-rolled prints scanned from finger-

print cards. There are two impressions recorded for each finger, namely, the F

(First) prints ranging from F00001 to F27000 and the S (Second) prints ranging

from S00001 to S27000. Among the records, most are rolled full prints. The

scanned resolution is 500 dpi and the fingerprint image size is 832× 768. In our

experiments, we chose the last 2000 F prints to constitute the template database

and the last 2000 S images as the query samples. Because a large portion of

the fingerprint images include impressions of part of the second joints, we first

segmented both the template and sample images to remove peripheral regions

and make the remainder frame lie in a north-south direction as much as possible.

The image size after segmentation is 480× 512 pixels.

For each sample image, we used a routine of NIST Biometric Image Software

[82], namely Mindtct, to obtain a quality map marking reliability of local fin-

gerprint image areas at different levels. Mindtct first extracts the low contrast

map, low flow map, and the high curve map which point to different low quality
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regions of the image. The information in these maps is further integrated into

one general map, which contains 5 levels of quality. The quality assigned to a

specific block is determined based on its proximity to blocks flagged in these

various maps. We extracted an image foreground with the highest quality level

and produced a partial fingerprint segment by keeping only the high quality areas.

Figure 3.6 shows a typical example of such partial fingerprint images generated in

the test and its mated full fingerprint. Therefore, partial fingerprints generated

in our experiment do not contain any singularity, and even singularity regions

are usually removed. In this way, we can generate a sample image set composed

of partial fingerprints.

The performance of the fingerprint indexing scheme is evaluated by reporting

the hit rate (HR) at certain penetration rates (PR). We tested the proposed

indexing scheme using different parameter settings, including the block size NB,

Fourier extension order k, distortion scale of the triangle sides δL, distortion

scale of the orientation difference δO, the number of fixed candidates K in the

list, among which the block size NB and the Fourier order k were fixed to 8 and

5, respectively, the other parameters were chosen with different values. Detailed

explanation and values of these parameters are listed in Table 3.1.

The whole indexing scheme was implemented in Matlab on a workstation PC

with the following configurations: Intel(R) Core(TM)i7 3.4GHz, 16GB memory,

64-bit Operating System.
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Table 3.1: Major Parameters Used

Symbol Explanation Values
NB Block size of the orientation field 8
k Order of the FOMFE coefficients 5
δL Difference of the length of sides 4, 5
δO Difference of the orientation difference 15, 30,60
K Number of fixed candidates 100, 200, 300

(a) Full fingerprint im-
age

(b) Partial fingerprint
image

Figure 3.6: A typical partial fingerprint image in our experiment and its corresponding
full image

3.5.2 Evaluation of the Minutiae Triplet based Indexing

Scheme

i).Performance on Full Fingerprint Databases

Table 3.2 and Table 3.3 show the performance of the minutiae triplet based

indexing approach on FVC 2000 DB2a and FVC 2002 DB1a, respectively, wherein

the best performance at a certain penetration rate is highlighted in bold. We can

see from these tables that even if the penetration rate is very low (e.g. 1%), the

hit rate is high (above 80%). Different choice of δL and δO results in different

performance. For FVC 2000 DB2a, the best choice of δL and δO is 6 and 15,

respectively, and for FVC 2002 DB1a, the best choice of δL and δO is 5 and 15,

respectively.

Fig. 3.7(a) shows the performance comparison of the minutiae triplet based
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Table 3.2: Performance Evaluation on FVC 2000 DB2a – Hit Rate

δL δO
HR (%)

PR = 1% PR = 2% PR = 3% PR = 4% PR = 5% PR = 10% PR = 20%

4
15 85 87 88 89 89 90 92
30 84 86 87 87 88 90 92
60 81 85 86 87 87 89 92

5
15 86 88 89 90 91 92 94
30 85 86 88 89 89 91 94
60 82 84 86 87 88 91 93

6
15 88 90 90 91 91 92 94
30 86 88 89 89 90 92 94
60 82 86 88 88 89 91 93

Table 3.3: Performance Evaluation on FVC 2002 DB1a – Hit Rate

δL δO
HR (%)

PR = 1% PR = 2% PR = 3% PR = 4% PR = 5% PR = 10% PR = 20%

4
15 89 91 92 92 92 93 95
30 88 90 91 91 92 93 94
60 84 87 87 88 89 92 93

5
15 90 93 94 94 94 95 96
30 89 91 91 92 93 95 96
60 85 88 88 89 91 92 94

6
15 91 92 93 93 94 95 95
30 88 90 91 92 92 93 95
60 84 86 87 88 89 91 94

indexing in our approach on FVC 2000 DB2a with other methods, including

minutiae quadruplets based indexing [32] and indexing with novel minutiae triplet

feature [34]. Fig. 3.7(b) shows the performance comparison of the proposed

minutiae triplet based indexing on FVC 2002 DB1a with other techniques based

on orientation field [19], PCMs [23], minutiae quadruplets [32] and novel minutiae

triplet feature [34]. We can see that the proposed indexing scheme outperforms

other state-of-the-art methods, especially when the penetration is very low (1%

and 2%).

Table 3.4 and Table 3.5 show the results on FVC 2002 DB1a and FVC 2000

DB2a for comparisons with other methods using another measurement, respec-
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Figure 3.7: Performance comparison of different indexing schemes on FVC databases

tively, that is the average penetration rate when the hit rate is 100%. We can see

from both tables that the proposed minutiae triplet based indexing scheme can

achieve much better performance than other method evaluated using the same

measurement.

ii).Performance on Partial Fingerprint Database

Fig. 3.8 illustrates the performance improvement of minutiae triplet based fin-

gerprint indexing on NIST SD 14 when the new features are used incrementally.
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Table 3.4: Average penetration rate on FVC 2002 DB1a when hit rate is 100%

Minutiae Triplets [27] 38.1%
Low-order Delaunay Triangle [29] 18.1%

Minutiae Quadruplets [32] 11.8%
Novel Minutiae Triplets [34] 9.9%

Proposed Scheme 3.51%

Table 3.5: Average penetration rate on FVC 2000 DB2a when hit rate is 100%

SIFT Features [47] Minutiae Quadruplets [32] Novel Minutiae Triplets [34] Proposed Scheme

91% 26% 22% 5.24%

In this experiment, the last 2000 F prints (F25001 ∼ F27000) constitute the

template database and 1000 S prints (S25001 ∼ S26000) are divided into 10

groups as the query samples. Parameters δL and δO were set to be 4 and 15,

respectively. As is shown in Fig. 3.8, the penetration rate decreased by at least

1/3 when the triangle position was used as an extended feature, and the the

penetration rate further decreased by at least 1/2 when the orientation difference

was used as another extended feature.

Table 3.6 is the performance of the minutiae triplet based indexing approach

on NIST SD 14 with different choice of δL and δO. In this experiment, the last

2000 F prints (F25001 ∼ F27000) form the template database and the last 2000

S prints (S25001 ∼ S27000) are used as the query samples. We can see that

when δL and δO are 6 and 30 respectively, the performance is the best (nearly

10%) in this test.

As mentioned before, existing techniques on partial fingerprint indexing ap-

proaches were evaluated on NIST SD 27, which need human involvement to

extract features. However, the partial sample images used in our experiments are

generated from full fingerprint images by erosion and are not used elsewhere, so

there is no related comparable work. According to the indexing performance of
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Table 3.6: Performance Evaluation on NIST SD 14 – Penetration Rate

δL
Penetration Rate (%)

δO = 15 δO = 30 δO = 60
4 15 13.28 14.63
5 12.25 11.48 13.29
6 10.25 10.12 10.27
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Figure 3.8: Performance improvement of using new features incrementally on NIST SD
14

other methods on full fingerprint databases in Table 3.4 and Table 3.5, we can

see that 10% penetration rate is fairly good for partial fingerprint indexing.

3.5.3 Performance of the Proposed Fusion Scheme

Without loss of generality, we choose the penetration rate as the performance

measure of our fusion indexing scheme, wherein PRF , PRT and PRC denote the

penetration rate of FOMFE coefficients based indexing, minutiae triangle based

indexing and the indexing after fusion, respectively.

The performance of the proposed fusion approach on NIST SD 14 is shown

in Table 3.7. We can see that the candidate list generated by minutiae triangle
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Table 3.7: Performance Evaluation on NIST SD 14 – Penetration Rate

δL δO PRF PRT
PRC

K = 100 K = 200 K = 300

4
15

16.61
15 12.54 12.48 12.51

30 13.28 11.38 11.33 11.53
60 14.63 12.77 12.62 12.72

5
15

16.61
12.25 10.45 10.35 10.48

30 11.48 10.29 10.21 10.28
60 13.29 11.92 11.71 11.71

PRF : penetration rate of FOMFE coefficients based indexing only
PRT : penetration rate of minutiae triangle based indexing only

PRC : penetration rate after the fusion scheme

based indexing is more reliable, so we use the top K of the candidates in this

list as the top candidates in the new candidate list in all the experiments. No

matter what values the parameters δL, δO and K are assigned, the penetration

rate after fusion is smaller than that of either FOMFE coefficients based indexing

or minutiae triangle based indexing only. For example, when δL = 4 and δO = 15,

the proposed fusion method can improve the penetration rate by around 2.5%,

which means that the search space is further reduced by nearly 17% compared

to the penetration rate of using minutiae triplet based indexing (15%).

Figure 3.9 and Figure 3.10 illustrate the histograms of the penetration rate

when δL = 4 and δL = 5, respectively. We can see that the number of fixed can-

didates K in minutiae triangle based list does not influence the final performance

much, and the performance is better when K = 200 in all parameter settings.

3.5.4 Computational Complexity Analysis

According to [12], the computational efficiency of the FOMFE can be greatly

improved when it runs on a large fingerprint database, because Ψ = {ψij(x, y)}

in Eq. (3.1) is only related to the coordinate variables, which means Ψ will be the



72
CHAPTER 3. PARTIAL FINGERPRINT INDEXING: A COMBINATION

OF LOCAL AND RECONSTRUCTED GLOBAL FEATURES

same for various inputs if x and y are the same. In this way, Ψ becomes a common

template that in fact only needs to be calculated once for all inputs. Since x and

y are generated on lattice indices, coarse OF inputs with the same dimensions

can share a common template of Ψ. Therefore, QR factorization can be brought

forward to the beginning even before the modeling process. The required terms

are then simply passed to the subsequent routines for evaluating the coefficients

and reconstructing the OF individually.

Before Smooth Extension, the FOMFE is used to refine the coarse OF of

the partial fingerprint and generate the initial coefficients for Smooth Extension.

The process consists of two parts: coefficients estimation and OF reconstruction.

The computational complexity of the coefficients estimation is O(2MΩK
2) [12],

where MΩ is the number of valid blocks from the coarse OF and K2 = (2k + 1)2

is the number of coefficients in the FOMFE. It is obvious that a larger block

size NB results in a smaller MΩ and, thus, a faster computation. The cost of

reconstruction is O(MΩK
2) for evaluating the K2 basis functions at each valid

block in the OF [12]. Therefore, the total theoretical cost of the FOMFE before

Smooth Extension is O(2MΩK
2) +O(MΩK

2).

Similarly, the computational complexity can also be estimated for Smooth

Extension. During Smooth Extension, the orientations of unknown blocks Mχ

are estimated step by step. For each step m in the Smooth Extension, the cost

for coefficients estimation is related to the total number of blocks already re-

constructed in previous m − 1 steps and the blocks in the m-th extended band,

that is O(2MΩ(m)K2). So the total cost for coefficients estimation during Smooth

Extension is
∑t−1

m=1O(2MΩ(m)K2). For OF reconstruction, no matter how many

steps it takes to fill the unknown region χ with phase estimates, the total cost for

reconstruction is O(MχK
2). Therefore, the total cost for generating the global
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feature set is O(2MΩK
2) +O(MΩK

2) +
∑t−1

m=1O(2MΩ(m)K2) +O(MχK
2). Since

Ω(0) = Ω and M = MΩ +Mχ is the total number of blocks in the partial finger-

print image, the total cost can be represented as
∑t−1

m=0O(2MΩ(m)K2)+O(MK2).

After Smooth Extension, the final coefficients are generated. The indexing using

FOMFE coefficients has been proved to be much faster than that of using raw

OF [12].

For indexing based on local minutiae triplet features, we use features from

all minutiae triplets instead of those of Delauney triangles because Delauney

triangles are not stable in partial fingerprint images. Therefore, it is unavoidable

that the number of triangles considered is very large. Fortunately, the number

of minutiae in a partial fingerprint image is less than that in a full fingerprint

image, and we have adopted some strategies to reduce the average percentage of

hypotheses that need to be considered for indexing: (1) before the construction

of triangles, minutiae with short distances to their neighbors are filtered out; (2)

we use quantization to retrieve points only in related bins, not to compare all

the points in the feature space for each query; (3) the new features are easy to

calculate and can filter out most of the points in each bin on average. Compared

to the well-known full minutiae based indexing approach in [27], our indexing

scheme based on minutiae triplets is much less complex.

The fusion scheme to generate the final candidate list is only related to the

number of templates N in the database and the number of iterations is N , so

the computational cost is O(N). In addition, the FOMFE coefficients based

indexing and the minutiae triplets based indexing are independent, so they can

be conducted in parallel, which can further speed up the retrieval process.
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3.6 Summary

In this chapter, we proposed to combine a reconstructed global feature, namely

FOMFE coefficients, with local minutiae triplet based features for partial finger-

print indexing. At first, the minutiae triplet based indexing scheme and FOMFE

coefficients based indexing scheme are applied separately to generating two candi-

date lists: reconstructed FOMFE coefficients are used to form the global feature

space directly; newly designed feature vectors on minutiae triplets are adopted

to form the local feature space. Before getting the final candidate list, a training

process is conducted on a small portion of the query fingerprints to decide which

candidate list tends to be more reliable. Based on the reliability, we derive a

set of fuzzy rules to guide the fusion of the two candidate lists for generating

the final candidate list. Evaluation on several public databases show that the

performance of minutiae triplet based indexing is improved significantly after

new features are considered, and can be comparable to that on full fingerprint

indexing under certain parameter settings. Experiments on the last 2000 F and

S fingerprint images in NIST SD 14 show that the penetration rate will decrease

after applying the fusion scheme, which means that the searching space will be

further reduced before matching.
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(a) δL = 4, δO = 15

(b) δL = 4, δO = 30

Figure 3.9: Penetration Rate: block size NB = 8, Fourier extension order k = 5,
distortion scale of the triangle sides δL = 4
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(a) δL = 5, δO = 15

(b) δL = 5, δO = 30

Figure 3.10: Penetration Rate: block size NB = 8, Fourier extension order k = 5,
distortion scale of the triangle sides δL = 5
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4.1 Motivation and Contributions

Conventionally, fingerprints were captured using contact-based methods, e.g.,

ink, thermal, optical, capacitive, ultrasonic, etc. In these cases, the subjects

have to press or roll their fingers against a solid surface with force to get 2D

fingerprint images. As a consequence, this capturing scheme often introduces

degraded images due to skin deformation, nonuniform pressure and residue left

on the sensor surface. To overcome these problems, touchless fingerprint imaging

technology has been proposed, particularly, the 3D fingerprint acquisition tech-

niques have drawn more and more attention recently. TBS North America [7] has

developed a 3D fingerprint system that uses shape from shading and stereovision

based technique to obtain 3D fingerprints in a non-contact fashion. Another

representative system was developed by Flashscan3D LLC [8] and the University

of Kentucky. Their system uses structured light illumination (SLI) technique and

can capture the 3D ridge-valley details of the fingertips. All these 3D fingerprint

sensors produce unraveled 2D equivalent fingerprints at last to be compatible

with legacy 2D fingerprints.

Despite the development of 3D fingerprint technology, preliminary experi-

ments have been carried out with limited individually collected samples [69][83],

instead of a publicly available 3D fingerprint database. This is a great barri-

er to experimental validation and comparison of algorithms in 3D fingerprint

biometric research area. We therefore built a multi-sensor fingerprint database

with 3D fingerprints as well as their corresponding 2D fingerprints from 150

volunteers (subjects). The large size of the database we have established will

provide meaningful statistical analysis and a truthful assessment of the perfor-

mance of the state-of-the-art algorithms in this area. Besides, our database can
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serve as a standard database for developing identification techniques for 2D to

3D fingerprint images. The resolution of these identification issues will require

an innovative approach which will significantly advance research in the area of

biometrics. It will also lead to the improvement and development of important

commercial products.

The rest of this chapter is organized as follows: Section 4.2 is a brief descrip-

tion of the database, including the acquisition protocol, the problems encountered

during the acquisition process, the naming scheme of the database and the vali-

dation steps. Evaluations on this database using original 3D fingerprint images

and enhanced 3D fingerprint images are demonstrated in Section 4.3 and Section

4.4, respectively. Section 4.5 concludes the whole work in this chapter.

4.2 Collection of 2D and 3D Fingerprint Database

4.2.1 Acquisition Protocol

The acquisition of the 2D and 3D fingerprint database was carried out in three

universities in Australia: the University of New SouthWales at Canberra, Latrobe

University at Melbourne, and Deakin University at Melbourne. The institution

in charge of coordinating the acquisition process was the University of New South

Wales at Canberra.

A total of 150 subjects were recruited from students and staff with balanced

demographic characteristics regarding age, gender, nationality similar to BMDB

[84]: 45% of the subjects were between 18 and 25 years of age, 45% between

25 and 35, and the remaining 10% of the subjects were above 35 years old; the

gender distribution was balanced with only a 10% difference between male and

female subjects; 45% of the subjects were East Asians, 45% were Indians or
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Bangladeshis, and the remaining 10% of the subjects were Caucasians.

To protect the privacy of all subjects, the name of each subject was not

recorded; instead a random number was assigned as the only ID for each subject.

All the relevant non-biometric data of each subject was stored in an independent

text file, which will not be published with the database.

Personal information and captured fingerprint data are personal data, for

which we have got approval from the Human Research Ethics Committee (HREC)

at the University of New SouthWales. At the start of the acquisition a Participant

Information Statement and Consent Form was signed by each subject. In the

Participant Information Statement and Consent Form, the subjects were properly

informed about how personal information would be used, that the fingerprint data

would be released in public anonymously, and that it was unlikely that they would

be identifiable in the future. The acquisition procedure could start only when

this consent form was fully understood and signed by the subject.

Two samples (BMP format) of ten fingers of each volunteer were collected

using a 3D fingerprint scanner; four samples (BMP format) of ten fingers of each

volunteer were collected using a 2D fingerprint scanner. The devices involved

and some representative examples are shown in Fig. 4.1: Fig. 4.1(a) is the 2D

fingerprint scanner; Fig. 4.1(b) is an example of its output image in low quality

due to the dry finger surface; Fig. 4.1(c) is an example of 2D fingerprints which

has clear ridge lines; Fig. 4.1(d) is the 3D fingerprint scanner; Fig. 4.1(e) is a

typical 3D fingerprint of low quality because the contrast of the left part of the

fingerprint is very low; and Fig. 4.1(f) is an example of 3D fingerprints in high

quality.

The scenario for the acquisition was an office-like environment with neutral

illumination which had no preponderant focuses. The acquisition was carried
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(a) 2D fingerprint
scanner

(b) a 2D sample of
low quality

(c) a 2D sample of
high quality

(d) 3D finger-
print scanner

(e) a 3D sample of
low quality

(f) a 3D sample of
high quality

Figure 4.1: Devices used and corresponding captured samples

out using a workstation PC which ran the acquisition software and two scanners

were connected to the PC via the USB interface 2.0. The donors sat in a chair

in front of the sensor. Acquisition was managed by a supervisor, who sat in

another chair next to the donor and was in charge of the following activities:

giving necessary instructions to the donors so that the acquisition protocol will

be followed; manipulating the operation of the software and inputting relevant

data for each donor; manually verifying the samples to decide whether to discard

or store them. The main features of the devices and software are listed in Table

4.1.
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(a) a noisy 2D sample (b) a noisy 3D sample

Figure 4.2: Noisy examples captured during acquisition

Table 4.1: Acquisition devices and their main features

Modality Model Main Features

3D Fingerprints
TBS S120E

Software: TBS 3DCaptureSuite v10018
DPI: around 1000
Image size: 1024 ∗ 1280
Storage size: 1.25MB

2D Fingerprints
CROSSMATCH Verifier 300 LC2.0

Software: FingerprintVerificationSDK 1.0
DPI: around 500
Image size: 640 ∗ 480
Storage size: 304KB

4.2.2 Naming and Validation of Acquired Data

i).Problems encountered during the acquisition

During the acquisition, several problems encountered are listed as follows:

• The residual left on the 2D fingerprint scanner affected the next capture,

especially when the former finger was wet. An example of the captured 2D

fingerprints is shown in Fig. 4.2(a). Besides, some 2D fingerprints were

very hard to capture because their corresponding fingers were too dry.

• The 3D fingerprint scanner was too sensitive: even if the finger pose was not

right, the device still accepted it leading to unacceptable scans sometimes.

Therefore, certain volunteers had to try many times to get the right scans.

• Some volunteers have short ring fingers and little fingers, so their corre-
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Table 4.2: Finger ID

Fingers ID
Right Thumb 1
Right Index 2

Right Middle Finger 3
Right Ring Finger 4
Right Little Finger 5

Left Thumb 6
Left Index 7

Left Middle Finger 8
Left Ring Finger 9
Left Little Finger 10

sponding 3D fingerprints could not be captured.

• The 3D fingerprint scanner introduced some noise when the room tempera-

ture was too high. An example of the captured 3D fingerprints is shown in

Fig. 4.2(b). It can be noticed that the peripheral region of the fingerprint

is not shown, so some post-processing techniques are needed to remove the

noise.

ii).Naming of the database

The proposed database consists of two sub-databases, one for 2D fingerprints,

the other for 3D fingerprints. The naming for both sub-databases are the same,

that is Subject ID Finger ID Capture Order. The Finger ID is listed in Table

4.2.

There are in total 150 volunteers, so the Subject ID ranges from 1 to 150. For

each subject, the Finger ID ranges from 1 to 10 according to Table II. The Capture

Order can be 1 and 2 for 3D fingerprints, and 1,2,3, and 4 for 2D fingerprints.

For example, the fingerprint named 102 3 2 in 3D sub-database represents the

second capture of the right middle finger of subject 102.
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iii).Validation of the database

Although the database was carefully collected by human supervisors, there were

still possible errors caused by software or humans. In order to ensure that the

database was conformed to the acquisition protocol, all the acquired samples were

manually verified by a human supervisor. The samples non-compliant with the

acquisition protocol were either corrected or removed. Note that valid low-quality

samples and invalid samples are different: low-quality samples are acceptable as

long as the acquisition protocol was followed (e.g., dry or wet 2D fingerprint im-

ages), and these samples were not removed from the database since they represent

real-world samples that can be found in the normal use of a fingerprint biometric

system. On the other hand, invalid samples are those that do not comply with

the specifications given for the database (e.g., blurred 3D fingerprint images).

The first stage of validation was carried out during the acquisition process it-

self. Human investigators were in charge of validating every captured sample and

recapturing if it did not meet the specified quality standards. After completion

of the acquisition, a second validation step was carried out again manually by an

investigator:

• Checking the names of all the samples using a read image routine, for

example, image named 30-2-4 would be replaced by name 30 2 4.

• Replacing a blank 2D fingerprint image (the fingerprint was not saved suc-

cessfully) by a sample of the same finger but of a different capture order.

• Marking missing 3D fingerprint images (ring or little fingers are too short

to be scanned by the 3D fingerprint scanner) and recording it down in the

instruction document.
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4.3 Verification Experiments On Raw 3D Im-

ages

The output of the 3D fingerprint sensor are unraveled 2D equivalent fingerprint

images, we call it original raw 3D images. To evaluate the recognition perfor-

mance, we have conducted three groups of testing on original raw images in

Section 4.3.1: (i) one for 2D fingerprint verification, (ii) one for 3D fingerprint

verification, and (iii) one for 2D to 3D fingerprint verification. We used a com-

mercial fingerprint identification software VeriFinger SDK [79] to extract all the

minutiae from each fingerprint image and get the match score for each pair of

testing fingerprints. Two different protocols are used to report the verification

performance of the established database:

• The original FVC protocol [85]: each template is compared against the

remaining ones of the same finger to obtain the False Non Match Rate

(FNMR). The first template of each finger is compared against the first

template of the remaining fingers in the data set, to determine the False

Match Rate (FMR).

• The modified 1vs1 protocol: the first template of each finger is compared

against the second one of the same finger to obtain the FNMR. The first

template of each finger is compared against the second template of the

remaining fingers in the data set, to determine the FMR.

Moreover, to enhance the contrast of the original raw 3D fingerprint images

and reduce the peripheral noise in these images, we carried out two sets of com-

parison experiments on enhanced original raw 3D fingerprint images in Section

4.3.2.
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4.3.1 Verification Experiments Using Original Raw Im-

ages

i).2D fingerprint verification

In this test, only part of the 2D fingerprint database was chosen, in particular,

the first capture and the second capture of six fingers (right thumb, right index,

right middle finger, left thumb, left index and left middle finger) of each subject

constituted the testing set. In the original FVC protocol, there are in total 900

(6 × 150) comparisons that should be genuine match, 150 each for right thumb,

right index, right middle finger, left thumb, left index, and left middle finger,

and there are in total 67050 (6× 150× 149/2) comparisons that should be false

match, 11175 each for right thumb, right index, right middle finger, left thumb,

left index, and left middle finger. In the modified 1vs1 protocol, similar to that

in the original protocol, there are in total 900 (6× 150) comparisons that should

be genuine match, and there are in total 134100 (6 × 150 × 149) comparisons

that should be false match, 22350 each for right thumb, right index, right middle

finger, left thumb, left index, and left middle finger.

ii).3D fingerprint verification

Similar to the 2D testing, all the 3D captures (the first and the second) of six

fingers (right thumb, right index, right middle finger, left thumb, left index and

left middle finger) of each subject were chosen in this test. In the original FVC

protocol, there are in total 900 (6 × 150) comparisons that should be genuine

match, and there are in total 67050 (6 × 150 × 149/2) comparisons that should

be false match. In the modified 1vs1 protocol, there are in total 900 (6 × 150)

comparisons that should be genuine match, and there are in total 134100 (6 ×
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Figure 4.3: Verification performance using the original FVC protocol

150× 149) comparisons that should be false match.

iii).2D to 3D fingerprint verification

In this test, the first capture of six fingers (right thumb, right index, right middle

finger, left thumb, left index and left middle finger) of each subject in both 2D

and 3D fingerprint databases were chosen, so the original FVC protocol is not

suitable for this test. In the modified 1vs1 protocol, there are in total 900 (6×150)

comparisons that should be genuine match, 150 each for right thumb, right index,

right middle finger, left thumb, left index, and left middle finger, and there are

in total 134100 (6 × 150 × 149) comparisons that should be false match, 22350

each for right thumb, right index, right middle finger, left thumb, left index, and

left middle finger.
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Figure 4.4: Verification performance using the modified 1vs1 protocol

iv).Results

We adopted the Equal Error Rate (EER) as a measure of our verification perfor-

mance. EER is the value where FMR and FNMR are equal and is the best single

description of the error rate of an algorithm. The lower the EER, the better the

algorithm.

Fig. 4.3 and Fig. 4.4 show the Equal Error Rate for each group in the above

three tests using the original FVC protocol and the modified 1vs1 protocol, re-

spectively. We can see from both figures that the average EER is less than 0.1%

for 2D fingerprint verification, around 0.5% for 3D fingerprint verification, and

around 5.67% for 2D to 3D fingerprint verification. It is obvious that, for each

group, the verification performance of 2D to 2D fingerprints is better than or

comparable to that of 3D to 3D fingerprints, and the performance of 2D to 3D

fingerprint verification is the worst. In other words, the matching rate is not

satisfactory for 2D to 3D fingerprint identification when using the raw 3D finger-
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print images and the commercial fingerprint identification software VeriFinger.

Therefore, post-processing algorithms for 3D fingerprint images as well as more

sophisticated 3D matching algorithms will be very important to improve the

performance of 2D to 3D fingerprint identification.

4.3.2 Verification Experiments Using Post-processed O-

riginal Raw Images

i).Testing on contrast enhanced images

As is mentioned before, the contrast of the 3D fingerprint images is low compared

to contact-based 2D fingerprint images, we therefore enhanced the contrast of the

3D fingerprint images by transforming the contrast values using contrast-limited

adaptive histogram equalization (CLAHE) [86]. Using CLAHE, the contrast

enhancement can be limited in order to avoid amplifying the noise which might

be present in the image. Then we tested the performance of 3D to 3D finger-

print verification and 2D to 3D fingerprint verification using the enhanced 3D

fingerprints.

ii).Testing on cropped images

Since the fingerprint images produced by the 3D scanning device is larger than

those of the traditional 2D sensor, we cropped all the raw 3D fingerprint images

by removing the peripheral regions. The size of the cropped 3D images is around

480 × 560. Then we tested the performance of 3D to 3D fingerprint verification

and 2D to 3D fingerprint verification using the cropped 3D fingerprints.
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Figure 4.5: Performance of 3D to 3D fingerprint verification

iii).Results

Fig. 4.5 shows the performance comparison of 3D to 3D fingerprint verification

using original raw 3D images, contrast enhanced raw 3D images and cropped raw

3D images, respectively. We can see that the performance for all fingerprints ex-

cept the left index fingerprints is improved after contrast enhancement, especially

the right index fingerprints, left thumb fingerprints and left middle fingerprints,

and the average EER for 3D to 3D fingerprint verification using contrast enhanced

images is comparable to that of the 2D to 2D fingerprint verification. However, as

shown in Fig. 4.5, cropping 3D images cannot improve the performance of 3D to

3D fingerprint verification, because the EER for 3D to 3D fingerprint verification

using cropped 3D images are much larger than that of using the original raw 3D

images.

Fig. 4.6 shows the performance comparison of 2D to 3D fingerprint verification

using original raw 3D images, contrast enhanced 3D images and cropped 3D



4.4. VERIFICATION EXPERIMENTS ON ENHANCED 3D IMAGES 91

right thumb right index right middle left thumb left index left middle average
0

2

4

6

8

10

12

Fingers

E
E

R
 (

%
)

Original

Enhanced

Cropped

Figure 4.6: Performance of 2D to 3D fingerprint verification

images, respectively. It is obvious that both contrast enhancement and cropping

cannot improve the performance of 2D to 3D fingerprint verification too much,

and compared to the performance of 2D to 2D fingerprint verification and 3D to

3D fingerprint verification, the performance of 2D to 3D fingerprint verification

using VeriFinger is far from satisfactory.

4.4 Verification Experiments On Enhanced 3D

Images

The raw 3D (unraveled 2D equivalent) fingerprint images were further processed

with algorithms ‘TH6’ and ‘R414’ provided by TBS 3DCaptureSuite. Fig. 4.7

and Fig. 4.8 show the typical fingerprint images of good quality and bad quality

(many creases captured by the 3D scanner) in the database, respectively, wherein

Subfigure (a) is the plain 2D fingerprint captured by the traditional scanner,
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(a) 2D fingerprint image (b) 2D equivalent fingerprint image
generated by 3D scanner

(c) Post-processed image in (b) by al-
gorithm HT6

(d) Post-processed image in (b) by al-
gorithm R414

Figure 4.7: Representative good quality images in the database

Subfigure (b) is the unraveled 2D equivalent fingerprint image produced by the

3D scanner, Subfigure (c) and (d) are the post-processed images of Subfigure (b)

by algorithm ‘TH6’ and ‘R414’, respectively.

4.4.1 Comparison Experiments Between Different Post-process

Algorithms

To test the performance of different enhancement algorithms, we have conducted

several experiments on a subset of the fingerprint database: fingerprints from 5

subjects, one of good quality, one of bad quality, and the others are of general
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(a) 2D fingerprint image (b) 2D equivalent fingerprint image
generated by 3D scanner

(c) Post-processed image in (b) by al-
gorithm HT6

(d) Post-processed image in (b) by al-
gorithm R414

Figure 4.8: Representative bad quality images in the database

quality.

Therefore, there are in total 100 (5×10×2) 2D plain fingerprints, 100 unrav-

eled 2D equivalent fingerprint images, 100 post-processed images using algorithm

‘TH6’, and 100 post-processed images using algorithm ‘R414’.

To investigate the performance of 2D to 3D fingerprint recognition, we divid-

ed the database into several groups by subjects or by fingers and conducted a

series of experiments. The recognition tool we used is also the Neurotechnology’s

commercial software Verifinger [79], which can also help extract and present the

main features of fingerprints (singular points and minutia points) in a graphical

interface.
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Figure 4.9: Recognition performance regarding different subjects

i).Testing by subjects

In this test, there are 5 groups (5 subjects in total) and each group contain-

s 20 (10 × 2) 2D fingerprints, 20 unraveled 2D equivalent fingerprint images,

20 post-processed images using algorithm ‘TH6’, and 20 post-processed images

using algorithm ‘R414’. We use False Reject Rate (FRR) to evaluate the recog-

nition performance. The lower the FRR, the better the performance. Fig. 4.9

demonstrates the performance regarding each subject in three scenarios: 2D to

unraveled 2D equivalent images, 2D to post-processed images using algorithm

‘TH6’, and 2D to post-processed images using algorithm ‘R414’.

As is shown in Fig. 4.9, the recognition performance of Subject 4 is the best

because the FRR are all 0 in three scenarios; the performance of Subject 5 is

the worst since the FRR are all very high in three testings, and the FRR even

reaches 90% when identifying 2D to post-processed images using algorithm ‘TH6’.

Possible reason for the large difference is that there are too many creases (bad
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Figure 4.10: Recognition performance regarding different finger names

quality) in the fingerprint images of Subject 5 captured by the 3D scanner, but

the ridges and valleys are very smooth (good quality) in the fingerprint images

of Subject 4.

The average FRR, which demonstrates the performance of the whole database,

is above 20% in all three scenarios, so the performance of 2D to 3D recognition is

not good regarding the database we have collected. Meanwhile, we can see from

the average FRR that, using Algorithm ‘R414’ to process unraveled 2D equivalent

images can improve the performance of 2D to 3D recognition since the FRR in

this scenario is lower than those in other two cases.

ii).Testing by finger names

In this test, there are 10 groups regarding left thumb finger, left index finger,

left middle finger, left ring finger, left little finger, right thumb finger, right index

finger, right middle finger, right ring finger, and right little finger, and each group

contains 10 (5 × 1 × 2) 2D fingerprints, 10 unraveled 2D equivalent fingerprint
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(a) (b)

Figure 4.11: Two captures of the same finger using the same 3D scanner

(a) (b)

Figure 4.12: Corresponding post-processed images in Fig. 5 using Algorithm ‘R414’

images, 10 post-processed images using algorithm ‘TH6’, and 10 post-processed

images using algorithm ‘R414’. We also use False Reject Rate (FRR) to evaluate

the recognition performance. Fig. 4.10 demonstrates the performance regarding

different finger names in three scenarios: 2D to unraveled 2D equivalent images,

2D to post-processed images using algorithm ‘TH6’, and 2D to post-processed

images using algorithm ‘R414’.

As is shown in Fig. 4.10, the recognition performance of ring fingers is the

worst since the FRR regarding both left ring and right ring fingers are all very

high in three scenarios, the FRR reaches 60% when identifying 2D to unraveled

2D equivalent images for the left ring fingers; the recognition performance of little
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fingers is a little better than that of the ring fingers, but still not good. Relatively

speaking, the performance of identifying the thumb fingers is the best, which may

be due to the large region and smooth surface of the thumb fingers.

iii).Testing of 3D to 3D fingerprint recognition

We also tested the performance of 3D to 3D fingerprint recognition, in particular,

we try to verify two unraveled 2D equivalent images of the same finger captured

consecutively using the same 3D scanner. There are in total 50 (5× 10) pairs of

fingerprints to be verified by VeriFinger. The results show that not all pairs can

be matched successfully, for example, the two fingerprints in Fig. 4.11 cannot be

verified as the same fingerprint, and their corresponding post-processed images

in Fig. 4.12 cannot be matched too.

The singular points and minutiae in Fig. 4.11 are marked red by VeriFinger,

we can see that the area of the fingerprint in Fig. 4.11(b) is wider than that

in Fig. 4.11(a) and the number of minutiae in Fig. 4.11(b) is larger than that

in Fig. 4.11(a). Actually, there are too many spurious minutiae in both images,

especially near the brim of the fingerprints, certain minutiae near the singular area

are missing, and the extracted singular point in Fig. 4.11(b) deviates obviously

from the ground truth. The same observations apply to images in Fig. 4.12 too.

All these may result from the difference between the finger poses of two captures

and the creases on the fingerprints.

iv).Discussion

According to the above testing, we can see that, despite the advantages, 3D

fingerprint technology is new and also has some drawbacks:

• the image resolution is not uniform and the contrast between the ridges and
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(a) Enhanced 3D fingerprint image by
algorithm R414

(b) Cropped image based on Singular
Points

(c) Cropped image based on image
quality

(d) Cropped image based on orienta-
tion reliability

Figure 4.13: A representative 3D image and its cropped ones by 3 different methods

the valleys is low in unraveled 2D equivalent fingerprint images, which will

impact the feature extraction process.

• the scanner is too sensitive to the pose of the finger, little difference will

lead to recognition failure.

• creases have a significant influence on the unraveled images and the subse-

quent post-processed images.
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4.4.2 Comparison Experiments on Post-processed Enhanced

Images

From the previous experiments, we can conclude that the enhanced 3D fingerprint

images using algorithm ‘R414’ have the best performance, so we will use them

as the 3D images in the later experiments. However, those images have too

many spurious minutiae that will impact the feature extraction, especially at the

peripheral region. To remove these noisy areas, we adopted 3 different approaches

to crop the 3D images and carried out some experiments to find out the best

cropping approach.

i).Process of enhanced images

• cropping based on Singular Points The singular points were extracted

using VeriFinger first, then a constrain was put on the positions of the core

points to remove spurious ones. Based on the corrected core points, an

ellipse is applied to each image and only the areas in the ellipse were kept

as the region of interests. As to those images without core points (e.g. Arch

type), we chose the center points as the center of the ellipse and applied

the ellipse cropping as well.

• cropping based on image quality Similar to partial fingerprints genera-

tion [87], we used Mindtct [82], a routine of NIST Biometric Image Software,

to obtain a quality map marking reliability of local fingerprint image areas

at 5 different levels. Then we extracted each image foreground with high

quality levels and kept only the high quality areas as region of interest.

• cropping based on orientation reliability The reliability of the finger-

print orientation filed describes the consistency of the local orientations in
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Figure 4.14: Recognition performance regarding different finger names

a neighborhood along the dominant orientation [88]. For 2D fingerprint

images, the map of the orientation field reliability has peaks in the singular

point locations, but for 3D fingerprint images, the map of the orientation

field reliability also has peaks in noisy peripheral areas. According to this

phenomenon, we cropped the 3D fingerprint images by some morphological

operations [89] on the map of the orientation field reliability, and generated

a foreground mask for each fingerprint image.

Figure 4.13 shows a typical example of such cropped fingerprint images under

different methods and its original fingerprint.

ii). Comparison of post-processed enhanced images

Fig. 4.14 shows the performance comparison of 2D to 3D fingerprint verification

using original 3D R414 images, cropped images based on SP, cropped images
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based on quality map and cropped images based on orientation reliability, re-

spectively. It is obvious that quality map based cropping cannot improve the

performance of 2D to 3D fingerprint verification, the possible reason is that im-

ages generated after quality map based cropping generally have singular points

missing and subsequently have too many genuine minutiae missing. We can

also find that both cropping based on SP and orientation reliability can improve

the performance of 2D to 3D fingerprint verification greatly, especially the one

based on SP. Therefore, we will use cropped 3D R414 images based on SP as the

standard 3D images for our later experiments.

4.5 Summary

Non-contact 3D fingerprint technology has the tendency of replacing traditional

fingerprint acquisition and recognition in many applications. This chapter first

presents our recently established fingerprint database which contains both 2D

fingerprints and their corresponding 3D fingerprints captured from 150 subjects.

The potential use of this database is listed as follows:

• Existing databases for 3D fingerprint research contain at most 11 subjects

[69], which is far from enough for verification or identification experiments.

Meanwhile, there is no database containing both 2D and 3D fingerprints

publicly available. Therefore, our database involving 150 subjects is the

first in its kind and can be treated as a benchmark database for fingerprint

biometrics. We have released the database publicly in 2015.

• The device and protocol for the 2D fingerprint subdatabase we have built

are compatible with the existing databases, such as FVC database 2006,
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NIST DB4, and the BioSecure database [84]. Therefore, the new 2D sub-

database can be combined fully or partially with the existing databases to

increase the number of available subjects.

• Effect of different acquisition devices on the quality of acquired samples

and its impact on the recognition performance can be investigated using

our newly established database.

• The compatibility of 2D fingerprints with their corresponding 3D finger-

prints can be investigated comprehensively with our database. It can be

seen from Fig. 4.7 and 4.8 that the fingerprint ridges are not continuous

after post-processing, as a result, there are many falsely extracted minutiae,

which will adversely affect the subsequent matching performance. So exact

feature extraction of 3D fingerprints are very important to be compatible

with legacy 2D fingerprints.

Based on the database we have collected, we futher conducted a series of exper-

iments on raw 3D fingerprint images and enhanced 3D fingerprint images. The re-

sult shows that the raw 3D images, even with post-process, cannot achieve as good

performance as the enhanced 3D images. So we will adopt the post-processed

enhanced 3D images as the standard 3D images for our later experiments.
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5.1 Motivation and Contributions

In recent years, great improvement has been achieved in the fingerprint sensing

technology. The development of sensor technology allows us to acquire finger-

prints with various types of sensors; the latest is the 3D fingerprint sensor. The

difference resulted from multi-type sensors significantly affects the characteristics

of the raw data, the extracted features and subsequently the indexing perfor-

mance. Only limited research has been carried out on the scale of impact [13][14]

or non-linear distortion [15][16] in multi-sensor matching. It is still a challenging

issue to exploit proper features or indexing algorithms for multi-sensor fingerprint

indexing.

Among variants of features for fingerprint indexing, the Minutia Cylinder-Code

(MCC) representation [90] derived from minutiae only is a robust and effective

local feature descriptor. Recent studies showed that MCC can provide the best

performance in terms of accuracy [33]. Its bit implementation is very flexible for

representing a single minutia using hundreds of bits. Besides, it enables binary

feature based fingerprint indexing [33] to be highly efficient.

Based on MCC, a Locality-Sensitive Hashing (LSH) scheme [33] has been

designed to index fingerprint in large databases, which uses a numerical approxi-

mation for the similarity between MCC vectors. However, the LSH scheme is not

robust enough when there is certain distortion between template and searched

samples, such as fingerprints captured by multi-sensors. Therefore, we investi-

gated the LSH and MCC characteristics of different databases, captured using

different sensors. We propose an improved indexing approach based on LSH.

The main contribution of this work is threefold: (1) the comprehensive study

on the LSH scheme and MCC descriptor, which points to a better solution for
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multi-sensor fingerprint indexing; (2) an improved indexing approach using s-

liding window based LSH, which can improve the indexing performance greatly

for multi-sensor fingerprint indexing, and can also improve the indexing perfor-

mance for single sensor fingerprint indexing in most cases; (3) introduction of a

new feature - the single maximum collision, and a fusion method that can further

improve the indexing performance.

The rest of this chapter is organized as follows. Section 5.2 is a brief introduc-

tion to the MCC descriptor and the indexing algorithm based on LSH. Section

5.3 elaborates on the improved indexing scheme, including the analysis on MCC

and LSH, the sliding window based LSH indexing scheme, and the final candidate

list generation. Experiments on our collected multi-sensor fingerprint databases

and two public benchmark fingerprint databases are demonstrated in Section 5.4

and Section 5.5 concludes the whole work.

5.2 Preliminaries On MCC and LSH

5.2.1 The MCC Descriptor

The MCC representation [90] is derived from the minutiae-only representation

(i.e., location and direction) of ISO/IEC 19794-2 fingerprint minutiae templates.

It encodes the neighborhood information of each minutia into a 3D data structure,

called minutia cylinder, which is invariant to translation and rotation (being

small at a local level), and is robust against skin distortion and small feature

extraction errors. The 3D cylinder structure is divided into several sections,

each corresponding to a directional difference in the range [−π, π]. Sections are

discretized into a fixed number of N ∗ N cells. Each cell value is calculated by

accumulating spatial and directional contributions from all other minutiae in the
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Figure 5.1: A graphical representation of a cylinder: the corresponding minutia and
its neighborhood is shown below the base of the cylinder. (b) is the binary

version of (a).

neighborhood for encoding, wherein the spatial contribution affects cell values in

the base and the directional contribution affects the height (i.e., which section to

be assigned a base value) of the 3D cylinder.

In the original MCC descriptor, each cylinder cell is associated with two bits:

one denoting the cell value and the other specifying cell ‘validity’. The corner cells

may be labelled as ‘invalid’ so that they are not used in the cylinder matching

phase. But in indexing approaches, for simplicity cell validity is disregarded and

all of the cells are considered valid, and the cell values are quantized into binary

values for bit implementation. In practice, bits from all sections are concatenated
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into a fixed-length binary feature vector. It is worth noting that the resulting

binary representation is very sparse, with far more zeros than ones, around 95% of

MCC bits are zeros on average [38]. Fig. 5.1 illustrates the minutia cylinder-code

of a minutia in both original and binary versions.

5.2.2 The LSH Indexing Scheme

Based on MCC, Cappelli et al. also proposed a Locality-Sensitive Hashing (LSH)

scheme for fingerprint indexing [33]. The hash-based indexing techniques are

mostly built on the collision principle. The basic idea is to hash similar points to

the same buckets (hash cells) such that, if two instances are similar, they would

have a relatively high chance of finding colliding segments in at least some of these

buckets. And a novel search algorithm has been designed using the derivation

of a numerical approximation for the similarity calculation between MCC binary

vectors.

Wang et al. [38] also proposed a simple yet effective geometric hashing tech-

nique based on the binary local descriptor of fingerprint minutiae cylinder-codes.

The proposed technique exploited dual representations of minutiae points, both

acquired from standard fingerprint templates, to build a 3D geometric hash table.

And a hierarchical indexing scheme was developed which combined the merits of

both LSH and geometric hashing.
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5.3 Improved Indexing Approach based on LSH

5.3.1 Analysis on LSH

LSH is the most popular method solving the nearest neighbor search problem

based on collision principle [91] in the Hamming space. It serves two purposes:

reducing dimensionality of the input binary strings and clustering data points

into buckets.

For binary feature vectors, LSH functions of random selecting bits can preserve

Hamming distance. This is due to the fact that, if the number of selected bits is

sufficiently large, the collision probability of two hashes is equal to the fraction of

bit positions on which the two binary strings agree [92]. Thus, to achieve a good

precision, LSH based methods require more sampling bits and hash tables, thus

leading to a significant increase in query time and storage requirement for long

inputs, typically seen in biometric representations, which often contain hundreds,

if not thousands, of bits in a single instance.

For example, in [33], the LSH hash functions were chosen randomly, but a

constraint was imposed to guarantee that bits were selected as evenly as possible.

In particular, the number of bits in a cylinder was 312 and 24 bits were selected

for each of the 32 hash functions (for a total of 32 ∗ 24 = 768 selected bits), while

the random selection resulted in 168 (of 312) bits selected in two functions and

144 (of 312) in three (168 ∗ 2 + 144 ∗ 3 = 768). So the number of total selected

bits has to be far larger than the number of bits in the cylinder. If the cylinder

is composed of thousands of bits, the number of hash functions will be hundreds,

which is impractical in terms of both time and storage consumptions.

In addition, 3D fingerprint images generally have more minutiae than 2D

fingerprints, especially false extracted minutiae, which will impact the formation
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of corresponding MCC binary vectors and the bit vectors selected by each hash

function. Therefore, we try to analyze the MCC features of different fingerprints

from the same finger, captured by different sensors, and improve the LSH indexing

algorithm to make it adaptive to indexing multi-sensor fingerprint images.

Without lose of generosity, we use the same notation as in [33] for analyzing

and describing the improved indexing algorithms. Each cylinder is treated as a set

of n binary cells. Let vm ∈ {0, 1}n be the binary vector obtained by linearizing

the cells of cylinder Cm corresponding to a given minutia m. Hence, from a

template T , a set of binary vectors V can be derived:

V = {vm | vm obtained from Cm, Cm ∈ CS} (5.1)

where vm is the binary vector obtained from the cylinder of minutia m and CS

is the cylinder set of template T .

The projection of a binary vector v into a subspace with h dimensions (h < n)

simply consists of selecting a subset of h bits from the n bits in v. More formally,

let H = {i1, i2, . . . , ih} ⊆ {1, . . . , n}. The projection of a given binary vector v

on H is defined as v[H] = [vi1 , vi2 , . . . , vih ]. The set of indices H defines a hash

function fH : {0, 1}n → N that maps a binary vector to the natural number whose

binary representation is v[H]. In the LSH approach, l hash functions are defined

by randomly choosing l subsets H1, H2, . . . , Hl, and the index consists of l hash

tables H1,H2, . . . ,Hl. Given a set of binary vectors to be indexed, each vector v

is placed into bucket fHk
(v) of each hash table Hk, for k = 1, . . . , l. To perform a

similarity search, the hash functions are applied to the query vector and all the

vectors in the corresponding buckets are retrieved as candidates. The candidates

are finally ranked according to their Hamming distance. In practice, LSH allows
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(a) an MCC base on a 2D fingerprint
image

(b) MCC base of the 2D fingerprint im-
age

(c) an MCC base on a 3D fingerprint
image

(d) MCC base of the 3D fingerprint im-
age

Figure 5.2: An example of the MCC difference between good quality images

to drastically reduce the number of distances to be calculated by considering

only those vectors that collide with the query vector under one or more of the

hash functions. Moreover, if a certain degree of approximation is tolerated, the

computation of distances can be completely avoided since the Hamming distance

between two binary vectors can be estimated by simply counting the number of

collisions of each pair of binary vectors. Intuitively, if two vectors collide under

many hash functions, then their normalized Hamming similarity is likely to be

high, while if the number of collisions is small, then probably the two vectors are

not very similar.
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5.3.2 Analysis on MCC of Multi-sensor Fingerprints

Fig. 5.2 is a typical example showing the difference between MCC of the same

minutia, but on different images. Fig. 5.2(a) is the 2D fingerprint image with the

MCC base on it, and Fig. 5.2(b) is the MCC base only, whose minutiae can be

identified more clearly. Fig. 2(c) is the 3D fingerprint image with the MCC base

on it, and Fig. 2(d) is the MCC base without the original 3D image. Both the

2D and 3D fingerprint images are of good quality, and different colors represent

different sections the minutiae should contribute to. We can see that most of

the neighboring minutiae have the same spatial and directional relations to the

central minutia, but there are still some differences in the neighborhood due to

the spurious or missing minutiae. The difference will have a direct impact on the

bit one distribution in the MCC binary vector of the minutia.

Fig. 5.3 is another example demonstrating the similarity between the MCC of

the same minutia, but in different images. Fig. 5.3(a) is the 2D fingerprint image

with the MCC base on it, and Fig. 5.3(b) is the MCC base only. Fig. 5.3(c) is

the 3D fingerprint image with the MCC base on it, and Fig. 5.3(d) is its MCC

base only. We can see that these two MCC bases have the same neighboring

relations, which means that their MCC binary vectors will be the same.

From these two typical examples, we can find some characteristics of the

MCC binary vectors between multi-sensor fingerprint images: 1) overall, most of

the MCC binary vectors of the same minutia but from multi-sensor fingerprint

images differ in some bits, which will have an influence on the natural numbers

of the hash selected sub binary vectors; and 2) in some local areas, the MCC

binary vectors of the same minutia but from multi-sensor fingerprint images are

completely the same.

On one hand, the LSH based approach can tolerate some degree of distortion,
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(a) an MCC base on a 2D fingerprint
image

(b) MCC base of the 2D fingerprint im-
age

(c) an MCC base on a 3D fingerprint
image

(d) MCC base of the 3D fingerprint im-
age

Figure 5.3: An example of the MCC similarity

because it chooses many hash functions (e.g. 32) instead of just a few, and

the number of selected bits for each hash function is often large enough (e.g.

24). However, if two binary vectors differ in 1 bit under a certain hash function,

the collision will fail, which will impact the final similarity score. To solve this

problem, we propose to divide each sub binary vector, selected by LSH hash

functions, into finer vectors, and a good solution is to use a sliding window based

strategy for division. On the other hand, suppose two fingerprints of the same

finger but captured by different sensors generally have a pair of MCC binary

vectors more similar than those of all the other false indices, this single maximum

collision can be adopted to supervise the indexing process, and it can be easily



5.3. IMPROVED INDEXING APPROACH BASED ON LSH 113

calculated during the LSH based collision computation.

5.3.3 The Indexing Approach

In the sliding window based LSH approach, we divide each binary set H into

several finer subsets. Suppose the window size is ws, ws < h, the first subset

is generated from the first binary bit to the wsth binary bit, then the window

slides right one binary bit every time, generating in total h − ws + 1 subsets.

Therefore, each hash function Hk is replaced by h−ws + 1 sub functions, which

are denoted by Hk−q, 1 ≤ k ≤ l, 1 ≤ q ≤ h− ws + 1. Accordingly, given a set of

binary vectors to be indexed, each vector v is placed into bucket fHk−q
(v) of each

hash table Hk−q. To perform a similarity search, the hash functions are applied

to the query vector and all the vectors in the corresponding buckets are retrieved

as candidates.

Fig. 5.4 is a simple example of the sliding window based LSH indexing.

Suppose the first hash function H1 chooses 18 bits (h = 18) from two MCC

binary vectors, v1 and v2. According to the original LSH indexing approach,

fH1(v1) = 33284 and fH1(v2) = 516, therefore, if v1 is the template binary vector,

and v2 is the query binary vector, v2 will not collide with v1 under hash function

H1, although v1[H1] and v2[H1] differ only at the third bit. In the sliding window

based approach (ws = 12), H1 is divided into 7 sub functions H1−q (1 ≤ q ≤ 7) by

sliding. Although the first three hash values (fH1−1(v1) vs. fH1−1(v2), fH1−2(v1)

vs. fH1−2(v2), and fH1−3(v1) vs. fH1−3(v2)) are different, the remaining four hash

values are the same. That is, if v1 is the template binary vector and v2 is the

query binary vector, v2 collides with v1 under four sub functions of H1.
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Figure 5.4: An example of sliding window based LSH

i).Creating the index

Algo. 5.1 shows index creation. Any binary vector vj of each template Ti is

given as the input to all of the LSH hash functions first. Since binary vectors

obtained with the MCC representation tend to be quite sparse (having more 0s

than 1s), those buckets whose binary representations have only a few 1 bits are

more likely to contain a large number of pairs and hence are less selective. For

this reason, a parameter (minPC) is used to discard selections with a low number

of 1 bits in the LSH mapping, and another parameter (minPCs) is used to discard

buckets with a low number of 1 bits in the sub hash tables. The pair (i, j), which

identifies template Ti but also vector vj (corresponding to minutia mj of Ti), is

stored in the corresponding buckets of the sub hash tables.
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Algorithm 1: Creation of the index
Input:

Database of minutiae templates DB = {T1, T2, . . .};
Set of hash functions F = {fHk

, k = 1, . . . , l};
Sliding window size ws.

Output:
Sub hash tables H = {Hk−q, k = 1, . . . , l, q = 1, . . . , h− ws + 1}.

Generate sub hash functions Fs = {fHk−q
, k = 1, . . . , l, q = 1, . . . , h− ws + 1}.

foreach template Ti in DB do
Use MCC to create binary vector set Vi from Ti

foreach vector vj in Vi do
foreach hash function fHk

in F do
b = fHk

(vj)
if PopCount(b) ≥ minPC then

foreach sub hash function fHk−q
under fHk

do
bs = fHk−q

(vj)

if PopCount(bs) ≥ minPCs then
Store (i, j) in bucket bs of table Hk−q

end

end

end

end

end

end

ii).Candidate list generation

At retrieval time, the same hash functions and sub hash functions such as those

being adopted in index creation are applied to each binary vector of the searched

template, and the number of collisions with database vectors is counted using an

accumulator matrix S (see Algorithm 5.2). In this way, the most similar database

templates are efficiently determined by accumulating the vector similarity of all

the minutiae and the candidate list is easily produced.

Apart from discarding buckets corresponding to a small number of 1 bits in

both LSH mapping process and sub hash tables, to reduce the number of elements

considered by the accumulator, we only consider the minutiae which satisfy basic
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Algorithm 2: Candidate list generation
Input:

Minutiae template T of the searched fingerprint
Database of minutiae templates DB = {T1, T2, . . .};
Set of hash functions F = {fHk

, k = 1, . . . , l};
Set of sub hash functions Fs = {fHk−q

, k = 1, . . . , l, q = 1, . . . , h − ws + 1}.
Set of sub hash tables H = {Hk−q, k = 1, . . . , l, q = 1, . . . , h − ws + 1}.
Maximum number of candidates maxC

Output:
A set of candidates CL = {(ik, sk)} sorted by sliding window base LSH, where each candidate (ik, sk) consists of a

database template index i and its score s.
A set of candidates CLsmc = {(ip, sp)} sorted by single maximum collison, where each candidate (ip, sp) consists of

a database template index i and its score s.

Use MCC to create binary vector set V from T
Initialize the hash score accumulator S
Initialize the single maximum collision score accumulator Ssmc
foreach vector v in V do

Let m be the minutia of T corresponding to v
Reset collision accumulator A
foreach hash function fHk

in F do

b = fHk
(v)

if PopCount(b) ≥ minPC then
foreach sub hash function fHk−q

in Fs do

bs = fHk−q
(v)

if PopCount(bs) ≥ minPCs then
foreach pair (i, j) in bucket bs of table Hk−q do

Let mj be the jth minutia of template Ti

if Compatible(m,mj) = true then
A[i, j] = A[i, j] + 1

end

end

end

end

end

end
foreach Ti with at least one collision in A do

Let CFmax = maxj{A[i, j]}

S[i] = S[i] + (CFmax)
p
h

if Ssmc[i] < CFmax then
Ssmc[i] = CFmax

end

end

end
foreach template index i in S do

S[i] = S[i]

|V |·(l·(h−ws+1))
p
h

end
Create CL by selecting at most maxc pairs (i, S[i]) with the highest scores in S
Create CLsmc by selecting at most maxc pairs (i, Ssmc[i]) with the highest scores in Ssmc

geometric constraints. Function Compatible(m,mj) is defined as follows:

Compatible(m,mj) =

 true, if dθ(m,mj) ≤ δθ and dxy(m,mj) ≤ δxy;

false, otherwise.

(5.2)

where dθ and dxy are the angular difference and the Euclidean distance between

the two minutiae, respectively.

In addition, when counting the number of collisions with database vectors,

another accumulator vector Ssmc is used to record the number of single maxi-
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mum collision with database template, and another candidate list is generated

by sorting the accumulator vector Ssmc.

iii).Candidate list fusion

The candidate list produced by sliding window based LSH indexing is expected to

be more reliable because the vector S accumulates the similarity of every minutia

in the searched template to database templates. That is, it is the averaged

similarity at a global level. And the candidate list generated according to vector

Ssmc provides some information about local similarity and can be used to produce

the final candidate list. Similar to our work in partial fingerprint indexing [87], we

treat all the template fingerprints as candidates and apply a fuzzy-based fusion

scheme to the two candidate lists to produce a new candidate list.

The fuzzy-based candidate list fusion scheme is reduced to only one stage

(without the training stage) - the testing stage, because we believe the penetration

rate of sliding window based LSH indexing is lower than the single maximum

collision indexing, which means that the candidate list generated by the sliding

window based LSH indexing is more reliable, and its top K candidates can keep

the original order in the new candidate list.

The fuzzy sets and fuzzy rules are the same as those for partial fingerprint

indexing [87]. After applying the fuzzy rules to both candidate lists, the new

candidate list is generated as the final candidate list.

5.4 Performance Evaluation and Analysis

To evaluate the proposed multi-sensor fingerprint indexing approach, compar-

ison experiments have been carried out on both our collected 2D and 3D fin-
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gerprint databases and two public fingerprint databases. Section 5.4.1 describes

the databases, tools and the performance measures used in our experiments and

Section 5.4.2 demonstrates the experimental results on our collected 2D and 3D

fingerprint databases. Section 5.4.3 demonstrates the experimental results on two

public databases and Section 5.4.4 is the analysis on the computational complex-

ity. The comparison experiment between even bit selection indexing and hash

based indexing is in Section 5.4.5.

5.4.1 Databases, Tools and Performance Measures

i).Database

• 2D database: the 2D database we collected [93] contains 6000 fingerprints

from 1500 fingers (4 impressions per finger). Only the first and the second

impressions were used in our experiments.

• 3D database: the 3D database we collected [93] contains nearly 3000 fin-

gerprints from 1500 fingers (2 impressions per finger). Only cropped finger-

prints from thumb, index, and middle fingers were used in our experiments.

• FVC2000 DB2: the second FVC2000 database contains 800 fingerprints

from 100 fingers (8 impressions per finger) captured using the capacitive

scanner Touch-Chip by ST Microelectronics.

• FVC2002 DB1: the first FVC2002 database, containing 800 fingerprints

from 100 fingers (8 impressions per finger) captured using the optical scan-

ner TouchView II by Identix.
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ii).Tools

In all the experiments, we used the third-party commercial software VeriFinger

4.0 from NeuroTechnology [79] to extract minutiae features from the fingerprints.

No particular pre-processing steps, such as image enhancement, foreground seg-

mentation or fingerprint alignment, were carried out before feature extraction.

After converting the radians into standard ISO/IEC 19794-2 format, the extract-

ed minutiae templates are input to the MCC SDK v2.0 software [94] to create

the MCC binary representations: Cylinders with an 16-cells in diameter and six

sections were created (resulting in a total of 1536 cells, 256 per section). The

same parameters reported in [33] have been used to create the cylinders, with the

only exception of µΨ, which has been set to 1/200 here instead of 1/100. This

new value is more appropriate for indexing since it allows a sufficient number

of one-valued cells to be obtained without reducing the discriminability of the

features. In addition, we followed the practice in [33][38] that disregards the cell

validity bits by considering all cells to be valid.

iii).Performance Measures

The performance of fingerprint indexing approaches is typically evaluated by

reporting the trade-off between error rate and penetration rate: this trade-off

usually depends on a parameter such as the maximum number of candidates to

be considered. The error rate is defined as the percentage of searched fingerprints

that are not found; the penetration rate is the portion of database that the system

has to search on average.

Apart from the above performance indicators, some researchers [33] also con-

sider another retrieval scenario (incremental search), where an ideal matching

algorithm is used to stop the search as soon as the right candidate is retrieved. In
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Table 5.1: Major Parameters Used

Symbol Explanation Values
n number of cells (bits) in a cylinder 1536
h number of bits selected by each hash function 24
l number of hash functions 32
ws size of the sliding window to generate sub hash bits 14
p shape parameter of distance function 30

minPC minimum one-bits for LSH index to be used 2
minPCs minimum one-bits for sub bucket index to be used 1
δθ maximum global fingerprint rotation (radians) π/4
δxy maximum global fingerprint translation (pixels) 256
K number of fixed candidates 40, 5

such a scenario there are no retrieval errors, since in the worst case the search can

be extended to the whole database, and the average penetration rate is reported

as a single performance indicator.

5.4.2 Comparison Experiments on Our Collected Databas-

es

i).Performance of 2D to 3D fingerprint indexing

For 2D to 3D fingerprint indexing, part of the first impressions (from 6 fingers

per person: thumbs, index fingers and middle fingers) in 3D fingerprint database

were treated as database templates, and the first impression of corresponding 2D

fingerprints were used as the searched templates. The parameters we adopted and

their detailed explanations were listed in Table 5.1, and the following experiments

would use the same parameters for indexing.

To be compatible with the original LSH indexing, we choose to report the

trade-off between error rate and penetration rate as the performance measure of

2D to 3D fingerprint indexing. The original LSH indexing was performed using

the Matlab function about indexing in MCC SDK 2.0, and the sliding window
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Table 5.2: Performance in Penetration Rate

Database Indexing experiments K Original LSH Sliding LSH Fusion

Our databases
2D vs. 3D

40
2.41 1.24 1.18

2D vs. 2D 0.32 0.34 0.32
3D vs. 3D 0.49 0.33 0.33

Public databases
FVC 2000 db2

5
1.96 1.71 1.63

FVC 2002 db1 1.76 2.16 2.08

base LSH indexing and fusion algorithms were also realized in Matlab using the

same parameters.

The performance comparison of 2D to 3D fingerprint indexing is shown in

Fig. 5.5. It can be seen that no matter what penetration rate is, the error

rate is much smaller in sliding window based indexing than that in original LSH

indexing. On average, the error rate dropped by half. In the fusion scheme, we

used the candidate list produced by sliding window based indexing as the reliable

ranking and fixed top 40 of its original order (K = 40) as the same order in the

final candidate list. In Fig. 5.5, we could not identify clearly the advantage of the

fusion scheme, so we adopted another indicator, the average penetration rate in

incremental search, as the performance measure. The performance after fusion

is shown in Table 5.2, which indicates the performance after fusion (1.18%) is

better than that in sliding window base LSH indexing (1.24%).

ii).Performance of 2D to 2D fingerprint indexing

For 2D to 2D fingerprint indexing, all of the first impressions in the 2D finger-

print database (1500 fingerprints) were treated as database templates, and all

the second impressions in the 2D fingerprint database were used as the searched

templates. The trade-off between error rate and penetration rate of 2D to 2D

fingerprint indexing is shown in Fig. 5.6. We can see that when the penetration
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Figure 5.5: Indexing performance of 2D to 3D database

rate is less than 24%, the error rate is generally much smaller in sliding window

based indexing than that in original LSH indexing, especially when the penetra-

tion rate is between 7% and 22%. Compared to 2D to 3D fingerprint indexing,

the error rate is much smaller (0.75% vs. 3.5% at penetration rate 5%). In the

fusion scheme, we also used the candidate list produced by sliding window based

indexing as the reliable ranking and fixed top 40 of its original order (K = 40) as

the same order in the final candidate list. Fig. 5.6 shows that the performance

after fusion is better than the sliding window based LSH indexing most of time.

On average, their performance is similar, which can be shown in Table 5.2 using

the average penetration rate measurement.

iii).Performance of 3D to 3D fingerprint indexing

For 3D to 3D fingerprint indexing, similar to 2D to 3D fingerprint indexing, part of

the first impressions in the 3D fingerprint database were treated as database tem-
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Figure 5.6: Indexing performance on the 2D database

plates, and their corresponding second impressions in the 3D fingerprint database

were used as the searched templates. The trade-off between error rate and pen-

etration rate of 3D to 3D fingerprint indexing is shown in Fig. 5.7. We can see

that the error rate is on average much smaller in sliding window based indexing

than the one in original LSH indexing. In the fusion scheme, we also used the

candidate list produced by sliding window based indexing as the reliable ranking

and fixed top 40 of its original order (K = 40) as the same order in the final

candidate list. Fig. 5.7 shows that the performance after fusion is not as good as

that in sliding window based LSH indexing when the penetration rate is between

4% and 29%, but the average penetration rate is the same as that in sliding

window based LSH indexing, which can also be seen in Table 5.2.
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Figure 5.7: Indexing performance on the 3D database

5.4.3 Comparison Experiments on Public Databases

We also compared the indexing performance on two public benchmark fingerprint

databases, FVC 2000 db2 and FVC 2002 db1. In these experiments, all of the

results have been obtained by using the first impression for index creation and

the remaining seven for searching.

i).Indexing performance on FVC 2000 db2

The performance of fingerprint indexing on FVC 2000 db2 is shown in Fig. 5.8

by reporting the trade-off between the error rate and penetration rate. We can

see that the error rate is much smaller in sliding window based indexing than the

one in original LSH indexing, and the error rate drops to 0 when the penetration

rate is 9% in sliding window based indexing, while the penetration rate is 11% in

original LSH indexing to achieve the same error rate. In the fusion scheme, we also



5.4. PERFORMANCE EVALUATION AND ANALYSIS 125

Figure 5.8: Indexing performance on FVC 2000 DB2

used the candidate list produced by sliding window based indexing as the reliable

ranking. Since the number of templates in FVC is 100, which is much smaller

than the number of templates in the 2D or 3D fingerprint database, we only fixed

top 5 of its original order (K = 5) as the same order in the final candidate list.

Fig. 5.8 shows that the performance after fusion is generally better than that in

sliding window base LSH indexing, which can also be demonstrated in Table 5.2

using the average penetration rate measurement.

ii).Indexing performance on FVC 2002 db1

The performance of fingerprint indexing on FVC 2002 db1 is illustrated in Fig.

5.9. In the fusion scheme, we also used the candidate list produced by sliding

window based indexing as the reliable ranking and fixed top 5 of its original

order (K = 5) as the same order in the final candidate list. We can see that

although the error rate drops to 0 when the penetration rate is 15% in all the
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Figure 5.9: Indexing performance on FVC 2002 DB1

cases, the error rates in sliding window based indexing and the fusion scheme are

generally larger than the one in original LSH indexing. Therefore, the sliding

window based scheme and fusion scheme cannot improve the indexing perfor-

mance on this database, which can also be demonstrated in Table 5.2 using the

average penetration rate measurement. The possible reason is that among the 8

impressions per finger in this database, there is one impression with only several

minutiae, which can result in more false collisions under sliding window based

LSH indexing.

5.4.4 Computational Complexity Analysis

Suppose the fingerprint database contains N minutiae templates and each tem-

plate contains F minutiae points. In our approach, the creation of index consists

of two preprocesses. The first one is to obtain the binary MCC codes, which takes

O(F ) time [38]. This part of preprocessing is very fast since each MCC bit-based
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representation can be computed within several milliseconds using the MCC SDK

[94] on a 2.66 GHz Intel Quad Core CPU [33]. The second one is to generate the

hash tables. Since every minutia is used as an input, and there are l hash func-

tions and each hash function is further divided into h−ws+1 sub hash functions,

the cost of the second preprocess for each template is O(Fl ∗ (h− ws + 1)) [33].

Therefore, the total time for creating the index is O(NF )+O(NFl∗(h−ws+1))

for the whole database.

At retrieval time, the key value of a query point is hashed, and then the

corresponding bucket is searched for the matching item. The time for hashing

and bucket access is constant, but the time to search a bucket for the matching

item is linear with the number of items in the bucket [38]. In sliding window

based LSH, the number of buckets is controlled by the number of bits selected by

each sub hash function, and the ideal number is l ∗ (h−ws+1)∗2ws . Assume the

most occupied bucket has M entries (the worst case being M = NF ), a query

point needs to search M items to find the best match with maximum collisions

of the hash indices. For a fingerprint with F minutiae points, the search time

complexity is thus O(MF ) [38]. The accumulated maximum collision counts and

the single maximum collision counts are then accumulated for allN fingerprints in

the database. The final results of N scores from accumulated maximum collision

counts are sorted to produce a list of match candidates, which can be done in

O(N logN) time [38]. The same time is needed to produce the second candidate

list by sorting the scores from the single maximum collision counts. Finally, the

fusion scheme also costs O(N) time.
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5.4.5 Comparison of Hash Bit Selection and Even Selec-

tion

The LSH based indexing scheme can approximate the similarity in the Hamming

space, another similarity measure is the nearest neighbor search in Euclidean

space. To obtain the exact Euclidean distance between two MCC vectors, a

simple way is to use even bit selection instead of bit selection by hash functions.

In the previous experiments, the length of each MCC binary vector (n) was 1536,

and all the LSH hash functions selected 768 (32∗24) bits (some bits were selected

repeatedly) in total, so not every bit was considered during the selection and

contributed to the final indexing. In this experiment, we tried to select every bit

once sequentially, namely even selection, and compare the indexing performance

of it with the LSH based scheme.

i).Performance of hash bit selection vs. even selection

For even selection, we set the sub vector length (h = 24) to be the same as that

in LSH indexing, so there are 64 even functions (1536 divided by 24). The first

even function chooses bit 1 to bit 24, the second one chooses bit 25 to bit 48, and

the following even functions will choose their bits in sequence. The LSH hash

functions are the same as those in previous experiments, that is, randomly select-

ing 24 bits as a hash function, and 32 hash functions in total. The experiments

were carried out regarding 2D to 3D fingerprint indexing.

Fig. 5.10 is the indexing performance comparison between even selection

and LSH hash selection, indicated by the tradeoff between error rate and pene-

tration rate. We can see that sliding window based LSH indexing significantly

outperforms both original even selection and siding window based even selec-
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Figure 5.10: Even bit selection vs. LSH hash selection on 2D and 3D database

tion indexing, although the LSH hash functions select fewer bits than the even

selection.

ii).Analysis of bit selection

From the above experiment, we can conclude that even selection is not as good as

random hash selection. We plotted the accumulated bit frequency on 2D and 3D

database and the bit occurrence rate in random hash selection in Fig. 5.11 and

Fig. 5.12, respectively. From Fig. 5.11, it is clear that the occurrence frequency

of bit 1 in both 2D and 3D fingerprint databases has the same distribution, that

is, some positions (of 1536 bits) have a high rate of meeting bit 1, whereas some

positions have no bit 1 in all the MCC binary vectors, and the accumulated bit

frequency is symmetric to the central point (around 768). Because 3D fingerprints

have more minutiae than 2D fingerprints on average, the absolute value of 3D

accumulated bit frequency is larger than that of 2D accumulated bit frequency.
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Figure 5.11: Accumulated bit frequency on 2D and 3D database

Since the bit 1 occurrence frequency is quite different regarding a single database,

the bits with a high occurrence rate are less selective in even selection. Fig. 5.12

can better demonstrate this phenomenon in LSH hash selection, not all the bits

have been selected (600 out of 1536) and not all the bits selected occur just once.

It can be observed from Fig. 5.12 that most of the selected bits occur once, some

twice, some three times and one bit even occurs four times.

5.5 Summary

With the rapid expansion of fingerprint databases, fingerprint indexing before

matching becomes more and more important, and the latest advance in sen-

sor technology requires us to develop new algorithms for multi-sensor finger-

print indexing. In this chapter, we have given a comprehensive study on the

state-of-the-art MCC descriptor and LSH based indexing algorithm and pro-
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Figure 5.12: Bit occurrence in LSH

posed an improved indexing approach based on them. The proposed approach

divides the hash bit vectors, selected by LSH using a sliding window, into fin-

er sub-vectors for indexing. We also take into consideration another feature -

the single maximum collision for generating another candidate list, and fuse the

candidate lists produced by both sliding window based LSH indexing and single

maximum collision indexing to produce the final candidate list. Experimentations

carried out on our collected multi-sensor fingerprint database showed that the pro-

posed indexing approach could improve the performance of fingerprint indexing

greatly. Evaluation was also conducted on some public benchmark databases for

fingerprint indexing, and the results demonstrated that the proposed approach

could outperform existing ones in almost all the cases.
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6.1 Conclusions

Identifying a partial fingerprint against a large database has always been extreme-

ly challenging, because it is hard to narrow down the candidate list for partial fin-

gerprint verification with limited features. Besides, the traditional contact-based

capture of fingerprints is gradually being complemented by contact-less 3D fin-

gerprint technology. The compatibility and recognition between different finger-

prints captured by different sensors is another challenge in fingerprint biometric.

Investigating these two challenges, this thesis made the following contributions:

• We have proposed to use two levels of features for partial fingerprint index-

ing, the reconstructed global feature based on common fingerprint pattern

and local features derived from existing minutiae. On the local level, we

design several simple and effective novel features of minutiae triplets in

addition to some commonly used features to constitute the local minuti-

ae triplet features. We then propose to combine the reconstructed global

feature and local minutiae triplet features to improve the performance of

partial fingerprint indexing. Specifically, two candidate lists are generated

first by using the minutiae triplet based indexing scheme and the FOMFE

coefficients based indexing scheme, respectively, then a fuzzy-based fusion

scheme based on ranking is designed to generate the final candidate list

for matching. To investigate the performance of the new features added to

minutiae triplet feature set, we have carried out several experiments on FVC

2000 DB2a, FVC 2002 DB1a and NIST SD 14, and the results demonstrate

that the features can improve the indexing performance greatly. Moreover,

experiments carried out on the public database NIST SD 14 show that the

comprehensive partial fingerprint indexing approach can improve the per-
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formance that has been achieved by individual partial fingerprint indexing

algorithms before fusion.

• To better investigate the 3D fingerprint biometric, we have collected a

multi-sensor fingerprint database consisting of both 3D fingerprints as well

as their corresponding 2D fingerprints captured by two commercial fin-

gerprint scanners from 150 subjects in Australia. We have also carried

out a series of experiments on 2D fingerprint verification, 3D fingerprint

verification, and 2D to 3D fingerprint verification, using different 3D im-

ages: 3D raw images, post-processed 3D raw images, 3D enhanced im-

ages, and post-processed 3D enhanced images. The results show that the

post-processed 3D enhanced images can achieve the best performance re-

garding 2D to 3D fingerprint recognition. In addition, the database was

released publicly in 2015. The large size of the database will provide mean-

ingful statistical analysis and a truthful assessment of the performance of

the state-of-the-art algorithms in this area.

• We have made a comprehensive study on the most effective indexing algo-

rithm - LSH indexing built on MCC descriptor, and proposed a finer hash

bit selection method based on LSH for multi-sensor fingerprint indexing.

Specifically, we divide the hash bit vectors, selected by LSH using a sliding

window, into finer sub-vectors with certain fixed length, and then convert

these sub-vectors into numerical approximation for MCC indexing, and fi-

nally generate the first candidate list. Moreover, we take into consideration

another feature - the single maximum collision for indexing. This feature

can generate another candidate list. Finally, the two candidate lists are

fused using the fusion scheme for partial fingerprint indexing to generate the
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final candidate list. Experimentations carried out on our collected 2D and

3D databases show that the proposed indexing approach greatly improves

the performance of fingerprint indexing. Evaluation was also conducted on

some public benchmark databases for fingerprint indexing, and the results

demonstrated that the new approach outperforms existing ones in almost

all the cases.

6.2 Future Work

3D fingerprint technology is developing fast and complementing the traditional

contact-based fingerprint technology. However, this technology is not mature and

there are still a number of interesting avenues for future research. Some typical

problems are summarized as follows.

• From Chapter 4, we have noticed that the 3D fingerprint sensor we adopted

cannot produce a real 3D fingerprint model in 3D space, which limited

the research on fingerprint recognition in 3D space. Therefore, the 3D

fingerprint model capture or reconstruction, feature extraction in 3D space,

and direct 3D fingerprint indexing or recognition need to be solved in the

near future. What is more, partial 3D fingerprint indexing will be very

challenging, as it is more complex in both the feature construction and

algorithm design.

• The unraveled 2D equivalent fingerprint images produced by 3D fingerprint

sensor generally contain much noise, which influences the performance re-

garding both 3D to 3D recognition and 2D to 3D recognition. Although

post-processed enhanced 3D images can achieve good performance, com-

pared to 2D fingerprint images, more new techniques are needed to enhance
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the raw 3D images.

• Both the LSH indexing and the sliding-window based LSH indexing rely

on hash bit selection. According to the experiments in Chapter 5, the

discrimination of each bit in the MCC binary code is different, so it is

possible to develop a better bit selection strategy than hash bit selection

based on the discrimination information.
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