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Abstract 

 

Regional climate projections in the Pacific region are potentially sensitive to a range of existing model 

biases. This study examines the implications of coupled model biases on regional climate projections 

in the tropical western Pacific. Model biases appear in simulations of El Niño Southern Oscillation, the 

location and movement of the South Pacific Convergence Zone, rainfall patterns, and the mean state 

of the ocean-atmosphere system including the cold tongue bias and erroneous location of the edge of 

the Western Pacific warm pool. These biases are examined in the CMIP3 20th century climate models 

and used to provide some context to uncertainty in interpretations of regional scale climate projections 

for the 21st century. To demonstrate, we provide examples for two locations that sit in different climate 

zones and so are affected by different biases: Nauru and Palau. We discuss some of the common 

approaches to analyze climate projections and whether they are effective in reducing the effect of 

model biases. These approaches include model selection, calculating multi model means, 

downscaling and bias correcting. 
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1. Introduction.  

Climate projections represent one of the many biophysical and socio-economic 

considerations that guide adaptation planning (e.g. Lehodey and Maury 2010). Many 

countries in the tropical Pacific region are comprised of low-lying atolls which are 

particularly vulnerable to sea level rise. Others are reliant on agriculture and fishing 

for their livelihoods and thus are vulnerable to changes to rainfall patterns, ocean 

temperatures, circulation and ocean chemistry. Despite this need, the 

Intergovernmental Panel on Climate Change report, Fourth Assessment Report, 

Working Group I has stated that “With a few exceptions, the spread in projections of 

hydrological changes is still too large to make strong statements about the future of 

tropical climates at regional scales” (IPCC, Christensen and Coauthors 2007 pg. 

861).  

 
To make climate projections of the future, global climate model projections are based 

on scenarios of future changes in greenhouse and other radiatively important gases 

to estimate physical changes in the ocean and atmosphere. In recent years, 

extensive analysis of climate projections have been conducted using global climate 

models taking part in the World Climate Research Programme’s Coupled Model 

Intercomparison Project (WCRP CMIP3, Meehl et al. 2007). Climate simulations 

undertaken as part of CMIP3 were used in the Fourth Assessment Report (AR4) of 

the Intergovernmental Panel on Climate Change (IPCC) (Randall and Coauthors 

2007) and further simulations will be conducted using the new generation of CMIP5 

models (Hurrell et al. 2011) for the IPCC Fifth Assessment Report.  

 

The climate in the western Pacific is associated with a complex set of processes and 

climatological features (Online resource S1). In particular, the position of the western 

Pacific Warm Pool and equatorial cold tongue influence large scale patterns of 

circulation and precipitation. On seasonal time scales, the western Pacific monsoon, 

Inter-tropical Convergence Zone (ITCZ) and South Pacific Convergence zone 

(SPCZ) vary in position and intensity. If models do not capture the extension of the 

SPCZ into the south-eastern extra-tropical Pacific, for example, the mean rainfall and 

variability over countries such as Fiji, Tonga, Niue and Cook Islands will not be 

correctly reproduced.  



 

On interannual and decadal time scales, the climate responds to the El Niño 

Southern Oscillation (ENSO) and the Pacific Decadal Oscillation.  Depending on 

location, El Niño and La Niña events alter temperature, rainfall, ocean nutrients 

(Lehodey et al. 1997), and tropical cyclones (Vincent et al. 2011). As such, ENSO 

changes in the future could have major implications for the region.  

 

For the tropical Pacific region, there is high confidence in the models simulating 

some large-scale projected changes. These include robust indications that large 

parts of the western Pacific sea surface should warm and become fresher as the 

warm pool extends eastward (Cravatte et al. 2009). In addition, the (near-equator) 

trade winds are likely to weaken (Vecchi and Soden 2007) with an increase in 

thermal stratification in the eastern Pacific (DiNezio et al. 2011). Increased moisture 

transport in a warmer world is expected to lead to increased precipitation in the inter-

tropical convergence zones on average (Christensen and Coauthors 2007), although 

the spatial patterns of rainfall change may be complex (e.g. Chou et al. 2009). To the 

south of the equator the south-easterly trades are expected to intensify 

(Timmermann et al. 2010). 

 

While leading global climate models have progressed rapidly (Randall et al. 2007) 

they are not at the stage where we can simply read off future regional climate 

projections. One important reason for this is the existence of systematic biases or 

errors in these models. It is well recognized that model biases need to be considered 

when making climate projections (Christensen and Coauthors 2007). A thorough 

understanding of the model biases relevant to a region is required in order to provide 

climate projections that reflect the wealth of understanding we do have about the 

climate system (as well as indicating where further research, model development, 

higher model resolution etc. are needed to reduce uncertainty). An example of 

acknowledging and discussing climate model biases when providing projections for 

the western tropical Pacific can be found in the Pacific Climate Change Science 

Program (PCCSP) report (Australian Bureau of Meteorology and CSIRO 2011) and 

accompanying Climate Futures Tool (see Whetton et al. 2012). 

 

In this paper we provide a summary of those elements that are poorly simulated in 

historical (20th century climate) simulations for the western tropical Pacific and in 



 

particular those features that show systematic biases across the set of CMIP3 

models. These same issues are relevant for projections derived from the CMIP5 

models as the biases are largely still present (Guilyardi et al. 2012, WCRP Workshop 

on Coupled Model Intercomparison Project Phase 5 Model Analysis, Hawaii 5-9 

March 2012). We then discuss why many systematic model biases cannot be 

removed with simple techniques and why more complex analysis is needed. We 

hope that this review will add value to applications that use localized information 

taken from the CMIP3 (and CMIP5) models particularly in the western tropical Pacific 

region.  

 

2. Methods -  Details of models used in study. 

In this study we use output from global climate models (or general circulation models, 

GCMs) in the WCRP's CMIP3 multi-model dataset (Meehl et al. 2007). Details of 

which models were used in each analysis vary as the availability of model output 

changes between scenarios and variables and results have been incorporated from a 

number of different individual studies. All realizations are used to construct a model 

mean for an individual model, and all available model means are used to construct 

the multi-model mean.  

 

A variety of observational data sets are used to assess model performance: 

Sea Surface Temperature (SST) 
Hadley Centre Sea Ice and SST dataset (HADISST)  (Rayner et al. 2003) 

Second Hadley Centre SST dataset (HADSST2) (Rayner et al. 2006) 

Extended Reconstruction SST version 3 dataset (ERSSTv.3) (Smith et al. 2008) 

Kaplan Extended SST V2 (Kaplan et al. 1998) 

Precipitation  

Global Precipitation Climatology Project (GPCP, Adler et al 2004)  

Climate Prediction Centre Merged Analysis of Precipitation (CMAP, Xie and Arkin 

1997) 

Subsurface salinity and temperature (Durack and Wijffels 2010) 

 

We focus on the region of the western tropical Pacific (Online resource S1). In 

particular, as case studies for investigating the implications of model biases on 



 

national projections, we focus on the Exclusive Economic Zones (EEZs) of Nauru 

(regions surrounding approximately 0º31’S and 166º56’E) and Palau (7º21’N and 

134º28’E). These two countries lie in different climate zones and are subject to 

different model simulation biases in the 20th Century.  

3. Model biases and model discrepancies in the western 

tropical Pacific. 

3.1 Biases in the mean state and trends of the western Pacific  

The western Pacific warm pool is characterized by fresh, warm water of temperatures 

greater than 28ºC (Fig  1a) and salinity less than 35 psu (Fig  1c) (see Cravatte et al. 

2009 for review). A sharp salinity front demarcates the warm, fresh water from the 

surrounding cool, saltier water.  
 

The cooler waters of the eastern equatorial Pacific are known to extend too far west 

in almost all CMIP3 models. Consequently, the western Pacific warm pool is 

contracted westward and the zonal winds are generally too strong in the west 

(Guilyardi et al. 2009). This is known as the cold tongue bias (e.g. Reichler and Kim 

2008). This systematic bias cannot be eliminated by selecting the best performing 

models or taking a multi-model mean due to its occurrence in almost all models. 

Models using ocean heat flux adjustment reduce or remove these SST biases, and 

reduce the associated rainfall biases. However, these models are inherently 

undesirable because the use of such flux adjustments in simulations of future climate 

is not physically based and can significantly alter the temporal evolution of climate 

simulations (Neelin and Dijkstra 1995). 

 

Precipitation is notoriously difficult to simulate for a variety of reasons (Dai 2006). 

Biases in mean SST have flow-on effects on mean precipitation and contribute to 

biases observed. Biases observed in precipitation then contribute to biases in surface 

salinity. Precipitation biases are largely restricted to the tropical Pacific, with the 

largest disagreement with observations in the regions of the South Pacific 

Convergence Zone (SPCZ) and Intertropical Convergence Zone (ITCZ), discussed in 

following section. 

 



 

3.2 Intertropical Convergence Zone and South Pacific Convergence Zone. 

Most state-of-the-art coupled models are able to simulate distinct bands of 

converging surface winds and convective rainfall forming the ITCZ and SPCZ (Fig  
2). However, models tend to simulate the extension of the equatorial dry zone 

between the ITCZ and SPCZ too far west, related to the SST and wind biases 

discussed above. The mean position and seasonal movement of the ITCZ is 

reasonably well simulated by most models although the ITCZ tends to be displaced 

too far north in Northern Hemisphere summer in many models (further discussion in 

Australian Bureau of Meteorology and Commonwealth Scientific and Industrial 

Research Organisation 2011).  

 

The majority of models also simulate an SPCZ rainfall band, although the simulated 

SPCZ tends to have an overly zonal (east-west) orientation rather than the observed 

northwest to southeast orientation (Fig  2), particularly east of the dateline (Brown et 

al. 2011). In extreme cases, the model SPCZ has a purely zonal orientation, parallel 

to the ITCZ (Bellucci et al. 2010). Some models also have an extension of the 

Southern Hemisphere rainfall band into the far eastern Pacific. While there is an 

observed rainfall band in this region in March and April, many models simulate a 

permanent “double ITCZ”, or a rainfall band alternating between hemispheres over 

the seasonal cycle (de Szoeke and Xie 2008).  

 

The SPCZ exhibits significant displacement associated with ENSO variability. 

Typically, the SPCZ moves north-east during El Niño and south-west during La Niña 

events (Vincent et al. 2011). Most models are able to capture some movement of the 

SPCZ in response to ENSO (Brown et al. 2011), but if the mean position of the SPCZ 

is not correct in a model, then the rainfall change associated with ENSO will be 

unrealistic, and in some cases of the wrong sign, at some locations.  

 

In the case of Nauru, in most CMIP3 models the western portion of the SPCZ is 

located too far south, with a dry zone between the SPCZ and ITCZ, resulting in a dry 

bias over Nauru. As this dry bias is associated with the persistence of overly cold 

SSTs on the equator in this region, some models do not simulate the northward shift 

of the SPCZ over Nauru during El Niño events. Models may also simulate 

unrealistically large percentage increases in rainfall over Nauru in future climates 



 

relative to the dry 20th century mean state. It is also expected from theory and models 

that to first order net precipitation should scale as the mean state precipitation  

multiplied by the temperature change (Held and Soden 2006). As a result, if the 

simulated precipitation distribution in the 20th Century mean state is significantly 

wrong then the spatial pattern of the precipitation projection is likely to be wrong. 

3.3 El Niño Southern Oscillation 

There is considerable variability in the simulation of ENSO in the CMIP3 models, as 

highlighted by the strength of the variability of the Nino3.4 index (Fig  3a). Despite 

these differences, the mean of the Nino3.4 values (green bar in Fig  3a) is very 

similar to the observations (shown in blue). In addition to Nino3.4 strength there are 

also considerable differences in the frequency, seasonal timing and spatial pattern in 

ENSO simulated in the models (Guilyardi et al. 2009) in CMIP3 and also in CMIP5 

(Guilyardi et al. 2012).  

 

Despite these large differences in the simulation of ENSO, there are systematic 

biases that are common to nearly all global coupled models. The systematic mean 

state biases in SST, discussed above, project onto the spatial pattern associated with 

ENSO. Therefore, as the mean position of the warm pool edge is too far west in the 

models, so too is the ENSO SST variability (Fig  3b) and associated dynamics. 

These factors can lead to differences in the amplitude, period, and dynamics of the 

simulated ENSO (Picaut et al. 1997; Maes and Belmari 2011). Similarly, the spatial 

bias in ENSO manifests in the location of wind-stress and precipitation anomalies 

(Online resource S2 e-h). 

 

At some locations in the Pacific, biases in simulations of ENSO can lead to year to 

year responses opposite to what is observed, which has major implications for 

projected changes to regional climatic variability and potentially for projected 

changes to mean climate. Regions within the cold tongue do not have this problem, 

however those along the boundary of the warm and cold pools do. As a result, 

countries to the west of 160ºW and away from the equator (Fig  4) have 

systematically weaker simulated correlations between SST and precipitation than 

observed. If climate change leads to changes in the interannual variability then this 

bias becomes a significant issue for understanding future climate. 



 

 

In the case of Palau, if the future climate shifts towards an increased frequency of 

strong El Niños, instead of projecting a strong rainfall decrease, manymodels would 

simulate projected rainfall increases, and with little change in the multi-model mean 

(Fig  4). Nauru, because of its location on the boundary between cool and warm 

ENSO-related SST anomalies, is only moderately affected by ENSO variability. Yet, 

in all model simulations, the ENSO SST bias means that Nauru becomes located 

within a region of very strong positive ENSO SST correlation (Figure 4). This bias 

poses problems for investigating changes in the 21st century projections. For 

example, if there was a future increase in the amplitude of ENSO variability it might 

drive strong changes for Nauru’s climate in the models when, in the real system, its 

effect would be more modest.  

 

The CMIP3 models simulate ongoing interannual ENSO variability under greenhouse 

forcing, but no consistency between models regarding changes in ENSO 

characteristics, as some models simulate increased ENSO amplitude or frequency 

and others simulate a decrease in amplitude or frequency (Vecchi and Wittenberg 

2010; Ganachaud et al. this issue). 

3.4 Subsurface Ocean 

The subsurface tropical western Pacific ocean  (Fig  5a) is characterized by a surface 

warm pool extending to around 100m, with strong stratification at its base defined as 

the thermocline. The thermocline domes upward in regions of Ekman pumping such 

as at the equator and in the vicinity of the ITCZ (around 8ºN). 

 

In general, most models are able to reproduce these features, although the warm 

pool tends to be less extensive and slightly cooler than observed (Fig  5b-d). Many 

individual models also simulate a realistic subsurface structure, with the thermocline 

at approximately the correct depth, although the stratification is often underestimated. 

The double ITCZ bias introduces an erroneous upward doming in the southern 

hemisphere in the models (Zhang et al. 2007). 

 

The vertical structure of temperature and density in the ocean are a defining feature 

for many oceanic processes. Biases that appear in the ocean subsurface 



 

temperature and salinity alter the ocean circulation and ocean current strength, 

upwelling, sea level and vertical mixing important for modeling marine 

biogeochemistry. In particular, biases in the thermocline structure affect the evolution 

of ENSO and the degree of coupling between ocean and atmosphere, important 

factors for reliable future climate projections. Sea level projections (discuss in next 

section) are very sensitive to the correct simulation of the subsurface temperature 

and salinity profiles and any biases within. 

3.5 Sea level trends 

Trends in simulated sea level are influenced by model biases in the temperature and 

salinity at all time scales. In addition to such biases, ocean temperature and salinity 

are often subject to ‘model drift’ (Sen Gupta et al. 2012). Differences in the way 

models reproduce interannual and low frequency variability also contribute to the 

projected sea level. 

 

Western Pacific regional patterns of dynamic sea level change (mainly due to ocean 

density and circulation change) can be mostly explained by steric sea-level change 

calculated over the full ocean depth (Fig  6). Despite a sample period of 50 years, the 

CMIP3 models show large discrepancies in the simulated sea level change 

compared to observations and large differences between models (Fig  6a). The 

differences can be traced to the simulation of the temperature and salinity changes 

over the same period (Fig  6c, d).  Therefore, model biases in temperature and 

precipitation are likely to be important for sea level projections. 

4. Accounting for model biases in climate projections 

While it is not difficult to quantify the model biases in the western tropical Pacific, it is 

not clear how these biases might filter through to affect climate projections. Tuna for 

example are attracted to the ocean current convergence point near the dateline. In 

CMIP3 models this is simulated too far west or even right against the edge of the 

Pacific basin. This convergence point is determined by a number of subtle features 

including windstress curl, upwelling rates of nutrients and gradients of salinity. When 

these are all poorly simulated for the 20th Century, projected changes for the 21st 

Century should be interpreted with caution. 

 



 

Over the long-term, we can expect simulation of the ocean-atmosphere system to 

improve, partly through better understanding of the key processes and partly through 

inevitable advancements in computer power and model resolution (Risbey and 

O’Kane 2011). In the meantime, there are various techniques that are applied to 

global climate models to increase our confidence in future climate projections 

including model selection; use of multi-model means; downscaling; and bias-

adjusting. While helpful in improving confidence in climate projections, they do not 

remove the effect of the systematic model biases and different techniques need to be 

employed. 

4.1 Model selection 

A potential way to address model deficiencies in projecting future changes is to apply 

a model selection process based on performance of models compared to historical 

observations (e.g. Irving et al. 2011 for the western tropical Pacific) using a range of 

metrics. Deciding which are the most important criteria to assess models against is 

quite difficult. Different models tend to have strengths in different areas and at 

different spatial scales, performing relatively well in some metrics and not in others. 

For example, in the Nauru region, amongst a range of considerations, it would be 

important to have a model that simulates the position of the SPCZ as well as 

possible. The variability of the SPCZ is however dependent on the simulation of 

ENSO, and the long term trend in the SPCZ may depend on the climate sensitivity of 

the model or the simulation of the Hadley Cell. It is not possible to determine which of 

these features is the most important as a selection criterion. Systematic model 

biases, such as the cold tongue bias and warm pool edge, occur in nearly all models 

and therefore can’t be a criterion for model selection.  

4.2 Multi-model means 

Use of a multi-model mean, in general, results in a better simulation of the current 

climate than any individual model (Reichler and Kim 2008). It is also useful for 

summarizing results of model projections. Taking a multi-model mean removes non-

systematic errors, reduces model drift (Sen Gupta et al. 2012) and reduces the 

aliasing of low frequency variability on the long term trend. However, systematic 

errors, such as the cold tongue bias, are not addressed by multi-model means and 

must still be carefully considered. The multi-model mean can also give a ‘smeared 



 

out’ simulation of climate features (due to averaging of slightly offset anomalies). The 

thermocline for example (Fig  5) is much sharper in any individual model than in the 

average. 

4.3 Downscaling approaches 

There is currently significant uncertainty in the ability of global climate models to 

represent small scale climate processes; particularly at sub-grid scales of less than 

100 km. Use of dynamical downscaling approaches is one way to account for such 

processes whereby boundary conditions in the coupled global climate model are 

passed to a higher resolution atmospheric or ocean model. (e.g. CCAM, RegCM, 

PRECIS, WRF, MM5 – see Australian Bureau of Meteorology and Commonwealth 

Scientific and Industrial Research Organisation 2011, Ch. 4 for more information). 

This technique is useful as it allows the smaller scale features such as orographic 

rainfall or coastal upwelling to be explored in more detail. In terms of the systematic 

model biases discussed here, dynamical downscaling cannot eliminate the issue. If a 

bias is present in the boundary condition forcing, this will have an impact on the 

higher resolution model. 

 

Statistical downscaling is another way to produce a less biased current climate 

simulation and regional projections that account for small scale forcing (Wilby et al. 

2009). A variety of techniques can be applied, for example in empirical downscaling, 

a statistical relationship is developed between fine-scale historical observations and 

broad scale climatic conditions that can be simulated by climate models, and this 

same relationship applied in the future (e.g. Donner et al. 2005 for coral bleaching). 

While potentially removing the bias to some extent in the current climate, this 

approach will still be affected by any impact that the GCM biases have on the GCM 

projected fields used for downscaling. This method contains assumptions that the 

present day interactions of weather and climate systems will continue into the future 

(Pielke and Wilby 2012) 

 

Finally, downscaled projections are often produced by simply adjusting a fine scale 

observed data base by the changes simulated by the GCM (the approach known as 

‘change factors’, in Wilby et al 2009). This approach, by definition, leads to no biases 



 

in the current climate case, but it too does not correct for any effect the GCM current 

climate biases have on the projected changes.   

 
4.4 Bias adjustment 
A technique used (often within a dynamical downscaling framework) to account for 

spatial biases (including systematic biases) is bias adjustment (e.g. Australian 

Bureau of Meteorology and Commonwealth Scientific and Industrial Research 

Organisation 2011, Ch. 4). In general, this involves ‘adjusting’ the projected forcing 

field by altering the current climate mean state to be the same as the observed mean 

state. This is often done to the SST to force an atmospheric model (Nguyen et al. 

2011), or to the winds to force an ocean model (Chamberlain et al. 2012) The 

corrected fields are then used as boundary conditions for a subsequent higher-

resolution simulation. The resulting output has a reduced (but not completely 

eradicated) current climate model bias in the mean and hence reduced biases in 

related variables such as precipitation. This method assumes that the mean climate 

state and other climate modes are independent, which they are not in the case of 

ENSO variability. As a consequence, the bias that remains in the interannual 

variability has the potential to feed  back on the mean state, thus retaining aspects of 

the model bias that can remain significant for small-scale projections. Hence the 

methods of downscaling with bias adjustment cannot completely remove the 

influence of biases present in the mean state and variability of global climate models 

used as the basis for projections. 

5. Conclusions 

Some climate change due to increased anthropogenic greenhouse gases is now 

inevitable and action is being undertaken or planned to adapt to the regional impacts 

of this warming. Climate model output such as that from the CMIP3 and CMIP5 

datasets, are being increasingly interrogated to provide regional and local climate 

projections at scales that are useful to inform adaptation decisions. While basin-scale 

large-scale projections for certain climate variables (e.g. temperature, sea level) can 

be made with a high level of confidence, uncertainty in climate projections becomes 

more prominent at smaller scales and for other climate variables such as 

precipitation.  

 



 

At regional scales in the western tropical Pacific, systematic regional biases in global 

climate models can have significant impacts on projections. We have discussed the 

issues for Nauru and Palau regions for demonstration purposes, but they also apply 

to regions that lie around the observed and simulated edge of the cold tongue and 

warm pool via the same reasoning.  

 

When using output from GCMs to create climate projections in the western tropical 

Pacific, the results should be interpreted with the model biases and uncertainties in 

mind. These considerations include, but are not limited to: 

• The differing locations of each key climate feature, such as the SPCZ, in each 

model should be assessed in regard to whether it is situated in the correct 

place relative to the region of interest. 

• Whether the region is affected by the mean state bias of the cold tongue and 

erroneously westward location of the edge of the warm pool. The mean state 

bias influences SST, salinity, wind -stress and precipitation. 

• The mean state bias affects ENSO impacts. When interpreting changes to 

interannual variability it is important to determine whether the region has the 

correct climate response to ENSO in the 20th Century or control runs. Some 

regions have a response of the wrong sign and/or amplitude to ENSO. 

• There is no consensus on the future behavior of ENSO. It can be misleading 

to only look at a few model projections without exploring the fuller range of 

possible ENSO futures, however this is often difficult due to limited resources. 

• Those making projections of ocean biology should also be aware of the mean 

state subsurface biases. In addition, assessment should be made of how well 

the model simulates the subsurface and particularly the thermocline. This will 

alter the ability of nutrients to be upwelled. 

• Sea level projections are highly sensitive to model biases that occur through 

the water column and should at least have the model drift removed from the 

relevant fields. 

 

Our discussions have addressed only some of the model biases and issues in the 

region. Other biases relate to the simulation of the Hadley and Walker cells and the 

location and strength of ocean currents (Sen Gupta et al. 2012), In addition climate 

change signals may be distorted by model drift (Sen Gupta et al. 2012) or aliasing of 



 

low frequency natural variability like the Pacific Decadal Oscillation (Zhang and 

Church 2012)  

 

Approaches to increase reliability of climate model projections were discussed 

including multi-model means, model selection, down-scaling and bias adjusting. 

While all methods are useful and improve understanding, they cannot remove the 

effect that any systematic biases may have on regional projected changes. We can 

expect that in the future, models will improve and biases will reduce. In the 

meantime, other techniques are emerging that show promise for adjusting for the 

effect of  model bias on projections. Examples include “pattern matching” of climate 

features (Moise and Delage 2011) and analyzing projected changes in particular 

climate features (e.g. the SPCZ) rather than changes at specific locations (Brown et 

al. 2012; Ganachaud et al. 2012)  

 

In summary, the results from the CMIP3 models for regional climate projections 

should be used with caution by decision makers needing accurate and reliable 

information about local or regional trends or changes over coming decades. Our 

study has expanded upon this conclusion already drawn by the IPCC AR4 report 

(Christensen and Coauthors 2007, pg. 861). Information about the strengths and 

limitations of each model should be considered when interpreting climate model 

projections. The latest simulations as part of CMIP5 are now coming online and 

continue to show similar model biases (Guilyardi et al. 2012, WCRP Workshop on 

Coupled Model Intercomparison Project Phase 5 Model Analysis, Hawaii 5-9 March 

2012) – though some of the more extreme biases seen in CMIP3 seem to have been 

reduced in CMIP5.. We expect that the limitations to climate projections discussed 

here will still remain relevant.  

 

While the model results have varying levels of skill, there is still a need for adaptation 

planning and implementation to occur. This must be done taking into account the 

systematic model biases where they have the potential to significantly affect 

projections (e.g. Wilby and Dessai 2010). Future work to reduce, manage and 

communicate the model biases is essential, as is the need to continue focusing on 

how we can develop techniques to provide higher confidence in our regional climate 

projections.  



 

Acknowledgements 
This research was conducted with the support of the Pacific Climate Change Science 

Program (PCCSP), a program funded by AusAID, in collaboration with the 

Department of Climate Change and Energy Efficiency, and delivered by the Bureau 

of Meteorology and the Commonwealth Scientific and Industrial Organisation 

(CSIRO). We thank Kevin Hennessy, and Karen Evans for useful discussions and 

comments on the manuscript.  

 

We acknowledge the modeling groups, the Program for Climate Model Diagnosis and 

Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling 

(WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset.  

Support of this dataset is provided by the Office of Science, U.S. Department of 

Energy. 



 

REFERENCES 
 
Australian Bureau of Meteorology and Commonwealth Scientific and Industrial Research 

Organisation (2011). Climate Change in the Pacific: Scientific Assessment and New 
Research. Volume 1 - Regional Overview. 
http://www.cawcr.gov.au/projects/PCCSP/publications.html. 

Australian Bureau of Meteorology and CSIRO (2011). Climate Change in the Pacific: 
Scientific Assessment and New Research.  Volume 2: Country Reports. 

Bellucci, A., S. Gualdi, et al. (2010). "The double-ITCZ syndrome in coupled general 
circulation models: the role of large-scale vertical circulation regimes." Journal of 
Climate 23: 1127-1145. 

Brown, J. R., A. F. Moise, et al. (2012). "Changes in the South Pacific Convergence Zone in 
IPCC AR4 future climate projections." Climate Dynamics 39: 1-19. 

Brown, J. R., S. B. Power, et al. (2011). "Evaluation of the South Pacific Convergence Zone 
in IPCC AR4 climate model simulations of the 20th century." Journal of Climate 24: 
1565-1582. 

Chamberlain, M., C. Sun, et al. (2012). "Downscaling the climate change for oceans around 
Australia. www.geosci-model-dev-discuss.net/5/425/2012/." Geoscientific Model 
Development 5: 425-458. 

Chou, C., J. D. Neelin, et al. (2009). "Evaluating the ‘‘rich-get-richer’’ mechanism in tropical 
precipitation change under global warming. ." Journal of Climate 22: 1982-2005. 

Christensen, J. H. and Coauthors (2007). Regional Climate Projections. United Kingdom and 
New York, NY, USA., Cambridge University Press. 

Cravatte, S., T. Delcroix, et al. (2009). "Observed freshening and warming of the western 
Pacific warm pool." Climate Dynamics 33: 565-589. 

Dai, A. (2006). "Precipitation characteristics in Eighteen Coupled Climate Models." Journal 
of Climate 19: 4605-4630. 

de Szoeke, S. P. and S. P. Xie (2008). "The Tropical Eastern Pacific seasonal cycle: 
assessment of errors and mechanisms in IPCC AR4 coupled-ocean atmosphere general 
circulation models." Journal of Climate 21: 2573-2590. 

DiNezio, P. N., A. C. Clement, et al. (2011). "Climate response of the equatorial Pacific to 
Global Warming." J. Climate 22: 4873-4892. 

Donner, S. D., W. J. Skirving, et al. (2005). "Global assessment of coral bleaching and 
required reates of adaptation under climate change." Global Change Biology 11: 2251-
2265. 

Durack, P. J. and S. E. Wijffels (2010). "Fifty-Year Trends in Global Ocean Salinities and 
Their Relationship to Broad-Scale Warming." Journal of Climate 23(16): 4342-4362. 

Ganachaud, A., A. Sen Gupta, et al. (2012). "Projected changes in the tropical Pacific Ocean 
of importance to tuna fisheries." Special Issue of Climate Change on Climate Change 
and Fisheries Submitted - Jan 2012. 

Ganachaud, A., A. Sen Gupta, et al. (this issue). "Projected changes to the central-west Pacific 
Ocean." Climatic Change. 

Guilyardi, E., H. Bellenger, et al. (2012). "A first look at ENSO in CMIP5." Clivar Exchanges 
17(58): 29-32. 

Guilyardi, E., A. T. Wittenberg, et al. (2009). "Understanding El Nino in ocean-atmosphere 
general circulation models." BAMS: 325-340. 

Held, I. M. and B. J. Soden (2006). "Robust Responses of the Hydrological Cycle to Global 
Warming." Journal of Climate 19: 5686-5699. 

Hurrell, J. W., M. Visbeck, et al., Eds. (2011). WCRP Coupled Model Intercomparison 
Project - Phase 5 - CMIP5. Clivar Exchanges. 



 

Irving, D. B., S. E. Perkins, et al. (2011). "Evaluating global climate models for the Pacific 
island region." Climate Research 49: 169-187. 

Kaplan, A., M. A. Cane, et al. (1998). "Analyses of global sea surface temperature 1856-
1991." Journal of Geophysical Research 103: 18567-18589. 

Lehodey, P., M. Bertignac, et al. (1997). "El Nino Southern Oscillation and tuna in the 
western Pacific." Nature 389(6652): 715-718. 

Lehodey, P. and O. Maury (2010). "CLimate Impacts on Oceanic TOp Predators (CLIOTOP): 
Introduction to the Special Issue of the CLIOTOP International Symposium, La Paz, 
Mexico, 3–7 December 2007." Progress In Oceanography 86(1-2): 1-7. 

Maes, C. and S. Belmari (2011). "On the Impact of Salinity Barrier Layer on the Pacific 
Ocean Mean State and ENSO." SOLA 7: 97-100. 

Meehl, G., D. Covey, et al. (2007). "The WRCP CMIP3 Multimodel Dataset." BAMS: 1383-
1394. 

Moise, A. F. and F. P. Delage (2011). "New climate model metrics based on object-orientated 
pattern matching of rainfall." Journal of Geophysical Research - Atmospheres 
116(D12108). 

Neelin, J. D. and H. A. Dijkstra (1995). "Ocean-Atmosphere Interaction and the Tropical 
Climatology. Part I: The Dangers of Flux Correction." Journal of Climate 8: 1325-
1342. 

Nguyen, K. C., J. J. Katzfey, et al. (2011). "Global 60 km simulations with the CCAM: 
evaluation over the tropics." Climate Dynamics. 

Picaut, J., F. Masia, et al. (1997). "An advective-reflective conceptual model for the 
oscillatory nature of the ENSO." Science 277(5326): 663-666. 

Pielke, R. A. and R. L. Wilby (2012). "Regional climate downscaling: What's the point?" 
EOS, Transactions American Geophysical Union 93(5): 52. 

Randall, D. A. and Coauthors (2007). Climate models and their evaluation. Climate Change 
2007: The Physical Science Basis, Contribution of Working Group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change. S. S. e. al.: 
589-662. 

Rayner, N. A., P. Brohan, et al. (2006). "Imporved analyses of changes and uncertainties in 
sea surface temperature measured in situ since the mid-nineteenth century: the 
HadSST2 dataset." Journal of Climate 19: 446-469. 

Rayner, N. A., P. D.E., et al. (2003). "Global analyses of sea surface temperature, sea ice , and 
might marine air temperature since the late nineteenth century." Journal of 
Geophysical Research 108: 4407. 

Reichler, T. and J. Kim (2008). "How well do coupled models simulate today's climate?" 
BAMS: 303-311. 

Risbey, J. S. and T. J. O’Kane (2011). "Sources of knowledge and ignorance in climate 
research." Climatic Change 108(4): 755-773. 

Sen Gupta, A., A. Ganachaud, et al. (2012). "Drivers of the projected changes to the Pacific 
Ocean equatorial circulation." Geophysical Research Letters in press. 

Sen Gupta, A., L. C. Muir, et al. (2012). "Climate Drift in the CMIP3 Models." Journal of 
Climate 25: 4621-4640. 

Smith, T. M., R. W. Reynolds, et al. (2008). "Improvements to NOAA's historical merged 
land-ocean surface temperature analysis (1880-2006)." Journal of Climate 21: 2283-
2296. 

Timmermann, A., S. McGregor, et al. (2010). "Wind Effects on Past and Future Regional Sea 
Level Trends in the Southern Indo-Pacific*." Journal of Climate 23(16): 4429-4437. 

Vecchi, G. and B. J. Soden (2007). "Global Warming and the weakening of the Tropical 
Circulation." J. Climate 20: 4316-4340. 



 

Vecchi, G. A. and A. T. Wittenberg (2010). "El Niño and our future climate: where do we 
stand?" Wiley Interdisciplinary Reviews: Climate Change 1(2): 260-270. 

Vincent, E. M., M. Lengaigne, et al. (2011). "Interannual variability of the South Pacific 
Convergence Zone and implications for tropical cyclone genesis." Climate Dynamics. 

Whetton, P., K. Hennessy, et al. (2012). "Use of Representative Climate Futures in impact 
and adaptation assessment." Climatic Change. 

Wilby, R. L. and S. Dessai (2010). "Robust adaptation to climate change." Weather 65(7): 
180-185. 

Wilby, R. L., J. Troni, et al. (2009). "A review of climate risk information for adaptation and 
development planning." International Journal of Climatology 29(9): 1193-1215. 

Zhang, X. and J. A. Church (2012). "Sea level trends, interannual and decadal variability in 
the Pacific Ocean " Submitted to Geophysical Research Letters. . 

Zhang, X., W. Lin, et al. (2007). "Toward understanding the double Intertropical 
Convergence Zone pathology in coupled ocean-atmosphere general circulation 
models." J. Geophys. Res. 112. 

 
 

 



 

List of Figure Captions 
Fig  1 Top: Annual mean SST (ºC) (top), precipitation (middle) and sea surface salinity (bottom). 

Observations shown on left and multi-model mean on right.  SST and SSS are averaged over 1950 – 

2000 and precipitation over 1980-2000. SST observations are from HadISST,  Precipitation 

observations from CMAP,  and Sea Surface Salinity from observations (Durack and Wijffels 2010), 

Models used are from the 20th century runs of the WCRP CMIP3 database over corresponding time 

periods. The 28ºC isotherm is plotted in black on the SST panel. Nauru is denoted by X and Palau by 

+. 

 

Fig  2 Location of the SPCZ determined from seasonal mean Dec-Feb precipitation (mm/day). (a) 

Observed precipitation from CMAP (1980-1999), (b) Multi-model mean from CMIP3 models (1980-

1999) (see Appendix A), and example models (c) NCAR PCM and (d) HadGEM1. Red line shows 

mean position of SPCZ for models, compared with observed position (black dashed line). “O” is 

location of Palau, and “X” is location of Nauru. Figure adapted from (Brown et al. 2011).  

 

Fig  3 Left: Standard Deviation of Nino3. 4 (Sept-Nov) over the 1900-2000 period of the 20th Century 

CMIP3 runs, ranked smallest to largest. Observations (from HadISST) are shown in blue and the 

multi-model mean in green. Right: The longitude of the zero line of the ENSO response in SST. 

Location is found by correlating Nino3.4 with SST and identifying the location where the correlation 

changes from positive to negative. Nino3.4 is calculated as the average SST in the region 5ºS to 5ºN 

and 170ºW to 120ºW over the 20th Century 

 

Fig  4 Correlations of a) SST (July – December) and b) precipitation (September – February) with 

Nino3.4 for observations (red cross) and the CMIP3 models (circles) over regional EEZs. EEZs are 

outlined in c) and correspond to islands involved in the PCCSP. Regions bounded by green are 

situated in the Pacific cold tongue and tend to have a strong positive correlation with ENSO.  The 

black and blue bounded regions represent the southern and northern branches around the cold 

tongue.  

 

Fig  5 Subsurface temperatures (contours) averaged between 160ºE and 170ºE. Calculations of the 

Brunt–Väisälä frequency N2 (representing the dynamical impact of stratification) are shown by the 

shading. a) observations from CARS 2006, b) Multi-model mean; and examples from individual 

models c) PCM d) GISS-ER and e) GFDL-CM2.1. 

 

Fig  6 Top row (a): Comparison between 1950-2000 sea level trends from 3 sample CMIP3 models 

and observations. Second row (b): Corresponding sea level trend along the equator. Third (c) and 

fourth (d) rows: Equatorial Depth sections of temperature and salinity trends. Model data have been 

de-drifted (Sen Gupta et al. 2012) by removing the trend from the relevant control run. Observed steric 



 

sea level linear trend was derived from the linear trend of observed temperature and salinity dataset 

(Durack and Wijffels 2010). 

 

 

Fig S1 Major climate features of the Pacific: (November to April mean) The West Pacific 

Monsoon, South Pacific Convergence Zone, Intertropical Convergence Zone, mean near-

surface winds into these convergence zone shown as arrows, and typical positions of moving 

sub-tropical high pressure systems. The approximate position of the West Pacific Warm Pool 

is also shown. The 15 countries included in the PCCSP are named. (Australian Bureau of 

Meteorology and Commonwealth Scientific and Industrial Research Organisation 2011).  

 
Fig S2 Correlation of Nino3.4 over 1950-2000 with SST (a-d) and precipitation (e-h) for 

September-October-November. Observations from a) HadISST and e) CMAP, multi-model 

means in b) and f), and two sample CMIP3 models c)  and g) CGCM3.1(T63), and d) and h) 

GFDL-CM2.1.  Multi-model mean is constructed with the 1st run of each available model over 

period 1950-2000. Observational data is taken from 1979 to 2006. 

 

 

 


