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Abstract 

This paper presents a novel selection technique to discard portions of speech that 

result in poor discrimination ability in speaker verification tasks. Theory supporting 

the significance of a sub-segmental selection procedure for test segments, prior to 

making decisions, is also developed. This approach has the ability to reduce the effect 

of the regions of the feature space that are not fully modeled by the speaker adaptation 

algorithm. The proposed technique utilises the frame-based score of the claimed and 

impostor speakers to select the most discriminative parts of the test segment. The 

frame selection technique, together with score normalisation, is evaluated on male and 

female speaker populations separately. Compared with a baseline system using both 

CMS and variance normalization, the proposed segment selection technique brings 

6% , 18%  relative reductions in error rate for female speakers, while for male 

speakers  a more significant relative error rate reduction of 10%, 20% is achieved, in 

terms of EER and minimum DCF respectively.  

1. Introduction 

Speaker verification determines whether a given speaker is 

who they claim to be, based on a score comparing the 

likelihood of the observed speech given the claimant speaker 

against the likelihood of the same segment given the general 

population background model. A problem arises when the 

speaker’s score varies widely in some frames, such that the 

speaker cannot be categorized as a true or impostor speaker. 

This variation of Log-Likelihood Ratios (LLR) across all 

frames is illustrated in Figure 1. The matching score for target 

(Figure 1(a)) and non-target (Figure 1(b)) speaker models are 

plotted as heavy lines whereas the dots are scores against 15 

closest impostor speaker’s models. Although the target and 

non-target speaker models usually give the highest and lowest 

scores respectively among all models, that is not always the 

case. Variation from this is due to the fact that all of the areas 

of acoustic features are not equally updated from the 

background model. As a result, the lack of available training 

data to accurately adapt the background model to the claimant 

speaker results in poor discrimination in some frames. In other 

words, the rate of change of the score distributions reveals that 

phonetic content of the unknown speech is updated according 

to the availability of training data for that particular phoneme.  

An early study of the importance of selecting the more 

discriminative partitions of the feature space based on their 

frame-based LLRs is introduced by Li (Li & Porter, 1988). Li 

and Porter selected the reliable frames to set a speaker-

independent threshold. This issue is addressed in a different 

manner (Pelecanos, Povy & Ramaswamy, 2006) by de-

emphasising the contribution of unreliable mixture 

components and emphasizing discriminative regions. 

Pelecanos et al. also introduced a score mapping approach that 

utilises development data to determine the weighting for each 

partition according to its discriminative ability. To avoid the 

assumption of Gaussian distributions for the target and 

impostor scores, Pelecanos et al. modeled the scores as a 

function of training soft counts. 

Succeeding the previous investigations, our proposal 

introduces a novel technique to select the most reliable and 

discriminative parts of speech without any assumption on the 

distribution of impostor and true scores. A framework is 

proposed, whereby if the sub-segments with low 

discrimination ability can be detected, and for each frame a 

log-likelihood ratio can be extracted, then the sub-segmental 

dropping can be successfully carried out. Statistical hypothesis 

testing is used to detect the non-discriminative sub-segments.  
It has been shown empirically (Li & Porter, 1998) that the 

sub-segments with low target scores, the LLR of the observed 

speech given the target speaker, and the low variance impostor 

scores result in poor discrimination and the overall 

performance would be improved greatly if they were left out in 

making the final decision. This result is supported by the 

theory presented in this paper.  

 The technique proposed herein can be implemented by 

making minor changes to the decision-making section of the 

existing speaker verification system. Since it uses the same 

impostor scores employed in score normalisation, it does not 

impose additional overhead to the system (Auckenthaler, 

Carey & Lloyd-Thomas, 2000).  
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Figure 1: 300ms sub-segmental scores from speaker and 

impostor models for male (a) target (b) non-target test speech 

segments, from the NIST 2002 Dataset 

2. Speech Segment Selection 

2.1. Problem Formulation 

Decision-making is the final processing stage of the speaker 

verification system, preceded by feature extraction and speaker 

modeling, as shown in Fig. 2. The decision-making process 

compares the LLR resulting from the claimed speaker model 

and the general population model (UBM) for a given test 

segment with a decision threshold. 

 
Figure 2: Schematic diagram of a speaker verification 

System (Campbell, 1997) 

A problem arises when the matching score of true and 

impostor models varies across the frames. Fig. 1 shows this 

variability across the frames, for target and non-target true and 

impostor models for one test segment. It can be seen that 

setting a fixed threshold on raw scores or making an average 

of scores, does not guarantee a reliable decision, since the 

averaging of some low scores might cause false rejection, as in 

Fig. 1 (a).  Poor representation of speakers can be mainly 

attributed to the score variability across all frames. MAP 

adaptation (Gauvain & Lee 1994), which has been widely used 

to model the characteristics of a specific speaker, was 

proposed as a solution for applications with sparse training 

data, such as speaker verification.  However, the assumption 

that the background model is representative of the acoustic 

regions of the feature space that are not accurately updated, 

due to a lack of training data, is not always valid. Furthermore, 

the variability of the feature vector distribution from session to 

session makes some speech frames less reliable in making the 

final decision, due to channel, handset, and noise artifacts. 

Thus, dropping or removing frames with poor discrimination 

ability reduces the miss detection error and consequently 

improves the overall performance of speaker verification 

system. Frame-based processing of likelihood ratios with these 

considerations in mind motivated the following new score 

segmentation method.  

2.2. Theoretical Basis for Speech Segment Selection 

Since selecting specific segments of test data with poor 

discrimination ability is a key task, the problem is formulated 

as a hypothesis test.  

2.2.1. Hypothesis Testing and Statistical Definitions 

In hypothesis testing we are interested in testing between two 

mutually exclusive hypotheses, called the null hypothesis 

(denoted H0) and the alternative hypothesis (denoted H1). H0 

and H1 are complementary hypotheses in the following sense: 

if the parameter being hypothesized about is θ , and the 

parameter space (i.e., possible values forθ ) is Θ , then the 

null and alternative hypotheses form a partition of Θ :  

 

Θ⊂Θ∈ 00 : θH  

Θ⊂Θ∈ cH 01 : θ     (1) 

 
c

0
Θ  is the set of all test statistic values for which H0 will be 

rejected. This region is called the rejection region. A test 

statistic, similarly to an estimator, is just some real-valued 

function ),...,( 1 nn XXTT ≡  of the data sample
n

XX ,...,
1

. 

Clearly, a test statistic is a random variable. A test is a function 

mapping values of test statistic into {0, 1}, where 

 

• “0” implies accept the null hypothesis H0 ⇔  reject 

the alternative hypothesis H1 

• “1” implies reject the null hypothesis H0 ⇔  accept 

the alternative hypothesis H1 

 

In this paper, we refer to a test as a combination of both (i) 

a test statistic; and (ii) the mapping from realizations of the 

test statistic to {0, 1}. Normally, we start with the research 

hypothesis and “set up” the null hypothesis to be the opposite 

of what we hope to prove. We then try to show that, in the 

light of the collected data, the null hypothesis is false. We do 

this by calculating the probability of the data if the null 

hypothesis is true. A test with significance level α  is one for 

which the probability of rejecting H0 when it is actually true, is 

controlled at a specified level (Devore, 1995; Papulis, 1991). 



In parameter estimation, an interval of plausible values for 

the parameter being estimated is called a confidence interval 

(Wackerly, Mendelhall & Scheaffer, 1996). Usually, we use 

the term confidence interval (CI) to refer to a combination of 

an interval estimate, along with a measure of confidence (such 

as the confidence coefficient). Hence, a confidence interval is 

a statement like “θ  is between 1.5 and 2.8 with probability 

80%.” This interval is found using pivotal quantity given a 

confidence coefficient. This quantity is a random variable 

which is a function of the parameter in question and the 

random variables 
n

XX ,...,
1

 but whose distribution is 

independent of that parameter. When we create CI's by 

inverting tests, the relevant pivotal quantity is the test statistic. 
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Figure 3: t-distribution and critical regions for null 

hypothesis 

Table 1: Level of significance for a two-tailed test 

with degree of freedom (df) = 28 

Level of significance for a two-tailed test ((((αααα))))    

.05 .025 .01 .005 .0005 

Corresponding test statistics value(t) 

t=1.7 t=2.05 t=2.47 t=2.76 t=3.67 

2.2.2. Segment Selection based on hypothesis testing 

The sub-segment selection discussed in this section 

compares the following two hypotheses: H0: The null 

hypothesis is that the segment Tx does not contain 

discriminative information. H1: The alternative hypothesis is 

that the segment Tx  does contain discriminative information. 

We call segment Tx discriminative iff its likelihood, given true 

or impostor models is enough to classify it as a true or 

impostor speaker. The LLR of segment 0, LxT , is defined as: 

 

21

Im0
))}|({log())}|({log(

µµ

λλ

−=

−=
pTTrueT

xpExpEL
    (2)  

 

where )|(),|(
Im) pTTrueT

xpxp λλ  are the likelihoods of data 

segment
T

x given the true and impostor models, 
True

λ  and 

pIm
λ , respectively. 

In real problems, it is virtually always the case that the 

values of the population variances are unknown. For large 

sample sizes, the sample variance is used in place of 

population variance in the test procedure. The assumption of 

large sample size is made to use the properties of the central 

limit theorem (CLT) (Proakis & Manolakis, 1996). In fact the 

CLT allows us to use these test methods even if the two 

populations of interest are not normal (Devore, 1995).   

In performing a large sample t-test, for the two 

populations
n

XX ,...,
1

and
m

YY ,...,
1

with corresponding sample 

means x , y and true means
1

µ , 
2

µ and a common sample 

variance
p

S , the null hypothesis, the test statistic, the 

alternative hypothesis and the rejection region for a specific 

significance level of test will be as follows: 

Null hypothesis:  

0210
: LH =− µµ                          (3) 

where in this case 00 =L , since this likelihood ratio results in 

poor discrimination when the two likelihoods are very close. 

Test statistic value: 
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which has a t distribution with m+n-2 degrees of freedom, and 

where 2

PS is the pooled estimator of the common variance 
2σ  

(Devore, 1995). 

Alternative hypothesis: 

021
: LH

a
≠− µµ                                 (5) 

And rejection regions for levelα test (Figure 3 and Table 1): 

2,2/ −+
≥

nm
tt

α
 or  

2,2/ −+
−≤

nm
tt

α
                              (6) 

In cases where the variances of the two populations are not 

equal, the following procedure (called the Smith-Satterthwaite 

test) is known to be an approximately level α test but the 

probability of accepting H0 when it is not true in this test has 

proved difficult to study. 

Test statistic value: 
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where S1 and S2 are the sample variances of the populations. 
 

2.3. Algorithm Description 

The aim of this algorithm is to detect and remove the non-

discriminative or misleading sub-segments as has been 

discussed in section 2.2.2. If a sub-segment has the same 

probability of being uttered by the true or impostor speakers, it 

results in poor discrimination.  But the above statement is 

valid when the likelihood of the test-segment given the 

impostor models does not change from one impostor to 

another, which means the variance of these likelihoods is 

small across different impostors. The smaller the variance, the 

more confident we are to discard a frame.   How small it 

should be is the issue which has been addressed by 

introducing the critical regions to discard a sub-segment in 

section 2.2.2. The rejection region to discard a sub-segment is 

the interval wherein the sub-segment is significant 



corresponding to a significant level α . Hence, only significant 

sub-segments are kept and the rest are discarded. 

By substituting 
0

L =0 in Equation 7, substituting values for 

x and y (the sample mean of target and impostor likelihood 

over a sub-segment of test data), 
1

s  and 
2

s (the sample 

variance of target and impostor likelihood over the same sub-

segment of test data), and m and n (the number of samples of 

target and impostor likelihoods over that same sub-segment of 

test data) allows the test statistic value to be evaluated.  

According to equation (6) and Figure 3, if the test segment 

was in the rejection regions of level α , the null hypothesis is 

false with α confidence, i.e. the probability that the current 

sub-segment is discriminative equals α . The segment 

selection algorithm can be summarized as in Figure 4. 

 

 
1. Divide the test segment into M consecutive sub-

segments, select a set of frames in the first sub-

segment: Tixi ...1, = , where ix is a frame of the current 

sub-segment and T is the number of frames in a sub-

segment. 

2. Compute the frame-based log likelihood of the test sub-

segment given the true model, 

Tixp Truei ...1)),|(log( =λ , where ix is a frame of the 

test sub-segment and T is the number of frames in a 

sub-segment. 

3. Compute the frame-based log-likelihood of the test sub-

segment given the impostor models. 

NlTixp
lpi ...1,...1),|(log( Im ==λ , where N is the number of 

impostor models. 

4.  Compute the mean and variance of the impostor and 

true  log-likelihoods  over a sub-segment of T frames as 

below: 
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5. Compute the t-statistics value from equation (7)  

6. If 
2nm,

2
2nm,

2

ttt
−+−+

<<− αα discard the sub-

segment 

7. Is it the last sub-segment of the test segment? 

• yes : finish 

• no : continue from the step 1 for the next          

sub-segment 

 

Figure 4: Segment selection algorithm 

This work is different from Pelecanos et al.’s proposal in the 

following aspects: 

• It discards the non-discriminative frames rather than 

modifying them. 

• Not limiting the non-discriminative frames to the 

ones with 1 to 10 Gaussian counts of trainings data 

(Reynolds, Quatieri & Dunn, 2000). Instead, using 

null-hypothesis testing to detect all frames would 

result in poor discrimination. 

• Working with sub-segments rather than frames 

allows use of the Central Limit Theorem (CLT) to 

estimate the mean and variance of target and 

impostor model rather than utilizing Spline 

functions to estimate the target and impostor 

statistics. 

 

 The same speech scores as shown in Figure 1 are plotted 

again after applying the segment selection technique with 
410−=α for male speakers, in Figure 5. The improvement after 

applying this algorithm is apparent in the reduced low true 

speaker scores in the target trial (a) and the reduced relative 

spread of true speaker scores in the non-target trial (b). 

3. System Setup 

3.1. Database 

Speaker recognition experiments were conducted on cellular 

telephone conversational speech from the switchboard corpus, 

the set defined by NIST for the 1-speaker cellular detection 

task in the 2002 Speaker Recognition Evaluations (SRE). The 

2002 set contains 330 targets (139 males and 191 females) and 

3570 trials (1442 males and 2128 females) with a majority of 

CDMA codec utterances; these are scored against roughly 10 

gender-matched impostors and the true speaker. The 60 

development speakers (2 minutes of speech for each of 38 

males and 22 females), 174 target speakers (2 minutes of 

speech for each of 74 males and 100 females) from NIST-2001 

were used to train the background model of NIST-2002 

system.174 NIST-2001 target speakers were also used as the 

impostor data for the NIST-2002 evaluation system. 

3.2. Baseline System 

The feature set consisted of 15 Mel-PLP cepstrum coefficients 

(Gauvain, Lamel & Adda, 2002; Barras & Gauvain, 2003) 15 

delta coefficients plus the delta-energy estimated on the 0-

3.8kHz bandwidth. Cepstral mean subtraction and variance 

normalization were applied to each speech file during training 

and testing. The speech detector discarded the 15-20% of the 

lower energy speech frames before the extraction process. 

The speaker modeling is based on a GMM-UBM 

approach. The UBM consisted of two-gender dependent 

models with 512 Gaussians which were trained on 112 male 

and 122 female speakers from the training portion of 

development and evaluation datasets of NIST 2001, and about 

6 hours of data in total. For each target speaker, a speaker-

specific GMM with diagonal covariance matrices was trained 

using the speaker training data via maximum a posteriori 

(MAP) (Gauvain & Lee, 1994) adaptation of the Gaussian 

means with 5 iterations of the EM algorithm.  
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Figure 5: Sub-segmental scores from speaker and impostor 

models for the same (a) target (b) non-target test segment in 

Figure1, after applying segment selection technique. 

3.3. Score Normalization and Segment Selection 

The T-norm was calculated using impostor models from 62 

male and 89 female speakers from the evaluation portion of 

the NIST2001 dataset, trained in a similar manner to the target 

models. The impostor models for segment selection algorithm 

are chosen from the 80% closest distant impostor speakers 

used in the T-norm. 

4. Experimental Results 

The experiments reported in this section examined the benefit 

of incorporating the proposed segment selection technique to 

discard frames with poor discrimination based on their target 

and impostor LLRs. The experiments investigated the 

performance improvement after applying this technique on 

male and female speakers separately in terms of Equal Error 

Rate (EER) and minimum Detection Cost Function (DCF) 

(Przybocki & Martin, 2004).  

4.2 Gender-Specific Segment Selection  

Tables 1 and 2 present the NIST2002 speaker recognition 

results for the proposed segmentation techniques on male 

speakers and female speakers respectively. The segment-

selection technique was evaluated with different values of the 

significant levelα ; but only the best result corresponding to 

the optimum value of 1210 −=α for male and 1410−=α  for 

female speakers are reported. The sub-segments should be 

small enough to track the score changes in different portions of 

a test segment but at the same time the assumption of large 

sample size to use the properties of the central limit theorem 

(section 2.2.2). These considerations led us to use 300ms (30 

frame) non-overlapped sub-segments to implement the 

segment-selection technique. 

The results shown in Table 2 reveal that this method, 

together with score normalization, provides a significant 

improvement in terms of minimum DCF and EER. The 

segment selection technique improves the minimum DCF and 

EER at least 3% and 4% over the T-norm and 18% and 6% 

over the baseline system for female speakers respectively. This 

improvement was more significant for male speakers (Table 3) 

as it brings at least 6% and 7% improvement over the T-norm 

and 20% and 10% over the baseline system. 

 

 

Table 2: Segment Selection results on Male Speakers 

System EER DCF 

(×1000) 

Baseline 

T-Norm Baseline 

Segment selection 

plus T-Norm 

10.99 

10.58 

9.83 

44.7 

38.4 

35.9 

 

 

Table 3: Segment Selection results on Female Speakers 

System EER DCF 

(×1000) 

Baseline 

T-Norm Baseline 

Segment selection 

plus T-Norm 

11.82 

11.42 

11.1 

52.7 

45 

43 

 

Figures 6 and 7 plot the Detection Error Tradeoff (DET) 

curve for the baseline, baseline plus T-Norm and optimum 

segment selection plus T-Norm on male and female speakers 

respectively. It can be clearly seen in both Figures that 

segment selection technique with T-Norm performs better than 

T-Norm alone in EER operating point and in the area of 

minimum DCF. So, the experiments support the theory 

(section 2.2.2) that discarding the non-discriminative frames 

reduces the miss detection rate. All three systems perform the 

same in low miss-rate areas on male speakers whereas these 

systems behave quite differently in this area on female 

speakers; both T-Norm and segment selection are better than 

baseline for low miss-rate areas.  

Generally, this technique was more successful on male 

speakers rather than female population. The reason might be 

attributed to the fact that the duration of test segments varies a 

lot for female compared with male speakers. So, using a fixed 

significance level for all durations is not as effective for female 

as for male speakers. Furthermore, in short test segments, the 

number of frames are limited, and discarding a discriminative 

frame wrongly could affect the results more than longer 

duration tests which are the majority of the male speaker 

utterances. 
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Figure 6: DET plot for the baseline and segment 

selection systems with and without T-Norm, for male 

speakers from the NIST 2002 dataset. 
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Figure 7: DET plot for the baseline and segment selection 

systems with and without T-Norm, for female speakers from 

the NIST 2002 dataset 

As a result, choosing an adaptive significant level 

α corresponding to the test segment durations especially for 

female speakers can improve the performance of the proposed 

method, greatly. Also, having a higher frame rate in short test 

segments can avoid dropping the discriminative sub-segments. 

5. Conclusion 

This paper has investigated the importance of selecting 

specific portions of a test segment to enhance the efficacy of 

the decision-making stage in speaker verification systems. A 

segment selection algorithm has been proposed to discard the 

non-discriminative parts of the test utterance based on their 

target and impostor log-likelihood ratios. This frame selection 

technique can be gender-specific in training and testing. The 

results indicate a consistent equal error rate reduction 

compared with the baseline across all experiments conducted. 

A relative reduction in error rate of 19% and 8% averaged 

over all test speakers in terms of min DCF and EER was 

obtained using the proposed segment selection technique.  

Future work may examine the optimum α values for test 

segments specific to their duration, handset, and modulation 

types.  
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