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Abstract

Gears are widely used in industrial machinery, and gear failure is a main cause of ma-
chine failure. Since gear wear is often the initial stage of gear failure, its monitoring and
prediction are key to proactive maintenance for critical machines, which could minimise
downtime, maintenance costs, and safety risks. However, existing gear wear monitoring
and prediction techniques face some ongoing technical challenges, including how to pro-
vide direct wear information and wear assessment and prediction in a cost-effective and
efficient manner. To tackle the challenges, this research aims to develop a set of advanced
techniques for gear wear monitoring and prediction. The four objectives of the research
and their corresponding methodologies and outcomes are summarised as follow.

(a) To develop a method to obtain direct and comprehensive gear wear information with-
out disassembling the gearbox. This objective was realised by combining surface replica-
tion with image analysis, allowing easy acquisition of high-resolution gear mould images
showing wear evolution on a tooth flank. (b) To investigate the relationship between the
features of worn gear surfaces and those of wear debris. To further understand the role
of wear debris analysis in wear assessment, a study on various features of macropits and
wear particles in the same fatigue process was conducted and provided new insights of gear
pitting and its monitoring. (c) To develop an automated system for gear wear assessment.
Deep learning models were developed to identify wear mechanisms and severities using
gear mould images and wear debris images. High classification accuracies were achieved,
and comparisons between the two image sources were made. (d) To develop a gear wear
prediction model using direct wear information. A deep generative model was developed
and trained on time series of gear mould images. Tests showed that the model using the
state-of-the-art AI technology can generate realistic and accurate predictions.

Overall, this research addressed the main limitations of existing methods and provided a
direct and evidence-based tool for monitoring and predicting gear wear. Its specific con-
tributions include (i) a new moulding-imaging method for monitoring gear wear evolution,
(ii) a detailed comparison between worn gear surfaces and wear debris in a wear process,
(iii) and AI and image-based gear wear assessment and prediction models for the first
time. The techniques could be performed during regular inspections of machines and used
with online methods for increased robustness.
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Chapter 1

Introduction

1.1 Research Background

Gears are crucial mechanical components for power transmission in many industry sec-

tors such as wind power, metal & mining, and power generation. The global market for

industrial gearbox reportedly reached US $38.4 billion in 2020 [1]. Gear failures caused

by gear wear and/or faults are one of the leading causes of machine failures, which of-

ten lead to significant downtime, maintenance costs, and threats to human safety. For

instance, surveys conducted in [2, 3] found that gears used in onshore wind farms usually

have a moderate failure rate among all critical components of a wind turbine but cause the

longest downtime (up to 33% of the total downtime). For helicopters, it was found that

drive train (gearbox is a main component) failures made up nearly 20% of their accidents

in the US from 1963 to 1997 [4].

In order to minimise the impacts brought by gear faults and machine failures, the main-

tenance strategies for machines and their critical components have evolved from run-to-

failure maintenance, to (time-based) preventive maintenance and then condition-based

maintenance (CBM) [5]. The run-to-failure maintenance is only suitable for low-cost and

easy-to-replace machines, and time-based preventive maintenance that is performed at reg-
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ular intervals often leads to high but unnecessary maintenance costs and potential damage

during the maintenance. Recognised as the most efficient maintenance strategy [5], CBM

allows maintenance to be conducted at the optimal time by monitoring a machine’s condi-

tion and carrying out essential maintenance based on the fault severity. As a result, CBM

can minimise maintenance costs and maximise the machine’s remaining useful life (RUL).

Many condition monitoring (CM) methods, including vibration, acoustic emission (AE),

and oil/wear debris analysis, have been developed for CBM. Among the existing tech-

niques, vibration and AE are predominantly used for gear fault detection and diagnostics

instead of gear wear monitoring and prediction. Gear wear monitoring and prediction are

crucial because the initial stage of most gear faults is often gear wear, which is an inevitable

degradation process of the gear tooth flank [6]. Gear wear is still difficult to be detected

using most CM methods before it is noticeably severe (e.g., visible dimensional change of

the tooth profile), except visual inspection and wear debris analysis (WDA) [5,7,8]. They

have been routinely used for gear wear monitoring in many applications [9], and they have

shown stronger capabilities than other methods in revealing gear wear in the early stage.

This is because they examine either the direct indications of gear wear (surface appearance

by visual inspection) or its by-products (wear debris by WDA) [7].

However, existing visual inspection and WDA approaches have some limitations in gear

wear monitoring as follows.

• Wear inspection and assessment of gears often require dismantling of the gearbox to

perform visual inspection by trained personnel. For detailed fault diagnosis, tooth

samples are often obtained using a destructive method to allow further examinations

(e.g., examine micro-cracks on gear surfaces) using a microscope. To avoid causing

damage to gears and reducing their useful lives, visual inspections of gear teeth

are usually carried out using naked eyes or tools with limited magnification. As

a consequence, micro-scale surface information that is critical for early-stage wear

monitoring is often unavailable when using the commonly practiced visual inspection

method.
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• WDA faces challenges in efficiently acquiring accurate gear wear information. Firstly,

wear debris may undergo deformation or fracture due to their entrapment between

gear contacts [10–12], resulting in potentially different sizes, shapes, and morphology

from their original states. Secondly, existing techniques and sensors for online imag-

ing of wear debris still experience some difficulties in acquiring high-quality wear

debris images (e.g., lubricant contamination) and processing large batches of images

in an efficient manner [13].

• The assessment of gear wear mechanism and severity still heavily relies on trained

analysts for both methods. The main reason is that the assessment criteria are

primarily qualitative, and practical experience is needed for a proper judgement.

Employing trained analysts is increasingly unattractive due to its low turnaround,

high cost, and potential subjectivity and human error.

As mentioned before, the existing techniques (visual inspection and WDA) were devel-

oped and are commonly applied to wear analysis. Wear prediction based on the current

wear condition (wear mechanism and severity) and its propagation rate is crucial be-

cause proactive maintenance actions can be planned in advance. For gear wear prediction,

physics-based methods (using a bottom-up approach) and data-driven methods (solely

relying on CM data) are the two primary groups [14, 15]. Physics-based methods aim to

model the gear wear process based on related physical laws. However, the modelling work

becomes extremely complex and challenging when including many impacting factors, in-

cluding material properties, operating conditions (load and speed), lubrication conditions,

environmental conditions (temperature, humidity), and potentially the co-occurrence of

multiple wear mechanisms [16]. Data-driven methods aim to predict gear wear using CM

data solely and they are becoming increasingly popular thanks to the fast development of

machine learning technology. Although many traditional problems of data-driven meth-

ods, such as data scarcity and feature engineering, are being solved, data quality remains

a critical issue. Specifically, commonly used CM data such as vibration or AE signals con-

tain limited gear wear information. In addition, the data could be easily contaminated by

noises from inherent imperfections of the gear, the signal transmission path, and the vary-

3



1.2. RESEARCH OBJECTIVES

ing operating conditions of the gearbox, etc [5,7,17]. Although images of worn gear teeth

and images of wear debris contain valuable gear wear information, limited work has been

conducted and reported on utilising the information and machine learning approaches to

monitor and predict gear wear.

1.2 Research Objectives

To address the above-mentioned limitations of existing techniques, this research aims

to develop advanced techniques for gear wear monitoring and prediction using

direct gear wear data generated experimentally. To achieve the aim, four objectives are

defined in this research.

1. To develop a method to obtain direct and comprehensive gear wear in-

formation without disassembling the gearbox. Gear teeth are usually difficult

to access by high-resolution imaging facilities when they are in the gearbox (space

issue), and therefore direct gear wear information is largely forsaken for gear wear

monitoring and prediction. This objective will be realised by combining surface repli-

cation (moulding) and image analysis to easily acquire high-resolution and compre-

hensive gear wear information (tooth appearance, surface morphology, tooth profile,

surface roughness, etc.). This development will provide a useful tool for obtaining

high-resolution, direct wear information on gear surfaces.

2. To investigate the relationship between the features of worn gear surfaces

and those of wear debris. This task is to deepen the understanding of to what

extent collected wear debris has similar tribological features to those of the gear

surfaces where the wear debris are generated. An experimental investigation that

both qualitatively and quantitatively compares various features of macropits and

wear debris in the same gear pitting process will be conducted for the first time. The

investigation will provide new insights into the gear pitting process and experimental

evidence for improving WDA in gear wear monitoring.
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3. To develop an automated system for gear wear mechanism and severity

assessment. This task is to reduce the cost and improve the efficiency of gear wear

assessment, which is predominantly performed by trained analysts. This objective

will be achieved by developing deep learning models (convolutional neural networks

(CNNs)) to identify gear wear mechanisms and severities using gear mould images

and wear debris images. This system will utilise the great capability of CNNs in im-

age classification to achieve gear wear assessment with high accuracy and efficiency.

4. To develop a gear wear prediction model using direct wear information.

Direct records of gear wear evolution (e.g., gear mould images) are highly valuable

data for the understanding of gear wear dynamics, but they have not been used

for gear wear prediction. Therefore, a deep generative model, which uses a limited

number of history gear mould images as inputs and generates a future image as

the output, will be developed for the first time. The wear prediction model will

employ advanced deep learning techniques to generates realistic and accurate gear

wear predictions.

1.3 Thesis Structure

In addition to this introduction chapter, this thesis consists of 8 chapters, including a

literature review chapter, a methodology chapter, and 4 technical chapters (Chapters

4 to 7) corresponding to the four objectives, followed by Discussion and Conclusions.

Chapters 4 to 6 are modified versions of three journal articles published during the PhD

candidature, and Chapter 7 is a modified journal article that will be submitted to Wear

in 2022. Details about the articles and modifications will be presented at the beginning of

each of the chapters. The brief introduction and organisation of each chapter is presented

below.

Chapter 1 - This chapter introduces the general background and objectives of this research

and the structure of this thesis.
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Chapter 2 - This chapter reviews important literature related to gear wear monitoring and

prediction. It covers topics including common gear wear mechanisms and their tribological

features, existing techniques for gear monitoring, image-based gear wear assessment, and

existing approaches and developments for wear predication. This chapter ends with a

summary of the key developments and research challenges/gaps in the area.

Chapter 3 - This chapter outlines the methodology designed to achieve the four objectives

in this research. Experimental tests are first planned so that the moulding technique can

be developed and applied to obtain gear moulds, and wear particles can be collected during

the tests. Then, the techniques and procedures for collection and analysis of mould and

wear particle samples are presented. Finally, the development of image-based gear wear

assessment and prediction using deep learning approaches is presented.

Chapter 4 - This chapter presents the development of a novel method that combines surface

replication and image analysis to obtain gear moulds and their images for investigating

the tribological features and their changes of the gear surfaces in a wear process. Its

application in a gear wear test demonstrates that comprehensive and high-resolution wear

information of worn gear can be obtained using this method without disassembling the

gearbox.

Chapter 5 - This chapter details the investigation on the relationship between gear macro-

pits and wear debris in a surface fatigue process. The investigation compares macropits

and wear debris qualitatively (via their images at different times in the same gear test)

and quantitatively (via numerical features regarding their concentration, size, shape, and

edge details), and provides new insights into the evolution of the gear surfaces and their

wear particles in the gear wear process.

Chapter 6 - This chapter details the development of automated assessment systems for

gear wear mechanism and severity assessment. Deep CNNs are developed to identify

gear wear mechanisms and severities using gear mould images and wear debris images.

Key procedures, including data preparation, model construction, and model training, are

detailed, and the models’ performance in tests are systematically evaluated.

6
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Chapter 7 - This chapter details the development of an image-based gear wear prediction

model using a deep learning approach. A time series of gear mould images is similar

to a short video, and therefore, deep learning techniques developed for video prediction

are adapted to gear wear prediction. The preparation of mould image sequences and

other datasets is detailed, and the construction and training of the generative adversarial

network (GAN) are introduced. Lastly, qualitative and quantitative evaluations of the

realism and accuracy of predicted images are presented.

Chapter 8 - This chapter discusses how the moulding-imaging techniques developed in

this research can be used in real-world applications. It also presents how the further

insights into the evolution of the tribological features of wear particles generated in the

wear process and their relationship with those of worn surfaces can be helpful for further

development of wear monitoring techniques based on wear debris. Reflections on the AI-

based wear classification and prediction are also included, followed by discussions on the

strengths and limitations of the works in the thesis.

Chapter 9 - This chapter summaries key findings obtained in this research and recommends

future work.
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Chapter 2

Literature Review

Due to the increasing demand for reducing downtime and maintenance costs of critical

machines, where gears are widely used to transmit power, gear wear monitoring and predic-

tion has received growing research interests in recent years. This chapter reviews common

gear wear mechanisms and their surface features and main methods for gear wear monitor-

ing and prediction, with a focus on their strengths and weaknesses, and highlights urgent

challenges that need to be tackled for a higher reliability and efficiency. This research is

conducted within the context of condition-based maintenance (CBM), and this topic is

briefly introduced below.

CBM, or predictive maintenance, is "a maintenance program that recommends mainte-

nance actions based on the information collected through condition monitoring" [18]. A

CBM program usually starts from the acquisition of machine health data (data acquisi-

tion), followed by processing the raw data to estimate the machine condition (data process-

ing), and ends by recommending appropriate maintenance tasks (decision-making) [18].

The core of CBM is condition monitoring (CM) that covers the process of data acquisition

and data processing. Diagnostics and prognostics, which provide crucial support to the

decision-making process, are two critical procedures of CBM. In recent decades, the rapid

development of various CM techniques with enhanced diagnostics and prognostics capa-

bility has given rise to the expansion of CBM in many industries [5,19]. Diagnostics refers
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to the process of determining the location and severity of a fault as well as identifying

its potential cause(s). Prognostics refers to the process of predicting the remaining useful

life (RUL) of a component based on the current condition of its degradation [18]. Diag-

nostics is a reactive process when a fault occurs, while prognostics is a proactive process

to predict and prevent a failure caused by the fault [14], which assists in condition-based

maintenance scheduling. Machine condition monitoring (MCM) with prognostics capa-

bility allows maintenance to be planned in advance and facilitates the optimisation of

maintenance schedule, which could minimise machine downtime and maximise its avail-

ability [18].

In this chapter, section 2.1 overviews gear wear and focuses on the main mechanisms and

different severity levels of gear wear and their surface features. Section 2.2 reviews the

main techniques for gear wear monitoring. Section 2.3 reviews image-based gear wear

assessment, focusing on image acquisition techniques and conventional and deep learning

based image analysis techniques. Section 2.4 reviews the main methods for gear wear

prediction. Section 2.5 summarises this chapter and identifies key research gaps in gear

wear monitoring and prediction.

2.1 Gear wear: mechanisms, severities, and surface features

In general, gear wear refers to the material removal process occurring on the gear tooth

flank during gear operation, and sometimes it also includes material transfer on the tooth

flank (e.g., the plastic flow of material) [20, 21]. Gear wear is one of the most common

forms of gear degradation, and it affects gear performance. Severe gear wear can induce

excessive transmission error, vibration and noise, and could even lead to tooth breakage.

In tribology, it is widely accepted that there are mainly four types of wear mechanisms,

including adhesive wear, abrasive wear, fatigue wear, and corrosive wear [22–25], and all

of them can occur in gear contacts. The term "wear mechanism" is sometimes used inter-

changeably with "wear mode" [25,26]. As an extremely complex process, gear wear can be
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impacted by numerous factors, including load, speed, gear material, lubrication, tooth pro-

file, surface roughness, etc. As the impacting factors vary, gear wear’s mechanism, mode,

and severity can be drastically different, resulting in different tooth surface appearances.

The ability to link the surface appearance of a worn gear to its wear mechanism and sever-

ity levels is critical in gear wear monitoring. Therefore, this section provides an overview

of common gear wear mechanisms and distinct surface features for wear mechanism and

severity assessment.

2.1.1 Adhesive wear

Adhesive wear refers to material being transferred from one surface to the other, due to

welding and tearing between two contact surfaces [21,22]. The wielding results from solid-

solid adhesion without intervening medium such as water and oil, and adhesion between

metals is particularly strong due to the formation of metallic bonding [27]. Metal surfaces,

except for noble metals, are usually covered by a thin layer of oxidation film that prevents

the formation of metallic bonding. In lubricated contacts, the oil film between two contact

tooth surfaces has similar separation effects. However, when the separation is lost, metallic

bonding forms in the real contact area when two opposing surfaces come into contact, as

shown in Figure 2.1. Then, when the two surfaces move away from each other, plastic

deformation will occur in the weakest region in the softer material, initiating internal

cracks. The cracks propagate until a piece of material is pulled out and transferred to the

other material.

Figure 2.1: A schematic of the adhesive wear process [27].
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Adhesive wear is mild or moderate when the welding is microscopic and only thin surface

films are transferred from one gear to the other [21]. It becomes severe when metal-metal

adhesion is formed and large pieces of material are transferred. Mild adhesive wear causes

nearly no alteration of the tooth surface, and it usually stops after running-in. Moderate

adhesive wear partially or entirely eliminates original manufacturing marks, but the tooth

surface is not noticeably rough [21].

Severe adhesive wear on gear teeth, also known as scuffing, has significant impacts on

gear operation and is often more concerning in gear CBM. Due to repetitive wielding and

tearing, the surfaces are often very rough and have a matte texture. Scuffed areas are

often manifested as bands separated by the pitch line, as shown in Figure 2.2 [28,29]. At

the micro scale, scuffing features rough and torn surfaces with signs of plastic deformation,

as shown in Figure 2.3. In practice, the severity of scuffing can be classified into three

levels, namely mild, moderate, and severe, according to the scuffed area compared to the

area of the active tooth flank [21].

Figure 2.2: Examples of scuffing on gear teeth at the macro scale [28,29].

Adhesive wear often occurs in dry contacts of metal gears where the oxidation films on

gear teeth can be easily broken. In lubricated gear systems, the occurrence of adhesive

wear often indicates lubrication failure, which is often caused by low oil viscosity, high

oil temperature, high load, etc [29]. The wear rate of adhesive wear is usually high, and

it often signals a rapid deterioration of contact surfaces. Gear scuffing can be controlled
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by using the lubricating oil with a higher viscosity, improving oil cooling, using extreme

pressure (EP) additives, etc [21,29].

Figure 2.3: An example of scuffing on gear teeth at the micro scale.

2.1.2 Abrasive wear

Abrasive wear is a prevalent wear mechanism, and it refers to material removal via cutting

or ploughing by hard particles or protuberances [7]. It is usually classified into two-body

and three-body abrasive wear. When the abrading bodies are fixed on one contact surface,

such as asperities or embedded particles, and directly abrade the other surface, the process

is two-body abrasive wear [27]. When the abrading bodies are loose particles that roll and

slide between two contact surfaces, the process is three-body abrasive wear [27]. Abrasive

wear on gears can usually be treated as the combination of two-body and three-body wear,

since surface asperities on gear teeth and entrapped wear particles can all act as abrasives.

Abrasive wear on gear teeth can be distinguished by scratches along the sliding direction, as

shown in Figure 2.4 (a) [28]. At the micro scale, parallel furrows along the sliding direction

indicate abrasive wear, as shown in Figure 2.4 (b). The severity of abrasive wear is usually

determined by the number of abrasive scratches and remaining manufacturing marks [21].
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Mild abrasive wear features a small number of scratches, and most of the manufacturing

marks are visible. When most manufacturing marks are removed, the wear severity is

considered moderate. Severe abrasive wear eliminates manufacturing marks, and the tooth

profile may be noticeably altered. Geometric deviations of gear teeth caused by abrasive

wear usually increase transmission error, dynamic loads, vibration, and noise [30].

Figure 2.4: Abrasive wear on gear teeth. (a) A macroscopic view [28]. (b) Microscopic
furrows in parallel. Horizontal lines are manufacturing marks.

A major impacting factor on abrasive wear is the material hardness, and the relative

abrasive wear resistance of a material is proportional to its hardness [31]. Therefore, using

harder materials, applying hard surface coatings, or surface heat treatment are widely used

to reduce abrasive wear. Surface roughness also has an important effect on abrasive wear

in that high surface roughness enhances asperity contacts and wear particles generation.

In lubricated contacts, the specific oil film thickness, which is the ratio of the oil film

thickness to the composite surface roughness of two surfaces, determines the extent of

separation between the two surfaces and negatively impacts the rate of abrasive wear [32].

The Archard’s law is widely used to calculate the wear rate for sliding contacts, and further

information can be found in section 2.4.
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2.1.3 Fatigue wear

Fatigue wear is caused by surface fatigue accumulated under cyclic rolling and/or slid-

ing [33]. Unlike common fatigue that could lead to structural fractures such as bending

fatigue of gear teeth, fatigue wear only affects surface and near-surface materials. How-

ever, they share similar development stages, namely, crack initiation and propagation.

For fatigue wear, cracks initiate due to the accumulation of plastic deformation at stress

concentrations, which could be at the contact surface such as surface asperities [34], or

the sub-surface such as inclusions and voids [35]. After initiation, cracks propagate within

the sub-surface under cyclic loading until the detachment of material fragments. Figure

2.5 [27] illustrates the process of surface-initiated fatigue wear.

Figure 2.5: A schematic of surface-initiated fatigue wear [27].

There are several types of fatigue wear for gears, and the most common ones are macro-

pitting and micropitting. As suggested by their names, macropitting and micropitting are

distinguished by the size and depth of pits. Macropits are usually larger than 100 µm

and as deep as 20 to 30 µm. Macropitting [36–38] is widely regarded as related to macro-

scopic stress distribution in Hertzian contacts where the maximum shear stress reaches

at Hertzian depth (below the contact surface) [39]. Micropits are usually smaller than

20 µm and as shallow as a few microns. Micropitting is closely related to localised stress
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distribution at the asperity scale [21,40]. Figure 2.6 [41–43] shows images of macropitting

and micropitting on gear teeth at the macro and micro scales.

The severity of macropitting is usually evaluated by the ratio of pitted area to the area

of the active tooth flank [21]. Mild macropitting occurs when a small area on the tooth

flank is covered by macropits, and moderate macropitting corresponds to a large surface

area being pitted. Macropitting is considered severe when a significant portion of the

tooth flank is pitted, such as the entire dedendum. Severe macropitting substantially

increases the risk of tooth flank breakage and usually signals the end of a gear’s useful

life. Compared to macropitting that could notably alter the tooth profile and impact the

normal operation of gears, micropitting is less harmful and less likely to cause catastrophic

failure [21]. However, micropitting could promote abrasive wear and macropitting due to

the roughened surface with a high crack density [43].

Figure 2.6: Examples of macropitting and micropitting on gear teeth. (a) Macropitting
on a spur gear [41], (b) micropitting on a helical gear [42], (c) macropits on a gear tooth
mould at the micro scale, (d) micropits at the micro scale [43].
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The useful lives of many lubricated gears are often governed by fatigue wear since other

types of wear that can be effectively minimised with careful selection of material, lubricat-

ing oil, and other parameters [44]. Common approaches to reduce or control fatigue wear

focus on alleviating stress concentrations, such as lowering loads, selecting materials with

fewer impurities, increasing surface hardness, lowering surface roughness, and increasing

the oil viscosity [21,27].

2.1.4 Corrosive wear

Corrosive wear occurs due to chemical or electrochemical reactions between a surface and

its environment [22, 24]. For contact surfaces of mechanical components, corrosive wear

often co-occurs with mechanical damage caused by other types of wear, and thus a more

precise term, tribocorrosion, is frequently used in those cases [7, 27]. Gear tribocorrosion

can be identified by stained or rusty gear tooth or etch pits across the tooth flank, as

shown in Figure 2.7 [45].

Figure 2.7: Rusty gear teeth due to tribocorrosion [45].

Tribocorrosion often leads to a higher wear rate than either of the two acts alone. For

instance, reaction products that loosely adhere to contact surfaces can be easily removed by

abrasive wear, and cleaned surfaces can easily react with corrosive reagents, thus boosting

the wear rate. In this case, severe tribocorrosion may lead to a considerable wear depth and

increase the risk of tooth breakage. Nevertheless, tribocorrosion can also reduce the wear

rate in some cases. For instance, extreme pressure (EP) additives [46] are commonly used
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for lubricated gears under high pressure to avoid scuffing because the additives react with

metals under high pressure, forming a strong film on the gear tooth separating two contact

surfaces. Gear tribocorrosion is often caused by oxygen, water, and elevated acidity in the

lubricating oil [21], and therefore, gear tribocorrosion can be controlled by oil changing

and reducing the chance of contaminants (e.g., water) entering the oil. Monitoring oil

properties such as water content and acidity is also very beneficial to minimise the risk of

tribocorrosion [47].

2.2 Gear wear monitoring techniques

Gear wear is the most common cause of gear degradation, and through monitoring its

development and taking proper maintenance actions, the risk of gear failure could be ef-

fectively minimised. Gear wear usually shows various indications and they can be classified

into direct indications and indirect indications [7,48], as shown in Figure 2.8 [7]. As a re-

sult, various techniques have been developed to acquire and analyse different types of data

related to those indications. The following subsections concisely review main techniques

for gear wear monitoring, including an overview of common techniques (section 2.2.1),

visual inspection and surface imaging (section 2.2.2), and oil and wear debris analysis

(section 2.2.3).

Figure 2.8: Categories of gear wear indications with examples [7].
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2.2.1 Overview of common techniques

Currently, oil analysis (OA) and wear debris analysis (WDA) are the most popular tech-

niques for gear wear monitoring in industrial applications [49], while visual inspection and

surface imaging are still commonly adopted. Further information about the two methods

can be found in section 2.2.2 (for visual inspection and surface imaging) and section 2.2.3

(for OA and WDA). Other techniques that have been predominantly used for gear fault

detection and diagnosis, such as vibration analysis, are also being applied to gear wear

monitoring in a few recent studies [50,51]. Compared to using direct gear wear data, they

have main advantages of non-intrusive and real-time monitoring of health condition of ro-

tating components. However, the existing vibration-based techniques also have inevitable

limitations for wear analysis. The main reason is that vibration signals of a gearbox sys-

tem are usually collected using sensors located on the casing and thus contain the dynamic

responses from the gears and other components, such as shafts, bearings, couplings. Thus,

the signals are complex for gear wear analysis and often have low sensitivity to early-stage

gear wear [5]. This section briefly introduces three types of techniques that have shown

some capabilities in gear wear monitoring, including thermography (section 2.2.1.1), vi-

bration analysis (section 2.2.1.2), and acoustic emission analysis (section 2.2.1.3).

2.2.1.1 Infrared thermography

Infrared thermography (IRT) refers to the process of using thermal cameras to capture

infrared radiation emitted by an object, and converting the radiation to thermal images

showing its temperature distribution [52]. The use of IRT is based on the fact that any

object emits electromagnetic radiation when its temperature is over absolute zero (0 K).

The radiation can be related to the object’s temperature using Stefan-Boltzmann law [53].

IRT is a non-contact and non-invasive technique, and it allows real-time visualisation of

the temperature distribution of an object [52]. Due to the advantages, IRT is extensively

used for medical applications, and it has also been used in the condition monitoring for

civil structures, electrical and electronic equipment, and machinery [52, 53]. IRT can
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be classified as passive IRT and active IRT according to the adoption of external thermal

stimulation [52]. For the condition monitoring for gearboxes, passive IRT is often preferred

because it does not require the gearbox to be stopped and opened [54], and the temperature

distribution can be monitored remotely using an infrared camera. Existing studies that

used IRT for the condition monitoring of gears primarily focus on fault detection, and

studies on gear wear monitoring are scarce [54]. Resendiz-Ochoa et al. [54] used an artificial

neural network to classify the infrared thermal images of a gearbox with four different gear

wear depths as shown in Figure 2.9 [54] (healthy, 25%, 50%, and 75% of uniform wear,

with 100% of uniform wear referring to the total removal of gear teeth). The results

showed that the thermal images could be used to distinguish the four gear wear depths

with 100% accuracy using the neural network. However, the differences between the four

wear depths were macroscopic (up to several millimetres, see the upper row in Figure 2.9),

and the capability of IRT in monitoring gear wear with a higher resolution (e.g., < 100

µm) remains to be investigated.

Figure 2.9: Photos of different gear wear depths and the corresponding thermal images of
the gearbox captured by infrared thermography [54]. (a) Healthy gear, (b) 25%, (c) 50%,
(d) 75% of uniform gear wear.

2.2.1.2 Vibration analysis

Vibration analysis is the most popular CM method with decades of successful industrial

applications. It uses vibration sensors (e.g., accelerometers) to obtain vibration signals
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and employs signal processing techniques to estimate the machine condition. It is a power-

ful method for fault detection and diagnosis because the vibration signature of a machine

deviates from its healthy one when a fault occurs, and the source of the fault is physically

related to the deviation [5]. Applying mature signal processing techniques, in the time do-

main, frequency domain, and time-frequency domain, to vibration signals greatly enhance

its capability to separate fault indications from other masking signals. The capability of

vibration analysis in monitoring gear wear is less studied than that in fault detection and

diagnosis, partly due to the coupling effect between gear wear and gear dynamics [51].

Hu et al. [55] proposed two vibration-based indicators for gear wear monitoring, namely

ALR and mALR, which measured the generalised distance between two gear state vectors

extracted from time synchronous averaged vibration signals. Two gear tests demonstrated

the effectiveness of the two indicators in detecting notable changes to the gear state. Feng

et al. [51] considered the differences between abrasion- and pitting-induced gear vibration

features and proposed an indicator of second-order cyclostationarity (ICS2) to separate

fatigue pitting and abrasive wear. Moreover, the proposed indicator showed micro-level

wear tracking capability in a lubricated and a dry gear test. Nevertheless, further devel-

opments of vibration-based gear wear monitoring are needed to tackle several important

issues. For example, the sensitivity of vibration signals to gear wear could be impacted by

the inherent deviation of a gear tooth profile gear from its ideal geometry that is compara-

ble to wear depth, and noise or masking signals from different sources of excitation (’blind

source separation’) [5]. In addition, varying operating conditions of gearboxes cause more

difficulties for the carefully designed indicators to track gear wear evolution [6].

2.2.1.3 Acoustic emission analysis

Acoustic emission (AE) analysis is a relatively new CM method, which uses similar pro-

cedures and signal processing techniques to vibration analysis [56]. Acoustic emissions

are solid-borne acoustic waves, e.g., generated during the interaction of two surfaces in

relative motion, due to damages to a material. Piezoelectric sensors are usually used to

capture AE signals [56]. Compared to vibration analysis, AE has shown greater sensitivity
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to faults, and can provide earlier warnings of faults [56–58]. However, AE signals can be

easily impacted by noises from other components, and the AE sensor needs to be close to

the target component to reduce the impact [56].

AE has shown effectiveness in gear wear monitoring due to its high sensitivity to surface

degradation [50, 57, 59, 60]. Tan et al. [57] conducted fatigue gear tests that ran at the

same speed but three different loads and compared the pitting detection capability of

three CM techniques, including AE, vibration and spectrometric oil analysis (SOA). The

results showed that the RMS values of AE were linearly correlated to pitting growth at

all tests and suggested that AE has good potential in gear pitting monitoring. Loutas et

al. [59] applied AE, vibration and oil debris monitoring to a long-running gear test and

extracted various features from vibration and AE signals to monitor the gear condition.

Results showed that AE had a similar capability to vibration analysis in monitoring normal

gear wear but demonstrated superiority in detecting cracked tooth. Sharma et al. [60]

developed a theoretical model to correlate gear pitting (more specifically, pitting size)

and other operating parameters with AE and experimental tests showed that the model

could estimate the pit size with reasonable accuracy. Feng et al. [50] considered the

cyclostationarity and non-Gaussianity of AE signals generated in lubricated gear contacts

and proposed two indicators, namely cyclic kurtosis and cyclic scale parameter, to monitor

gear wear evolution in a gear wear test. Direct measurement of gear wear in the test

showed a close correlation between the two indicators and gear wear where cyclic kurtosis

was sensitive to surface roughness evolution, and cyclic scale parameter was sensitive to

pitting propagation.

2.2.2 Visual inspection and surface imaging

Visual inspection and surface imaging are vision-based techniques that examine direct

indications of gear wear, i.e., changes in tooth surface appearance and tooth profile, to

monitor gear wear by capturing and analysing images of gear teeth. Traditional visual

inspection by naked eyes is a typical example of such techniques, and it is still among
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the most common ways to assess the condition of a machine. Surface imaging using en-

hanced magnification and image processing techniques often provide more detailed surface

information than visual inspection. Wear analysis using high-resolution images have the

following main advantages.

• Image-based techniques provide higher monitoring accuracy and reliability than

other CM techniques due to their direct nature [61,62].

• Comprehensive wear information, such as surface appearance, surface roughness,

profile change, and 3D shapes of defects, can be obtained [7].

• An automated process, from imaging to diagnosis and prognosis, can be easier to

achieve, thanks to the fast development of deep learning techniques for image analysis

in recent years [63].

However, the most significant disadvantage of vision-based techniques that limits their

research development and industrial applications, is the difficulty accessing gear teeth by

imaging facilities due to the limited space within the gearbox casing. For detailed ex-

aminations, the gearbox often needs to be dismantled, and worn or damaged gears are

taken out so that they can be examined using high-resolution imaging facilities such as an

optical microscope. For gear wear tests conducted in laboratories, gear teeth sometimes

are cut off in order to use advanced imaging facilities such as scanning electron microscopy

(SEM) for high-precision surface characterisation [64]. For industrial machines, disassem-

bly of gearboxes is usually prohibited unless in major repairs. Therefore, the frequency

and quality of visual inspection and surface imaging are often limited.

Different approaches have been adopted to address this issue, and surface replication has

emerged as a feasible one that enables high-resolution imaging without disassembling the

gearbox. Surface replication, or moulding, is the process to obtain negative replicas of

active gear tooth flanks. It usually involves applying replication compounds to the valleys

between certain teeth when the gearbox is stopped and opened, curing of the moulds, and

taking off cured moulds [65]. After replication, the moulds can be transferred to imaging
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facilities to capture 2D and 3D images, with which various surface information can be

extracted. The procedures of surface replication and imaging of gear teeth are illustrated

in Figure 2.10.

Surface replication has been successfully applied in surface manufacturing (with specific

micro or nano geometries) and surface characterisation [65]. However, there are limited

research works that applied surface replication to monitor gear wear. Andersson [66, 67]

in 1974 proposed using acetyl cellulose films and acetone as the replication compounds

for gears and observed the replica films using optical microscopy and SEM. However, the

cured replicas were flexible films, and thus they were unable to retain the tooth profile

information (only micro-scale surface features were impressed). The sample preparation

was time-consuming, which involved pre-softening the acetyl cellulose film by acetone,

gluing the films to glass slides, and coating a conductive layer on the samples for SEM

examination. In addition, acetone might enter and contaminate lubricants in the process.

Figure 2.10: A schematic of surface replication and imaging for gears. The procedure usu-
ally has four steps: (a) surface preparation (cleaning), (b) applying replication compounds,
(c) separating cured replica from the gear, and (d) replica imaging.

Then, Flodin [64,68] used a methyl methacrylate-based resin as the moulding compounds,

which were supplied as liquid and powder. A clamp was specially designed to enclose the
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compounds between gear teeth, and putty was also used for sealing, as shown in Figure 2.11

[68]. Rigid replicas were obtained, and a 3D stylus instrument was employed to measure

their waviness and surface roughness. The author reported satisfactory performance of

the replication method in measuring surface roughness but found that the replicas had

serious deformation issues due to the significant internal stress, which led to the loss of

actual tooth profile information [68]. More recently, Moorthy and Shaw [69, 70] used

silicone polymers for gear surface replication. The replicas were then used to observe

tooth surface damage under an optical microscope and measure tooth profile change using

a coordinate measuring machine. Images of replicas showed many important wear features

that were difficult to capture during normal visual inspections, and the use of silicone

polymers prevented the loss of tooth profile. However, the replicas may deform when

being in contact with the probe of the coordinate measuring machine, which might cause

significant measurement errors. Moreover, due to potential issues in imaging, the image

quality remained relatively low, and micro surface features were not captured, as shown in

Figure 2.12 [69]. Similarly, Ames [71] reported using silicone polymers to make replicas of

gear teeth and used both phase-shift interferometry and confocal microscopy to measure

surface roughness and local wear depth of spiral bevels gears by superfinishing. The

replicated surface appearances were captured using low-resolution imaging devices, and

micro surface features were not examined.

Figure 2.11: The specially designed clamp in [68] for surface replication on a FZG test rig.
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Figure 2.12: An optical stereo image of micropitting on a gear tooth replica [69].

2.2.3 Oil and wear debris analysis

Oil and wear debris analysis (OA/WDA) are commonly used CM methods that have

shown effectiveness in providing early warnings of faults for lubricated components [26,47].

They are used to examine various features or properties of the lubricating oil and wear

debris to estimate the gear wear rate, severity and mechanism. OA mainly focuses on

key physical and chemical properties of the lubricating oil related to gear wear, such as

viscosity, water content, and acidity [47]. WDA mainly examines wear debris features,

such as concentration, size, shape, surface morphology [26].

2.2.3.1 Detection techniques for key wear debris features

The techniques to examine the key properties of the lubricating oil and wear debris have

been developed for decades and many of them, particularly offline techniques, are ma-

ture and standardised [72–74]. Routine offline analyses such as spectrometric oil analysis

(SOA) and particle counting are used to estimate the oil condition and wear debris’s con-

centration, size, and chemical composition [9]. When routine analyses report abnormal
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results, microscopic characterisation of wear particles is usually needed for further wear

information. The characterisation is usually carried out in three steps: (i) periodic collec-

tion of oil samples, (ii) particle separation and specimen preparation, which can be done

via methods such as analytical ferrography [75] and filter patch analysis [72], and (iii)

specimen examination, usually under an optical microscope, to identify the concentration,

size, and types of wear particles [73]. Offline OA and WDA systems that integrate anal-

yses of multiple oil and wear debris properties are commercially available [76] and they

improve the overall efficiency of offline analyses.

Despite the fact that offline techniques can provide detailed and accurate wear information,

the demand for real-time monitoring has been driving the development of online oil and

wear debris sensors for the last two decades. Online wear debris sensors [77–79] have drawn

more attention since wear debris carries more direct information about gear wear than

lubricating oil [49]. There are mainly five types of online wear debris sensors with different

particle detection principles: inductive, capacitive, electrostatic, acoustic, and optical [47,

49]. These sensors have different capabilities in measuring wear debris properties, as

summarised in Table 2.1 [47,49,80], which is determined by their working principles.

Table 2.1: Main types of online wear debris sensors, their detectable wear debris properties,
and example commercial products [47,49,80].

Sensor type Detectable wear debris properties Example products
Inductive Size, quantity, material [81, 82]
Capacitive Size, quantity None
Electrostatic Size, quantity None
Acoustic Size, quantity None
Optical (photoelectric) Size, quantity [83]
Optical (imaging) Size, quantity, morphology, material None

Table 2.1 shows that most online wear debris sensors are designed to detect basic wear de-

bris features, i.e., size and concentration/quantity, related to gear wear rate and severity.

Inductive sensors usually introduce an external magnetic field (via coils) in the oil flow,

and the magnetic flux increases when ferromagnetic particles (e.g., cast iron and steel)

pass through the sensing zone [47, 49]. This is due to the high relative permeability of
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ferromagnetic materials, despite the counteracting field generated by eddy currents. For

other materials with low relative permeability (e.g., copper and titanium), the magnetic

flux decreases, and thus inductive sensors can distinguish ferrous debris from non-ferrous

ones. Moreover, inductive sensors are insensitive to air bubbles and water droplets in the

oil because of their low relative permeability (close to oil) and negligible eddy currents.

The microfluidic inductive sensors developed by Zhe et al. [79, 84–87] are representative

research outcomes in recent years. The use of microfluidic channels restricted the flow

path of wear debris to the sensing area with the highest magnetic flux density and re-

duced the chance of multiple particle passing simultaneously, thus increasing the sensor’s

sensitivity and accuracy. The low throughput problem caused by the small size of mi-

crofluidic channels were also addressed by employing multiple sensing channels in parallel.

The difficulty of processing multi-channel data was also tackled by synchronised sampling.

The sensors achieved accurate detection of small wear debris (11 µm in 1 mm diame-

ter pipes) and larger wear debris with high throughput (50 µm particles at a flow rate

of 750 ml/min) [79, 87]. Research on other types of sensors for monitoring the size and

concentration of wear debris has reported less successful results than those on inductive

sensors. Capacitive sensors utilise the change of capacitance between two electrodes in the

lubricating oil when metallic particles pass to measure their size and quantity [49]. The

main disadvantages of capacitive sensors are that (i) the capacitance of oil varies when

oil properties such as viscosity and acidity change, and (ii) water droplets have a signif-

icant impact on capacitance measurement due to the high permittivity of water [47, 49].

Electrostatic sensors detect wear particles based on the phenomenon that adhesive wear

particles are positively charged after their release. Several prototypes were designed in

laboratory settings for scuffing wear monitoring for gears and bearings [88–91]. However,

the mechanisms of debris charging have not been well understood, and thus, electrostatic

sensors have not seen their industrial applications for gear wear monitoring [49,91]. Acous-

tic sensors detect wear particles by measuring the attenuation or the scattering of acoustic

waves (usually ultrasonic waves) caused by the passing of particles [47]. An important

feature of acoustic sensors is that air bubbles can be distinguished from wear debris due

to their different reflection coefficients of acoustic waves [92]. Nevertheless, the lubricat-
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ing oils absorb a notable amount of acoustic energy, and the absorption varies with the

change of oil viscosity, leading to errors in size detection of acoustic sensors [49]. Lastly,

photoelectric sensors, a group of optical sensors, detect wear particles by measuring the

change of light transmission caused by passing particles, either light extinction or light

scattering [49]. Many offline wear particle counters, such as [93], are designed based on

this principle. There are also online extensions of these devices, such as [83]. However,

online applications of photoelectric sensors for gear wear monitoring need to address the

impacts of low oil transparency, air bubbles, particle overlap, etc [49].

Optical sensors that capture wear debris images, or imaging sensors, are the only ones

that can capture comprehensive information of wear debris, including size, quantity, mor-

phology, and material [49,78,94]. The morphology and material information are necessary

to determine the type and source of wear debris, and they can be used to infer the wear

mechanism and source. Therefore, numerous research on imaging sensors and related

techniques have been conducted in recent years. Wu et al. [95] designed an online visual

ferrograph (OLVF) sensor that used magnetic deposition to fix ferromagnetic particles in

the oil flow and an imaging sensor with both reflected and transmitted light to capture

wear debris images. Various tests [94–97] showed that images captured by OLVF could

be used to extract the size, quantity, shape, and colour of wear debris. The issue of oil

transparency that impacts particle detection was also recently addressed by Li et al. [98],

who improved the OLVF sensor using dark-field imaging. However, due to the use of

magnetic deposition, wear particles in OLVF tend to form chain-like clusters with particle

overlap, causing significant difficulty in accurately extracting size and shape information

of individual particles from the images, despite the relief from using advanced image seg-

mentation techniques [49, 99]. A microfluidic approach was adopted by Peng et al. [100]

to avoid the issue of particle overlap, and it also allowed multiple views of wear particles

to be captured, which is vital for their 3D characterisation. Combining microfluidic chan-

nels with imaging sensors is a promising approach for online WDA, but several challenges

need to be tackled before its industrial applications. Firstly, the small sizes of microfluidic

channels are necessary to capture images of individual particles but seriously limit the

oil flow rate [49]. Secondly, usually limited space is allowed for installing online sensors,
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and it prohibits the use of high-resolution imaging sensors, resulting in low-quality wear

debris images, as shown in Figure 2.13 [96]. Last but not least, for all imaging sensors,

efficient processing of a large number of wear debris images in an industrial environment,

from image enhancement and segmentation to particle classification, remains a critical

challenge [47,49].

Figure 2.13: A typical wear debris (generated in a four-ball wear tester) image captured
by online imaging sensors [96].

2.2.3.2 The relationship between worn gear teeth and oil and wear debris

features

It is commonly acknowledged that many oil and wear debris features have close relation-

ships with gear wear, and they are the foundation of using OA and WDA for gear wear

monitoring [25,47,80,101]. For oil features, viscosity directly affects the oil film thickness

and separation between two contact surfaces, which are closely related to the occurrence

or rate of adhesive, abrasive, and fatigue wear [22,29]. Water content, which often comes

from condensation of ambient moisture and coolant leakage, is closely related to the ox-

idation of lubricants and tribocorrosion of gears [47]. Acidity, which is usually measured

using total acid number (TAN), indicates the oxidation level of the oil, has a major impact

on tribocorrosion of gears [47]. For wear debris features, the concentration of wear de-

bris indicates the gear wear rate, and the combination of concentration and size is closely

related to gear wear severity, as shown in Figure 2.14 [47].
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Figure 2.14: The empirical relationships between wear debris concentration, size, and wear
severity [47]. The ranges of wear debris size can be machine- and operating-condition-
specific.

As for wear mechanism assessment, the size, shape, and surface morphology of wear debris,

which are closely related to their generation process, are crucial properties in WDA [25].

Based on the above three properties, wear debris are usually classified into six different

types, namely, rubbing, cutting, laminar, fatigue, sphere, and severe sliding particles, and

the types of wear debris can be used to identify the wear mechanism [25,102]. For instance,

cutting particles, which are curled metal strips, usually indicate the occurrence of abrasive

wear, and fatigue particles, which are chunky and have rough surfaces, usually indicate

the occurrence of fatigue wear [102].

However, the relationship between worn gear teeth and wear debris features could be

impacted by the modifications of wear debris, e.g., deformation or fracture caused by

entrapment of wear particles in gear contacts after their detachment from gear teeth

[10,25]. The extent to which wear debris keep their original morphology or even quantity

after their detachment has not been well understood [25]. Experimental tests [10,12,103]

have shown that the particle concentration between gear contacts is significantly (ten to

thousands of times) higher than that in bulk lubricating oil. Theoretical analyses and

experimental tests [11, 12, 104] on particle entrapment showed that larger particles are
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easier to be entrained into contacts than small ones. In general, entrapped particles may

be compressed into platelets (ductile material) or broken into fragments (brittle material),

as shown in Figure 2.15 [104].

Figure 2.15: Modifications of entrapped particles in contacts [104]. (a) A ductile particle
can be compressed into a platelet. (b) A brittle particle can be broken into fragments.

There are few studies [105–108] that investigated the relationship between features of worn

gear teeth and those of wear debris in the same gear wear process, although characterisa-

tions on either wear debris [109–113] or worn gear teeth [64, 110, 114–116] are numerous.

Reda et al. [105] conducted a series of sliding wear tests of steels where a cylindrical sleeve

rotated against various fixed samples (cylinders, balls, and a flat plate) and examined worn

surfaces and generated wear particles using optical microscopy and SEM. The worn sur-

faces and wear particles were classified into six wear regimens by the surface appearance of

the worn surfaces and the size and colour of wear particles. The classification showed that

wear particles became larger (from less than 15 µm to up to 150 µm) as the wear rate rose

(from low to high) and worn surfaces were ploughed. Umeda et al. [106] conducted a set

of pin-on-disc steel sliding tests and analysed optical microscopic images of worn surfaces

and wear particles. Two textural features, namely, angular second moment and contrast,

were calculated from the co-occurrence matrices of the images of worn surfaces and wear

particles. By qualitative comparisons, the authors found evident differences between the

features of wear particles and those of worn surfaces. Yuan et al. [107, 108] conducted

rolling and sliding wear tests on a pin-on-disc test and a ball-disc tester, respectively, and

measured surface roughness of wear particles and worn surfaces at different wear stages

(e.g., running-in, steady, and severe wear). Results showed that the surface roughness (Sa)

values of wear particles were generally smaller than those of worn surfaces and suggested
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the modifications of wear particles after their generation. Moreover, the surface roughness

of wear particles and worn surfaces shared a similar trend across different wear stages. To

sum up, existing studies mainly based on pin-on-disc test rigs reveal some changes in the

size and surface roughness of wear particles and their difference to those of worn surfaces.

Study of the gear wear evolution, in particular, the relationship of wear particles and gear

surfaces in a wear process is yet to be conducted.

In summary, the strengths and limitations of OA and WDA in gear wear monitoring are

as follow.

• Many features of oil and wear debris have close relationships with gear wear, pro-

viding OA and WDA with advantages in gear wear monitoring. On the other hand,

OA and WDA monitor indirect indications of gear wear, and their accuracy and

reliability could be lower than direct monitoring methods. The morphology of cap-

tured wear particles could be significantly different from their original morphology

due to the impact of particle entrapment in gear contacts. Further studies on their

relationship in a wear process are needed.

• Offline OA and WDA are established techniques widely used to determine gear

wear rate, severity, and mechanism, but often require expensive facilities and cause

inevitable delays in gear wear monitoring.

• Online OA and WDA can provide gear wear rate and severity information with com-

parable accuracy to offline techniques, and most importantly, real-time monitoring

capabilities. Current online WDA sensors cannot efficiently provide the morphology

information of wear debris, and imaging sensors face challenges such as sensor im-

provement (e.g., improve the quality of wear debris images) and image processing

(efficient processing of large batches of images).
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2.3 Image-based gear wear assessment

As reviewed in section 2.2, images are commonly used data in gear wear monitoring and

crucial data for detailed gear wear assessment. Specifically, images are the major data

used in visual inspection and surface imaging, and images of worn gear teeth containing

direct wear information are highly valuable for assessing gear wear mechanism and sever-

ity. For WDA, wear debris images are necessary data to determine the particle type and

then infer the gear wear mechanism. Images of worn gear teeth and wear debris might

look completely different, but their acquisition and analysis techniques often share many

similarities. Therefore, this section reviews important image acquisition techniques (sec-

tion 2.3.1) and conventional (section 2.3.2) and deep learning based (section 2.3.3) image

analysis techniques for the assessment of gear wear mechanism and severity.

2.3.1 Image acquisition techniques

The process of image acquisition plays a significant role in image-based gear wear as-

sessment as the quality of gear wear information contained in the images can vary greatly

depending on the chosen imaging techniques [7,13]. Various types of microscopy and other

imaging methods have been employed to meet different demands of image quality. For

on-site gear wear analysis, portable devices such as regular digital cameras and hand-held

microscopes are often seen. For laboratory gear wear analysis, optical microscopy [70,117],

laser scanning confocal microscopy (LSCM) [26, 118], and scanning electron microscopy

(SEM) [112,119] are frequently used.

Portable tools are often used for gear teeth imaging due to the tight space between gear

teeth and the obstruction of the gearbox housing. Images captured using these tools, such

as those in Figures 2.2, 2.4,2.7, and 2.9, are often used to show the overall appearance

of worn gear teeth. Due to the lack of precise positioning and appropriate illumination,

portable imaging tools are still mainly used for a rough or preliminary gear wear assess-

ment.
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Optical microscopy is one of the most popular imaging methods for gear wear analysis,

and it is often low-cost and easy to use [7]. By changing different objective lens, an optical

microscope can provide a broad range of magnification (e.g., five times to hundreds of

times magnification). Optical microscopy is usually used to capture 2D images of gear

wear samples(e.g., wear debris slides), but it is not suitable for the direct imaging of gear

tooth flank due to the tight space between gear teeth, which also applies to other types of

microscopy. As reviewed in section 2.2.1, this issue could be addressed by making replicas

of gear teeth using appropriate replicating compounds, and in some cases, destructive

measures such as tooth cutting are adopted for detailed examinations [43,119]. The quality

of images captured by optical microscopy can be notably affected by the type and the

adjustment of illumination [7]. For example, gear wear samples are usually non-transparent

and therefore reflected light is often chosen. However, when the feature of interest is the

shape of an object, such as tooth profile and edges of wear particles, transmitted light

could provide a better contrast between the background and the object (see wear particle

images in [77,95]). For very reflective surfaces, normal reflected illumination might cause

glare and the loss of clear surface features and reducing the intensity of illumination or

using polarised illumination could be helpful [7].

SEM is another prevalent imaging method for gear wear analysis, and the sample surface

is scanned by a high-energy electron beam to generate its image [7]. SEM has the features

of high magnification and high spatial resolution, and it can be used to capture 3D surface

information and examine the chemical composition of wear samples [120]. However, SEM

is usually more expensive than the other two types of microscopes, and the preparation

for some samples can be time-consuming [120]. It is usually used for very detailed surface

characterisation of wear samples, and example applications in gear wear analysis can be

found for cut-off gear tooth in [119] and wear particles in [112].

LSCM is usually used for 3D imaging of gear wear samples such as gear tooth moulds [121]

and wear particles [122]. It utilises a pinhole to exclude out-of-focus light, leading to a

small depth-of-field. By capturing images at different heights with a small and controlled

step size, LSCM can construct the 3D shape of an object [7]. Compared to SEM, the cost
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of LSCM is usually lower, and requires much fewer sample preparations.

2.3.2 Conventional image analysis for gear wear assessment

After image acquisition, raw images of gear wear samples usually require different levels

of image processing so that meaningful wear information can be extracted and utilised

for gear wear assessment. Human analysts are capable of analysing many raw images to

assess gear wear states, but such tasks are usually very time-consuming and costly [111,

112, 122]. Therefore, various image processing techniques have been developed to assist

human analysts for gear wear assessment. Conventional image analysis for wear assessment

often consists of preprocessing raw wear images and extracting meaningful features from

the images [61]. Then, the extracted features are used for gear wear assessment via human

assessment or computer algorithms such as machine learning models.

The preprocessing of raw images is to improve their quality, and it usually involves reducing

noises in images, enhancing their contrast, sharpening images, etc [61]. Both the inputs

and outputs of this process are images. Image filtering is often used to reduce noise (e.g.,

median filter and Gaussian filter) and sharpen images (e.g., Laplacian filter) [61, 123].

Contrast stretching and histogram equalisation are often used for contrast enhancement

[123].

Image segmentation is often employed to separate the objects of interest from the back-

ground [123]. For images of worn gear teeth, certain surface defects such as pits need to

be separated from the tooth surface so that their size, shape, and other features can be

extracted. For wear particle images, particle segmentation is a critical step for further

analysis, especially for particle chains in ferrograph images [124]. Thresholding is a simple

and common method for image segmentation, and different methods have been developed

for automatic threshold selection, such as Otsu’s method [125]. More difficult segmenta-

tion tasks such as separating particles from particle chains usually require more advanced

techniques. Wang et al. [124] combined watershed transformation and an improved ant

colony clustering algorithm to segment ferrograph images. The proposed method was
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shown to effectively minimise the over-segmentation of large abnormal particles. Wu et

al. [97] combined a marker-controlled watershed approach and multi-scale morphological

operations to improve the segmentation reliability for online ferrograph images.

After image segmentation, various numerical features of the separated objects are extracted

for their mathematical descriptions, and many studies have been devoted to this topic

for gear wear assessment [111]. In order to obtain a comprehensive description of the

separated wear-related objects, multiple types of features are usually extracted, and multi-

variant statistics are output as a result. For wear particles, size features (e.g., diameter,

perimeter, Weibull parameters of size distribution), shape features (e.g., aspect ratio,

roundness, fractal dimension), surface topography features (e.g., Sa and Sq), and colours

are commonly used in their characterisation [94, 111, 112, 126, 127]. Those features can

also describe certain surface defects on worn gear teeth such as pits. Features for surface

topography are of particular importance in classifying worn gear teeth and wear particles,

but the development of such features has experienced slow progress due to the extreme

complexity of those 3D surfaces [110]. Stachowiak et al. [110] pointed out that many

features or methods to describe surface topography were scale-variant and those scale-

invariant features obtained via fractal methods were not suitable for anisotropic surfaces.

To address the problem, they proposed a modified partitioned iterated function system

(PIFS) to encode 3D images of surfaces for the full description of their surface topography,

but its application is not seen in other gear wear studies.

The final step of conventional image analysis is to process and interpret the extracted

features to obtain results of gear wear assessment, which is often the classification of gear

wear mechanism and wear severity levels. Many studies have adopted conventional ma-

chine learning methods to efficiently process the multi-variant features, such as support

vector machine (SVM), expert system, and neural network. Peng and Kirk [109] extracted

nine boundary- and surface topography-related features from LSCM images of wear par-

ticles, and input them into a fuzzy Kohonen neural network and a multi-layer perceptron

(MLP) network for automatic particle classification. Later they also employed a grey sys-

tem with fuzzy logic to achieve automatic particle classification with similar input data.
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Stachowiak et al. [112] used a linear SVM to classify wear particles using three features

extracted from SEM images, which were reduced from 44 features by principal compo-

nent analysis (PCA) and a nonlinear Fisher reduction, and the SVM achieved an error

rate of 3% among abrasive, adhesive and fatigue particles. Wu et al. [94] extracted two

representative particle features from online ferrograph images, one of which described the

concentration of wear particles while the other described the sizes of large particles. A

method of support vector data description (SVDD) was employed for wear state identifi-

cation. Gonzalez-Arias et al. [114] extracted histograms of oriented gradients (HOG) from

SEM images of worn surfaces and compared three classifiers, i.e., Gaussian naive Bayes,

decision tree, and random forest, to distinguish mild from severe abrasive wear.

Conventional image analysis has shown effectiveness in gear wear assessment, and many

numerical features (e.g., size, aspect ratio, Sa) have been used in routine wear analysis.

However, such processes can be very time-consuming and technically demanding. Specifi-

cally, a complete analysis procedure that often involves multiple steps of image processing,

and for different images, the method of processing and related parameters usually require

careful selection [97]. Then, the feature extraction process can be challenging (e.g., craft-

ing surface topography features), and the selected features might not generally be suitable

for other surfaces [128,129].

2.3.3 Deep learning based image analysis for gear wear assessment

The fast development and successful applications of deep learning since around 2012 have

shown its superiority in discovering intricate structures in large datasets over other meth-

ods [63]. One of its most successful applications is in image processing and analysis,

covering tasks such as image segmentation [130], object detection [131], image classifi-

cation [132, 133]. A key characteristic of deep learning is that little feature engineering

is needed compared to conventional machine learning approaches, making it possible to

process raw data using deep learning algorithms [63].

In recent years, the intriguing feature and successful applications of deep learning have
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driven researchers to adopt deep learning based image analysis for gear wear assessment.

Wang et al. [128] employed a deep convolutional neural network (CNN) to identify fatigue

and severe sliding particles and achieved 85.7% identification accuracy for fatigue particles

and 80% for severe sliding particles. Compared to previous studies [112,122] that required

3D surface information of particles and careful feature engineering, their study demon-

strated that efficient particle classification can be realised using only 2D images of wear

particles via a deep learning approach. Peng and Wang [129] proposed FECNN, a CNN

for ferrography image classification, and they introduced 1D convolution and dropout to

increase the learning robustness of the model. Compared to previous particle classifica-

tion works, they achieved a high classification accuracy (93.89%) using a relatively small

number of training samples. The extracted particle features by the deep learning model

were visualised.

Apart from particle classification, the deep learning approach was also used to restore

blurry particle images. Wu et al. [134] used a CNN with an autoencoder structure and a

large kernel size to deblur wear particle images, and they generated training pairs (a sharp

and a blurry image of the same particle) by capturing particle images with different focus

degrees. Their sample results, including blurry inputs, restored outputs and their ground

truth, are shown in Figure 2.16 [134]. The application of deep learning in processing worn

gear teeth images is scarce, and it could be caused by the difficulty in obtaining sufficient

training samples of worn gear teeth, as mentioned in section 2.2.2.

Figure 2.16: Wear particle image restoration using a deep CNN [134].
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2.4 Gear wear prediction

Gear wear prediction is a critical task of gear prognosis that enables proactive mainte-

nance actions to be taken to prevent gear fault from happening. Extensive research on

gear wear prediction have been conducted, and physics-based methods and data-driven

methods have been considered the two primary approaches [48, 135–137]. Physics-based

methods attempt to establish explicit mathematical models to relate gear wear with the

impacting physical parameters [136]. On the contrary, data-driven methods attempt to

establish algorithms that implicitly model the gear wear dynamics based on CM data,

without reference to physical laws [135]. In recent years, machine learning methods can

be distinguished from statistical data-driven methods, due to their rapid development

in recent years [138]. Therefore, this section reviews three main methods for gear wear

prediction, namely physics-based methods (section 2.4.1), statistical data-driven meth-

ods (section 2.4.2), and machine learning methods (section 2.4.3), and also highlights the

opportunities and challenges brought by deep learning.

2.4.1 Physics-based methods

Many physics-based models have been developed to relate gear wear rate (usually for

adhesive, abrasive, and corrosive wear) or surface fatigue life of gears (for fatigue wear)

to impact factors such as load and speed. Most of the models were built upon simple

wear laws or relationships, and significant research efforts have been devoted to their

improvements by considering more impacting factors.

The Archard’s wear equation [139], or Archard’s law, is one of the most frequently used

wear equations for sliding contacts, which relates the wear rate, i.e., wear depth per unit

sliding distance, to the contact pressure. A commonly used expression [140] is as

dh

ds
= kP (2.1)
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where h is the wear depth (m), s is the sliding distance (m), k is the wear coefficient

(Pa−1), and P is the normal contact pressure (Pa). The effects of many other parameters,

such as gear material, lubrication, and surface roughness of gear teeth, are incorporated

in the wear coefficient k, which significantly simplifies the equation but limits its accu-

racy. The Archard’s wear equation was originally proposed to estimate adhesive wear,

but its flexibility provided by k allowed it to be adapted for abrasive wear and corrosive

wear [141]. Based on Archard’s wear equation, Wu and Cheng [142,143], Flodin and An-

dersson [144,145], and Kahraman et al. [140,146–148] have improved the original model for

gear wear prediction, with a focus on detailed modelling of the contact pressure, consid-

ering the varying contact geometry during gear meshing, elastohydrodynamic lubrication

(EHL), modified tooth profile, etc. The models of Flodin and Andersson and Kahraman

et al. were validated by experimental tests, and results showed their models achieved

reasonable prediction accuracy for maximum wear depth. In the tests by Flodin [64], the

wear coefficient was empirically chosen, and simulated results for wear distribution and

maximum wear depth near the tooth root that experienced the most severe wear showed

notable errors compared to experimental results. In comparison, Kahraman et al. [146]

conducted a gear test first to determine the wear coefficient and used the k value in wear

prediction for other tests with the same configuration (e.g., material, operating condi-

tion, and lubrication). The simulation results for maximum wear depth showed excellent

agreement with measured values from tests. The comparison suggested that access to the

appropriate wear coefficient is critical for the wear prediction models to work well. When

the wear coefficient can be experimentally obtained, and the actual running conditions of

gears are consistent and close to the experiments, the above models are usually suitable for

wear prediction [15, 147]. However, it is not practical for the majority of industrial gear-

boxes mainly due to the complexity of gear wear, in which the impacting factors could be

different from machine to machine, and could vary significantly through the process.

For fatigue wear prediction (e.g., macropitting and micropitting), gear surface fatigue lives

that often refer to the number of running cycles before fatigue wear occurs are usually

predicted instead of the wear rate. Extensive research on fatigue wear under rolling/sliding

contacts have been conducted, especially for bearings, and there are also many gear fatigue
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models [136]. Among the gear fatigue models, two groups can be roughly distinguished.

The first group usually adopts multi-axial fatigue criteria that relate stress or strain to

the fatigue life of material, while the second group usually adopts a fracture mechanics

method to model crack initiation and propagation. The models [40,42,149–152] based on

multi-axial fatigue criteria, such as the critical plane criterion and the Dang Van criterion,

usually have detailed modelling of the stress/strain field under gear contacts. The state-

of-the-art models [40,153] of this group usually has a mixed EHL model that considers the

evolving tooth profile and surface roughness to improve the accuracy of stress simulation.

Due to detailed modelling of localised stress variation, they have shown effectiveness in

micropitting prediction [40, 150, 152]. Figure 2.17 [152] shows the micropitting prediction

results in [152], compared to experimental results.

Figure 2.17: The comparison between experimental (left) and simulation (right) results
of micropitting prediction by the model developed by Morales-Espejel et al. [152]. The
pitted area, Ap, for different sliding/rolling ratio S: (a) S = −0.15, (b) S = −0.3, are
indicated. Predicted pitted areas are in dark red.
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The gear fatigue models based on fracture mechanics follow the mechanism of rolling/s-

liding contact fatigue and focus on the iterative simulation of crack growth [154]. A

commonly used crack growth equation is Paris’ law [155], or the Paris-Erdogan equation,

which can be expressed as

da

dN
= C(∆K)m (2.2)

where da
dN is the crack growth rate (m/cycle), ∆K is the range of stress intensity factor

(Pa m0.5), and m (unitless) and C (Pa−mm1−0.5m, note the difference between the unit m

and the variable m) are material constants that need to be experimentally determined.

With the crack growth equation and the stress field near the contact surface that is usually

calculated using the finite element method (FEM), the crack growth towards the direction

with the highest stress intensity during each running cycle can be simulated. With iterative

updating of fatigue cracks and stress intensity, the formation of pits could be visualised,

as shown in Figure 2.18 [38]. Compared to the first group of models, fracture mechanics

models usually adopt simpler lubrication models (e.g., without EHL) and gear contact

models (e.g., Hertzian contacts). The predicted fatigue lives of gears (macropitting) in

[38, 154, 156, 157] have shown reasonable agreement with experimental results, and the

shapes of pits were also well predicted, as shown in Figure 2.19 [158].

Many gear fatigue models in either group made an important hypothesis that a gear’s

service life ends when pitting initiates. It is largely true for ball bearings of which the

rolling motion can be immediately disturbed when pits occur on the raceway, but not nec-

essarily true for gears that undergo line contacts instead of point contacts. As mentioned

in section 2.2.3, macropitting is considered severe when a significant portion of gear tooth

is pitted and micropitting is less likely to cause severe fault than macropitting. Therefore,

the propagation of pitting, i.e., the generation of multiple pits, should also be considered

for gear fatigue prediction.
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Figure 2.18: Simulation results of fatigue crack growth using FEM based on fracture
mechanics [38].

Figure 2.19: (a) A predicted micropit in comparison to (b) micropits generated experi-
mentally; (c) A predicted macropit compared with (d) a macropit generated experimen-
tally [158].
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In summary, physics-based methods for gear wear prediction are available for common gear

wear mechanisms, especially for fatigue wear, of which detailed modelling of lubricated

contacts and crack initiation and propagation are achieved. The accuracy of physics-based

models appear reasonable as suggested by their experimental tests with well-controlled

operating conditions. Physics-based models are suitable for wear prediction when the

models’ required inputs (e.g., material constants, wear coefficients) can be obtained and

the operating conditions remain consistent. In addition, physics-based models are based

on physical laws or relationships that have been extensively studied, and their outputs

usually have clear physical meaning, which is often desired for engineering applications.

However, physics-based models have the following main limitations that restrict their wide

applications.

• Current modelling capabilities of physics-based methods are insufficient to account

for the complexity of gear wear that at least includes: (i) numerous impacting fac-

tors (e.g., material, heat treatment, geometric errors, surface roughness, lubrication,

additives, and temperature), (ii) the variation of those factors through the wear pro-

cess, and (iii) the co-existence of multiple wear mechanisms. Therefore, the accuracy

and reliability of physics-based methods are often questioned in practical usage.

• Using physics-based methods requires the necessary understanding of the gear wear

mechanism (expertise required). Moreover, collecting the input parameters for phys-

ical models is often costly.

• Using complex physical models for improved accuracy usually requires prohibitive

computational resources, which makes them less cost-effective than other methods.

2.4.2 Statistical data-driven methods

Data-driven methods for gear wear prediction rely only on observed data related to gear

wear, which can be event data or CM data [18]. Because event data that registers past

gear faults related to wear are relatively scarce, CM data are primarily used in data-driven
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methods. The fast development of sensor technology has made it possible to measure

multiple types of information concerning gear wear in real time. The obtained CM data

are very versatile, such as vibration, oil temperature, wear debris quantity, load, and

speed. When CM data are collected, a statistical model is commonly employed to be

fitted to the data in a probabilistic manner, and it is often called a statistical data-driven

approach [48].

Si et al. [48] presented a comprehensive review of statistical data-driven methods for RUL

estimation, and the statistical models were classified into two groups: models that use

direct CM data, and models that use indirect CM data, as shown in Figure 2.20 [48]. For

direct CM data, commonly used statistical models were further classified into regression-

based, Wiener process, Gamma process, and Markovian-based models, according to how

the machine degradation process is simplified. For indirect CM data, stochastic filtering-

based, covariate-based hazard, and hidden Markov model and hidden semi-Markov model

based methods were identified as the main methods. The bridging role of feature extraction

between indirect and direct CM data was also elaborated. That is, when extracted features

from indirect CM data can be used to characterise the machine condition, those statistical

models for direct CM data can also be applied to the extracted features.

Figure 2.20: Classification of commonly used statistical data-driven methods for RUL
estimation [48].
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CM data such as vibration signals and wear debris features are commonly used for gear

wear prediction. Feature extraction is usually applied to the raw data before statistical

modelling, with rare exceptions where the raw data is used directly. Wang et al. [159]

reviewed health indicators for prognosis and health management of bearings and gears in

the literature, which are extracted from vibration signals mainly through signal processing

and conventional machine learning techniques. However, many health indicators were

engineered for fault detection and diagnosis and may not be effective for wear prediction

[15, 137]. He et al. [160] applied particle filters to a vibration-based health indicator that

were computed using six condition indicators (e.g., residual RMS, FM0) and oil debris

mass for RUL prediction in a gear pitting test. Zaidi et al. [161] extracted time-frequency

features from motor current using discrete wavelet transform (DWT) and employed hidden

Markov models (HMMs) to predict gear failures of automotive starter motors. Kocijan

and Tank [162] applied a Gaussian process model to the time series of a spectral feature

of vibration signals to predict gear wear, and test results showed that the model provided

warnings of critical wear 15 to 20 hours in advance. However, the relationship between

the selected feature and actual gear wear was not investigated.

Statistical data-driven methods using wear debris features are limited in the literature, and

most existing studies usually attempt to establish physical models describing the variation

of wear debris concentration in a gear wear process. Feng et al. [8] modelled the wear debris

concentration based on Kragelsky’s model and indicated that the evolution of an index of

particle coverage area obtained using an OLVF (see section 2.2.3) was aligned with the

simulation results. However, a quantitative criteria to determine if gears enter the severe

wear stage was absent, and the generalisation capability of the proposed model was not

demonstrated through different tests. Zhu et al. [163] used particle filters on the viscosity

and dielectric constant of the lubricating oil to predict the RUL of wind turbine gearboxes,

and the authors derived physical models to relate the two oil properties to wear debris

concentration. However, the relationship between oil properties and actual gear wear has

not been well understood, and the accuracy of this method could be impacted by many

factors that were not considered in the laboratory test. For example, the oil viscosity can

be notably affected by oil oxidation, external contamination, additive depletion, etc. [47],
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which was considered only to be affected by temperature and wear particles. Hong et

al. [164] proposed using the peak rate of wear debris generation as the indicator of the

end of RUL based on a physical model that related wear particle generation to surface

roughness evolution, and empirical data from wind turbine gearboxes were used to validate

the method. However, it can be observed from the empirical data that the rate of wear

debris generation varied significantly throughout the wear process, and there could be

multiple peaks of wear particle generation, bringing challenges to use the indicator in

practice.

Current statistical data-driven methods for gear wear prediction based on feature extrac-

tion, or feature engineering, face the following main challenges.

• Handcrafted features for gear wear prediction have limited generalisation capability.

There is still no health indicator or a set of health indicators that have been shown

effectiveness for different gear wear mechanisms under different operating conditions

[138].

• The difficulty of feature engineering is expected to increase significantly as multi-

dimensional CM data becomes increasingly available [48].

• To extract useful features and fit appropriate statistical models to the features re-

quire considerable expertise in signal process and statistics, which could limit their

popularity in industrial applications.

2.4.3 Machine learning methods

Machine learning methods are being increasingly used for gear wear prediction and other

tasks in gear prognosis, and they can be distinguished from the two methods mentioned

above due to their unique features. Similar to statistical data-driven methods, machine

learning methods for gear wear prediction are also driven by CM data of gears, mean-

ing that little knowledge of the physics of the gear wear process is required. However,

compared to statistical modelling in which the relationship between inputs (history CM
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data in this case) and outputs (future CM data) is explicitly approximated by a statistical

model such as a linear regression model, machine learning implicitly models the process

by learning from observed data without presuming the relationship between inputs and

outputs [165]. Thus, the advantage that little expertise in complex statistical modelling

is required, and the increasing availability of CM data have given rise to machine learn-

ing methods in gear wear prediction. Among various machine learning techniques, deep

learning has demonstrated its superiority over conventional approaches through numerous

applications. Therefore, this subsection reviews conventional machine learning methods

for gear wear prediction (section 2.4.3.1) and new potentials brought by deep learning

approaches (section 2.4.3.2).

2.4.3.1 Conventional machine learning approaches

Gear wear prediction via conventional machine learning approaches is usually realised

through the following steps: gear wear data acquisition and preprocessing, feature ex-

traction, model selection, training, and testing (predicting gear wear). There are many

conventional machine learning models available, and examples of those for time-series pre-

diction include support vector machine (SVM), random forest, and neural networks [166].

Wang et al. [167] compared the performance of recurrent neural networks (RNNs) and

neuro-fuzzy systems in multiple gear fault prediction tests (including severe abrasive wear,

scuffing, and pitting). Vibration-based features were extracted and used for model training

and testing. Results showed that the neuro-fuzzy systems generally outperformed RNNs

in one-step-ahead prediction of the evolution of the features. However, actual gear wear

conditions were not examined to validate the correlation between the extracted features

and gear wear. Kundu et al. [168] employed a random forest regression methodology to

predict gear pitting propagation using correlation coefficient-based features extracted from

residual vibration signals and achieved an average RUL prediction accuracy of 6.7% in five

gear pitting tests when fusing vibration signals from sensors installed at different positions.

Nevertheless, the prediction performance of the proposed feature was not compared with

other commonly used vibration-based features such as RMS and FM4.
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2.4.3.2 Deep learning approaches

Compared to conventional machine learning approaches, deep learning approaches do not

require the feature extraction step and make the implementation of machine learning

easier for engineers without expertise in signal processing and feature selection. Deep

learning techniques have been successfully used in prediction tasks such as stock price

prediction [169], traffic prediction [170], precipitation forecast [171], and video prediction

[172, 173]. The development of transfer learning and other deep learning techniques also

provide promising solutions to improve the generalisation capability of gear wear prediction

models for different machines under different operating conditions [138].

Currently, most deep learning applications in gear condition monitoring focus on gear fault

detection and diagnosis, and research on gear wear prediction are limited. Xiang et al. [174]

and Yan et al. [175] employed modified long short-term memory (LSTM) networks to

process extracted features from vibration signals to predict RUL of gears. LSTM networks

are famous for learning long-term dependencies in sequential inputs and have shown better

performance than traditional RNNs [176]. Experimental results showed that the proposed

models could predict the RUL of gears with reasonable accuracy when most data points

from the late stage of the tests were given. However, complicated feature extraction

procedures from raw vibration signals were needed to relieve the impact of background

noise. The lack of separate gear tests (e.g., under different operating conditions) to validate

the generalisation capability of the models could also be an important limitation. Lo et

al. [177] trained a 1-D CNN (another commonly used neural network to process sequential

data) on raw vibration data to estimate gear wear by comparing the test vibration signal

and normal vibration signals (from the normal wear stage) and abnormal signals (from the

wear-out stage) in the feature space. The proposed model was validated using data from

a gear wear test and a benchmark bearing dataset, and results showed a low estimation

error (10%) for wear depth. Nevertheless, the target data, i.e., vibration signals and

the wear depth, at the end of a gear’s service life are necessary for the model to work,

which are impossible to obtain for in-service gears. The authors also indicated that there

was significant variability across different gears in terms of their operating conditions and
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service lives, making it difficult to transfer the target data from test gears to others.

Although little feature engineering is needed, gear wear prediction using deep learning

approaches still faces challenges for its further development. An important issue is the

data quality for training deep learning models, which represents the degree of correlations

between CM data and actual gear wear [17], since the models only rely on CM data without

any help from physical relationships. The learning difficulty of deep neural networks could

be lowered significantly by using direct CM data instead of indirect CM data. For example,

gear vibration signals can be easily impacted by background noise, inherent manufacturing

errors, varying operating conditions, etc. [5, 15], and wear debris data that have much

closer relationships with gear wear can still suffer from modifications by gear contacts and

measurement errors [10,49].

2.5 Summary

This chapter has reviewed common gear wear mechanisms, severity levels, and their surface

features, and main methods for gear wear monitoring and prediction. Visual inspection and

surface imaging, and OA and WDA have shown strong capabilities in gear wear monitoring

and their strengths and weaknesses were examined. Both methods utilise images as key

inputs, and thus, common techniques for image acquisition and conventional and deep

learning based image analysis techniques for gear wear monitoring have been reviewed.

For gear wear prediction, three main methods, namely, physics-based methods, statistical

data-driven methods, and machine learning methods, were reviewed, and the potentials

and challenges of using deep learning approaches for gear wear prediction were presented.

In summary, the following research gaps in existing research on gear wear monitoring and

prediction can be identified through this literature review.

1. A method to obtain direct and comprehensive gear wear information that does not

require gearbox disassembly is not available. The advantage of visual inspection

and surface imaging in accessing direct wear information is largely forsaken for gear
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applications due to this reason.

2. Limited research has been done on the morphological relationship between worn

gear surfaces and wear debris in the same wear process. Because wear debris may

undergo deformation or fracture due to their entrapment between gear contacts, this

relationship needs to be experimentally examined in a gearbox setup for a better

understanding of the gear wear process and informed use of WDA.

3. A method to automate the assessment of gear wear mechanism and severity based on

gear surface appearance has not been seen in the literature. To date, gear wear as-

sessment still heavily relies on human experts and/or processed information through

qualitative and quantitative image analysis, which have various drawbacks such as

only extracting limited surface information and time-consuming. Development of

an automated method could help address issues of low turnaround, high cost and

subjectivity associated with manual assessment.

4. Little research has been done on the potential of gear wear prediction using gear tooth

images, although deep learning has been successfully applied in similar prediction

tasks (e.g., video prediction). Gear tooth images are direct CM data that are able

to capture actual gear wear with high accuracy and reliability, from which advanced

deep learning model could learn gear wear dynamics.
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Chapter 3

Methodology

This research aims to develop advanced techniques for gear wear monitoring and prediction

using direct gear wear data. In the previous chapter, existing methods and techniques for

gear wear monitoring and prediction have been reviewed, and four gaps in the research

area have been identified. Based on the gaps, the four objectives of this research are

restated here.

1. Currently, direct and detailed imaging of gear teeth often requires gearbox disassem-

bly, making the collection and utilisation of direct gear wear information notably

difficult. Therefore, the first objective of this research is to develop a method

to lower the difficulty of obtaining direct and comprehensive gear wear

information to the extent that gearbox disassembly is not required.

2. Due to the difficulty in collecting wear evolution information in a wear process as

mentioned above, little research has been done on the morphological relationship

between worn gear surfaces and wear debris in the same wear process, which is vital

for proper use of wear debris analysis for gear wear monitoring. Therefore, the second

objective of this research is to experimentally investigate the qualitative and

quantitative relationship between worn gear surfaces and wear debris in

the evolution of a gear wear process.
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3. The assessment of gear wear mechanism and severity still heavily relies on trained

analysts, which is often associated with a high cost and low efficiency. Therefore,

the third objective of this research is to develop a system that automatically

assesses gear wear mechanism and severity.

4. Gear tooth images containing direct and comprehensive wear information have not

been used for gear wear prediction, despite images being increasingly used for similar

prediction tasks. Therefore, this research’s fourth and last objective of this research

is to develop an image-based gear wear prediction model using a deep

learning approach.

This chapter outlines the methodology adopted in this research to achieve the above objec-

tives. Figure 3.1 illustrates the overall structure of the methodology and the connections

between the four technical chapters that correspond to the four objectives (Chapters 4 to

7). Firstly, gear wear tests were conducted to generate the wear data used in this research.

Then, to achieve Objective 1, replication compounds were selected to replicate worn gear

teeth to obtain gear teeth moulds without gearbox disassembly, and a wide variety of direct

wear information was extracted from gear mould images via image acquisition and image

analysis. To achieve Objective 2, gear mould images and wear debris images, which were

obtained by imaging the wear debris slides made from collected oil samples, were analysed

and compared to investigate the relationship between worn gear surfaces and wear debris

in the same gear test. Then, to achieve Objective 3, deep learning models (CNNs) were

trained on gear mould images and wear debris images to automate the process of gear

wear mechanism and severity assessment. Lastly, to achieve Objective 4, a deep learning

model (GAN) was trained on time series of mould images to learn the gear wear dynamics

and predict the evolution of gear wear.
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Figure 3.1: The overall structure of the methodology of this research.

In this chapter, section 3.1 details the experimental facility and gear wear tests, and section

3.2 introduces the methods to collect wear samples in the tests, followed by section 3.3 that

overviews the image acquisition process and image analysis techniques. Image-based gear

wear assessment and wear prediction using deep learning approaches are briefly explained

in sections 3.4 and 3.5, respectively. The summary of this chapter is presented in section

3.6. It is worth noting that Chapters 4, 5, 6, and 7 have a dedicated section that provides

details of the methodology to achieve their corresponding objective.
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3.1 Experimental facility and gear wear tests

Gear wear tests, i.e., a long-running lubricated test and a relatively short dry test, were

conducted on a single-stage spur gearbox test rig, as shown in Figure 3.2. The test rig

consists of an ABB three-phase induction motor that provides input power (nominal power:

4 kW) with a variable speed, a single-stage spur gearbox, and a magnetic particle brake

that provides a variable load.

Figure 3.2: The single-stage spur gearbox test rig.

The pair of spur gears used in the lubricated test, as shown in Figure 3.3, consists of a

driving gear with 19 teeth and a driven gear with 52 teeth. Another pair of gears with the

same configuration and material was used in the dry test. The gears used in the two tests

were manufactured by KHK, and their main technical specifications were summarised in

Table 3.1. The elemental composition of the gear material is shown in Table 3.2.
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Figure 3.3: The pair of spur gears used in the lubricated test. The left is the driven gear
and the right is the driving gear. The yellow marked teeth are the ones for moulds making
during the test. The dry test used another gear pair with the same configuration and
material.

Table 3.1: Main technical specifications of the spur gears used in the two gear wear tests.

Parameters Value
Number of teeth 19 (driving gear) / 52 (driven gear)
Module 2 mm
Face width 20 mm
Pressure angle 20°
Material Normalised JIS S45C (equivalent to AISI 1045)
Tooth hardness ∼ 190 HB

Table 3.2: Nominal elemental composition of JIS SC45 steel.

Element Weight %
Carbon 0.42 - 0.48
Manganese 0.6-0.9
Phosphorus 0.03
Sulphur 0.035
Silicon 0.15 - 0.35
Iron Balance
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The lubricated test was designed to study a gear fatigue process by collecting and analysing

gear teeth moulds and wear debris samples. Before the test, the two gears were manually

roughened (Sa = 3.2 µm, measured using a laser scanning microscope with a 20x objective

lens) to accelerate the initiation of fatigue pitting. This procedure was based on the

relationship between surface roughness and surface fatigue life in rolling-sliding contacts

[151, 178–180]. The gears were lubricated using splash lubrication in the test, using Shell

mineral oil with a kinematic viscosity of 146 m2s−1 at 40°C and 14.7 m2s−1 at 100°C. The

torque of the input shaft of the gearbox was kept constant (20 Nm) through the test by

the magnetic brake, while its rotational speed was adjusted to avoid the overheating of

the magnetic brake. The specific input speeds were: 20 Hz from 0 to 0.57 million cycles,

10 Hz from 0.57 to 0.86 and 2.5 to 3.25 million cycles, and 15 Hz from 0.86 to 2.5 million

cycles. In total, the lubricated test ran for around 3.25 million cycles (68 hours), and the

driving gear was eventually severely worn by macropitting and abrasive wear. During the

test, the test rig was stopped 40 times to apply the surface replication method to obtain

gear teeth moulds without disassembling the gearbox. The time interval between each

stoppage of the gearbox was roughly 80 thousand cycles, and shorter intervals were used

during the beginning and closing stage of the test to capture the rapid wear evolution on

gear teeth.

The dry test was designed to study a gear scuffing process by collecting and analysing gear

teeth moulds. A high wear rate was expected [27] as no lubrication would be used. Due

to this reason, the two gears were not manually roughened, and a lower input torque (5

Nm) was selected so that the duration of the test is reasonably long enough for collecting

multiple batches of gear teeth moulds to study the wear evolution. A constant input speed

(10 Hz) was used throughout the dry test. In total, the dry test ran for 54.6 thousand

cycles (around 4 hours), and both of the two gears were severely worn by scuffing at the

end of the test. During the test, the test rig was stopped 11 times for moulds making.

The time interval between each stoppage of the gearbox was roughly 6 thousand cycles,

and shorter intervals were used during the beginning stage of the test to capture the rapid

wear evolution on gear teeth.
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3.2 The sampling of gear wear evolution

in order to directly study the evolution of gear wear, gear teeth moulds, which are direct

records of gear wear, and oil samples with wear debris, which are by-products of gear

wear, were collected when the gear test rig was stopped during the tests. Techniques and

procedures used to collect these samples are described below.

3.2.1 Development of a moulding method to collect gear teeth moulds

A moulding method, or surface replication, was developed to acquire direct records of gear

wear, i.e., gear teeth moulds, during gear wear tests without gearbox disassembly. There

are many types of surface replication compounds available, and several key considerations

such as replication resolution and deformation were incorporated in the selection process.

Microset 101 [181] (thixotropic silicone polymers) was finally chosen as the replication

compounds in this research due to its high-resolution, fast curing, low shrinkage, low

thermal expansion, and ability to be used on vertical surfaces. Its replication quality

was tested using a resolution target and a surface comparator in terms of the replication

resolution, accuracy, and profile reproduction. More details about the development of

the moulding method can be found in Chapter 4. Table 3.3 shows key properties of the

replication material.

Table 3.3: Key properties of the surface replication compounds (Microset 101) [181].

Property Value
Resolution 0.1 µm
Working life 3 min at 25°C
Curing time 20 min at 25°C
Usable temperature -10°C to 180°C
Cured hardness 28 - 30 Shore A
Shrinkage < 1%
Linear expansion coefficient 2.8× 10−6 °C−1

Before each test, six gear teeth (three on the driving gear and three on the driven gear)

were selected and marked for moulds making, as shown in Figure 3.3, where the selected
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teeth were marked in yellow. As mentioned above, the test rig was stopped multiple times

during the two tests, and at those times, the lid of the gearbox was taken off for moulds

making. Before applying the replication compounds, the marked gear teeth needed to be

carefully cleaned and any oil on the teeth must be absorbed for the proper curing of the

replication compounds. Then, the replication compounds were injected using a dispenser

with an extended mixing nozzle (see Figure 3.4) to cover the marked worn tooth flanks

and fill in the valley between gear teeth, as shown in Figure 3.5. After the curing time

of 20 minutes, a batch of six gear teeth moulds was taken off and stored separately. In

total, 41 batches of moulds (including a batch made before the test) were obtained in the

lubricated test, and 12 batches (also including a batch before the test) of moulds were

obtained in the dry test.

Figure 3.4: The replication compounds dispenser used in this research [181].

Figure 3.5: Curing moulds on gear teeth in the dry test (left) and a cured gear tooth
mould (right).
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3.2.2 Collection of wear debris slides using the filtergram method

Wear debris is by-product of gear wear, and it also carries various important gear wear

information. Therefore, wear debris slides were acquired in the lubricated test via oil

sampling and the filtergram method. Oil sampling was carried out just before the test rig

was stopped for moulds making, and the sampling location was 1 cm below the oil surface

and underneath the gear meshing region. A guiding channel was specially designed and 3D

printed to ensure the accuracy and consistency of the oil sampling position, as illustrated

in Figure 3.6. In total, 40 oil samples were obtained in the lubricated test, and the volume

of each oil sample was around 20 ml. It is worth noting that an equal amount of clean oil

was added to the gearbox after each sampling.

Figure 3.6: The design of the guiding channel (in light grey) installed on the gearbox (in
dark grey). (a) Front sectional view. (b) Right sectional view.

Then, the oil samples were processed using the filtergram method [182] to make wear

debris slides. The method involved separating wear debris from oil using membrane filters

and fixing the filters on clean glass slides. The membrane filter used in this research had a

pore size of 3 µm, meaning that only wear debris larger than 3 µm could be captured. For

each wear debris slide, 1 ml of the oil sample was extracted from the sampling bottle and

used in slide making. Before oil extraction, the sampling bottle was sonicated to ensure

an even distribution of wear debris in the oil, and a low-power and short (around 10 mins)

sonication was chosen to avoid violent collisions of wear debris [122,182]. The membrane

filter on the glass slide was cleared to enhance the contrast between particles and their

background during imaging.
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3.3 Image acquisition and analysis

In order to obtain a wide variety of wear information, two types of microscopy, i.e., optical

microscopy and laser scanning confocal microscopy (LSCM), were selected to capture 2D

and 3D images of collected gear wear samples (i.e., gear teeth moulds and wear debris

slides), respectively. To capture wear features at the micro scale, an Olympus BX53

optical microscope [183] with a DP72 digital camera [184] and a Keyence VK-X200 3D

laser microscope [185] were selected to be the suitable imaging facilities. Then, a series

of image processing and analysis techniques were employed to extract various gear wear

information for gear wear monitoring. Figure 3.7 shows the different image acquisition

and analysis techniques chosen in this research to obtain different gear wear information.

Figure 3.7: Image acquisition and analysis for (a) gear teeth moulds and (b) wear debris
slides.

Gear teeth moulds contain microscopic wear features and macroscopic appearances on

worn gear teeth, and thus different objective lenses were employed to cover the broad size

range. For example, a 5x objective lens of the optical microscope was used to capture the

macroscopic appearance of gear teeth, while a 20x lens was used to capture microscopic

wear features such as micropits and surface cracks. A mould holder was specially designed

and 3D printed to properly fix the moulds. For the 2D images captured using the 5x
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objective lens, image stitching was necessary to generate large mould images covering

the entire addendum or dedendum of a tooth flank, and the gear wear evolution could

be visualised in great detail through time series of the large mould images in a wear

process. To quantitatively describe important surface features such as macropits, the

features need to be separated from their background (i.e., the tooth surface), and advanced

image segmentation techniques were employed for this purpose. Using the 3D images, the

height information was extracted to calculate various 3D surface roughness parameters

such as Sa and Sq and carry out 3D characterisation of surface features such as measuring

pitted depth. Moreover, 3D tooth profiles could also be obtained by stitching multiple 3D

images along the profile, and they allowed the calculation of wear depths by subtracting

a worn tooth profile from the original one.

For wear debris slides where wear debris from a few microns to about a hundred microns

were dispersed, a 20x objective lens was selected for the optical microscope to capture 2D

wear debris images. Key numerical features of wear debris, such as concentration, size,

aspect ratio, and roundness, can be extracted using the 2D images to be used in comparison

with those of worn gear surfaces. It is worth noting that the concentration of wear debris in

this research is defined as the percentage of area covered by wear particles within the total

area of captured images [95]. 3D images of wear debris were not incorporated due to their

limited sample size. The extraction process started from preprocessing the raw 2D images

to improve their overall quality via noise reduction and contrast enhancement. Then,

image segmentation was used to separate wear debris from their background, and various

numerical features were selected and calculated for proper particle characterisation. More

details about the feature extraction step can be found in Chapter 5.

The extraction of key features of worn gear surfaces and wear debris from images allowed

a detailed investigation of their relationship in the same wear process. Both qualitative

and quantitative comparisons were made between worn gear teeth and wear debris. Qual-

itatively, the evolution of the wear mechanisms and their severity on gear teeth and that

of the types and sizes of wear debris were compared using time series of mould images

and wear debris images in the lubricated test. Quantitatively, the evolution of crucial
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indicators of gear wear severity, including pitted area and wear debris concentration, were

compared. For other important numerical features of macropits and wear debris, detailed

comparisons regarding their data distributions, evolution, and principal components were

designed and conducted. Further information can be found in section 5.3.

3.4 Image-based wear assessment using deep learning

Deep learning models (CNNs) were developed to automate the identification of gear wear

mechanisms and severities using mould images and wear debris images. A deep learning

approach was adopted due to its strong capabilities in learning intricate patterns in large

datasets over other approaches [63], and CNNs were chosen due to their numerous suc-

cessful applications in image analysis [132]. As illustrated in Figure 3.8, automated gear

wear assessment was achieved via the following steps.

Figure 3.8: Image-based gear wear assessment using deep learning. (a) Wear assessment
CNNs based on gear mould images. (b) Wear assessment CNNs based on wear debris
images.
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1. Preparation of gear wear images. Currently, open-source image datasets of gear

wear that can be used to train deep learning models for gear wear assessment are

not available. Therefore such datasets were purpose-built in this research. Large

mould images that directly recorded gear wear evolution in the tests and wear debris

images that directly recorded the by-products of gear wear in the lubricated test

were suitable data to train CNNs for automated gear wear assessment. Wear debris

images were converted to two types of images: images of individual particles for

particle classification by image segmentation, and images of group particles for wear

severity assessment by image cropping. This procedure was necessary because the

CNN built for particle classification required that each input image contained only

one wear particle while the other CNN built for severity assessment did not have

this requirement. More details about data preparation can be found in Chapter 6.

2. Data augmentation and labelling. The number of acquired raw images (both mould

images and wear debris images) were insufficient for training deep CNNs, and thus

different strategies of data augmentation were designed to increase their numbers

(see Chapter 6). Then, the labelling process in which the images were manually

classified into different wear mechanisms or particle types and different severity lev-

els, was conducted following established guidelines (e.g., gear standards) to ensure its

correctness and consistency. In the end, more than one hundred thousand labelled

mould images were generated covering four wear mechanism categories: normal,

abrasive wear, scuffing, and pitting, and three severity levels for each of the latter

three wear mechanisms: mild, moderate, and severe. For wear debris images, more

than ten thousand labelled images of individual particles were generated covering

four particle types: rubbing, laminar, fatigue, and cutting particles, and nearly ten

thousand labelled images of group particles were obtained covering three severity

levels: mild, moderate, and severe.

3. Construction, training, validation and testing of the CNNs. The CNNs used to

automate gear wear assessment were constructed based on a widely recognised ar-

chitecture, and its six variants were developed for different classification tasks (one
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wear mechanism CNN and three wear severity CNNs for mould images, and one par-

ticle classification CNN and one wear severity CNN for wear debris images). Then,

the augmented and labelled datasets were split into training, validation, and testing

datasets. The training and validation datasets were used in the training process,

where the validation datasets were used for monitoring the existence of overfitting,

and the testing datasets were used to test the models’ generalisation to new data.

4. Applying trained CNNs in a two-level wear assessment system. A two-level inference

system was developed to integrate wear mechanism assessment and wear severity as-

sessment. In the system, the wear mechanism CNN classifies mould images into

different wear mechanism category and abnormal images were sent to the corre-

sponding wear severity CNN for severity assessment. The developed system was

tested using full-tooth mould images to generate, for the first time, colour-coded

wear mechanism maps that clearly showed the distribution of identified wear mech-

anisms on the entire tooth flank, and wear severity maps that visualise the severity

distribution for each identified mechanism.

3.5 Image-based wear prediction using deep learning

A deep learning model, i.e., generative adversarial network (GAN), was developed for

the first time to learn gear wear dynamics from direct records of gear wear evolution,

i.e., mould image sequences (time series of mould images). The approach was inspired

by studies on video prediction using deep learning techniques since a sequence of mould

images for the same tooth is conceptually similar to a video. As illustrated in Figure 3.9,

image-based gear wear prediction was realised via the following steps.

1. Construction of full-tooth gear mould images. Gear wear occurred on the entire

active tooth flank in the gear tests, and it had different manifestations (e.g., mech-

anisms, severity) in different regions, especially along the tooth profile direction. If

the training samples only captured a limited portion of the tooth surface, it could
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be difficult for the wear prediction model to learn the overall gear wear dynamics,

lowering the reliability of wear prediction. Therefore, full-tooth mould images were

constructed by stitching multiple smaller mould images, and they showed overall

how different wear mechanisms developed on gear teeth. More details about the

construction process can be found in Chapter 7.

Figure 3.9: Image-based gear wear prediction using deep learning.

2. Assembly of individual full-tooth mould images into sequences. A certain number

of the full-tooth mould images of the same gear tooth were selected and assembled

in chronological order, forming a sequence of mould images. Considering that vi-

sual inspection and surface imaging could be carried out at different time intervals

for different machines, mould image sequences with different time intervals were as-

sembled. The sequences were similar to short videos that visualised the gear wear

dynamics.

3. Data augmentation to build the image sequence datasets. The number of sequences

of full-tooth mould images was insufficient for deep learning training, and the size

of each image was too large, requiring prohibitive computing resources. In order

to address the issues, image cropping was introduced to reduce the image size and
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increase the number of sequences, and the cropping was performed only along the

tooth width direction to ensure that each sequence covered the wear evolution along

the tooth profile direction.

4. Construction, training, validation, and testing of the wear prediction model. An

image sequence is a time series of images, and convolutional long short-term memory

(ConvLSTM) networks are commonly used to process such data [171]. They can be

regarded as a combination of convolutional operations that are famous for handling

images, and LSTM networks that are famous for handling time series. Therefore,

a ConvLSTM network was constructed to generate future mould images using past

ones. A combination of three loss functions was designed to increase the accuracy

and sharpness of predicted images. A CNN was employed to distinguish generated

mould images from real mould images to increase the realism of predicted images.

In this way, a GAN with a generator (ConvLSTM) and a discriminator (CNN) was

built for gear wear prediction. Then, the prepared mould image sequences were split

and used to train, validate, and test the wear prediction model.

5. Evaluation of predicted images. The predicted images were evaluated both qual-

itatively and quantitatively during testing regarding the prediction accuracy and

image realism. The prediction accuracy measures the closeness between predicted

images and their ground truth, while realism measures how realistic and sharp the

predicted images are. Two commonly used image metrics were adopted to evaluate

the overall accuracy and realism of predicted images, and two wear specific metrics

were designed to evaluate the prediction accuracy of gear wear propagation.

3.6 Summary

In summary, this chapter provided an overview of the methodology designed to achieve

the four research objectives. Key stages were introduced, including experimental tests,

image acquisition and analysis, and using images and deep learning for automated gear
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wear assessment and prediction. The methodology to achieve the four objectives can be

summarised as follow.

• To achieve Objective 1 (to develop a method to obtain direct and comprehensive gear

wear information without gearbox disassembly), a moulding method was developed

to obtain gear teeth moulds that replicate worn gear surfaces. Optical microscopy

and LSCM were selected to capture 2D and 3D images of the moulds, which con-

tained both macro- and micro-scale wear features. A variety of direct gear wear

information was extracted via image analysis techniques and utilised to monitor

gear wear.

• To achieve Objective 2 (to investigate the relationship between the features of worn

gear surfaces and those of wear debris), important numerical features of macropits

and wear debris that were generated in the same wear process were selected and

extracted from gear mould images and wear debris images via image segmentation

and analysis. Both qualitative comparisons based on the images and quantitative

comparisons based on extracted features were conducted to gain novel insights into

the gear wear process.

• To achieve Objective 3 (to develop an automated system for gear wear mechanism

and severity assessment), deep learning models (CNNs) were developed to identify

gear mould images and wear debris images of different wear mechanisms and severity

levels. Large datasets of the two types of images were purpose-built to ensure the

accuracy and reliability of the automated assessment. A two-level inference system

that integrated the assessment of wear mechanism and severity was also developed

to convert full-tooth mould images into colour-coded maps clearly showing wear

conditions on the tooth surface.

• To achieve Objective 4 (to develop a gear wear prediction model using direct wear

information), a deep learning model (generative adversarial network (GAN)) was

developed to learn gear wear dynamics from time-series of gear mould images. Large

datasets of mould image sequences that directly recorded gear wear evolution were
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built for the first time. A combination of three loss functions was designed to increase

the prediction accuracy and sharpness, and an adversarial training strategy was

developed to enhance the prediction realism.
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Chapter 4

Application of Surface Replication

Combined With Image Analysis to

Investigate Wear Evolution on

Gear Teeth: A Case Study

This chapter addresses the first objective of this research, i.e., to develop a method

to obtain direct and comprehensive gear wear information without gearbox

disassembly, via the combination of surface replication and image analysis. As illustrated

in Figure 3.1, this chapter is the foundation of this thesis because its main outputs, i.e.,

gear mould images, are the core inputs of the other three chapters. This chapter is a

modified version of the published journal article below, and the main modifications

include additional experimental results and a condensed methodology section, of which the

details about gear test rig and procedures were moved to Chapter 3.

• H. Chang, P. Borghesani, W. A. Smith, and Z. Peng, "Application of surface repli-

cation combined with image analysis to investigate wear evolution on gear teeth –

A case study," Wear, vol. 430–431, pp. 355–368, 7 2019.
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Abstract

Gear wear is a critical degradation process in many applications, and its monitoring is

important to ensure the safe operation of machines. The case study presents a novel

approach to obtain comprehensive and high-resolution wear information for monitoring

the evolution of gear wear. This is achieved by combining a moulding method and non-

contact imaging-based measurements in two- and three-dimensions and without gearbox

disassembly and tooth removal. Optical and laser scanning confocal microscopy and im-

age processing tools were employed to provide quantification of surface roughness, wear

severity and wear depth on gear teeth during a lubricated endurance test. Also, a detailed

qualitative analysis on the progression of the two main wear mechanisms (abrasive wear

and fatigue pitting) was provided, alongside an evaluation of the diagnostic capabilities

offered by the proposed methodology. The insights on gear wear offered in this case study

also represent a valuable guideline for researchers and engineers in gear condition moni-

toring. Moreover, the proposed wear analysis technique can be used to characterise and

understand wear phenomena in other conditions and geared transmissions.

4.1 Introduction

As reviewed in section 2.1, wear is a material degradation and removal process that can

eventually lead to the failure of mechanical components and systems. Gear systems,

widely used to transmit power, often suffer from abrasive wear and/or contact fatigue.

Serious gear wear often induces excessive vibration and noise and significantly impacts

the remaining useful life (RUL) of gears [5, 186]. To mitigate the impact of gear wear on

the safety and reliability of machines, operators often put in place a schedule of regular

inspections [5] and/or install online condition monitoring sensors. The most popular

technologies include oil and wear debris analysis (OA/WDA) [26, 187], vibration [5, 55]

and acoustic emission [188].

However, the effectiveness of gear wear monitoring systems and inspection schedules is
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strongly dependent on the knowledge of gear wear dynamics. Thus, laboratory test-

ing and analysis of wear evolution on gear teeth (both surface topography and tooth

profile) are conducted to understand the progression of different wear mechanisms and

their interactions. Observing and detailing different wear phenomena at the micro-scale

has been an important and challenging task throughout the history of modern tribol-

ogy [23, 152, 189, 190]. Surface topography at a micro level is known to affect the wear

rate [23,27] and surface fatigue life [179,180] in lubricated contacts, while tooth profile de-

viation affects transmission error [5], vibration [191], and wear rate [146]. Also, modelling

different gear wear modes often needs quantitative morphological information of corre-

sponding surface features as input and/or validation [37, 68, 154]. Moreover, numerous

condition monitoring attempts [26, 55, 59, 192] based on vibration or acoustic emissions

(AE) require the ability to directly assess the surface condition to establish correlations

and validate diagnostic techniques.

In the past, many surface inspection techniques have been applied to examine wear of

gear teeth at the micro-scale [193, 194]. These techniques worked directly on gear teeth,

thus requiring their transport and fitting within high-resolution instruments. This step

increases the cost and complexity of the procedures since the dismantling of gearboxes is

usually needed, and destructive tooth removal is required to perform a detailed analysis

on and/or under the tooth surface, making the techniques suitable only for analysing the

final stage of a gear wear process [156]. Researchers aiming at regular inspections of gear

teeth then usually have to abandon microscopy and accept the significantly lower-quality

output of a simple visual inspection [57,195].

As mentioned in section 2.2, there is little research on direct gear wear monitoring without

gearbox disassembly. The most promising method is based on using a moulding material

to replicate the tooth surface, thus allowing microscopic analysis without gear disassembly

and tooth removal. The few studies adopting this approach differ in the moulding material

and analysis technique. Andersson [66,67] used acetyl cellulose films and acetone to obtain

replicas of gear teeth, but the flexible films were intrinsically unable to include profile

information (only micro-scale patterns were impressed in the replicas). Flodin [64, 68]
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made replicas of gear teeth using a methyl methacrylate-based resin as the moulding

material, obtaining hard moulds that retained tooth profile information. However, the

author himself suggested the moulds had serious deformation issues, which led to the

loss of information regarding the true gear teeth profiles, and there were thought to be

problems with the replication of surface roughness. In addition, the surface information

was ultimately obtained from the moulds using only a stylus, without the benefits of more

sophisticated examination methods (e.g. optical imaging), leading to the loss of important

information such as micro surface features. More recently, Moorthy and Shaw [69, 70]

obtained replicas of gear teeth using silicone polymers and used them to observe surface

damage by imaging and measuring tooth profile changes using a coordinate measuring

machine of which the sensing probe will come into contact with samples in measurement.

But silicone polymers may deform when being in contact with the probe, which might

lead to measurement error. Also, the approach cannot obtain surface roughness and micro

surface features such as small pits and microcracks that are important in monitoring wear

evolution on gear teeth.

Therefore, this chapter aims to investigate the capabilities of combining surface replication

with image analysis in wear monitoring and wear analysis on gear teeth, allowing the

extension of the method to other gears and conditions. This chapter is organised as

follows. Section 4.2 introduces the methodology adopted in the case study, and section

4.3 presents the results. Discussion is detailed in section 4.4, followed by the summary of

this study in section 4.5.

4.2 Methodology

In order to obtain direct and comprehensive gear wear information without gearbox disas-

sembly, a novel method that combines surface replication and image analysis was developed

and applied in the lubricated gear wear test to investigate gear wear evolution. The gear

test rig and procedures are briefly introduced in section 4.2.1, and section 4.2.2 details the

development of surface replication of gear teeth, i.e., the moulding method, followed by
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section 4.2.3 introducing the process of image acquisition and analysis to investigate gear

wear evolution.

4.2.1 Gear test rig and procedures

The lubricated spur gear wear test was conducted on a single-stage spur gearbox rig, as

shown in Figure 3.2. Full details about the test rig and the test procedures can be found

in section 3.1, and only key information is presented in this section.

The driving gear has 19 teeth while the driven gear has 52 teeth, as shown in Figure 3.3.

The two gears had an initial surface roughness of 3.2 µm, which was manually roughened

to accelerate the initiation of fatigue pitting. The gear material is normalised JIS S45C

(equivalent to AISI 1045) medium carbon steel with a hardness of around 190 HB. Six

teeth (three of the driving gear and three of the driven gear) were selected and marked

to make moulds, as shown in Figure 4.1. Considering that through visual inspection, all

teeth experienced surface fatigue uniformly, three moulds (2 for analysis and comparison

plus 1 spare one) on each gear are sufficient. In principle, a mould could be made on any

tooth after the lubricant on the surface was removed. Practically, it involves removing

the lubricant, cleaning the surface, applying the mould material and a curing period

before removing the mould from the gear. The total duration for making one mould is

approximately 30 minutes. If the above procedures were used to make 6 moulds one by

one, it would take a total of 180 minutes at each stop, resulting in a significant increase

in the total testing hours. To minimise the duration of the mould making process so that

the test could be completed in a reasonable time frame, a total of 6 moulds (three moulds

on each gear) were made simultaneously. To do so, 3 teeth on each gear were randomly

selected within a 90-degree circular sector indicated in Figure 4.1, which were above the

oil surface and had space for the moulding material to be applied to properly cover both

tooth flanks. The selected tooth surfaces were cleaned altogether, and the mould materials

were applied to them at one go. After curing (20 minutes), 6 moulds were ready to be

collected and the test was continued. The total duration for collecting the 6 moulds at
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one stop was about 40 minutes.

Figure 4.1: The driven (left) and driving (right) gears. The marked teeth were monitored
continually using the method developed in section 4.2.2.

During the test, the test rig was stopped at pre-defined intervals to make moulds without

disassembling the gearbox. In total, there were 40 intervals during 3.25 million running

cycles (68 hrs), and shorter intervals were used at the beginning and the later stage of the

test where rapid changes to the teeth occurred.

4.2.2 Surface replication of gear teeth

Three aspects of the performance of the surface replication material, or the moulding

material, are critical to gear wear monitoring. They are: (i) the micro-scale resolution, i.e.

the capability to fill micro-valleys and conform to micro-scale features on tooth surfaces;

(ii) the accuracy at which moulds reproduce surface topography, i.e. surface roughness,

without bias introduced, for instance, by deformation due to residual stress in the curing

process; and (iii) the capability to reproduce tooth profiles (i.e. reproducing not only local

surface roughness, but also macro-level profile shape and any changes therein, expected to

be up to a few hundred micrometres for the module 2 gears tested in this study). Microset

101 (thixotropic silicone polymers) was chosen as the moulding material in this study,
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which features high resolution, fast curing, low shrinkage, low thermal expansion, and

ability to be used on vertical surfaces, and it overcomes the issues of the acetyl cellulose

films (loss of the surface profile information) used in [67] and the methyl-methacrylate

resin (large deformation) used in [68]. The high resolution and low shrinkage of the

silicone polymers are due to the excellent wettability and low surface tension of the silicone

polymer, which are related to the low intermolecular forces between methyl groups and the

flexibility of the backbone of silicone [196]. A detailed evaluation of the replication quality

of the moulding material was conducted through comparing the resolution, accuracy, and

profile retention to those of original engineering surfaces, and the procedures and results

are presented in Appendix A. Nominal technical information of the moulding material can

be found in Table 3.3.

During each interval in the test, the marked teeth were cleaned using compressed air and

the remaining oil was removed using absorbent materials. Then, the moulding material

was applied to the teeth using a dispenser with an extended mixing nozzle (see Figure

3.4) until the valleys between gear teeth were filled (see Figure 3.5). After the curing time

(20 minutes at 25°C), the moulds were taken off (see Figure 3.5) and properly stored for

future analysis.

4.2.3 Image acquisition and processing for wear analysis

The moulds of gear teeth were examined using optical microscopy and laser scanning

confocal microscopy (LSCM), mainly for qualitative and quantitative analysis, respec-

tively. The choice of an imaging-based surface measurement was determined by the need

to preserve detailed profile information, which would be compromised using contact-based

techniques (e.g. profilometer) on a shape-preserving yet relatively soft moulding material.

An optical microscope was used to capture 2D images of the moulds, with the twofold

objectives of qualitatively observing the wear evolution and quantitatively estimating the

growth of pitted area on gear teeth. In order to obtain a qualitative and comprehensive

picture of the tooth wear evolution, a 5x magnification lens was used to image the entire
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width of a gear tooth (axial direction). Seven images, each covering an area of 2.8 (length)

x 2.1 (height) mm, were captured and stitched to obtain a high-resolution (a few microns)

representation of the entire addendum or dedendum of a gear tooth (Figure 4.2 (a) is an

example for the dedendum).

Figure 4.2: (a) A stitched 2D image of the dedendum on driving gear teeth and (b) its
binary image. Individual images were acquired using optical microscopy (5x objective
lens).

The stitching procedure was done on both the addendum and dedendum of the moulds,

resulting in a series of 14 images per mould. The height of each image (2.1 mm) was

sufficient to cover more than half of the active profile in the radial direction. For the

quantification of pitted area, a 30x30 pixels median filter was applied to the stitched 2D

images (typically 9400x1030 pixels) to remove noise, followed by a binarisation process us-

ing Otsu’s method [33]. The latter transforms the images into logical matrices classifying

each pixel as either pitted (black/0) or not pitted (white/1). An example of this transfor-

mation is given in Figure 4.2 (b). Finally, the pitted area was calculated by summing and

scaling inverted logical matrices (where 1 stands for pitted). In addition to these images, a

higher magnification of 20x was used for examining micro features (e.g. cracks) in specific

areas of the tooth.

LSCM was employed to capture 3D images of radial strips along the radial direction of

each mould and of additional areas where features of interest (e.g., cracks, pits and wear

marks) were located. A single radial strip was obtained by stitching seven 1.4x1 mm

images captured with a 10x objective lens. The resulting strip (e.g. Figure 4.3) contained

the height and spatial information of a complete tooth profile plus two unworn portions
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at the root and tip (owing to tip relief) of the tooth. The latter were used as references

in the evaluation of the wear depth and the comparison of profiles at different stages of

the test. In particular, the estimated tooth profiles were obtained by averaging the strip

in the axial direction to reduce the effects of localised height variations.

Figure 4.3: A stitched 3D image of the profile of driving gear tooth 2 (SAP: start of active
profile, EAP: end of active profile). Individual images were acquired using LSCM with a
10x objective lens.

Similar strips were obtained to evaluate surface roughness yet based on 8 images of the

active profile only and with an 20x objective lens. The surface roughness index Sa was

calculated based on ISO 4288:1996 on three individual strips at different axial locations

across the tooth width (left, centre, and right), and the average of the three Sa values

was used. The 20x lens was also used for 3D images on specific areas of the mould in

correspondence to identified features of interest. This magnification factor results in a

lateral resolution of 0.7 µm and a depth resolution of 0.5 µm.

4.3 Results

The surface replication method was applied to gear teeth in a lubricated spur gear test

where the test rig was stopped at pre-defined intervals for mould making. Then, the

moulds of gear teeth were imaged using optical microscopy and LSCM, and image analysis
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techniques were employed to quantify the gear wear evolution. The observations on the

pitting process, including its initiation and propagation and its interactions with abrasive

wear and plastic deformation, are reported. Terminologies for gear wear used in this

paper are consistent with ANSI/AGMA 1010-F14 [21]. More specifically, macropitting

is a type of fatigue wear on soft tooth surfaced caused by repeated Hertzian stresses at

the macroscale (this case), while micropitting is another type of fatigue wear caused by

repeated Hertzian stresses and plastic flow at the asperity scale and often occurs on hard

gear teeth.

4.3.1 Wear evolution on gear teeth at the macroscale

As mentioned in section 4.2.1, three driving gear teeth and three driven gear teeth were

monitored throughout the test. It was found that those driving gear teeth and driven gear

teeth had the same or very similar wear patterns. Therefore, only one of the driving gear

teeth and one of the driven gear teeth were used here as an example to show the wear

process.

Figure 4.4 shows the dedendum of tooth 2 of the driving gear at seven different times

during the test. Note that the darker areas in the figure represent macropits (confirmed to

be protrusions on the moulds). Overall, there were three identified stages in the evolution

of the driving gear tooth surface. The first stage involved polishing or running-in from

the beginning (Figure 4.4 (a)) to 0.13 million cycles (Figure 4.4 (c)). The driving gear

experienced a quick polishing or running-in stage when its original rough surface was

effectively smoothened in less than 0.013 million cycles (11 mins). The second stage

showed the fast growth of small and large macropits from 0.13 to 2.17 million cycles

(Figure 4.4 (f)). In the second stage, The macropitting process initiated around the start

of active profile (SAP) and then propagated towards and beyond the pitch line (Note that

the driving gear meshes dedendum first). Furthermore, small macropits appeared before

0.13 million cycles, and then quickly spread to the entire dedendum by about 0.86 million

cycles. Large macropits (length > 500 µm) were mainly distributed near the SAP early in
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the test and then progressed to the pitch line at the end. The final stage experienced the

stabilisation (zero growth, albeit with some fluctuations) of the macropitting process in

the period of 2.17 to 3.25 million cycles (Figure 4.4 (g)), in which macropits grew and new

macropits formed, while many existing macropits shrank in size and even disappeared,

probably as a consequence of abrasive wear and plastic deformation.

Figure 4.4: (a-g) Wear evolution on the dedendum of driving gear tooth 2 (0-68 hours;
0-3.25 million cycles).

Figure 4.5 shows the addendum of tooth 2 of the driving gear at six different times. Unlike

the dedendum, the addendum of the driving gear teeth experienced predominantly abrasive

wear, with little macropitting present. The growth of abrasive wear can be identified by

the increase of parallel scratches oriented in the direction of sliding and the removal of

initial random scratches. There were no obvious macropits on the addendum, but small
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pits of around 10 to 20 µm were observed from the initial stage (0.01 million cycles). In

addition, indentations, a type of plastic deformation [21], (protrusions in the moulds) can

be seen on the addendum, which had similar sizes to macropits on the dedendum, and

they were potentially caused by wear debris trapped between the two contact surfaces.

Figure 4.5: (a-f) Wear evolution on the addendum of driving gear tooth 2 (0-68 hours;
0.01-3.25 million cycles).

Figure 4.6 shows the dedendum of tooth 1 of the driven gear at seven different times.

In general, the dedendum of the driven gear experienced much slower and less severe

wear than the driving gear did. This is exemplified by the slow polishing process, which

was not completed at the end of the test. At about 21h (i.e., 1.1 million cycles), in

addition to abrasive wear, macropitting commenced, evidenced by the small number of

small macropits shown in Figure 4.6 (d). In comparison to the macropitting process of

the driving gear, the macropitting growth rate of the driven gear was much slower (see the

changes in the macropit numbers from Figure 4.6 (d) to (f)). It can be seen in Figure 4.6

(g) that at the end of the test, most of the macropits were distributed along an axial line.

Similar to the driving gear, obvious abrasive wear can also be noticed around the SAP,

but it is not as severe as the driving gear case. The driven gear dedendum also showed

many indentations with similar sizes and shapes to those on the driving gear addendum.
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Figure 4.6: (a-g) Wear evolution on the dedendum of driven gear tooth 1 (0-68 hours;
0-3.25 million cycles).

Figure 4.7: (a-c) Wear evolution on the addendum of driven gear tooth 1 (10-68 hours;
0.65-3.25 million cycles).

Figure 4.7 shows the addendum of the driven gear at three different times. The addendum

of the driven gear had the same dominant wear mechanism as on the driving gear adden-
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dum, which was abrasive wear. Compared to the features on the addendum of the driving

gear, larger and denser parallel scratches were found on the driven gear addendum. It can

also be noticed that there were more initial scratches removed at the left edge than the

right edge, suggesting the existence of slight misalignment.

4.3.2 Surface roughness evolution on gear teeth

Figure 4.8 shows the surface roughness (Sa) evolution of the driving gear in the test. As

mentioned in section 4.3.1, the driven gear teeth had a much less obvious change than the

driving gear, so only the surface roughness of the driving gear teeth was tracked.

Figure 4.8: Surface roughness evolution of driving gear tooth 2.

Similar to the macro-scale wear evolution presented in section 4.3.1, three stages can be

identified on the Sa data in Figure 4.8. The three stages were the running-in stage (0

to 0.1 million cycles) with the surface roughness decreasing, the increasing stage (0.1 to

2.2 million cycles), and the stabilising stage (2.2 to 3.3 million cycles) with no significant

change in the surface roughness. The initial surface roughness of the driving gear teeth

was Sa = 3.2 µm, and it was reduced rapidly to 1.1 µm in the first stage. The maximum

surface roughness, occurring at the end of the second stage, was Sa = 3.4 µm. Within
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the second stage, two sub-stages can be identified: the fast growth stage (0.13 to around

1 million cycles) and the slow growth stage (1 to 2.2 million cycles).

4.3.3 Macropitting initiation on gear teeth

Fatigue pitting was found to be the main wear mechanism that characterised the driv-

ing gear surface. Thus, a closer examination of the initiation and the propagation of

macropitting was implemented qualitatively and quantitatively.

Figure 4.9: The driving gear tooth surfaces (a, c, e) before and (b, d, f) after macropits
formed.
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Figure 4.9 presents three examples of tooth surface before and after a macropit formed.

Before materials came off the tooth surface (Figure 4.9 (a), (c), and (d)), cracks that almost

enclosed the soon-to-be macropit can be clearly observed. For many macropits observed

throughout the test, cracks could be seen before they formed, and it was found that on

formation, the macropits were usually smaller than the area the cracks had enclosed.

Figure 4.10 shows 3D shapes of three macropits at different stages (see section 4.3.1). Pit

1 was the earliest initiated macropit, while the other two formed during the fast growth

and stabilisation stages, respectively. It was found that most macropits had a wedge shape

and the sharp end always pointed in the same direction as the relative sliding velocity,

as shown in Figure 4.10 (a-c). The depth of newly-formed macropits was in the range of

30 ∼ 90 µm, and large macropits tended to be deeper than small ones. After macropits

formed, their depth was observed to decrease in general, as shown in Figure 4.10 (d).

Figure 4.10: (a-c) 3D shapes of three macropits and (d) their depth changes at five times.
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4.3.4 Macropitting propagation on driving gear teeth

It was found macropitting propagated in three modes. They are: (i) the ongoing initiation

of new macropits that are relatively far from other pits (Figure 4.11 (a)), (ii) self-expansion

of macropits caused by new cracks growing from original ones (Figure 4.11 (b)), and (iii)

merging of neighbouring macropits into a larger macropit (Figure 4.11 (c)).

Figure 4.11: (a-c) Merging of small macropits into a large macropit on driving gear teeth
(16-19 hours; 0.86-1.02 million cycles).

Figure 4.12: Driving gear pitted area evolution throughout the test.

Quantitative analysis of macropitting propagation on driving gear teeth was realised using

microscopic images and image analysis as described in section 4.2.3. The growth of total

pitted area on tooth 2 on the driving gear is shown in Figure 4.12, obtained by summing

the logical matrix of Figure 4.2 (b) and calibrating. Only one tooth was selected because
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the macropitting severity was uniformly repeated across different teeth. There were also

three identified stages of pitted area growth, which were the fast growth stage (0.13 to 0.86

million cycles), slow growth stage (0.86 to 2.17 million cycles), and the stabilisation stage

(2.17 to 3.25 million cycles). Macropitting started before 1h30m (0.13 million cycles) and

quickly expanded to around 7.4 mm2 out of the area of the dedendum of 40 mm2 at 0.86

million cycles. The maximum pitted area was 11.7 mm2 at 2.17 million cycles.

In addition to the pitted area, it is also important to find the pitting distribution on gear

teeth. Figure 4.13 and Figure 4.14 show the evolution of macropitting distribution in

the axial and radial directions, respectively. The grayscale value of each small rectangle

in the two figures corresponds to the pitted area percentage at a certain axial or radial

position on the gear tooth surface at a certain time. In the axial direction, before 1 million

cycles, the more heavily loaded (brake) side has notably denser macropitting than other

regions, but by the end, macropitting is evenly distributed along this direction. In the

radial direction, macropitting started around the SAP and spread towards the pitch line

at a steady rate. In the end, severe macropitting (pitted area percentage larger than 30%

in Figure 4.14) was mainly located around the SAP and the pitch line.

Figure 4.13: The evolution of macropitting distribution in the axial direction on the driving
gear tooth 2.
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Figure 4.14: The evolution of macropitting distribution in the radial direction on the
driving gear tooth 2.

4.3.5 Tooth profile change of the driving gear

As wear progresses from the micro to macro level, geometric change occurs to the tooth

profile. The modified tooth profile can be obtained using LSCM by scanning the moulds

from the tip to the root (see section 4.2.3). Figure 4.15 shows the average profiles of tooth

2 on the driving gear at three different times – 0h11m, 48h and 68h, or 0.013, 2.58, and

3.25 million cycles – corresponding to the three stages described in section 4.3.1. Figure

4.16 shows the wear depth after the fast growth stage (orange) and at the end of the test

(blue), which was obtained by subtracting profiles at 48h and 68h in Figure 4.15 by the

profile at 11m, and it also shows the moving of the contact line of minimum wear towards

the tooth tip on driving gear teeth, except the tip and the root. A few observations of

tooth profile changes are as follows. (a) After 3.25 million cycles, the maximum wear depth

was 80 µm which occurred at the dedendum, while the minimum wear depth, except for
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two ends of the active profiles, was 14 µm which occurred 0.2 mm outside the pitch line

at the addendum. (b) It can be seen clearly from both figures that most material removal

happened during the fast growth stage. (c) The dedendum wore substantially more than

the addendum. (d) During the fast growth stage, the pitch line had nearly zero wear

(∼ 1 µm), but during the stabilization stage, the area around the pitch line experienced

relatively severe wear.

Figure 4.15: Tooth profile changes of the driving gear (tooth 2) with the active profile
marked in light red starting from the SAP and ending at the EAP.

Figure 4.16: Wear depth on the driving gear tooth 2.
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4.4 Discussion

4.4.1 Evaluation of the quality of the proposed method on gear wear

monitoring

The combination of the surface replication and image analysis methods presented in this

case study has allowed us to monitor and quantitatively measure the evolution of the

tooth surface and profile in the wear process. The micro-scale examination of the surface

damage on gear teeth was possible thanks to the high resolution (see section 4.2.2 for

definition) of the moulding material (0.1 µm) and the imaging facilities (ranging from a

few microns to 0.7 µm). Both macropits up to ∼ 500 µm (see Figure 4.4) and small pits

and cracks (see Figure 4.17) on gear teeth were clearly visible and detailed. The rigidity

of the moulding material, coupled with non-contact measurements (imaging), enabled the

tracking of tooth profile evolution.

Figure 4.17: Small pits and cracks on the addendum of the driven gear tooth 2.

The quality of the procedure (and thus the validity of the case study results) was also vali-

dated against reference samples of known geometry and surface roughness. This additional

validation is discussed in Appendix A.
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4.4.2 The identification of macropitting, abrasive wear and plastic de-

formation and their interactions

By analysing the surface morphology of the gear teeth moulds, three types of surface dam-

age, namely, macropitting, abrasive wear and plastic deformation were detected. Abrasive

wear and plastic deformation were the main surface damage modes in the running-in pe-

riod in which the initial rough surfaces were smoothened (see Figure 4.8). Macropitting

(to be specific, progressive macropitting [21]) caused by repeated Hertzian stresses [20]

existed for the majority of the test. Most macropits were larger than 100 µm, and many

macropits were larger than 500 µm in length. Macropitting only occurred on the deden-

dum of both gears (see Figure 4.4 to Figure 4.7), which is aligned with results of many

theoretical and experimental studies on macropitting [116,179,197–199].

Along with the macropitting process, abrasive wear co-existed as the secondary wear

mechanism and can be identified by parallel scratches or furrows left on one or both

contact surfaces [21, 200]. Large scratches longer than 100 µm were observed around the

SAP and on the addendum of gear teeth of both gears (see Figure 4.5 and Figure 4.7),

and short scratches were found all over the active profiles of gear teeth (see Figure 4.18).

The location of the operating pitch line can also be identified by the absence of scratches

or furrows, as shown in Figure 4.18.

Plastic deformation of a material is due to Hertzian stresses exceeding the yield strength

of the material [21]. Plastic deformation is a well-known surface damage in gear contacts

[21, 44, 201], but its records at the microscale on gear teeth are limited. The evidence of

plastic deformation in this test is as follows. At the macroscale, rough surfaces of both

gears were smoothened effectively in just 11 minutes of running (0.013 million cycles), and

almost no large scratches were left on driving gear teeth (see Figure 4.4 (a)-(b)). At the

microscale, abundant signs of plastic flow of materials filling or burying the large furrows

left by the roughening process employed before the test were observed on gear teeth, as

shown in Figure 4.19. It can be seen that aside from those large furrows, the area is

relatively smooth, and there are only a few scratches.
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Figure 4.18: Parallel scratches around the operating pitch line on the driving gear (2.5
million cycles, circled are scratches or furrows caused by abrasive wear).

Figure 4.19: Plastic deformation of materials on driving gear teeth (circled are signs of
plastic flow).
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The three surface damage modes, macropitting, abrasive wear, and plastic deformation,

did not act independently on the tooth surfaces. During the first 0.013 million cycles of the

driving gear, plastic deformation and abrasive wear were the two main wear mechanisms

observed. From 0.013 to 0.13 million cycles, abrasive wear steadily developed. Relatively

uniform contact pressure due to the flattened surface and the work hardening effect is

suggested as the main cause of the lower incidence of plastic deformation. Then, from

around 0.13 million cycles, macropitting initiated on the driving gear and quickly prop-

agated, becoming the dominant wear mechanism, which was reflected in the large pitted

area and large wear depth on the dedendum of driving gear teeth. As shown in Figure

4.16, compared to the addendum of driving gear teeth where severe abrasive wear occurred

but no macropitting appeared, the wear depth on the dedendum was nearly twice as much

as the addendum after 2.58 million cycles.

The interactions between the three wear mechanisms were mainly reflected in the shrinking

of the pitted area, which can be noticed easily from 2D images, as shown in Figure 4.4,

and the pitted area growth curve in Figure 4.12. The combined effect of abrasive wear

and plastic deformation could be the cause for reducing the pitted area. Firstly, abrasive

wear constantly removed materials from the dedendum, reducing the pitted area and the

depth of macropits. Secondly, edges of newly formed macropits had a relatively high stress

concentration compared to the non-pitted areas, and thus, plastic flow was likely to occur

in these regions, resulting in the partial filling of the macropits.

4.4.3 Insights into macropitting initiation and propagation

Most signs on the moulds of gear teeth before macropitting was initiated were found to be

cracks. Some cracks were closed and later resulted in macropits of the same shape. Based

on 3D images of newly appeared macropits, inclination angles of crack faces with respect

to the tooth surface were estimated in the range of 10-20 degrees, smaller than the 20-30

degrees adopted in many crack propagation models [37, 157] (this can be material- and

operating condition-specific). Furthermore, the direction of crack propagation was found
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to be opposite to the direction of the relative sliding velocity (see Figure 4.10 (a-c)). This

statement is supported by the fact that macropitting only occurred on the dedendum of

gear teeth of both gears in the test, and those regions experienced ‘negative sliding’ - the

direction of the relative sliding velocity was opposite to the direction of the rolling velocity.

The location of macropitting initiation was initially around the SAP where rippling, which

is periodic, wave-like plastic deformation [21], was found before those regions became

pitted, as shown in Figure 4.20. The emergence of rippling indicated that this region

experienced large tangential forces. After the initial stage, the location of macropitting

initiation spread towards the pitch line where contact stresses were higher, as shown in

Figure 4.4 and Figure 4.14. Apart from the locations of macropitting initiation, the

average size of macropits also changed with time. Early-formed macropits (Figure 4.6 (c)

and Figure 4.10 (a)) were smaller and shallower than late-formed ones (Figure 4.10 (c))

on average. The same trend might also apply to the generation of wear particles, fatigue

particles in particular, which were found in literature usually to increase in size in the late

stage of a gear test [202].

As described in section 4.3.4, three modes of macropitting propagation were observed: on-

going initiation of new macropits, self-expansion of and merging of neighbouring macropits.

Figure 4.20: Rippling before macropitting propagated on the driving gear (0.27 million
cycles, circled is the sign of rippling, a type of plastic deformation).
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4.5 Summary

In this chapter, a combination of surface replication and image analysis was established

and applied to investigate the wear evolution on gear teeth in the lubricated gear test.

The replication quality of the moulding material (thixotropic silicone polymers) – including

resolution, precision and profile retaining ability – enabled a series of detailed analyses of

tooth surface evolution due to different wear mechanisms. Optical microscopy and LSCM

were used to inspect gear tooth moulds, and image analysis allowed tracking the qualitative

evolution of abrasive wear, macropitting and plastic deformation, and quantifying gear

wear in terms of pitted area, surface roughness, and wear depth.

Insights drawn from this case study were summarised as follows:

• Three material degradation modes were detected: abrasive wear and plastic de-

formation that smoothened gear teeth in the short running-in period, followed by

macropitting - the primary wear mechanism for most of the test, while abrasive wear

was the secondary mechanism.

• Macropitting initiated around the SAP on driving gear teeth and propagated to the

pitch line. The average macropit size increased with the propagation.

• Three growth stages of macropitting were observed: the fast growth stage (0.13 to

0.86 million cycles), the slow growth stage (0.86 to 2.17 million cycles), and the

stabilisation stage (2.17 to 3.25 million cycles).

• Three stages of surface roughness (Sa) evolution were observed: the running-in stage

(0 to 0.1 million cycles), the increasing stage (0.1 to 2.2 million cycles), and the

stabilising stage (2.2 to 3.3 million cycles).

• The maximum wear depth (80 µm) occurred on the dedendum of the driving gear

teeth, whereas the line of minimum wear-depth moved towards the tip.

This study has shown the potential of the proposed methodology for laboratory gear
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wear investigation, with possible extension to field applications when the gearbox can be

stopped and opened at regular intervals. This is not uncommon in industries characterised

by seasonal production (e.g. food processing) and (with lower frequency) when major

overhauls occur in usually continuous production systems. Moreover, despite being specific

to this case study, the insights gathered on wear evolution of gear teeth, can be used as

experimental evidence to guide the development and/or validate the results of gear-wear

models.
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Chapter 5

Investigation on the Relationship

Between Gear Macropits and

Wear Particles in a Gear Fatigue

Process

This chapter addresses the second objective of this research, i.e., to investigate the

relationship between the features of worn gear surfaces and those of wear

debris, via comparing and analysing gear mould images and wear debris images obtained

in the same fatigue wear process. This study is based on the development in Chapter

4, which effectively lowered the difficulty in collecting direct gear wear information, and

it examines the links between worn gear surfaces and wear debris both qualitatively and

quantitatively. The novelties of the method are as follow. (i) The scarcity of tribological

data of gear teeth during a wear process is solved, and for the first time, gear macropits

and wear particles during a wear process are collectively characterised and studied. (ii)

Quantitative comparisons between pitting particles and gear macropits in terms of their

tribological features are investigated and better understood.
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This chapter is a modified version of the published journal article below, and the

main modifications include a condensed methodology section of which the details about

the experimental test and wear sample collection were moved to Chapter 3.

• H. Chang, P. Borghesani, and Z. Peng, "Investigation on the relationship between

macropits and wear particles in a gear fatigue process,"Wear, vol. 484-485, p.203724,

11 2021.

Abstract

Macropitting is one of the most common gear wear mechanisms, and monitoring its ini-

tiation and propagation is critical to ensure the safe operation of gearboxes. Wear debris

analysis (WDA) is widely used to monitor and diagnose gear macropitting and its diag-

nostic capability relies on a good understanding of the relationship between wear particle

features and those of actual gear macropits. However, the study on this relationship has

been impeded by ongoing challenges in characterising gear macropits during the wear

process. As a result, detailed experimental data of macropits and the quantitative rela-

tionships between wear particles and macropits evolving in the fatigue process are scarce.

In order to address the above issues, this study examines macropits and wear particles

generated on gear surfaces and their evolution in a gear fatigue process through employing

a moulding method to obtain 38 batches of gear teeth moulds in the wear process. 2D char-

acterisations of macropits on the moulds and sampled wear particles were conducted using

optical microscopy. Qualitative and quantitative relationships between different features

of macropits and wear particles were investigated. Results showed the concentration of

wear particles had a similar trend to pitted area growth, yet with a delay. This behaviour

was also found in 4 non-dimensional numerical features characterising the geometry of

particles and pits. The results of this study provide further insights into the evolution of

gear contact fatigue and can assist in its monitoring.
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5.1 Introduction

As reviewed in section 2.1.3, macropitting is one of the most common wear mechanisms of

gears [43,203], and it is the result of gear surface fatigue accumulated under cyclic rolling-

sliding contacts [33,204]. The initiation of macropitting occurs when fatigue micro-cracks

form due to stress concentrations at the contact surface (related to surface asperities, wear

debris, etc.) or subsurface (related to inclusions, voids, etc.), and the cracks propagate

under cyclic loads until the detachment of gear material [151, 178, 199]. The develop-

ment of macropitting can be impacted by many factors, including load, surface roughness,

lubricants, slide-roll ratio, etc [46,179,180].

Severe macropitting often induces excessive vibration and noise and may eventually lead

to tooth breakage [20, 199, 205]. Thus, machine condition monitoring (MCM) techniques

are often employed to detect the presence of macropitting to better maintain the gearbox.

Wear debris analysis (WDA) is one of the most widely used techniques for MCM. WDA

has been used offline for decades and recently implemented online with the development

of online wear debris sensors [101]. Both offline and online WDA examine wear debris

characteristics, including concentration/quantity, morphology, colour, and composition,

to estimate the wear rate and wear mechanism of a machine [127]. The capability of

WDA to estimate the wear rate and wear mechanism is based on the fact that wear debris

is the by-product of a wear process [206]. This means that the total amount of wear

debris in lubricants equals the material loss of contact components if without wear debris

removal. However, studies have revealed that wear debris may be entrained into contacts

between components after its generation, resulting in its deformation or fracture [10–12].

Thus, the size and morphology of wear particles may be different from their original states.

Therefore, the strength and characteristics of the correlation between wear debris features

and worn surface condition must be assessed to establish the reliability of wear-debris-

based gear monitoring.

There are numerous studies on wear particle characterisation [109–113] and worn surface

examination [64, 110, 114–116]. However, studies that correlate characteristics of wear
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particles and worn surfaces are few [105–107, 207]. In [105], the authors examined worn

surfaces and wear particles generated under lubricated sliding contacts between steels and

classified them into six wear regimes, based on a qualitative assessment of their morphology

(e.g. smoothness for worn surfaces, size and colour for wear particles). In [106], the authors

qualitatively compared two textural parameters obtained from co-occurrence matrices of

images of wear particles and worn surfaces in a set of pin-on-disc tests and suggested

differences in the two parameters between wear particles and worn surfaces. The surface

roughness of wear particles and worn surfaces were measured in different wear stages under

rolling and sliding contacts [107,207]. It was found that wear particles and worn surfaces

share a similar trend of surface roughness changes.

Despite these interesting studies, the characterisation of the evolution of both surfaces and

particles throughout the wear process is limited, especially for gears, due to the difficulty

of frequent image acquisition of worn gear teeth. Due to this reason, microscopic images of

worn gear teeth in the wear process are scarce. Recently, a method that combined surface

replication, or moulding, and image analysis to monitor gear wear was proposed in [121],

and it allows the morphology of worn gear teeth to be recorded in great detail in the wear

process.

This chapter is organised as follow. Section 5.2 elaborate the methodology of the study,

and section 5.3 presents results and discussion, followed by summary in section 5.4.

5.2 Methodology

The methodology to investigate the relationship between gear macropits and wear par-

ticles is illustrated in Figure 5.1. This section firstly briefly introduces the experimental

test and data acquisition in section 5.2.1 and then details image processing and feature

extraction to obtain numerical features to characterise macropits and wear debris in sec-

tion 5.2.2, followed by data analysis to determine the relationship between the features of

gear macropits and wear particles in section 5.2.3
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Figure 5.1: Diagram of the methodology to investigate the relationship between gear
macropits and wear particles.

5.2.1 Experimental test and data acquisition

The lubricated gear wear test was designed to promote macropitting and conducted on the

test rig, as shown in Figure 3.2. The gear material, load, and lubrication were carefully

selected to minimise the chance of occurrence of micropitting, scuffing and abrasive wear

[20]. Furthermore, in order to accelerate the initiation of macropitting, the two gears were

manually roughened before the test. This procedure is based on the established effect of

surface roughness on surface fatigue life in rolling-sliding contact, as reported by many

experimental and theoretical works (see [151, 178–180]). The test ran for a total of 3.25

million cycles (of the input shaft), and at the end, the driving gear (pinion) was severely
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worn by macropitting. Full details about the test can be found in section 3.1.

In order to monitor the gear wear process, lubrication oil samples and gear teeth moulds

were collected using the methods detailed in section 3.2. The test was paused 40 times for

oil sampling and moulds making. The intervals between two pauses were designed to be

denser in the initial stage of the test, and the average interval was 0.08 million cycles. Six

gear teeth (3 for the driving gear, 3 for the driven gear) were marked, as shown in Figure

3.3, and six moulds were obtained during each pause.

An oil sample was obtained before the test rig was stopped each time for making gear

moulds. The oil sampling point was 1 cm below the oil surface and underneath the gear

meshing region, and a 3D-printed guiding channel was used to ensure the accuracy and

consistency of the position of the sampling point, as shown in Figure 3.6. After each

sampling, an equal amount of clean oil was added to the gearbox to ensure that the oil

quantity in the gearbox remained unchanged. A total of 40 oil samples were collected

during the test.

Wear debris slides were made from oil samples using the filtergram method [208], in which

the membrane filter on the glass slide was cleared for a better contrast between particles

and their background so that high-quality images of wear particles could be acquired for

quantitative analysis. The membrane filter has a pore size of 3 µm to collect wear particles

whose sizes are larger than the pore size. For each slide, the same amount (1 ml) of oil

sample was extracted from the oil sample bottle after sonication to ensure the consistency

of comparisons. In total, 38 good-quality gear teeth moulds of a driving gear tooth and 10

wear debris slides were used in image acquisition described in the next section. Choosing

fewer wear debris slides was because the small size and dispersed state of wear debris

on the slide required much more time to image than the moulds and the 10 slides were

selected to cover the entire duration of the test with similar intervals.

Gear teeth moulds and oil samples obtained from the gear tests were examined using opti-

cal microscopy, as mentioned in section 3.3. The imaging procedure aimed to capture the

overall appearance of the pitted region and wear particles so that the concentration and
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other numerical features of macropits and wear particles can be extracted. A specially

designed holder with an involute profile was designed for the moulds to ensure the consis-

tency of the imaging position. Due to the different scales of macropits on the moulds and

wear particles on the slides, different imaging strategies were adopted. For the moulds, a

5x objective lens was used, and 7 images were captured along the face width, which were

then stitched into a complete scan (see Figure 5.2) of the pitted region on the tooth flank.

For the wear particle slides, a 20x objective lens was used, and 40 images were captured at

different locations in a circular ring of the membrane filter. The circular ring was where

most particles were evenly distributed, and it had an outer diameter of 11 mm and an

inner diameter of 5 mm. In total, the 40 images make up around 20% of the circular ring

area. Figure 5.3 shows a sample wear particle image captured by optical microscopy.

Figure 5.2: (a) A stitched image of the pitted region on a gear tooth mould (macropits
are in black) and (b) its segmented binary image.

Figure 5.3: (a) A wear particle image captured by optical microscopy (particles are the
bright ones) and (b) its segmented binary image.
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5.2.2 Image processing and feature extraction

5.2.2.1 Image processing

A series of image processing techniques were applied to transform the raw 2D images

into usable forms from which different numerical features can be extracted. The main

task was image segmentation that separated either macropits or wear particles from their

background and separated connected macropits.

The high contrast between objects of interest (either macropits or wear particles) and the

background (see Figure 5.2 (a) and Figure 5.3 (a)) allows the images to be segmented

using simple histogram-based thresholding methods. Each channel of the RGB image was

assigned a separate threshold using the method, and the three channels were combined

into a new binary image. Figures 5.2 (b) and 5.3 (b) show the segmented binary images

of the 2D images of macropits and wear particles, respectively.

After segmentation by thresholding, the binary images of wear particles were ready for

feature extraction, but those of macropits needed further processing. The reason is that

some macropits merged in the wear process, as shown in Figure 5.4 (a) to (b), while

discrete wear particles would not be affected by this phenomenon.

Figure 5.4: An example of a new macropit formed and merged with old macropit; (a) at
0.86 million cycles, (b) at 0.94 million cycles, a new pit formed in the top left region and
was connected to pit below, (c) segmented binary image of (b) after marker-controlled
watershed segmentation.
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The merged macropits could not be separated simply by thresholding, and they will re-

sult in wrong numerical features such as area and aspect ratio. To solve this problem,

marker-controlled watershed segmentation [123] was applied to the binary images after

thresholding. Watershed-based segmentation is often used to break connected or over-

lapped regions in an image into distinct objects, and the marker-controlled method min-

imises over-segmentation, which is a common problem associated with other methods of

watershed segmentation. Figure 5.4 (c) shows the segmentation result of Figure 5.4 (b)

using marker-controlled watershed transformation.

5.2.2.2 Pitted area and concentration of wear particles

The images after image processing, as described in section 5.2.2.1, were then used to extract

two measures of macropits’ propagation and one measure of the particle concentration in

oil. Regarding macropits, two measures of area coverage were defined: (i) the area coverage

of macropits cpits(t), calculated as the total area of all pits over the total area of the active

tooth flank (see Equation 5.1); and (ii) the area coverage of the pitted region cpittedregion(t),

obtained as the overall area of the flank showing pits over the total area of the active tooth

flank (see Equation 5.2).

cpits(t) = Apits(t)
Aactive tooth flank

= Apits(t)
51.31mm2 (5.1)

cpitted region(t) = Apitted region(t)
Aactive tooth flank

= Apitted region(t)
51.31mm2 (5.2)

In Equation 5.1 and Equation 5.2, cpits(t) is the area coverage of macropits at time

t, and Apits(t) is the total area of macropits in the large mould image of the time t.

Aactive tooth flank is the area of the active tooth flank which is a constant, and Apitted region
is the area of the pitted region which is defined as a rectangular area that contains most

of the pitted area Apits(t) (99% in this study).
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The main difference between the two quantities is that the former only considers the sum

of the areas of the discrete macropits, whereas the second is based on the “pitted region”,

i.e., the continuous region impacted by macropitting. cpitted region(t) is always larger than

cpits(t), since it includes additional portions of the surface between pits. An example of

the difference between the two areas is shown in Figure 5.5.

Figure 5.5: (a) Pitted area and (b) pitted region highlighted in a gear tooth mould image.

The second measure is closer in concept to the ‘pitted area’ used in gear standards [21,209],

which describes the spread of macropitting instead of accurately calculating the area of

every macropit. Moreover, this measure is less affected by the shrinkage of macropits

compared to cpits(t). This phenomenon, as shown in Figure 5.6, can be caused by abrasive

wear that gradually make the pits shallower and smaller and plastic deformations of the

edges of macropits that made material flow in the pits [210].

Figure 5.6: An example of shrinkage of macropits in the wear process; (a) at 0.36 million
cycles, (b) at 0.42 million cycles, (c) at 0.51 million cycles.

The “derivatives” of cpits(t) and cpitted region(t) with respect to time were also defined (see

Equation 5.3 and Equation 5.4) using a finite-difference approach in order to investigate
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their relationships with particles.

ċpits(ti) = cpits(ti+1)− cpits(ti−1)
ti+1 − ti−1

1 ≤ i ≤ 37 (5.3)

ċpitted region(ti) = cpitted region(ti+1)− cpitted region(ti−1)
ti+1 − ti−1

1 ≤ i ≤ 37 (5.4)

In Equation 5.3 and Equation 5.4, i is the number of gear inspection, ti is in million cycles,

t0 = 0 and both parameters are assumed cpits(0) = cpitted region(0) = 0.

The concentration of wear particles for the oil sample collected at time t was instead defined

as the percentage of area covered by wear particles within the total area of captured images

at time t (see Equation 5.5), rather than the number of wear particles per unit volume of

oil. Both the pit- and particle-related quantities used in this paper are commonly used in

gear teeth inspection [21] and wear debris analysis [95].

cparticle(t) =
∑40
i=1Ai,particles(t)
Asample × 40 =

∑40
i=1Ai,particles(t)

14.5mm2 (5.5)

In Equation 5.5, cparticle(t) is the concentration of wear particles for the oil sample collected

at time t, Ai,particles(t) is the total area of wear particles in the ith sample image (out of

40), and Asample is the area of each sample image which is a constant. Apits and Aparticles
were calculated using the binary images as shown in Figure 5.2 (b) and Figure 5.3 (b).

5.2.2.3 Numerical features of individual macropits and wear particles

The 2D images after processing as described in section 5.2.2.1 were used to extract various

numerical features of individual macropits and wear particles, relating to their size, shape,

and edge details, as summarised in Table 5.1. Note that the major or minor axis length was

extracted from the ellipse whose second moment of area is the same as the object’s. Abox
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and Aconvex are the area of the object’s bounding box, the smallest rectangle containing

the object, and the area of the object’s convex hull, respectively.

Table 5.1: 2D numerical features [111, 117, 211] extracted from individual macropits and
wear particles images.

No. Numerical features Formula

1 Area (µm2) A

2 Perimeter (µm) L

3 Equivalent diameter (µm) deq =
√

4A
π

4 Major axis length (µm) la

5 Minor axis length (µm) lb

6 Aspect ratio AR = la
lb

7 Eccentricity e =
√

1− l2
b
l2a

8 Extent ex = A
Abox

9 Solidity s = A
Aconvex

10 Circularity c = 4πA
L2

5.2.3 Analysis of extracted quantities

The evolution of the area coverage of macropits (cpits, cpitted region and their derivatives)

and the concentration of wear particles (cparticles were compared to identify any relation-

ship. The relationships between the 10 numerical features of individual macropits and wear

particles were investigated in three aspects: (i) data distributions, (ii) evolution and (iii)

principal components. The analysis used 10,952 observations of wear particles’ features

(obtained from 10 oil samples) and 12,374 observations of macropits’ features (obtained

from 38 gear inspections). The purposes and details of the analyses are provided below.

Firstly, the data distributions of the two feature sets (one for macropits and the other

for wear particles) were analysed using exploratory analysis, which quantifies the central

tendency and variability of the features of macropits and wear particles and provided

summary statistics including minimum, maximum, range, mean, median, 25 percentile,
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75 percentile, skewness, and kurtosis. Box plots were then used to visualise and compare

the results.

Secondly, the evolution of the 10 numerical features of macropits and wear particles in

the test were compared to reveal their relationships in the time domain. For observations

corresponding to the same time and the same objects (either macropits or wear particles),

the average value was obtained and used in time plots. The observations of macropits

came from 38 different times, and those of wear particles came from 10 different times.

Finally, the two feature sets were analysed using principal component analysis (PCA).

PCA is commonly used in dimensionality reduction for multivariate statistics, and it is

an effective method to reveal the driving principles of the variables, i.e. which variables

change together [212]. It has been used for wear particle features [213] and other condition

monitoring signals [59] but not for macropits. Before PCA, the dataset was standardised,

i.e., the raw scores subtracting the sample mean and divided by the sample standard

deviation, due to different units and scales of the variables. For example, macropits had

the size of usually hundreds of microns while wear particles were of only tens of microns.

5.3 Results and Discussion

In this section, an overview of the evolution of gear macropits and wear particles is pre-

sented firstly. Then, the evolution of pitted area and wear particles’ concentration are

compared, followed by the relationships of their numerical features.

5.3.1 Overview of the evolution of gear macropits and wear particles

For the ease of understanding of the gear wear process, a qualitative comparison between

mould images and wear particle images at different stages in the test was carried out.

Figure 5.7 shows an overview of the evolution of gear macropits and wear particles and

tabulates wear mechanisms of gear teeth (in the order of their severity) and different types
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of wear particles present in oil samples (in the order of their proportions). Changes in

the severity of different wear mechanisms and proportions of different wear particles with

respect to previous ones were also observed qualitatively and annotated near the images.

It is worth noting that for each time, 40 wear particle images were used for evaluation and

only one of them is presented in the figure.

Figure 5.7: The evolution of gear macropits and wear particles. (a1) – (j1) mould images,
(a2) – (j2) wear particle images. Texts summarise wear information, including running
cycles, wear mechanisms on gear surface in the order of severity, their changes with respect
to previous ones, wear particle types in the order of proportion, their changes with respect
to previous ones, and approximate sizes. Note ‘↑’, ‘↓’ and ‘-’ means increase, decrease and
no apparent change, respectively.

As shown in the figure, gear macropits started near the root and quickly propagated

towards the pitch line before 0.86 million cycles and then the propagation slowed down

until the pitted area peaked around 2.17 million cycles when macropits occupied the

majority of the dedendum. Afterwards, the propagation stabilised, but the shrinkage of
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pits was noticeable. Meanwhile, the concentration of wear particles in the oil samples

quickly increased before 0.86 million cycles and peaked around 1.99 million cycles, after

which the concentration decreased significantly. Moreover, it can be observed that the

darkness of oil samples followed a similar trend to wear particle concentration.

5.3.2 The evolution of pitted area and wear particles’ concentration

Figure 5.8 (a-b) show the evolution of the area coverage of macropits and pitted region

(cpits and cpitted region) and of the wear particles’ concentration. It can be observed from

the two figures that the growth trend of either of the two parameters of pitted area was

evidently different from that of wear particles’ concentration, especially after 2 million

cycles. However, both plots show a three-stage evolution of pitted area, in which both

parameters quickly rose before 1 million cycles, then peaked around 2 million cycles, and

fluctuated or stabilised afterwards. After around 2.2 million cycles, there was a substantial

decrease in cpits while cpitted region was more stable, which shows the use of pitted region

was effective to minimize the impact of macropits shrinkage.

The increase of macropitting to its peak could be driven by two factors. (i) The cyclic

condition of lubricated rolling-sliding contacts possibly caused the ongoing initiation and

propagation of macropitting. (ii) The roughened gear surfaces likely caused localised stress

concentrations and thus could accelerate the initiation and propagation of macropitting

in the early stage. Then, the stabilisation and decline of macropitting could be caused by

three mechanisms: (i) the flattening of the involute profile after around 2 million cycles

(see previous work in [121]), possibly increasing the nominal contact area; (ii) abrasive

wear continuously removing material and making pits shallower and smaller; and/or (iii)

increased localized contact stress around pits causing plastic deformations of their edges,

which can flow into the macropits.

Figure 5.8 (c-d) compares the wear particle concentration with the derivatives of the

two area-coverage measures of macropitting. The plots of the derivatives have been

smoothened with a 3-time-step moving average. It can be observed that while parti-
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cle concentration did not align well with the derivatives of pit measures, the alignment

became much better with a shift of 0.85 million cycles along the horizontal axis.

Figure 5.8: The evolution of the pitted area and wear particles’ concentration in the test;
(a) the evolution of cpits vs cparticles; (b) the evolution of cpitted region vs cparticles; (c) the
evolution of ċpits vs cparticles; (d) the evolution of ċpitted region vs cparticles. The plots for
ċpits and ċpitted region were smoothed using a moving average window of 3 points.

A possible explanation for the superior alignment of the derivatives is that wear particles

in each oil sample are expected to be mostly new particles that were just released into

the oil. This is justified under the assumption that most history particles (especially in a

large size) have settled and therefore not captured at the oil sampling location (see section

5.2.1 for the oil sampling procedure). Moreover, particles smaller than 3 microns are not

likely to be included in the analysis due to the filter’s pore size and imaging resolution.
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This could also contribute to the “removal” of historical particles from samples, assuming

that recirculated particles are likely to be ground into a smaller size.

However, the delay between the propagation of macropitting and wear particles’ concen-

tration was a surprising finding, especially considering the above hypothesis on the removal

of historical particles. A possible explanation is that the low hardness of the gears used

in the test allowed primary wear particles to be pressed and entrained into the contact

surfaces [10,103,214], as apparent in Figure 5.9, and released in the oil later.

Figure 5.9: Dents on the tooth surfaces that have similar sizes and shapes to macropits;
examples are highlighted with red dashed circles; (a) the tooth surface of the driving gear
at 2.3 million cycles; (b) the tooth surface of the driven gear at 0.94 million cycles.

5.3.3 Relationships between numerical features of individual macropits

and wear particles

The investigation results of the relationships between numerical features of individual

macropits and wear particles are detailed in three aspects in this section, which are the

data distributions, evolution, and principal components of the numerical features.
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5.3.3.1 Data distributions of the numerical features

Figure 5.10 visualises the descriptive statistics of the numerical features of macropits and

wear particles, and the complete comparison of the statistics is shown in Table 5.2.

Figure 5.10: Box plots of the numerical features of macropits and wear particles.

Table 5.2: Descriptive statistics of the numerical features of individual macropits and wear
particles.
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In the box plots, the upper and lower whisker represents the maximum and minimum

value, respectively, and the red line is the median value. The upper and lower edge of the

box represents 25 and 75 percentile value, respectively. Figure 5.10 shows that macropits

are much larger than wear particles regarding their 2D sizes, as reflected by box plots of all

the dimensional features. In terms of the non-dimensional features, the data distributions

of macropits are comparable to those of wear particles. For all features, similar central

tendency and variability were observed between macropits and wear particles, as reflected

in the relative size and position of boxes in relation to the whiskers.

5.3.3.2 The evolution of the numerical features

Figure 5.11 shows the evolution of 6 numerical features (out of 10) of macropits and wear

particles in the test. Firstly, it can be observed from Figure 5.11 (a) and (b) that the

area and major axis length of macropits and wear particles evolved with notably different

trends, and applying a time shift of −0.85 million cycles to the plots of wear particles

(indicated by dashed lines, as done for the concentration results) did not improve the

result. The poor correlations were also observed for the remaining dimensional features,

including perimeter, equivalent diameter and minor axis length (not reported for the

sake of brevity). On the contrary, Figure 5.11 (c)-(f) show similar variations between

macropits and wear particles in terms of 4 non-dimensional features, including aspect

ratio, extent, solidity, and circularity, if a time shift of −0.85 million cycles is applied to

the plots of wear particles. The fact that the same delay between pits and particles is

observed in the concentration study (section 5.3.2) and these 4 non-dimensional features

provides additional support to this finding. It also suggests that non-dimensional features

of particles might have more diagnostic value than dimensional geometrical quantities.
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Figure 5.11: The evolution of 6 numerical features of macropits and wear particles: (a)
area, (b) major axis length, (c) aspect ratio, (d) extent, (e) solidity, and (f) circularity.
The solid lines represent actual values, and the dashed orange lines represent time-shifted
values (all by -0.85 million cycles) with respect to the solid orange lines.
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5.3.3.3 Principal components of the numerical features

The principal components of the two feature sets were analysed and visualised using PCA

as described in section 5.2.3. Figure 5.12 show the PCA results of the numerical features

of macropits and wear particles, including the number of principal components obtained

and the visualisation of their relationships.

Figure 5.12: PCA results of 2D features; (a-b) Pareto plots of macropits and wear particles,
respectively; (c-d) 3D biplots of principal components of macropits and wear particles,
respectively.

It can be seen from the pareto plots in Figure 5.12 (a-b) that both macropits and wear

particles needed 3 principal components to account for more than 90% of the variance.

Figure 5.12 (c-d) show the principal component coefficients of the 3 components in 3D
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space, and it is evident the 2D features had the same grouping with a clear physical

meaning for macropits and wear particles. The 3 groups are (i) size features, including area,

perimeter, equivalent diameter, major axis length, and minor axis length, (ii) overall shape

features, including aspect ratio and eccentricity, and (iii) edge-detail features, including

circularity, solidity and extent. The results suggested that the 10 numerical features of

macropits and wear particles had very similar principal components.

5.4 Summary

A novel and integrated method was applied to investigate both qualitative and quantita-

tive relationships between gear macropits and wear particles in a lubricated gear test. The

method adopted the technique of moulding and imaging to acquire accurate and detailed

wear information on gear teeth and effectively solved the scarcity of tribological data of

gear teeth during the wear process. Sampled macropits and wear particles were imaged

using optical microscopy, and the 2D images were used to extract concentration and 10

numerical features of macropits and particles related to their size, shape, and edge details.

The evolution of the pitted area and macropits’ concentration were compared. For numer-

ical features, their data distribution, evolution, and principal components were compared.

In general, this study suggests that using only the concentration of wear particle is insuffi-

cient for timely gear wear monitoring. The most relevant findings of the investigation are

summarised as follow.

• The evolution of the concentration of wear particles showed a similar trend to that

of the pitted area derivative but with a strong delay (∼ 0.85 million cycles).

• The evolution of 4 non-dimensional features, including aspect ratio, extent, solidity

and circularity, of wear particles and macropits showed similar trends if we consider

the same delay (∼ 0.85 million cycles).

• PCA shows strong covariance of most non-dimensional features, suggesting that only

a few are needed for surface/particle characterisation.
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This study thus encourages an interesting research direction for future work. An investi-

gation of the reasons for the observed delay would be aided by conducting gear tests with

different configurations (gear materials, speeds, loads, etc.). This would also contribute

to a more in-depth analysis of the detailed information conveyed by the non-dimensional

features discussed in this paper.
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Chapter 6

Automated Gear Wear Mechanism

and Severity Assessment Using

Images and a Deep Learning

Approach

This chapter addresses the third objective of this thesis, i.e., to develop an automated

system for gear wear mechanism and severity assessment, by developing convo-

lutional neural networks (CNNs) to identify gear mould images and wear particle images

of different wear mechanisms and severity levels. This work is built upon the moulding-

imaging method developed in Chapter 4, which allowed easy acquisition of gear mould

images that contain rich and detailed surface features for wear assessment. The potential

of mould images being utilised for gear diagnostics is investigated and compared with wear

debris images using the same deep learning approach.

This chapter expands on the following published journal article in which only

mould images were used for gear wear assessment,
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• H. Chang, P. Borghesani, and Z. Peng, "Automated assessment of gear wear mecha-

nism and severity using mould images and convolutional neural networks," Tribology

International, vol. 147, p.106280, 2 2020.

The expansion aimed to investigate the feasibility of CNNs in classifying wear particle

images into different wear mechanisms and severity levels, based on the validated perfor-

mance of CNNs for mould images in similar classification tasks in the article above, and

a similar methodology was adopted for the classification of wear particle images.

Abstract

A novel methodology for automated wear mechanism and severity assessment combining

surface replication, imaging and deep learning is proposed. A large dataset of images

of gear teeth moulds was built and covers abrasive wear, macropitting and scuffing, and

three severity levels for each mechanism, i.e., mild, moderate and severe. Wear debris

image datasets were also built and cover four types of wear particles, including rubbing,

laminar, fatigue, and cutting, and three severity levels. A two-level inference methodology

for mould images was designed, based on a first convolutional neural network (CNN) for

wear mechanism identification, followed by three CNNs for wear severity estimation. The

first level obtained a test classification accuracy of 98.22% and the second of 95.16% on

average. The two-level system was also applied to full flank mould images to generate wear

mechanism and severity maps showing the geographical distribution of wear. The particle

classification CNN achieved a test classification accuracy of 88.97%, and the severity CNN

using wear debris images scored 90.11%.

6.1 Introduction

The assessment of wear mechanisms and severity plays an important role in gear wear

monitoring because the information is critical for engineers to analyse the root cause of
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wear-related fault and to determine when the maintenance should be carried out based

on the severity of the fault [78, 114, 215]. As reviewed in Chapter 2, current MCM tech-

niques are mainly for fault detection and diagnostics, with some having capabilities in

assessing wear mechanism and severity. Specifically, vibration and acoustic emission (AE)

techniques are primarily for localised fault detection and diagnosis rather than distributed

wear monitoring [5, 56, 78]. Oil and wear debris analysis (OA/WDA) is a more direct

and effective technology for wear analysis compared to vibration and AE and has shown

capabilities in wear mechanism and severity assessment based on oil features such as vis-

cosity and acidity [47] and wear debris features such as size, quantity, morphology, and

colour [47,112,216]. However, discrete wear debris features are inadequate to reconstruct

a gear tooth surface, and its assessment accuracy can be affected by deformation of wear

debris, accumulation of historical particles, exogenous contaminants, etc [27,47,134].

A conventional method to get a direct and reliable assessment of gear wear mechanism

and severity is to visually inspect a tooth surface, possibly with the aid of cameras for

enhanced magnification [7, 78]. In this case, the appearance of the tooth surface is com-

pared against gear standards by trained analysts to identify the presence of specific wear

mechanisms and their severity. However, there are three problems involved in this vision-

based method, and they are (i) high cost of employing trained analysts, (ii) subjectivity

associated with human judgement, and (iii) limited capability of human experts perform-

ing such tasks [7, 112, 216, 217]. The third problem refers to the limited resolution of the

human eye or portable optical instruments (e.g. cameras) [121,218]. Micro-scale observa-

tions require gears to be disassembled and sent to high-resolution imaging facilities such

as scanning electron microscopes (SEM) and often require the teeth to be cut to get cross-

sectional views [7, 121]. The cost involved in this process and the destructive nature of

thorough optical surface analysis (tooth removal) often result in researchers and engineers

accepting low-resolution inspections. Based on previous gear wear research that employed

surface replication of gear teeth [66–68,70], a feasible solution of combining surface repli-

cation and image analysis has recently been proposed for gear wear investigation [121]. In

that methodology, surface replication, or moulding, is applied to gear teeth with a short

pause in the gear operation but without disassembling the gearbox. The moulds are then
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analysed with high-resolution optical and laser-scanning microscopes allowing the recon-

struction of both micro-level features and macro-level profile changes. In [121], silicone

polymers compounds were found to retain all the necessary information to reconstruct

both microscopic and macroscopic wear symptoms and image analysis techniques were

combined to extract comprehensive high-resolution wear information of gear teeth.

The rapid development of machine learning, especially deep learning, offers a promising

solution to address the first two issues mentioned above associated with manual classifica-

tion of gear teeth images, which has succeeded in many similar applications such as pattern

recognition and speech recognition [63, 132]. Conventional machine learning that starts

with feature extraction has shown capabilities in image-based wear assessment combined

with image processing [111, 112,114, 126, 219–224]. For wear analysis, most of the studies

extracted features from pre-processed images of worn surfaces or wear particles and used

them in classifiers such as support vector machines (SVM) to classify images into different

classes of wear mechanism and severity. In [6], three features obtained from SEM images

of wear particles that underwent discrete wavelet transformation (DWT) were used in an

SVM to classify wear particles into abrasive, adhesive, and fatigue particles. In [114], a

descriptor called Histogram of Oriented Gradient (HOG) was extracted from images of

abrasive wear of a cast iron specimen and used in various classifiers to classify images

into mild and severe wear. Indeed, these models automated wear mechanism and severity

assessment, but the extracted features were carefully engineered to work on specific wear

mechanisms and severity levels. It can be imagined that it would be very difficult to design

a complete set of features that cover all wear mechanisms and severity levels. Furthermore,

it has been shown that the feature extraction method is limited in processing raw images,

and a series of manually tuned preprocessing steps are often needed [63].

Deep learning, however, enables computers to learn intricate patterns in large datasets

easily and match or outperform human experts in many tasks [63, 225]. These tasks are

usually easy to perform by humans, but expressing the rules mathematically can be very

difficult. Examples include the high accuracies of deep convolutional neural networks

(CNNs) in large-scale image classification tasks that only well-trained human experts
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could match [226], the low error rates of speech recognition achieved by deep recurrent

neural networks (RNNs) that benefit many people every day [63]. Deep learning enables

computers to learn representations of large datasets and requires significantly less engi-

neering knowledge than conventional machine learning [63, 176]. The learning process of

machines is essentially performed by iterative adjustments of multiple internal parameters

(weights and biases) attached to multiple layers of information abstraction, with training

information flowing from a set of known desired network outputs back towards the en-

try point of the network (backpropagation) [63, 225]. Deep learning is also increasingly

being used in machine condition monitoring based on vibration [227–229], AE [230, 231]

and WDA [128, 129, 134]. CNNs have also been used to classify [128, 129] or deblur [134]

wear particle images. Wang et al. [128] integrated a back-propagation neural network and

a CNN for particle classification and achieved an average classification accuracy of 83%.

Peng et al. [128] achieved a higher classification accuracy (93.89%) for ferrography particle

images using a 1D CNN with dropout operation. However, to the best of the authors’

knowledge, no study so far has proposed the development of deep learning techniques to

process raw surface images for automated wear mechanism and severity assessment.

Thus, this study aims to investigate the capabilities of deep CNNs in identifying gear wear

mechanism and their severity based on raw image inputs obtained from moulds of gear

teeth and wear particle samples. The rest of this chapter is organised as follow. Section

6.2 details the methodology of this study, in which the differences in handling mould

images and wear particle images are made clear, and section 6.3 presents results and

discussions regarding the wear assessment performance of the CNNs, followed by section

6.4 summarising the developments and key findings of this chapter.

6.2 Methodology

In this study, the capabilities of deep CNNs in processing raw images (i.e., mould images

of gear teeth and wear particle images) for automated gear wear mechanism and severity

assessment are investigated. As mentioned in section 6.1, a deep learning method is chosen
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due to its strong capability to learn intricate patterns in large datasets without feature

engineering. Among various deep neural networks, CNNs have shown better performance

in image classification than other neural networks [63, 225] because they consider spatial

correlations among image pixels and use shared weights to ensure that the classification

result will not be affected by the feature’ location.

In this study, deep CNNs are trained on large datasets of mould images to establish

a two-level inference system in which the first level identifies the dominant gear wear

mechanism(s) if any and the second level assesses the severity level of identified wear

mechanism(s), as shown in Figure 6.1.

Figure 6.1: Diagram of the methodology for automated gear wear assessment using mould
images. (a) Flow of gear wear data from gear tests to usable datasets for the wear as-
sessment CNNs. (b) Integrated testing of the two-level inference system using full tooth
mould images.

Then, deep CNNs with similar architecture are trained on wear particle images where
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images of individual particles are used for particle classification, and images of group

particles are used for wear severity assessment, as shown in Figure 6.2. The following

sub-sections will provide methodological details on the acquisition of the datasets, the

procedures implemented for data augmentation and labelling, the architecture, training,

validation, and testing of the CNNs.

Figure 6.2: Diagram of the methodology for automated gear wear assessment using wear
particle images.

6.2.1 Data acquisition from gear tests

In order to train the CNNs for automated gear wear mechanism and severity assessment,

mould images of worn gear teeth were obtained from the two gear tests (the lubricated

test and the dry test) of this research, and wear particle images were obtained from only

the lubricated test. In the lubricated test that ran for 3.25 million cycles, gears were

severely worn by macropitting and abrasive wear, while in the dry test that ran for 54.6

thousand cycles, gears were severely worn by scuffing. The lubricated test was paused 40
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times for moulds making and oil sampling, and the dry test was paused 11 times only for

moulds making. Detailed information on the tests, including the test rig, experimental

parameters, and operating conditions, can be found in section 3.1.

The method of moulding and imaging developed in Chapter 4 was used to collect gear

mould images from two gear tests. During each pause in the tests, six gear teeth moulds

were obtained, corresponding to 6 marked teeth (3 on the driving gear and 3 on the driven

gear). Then, the moulds were scanned along the face width using optical microscopy to

get 2D images covering the entire dedendum or addendum. Figure 6.3 shows two sample

mould images in the lubricated test. Each large mould image (∼ 9400 pixels x 1000 pixels)

covered a rectangle area of around 20 mm x 2 mm, which was obtained by stitching seven

images (each has the size of 1360 pixels x 1024 pixels) captured using a 5x objective lens.

Each pixel in the images is equivalent to 2.04 µm on gear moulds. In total, a sufficient

number of 2D large mould images (165 images) were obtained for the training, validation,

and testing of the wear mechanism CNN and three wear severity CNNs.

Figure 6.3: Examples of gear teeth mould images in the lubricated test (at 3.25 million
cycles). (a) Addendum. (b) Dedendum.

The wear particle images were obtained from lubricating oil samples in the lubricated test

(see details in section 3.2 and 3.3). Wear particles from the dry test were not used in CNN

training because dry particles (many larger than 1 mm) are much larger than lubricated

particles (usually smaller than 50 µm), which cannot be fitted using the image size for

lubricated particles. Moreover, conventional particle classification approaches (e.g., image

processing and feature extraction) can be used to classify those dry wear particles due to

their distinct features (e.g., large sizes, rough surfaces). Due to the small sizes of wear
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particles, a 20x objective lens was used to capture their images using optical microscopy.

It was observed that wear particles were evenly distributed within a circular ring (outer

diameter: 11 mm, inner diameter: 5 mm) on the membrane filter. Therefore, 40 images

were captured at different locations within the ring for each slide, and the total imaged

area accounted for around 20% of the ring area. In total, 10 wear debris slides were

imaged, and 400 wear particle images were obtained via optical microscopy. The size of

each image is 1360 pixels x 1023 pixels, with a scale of 0.51 µm/pixel, and Figure 6.4 (a)

shows an example of captured wear particle images.

Figure 6.4: An example of wear particle images obtained by optical microscopy. (a) The
raw image. (b) The segmented binary image. (c) The image of an individual particle
cropped from (a). (d) The image of group particles cropped from (a).

The wear particle images were further processed into images of individual particles and

group particles for particle classification and severity assessment, respectively.
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• Training a CNN for image classification requires the inputs to be categorised accord-

ing to their types (i.e., labelling). Therefore, the raw images that contain different

types of wear particles need to be broken down into smaller images where each image

only contains one particle. Image segmentation was firstly applied to the raw images

(e.g., Figure 6.4 (a)) to separate wear particles from the background, outputting bi-

nary images, as shown in Figure 6.4 (b). A histogram-based method was used for

segmentation thanks to the high contrast between wear particle and the background.

The binary images enable wear particles to be indexed by their locations separately,

and the location information was used to crop smaller images of individual particles

from the raw images, as shown in Figure 6.4 (c). Then, the cropped images were

padded with zeros to the same size (200 pixels x 200 pixels) to become valid inputs

for the particle classification CNN. In total, 5,119 images of individual particles were

obtained to train, validate and test the particle classification CNN.

• Collective features of wear particles such as concentration and size distribution are

commonly used for wear severity assessment. Therefore, images of group particles

(each image has a size of 450 pixels x 450 pixels) were cropped from the raw images

without overlapping for the wear severity CNN, as shown in Figure 6.4 (d). The

raw image was not used in its entirety due to its large size and rich details, and it

requires a CNN with a significant capacity to process, which usually also needs a

high number of training samples to avoid overfitting. Cropping the raw images into

smaller images can address both issues simultaneously by reducing the image size

and increasing the number of images. In total, 2,316 images of group particles were

obtained for the training, validation, and testing of the wear severity CNN.

6.2.2 Data augmentation and labelling

This section details the augmentation and labelling of the image samples (section 6.2.2.1

for mould images and section 6.2.2.2 for wear particle images) acquired in the gear tests,

which converted those samples to usable data for the CNNs.
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6.2.2.1 Data augmentation and labelling of mould images

Deep neural networks require a high number of training samples (e.g., thousands to hun-

dreds of thousands) to avoid the problem of overfitting. In order to generate such a large

training dataset, the original mould image set (165 large mould images) was augmented by

cropping and in-plane rotation. Despite the original images having a similar nominal size

(∼ 9000 pixels x 1000 pixels), the curvature of the addendum and dedendum at different

stages of wear resulted in different sizes of the usable area (e.g. the illuminated portion of

Figure 6.3). Therefore, the minimum height of such a usable area (450 pixels) was chosen

to crop the original images into small samples (450 pixels x 450 pixels). Rather than

splitting the image in non-overlapping square samples, a stride of 50 pixels was used both

horizontally and vertically to obtain a higher number of samples. This choice, a commonly

used method to augment image data in deep learning [176], also ensured that surface fea-

tures were captured by at least one 450 x 450 sample in their entirety. Note that, out

of the 165 large mould images, 16 were used to produce test data, while the remaining

149 were used to produce datasets for training and validation. Images in the dataset were

then labelled, i.e. manually classified into different groups according to their dominant

wear mechanism and severity level. Specifically, the small mould images were classified

into four wear mechanism groups: normal, abrasive wear, macropitting, and scuffing; and

each image in the three abnormal groups was then classified into three severity levels:

mild, moderate, and severe. When the number of samples for some wear mechanisms

or severity levels was notably smaller than others, in-plane rotations were applied to the

corresponding image subsets to increase their numbers. The composition of the datasets

after augmentation and the two-level classification is shown in Table 6.1.

Table 6.1: Categories of the labelled mould image datasets (listed in (training data +
validation data)/test data, in the number of images).

Wear mechanisms Mild Moderate Severe Total
Normal N/A 25,941/2,150
Abrasive wear 10,304/1060 4,194/499 2,717/216 17,215/1775
Macropitting 10,234/1154 12,403/1,300 14,130/999 36,767/3,453
Scuffing 2,377/488 2,111/545 24,905/1,974 29,393/3,007
Total 109,316/10,385
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In order to minimise subjectivity and ensure consistency, the labelling was performed ac-

cording to established guidelines (both in the form of descriptions and images of worn

surface appearance) taken from gear standards, peer-reviewed journal articles, and books.

Firstly, the American standard ANSI/AGMA 1010-F14 [21] that provides general descrip-

tions and sample images of different wear mechanisms was followed. It is worth noting

for terminological accuracy that in this study macropitting and scuffing are referred to

as wear mechanisms, even if they appear as “gear failures” in the nomenclature of the

standard. To ensure an unbiased reference for the labelling, additional descriptions and

images from peer-reviewed journal articles and books were also used [7,22,28,29,232–234].

Table 6.2 summarises the main features of the three wear mechanisms used in this work to

label the image dataset [21]. In addition to comparison to literature cases, the knowledge

of the historical development of the two tests generating the samples was used to validate

and further correct the labelling of images. Figure 6.5, Figure 6.6, and Figure 6.7 show

sample labelled mould images and their references.

Table 6.2: Summary of key features associated with wear mechanisms according to the
established literature [7, 21,22,28,29,232–234].

Mechanism Description

Abrasive wear

Parallel grooves in the sliding direction on the tooth surface under
magnification

- Mild Fine scratches and machining marks are visible
- Moderate A few machining marks
- Severe Machining marks removed

Macropitting
(fatigue wear)

Macroscopic pits on the tooth surface usually with sharp and an-
gular edges

- Mild Small macropits occur in localised areas

- Moderate Macropits enlarge and propagate to a moderate part
of the tooth surface

- Severe Macropits occupy a significant part of the tooth sur-
face

Scuffing
(adhesive wear)

A rough and torn surface, with plastic deformation and material
transfer

- Mild Fine scuffed marks with an etched appearance and
occurs on localised areas

- Moderate Occurs in patches that cover significant areas

- Severe Occurs on the entire addendum and/or dedendum and
the surface is very rough
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Figure 6.5: (a) A mould image of a gear surface subjected to abrasive wear in the lubricated
test, (b) the reference in [232].

Figure 6.6: (a) A mould image of a gear surface worn by macropitting in the lubricated
test, (b) and (c) the references in [29].
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Figure 6.7: (a) A mould image of a moderate-scuffed gear surface in the dry test, (b) the
reference in [232], (c) a mould image of a severe-scuffed gear surface in the dry test, (d)
the reference in [29].

6.2.2.2 Data augmentation and labelling of wear particle images

For wear particle images, the labelling process was carried out before data augmentation

because the contents in either images of individual particles or group particles were fixed

in the data acquisition step. Established guidelines [25, 126–128] were also employed to

ensure the accuracy and consistency of the labelling process. Wear particles are commonly

classified into six types: rubbing, cutting, laminar, fatigue, spherical, and severe sliding
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particles [25], and four of them were identified in the lubricated test using the criteria

described in Table 6.3. Figure 6.8 shows labelled images of individual particles and their

references. For images of group particles, they were classified into three severity levels,

namely mild, moderate, and severe, based on the concentration and size of particles,

which are widely used for wear severity assessment [25, 47, 80, 187] (see Table 6.4). It

is worth noting that the concentration and size of wear particles can vary significantly

across different machines, operating conditions, etc., and the specific values of Tm and Ts
as described in the table can vary notably in different cases.

Table 6.3: Key features of different types of wear particles identified in the lubricated
test [25,126–128].

Particle type Size range and morphological features
Rubbing < 20 µm, thin flakes with smooth surfaces

Cutting Long and curved particles

Laminar 20 - 50 µm, thin and reflective particles with fre-
quent occurrence of holes and uneven edges

Fatigue > 20 µm, chunky particles with rough surfaces

Figure 6.8: Images of different types of wear particles (upper) identified in the lubricated
test and their references (lower). (a) Rubbing particles [128], (b) laminar particles [126],
(c) fatigue particles [126], (d) cutting particles [126].

134



6.2. METHODOLOGY

Table 6.4: Severity levels of images of group particles and their assessment criteria [25,80,
102]. 0 < Tm < Ts.

Severity level Assessment criteria

Mild The total quantity of wear particles is less than Tm with no
particle larger than 20 µm

Moderate The total quantity of wear particles is between Tm and Ts
with no or limited particles larger than 20 µm

Severe The total quantity of wear particles is more than Ts with
multiple or more particles larger than 20 µm

After the labelling process, wear particle images were split into training and validation

images (90%) and testing images (10%) before data augmentation in order to ensure that

testing images were completely different from training and validation images. It was found

in the labelling process that images of individual particles were unbalanced across different

categories. The number of rubbing particle images was much higher than others, and the

number of cutting particle images was around half of that of laminar and fatigue particles.

Therefore, similar to mould images, in-plane rotation was applied to images of laminar,

fatigue, and cutting particles to balance and augment the image datasets of individual

particles. Table 6.5 shows the number of images of individual particles before and after

data augmentation.

Table 6.5: The number of images of individual particles before and after data augmentation
(listed in (training data + validation data)/test data).

Particle type Number of images
Original After augmentation

Rubbing 3,674/408 3,674/408
Laminar 359/39 3,590/390
Fatigue 363/40 3,630/400
Cutting 213/23 3,834/414

For the images of group particles, the issue of an unbalanced dataset was not evident, and

data augmentation was applied to all categories of images, as shown in Table 6.6.
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Table 6.6: The number of images of group particles before and after data augmentation
(listed in (training data + validation data)/test data).

Severity level Number of images
Original After augmentation

Mild 626/69 2,504/376
Moderate 834/92 3,336/368
Severe 626/69 2,504/376

6.2.3 Construction, training and testing of the CNNs

This section details the architecture of the CNNs (section 6.2.3.1) and the strategy for

training, validation, and testing of the CNNs (section 6.2.3.2).

6.2.3.1 Architecture of the CNNs

Convolutional neural networks were employed to classify mould images via the two-level

inference (see Figure 6.1) and classify wear particle images via the method shown in

Figure 6.2. A CNN contains convolutional layers that usually have multiple feature maps

in parallel for different features and convolve their input data (e.g. a 2D image) with

shared weights to extract higher-level features. In this study, different image datasets

were used to train different CNNs for different classification tasks but the CNNs share

similar architecture and hyper-parameters.

For mould images, the wear mechanism CNN (first-level inference) was designed to classify

images against the four possible wear mechanism classes (including healthy), whereas the

wear severity CNNs (second-level inference) were designed to classify images belonging

to a specific wear mechanism within three wear-severity classes. There are two reasons

for choosing such a two-level design rather than a single CNN that classifies both wear

mechanism and severity. (i) The two-level design embeds the knowledge of the correlations

among three severity levels of the same wear mechanism (e.g. both “severe pitting” and

“mild pitting” must be “pitting”), while in a single CNN three severity levels are indepen-

dent of each other. (ii) In the two-level design, a higher number of training samples for
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the wear mechanism CNN can be used (i.e. the training dataset is split into 4 categories

instead of 10), and it could result in more accurate identification of wear mechanism.

Furthermore, the combination of the two effects is likely to improve the performance of

severity CNNs because misclassifications between different wear mechanisms are less likely.

For wear particle images, the particle classification CNN was designed to classify images of

individual particles against the four possible particle types (rubbing, laminar, fatigue, and

cutting), whereas the wear severity CNN (using particle images) was designed to classify

images of group particles against the three possible severity levels (mild, moderate, and

severe).

The architecture used for the wear mechanism CNN is shown in Figure 6.9, and the other

CNNs have similar architecture. There are 11 hidden layers in the CNN that comprises

three stacks of convolutional layers plus max-pooling layers, followed by another two con-

volutional layers and three fully connected layers. The construction of the CNNs has

drawn heuristics from other successful image classification CNNs [132,235].

Figure 6.9: The architecture of the wear mechanism CNN. The other CNNs have similar
architecture. The input layer (l=0) is a grayscale mould image (450 x 450 x 1). The
output shape on top of convolutional and max-pooling layers stands for pixel x pixel x
feature maps.

For the CNNs using mould images in this study, the input is a grayscale mould image

(450 x 450 x 1), and the output is a four- or three-element score vector representing the

probability of each wear mechanism or severity. For instance, an output of [0.1, 0.2, 0.6,

0.1] from the wear-mechanism CNN shows that the CNN has 10% confidence that the

input image is normal, 20% confidence for abrasive wear, 60% for macropitting and 10%
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for scuffing. For the CNNs using wear particle images, the input is an RGB image (200 x

200 x 3), and the output is a four- or three-element score vector.

The mathematical transformations from inputs to outputs of the wear mechanism CNN

are briefly introduced here. The CNN was programmed to turn the input grayscale image,

an intensity matrix, to a score vector (output) via 12 layers of nonlinear transformation.

The lth layer of the CNN, Al, can be denoted as

Al = {ali,j,k} (6.1)

where a is an artificial neuron, i ∈ {0 .. N l − 1}, j ∈ {0 ..M l − 1}, k ∈ {0 .. Dl − 1}, N l,

M l, and Dl are the height, width, and depth of the lth layer, respectively. For instance,

the input layer has the dimension of N0 = M0 = 450, D0 = 1, and the output layer has

the dimension of N12 = 4,M12 = D12 = 1.

For convolutional layers (l = 1, 3, 5, 7, 8), convolutions between kernels and previous layers

are performed, and the output will be as

ali,j,k = f

(
blk +

Sl−1∑
i′=0

Sl−1∑
j′=0

Dl−1∑
k′=0

wli′,j′,k′ · al−1
i∆l+i′,j∆l+j′,k′

)
(6.2)

where each kernel W l
k = wli′,j′,k′ has the width and height of Sl and the depth of Dl−1,

and slides across its previous layer Al−1 horizontally and vertically, with a stride of ∆l.

In this study, S1 = 5, S3 = S5 = S7 = S8 = 3, and ∆1 = 2,∆3 = ∆5 = ∆7 = ∆8 = 1.

In order to connect Al−1 and Al, Dl kernels are needed to generate Dl feature maps. In

this study, D1 = D3 = 32, D5 = D7 = 64, D8 = 128. After the convolution operation

between the kernel W l
k and its previous layer Al−1, a bias blk is added. Finally, a nonlinear

activation function is applied to the sum to generate the corresponding element ali,j,k in

the next layer. Rectified linear units (ReLu) were used as the activation function in this
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study

f(x) = max ( 0 , x ) (6.3)

For max-pooling layers (l = 2, 4, 6), the output will be as

ali,j,k = max(al−1
i∆+i′,j∆+j′,k) (6.4)

where i′, j′ ∈ {0, 1}, and ∆ = 2 in this study. This operation effectively passes the largest

value in a 2x2 window in the input layer to the next layer, and the window slides across

the input layer without overlapping.

For fully connected layers (l = 9, 10, 11, 12), the output will be as

ali,j,k = f

(
bli +

N l−1−1∑
i′=0

wlj,i′,k · al−1
i′,j′,k′

)
(6.5)

where j = j′ = k = k′ = 0. This operation effectively multiplies the input layer Al−1

by a weight matrix W l = {wlj,i′} , adding a bias bli, and applied an activation function of

ReLu except for layer 12. For l = 12, the Softmax function is applied to normalise the

output. The use of Softmax function enables the outputs to be interpreted as a probability

distribution, as

fsoftmax(xi) = exi∑N l−1
i=0 exj

(6.6)

where i ∈ {0 .. N l − 1}. Also, note that the last convolutional layer (l = 8) is flattened to

connect with the following fully connected layer in the above way.

The learning process of such a neural network is realised by iterative adjustments of

internal parameters, i.e. weights and biases, to minimise the objective function, or cost
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function, which is chosen to be the regularised cross-entropy as

C = 1
NS

NS∑
x=1

(
−
N l−1∑
i=0

(yi · ln ali + (1− yi) ln(1− ali)) + λ

2

L∑
l=1

Kl−1∑
k=0

J l−1∑
j=0

Il−1∑
i=0

wli,j,k
2
)

(6.7)

where NS is the number of training samples, x refers to each input image, yi is the ground

truth value corresponding to the ith neuron in the output layer (either 0 or 1), ali is the ith

output (l = 12), λ is the regularisation parameter, and the last term represents the sum of

square of all weights of the network. For convolutional layers (l = 1, 3, 5, 7, 8), I l = J l = Sl

and K l = Dl. For fully connected layers (l = 9, 10, 11, 12), I l = N l,J l = N l−1 and K l = 1.

L = 12 in this study.

The learning process utilised the commonly-used backpropagation algorithm and the

method of stochastic gradient descent (SGD) [63, 236]. The iterative learning process

consists of three steps. (i) The network transformed input images (a batch of images)

into output vectors through the feedforward path (Equation 6.1 to 6.6) and calculated

costs (Equation 6.7). (ii) The gradients of costs with respect to weights in the output

layer were calculated, and gradients were backpropagated from the output layer to the

input layer. (iii) The SGD method was implemented to update weights and biases in

the network. Then, these three steps were repeated on the remaining training samples,

which were fed in the network batch by batch to finish an epoch of training. After each

training epoch, the model was validated using the validation dataset and the model with

the highest validation accuracy in finished epochs was saved. The training was stopped

early if the validation accuracy had not improved in 20 epochs.

Note that the architecture of the networks (e.g. number of convolutional and fully con-

nected layers) was tuned manually. In other words, the performance, i.e., validation

accuracy, of an architecture was evaluated after training and then a new architecture was

engineered based on the results of the previous trials. Compared to other common meth-

ods for model parameters tuning such as grid search, this method requires more manual

work but considers history training and overall requires less computing time.
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6.2.3.2 Strategy for training, validation and testing

The labelled mould images were split into three datasets: the training dataset with 87,571

images (73%), the validation dataset with 21,745 images (18%), and the test dataset with

10,385 images (9%). The training and validation dataset came from 149 large mould

images (out of the 165 large mould images, see section 6.2.1), while the test dataset was

from 16 entirely different large mould images. Using different images for testing ensures

that the evaluation of the models is not biased by the use of similar training and test

sets. The split ratio was selected to ensure the number of test images is sufficiently large

enough to be statistically meaningful and to minimise overfitting. The split of labelled

wear particle images was similar (see Table 6.5 and Table 6.6). Note that the training

and validation dataset were shuffled together and then split into training and validation

data in the training process. Finally, gear tooth images from gear standards and journal

articles were also included in the test dataset of mould images. In the training process,

the network learned from training samples, and at the end of each epoch of training, the

performance of the networks was evaluated using the validation dataset. The program

was written in Python using TensorFlow.

The testing of the two-level inference system included individual tests of each CNN on

small mould images in the test dataset and integrated tests on full tooth mould images.

Different from the large mould images, the full tooth mould images were stitched using 2

or 3 large mould images in order to show gear wear on the entire active tooth flank. Thus,

full tooth mould images have a larger height (∼ 9000 pixels x 1600 pixels) than large mould

images (∼ 9000 x 1000). The individual tests aimed to check the classification accuracy

of each CNN, and the integrated tests aimed to evaluate the overall performance of the

system in assessing wear mechanism and severity using full tooth mould images. Indicators

of performance, including classification accuracy in training, validation and testing, were

obtained in individual tests, and the corresponding confusion matrices were also built

for detailed analyses on the performance of each CNN. The integrated tests generated

wear mechanism maps fused with their original mould images showing the distribution of

identified wear mechanisms on gear teeth, followed by wear severity maps for each wear
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mechanism. The wear mechanism and severity maps were obtained through five steps.

1. Full tooth flank mould images (∼ 9000 pixels x 1600 pixels) were cropped into

small mould images with a square window (450 x 450) that translates vertically and

horizontally with a step size of 50 pixels (or ∼ 102 µm). This step was necessary

because the CNNs only accept inputs of the same size (450 x 450).

2. Cropped images (450 x 450) were fed into the wear mechanism CNN to assess the

wear problem in each image.

3. Images identified as abnormal, i.e. abrasive wear, macropitting, or scuffing, were

sent to the corresponding wear severity CNN to assess the wear severity level.

4. Results of wear mechanism assessment of small mould images were grouped to gen-

erate RGB wear mechanism maps, and the maps were fused with corresponding full

tooth flank images to show the distribution of identified wear mechanism on gear

teeth. Specifically, the output of the wear mechanism CNN was rounded to a one-hot

encoded vector, i.e. [0, 0, 0, 0] for normal, [0, 1, 0, 0] for scuffing, [0, 0, 1, 0] for abra-

sive wear, and [0, 0, 0, 1] for macropitting. The last three elements were regarded

as three colour channels to be used to construct a coloured wear mechanism map

with the following colour code: black ([0, 0, 0]) for normal, red ([1, 0, 0]) for scuffing,

green ([0, 1, 0]) for abrasive wear, and blue ([0, 0, 1]) for macropitting. The process

of generating RGB wear mechanism maps is illustrated in Figure 6.10.

5. Results of wear severity assessment were grouped to generate grayscale wear severity

maps to show the severity distribution of identified wear mechanisms on gear teeth.

Specifically, the output of the wear severity CNNs for each 450 x 450 image was

coded in grayscale as [0.25, 0.5, 1], corresponding to mild, moderate and severe wear.

Then, scores were grouped according to their wear mechanisms and grayscale wear

severity maps for identified wear mechanisms were generated, as illustrated in Figure

6.10(b) A sample wear mechanism map is shown in Figure 6.11.
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Figure 6.10: Schematic of construction of wear mechanism and severity maps out of small
mould images: (a) wear mechanism map, (b) wear severity map. The two maps have the
same size as the corresponding full mould image. A local average was applied to the maps
after the cumulation of colour or grayscale blocks.

Figure 6.11: A sample wear mechanism map of a gear tooth flank. Red represents scuffing,
and green represents abrasive wear, with black representing normal.

The testing of the CNNs using wear particle images measured the classification accuracy

of the particle classification CNN and the severity CNN using their corresponding test

samples. Confusion matrices of the testing results were also built for a detailed analysis

of the CNNs’ performance.
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6.3 Results and discussions

This section presents training and testing results of the wear assessment CNNs using mould

images (individual tests on small mould images in section 6.3.1 and integrated tests on full

tooth mould images in section 6.3.2) and wear particle images (section 6.3.3). Discussions

of the results are presented in section 6.3.4.

6.3.1 Training and individual tests of the wear assessment CNNs using

mould images

6.3.1.1 Training and testing of the wear mechanism CNN

The model parameters of the wear mechanism CNN were manually tuned, and multiple

models were trained and compared in terms of training performance. Figure 6.12 shows

the training and validation accuracy of the top 5 models.

Figure 6.12: Training and validation accuracy for top 5 wear mechanism CNNs. Model
1 is the model employed as the wear mechanism CNN. Compared with model 1, model 2
has 4 convolutional layers and model 3 has 3 convolutional layers. Model 4 has the same
hidden layers as model 1, except that it has 256 dense neurons in layer 11. Model 5 has
only two fully connected layers.
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Figure 6.12 shows that for the models, the accuracy in training and validation quickly

rose to above 90% at the beginning of training and slowly increased with fluctuations.

The classification accuracy was calculated based on the comparison between true labels

and classification results (mechanism with the highest classification score). There is no

apparent divergence between training and validation accuracy for all 5 models, which

indicates that overfitting was effectively reduced. It can be seen that model 1 (in black)

had the highest training and validation accuracy (around 98%). The test accuracy of

model 1 was 98.22%.

Figure 6.13 shows sample test images and bar graphs of prediction vectors (relative like-

lihood of each wear mechanism) given by the wear mechanism CNN. The sample images

show that the wear mechanism CNN can correctly distinguish with high confidence those

mould images that contain single surface features such as parallel scratches of abrasive

wear, irregular black pits of macropitting, and very rough surfaces of scuffing.

Figure 6.13: Sample test images and wear mechanism predictions. (a) Normal, (b) abra-
sive wear, (c) macropitting, and (d) scuffing. The identified dominant wear mechanism
(classification result used for further analysis) is highlighted in blue.

Figure 6.14 shows the confusion matrix of the wear mechanism CNN on the test dataset

and shows the detailed performance of the model. Rows in the matrix represent true
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labels, whereas columns (in the same order as the rows) show classification results (i.e. the

mechanism with the highest classification score) so that the ideal result would be a matrix

with 100% on the diagonal terms (and 0% elsewhere). For example, the first row indicates

that 98.09% of normal images were correctly classified as normal, whereas 0.65% were

mistaken for abrasive wear, 0.19% for macropitting, and 1.07% for scuffing. In general, it

is shown that the wear mechanism CNN attained a high identification accuracy across all

wear mechanisms in this study. The wear mechanism CNN achieved the highest accuracy

in identifying pitting (98.67%) and the lowest accuracy for abrasive wear (96.79%). Wrong

predictions were also examined, and it was found that those who were wrongly identified

as normal were mostly mild wear, i.e. mild abrasive wear, mild macropitting, and mild

scuffing.

Figure 6.14: Confusion matrix of the wear mechanism CNN (percentage in the same row
adds to 1).

The wear mechanism CNN was also tested on gear teeth images from other publications
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and mould images captured by different cameras, and sample results are shown in Figure

6.15. The results show that the capability of the wear mechanism CNN is not limited

to mould images with good illuminations. The model learnt general surface features to

distinguish different wear mechanisms instead of ‘memorising’ specific features in mould

images.

Figure 6.15: Sample external test images and predictions by the wear mechanism CNN.
(a) A mould image of abrasive wear in the dry test captured by a normal camera. (b) An
abrasive wear image in [232]. (c) A mould image of macropitting in the lubricated test
captured by a mobile phone camera. (d) A macropitting image in [237]. (e) A scuffing
image in [232]. (f) A scuffing image in [29].

6.3.1.2 Training and testing of the wear severity CNNs

Figure 6.16 shows the accuracy in training, validation and testing of three wear severity

CNNs. In general, wear severity CNNs achieved a lower identification accuracy than the

wear mechanism CNN, and there were variations among the three models. The scuffing

CNN achieved the highest test accuracy of 97.61%, followed by macropitting and abrasive

wear. The main reasons for the general lower test accuracy of wear severity CNNs could be

(i) the smaller number of training samples ( 1/4 of the wear mechanism training samples)

and (ii) less distinct boundaries between two severity levels. For instance, the difference

between macropitting occupying ‘a moderate’ and ‘a significant’ part of the tooth surface

is harder to be distinguished than the difference between macropits and parallel scratches.

Figure 6.17 shows sample test images and bar graphs of predictions of wear severity CNNs.
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Figure 6.16: Training and validation accuracy of the three wear severity CNNs using mould
images.

Figure 6.17: Sample test images and their wear severity assessment: (a) abrasive wear,
(b) macropitting, (c) scuffing.
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Figure 6.18 shows confusion matrices of three wear severity CNNs on the test dataset.

The results show that all three CNNs achieved a classification accuracy of higher than

90% for all severity levels, and the scuffing had the best performance with an accuracy of

at least 96%. The abrasive wear and macropitting CNNs had their highest accuracy in

identifying mild wear while the scuffing CNN was best in identifying severe wear. On the

other hand, they all had the lowest accuracy in identifying moderate wear.

Figure 6.18: Confusion matrix of the three wear severity CNNs: (a) abrasive wear, (b)
macropitting, (c) scuffing.

The different strengths and weaknesses of the three severity CNNs may be related to
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two reasons, that is, (i) the unbalanced training dataset for abrasive wear and scuffing

and (ii) the difference in the labelling accuracy of the training data. Regarding reason

(i), mild wear makes up nearly 60% of the training samples for abrasive wear while its

ideal ratio is 33% (due to three wear severity levels). In this case, even if moderate

and severe wear have low accuracy, the overall accuracy, which is averaged across all

training samples, could be high. Thus, it is plausible that abrasive wear CNN scored

highest in mild wear and similarly, scuffing CNN scored highest in severe wear. Regarding

reason (ii), as shown in Table 6.2, moderate wear is determined by the presence of a

moderate amount of specific features, i.e., a few machining marks for moderate abrasive

wear, enlarged macropits for moderate macropitting, and patch occurrence for moderate

scuffing. In the labelling process, it is difficult to precisely distinguish images around the

boundaries (i.e., mild/moderate and moderate/severe) every time. Thus, compared to

mild and severe wear, which can be labelled and classified with high confidence, there

was more uncertainty in labelling the training data of moderate wear. As a result, the

prediction of the moderate wear of all three CNNs has the lowest probability on average.

However, the three severity CNNs never misclassified severe wear as mild wear or the

other way. In the future, the performance of severity CNNs could be further improved

by two approaches. (i) Introduce new training samples from gear tests that experience

different wear mechanisms and severity to increase the number of training samples and

also to balance their distribution in the datasets. (ii) Employ automated tuning methods

for models’ parameters such as random search to optimise the models’ configurations.

6.3.2 Integrated wear mechanism and severity assessment using full

tooth images

Mould images that recorded the evolution of an entire tooth flank of the driving gear in the

lubricated test are shown in Figure 6.19. The main observations drawn from the figure

are as follows. (i) Initial roughening marks were effectively removed in a short period

(0.17 million cycles), especially on the dedendum. (ii) The addendum and dedendum

exhibited drastically different wear patterns in which the dedendum was severely damaged
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by macropitting while the addendum was damaged at a slower rate by abrasive wear. (iii)

Macropitting initiated near the root and propagated towards the pitch line.

Figure 6.19: Surface evolution of a driving gear tooth flank in the lubricated test at (a) 0
cycle, (b) 0.17 million cycles, (c) 0.51 million cycles, and (d) 3.25 million cycles.

Figure 6.20 shows the evolution of a driven gear tooth flank in the dry test. The main

observations drawn from the figure are as follows. (i) The tooth flank was severely damaged

first at both edges, and then the damage quickly spread to the entire flank. (ii) Severe

abrasive wear occurred at both edges of the tooth flank at 6.6 k cycles, especially on the

dedendum, became the dominant wear mechanism on the dedendum at 12.6 k cycles but

was replaced by scuffing later. (iii) Scuffing patches on the dedendum at 6.6k cycles were

replaced by abrasive wear at 12.6 cycles. It is worth noting that a similar phenomenon,

i.e. initial scuffing replaced by abrasive wear, was reported in [238].
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Figure 6.20: Surface evolution of one driven gear tooth in the dry test at (a) 0 cycle, (b)
6.6 k cycles, (c) 12.6 k cycles, and (d) 30.6 k cycles.

The two-level inference system was applied to the eight full tooth flank mould images of

Figure 6.19 and Figure 6.20 and resulted in the wear mechanism and severity maps and

their labelled maps of Figure 6.21 and Figure 6.22. In general, wear maps assessed by the

CNNs are very close to those labelled manually. The first column of Figure 6.21 shows

wear mechanism maps superimposed to original images taken on the pinion at different

stages of the lubricated test. These maps clearly reflect the initiation and propagation

of the two major wear mechanisms in the lubricated test, i.e. macropitting (blue) and

abrasive wear (green). Furthermore, wear severity maps in the second and third columns

of Figure 6.21 show the severity of the two wear mechanisms, respectively, and their spatial

variations. It can be seen from Figure 6.21 (d2-d3) that the severity of abrasive wear was

much lower than that of macropitting, although they both occupied a significant part of
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the tooth flank. In addition, wear severity of either wear mechanism was not uniformly

distributed across the tooth flank, especially in the early stages of wear.

Figure 6.21: Wear mechanism and severity maps in the lubricated test and their labelled
maps. (a1), (b1), (c1) and (d1) are wear mechanism maps at running cycles of 0, 0.17
million, 0.51 million, and 3.25 million, respectively. (a2) - (d2) are corresponding wear
severity maps of macropitting and (a3) - (d3) for abrasive wear. (a4) - (d4) are labelled
wear mechanism maps for (a1) – (d1). (a5) – (d5) and (a6) – (d6) are labelled wear
severity maps for (a2) – (d2) and (a3) – (d3), respectively.

Similarly, Figure 6.22 shows the evolution of the distribution of scuffing and abrasive wear

and their severity in the dry test. It can be seen that in the dry test, the tooth surface was

worn more quickly than in the lubricated test, with a significant area severely damaged in

just 12.6 k cycles. In addition, the severity maps of scuffing show that the spread of this

wear mechanism started from the right edge instead of both edges, indicating the potential

existence of minor shaft misalignment in the dry test.
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Figure 6.22: Wear mechanism and severity maps in the dry test and their labelled maps.
(a1), (b1), (c1) and (d1) are wear mechanism maps at running cycles of 0, 6.6 k, 12.6 k,
and 30.6 k, respectively. (a2) - (d2) are corresponding wear severity maps of macropitting
and (a3) - (d3) for abrasive wear. (a4) - (d4) are labelled wear mechanism maps for (a1)
– (d1). (a5) – (d5) and (a6) – (d6) are labelled wear severity maps for (a2) – (d2) and
(a3) – (d3), respectively.

6.3.3 Training and testing of the wear assessment CNNs using particle

images

6.3.3.1 Training and testing of the particle classification CNN

Figure 6.23 shows the training, validation and testing accuracy of the particle classification

CNN. It can be observed that the training accuracy stabilised around 93% while the

validation accuracy stabilised around 91%, with the highest validation accuracy of 91.65%.

The stable training accuracy being slightly higher than the stable validation accuracy

suggests the existence of minor overfitting. The particle classification CNN scored 88.97%

in testing, which was 2.68% lower than the best performance in validation. Considering
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the low number of training samples before data augmentation (see Table 6.5), the particle

classification CNN achieved reasonable performance in testing. Figure 6.24 shows sample

test images of individual particles and their classification results.

Figure 6.23: Training, validation, and testing accuracy of the particle classification CNN.

Figure 6.24: Sample images of individual particles and their classification results. (a)
cutting, (b) fatigue, (c) laminar, and (d) rubbing particles.
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Figure 6.25 shows the confusion matrix of the particle classification CNN, which achieved

a significantly higher accuracy in identifying rubbing particles (97.79%) than others and

showed the lowest accuracy in identifying fatigue particles (82.25%).

Figure 6.25: Confusion matrix of the particle classification CNN.

The fact that rubbing particles are usually smaller than the other three types of particles

(see Table 6.3) could account for the high accuracy to a large extent. Moreover, the

abundance of original training samples for rubbing particles, which did not require data

augmentation, could also contribute to the result. For fatigue particles, the confusion

matrix shows that the CNN had 11% of chance to classify them as laminar particles. It

suggests that surface morphology could be harder for the CNN to capture than the size

or shape information since fatigue particles usually have rough surfaces while laminar

particles usually have smooth surfaces. In addition, the confusion matrix shows that

the particle classification CNN rarely misclassify normal particles (rubbing particles) as

abnormal particles (the others) or vice versa.
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6.3.3.2 Training and testing of the wear severity CNN

Figure 6.26 shows the training, validation, and testing accuracy of the wear severity CNN

using images of group particles. The highest training accuracy was 95.46%, while the high-

est validation accuracy was 92.69%. The wear severity CNN achieved a testing accuracy

of 90.11%. Similar to the particle classification CNN, minor overfitting also occurred to

the wear severity CNN. Overall, the wear severity CNN had higher classification accura-

cies than the particle classification CNN, which could be related to the higher number of

original training samples for the severity CNN (see Table 6.6). Figure 6.27 shows sample

test images of group particles and their classification results.

Figure 6.28 shows the confusion matrix of the wear severity CNN, which achieved the

highest classification accuracy for mild wear (95.29%) and the lowest accuracy for moderate

wear (85.82%). The misclassifications of moderate wear images as other types could be

related to the difficulty in manually labelling those images that are around the boundaries

between different categories (i.e., mild/moderate and moderate/severe).

Figure 6.26: Training, validation, and testing accuracy of the wear assessment CNN using
particle images.
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Figure 6.27: Sample images of group particles and their wear severity assessment results.
(a) Mild, (b) moderate, and (c) severe wear.

Figure 6.28: Confusion matrix of the wear severity CNN using wear particle images.

6.3.4 Discussions

The CNNs showed overall reasonable capabilities in wear mechanism and severity assess-

ment in various tests above, and they also demonstrated different performance for different
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image datasets. For mould images, the wear mechanism CNN achieved an overall higher

classification accuracy (> 98%) than the three wear severity CNNs (93% - 98%), while for

wear particle images, the wear severity CNN achieved a slightly better performance (90%)

than the particle classification CNN (89%). This difference could be related to multiple

factors, and one of them could be the number of original training samples. The original

training samples for the wear mechanism CNN (> 100 thousand, see Table 6.1) were sev-

eral times more than those for each of the three wear severity CNNs (15 - 40 thousand),

while the numbers for the particle classification CNN (200 - 400, except for rubbing parti-

cles, see Table 6.5) were notably smaller than those for the wear severity CNN (600 - 900,

see Table 6.6). This effect could also partly explain the better performance of the CNNs

using mould images than the CNNs using wear particle images. Except for the number

of training samples, the sharpness of surface features could also affect the performance of

the CNNs. In this study, key surface features of mould images (see Figure 6.13 and Figure

6.17), e.g., pits, scratches, and cracks, are generally sharper than those of wear particle

images (see Figure 6.24 and Figure 6.27), e.g., smoothness of the particle surface, which

could contribute to the difference between the two groups of CNNs.

Compared to the few existing studies on wear assessment using worn surfaces images

[114, 222, 223], the CNNs using mould images achieved higher classification accuracies

(e.g., ∼ 80% in [114] in classifying mild and severe abrasive wear). More importantly, the

deep learning approach used in this study did not require the complicated process of fea-

ture extraction, and it could be easier for the CNNs to extend to other wear mechanisms

and severity levels when new images of worn surfaces are available. In addition, the wear

mechanism and severity maps constructed using the classification results of the CNNs are

much easier to use for maintenance engineers. For wear assessment using wear particle

images, there are more existing works [109,112,126,128,129], and a few of them [128,129]

also employed deep learning techniques for image classification. The CNNs using wear par-

ticle images in this study showed better performance (∼ 90% classification accuracy) than

the integrated model (83%) in [128] and comparable performance to the CNNs (93.89%)

in [129,239].
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The test results demonstrated the advantages of combining wear images and deep learning

approaches, including no feature engineering required, high classification accuracy, etc.

However, there could also be limitations for the deep learning approaches in tasks such

as wear severity assessment using wear particle images. Specifically, the concentration,

size and size distribution of wear particles, which are the main parameters used for wear

severity assessment, can be extracted from wear particle images using image processing

techniques. In addition, the wear severity CNN could have difficulty generalising to other

wear particle images from different machines or operating conditions, which could result

in significantly different particle concentrations and sizes. In such cases, an algorithm that

can output quantitative features (e.g., actual values of particle concentration) and allows

analysts to adjust severity thresholds to adapt to different cases could be more favourable.

6.4 Summary

A two-level inference system made up of one wear mechanism CNN and three wear severity

CNNs was proposed in this study for a novel method of automated assessment of gear wear

mechanism (first-level inference) and severity (second-level inference) using gear mould

images. The deep learning approach was also applied to wear particle images, including a

particle classification CNN and a wear severity CNN automated wear assessment.

For training, validating and testing the CNNs, a high number of mould images were ob-

tained from the lubricated and the dry gear wear test via moulding and imaging, and a

lower number smaller of wear particle images were obtained only from the lubricated test

via oil sampling, filtergram, and imaging. The wear particle images were converted to

images of individual particles (used by the particle classification CNN) via image segmen-

tation and images of group particles (used by the wear severity CNN) via image cropping.

Then, the labelling of the data strictly followed gear standards and other established

guidelines to minimise subjectivity and data augmentation was applied to the datasets to

generate nearly 120,000 samples for the wear mechanism CNN and three severity CNNs,

nearly 15,000 samples for the particle classification CNN, and around 8,000 samples for
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the wear severity CNN, to reduce overfitting. The CNNs shared similar architecture that

contained 11 hidden layers and were trained using the backpropagation algorithm with the

SGD method. The wear mechanism CNN and three severity CNNs took grayscale mould

images (450 pixels x 450 pixels x 1 channel) as inputs and output four- or three-element

score vectors indicating the wear mechanism or severity, while the particle classification

CNN and the severity CNN took RGB particle images (200 x 200 x 3) as inputs and

outputs four- or three-element score vectors indicating the particle type or severity level.

In general, this study presents a new methodology to perform automated wear mechanism

and severity assessment combining deep learning with mould images of gear surfaces, mak-

ing it possible to monitor and effectively communicate the evolution of a gear degradation

process, with improved details and massively reduced manual operations if compared to

previous approaches. The significance of the proposed method is mainly in its automated

and repeatable nature, requiring little or no expert intervention after its initial synthesis.

This method could provide important assistance to maintenance engineers without exper-

tise in gear surface analysis or particle analysis to find the root cause of gear wear and

carry out informed maintenance tasks. The findings of this chapter are summarised as

follow.

• The wear mechanism CNN achieved a high classification accuracy of more than 98%

among normal, abrasive wear, macropitting and scuffing, while three wear severity

CNNs achieved classification accuracies of 93% (for abrasive wear), 94% (macropit-

ting), and 98% (for scuffing) among mild, moderate, and severe wear images.

• The two-level inference system can be applied to full tooth flank mould images to

generate an overall assessment and a clear display of the distribution of different

wear mechanisms and severity levels of identified wear mechanisms across the entire

tooth flank.

• The particle classification CNN achieved a reasonable (considering the low number

of training samples) classification accuracy of around 89% among rubbing, fatigue,

laminar, and cutting particles, while the wear severity CNN (using particle images)
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achieved a similar accuracy of around 90% among mild, moderate, and severe wear

images.

The capabilities of the two-level inference system can be extended to cover other gear

wear mechanisms by incorporating image data from other gear tests. Similarly, more wear

particle images can enhance the performance of the particle classification CNN. An open

database will be built in the future in which gear experts can utilise existing data and

contribute new data for a continuously improving dataset for gear wear assessment.
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Chapter 7

Image-based Gear Wear

Prediction: A Deep Learning

Approach

This chapter addresses the fourth and the last objective of this research, i.e., To develop a

gear wear prediction model using direct wear information, by developing a deep

learning model to predict the future gear surface appearance using history gear mould

images. This work is built upon the the moulding-imaging method developed in Chapter

4, and it investigates the potential of utilising mould images for gear prognostics using a

deep learning approach.

This chapter is a modified version of the below journal manuscript that will be submitted

to the journal of Wear in Jan/Feb 2022, and the main modifications include a condensed

methodology section of which the details about the experimental test were moved to

Chapter 3.

• H. Chang and Z. Peng, "Image-based gear wear prediction: A deep learning ap-

proach," Wear, 2022.
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Abstract

Gear wear prediction is vital to optimise maintenance policy and minimise machine down-

time. Due to increasing data availability and fast development of deep learning, data-

driven methods have emerged as promising solutions for gear wear prediction. However,

most data-driven models adopt gear health data that contain limited wear information and

can be easily impacted by various factors. To achieve efficient and accurate gear wear pre-

diction, this chapter proposes a novel framework in which a convolutional long short-term

memory (ConvLSTM) model learned gear wear dynamics from direct gear health data, i.e.,

gear tooth images. Given a sequence of history images and time information, the model

is able to generate a future image of the same gear tooth. Qualitative evaluations showed

that the prediction is realistic and preserves important tribological features for wear as-

sessment. Quantitative evaluations showed that the model achieved high scores for both

realism-related metric (e.g., 0.994±0.002 for VGG cosine similarity) and accuracy-related

metrics (e.g., -2.56%±4.21% for pitted region error).

7.1 Introduction

Gear wear is an inevitable surface degradation process occurring on gear teeth, and it is

often the initial stage of gear failure, which is a main cause of machine failure [20, 21].

To minimise the downtime, maintenance costs, and safety risks associated with machine

failures, condition-based maintenance (CBM) is widely used for important machines [240].

A critical part of CBM is prognosis, and it is to monitor the degradation of a component

(gear in this study) from its initial stage and predict its remaining useful life (RUL)

[14]. Gear prognosis is a proactive process that enables maintenance scheduling to be

optimised and prevents unplanned downtime [14]. Gear wear prediction is a core task in

gear prognosis and has received considerable research interests [15,152,154,241].

However, it is still difficult to accurately predict the development of gear wear in an

efficient manner, mainly due to the large number of impacting factors such as load, speed,
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gear materials, lubrication, etc [146]. As reviewed in section 2.4, existing studies on gear

wear prediction usually adopt two methods, namely physics-based methods and data-

driven methods [136]. Physics-based models, using a bottom-up approach, consider main

impacting factors and theoretically simulate the gear wear process. In contrast, data-

driven models attempt to learn the characteristics of gear wear solely from condition

monitoring (CM) data such as vibration signals [40, 135]. However, both methods have

certain limitations that restrict their applications. For physics-based models, current

modelling efforts can only include limited impacting factors, and complex models are too

computationally expensive [15, 242]. For data-driven methods, despite their traditional

problem of feature engineering being solved by deep learning, the quality of CM data can

hinder the development of data-driven methods [15, 135]. Firstly, most CM data do not

directly reveal changes in the appearance or dimension of gear teeth, and therefore, they

contain limited gear wear information [7]. Then, most CM data can be easily impacted

by factors such as inherent imperfections of the gear, noises from the signal transmission

path, and varying operating conditions [5, 15,17].

Compared with other CM data, images of gear tooth flank contain direct wear information

and are often captured during inspections for basic wear assessment. However, they are

rarely used for gear wear prediction in the research field. The reasons for their under-

utilisation for wear prediction could be twofold: (i) high-resolution gear tooth images are

difficult to obtain without disassembling the gearbox; (ii) the trend of gear wear evolution

in the form of images is difficult to capture, especially with multiple wear mechanisms.

The first issue, i.e., acquisition of gear tooth images without disassembling the gearbox,

has been addressed by the combination of surface replication and image analysis [121].

The authors showed that the wear evolution on gear teeth could be recorded on gear

moulds with micro-scale precision. Through analysing the mould images captured using

a microscope, valuable and direct wear information is obtained. Then, the problem of

learning gear wear dynamics could be tackled by deep learning, which has shown great

capabilities to learn various high-level representations from raw data such as raw images

and videos [63, 243]. Similar to the image sequence in a video, images of a gear tooth

flank at different times have spatiotemporal correlations that characterise the gear wear
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process. Thus, the deep learning techniques for video prediction can also be applied to

image sequences of gear teeth for wear prediction. Essential background information on

video prediction is provided below.

Video prediction using a deep learning approach is a relatively new research topic. Given

a sequence of video frames, a video prediction model generates subsequent frame(s). A

video, which is a time series of images, has spatial dimensions (width, height, and channels

of each frame) and a temporal dimension (i.e., time). Both the spatial and temporal in-

formation should be modelled to extract meaningful patterns of a video. Current research

works [171, 244, 245] usually integrate convolutional models that are famous for handling

images, and recurrent models that are widely used for time-series data, to model the spa-

tiotemporal dimensions of a video. Among various recurrent neural networks (RNNs),

long short-term memory (LSTM) networks proved to be exceptionally effective in learning

and storing information for a long term, which are widely used in tasks such as speech

recognition [63]. To allow LSTM to model the spatial dimensions, Shi et al. [171] replaced

key matrix multiplications with convolutions in a LSTM layer, and trained the proposed

ConvLSTM model for precipitation nowcasting. The ConvLSTM model proved to have

substantially better performance than normal LSTM models in video prediction [171]. A

common problem many video prediction models encounter is blurry predictions, which is

mainly due to the deterministic loss that tends to average equally probable predictions.

Many attempts were made to solve this problem. For example, Mathieu et al. [172] used

an adversarial training strategy for the first time in video prediction and obtained much

sharper predictions than previous deterministic models. Lee et al. [173] introduced stochas-

ticity to GANmodels and proposed VAE-GANs, a combination of variational autoencoders

(VAEs) and generative adversarial networks (GANs), to generate diverse (thanks to VAEs)

and realistic (thanks to GANs) predictions.

This study is conducted to demonstrate that efficient and accurate gear wear prediction is

achievable using deep learning techniques and based on limited history gear tooth images.

The novelty of the study is that automated wear prediction is performed using the state-

of-art AI method and raw image sequences of gear tooth flank that contains direct and

166



7.2. METHODOLOGY

detailed information of gear wear evolution.

7.2 Methodology

As introduced in section 3.5, gear wear prediction was achieved through training a deep

learning model on image sequence datasets, in which each sequence is a time series of gear

mould images for the same tooth. The model automatically learns gear wear dynamics

through mould image sequences and generates images that predict future gear wear. This

section details the acquisition of the image sequence datasets of gear wear evolution in sec-

tion 7.2.1, the deep learning model for wear prediction in section 7.2.2, and the evaluation

of predicted images in section 7.2.3.

7.2.1 Image sequence datasets of gear wear evolution

The development of a deep learning model for gear wear prediction needs datasets of image

sequences of gear tooth for training, validation, and testing. The datasets used in this

study came from the lubricated test (see section 3.1), during which the moulding method

(see section 3.2) was applied at different times to obtain 41 batches of gear moulds (6

moulds per batch). The moulds were imaged using optical microscopy with a 5x objective

lens. Due to the large dimension of the active gear tooth flank (20 mm x ∼ 3 mm),

multiple images (21 images: 3 rows along the tooth profile and 7 columns along the face

width) were captured to cover the entire active flank. Then, the images were stitched to

form a full-flank image (see Figure 7.1 as an example).

Figure 7.1: A stitched mould image covering an entire active tooth flank of the driving gear
in the gear test (the black pits are macropits and the non-parallel scratches are manual
roughening marks).
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Then, the stitched full-flank images were converted into ready-to-use datasets of image

sequences for the wear prediction model through three steps, as illustrated in Figure 7.2.

Figure 7.2: The three main steps, namely, selection, assembly and cropping, to prepare
image sequence datasets.

(i) Selection of gear tooth images for datasets building (see Figure 7.3). The image se-

quence datasets were built using 36 batches (out of 41) of full-flank images of the driving

gear. Firstly, the driven gear’s images were not used because the driven gear was worn

at a much slower rate than the driving gear. There was only mild to moderate macropit-

ting on the driven gear at the end of the test while the driving gear was already severely

worn. Then, 5 batches of full-flank images from the initial stage of the test were excluded

because the time intervals were much shorter in the initial stage than the rest of the test.

This ensured comparable time intervals between image batches. Therefore, 108 (3x36)

full-flank images were used to build the datasets.

The training and validation datasets were made using only images from tooth No.2 and

No.3 (see Figure 7.3 for the numbering) on the driving gear, while the test dataset was

made using only images from tooth No.1. This split of dataset sources ensured that the

image sequences in the test set were different from those in the training and validation

sets and the model’s generalisation capability could be properly tested.
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Figure 7.3: Selection of gear tooth images for datasets building.

(ii) Assemble individual images into image sequences (see Figure 7.4). This step was to

create image sequences with different time intervals to make the model compatible with

different gears in practice. In this study, sequence-to-one (5-to-1) prediction was adopted.

That is, each sequence contains 6 gear tooth images, in which the first 5 images are

provided as history images to the prediction model, and the last image is the ground truth.

The number of history images (i.e., 5) was chosen to ensure the prediction reliability by

providing sufficient history information and considering the restriction of moulds making

in practice. Therefore, 6 chronologically ordered images from the same gear tooth were

needed to assemble an image sequence.

Unlike image sequences of common videos with a constant frame rate and thus an even

time interval between consecutive frames, the time interval between consecutive gear tooth

images varies and depends on inspection times. In practice, inspection times are specific

to equipment and many other factors, and a fixed time interval might not be reasonable

for different gears. Therefore, in this study, image sequences with different time intervals

were assembled, and the time information for each image was also provided to the model in

training, validating, and testing. Specifically, there were 6 levels of time intervals between

consecutive images in a sequence, from interval 1, corresponding to the shortest intervals,
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to interval 6, corresponding to the longest intervals, as shown in Figure 7.4. For example,

sequences with interval 1 consist of 6 consecutive images (e.g., image No. 1 to 6), and

sequences with interval 6 consist of 6 images that were taken every other 5 images (e.g.,

images No.1, 7, 13, 19, 25, 31). For each gear tooth, there can be at most 31 sequences

with interval 1, and 6 sequences with interval 6, as illustrated in Figure 7.4. In total, there

were 333 (3 x 111) sequences of full-flank images.

Figure 7.4: Selection of individual images to assemble image sequences using different time
interval levels. For each gear tooth, the selection was made among its 36 full-flank images
(chronologically ordered, shown on the left).

(iii) Cropping of assembled full-flank image sequence for data augmentation (see Figure

7.5). The 333 assembled full-flank image sequences were presumably insufficient for train-

ing a deep learning model, and therefore, they were cropped to augment the datasets.

Firstly, a rectangular window of 8850 x 1330 (pixel x pixel, equivalent to 18.06 mm x

2.71 mm) window was used to crop the full-flank images to remove unclear image borders

(original image size was around 9000 x 1500). Then, a square window of 1330 x 1330

(pixel x pixel) moving along the face width direction was used to crop the border-cleared

170



7.2. METHODOLOGY

images into smaller images. The step size of the moving window varied according to the

interval level because of the different maximum number of sequences for different interval

levels, as shown in Figure 7.4. This was for the balance of datasets across different inter-

val levels so that the training of the wear prediction model was not skewed to a specific

level. Moreover, the generated image sequences were manually inspected, and those with

significant contamination (from moulds making) were removed. In the end, there were

5,183 image sequences (all from tooth No.2 and No.3 of the driving gear) for training and

validation and 2,131 sequences (all from tooth No.1 of the driving gear) for testing. Each

image sequence has the shape of 1330 x 1330 x 6 (width (in pixel) x height (in pixel) x

frames).

Figure 7.5: Cropping full-flank image sequences using a square moving window. The full-
flank images were border-cleaned and had a size of 8850 x 1330. The size of the moving
window was 1330 x 1330, and the step size varied according to the interval level.
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7.2.2 Deep learning model for wear prediction

This section details the inputs, outputs, loss functions, and the architecture of the wear

prediction model and its adversarial training procedures. Overall, the wear prediction

model is a generative adversarial network (GAN) that consists of a generator and a dis-

criminator, and the adversarial relationship between the two components is utilised to

produce sharp and realistic predictions. The generator is a ConvLSTM network that

models the spatiotemporal dimensions of image sequences to generate accurate predic-

tions, while the discriminator is a simple convolutional neural network (CNN) used to

distinguish generated images from real images.

7.2.2.1 Inputs, outputs and overall structure of the model

The wear prediction model is GAN consisting of a generator and a discriminator. The

generator generates a future gear tooth image given a sequence of history images, and the

discriminator discriminates generated images, or fake images, from real images. During

training, the generator’s objective is to ensure that the generated image is as close to the

ground truth as possible and realistic enough to deceive the discriminator. The discrim-

inator’s objective is to correctly classify real and fake images, i.e., not to be deceived by

the generator. Therefore, the generator and the discriminator will compete and ideally

improve their capability to eventually reach a dynamic balance. Figure 7.6 illustrates

the structure of the wear prediction model. The generator’s inputs consist of 5 past im-

ages (the first 5 of an image sequence, T=6 in this study) and their corresponding time

information (running cycles), and its output is a predicted gear tooth image. For the

discriminator, its inputs consist of a fake image, i.e., the predicted image generated by

the generator, and a real image, which can be randomly sampled from the image sequence

dataset, and its output is the classification results, either ‘0’ (fake) or ‘1’ (Real).
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Figure 7.6: The GAN structure and its inputs, outputs, and losses. The ‘G’ block repre-
sents the generator and ‘D’ represents the discriminator. The predicted image is the fake
image and acts as one of the inputs for the discriminator.

7.2.2.2 Losses of the generator and the discriminator

The loss function for the generator (see Equation 7.1), LG, is a weighted combination

of two parts: (i) prediction loss, Lpred, which measures the closeness of the predicted

image to the ground truth, and (ii) adversarial loss, LGadv, which measures the chances of

the discriminator misclassifying fake images as real images, i.e., the realism of predicted

images. Thanks to the adversarial loss, the balance between realistic predictions and

predictions of high similarity to the ground truth, can be adjusted by the parameter, λadv.

LG = Lpred + λadv ∗ LGadv (7.1)

The prediction loss for the generator (see Equation 7.2), LGpred, can be broken down into:

(i) mean absolute error (MAE, also known as l1 loss)(see Equation 7.3), LMAE , which is

commonly used in video prediction but would cause blurry predictions [172,243], and (ii)

image gradient difference loss (GDL)(see Equation 7.4), LGDL, which is used to sharpen
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the predicted images [172]. The weight of the image gradient different loss can be adjusted

by the parameter, λGDL.

Lpred = LMAE + λGDL ∗ LGDL (7.2)

LMAE = 1
N

∑
i,j

∣∣∣∣|Yi,j − Ŷi,j |∣∣∣∣ (7.3)

LGDL = 1
N

∑
i,j

∣∣∣∣|Yi,j − Yi−1,j | − |Ŷi,j − Ŷi−1,j |
∣∣∣∣+ ∣∣∣∣|Yi,j − Yi,j−1| − |Ŷi,j − Ŷi,j−1|

∣∣∣∣ (7.4)

In Equation 7.3 and 7.4, Yi,j and Ŷi,j is the pixel (i, j) of the ground truth and the predicted

image, respectively, and N is the total number of pixels in either image (the two images

must have the same size).

The adversarial loss for the generator (see Equation 7.5), LGadv, measures the chances of the

predicted images successfully deceiving the discriminator and is calculated by comparing

targets ‘1’ (the generator aims to deceive the discriminator into classifying fake images as

‘1’) and the discriminator’s classification result on the predicted image.

LGadv = LBCE(D(Ŷ ), 1) (7.5)

In Equation 7.5, LBCE is the binary cross-entropy loss given by Equation 7.6, and D(Ŷ )

represents the output of the discriminator (D) given the input of a predicted image Ŷ .

LBCE(x, y) = −y ∗ ln(x)− (1− y) ∗ ln(1− x) (7.6)

The discriminator’s aim is to classify all real images as ‘1’ and all fake images as ‘0’, and

therefore, its loss, LD, is calculated by comparing ‘1’ with classification result on a real
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image or ‘0’ with classification results on a fake image, as given by Equation 7.7

LD =


LBCE(D(R), 1) for real images

LBCE(D(Ŷ ), 0) for fake images

(7.7)

7.2.2.3 Architecture of the generator and the discriminator

The generator is a ConvLSTM network with an encoder-decoder structure and skip con-

nections, as shown in Figure 7.7. LSTM is a type of recurrent neural network (RNN) that

can learn long-term dependencies, i.e., utilising history information, even that came from

a long term ago, to inform current processing [176]. When convolution is incorporated

in LSTM, the modified version, i.e., ConvLSTM, can process image sequences and found

suitable for video prediction [171, 173]. Detailed mathematical transformations inside a

ConvLSTM layer can be found in [171]. After each ConvLSTM layer, layer normalisa-

tion normalises the outputs from the previous layer separately within a batch, and it was

employed to stabilise training and improve convergence [176, 246]. As there are multiple

convolutions in a ConvLSTM layer and its recurrent nature, the training of ConvLSTM

requires much more computing power than the training of normal convolutional networks.

Therefore, the input sequence was downsampled to 200 x 200 for each image, and grey-

scale inputs were used.

The encoder-decoder structure firstly compresses the image sequences from 200 x 200 to

50 x 50 through the encoder and then reconstructs the sequences back to the original size

(200 x 200) through the decoder. This structure was employed to create a bottleneck

(the four 50 x 50 blocks in Figure 7.7) to force the network to learn the most important

features that characterise the spatiotemporal dynamics in an image sequence. However, a

substantial amount of information is lost during the max-pooling process, which could be

important in synthesising local features in the output image. Therefore, skip connections

(dashed lines in Figure 7.7) were used to preserve the information. In the middle of the

bottleneck, another input of time information was provided to the network.
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The discriminator is a simple CNN similar to AlexNet [132]. Note that the input of the

discriminator is individual images instead of image sequences. The image size was reduced

via convolutional layers with a stride of 2 along both the width and height. The leaky

rectified linear unit (ReLU) was used as the activation function for the convolutional layers

based on its superior performance to the standard ReLU [247].

Figure 7.7: The architecture of the generator. The blocks only illustrate the width, height
(below each block) and number of feature maps (along the depth of each block), and there
are 2 other dimensions: batch size and number of past frames. For instance, the full shape
of the sequence input is (batch size, 5, 200, 200, 1), and the first hidden layer has the
shape of (batch size, 5, 200, 200, 32). The last hidden layer has the shape of (batch size,
1, 200, 200, 32).

Figure 7.8: The architecture of the discriminator.
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7.2.2.4 Adversarial training procedures

As illustrated in Figure 7.9, the adversarial training procedures started from taking a

batch (M) of image sequences and time tensors to the generator. Then, the M predicted

images and M real images were put in the discriminator, and classification results (‘0’ or

‘1’) for fake images and real images were obtained, respectively. Losses for the generator

and discriminator were then calculated based on the functions described in section 7.2.2.2.

The gradients were calculated based on the losses using Adam, a method of stochastic

gradient descent (SGD), and the trainable parameters of the generator and discriminator

were updated, respectively, thus finishing a training step. The training step was repeated

until the training datasets were exhausted.

Figure 7.9: The adversarial training procedures.
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Then, validation started, and it was similar to training, except that gradients were not

calculated, and the parameters of the generator and discriminator were not updated.

Validation was finished when the validation dataset was exhausted. A training epoch was

finished when both training and validation datasets were exhausted, and it was repeated

until convergence. Convergence was considered achieved when the losses for the generator

and discriminator reached a dynamic balance and predicted images were reasonably close

to the ground truth.

7.2.3 Evaluation of predicted images

Several important aspects need to be considered when evaluating outputs of a video pre-

diction model such as their realism and accuracy [243]. Regarding the specific task of

gear wear prediction, the predicted images should be realistic and sharp enough for en-

gineers to recognise various wear features on the tooth flank and also accurately capture

the dynamics of wear propagation.

Therefore, both qualitative and quantitative evaluations were conducted to assess the re-

alism and accuracy of predicted images in the context of gear wear prediction. Qualitative

evaluation was included because common quantitative metrics often produce different re-

sults from qualitative evaluation made by humans [172,173,243]. Recent studies on video

prediction have found that traditional metrics such as peak signal-to-noise ratio (PSNR)

and structural similarity index measure (SSIM) are biased towards blurry predictions in-

stead of sharp ones with minor errors [173,243,248].

For quantitative evaluation, 4 metrics, namely multi-scale structural similarity index mea-

sure (MS-SSIM), VGG cosine similarity, pitted area error (PAE), and pitted region error

(PRE), were employed. MS-SSIM was used to evaluate the closeness of the predicted

images to the ground truth, and it has shown equal or better performance to SSIM [249],

which is commonly used pixel-wise metric. VGG cosine similarity is the cosine similarity

between two feature vectors extracted from the VGGNet [250], given the predicted image

and its ground truth as the input, respectively. Studies have shown that such a metric
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based on deep features is better at measuring the perceptual similarity of two images than

traditional pixel-wise metrics [172,248].

For the task of gear wear prediction (prediction of pitting propagation in this study),

PAE and PRE were developed to measure the error of pitted area/region in a predicted

image compared to that in the ground truth. The two metrics were used to examine if

the model accurately captured the dynamics of wear propagation. The method to extract

macropits from gear mould images and calculate pitted area and pitted region can be

found in Chapter 5. It is also suggested that PRE could be a more accurate measure of

pitting propagation than PAE when there is a shrinking of pits [251]. Equation 7.8 is

the formula to calculate PAE (%), where ĉpits (unitless) is the area coverage of macropits

(see Equation 5.1) calculated using predicted images, while cpits was calculated using the

ground truth. PRE was obtained using a similar approach, where cpits in Equation 7.8

was replaced with cpitted region (see Equation 5.2), which measured the area coverage of

pitted region.

PAE = | ˆcpits − cpits|
cpits

× 100% (7.8)

7.3 Results and discussion

This section provides qualitative and quantitative evaluation results using test data, from

which the model’s capability in predicting gear wear, in terms of the realism and accuracy

of predictions, can be assessed. The results also demonstrate the effect of different time

intervals of the image sequence on the prediction quality.

7.3.1 Qualitative evaluation of predicted gear wear images

This section shows the results of qualitative evaluation of predicted gear wear images, as

shown in Figure 7.10, Figure 7.11, and Figure 7.12 that demonstrate the capability of the
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wear prediction model to predict the gear surface change in the wear process. The effect

of time interval on the prediction quality is also presented by comparing the three figures.

Figure 7.10 shows a long-term prediction based on an image sequence with interval 6 (the

longest interval level), and Figure 7.11 shows a mid-term prediction based on a sequence

with interval 3, with Figure 7.12 showing a short-term prediction based on a sequence

with interval 1.

In terms of the realism of predicted images, it can be seen that the wear prediction

model is able to generate realistic images of gear tooth flanks and clear surface features

for wear assessment, such as macropits and scratches. However, minor features such as

minor cracks and dents are not generated in the predictions. By comparing the three

figures, it was found that the model tends to generate more realistic images for short-

term predictions. In Figure 7.12, the prediction includes clear surface features of different

sizes and little blurriness, making it difficult to be distinguished from real images. In

contrast, the prediction in Figure 7.10 showed relatively blurry scratches and is easier to

be identified as a generated image.

In terms of prediction accuracy, the examples demonstrate that the model made plausible

predictions on wear propagation, which were reasonably aligned with the ground truth.

By comparing the predicted images and their last frames (the last frame of the five past

frames), it can be found that the model was not simply copying the last frames but creating

plausible changes on the tooth flank, e.g., new pits generated and old pits shrunk. It is

worth noting that the predicted changes of surface features might not be the same as those

in the ground truth, e.g., the locations and sizes of new pits. However, the overall trend

of wear propagation was not misjudged, e.g., the total pitted area and pitted region (see

Figure 7.10). Moreover, the effect of the time interval on the prediction accuracy was not

obvious.
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Figure 7.10: (a-e) Five past frames with the longest interval level (interval 6, see Figure
7.4), (f) the predicted image, and (g) the ground truth of a gear tooth flank in the lubri-
cated test. The running cycles for the past frames and the ground truth are 0.57, 0.82,
1.28, 2.14, 2.64, and 3.25 million cycles, respectively. cpits and cpitted region (both unitless)
are also indicated on the top right of each image.
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Figure 7.11: (a-e) Five past frames with a medium interval level (interval 3, see Figure 7.4),
(f) the predicted image, and (g) the ground truth of a gear tooth flank in the lubricated
test. The running cycles for the past frames and the ground truth are 0.51, 0.65, 0.75,
0.91, 1.16, and 1.69 million cycles, respectively. cpits and cpitted region (both unitless) are
also indicated on the top right of each image.
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Figure 7.12: (a-e) Five past frames with the shortest interval level (interval 1, see Figure
7.4), (f) the predicted image, and (g) the ground truth of a gear tooth flank in the lubri-
cated test. The running cycles for the five past frames and the ground truth are 2.72, 2.80,
2.88, 2.97, 3.14, and 3.25 million cycles, respectively. cpits and cpitted region (both unitless)
are also indicated on the top right of each image.
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7.3.2 Quantitative evaluation of predicted gear wear images

This section shows the quantitative evaluation results, as shown in Figure 7.13 that quan-

tifies the discrepancy between generated predictions and their ground truth using the four

metrics mentioned in section 7.2.3. The effects of time intervals on the four metrics are

also presented. For each interval level, the metric score is the average of all test sequences

with the same interval level. The first two metrics, MS-SSIM and VGG cosine similarity,

measure the similarity between a predicted image and its ground truth, and the higher

score corresponds to the better model performance. For MS-SSIM, the model achieved

the highest score of 0.605 when making short-term predictions (interval 1, see Figure

7.4) and the lowest score of 0.367 when making long-term predictions (interval level 6),

with an average of 0.464±0.116 across all interval levels. Overall, an inverse relationship

between interval level and MS-SSIM can be observed. For VGG cosine similarity, the

model achieved high scores across all interval levels, with an average score of 0.994±0.002,

suggesting a high similarity between the predictions and ground truth in terms of their

underlying features. Moreover, a decreasing trend of the VGG cosine similarity score with

respect to increasing interval levels could be observed, but the relationship is not as clear

as that of MS-SSIM.

The last two metrics, PAE and PRE, focus on the main tribological features (macropits)

on gear teeth and measure the model’s capability to capture the dynamics of wear prop-

agation. Positive scores correspond to overestimation by the model, and negative scores

correspond to underestimation. For PAE, the model achieved an average error rate of

0.652%±7.3%. For short- to medium-term predictions (interval 1-3, as shown in Figure

7.4), the model tended to underestimate pitted area growth, while for medium- to long-

term predictions (interval 4-6), the model tended to overestimate the growth. For PRE,

the model achieved an average error rate of -2.56%±4.21%, and the variation range of

error rate was lower than that of PAE. For most interval levels, the model tended to

slightly underestimate the pitted region growth. Overall, metrics using extracted features

from images, including VGG cosine similarity, PAE and PRE, suggest that the model

generates high-quality and accurate predictions. On the other hand, the traditional pixel-
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wise metric, MS-SSIM, suggests that the prediction accuracy is reasonable for short-term

predictions but could notably decrease with extended interval levels.

Figure 7.13: Evaluation results of the four metrics with respect to different interval levels.
(a) VGG cosine similarity, (b) MS-SSIM, (c) pitted area error, and (d) pitted region error.

7.3.3 Discussion

The ConvLSTM wear prediction model was designed to extract high-level features from

image sequences of gear tooth flank and generate realistic and accurate predictions for

gear prognosis. Test results have shown that the model has achieved the objective. Qual-

itatively, the predictions preserve essential tribological features for wear mechanism and

severity assessment, and they are well aligned with the ground truth in terms of the prop-
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agation of different wear mechanisms on the tooth flank. For image sequences with the

shortest interval level (interval 1), the predictions are very realistic and difficult to be dis-

tinguished from real images. Quantitatively, the model achieves excellent scores on three

metrics regarding both the realism and accuracy of predictions, including VGG cosine

similarity (for realism, based on deep features) and PAE and PRE (for accuracy, related

to pitting propagation prediction). Compared to other video prediction works [173, 252],

the model in this study generates predictions of equivalent or higher scores in terms of

VGG cosine similarity. It is also demonstrated that the model prediction accuracy does

not decrease when the interval level extends, as reflected by the PRE scores.

Another important aspect of the model is that the predicted image is closer to its ground

truth than its previous image in pitted area/region prediction. In other words, the model

does not simply copy the last frame (of 5 past frames) and make trivial changes. Instead,

normal events related to pitting evolution, such as the generation of new pits and shrinkage

of existing pits, can be observed in predictions (see Figure 7.10, Figure 7.11, and Figure

7.12). To quantify this relationship, a pitted area/region-based metric named relative

closeness ratio (RCR) was adopted, which measures the relative closeness between the

prediction and its ground truth and previous image. Figure 7.14 shows the definition of

RCR and scatter plots of RCR for pitted area and pitted region. It can be observed from

the figure that a majority (72.2%) of predictions are closer to the ground truth than their

previous images.

In terms of MS-SSIM, the model only achieved reasonable scores (around 0.6) for short

interval levels, and the scores decreased to 0.4 for long interval levels. However, the scores

could be impacted by the inherent defects of the gear tooth images. MS-SSIM is a pixel-

wise index for image similarity, which means that two identical images could obtain a

low score if one image is slightly shifted, as shown in Figure 7.15. In this study, manual

adjustment of the position of the gear tooth mould and image stitching were required to

obtain a flat gear tooth image for the curved tooth flank. As a result of the positioning

error and stitching error, the gear tooth images could not be fully aligned with each

other, and such inherent defects limit the MS-SSIM score of a prediction regardless of its
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qualitative realism and accuracy.

Figure 7.14: The relative closeness between prediction and its ground truth and previous
image in (a) pitted area and (b) pitted region. RCR above 0 means that the prediction is
closer to its ground truth than its previous image and vice versa.

Figure 7.15: An example of MS-SSIM’s sensitivity to image position. (a) The original
image (200x200) and (b) its shifted version (to upper left by 2x2). The MS-SSIM between
two images is 0.6092.
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The model in this study is the first one for gear wear prediction that generates realistic

and accurate predictions utilising image sequences of gear tooth flank. The model employs

mixed inputs (image sequences and time information), and it allows great flexibility of gear

tooth inspection and imaging in practice. Moreover, the model can be generally applied to

different wear mechanisms and mechanical components since it only relies on image data

and time information to make predictions.

7.4 Summary

A novel deep learning model for gear wear prediction was proposed in this chapter. The

model takes an image sequence (5 history images) of the same gear tooth flank and the

corresponding time information as the inputs and generates a future image of the tooth

flank as the output. A dataset of gear tooth image sequences was built using the moulding

method from a long-running gear test, and the training and test datasets came from

different gear teeth. Considering varying gear inspection times in practice, image sequences

with six different time intervals were included in the dataset. The model is a GAN of

which the generator is a ConvLSTM network to capture the spatiotemporal dynamics in

an image sequence. To improve the realism of predictions, image gradient difference losses

and adversarial losses were combined with mean absolute error. Both qualitative and

quantitative evaluations were used to ensure a fair measure of the predictions. The effect

of time interval on prediction quality was also studied. Test results have shown that the

model can generate realistic and accurate predictions for different interval levels.

Findings are summarised as follow.

• The qualitative evaluation of the test results showed that the model preserves essen-

tial tribological features in predictions for wear mechanism and severity assessment,

and it also predicts surface changes aligned with propagation trends of different wear

mechanisms.

• The quantitative evaluation showed that the model performed well on three metrics,
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including VGG cosine similarity (0.994±0.002), PAE (0.652%±7.3%) and PRE (-

2.56%±4.21%).

• As the time interval of the image sequence increased, the realism of the predictions

reduced, but the effect on prediction accuracy was not obvious.

• The model achieved reasonable scores of MS-SSIM for short interval levels (∼ 0.6),

but the score decreased to around 0.4 for long interval levels, which might be affected

by positioning error during imaging.

The model can be extended to other wear mechanisms and mechanical components since

it does not require expert knowledge of specific wear problems. The main limitation of

this work is that stochasticity was not incorporated in the deep learning model, causing

the difficulty in precisely predicting the locations of pits generation, and future work to

improve the model will be presented in Chapter 9.
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Chapter 8

Discussion

This research developed a set of advanced techniques for gear wear monitoring and predic-

tion. Detailed discussions of these developments can be found in the earlier chapters, in

particular, sections 4.5, 5.4, 6.3.4 and 7.3.3. This chapter, from an integrated perspective,

discusses (i) potential applications of the developed moulding-imaging techniques, (ii) fur-

ther insights into WDA for gear wear monitoring, (iii) AI-assisted gear wear assessment

and prediction, and (iv) strengths and limitations of the developed techniques.

8.1 Potential applications of the developed moulding-imaging

techniques

The combination of surface replication and image analysis, or the moulding-imaging tech-

niques, were developed and applied in this thesis to obtain direct wear information on worn

surfaces. Compared to other existing techniques, the novelty of the techniques compared

to other existing techniques is the ability to obtain and utilise a variety of direct gear

wear information (e.g., macro- and micro-scale surface appearance, tooth profile, surface

roughness, pitted area, see Chapter 4). Assisted with the impressions of worn surfaces

and the extracted wear information, early warnings for wear-related gear faults could be
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provided with high accuracy and reliability. Therefore, the techniques could be poten-

tially applied in industrial maintenance and serve as an efficient tool to reduce machine

downtime and maintenance costs. Table 8.1 summarises suggested procedures to imple-

ment gear wear monitoring and prediction based on the moulding-imaging techniques for

industrial gearboxes.

Table 8.1: Suggested procedures to implement gear wear monitoring and prediction based
on the moulding-imaging techniques.

No. Operation procedure
1 Stop the gearbox
2 Remove the gearbox’s inspection cover and rotate the input shaft to move

the marked teeth (marking should be done during the first inspection) to an
accessible position (above the lubricant level)

3 Clean the teeth using an air tube and remove any remaining oil on them using
absorbent materials

4 Apply the replication compounds in the valley between two teeth and ensure
the entire tooth flanks are covered

5 Take off the cured moulds after suggested curing time (20 mins at 25°C for
the material used in this thesis)

6 Capture images of collected moulds using an optical microscope
7 Pre-process the acquired mould images (e.g., stitching, cropping, stacking) to

prepare valid inputs for the two-level wear assessment system (see Chapter 6)
and the wear prediction model (see Chapter 7)

8 Input the pre-processed mould images into the two-level wear assessment sys-
tem for automated wear mechanism and severity assessment

9 Input prepared mould image sequences into the wear prediction model for gear
wear prediction. Note that the predicted gear images can also be put into the
wear assessment system for automated wear assessment

10 Submit gear wear assessment and prediction results for maintenance decision-
making (beyond the scope of this thesis)

The procedures as shown in Table 8.1 can be implemented during regular inspections to

minimise interruptions to the normal operation of a gearbox. During gearbox stoppage,

maintenance engineers could remove the inspection cover of a gearbox (see Figure 8.1

[253,254]) and then implement the moulds making procedures. For some gearboxes within

complex structures that cannot directly accessed, it could be difficult to acquire gear

moulds using the suggested procedures. Firstly, as mentioned in section 4.2.2, the target

tooth flank(s) must be cleaned to be oil-free to ensure a proper curing of the replication
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compounds. Usually, it can be done by using an air tube to blow off most of the oil on

the tooth flank(s) and then using absorbent materials to remove the remaining oil. It is

worth noting that the absorbent materials should leave no contaminants on gear teeth or

in the lubricating oil. Then, replication compounds can be conveniently applied to the

tooth flank(s) using a dispenser with an extended nozzle (see Figure 3.4). After the curing

process, which takes around 20 minutes for the replication compounds used in this research,

gear moulds can be taken off easily, and no contaminants will be left on gear teeth. It is

estimated that the entire process, from removing the inspect cover to collecting cured gear

moulds, could be finished in less than one hour. Therefore, it is feasible to implement the

techniques to regularly collect gear moulds to record gear wear evolution. Compared to

other visual inspection methods such as using an endoscope or a videoscope, of which the

imaging process must be finished within the inspection session, gear moulds can be stored

for an extended amount of time and examined by various microscopy repetitively.

Figure 8.1: Examples of gearboxes with the inspection cover removed. (a) A wind turbine
gearbox [253]. (b) An automotive gearbox [254].

The techniques could also be applied to conduct fundamental studies on gear wear to

better understand a complex gear wear process such as combination of micropitting and

tribocorrosion in offshore drive trains [255, 256] and in a controlled (i.e., lab-based) envi-

ronment. As reviewed in section 4.2, in laboratory gear tests, detailed surface imaging is

192



8.1. POTENTIAL APPLICATIONS OF THE DEVELOPED TECHNIQUES

usually only conducted before and after the test, and the evolution of gear wear is usually

examined by simple visual inspections. By regularly applying the developed techniques

during laboratory gear tests, gear moulds and mould images that record the wear evolu-

tion in great detail could be obtained. Compared to industrial machines, laboratory test

rigs are usually allowed to stop more frequently, making the implementation of moulds

making more feasible. Mould images as well as other quantitative data can be used to

study a range of topics including the evolution of a gear wear process, wear performance

of new gear materials, anti-wear properties of lubricants and additives.

In terms of gear wear prediction, the insights into gear wear evolution obtained in this

research, particularly in Chapter 4, could be used as experimental evidence for the de-

velopment of physical models of gear wear. For instance, 3D mould images of macropits

could be used to calculate the inclination angle of a crack face with respect to the tooth

surface, which is an important initial parameter used in numerical simulation of pitting

propagation [37, 157]. Moreover, for gear pitting models that predict the distribution of

fatigue pitting [40,152], wear maps such as Figure 4.13, Figure 4.14, and Figure 6.21 could

be used to quantify the prediction accuracy.

The moulds making process requires a gearbox to be stopped, and therefore, the tech-

niques may not be suitable to provide real-time wear monitoring when it is difficult to

access gear teeth. However, regular inspections are commonly implemented to maintain

industrial machines, and such opportunities can be utilised for moulds making. For exam-

ple, wind turbines are typically maintained at least twice per year [257, 258], and regular

inspections are conducted more frequently [259]. For machines that do not need to operate

continuously, such as helicopters and mining excavators, there could be more windows to

implement the techniques to collect direct wear evidence for further analysis or trending,

which is vital for RUL prediction.

The direct gear wear information obtained via the combination of surface replication and

image analysis has not only been used in gear wear monitoring and prediction per se,

but also provided and could provide more important supports for the development of

other CM techniques. For techniques such as vibration and AE analysis, direct gear
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wear information is essential to establish the correlations between proposed signal features

and real surface conditions of gears. The developed techniques in this research have

been used in several studies on vibration and AE analysis. In [50], two AE-based gear

wear indicators (cyclic kurtosis and cyclic scale parameter) were proposed based on the

cyclostationarity of AE. Direct gear wear information, including the precise region affected

by macropitting and the growth of total pitted area, served as crucial evidence to quantify

the two indicators’ sensitivity to different gear wear mechanisms (cyclic scale parameter

being more sensitive to macropitting while cyclic kurtosis being more sensitive to abrasive

wear). Similarly, in [51], gear moulds images showing detailed evolution of different gear

wear mechanisms and the growth of pitted area were employed as important validations

in developing vibration indicators for wear mechanism identification. The techniques are

generally suitable for experimental studies on other gear wear monitoring and prediction

techniques due to the ability to accurately quantify gear wear throughout an entire wear

process. Combining the developed techniques in this research and other CM methods

(e.g., WDA, vibration analysis) that provide high-frequency or real-time monitoring could

potentially bring a synergistic improvement to maintenance reliability. This is because the

techniques could provide accurate visualisations of current gear wear and predictions of

wear evolution, and the information can be used by other CM methods to make informed

adjustments to their monitoring strategies. In turn, real-time CM data could be crucial

to optimise the inspection schedule for moulds making.

8.2 Further insights into WDA for wear monitoring

The developed techniques presented in Chapter 4 and discussed in section 8.1 were used to

investigate the relationship between worn gear teeth and wear particles in the same wear

process. The relationship has a fundamental effect on the implementation of OA/WDA,

and the techniques could help deepen the understanding of this relationship. From the

investigation in Chapter 5, a major finding is that there was a significant delay (0.85 million

cycles) between the variation of wear debris concentration and that of pitted area/region
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(see Figure 5.8) and the delay was also found regarding the variation of four numerical

features (e.g., aspect ratio) of wear debris and macropits. Reports of such delays were

not seen in the literature, but studies on the life cycle of wear debris provide potential

explanations. As reviewed in section 2.2.3.2, wear particles could be entrapped between

gear contacts after their detachment [10, 25] and experimental tests [10, 12, 103] showed

the particle concentration between gear contacts is often much higher than that in the

bulk oil. Those findings suggest that the delay might be caused by prolonged entrapment

of wear particles between gear contacts. This hypothesis is also supported by many dents

that were observed on gear teeth in the lubricated test, especially on driven gear teeth, as

shown in Figure 5.9.

Nevertheless, the finding of the delay provides potentially valuable evidence for the use

of OA/WDA to monitor gear wear. That is, when the real-time reading of wear debris

concentration suggests the occurrence of abnormal gear wear, the actual wear severity

could be worse than the suggested level. The extent of the delay could be affected by

factors such as gear materials and lubrication systems. For example, in the lubricated

test, the oil circulated within the gearbox (no external loop), and the gear material was

relatively soft, making it easy for newly generated wear debris to accumulate near the

meshing region and be entrapped. Entrapped particles, before their release into bulk oil,

may not be detectable by existing methods but there could be a reasonable portion of newly

generated particles that are not entrapped between contacts. Among those unaffected

particles, the abnormal particles (e.g., fatigue particles, severe sliding particles) could be

important indications of the occurrence of abnormal wear without delay. For example,

in the lubricated test, the growth rate of pitted area reached its first peak at around 0.6

million cycles (see Figure 5.8), while that of particle concentration remained very low.

However, by examining particle images obtained at 0.58 million cycles, of which one was

shown in Figure 5.7 (b2), a few large fatigue particles were found, indicating the occurrence

of fatigue pitting without a noticeable delay. Therefore, the ability to capture and identify

abnormal wear debris might be necessary to provide early warnings of abnormal gear

wear. As mentioned in section 2.2.2, particle identification usually requires not only the

size of each particle to be captured but also its shape and morphology. Therefore, further
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development of online wear debris imaging is necessary to overcome this phenomenon.

8.3 AI-assisted gear wear monitoring and prediction

Artificial intelligence (AI) technologies were used in this research to process gear mould

images to automate gear wear monitoring and prediction. Specifically, deep CNNs were

employed to classify mould images and wear debris images into different wear mechanisms

and severity levels, and a GAN with a ConvLSTM generator was employed to generate

future gear tooth images using history images. The use of deep learning significantly sim-

plified the process of image-based wear assessment and prediction, which often involved

technically demanding and time-consuming procedures such as image segmentation, fea-

ture extraction, and statistical modelling (in prediction), as reviewed in Chapter 2. The

developed techniques were able to automatically generate and visualise the results of wear

assessment and prediction through wear maps (see Figures 6.21 and 6.22) and predicted

images (see Figures 7.10, 7.11, and 7.12) in several seconds (using a normal CPU) or under

one second (using a normal GPU). Ideally, the techniques could enable maintenance engi-

neers to carry out the entire process of gear wear monitoring and prediction, from moulds

making, to mould imaging, to data input into deep learning models, and to results inter-

pretation by themselves, bringing positive impacts including reduced reliance on trained

analysts, lower costs, and improved efficiency.

However, other important aspects need to be reflected for a proper evaluation of the AI-

assisted system. The first of them might be whether the deep learning models matched

or outperformed human analysts or other conventional AI approaches in terms of the ac-

curacy of wear assessment and prediction. As the development of gear wear monitoring

and prediction is still in its early stage, human performance on such tasks has not been

reported in the literature, and similar works are rather limited. In terms of wear assess-

ment, the three wear severity CNNs developed in Chapter 6 achieved significantly higher

classification accuracies (∼ 95%) than the conventional classification approach using a

HOG descriptor did in [114] (∼ 80%) for wear severity assessment. The wear mechanism

196



8.3. AI-ASSISTED GEAR WEAR MONITORING AND PREDICTION

CNN obtained an even higher classification accuracy of 98% plus. For wear debris images,

the CNNs in this research achieved a comparable performance (∼ 90%) to the CNNs de-

veloped in [129, 239] (∼ 94%) for wear debris classification. In terms of wear prediction,

due to the scarcity of studies on image-based wear prediction, performance data for com-

parison were not found. The wear prediction model developed in Chapter 7 achieved high

scores (0.994 ± 0.002) on VGG cosine similarity that measures the realism and accuracy

of predictions and low errors in pitted area (0.652% ± 7.3%) and pitted region (−2.56%

± 4.21%) prediction.

Then, the technical efforts spent on building the AI-assisted systems, from model selection

to data preparation and to model training, need to be considered despite their desirable

features of automated process and high accuracy. In this research, the selection of CNNs

for image classification was inspired by their numerous successful applications related to

image analysis (see section 2.3.3), while the selection of ConvLSTM for image prediction

was inspired by its applications in video prediction. Normal 2D CNNs cannot model

the time dimension of time series of gear tooth images, and therefore ConvLSTM, i.e.,

the combination of CNNs and LSTM networks, was employed. It is worth noting that

ConvLSTM is only one of the several popular models for video prediction [243], which is

a relatively new research topic, and a comprehensive comparison between them would be

beyond the scope of this research.

Regarding data preparation, deep learning models (e.g., deep CNNs) generally have stronger

learning capabilities than conventional machine learning models (e.g., SVMs) [63], but they

usually require a much higher number of training samples to minimise overfitting [225].

Therefore, the preparation of training, validation and test data, especially the manual

process of data labelling, could be one of the most time-consuming procedures. In this

research, data (images) labelling for the deep CNNs in Chapter 6 took around two months

of full-time manual work, and the author experienced the effect of mental fatigue on the

efficiency and correctness of the labelling process. There are many open-source datasets

for common applications of deep learning (e.g., classifying common objects such as trees

and cars), but for its specific engineering applications such as in this research, the work-
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load of dataset building should be well considered. A potential solution to this issue is to

build large open-source datasets of gear wear images (either gear tooth images or wear de-

bris images) that cover different wear mechanisms, severity, gear materials, etc., through

research-industry collaborations. The open-source datasets could facilitate cross-checks

of data labels, model benchmarking, and ultimately industrial applications of AI-assisted

wear monitoring and prediction.

Lastly, training deep learning models with different architecture and hyper-parameters has

mainly been a trial-and-error process since there have not been widely accepted theories

to determine the parameters [176,225]. For industrial maintenance, the combined costs of

time, computing resources, and deep learning experts could become prohibitive to train

such models from scratch and train many models for slightly different applications. To

solve this issue, transfer learning [260] could be applied to utilise pre-trained models on

large datasets, and it could effectively reduce training time and the need for a large number

of new training samples.

8.4 Strengths and limitations of the developed techniques

This section discusses the strengths and weaknesses of the developed techniques in this

research in terms of several common aspects to evaluate CM techniques as suggested in [9].

Firstly, the strengths of the developed techniques can be identified as follow.

• The techniques can provide direct and comprehensive gear wear informa-

tion. As mentioned in Chapter 4, the combination of surface replication and image

analysis can be used to extract a wide variety of direct gear wear information, such

as gear tooth appearance and its evolution, macro- & micro-scale surface features,

3D tooth profiles, and pitted area. In comparison, the methods based on vibration,

AE, and IRT in practice can only be used to detect severe gear wear (also called

wear fault [261]) and other gear faults [5,54,55,59,261] via indirect wear information

(e.g., vibration signals), despite their capabilities in detecting mild to moderate gear
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wear (in terms of wear depth) and differentiating wear mechanisms being actively

studied [50, 51]. OA and WDA are more direct methods, and they are widely used

to determine gear wear rate, wear mechanism, and wear source. However, the actual

gear tooth condition, which can be directly accessed by the developed techniques,

cannot be reconstructed using discrete wear debris.

• The techniques can monitor gear wear with high accuracy and high reli-

ability. As mentioned in Chapter 4, the selected replication material has desirable

physical properties such as high resolution, low shrinkage and low thermal expan-

sion, and its replication quality was tested regarding resolution, accuracy, and pro-

file reproduction (see Appendix A). Therefore, replicas of worn gear teeth with a

micro-level precision can be obtained through proper moulds making. Common mi-

croscopes would be sufficient to capture high-resolution images of the gear moulds,

and the images can be analysed by the automated wear assessment system developed

in Chapter 6 or trained analysts to ensure accurate and reliable gear wear monitor-

ing. In comparison, the reliability of other CM techniques could be easily impacted

by various factors (see sections 2.2.2 and 2.2.3), resulting in reduced accuracy and

reliability for gear wear monitoring.

• The techniques could be a cost-effective tool for root cause analysis and gear

maintenance. Maintenance cost is a major expenditure that many industries attempt

to moderate such as wind farms [3], and therefore introducing new and costly mainte-

nance techniques to such industries could be challenging. The developed techniques

in this research, however, could be low-cost yet effective in comparison to the current

practice of detailed wear analyses that require gearbox disassembly and even tooth

cut. The potential costs of applying the techniques in industrial maintenance could

be broken down into hardware cost (purchasing replication compounds, imaging fa-

cilities, etc.,), personnel cost (for moulds making, imaging, etc.,), and opportunity

cost (for interrupting production). Firstly, in terms of the hardware cost, the cost of

replication compounds used in this research was around AU$ 80 per 100 ml, which

could be very likely lower for bulk purchases, and the cost of a common optical
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microscope is around a few thousand Australian dollars. Secondly, automated gear

wear assessment and prediction based on the deep learning models could save a ma-

jor expense for trained analysts, and existing maintenance engineers with essential

training can carry out the main tasks such as moulds making and imaging. Lastly,

as discussed in section 8.1, regular inspections that are commonly implemented in

industries could be well utilised to carry out moulds making which could be finished

quickly, and therefore the interruptions to normal production could be minimised.

Nevertheless, the developed techniques have important limitations that need to be con-

sidered. Future work to address the issues can be found in the next chapter.

• The techniques are intrusive and cannot provide real-time wear monitor-

ing. As mentioned in section 8.1, the moulds making process requires the gearbox

to be stopped and its inspection cover to be removed, and hence it has obvious

disadvantages compared to non-intrusive techniques such as vibration analysis and

IRT. The lack of real-time monitoring capability means that the gear tooth condition

could not be inspected between two moulds collections, although the condition can

be predicted using history mould images. Therefore, ideally, the techniques should

be used with real-time monitoring techniques for enhanced robustness.

• The study of the relationship between worn gear surfaces and wear debris

was based on only 2D images. 3D images of wear debris had a limited sample size

(less than 100 compared to over 10,000 for 2D images of wear debris), and therefore

they were not used in this research. Comparing 3D features of worn surfaces and

wear debris, such as volume and surface roughness, could provide additional insights

into their relationship in gear wear evolution.

• The automated monitoring and prediction models still need more training

data to further improve their reliability. Successful deep learning systems

(e.g., autopilot systems, face recognition systems) all need to be trained on large

scale training datasets to ensure that they can generalise well to new data, which
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is directly related to their reliability. Similarly, the deep learning models developed

in this research also need to be trained on a variety of gear moulds images covering

different gear sizes, materials, operating conditions, etc. In this research, the images

came from only two gear wear tests although both lubricated and dry tests were

conducted. Therefore, the moulds making procedure needs to be applied to more

gear tests to obtain more diverse mould images.
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Chapter 9

Conclusions and Future Work

This research has developed advanced techniques to collect direct wear information for gear

wear assessment, monitoring and prediction. Specifically, Chapter 4 laid the foundation by

employing the combination of surface replication and image analysis to obtain gear mould

images that contain direct and comprehensive gear wear information. Then, Chapter 5

linked the proposed method to WDA, a popular method for gear wear monitoring, by

investigating the morphological relationship between worn gear teeth and wear debris in

the same wear process. Then, gear mould images and wear debris images were used to

train deep learning models (CNNs) to identify common gear wear mechanisms and severity

levels, thus automating the process of gear wear assessment. Lastly, time series of gear

mould images, or mould image sequences, were used to train a deep learning model (GAN)

to learn gear wear dynamics and predict future appearances of gear teeth using history

images.

Overall, the techniques provide a novel tool that allows direct and detailed examinations

of worn gear teeth and enables automated wear assessment and prediction based on direct

wear information (gear mould images) using deep learning approaches. Compared to other

CM techniques for gear wear monitoring and prediction, the techniques have distinctive

features of direct monitoring, high accuracy and reliability, and minimised reliance on

trained analysts, and they are suitable to be used with real-time monitoring techniques
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for enhanced robustness. Specifically, key findings related to the four objectives of this

research are summarised in section 9.1, and future work are recommended in section 9.2.

9.1 Summary of key findings

In relation to Objective 1 of this research, i.e., to develop a method to obtain direct

and comprehensive gear wear information without gearbox disassembly, the

following key findings were obtained.

• Surface replication using the selected material attained (i) high replication resolution

(capturing surface features spaced at ∼ 1 µm), (ii) high-accuracy surface topography

replication (accurately replicating surfaces with roughness values ranging from 0.4

µm to 12.5 µm), and (iii) high-accuracy profile replication (less than 1 µm RMS

error when replicated profiles were aligned with actual profiles).

• From mould images, a wide variety of direct gear wear information were extracted

via image analysis techniques, including (i) the overall appearance of a gear tooth

and its evolution, (ii) macro- & micro-scale surface features, (iii) 3D tooth profile,

(iv) surface roughness, and (v) wear quantification (e.g., wear depth, pitted area).

In relation to Objective 2, i.e., to investigate the relationship between the features

of worn gear surfaces and those of wear debris, the following key findings were

obtained.

• Qualitative comparisons between gear mould images and wear debris images ob-

tained in the lubricated test showed that the variation of wear debris concentra-

tion/quantity followed a similar trend as the propagation of macropitting (the pri-

mary wear mechanism) on gear teeth.
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• Quantitative comparisons showed that the evolution of wear debris concentration

had a similar trend to that of the pitted area derivative in the test but with a

notable delay of ∼ 0.85 million cycles.

• The same delay was also observed in comparing the evolution of four non-dimensional

features (aspect ratio, extent, solidity, and circularity) of wear debris and macropits.

In relation to Objective 3, i.e., to develop an automated system for gear wear

mechanism and severity assessment, the following key findings were obtained.

• Deep CNNs were employed to automate gear wear assessment using mould images

and wear debris images, and the wear assessment CNNs achieved high classification

accuracies in tests. The wear mechanism CNN using mould images achieved a no-

tably high accuracy of 98.22% in classifying images of normal condition, abrasive

wear, macropitting, and scuffing, and the three wear severity CNNs scored 93.43%,

94.44%, and 97.61% in classifying images of mild, moderate, and severe wear, for

abrasive wear, macropitting, and scuffing, respectively. The particle classification

CNN using wear debris images achieved a classification accuracy of 88.97% in classi-

fying images of rubbing, fatigue, laminar, and cutting particles, and the wear severity

CNN scored 90.11% in classifying images of mild, moderate, and severe wear.

• Using gear mould images, a two-level inference system was built by connecting the

wear mechanism CNN (the first level) and three severity CNNs (the second level).

The system could automatically convert full-tooth mould images to wear mechanism

maps and wear severity maps that display the distribution of wear mechanisms and

their severity levels on gear teeth.

In relation to Objective 4, i.e., to develop a gear wear prediction model using direct

wear information, the following key findings were obtained.

• A GAN with a ConvLSTM generator was developed to generate a future image of a

gear tooth using five history images of the same tooth and their time information.
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Image sequences with six different time intervals were used in model training to

adapt to different gearbox inspection intervals in practice.

• Qualitatively, the predicted images in tests were reasonably realistic and accurate

because they contain essential tribological features for wear assessment and plausible

surface changes aligned with the trends of wear propagation.

• The predicted images also obtained high scores on quantitative metrics, including

VGG cosine similarity (0.994±0.002) that measures the realism and accuracy of

predictions and PAE (0.652%±7.3%) and PRE (-2.56%±4.21%) that measure the

accuracy of pitting prediction.

9.2 Future work

Based on the limitations of this research as discussed in section 8.4, future work on the

developed techniques are recommended as follow.

• The procedures of moulds making and imaging could be streamlined to minimise the

interruption to machine operation and to further improve their efficiency. Although

the moulds making process could utilise regular inspections and be quickly finished,

as discussed in section 8.1, its interruption to machine operation could be costly

and needs to be minimised as much as possible. Further developments, such as

designing tools to simplify tooth cleaning and applying replication compounds, and

standardising the mould imaging process, could be considered.

• Further studies of comparing 3D features of worn surfaces and those of wear debris

in a gear wear process can be conducted, to deepen the understanding of the rela-

tionship between worn surfaces and wear debris. Several technical challenges could

be encountered, such as the acquisition of full 3D shapes of wear particles and the

heavy workload of acquiring sufficient 3D images of worn surfaces and wear particles.

A potential solution to the former issue could be utilising microfluidic devices with
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multiple imaging sensors to capture multiple 2D images of wear particles, and they

can be used to reconstruct full 3D shapes of wear particles.

• Utilising the moulding-imaging techniques, further fundamental studies on the in-

fluence of gear materials (e.g., ceramics and polymers) and operational and environ-

mental conditions on their wear performance can be conducted. The image-based

evidence is critical for understanding their wear modes and wear processes. Also,

crucial data will be available to develop AI-based wear assessment and prediction.

Collaborations and an open platform could be the key to building large-scale gear

wear datasets, which benefit not only the improvement of the deep learning models

but also the broader field of gear wear research.

• Stochasticity could be introduced to the wear prediction model for more precise

predictions of wear propagation. The process of gear wear propagation is difficult

to predict in details, such as the generation location of macropits and their sizes,

and therefore, the deterministic GAN model developed in Chapter 7 has limited

capability to precisely predict such events. To solve this issue, the model needs to

be further improved to incorporate stochasticity. When the prediction accuracy is

well improved, a recursive prediction strategy in which the predicted image along

with previous frames is used as the input of the generator will be attempted to make

multi-step-ahead predictions.

• The integration of the techniques with other CM techniques such as vibration and

WDA in monitoring and predicting gear wear should be further studied to reveal if

the distinctive strengths of these techniques could be combined to provide a robust

maintenance program that could effectively reduce maintenance costs and downtime.

Possible approaches are digital twins [262] with multiple sensors and other data

fusion techniques [263,264].
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Appendix - Evaluation of

Replication Quality

The surface replication method combined with image analysis was applied to reference

samples to evaluate the replication quality in resolution, accuracy and profile retention.

The micro-scale resolution of the material was tested using a reference surface with 830

line pairs per mm, as shown in Figure A.1. The results of the test (Figure A.1 (b) and

(c)) show the line pairs on the reference surface and its mould, respectively, using LSCM

with a 50x magnification objective lens. The fact that the mould could capture the surface

features spaced at ∼ 1 µm suggests a micrometric order for the resolution of the selected

moulding material.

The accuracy and profile retention were assessed by moulding a set of specimens with flat

and curved surfaces of known surface roughness. Six surface samples were used: three

flat surfaces with ground finishing and three curved surfaces cut off a sample obtained by

turning. The flat surface samples had Ra values of 0.4 µm, 0.8 µm, and 1.6 µm, while

the curved surfaces had Ra values of 3.2 µm, 6.3 µm, and 12.5 µm (Figure A.2 (a)). The

curved surfaces were characterised by manufacturing marks resulting in a characteristic

profile wavelength in the order of a few hundred microns.
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Figure A.1: (a) The resolution reference sample with a flat surface, (b) a LSCM image of
83 line pairs on the top surface of the reference sample, and (c) a LSCM image of the line
pairs on the top of the mould.

Figure A.2: (a) A surface comparator and (b) the surface roughness of its moulds.

The accuracy was measured in terms of surface roughness, and the surface roughness of

the moulds obtained on these samples were measured using LSCM with a 20x objective

lens at 5 random locations on each sample. Figure A.2 (b) shows the comparison between
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the nominal roughness values (in blue, with tolerance indicated by black whiskers) and

the measured quantities (mean in red with whiskers indicating ±1 standard deviation).

It can be clearly seen that the measured surface roughness of all six moulds is within the

tolerance of nominal values and its standard deviation is lower than 3% of the mean.

Profile retention of the moulding material was confirmed by imaging the curved surface

with Ra = 6.3 µm and the corresponding mould. The profile of the mould and the surface

were scanned using LSCM with a 20x objective lens across two rectangular strips oriented

perpendicularly to each other. Each strip had a length of ∼ 1,400 µm and a width of

∼ 700 µm. The profiles of Figure A.3 (a) and (b) were then obtained by averaging the

scan along the strips’ width to remove local random features. The averaged profiles were

characterised by the manufacturing-induced waviness with a wavelength of ∼ 300 µm in

the X direction (Figure A.3 (a)) and an arc with a radius of ∼ 30 mm in the Y direction

(Figure A.3 (b)), respectively.

In the X direction, the RMS error, which is the RMS of the height difference between the

actual and mould-based estimation of the profile, is 0.99 µm, and the maximum error is

2.54 µm. In the Y direction, the RMS error is 0.22 µm and the maximum error is 0.64

µm.

Figure A.3: Comparisons of profiles between the comparator and its mould in (a) X
direction, and (b) Y direction.
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