
Bayesian estimation of decomposable Gaussian graphical
models

Author:
Armstrong, Helen

Publication Date:
2005

DOI:
https://doi.org/10.26190/unsworks/23643

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/24295 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/23643
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/24295
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Bayesian estimation of

decomposable Gaussian graphical

models

.....

A thesis presented to

The University of New South Wales

in fulfillment of the thesis requirement

for the degree of

Doctor of Philosophy

by Helen Armstrong

21/12/05

Abstract

This thesis explains to statisticians what graphical models are and how to use them

for statistical inference; in particular, how to use decomposable graphical models for

efficient inference in covariance selection and multivariate regression problems. The

first aim of the thesis is to show that decomposable graphical models are worth using

within a Bayesian framework. The second aim is to make the techniques of graphical

models fully accessible to statisticians.

To achieve these aims the thesis makes a number of statistical contributions.

First, it proposes a new prior for decomposable graphs and a simulation methodology

for estimating this prior. Second, it proposes a number of Markov chain Monte

Carlo sampling schemes based on graphical techniques. The thesis also presents

some new graphical results, and some existing results are reproved to make them

more readily understood. Appendix 8.1 contains all the programs written to carry

out the inference discussed in the thesis, together with both a summary of the theory

on which they are based and a line by line description of how each routine works.

iii

Acknowledgments

This thesis exists because of Robert Kohn’s remarkably steadfast faith in my ability

to complete it. On a more prosaic note, I would like to thank Robert for his invalu-

able academic advice and assistance, and for his commitment to seeing me through.

Also my co-supervisors Chris Carter and Catherine Greenhill for many academic

discussions and for performing the unenviable task of checking my graphical proofs.

I would like to thank Ed Cripps and Farid Khoury for answering my many questions

when I was learning to program. Finally, I would like to thank the many academics

in Europe and America who answered my questions about their own research.

This thesis was completed with the financial assistance of an APA and scholar-

ships from the School of Mathematics, and from an ARC grant funded scholarship

from Robert Kohn.

v

Declaration

vii

Contents

Abstract iii

Acknowledgments v

Declaration vii

1 Introduction 1

1.1 Contributions . 2

1.2 Motivation . 6

1.3 Literature review . 6

2 Introduction to Gaussian graphical models 9

2.1 Introduction . 9

2.2 Graph theory . 10

2.3 Statistical graphical models . 13

2.4 Decomposable statistical graphical models 14

2.5 Calculating a g-constrained covariance matrix 16

2.6 Constructing multivariate distributions from decomposable graphs . . 18

2.7 Applicability of decomposable models 22

2.8 Using the graphical structure for inference 23

2.9 Historical motivation for decomposable distributions and Sundberg’s

criteria . 31

2.10 Appendix to Chapter 2 . 32

3 Decomposable graphical models 35

3.1 Introduction . 35

ix

CONTENTS

3.2 Equivalent definitions of decomposable graphs 35

3.3 Legal edge deletion and addition . 36

3.4 Junction trees . 44

3.5 Illustrative examples . 44

3.5.1 Representing conditional independence properties 45

3.5.2 Checking chordality . 45

3.5.3 Finding perfect numberings, perfect sequences of cliques, and

the separators, residuals and histories of the sequence 46

3.5.4 Checking legality of edge changes 54

4 Bayesian covariance selection models 61

4.1 Likelihood and hierarchical structure 61

4.2 The hyper inverse Wishart distribution. 62

4.3 Generating a Markov chain from the HIW distribution 63

4.4 HIW results for Bayesian analysis using MCMC 67

4.5 Prior for Σ . 73

4.6 Prior specification for Φ and its parameters 74

4.7 Prior for g . 75

4.8 Posterior inference and Markov chain Monte Carlo sampling 76

4.9 Sampling the graphs g . 77

4.10 Generating the parameters in Φ . 78

4.11 Generating Σ, Ω and μ . 79

4.12 Generating δ . 79

4.13 Efficient estimation of E(Ω|y) . 80

4.14 Comparsion to the Wong et al. (2003) covariance selection prior . . . 80

5 Variable and covariance selection in multivariate regression models 85

5.1 Introduction . 85

5.2 Model description . 86

5.2.1 Introduction . 86

5.2.2 Prior for the regression coefficients 87

5.2.3 Prior for the vector of binary indicator variables 88

5.2.4 Permanently selected variables 89

5.2.5 Priors for Σ, Φ, g . 89

x

CONTENTS

5.3 Sampling scheme . 89

5.4 Comparison to Cripps et al. (2005) using same real data sets 90

5.4.1 Pig growth rate data . 91

5.4.2 Cow diet data . 93

5.4.3 Physical measurements data: model 1 103

5.5 HIV data analysis . 112

6 Reduced conditional sampling for variable and covariance selection

in multivariate regression models 121

6.1 Introduction . 121

6.2 Model description . 122

6.2.1 Introduction . 122

6.2.2 Prior for β and Ω . 122

6.2.3 Prior for the vector of binary indicator variables 124

6.2.4 Permanently selected variables 124

6.2.5 Priors for Σ, Φ, g . 125

6.3 Sampling scheme . 125

6.4 Results . 126

6.4.1 Cow diet data . 127

6.4.2 Physical measurements data: model 2 133

6.4.3 Physical measurements data: model 3 139

6.5 Comparision to variable selection using leaps function 142

7 Evaluating and assessing the size prior for a graph 145

7.1 Introduction . 145

7.2 Comparison of the size prior for a graph with the uniform prior . . . 145

7.3 Evaluating the size-based prior . 147

7.4 Simulation methodology for estimating the Ap,k. 150

7.5 Results . 152

8 Appendicies 155

8.1 Appendix A: MATLAB code with line by line explanations for the re-

duced conditional sampler and covariance selection using the method-

ologies presented in this thesis. 155

xi

CONTENTS

8.1.1 checking chordality . 155

8.1.2 finding cliques, given the order 158

8.1.3 creating the junction tree, given a perfect sequence of cliques . 167

8.1.4 finding the separators, given a perfect sequence of cliques and

the associated junction tree 170

8.1.5 finding the path matrix of g, in which the i, jth entry is one if

vertices vi and vj are connected 175

8.1.6 finding the set of neighbours of a single vertex 176

8.1.7 finding the set of parents of a single vertex 177

8.1.8 finding the first clique in a perfect sequence that contains a

given vertex va . 179

8.1.9 finding all cliques in a perfect sequence that contains a given

vertex va . 181

8.1.10 finding the sets of separators, residuals and histories, given a

perfect sequence of cliques . 182

8.1.11 checking legality of edge removals 185

8.1.12 checking legality of edge additions using Theorem 2, Giudici

& Green (1999) . 190

8.1.13 checking legality of edge additions using Lemma 3.3.6 212

8.1.14 calculating a g-constrained version of Σ. 213

8.1.15 sampling Σ ∼ HIW (g, δ, I). 217

8.1.16 closed transformation of HIW (g, δ, •) 227

8.1.17 calculating the logarithm of the normalising constant for the

hyper inverse Wishart distribution. 239

8.1.18 calculating the logarithm of the ratio of normalising constants

h(g, δ, Φ)/h(g′, δ, Φ). 242

8.1.19 randomly selecting a pair of vertices. 244

8.1.20 proposing the next graph . 245

8.1.21 sampling the next graph iterate 249

8.1.22 generating the covariance selection iterates 252

8.1.23 decomposable covariance selection script. 253

8.1.24 miscellaneous subroutines. 260

8.1.25 Graphviz code and output . 266

xii

CONTENTS

8.2 Appendix B: Useful matrix theory . 268

8.3 Appendix C: Proofs of results . 268

8.4 Appendix D: FORTRAN code . 270

Bibliography 305

xiii

Chapter 1

Introduction

This thesis explains to statisticians what graphical models are and how to use them

for statistical inference; in particular, how to use decomposable graphical models for

efficient inference in covariance selection and multivariate regression problems. The

first aim of the thesis is to show that decomposable graphical models are worth using

within a Bayesian framework. The second aim is to make the techniques of graphical

models fully accessible to statisticians.

To achieve these aims the thesis makes a number of statistical contributions.

First, it proposes a new prior for decomposable graphs and a simulation methodol-

ogy for estimating this prior. Second, it proposes a number of Markov chain sampling

schemes based on graphical techniques. The thesis also presents some new graphical

results, and some existing results are reproved to make them more readily under-

stood. Appendix 8.1 contains all the programs written to carry out the inference

discussed in the thesis, together with both a summary of the theory on which they

are based and a line by line description of how each routine works.

The rest of Chapter 1 is organised as follows. Section 1.1 outlines the contri-

butions of this thesis to the existing literature. Section 1.2 presents a statistical

motivation for graphical models. Section 1.3 presents a summary review of the rele-

vant literature.

1

CHAPTER 1. INTRODUCTION

1.1 Contributions

Estimating a covariance matrix efficiently is an important statistical problem with

many applications, such as multivariate regression, cluster analysis, factor analysis,

and discriminant analysis; see, for example, Mardia et al. (1979). Such applications

are used in the fields of business, engineering, and the physical and social sciences.

It is also of considerable interest to understand the graphical structure of the covari-

ance matrix because it is directly interpretable in terms of the partial correlations

of the underlying multivariate distribution. By the graph of the covariance matrix

we mean the pattern of nonzero off-diagonal elements in the inverse of the covari-

ance matrix, also called the concentration matrix (see Lauritzen 1996,Chapter 5).

Estimating a covariance matrix efficiently and understanding its graphical structure

is difficult because the number of unknown parameters in the covariance matrix in-

creases quadratically with dimension, and because the estimate of the covariance

matrix must be positive definite.

The literature review in Section 1.3 shows that whilst there is an extensive liter-

ature on Bayesian variable selection, model selection and model averaging, there is

a significant gap in the literature in the area of multivariate covariance estimation

using the efficiencies made possible by graphical methods.

There are three reasons for the slow adoption of graphical methods in statistics.

First, the methods are difficult to understand and implement. Complicated software

is required, which is not always readily available. Furthermore, texts on the subject

assume a high degree of familiarity with fundamental graphical concepts that many

statisticians lack. The people most familiar with the graph theory are predominantly

computer scientists, who are more interested in structural learning and are unlikely

to consider a statistical application for covariance estimation. Second, there is in-

sufficient evidence demonstrating the advantages of applying graphical techniques

to motivate statisticians to learn about them. Third, there is a lack of accessible

literature explaining how graphical methods can be applied in Bayesian statistical

inference in general, and for multivariate Gaussian regression models in particular.

This thesis considers Bayesian estimation of decomposable Gaussian covariance

selection models, also known as decomposable graphical Gaussian models. Chapter 2

presents an introduction to graphical models and explains, from a statistical point

2

CHAPTER 1. INTRODUCTION

of view, why such models are interesting. It also explains how graphical methods

can be used to facilitate statistical inference. In order to use the theory of Chap-

ter 2, it is necessary to simulate an irreducible Markov chain in the state space of

graphs. Chapter 3 explains how this can be done, and provides worked examples

so that the theoretical results can be programmed easily. In the process, the thesis

contributes some new graphical results that make transitions in the state space of

decomposable graphs easier to understand and calculate. To make the theory easier

to understand and implement for real inference, informal explanatory heuristics and

statistical interpretations are given whenever relevant. New proofs of existing fun-

damental results together with illustrative examples of the application of the proof

are provided whenever such a proof makes the result easier to understand.

Another major contribution of this thesis is to implement graphical techniques in

a statistical framework: specifically, to provide empirical evidence that they are an

efficient way to perform covariance estimation, and show how they can be applied in

general regression models for variable and covariance selection. This is achieved as

follows.

First, a prior for the covariance matrix is proposed such that the probability

of each graph size is specified by the user, where the size of a graph is defined as

the number of its edges. Most previous approaches, e.g. Giudici & Green (1999),

assume that all graphs are equally probable. Section 7.2 reports the results of a

simulation study that shows that the prior that assigns equal probability over graph

sizes outperforms the prior that assigns equal probability over all graphs, both in

identifying the correct decomposable model and in estimating the covariance matrix

more efficiently. This advantage is greatest when the number of observations is small

relative to the dimension of the covariance matrix. The simulations in Section 4.14

suggest that there is relatively little loss in statistical efficiency in using mixtures of

decomposable models compared to the estimator of Wong et al. (2003), even when

the graph of the covariance matrix is not decomposable.

The new prior uses the counts Ap,k of decomposable graphs of size k with p

vertices. The next contribution is to propose a Markov chain Monte Carlo method

for estimating these counts and to show that the counts obtained by the simulation

method agree with analytic results when such results are known. Chapter 7 evaluates

and assesses the new prior for the decomposable space. It presents a simulation

3

CHAPTER 1. INTRODUCTION

methodology for estimating the prior, and gives the results of the simulation. The

numbers produced have not been calculated before because it is beyond current

computational limits to do so analytically for p ≥ 9. The numbers for p ≤ 8 are

calculated exactly, and are presented because they are not readily available in the

literature at present.

Chapter 4 explains Bayesian covariance selection models, and gives some results

for the graph dependent version of the Wishart and inverse Wishart distributions,

as these are used in the Markov chain Monte Carlo simulations. Section 4.8 shows

how to use the marginal likelihood results in Giudici (1996) to derive a reduced con-

ditional MCMC sampler for decomposable graphical models, where the covariance

matrix is integrated out of all conditional distributions and is not generated in the

Markov chain Monte Carlo . This result is based on Wong (2002). This approach

does not require reversible jump Metropolis-Hasting methods and has the local com-

putation properties of the Giudici & Green (1999) approach, so the computational

complexity for one iteration of the approach in this thesis is similar to that of Giudici

& Green (1999). However, it is reasonable to expect that the sampler in this thesis

has a faster convergence rate to that of Giudici & Green (1999) and Brooks et al.

(2003), but we have not compared them emprically.

Sections 4.3 and 4.11 show how the exact posterior results of Dawid & Lauritzen

(1993) and Roverato & Whittaker (1998) for graph dependent versions of the Wishart

and inverse Wishart distributed covariance matrix can be used together with the

results in Roverato (2000) to sample graph dependent covariance matrices directly

from their exact posterior distribution. In addition to the presentation of the theory,

detailed worked examples are used to illustrate and explain the difficult graphical

concepts involved.

Section 4.14 compares the performance of the reduced conditional sampler (which

assumes a decomposable prior) to the more general, but less efficient, prior of Wong

et al. (2003). This section provides empirical evidence that the decomposable reduced

conditional sampler has a faster convergence rate than the Wong et al. (2003) ap-

proach. The results in this section suggest that at present there is no ‘best’ method

for estimating Gaussian covariance selection models. While the method of Wong

et al. (2003) works in principle for all graphs, the convergence of their MCMC sim-

ulation can be slow if the true graph has full subgraphs of size 5 or larger because

4

CHAPTER 1. INTRODUCTION

Wong et al. (2003) generate the elements of the concentration matrix one at a time.

On the other hand, the decomposable reduced conditional sampler is extremely effi-

cient because the concentration matrix is integrated out. It is therefore an attractive

alternative to the Wong et al. (2003) model for high dimensional graphs that are

likely to have substantial full subgraphs. Another advantage of the decomposable

prior is that there is a separate normalizing constant for each decomposable graph,

whereas Wong et al. (2003) have a normalizing constant for each graph size. A com-

parison between the MCMC methods described in this thesis and a stochastic search

approach for finding the graph with maximum posterior probability is described in

Jones et al. (2005).

Chapter 5 applies the decomposable graphical methdology for covariance selection

in multivariate regression, and compares it to the results of Cripps et al. (2005) who

use the nondecomposable methdology of Wong et al. (2003). In this chapter variable

selection is also carried out on the regression coefficients. Chapter 5 also shows how

the graphical methodology allows for a far richer interpretation of the data than is

possible using conventional methods. It also contains analysis of higher dimensional

datasets. The number of iterations required to analyse these datasets using the Wong

et al. (2003) or Cripps et al. (2005) methodologies may become prohibitive when the

inverse covariance is not sparse, because of the high autocorrelations in the iterates.

Chapter 6 proposes a new sampling scheme for covariance selection and variable

selection in a multivariate regression model that integrates out both the regression

coefficients and the covariance matrix. Such a sampling scheme is not possible using

the methods of Cripps et al. (2005). Section 6.4 gives empirical evidence that the

sampler in Chapter 6 is more efficient than both the sampler of Cripps et al. (2005)

and the decomposable sampler of Chapter 5 on a number of real datasets.

The final contribution of this thesis is a complete graphical analysis package, in

MATLAB and FORTRAN, that is sufficient for performing all the analysis presented

in this thesis. Each subsection of Appendix 8.1 corresponds to a single routine. It

gives an explanation of the routine and the theory on which it is based, followed by a

line by line description of the algorithms involved in each step. These programs and

explanations are given so that statisticians can apply the techniques of this thesis

easily.

5

CHAPTER 1. INTRODUCTION

1.2 Motivation

Suppose we have independent observations

yt ∼ N(μ, Σ), t = 1, . . . , n, (1.1)

where yt is p × 1 and Σ is the covariance matrix. Let y = (y1, . . . , yn) be the data.

Suppose our aim is to estimate a model for y. Estimating a covariance matrix ef-

ficiently is difficult because the number of unknown parameters in the covariance

matrix increases quadratically with dimension, and because the estimate of the co-

variance matrix must be positive definite.

A more parsimonious model results if there are zeros in the covariance matrix Σ

or the concentration matrix Ω = Σ−1, and for Gaussian data such zeros have the

following interpretation. If Σij = 0, then yit and yjt are independent for all t. We

also have that if Ωij = 0 then yit and yjt are independent conditional on ykt for all

k �= i, j (See Wermuth (1976)). We note that allowing for zeros in the concentration

or covariance matrix can improve the statistical efficiency of the estimated covariance

matrix, as well as improve inference for the multivariate linear regression model,

because the predictive distribution is estimated more efficiently.

However, selecting which elements of Ω to set to zero is difficult even for moderate

dimensions because a p × p concentration matrix has k = p(p − 1)/2 distinct off-

diagonal entries and there are 2k possible possible configurations of concentration

matrices with zero elements associated with it. A better approach is to consider

subset spaces which become increasingly sparse as p increases. It is well known that

the space of decomposable matrices is such a space, and for completeness this is

proved in Appendix 8.3.

1.3 Literature review

There is a large literature of methods that use shrinkage or Bayesian models to

improve on the maximum likelihood estimator of the covariance matrix. See, for

example, Dempster (1969), Dempster (1972), Efron & Morris (1976), Yang & Berger

(1994), Chiu et al. (1996), Giudici & Green (1999), Barnard et al. (2000), Wong et al.

(2003) and Liechty et al. (2004). The simulation studies in Yang & Berger (1994)

and Wong et al. (2003) show that considerable gains in efficiency are possible.

6

CHAPTER 1. INTRODUCTION

Dempster (1972) advocates a covariance selection approach to estimate a co-

variance matrix more efficiently, by which he means setting to zero some of the

off-diagonal elements of the concentration matrix. His idea is that a more parsimo-

nious model will give greater efficiency. As mentioned in the previous section, the

selection of which elements to set to zero is difficult even for moderate dimensions

because a p× p concentration matrix has p(p− 1)/2 distinct off-diagonal entries and

there are 2p(p−1)/2 possible graphs associated with it. Drton & Perlman (2004) give

a model selection approach based on simultaneous confidence intervals to determine

which partial correlations are zero. The simultaneous confidence intervals are based

on large sample theory and become large when p is moderate to large. Drton &

Perlman (2004) do not attempt to estimate the covariance matrix based on their

selected graph.

A number of articles take a Bayesian approach to covariance selection. For the

case of decomposable graphs, Dawid & Lauritzen (1993) introduce a conjugate prior

for the covariance matrix called the hyper inverse Wishart distribution. Giudici

(1996) uses a prior for the covariance matrix that is a mixture of fixed parameter

hyper inverse Wishart priors over decomposable graphs and calculates the marginal

likelihood for each decomposable graph, up to an overall normalizing constant. The

marginal likelihood is used to calculate the posterior probability of each graph. This

gives an exact solution for small examples, but for p greater than approximately 8

the number of graphs is prohibitively large.

Roverato (2000) shows that the hyper inverse Wishart prior for the covariance

matrix is equivalent to a constrained Wishart prior for the concentration matrix. It

is straightforward to define a constrained Wishart prior for general graphs, however,

such distributions have normalizing constants that are not available analytically un-

less the graph is decomposable. Roverato (2002), Atay-Kayis & Massam (2005)

and Dellaportas et al. (2004) propose efficient simulation and importance sampling

methods for estimating the normalizing constants for the nondecomposable graphs.

The normalizing constants are used to examine a small number of graphs and select

those that that have the highest marginal likelihood or posterior probability, rather

than to estimate the covariance matrix by averaging over graphs. However, such an

approach seems unsuitable as the basis of a Markov chain Monte Carlo sampling

scheme when p is moderate to large because there are 2p(p−1)/2 possible graphs with

7

CHAPTER 1. INTRODUCTION

only a small fraction of them being decomposable.

Giudici & Green (1999) give a MCMC approach that can deal with large values

of p. Their method applies to a hierarchical model with a hyper inverse Wishart

prior for the covariance matrix conditional on a decomposable graph. They use

reversible jump Metropolis-Hastings methods to generate the covariance matrix and

other parameters. Their method has a local computation property that only requires

Cholesky decompositions of the submatrix of the covariance matix corresponding to

a clique of the graph. Brooks et al. (2003) modify the reversible jump MCMC

proposal of Giudici & Green (1999) and give empirical results to show this improves

the convergence rate.

Wong et al. (2003) also use MCMC methods to select which off-diagonal elements

to set to zero. They use reversible jump Metropolis-Hastings methods to generate

the inverse covariance matrix and other parameters. The main difference between

Giudici & Green (1999) and Wong et al. (2003) is that Wong et al. (2003) do not

constrain the possible graphs to be decomposable. Wong et al. (2003) use a prior with

normalizing constants based on graph size to avoid having to calculate normalizing

constants for each nondecomposable graph. They also need to run a separate MCMC

to estimate the normalizing constants for each graph size.

For longitudinal data, Smith & Kohn (2002) factor the concentration matrix

using a Cholesky decomposition and carry out variable selection on the strict lower

triangle of the Cholesky factor to obtain parsimony. Their approach is attractive

when there is some natural ordering of the observation vector, but there are two

potential drawbacks to the Cholesky approach when such a natural ordering does

not exist. First, different orderings of the variables can yield different estimates of

the covariance matrix. Second, under some orderings the Cholesky factor may be

quite full even if the concentration matrix is sparse.

8

Chapter 2

Introduction to Gaussian graphical

models

2.1 Introduction

This chapter introduces graphical models and explains why such models are interest-

ing. To do so, some definitions from graph theory are given in Section 2.2. Section 2.3

shows how the concepts of graph theory can be used to represent the likelihood as a

product of low dimensional terms with some nice properties. In the case of Gaussian

distributions, we show how to associate a graph with the inverse covariance matrix

to derive the representation. Section 2.5 discusses the theory necessary to find a

decomposable version of any positive definite matrix, and hence how to define de-

composable versions of Gaussian distributions. Conversely, Section 2.6 shows how

the same graph-theoretic concepts can be used to define complex multivariate distri-

butions with desirable independence properties, which are constructed from simple

lower-dimensional distributions. Together these results show how graphs can be used

as an inference tool for simplifying and organising probability calculations. Thus the

theory of graphical models can be used to facilitate statistical inference in general,

and covariance selection in particular.

More detail on the material in this chapter can be found in (Lauritzen, 1996,

Chapters 2 and 3).

9

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

2.2 Graph theory

This section gives some definitions and results from graph theory that are funda-

mental to Gaussian graphical models. It is intended for reference only, as detailed

explanations using illustrative examples are given in Chapter 3.

Let V be a finite set of vertices. Let E = {(u, v) : u ∈ V, v ∈ V, u �= v} be a

set of edges so that E ⊂ V × V . Define a graph g as an ordered pair g = (V, E) of

vertices and edges, where V is assumed to be finite. Write v ∈ g whenever v ∈ V ,

and similarly e ∈ g to denote any e ∈ E. For any graph C, write g + C to denote

the graph obtained by adding all edges and vertices in C to g. Since an edge (u, v)

is equivalently the graph e = (V = {u, v}, E = {(u, v), (v, u)}), any subset of edges

E ′ ⊂ E can be used to define a subgraph g′ = (V, E′) of g, and we can write g + e for

the graph obtained by adding e to g. For any subgraph or subset of edges C ⊂ g,

or any set of vertices C, write g − C to denote the subgraph obtained by deleting

from g all vertices in C and all edges in g with at least one vertex in C. For any

A ⊂ V the induced subgraph is defined as the graph gA = (A, EA) formed by keeping

only those edges in g with both endpoints in A. Write u ∼ v if either (u, v) or

(v, u) ∈ E, and say u and v are adjacent. It is assumed throughout this thesis that

g is a simple undirected graph. That is, without loops (so u �= v for all u, v such

that (u, v) ∈ E) or multiple edges (so every element in E is distinct), and (v, u) ∈ E

whenever (u, v) ∈ E. Define the set of neighbours (denoted by nbrs(v)) of a vertex

v in g as the set of all vertices that are adjacent to v in g. Define [v] = {v}∪nbrs(v)

as the closure of v in g obtained as the union of v with its neighbours. A subset

K ⊆ V is called complete if every pair of vertices are adjacent. Define a clique of

g as a maximal complete subgraph of g. By maximal we mean that a clique is not

contained in a larger complete subgraph.

For any sequence B1, . . . Bk of subsets of V , define the histories of the sequence

as the sets Hj = ∪j
i=1Bi for j = 1, . . . , k. Similarly define the separators of the

sequence as Sj = Bj ∩ Hj−1 for j = 2, . . . , k and the residuals of the sequence as

Rj = Bj\Hj−1 for j = 2, . . . , k.

We say that the sequence {B1, . . . Bk} satisfies the running intersection property

if for all i > 1 there is a j < i such that Si ⊆ Bj . The sequence is called perfect

if it satisfies the running intersection property, and all the sets Si, i = 2, . . . , k are

10

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

complete. Section 2.4 shows that when V is the index set for a random vector XV ,

the existence of a perfect sequence of sets makes it easy to find a representation of

the likelihood in terms of low dimensional factors.

A numbering v1, . . . , vp of the vertices V of g = (V, E) is called a perfect numbering

if Bj = [v] ∩ {v1, . . . , vj} is a perfect sequence. (In this case B1, . . . , Bk are all

complete, by definition.) We will see in Section 3.5 that this numbering can be

found recursively in an algorithmic process that aborts if there exists no perfect

sequence of complete sets. On the other hand, if the numbering does exist, it can be

used to find the perfect sequence. Hence perfect numberings are critical in finding

representations of the likelihood in terms of low dimensional factors that facilitate

posterior statistical inference.

Note that we follow the conventions of Lauritzen (1996), where sequences of

individual set elements are perfect numberings, and the associated sequences of sets

are perfect sequences.

Let g be a graph having p vertices labelled v1, . . . , vp. Then the adjacency matrix

G of g is the p × p matrix whose ij entry Gij = 1 if e = (vi, vj) ∈ E, and Gij = 0

otherwise. It is assumed throughout that all graphs are simple, so the diagonal

elements Gii are all zero. A path of length k in g from a to b is an alternating

sequence of its k − 1 vertices and k edges of the form v0, e1, v1, e2, . . . , ek, vk, where

vertices vi−1 and vi are endpoints of edge ei for each i, and all the vertices are distinct.

Since an edge is uniquely characterised by its endpoints, we may denote paths by

the sequence of vertices only. The path matrix of a graph g is the adjacency matrix

of the transitive closure of g. That is, the path matrix G′ of g satisfies G′
ij = 1 if

and only if there is a path of any length from vi to vj in g, and G′
ij = 0 otherwise.

Define the distance between vertices u and v in a graph g as the length of the

shortest path between them, denoted dg(u, v). Any pair of vertices joined by a path

are connected. If all vertices are connected then g is said to be connected. Otherwise

g will consist of connected components which are maximal connected subgraphs of

g.

Refer to the graph in Figure 3.3 as g5. In g5, vertices 1 and 6 are adjacent, as are

vertices 6 and 4. These characterise the edges e1 = (1, 6) and e2 = (6, 4) respectively.

Vertices 1 and 4 are not adjacent, but there is a path between them. There is a path

between every pair of vertices in g5. Hence g5 is connected and consists of a single

11

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

connected component. However, the graph we shall refer to as g26, depicted in

Figure 2.9, is not connected, and consists of 3 connected components.

For any two vertices a, b, we say that a subset S is an (a,b)-separator, or that S

separates a and b, if every path between a and b includes at least one vertex s ∈ S.

Write a
g

⊥b|S for this, and omit g when the context is clear. Similarly, write A
g

⊥B|S
and say that S separates the sets A and B if for every vertex pair a ∈ A and b ∈ B,

each path connecting a and b includes at least one element of S.

Any path that begins and ends at the same vertex (but in which every other

vertex is distinct) is called a cycle. If the cycle involves n distinct edges then it is

called an n-cycle. A tree is a connected graph that has no cycles. A forest is a graph

(connected or not connected) that has no cycles. Define a chord of a cycle as a pair

of vertices that are not consecutive on the cycle, but which are adjacent in g. We

say that a graph is chordal if every n-cycle, n ≥ 4, has at least one chord.

Define a decomposition of g = (V, E) as a pair (A, B) of subsets of V such that

V = A ∪ B, A ∩ B is complete, and A ∩ B separates A from B. We say (A, B)

decomposes g into the induced component subgraphs gA and gB. Define a proper

decomposition as one in which both A and B are proper subsets of V .

We say that a graph g is decomposable if it is complete, or if there exists a proper

decomposition (A, B) into decomposable subgraphs gA and gB. (pp. 1310-11, Dawid

& Lauritzen (1993)).

An important advantage of decomposable over nondecomposable graphs is that

their vertices can be arranged in a perfect numbering, or, equivalently, their cliques

can be arranged in a perfect sequence. This is summarised in the proposition given

below. This is an advantage because perfect numberings and sequences are easy to

determine using algorithmic procedures, as illustrated in Section 3.5.3 and will be

shown to be very useful for calculations in subsequent sections.

Proposition 2.2.1 (Lauritzen, 1996,p.18). The following conditions are equivalent

for an undirected graph g:

1. the vertices of g admit a perfect numbering;

2. the cliques of g can be numbered to give a perfect sequence;

3. the graph g is decomposable.

12

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

A second advantage of decomposable models is that decomposability is equivalent

to chordality (see Leimer (1989)). This is an advantage because chordality is easy

to determine using algorithmic procedures, as illustrated in Chapter 3.

2.3 Statistical graphical models

Let XV be a random vector whose elements are indexed by the finite set V , with

p = |V | the number of elements of V . Let pV (xV) be the joint density of XV and PV

the associated probability distribution. If XV is Gaussian we write XV ∼ N|V |(μ, Σ)

and let Ω = Σ−1 throughout.

For any A ⊂ V , let XA be the subvector (Xa : a ∈ A) of XV and let pA(xA) be

its density. If R, S ⊆ V and A = R∪ S, then XA = XR∪S is referred to as the union

of random vectors XR and XS, and we write XA = XR ∪ XS. We say it is a disjoint

union if A = R ∪ S is a disjoint union.

We use the following notation of Dawid (1979), which has become standard.

Let A, B, C be any subsets of V . For random subvectors XA, XB, XC of XV we

write XA⊥⊥XB|XC [PV] if XA and XB are independent conditional on XC . We

write ⊥⊥{XA, XB, XC} [PV] to indicate the mutual independence of all three, and

XA⊥⊥XB [PV] for the marginal independence. Indication of the distribution [PV] is

omitted when it is clear from the context.

We call a random vector XA complete if there are no independencies or conditional

independencies between any of the random variables comprising XA, and say that it

is maximally complete if it is not a proper subvector of any complete random vector.

For any g = (V, E), a statistical graphical model g is a family of distributions for

the collection of random variables XV = (Xv)v∈V indexed by the elements of V and

taking values in probability spaces XV = (Xv)v∈V , where each member of the family

satisfies XA⊥⊥XB|XD for every triple A, B, D ⊆ V such that A
g

⊥B|D. Thus g is

a representation of the structure of independencies satisfied by every member of g.

A Gaussian graphical model is a graphical statistical model in which every member

is Gaussian. It is clear that the graphical condition of separation in an undirected

graph cannot represent any distribution in which there are induced dependencies,

so graphical statistical models cannot be used to represent all distributions. For

example, if PV ∈ g for the graph depicted in Figure 3.7, then Xb⊥⊥Xj |Xc, and

13

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

Xb⊥⊥Xj |Xc, XU for any subset of variables U .

A probability measure P on XV is said to be globally Markov, or to obey the global

Markov property, relative to g, if XA⊥⊥XB|XD for any triple of subsets A, B, D such

that A
g

⊥B|D. A density pV is similarly defined as globally Markov, or to obey the

global Markov property, relative to g, if its associated measure is globally Markov. If

D is null, then XA⊥⊥XB|XD means that XA and XB are independent. This is equiv-

alent to A
g

⊥B|D which means that A and B are not connected, so disconnectedness

defines independence in a statistical graphical model.

If XV is Gaussian, define the graph g(Ω) as having vertices V , with the edge

set E = (u, v) ⊂ V × V such that u �= v and Ωu,v �= 0. It is well known

(e.g. Proposition 5.2, p. 129, Lauritzen (1996)) that Ωu,v = 0 if and only if Xu⊥⊥Xv|XV \{u,v}.

The next proposition shows that for a Gaussian model, PV is globally Markov with

respect to g(Ω).

Proposition 2.3.1 (Proposition 2, Speed & Kiiveri (1986)). Let g = (V, E) be an

undirected graph with vertex set V indexing the Gaussian random variables XV ∼
N|V |(μ, Σ). Let Ω = (Σ)−1. Then the following are equivalent.

(i) Ωαβ = 0 if (α, β) /∈ E and α �= β;

(ii) for every v ∈ V , Xv⊥⊥XV \v|Xnbrs(v); and

(iii) XA⊥⊥XB|XD for any triple of subsets A, B, D such that A
g

⊥B|D.

2.4 Decomposable statistical graphical models

This section defines a decomposable statistical graphical model and shows that for

such a model, the density of XV is a product of lower dimensional clique depen-

dent densities. This allows for efficient inference. Furthermore, the cliques are easy

to determine (see Section 3.5.3), and so decomposable models simplify statistical

computations.

Deriving a model for pV based on a set of observations (data), is facilitated when

the likelihood can be represented as a product pV (xV) =
∏

B∈B p(xB|xSB
), B, S ⊂

V of low dimensional factors p(xB|xSB
), such that

∑
B∈B |SB| is minimal amongst

14

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

all factorisations of pV (xV), and V = ∪B∈BB is a disjoint union. We call such a

factorisation a minimal factorisation, if it exists.

The next lemma summarises an important advantage of decomposable models:

that finding a low dimensional factorisation is equivalent to finding a perfect sequence

of cliques (which is computationally simple, as explained in Section 3.5.3).

Lemma 2.4.1 Let g = (V, E) be a decomposable graph with perfect sequence of

cliques {C1, . . . , Ck}, separators Si = Ci ∩ Hi, and residuals Ri = Ci\Hi−1. Then

any density p that is globally Markov with respect to g factorises according to g as

p(xV) =

k∏
i=1

p(xRi
|xSi

)p(xC1). (2.1)

Proof. By Lemma 2.10.1 (in the appendix to this chapter), XRi+1
⊥⊥XHi\Si+1

|XSi+1
[PV].

Thus,

pV (xHi+1
) = pV (xHi+1\Hi

|xHi
)pV (xHi

)

= pV (xRi+1
|xHi

)pV (xHi
)

= pV (xRi+1
|xHi\Si+1

, xSi+1
)pV (xHi

)

= pV (xRi+1
|xSi+1

)pV (xHi
) since XRi+1

⊥⊥XHi\Si+1
|XSi+1

[PV]. (2.2)

As p(xH1) = p(xC1), the proof is obtained by induction and that Lemma 2.10.1

guarantees all independences hold in PV , not just PHi+1
.

We can use Lemma 2.4.1 to derive the well known result that expresses pV in

terms of its clique and separator marginals. We use this lemma throughout for

Bayesian inference.

Lemma 2.4.2 (Equation (5.44), p. 144, Lauritzen (1996)). Let pV be a joint den-

sity which is globally Markov with respect to decomposable g = (V, E). Let C and S be

the cliques and separators of g, with corresponding marginal densities {pC : C ∈ C}
and {pS : S ∈ S}, respectively.

Then pV factorises

pV (xV) =

∏
C∈C pC(xC)∏
S∈S pS(xS)

. (2.3)

15

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

Proof. By definition, Ci = Ri ∪ Si, and so p(xRi
|xSi

) = p(xRi∪Si
)/p(xSi

) =

p(xCi
)/p(xSi

). Substituting p(xCi
)/p(xSi

) for p(xRi
|xSi

) in (2.1) gives the result.

We remark that the equivalence of these two factorisations is also given by the

uniqueness of the distribution in Lemma 2.6.4, together with Proposition 2.6.1 and

Proposition 2.6.2.

2.5 Calculating a g-constrained covariance matrix

This section discusses the theory necessary to find a decomposable version of any pos-

itive definite matrix. This allows us to define decomposable subfamilies of Gaussian

distributions.

Given any positive definite matrix Σ and decomposable graph g with adjacency

matrix G, we require a positive definite matrix Σ|g such that (Σ|g)ij = Σij if Gij = 1

or i = j, and (Σ|g)−1
ij = 0 if Gij = 0. Note that the entries (Σ|g)ij for which Gij = 0

are left undefined by this requirement. If such a Σ|g is uniquely defined by the

requirement, then we say it is the g-constrained version of Σ.

Theorem 1 of Speed & Kiiveri (1986) asserts the existence and uniqueness of Σ|g.

(Existence and uniqueness also follows from the result of Grone et al. (1984) on the

existence and uniqueness of the positive completion.) We introduce the following

notation. Define the complementary graph of g = (V, E) as g̃ = (V, Ẽ) where Ẽ =

(V × V)\E has the property that (u, v) ∈ Ẽ if and only if u �= v and (u, v) /∈ E.

Denote by C̃ a set of cliques of g̃.

Theorem 2.5.1 (Speed & Kiiveri, 1986,Theorem 1) Given positive definite matrices

L and M defined on the vertices V of a graph g = (V, E), there exists a unique positive

definite matrix K such that

1. Kuv = Luv if (u, v) ∈ E or u = v.

2. (K)−1
uv = Muv if (u, v) /∈ E and u �= v.

Equivalently,

1. KC = LC if C ∈ C.

16

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

2. For any C̃ ∈ C̃, (K)−1

C̃,C̃
and MC̃,C̃ agree except on the diagonals.

Setting K = Σ|g, L = Σ and M = G in Theorem 2.5.1 gives a natural param-

eterisation of g so that g can be associated with a full covariance Σ. So, in the

zero mean Gaussian case, in which the covariance defines the distribution, g can be

associated with a full distribution, not just its conditional independencies. That is,

every covariance has a uniquely defined g-constrained version with the same entries

on the edge set of g, and with an inverse that has the same zero pattern as G except

on the diagonals.

Any decomposable graph g can be used as the basis of an efficient algorithm for

computing Σ|g as follows. Let M+(g) be the set of |V | × |V | symmetric positive

matrices Ω satisfying Ωuv = 0 for all u � v in g. For any submatrix ΩAB of Ω on the

vertices in A, B ⊂ V denote by [ΩAB]V the |V |× |V | matrix whose remaining entries

are zero. That is, [ΩAB]VAB = ΩAB and [ΩAB]Vuv = 0 for all u /∈ A, v /∈ B.

Lemma 2.5.2 (Lauritzen, 1996,Lemma 5.5, p. 136) Let Ω ∈ M+(g), and let

(A, B, C) be a disjoint partitioning of g with C separating A from B. Then

Ω = [ΩA∪C]V + [ΩB∪C]V − [ΩC]V (2.4)

and for any symmetric |V | × |V | matrix L we have

tr(ΩL) = tr(ΩA∪CLA∪C) + tr(ΩB∪CLB∪C) − tr(ΩCLC). (2.5)

If Ω is invertible and Σ = Ω−1 then

Ω =
[
(ΣA∪C)−1

]V
+

[
(ΣB∪C)−1

]V −
[
(ΣC)−1

]V
(2.6)

and the determinant satisfies

det(Ω) = det((ΣC))/det(ΣA∪C)det(ΣB∪C). (2.7)

Repeated use of Lemma 2.5.2 gives Ω = (Σ|g)−1 as follows:

Ω =
∑
C∈C

[ΩCC]V −
∑
S∈S

[ΩSS]V (2.8)

=
∑
C∈C

[
(ΣCC)−1

]V −
∑
S∈S

[
(ΣSS)−1

]V
, (2.9)

17

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

where the sum over the separators includes each possibly nondistinct Si = Ci∩Hi−1.

The maximum likelihood estimate of Ω for decomposable covariance selection

models is given by an analogous repeated use of Proposition 5.6, Equation 5.29, p.

138, Lauritzen (1996):

Ω =
∑
C∈C

[
((Sy)CC)−1

]V −
∑
S∈S

[
((Sy)SS)−1

]V
. (2.10)

where the sum over the separators again includes each possibly nondistinct Si =

Ci ∩ Hi−1, and Sy =
∑n

t=1(yt − y)(yt − y)′.

If g is not decomposable, then Σ|g can not be found efficiently (see p. 134,

Lauritzen (1996)).

2.6 Constructing multivariate distributions from

decomposable graphs

This section shows that for any decomposable graph, it is possible to define compli-

cated statistical models from simpler clique dependent distributions. Furthermore,

these distributions are completely characterised by the clique dependent distribu-

tions.

Because zero mean Gaussian measures are completely specified by the covariance

matrix, specifying clique marginal submatrices of the covariance matrix is equiva-

lent to specifying clique marginal densities pCi
. Thus Theorem 2.5.1 in Section 2.5

characterises the Gaussian graphical model g of Gaussian statistical measures in

terms of the consistent clique marginal densities pCi
corresponding to the subma-

trices ΣCi,Ci
. This is a surprising result, as it leaves unspecified the entries Σu,v for

which (u, v) /∈ E. This property of the hyper inverse Wishart is explained in more

detail in Section 4.2.

We begin with some necessary definitions. A probability measure P on X is

said to be pairwise Markov, or to obey the pairwise Markov property, relative to any

graph g, if for any pair u, v of nonadjacent vertices Xu⊥⊥Xv|V \{u, v}.
A probability measure P on X is said to be locally Markov, or to obey the local

Markov property, relative to g, if for every v ∈ V , Xv⊥⊥XV \[v]|Xnbrs(v).

18

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

A distribution P on V is called Markov over g if XA⊥⊥XB|(XA∩B) for any de-

composition (A, B) of g.

Two distributions Q over XA and R over XB are consistent if they both yield

the same distribution over XA ∩ XB.

A probability measure P on XV is said to factorise according to g = (V, E) if for

all complete subsets A ⊆ V there exist non-negative functions ψA that depend on xV

through xA only, and there exists a product measure μ =
⊗

v∈V μv on XV , such that

P has density f with respect to μ where f has the form f(xV) =
∏

A complete ψA(xV)

The next two propositions show that globally Markov distributions over g are

exactly the distributions that factorise according to g. Thus every member of a

statistical graphical model g will factorise according to g.

Proposition 2.6.1 (Hammersley & Clifford (1971)) A probability distribution P

with positive and continuous density f with respect to a product measure μ satisfies

the pairwise Markov property with respect to an undirected graph g if and only if it

factorises according to g.

Proposition 2.6.2 (Proposition 3.8, p. 35, Lauritzen (1996)). For any undirected

graph g = (V, E) and any probability distribution P on XV , if P factorises according

to g, then P is globally Markov with respect to g, which implies the local Markov

property, which implies the pairwise Markov property.

The next lemma guarantees that a globally Markov distribution can be con-

structed recursively from a set of consistent distributions. Hence decomposable

graphical models are completely characterised by sets of consistent clique marginal

distributions, and provide a powerful tool for specifying complex multivariate distri-

butions from a set of simple component distributions on the cliques.

Lemma 2.6.3 (Lemma 2.5, p. 1277, Dawid & Lauritzen (1993)). If distributions

Q over XA and R over XB are consistent, then there exists a unique distribution P

over XA∪B such that PA = Q, PB = R, and XA⊥⊥XB|XA∩B [P].

We now illustrate the construction based on Lemma 2.6.3. Following Dawid &

Lauritzen (1993), define the Markov combination P of consistent distributions Q over

XA and R over XB as the unique distribution over XA∪B such that PA = Q, PB = R,

and XA⊥⊥XB|XA∩B [P] . We write P = Q � R.

19

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

Let P = Q � R be the Markov combination of Q and R over XA∪B with density

p. Then using the rules of probability we have

pA∪B(xA∪B) = p(xA∪B|xA∩B)p(xA∩B)

= p(xA|xA∩B)p(xB|xA∩B) since XA⊥⊥XB|XA∩B

=
p(xA, xA∩B)

p(xA∩B)

p(xB, xA∩B)p(xA∩B)

p(xA∩B)
by definition of conditional densities

=
pA(xA)pB(xB)

pA∩B(xA∩B)
since A ∩ B ⊆ A and A ∩ B ⊆ B. (2.11)

Since P = Q � R, then if Q, R have densities q, r, respectively, we can substitute

these into the above and get

p(xA∪B) =
q(xA)r(xB)

pA∩B(xA∩B)

=
q(xA)r(xB)

qA∩B(xA∩B)

=
q(xA)r(xB)

rA∩B(xA∩B)
, (2.12)

since by consistency, all densities agree on xA∩B.

We now illustrate how to generalise this procedure to construct globally Markov

distributions from any set of pairwise consistent smaller dimensional distributions,

so long as the sample spaces {XAi
: i = 1, . . . , k} of the consistent distributions

{PAi
: i = 1, . . . , k} can be ordered in such a way that for every i > 1, there

exists a j < i such that XAi∩(∪i−1
t=1At)

= XAi∩Aj
. It is self evident that when the

marginal specifications of PV are consistent, then only those for maximal subsets

(i.e. cliques) are required. Hence the above condition on the sample spaces is exactly

the condition that guarantees the existence of a perfect sequence of the Ai. That is

(by Proposition 2.2.1), that the Ai are simply the cliques of a decomposable graph.

Let g = (V, E) be a decomposable graph. Let C = {C1, . . . , Ck} be a perfect

sequence of cliques of g with separators S = {S2, . . . , Sk}. Assume that PV is

globally Markov with respect to g, and has a pair of consistent marginal densities

pC1 , pC2 . Then

pC2∪C1(xC2∪C1) = pC2(xC2)pC1(xC1)/pC2∩C1(xC2∩C1) by (2.12)

= pC2(xC2)pC1(xC1)/pS2(xS2). (2.13)

20

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

Since g is decomposable, for every i > 1, each Si ∈ S can be written as Si = Ci ∩Cj

for some j < i. This fact together with (2.13) motivates the following construction.

Let Q = {QCi
: 1 ≤ i ≤ k} be any set of pairwise consistent clique distributions,

where each QCi
is a distribution of XCi

with associated density qCi
. Define PH1 =

QH1 = QC1 , PH2 = PC1∪C2 = PH1 � QC2 , and use the obvious notation for associated

densities. Since elements of Q are pairwise consistent, qC1(xC1∩C2) = qC2(xC1∩C2).

Since H1 = C1, and S2 = H1 ∩ C2, then qH1(xH1∩C2) = qC2(xH1∩C2). Therefore we

have

pH2(xH2) = pH1(xH1)qC2(xC2)/qH1∩C2(xH1∩C2)

= qC1(xC1)qC2(xC2)/qS2(xS2). (2.14)

Similarly define PH3 = PC1∪C2∪C3 = PH2 � QC3 . Again, by consistency and the

fact that Si ⊂ Cj for some j < i, it follows that

pH3(xH3) = pH2(xH2)qC3(xC3)/qS3(xS3) by (2.14)

= qC1(xC1)qC2(xC2)qC3(xC3)/qS2(xS2)qS3(xS3). (2.15)

Giving one more explicit example we have PH4 = PH3 � QC4 , and so

pH4(xH4) = pH3(xH3)qC4(xC4)/qS4(xS4) by (2.15)

= qC1(xC1)qC2(xC2)qC3(xC3)qC4(xC4)/qS2(xS2)qS3(xS3). (2.16)

In general, since Si = Hi−1 ∩ Ci = Cj ∩ Ci for some j < i, and qCj
(Cj ∩ Ci) =

qCi
(Cj ∩Ci) by consistency, we can recursively define PHi+1

= PHi
� QCi+1

. This pro-

cess can be continued to obtain pV (xV) = pHk
(xV) =

∏k
i=1 qCi

(xCi
)/

∏k
i=2 qSi

(xSi
).

This process can clearly be used to construct a decomposable globally Markov

distribution QV from any set of consistent clique distributions Q. On the other hand,

because the marginal distributions of a joint distribution must be consistent, then for

every member P of a decomposable statistical graphical model g, the clique marginal

distributions PCi
, i = 1, . . . , k are a set of pairwise consistent clique marginals. That

is, every decomposable globally Markov distribution can be constructed from some

set Q.

Suppose the above procedure is well defined. Then, since every member of g

can be obtained from some set Q, then any member of a statistical family g can be

21

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

characterised by its clique marginal distributions, which must be consistent as they

are the marginals of the joint pV . On the other hand, sets of pairwise consistent clique

distributions of complete random variables XCi
can be used as ‘building blocks’ to

construct complex larger dimensional distributions, and these distributions will be

characterised by the smaller dimensional PCi
.

The next lemma guarantees that the procedure is well defined. Thus every

Markov (or hyper Markov) distribution is the recursive Markov combination of a

set of consistent clique marginal distributions for a perfect sequence of cliques of

some decomposable graph.

Lemma 2.6.4 (Theorem 2.6, p. 1278, Dawid & Lauritzen (1993)). Let C and S be

the cliques and separators of a decomposable graph g = (V, E). Let {PC : C ∈ C} be

a set of consistent clique distributions, with corresponding densities {pC : C ∈ C}.
Then the joint density p given by

p(x) =

∏
C∈C pC(xC)∏
S∈S pS(xS)

(2.17)

is the density of the unique Markov distribution over g having the given consistent

distributions as its clique marginals.

2.7 Applicability of decomposable models

Using the graphical concept of separation to represent conditional independencies is

a valid methodology for inference in any Markov distribution. Therefore the theory

of graphs can be applied whenever it is reasonable to assume that a statistical graph-

ical model (i.e. a set of globally Markov distributions) is a subset of the family of

distributions that you want to model. Dawid & Lauritzen (1993) construct a range

of decomposable Markov subfamily distributions, and give them the prefix ‘hyper’

to denote that they occur as distributions over the parameters of their respective

sampling distributions, when it is assumed that the sampling distributions them-

selves are a decomposable Markov family. For example, they construct the hyper

multinomial as the distribution of n times the maximum likelihood estimator of the

parameter p = p1, . . . , pk in the multinomial decomposable sampling distribution

for θ ∼ Multinomial(n, p); the hyper Wishart as the distribution of the maximum

22

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

likelihood estimate of the parameter Σ in the Gaussian decomposable sampling dis-

tribution for y ∼ N(0, Σ); and the hyper inverse Wishart as the conjugate prior

distribution for Σ for the same likeihood y ∼ N(0, Σ). These occur in connection

with the analysis of log-linear and covariance selection models for the case when the

data are assumed to come from a decomposable distribution.

Chapter 4 considers in detail the hyper Wishart and hyper inverse Wishart dis-

tributions and their application in Bayesian covariance selection models. Their use

in posterior inference using MCMC and efficient estimation of E(Ω|y) is analysed

in Section 4.8. Section 4.14, Section 5.4 and Section 6.4 give empirical justification

for the use of Gaussian decomposable graphical models in covariance selection and

general multivariate regression. Based on the simulation evidence reported in this

thesis, and the evidence of the datasets considered in Chapters 5 and 6, the decom-

posable methodology performs comparably to the more general methodologies, even

if the actual sampling distribution is not decomposable. In particular, even though

the space of decomposable graphs is increasingly sparse with p, (see in Lemma 8.3.1),

in the simulations presented in Chapter 4.14, the decomposable covariance estimate

appears to be just as ‘close’ to the true value as the estimate obtained by the more

general methodology. It appears that there could be a decomposable distribution suf-

ficiently close to any nondecomposable distribution, and so a decomposable estimate

of the covariance may be almost as close to the true value as a nondecomposable

estimate, even when the true covariance is not decomposable.

2.8 Using the graphical structure for inference

This section illustrates how to use graph-theoretic concepts to determine whether

a minimal factorisation exists. It is the recursive characterisation of V in terms

of the sequence Ai, i = 1, . . . , k and the condition that XRi+1
⊥⊥XHi\Si+1

|XSi+1
that

guarantees the existence of the minimal factorisation, and which makes sequential

sampling schemes possible. This recursive characterisation of V is equivalent to the

requirement that there exists a perfect sequence of subsets of V . By definition, the

index sets Ai of the complete maximal vectors XAi
are exactly the cliques of g(Ω).

So if PV is globally Markov with respect to g(Ω), and g(Ω) is decomposable, then a

minimal factorisation exists and we can find the factorisation by finding the cliques

23

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

of g(Ω).

For any matrix M , denote by MA,B the submatrix MA,B of M defined as MA,B =

(Ma,b : a ∈ A, b ∈ B). We write MA,B = [0] to denote that Ma,b = 0 for all

(a, b) ∈ A × B. Define MA,B to be full if Ma,b �= 0 for all (a, b) ∈ A × B. For

A, B ⊂ V , the covariance matrix of XA and XB is therefore given by ΣA,B.

The subvectors XRi
, XSi

are complete because the vectors XAi
are complete.

Hence the corresponding submatrices ΩAi,Ai
, ΩRi,Ri

, ΩSi,Si
are full. The equivalence

of (i) and (iii) in Proposition 2.3.1 asserts that ΩRi,Hi−1\Si
= [0] . Hence the recursive

definitions Ri = Ai\Hi−1 and Si = Ai ∩ (∪i−1
k=1Ak) can be used to define an ordering

C1, R2, . . . , Rk of the index set V which results in Ω having the structure illustrated

in Figure 2.1.

<.......Omega_H3\S4,R4.......>

<Omega_H2\S3, R3><....Omega_H2\S3,R4.....>

S1 = empty set

S2

C2 = R2 U S2

S3

C3 = R3 U S3

S4

C4 = R4 U S4

C1 = R1, <........Omega_H1\S2,R2............><Omega_H1\S2,R3><.....Omega_H1\S2,R4....>

Figure 2.1: Inverse covariance for a decomposable distribution

Ω is diagonal in the special case where Xv, v ∈ V are mutually independent. This

case is referred to as marginal mutual independence and it is obvious from Ω that a

minimal factorisation exists, and the form of the minimal factorisation. This is not

true of the more general cases. First consider the next most general case where XV

can be written as a disjoint union of maximally complete XAi
, i = 1, . . . , k which are

mutually independent of each other, and call this case disjoint block independence. If

the variables are ordered correctly, then disjoint block independence can be inferred

from the inverse covariance. But if the ordering is not correct, then this is not

true. This is illustrated by comparing greyscale representations of generic inverse

24

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

covariances, where the greyscale is created by putting a white square in the ijth

position of the figure if Ωij = 0 or i = j, and a black square otherwise. A white

square is used for i = j so that the greyscale of Ω is identical to the greyscale of the

adjacency matrix of g(Ω).

Figure 2.3 makes disjoint block independence obvious. Figure 2.2 is the greyscale

of the same inverse covariance but now the variable ordering is permuted: in this

figure neither the required ordering nor the subsets of variables is obvious. The pic-

torial representation is independent of variable ordering when labels on the vertices

are ignored. Figures 2.5 and 2.4 give the pictorial representations of Figure 2.3 and

Figure 2.2 respectively. They are identical if the labels showing the ordering of the

index set in the corresponding greyscales are deleted.

The argument is made stronger by considering distributions which do not satisfy

marginal mutual or disjoint block independence. In Figure 2.7 it is arguably discern-

able from Ω that the distribution is decomposable, but here the vertices of the index

set are ordered correctly. Figure 2.6 is the greyscale of the same inverse covariance,

but now the variable ordering has been permuted: in this figure neither the required

ordering nor the subsets Ai are obvious. On the other hand, the structure of the

pictorial representation is independent of ordering. Figures 2.9 and 2.8 are the pic-

torial representations of Figure 2.7 and Figure 2.6 respectively. They are identical

if the labels showing the ordering of the vertices in the corresponding greyscales are

deleted.

The pictorial representation faciliates the inference of when decomposability holds,

which is not true of the inverse covariance. The greyscale in Figure 2.10 is nondecom-

posable. It is obtained by adding a single illegal edge to the decomposable greyscale

given in Figure 2.6. It is very difficult to distinguish these greyscales at a glance.

Figure 2.11 is the nondecomposable graph of Figure 2.8 obtained by adding the same

single illegal edge. It is very easy to distinguish these pictorial representations at a

glance, and in particular, to determine the illegal 7-cycle in Figure 2.11.

25

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

Greyscale of decomposable g16
case2

 with iota variable numbering

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 2.2: 16-dimensional example of block independence, a special case of Sundberg’s criterion.
A perfect numbering of variables exists, but the order of the sequence of variables chosen for the
covariance is not a perfect numbering.

Greyscale of decomposable g16
case2

 with perfect variable numbering

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 2.3: The same inverse covariance as Figure 2.2, but with the covariance ordering chosen to
match a perfect numbering.

26

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

1 2

6

11

3
5

8

9

12
13

16

4

7

10

14

15

Figure 2.4: 16-dimensional pictorial representation of Figure 2.2

1

2

3

4

5

6

7

8

9
10

11

12

1314

1516

Figure 2.5: 16-dimensional pictorial representation of Figure 2.3

27

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

Greyscale of decomposable g26
compound

 with iota variable numbering

5 10 15 20 25

5

10

15

20

25

Figure 2.6: 26-dimensional Sundberg’s criterion example where a perfect numbering of variables
exists, but the order of the sequence of variables chosen for the covariance is not a perfect numbering.

Greyscale of decomposable g26
compound

 with perfect variable numbering

5 10 15 20 25

5

10

15

20

25

Figure 2.7: The same inverse covariance as Figure 2.6, but with the covariance ordering chosen to
match a perfect numbering.

28

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

1

24

26

2

6

18

7

10

3

11

13

23

4

9

21
5

12

19

8

17

20

22

25

14

16

15

Figure 2.8: 26-dimensional pictorial representation of Figure 2.6

1 2

3

4
5

6

7

10

11

8

9

12

13

14

15

16

17

18
19

20

21

22

23
24

25

26

Figure 2.9: 26-dimensional pictorial representation of Figure 2.7

29

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

Greyscale of nondecomposable g26
nondec

 reordered as iota

5 10 15 20 25

5

10

15

20

25

Figure 2.10: Greyscale of nondecomposable graph got by adding a single illegal edge

1

24
26

2

6

18

7

10

3

11

13

23

4

9

21

512

19

8

15

17

20

25

22

14

16

Figure 2.11: Pictorial representation of same nondecomposable graph as Figure 2.10

30

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

2.9 Historical motivation for decomposable distri-

butions and Sundberg’s criteria

The aim is find a minimal factorisation of pV . If there exists a triple A1, A2, S of

disjoint subsets of V with union V such that XA1⊥⊥XA2 |XS, then pV can be factorised

as

pV (xV) = p(xA1 |xA2 , xS)p(xA2 |xS)p(xS)

= p(xA1 |xS)p(xA2 |xS)p(xS) since XA1⊥⊥XA2|XS. (2.18)

If no such triple exists, then the following characterisation is a more general recursive

‘decomposition’ of the index set V into sets Ai, i = 1, . . . , k, with consequent minimal

factorisation of pV . We call this characterisation Sundberg’s criterion, to acknowledge

that it is equivalent to the criterion of decomposability given by Sundberg (1975).

Sundberg’s criterion There exists an ordered sequence of maximally complete

subvectors XA1 , . . . , XAk
with union XV , such that each XAi

can be written as a

disjoint union of ‘new’ elements XRi
, Ri � Aj , j < i and ‘old’ elements XSi

, Si ⊂
Aj , j < i, and for every i > 1, XRi

⊥⊥X(∪i−1
t=1At)\Si

|XSi
.�

We say that any distribution satisfying Sundberg’s criterion is decomposable.

If we let Hi−1 = ∪i−1
t=1At, then Si = Ai ∩ Hi−1 and Ri = Ai\Hi−1. Since Si ⊂ Aj ,

then Si = Ai ∩ Aj . Hence XRi
⊥⊥XHi−1\Si

|XSi
, and the ‘new’, or ‘residual’ random

variables in the subvector XRi
of XAi

can be made independent of the total ‘history’

of random variables in XHi−1
by conditioning on XSi

for Si = Ai ∩ Hi−1.

Thus Sundberg’s criterion leads to a minimal factorisation. If the Ai are all

disjoint and ⊥⊥{XA1 , . . . , XAk
} [PV] , then we have the special case where every con-

ditioning set xS in the factorisation is empty. The Bayesian methodology for sequen-

tially generating the random variables in XV in an MCMC scheme that minimises

the conditioning required at each step is obvious from the above factorisation. First

sample XH1 = XA1. Continue to sample each XRi+1
conditional on the previously

generated values xSi+1
of XSi+1

. The values xSi+1
are known because Si+1 ⊂ Hi

and the values xHi
have already been sampled. This scheme maximises the num-

ber of variables sampled at each step, as each XRi
is the maximal subvector of the

31

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

maximally complete XCi
that has not yet been sampled. Equivalently, the factori-

sation has the fewest possible factors. On the other hand, Section 2.6 shows that

the conditions of Sundberg’s criterion guarantee that a well defined joint distribu-

tion for XV with desirable independence properties can be constructed from any set

{PAi
, i = 1 . . . k} of simple lower-dimensional distributions of the subvectors XAi

that agree on their pairwise common sample spaces.

2.10 Appendix to Chapter 2

The next lemma shows that Ri

g

⊥Hi−1|Si, is true in every decomposable graph. This

is a well known result which is proved here for completeness because the best known

reference (Lauritzen, 1996,Lemma 2.11, p. 15) is for the special case Ri

gHi

⊥Hi−1|Si,

and we need to guarantee separation in g, not just gHi
.

Lemma 2.10.1 Let g = (V, E) be a decomposable graph with perfect sequence of

cliques C1, . . . , Ck. For i ≥ 2, define Ri = Ci\Hi−1 and Si = Ci ∩ Hi−1 where

Hj = ∪j
t=1Ct. Then Ri

g

⊥Hi−1\Si|Si.

Proof. We need to show that every path (r, . . . , h), where r ∈ Ri, h ∈ Hi−1\Si,

includes at least one s ∈ Si, or, equivalently, that r and h are not connected in

gV \Si
. Without loss of generality, assume that (r, . . . , h) is the shortest path in gV \Si

connecting Ri and Hi−1, and note that any shortest path contains at most one edge

from any clique.

We first show that only paths in gHi
need to be considered. Let T be the graph

with vertices C1, . . . , Ck, and with edges obtained by successively choosing for each

i > 2, the smallest j < i for each i such that Si ⊂ Cj and then letting Ci ∼ Cj.

By Proposition 2.8, p. 26, Lauritzen (1996), T is a junction tree and, in particular,

contains no cycles.

If the path (r, . . . , h) includes any vertex v ∈ Ct\Ci, t > i, then T includes a cycle

(Cj, Ci, . . . , Ct, . . . , Cj), contradicting the fact that it is a tree.

So assume that (r, . . . , r′, h′, . . . , h) ∈ gHi
where (r′, h′) ∈ gHi\Si

is an edge be-

tween a vertex r′ ∈ Ri and a vertex h′ ∈ Hi−1\Si. By definition of Ri and Hi−1, then

r /∈ Ct for any t < i and h′ /∈ Ci. We have already ruled out the case that r′, h′ ∈ Ct.

So there is no clique containing the pair r′, h′, hence there is no such edge (r′, h′).

32

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

Therefore the path (r, . . . , r′, h′, . . . , h) does not exist. Hence Si is an (r, h)-separator

of all pairs r ∈ Ri, h ∈ Hi−1\Si and the result is proved.

33

CHAPTER 2. INTRODUCTION TO GAUSSIAN GRAPHICAL . . .

34

Chapter 3

Decomposable graphical models

3.1 Introduction

The pictorial representation of a graphical model enables us to discern independence

and conditional independence properties easily. Chapter 2 shows that the density

of XV can be factored in terms of lower dimensional components to make it more

tractable. This chapter discusses conditions to determine whether a graphical model

is decomposable, and, if so, how to determine the sets required for a minimal factori-

sation. Section 3.3 shows how to transition from one decomposable graph to the next

in such a way that the Markov chain generated is irreducible, and includes some new

results for determining when a decomposable graphical model remains decomposable

when we add an edge. Section 3.5 gives a number of detailed examples to illustrate

the graph-theoretic concepts defined in Section 2.2 and discussed in this chapter.

MATLAB algorithms to implement the graph-theoretic procedures are given in

in Appendix 8.1, and the equivalent FORTRAN code is given in Appendix 8.4. The

code presented in these appendicies is the actual code used to produce the results in

this thesis. A working directory of the same is available upon request.

3.2 Equivalent definitions of decomposable graphs

Leimer (1989) shows that a graph g has no unchorded n-cycles, n ≥ 4, if and only

if it is decomposable. Therefore any distribution which is globally Markov with

respect to g, where g has no unchorded n-cycles, n ≥ 4, is decomposable. We show

35

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

in Section 3.5 that checking for unchorded n-cycles in the pictorial representation is

quite simple, and so provides a valuable methodology for checking decomposability

of g.

Determining decomposability by checking that there are no unchorded n-cycles,

n ≥ 4, is equivalent to the algorithm of Tarjan & Yannakakis (1984) which is com-

monly cited in the literature and is straightforward to program. Furthermore, Tarjan

& Yannakakis (1984) outputs an ordering of the variables which is a perfect num-

bering if the graph is chordal, and aborts otherwise. This perfect numbering can

then be used to find a perfect sequence of cliques and the separators, residuals and

histories of the sequence, as illustrated in Section 3.5.3. Therefore it is the Tarjan

& Yannakakis (1984) algorithm that is used as the basis of the MATLAB algorithm

for checking decomposability that is given in Appendix 8.1.

Graphs which have no unchorded n-cycles, n ≥ 4, are commonly called triangu-

lated, and the result of Leimer (1989) is consequently given as ‘decomposable if and

only if triangulated’. This terminology is misleading as illustrated by Figure 3.3. The

pictorial representation looks ‘triangular’, yet we show in Section 3.5 that it is not

chordal, and therefore not decomposable by Leimer (1989). That is, it is comprised

entirely of 3-edged segments, but it is not triangulated. It is easy to create many

such nondecomposable graphs with a triangular appearance using similar amalga-

mations of 3-edged segments. Therefore we prefer to use the terminology chordal or

decomposable rather than triangulated.

3.3 Legal edge deletion and addition

This section discusses the graph-theoretic concepts required to define an irreducible

Markov chain on the decomposable graph space. Consider the state space g of all

decomposable graphs with vertices V . Let g[1], g[2], . . . be a Markov chain of states

from g where the one step transition from state g[i] to state g[i+1] is conditional on

g[i] and is given by adding or deleting a single edge in g[i] such that the resulting

graph remains decomposable.

We generate the Markov chain of graphs using a Metropolis Hastings Markov

chain Monte Carlo (MH MCMC) algorithm. In order to ensure convergence to

the correct distribution, it is necessary to ensure that the chain is irreducible, and

36

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

that each graph sampled is decomposable. That is, given any graph in the space,

there must be a positive probability of sampling any other decomposable graph.

Lemma 3.3.1 ensures that this chain is irreducible.

Lemma 3.3.1 (Lemma 5, Frydenberg & Lauritzen (1989)) Let g = (V, E) be decom-

posable and let g′ = (V ′, E ′) be a decomposable subgraph of g such that |E/E′| = k.

Then there exists an increasing sequence g′ = g0 ⊂ g1 ⊂ . . . ⊂ gk = g of decomposable

graphs that differ by exactly one edge.

If changing a single edge in a decomposable graph results in a decomposable

graph, the edge change will be called legal. In order to make the transition from g[i]

to another graph within g, we must either test the legality of a given edge change or

else check whether a proposed graph is decomposable. We will see that characterising

legal changes is more computationally efficient than checking that g is decomposable,

and so the characterisation of legal edge changes is fundamental to the Metropolis

Hastings Markov Chain Monte Carlo methodology used in this thesis. Therefore a

number of examples of legal and illegal edge additions are given in Subsection 3.5.3.

These examples illustrate how to check if a given edge change is legal, and make the

proof of Lemma 3.3.4 easier to understand.

Lemma 3.3.2 is a characterisation of legal deletions from a decomposable graph

originally given by Frydenberg & Lauritzen (1989). Lemma 3 on p. 551 of Frydenberg

& Lauritzen (1989) states without proof that the deletion of an edge that is contained

in two or more cliques results in a chordless 4-cycle, and conversely. For completeness,

we prove this.

Lemma 3.3.2 (Frydenberg & Lauritzen, 1989,Lemma 3). Let g = (V, E) be decom-

posable, and e = (a, b). Then g − e is decomposable if and only if e is a member of

only one clique.

Proof. Assume that e = (a, b) ∈ Ci and e ∈ Cj for some pair of cliques with Ci �= Cj.

We must show that there exists an unchorded n-cycle, n ≥ 4 in g−e. Since Ci �= Cj,

there exists x ∈ Ci such that x /∈ Cj. As x /∈ Cj , then by completeness of cliques

there exists at least one y ∈ Cj such that x � y. Consider the cycle (a, x, b, y, a) in

g. Since x � y, we know that (a, b) is the only chord on this cycle. Thus deleting e

results in an unchorded 4-cycle in g − e.

37

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

Now assume that e = (a, b) ∈ C and e /∈ Cj for any Cj �= C. We must show

that every n-cycle, n ≥ 4 in g − e, contains a chord. Let (a, x, . . . , b, . . . , y, a) be any

n-cycle in g − e, n ≥ 4. Since (a, b) is in only one clique C, then C must contain all

the neighbours of a. In particular, both x and y belong to C. Since C is complete,

we have x ∼ y so (x, y) is a chord on this cycle.

Adding edges is harder. Consider a pair of vertices u, v such that u � v. For any

edge e = (u, v) to be an illegal addition to g, an unchorded n-cycle (u, v0, . . . , vk, v, u),

n ≥ 4 must be created by making u and v adjacent in g + e. There must therefore

exist a path (u, v0, . . . , vk, v) in g such that u is not adjacent to any vi, i �= 0, and v

is not adjacent to any vi, i �= k (as any one of these adjacencies creates a chord on

the cycle). This gives the following simple necessary test for legal edge additions:

there must exist a path of length 2 between the vertices.

Lemma 3.3.3 An edge addition (vi, vj) to a connected decomposable graph g is ille-

gal if its adjacency matrix satisfies
∑p

r=1 GirGrj = 0, or equivalently, dg(vi, vj) ≥ 3.

Proof. It is a basic fact in graph theory that if A is a p × p adjacency matrix,

and Ak = (Ak
ij), then Ak

ij =
∑p

r=1 Ak−1
ir Arj equals the number of paths from vertex

vi to vertex vj of length k. (See, for example, Theorem 4.14, p. 223, Kalmanson

(1986).) If
∑p

r=1 GirGrj = 0, there is no length 2 path (vi, v0, vj) including a vertex

v0 adjacent to both vi and vj . That is, dg(vi, vj) ≥ 3. Consider any shortest path

(vi, v0, . . . , vj) in g and consequent shortest cycle (vi, v0, . . . , vj, vi) in g + e. This is

an unchorded n-cycle, n ≥ 4 because any chord would give a shorter path from vi to

vj in g, which is a contradiction.

The graph we refer to as g8 in Figure 3.13 illustrates that Lemma 3.3.3 is not a

sufficient condition for legal additions. There is a length 2 path connecting vertices

7 and 1, but if e = (7, 1) is added, an unchorded 7-cycle (1, 2, 3, 4, 5, 6, 7, 1) results

in g8 + e, so e is an illegal addition.

Lemma 3.3.3 is a useful sufficient test for illegality of an edge addition proposal

in an MCMC sampler. It can be used to decrease the computational effort required

when proposing edge additions to a graph with a relatively large number of edges,

because most decomposable graphs have approximately half the 2p(p−1)/2 total possi-

ble number of edges (see Section 7.5). That is, when the number of edges is relatively

large in comparison to the total possible number of edges, there are relatively fewer

38

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

decomposable than nondecomposable graphs having more edges than the current

graph. So when the current decomposable graph has a relatively large number of

edges, there is a priori more chance of randomly proposing an illegal rather than

legal edge addition.

Lemma 3.3.4 gives a simpler, though equivalent, characterisation of legal addi-

tions to Theorem 2 of Giudici & Green (1999). It can be discerned directly from the

graph without building a junction tree (to be defined in Section 3.4). Lemma 3.3.4

is therefore easier to verify quickly from the pictorial representation than Theorem 2

of Giudici & Green (1999). We also show that Lemma 3.3.4 is easier to program

(inefficiently), and that it can be programmed efficiently.

Lemma 3.3.4 Let g be a decomposable graph in which vertices u, v are not adjacent.

Then e = (u, v) is a legal addition to g if and only if there exists a pair of cliques

Cu, Cv such that u ∈ Cu, v ∈ Cv and their intersection Cu ∩Cv is a (u, v)-separator.

Note that if u and v are in different connected components, then intersections of

Cu ∩Cv = ∅ for every pair Cu, Cv containing u and v respectively. But if u and v are

not connected in g, then they are separated trivially by the empty set. Hence the

characterisation of Lemma 3.3.4 subsumes both the connected and the disconnected

case.

The following is a stand alone proof. Necessity would be made simpler if we

assume Theorem 2, Giudici & Green (1999), since if the Giudici & Green (1999)

Theorem 2 condition holds, then there must exist cliques Cu and Cv such that Cu∩Cv

is a (u, v)-separator. Sufficiency for Lemma 3.3.4 is a lot simpler than for Theorem 2,

Giudici & Green (1999).

Proof. Assume throughout that u � v in g. The disconnected case is trivial: if

there is no path connecting u and v in g, no cycle can be created in g + e by making

u ∼ v, and all intersections are empty. In this case, ∅ is trivially a (u, v)-separator

so the characterisation holds.

In the rest of the chapter we use the notation Cu, Cv to indicate a pair of cliques

of g containing the vertices u, and v respectively.

For g connected, consider 3 cases. Case 1: First assume that there exists

a pair of cliques Cu, Cv such that S = Cu ∩ Cv is a (u, v)-separator. Refer

to Figure 3.1. We need to show that every n-cycle, n ≥ 4, in g + e contains a chord.

39

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

u

s

v

u

w

r

v

Cv

Cu Cu

Cv

Case 1
Case 2

Figure 3.1: Illustration of Case 3

Since S is a separator, every path (u, . . . , v) in g contains at least one s ∈ S. There

are three possibilities:

1. The path is of form (u, . . . , s, . . . , v) with i ≥ 1 vertices between u and s, and

j ≥ 1 vertices between s and v: Since Cu is complete and s ∈ Cu, u ∼ s.

Therefore (u, s) is a chord on the cycle (u, . . . , s, . . . , v, u) in g + e.

2. The path is of form (u, s, . . . , v) with j ≥ 1 vertices between s and v: Cv

is complete and s ∈ Cv, so s ∼ v. Therefore (v, s) is a chord on the cycle

(u, s, . . . , v, u) ∈ (g + e).

3. The path is of the form (u, s, v): Since this path comprises only 3 vertices,

(u, s, v, u) is a 3-cycle.

Hence there are no unchorded n-cycles, n ≥ 4, created by adding the edge (u, v) to

g in this case.

Case 2: Next assume that every pair of cliques Cu, Cv is such that

Cu ∩ Cv = ∅. Refer to Figure 3.1. Consider a shortest path (u, w, . . . r, v) in g. If

dg(u, v) ≥ 3, then there exist w ∼ u and r ∼ v such that (u, w, . . . r, v, u) is an

unchorded n-cycle in g + e. Hence it suffices to show that dg(u, v) ≥ 3. Assume

for a contradiction that dg(u, v) = 2, and consider a shortest path (u, w, v). Since

u ∼ w, there exists a clique Cu containing u and w. Similarly, there exists a clique

Cv containing v and w. Therefore w ∈ (Cu∩Cv) for this pair of cliques, contradicting

the assumption of this case.

40

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

Case 3: Finally assume that there exists a pair of cliques Cu, Cv such

that Cu ∩ Cv �= ∅, but Ci ∩ Cj is not a separator for all pairs of cliques

Ci, Cj such that u ∈ Ci, v ∈ Cj. Let Cu, Cv be any pair of cliques containing u

and v respectively. Let S∗ be a (minimal) (u, v)-separator containing Cu ∩Cv. Such

an S∗ exists because any (u, v)-separator must contain all the common neighbours

of u and v. Since every vertex in Cu is a neighbour of u and similarly for Cv, then

S∗ must contain Cu ∩ Cv for every pair of cliques containing u and v respectively.)

Further, since g is decomposable we know that we can take S∗ to be complete.

Let W = Cu ∩ Cv and consider the graph g − W . There are two possibili-

ties. Either dg−W (u, v) ≥ 3, or dg−W (u, v) = 2 (because e /∈ g, so u � v). If

dg−W (u, v) ≥ 3, then there exists a shortest path from u to v in g − W of the form

(u, a1, . . . , ak, s, b1, . . . , bt, v) where s ∈ S∗\W and either k ≥ 1 or t ≥ 1. Then adding

the edge e = (u, v) gives an unchorded n-cycle, n ≥ 4, in g −W + e. This is also an

unchorded n-cycle in g + e. So we cannot add the edge e in this case.

Otherwise, there is a path from u to v in g−W of length 2. Refer to Figure 3.2. Let

C_u

S*A

u

v

W

C_v

Figure 3.2: Illustration of Case 3

a1, . . . , av be all the common neighbours of u and v in g−W , and let A = {a1, . . . , av}.
We have already argued that S∗ contains all such common neighbours, so A ⊆ S∗.

Since u � v in g, then the vertices in W ∪A must span a complete graph or else there

would exist an unchorded 4-cycle of the form (u, i, v, j, u) for some pair i, j ∈ W ∪A,

contradicting that g is chordal. (That W ∪ A spans a complete graph also follows

since W ⊆ S∗ and the fact that S∗ is complete because g is chordal.) So all elements

of A are joined to each other, all joined to both u and v, and all joined to each

41

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

element in W = Cu ∩Cv. Hence there exists a maximally complete set (i.e. a clique)

Ĉu such that {u} ∪ W ∪ A ⊆ Ĉu. Similarly, there exists a clique Ĉv such that

{v} ∪ W ∪ A ⊆ Ĉv. Further, Ĉu ∩ Ĉv ⊆ S∗ because any vertex z ∈ Ĉu ∩ Ĉv is by

construction a common neighbour of both u and v, and so must be in either W or A.

Note that by construction, |Ĉu∩Ĉv| = |Cu∩Cv|+ |A| > |Cu∩Cv| (and the inequality

is strict). Because of the strict inequality, |S∗\(Ĉu∩ Ĉv)| < |S∗\(Cu∩Cv)|. If we now

choose Ĉu and Ĉv as the pair of cliques to consider, we can repeat this process. By

the decreasing size of the sets |S∗\(Ĉu ∩ Ĉv)|, this process must terminate for some

final pair of cliques Ĉu, Ĉv, with u ∈ Ĉu, v ∈ Ĉv, and Ĉu ∩ Ĉv �= ∅. There are only

two eventual outcomes. Either Ĉu ∩ Ĉv = S∗, which contradicts the assumption in

this case, or dg−(cCu∩cCv)(u, v) ≥ 3, in which case the edge (u, v) cannot be added.

Cases 2 and 3 give necessity of the conditions and the lemma is proved.

It is easy to program Lemma 3.3.4 when equivalently stated in terms of path

matrices, as in Lemma 3.3.6. The program in Section 8.1.13 programs this lemma

naively, and is not as computationally efficient as more sophisticated alternatives.

First, it has the disadvantage of searching over all pairs of cliques that contain u and

v. Second, calculating the path matrix is of complexity O(p4).

More efficient algorithms can be substituted for the conceptually simpler program

once the user is sufficiently confident with the graph-theoretic concepts required to

do so. More efficient algorithms for finding the path matrix exist. A more efficient

overall approach based on the junction tree of the modified graph g′ = g− (Cu∩Cv),

is as follows. Remove Cu ∩ Cv from the perfect sequence of the cliques of g, and

hence find a perfect sequence containing the cliques g′. Lemma 4.4.4 can then be

applied to find a perfect sequence of cliques of g′. Construct the junction tree T ′ of

g′, and check to see if u and v are disconnected in T ′.

Note that the condition that Cu∩Cv � S for some separator S is not sufficient. It

is shown in the above proof that every such intersection is a subset. The intersection

must be equal to a separator. Figure 3.13 illustrats an illegal edge addition (u =

1, v = 7) for which Cu ∩ Cv is a proper subset of S.

Remark 3.3.5 Theorem 2 of Giudici & Green (1999) is a significant contribution to

the implementation of decomposable graphical models in statistical inference. Prior

to their characterisation, it was necessary to use computationally costly algorithms

such as the Maximum Cardinality Search of Tarjan & Yannakakis (1984) (complexity

42

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

O(|V | + |E|)) to generate a chain of decomposable graphs by legal edge changes.

Lemma 3.3.6 Let g be a decomposable graph with cliques C. Let Cu = {C ∈ C : u ∈ C},
and Cv = {C ∈ C : v ∈ C}. Let Cu ∈ Cu and Cv ∈ Cv be such that |Cu ∩Cv| is maxi-

mal. Then the edge (u, v) is a legal addition to g if and only if the uvth entry of the

path matrix of g − (Cu ∩ Cv) is zero.

Proof. This follows directly from the definition of a path matrix, and from the

construction of the separator S∗ in the proof of Lemma 3.3.4.

Lemma 3.3.6 is easy to program. First use find all clique containing.m (described

in Subsection 8.1.9) to find the sets Cu and Cv. Next test the size of all pairwise inter-

sections between Cu and Cv to find a pair Cu, Cv with maximal intersection. Calculate

the adjacency matrix of g − (Cu ∩Cv) by making zero all rows and columns indexed

by the elements of Cu ∩Cv. Use reachability graph.m (described in Subsection 8.1.5)

to find the path matrix of g − (Cu ∩ Cv). Then the edge e = (u, v) may be added if

and only if the uvth entry of the path matrix is zero.

Excluding junction tree code gives less computationally complicated code than

that based on Theorem 2 of Giudici & Green (1999), and explained in Subsec-

tion 8.1.12. Compare the code of Subsection 8.1.12 to that of Subsection 8.1.13.

There are more than 4 times as many lines of code in the program based on Theo-

rem 2 of Giudici & Green (1999) than the code in Subsection 8.1.13 which is based

on Lemma 3.3.6.

Remark 3.3.7 The characterisations for legality of single edge transitions does not

include reference to any particular distribution. Therefore a Markov chain on the

state space of decomposable graphs can be generated using these methods and any

transition probability. In Section 7.3 we choose a transition prior on the state space

that results in an MCMC chain which converges to a distribution which gives equal

probability to all graphs of the same number of edges. In Section 4.8 we choose a

transition probability that results in an MCMC chain which converges to the posterior

distribution of the decomposable state space.

43

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

3.4 Junction trees

We discuss junction trees in this section because they can be used to simplify algo-

rithmic procedures and increase computational efficiency in decomposable models.

They also often simplify proofs of decomposable graph-theoretic results, and are

used in the characterisation of legal edge additions that is given by Giudici & Green

(1999).

Let C be a collection of subsets of V . Let T be a tree with vertices that correspond

to the elements of C. That is, each vertex in the tree corresponds to a single subset

in C. Then T is a junction tree if any intersection Ci ∩ Cj (where Ci, Cj ∈ C) is

contained in every vertex on the (necessarily unique) path in T between Ci and Cj.

Let C be the cliques of a decomposable graph, and the sequence C1, . . . , Ck a

perfect sequence of the cliques. Then we know that for all i > 1, there is a j < i

such that the separator Si ⊆ Cj. In Subsection 3.5.2 we illustrate how every Si can

be obtained as the intersection between at least one pair Ci ∩ Cj for some j < i. So

if a tree is created using a perfect sequence of cliques C1, . . . , Ck as the vertices, then

that tree will satisfy the definition of a junction tree if the edges are successively

chosen as follows. For each i > 1, add the edge (Ci, Cj) to one of the Cj, j < i that

satisfies |Ci∩Cj | is maximal. Note that if there are more than one Cj which satisfies,

then any of these can be chosen.

Junction trees can be interpreted as perfect sequences with parallel subsequences,

where for every i > 1, you ‘split out’ and make ‘parallel’ the subsequences that have

the same intersection set with Ci. These splits occur as the branches in the junction

tree at Ci.

3.5 Illustrative examples

The pictorial representation makes concepts intuitively clear, because finding paths

amounts to tracing along lines between the symbols used for vertices. This section

illustrates, using detailed examples, the definitions of Section 2.2, and the graph-

theoretic concepts presented in this chapter.

44

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

3.5.1 Representing conditional independence properties

In Figure 2.9 X1⊥⊥{X14, X21}, X1⊥⊥{X14, X21}|XD for any subset of variables D,

and X1⊥⊥XB|(XD ∪ X2) for all subsets B and D because 2 is a (1, v)-separator for

every vertex v ∈ V \2.

If there exists at least one path between an element of A and an element of B

which does not include an element of D, then D does not separate A and B, and so

XA �⊥⊥XB|XD. For example, Figure 2.9 implies that X1 �⊥⊥(XB ∪{X10, X14, X21})|XD

whenever D excludes the vertex 2, because 2 is on every path between 1 and 10.

Note that none of the sets are assumed to be minimal or maximal, and that the

graphical representation of conditional independence using graph separation is a

general feature of all graphical models, not just decomposable graphs.

It is clear that in a decomposable graph, the minimal separating set between a

clique Ci and Hi−1 is the sequence separator Si = Ci ∩ Hi−1. Lemma 2.10.1 shows

this.

3.5.2 Checking chordality

Consider the graph in Figure 3.3, which we refer to as g5. It contains a 5-cycle

(1, 2, 3, 4, 5, 1). None of the pairs of vertices which are not adjacent on the 5-cycle

(i.e. 1 and 3, 1 and 4, 2 and 4, 2 and 5, 3 and 5, 4 and 1), are actually adjacent in

g5. This 5-cycle has no chords, and so g5 is not chordal.

Consider the 4-cycle (1, 2, 3, 6, 1). There are 2 pairs of non adjacent vertices on

this 4-cycle: 1 and 3, and the pair 2 and 6. The pair 1 and 3 are not adjacent in g5.

But the pair 2 and 6 are adjacent in g5, and so e = (2, 6) is a chord on the 4-cycle.

There are many other chorded 4-cycles in g5, but no other unchorded n-cycles for

n ≥ 4. For example, the 5-cycle (1, 6, 3, 4, 5, 1) contains the chord (6, 4). If the edge

(1, 3) is added, there still exists the unchorded 4-cycle (1, 3, 4, 5, 1) so a further edge,

such as (1, 4) is needed to ensure there are no unchorded n-cycles for n ≥ 4. The

graph we refer to as g5dec that is obtained from g5 by adding these 2 extra edges is

depicted in Figure 3.5. Every n-cycle, n ≥ 4, in g5dec has at least one chord, so g5dec

is a chordal graph.

Making inference from the pictorial representation is easier than from the corre-

sponding greyscale of the inverse covariance Ω. Figure 3.4 is the greyscale plot of a

45

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

generic inverse covariance Ω for g5. That is, Ωij = 0 whenever Xi⊥⊥Xj |V \{Xi, Xj}
for every pair of distinct vertices not adjacent in g5. Figures 3.5 and 3.6 are the pic-

torial and greyscale representations of the decomposable graph g5dec, respectively.

The unchorded 5-cycle is immediately obvious in Figure 3.3 but not in Figure 3.4.

It is easier to assess the degree of difference between Figure 3.3 and Figure 3.5, than

the degree of difference between Figure 3.4 and Figure 3.6.

Refer to the graph depicted in Figure 3.7 as g13dec. This graph is decomposable

but the graph we refer to as g13nondec that is obtained by adding the single extra

edge e = (a, d) to g13dec is not. The unchorded 4-cycles (a, c, i, d, a) and (a, d, h, c, a)

are more obvious in Figure 3.8 than in its greyscale representation Figure 3.10.

1

2

5

6

3

4

Figure 3.3: Nondecomposable graph g5 exhibiting a ‘triangulated’ appearance.

3.5.3 Finding perfect numberings, perfect sequences of cliques,

and the separators, residuals and histories of the se-

quence

The Markov chain on the state space of all decomposable graphs with p vertices, and

one step transitions given by the addition or removal of a single edge is irreducible

46

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

nonchordal graph which appears triangular

1 2 3 4 5 6

1

2

3

4

5

6

Figure 3.4: Greyscale of g5.

1

2

3

4

5

6

Figure 3.5: Decomposable graph g5dec obtained from g5 by adding edges (1,3) and (1,4).

47

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

(eg. Frydenberg & Lauritzen (1989)). If changing a single edge in a decomposable

graph results in a decomposable graph, the edge change will be called legal. This

section explains the graphical procedures and associated algorithms for making one

step transitions via legal edge changes.

Consider g13dec of Figure 3.7. It contains no unchorded n-cycles for n ≥ 4. Notice

that the set of vertices A = {d, k, i, g, h} satisfies the following 2 conditions: (1) every

vertex of A is adjacent to every other vertex of A, and (2) the first condition would

not be satisfied if a single further vertex is included in the subset. But {d, k, i}
or any subset of A only satisfies condition (1). The subset of vertices {a, b, c, i, h}
does not satisfy condition (1), even though it is the union of two sets {a, b, c} and

{i, h, c} which each satisfy both (1) and (2). The set {d, j} satisfies both conditions,

as do {g, l, h, m}, {d, i, k, e} and {e, f}. It is possible to check that these 7, and

only these 7 subsets of g13dec satisfy both conditions. Subsets that satisfy condition

(1) are said to be complete. Subsets which also satisfy condition (2) are said to be

maximally complete, and are called the cliques of g. The set C of all cliques of g is

uniquely defined. If g is decomposable, C is the collection of sets Ai which can be

ordered to satisfy Sundberg’s criterion, and may be arranged in a perfect sequence.

The vertex indicies within each clique are the corresponding ‘block’ indicies in Ω.

Therefore, if we can find and order the cliques and the Ri correctly, then we can find

the corresponding ‘block’ ordering of Ω.

If the cliques can be discerned, then the process underlying the Tarjan & Yan-

nakakis (1984) Maximum Cardinality algorithm is easy to follow and the output is a

perfect numbering of the vertices v1, . . . , vp. We now describe the algorithm. Create

the variable numbering as follows. Recall that the set nbrs(v) of neighbours of a

vertex v in g is the set of all vertices adjacent to v. Choose as the next vertex vk the

vertex with the most already ordered neighbours, breaking ties arbitrarily. We use

Figure 3.7 to illustrate, and refer to this graph as g13dec. Since none of the vertices

are ordered yet, choose any vertex as v1. For example, choose v1 = f . The only ver-

tex adjacent to f is e, so set v2 = e. The unordered vertices adjacent to v2 = e are

R2 = {d, i, k} and they are all adjacent to only one already ordered vertex, e. There-

fore any one of them will do for v3. Set v3 = k. Either of d or i have maximal number

2 of already ordered neighbours. So v4 can be either d or i. Set v4 = i. Maximising

the number of already ordered neighbours forces the choice v5 = d, the remaining

48

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

the undecomposable graph made decomposable

1 2 3 4 5 6

1

2

3

4

5

6

Figure 3.6: Greyscale of Figure 3.5

a

b

c

h

i

k

l

m

d

e

g

j

f

Figure 3.7: Decomposable g13dec

49

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

a

b

c

d

h

i

e

g

j

k

l

m

f

Figure 3.8: Nondecomposable g13nondec = g13dec + (a, d)

Greyscale of decomposable g13

2 4 6 8 10 12

2

4

6

8

10

12

Figure 3.9: Generic Ω greyscale of decomposable g13dec

50

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

element of the clique C2 = {d, e, i, k}. Therefore (v1, . . . , v5) = (f, e, k, i, d). We must

now choose v6 ∈ {l, m, g, h, j, c, a, b}. None of the vertices in {l, m, a, b} have any

already ordered neighbours. Both c and j have only one already ordered neighbour,

d and i respectively. Both elements of R3 = {g, h} have 3 already ordered neigh-

bours S3 = {k, i, d}. We must choose v6 with maximal number of already ordered

neighbours, so it can be either of g or h. Say v6 = g. Then v7 = h is the only pos-

sibility because it has the unique maximum number of already ordered neigbours,

and consequently that (v1, . . . , v7) = (f, e, k, i, d, g, h). Note that v7 = h was the

only unnumbered element remaining from the clique C3 = {k, i, d, g, h}. We are

left to choose v8 ∈ {c, l, m}. Set v8 = l so that v9 = m and v10 = c is the only

possibility which satisfies the algorithms maximal conditions. All remaining vertices

{a, b, j} have only one already ordered neighbour. If either of a or b are next num-

bered, we are forced to then choose the other. If j is next numbered, we can then

choose either of a or b as the second to last variable in the ordering. We choose

(v11, v12, v13) = (j, b, a), and the perfect numbering given by the order of the vertices

in the sequence o1 = (f, e, k, i, d, g, h, l, m, c, j, b, a) results. Figure 3.11 is g13dec with

the vertices enumerated as per the numbering of vertices in the sequence o1. Notice

that the algorithm forces you to number every vertex comprising a clique before

numbering a vertex in the next clique. So if you can discern the cliques readily, the

process is clearly very simple, and naturally orders the cliques. Always order the ver-

tices in the current clique Ci before moving onto the next clique Cj . Choose the next

clique as one which has largest intersection Sj = Hi ∩ Cj with the already ordered

cliques Hi = ∪i
k=1Ck, breaking ties arbitrarily. The order in which each clique is

finished is the perfect sequence of Sundberg’s criterion. In the previous example, the

clique which had all vertices numbered first was C1 = {f, e}. The second completed

clique was C2 = {e, k, i, d}, which is a disjoint union of ‘new’ variables R2 = {k, i, d}
and ‘old’ variable S2 = {e}. H2 = C1 ∪ C2 is the variables numbered so far. The

third completed clique was C3 = {i, d, k, g, h} with R3 = {g, h}, S3 = {i, d, k} and

H3 = C1 ∪ C2 ∪ C3. The fourth completed clique was was C4 = {g, h, l, m} with

R4 = {l, m}, S4 = {g, h} and H4 = C1 ∪ C2 ∪ C3 ∪ C4. The fifth was C5 = {i, h, c}
with R5 = {c}, S5 = {i, h} and H4 = C1∪C2∪C3∪C4∪C5. The final two cliques were

C6 = {d, j} and C7 = {c, b, a} respectively, with R6 = {j}, S6 = {d}, R7 = {a, b},
S7 = {c}. Notice that V = C1 ∪ R2 ∪ . . . ∪ R7. Also notice that every numbering of

51

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

Greyscale of nondecomposable g13
nondec

=g13 ∪ e=(1,4)

2 4 6 8 10 12

2

4

6

8

10

12

Figure 3.10: Generic Ω greyscale of nondecomposable g13nondec = g13dec + (a, d)

a_order13

b_order12

c_order10

h_order7

i_order4

k_order3

l_order8

m_order9

d_order5

e_order2

g_order6

j_order11

f_order1

Figure 3.11: Decomposable g13dec

52

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

the vertices in which every vertex in Ri precedes every vertex in Ri+1 is perfect. That

is, the order of the elements of each Ri is irrelevant. This example shows that the

order of the Ri is not always uniquely defined, given the previous order in numbering

vertices. For example, having started with C1 = {f, e}, the set R2 had the uniquely

maximum number of already numbered neighbours, so it is necessary to next num-

ber all its members. Similarly, we are next forced to number all the elements of R3

because these, and only these, each had maximum number 3 of previously numbered

neighbours. Once all the elements of R3, and consequently C3, are numbered, the

algorithm does not allow the elements of R6 = {j} to be numbered before numbering

the elements of R4 because j has only one previously numbered neighbour, and R4

has nonunique maximal number 2 of previously numbered neighbours, {i, h}. Nor

can we choose R6 = {j} before numbering the elements of R5, because R5 also has

2 previously numbered neighbours. However R7 = {b, a} can precede rather than

follow R6 = {j}. Each element of R7 is adjacent to S = {c} of size 1. Each ele-

ment of R6 is adjacent to the set of already numbered vertices S = {d} with size

1. The key feature in this case is that R7 and R6 have the same maximal number

of previously numbered neighbours. This illustrates that uniqueness of ordering in

the sequence {Ri, Ri+1, . . . , } occurs when there is a unique maximum of already

numbered neighbours. Otherwise, if there are more than one set Ri with the same

maximal number of previously numbered neighbours, elements of any of these Ri

can be chosen next. But having chosen this Ri, the algorithm forces you to finish

numbering all its elements before beginning to number vertices in any other Rj .

We now show that this perfect sequence satisifies the running intersection prop-

erty. For j = 2, we have S2 = C2 ∩ C1 = {e} ⊂ C1 and 1 < j = 2. For j = 3,

we have S3 = C3 ∩ (C1 ∪ C2) = {k, i, d} ⊂ C2 and 2 < j = 3. For j = 4, we have

S4 = C4 ∩ (C1 ∪C2 ∪C3) = {g, h} ⊂ C3 and 3 < j = 4. We leave j = 5, . . . , 7 to the

reader.

Figure 3.11 has vertices labelled by following the above procedure. Check that

you can find alternative perfect numberings of vertices that result in different perfect

sequences of the cliques, but that the sets of cliques and separators are the same in

every case.

We now explain the equivalent algorithmic check of decomposability given by

Tarjan & Yannakakis (1984) which is used in the code of Appendix 8.1.1. Recall

53

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

that [vk] = {vk} ∪ nbrs(vk) is defined as the closure of vk in g. Note that [vk] may

be the same for a number of different k if vk ∈ Si for at least one i. In the pictorial

representation of a chordal graph g, it is obvious that if vk is contained in only one

clique (so not in any of the Si), [vk] is that single clique. Otherwise [vk] is the union

of cliques which contain vk.

In a decomposable graph, the separators Si are complete. The requirement that

every n-cycle, n ≥ 4 has at least one chord therefore results in the following check of

decomposability. If the numbering v1, v2, . . . , vk, vk+1, . . . , vp of V is perfect, then the

sets Bk = [vk]∩{v1, v2, . . . , vk} are always complete. This is because [vk] is either the

current clique Cj or the union of cliques, some of which may come after Cj but at

least one of which must precede or be equal to Cj , and the set {v1, v2, . . . , vk} ⊆ Hj .

If vk is an element of Si = Ck ∩Ci for some i < k then the intersection Bk is a subset

of Si so must be complete by completeness of separators. The subset is proper unless

vk is later in the perfect numbering than the last ordered element in Si, in which

case the intersection is the separator Si, which is complete. If vk is any element in

Rj , then Bk will be a strict subset of Cj and equal to Cj if vk is the last element of

Cj to be ordered. The completeness of cliques again gives completeness of Bk.

Compare this with the nondecomposable case. Figure 3.12 is the nondecompos-

able 4-cycle. No matter how the vertices are ordered, the closure of any vertex does

not have complete intersection with all preceding vertices in the order. For example,

if a is ordered first, then either of b or d have maximal number 1 of ordered neigh-

bours. Choose v2 = b. Then B2 = [b] ∩ {a, b} = {a, b, c} ∩ {a, b} = {a, b} which is

complete. Either of c or d have maximal number 1 of ordered neighbours. Choose

v3 = c. Then B3 = [c] ∩ {a, b, c} = {b, c, d} ∩ {b, c} = {b, c} which is also complete.

But B4 = [d] ∩ {a, b, c, d} = {c, d, a} ∩ {a, b, c, d} = {c, d, a} which is not complete.

The addition of the chord (a, c) makes B4 complete, and the graph chordal. Further,

no ordering results in all the Bk being complete. This checking for completeness of

Bk at each incremental k is the basis of the algorithm of Tarjan & Yannakakis (1984)

known as maximum cardinality search (see Subsection 8.1.1).

3.5.4 Checking legality of edge changes

We first illustrate legal edge removals. Consider the graph depicted in Figure 3.13.

It is obvious from the figure that the cliques are given by Ci = {i, i + 1, 8} for

54

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

i = 1, . . . , 7 and the separators by Si = {i, 8} for i = 2, . . . 6. If any one of the edges

ei = (i, 8), i = 2, . . . 6 is deleted, the unchorded 4-cycle (i, i + 1, i + 2, 8, i) is created.

Conversely, if any of the edges (j, j + 1), j = 1, . . . , 7 or the edge (1, 8) is deleted, no

unchorded n-cycle is created. Now consider the more complicated g13dec as given in

Figure 3.7. If the edge (g, h) ∈ S4 is deleted, then for any x ∈ R4 and y ∈ R2 the

4-cycle (g, x, h, y, g) is created. If the edge (i, h) ∈ S5 is deleted, then for any x ∈ R5

and y ∈ C3\S5 the 4-cycles (g, x, h, y, g) are created. As a final example, if the edge

(a, b) is deleted in Figure 3.14, the unchorded 5-cycle (a, 1, b, 2, 3, a) results, but any

of the edges (a, i) or (b, i) for i = 1, 2, 3 can be removed legally.

In general, if any edge (s1, s2) obtained by choosing each s1, s2 from a separator

Si = Ci ∩Cj is deleted, then a 4-cycle (s1, ri, s2, rj, s1) results, where ri ∈ Ci\Si and

rj ∈ Cj\Sj.

We now illustrate legal edge additions. Consider g8 of Figure 3.13. Adding

any edge (i, i + 2), i = 1, . . . , 5 makes this edge another chord to the 4-cycle (i, i +

1, i + 2, 8, i) and is therefore legal. Note that each of these legal edge additions joins

an element of a clique Ci and an element of a clique Cj where Ci, Cj intersect in a

separator S ∈ S. Furthermore, in the pictorial representation, cliques which intersect

in a separator appear to be ‘adjacent’, or next to each other in a maximal way with

respect to intersection. For example, in g8 of Figure 3.13 any pair of cliques have

a nonempty intersection which is a subset of a separator S ∈ S, but only cliques

Ci = {8, i, i + 1} and Ci+1 = {8, i + 1, i + 2}, i = 1, . . . 5 look like they are ‘next to

each other’ in a maximal way with respect to intersection. This intuitively illustrated

notion of maximal intersection between cliques is equivalent to the condition that

two cliques intersect in a separator, and not just the subset of a separator. The

distinction between cliques having an intersection which is equal to some S ∈ S as

opposed to a subset of some S ∈ S is critical in determining legal edge additions.

The set of separators S is not defined by pairwise intersections Ci ∩Ci+1 for a given

perfect sequence, but by the cumulative ‘running’ intersection of a clique Cj with

the union of all previous cliques in the perfect sequence. However, for every S ∈ S
there exists a perfect sequence of cliques such that S = Ci ∩ Cj for some j < i.

In Figure 3.13, Cj = Ci−1. It is these cliques that are intuitively ‘adjacent’ in the

graph, and that satisfy Ci ∩Cj , j < i being the largest such intersection set from all

Cj preceding Ci in a perfect sequence of cliques. We therefore define adjacent cliques

55

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

as follows. Let C1, . . . , Ck be any perfect sequence of cliques. For any i > 1, we say

that Cj, j < i, is an adjacent predecessor of Ci if |Ci ∩Cj | ≥ Ci ∩ Cl for all l < i. In

words, Cj is the possibly nonunique clique that precedes Ci in a perfect sequence of

cliques, and has maximal sized intersection with Ci. The notion of adjacent cliques

is important in graphical models. In Section 3.4 we defined T , the junction tree of a

decomposable g. T is a graph which has the cliques of g as its vertices, and satisfies

the property that the intersection Ci ∩ Cj of any pair of clique vertices Ci and Cj

in T is a subset of every clique Cl on the necessarily unique path between Ci and

Cj in T . Section 3.4 shows that T can be constructed sequentially from a perfect

sequence C1, . . . , Ck of cliques of g, by adding an edge between the next Ci and any

of the Cj, j < i such that |Cj ∩Ci| is maximal with respect to all cliques that precede

Ci in the sequence.

Figure 3.13 makes the distinction between ‘Ci ∩ Cj a separator’ and ‘clique in-

tersection Ci ∩ Cj subset of separator’ clear. Vertex 8 is contained in every clique,

and hence every separator. Yet {8} �= Si for any i. The cliques C1 = {8, 1, 2}
and C2 = {8, 2, 3} are intuitively adjacent, and their intersection is a separator

S2 = {8, 2}. Intuitively, Ci is not adjacent to C1 for any i > 2. Similarly, each pair

of cliques Ci = {8, i, i + 1} and Ci+1 = {8, i + 1, i + 2} are adjacent, but Ci is not

adjacent to any Ci+k, k > 1.

Note that the sequence of separators can include repetition so more than 2 cliques

can be adjacent. Figure 3.14 is a decomposable graph of 3 cliques Ci = {a, b, i}, i =

1, 2, 3 with all separators equal, and given by Sk = {a, b}, k = 2, 3.

Consider adding the edge (7, 1) to the graph of Figure 3.13. This creates the

unchorded 7-cycle (1, 2, 3, 4, 5, 6, 7, 1) and is therefore illegal. Moreover, there are no

adjacent cliques containing each of 1 and 7 respectively. Equivalently, there are no

pair of cliques Ca and Cb containing a = 1 and b = 7 respectively, such that Ca ∩Cb

separates the vertices 1 and 7. Similarly, adding any edge (i, i + 3), i = 1, . . . , 4,

(i, i + 4), i = 1, . . . , 3, or (i, i + 5), i = 1, . . . , 2 will create an unchorded 4, 5, or

6-cycle, respectively. Again, there are no adjacent cliques containing the respective

end vertices for each of these edges. Equivalently, there are no pair of cliques that

contain the respective end vertices for each of these edges and whose intersection

separates those same edge end vertices.

Consider g13dec of Figure 3.7 and the perfect sequence C1, . . . C7 already defined.

56

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

a

b

c

d

Figure 3.12: 4-cycle illustrating that Bk is not complete

1

2

8

3
4

5

6

7

Figure 3.13: Decomposable g8 illustrating adjacent cliques.

57

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

Choose any 2 vertices which are not adjacent in the graph. For example, choose

g ∈ C3 and f ∈ C1. Adding the edge (f, g) creates a number of unchorded n-

cycles. For example the 4-cycle (f, e, k, g, f). However the edge addition (e, g) is

legal, and e ∈ C2 which is adjacent to C3. The nondecomposable graph of Figure 3.8

was created from g13dec by adding the edge (a, d). There is no pair of adjacent

cliques containing a and d respectively in g13dec, and a number of unchorded cycles

in Figure 3.8 result from adding the edge (a, d) to g13dec.

The pictorial representation makes it obvious which cliques are adjacent. This is

not the case for the greyscale or adjacency matrix representations. Furthermore, in

any computational algorithms it is necessary to search amongst all pairs of cliques

containing a and b respectively, because a given vertex can be in a number of cliques.

But it is immediately obvious in a diagram whether two cliques are adjacent or not.

For example, e is also in C1. But C1 is clearly not adjacent to C3. We have just

shown that the edge (e, g) is a legal addition and that e and g are also contained in

adjacent cliques C2 and C3 respectively.

Consider again Figure 3.13. Recall that adding any edge (i, i + 2), i = 1, . . . , 5 is

legal. A perfect sequence is given by {Ci = {i, i + 1, 8} : i = 1, . . . 6}. Consider i = 1

and the edge addition (1, 3). Every path connecting 1 and 3 includes at least one

element of C1 ∩ C2 = {2, 8}. Intuitively from the diagram, the elements in C1 ∩ C2

are ‘gates’ on every path between 1 and 3. If these ‘gates’ were ‘shut’, then 1 would

be ‘separated’ from 3. Intuitively, every path between 1 and 3 would be blocked.

Similarly, for every legal edge addition (i, i+1), every path between i and i+1 must

include an element of Ci ∩Ci+1 = {i, 8}. Intuitively from the diagram, the set {i, 8}
can be used to block every path connecting i and i+1. Now consider an illegal edge

addition such as between 1 and 4. Then C1 ∩Cj = {8} for all the Cj , j = 3, 4 which

contain 4. But there exists a path 1 − 2 − 3 − 4 connecting 1 and 4 which does not

include an element of C1 ∩Cj = {8}. Intuitively, neither of the cliques Cj satisfy the

requirement that C1 ∩ Cj blocks all the paths between 1 and 4. It is this notion of

‘path blocking’ that is formalised by the definition of (u, v)-separation.

The essential feature and advantage of the pictorial representation is as an infer-

ence tool for checking independence and conditional independence in a distribution

it is assumed to represent. It is the relative ease with which these can be discerned

from the diagram as opposed to the distribution (or the covariance in distributions

58

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

where these are equivalent) that makes the pictorial representation so attractive. We

therefore give more examples of graph separation and its use in checking legality of

edge additions for decomposable graphs.

Consider g13dec of Figure 3.7 and the illegal edge addition between f and g. Now

f ∈ C1 only, while g is contained in 2 cliques, C3 and C4. Both intersections Ci ∩Cj

for j = 3, 4 are empty. D = ∅ does not separate any vertices, so the edge is illegal

as already shown. Adding an edge between a and d is similarly shown to be illegal.

Here a ∈ C7 only, while d ∈ Cj for j = 2, 3, 6, and each of C7 ∩Cj = ∅ for j = 2, 3, 6.

If an edge is added between m and c, a 4-cycle (m, c, i, g, m) is created. Check that

none of the pairs m and i, c and g, or i and m which are not consecutive on this

cycle, are adjacent in g13dec. Hence (m, c, i, g, m) is an unchorded 4-cycle showing

that the edge addition results in a nondecomposable graph. Lemma 3.3.4 gives the

same result, as m ∈ C4 only and the only clique containing a which has nonempty

intersection with C4 is C5 = {h, i, c}. Here C4 ∩C5 = {h}, but there are many paths

connecting m and c which do not include h. One example is the path (m, g, i, c).

Therefore the conditions of Lemma 3.3.4 fail as required.

Now consider adding an edge between m and k. No unchorded n-cycles for n ≥ 4

result: i.e. this is a legal edge addition. In this case, C4 ∩ C3 = {g, h}, and there is

no path between m and c which does not include at least one member of C4 ∩ C3.

Lemma 3.3.4 implies this is a legal edge addition as required.

59

CHAPTER 3. DECOMPOSABLE GRAPHICAL MODELS

a
b

1

2

3

Figure 3.14: Decomposable g5 illustrating all cliques adjacent, so all separators equal and given by
Sk = {a, b}, k = 1, 2.

60

Chapter 4

Bayesian covariance selection

models

4.1 Likelihood and hierarchical structure

Suppose we have independent observations

yt ∼ N(μ, Σ), t = 1, . . . , n, (4.1)

where yt is p × 1. Let y = (y1, . . . , yn) be the data. We use a hierarchical prior for μ

and Σ of the form

p(μ, Σ, Φ, δ, g) = p(μ|Σ, Φ, δ, g)p(Σ|Φ, δ, g)p(Φ|δ, g)p(δ|g)p(g),

where each of the terms on the right is discussed below. We assume that

p(μ|Σ, Φ, δ, g) ∝ c for some constant c, as our focus in this chapter is on priors for

Σ. The prior for Σ depends on its graph g, the p× p matrix Φ and the scalar δ, and

is discussed in Section 4.5. Section 4.2 defines the graph of Σ as the configuration of

nonzero off-diagonal elements in Σ−1. The prior for Φ is discussed in Section 4.6 and

the prior for the graph g is discussed in Section 4.7. We set the degrees of freedom

parameter δ to 5 as such a value of δ gives a suitably noninformative prior for Σ.

We restrict the graph of Σ to be decomposable, so that the prior for Σ is a mixture

over all decomposable graphs. We explain in Section 4.2 that this is equivalent to

the prior for Ω = Σ−1 being a mixture over all Wishart distributions constrained to

decomposable graphs.

61

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

4.2 The hyper inverse Wishart distribution.

Let g = (V, E) be an undirected graph with vertices V = {1, . . . , p} and set of edges

E ⊆ V ×V , where an element of E is given by the index pair (i, j) of the vertex pair

(Vi, Vj) ∈ V × V . For a square matrix A we write A > 0 to denote that A is positive

definite. Let M+(g) be the set of p × p matrices Ω satisfying Ω > 0 and Ωij = 0 for

all pairs (i, j) /∈ E.

For a given p× p covariance matrix Σ, we define the graph g = g(Σ) of Σ, as fol-

lows. Let Ω = Σ−1. Let V = {1, . . . , p} and define E = {(i, j), i �= j such that Ωij �=
0}. Thus the graph g(Σ) gives the configuration of nonzero off-diagonal elements in

Ω.

We say that an m × m matrix A > 0 has an inverse Wishart (IW) density with

δ > 0 degrees of freedom and scale matrix Φ, denoted as A ∼ IW (m, δ, Φ), if the

density of A is

p(A|δ, Φ) =
|Φ| δ

2

2
mδ
2 Γm(δ

2
)
|A|− (δ+m+1)

2 etr

(
−1

2
ΦA−1

)
(4.2)

where etr(A) = exp(trace(A)) and for α > (m−1)
2

,

Γm(α) = πm(m−1)/4
m∏

i=1

Γ(α − (
i − 1

2
))

is the multivariate gamma function (Muirhead, 1982,p. 113). We will refer to g =

g(Σ), and say that Σ and Ω are decomposable if g = (V, E) is decomposable.

Suppose that g is a decomposable graph and let C1, . . . , Ck be a perfect sequence

of the cliques of g. Let Hj = C1 ∪ . . . ∪ Cj be the history of the sequence and

let Sj = Hj−1 ∩ Cj be the separators for j = 2, . . . , k. For any matrix M and

subset of vertices B, use MBB to denote the symmetric submatrix of M which is

formed by taking every corresponding entry Mij for which the vertices {Vi, Vj} ∈ B.

Using the parameterization of Dawid (1981), we say Σ has a hyper inverse Wishart

(HIW) distribution, with hyperparameters (δ, Φ) denoted by Σ ∼ HIW (g, δ, Φ), if

for Σ−1 ∈ M+(g)

p(Σ|δ, Φ, g) =

k∏
i=1

p (ΣCiCi
|δ, ΦCiCi

)

k∏
i=2

p (ΣSiSi
|δ, ΦSiSi

)

(4.3)

62

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

where δ > 0, Φ > 0, and the density is with respect Lebesgue measure on the

elements of Σ corresponding to edges of g.

In (4.3), the terms p (ΣCiCi
|δ, ΦCiCi

) denote the IW densities

ΣCiCi
∼ IW (|Ci|, δ + |Ci| − 1, ΦCiCi

) given by

p (ΣCiCi
|δ, ΦCiCi

) =

∣∣∣ΦCiCi

2

∣∣∣
„

δ+|Ci|−1

2

«

Γ|Ci|
(

δ+|Ci|−1
2

) |ΣCiCi
|−

„
δ+2|Ci|

2

«
etr

[
−1

2
(ΣCiCi

)−1 ΦCiCi

]
(4.4)

where |Ci| denotes the cardinality of the clique Ci, and the terms p (ΣSiSi
|δ, ΦSiSi

)

are defined similarly. Note that the expression in (4.3) is invariant to the choice of

perfect sequence.

From (4.2) – (4.4), the normalizing constant for the HIW distribution is

h(g, δ, Φ) =

k∏
i=1

[∣∣∣ΦCiCi

2

∣∣∣(δ+|Ci|−1

2
)

Γ|Ci|
(

δ+|Ci|−1
2

)−1
]

k∏
i=2

[∣∣∣ΦSiSi

2

∣∣∣(δ+|Si|−1

2
)

Γ|Si|
(

δ+|Si|−1
2

)−1
] . (4.5)

4.3 Generating a Markov chain from the HIW dis-

tribution

This section shows how to generate the covariance matrix Σ of a decomposable

Gaussian distribution efficiently from its prior or posterior by conditioning on a

decomposable graph g. The computer programs in Sections 8.1.15 and 8.1.16 sample

Σ ∼ HIW (g, δ, Φ), and are based on the theory in this section.

Section 3.3 shows how to transition from one decomposable graph to another by

either adding or removing an edge. Combined with a decision rule on whether to

make the transition, and given the first iterate g[1] = (V, E), this methodology is

all that is required to generate a Markov chain of decomposable graphs g[1], g[2],

None of the procedures depends on a particular distribution: the only condition

is the decomposability of g. Hence, given any decomposable g = (V, E), graphical

procedures can be used to sample from any distribution which is globally Markov over

g. Whenever each graph dependent normalising constant pV (xV |g) can be calculated,

63

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

then the variables XV can be integrated out to give a sampler for g. In this case the

variables XV are like a hierarchical conjugate prior for g, which is the case for the

Σ ∼ HIW (g, δ, Φ).

Let θ be the parameter of a distribution for XV , and let P (θ|g) be the distribution

of θ. Dawid & Lauritzen (1993) coined the term laws for distributions of parameters

of random variables associated with the vertices of a graph and the adjective hyper

for all the parameter analogous concepts. If the parameters of the marginals (when

considered as random variables) satisfy the graph implied independencies so that

P (θ|g) factorises according to g, then P (θ|g) is hyper Markov with respect to g.

Section 2.5 shows that Σ can be uniquely defined by specifying each Σij for all

(i, j), i = j or (i, j) ∈ E , and requiring that Σ−1 = Ω ∈ M+(g). A covariance

selection model is a regular exponential family model with canonical statistic K ∈
M+(g) (Lauritzen, 1996,p. 132). Therefore, Σ can be sampled via the canonical

statistic Ω. The Wishart distribution is the probability distribution of the maximum

likelihood estimator of the covariance matrix of a multivariate normal distribution. It

is a conjugate prior and so a g-constrained version of the Wishart is a natural choice

for Ω, and a g-constrained version of the inverse Wishart is a natural choice for Σ.

A g-constrained version of the inverse Wishart which has clique consistent marginals

can be defined analogously to the way in which a measure on the line ax + by = c

in R2 can be defined by using the parameterisation x = t, y = (c − at)/b, r(t) =

(t, c−at/b) ∈ R2 and letting P (dt) = p(t)dt where p(t) = |dr/dt| = |(dx/dt, dy/dt)| =√
1 + a2/b2. To explain further, let M+(g) be the set of p × p matrices which are

positive definite and have zero ijth entry for all pairs (i, j) /∈ E. If g = (V, E),

then an analogous parameterisation of the manifold M+(g) is obtained by letting

t1, . . . , t|E| correspond to ‘the edges in Σ’; i.e. each tk corresponds to exactly one Σi,j

such that (i, j) ∈ E. The hyper inverse Wishart (HIW) measure on M+(g) can then

be defined by PHIW (d(t1, . . . , t|E|) = pHIW (t1, . . . , t|E|)d(t1, . . . , t|E|) where pHIW is

given in Section 4.5 and d(t1, . . . , t|E|) is the usual Lesbegue measure in Euclidean

space. However, such distributions have normalizing constants that are not available

analytically unless the graph is decomposable.

Let θV be the parameters of a distribution considered as random variables, and

let PθV
be the associated hyper distribution. For any subsets A, B of V , let PθA

be

the marginal distribution of θA and let PθB|A be the distribution of θB conditional

64

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

on θA. We say that Pθ is strong hyper Markov over g = (V, E) if θB|A⊥⊥θA for any

decomposition (A, B) of g.

If g is decomposable and the marginals of PθV
are consistent, then Pθ factorises

according to g and so is strong hyper Markov. In which case, the next three theorems

can be used to sample Σ from its exact HIW distribution.

Theorem 4.3.1 (Roverato, 2000,Theorem 2, p.105) For the parameter Σ of a de-

composable covariance selection model with graph g = (V, E), the following are equiv-

alent:

(i) the distribution of Σ is strong hyper Markov over g;

(ii) for every enumeration of the vertices V following a perfect elimination scheme

for g, the rows of the matrix Ψ defined by Σ−1 = Ψ′Ψ are mutually independent.

Propositions 3, 4, and 5 of Wermuth (1980) together assert that every decompos-

able covariance selection model with covariance Σ can, after proper reordering of the

variables, be characterised by Ψ, where Σ−1 = Ψ′Ψ is the Cholesky decomposition of

Σ−1. In particular, if the vertices V are reordered to follow any perfect elimination

scheme for g, then the zero pattern of the upper triangle of Ψ is the same as the zero

pattern of Σ−1, and even though there is more than one perfect elimination scheme

for a given g, the elements of Ψ do not depend on the choice (see Paulsen et al.

(1989)).

A perfect elimination scheme for a graph g with cliques C1, . . . , Ck and residuals

R2, . . . , Rk is given as follows. First, take the variables in C1 in any order. Fol-

low these by the variables in R2 in any order. Continuing, the sequence given by

C1, R2, . . . , Rk is a perfect numbering (Lauritzen, 1996,Lemma 2.21, p. 15). A per-

fect elimination scheme is given by reversing this sequence. Hence Theorem 4.3.2

given below can be used to generate Σ ∼ HIW (g, δ, I) for I the identity matrix.

Note that I corresponds to the graph of no edges in which all variables are trivially

separated. Let pa(αi) be the adjacent predecessors of the ith variable in the perfect

order just described. This is, equivalently, the adjacent variables that follow the ith

variable in the perfect elimination scheme.

Theorem 4.3.2 (Roverato, 2000,Theorem 3) Suppose Σid ∼ HIW (g, δ, I), where

g = (V, E) is decomposable and δ > 0 is an integer. Let (Σid)
−1 = Ψ′

idΨid be the

65

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

Cholesky decomposition of (Σid)
−1, and let pa(αi) be the parents of the ith variable

in the perfect ordering given by C1, R2, . . . , Rk. Then the main diagonal elements

(Ψid)ii are square roots of χ2
(δ+|pa(αi)|) quantities, the off-diagonal elements (Ψid)rs

with r < s and (αr, αs) ∈ E, are N(0, 1), and these random variables are mutually

independent.

In order to sample Σ ∼ HIW (g, δ, Φ), where Φ ∈ M+(g), a closed transformation

of the hyper inverse Wishart space is performed using Theorem 4.3.3.

Theorem 4.3.3 (Roverato, 2000,Theorem 4) Let g = (V, E) be a decomposable

graph with cliques C1, . . . , Ck, separators S2, . . . , Sk and residuals R2, . . . , Rk. Let

D be a |V | × |V | positive definite matrix, and suppose Σ ∼ HIW (g, δ, B) where

δ > 0 is an integer and B−1 ∈ M+(g). Assume that the vertices of g are enumerated

according to a perfect elimination scheme, and similarly for the entries in B and D.

Put Σ−1 = Ψ′Ψ, and for j = 1, . . . , k, successively define the Cholesky decompositions

Qj , P j and the matrices Oj by putting:

(BCj ,Cj
)−1 = (Qj)′Qj ,

(DCj ,Cj
)−1 = (P j)′P j,

and

Oj = (Qj)−1P j.

Then the upper triangular matrix Υ defined by

ΥC1,C1 = ΨC1,C1O
1,

and for j = 1, . . . , k

ΥRj ,Rj
= ΨRj ,Rj

Oj
Rj ,Rj

, ΥRj ,Sj
= ΨRj ,Rj

Oj
Rj ,Sj

+ ΨRj ,Sj
Oj

Sj ,Sj

is such that (Υ′Υ)−1 ∼ HIW (g, δ, D).

Theorems 4.3.2 and 4.3.3 are consequences of the standard Odell & Feiveson

(1966) result for Wishart distributions:

Theorem 4.3.4 Odell & Feiveson (1966) Let Ω ∼ W (δ + |V | − 1, I) have Cholesky

decomposition Ω = Ψ′Ψ. Then the main diagonal elements Ψii are square roots of

66

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

χ2
(δ+|V |−i) quantities, the off-diagonal elements Ψij ∼ N(0, 1) and these random vari-

ables are mutually independent. A Wishart matrix with parameter A = T ′T may suc-

cessively be obtained by the transformation (ΨT)′(ΨT) = T ′ΩT ∼ W (δ + |V |−1, A).

4.4 HIW results for Bayesian analysis using MCMC

We first define notation for the edge indicators of a graph g. Let

eij =

{
1 if (i, j) ∈ E

0 otherwise
(4.6)

and let e−ij = {ekl : (k, l) �= (i, j)}. Note that any graph g = (V, E) can be unam-

biguously written as g = (eij, e−ij).

For a given graph g = g(Σ), let the number of edges, or the size of g, be given by

size(g) =
∑
i<j

eij (4.7)

i.e. size(g) is the number of nonzero elements in the strict upper triangle of Ω, and

size(g) ≤ r = p(p − 1)/2.

Section 4.9 describes a reduced conditional Metropolis Hastings sampler for g.

The covariance selection code of Section 8.1.23 is based on the programs in Sec-

tions 8.1.21 and 8.1.22 and recalculates the perfect sequence of each new graph

iterate in the chain so that the legality of the next proposed edge change can be

checked. If it were possible to find a perfect sequence of the cliques of any graph g′

from the cliques of a given graph g which only differed from g′ by a single edge, then

a far more computationally efficient program results.

The results in this section show that this is possible, and furthermore, that there is

a consequent expression for the graph likelihood given in (4.18) that can be evaluated

efficiently. The next theorem summarises the necessary graph theory for updating

the perfect sequence of g to give the perfect sequence of g′.

Let g = (V, E) be a decomposable graph with edge indicators {eij, i < j ≤
p}. Assume the edge indicator eij = 1 for g, and that the graph g′ = (V, E′) is

decomposable and has edge set E ′ as defined by indicators {e′ij = 0, e−ij}. So g′ is

obtained from g by deleting the edge (i, j). The following theorem is used for gains

in efficiency in the reduced conditional sampler.

67

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

Theorem 4.4.1 (Wong (2002)). Suppose that g and g′ are the decomposable graphs

defined above. Suppose that C1, . . . , Ck are the cliques of g ordered to form a perfect

sequence and S2, . . . , Sk are the corresponding separators. Then

(a) The edge (i, j) is contained in a single clique of g (Giudici & Green (1999)).

(b) If (i, j) ∈ Cq then either i /∈ Sq or j /∈ Sq.

(c) If j /∈ Sq and Cq1 = Cq\{j} and Cq2 = Cq\{i} then C1, . . ., Cq−1, Cq1, Cq2, Cq+1,

. . ., Ck is a perfect sequence of complete sets in g′ and has separators S2, . . ., Sq−1,

Sq1 = Sq, Sq2 = Cq\{i, j}, Sq+1, . . ., Sk.

(d) The sequence C1, . . ., Cq−1, Cq1, Cq2, Cq+1, . . ., Ck contains all the cliques of g′.

Remark 4.4.2 Part (a) is Theorem 1 of Giudici & Green (1999).

Parts (b) and (c) follow from part (a) and Lemma 2.20 of Lauritzen (1996).

Two instructive examples are given to illustrate Theorem 4.4.1 because the effi-

ciency of the reduced conditional sampler depends on its application. Before giving

the examples, the gains in efficiency are explained. The characterisation of the

cliques and separators in Theorem 4.4.1 means that it is unnecessary to compute the

marginal likelihoods for g[i] and g[i+1] (or their normalising constants). Section 4.4

gives an expression for the ratio p(y|gp, δ, Φ)/p(y|gc, δ, Φ) of the posterior likelihoods

in the MH acceptance probability for the transition proposal. Theorem 4.4.1 results

in an expression for p(y|gp, δ, Φ)/p(y|gc, δ, Φ) that involves the subgraphs Sq2 and e

only: this is given in (4.8) of Lemma 4.4.3. Lemma 4.4.5 gives an efficient method

for calculating (4.8). The program to calculate h(g,δ,Φ)
h(g′,δ,Φ)

in p(y|gp, δ, Φ)/p(y|gc, δ, Φ) is

given in Section 8.1.18.

Theorem 4.4.1 is also the basis of an efficient method for computing a perfect

sequence of cliques for the one step transition state g[i+1], given a perfect sequence

of cliques for the ith graph iterate g[i]. This ‘local update’ methodology based on

Theorem 4.4.1 is far less computationally expensive than the methodology used by

Giudici & Castelo (2003), who use the algorithm of Tarjan & Yannakakis (1984) with

complexity O(|V | + |E|) to update the clique sequence with each transition.

The illustrative examples are now given. Using the notation of Theorem 4.4.1,

let i = u, j = v, and consider the graph g0 = (euv, e−uv) where e−uv = {eab =

1, eau = 1, ear = 1, eav = 1, ebu = 1, ebr = 1, ebv = 1, eur = 1}. First consider

the case where euv = 0, and g′ = (euv = 0, e−uv) as depicted by the first graph of

68

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

Figure 4.1. The dotted line represents the legal edge addition e = (u, v) to g′. A

perfect sequence of cliques for g′ is {Cu = {a, b, u, r}, Cv = {a, b, v}} with separator

Sv = Cv ∩ (Cu ∪ Cv) = {a, b}. If the edge e = (u, v) is added, then the resulting

g = (euv = 1, e−uv) has new clique Cq = (Cu ∩ Cv) ∪ e = {a, b, u, v} = Sv ∪ e, and a

new separator Sq = {a, b, u}. A perfect sequence for g = (euv = 1, e−uv) is {Cu, Cq}.
This illustrates that the clique Cq containing the extra edge e and required to define

Sq2 in Lemmas 4.4.3 and 4.4.5 is given by (Cu∩Cv)∪e , where Cu, Cv are the cliques

of Lemma 3.3.4. The output clique C of the MATLAB routine in Sections 8.1.12 is

computed using this fact. The corresponding qth separator is given by Sq = Cu∩Cv,

where Cu, Cv are the cliques of Lemma 3.3.4. Note that Sq is the separator S∗

constructed in the proof of Lemma 3.3.4.

Now consider the case where the edge e = (u, v) is deleted from g = (euv =

1, e−uv). Refer to the second graph in Figure 4.1, in which the dotted line indicates

the edge (u, v) to be deleted. The edge e = (u, v) is contained in a single clique

Cq = {a, b, u, v} of g as required by Theorem 4.4.1(a). The output clique C of

the MATLAB routine given in Section 8.1.11 is this clique Cq. In accordance with

Theorem 4.4.1(b), e ∈ Cq, and i = u ∈ Sq = {a, b, u}, but j = v /∈ Sq. In accordance

with Theorem 4.4.1(c), Cq1 = Cq\{j} = Cq\{v} = {a, b, u, v}\{v} = {a, b, u}, and

Cq2 = Cq\{i} = Cq\{u} = {a, b, u, v}\{u} = {a, b, v} = Cv. The sequence {Cu =

{a, b, u, r}, Cq1 = {a, b, u}, Cq2 = Cv = {a, b, v}} is a perfect sequence of complete

sets in g′ = (euv = 0, e−uv). Note that the sequence is not a sequence of cliques,

as the complete set Cq1 is not maximal (it is contained in Cu = {a, b, u, r}). The

corresponding sequence of separators for the sequence of complete sets is {Sq1 =

Sq = {a, b, u}, Sq2 = Cq\{u, v} = {a, b}}. In accordance with Theorem 4.4.1(d), the

sequence {Cu, Cq1, Cq2 = Cv} contains the perfect sequence {Cu, Cv} of cliques of g′ =

(euv = 0, e−uv). Lemma 4.4.4 can then be applied to the sequence {Cu, Cq1, Cq2 = Cv}
to obtain the perfect clique sequence {Cu, Cv}.

In the preceding example of Figure 4.1, the clique Cq that contains the extra

edge e = (u, v) subsumes the clique Cv so Cq2 = Cv. This is because the residual

Rv consists solely of v, one of the edge ends of the extra edge e = (u, v). This is

not the case whenever there exists at least one extra vertex k in Cv, as illustrated

by Figure 4.2. Here e−uv = {eab = 1, eau = 1, ear = 1, eav = 1, eak = 1, ebu = 1, ebr =

1, ebv = 1, ebk = 1, eur = 1, ev,k = 1}, and g = (euv = 1, e−uv) has perfect sequence

69

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

of cliques {Cu, Cq, Cv} where the cliques Cu = {a, b, u, r} and Cq = {a, b, u, v} are

as before, but Cv = {a, b, v, k} is no longer subsumed by Cq. Parts (a) and (b) of

Theorem 4.4.1 are verified because e ∈ Cq only, and j = v /∈ Sq = {a, b, u}. The

sets Cq1 = Cq\{v} = {a, b, u} and Cq2 = Cq\{u} = {a, b, v} are the same as in the

previous example of Figure 4.1, but now Cq2 = {a, b, v} is a proper subset of Cv =

{a, b, v, k}. Hence Cq2 �= Cv in the sequence {Cu, Cq1, Cq2, Cv}. In accordance with

Theorem 4.4.1(c) this sequence is a perfect sequence of complete sets in g′ = (euv =

0, e−uv) with separators Sq1 = Sq = {a, b, u}, Sq2 = Cq\{u, v} = {a, b}, Sv = {a, b}.
Finally, the perfect sequence {Cu, Cv} of cliques of g′ is contained in the sequence

{Cu, Cq1, Cq2, Cv} as required by Theorem 4.4.1(d), and can be obtained from the

sequence {Cu, Cq1, Cq2, Cv} by applying Lemma 4.4.4.

Deleting the edge e=(u,v)

u u

a

r

v

b

Cq={a,b,u,v}

r

a

Cv={a,b,v}

b

Cu={a,b,u,r}

Adding the edge e=(u,v)

v

Cq1=Cq\{v}={a,b,u}=Sq

Cq2=Cq\{u}={a,b,v}=Cv

Figure 4.1: Illustration of Theorem 4.4.1 for the case in which the residual Rv consists of just the
edge end vertex v.

u

Deleting the edge e=(u,v)

r

a b

Cu={a,b,u,r}

Adding the edge e=(u,v)

kv

u

a

r

b

k
v

Cq={a,b,u,v} Cq1=Cq\{v}={a,b,u}=Sq

Cq2=Cq\{u}={a,b,v}Cv={a,b,v,k}

Figure 4.2: Illustration of Theorem 4.4.1 for the case in which the residual Rv consists of at least
1 additional vertex k to the edge end vertex v.

The next lemma uses (4.5) and Theorem 4.4.1 to simplify the expression for the

likelihood ratio in (4.18).

70

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

Lemma 4.4.3 (Wong (2002)). Suppose that g and g′ are the decomposable graphs

defined above. Then, using the notation of (4.15), and Theorem 4.4.1

h(g, δ, Φ)

h(g′, δ, Φ)

h(g′, δ∗, Φ∗)
h(g, δ∗, Φ∗)

=

∣∣ΦDD|Sq2

∣∣„
δ+|Sq2 |+1

2

« ∣∣∣Φ∗
ii|Sq2

∣∣∣
„

δ∗+|Sq2 |
2

« ∣∣∣Φ∗
jj|Sq2

∣∣∣
„

δ∗+|Sq2 |
2

«

∣∣Φii|Sq2

∣∣„
δ+|Sq2 |

2

« ∣∣Φjj|Sq2

∣∣„
δ+|Sq2 |

2

« ∣∣∣Φ∗
DD|Sq2

∣∣∣
„

δ∗+|Sq2 |+1

2

« ×

Γ

(
δ+|Sq2 |

2

)
Γ

(
δ∗+|Sq2 |+1

2

)
Γ

(
δ+|Sq2 |+1

2

)
Γ

(
δ∗+|Sq2 |

2

) (4.8)

where D = {i, j}, ΦDD|Sq2
= ΦDD − ΦDSq2

(
ΦSq2Sq2

)−1
ΦSq2D, and Φii|Sq2

, Φjj|Sq2
,

Φ∗
DD|Sq2

, Φ∗
ii|Sq2

and Φ∗
jj|Sq2

are defined similarly.

The next lemma is required to obtain an expression for h(g′, δ, Φ).

Lemma 4.4.4 (Lemma 2.13, p. 16, Lauritzen (1996)). Let C̃1, . . ., C̃ek be a perfect

sequence with separators S̃2, . . ., S̃ek. Assume that C̃t ⊂ C̃p for some t �= p and that

p is minimal with this property for fixed t. Then

(a) If p < t then S̃t = C̃t and C̃1, . . ., C̃t−1, C̃t+1, . . ., C̃ek is a perfect sequence with

separators S̃2, . . ., S̃t−1, S̃t+1, . . ., S̃ek
(b)If p > t then S̃p = C̃t and C̃1, . . ., C̃t−1, C̃p, C̃t+1, . . ., C̃p−1, C̃p+1, C̃ek is a perfect

sequence with separators S̃2, . . ., S̃t−1, S̃t, S̃t+1, . . ., S̃p−1, S̃p+1, S̃ek

From Lemma 4.4.4, a perfect sequence of complete sets C̃1, . . ., C̃ek containing

the cliques of g′ can be thinned by removing complete sets that are not cliques

and reordering the sequence. From Lemma 4.4.4, the right-hand side of (4.5) is

invariant to this thinning process. Successive application of the thinning process

gives a perfect sequence consisting of the cliques of g′.

71

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

From (4.5), Theorem 4.4.1 and Lemma 4.4.4, Wong (2002) shows

h(g′, δ, Φ)

=

∏
i=1,...q−1,q1,q2,q+1,...,k

[∣∣∣ΦCiCi

2

∣∣∣
„

δ+|Ci|−1

2

«
Γ|Ci|

(
δ+|Ci|−1

2

)−1
]

∏
i=2,...q−1,q1,q2,q+1,...,k

[∣∣∣ΦSiSi

2

∣∣∣
„

δ+|Si|−1

2

«
Γ|Si|

(
δ+|Si|−1

2

)−1
] . (4.9)

Now consider the ratio h(g, δ, Φ)/h(g′, δ, Φ). Wong (2002) simplifies the expressions

from (4.5) and (4.9) to give

h(g, δ, Φ)

h(g′, δ, Φ)
=

∣∣ΦCqCq

∣∣„
δ+|Sq2 |+1

2

« ∣∣ΦSqSq

∣∣„
δ+|Sq2 |−1

2

«
Γ

(
δ+|Sq2 |

2

)
∣∣ΦCq1Cq1

∣∣„
δ+|Sq2 |

2

« ∣∣ΦCq2Cq2

∣∣„
δ+|Sq2 |

2

«
Γ

(
δ+|Sq2 |+1

2

)
2
√

π

. (4.10)

Substituting ∣∣ΦCqCq

∣∣ =
∣∣ΦDD|Sq2

∣∣ ∣∣ΦSq2

∣∣∣∣ΦCq1Cq1

∣∣ =
∣∣Φii|Sq2

∣∣ ∣∣ΦSq2

∣∣∣∣ΦCq2Cq2

∣∣ =
∣∣Φii|Sq2

∣∣ ∣∣ΦSq2

∣∣
into (4.10) gives (Wong (2002))

h(g, δ, Φ)

h(g′, δ, Φ)
=

∣∣ΦDD|Sq2

∣∣„
δ+|Sq2 |+1

2

«
Γ

(
δ+|Sq2 |

2

)
∣∣Φii|Sq2

∣∣„
δ+|Sq2 |

2

« ∣∣Φjj|Sq2

∣∣„
δ+|Sq2 |

2

«
Γ

(
δ+|Sq2 |+1

2

)
2
√

π

.

A similar expression can be derived for the ratio h(g, δ∗, Φ∗)/h(g′, δ∗, Φ∗) and the

result follows.

The following lemma gives an efficient method for evaluating the terms in (4.8)

using Cholesky decompositions.

Lemma 4.4.5 (Wong (2002)). Using the notation of Theorem 4.4.1 and Lemma

4.4.3, suppose that the matrix ACqCq > 0 is partitioned as

ACqCq =

(
ASq2Sq2

ASq2D

ADSq2
ADD

)

72

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

and has Cholesky decomposition ACqCq = LL′ where

L =

(
LSq2Sq2

0

LDSq2
LDD

)

and

LDD =

(
lαα 0

lβα lββ

)
.

Then

(a) ADD|Sq2
= LDD (LDD)′

(b)
∣∣ADD|Sq2

∣∣ = (lαα)2 (lββ)2

(c) Aαα|Sq2
= (lαα)2

(d) Aββ|Sq2
= (lβα)2 + (lββ)2

Equation (4.18) and parts (b)—(d) of Lemma 4.4.5 give an efficient expression

for the conditional distributions in Section 4.8. The main computational effort is in

updating the Cholesky decompositions of the matrices ΦCqCq and Φ∗
CqCq

whenever an

edge is added or deleted. From Lemma 4.4.5, this Cholesky decomposition must be

done with the entries for the ith and jth vertices in the lower right corner. Note that

efficient Cholesky updating routines using Givens rotations are available in MATLAB

and FORTRAN. Note also that the dimensions of ΦCqCq and Φ∗
CqCq

depend on the

clique sizes and may be much smaller than p. Thus our method has the local

computational properties described in Giudici & Green (1999) and will have similar

computational cost to their method per iteration of the Gibbs sampler.

4.5 Prior for Σ

We use the HIW prior of (4.3) for Σ, with δ = 5, because it allows Σ to be integrated

out of the sampling scheme described in Section 4.8. Roverato (2000) shows that

the inverse of a HIW random matrix has a Wishart distribution, subject to the

constraints imposed by the corresponding graph. Thus

p(dΣ|Φ, δ) =
∑

g

p(dΣ|g, Φ, δ)p(g)

73

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

is a mixture of HIW distributions over all decomposable graphs g, and is equivalent

to the prior on Ω being a mixture of constrained Wishart distributions over all

decomposable graphs.

4.6 Prior specification for Φ and its parameters

We consider the following three specifications for the hyperparameter Φ, and refer

to them as the hyperprior forms of Φ:

1. Φ = τI, τ > 0 where I is the p × p identity matrix.

2. Φ = τ(ρJ + (1 − ρ)I), τ > 0 where J is the p × p matrix of ones and ρ is a

correlation coefficient that needs to be in the open interval (−1/(p − 1), 1) for

Φ to be positive definite. This specification is used by Giudici & Green (1999)

and is called the equicorrelated version of Φ because Φii = τ and Φij = τρ for

i �= j.

3. Φ = τSy/(n − 1), where τ > 0,

Sy =
n∑

t=1

(yt − y)(yt − y)′, (4.11)

and y is the mean of the yt. We refer to this as the scaled sum of squares form

of Φ.

We motivate this choice of Φ in two ways. First, by integrating μ out of

p(y|μ, Σ), with p(μ) constant, we obtain

p(y|Σ) ∝ |Σ|−(n−1)/2 etr

(
−1

2
SyΣ

−1

)
. (4.12)

Suppose g is a decomposable graph. If we take p(Σ|g) ∝ p(y|Σ)1/(n−1), then

from (4.12) and equation (3) of Giudici (1996), we can write p(Σ|g) in the form

(4.4) with Φ = Sy/(n − 1).

A second motivation for this choice of Φ is to note that if Σ ∼ HIW (p, δ, Φ),

then E(ΣCC) = ΦCC/(δ − |C| − 1) for any clique C = Ci or separator C = Si

in (4.3). Since (Sy)CC/(n − 1) is an unbiased estimator of ΣCC , this suggests

taking Φ ∝ Sy/(n − 1).

74

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

We assume in all cases that τ is uniform on the interval [0, Γ] where Γ is large,

e.g. Γ = 1010, and in the equicorrelated case that ρ is uniform on the open interval

(−1/(p − 1), 1).

4.7 Prior for g

Because of the theoretical and practical difficulty in calculating the exact number of

decomposable graphs for a given p, or the number of graphs of a given size, most

of the literature for both decomposable and general models takes the prior for g as

uniform over all the relevant graphs; see, for example, Atay-Kayis & Massam (2005),

Dellaportas & Forster (1999), Geiger & Heckerman (2002), Giudici & Castelo (2003),

Brooks et al. (2003), Giudici & Green (1999), Roverato (2002).

Such a prior favours any class of graphs with many members over a class with

few members, and favours middle sized graphs over both very large and very small

sized graphs.

Let Ap,k denote the number of graphs of size k. We specify the prior for a graph

g hierarchically as follows.

p(g|size(g) = k) =
1

Ap,k
,

so that all graphs of a given size are equally likely. We now specify the prior for the

size of a graph. One choice is

p(size = k) ∝ Ap,k,

which means that

p(g) = p(g, size(g)) = p(g|size(g))p(size(g)) ∝ constant,

giving the uniform prior for g. A more flexible prior is of the form

p(size = k|ψ) =

(
r

k

)
ψk(1 − ψ)r−k

where we interpret ψ as the probability that any two vertices have a common edge

and r = 2p(p−1)/2 is the maximum possible number of edges. We could then put a

75

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

prior on ψ. Suppose we take the prior for ψ to be a Beta distribution function with

parameters a and b, i.e.

p(ψ) =
ψa−1(1 − ψ)b−1

B(a, b)
.

Then,

p(size = k) =

(
r

k

)
B(a + k, r − k + b)

B(a, b)

and

p(g) = p(g|size(g))p(size(g)) (4.13)

=

(
r

size(g)

)
B(a + size(g), r − size(g) + b)

Ap,size(g)B(a, b)
(4.14)

where B(a, b) is the beta function. We can also put a prior on a, b. We take ψ

uniform so that a = b = 1, which means that

p(size = k) =
1

(r + 1)
and p(g) =

1

(r + 1)Ap,k
.

That is, the size of each graph has equal probability, and the probability of a graph

of size k conditional on size = k is uniform. However our framework is more flexible

than this.

We call this the size-based prior for g and in Section 7.2 compare results against

those using a uniform prior.

The size-based prior makes it easier to discover sparse and full graphs when n/p

is small. The counts Ap,k are not available in the literature. Section 7.3 gives results

to calculate a subset of them analytically, and shows how to evaluate the rest by

simulation.

4.8 Posterior inference and Markov chain Monte

Carlo sampling

We use Markov Chain Monte Carlo (MCMC) simulation to obtain all posterior distri-

butions. The simulation involves the generation of the graphs g and the parameters

in Φ but not Σ and μ which are integrated out. Thus, our sampling scheme is said

to generate from reduced conditionals and is therefore far more efficient than the

76

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

sampling schemes in Giudici & Green (1999) and Wong et al. (2003) that generate

Σ as part of their sampling scheme.

We note that iterates of μ and Σ can also be generated in conjunction with the

simulation, but such iterates of μ and Σ do not have any influence on the convergence

properties or dependence structure of the reduced conditional simulation.

The following theorems are useful in evaluating the conditional distributions re-

quired in the simulations. The first theorem gives a conjugate prior property of the

HIW distribution.

Let Sy be defined by (4.11) and define

Φ∗ = Φ + Sy and δ∗ = δ + n∗ (4.15)

where n∗ = n if the mean μ is known and n∗ = n − 1 otherwise.

Theorem 4.8.1 (Dawid and Lauritzen, 1993) For the Bayesian model specified by

(4.3) and (4.12)

Σ|y, δ, Φ, g ∼ HIW (g, δ∗, Φ∗)

Proof. See Dawid and Lauritzen (1993), Wong (2002), or Appendix 8.3.

The next theorem gives an expression for the marginal likelihood.

Theorem 4.8.2 (Giudici, 1996) For the Bayesian model specified by (4.3) and (4.12),

p(y|δ, Φ, g) = (2π)−(n∗p/2) h(g, δ, Φ)

h(g, δ∗, Φ∗)
(4.16)

Proof. See Giudici (1996), Wong (2002), or Appendix 8.3.

4.9 Sampling the graphs g

We sample the graphs g by generating the edge indicators one at a time, conditional

on δ, Φ and e−ij = {ekl, (k, l) �= (i, j), k < l} using the following MH sampling

scheme.

Using the notation of Section 4, let gc = (V, Ec) be the current graph of Σ, which

is decomposable by construction with edge indicators {ec
kl : 1 ≤ k < l ≤ p}.

77

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

We choose a pair (i, j) at random and suppose that g = (eij, e
c
−ij) is decomposable

for both eij = 0 and eij = 1. We use the legal edge addition and deletion characteri-

zations of Giudici & Green (1999) and Frydenberg & Lauritzen (1989) respectively

to ensure this. Otherwise we choose a new pair (i, j).

Set the proposal graph as gp (conditional on gc) as g = (ep
ij , e

c
−ij) where ep

ij =

1 − ec
ij. This means that the proposal density for eij is qg(a|b, ec

−ij) where a and b

are each either 0 or 1, and qg(a = 1 − b|b, ec
−ij) = 1.

The MH acceptance probabilty for the proposal is

min

{
1,

p(y|gp, Φ, δ)

p(y|gc, Φ, δ)

p(gp)

p(gc)

}
(4.17)

because qg(e
c
ij|ep

ij , e
c
−ij)/qg(e

p
ij |ec

ij, e
c
−ij) = 1. The ratio p(gp)/p(gc) is known and the

ratio of marginal likelihoods is

p(y|gp, Φ, δ)

p(y|gc, Φ, δ)
=

h(gp, δ, Φ)

h(gc, δ, Φ)

h(gc, δ∗, Φ∗)
h(gp, δ∗, Φ∗)

. (4.18)

A simple expression for (4.18) is derived in Section 4.4.

4.10 Generating the parameters in Φ

In all cases of Section 4.6 we generate τ using a random walk MH method

log(τ p) = log(τ c) + ξτ , ξτ ∼ N(0, σ2
τ),

which has acceptance probability

min

{
1,

p(y|g, τp, ρ)

p(y|g, τ c, ρ)

p(τ p)

p(τ c)

}
(4.19)

as the proposal densities cancel out. In the equicorrelated case, the parameter ρ is

generated similarly to τ by a random walk MH method

ρp = ρc + ξρ , ξρ ∼ N(0, σ2
ρ).

The choice of the variances σ2
τ , σ

2
ρ is sensitive to p, and is fine tuned to attain

acceptance probabilities of around 25% according to the acceptance rate of the pro-

posals. For the cases p = 17 reported in this thesis, such an acceptance probability

resulted from using σ2
τ = 1/10 and σ2

ρ = 1/20.

78

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

4.11 Generating Σ, Ω and μ

Although μ, Σ and Ω are not generated in the Markov chain Monte Carlo simulation,

it is often necessary to estimate functionals of μ, Σ and Ω. Such functionals can be

estimated by sampling from the posterior distribution of Σ, Ω and μ. Conditional on

(g, δ, Φ) it follows from Theorem 4.8.1 that p(Σ|y, g, δ, Φ) is HIW with parameters (δ+

n−1, Φ+Sy) so that Σ and Ω can be generated using Theorems 3 and 4 of Roverato

(2000). It is straightforward to show that p(μ|y, Σ, g, δ, Φ) is N(y, Σ/n), and hence

generate μ, giving iterates {μ[j], Σ[j], Ω[j], j ≥ 1} from the posterior distribution.

4.12 Generating δ

We now show how to generate δ assuming bounds dL ≤ δ ≤ dU . Define the proposal

density qδ(x|z) as

qδ(x|z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2
, if x = z + 1 or x = z − 1 for dL ≤ z ≤ dU ;

1, if x = z + 1 for z = dL;

1, if x = z − 1 for z = dU ;

0, otherwise.

(4.20)

qδ(x = z + 1|z) =
1

2
= qδ(x = z − 1|z)

for dL ≤ z ≤ dU , and

Now use qδ as a MH proposal for generating δ with acceptance probability

min

{
1,

p(y|g, δp, Φ)

p(y|g, δc, Φ)

p(δp)

p(δc)

qδ(δ
c|δp)

qδ(δp|δc)

}
(4.21)

We take p(δ) as the prior for δ. This can be uniform on the closed interval [dL, dU].

Note that

qδ(δ
p|δc) =

⎧⎨⎩1
2
, if dL ≤ δc ≤ dU ;

1, if δc = dL or dU .
(4.22)

and

qδ(δ
p|δc) =

⎧⎨⎩1
2
, if dL ≤ δp ≤ dU ;

1, if δp = dL or dU .
(4.23)

79

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

Note also that if dL = dU then there is nothing to generate, and dU − dL can be as

large or small as you want.

4.13 Efficient estimation of E(Ω|y)

This section shows how to estimate the posterior mean of Ω efficiently. The posterior

mean of Ω is not only used as an estimator of Ω, but E(Ω|y)−1 is the Bayes esti-

mator of Σ for the L1 loss function used in Section 7.2. One method of estimating

E(Ω|y) is to use the histogram estimator J−1
∑J

j=1 Ω[j]. A statistically more efficient

estimator is the mixture estimator J−1
∑J

j=1 E(Ω|y, g[j], δ[j], Φ[j]). We now show how

to efficiently compute E(Ω|y, g, δ, Φ) using the following notation from Lauritzen

(1996). Suppose that A is a p × p matrix and S ⊂ V . Let B = [ASS]V , the p × p

matrix defined by

Bij =

{
Aij if {i, j} ⊂ S

0 otherwise

Theorem 4.13.1 Suppose that Ω|y ∼ W (g, δ∗, Φ∗), where g is decomposable. Then,

using the notation of this and Section 4,

E (Ω|y, δ, Φ, g) =
k∑

i=1

[
(δ∗ + |Ci| − 1)

(
Φ∗

CiCi

)−1
]V

−
k∑

i=2

[
(δ∗ + |Si| − 1)

(
Φ∗

SiSi

)−1
]V

(4.24)

Proof. See Wong (2002) or Appendix 8.3.

4.14 Comparsion to the Wong et al. (2003) covari-

ance selection prior

This section compares the performance of our prior to the covariance selection prior

of Wong et al. (2003), which does not assume that the graph of the covariance matrix

is decomposable. Based on the results in Section 7.2, we use the equicorrelated form

of Φ and the size-based prior for the decomposable graphs.

The simulation considers the following four graph types for g. (a) Ω = I, the

identity matrix, representing the empty graph and a diagonal covariance matrix;

80

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

(b) Ω tridiagonal, representing a sparse and decomposable graph which is a path

consisting of p− 1 edges; (c) Ω corresponding to a 4-cycle on p vertices representing

a sparse but nondecomposable graph; and (d) Ω corresponding to a p−cycle on p

vertices, again representing a sparse but nondecomposable graph. We note that the

nondecomposable graphs in (c) and (d) require the addition of extra edges when we

estimate them by a mixture of decomposable graphs. Furthermore, (d) is an extreme

case of non-decomposability, as it requires the addition of at least p−3 edges to make

the graph decomposable. Conversely, the unchorded 4-cycle on p vertices requires

the addition of only one edge to make it decomposable, so it is chosen as an indicator

of performance for the sparsest nondecomposable case.

The simulation considers the three forms of Φ described in Section 4.6 and two

sample sizes n = 40 and n = 100. We report results for matrices of size p = 17, but

similar results are obtained for matrices of other sizes.

Let ΣT be the true value of Σ and let Σ̂ be an estimator of ΣT . We measure the

performance of Σ̂ using the L1 loss function

L1(Σ̂, ΣT) = trace(Σ̂Σ−1
T) − log det(Σ̂Σ−1

T) − p. (4.25)

This loss function is frequently used to compare estimates of the covariance ma-

trix, e.g. Yang & Berger (1994). It is straightforward to show that L1 ≥ 0 for all Σ̂

and ΣT , and that it is only equal to 0 if Σ̂ = ΣT . It is also straightforward to show

that for y ∼ N(0, Σ),

L1(Σ̂, ΣT) = −
∫

p(y|Σ̂) log

(
p(y|ΣT)

p(y|Σ̂)

)
dy (4.26)

i.e. L1 is equivalent to a Kullback-Liebler distance between p(y|ΣT) and p(y|Σ̂) with

respect to the density p(y|Σ̂). The Bayes estimator for Σ for the L1 loss function is

E(Ω|y)−1, which is computed as in Section 4.13.

We refer to the decomposable prior as DCP and the nondecomposable prior of

Wong et al. (2003) as NDP . We use boxplots to compare replication by replication

the DCP prior with the NDP prior in terms of the percentage increase in the loss

function L1 resulting from using the NDP prior compared to the DCP prior. That

is, the boxplots are based on calculating the percentage increase in L1 of DCP over

NDP for each iterate, i.e.

100(LDCP
1 − LNDP

1)/LNDP
1 .

81

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

for each replication, where LDCP
1 and LNDP

1 are the values of L1(Σ̂, ΣT) for the DCP

and NDP priors, respectively.

We ran the sampler for the case p = 17 on n = 40 and 100 observations from

four simulated data sets corresponding to the four models (a)–(d) for Ω.

Figure 4.3 reports boxplots of the percentage increase in L1 of DCP over NDP

for each iterate. The boxplots are based on 20 replications with each replication

consisting of 2,000 burn-in iterations and 20,000 sampling iterations. This number of

iterations was sufficient because Ω is relatively sparse in the four models considered.

Figure 4.3 shows that both priors perform similarly for decomposable graphs and

nondecomposable graphs, for both n = 40 and n = 100. These results and others

suggest that the prior based on decomposable graphs performs similarly to that of

Wong et al. (2003) when the graphs are relatively sparse.

ident tridi 4−cyc 17cyc

−40

−20

0

20

40

n
=

4
0

ident tridi 4−cyc 17cyc

−50

0

50

100

n
=

1
0

0

Figure 4.3: Percentage increase in L1 for DCP over NDP . The left panel is for n = 40 and the
right is for n = 100.

Next we report autocorrelation plots for the iterates of the elements of Ω, when

p = 5 and the graph is full for both DCP and NDP when n = 40. The simulation

for DCP uses a burn-in of 50,000 iterations and a sampling of 50,000 iterations, and

500, 000 burn-in and 1 million sampling iterations for NDP , because Ω is not sparse.

Figures 4.4 and Figure 4.5 show the autocorrelation plots for the DCP and

NDP models for a representative selection of Ωij . Figures 4.4 and 4.5 show that the

autocorrelations of the iterates of the Ωij decay rapidly to zero for the DCP model,

but are far more dependent in the NDP model. This difference in dependence is due

to the greater efficiency of the sampling scheme in the decomposable case. Grey

82

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

i,
j=

 2
5

Plot of DCP omega acfs, s50K, w50K

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

i,
j=

 3
3

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

i,
j=

 3
4

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

i,
j=

 3
5

Figure 4.4: Autocorrelations of the iterates of the Ωij in the DCP case for a representative selection
of Ωij .

scale plots of the true inverse covariance Ω and posterior mean estimates of Ω for the

NDP estimator and the DCP estimator for the 17-cycle case indicate that NDP and

DCP performed similarly in the simulations. For brevity only the nondecomposable

17-cycle is presented as it represents a case of high non-decomposability. Figure 4.6

shows that even in this case, the grey scales are very similar.

As a final empirical check on how close the DCP model estimate and NDP model

estimates were, the average value of all entries Ω̂ij from 20 DCP model estimates Ω̂

are compared to the same for the NDP model estimate. In the case of Figure 4.6,

they are within 2.5% of each other.

83

CHAPTER 4. BAYESIAN COVARIANCE SELECTION MODELS

0 50 100 150 200 250 300 350 400 450 500
0.6

0.8

1
i,
j=

 2
5

Plot of NDP omega acfs, s1000K, w500K

0 50 100 150 200 250 300 350 400 450 500
0.6

0.8

1

i,
j=

 3
3

0 50 100 150 200 250 300 350 400 450 500
0.6

0.8

1

i,
j=

 3
4

0 50 100 150 200 250 300 350 400 450 500
0.6

0.8

1

i,
j=

 3
5

Figure 4.5: Autocorrelations of the iterates of the Ωij in the NDP case for a representative selection
of Ωij .

omega true 17−cycle
5 10 15

2

4

6

8

10

12

14

16

NDP
5 10 15

2

4

6

8

10

12

14

16

DCP equicorr size
5 10 15

2

4

6

8

10

12

14

16

Figure 4.6: True inverse covariance Ω and posterior mean estimates of Ω for the NDP estimator
and the DCP estimator for the 17-cycle case.

84

Chapter 5

Variable and covariance selection

in multivariate regression models

5.1 Introduction

Decomposable graphical models have a natural application in general linear regres-

sion. This chapter provides a decomposable graphical framework for both deciding

the structure of, and estimating the parameters in, a multivariate regression model.

It compares the results to those obtained by Cripps et al. (2005) for the same real

data sets, who use the prior of Wong et al. (2003) to carry out covariance selection.

By variable selection we mean that the regression model allows some of the re-

gression coefficients to be identically zero. By covariance selection we mean that

the model allows some of the off-diagonal elements of the inverse of the covariance

matrix to be identically zero. We estimate all functionals of the parameters by model

averaging; that is, by taking a weighted average of the values of the functional, where

the average is over the allowable configurations of the regression coefficients and the

covariance matrix, and the weights are the posterior probabilities of the configura-

tions. The computation is carried out using a Markov chain Monte Carlo simulation

method.

This chapter is organised as follows. Section 5.2 describes the multivariate model

and the priors for variable and covariance selection. Section 5.3 discusses the sam-

pling scheme and how the decomposable reduced conditional sampler carries out the

computation. Section 5.4 presents the decomposable results and shows that they are

85

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

very similar to those obtained by Cripps et al. (2005), but that the autocorrelations

in the iterates of the decomposable sampling scheme decay far more rapidly to zero

than the iterates in the Cripps et al. (2005) sampling scheme.

5.2 Model description

5.2.1 Introduction

For t = 1, . . . , n, let yt be a p× 1 vector of responses, xt a p× q matrix of covariates

and β the q × 1 vector of regression coefficients. We assume the model

yt = xtβ + et, et ∼ N(0, Σ), (5.1)

where g is decomposable and Σ ∼ HIW (g, δ, Φ). Let γ = (γ1, . . . , γq) be a vector

of binary variables such that the ith column of xt is included in the regression if

γi = 1 and excluded if γi = 0. We write xt,γ for the matrix that contains all columns

of xt for which γi = 1 and write βγ for the corresponding subvector of regression

coefficients. Therefore, the vector γ indexes all the mean functions for the regression

model (5.1). Conditional on γ, (5.1) becomes

yt = xt,γβγ + et, et ∼ N(0, Σ), Σ ∼ HIW (g, δ, Φ). (5.2)

Model (5.2) contains as a special case the multivariate model

yt = Bx̃t + et, et ∼ N(0, Σ), Σ ∼ HIW (g, δ, Φ), (5.3)

where B is a matrix of regression coefficients and xt is a vector of covariates. It is

clear that model (5.3) is a special case of model (5.1) by taking xt = x̃′
t ⊗ Ip and

β = vec(B), where ⊗ means Kronecker product and vec(B) is the vector obtained by

stacking the columns of B beneath each other. The model (5.3) is used extensively in

multivariate regression analysis, e.g. , (Mardia et al., 1979,p. 157) and in particular

Brown et al. (1998), Brown et al. (1999) and Brown et al. (2002). We note that Brown

et al. (1998), Brown et al. (1999) and Brown et al. (2002) do variable selection on

x̃t which means that when they drop a covariate they drop a whole column of the

matrix B. (Cripps et al., 2005,Section 2.8) shows how this can be done in general

for the model (5.1).

86

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

5.2.2 Prior for the regression coefficients

We use the same prior for the regression coefficients as in Cripps et al. (2005).

The following description is taken directly from Cripps et al. (2005) with the kind

permission of the authors, and included here only for completeness.

Similarly to Smith & Kohn (1996), we define the prior for the the regression

coefficients as being noninformative with respect to the likelihood and with a mode

at zero. To motivate the prior, it is useful to rewrite the likelihood as follows.

p(y|β, γ, Ω) = |2πΩ|n
2 exp

{
−1

2

n∑
t=1

(yt − xt,γβγ)
′
Ω(yt − xt,γβγ)

}

= |2πΩ|n
2 exp

{
−1

2

n∑
t=1

y
′
tΩyt − 2β

′
γ

n∑
t=1

x
′
t,γΩyt + β

′
γ

n∑
t=1

x
′
t,γΩxt,γ

}

= |2πΩ|n
2 exp

{
−1

2
SSy − 2β

′
γSSxyγ + β

′
γSSxxγβγ

}
, (5.4)

where

SSy =

n∑
t=1

y
′
tΩyt, SSxyγ =

n∑
t=1

x
′
t,γΩyt, and SSxxγ =

n∑
t=1

x
′
t,γΩxt,γ .

As a function of βγ, the likelihood is Gaussian with a mean of (SSxxγ)
−1SSxyγ and

covariance matrix (SSxxγ)
−1.

Conditional on the binary indicator vector and the covariance matrix we take the

prior for βγ as

βγ |Σ, γ ∼ N(0, c(SSxxγ)
−1) (5.5)

and set c = n such that the prior variance of βγ stays approximately the same as n

increases.

From (5.4) and (5.5) we can write the density of βγ conditional on y, Σ, γ, g, δ

and Φ as

βγ|y, γ, Σ ∼ N

(
c

1 + c
(SSxxγ)

−1SSxyγ,
c

1 + c
(SSxxγ)

−1

)
, (5.6)

where Σ ∼ HIW (g, δ, Φ).

87

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

5.2.3 Prior for the vector of binary indicator variables

The prior for the vector of binary indicator variables is that of Cripps et al. (2005).

The following description is taken directly from Cripps et al. (2005) with the kind

permission of the authors, and included here only for completeness.

We first define

qγ =

q∑
i=1

γi,

which is the number of columns contained in xt specified by γi = 1.

We assume that γ and Σ are independent apriori and as in Kohn et al. (2001) we

specify the prior for γ as

p(γ|π) = πqγ(1 − π)q−qγ , with 0 ≤ π ≤ 1. (5.7)

We set the prior for π as uniform, i.e. p(π) = 1 for 0 ≤ π ≤ 1, so that

p(γ) =

∫
p(γ|π)p(π)dπ

=

∫
πqγ(1 − π)q−qγdπ

= B(qγ + 1, q − qγ + 1)

where B is the beta function defined by

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.

The likelihood for γ and Σ with βγ integrated out is

p(y|γ, Σ) =

∫
p(y|β, Σ, γ)p(βγ|γ, Σ)dβγ

∝ (1 + c)−
qγ
2 exp

{
−1

2

(
SSy − c

1 + c
SSxy

′
γSSxx−1

γ SSxyγ

)}
.(5.8)

We can write the density of γ conditional on y and Σ as

p(γ|y, Σ) ∝ p(y|Σ, γ)p(γ),

and use this density to update γ in the Markov chain Monte Carlo simulation.

88

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

5.2.4 Permanently selected variables

We frequently wish to permanently retain some variables in the regression. For

example, we may wish to retain all the intercept terms in the regression. We do so

by setting the indicators γ for these variables to be identically one and setting qγ in

section 5.2.3 to be the sum of the γi, excluding those γi that are identically 1. If we

wish to estimate the model with no variable selection, then we would set γi = 1 for

all i.

5.2.5 Priors for Σ, Φ, g

We use the HIW prior of (4.3) for Σ, with δ = 5, because it allows Σ to be inte-

grated out in the sampling scheme described in Section 4.8. Based on the results

in Section 7.2, we use the equicorrelated form of Φ and the size-based prior for the

decomposable graphs.

5.3 Sampling scheme

This section describes the decomposable sampling scheme for the regression model.

The sampling scheme for γ and β in this chapter is the same as the sampling scheme

for γ and β in Cripps et al. (2005), with the added condition that Σ ∼ HIW (g, δ, Φ)

is decomposable. Conditional on Σ ∼ HIW (g, δ, Φ), we do variable selection on

the elements of β, with β integrated out. To do this, we use a Gibbs sampler to

generate the elements of γ one at a time by calculating p(γi = 1|y, Ω, γ−i), where

γ−i = {γj : j �= i} (see Kohn et al. (2001) for details). In order to estimate the mean

for covariance selection, we then generate βγ conditional on Σ, γ from its conditional

posterior density as given in (5.6). By conditioning on Σ we are also conditioning on

g, δ, Φ because Σ ∼ HIW (g, δ, Φ).

The sampling scheme for covariance selection as described in this chapter is dif-

ferent to Cripps et al. (2005) who do covariance selection on the elements of Ω, one

at a time, conditional on β and Ω. In the decomposable scheme, on the other hand,

covariance selection for Ω is performed by generating the decomposable graph g, via

the edge indicators, as described in Section 4.9. This is done with Ω integrated out

but dependent on β because ỹ = y − xβ is used to calculate Sy.

89

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

In order to compare performance and use ỹ = y−xβ to calculate Sy, we generate

Ω. Ω is sampled directly from a decomposable HIW distribution using the results of

Sections 4.3 and 4.11 where ỹ is used to calculate Sy.

In summary, γ, β, g, Ω and the parameters in Φ are generated using the following

Markov chain Monte Carlo scheme.

1. γi|γ−i, y, g, Ω , i = 1, . . . q;

2. βγ|y, γ, g, Ω;

3. ρ, τ |y, g, x, β, δ, Φ;

4. eij |e−ij, y, x, β, δ, Φ , i = 1, . . . p − 1 j = i, . . . p;

5. Ω|y, x, β, g, δ, Φ,

where the edge indicators eij and the notation g = (eij , e−ij) are given in Section 4.4.

We generate g = (eij , e−ij) and the parameters in Φ using the sampling scheme

described in Chapter 4.8. Ω is sampled from its posterior distribution, conditional

on xβ, g, δ, Φ, using the method and results described in Sections 4.3 and 4.11.

5.4 Comparison to Cripps et al. (2005) using same

real data sets

This section compares the performance of the decomposable prior to the covariance

selection prior of Wong et al. (2003) in the multivariate regression context described

in Cripps et al. (2005), which does not assume that the graph of the covariance

matrix is decomposable. Based on the results in Section 7.2, we use the size-based

prior for the decomposable graphs. We use the equicorrelated form of Φ when it is

most likely that Ω is sparse, and both the equicorrelated and scaled sum of squares

forms of Φ otherwise.

We compare performance of the priors on the cross-sectional cow diet and pigs

growth rate datasets reported in Cripps et al. (2005) and explained in detail in

Subsections 5.4.2 and 5.4.1, as well as the physical measurements dataset from

Larner (1996). Following the notation of Cripps et al. (2005) and Section 4.14,

90

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

let DCPCSV S be the decomposable prior and let NDPCSV S be the nondecom-

posable prior of Cripps et al. (2005). Let τSy stand for the scaled sum of squares form

of Φ for model DCSV S. Let C be the partial correlations matrix. For j = 1, . . . , p

and i < j, we define the binary variable Jij = 0 if Cij is identically zero and Jij = 1

otherwise. Let J = {Jij, i < j, j = 1, . . . , p}. These binary variables are analogous

to the γi binary variables that we use for variable selection, and in the decomposable

case, Jij are the edge indicators eij.

For the variable selection, we report the posterior means and standard errors of

the regression coefficients, and the posterior probabilities of including a predictor

variable in the regression. For the covariance selection, we report image plots of the

estimates of C, J and Ω which are computed as the average of the iterates and which

we we refer to as Ĉ, Ĵ and Ω̂, respectively. The image plots are lighter where the

matrix is sparser. Where instructive, we report the graphs consisting of edges with

at least k% posterior sampling probability, and refer to these as the k% graphs. Note

that the decomposable k% graphs need not be decomposable.

5.4.1 Pig growth rate data

This longitudinal data set contains observations on 48 pigs measured over 9 successive

weeks. It is described in Diggle et al. (2002,pp. 34-35). 1 Following Cripps et al.

(2005), we model the mean function of the pigs growth rate as a piecewise linear trend

such that at each time point we allow the slope to change. We use the equicorrelated

form of Φ because longitudinal data is most likely to result from a tridiagonal banded

structure. Therefore a sparse structure for Φ is likely to give the best results.

Let yti be the response for pig t at time i and write the piecewise linear time

trend as

β0 + β1i + β2(i − 2)+ + β3(i − 3)+ + . . . + β8(i − 8)+, for i = 1, . . . , 9 (5.9)

where

x+ =

{
x if x ≥ 0,

0 if x < 0.

Writing (5.9) in the notation of (5.3)

yt = xtβ + et, et ∼ N(0, Σ) , (5.10)

1The data can be obtained from http://www.maths.lancs.ac.uk/∼diggle/lda/Datasets/

91

http://www.maths.lancs.ac.uk/%E2%88%BCdiggle/lda/Datasets
http://www.maths.lancs.ac.uk/%E2%88%BCdiggle/lda/Datasets
http://www.maths.lancs.ac.uk/%E2%88%BCdiggle/lda/Datasets

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

where the predictor matrix xt is

Xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0 0

1 3 1 0 0 0 0 0 0

1 4 2 1 0 0 0 0 0

1 5 3 2 1 0 0 0 0

1 6 4 3 2 1 0 0 0

1 7 5 4 3 2 1 0 0

1 8 6 5 4 3 2 1 0

1 9 7 6 5 4 3 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and β is the corresponding 9 × 1 vector of regression coefficients.

Table 5.1 compares the estimated posterior means and standard errors for the

regression coefficients and the posterior probabilities that the regression coefficients

are nonzero. The coefficient β2 is significant for both NDPCSV S and DCPCSV S.

Comparing respective entries indicates that there is no significant difference in the

results obtained by NDPCSV S and DCPCSV S.

β1 β2 β3 β4 β5 β6 β7 β8 β9

Post. mean NDPCSV S 17.8010 6.6829 0.1251 -1.2903 0.1648 0.3164 -0.0604 0.6258 -0.7225

Post. mean DCPCSV S 17.8092 6.6861 0.1149 -1.2779 0.1647 0.3064 -0.0674 0.6609 -0.7596

Post. std. error NDPCSV S 0.3903 0.1630 0.2238 0.2920 0.2357 0.3759 0.2233 0.4031 0.4614

Post. std. error DCPCSV S 0.4079 0.1603 0.2218 0.2980 0.2321 0.3684 0.2269 0.3846 0.4120

Post. prob. NDPCSV S NA 1.0000 0.3950 1.0000 0.5185 0.5905 0.3465 0.8180 0.8145

Post. prob. DCPCSV S NA 1.0000 0.3889 0.9998 0.5141 0.5843 0.3484 0.8367 0.8609

Table 5.1: Posterior means, standard errors and probabilities of being nonzerofor the regression
coefficients using model NDPCSV S for the pig growth rate data compared to the same estimates
using model DCPCSV S. NA means not applicable as the coefficient is always included.

Figure 5.1 compares the image plots of Ĉ and suggests that the estimates are

similar. Figure 5.2 compares the image plots of Ĵ and indicates that there is negligible

difference in the sparsity of the estimates of the partial correlation matrix between

model NDPCSV S and model DCPCSV S. Both plots suggest that the partial

correlations have an autoregressive type structure.

92

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

a) (b)

Figure 5.1: Image plots of Ĉ for the pig growth rate data. Panel (a) is for model NDPCSV S.
Panel (b) is for model DCPCSV S.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

a) (b)

Figure 5.2: Image plots of Ĵ for the pig growth rate data. Panel (a) is for model NDPCSV S.
Panel (b) is for DCPCSV S.

5.4.2 Cow diet data

This data set consists of observations on 50 cows that are subjected to a diet additive.

The data is cross-sectional and is described in Gelman et al. (2000,p.213-215) 2. Each

cow is assigned to one of four different levels of diet additive: 0% for the first 12

cows, 0.1% for cows 13-25, 0.2% for cows 26-38 and 0.3% for the remaining 12 cows.

The following variables are also recorded for each cow, where ‘p’ indicates predictor,

and ‘r’ indicates response:

p2 Lactation

p3 Age (mos)

2The data is available from http://www.stat.columbia.edu/∼gelman/book/data/.

93

http://www.stat.columbia.edu/%E2%88%BCgelman/book/data%00%00
http://www.stat.columbia.edu/%E2%88%BCgelman/book/data%00%00
http://www.stat.columbia.edu/%E2%88%BCgelman/book/data%00%00

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

p4 Initial weight (lb)

r1 Mean daily dry matter consumed (kg)

r2 Mean daily milk product (lb)

r3 Milk fat (%)

r4 Milk solids nonfat (%)

r5 Final weight (lb)

r6 Milk protein (%)

The first 3 variables were recorded before the additive was included in the diet

and the last 6 variables were recorded after the additive was included in the diet.

Following Cripps et al. (2005), we treat the 6 post-diet additive variables as the

multivariate response and the diet additive and the 3 pre-diet additive variables as

the predictors. We model the data as in (5.3) which allows the same covariates to

have different regression coefficients for each element in the vector of the responses.

An interesting feature of this data is the relatively high correlation amongst some

of the predictor variables. In particular, the correlation between lactation and age

is 0.9624, the correlation between lactation and initial weight is 0.7504 and the

correlation between age and initial weight is 0.7808.

The response vector for the tth cow is yt = (yt1, yt2, . . . , yt6)
′
where yt contains, in

the following order, Mean daily dry matter consumed, Mean daily milk product, Milk

fat, Milk solids nonfat, Final weight and Milk protein. The predictor vector for the

ith cow is xt = (xt0, xt1, xt2, xt3, xt4)
′
, where xt contains, in the following order, an

intercept, Diet additive, Lactation, Age and Initial weight. The matrix of regression

coefficients in (5.3) for this example is,

B =

⎡⎢⎢⎢⎢⎣
β1,0 β1,1 β1,2 β1,3 β1,4

β2,0 β2,1 β2,2 β2,3 β2,4

...
...

...
...

...

β6,0 β6,1 β6,2 β6,3 β6,4

⎤⎥⎥⎥⎥⎦ .

We present analysis for both the τSy and the equicorrelated forms of Φ because the

results of Section 7.2 suggest that if Ω is sparse, then the equicorrelated prior will

94

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

Posterior mean

β1,0 β1,1 β1,2 β1,3 β1,4 β2,0 β2,1 β2,2 β2,3 β2,4

NDPCSV S 9.5310 0.5236 0.0623 0.0010 0.0050 30.7891 -0.4925 0.2332 0.0084 0.0213

τSy 10.2854 0.6567 0.0714 0.0017 0.0044 34.3323 -0.5668 0.3542 0.0103 0.0182

equi 9.0785 0.2399 0.0909 -0.0019 0.0055 26.5486 -0.0982 0.1089 0.0009 0.0251

β3,0 β3,1 β3,2 β3,3 β3,4 β4,0 β4,1 β4,2 β4,3 β4,4

NDPCSV S 2.9592 2.0622 0.0316 0.0001 0.0001 8.5256 -0.0074 -0.0109 -0.0004 0.0000

τSy 2.9647 2.0559 0.0294 0.0000 0.0001 8.5341 -0.0075 -0.0132 -0.0005 0.0000

equi 2.9616 2.1010 0.0291 0.0004 0.0001 8.5238 -0.0091 -0.0070 -0.0005 0.0000

β5,0 β5,1 β5,2 β5,2 β5,4 β6,0 β6,1 β6,2 β6,3 β6,4

NDPCSV S 232.9853 -191.9362 0.3351 -0.0346 0.8080 3.2934 -0.0119 0.0009 0.0001 -0.0000

τSy 238.9370 -200.4239 0.5443 -0.0393 0.8041 3.2968 -0.0138 0.0011 0.0001 -0.0000

equi 231.9985 -165.1042 0.0471 -0.0515 0.8066 3.2912 -0.0075 0.0008 0.0001 -0.0000

Table 5.2: Comparison of posterior means for the regression coefficients using model NDPCSV S

and DCPCSV S for the τSy and the equicorrelated forms of Φ, respectively, for the cow diet data.

Posterior sampling standard error

β1,0 β1,1 β1,2 β1,3 β1,4 β2,0 β2,1 β2,2 β2,3 β2,4

NDPCSV S 3.3086 1.5375 0.2179 0.0119 0.0029 13.0697 3.1737 0.8675 0.0527 0.0116

τSy 3.3432 0.5677 0.0862 0.0037 0.0016 11.5567 0.9113 0.4015 0.0170 0.0066

equi 2.8679 0.3685 0.1007 0.0059 0.0018 8.4345 0.7033 0.1580 0.0150 0.0082

β3,0 β3,1 β3,2 β3,3 β3,4 β4,0 β4,1 β4,2 β4,3 β4,4

NDPCSV S 0.3669 0.5725 0.0688 0.0040 0.0003 0.1730 0.1014 0.0310 0.0019 0.0002

τSy 0.9006 0.6456 0.0221 0.0012 0.0001 2.5598 0.0303 0.0109 0.0007 0.0001

equi 0.8959 0.6563 0.0220 0.0011 0.0001 2.5562 0.0313 0.0095 0.0006 0.0001

β5,0 β5,1 β5,2 β5,2 β5,4 β6,0 β6,1 β6,2 β6,3 β6,4

NDPCSV S 82.8676 120.2146 4.5379 0.3559 0.0671 0.1259 0.0848 0.0103 0.0008 0.0001

τSy 76.2745 72.2902 1.5802 0.1229 0.2428 0.9898 0.0274 0.0034 0.0002 0.000

equi 74.0973 64.4649 1.3500 0.1174 0.2433 0.9879 0.0276 0.0038 0.0003 0.0000

Table 5.3: Posterior standard errors for the regression coefficients using model NDPCSV S and
DCPCSV S for the τAy and equicorrelated forms of Φ, respectively, for the cow diet data.

work best, and if Ω is reasonably full, then the τSy will work best, and we do not

know, a priori, which case holds.

Tables 5.2, 5.3 and 5.4.2 compare the estimated means, standard errors and

probabilities of being nonzero, respectively, of the regression coefficients, and shows

that all models provide similar estimates.

95

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

Posterior probability of being non-zero.

β1,0 β1,1 β1,2 β1,3 β1,4 β2,0 β2,1 β2,2 β2,3 β2,4

NDPCSV S NA 0.1598 0.1453 0.1027 0.8208 NA 0.0816 0.1340 0.1116 0.8339

DCPCSV S τSy NA 0.1819 0.1527 0.1131 0.7271 NA 0.0840 0.1676 0.1208 0.7349

DCPCSV S equi. NA 0.1013 0.1509 0.1043 0.8780 NA 0.0607 0.0910 0.0855 0.9379

β3,0 β3,1 β3,2 β3,3 β3,4 β4,0 β4,1 β4,2 β4,3 β4,4

NDPCSV S NA 0.9833 0.2918 0.1614 0.2203 NA 0.0663 0.1848 0.1436 0.1046

DCPCSV S τSy NA 0.9778 0.2713 0.1464 0.2204 NA 0.0701 0.2092 0.1605 0.1100

DCPCSV S equi. NA 0.9919 0.2832 0.1650 0.2003 NA 0.0643 0.1348 0.1280 0.0932

β5,0 β5,1 β5,2 β5,3 β5,4 β6,0 β6,1 β6,2 β6,3 β6,4

NDPCSV S NA 0.7952 0.0717 0.0746 1.0000 NA 0.0780 0.0809 0.0819 0.1212

DCPCSV S τSy NA 0.8057 0.0756 0.0756 1.0000 NA 0.0803 0.0845 0.0852 0.1306

DCPCSV S equi. NA 0.6848 0.0657 0.0759 1.0000 NA 0.0641 0.0703 0.0809 0.1116

Table 5.4: Posterior probabilities of the regression coefficients being nonzero for models NDPCSV S

and DCPCSV S using the τSy and equicorrelated forms of Φ, respectively, for the cow diet data.
NA means not applicable as the coefficient is always included.

Figure 5.3 compares the image plots of Ω̂ and suggests that there is little difference

in the estimates of the models.

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

(a) (b) (c)

Figure 5.3: Image plots for the cow milk protein data. Panel (a) is the image plot of Ω̂ as estimated
by model NDPCSV S. Panel (b) is the same as estimated by DCPCSV S using the τSy form of
Φ. Panel (c) is the same as estimated by model DCPCSV S using the equicorrelated form of Φ.

Figure 5.4 compares the image plots of Ĉ and suggests that the estimates for

C1,U , and CU,6 where U = (2, . . . , 6) are very similar in all three models. There are

other regions of agreement in the estimates for C, but the τSy DCPCSV S estimate

is closer to the NDPCSV S estimate than the equicorrelated DCPCSV S estimate.

96

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

1 2 3 4 5 6

1

2

3

4

5

6
1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

(a) (b) (c)

Figure 5.4: Image plots for the cow milk protein data. Panel (a) is the image plot of Ĉ as estimated
by model NDPCSV S. Panel (b) is the same as estimated by model DCPCSV S using the τSy

squares form of Φ. Panel (c) is the same as estimated by model DCPCSV S using the equicorrelated
form of Φ.

Figure 5.5 compares image plots of Ĵ , as estimated by models NDPCSV S,

and DCPCSV S using the τSy and the equicorrelated forms of Φ, respectively. As

expected, the equicorrelated prior estimate is the sparsest. The plots indicate that

although there is some difference in the sparsity of the estimates, all models agree

on a large proportion of edges.

1 2 3 4 5 6

1

2

3

4

5

6
1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

(a) (b) (c)

Figure 5.5: Image plots for the cow milk protein data. Panel (a) is the image plot of Ĵ for model
NDPCSV S. Panel (b) is the same for model DCPCSV S using the τSy form of Φ. Panel (c) is
the same for model DCPCSV S using the equicorrelated form of Φ.

Figure 5.6 compares edge posterior probabilities. These are lowest for the equicor-

related DCPCSV S. Panel (a) shows that all three models are within 15% of each

other on 6 of the 15 possible edges. Panel (c) shows that the posterior edge proba-

bility estimates of the τSy DCPCSV S model are within 30% of the NDPCSV S

97

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

estimates on every edge, and within 10% on 7 of the 15 edges. Panels (b) and (d)

suggest that the τSy DCPCSV S estimates are closer to the NDPCSV S estimates

than the equicorrelated decomposable model, and that the τSy DCPCSV S esti-

mates are closer to the NDPCSV S estimates than to the equicorrelated DCPCSV S

estimates.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

(a) (b)

0 5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

(c) (d)

Figure 5.6: Edge posterior plots for the cow diet dataset. The edges are ordered in sequence along
the x-axis as (1, 2), (1, 3), . . . , (1, 6), (2, 3), (2, 4), . . . , (5, 6), and the y-axis is the corresponding pos-
terior sampling probability of the edge being present. Panel (a) plots NDPCSV S (*), DCPCSV S

using the equicorrelated form of Φ (o), and DCPCSV S using the scaled sum of squares form of Φ
(x). Panel (b) plots NDPCSV S (*) compared with DCPCSV S using the equicorrelated form of
Φ (o). Panel (c) plots NDPCSV S (*) compared with DCPCSV S using the scaled sum of squares
form of Φ (x). Panel (d) plots DCPCSV S using the equicorrelated form of Φ (o) compared with
DCPCSV S using the scaled sum of squares form of Φ (x).

Figure 5.7 compares the graphs which consist of edges with posterior sampling

probabilities of at least 75%, 85%, 95% and 99% respectively. Panel (a) of each is the

estimate of NDPCSV S, whilst (b) and (c) are those of DCPCSV S using the τSy

and the equicorrelated forms of Φ, respectively.

98

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

Summary

For brevity, we call the graphs consisting of edges with at least k% posterior sampling

probability the k% graphs. Note that the decomposable k% graphs need not be

decomposable.

1. the two most likely edges for all models are the same: these are e1 = (1, 2)

and e2 = (4, 6). This implies that Mean daily milk product and Mean daily dry

matter consumed are completely dependent: i.e. cannot be made independent

by conditioning on any subset of the remaining variables. Similarly, Milk solids

nonfat and Milk protein are completely dependent.

2. (c) is a subgraph of both (a) and (b) in every case.

3. The DCP equicorrelated 75% and 85% graphs are the same, and equal to the

τSy 95% graph.

4. The equicorrelated 95% and 99% graphs are the same, and a subgraph of every

graph.

5. The 95% graphs for NDP and DCP using the τSy form of Φ are the same.

6. The NDP 99% graph is a subgraph of all the remaining models graphs, except

the equicorrelated 99% graph.

7. At the 85% level, the graph in (d) is the graph in (f) plus the edges (2,5). The

graph in (e) is the graph in (f) plus the edge (4,1).

8. At the 75% level, the graph in (a) is the graph in (c) plus the edges (5,4) and

(5,2). It is not decomposable. The graph in (b) is the graph in (c) plus (5,6),

(1,3) and (1,4).

We now give the details. We first consider point 7. above. Panels (d), (e)

and (f) of Figure 5.7 are the 85% graphs for each model. Panel (d) is for model

NDPCSV S and Panels (e) and (f) are for model DCPCSV S using the τSy and the

equicorrelated forms of Φ, respectively. The difference of the edge e = (2, 5) means

that model NDPCSV S estimates that r2=Mean daily milk product is dependent on

r5=Final weight, even after conditioning on all remaining variables. On the other

99

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

hand, because r2=Mean daily milk product is connected to, but not adjacent to

r5=Final weight in Panels (e) and (f), model DCPCSV S estimates that Mean daily

milk product is independent of Final weight, after conditioning on all the rest. In the

graphs of both NDPCSV S and DCPCSV S, r3=Milk fat is made independent of

r4=Milk solids, nonfat, by conditioning on r6=Milk protein because r3
g

⊥r4|r6. This

means that Milk solids nonfat is irrelevant to knowing Milk fat in the situation where

you know Milk protein: you only need to condition on Milk protein to make these

two independent, and need not condition on, for example, Mean daily dry matter

consumed, or any of the other remaining variables. On the other hand, the models

disagree on the relation between Mean daily milk product and Final weight. Model

NDPCSV S says that these can never be made independent of one another, no

matter what other variables you condition on. Model DCPCSV S says that Mean

daily milk product can be made independent of Final weight by conditioning on Mean

daily dry matter consumed. This is arguably reasonable: if I made a guess about

Mean daily milk product, then you told me Final weight had changed, then I would

update my estimate accordingly. But if, before you told me the new Final weight,

I gained information about the new Mean daily dry matter consumed, then I would

get no further ‘new’ information by knowing Final weight. That is, Final weight is

irrelevant to Mean daily milk in the situation where Mean daily dry matter consumed

is known. This is reasonable because a cow’s Final weight would be largely equivalent

to the amount of daily dry matter consumed, given the Initial weight was the same.

On the other hand, these variables cannot be made independent by knowing Milk

fat. So Final weight is still relevant to Mean daily milk in the situation where only

the percentage of Milk fat is known.

The 85% graphs of DCPCSV S using the equicorrelated form of Φ and DCPCSV S

using the τSy form of Φ differ in only one edge, e = (1, 4).

We now consider the 99% graphs shown in Panels (k), (l) and (m) of Figure 5.7.

The conclusion from model NDPCSV S is that {v3, v4, v6}⊥⊥{v1, v2, v4}; i.e. that

Milk fat, Milk protein and Milk solids non fat, are marginally independent of Mean

daily milk product, Final weight and Mean dry matter consumed. On the other hand,

the conclusion from model NDPCSV S is that these are not marginally independent,

but can be made independent by conditioning. In particular, there is a dependency

between the Mean daily milk product and the Milk protein % that cannot be removed

100

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

by conditioning.

More inference about the conditional independencies between variables can be

inferred from the graphs, but for brevity this discussion is omitted.

101

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

1

2

5

6

3

4

1
2

3

4

5

6

1 2

5

6

3

4

(a) (b) (c)

1

2

5

6

3

4
1 2

4

5

6

3

1 2

5

6

3

4

(d) (e) (f)

1

2

5

6

3

4

1 2

5

6

3

4

1
2

4

6

(g) (h) (i)

1

2

5

3

6

4

1

2

5

6

3

4

1
2

4

6

(j) (k) (l)

Figure 5.7: Graphs for the cow milk protein data. Panels (a), (b) and (c) are the 75% graphs for
model NDPCSV S, and model DCPCSV S using the scaled sum of squares and the equicorrelated
forms of Φ, respectively. Panels (d), (e) and (f) are the same, at the 85% level. Panels (g), (h) and
(i) are the same, at the 95% level. Panels (j), (k) and (l) are the same, at the 99% level.

102

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

5.4.3 Physical measurements data: model 1

In this section we compare the NDPCSV S and DCPCSV S models on a dataset

consisting of the weight and various physical measurements for 22 male subjects

aged 16 to 30. Subjects were randomly chosen volunteers, all in reasonably good

health. Subjects were requested to slightly tense each muscle being measured to

ensure measurement consistency. Apart from Mass, all measurements are in cm.

(see Larner, M. (1996). Mass and its Relationship to Physical Measurements. MS305

Data Project, Department of Mathematics, University of Queensland.)3 Figure 5.8

gives histogram plots of all eleven variables. For simplicity and because this is an

exploratory analysis, we carry out the analysis as if the variables were multivariate

Gaussian, though we note that for further analysis of the data we would investigate

transformations of the variables to make this assumption more reasonable.

50 55 60 65 70 75 80 85 90 95
0

5

i= 1

24 25 26 27 28 29 30 31
0

2

4

i= 2

28 29 30 31 32 33 34 35 36 37 38
0

2

4

i= 3

85 90 95 100 105 110 115
0

2

4

i= 4

35 36 37 38 39 40 41
0

5

10

i= 5

102 104 106 108 110 112 114 116 118 120 122
0

2

4

i= 6

70 75 80 85 90 95 100 105
0

5

10

i= 7

168 170 172 174 176 178 180 182 184 186 188
0

2

4

i= 8

32 33 34 35 36 37 38 39 40 41 42
0

5

10

i= 9

42 44 46 48 50 52 54 56 58
0

5

10

i= 10

55.5 56 56.5 57 57.5 58 58.5 59 59.5 60
0

5

i= 11

(a) (b) (c)

Figure 5.8: Histograms of the physical measurements dataset. Panel (a) is the histograms for the
first to fourth variables. Panel (b) is the histograms for the fifth to eighth variables. Panel (c) is
the histograms for the ninth to eleventh variables.

The dataset is interesting because it consists of only 22 observations on 11 vari-

ables, and there are reasonable obvious interrelationships between variables. Stan-

dard analysis would regress weight on the remaining variables. We instead use a

3The data can be downloaded from http://www.statsci.org/data/oz/physical.html.

103

http://www.statsci.org/data/oz/physical.html

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

graphical structure analysis. The graphical analysis allows us to identify (1) clusters

of variables (i.e. cliques) from which we can infer variables that are redundant in the

model, and, (2) variables which are adjacent to Mass in the graphical structure, and

therefore cannot be made independent of Mass by conditioning on any subset of the

remaining variables. These can be interpreted as the best predictors to include in

the model for predicting the response variable Mass.

The p = 11 variables are indexed in the following order:

1. Mass: weight in kg,

2. Fore: maximum circumference of forearm,

3. Bicep: maximum circumference of bicep,

4. Chest: distance around chest directly under the armpits,

5. Neck: distance around neck, approximately halfway up,

6. Shoulders: distance around shoulders, measured around the peak of the shoulder

blades

7. Waist: distance around waist, approximately trouser line,

8. Height: from top of head to toe,

9. Calf: maximum circumference of calf,

10. Thigh: circumference of thigh, measured halfway between the knee and the top of

the leg,

11. Head: maximum circumference of head.

Figure 5.9 compares the autocorrelations for a representative selection of Ωij iter-

ates. The autocorrelations decay rapidly to zero for the DCPCSV S models, but not

for the NDPCSV S model. Note the scale on the y-axis in Figure 5.9: in Panel (a) the

NDPCSV S plot requires a y-axis going to 1.0 in all cases, but DCPCSV S only needs

0.1-0.2 in general, and a maximum of 0.5. The difference in autocorrelation of the iter-

ates between NDPCSV S and DCPCSV S is due to the greater efficiency of the sampling

scheme in the decomposable case. Figure 5.9 also shows that the autocorrelations for

the iterates of the τSy form of Φ sampling scheme decay more rapidly to zero than the

equicorrelated sampling scheme.

104

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

0 50 100 150 200 250 300
−1

0

1

i,
j=

 2
3

Plot of NDP omega acfs physical

0 50 100 150 200 250 300
−1

0

1

i,
j=

 2
4

0 50 100 150 200 250 300
−1

0

1

i,
j=

 2
5

0 50 100 150 200 250 300
−1

0

1

i,
j=

 2
6

0 50 100 150 200 250 300
−1

0

1

i,
j=

 2
7

0 50 100 150 200 250 300
−1

0

1

i,
j=

 2
8

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

i,
j=

2
3

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

i,
j=

2
4

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

i,
j=

2
5

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2
i,
j=

2
6

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

i,
j=

2
7

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

2
8

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

2

3

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

2

4

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

2

5

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

2

6

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

2

7

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

2

8

(a) (b) (c)

Figure 5.9: Autocorrelations in the iterates of the Ωij for a representative selection of Ωij and
the physical measurements dataset. Panel (a) plots the autocorrelations for NDPCSV S. Panel
(b) is the autocorrelations for DCPCSV S using the equicorrelated form of Φ. Panel (c) is the
autocorrelations for DCPCSV S using the τSy form of Φ.

Figure 5.10 shows that all models have converged. In particular, it shows that the

high autocorrelations for NDPCSV S are not because the sampler is not in the stationary

distribution.

Figure 5.11 shows that the sampling average of Ω is similar for each model. There are

definite regions of agreement between all three models: for example, the very sparse area

in the right hand bottom corner, and that the second variable, Maximum circumference of

forearm, shows partial correlation with the greatest number of the remaining variables.

Figure 5.12 are image plots of the sampling averages of C for all 3 models, and suggests

that all 3 models agree on the relatively strong relationship between y1 = Mass and

y7 = Waist. The image plots for NDPCSV S and equicorrelated DCPCSV S posterior

means of CU,U , where y′U = (y1, . . . , y7), appear almost identical.

Figure 5.13 compares the image plots of Ĵ and supports similar conclusions to those

reported for Figure 5.12.

105

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

0

2

i,
j=

2
3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.5

0

0.5

i,
j=

2
4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

0

2

i,
j=

2
5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1

0

1

i,
j=

2
6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.5

0

0.5

i,
j=

2
7

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.2

0

0.2

i,
j=

2
8

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

i,
j=

2

3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

i,
j=

2

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

i,
j=

2

5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

i,
j=

2

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

i,
j=

2

7

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

i,
j=

2

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2

i,
j=

2

3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2

i,
j=

2

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−5

0

5

i,
j=

2

5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

−1

0

i,
j=

2

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2

i,
j=

2

7

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

i,
j=

2

8

(a) (b) (c)

Figure 5.10: Iterates of Ωij for a the same representative selection of indicies shown in Figure 5.9.
Panel (a) is the iterates for NDPCSV S. Panel (b) is the same for DCPCSV S using the equicor-
related form of Φ. Panel (c) is the same for DCPCSV S using the scaled sum of squares form of
Φ.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

(a) (b) (c)

Figure 5.11: Image plots of Ω̂ for the physical measurements dataset. Panel (a) is for NDPCSV S.
Panel (b) is for DCPCSV S using the equicorrelated form of Φ. Panel (c) is for DCPCSV S using
the τSy form of Φ.

106

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

(a) (b) (c)

Figure 5.12: Image plots of Ĉ for the physical measurements dataset. Panel (a) is for NDPCSV S.
Panel (b) is forthe DCPCSV S using the equicorrelated form of Φ. Panel (c) is for DCPCSV S

using the τSy form of Φ.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

(a) (b) (c)

Figure 5.13: Image plots of Ĵ . Panel (a) is for NDPCSV S. Panel (b) is for DCPCSV S using the
equicorrelated form of Φ. Panel (c) is for DCPCSV S using the τSy form of Φ.

107

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

Figure 5.14 compares edge posterior probabilities. In general, tbe τSy DCPCSV S

model gives the highest posterior probabilities, and the equicorrelated DCPCSV S model

gives the lowest. Panel (a) shows that all three models are within 15% of each other

on 10 of the 55 possible edges. Panel (c) shows that the τSy DCPCSV S posterior edge

probability estimates are within 30% of the NDPCSV S estimates on every edge, and

within 10% on 12 of the 55 edges. Panels (b) and (d) suggest that the τSy DCPCSV S

estimates are closer to the NDPCSV S estimates than the equicorrelated decomposable

model estimates, and that the τSy DCPCSV S estimates are closer to the NDPCSV S

estimates than to the equicorrelated DCPCSV S estimates.

Figure 5.15 shows the 70%, 90% and 95% graphs, respectively. At the 50% level, all

graphs are full and these are omitted for brevity. The equicorrelated decomposable prior

consistently gives the sparsest estimates, followed by the NDPCSV S and the τSy decom-

posable model estimates, respectively. The graphs show that y1 = Mass and y2 = Waist

are dependent in all cases, and there is no conditioning set of variables that can make

them independent. This conclusion makes reasonable sense. Interestingly, the equicorre-

lated DCPCSV S model and the NDPCSV S models imply that Mass is conditionally

dependent on either y10 = Thigh or y11 = Head, respectively. The sample means of y10

and y11 are more similar to each other than the means of any of the remaining variables,

so these models can be interpreted as giving very similar inference about the most likely

edges.

108

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

(a) (b)

0 10 20 30 40 50 60
0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

(c) (d)

Figure 5.14: Edge posterior plots for the physical measurements dataset. The edges are ordered in
sequence along the x-axis as (1, 2), (1, 3), . . . , (1, 11), (2, 3), (2, 4), . . . , (10, 11), and the y-axis is the
corresponding posterior sampling probability of the edge being present. Panel (a) plots NDPCSV S

(*), DCPCSV S using the equicorrelated form of Φ (o), and DCPCSV S using the τSy form of Φ
(x). Panel (b) plots NDPCSV S (*) compared with DCPCSV S using the equicorrelated form of
Φ (o). Panel (c) plots NDPCSV S (*) compared with DCPCSV S using the scaled sum of squares
form of Φ (x). Panel (d) plots DCPCSV S using the equicorrelated form of Φ (o) compared with
DCPCSV S using the scaled sum of squares form of Φ (x).

109

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

1

2

3

4
5

6

7

8
9

10

11

1

2

6

7
9

10

3

5

4

1

2

3

4
5

6

7

8
9

10

11

(a) (b) (c)

1

2

7
9

11

3

6

4

5

8
1

6

7

10

3

4

1

2

3

4
5

6

7

8
9

10

11

(d) (e) (f)

1

7

11

2

6

3

4

8

1

7

1
2

4

5

6

7

8

9

10

11

3

(g) (h) (i)

Figure 5.15: Graph pictures for the physical measurements dataset. Panels (a), (d) and (g) are
70%, 90% and 95% graphs, respectively, for model NDPCSV S. Panels (b), (e) and (h) are the
same, for model DCPCSV S using the equicorrelated form of Φ. Panels (c), (f) and (i) are the
same, for by model DCPCSV S using the τSy form of Φ.

110

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

The summary analysis from Larner, M. (1996) is given below. It is the output of leaps

which does variable selection based on minimising the Cp Mallows criteria score. It does

not communicate the independence interrelations of the graphical analysis just given. (See

further discussion in Section 6.5.)

> leaps.mass <- leaps(physical[,2:11],Mass,nbest=3)

> df.mass <- data.frame(p=leaps.mass$size,Cp=leaps.mass$Cp)

> round(df.mass,2)

p Cp

Waist 2 60.50

Fore 2 74.80

Shoulder 2 110.36

Fore,Waist 3 14.70

Waist,Calf 3 25.25

Shoulder,Waist 3 29.54

Fore,Waist,Height 4 7.45

Fore,Waist,Calf 4 11.18

Fore,Waist,Thigh 4 12.21

Fore,Waist,Height,Thigh 5 4.44

Fore,Waist,Height,Calf 5 6.10

Fore,Waist,Height,Head 5 6.83

Fore,Waist,Height,Thigh,Head 6 4.14

Fore,Waist,Height,Calf,Thigh 6 4.82

Fore,Waist,Height,Calf,Head 6 5.35

Fore,Waist,Height,Calf,Thigh,Head 7 4.38

Fore,Chest,Waist,Height,Calf,Head 7 4.81

Fore,Chest,Waist,Height,Thigh,Head 7 5.50

Fore,Chest,Waist,Height,Calf,Thigh,Head 8 5.47

Fore,Bicep,Waist,Height,Calf,Thigh,Head 8 6.07

Fore,Shoulder,Waist,Height,Calf,Thigh,Head 8 6.12

Fore,Chest,Neck,Waist,Height,Calf,Thigh,Head 9 7.13

Fore,Chest,Shoulder,Waist,Height,Calf,Thigh,Head 9 7.45

Fore,Bicep,Chest,Waist,Height,Calf,Thigh,Head 9 7.47

Fore,Bicep,Chest,Neck,Waist,Height,Calf,Thigh,Head 10 9.01

Fore,Chest,Neck,Shoulder,Waist,Height,Calf,Thigh,Head 10 9.10

Fore,Bicep,Chest,Shoulder,Waist,Height,Calf,Thigh,Head 10 9.45

Fore,Bicep,Chest,Neck,Shoulder,Waist,Height,Calf,Thigh,Head 11 11.00

> lm.mass <-lm(Mass~Fore+Waist+Height+Thigh)

> summary(lm.mass,cor=F)

Call: lm(formula = Mass ~ Fore + Waist + Height + Thigh)

Residuals:

Min 1Q Median 3Q Max

-3.882 -0.6756 -0.1017 0.9641 4.992

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -113.3120 14.6391 -7.7404 0.0000

111

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

Fore 2.0356 0.4624 4.4020 0.0004

Waist 0.6469 0.1043 6.2015 0.0000

Height 0.2717 0.0855 3.1789 0.0055

Thigh 0.5401 0.2374 2.2750 0.0361

Residual standard error: 2.249 on 17 degrees of freedom

Multiple R-Squared: 0.9659

F-statistic: 120.5 on 4 and 17 degrees of freedom, the p-value is 3.079e-012

5.5 HIV data analysis

In this section we use the DCPCSV S model on a confidential dataset with the kind

permission of the National Centre for HIV research in Sydney. This data set consists of

n = 14 observations on a single patient at t weeks either on or off treatment. The p = 24

variables measured are cell counts of different phenotypes within each of the CD4+ and

CD8+ T cells. Based on the results in Section 7.2, we use the equicorrelated form of Φ

and the size-based prior for the decomposable graphs.

Let y = (yt1, . . . , ytp)′ be the observed cell counts at week t. For each j = 1, . . . , p, let

ytj be the cell count of phenotype j, measured t weeks from the beginning of a zt = 0 (off)

or zt = 1 (on) treatment period. We assume the piecewise linear model

ytj = βj
0 + βj

1t + βj
2zt + εt,j for j = 1, . . . , p (5.11)

where zt = 1 if the patient is treated at time t, and zt = 0 otherwise.

Writing (5.11) in the notation of (5.1),

yt = xtβ + et, et ∼ N(0,Σ), (5.12)

where Σ ∼ HIW (g, δ,Φ) the matrix xt of covariates is of dimension p × 3p and is

xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 t zt 0 0 0 0 0 0 0 0 0 . . .

0 0 0 1 t zt 0 0 0 0 0 0 . . .

0 0 0 0 0 0 1 t zt 0 0 0 . . .

.

0 0 0 0 0 0 0 0 0 . . . 1 t zt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
; β is the corresponding 3p× 1 vector of regression coefficients consisting of p/3 subvectors

βj = (βj
0, β

j
1, β

j
2)

′ for each j = 1, . . . , p.

Figure 5.16 shows the histograms of the natural logarithm of the variable values for

y1, . . . , y28 for the original dataset which includes variables which are knonw linear com-

binations of the remaining variables. For simplicity and because this is an exploratory

112

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

analysis, we take the logarithm of the entire dataset and assume a multivariate normal

model, though we note that for further analysis of the data for biomedical inference we

would investigate other transformations of some of the variables.

0 5 10 15
0

5

i= 1
7.5 8 8.5
0
2
4

i= 2

6.5 7 7.5 8
0

5

i= 3
6 6.5 7 7.5

0
2
4

i= 4

5.5 6 6.5 7
0
2
4

i= 5
5.5 6 6.5 7
0
2
4

i= 6

5.5 6 6.5 7
0

5

i= 7
2 2.5 3 3.5 4

0
2
4

i= 8

6.2 6.4 6.6 6.8 7
0
2
4

i= 9
3 3.5 4 4.5

0
2
4

i= 10

3 3.5 4 4.5 5
0

5

i= 11
6 6.2 6.4 6.6

0
2
4

i= 12

5 5.5 6 6.5
0
2
4

i= 13
5.5 6 6.5
0
2
4

i= 14

5 5.5 6 6.5
0

5

i= 15
4.5 5 5.5 6
0
2
4

i= 16

4.5 5 5.5 6 6.5
0
2
4

i= 17
3.5 4 4.5 5
0
2
4

i= 18

6.5 7 7.5
0
5

10

i= 19
4.5 5 5.5 6
0

5

i= 20

5 5.5 6 6.5
0
2
4

i= 21
5.5 6 6.5
0
5

10

i= 22

5.5 6 6.5 7
0

5

i= 23
4.5 5 5.5 6
0
5

10

i= 24

4 4.5 5 5.5
0
2
4

i= 25
3 4 5 6

0

5

i= 26

6 6.2 6.4 6.6
0

5

i= 27
3.5 4 4.5 5
0
2
4

i= 28

(a) (b) (c)

Figure 5.16: Histograms of the natural logarithm of the full HIV dataset. Panel (a) is the histograms
for log(y1), . . . , log(y10). Panel (b) is the histograms for log(y11), . . . , log(y20). Panel (c) is the
histograms for log(y21), . . . , log(y28).

Let V = {1, . . . , 24} be the index set of the 24 selected variables of interest. In order to

ensure non-singularity of the sample covariance, and because we only have n = 14 obser-

vations on p = 24 variables, we first analyse subsets of variables of sizes p = 6, . . . , 13 < n

such that the variables within each subset are known a priori to be linearly independent,

ensuring that the sample covariance matrix is non-singular.

The first empirical result is that the estimates on the intersections of such subsets

of variables are the same. Panels (a) and (b), respectively, of Figure 5.17 shows the

75% graphs for 2 typical index subsets: V 3 = {1, 4, 5, 6, 7, 8, 13, 14, 15, 16, 20, 23, 24} and

V 4 = {5, 6, 7, 8, 11, 13, 14, 15, 16, 19, 20, 23, 24}. Consider A = {5, 14, 23, 13}, B = {6, 8}
and C = {16, 15, 20}, which are subsets of both V 3 and V 4. Figure 5.17 shows that the

estimates of the induced subgraphs on the subsets A,B and C are the same in both cases,

after allowing for disconnectedness about variables which are not common to both V 3 and

V 4. For example, the subset V 3 does not include the connecting variables y4 and y11, and

so the induced subgraphs on A,B and C, respectively, are disconnected in Panel (a) but

113

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

connected in Panel (b). For subsets with non empty intersection, where the corresponding

sample covariance was positive definite, this empirical result was typical. For brevity we

report this example only.

4

7

14

23

5

6

8

13

15

16

20

5

11

14

19

23
13

15

6

8

7

16

20

(a) (b)

Figure 5.17: The 75% graphs for subsets of variables V 3 and V 4 with nonempty intersection. In
this case, the associated covariances are known a priori to be positive definite. Panel (a) is for the
index set V 3. Panel (b) is for the index set V 4. The induced subgraphs on common subsets of V 3
and V 4 are the same in each panel.

The second empirical result is that the first empirical result just discussed remains true

when the condition for positive definiteness, that p < n, is removed. Consider the typical

index subset V 2 = {1, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 21, 22, 23} which has nonempty

intersection with V 3, but for which V 2\V 3 �= ∅. It is known a priori that there are no

linear relationships between the variables in yV 2, but because |V 2| = 16 > n = 14 we know

that the sample covariance is not positive definite. The graph in Panel (b) of Figure 5.18 is

the 75% graph. We present the estimate for V 3 again in Panel (a) to facilitate comparison

and discussion. Recall that the eigenvalues of the sample covariance for V 3 are significantly

greater than zero. Panels (a) and (b) show that the model estimates agree on the induced

subgraphs on the common vertices.

The third empirical result is that the results just discussed still hold when we take

unions of index subsets such that p > n and the sample covariance has many eigenvalues

that are not significantly greater than zero. That is, even in this case the induced subgraphs

on the intersections are the same. The graph in Panel (c) of Figure 5.18 is the estimate for

the union of the two subsets V 2 and V 3. Panel (c) shows that the induced subgraphs gV 3

114

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

and gV 2 are the same for both model estimates, and agree with the estimates in Panels (a)

and (b), respectively.

In order to test this robustness of the model to the subsets chosen, we next consider the

index subset V 8 = V 2∪V 3∪{18}, the largest subset for which it is known that there are no

linear relationships between the variables, but for which the sample covariance is singular

because p = 20 > n.4 Panel (d) of Figure 5.18 is the graph 75% graph. In Panel (d), the

induced subgraphs of V 3 and V 2 are not exactly the same the graphs in Panels (a) and

(b). However, when we allow for the exponentially larger sampling space by considering

the 65%graphs, we see that all induced subgraphs agree. The graphs in Panels (e) and

(f) are for the same variables as Panels (c) and (d), respectively, but consist of edges with

posterior sampling probability at least 65%. Panels (e) and (f) more obviously contain as

induced subgraphs the graphs in Panels (a), (b) and (c). It arguably better to consider the

induced subgraphs of (e) and (f) rather than of (c) and (d), because the superexponential

increase in the number of possible edges from p = 13 to p = 20 implies a lower expected

posterior probability for every edge.

The fourth empirical result is that the third empirical result holds even when we know,

a priori, that there are linear relationships between the variables because of the way the

variable values are computed. We find empirically that we can still use graphical methods

to obtain well behaved positive definite estimates of Ω and Σ.

Figure 5.19 compares the image plot of the inverse sample covariance to image plots

of different DCPCSV S model matrix estimates for V = {1, . . . , 24}. In this case, it is

known a priori that linear relationships exist between the variables because of the way

their values are computed. Panel (a) is the inverse of the sample covariance. Because the

eigenvalues are not precisely zero, MATLAB allows us to calculate this inverse. Panel (b)

is the inverse of the average of the iterates of Σ for model DCPCSV S which is positive

definite by construction. Panel (c) is the average of the iterates of Ω for model DCPCSV S.

Panel (d) is the average of the iterates of C for model DCPCSV S.

The matrix estimates do not allow us to interpret easily the conditional independencies.

In particular, it is difficult to discern the vertices which are connected but not adjacent and

the sets S that separate variables of particular interest. Figure 5.20 are the 65%, 70%, 75%,

80%, 85%, 90% and 95% graphs, respectively. The relationships that we discovered are of

interest to the biomedical researchers who supplied the data because we can formulate

4In actual fact, 22 of the total 24 variables are theoretically not linearly related, however in this
case there will be two subsets of variables whose total values are almost equal. We therefore chose
to exclude these two variables also.

115

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

relationships between the variables in a similar way to those formulated in the analysis of

the cow diet dataset in Section 5.4.2. In particular, we can postulate which variables are

irrelevant to knowing key variables of interest after conditioning on other variables, and

which variables are always dependent no matter which other variables are known.

The final empirical result is that the β coefficient estimates are analogously consistent.

That is, regardles of the subset of variables chosen on which to run the DCPCSV S model,

the estimates βj
2 for j = 1, 21, 24 were at least 10% in every case. All the remaining βj

2

and all the βj
1 are less than 10%. This result remained true when we ran the model on the

whole p = 24 variables in which there are known linear relationships.

As a check on the sensitivity of the inference to some of the assumptions in the model,

we compared the graphical estimates for V 3 under the following 4 alternatives: (1) the

dataset consisting of the natural logarithm of y1 only, and the remaining data left in its

original form; (2) the dataset consisting of log(log(y1)) and log(yV 3\1); and (3) the natural

logarithm of all variables, but for a model in which there are no covariates. Figure 5.21

shows that the estimates of the graphical structures are surprisingly similar for each of

these modeling assumptions.

116

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

4

7

14

23

5

6

8

13

15

16

20

4

7

17

5
6

8

14

15

21

22

19

23

(a) (b)

4

7

10

17

19

23

5

14

15

20

21

22

4

14
17 18

5

6

8

7

12

19

13

23

21

15

20

22

(c) (d)

4

78

10

17

19

14

23

5

12

6

13

15

20

21

22

4

8 13

14

17

18

19

23

24

20

21

5

12

6

7

10

15

22

16

(e) (f)

Figure 5.18: The 75% graphs for different subsets of variables from the HIV dataset. Panel (a)
is the graph for V 3, where p = |V 3| = 13 < n and the sample covariance is positive definite
with eigenvalues significantly larger than zero. Panel (b) is the graph for V 2, which has nonempty
intersection with V 3 but does not properly contain V 3. In this case, p = |V 2| = 16 > n so the
sample covariance is singular, but we know a priori that there are no linear relationships between
the variables. Panel (c) is the graph for V 7 = V 2 ∪ V 3. In this case, p = |V 7| = 19 > n so
the sample covariance is singular, but we know that there are no linear relationships between the
variables. Panel (d) is the graph for V 8 = v2 ∪ v3 ∪ {18}. This is the largest possible subset in
which we know that there are no linear relationships and for which p > n. Panels (e) and (f) are
the same as Panels (d) and (e), but are for the 65% graphs.

117

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

(a) (b)

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

(c) (d)

Figure 5.19: Image plots of various matrix estimates for the HIV dataset. Panel (a) is the inverse of
the sample covariance. Panel (b) is the inverse of the average of the iterates of Σ for the DCPCSV S

model. Panel (c) is the average of the iterates of Ω for the DCPCSV S model. Panel (d) is the
average of the iterates of C for the DCPCSV S model.

118

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

2

4

7

10

11

13

17

18

19

23

14

12

15

21

3

56

8

16

20

22

2

47

11

13

17

18

12

19

21

23

3

5

8
10

14

15
20

16

2

4

7

11

1317

18

12

19
21

23

3

5

8

10

14

15

20

16

(a) (b) (c)

2

4

11

13

17

18

19

21

3

5

10

14

15

20

2

4

13

17

18

11
19

21

3

14

15

20

2

4

17

18

3

11

1914

15

20

(d) (e) (f)

15

18

20

19

17

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

(g) (h) (i)

Figure 5.20: Graphs for the HIV dataset. Panels (a) to (g) are the 65%, 70%, 75%, 80%, 85%, 90%
and 95% graphs, respectively. Panels (h) and (i) are the image plots of the adjacency matrices for
the 75% and 95% graphs, respectively.

119

CHAPTER 5. VARIABLE AND COVARIANCE SELECTION IN . . .

4

7

13

23

15

20

4

5

7

14
23

6

8

13

24

15

16
20

(a) (b)

4

5

7

8

14

23

6

13

15 16

20

4

5

7

14

23

6

8

13

15

16

20

(c) (d)

Figure 5.21: Graphs of different transformations for the subset V 3 from the HIV dataset. Panel
(a) is the 75% graph for the variables yV 3 but taking log(y1) only, and y(V 3\1), where log indicates
the natural logarithm. Panel (b) is the same as Panel (a), but for edges with posterior sampling
probability at least 50%. Panel (c) is the same as Panel (a), but for log(log(y1)) and log(yV 3\1).
Panel (d) is the same as Panel (a) in figure 5.18, but the covariates xt are omitted from the model.

120

Chapter 6

Reduced conditional sampling for

variable and covariance selection

in multivariate regression models

6.1 Introduction

This chapter presents a new sampling scheme for variable and covariance selection in

multivariate regression models which generates the variable and edge indicators with both

the regression coefficients and the covariance matrix integrated out. This means that the

new sampling scheme is potentially more efficient than that given in Chapter 5, and hence

it is also a more efficient sampling scheme than the one used by Cripps et al. (2005).

The chapter is organised as follows. Section 6.2 describes the model, the priors and

gives an expression for the marginal likelihood with both the vector of coefficients and

the covariance matrix integrated out. Section 6.3 describes the sampling scheme used in

this chapter and explains the difference between it and the sampling scheme introduced

in Chapter 5. Section 6.4 compares the performance of the sampling scheme introduced

in this chapter to the sampling scheme introduced in Chapter 5 and the sampler used

in Cripps et al. (2005). The comparisons are made by applying all three schemes to the

cow diet and physical measurements data sets introduced in Chapter 5. To illustrate that

graphical analysis gives a richer interpretation of the data than regression analysis, two

different regression models are used to analyse the physical measurements data.

121

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

6.2 Model description

6.2.1 Introduction

For t = 1, . . . , n, consider the multivariate regression model

yt = Bxt + et, et ∼ N(0,Σ), Σ ∼ HIW (g, δ,Φ), (6.1)

where yt is p × 1, B is a p × q matrix of regression coefficients, xt is a q × 1 vector of

covariates, and Σ is the p × p covariance matrix. This model can be written as

y = (X ⊗ Ip)β + e, (6.2)

where X = (x1, . . . , xn)′, Y = (y1, . . . , yn), y = vec(Y), e = vec(e1, . . . , en), β = vec(B),

and Ik is the k × k identity matrix. The variance covariance matrix of e is In ⊗ Σ.

Suppose Σ ∼ HIW (g, δ,Φ) and let M+(g) be defined as in Section 2.5. Then

p(y|Σ, g) = p(y|Σ)I(Ω ∈ M+(g)), where I(Ω ∈ M+(g)) = 1 if Ω ∈ M+(g)) and zero

otherwise. The likelihood for this model is

p(y|β,Σ, g) = |2π(In ⊗ Σ)|−1/2 exp(−1/2(y − (X ⊗ Ip)β)′ (6.3)

× (In ⊗ Σ−1)(y − (X ⊗ Ip)β))I(Ω ∈ M+(g))

= (2π)−np/2|Σ|−n/2 exp(−1/2E)I(Ω ∈ M+(g)), (6.4)

where

E = (y − (X ⊗ Ip)β)′(In ⊗ Σ−1)(y − (X ⊗ Ip)β)

= y′(In ⊗ Σ−1)y − 2β′(X ′ ⊗ Σ−1)y + β′(X ′X ⊗ Σ−1)β. (6.5)

6.2.2 Prior for β and Ω

We take the prior for β given Σ as β|Σ ∼ N(0, c((X ′X)−1 ⊗ Σ)). This is a scaled version

of the likelihood as a function of β, but is centred at zero.

Let γ = (γ1, . . . , γq) be a vector of binary variables such that the ith variable of xt is

included in the regression if γi = 1 and excluded if γi = 0. Let qγ =
∑q

i=1 γi. Given γ,

y = (Xγ ⊗ Ip)βγ + e and βγ ∼ N(0, c(X ′
γXγ)−1 ⊗ Σ), and hence

p(βγ |Σ, g, c) = |2πc((X ′
γXγ)−1 ⊗ Σ)|−1/2 exp(−(2c)−1β′

γ(X ′
γXγ ⊗ Σ−1)βγ)I(Ω ∈ M+(g))

= (2π)−pqγ/2c−pqγ/2|X ′
γXγ |p/2|Σ|−qγ/2

× exp(−(2c)−1β′
γ(X ′

γXγ ⊗ Σ−1)βγ)I(Ω ∈ M+(g)). (6.6)

122

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

Conditional on (γ,Σ, g) the joint distribution p(y, βγ |γ,Σ, g) is

p(y|βγ , γ,Σ, g)p(βγ |γ,Σ, g) = (2π)−(n+qγ)p/2|Σ|−(n+qγ)/2|X ′
γXγ |p/2

× c−pqγ/2 exp(−E/2)I(Ω ∈ M+(g)), (6.7)

where

E = β′
γ(X ′

γ ⊗ Σ−1)βγ(1 + 1/c) − 2β′
γ(X ′

γXγ ⊗ Σ−1)y + y′(Ip ⊗ Σ−1)y

= (βγ − β̂γ)′(X ′
γXγ ⊗ Σ−1)(βγ − β̂γ)(1 + 1/c) (6.8)

+ y′(In ⊗ Σ−1)y − β̂′
γ(X ′

γXγ ⊗ Σ−1)β̂γ(1 + 1/c) (6.9)

and

β̂γ = c/(1 + c)((X ′
γXγ)−1X ′

γ) ⊗ In)y. (6.10)

Let Hγ = Xγ(X ′
γXγ)−1X ′

γ . Then

β̂′
γ(X ′

γXγ ⊗ Σ−1)β̂γ(1 + 1/c) = (c/(1 + c))y′(Hγ ⊗ Σ−1)y, (6.11)

and so

E = (βγ − β̂γ)′(X ′
γXγ ⊗ Σ−1)(βγ − β̂γ)(1 + 1/c) + y′((In − c/(1 + c)Hγ) ⊗ Σ−1)y. (6.12)

Using these expressions, the marginal likelihood of y given Σ, g and γ can be expressed

as

p(y|γ,Σ, g) =
∫

p(y|βγ ,Σ, g)p(βγ |Σ, g)dβγ

= (2π)−(n+qγ)p/2|Σ|−(n+qγ)/2|X ′
γXγ |p/2c−pqγ/2 exp(−1/2y′(Mγ ⊗ Ω)y)

×
∫

exp
(
−1/2

(
1 + c

c

)
(βγ − β̂γ)′(X ′

γXγ ⊗ Σ−1)(βγ − β̂γ)
)

dβγ

×
∣∣∣∣(2π)−1

(
1 + c

c

)
(X ′

γXγ ⊗ Σ−1)
∣∣∣∣1/2∣∣∣∣(2π)−1

(
1 + c

c

)
(X ′

γXγ ⊗ Σ−1)
∣∣∣∣−1/2

× I(Ω ∈ M+(g))

= (2π)−(n+qγ)p/2|Σ|−(n+qγ)/2|X ′
γXγ |p/2c−pqγ/2 exp(−1/2y′(Mγ ⊗ Ω)y)

× (2π)pqγ/2

(
1 + c

c

)−pqγ/2

|X ′
γXγ |−p/2|Σ|qγ/2I(Ω ∈ M+(g)).

(6.13)

where Mγ = In − c/(1 + c)Hγ . Substituting Ω for Σ−1 in (6.13) gives

p(y|γ,Ω, g) = (2π)−np/2|Ω|n/2(1 + c)−pqγ/2 exp(−1/2y′(Mγ ⊗ Ω)y)I(Ω ∈ M+(g)). (6.14)

We need the following lemma, whose proof is straightforward.

123

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

Lemma 6.2.1 Suppose that A is an r × s matrix and B is s × r. Then

traceAB = (vecA)′vec(B′) (6.15)

= (vec(A′))′vec(B). (6.16)

Using Lemma 6.2.1,

y′(Mγ ⊗ Ω)y = vec(Y)′vec(ΩY Mγ)

= vec(Y ′)′vec(ΩY Mγ

= trace(Y MγY ′Ω) (6.17)

= trace(S(γ)Ω), (6.18)

where S(γ) = Y (I − (c/1 + c)Hγ)Y ′.
Hence

p(y|γ,Ω, g) ∝ |Ω|n/2(1 + c)−pqγ/2etr(−1/2S(γ)Ω). (6.19)

Because Ω ∼ HW (g, δ,Φ), or, equivalently, Σ ∼ HIW (g, δ,Φ),

p(Ω|g, δ,Φ) = h(g, δ,Φ)|Ω|(δ−2)/2etr(−1/2ΦΩ),

where h(g, δ,Φ) is the normalising constant in (4.5) for the HIW distribution given in Sec-

tion 4.2. Therefore, we can derive an expression for p(y|γ, g, δ,Φ) on which the reduced

conditional sampler is based. In the following derivation we use that γ is a priori indepen-

dent of {Ω, g}. In particular, p(γ|g,Ω) = p(γ), p(Ω|g, γ) = p(Ω|g) and p(g|γ) = p(g).

p(y|γ, g, δ,Φ) = p(y|γ,Ω, g, δ,Φ)p(Ω|γ, g, δ,Φ)/p(Ω|y, γ, g, δ,Φ)

=
[
2π−np/2(1 + c)−pqγ/2|Ω|n/2etr(−1/2S(γ)Ω)h(g, δ,Φ)|Ω|(δ−2)/2etr(−1/2ΦΩ)

]
(6.20)

/
[
h(g, δ + n,Φ + S(γ))|Ω|(n+δ−2)/2etr(−1/2(Φ + S(γ))Ω)

]
= 2π−np/2(1 + c)−pqγ/2h(g, δ,Φ)/h(g, δ + n,Φ + S(γ)). (6.21)

6.2.3 Prior for the vector of binary indicator variables

The prior is described in Section 5.2.3.

6.2.4 Permanently selected variables

The model for permanently selected variables is described in Section 5.2.4.

124

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

6.2.5 Priors for Σ, Φ, g

The prior is described in Section 5.2.5.

6.3 Sampling scheme

This section describes the decomposable sampling scheme for the regression model with

γ, g and the parameters in Φ generated using the following Markov chain Monte Carlo

sampling scheme.

1. γ|y, x, γ−i, g, δ,Φ;

2. ρ, τ |y, x, γ, g, δ,Φ;

3. g|y, x, γ, δ,Φ.

We now give details of steps 1 and 3. In step 1, similarly to Section 4.9, let γ−i = {γk, k �= i}
and write γ = (γi, γ−i). Since p(γ|y,Ω, g, δ,Φ) ∝ p(y|γ, g, δ,Φ)p(γ), γ can be sampled from

its posterior distribution using Markov chain Monte Carlo and (6.21) by generating the γi

one at a time, conditional on g, δ,Φ and γ−i, using the following MH sampling scheme.

For i = 1, . . . , p, let γ = (γi, γ−i) and let γc = (γc
1, . . . γ

c
q)

′ be the current value of γ, given

the generated values γ1, . . . , γi−1 generated thus far. Define the proposal γp (conditional

on γc) as γp = (γp
i , γc

−i), where γp
i = 1 − γc

i . This means that the proposal density for γi

is qγ(a|b, γc
−i) where a and b are each either 0 or 1, and qγ(a = 1− b|b, γc

−ij) = 1. The MH

acceptance probabilty for the proposal is therefore

min
{

1,
p(y|γp, g, δ,Φ)
p(y|γc, g, δ,Φ)

p(γp)
p(γc)

}
(6.22)

because qγ(γc
i |γp

i , γc
−i)/qγ(γp

i |γc
i , γ

c
−i) = 1. The ratio p(γp)/p(γc) is known and the ratio of

likelihoods p(y|γp, g, δ,Φ)/p(y|γc, g, δ,Φ) is given by (6.21).

Similarly, p(g|y, γ, δ,Φ) ∝ p(y|γ, g, δ,Φ)p(g). Hence in step 3, we can sample g =

(eij , e−ij) from its posterior conditional on {γ, δ,Φ} via the edge indicators using the same

Metropolis Hastings Markov chain Monte Carlo sampling scheme described in Section 4.9,

except that the likelihood of that section is replaced by (6.21). Note that we generate the

graph g conditional on γ and hence the term (1 + c)−pqγ in the likelihood (as a function of

g) is a constant and drops out of the Metropolis Hastings ratio.

Both β and Ω are generated in order to compare performance with the estimates in

Cripps et al. (2005) and in Chapter 5. Ω is sampled from p(Ω|y, g, γ) as described in

125

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

Sections 4.3 and 4.11, but with Sy replaced by S(γ). The coefficient vector βγ is sampled

from p(βγ |y, g, γ,Ω) using (5.6) of Section 5.2.2. However, generating β and Ω does not

affect the convergence and mixing of the sampling scheme introduced in this chapter.

The sampling scheme described in this chapter is different to the scheme described in

Section 5.3. Both Cripps et al. (2005) and the sampling scheme in Chapter 5 generate the

elements of γ one at a time by calculating

p(γi = 1|y,Ω, γ−i)

which depends on Ω. On the other hand, in the reduced conditional scheme proposed in

this chapter, γ and g are sampled from their posteriors without conditioning on Ω by using

Markov chain Monte Carlo and (6.21).

6.4 Results

Let DCPCSV SNB denote the decomposable model described in this chapter with columns

of the B matrix either dropped or retained and with selection on the graph g(Ω), where

g(Ω) is restricted to be decomposable. It is convenient for DCPCSV SNB to stand also

for the sampling scheme used to estimate the model. The inverse covariance matrix Ω

and the matrix of coefficients B are also generated, although not as part of the sampling

scheme. In this chapter we use the cow data and the physical measurement data sets to

compare DCPCSV SNB to the NDPCSV S and DCPCSV S models. In order to make

the comparison consistent, columns of the B matrix are also either dropped or retained in

the NDPCSV S and DCPCSV S models used in this chapter.

Let τSy and τS(γ) denote the scaled sum of squares form of Φ for models DCPSV S and

DCPCSV SNB, respectively. Let C be the partial correlations matrix. For j = 1, . . . , p

and i < j, we define the binary variable Jij = 0 if Cij is identically zero and Jij = 1

otherwise. Let J = {Jij , i < j, j = 1, . . . , p}. These binary variables are analogous to the

γi binary variables that we use for variable selection, and in the decomposable case, Jij are

the edge indicators eij.

For the variable selection, we report the posterior means and standard errors of the

regression coefficients, and the posterior probabilities of including a predictor variable in

the regression. For the covariance selection, we report image plots of the estimates of C, J

and Ω which are computed as the average of the iterates and which we we refer to as Ĉ, Ĵ

and Ω̂, respectively. The image plots are lighter where the matrix is sparser.

126

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

6.4.1 Cow diet data

This section compares the DCPCSV SNB model to the NDPCSV S and DCPCSV S

models on the same cow diet dataset described in Section 5.4.2.

Figures 6.1 and 6.2 compare the autocorrelations of the iterates. Figure 6.1 shows

the autocorrelations in the γi for each model. Panel (a) is for model NDPCSV S, and

Panels (b) and (c) are for models DCPCSV S and DCPCSV SNB, respectively, using

the equicorrelated form of Φ. The autocorrelations of the iterates decay most rapidly to

zero for the two decomposable models, suggesting that the greatest gains in efficiency are

from reduced conditional covariance selection. Comparing the NDPCSV S plots with the

two decomposable model plots suggest that there is minimal additional efficiency gained

from the reduced conditional variable selection sampler that is not already gained in the

reduced conditional covariance selection sampler. The autocorrelations for the decompos-

able samplers using the τSy form of Φ were similar to those for the equicorrelated form of

Φ. The plots are omitted for brevity.

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

1

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

2

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

3

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

4

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

1

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

2

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

3

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

4

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

1

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

2

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

3

0 50 100 150 200 250 300
−0.04
−0.02

0
0.02
0.04

γ
i,

i=

4

(a) (b) (c)

Figure 6.1: Autocorrelations of the iterates of the γi for the cow diet dataset. Panel (a) plots the
autocorrelations for NDPCSV S. Panel (b) is the same for DCPCSV S using the equicorrelated
form of Φ. Panel (c) is the same for DCPCSV SNB using the equicorrelated form of Φ.

127

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

Figure 6.2 compares the autocorrelations in the iterates of the log of the likelihood

p(y|g, γ,Ω) for models NDPCSV S and DCPSCV S, and in the iterates of the log of the

reduced conditional likelihood p(y|γ, g) for the DCPCSV SNB model. Each of the de-

composable models are for the equicorrelated form of Φ. The autocorrelations decay most

rapidly to zero for the DCPCSV SNB model, followed by the DCPCSV S model. The

autocorrelations in the log likelihood for NDPCSV S are much better than for the γi,

though not so good as the decomposable models. The autocorrelations for the decompos-

able models using the τSy form of Φ are similar to the equicorrelated models, and the plots

are omitted for brevity.

It is unclear why the autocorrelations for DCPCSV SNB are not more significantly

better than for DCPCSV S. We surmise that it is because both these use the same reduced

conditional covariance selection sampler, and that the greatest gains in efficiency are from

covariance selection rather than variable selection. That is, most of the autocorrelation is

introduced in sampling Ω.

We conclude that the difference between NDPCSV S and DCPCSV S in dependence

of the iterates is due to the greater efficiency of the DCPCSV S sampling scheme which

integrates out the covariance Σ; and secondly, that the difference between these two and

the DCPSCV SNB model in dependence of the iterates is due to the greater efficiency of

the sampling scheme which integrates out both the covariance and regression coefficient

parameters.

0 50 100 150 200 250 300
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200 250 300
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200 250 300
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(a) (b) (c)

Figure 6.2: Autocorrelations of the iterates of the log likelihood. Panel (a) is the autocorrelations
for NDPCSV S of log(p(y|g, γ, Ω). Panel (b) is the same for DCPCSV S using the equicorrelated
form of Φ. Panel (c) is the autocorrelations for for DCPCSV SNB of log(p(y|g, γ) using the
equicorrelated form of Φ.

128

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

The different model estimates of γ are compared in Table 6.1 which suggests that all

model estimates are similar. The conclusion from the values of the γi is that Initial weight

followed by Level of diet additive are significantly better predictors of the response variables

than the remaining covariates. A full analysis of the complete interrelationships between

variables could be done similarly to the analysis presented in Chapter 5.4 by considering

the graphical pictures corresponding to the various estimates of g(Ω), but for brevity this

analysis is omitted.

The different model estimates of the regression coefficients β are compared in Table 6.2

which suggests that the model estimates of NDPCSV S, DCPCSV S and DCPCSV SNB

are similar.

γ0 γ1 γ2 γ3 γ4

NDPCSV S NA 0.4934 0.0018 0.0003 1.0000

equi. DCPCSV S NA 0.4572 0.0006 0 1.0000

τSy DCPCSV S NA 0.4572 0.0006 0 1.0000

eq. DCPCSV SNB NA 0.4394 0 0 1.0000

τS(γ) DCPCSV SNB NA 0.4572 0.0006 0 1.0000

Table 6.1: Posterior mean estimates of γ1, . . . , γ4 for the grouped cow diet dataset. See text for
details. γ0 is identically 1 as the coefficient is always included. Integer values are given whenever
these are exact.

Figures 6.3 and 6.4 compare Ĉ, Ĵ and Ω̂ for models NDPCSV S, DCPCSV S and

DCPCSV SNB. The image plots of Ω̂ of all models appear almost identical. The image

plots of Ĉ and Ĵ for DCPSCV S using the τSy form of Φ are more similar to NDPCSV S

than the remaining decomposable models. However the image plots of Ĵ and Ĉ are almost

identical in the last row, suggesting all models agree on the partial correlations between

(y5, y6)′ = (Final weight,Milk protein(%)) and the remaining variables. There are other

regions of distinct similarity, suggesting that overall the model estimates are very similar.

129

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

Posterior mean

β1,0 β1,1 β1,2 β1,3 β1,4 β2,0 β2,1 β2,2 β2,3 β2,4

NDPCSV S 8.1667 0.5353 0.0001 -0.0000 0.0062 24.3243 -0.2539 0.0001 -0.0000 0.0271

τSy DCPCSV S 8.1690 0.4196 0 0 0.0063 24.2531 -0.0866 0 0 0.0271

equi DCPCSV S 8.1628 0.5150 0 -0.0000 0.0063 24.3140 -0.1221 0 0.0000 0.0271

τSy DCPCSV SNB 8.1242 0.4944 0.0000 0 0.0063 24.2279 -0.1565 -0.0003 0 0.0272

equi DCPCSV SNB 8.1652 0.4965 0 0 0.0063 24.2415 -0.1120 0 0 0.0272

β3,0 β3,1 β3,2 β3,3 β3,4 β4,0 β4,1 β4,2 β4,3 β4,4

NDPCSV S 2.6396 0.9696 0.0001 0.0000 0.0006 8.5521 -0.1007 -0.0001 -0.0000 -0.0000

τSy DCPCSV S 2.6661 0.7284 0 0 0.0006 8.5469 -0.0744 0 0 -0.0000

equi DCPCSV S 2.6334 0.9485 0 -0.0000 0.0006 8.5538 -0.0995 0 -0.0000 -0.0000

τSy DCPCSV SNB 2.6444 0.8927 0.0000 0 0.0006 8.5470 -0.0990 -0.0001 0 -0.0000

equi DCPCSV SNB 2.6486 0.8671 0 0 0.0006 8.5544 -0.0850 0 0 -0.0000

β5,0 β5,1 β5,2 β5,2 β5,4 β6,0 β6,1 β6,2 β6,3 β6,4

NDPCSV S 220.4607 -110.7841 -0.0013 -0.0001 0.8077 3.3412 -0.0828 0.0000 0.0000 -0.0001

τSy DCPCSV S 216.8705 -83.4706 0 0 0.8073 3.3388 -0.0643 0 0 -0.0001

equi DCPCSV S 219.4685 -108.9125 0 -0.0001 0.8082 3.3417 -0.0827 0 -0.0000 -0.0001

τSy DCPCSV SNB 216.8705 -83.4706 0 0 0.8073 3.3388 -0.0643 0 0 -0.0001

equi DCPCSV SNB 217.6527 -98.4224 0 0 0.8087 3.3424 -0.0720 0 0 -0.0001

Table 6.2: Comparison of posterior means of the regression coefficients for the grouped cow diet
data. Models NDPCSV S and DCPCSV S for the τSy and the equicorrelated forms of Φ, re-
spectively, are compared to models DCPCSV SNB for the τSy and the equicorrelated forms of Φ,
respectively. Integer values are given when these are exact.

130

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

(a) (b) (c)

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

(d) (e) (f)

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

(g) (h) (i)

Figure 6.3: Image plots of Ĉ, Ĵ and Ω̂ for the cow diet dataset. Panels (a), (d) and (g) are Ĉ, Ĵ and
Ω̂, respectively, for model NDPCSV S. Panels (b), (e) and (h) are the same for model DCPCSV S

using the equicorrelated form of Φ. Panels (c), (f) and (i) are the same for model DCPCSV SNB

using the equicorrelated form of Φ.

131

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

(a) (b) (c)

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

(d) (e) (f)

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

(g) (h) (i)

Figure 6.4: Image plots of Ĉ, Ĵ and Ω̂ for the cow diet dataset. Panels (a), (d) and (g) are Ĉ, Ĵ and
Ω̂, respectively, for model NDPCSV S. Panels (b), (e) and (h) are the same for model DCPCSV S

using the τSy form of Φ. Panels (c), (f) and (i) are the same for model DCPCSV SNB using the
τS(γ) form of Φ.

132

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

6.4.2 Physical measurements data: model 2

This section compares the DCPCSV SNB model to the NDPCSV S and DCPCSV S

models on the same physical measurements dataset described in Section 5.4.3. The covari-

ate predictor variables are Mass and Height. The remaining p = 9 variables are used as

the response vector y. The p = 9 response variables are indexed in the following order:

r1 Fore: maximum circumference of forearm,

r2 Bicep: maximum circumference of bicep,

r3 Chest: distance around chest directly under the armpits,

r4 Neck: distance around neck, approximately halfway up,

r5 Shoulders: distance around shoulders, measured around the peak of the shoulder

blades

r6 Waist: distance around waist, approximately trouser line,

r7 Calf: maximum circumference of calf,

r8 Thigh: circumference of thigh, measured halfway between the knee and the top of

the leg,

r9 Head: maximum circumference of head.

Figures 6.5 and 6.6 compare the autocorrelations in the iterates of a representative

sample of the Ωij. Figure 6.5 compares NDPCSV S with the decomposable samplers using

the equicorrelated form of Φ. Figure 6.6 compares NDPCSV S with the decomposable

samplers using the τSy form of Φ. The autocorrelations show the same trends between

models as those reported in Section 6.4.1 for the cow diet data. The autocorrelations of

the iterates decay least rapidly to zero for the NDPCSV S model, but there appears to

be no difference in the autocorrelations of the two decomposable samplers. The empirical

evidence for the physical measurements data provides further support for the conclusions

on the relative efficiency of the models given in Section 6.4.1. For brevity these conclusions

are not repeated here.

The sampling average values of γ are compared in Table 6.3 which suggests that all

model estimates are very similar. The value for γ1 is identically one for every model,

suggesting that the corresponding predictor variable Mass is a significantly better predictor

of the response variables than Height. A full analysis of the complete interrelationships

133

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

0 50 100 150 200 250 300
−1

0

1

i,
j=

2

5

0 50 100 150 200 250 300
−1

0

1

i,
j=

2

6

0 50 100 150 200 250 300
−1

0

1

i,
j=

2

7

0 50 100 150 200 250 300
−1

0

1

i,
j=

2

8

0 50 100 150 200 250 300
−1

0

1

i,
j=

2

9

0 50 100 150 200 250 300
−1

0

1

i,
j=

3

3

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6
7

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6
8

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

i,
j=

6
9

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

i,
j=

7
7

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

i,
j=

7
8

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

i,
j=

7
9

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6

7

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6

8

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6

9

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

i,
j=

7

7

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

i,
j=

7

8

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

i,
j=

7

9
(a) (b) (c)

Figure 6.5: Autocorrelations of the iterates of the Ωij for a representative selection of Ωij and
the physical measurements dataset. Panel (a) plots the autocorrelations for NDPCSV S. Panel
(b) is the same for DCPCSV S using the equicorrelated form of Φ. Panel (c) is the same for
DCPCSV SNB using the equicorrelated form of Φ.

between variables could be done similarly to the analysis presented in Chapter 5.4 by

considering the graphical pictures corresponding to the various estimates of g(Ω), but for

brevity this analysis is omitted.

γ0 γ1 γ2

NDPCSV S NA 1.0000 0.0070

equicorrelated DCPCSV S NA 1.0000 0.0027

τSy DCPCSV S NA 1.0000 0.0118

equicorrelated DCPCSV SNB NA 1.0000 0.0035

τS(γ) DCPCSV SNB NA 1.0000 0.0026

Table 6.3: Posterior mean estimates of γ1, γ2 corresponding to Mass and Height, respectively, for
the physical measurements dataset using Model 2. See text for details. γ0 is identically 1 as the
coefficient is always included. Integer values are given whenever these are exact.

134

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

0 50 100 150 200 250 300
−1

0

1

i,
j=

2

5

0 50 100 150 200 250 300
−1

0

1

i,
j=

2

6

0 50 100 150 200 250 300
−1

0

1

i,
j=

2

7

0 50 100 150 200 250 300
−1

0

1

i,
j=

2

8

0 50 100 150 200 250 300
−1

0

1

i,
j=

2

9

0 50 100 150 200 250 300
−1

0

1

i,
j=

3

3

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6

7

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6

8

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6

9

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1
i,
j=

7

7

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

7

8

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

i,
j=

7

9

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6

7

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6

8

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

6

9

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

7

7

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

7

8

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

i,
j=

7

9

(a) (b) (c)

Figure 6.6: Autocorrelations of the iterates of the Ωij for a representative selection of Ωij and the
physical measurements dataset. Panel (a) plots the autocorrelations for NDPCSV S. Panel (b) is
the same for DCPCSV S using the τSy form of Φ. Panel (c) is the same for DCPCSV SNB using
the τS(γ) form of Φ.

The different model estimates of the regression coefficients β are compared in Table 6.4

which suggests that the model estimates of NDPCSV S, DCPCSV S and DCPCSV SNB

are similar.

Figures 6.7 and 6.8 compare Ĉ, Ĵ and Ω̂ for models NDPCSV S, DCPCSV S and

DCPCSV SNB. Figure 6.7 is the decomposable estimates for the equicorrelated form of

Φ, whilst Figure 6.8 is for the τSy form of Φ. The image plots of Ĉ and Ω̂ for all models

appear to be more similar than the image plots for Ĵ . However, in general, there are

regions of distinct similarity in all the estimates which suggests that the efficiency gains of

the reduced conditional decomposable samplers are not at the expense of the accuracy of

their estimates.

135

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

Posterior mean

β1,0 β1,1 β1,2 β2,0 β2,1 β2,2 β3,0 β3,1 β3,2

NDPCSV S 15.4898 0.1504 -0.0002 18.3009 0.1850 -0.0012 61.8963 0.4561 -0.0017

τSy DCPCSV S 15.5446 0.1504 -0.0006 18.6326 0.1826 -0.0021 62.4531 0.4525 -0.0034

equi DCPCSV S 15.4444 0.1506 -0.0001 18.1987 0.1847 -0.0005 61.6513 0.4572 -0.0007

τSy DCPCSV SNB 15.5048 0.1499 -0.0002 18.2608 0.1837 -0.0006 61.8561 0.4541 -0.0010

equi DCPCSV SNB 15.4180 0.1512 -0.0001 18.2153 0.1849 -0.0007 61.6812 0.4574 -0.0010

β4,0 β4,1 β4,2 β5,0 β5,1 β5,2 β6,0 β6,1 β6,2

NDPCSV S 26.3929 0.1293 0.0000 71.5318 0.4776 0.0007 35.9504 0.6233 -0.0011

τSy DCPCSV S 26.4010 0.1298 -0.0003 71.5503 0.4788 0.0001 36.0952 0.6247 -0.0025

equi DCPCSV S 26.3587 0.1298 0.0000 71.5433 0.4782 0.0003 35.8419 0.6234 -0.0005

τSy DCPCSV SNB 26.4407 0.1288 -0.0002 71.8285 0.4746 -0.0002 36.1118 0.6200 -0.0008

equi DCPCSV SNB 26.3447 0.1303 -0.0001 71.5694 0.4786 0.0001 35.8697 0.6236 -0.0006

β7,0 β7,1 β7,2 β8,0 β8,1 β8,2 β9,0 β9,1 β9,2

NDPCSV S 22.7393 0.1755 0.0000 28.1495 0.2642 -0.0007 53.5506 0.0269 0.0000

τSy DCPCSV S 22.8003 0.1755 -0.0003 28.4224 0.2625 -0.0015 53.5503 0.0281 -0.0005

equi DCPCSV S 22.7346 0.1756 -0.0000 28.0614 0.2643 -0.0002 53.4823 0.0277 0.0001

τSy DCPCSV SNB 22.8110 0.1748 -0.0002 28.1579 0.2632 -0.0004 53.6278 0.0259 -0.0002

equi DCPCSV SNB 22.6997 0.1763 -0.0001 28.0609 0.2648 -0.0004 53.4831 0.0281 -0.0000

Table 6.4: Comparison of posterior means of the regression coefficients for the grouped physical
measurements data, model 2. Models NDPCSV S and DCPCSV S for the τSy and the equicor-
related forms of Φ, respectively, are compared to models DCPCSV SNB for the τSy and the
equicorrelated forms of Φ, respectively. Integer values are given when these are exact.

136

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(a) (b) (c)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(d) (e) (f)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(g) (h) (i)

Figure 6.7: Image plots of Ĉ, Ĵ and Ω̂ for the physical measurements dataset. Panels (a), (d) and
(g) are Ĉ, Ĵ and Ω̂, respectively, for model NDPCSV S. Panels (b), (e) and (h) are the same for
model DCPCSV S using the equicorrelated form of Φ. Panels (c), (f) and (i) are the same for
model DCPCSV SNB using the equicorrelated form of Φ.

137

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(a) (b) (c)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(d) (e) (f)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(g) (h) (i)

Figure 6.8: Image plots of Ĉ, Ĵ and Ω̂ for the physical measurements dataset. Panels (a), (d) and
(g) are Ĉ, Ĵ and Ω̂, respectively, for model NDPCSV S. Panels (b), (e) and (h) are the same
for model DCPCSV S using the τSy form of Φ. Panels (c), (f) and (i) are the same for model
DCPCSV SNB using the τSy form of Φ.

138

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

6.4.3 Physical measurements data: model 3

In this section we compare the DCPCSV SNB model to the NDPCSV S and DCPCSV S

models on the same physical measurements dataset described in Section 5.4.3 but assuming

a regression model in which the covariate predictor variables and the response variables of

Section 6.4.2 are interchanged. That is, there are 9 predictor variables and p = 2 response

variables, and these are indexed in the following order:

p1 Fore: maximum circumference of forearm,

p2 Bicep: maximum circumference of bicep,

p3 Chest: distance around chest directly under the armpits,

p4 Neck: distance around neck, approximately halfway up,

p5 Shoulders: distance around shoulders, measured around the peak of the shoulder

blades,

p6 Waist: distance around waist, approximately trouser line,

p7 Calf: maximum circumference of calf,

p8 Thigh: circumference of thigh, measured halfway between the knee and the top of

the leg,

p9 Head: maximum circumference of head,

r1 Mass: weight in kg, and

r2 Height: height in cm.

The trends in the autocorrelations of γi, log likelihood and Ωij iterates are the same

as those reported in Subsections 6.4.1 and 6.4.2, providing more empirical evidence that

the decomposable samplers are more efficient than the nondecomposable sampler, and that

DCPCSV SNB is the most efficient sampler. The plots of the autocorrelations are omitted

for brevity.

The sampling average values of γ are compared in Table 6.5 which suggests that all

model estimates are similar. The relative values of the γi, , i = 1, . . . , 9 for all models

suggests that Fore and Waist (corresponding to γ1 and γ6, respectively) are the two pre-

dictors with highest probability of selection in the model. γ8, corresponding to Thigh is

the predictor with next highest posterior mean of inclusion in the model. A full analysis

139

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

of the complete interrelationships between variables can be done similarly to the analysis

presented in Chapter 5.4 by considering the graphical pictures corresponding to the various

estimates of g(Ω), but for brevity this analysis is omitted.

γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9

NDPCSV S NA 0.8074 0.0911 0.0486 0.0380 0.0917 0.9827 0.1380 0.1527 0.0549

equi. DCPCSV S NA 0.6162 0.0936 0.0633 0.0483 0.1030 0.8264 0.1040 0.1458 0.0302

τSy DCPCSV S NA 0.7218 0.1191 0.0639 0.0616 0.0793 0.8536 0.1178 0.1840 0.0556

eq. DCPCSV SNB NA 0.6092 0.0624 0.0512 0.0425 0.0523 0.9302 0.1016 0.1323 0.0506

τS(γ) DCPCSV SNB NA 0.8581 0.0565 0.0473 0.0315 0.0377 0.9950 0.0790 0.1309 0.0519

Table 6.5: Posterior mean estimates of γ1, . . . , γ9 for the physical measurements dataset using Model
3. See text for details. γ0 is identically 1 as the coefficient is always included. Integer values are
given whenever these are exact.

The different model estimates of the regression coefficients β are compared in Table 6.6

which suggests that the model estimates of NDPCSV S, DCPCSV S and DCPCSV SNB

are similar.

In terms of which variables to select in the model, there are two points to note. First,

in Table 6.5 the values of γ1 and γ6 are similar, and both significantly greater than the

remaining γi. Second, the remaining γi are all very similar. These values suggest that the

regression model should include the covariates Waist and Fore, and that the remaining

covariates are not adding much to the model.

In the model of this section, there are only p = 2 response variables, so the matrices

J and Ω are each 2 × 2. Figure 6.7 compares Ĵ and Ω̂. The three models NDPCSV S,

DCPCSV S and DCPCSV SNB have almost identical estimates of J . In general, the

entries in the table suggest that all models provide similar estimates.

140

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

Posterior mean

β1,0 β1,1 β1,2 β1,3 β1,4

NDPCSV S -64.7888 2.0719 -0.0087 0.0055 0.0150

τSy DCPCSV S -83.9945 2.4310 -0.2015 0.0284 0.0772

equi DCPCSV S -63.0667 1.7753 0.0469 0.0133 0.0462

τSy DCPCSV SNB -64.1581 2.2350 0.0029 0.0051 0.0060

equi DCPCSV SNB -59.1494 1.6695 0.0279 0.0129 0.0270

β1,5 β1,6 β1,7 β1,8 β1,9

NDPCSV S 0.0355 0.7474 0.1628 0.0994 -0.0310

τSy DCPCSV S 0.0284 0.5861 0.1465 0.5773 0.0206

equi DCPCSV S 0.0727 0.6884 0.1948 0.1334 -0.0200

τSy DCPCSV SNB 0.0102 0.7571 0.0967 0.0824 -0.0286

equi DCPCSV SNB 0.0267 0.7938 0.1476 0.1144 -0.0309

β2,0 β2,1 β2,2 β2,3 β2,4

NDPCSV S 136.7393 0.5234 -0.1251 -0.0111 0.0444

τSy DCPCSV S 116.4333 0.5145 -0.7215 0.0478 0.0862

equi DCPCSV S 138.4147 0.4299 -0.0632 -0.0172 0.0169

τSy DCPCSV SNB 137.5855 0.6275 -0.0759 -0.0120 0.0292

equi DCPCSV SNB 139.8233 0.3725 -0.0480 -0.0071 0.0300

β2,5 β2,6 β2,7 β2,8 β2,9

NDPCSV S 0.0531 0.1456 0.0988 -0.0046 0.0202

τSy DCPCSV S 0.0365 0.1389 0.1283 0.7946 -0.0697

equi DCPCSV S 0.0628 0.1668 0.0709 0.0030 -0.0102

τSy DCPCSV SNB 0.0162 0.1576 0.0765 -0.0197 0.0194

equi DCPCSV SNB 0.0294 0.1727 0.0778 -0.0035 0.0177

Table 6.6: Comparison of posterior means of the regression coefficients for the grouped physical
measurements data, model 3. Models NDPCSV S and DCPCSV S for the τSy and the equicor-
related forms of Φ, respectively, are compared to models DCPCSV SNB for the τSy and the
equicorrelated forms of Φ, respectively. Integer values are given when these are exact.

bJ1,2
bΩ1,1

bΩ1,2
bΩ2,2

NDPCSV S 0.9807 0.1164 -0.0350 0.0235

equi. DCPCSV S 0.97782 0.1032 -0.0343 0.0248

τS(γ) DCPCSV S 0.9932 0.1228 -0.0410 0.0275

equi. DCPCSV SNB 1 0.0939 -0.0364 0.0218

τS(γ) DCPCSV SNB 1 0.1176 -0.0401 0.0212

Table 6.7: Estimates of J and Ω for all models. Both Ĵ1,2 for models DCPCSV S and
DCPCSV SNB are identically one.

141

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

6.5 Comparision to variable selection using leaps

function

This section illustrates that graphical techniques provide more information for variable

selection than standard linear regression techniques, by comparing the graphical analysis

with the summary analysis from Larner, M. (1996) that is reproduced at the end of Sub-

section 5.4.3. The summary analysis is the output of the leap function method of variable

selection which ranks the models in terms of the Mallow’s Cp criterion, where the model

with the lowest Cp score is judged to fit the data best. The standard regression analysis

is based on successively choosing different combinations of predictor variables and calcu-

lating the Cp value of the corresponding models. The output reproduced at the end of

Subsection 5.4.3 gives the lowest Cp score to the model which regresses Mass on the 4

variables Fore, Waist, Height and Thigh. In the graphical analysis in Subsection 6.4.3,

Height is included as a response variable. Thigh corresponds to γ8, which has the next

highest posterior sampling probability of being nonzero after Waist and Fore. The model

inferred from the graphical analysis therefore agrees with the model inferred from the leaps

output.

However, the graphical method gives insight into the interrelationships between all

variables simultaneously, whilst the leap analysis does not. In particular, it is possible to

analyse whether or not any pair of dependent variables remain dependent after conditioning

on all, or some proper subset, of the remaining variables. This is done by seeing if the edge

posterior probabilities in the estimate of g(Ω) suggest that the variables are adjacent, or

merely connected. The model presented in Subsection 5.4.3 provides estimates of g(Ω) in

the case where all 11 variables are included as ‘responses’. These pictures can be used to

analyse the strength of the various conditional independencies between any of the total 11

variables in the dataset. This is not possible using the leap analysis.

Figure 6.9 shows the 95% and 65% graphs respectively, for model DCPCSV S using

the equicorrelated form of Φ. Recall that the p = 11 variables are indexed in the following

order:

1. Mass: weight in kg,

2. Fore: maximum circumference of forearm,

3. Bicep: maximum circumference of bicep,

4. Chest: distance around chest directly under the armpits,

142

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

5. Neck: distance around neck, approximately halfway up,

6. Shoulders: distance around shoulders, measured around the peak of the shoulder

blades

7. Waist: distance around waist, approximately trouser line,

8. Height: from top of head to toe,

9. Calf: maximum circumference of calf,

10. Thigh: circumference of thigh, measured halfway between the knee and the top of

the leg,

11. Head: maximum circumference of head.

Panel (a) suggests that Mass and Waist are most likely to be dependent, regardless of

which of the remaining variables are conditioned upon. Panel (c) suggests that Mass may

well be adjacent to Fore, as suggested by the summary analysis from Larner (1996). This

model can be tested further by considering similar graphs at varying levels of posterior

sampling probability between 65% and 95%. For brevity, this analysis is excluded, but the

discussion illustrates that graphical techniques provide a method for deciding the structure

of the linear regression model.

143

CHAPTER 6. REDUCED CONDITIONAL SAMPLING FOR . . .

1

7

1

2

6

7

9

10

11

3

5

8

4

(a) (b)

Figure 6.9: Graphs for the physical measurements dataset where only the mean is included in the
regression model. Panel (a) is 95% graph for model DCPCSV S using the equicorrelated form of
Φ. Panel (b) is the 65% graph for model DCPCSV S using the equicorrelated form of Φ.

144

Chapter 7

Evaluating and assessing the size

prior for a graph

7.1 Introduction

This chapter gives details on the size prior for a graph. This prior is introduced in Sec-

tion 4.7. We begin by comparing its performance with the uniform prior, then present the

methodology for calculating and estimating the Ap,k.

7.2 Comparison of the size prior for a graph with

the uniform prior

This section compares the prior based on the graph size with the uniform prior that is used

in most previous articles. Performance is in terms of a loss function and a simulation is

carried out to numerically assess performance. We find that overall the size based prior

for g outperforms the uniform prior.

Our simulation considers the following five graph types for g. (a) Ω = I, the identity

matrix, representing the empty graph and a diagonal covariance matrix; (b) Ω tridiagonal,

representing a sparse and decomposable graph which is a path consisting of p − 1 edges;

(c) Ω an ‘extreme’ full matrix (the correlation coefficients ρij of Ω−1 satisfy |ρij | > .30),

which corresponds to a complete graph; (d) Ω corresponding to a 4-cycle on p vertices

representing a sparse but nondecomposable graph; and (e) Ω corresponding to a p−cycle

on p vertices, again representing a sparse but nondecomposable graph. We note that

145

CHAPTER 7. EVALUATING AND ASSESSING THE SIZE PRIOR . . .

the nondecomposable graphs in (d) and (e) require the addition of extra edges when we

estimate them by a mixture of decomposable graphs. Furthermore, (e) is an extreme case

of non-decomposability, as it requires the addition of at least p − 3 edges to make the

graph decomposable. Conversely, the unchorded 4-cycle on p vertices requires the addition

of only one edge to make it decomposable, so is chosen as an indicator of performance for

the sparsest nondecomposable case.

The simulation considers the three forms of Φ described in Section 4.6 and two sample

sizes n = 40 and n = 100. We report results for matrices of size p = 17, but similar results

are obtained for matrices of other sizes.

The design of the simulation study is similar to that in Section 4.14. We use L1 as the

loss function, as described in Section 4.14.

We use boxplots to compare replication by replication the size-based prior with the

uniform prior in terms of the percentage increase in the loss function L1 resulting from

using the uniform prior compared to the size-based prior. That is, the boxplots are based

on calculating

100(Lunif
1 − Lsize

1)/Lsize
1

for each replication, where Lunif
1 and Lsize

1 are the values of L1(Σ̂,ΣT) for the uniform and

size-based priors respectively.

The boxplots are based on 20 replications with each replication consisting of 2,000

burn-in iterations and 20,000 sampling iterations. We ran the sampler for the case p = 17

on n = 40 and 100 observations from five simulated data sets corresponding to the five

models (a)–(e) for Ω.

Figure 7.1 presents the results for p = 17. The plots show that for Φ = τI and Φ

equicorrelated, the size prior is at least as good, and often much better than, the uniform

prior. For Φ = τSy/(n − 1), the comparison between the size prior and the uniform prior

is inconclusive for n = 40, but for n = 100 the size prior is at least as good as, and often

better than the uniform prior. We conclude that the size-based prior outperforms the

uniform prior.

We also compared the performance of the three forms of Φ for the uniform and size

priors. Figures 7.2 and 7.3 present indicative results. We find that overall the equicorrelated

form of Φ using the size-based prior for the graph performs best. Therefore it is this

combination that we use for comparison with other covariance selection models.

146

CHAPTER 7. EVALUATING AND ASSESSING THE SIZE PRIOR . . .

tauI equi tauS
0

200

400

id
e
n
tit

y

tauI equi tauS
−40
−20

0
20
40

tr
id

ia
g
o
n
a
l

tauI equi tauS
0

100
200
300

fu
ll

tauI equi tauS

0

100

200

4
cy

cl
e

tauI equi tauS
−50

0

50

100

n
e
q
cy

cl
e

tauI equi tauS

50
100
150
200
250

tauI equi tauS

0

20

40

tauI equi tauS
0

50

100

tauI equi tauS
0

50

100

150

tauI equi tauS

−50
0

50
100

Figure 7.1: Percentage increase in loss of uniform prior relative to the size prior measured under
L1 loss. The left panels correspond to n = 40 and the right panels to n = 100. tauI, equi and tauS
correspond to Φ = τI, Φ equicorrelated and Φ = τSy/(n − 1).

7.3 Evaluating the size-based prior

To use the size-based prior for graphs on p vertices, we need the set of numbers {Ap,k :

k = 0, . . . , r} where Ap,k is the number of decomposable graphs of size k on p vertices, and

r =
(
p
2

)
is the maximum graph size. These numbers are not in the literature, nor is there a

general method available for computing them. In this section we present some exact values

of Ap,k as well as a simulation method that can estimate the Ap,k as precisely as necessary.

Let Bp,k be the number of connected decomposable graphs of size k on p vertices.

Equations (3) and (4) of Castelo & Wormald (2001) give recurrences to calculate Ap,k from

the Bp,k analytically, and the information to calculate all Bp,k analytically is implicit in

Wormald (1985). For p ≤ 8, Wormald (1985) gives the Bp,k from which we computed the

147

CHAPTER 7. EVALUATING AND ASSESSING THE SIZE PRIOR . . .

tauI equi tauS

1

2

3
id

en
tit

y

tauI equi tauS

2

4

tauI equi tauS
1

2

3

tri
di

ag
on

al

tauI equi tauS

2

4

tauI equi tauS

5
10
15
20
25

fu
ll

tauI equi tauS
4
6
8

10
12

tauI equi tauS
1

2

3

4c
yc

le

tauI equi tauS

1
2
3
4
5

tauI equi tauS
1

2

3

ne
qc

yc
le

uniform
tauI equi tauS

1
2
3
4
5

size

Figure 7.2: Values of L1 for the three forms of Φ and the five different forms of Ω. The sample size
is n = 40 with the left panel the uniform prior and the right panel the size-based prior.

tauI equi tauS
0.2

0.4

0.6

id
en

tit
y

tauI equi tauS
0.1

0.2

0.3

tauI equi tauS

0.5

1

tri
di

ag
on

al

tauI equi tauS

0.4

0.6

0.8

tauI equi tauS

2
4
6
8

fu
ll

tauI equi tauS

2

3

4

tauI equi tauS
0.2

0.4

0.6

0.8

4c
yc

le

tauI equi tauS

0.2

0.4

tauI equi tauS

0.5
1

1.5
2

ne
qc

yc
le

uniform
tauI equi tauS

0.5
1

1.5
2

2.5

size

Figure 7.3: Values of L1 for the three forms of Φ and the five different forms of Ω. The sample size
is n = 100 with the left panel the uniform prior and the right panel the size-based prior.

Ap,k and these are reported in Table 7.1.

However, Wormald’s (1985) analytic approach for obtaining the Bp,k is likely to be

computationally intractable for p > 25 (private correspondence with Wormald). Even

for 8 < p ≤ 25 obtaining the Bp,k would take weeks on realistically sized computers.

148

CHAPTER 7. EVALUATING AND ASSESSING THE SIZE PRIOR . . .

Table 7.1: For each p, 2 ≤ p ≤ 8 the table gives each Ap,k, 0 ≤ k ≤ r and Ap =
∑r

k=0 Ap,k. The
table also gives for each p the percentage of graphs that are decomposable.

k 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1

1 1 3 6 10 15 21 28

2 3 15 45 105 210 378

3 1 20 120 455 1330 3276

4 12 195 1320 5880 20265

5 6 180 2526 18522 92988

6 1 140 3085 40647 315574

7 90 3255 60795 770064

8 30 3000 79170 1357818

9 10 2235 92785 2078300

10 1 1206 94521 2892176

11 615 81417 3621576

12 260 58485 4016439

13 60 40110 3916724

14 15 24255 3432660

15 1 12222 2855748

16 4872 2185484

17 1890 1488984

18 595 902944

19 105 493220

20 21 258468

21 1 118504

22 46046

23 14868

24 4690

25 1176

26 168

27 28

28 1∑r
k=0 Ap,k 2 8 61 822 18,154 617,675 30,888,596

% decomposable 100% 100% 95% 80% 55% 29% 12%
149

CHAPTER 7. EVALUATING AND ASSESSING THE SIZE PRIOR . . .

Furthermore, analytically deriving the Ap,k from the Bp,k is computationally feasible only

for small p. Because of these difficulties we propose a simulation methodology to estimate

the Ap,k for all p.

7.4 Simulation methodology for estimating the Ap,k.

We begin with some exact results which can be used to calculate {Ap,k : k ≤ 5 and r−2 ≤
k ≤ r} analytically for any p. Let Fp,k denote the number of nondecomposable graphs

having p vertices and k edges.

Lemma 7.4.1 1. Ap,k =
(
r
k

)
− Fp,k.

2. Fp,0 = Fp,1 = Fp,r = 0, p ≥ 0.

3. Fp,2 = Fp,r−1 = 0, p ≥ 2.

4. Fp,3 = 0, p ≥ 3.

Proof. The proof is obvious.

Lemma 7.4.2 1. For p ≥ 4, Fp,4 =
(p
4

)
× 3.

2. For p ≥ 4, Fp,r−2 = Fp,4.

3. For p ≥ 5, Fp,5 =
(p
5

)
× 12 +

(p
4

)
× 3 × (r − 6).

Proof. See Wong (2002) or Appendix 8.3.

We now show how to estimate the {Ap,k : 6 ≤ k ≤ r − 3} for all p. Our approach is

to run a separate simulation to estimate each Ap,k for 6 ≤ k ≤ r − 3. The simulations

are done in ascending order of k, i.e. k = 6, . . . , r − 3, and the simulation to estimate a

particular Ap,k is restricted to graphs of size ≤ k and uses the estimates Âp,j of Ap,j for

j = 6, . . . , k − 1 that have been calculated in previous simulations.

We now describe the details of the simulation to estimate a particular Ap,k. Let φp,k

be the initial estimate of Ap,k given by

φp,k = α̃p,k

Â2
p,k−1

Âp,k−2

(7.1)

with α̃p,k chosen in the range (0.5, 1). To justify this choice of φp,k, we note that we have

found empirically that log Ap,k is approximately a negative quadratic (see figures 7.4 and

150

CHAPTER 7. EVALUATING AND ASSESSING THE SIZE PRIOR . . .

7.5) so that log Ap,k − 2 log Ap,k−1 + log Ap,k−2 ≤ 0, and hence

αp,k =
Ap,k/Ap,k−1

Ap,k−1/Ap,k−2
≤ 1.

We have also found empirically that αp,k is likely to exceed 0.5. Because

Ap,k = αp,k

A2
p,k−1

Ap,k−2

the above discussion suggests the choice of φp,k in (7.1).

We use Lemmas 7.4.1 and 7.4.2, the estimates Âp,j of Ap,j for j = 6, . . . , k − 1 that

have been calculated in previous simulations, and the initial estimate φp,k of Ap,k given

above to define the following probability distribution pe(g) on the graphs g of size ≤ k. To

simplify the notation we omit subscripts for p and k in pe(g). Let

pe(g) ∝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Ap,size(g)
if 0 ≤ size(g) ≤ 5

1bAp,size(g)
if 6 ≤ size(g) ≤ k − 1

1
φp,k

if size(g) = k

(7.2)

which implies that

pe(size = k)
pe(size ≤ 5)

=
Ap,k/φp,k∑5
j=0 Ap,j/Ap,j

=
1
6
Ap,k/φp,k

and hence

Ap,k = 6φp,k
pe(size = k)
pe(size ≤ 5)

.

By running the simulation described below based on pe(g) we can estimate the ratios

pe(size = k)/pe(size ≤ 5) by their relative frequencies and hence obtain an estimate of

Âp,k = 6φp,k
p̂e(size = k)
p̂e(size ≤ 5)

,

where p̂e(size = k) and p̂e(size ≤ 5) are the empirical relative frequencies.

The simulation uses the following MCMC sampling scheme. As in Section 4.9, we

generate the edge indicators one at a time conditional on the other edge indicators. Let

gc = (V,Ec) be the current graph with edge indicators given by {ekl : (k, l) ∈ Ec}. We

select an edge (i, j) at random. If g = (eij , e
c
−ij) corresponds to a decomposable graph

of size ≤ k for both eij = 0 and eij = 1 then we proceed, where we again use the legal

151

CHAPTER 7. EVALUATING AND ASSESSING THE SIZE PRIOR . . .

edge addition and deletion characterizations of Giudici & Green (1999) and Frydenberg &

Lauritzen (1989) respectively to test this. Otherwise we select a new edge. If we proceed,

then we propose a new graph gp = (1 − ec
ij , e

c
−ij) and accept this graph with probability

min {1, pe(gp)/pe(gc)}

which is evaluated using (7.2).

We note that at each stage we can also re-estimate Ap,j, j = 6, . . . , k − 1.

7.5 Results

This section presents the estimates Âp,k for k = 0, . . . , r and p = 8 and 34, and provides a

general method to check on the quality of these estimates. Define the prior pe(g) on the

decomposable graphs g as

pe(g) ∝

⎧⎨⎩
1

Ap,size(g)
if 0 ≤ size(g) ≤ 5 or r − 2 ≤ size(g) ≤ r

1bAp,size(g)
if 6 ≤ size(g) ≤ r − 3.

The prior pe in this section is different to pe in Section 7.4. If the estimates Âp,k, 6 ≤ k ≤
r−3 are precise, then pe(size = k) should be close to uniform and hence close to the target

value 1/(r + 1). An approximate lower bound for the standard error of the estimates of

pe(size = k) is
√

π(1 − π)/J , where π = 1/(r + 1) and J is the number of iterates used

to compute pe(size = k). Our simulations use a burn-in period of 2,000 iterations and a

sampling period of N = 10, 000 iterations. Figure 7.4 plots the estimates Âp,k for p = 8

and the true values A8,k, k = 0 . . . r on both an absolute and logarithmic scale. Figure 7.4

also plots the estimates of pe(size = k) together with the target value 1/(r + 1) and lower

bounds for the ±3 standard error lines.

Figure 7.5 has the same interpretation as Figure 7.4 but is for p = 34. The true values

of A34,k are not plotted as they are mostly unknown. Similar plots were obtained for

9 ≤ p ≤ 40, but these are omitted for brevity.

We now describe how to check the quality of these estimates. If Âp,j = Ap,j for all

j then p̂e(size = j) = 1/(r + 1) for all j so that E(p̂e(size = j)) = 1/(r + 1) and the

standard error of p̂e(size = j) is at least as large as
√

π(1 − π)/N where π = 1/(r+1) and

N is the number of iterates used to calculate p̂e(size = k). To account for autocorrelations

in the MCMC scheme we use every 20th iterate. Figure 7.4(a) and Figure 7.5(a) give

plots of the Âp,j for p = 8 and 34, together with their respective logarithmic scale values,

p̂e(size = k) and the horizontal lines at 1/(r+1) and 1/(r+1)±3
√

π(1 − π)/J in panel (a).

152

CHAPTER 7. EVALUATING AND ASSESSING THE SIZE PRIOR . . .

Figure 7.4(a) also shows the true values A8,j. Similar plots of true compared to estimated

values were achieved for p ≤ 7.

For p = 9, . . . , 12 the totals Ap =
∑

j Ap,j are known, but not the values Ap,j. As a

further check on results we compared our estimated values of Âp to Ap and found that we

were consistently within 1% of the truth.

0 10 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

(a)
0 10 20

0

2

4

6

8

10

12

14

16

(b)
0 10 20

0.028

0.03

0.032

0.034

0.036

0.038

0.04

(c)

Figure 7.4: Panel (a): Plot of true A8,k(·) and estimates Â8,k (open circles), k = 0, . . . r. Panel (b):
Log scale of plot (a). Panel (c): Plot of p̂e(size = k) together with their target value of 1/(r + 1)
(middle horizontal line) and ±3 approximate standard errors (outer horizontal lines).

0 200 400
0

1

2

3

4

5

6
x 10

96

(a)
0 200 400

0

50

100

150

200

250

(b)
0 200 400

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

−3

(c)

Figure 7.5: Panel (a): Plot of estimates Â34,k k = 0, . . . r. Panel (b): Log scale of plot (a). Panel
(c): Plot of p̂e(size = k) together with their target value of 1/(r + 1) (middle horizontal line) and
±3 approximate standard errors (outer horizontal lines).

153

CHAPTER 7. EVALUATING AND ASSESSING THE SIZE PRIOR . . .

154

Chapter 8

Appendicies

8.1 Appendix A: MATLAB code with line by line

explanations for the reduced conditional sam-

pler and covariance selection using the method-

ologies presented in this thesis.

This section gives line by line descriptions of working MATLAB code for achieving each

of the corresponding subsections of Section 3.5. The equivalent FORTRAN code is given,

without explanations, in Appendix 8.4

8.1.1 checking chordality

Subsections 3.5.2 and 3.5.3 illustrate that a graph is chordal if the numbering v1, . . . , vp is

such that each vi has a maximal number of previously numbered neighbours, nbrs(vi) ∩
{v1, . . . , vi−1}, and that this set is complete. Define pa(vi) = nbrs(vi) ∩ {v1, . . . , vi−1}
as the parents of vi. The Maximum Cardinality Search of Tarjan & Yannakakis (1984)

explained below starts with a set of unnumbered vertices, and sequentially numbers vertices

by maximising pa(vi). As each vertex is numbered, it checks that pa(vi) is complete and

aborts when this condition is not satisfied, returning ‘not chordal’. If the algorithm succeeds

in numbering all vertices, then the graph is complete and the sequence of vertices form a

perfect numbering.

The following 22 item list description is enumerated with respect to the 22 lines of code

(excluding comment and blank lines) that follows it.

155

CHAPTER 8. APPENDICIES

1. set all diagonals of g to 1 so that completeness can be checked by comparing to a

string of ones.

2. define p as the number of vertices.

3. initialise order as a 1 × p vector of zeros. order is the 1 × p permutation vector of

indicies 1, . . . p (1, . . . p is the original indexing in the adjacency matrix g) that gives

a perfect numbering.

4. initialise chordal to 1 (yes).

5. arbitrarily set v1 as the first in the perfect numbering; i.e. initialise the first element

of the vector numbered to 1.

6. arbitrarily set v1 as the first in the perfect numbering; i.e. set order(1) = 1.

7. begin for loop i = 2, . . . , p.

8. for each i, form the set capU of unnumbered vertices.

9. for each i, initialise score to the zero vector. In what follows score(i) will equal

|p(vi)|.

10. for each i, begin for loop ui = 1, . . . , length(capU), (length(capU) is the number of

currently unnumbered vertices).

11. initialise u as the uith element of capU .

12. set score(ui) as the number of previously numbered neighbours (length(intersect(neighboursnode(g, u), num

is the number of the intersection between the neighbours of u and numbered, the

vector of numbered vertices)

13. end inner ui loop

14. find the position of the maximum of score (argmax(score)), and set u equal to capU

at this position. Thus u is the first element of the vector of unnumbered vertices

which has the maximal number of parents.

15. add u to the set of numbered vertices.

16. set the ith element of order equal to u, the perfect numbering permutation of the

vertices.

156

CHAPTER 8. APPENDICIES

17. find pa, the set of already numbered neighbours, or parents, of u.

18. begin if loop to test noncompleteness of pa by seeing if there is at least one position

of g corresponding to one pair of vertices in pa that are not joined by an edge. That

is, the submatrix g(pa, pa) is not all ones (assuming extra edges g(v, v) are added).

19. if the submatrix g(pa, pa) is not complete, set chordal=0 (no).

20. if the submatrix g(pa, pa) is not complete, break out of the external i loop and abort.

21. end internal ith test for completeness

22. end external for i = 1, . . . , p loop

function [chordal, order]=check_chordal(g)

% inputs: 1. g, the p x p symmetric adjacency matrix with

% respect to an original ordering v_1, ..., v_p

% output: 1. chordal=1/0 (yes/no)

% 2. order=[a permutation vector of the v_i].

order is a sequence alpha(1)...alpha(p) which is an ordering

of the v_i such that the sequence v_alpha(1)...v_alpha(p)

is a perfect numbering if it exists]

% A numbering alpha is perfect if

% nbrs(alpha(i)) intersect {alpha(1)...alpha(i-1)} is complete.

% A graph is chordal iff it has a perfect numbering.

% The Maximum Cardinality Search algorithm will create such a

% perfect numbering if possible.

% See Golumbic, "Algorithmic Graph Theory and Perfect Graphs",

% Cambridge Univ. Press, 1985, p85.

% or Castillo, Gutierrez and Hadi,

% "Expert systems and probabilistic network models", Springer 1997, p134.

g=setdiag(g, 1);

p = size(g,1);

order = zeros(1,p);

chordal = 1;

157

CHAPTER 8. APPENDICIES

numbered = [1];

order(1) = 1;

for i=2:p

capU = setdiff(1:p, numbered);

% unnumbered verticies

score = zeros(1, length(capU));

for u_i=1:length(capU)

u = capU(u_i);

score(u_i) = length(intersect(neighbours_vertex_cell(g, u), numbered));

end

u = capU(argmax(score));

numbered = [numbered u];

order(i) = u;

pa = intersect(neighbours_vertex_cell(g,u), order(1:i-1));

% already numbered neighbours

if ~isequal(g(pa,pa), ones(length(pa)))

chordal = 0;

break;

end

end

8.1.2 finding cliques, given the order

Subsection 3.5.2 illustrated how to find the cliques of a chordal graph. The process was as

follows. Assume that valpha(1), . . . , valpha(p) is a perfect numbering, It was pointed out in

Subsection 3.5.2 that the set valpha(i) ∪ pa(valpha(i)) of a vertex with its parents was either:

(1) a strict subset of a single clique for vertices which were not the last ordered in a clique,

(2) the whole of a single clique for vertices which were the last ordered in a clique.

Therefore, the sequence of numbers of parents of the variables will be constant or

decreasing whenever the vertex is the last to be ordered in a clique. This is the principle

employed to find the cliques algorithmically as follows.

Create a vector numpa of prenumbered neighbours such that num pa(i) is the number

of parents of the ith variable vorder(i). If num pa is decreasing (num pa i ≥ num pa(i+1),

then the set comprising the vertex vorder(i) and its parents is the next clique in the perfect

sequence. Note that whenever num pa is constant, all the associated vertices have the same

maximal number of parents and any permutation of the associated subsequence of cliques

158

CHAPTER 8. APPENDICIES

within the overall ordering of all cliques, will still result in a perfect sequence ordering of

the cliques.

The following 33 item list description is enumerated with respect to the 33 lines of code

(excluding comment and blank lines) that follows it. The code is first explained assuming

a MATLAB cell array representation of the cliques, followed by the equivalent explanation

for a MATLAB matrix array representation.

1. define p = number of vertices in g.

2. initialise a 1 × p cell array pa of p empty sets for the parents of each vertex. The

sets of parents will be used to create the cliques, so each set pai is saved in pa rather

than recomputed later.

3. intialise to zero the vector num pa for recording the number of parents.

4. begin for loop i = 2, . . . p to find sequentially the number of parents of each vertex,

where the sequence ordering is the same as the maximum cardinality search perfect

numbering.

5. set v as the ith vertex in order, the maximum cardinality search perfect numbering.

6. create pre v, the set of all predecessors of v with respect to the perfect numbering.

7. find the set ns of neighbours of v in g.

8. find the set of parents pai by taking the intersection of the neighbours with the

predecessors.

9. record the number of parents of the ith vertex v = vorder(i) in num pa. Note that the

ith element of num pa corresponds to the number of parents of the ith node with

respect to the permutation vector order; i.e. v = vorder(i), and NOT v = vi. It is

critical that the variables retain the order as per the maximum cardinality search

perfect numbering given by the input permutation vector order.

10. end for loop i = 2, . . . p.

11. initialise ladder to zero.

12. begin for loop i = 1, . . . p to record which vertices are ‘ladder’ vertices; i.e. the

vertices v such that v ∪ pa(v) is a clique.

13. begin if test for decreasing number of parents.

159

CHAPTER 8. APPENDICIES

14. if the number of parents of v = order(i) decreases as the next i + 1, or the vertex

v = vorder(p) is the last to be considered, then make that vertex the ith ladder vertex

ladder(i).

15. end internal test for decreasing number of parents.

16. end external for loop i = 1, cdotsp.

17. initialise a cell array for the cliques of the same size as ladder, so that the maximum

number of cliques possible is assumed.

18. begin for loop i = 1, . . . p to create each clique, assuming that the number of cliques

is p; i.e. the maximum possible. number

19. begin if test for the nonzero elements of ladder.

20. if the ith element of ladder is still zero (recall ladder was initialised as a zero vector),

then there is no associated clique. i.e. the vertex vorder(i) is not the last numbered

in the clique. So set cliquesi equal to the empty set, [].

21. otherwise,

22. set cliquesi as the union of vorder(i) and its parents. Note that MATLAB orders

union(a,b) as [min(a,b), max(a,b)] regardless of the relative sizes of a, b

23. end if test for finding the ladder vertices.

24. end for loop for clique creation.

25. now we need to get rid of the empty cliques, so define k as the number of nonzero

elements in ladder.

26. initialise a counter variable newindex to 1.

27. initialise re index cliques as a 1 × k cell array of k empty sets.

28. begin for loop i = 1, . . . p to find the nonempty elements of cliques.

29. begin if test for finding the nonzero ladder vertices.

30. if ladder(i) is nonzero, then define the new index th set of re index cliques to be

cliquesi.

160

CHAPTER 8. APPENDICIES

31. add one to new index so that it can be used to index the next nonempty clique in

cliques.

32. end if test for finding the nonzero ladder vertices.

33. end for loop for finding the set re index cliques of nonempty cliques.

function [re_index_cliques, cliques]=chordal_to_ripcliques_cell(g, order)

% inputs: 1. g, the p x p symmetric adjacency matrix with

% respect to an original ordering v_1, ..., v_p

% 2. order, the output of check_chordal or any other

% perfect numbering permutation of the vertex indicies.

% output: 1. re_index_cliques, a cell representation containing only

% non-empty cliques, re_indexed

% so that re_index_cliques{i} is the ith non-empty clique

% in a sequence of cliques that satisfies the

% running intersection property.

% 2. cliques, a cell representation of the

% cliques of g in perfect order.

% i.e. Unlike re_index_cliques, these

% are indexed with respect to the vertices in the ordering.

% So if order(j) is a ladder vertex, the cell will contain the associated clique.

% If not, the cell will be empty.

%

% Note: If cliques{i}={2, 4, 5, 7}, then clique{i} comprises

% variables v_2, v_4, v_5 and v_7 with respect to the original

% ordering of the adjacency matrix, and not the perfect numbering.

p=size(g,1);

pa=cell(1,p);

num_pa=zeros(1,p);

%initialise the vector of number of predecessors

for i=2:p;

v=order(i);

pre_v=order(1:i-1);

ns=neighbours_vertex_cell(g, v);

% find set of neighbours of each v=order(i)

% turn the set into a vector (so can take intersection)

pa{i}=intersect(ns, pre_v);

% find the sets of those neighbours which precede

% v(i) with respect to order.

% Store answer for cliques.

num_pa(i)=length(pa{i});

% get cardinality for ladder test. note that the ith element of num_pa

% corresponds to the number of pre-nbs of the ith vertex in order; i.e

% v=order(i), and NOT v=i. We need to keep variables ordered as per the

161

CHAPTER 8. APPENDICIES

% mcs ordering, the vector called order.

end;

ladder=zeros(1,p);

for i=1:p;

if i==p | num_pa(i) >= num_pa(i+1);

%if i=p or cardinality of pa decreasing with i

%then the vertex v=order(i) is a ladder vertex.

ladder(i)=order(i); %make this v the next ladder vertex

end;

end;

cliques=cell(size(ladder));

for i=1:p;

if ladder(i)==0

cliques{i}=[];

else;

cliques{i}=union(order(i), pa{i});

% NOTE matlab orders union(a,b) as [min(a,b), max(a,b)]

% regardless of relative size of a,b

end;

end;

% get rid of empty cliques

k=length(find(ladder));

new_index=1;

re_index_cliques=cell(1,k);

for i=1:p;

if ladder(i)~=0 re_index_cliques{new_index}=cliques{i};

new_index=1+new_index;

end;

end;

% Theorem: re_index_cliques{i} are the cliques of g and clique ordering satisfies the RIP.

The code is now explained assuming a MATLAB matrix array representation of the sets

of variables. In this representation, a subset of p variables is represented by a p×1 column

vector of zeros and ones. If there is a one in the ith row position, then the vertex variable

vi is an element of the subset. A zero indicates vi is not an element. A matrix array

comprised of each of these columns is then used to represent a set of subsets. If there

is a one in the i, jth position of the array, then the ith variable is an element of the jth

subset. Since the smallest nonempty clique subset consists of a single variable, the largest

number of cliques possible for a given graph is p. Thus a p×p array cliques is sufficient for

representing any set of cliques. For example, if V = {1, 2, . . . , 8} and clique C2 = {2, 4, 5},

162

CHAPTER 8. APPENDICIES

then cliques(:,2)= [01011000]′. If there are k < p cliques, then cliques(:, k+1:p)= [0].

The following 28 item list description is enumerated with respect to the 28 lines of

code (excluding comment and blank lines) that follows it. Note that the subscript zo used

throughout, indicates a ‘zero / one’ representation of the variables.

1. define p = number of vertices in g.

2. initialise a p × p matrix array pa to zero for the parents of each vertex. The sets

of parents will be used to create the cliques, so each set pa(:,i) is saved rather than

recomputed later.

3. intialise to zero the vector num pa for recording the number of parents.

4. begin for loop i = 2, . . . p to find sequentially the number of parents of each vertex,

where the sequence ordering is the same as the maximum cardinality search perfect

numbering.

5. set v as the ith vertex in order, the maximum cardinality search perfect numbering.

6. initialise to zero the vector pre v to represent the set of all predecessors of v with

respect to the perfect numbering.

7. set pre v(j)= 1, j = 1, . . . , i − 1 equal to one to represent that variables v1, . . . vi−1

are the predecessors of vi with respect to the perfect numbering.

8. find the set ns of neighbours of v in g.

9. find pa i, the column vector representing the set of parents of v in g, by taking the

intersection of the neighbours of v with its predecessors.

10. to find the number of parents for num pa, find the nonzero entries of pa i. Set

num pa(i) equal to the number of parents of the ith vertex v = order(i). Note

that num pa(i) corresponds to the number of parents of the ith node in order ;

i.e. v = order(i), and NOT v = i. It is critical that the variables retain the order

as per the maximum cardinality search perfect numbering given by the permutation

vector order.

11. Save the set of parents in pa; i.e. set pa(:,v)=pa i.

12. end for loop i = 2, . . . p.

13. initialise ladder to zero.

163

CHAPTER 8. APPENDICIES

14. begin for loop i = 1, . . . p to record which vertices are ‘ladder’ vertices; i.e. the

vertices v such that v ∪ pa(v) is a clique.

15. mtest for decreasing number of parents. For the test, the number of parents of the

ith vertex according to order is found by summing the order(i)th column of pa.

16. if the number of parents of v = order(i) decreases for the next i + 1, or the vertex

v = vorder(p) is the last to be considered, then make that vertex the ith ladder vertex

ladder(i).

17. end internal test for decreasing number of parents.

18. end external for loop i = 1, . . . p.

19. initialise a p × p matrix array for the cliques.

20. intialise to zero index non zero ladder, a counter used to index the nonzero elements

of ladder. Note that this counter will ensure all the leading columns are nonzero if

there are fewer than p cliques.

21. begin for loop i = 1, . . . p to create each clique, allowing for the maximum number

p possible cliques.

22. begin if test for finding the ladder vertices; i.e. represented by the nonzero elements

of ladder.

23. initialise to zero v i, a p × p column vector representation of the single variable

v = ladder(i).

24. to represent the single variable v = ladder(i), the ladder(i)th variable of the column

vector v i must be equal to one, and every other entry must be zero.

25. add one to the counter index non zero ladder.

26. set the index non zero ladderth column of the array cliques as the union of v with

its parents.

27. end if test for finding the ladder vertices.

28. end for loop for clique creation.

164

CHAPTER 8. APPENDICIES

function [cliques]=chordal_to_ripcliques_zo(g, order)

% inputs: 1. g, the p x p symmetric adjacency matrix with

% respect to an original ordering v_1, ..., v_p

% 2. order, the output of check_chordal or any other

% perfect numbering of the vertex indicies.

% output: 1. cliques, a p x p matrix representation of the

% cliques of g in perfect order.

% i.e. each column cliques(:,i) is the ith ordered clique

% in a sequence of cliques that satisfies the running intersection property.

% If the jth row of cliques(:,i) equals one, then v_j is an

% element of clique C_i.

% Note: the maximum number of cliques for any graph is p,

% which occurs when the v_i are all independent so each clique

% comprises a single variable vertex.

p=size(g,1);

pa=zeros(p,p);

num_pa=zeros(1,p);

% initialise the vector of number of predecessors

for i=2:p;

v=order(i);

pre_v=zeros(p,1);

pre_v(order(1:i-1))=1;

% create 0/1 col vector representing predecessors of v

ns=neighbours_vertex_zo(g, v);

% find set of neighbours of each v=order(i)

pa_i=intersect_zo(ns, pre_v);

num_pa(i)=size(find(pa_i),1);

pa(:, v)=pa_i;

% find the sets of those neighbours which precede

% v=order(i) with respect to order. Store answer for cliques.

% so if order=[1 3 7 5 2 4 6], pa(:,order(4)=5)=[0 0 1 0 0 0 1]’

% pa =

% 0 0 1 0 0 0 1

% 0 0 0 1 0 0 0

% 0 0 0 0 1 0 1

% 0 0 0 0 0 0 0

% 0 0 0 0 0 0 0

% 0 0 0 0 0 0 0

% 0 1 0 0 1 1 0

% num_pa ordered as per order (i) = 0 1 2 2 1 1 1

% corresponding to v= 1 3 7 5 2 4 6

% eg num of pre nbs of 3 for ladder test=sum(:,3), etc.

% note that the ith column

% corresponds to the pre-nbs of the ith vertex in order;

% i.e v=order(i), and NOT v=i. Simly for cardinality

165

CHAPTER 8. APPENDICIES

% Need to keep variables ordered as per the

% mcs ordering, the vector called order.

end;

ladder=zeros(1,p);

% NOTE: for ladder(i)~=0, ladder(i)=order(i)

for i=1:p;

if i==p | sum(pa (:, order(i))) >= sum(pa(:,order(i+1)))

%if i=p or cardinality of pa decreasing with

% v=order(i), then the vertex v=order(i) is a ladder vertex.

% eg, i=4, order as above has ladder [0 0 7 5 2 4 6]

% as == or decrease occurs num_pa(i), i=3 4 5 6 7

% and order(3)=7,order(4)=5,order(5)=2,order(6)=4,order(7)=6.

ladder(i)=order(i);

% make this v the next ladder vertex

end;

end;

%%%%%%%%%%%%%%%%%%%%%%%

%% NOTE: i output non-empty columns first, so clique ordering follows

%% matrix cliques column ordering.

%% if only 3 cliques, then cliques(:, 3:n)=zero(n,1);

%% cliques(:,i)=union of the ith non-zero ladder vertex and its predecessors)

%% eg cliques(:,3)=[0 1 0 0 0 0 0]+[0 0 0 0 0 0 1] = {2} U {7}

%% NOTE: for ladder(i)~=0, ladder(i)=order(i)

cliques=zeros(p, p);

% only create clique columns if it’s non-empty set

index_non_zero_ladder=0;

for i=1:p;

if ladder(i)~=0;

v_col_i=zeros(p,1);

% create column vector rep. of v=ladder(i)

v_col_i(ladder(i),1)=1;

% ladder(i)=order(i)

index_non_zero_ladder=index_non_zero_ladder+1;

cliques(:, index_non_zero_ladder)=union_zo(v_col_i,pa(:,ladder(i)));

end;

end;

% Theorem: cliques(index_non_zero_ladder, 1:size_cliques) are the cliques of g

% and clique ordering satisfies the RIP.

166

CHAPTER 8. APPENDICIES

8.1.3 creating the junction tree, given a perfect sequence of

cliques

This code creates a junction tree from a perfect sequence of cliques based on the principle

of maximising the size of the intersection of clique Ci with its predecessors in the sequence,

as explained in Sections 3.4 and 3.5. The cell array version is described before giving an

alternative matrix array version.

The following 12 item list description is enumerated with respect to the 12 lines of

MATLAB code (excluding comment and blank lines) that follows it.

1. find t, the number of nonempty cliques of g.

2. initialise a 1 × t vector score to record the size of the intersections Ci ∩ Cj .

3. initialise jt, the adjacency matrix of the junction tree, allowing for the maximum

number of clique vertices.

4. begin for loop i = 2, . . . t to find the (Ci, Cj) edge.

5. begin internal k dependent for loop k = 2, . . . i−1 to find the sizes of the intersections

Ci ∩ Ck, k < i.

6. set score(k) equal to |Ci ∩ Ck|, k < i.

7. end internal k dependent for loop.

8. begin if test for empty intersections, so that an edge is not added if all intersections

Ci ∩ Ck, k < i are empty.

9. if the maximum of score is greater than zero, then find j, the position of the maxi-

mum. Note that MATLAB uses the first maximal element in the case of nonunique-

ness.

10. add the edge (Ci, Cj) to the junction tree by setting the i, jth and j, ith entries of

the adjacency matrix jt equal to one.

11. end the internal if test.

12. end outer i dependent for loop.

167

CHAPTER 8. APPENDICIES

function [jtree]=ripcliques_to_jtree_cell(re_index_cliques)

% input: re_index_cliques, a 1 x t cell array of nonempty cliques

% of a chordal graph in RIP ordering

% (such as re_index_cliques from chordal_to_ripcliques_cell.m).

% output: jtree, the adjacency matrix of a junction tree with respect

% to cliques (not necessarily unique).

% WARNING: this algorithm only works for cliques outputted

% with respect to a maximum

% cardinality search ordering of the cliques, as then the cliques are

% already ordered with respect to the rank of the highest vertex in the

% clique. For example, if mcs ordering of vertices is [6 5 3 1 4 2], then a

% clique comprised of {6,1} will precede a clique comprised of {4,2}

% since 6 and 1 precede 4 and 2 in the ordering [6 5 3 1 4 2].

t=size(re_index_cliques,2);

score=zeros(1,t);

jtree=zeros(t,t);

for i=2:t;

for k=1:i-1;

score(k)=length(intersect(re_index_cliques{i}, re_index_cliques{k}));

end;

if max(score)~=0 ;

% only add the edge if clique i IS connected to one of its

% predecessors. if score is all zeros, then clique has no intersection

% with any of its predecessors. Since the cliques are in RIP, it must

% follow that we are no longer in the same connected component of

% the graph.

% if clique i has no intersection with any of the preceding cliques,

% then the graph is disconnected, so the adjacency matrix will have

% a zero row/column for this i, and we have a forest, not a j_tree.

j=argmax(score);

jtree(i,j)=1; jtree(j,i)=1;

end;

end;

The matrix array version that follows the description below is identical, except that

the equivalent matrix array operations are used.

1. find p, the maximum possible number of cliques of g.

2. initialise to zeros a 1 × p vector clique sizes to record the number of variables

in each clique. This can be computed by summing each column of cliques, since

cliques(i, j) = 1 if and only if vi ∈ Cj.

168

CHAPTER 8. APPENDICIES

3. calculate the column totals and store in clique sizes.

4. calculate num cliques, the number of nonempty cliques by finding how many of the

p entries in clique sizes are nonzero.

5. initialise a 1 × p vector score to record the size of the intersections Ci ∩ Cj .

6. initialise jt, the adjacency matrix of the junction tree, allowing for the maximum

number of clique vertices.

7. begin for loop i = 2, . . . , num cliques to find the (Ci, Cj) edge.

8. begin internal k dependent for loop k = 2, . . . i−1 to find the sizes of the intersections

Ci ∩ Ck, k < i.

9. set score(k) equal to |Ci ∩ Ck|, k < i. The number of elements in the intersection is

given by summing the vector representing Ci ∩ Ck.

10. end internal k dependent for loop.

11. begin if test for empty intersection, so that no edge is added when all intersections

Ci ∩ Ck, k < i are empty.

12. if the maximum of score is greater than zero, then find j, the position of the max-

imum. Note that routine argmax.m returns the index of the first maximal element

in the case of nonuniqueness.

13. add the edge (Ci, Cj) to the junction tree by setting the i, jth and j, ith entries of

the adjacency matrix jt equal to one.

14. end the internal if test.

15. end outer i dependent for loop.

function [jtree]=ripcliques_to_jtree_zo(cliques)

% input: 1. cliques, a p x p matrix array respresentation of a

% perfect sequence of cliques of g.

% (eg, from chordal_to_ripcliques_zo.m)

% output: jtree, the adjacency matrix of a junction tree

% (not necessarily unique) with respect to cliques

% WARNING: this algorithm only works for cliques outputted

% with respect to a maximum cardinality search ordering of

% the cliques, as then the cliques are already ordered with

169

CHAPTER 8. APPENDICIES

% respect to the rank of the highest vertex in the clique.

% For example, if mcs ordering of vertices is [6 5 3 1 4 2], then a

% clique comprised of {6,1} will precede a clique comprised of {4,2}

% since 6 and 1 precede 4 and 2 in the ordering [6 5 3 1 4 2].

p=size(cliques, 1);

clique_sizes=zeros(1,p);

clique_sizes=sum(cliques, 1);

% this is a 1 x p vector of column totals.

% summing the column cliques(:,i) gives the number of vertices

% in clique C_i.

num_cliques=size(find(clique_sizes), 2);

score=zeros(1,p);

jtree=zeros(p,p);

for i=2:num_cliques;

for k=1:i-1;

score(k)=sum(intersect_zo(cliques(:,i), cliques(:,k)));

end;

if max(score)~=0 ;

% only add the edge if clique i IS connected to one of its

% predecessors. if score is all zeros, then clique has no intersection

% with any of its predecessors. Since the cliques are in RIP, it must

% follow that we are no longer in the same connected component of

% the graph.

% if clique i has no intersection with any of the preceding cliques,

% then the graph is disconnected, so the adjacency matrix will have

% a zero row/column for this i, and we have a forest, not a j_tree.

j=argmax(score);

jtree(i,j)=1; jtree(j,i)=1;

end;

end;

8.1.4 finding the separators, given a perfect sequence of

cliques and the associated junction tree

Let T be a junction tree with the cliques of g as its vertices. Recall that by definition of a

junction tree, the intersection Ci ∩Cj is a subset of every clique on the necessarily unique

path in T connecting Ci and Cj. Therefore, the intersections between adjacent cliques in

T will have the largest number of elements.

Recall that a perfect sequence of sets C1, . . . , Ck has the running intersection property.

That is, for every i > 1, the intersection Si = Ci ∩ Hi−1 ⊂ Cj for some j < i. Therefore,

the principle used to create the junction tree T from a perfect sequence of cliques ensures

170

CHAPTER 8. APPENDICIES

that the intersections Ci ∩Cj between adjacent cliques in jt will be equal to the separator

sets Si by the following argument.

Fact 1. the definition of the junction tree that the intersection between any pair must

be a subset of the cliques on the necessarily unique path between them implies that the

adjacent intersections are the biggest possible intersections which include either one of the

adjacent pair. Fact 2. The junction tree jt was formed by adding an edge between Ci and

any preceding clique which had maximal intersection with Ci. Fact 3. From the running

intersection property, we know that Si ⊂ Cj , j < i. Fact 4. But Si is the intersection

between Ci and the union of all cliques which precede Ci in the perfect sequence. Facts 1,

2, 3 and 4 together imply that Si = Ci ∩Cj, and so Si is the biggest intersection. Since we

know that adjacent cliques have a (not necessarily unique) maximal intersection, then the

separators Si can be calculated as the intersection between adjacent cliques in the junction

tree.

Note that if two cliques Cj1 and Cj2 each have same maximal intersection with Ci,

then either of these could have been made adjacent to Ci in jt. This situation corresponds

to the situation in which two of the sequence separators are the same, as illustrated by

the decomposable g5 of Figure 3.14, in which all three cliques are separated by the same

sequence separator, Sk = {a, b}, k = 1, 2.

Therefore, the sets which separate Ci and Cj can be found by taking the pairwise

intersections of adjacent cliques in the junction tree. Furthermore, the intersections Si =

Ci ∩ Cj of adjacent cliques will separate Ci\Ci ∩ Cj and Cj\Ci ∩ Cj in g.

An alternative to this routine that does not require the input of a junction tree is given

in Section 8.1.10.

The following 13 item list description is enumerated with respect to the 13 lines of

MATLAB code (excluding comment and blank lines) that follows it. This code finds the

separators and their sizes from a perfect sequence of cliques and the associated junction tree,

based on the above described principle of adjacent cliques having maximal intersections

which are the sequence separators and the graph separators. The cell array version is

described before giving an alternative matrix array version.

1. find t = number of vertices in jtree, the junction tree. This is the same as the

number of cliques of g.

2. initialise a t × t array sepsize to zero. sepsize(i,j) will equal |Ci ∩ Cj | if Ci and Cj

are adjacent, and will remain zero if they are not adjacent.

3. initialise seps, a t × t cell array for storing the associated separators Ci ∩ Cj for

171

CHAPTER 8. APPENDICIES

adjacent cliques.

4. begin for loop i = 1, . . . t to find the clique adjacent to Ci.

5. begin internal for loop j = i + 1, . . . t to consider all cliques Cj, j > i for adjacency

test. Note that this will find all adjacent pairs, as the adjacency matrix jtree is

symmetric so only the upper (or lower) triangular half needs to be searched.

6. begin if test so that intersections are only taken between cliques adjacent in T , as

given by the nonzero entries of the adjacency matrix jtree.

7. if the pair of cliques Ci and Cj are adjacent, take the intersection Ci ∩Cj and store

as the ijth entry in seps.

8. if the pair of cliques Ci and Cj are adjacent, find |Ci∩Cj| and store as the ijth entry

in sepsize.

9. make seps symmetric.

10. make sepsize symmetric.

11. end the internal if test.

12. end inner j dependent for loop.

13. end outer i dependent for loop.

function [sepsize, seps]=separators_cell(cliques, jtree)

% NOTE: if you just want a 1 x num_seps array of the sequence separators, use

% seps_residuals_histories.m

% inputs: 1. cliques, a 1 x t cell array of the t nonempty cliques of g in

% RIP ordering (from chordal_to_ripcliques_cell.m)

% 2. jtree, the associated t x t adjacency matrix of the junction tree

% output: 1. sepsize, a matrix array of the size of the separator sets, in which

% sepsize(i,j) = [number of elements in intersection between

% cliques cliques{i} and cliques{j} if they are adjacent, and zero else.

% 2. seps, a (num_cliques)x(num_cliques) cell array

in which seps{i,j}=cliques{i} intersect cliques{j}.

t=size(cliques,2);

sepsize=zeros(size(jtree)); % =num_cliques x num_cliques

seps=cell(size(jtree));

for i=1:t;

172

CHAPTER 8. APPENDICIES

for j=i+1:t;

if jtree(i,j)==1;

seps{i,j}=intersect(cliques{i}, cliques{j});

sepsize(i,j)=length(intersect(cliques{i}, cliques{j}));

% this version does the full matrix/cell array

% which is symmetric so actually unnecessary.

% But could be dangerous not to compute in case the wrong ordering

% j, i, for j > i is used by one of the calling programs)

seps{j,i}=seps{i,j};

sepsize{j,i}=sepsize(i,j);

end;

end;

end;

The matrix array code is now explained.

1. find p, the maximum possible number of vertices in jtree, the junction tree. This is

the same as the size of the array cliques.

2. initialise a p × p array sepsize to zero. sepsize(i,j) will equal the |Ci ∩ Cj | if Ci and

Cj are adjacent, and will remain zero if they are not adjacent.

3. initialise to zeros a 1 × p vector clique sizes to record the number of variables

in each clique. This can be computed by summing each column of cliques, since

cliques(i, j) = 1 if and only if vi ∈ Cj.

4. calculate the column totals and store in clique sizes.

5. calculate num cliques, the number of nonempty cliques by finding how many of the

p entries in clique sizes are nonzero.

6. begin for loop i = 1, . . . num cliques to find the clique adjacent to Ci.

7. begin internal for loop j = i + 1, . . . num cliques to consider all cliques Cj , j > i

for adjacency test. Note that by the symmetry of the adjacency matrix for the

junction tree, only the upper (or lower) triangular half needs to be searched to find

all adjacent pairs.

8. begin if test so that intersections are only taken between cliques adjacent in T , as

given by the nonzero entries of the adjacency matrix jtree.

173

CHAPTER 8. APPENDICIES

9. if the pair of cliques Ci and Cj are adjacent, take the intersection Ci ∩ Cj by using

the subroutine intersect zo. This returns a vector of zeros and ones representing the

set of variables in the intersection. Hence the sum of this vector gives the number of

variables in the intersection. This sum is stored as the ijth entry in sepsize.

10. make sepsize symmetric.

11. end the internal if test.

12. end inner j dependent for loop.

13. end outer i dependent for loop.

function [sepsize]=sepsize_zo(cliques, jtree)

% NOTE: if you just want a 1 x num_seps array of all the

% sequence separators, use seps_residuals_histories.m

% inputs: 1. cliques, a p x p matrix array respresentation of a

% perfect sequence of cliques of g.

% (eg, from chordal_to_ripcliques_zo.m)

% 2. jtree, the associated p x p adjacency matrix

% of the junction tree

% output: 1. sepsize, a matrix array of the size of the

% separator sets, in which

% sepsize(i,j) = |C_i intersection C_j| between

% adjacent cliques C_i and C_j with respect to jtree.

[p]=size(cliques,1);

sepsize=zeros(p,p);

clique_sizes=zeros(1,p);

clique_sizes=sum(cliques, 1);

% this is a 1 x p vector of column totals

num_cliques=size(find(clique_sizes),2);

for i=1:num_cliques;

for j=i+1:num_cliques;

if jtree(i,j)==1;

sepsize(i,j)=sum(intersect_zo(cliques(:,i), cliques(:,j)));

% this version does the full matrix/cell array

% which is symmetric so actually unnecessary.

% But could be dangerous not to compute in case the wrong ordering

% j, i, for j > i is used by one of the calling programs)

sepsize(j,i)=sum(seps_ij);

end;

end;

end;

174

CHAPTER 8. APPENDICIES

8.1.5 finding the path matrix of g, in which the i, jth entry

is one if vertices vi and vj are connected

It is well known that for any p×p adjacency matrix g, the powers gk are the k-step transition

matrices. The longest possible path without repetition of vertices is p−1. Hence the finite

sum sum g + g2 + ... + gp−1 is the transition matrix indicating all the vertices that are

connected in 1 ≤ k ≤ p − 1 transition steps. Each ijth entry of the sum shows the total

number of possible paths of length 1 ≤ k ≤ p − 1 between vi and vj , and any zero entry

indicates that vi and vj are not connected.

The following 9 item list description is enumerated with respect to the 9 lines of MAT-

LAB code (excluding comment and blank lines) that follows it. The code computes the

transition matrix by computing the sum described above.

1. find p, the number of vertices in g.

2. initialise A as g, the single step transition matrix.

3. initialise reach graph, the p× p array of the number of paths length ≤ p− 1 between

vertex pairs.

4. begin for loop i = 1, . . . p − 1 for the sequential sum.

5. add the next i-step transition matrix to reach graph.

6. calculate the next (i + 1)-step transition matrix.

7. end for loop i = 1, . . . p − 1.

8. replace every entry greater than one with a one. The MATLAB command C = (C >

0) returns a matrix with 1s in every place where C ¿ 0.

function reach_graph = reachability_graph(g)

% inputs: 1. g, the p x p symmetric adjacency matrix with

% respect to an original ordering v_1, ..., v_p

% output: 1. reach_graph, a p x p symmetric matrix, in which

% reach_graph(i,j) = 1 iff there is a path from i to j

% This computes g = g + g^2 + ... + g^{p-1}, which is the transition matrix

% showing all possible vertices that can be

% reached in 1, ..., p-1 steps. Note that the longest

% possible path is p-1, so only need to consider up to and including paths

% of length p-1

175

CHAPTER 8. APPENDICIES

p = size(g,1);

A = g;

reach_graph = zeros(p);

for i=1:p-1

reach_graph = reach_graph + A;

A = A * g;

end

reach_graph = (reach_graph > 0);

% C = (C > 0) gives a matrix with 1s in every place where C > 0.

8.1.6 finding the set of neighbours of a single vertex

Since g is the adjacency matrix of a graph on vertices V = {v1, . . . vp}, the indicies of the

neighbours of vi are the indicies of the nonzero entries of row i, as returned by the MATLAB

find function, and the 1 × |nbrs(vi)| array output will represent the set of neighbours in

the cell array version.

The following single item list description is for the single line of MATLAB code (ex-

cluding comment and blank lines) that follows it.

1. use inbuilt MATLAB find function to return the indicies of all vertices j such that

gij = 1. Since g is the adjacency matrix, this is the same as the indicies of all

vertices adjacent to vi. Note that MATLAB will return the indicies of the vertices

in ascending order.

function [ns]=neighbours_vertex_cell(g, i)

% inputs: 1. g, the p x p symmetric adjacency matrix with

% respect to an original ordering v_1, ..., v_p

2. i, the index with respect to g, of the vertex

v_i whose neighbours are required.

% output: ns, a 1 x |nbrs(v_i)| array of indicies of nbrs(v_i).

Returns the empty vector if v_i has no neighbours

ns=find(g(i,:));

% NOTE: MATLAB find will return the vertices in ascending order

The matrix array version must return a p× 1 vector ns, such that ns(j) = 1 whenever

vj is adjacent to vi. Therefore the neighbours are given by the ith column of g. The

following 3 item list description is for the 3 lines of MATLAB code (excluding comment

and blank lines) that follows it.

176

CHAPTER 8. APPENDICIES

1. find p, the number of vertices.

2. initialize ns, the p × 1 vector of zeros and ones to represent the set nbrs(vi).

3. nbrs(vi) is given by the ith column of the adjacency matrix g, since by definition of

the adjacency matrix g, gij = 1 if and only if vi and vj are adjacent, and gij = 0

otherwise.

function [ns]=neighbours_vertex_zo(g, v_i)

% inputs: 1. g, the p x p symmetric adjacency matrix with

% respect to an original ordering v_1, ..., v_p

2. i, the index with respect to g, of the vertex

v_i whose neighbours are required.

% output: ns, a p x 1 vector of zeros and ones, representing nbrs(v_i).

Returns zero vector if no neighbours.

p=size(g,1);

ns=zeros(p,1);

ns=g(:,i);

% NOTE: MATLAB find will return the vertices in ascending order

8.1.7 finding the set of parents of a single vertex

This routine assumes that the ordering by which the parents are neighbouring predecessors,

is the ordering 1, . . . p of the adjacency matrix matrix g.

The following 3 item list description is enumerated with respect to the 3 lines of MAT-

LAB code (excluding comment and blank lines) that follows it. This code finds pa(vi) as

the intersection between the vertices v1, . . . , vi−1 and nbrs(vi). The cell array version is

described before giving an alternative matrix array version.

1. initialise ps, the set of parents, as the empty set.

2. find ns, the set of indicies of the neighbours of vi.

3. find ps, the set of indicies of pa(vi), by taking the intersection of all indicies preceding

i, and the indicies of nbrs(vi). Note that MATLAB will return the indicies of the

vertices in ascending order.

function [ps]=parents_vertex_cell(g, i)

% inputs: 1. g, the p x p symmetric adjacency matrix with

177

CHAPTER 8. APPENDICIES

% respect to an original ordering v_1, ..., v_p

2. i, the index with respect to g, of the vertex

v_i whose parents are required.

% output: ps, a 1 x |pa(v_i)| array of indicies of pa(v_i) with

respect to the ordering 1, 2,..., p.

Returns the empty vector if v_i has no parents.

%% NOTE: This only works if vertices are ordered as per g.

%% i.e. if mcs order is 1, 7, 3, 4, 2, ...

%% then it will return

%% parents(adj_mat, 4)=intersect([1 7 3 4], [1:4])

%% =[1 3]

%% which is WRONG

ps=[];

ns=neighbours_node_cell(g, i);

ps=intersect([1:i], ns);

The matrix array version must return a p×1 vector ps, such that ps(j) = 1 whenever vj

is adjacent to vi and precedes vi in the order 1, . . . , p, and ps(j) = 0 otherwise. Therefore

the parents are represented by the vector ps defined by ps(j) = 0, j ≥ i and ps(j) = 1 for

all indicies less than i which are also included in the vector of indicies of nbrs(vi). The

following 5 item list description is for the 5 lines of MATLAB code (excluding comment

and blank lines) that follows it.

1. find p, the number of vertices in g.

2. initialise to the zero vector ps, the set of indicies of the parents.

3. find the indicies of the neighbours of vi.

4. set the indicies of the parents to be the indicies of the neighbours.

5. make zero all the indicies which follow i.

function [ps]=parents_vertex_zo(g, i)

% inputs: 1. g, the p x p symmetric adjacency matrix with

% respect to an original ordering v_1, ..., v_p

2. i, the index with respect to g, of the vertex

v_i whose neighbours are required.

% output 1: ps, a p x 1 vector representing pa(v_i)

%

% NOTE: This only works if vertices are ordered as per g.

178

CHAPTER 8. APPENDICIES

% i.e. if mcs order is 1, 7, 3, 4, 2, 6, 5

then it will return

% [1 0 1 0 0 0 0]’=parents(adj_mat, 4) (=[1,3])

% which is WRONG (should be [1 0 1 0 0 0 1]’={1 7 3})

p=size(g, 1);

ps=zeros(p,1);

nbs=neighbours_vertex_zo(g, i);

ps=nbs;

ps(i:p,1)=0;

8.1.8 finding the first clique in a perfect sequence that con-

tains a given vertex va

This code finds the index of the first clique in cliques that contains the vertex va. Note

that va must be contained in at least one clique or the routine never breaks. The cell array

version is described before the matrix array version.

The following 11 item list description of the cell array version is enumerated with

respect to the 11 lines of MATLAB code (excluding comment and blank lines) that follows

it.

1. initialise i = 1 as the index of the clique to be searched for the vertex va.

2. initialise the variable found to zero. found will be set to one when a clique containing

va is found.

3. initialise index a, the index of the clique containing va, to that of the first clique.

4. begin conditional while loop so that the routine continues to search for the clique

containing va until found is set to one.

5. begin internal j dependent for loop, to test if vj is an element of the ith clique.

6. begin internal if test to see if the jth element of the ith clique is equal to va, by

testing to see if cliquesi(j)=a.

7. if cliquesi(j)=a, then set index a = i, found=1, and break out of the internal for

loop so that vi is not tested against any further elements of the ith clique.

8. begin internal if test to increment the index of the clique being searched if va is still

unfound after comparison with all elements of the ith clique.

179

CHAPTER 8. APPENDICIES

9. if va is still not found, then add one to the index of the clique to be searched, to look

for va in the next clique in the sequence.

10. end internal if test to increment the index of the cliques.

11. end conditional while loop.

function [index_a]=find_clique_containing_cell(a, cliques)

% inputs: 1. a, the index of the vertex v_a with respect

% to the ordering of cliques.

% NOTE: if v_a is not in one of the cliques, this routine

% will go into an infinite while loop.

% 2. cliques, a cell array of nonempty cliques

% output: index_a, the index of the first clique

% (in the order of the cell array)

% that contains v_a

i=1;

found=0;

index_a=1;

while found==0;

for j=1:length(cliques{i});

if cliques{i}(j)==a;

index_a=i; found=1; break; end,

end;

if found == 0;

i=i+1;

end

end;

The matrix array version is trivial. Since the p×p array cliques is such that cliquesij = 1

if and only if vi ∈ Cj , and cliquesij = 0 otherwise, the indicies of all cliques containing va

is given by the indicies of the nonzero entries in the ath row of cliques. The following 4

item list description of the matrix array version is enumerated with respect to the 4 lines

of MATLAB code (excluding comment and blank lines) that follows it.

1. find p, the maximum possible number of cliques.

2. initialise the p × 1 variable all indicies to zero. all indicies is the vector of indicies

of all the cliques that contain va.

3. use the MATLAB inbuilt find function to find all indicies.

4. use the inbuilt MATLAB min function to set index a as the minimum index, and

hence the first clique in the ordering of cliques that contains va.

180

CHAPTER 8. APPENDICIES

function [index_a]=find_clique_containing_zo(a, cliques)

% inputs: 1. index_a, the index of the vertex v_a with respect

% to the ordering of cliques.

% NOTE: if v_a is not in one of the cliques, this routine

% will go into an infinite while loop.

% 2. cliques, a p x p matrix array respresentation of a

% perfect sequence of cliques of g.

% (eg, from chordal_to_ripcliques_zo.m)

% output: index_a, the index of the first clique (with respect to the

column order of the array cliques) that contains v_a

p=size(cliques,1);

all_indicies=zeros(p,1);

all_indicies=find(cliques(a, :));

index_a=min(all_indicies);

8.1.9 finding all cliques in a perfect sequence that contains

a given vertex va

This code finds all the indicies of the cliques in cliques that contain the vertex va. The cell

array version is given before the matrix array version.

1. initialise index a, the vector such that index a(i)=1 if and only if va ∈ Ci.

2. begin internal i dependent for loop, to test for existence in the ith clique.

3. begin internal j dependent for loop, to test if vj is an element of the ith clique.

4. begin internal if test to see if the jth element of the ith clique is equal to va, by

testing to see if cliquesi(j)=a.

5. if cliquesi(j)=a, then set index a = i.

6. end conditional if to find index a = i.

7. end j dependent for loop to test if vj ∈ Ci.

8. end i dependent for loop to test all Ci.

function [all_indicies_a]=find_all_clique_containing_cell(a, cliques)

% input: 1. a, the index of v_a wrt adjacency matrix g

% 2. cliques, a cell representation of cliques of g.

% output:1. all_indicies_a, the indicies (wrt order of cliques) of all cliques

% that contain v_a

181

CHAPTER 8. APPENDICIES

index_a=zeros(1, length(cliques));

for i=1:length(cliques)

for j=1:length(cliques{i});

if cliques{i}(j)==a;

index_a(i)=i;

end;

end

end

all_indicies_a=find(index_a);

The matrix array version is trivial. Since the p×p array cliques is such that cliquesij = 1

if and only if vi ∈ Cj , and cliquesij = 0 otherwise, the indicies of all cliques containing va

is given by the indicies of the nonzero entries in the ath row of cliques.

1. use the MATLAB inbuilt find function to find all indicies.

function [all_indicies_a]=find_all_clique_containing_zo(a, cliques)

% input: 1. a, the index of v_a wrt adjacency matrix g

% 2. cliques, a p x p matrix representation of cliques of g.

% output:1. all_indicies_a, the indicies (wrt order of cliques) of all cliques

% that contain v_a

all_indicies_a=find(cliques(a, :));

8.1.10 finding the sets of separators, residuals and histories,

given a perfect sequence of cliques

Subsection 2 introduced the sets of subsets of V denoted S,R,H, respectively, of sequence

separators, residuals and histories. The code explained below finds these sets of subsets

given C, a perfect sequence, using the definitions given in Subsection 2. Note that unlike

the code in Section 8.1.4, this code does not require the input of a junction tree, so can be

used to find the separators without calculating a junction tree. The code is first explained

with respect to each set of sets having a cell array representation, then followed by the

equivalent code based on a matrix array representation.

The following 11 item list description is enumerated with respect to the 11 lines of code

(excluding comment and blank lines) that follows it.

1. find num cliques, the number of cliques.

2. define num seps, as |S| assuming that the first separator is empty.

3. find num non empty seps. This is |S| − 1.

182

CHAPTER 8. APPENDICIES

4. initialise seps, the cell array of separators, to a cell array of empty sets.

5. initialise resids, the cell array of residuals, to a cell array of empty sets.

6. initialise hists, the cell array of histories, to a cell array of empty sets.

7. calculate the first history, hists{1,1} equal to the first clique.

8. begin for loop, dependent on index= 2, . . . , |C|. The initialisation of the cell arrays,

together with the loop beginning at index=2, ensures that both the first separator

and residual are each empty.

9. calculate the index th hisory as the union of the first index cliques.

10. calculate the index th separator as the intersection of the index th clique and the

(index-1)th history.

11. calculate the index th residual as the set difference between the (index-1)th history

and the index th clique.

function [seps, resids, hists]=seps_resids_hists_cell(cliques)

% input: 1. cliques, a 1x|num_cliques| cell array of RIP ordered cliques

% output: 1. seps, a 1x (num_cliques) cell array of the

% separators wrt the ordering of the cell array cliques.

% Note that by definition, the indexes j of S_j begin at 2,

% so below defines the first separator seps{1,1}=[].

% 2. resids, a 1x (num_cliques) cell array of the

% histories wrt the ordering of the cell array cliques.

% Note that by definition, the indexes j of R_j begin at 2,

% so below defines the first residual resids{1,1}=[].

% 3. hists, a 1x (num_cliques) cell array of the

% separators wrt the ordering of the cell array cliques.

num_cliques=size(cliques,2);

num_seps=num_cliques;

num_non_empty_seps=num_seps-1;

seps=cell(1, num_seps);

resids=cell(1, num_seps);

% NOTE i always set the first empty, as everyone

% indexes j as 2,..., num_cliques.

hists=cell(1, num_seps);

hists{1,1}=cliques{1};

for index=2:num_cliques;

hists{1,index}=union(cliques{index}, hists{index-1});

183

CHAPTER 8. APPENDICIES

seps{1,index}=intersect(cliques{index}, hists{index-1});

resids{1,index}=setdiff(cliques{index}, hists{index-1});

end;

% Sj are intersection of total HISTORY and the

% new clique, not C_j and C_j-1.

% All of output ordered min:max by matlab.

The following 11 item list description of the matrix array version is enumerated with

respect to the 11 lines of code (excluding comment and blank lines) that follows it.

1. find p, the maximum possible number of cliques.

2. calculate num cliques, the number of nonempty cliques. Since the output array

cliques from chordal to ripcliques zo.m has a zero column if and only if it represents

an empty clique, then the sum of each column is the number of elements in the asso-

ciated clique. Hence the largest index of the columns which do not sum to zero is the

number of nonempty cliques, and can be calculated by max(find(sum(cliques, 1) �=
0)).

3. initialise to zero seps the matrix representation array of S.

4. initialise to zero resids the matrix representation array of R.

5. initialise to zero hists the matrix representation array of H.

6. calculate the first history, hists(:,1)=cliques(:,1).

7.

8. begin for loop, dependent on index= 2, . . . , |C|. The initialisation of the matrix

arrays, together with the loop beginning at index=2, ensures that both the first

separator and residual are each empty.

9. calculate the index th hisory as the union of the first index cliques.

10. calculate the index th separator as the intersection of the index th clique and the

(index-1)th history.

11. calculate the index th residual as the set difference between the (index-1)th history

and the index th clique.

184

CHAPTER 8. APPENDICIES

function [seps, resids, hists]=seps_resids_hists_zo(cliques)

% input: 1. cliques, a p x p matrix array respresentation of a

% perfect sequence of cliques of g.

% output: 1. seps, a p x p matrix array of the

% separators wrt the ordering of the matrix array cliques.

% Note that by definition, the indexes j of S_j begin at 2,

% so below defines the first separator as the empty set.

% 2. resids, a p x p matrix array of the

% histories wrt the ordering of the matrix array cliques.

% Note that by definition, the indexes j of R_j begin at 2,

% so below defines the first residual as the empty set.

% 3. hists, a a p x p matrix array of the

% separators wrt the ordering of the matrix array cliques.

p=size(cliques,1);

num_cliques=max(find(sum(cliques,1)~=0));

% sum(cliques,1)) gives sum of each col=number of elts in clique

% find...~=0 returns indicies of nonzero cols, so take max for num

seps=zeros(p, p);

resids=zeros(p, p);

% NOTE i always set the first as empty, so index=2,..., num_cliques.

hists=zeros(p, p);

hists(:,1)=cliques(:,1);

for index=2:num_cliques;

hists(:,index)=union_zo(cliques(:,index), hists(:,index-1));

seps(:,index)=intersect_zo(cliques(:,index), hists(:,index-1));

resids(:,index)=setdiff_zo(cliques(:,index), hists(:,index-1));

end;

% Sj are intersection of total HISTORY and the

% new clique, not Cj and Cj-1

8.1.11 checking legality of edge removals

This code is based on the principle that an edge cannot be legally deleted if it is in more

than one clique, and can be otherwise. This characterisation of legal deletions is according

to Lemma 3.3.2. By Theorem 4.4.1, the single clique Cq which contains the edge that can

be legally deleted is required to define Sq2 in Lemmas 4.4.3 and 4.4.5, and hence to calculate

the ratio of graph marginal likelihoods for the MH transition probability. Therefore Cq

is outputted by this routine. The code is first explained with respect to each set of sets

having a cell array representation, then followed by the equivalent code based on a matrix

array representation.

The following 14 item list description is enumerated with respect to the 14 lines of code

185

CHAPTER 8. APPENDICIES

(excluding comment and blank lines) that follows it.

1. initialise to ‘yes’ the indicator of a legal removal, delete ok.

2. initialise to zero the count of the number of cliques that contain the edge (vi, vj).

3. find t, the number of cliques.

4. begin for loop, dependent on k = 1, cdots, t, to find the cliques which contain (vi, vj).

5. let C k be the representation of Ck, kth clique.

6. begin if test for the edge (vi, vj) ∈ Ck. The cell array representation ensures that if

(vi, vj) ∈ Ck, then the intersection of the vector C k with the vector [i,j] will equal

[i,j], so be of size 2.

7. if (vi, vj) ∈ Ck, then set C=C k. The calculation of the likelihood depends on the

clique which contains the edge which can be legally deleted, so it must be outputted

by this routine.

8. if (vi, vj) ∈ Ck, add one to the count of the number of cliques containing (vi, vj).

9. begin if test for more than one clique containing (vi, vj).

10. if the there are strictly greater than one cliques containing the edge, then it is an

illegal removal, so set the indicator delete ok to zero, and a dummy return C=[9 9

9].

11. if the edge is in 2 cliques, then it is illegal. There is no point testing for inclusion in

other cliques, so exit the for loop.

12. end the test for (vi, vj) ∈ Ck.

13. end the test for more than one clique containing the edge.

14. end the external for loop.

function [delete_ok, C]=check_edge_delete_cell(i,j, cliques)

% inputs: 1. i, j, the indicies of the edge vertices with respect

% to the original ordering in the adjacency matrix g

% 2. cliques, a 1 x t cell array of a perfect sequence of

% (nonempty) cliques,

% such as from chordal_to_ripcliques_cell.m

% outputs: 1. delete_ok=1/0

186

CHAPTER 8. APPENDICIES

% (yes/no, can delete and remain chordal)

% 2. C=[clique which contained the legal edge],

% as represented by a 1 x |C| array of vertex indicies

% with respect to original g

% The likelihood depends on C, so it is outputted by

% this routine.

delete_ok=1;

count_cliques=0;

% initialise to 0 the count of cliques containing the edge

t=size(cliques,2);

for k=1:t;

C_k=cliques{k};

if length(intersect([i,j], C_k))==2;

% since cliques are by definition complete,

% if a clique contains the ith and jth vertices,

% then it contains the edge (v_i,v_j).

C=C_k;

% if legal delete, this is clique edge is in.

count_cliques=count_cliques +1;

if count_cliques > 1;

delete_ok =0; C=[9 9 9];

break;

end;

end;

end;

% Theory: can ONLY delete edges that are in a single clique

% (else in separator). Draw picture and can see why.

The following 14 item list description of the matrix array version is enumerated with respect

to the 14 lines of code (excluding comment and blank lines) that follows it.

1. find p, the number of vertices and the maximum possible number of cliques.

2. initialise to ‘yes’ the indicator of a legal removal, delete ok.

3. initialise to zero C, the vector representation of the clique which contains the edge

(vi, vj).

4. initialise to zero count cliques, the count of the number of cliques that contain the

edge (vi, vj).

5. calculate the vector clique sizes, in which the ith entry is the size of the ith clique.

This is given by the column sums of the zero one matrix array representation, cliques.

187

CHAPTER 8. APPENDICIES

6. calculate num cliques, the number of cliques. This is the number of nonzero elements

of clique sizes, so equal to the number of indicies returned by the MATLAB find

function along the second dimension of clique sizes.

7. initialise to zero edge col vec, a p×1 column vector representation of the edge (vi, vj)

with respect to the ordering of the original adjacency matrix g.

8. set the jth element of edge col vec to 1 to represent that vi is a member of the edge.

9. set the jth element of edge col vec to 1 to represent that vj is a member of the edge.

10. begin for loop, dependent on k = 1, cdots,num cliques, to find the cliques which

contain (vi, vj).

11. let clique k be the representation of Ck, kth clique.

12. begin if test for the edge (vi, vj) ∈ Ck. If (vi, vj) ∈ Ck, then there will be a one in

the ith and jth positions of the vector representation of the intersection. Hence the

sum of the intersection will equal 2.

13. if (vi, vj) ∈ Ck, then set C=clique k. The calculation of the likelihood depends on the

clique which contains the edge which can be legally deleted, so it must be outputted

by this routine.

14. if (vi, vj) ∈ Ck, add one to the count of the number of cliques containing (vi, vj).

15. begin if test for more than one clique containing (vi, vj).

16. if the there are strictly greater than one cliques containing the edge, then it is an

illegal removal, so set the indicator delete ok to zero, and a dummy return C=[9 9

9].

17. if the edge is in 2 cliques, then it is illegal. There is no point testing for inclusion in

other cliques, so exit the for loop.

18. end the test for (vi, vj) ∈ Ck.

19. end the test for more than one clique containing the edge.

20. end the external for loop.

188

CHAPTER 8. APPENDICIES

function [delete_ok, C]=check_edge_delete_zo(i,j, cliques)

% inputs: 1. i, j, the indicies of the edge vertices with respect

% to the original ordering in the adjacency matrix g

% 2. cliques, a p x p matrix array respresentation of a

% perfect sequence of cliques of g.

% (eg, from chordal_to_ripcliques_zo.m)

% outputs: 1. delete_ok=1/0

% (yes/no, can delete and remain chordal)

% 2. C=[clique which contained the legal edge],

% as represented by a p x 1 array of zeros and ones

% with respect to original g.

% The likelihood depends on C, so it is outputted by

% this routine.

p=size(cliques,1);

delete_ok=1;

C=zeros(p,1);

count_cliques=0;

% initialise to 0 the count of cliques containing the edge

clique_sizes=zeros(1,p);

clique_sizes=sum(cliques, 1);

% this is a 1 x p vector of column totals

num_cliques=size(find(clique_sizes),2);

%%%%%% create p x 1 vector representation of edge

edge_col_vec=zeros(p,1);

edge_col_vec(i,1)=1;

edge_col_vec(j,1)=1;

for k=1:num_cliques;

clique_k=cliques(:,k);

if sum(intersect_zo(edge_col_vec, clique_k))==2;

% since cliques are by definition complete,

% if a clique contains the ith and jth vertices,

% then it contains the edge (v_i,v_j).

C=clique_k;

% if legal delete, this is clique edge is in.

count_cliques=count_cliques +1;

if counter > 1;

delete_ok =0; C=[9 9 9];

break;

end;

end;

end;

% Theory: can ONLY delete edges that are in a single clique

% (else in separator). Draw picture and can see why.

189

CHAPTER 8. APPENDICIES

8.1.12 checking legality of edge additions using Theorem 2,

Giudici & Green (1999)

This code is based on the Giudici & Green (1999) characterisation that an edge can be

added legally between vertices vi and vj if and only if there exists a pair of cliques Ci, Cj ∈ C
such that vi ∈ Ci, vj ∈ Cj and Ci ∩ Cj is equal to a separator on the path between Ci

and Cj in the associated junction tree. Lemma 3.3.4 gives an equivalent characterisation

of legal additions that is not based on junction trees, making most of the code obselete.

However, the code was written before Lemma 3.3.4 and the results are based on the below

code. Note that the routine is only called by the main program if the vertices are in

the same connected component, as the edge addition is trivially legal when the vertices

are in different connected components of g. Using the notation of Section 4.4, if g is the

decomposable graph got from g′ by adding the single edge e, then by Theorem 4.4.1, the

clique Cq required to define Sq2 in Lemmas 4.4.3 and 4.4.5, and hence to calculate the

ratio of graph marginal likelihoods for the MH transition probability, is equal to the union

e ∪ {Cu ∩ Cv} for the cliques Cu, Cv of Lemma 3.3.4. Therefore Cq is outputted by this

routine.

The code is first explained with respect to the cell array representation of sets, then

followed by the equivalent code based on a matrix array representation. The calculation of

the likelihood depends on C which consists of the union of the vertices in e and the vertices

in the intersection of the cliques in the characterisation. Therefore C must be outputted

by this routine.

The code is first explained with respect to each set of sets having a cell array rep-

resentation, followed by the explanation of the equivalent code based on a matrix array

representation. Because the program is so long, the code will be explained in sections, each

corresponding to a specific purpose. The itemised list description will be enumerated with

respect to the lines of code (excluding comment and blank lines) of the section rather than

the entire program. For clarity and ease of matching description with code, at the end of

each section the corresponding last line of that section’s code will be inserted.

1. initialise to ‘no’ the indicator of a legal addition, edge ok.

2. initialise to ‘no’ the indicator quit that the routine can be aborted. quit will be set

equal to one for the first pair of cliques that satisfy the conditions of the characteri-

sation.

3. initialise to zero the index of the fork of the tree, fork.

190

CHAPTER 8. APPENDICIES

4. initialise to ‘no’ the indicator CASE same branch that the vertices are on the same

branch of the tree.

5. initialise to ‘no’ the indicator CASE sats on b2 branch that the characterisation is

satisfied on the branch of the tree that contains the index b2 th clique in the perfect

sequence represented by the cell array cliques.

6. initialise to ‘no’ the indicator locate a2 that a clique containing va, the ath vertex

(with respect to the original adjacency matrix g), has been located.

7. find t, the number of cliques.

t=size(cliques,2); % END 1st SECTION for code description

The second section finds the indicies of the first pair of cliques in the perfect sequence

that contain va and vb, the ath and bth vertices of the graph, respectively. It then renames

the clique indicies and the vertices so that: the index b2 th clique Cindex b2 contains vindex b2,

the index b2 th vertex of the graph; the index a2 th clique Cindex a2 contains vindex a2, the

index a2 th vertex of the graph; and index b2 is strictly greater than index a2. Since

Cindex b2 is the first clique in the perfect sequence that contains vindex b2, and since index b2

is strictly greater than index a2, then Cindex b2 must be closer to any clique containing

vindex a2 than any other clique containing vindex b2. If vindex a2 is on the same branch of the

tree as vindex b2, then the closest clique containing vindex a2 will be the first clique containing

vindex a2 on a path from Cindex b2 upwards towards the root of the junction tree. Note that

in this case, the closest clique containing vindex a2 will not necessarily be Cindex a2. If two

or more cliques contain v a2, then the closest clique to Cindex b2 will be the last clique in

the perfect sequence that contains va2, and Cindex a2 was the first. Based on this fact, the

code tests if va2 ∈ Ck for all the cliques Ck that are on the path from Cindex b2 to the root,

and exits the loop as soon as the first clique containing va2 is found.

1. find index b, the index with respect to cliques of the first clique in the perfect se-

quence that contains vb.

2. find index a, the index with respect to cliques of the first clique in the perfect se-

quence that contains va.

3. let index b2 be the greater of index a and index b.

4. if index b2 is equal to index b, then set b2 = b, a2 = a.

5. otherwise, set b2 = a, a2 = b.

191

CHAPTER 8. APPENDICIES

6. end if test for renaming indicies.

7. clear the original index a.

8. let index equal index b2. This will be the actual index of the cliques Ck with respect

to the perfect sequence represented by cliques.

9. find next index, the index of the single parent of C index with respect to the junction

tree jtree. This parent must be unique because jtree is a tree.

10. begin for loop, dependent on dummy = 1, cdots, index b2−1, to look for va2 in every

clique on the path to the top of jtree, allowing for the maximum possible length path.

11. begin if test for reaching the top of the tree and not finding a clique containing va2.

At the top of the tree, the parent of the current clique is empty.

12. if the top of the tree is reached, and the indicator for finding a clique containing va2

is still zero, then exit the loop and set CASE same branch= 0 to indicate that va2 is

not on the same branch as vb2.

13. end if test for reaching the top of the tree and not finding a clique containing va2.

14. begin if test for va2 ∈ Cnext index and the parent index being well defined. Note that

the test isempty(next index)== 0 ensures that the parent is well defined; i.e. that

the very first clique Cindex b2 is not the top of the tree. If Cindex b2 is the top of

the tree, then, the first next index calculated is the empty set, and the variable

cliques{next index} is not defined. So an error message will result if the test is only

for va2 ∈ Cnext index.

15. if va2 ∈ Cnext index and Cnext index is defined, then set index a2=next index, set the

indicators for locating va2 and va2 being on the same branch as vb2 both one (for

‘yes’), and exit the for loop as the closest clique containing va2 has been found.

16. if va2 /∈ Cnext index, set index=next index.

17. find the parent of the new Cindex. This clique is the next clique on the path. Call

this parent the new Cnext index.

18. end for loop looking for va2 in every clique on the path to the top of jtree.

end; % END 2nd SECTION for code description

192

CHAPTER 8. APPENDICIES

If va2 was not located on the path from Cindex b2 to the top of the tree, then it must be

the case that there is a fork on the path between Cindex b2 and the closest clique to it that

contains va2. In this case, unlike the previous case, the closest clique is the one closest to

the top of the tree, and will be the first in the perfect sequence. Therefore index a2 will

be the output of the routine find clique containing(a2, cliques).m, even though this was

not the case if the cliques were on the same branch of jtree. The final section of code tests

the characterisation that the intersection of the closest cliques Cindex b2 and Cindex a2 is a

separator between them. In practice, only the size of the intersection needs to be tested

because (by the definition of a junction tree) Cindex a2 ∩Cindex b2 ⊂ Ck for every clique Ck

on the path.

1. begin if test for indicator CASE same branch= 0, indicating that Cindex a2 was not

on the same branch as Cindex b2.

2. if Cindex a2 was not on the same branch as Cindex b2, then there is a fork on the

shortest path between them, so Cindex a2 is the first clique in the perfect sequence

containing va2.

3. end if test for same branch.

4. find the intersection of the closest cliques, as represented by the indicies in Cindex a2∩
Cindex b2 with respect to the adjacency matrix g.

5. calculate s = |Cindex a2 ∩ Cindex b2|.

6. if s is zero, then the intersection is empty and cannot be a separator in any connected

component of g. So return ‘no’, not legal, by setting the indicator edge ok= 0. In

this case, set C equal to the empty set, and the indicator quit= 1 so that the routine

can be exited prematurely.

7. begin if test for the cliques being adjacent in jtree. By the construction of jtree,

adjacent cliques have intersection equal to a separator.

8. if the cliques are adjacent, return ‘yes’, legal, by setting the indicator edge ok= 1.

In this case, set C as the union of the edge vertices and the intersection, and the

indicator quit to 1 so that the routine can be exited prematurely.

9. end if test for continuing the routine and the cliques being on the same branch.

193

CHAPTER 8. APPENDICIES

end; % END 3rd SECTION for code description

If the indicator quit is still zero, then all the separators on the path between Cindex a2

to Cindex b2 must be tested for equality with Cindex a2 ∩ Cindex b2. As already noted, only

the size of the intersection needs to be tested. If at any stage there exists a separator of

size s, then the characterisation of legal addition is satisfied so the routine can be exited

prematurely.

The next two sections check that the closest pair of cliques satisfies the characterisation

that their intersection is a separator on the path in jtree between them. Two cases need

to be considered. The first case is if the cliques were on the same branch. In this case,

the path is from Cindex a2 to Cindex b2 via parents. The comparison is therefore between s

and the size of all the pairwise intersections of adjacent cliques in jtree, on the path from

Cindex b2 to Cindex a2.

1. begin if test for quit still zero and Cindex a2 on the same branch as Cindex b2.

2. in this case, define bottom=index b2.

3. in this case, define next parent b2 as the first parent of Cindex b2 in jtree.

4. begin while loop to terminate once the next parent is Cindex a2; i.e. continue while

next parent b2≥ index a2.

5. if next parent b2≥ index a2, then begin if test for comparing s with the size of the

separator between Cnext parent b2 and Cbottom.

6. if s the size of the separator between Cnext parent b2 and Cbottom is equal to s, then

the characterisation is satisfied. Return edge ok= 1, and C = {va, vb} ∪ (Cindex a2 ∩
Cindex b2).

7. set quit to exit the routine prematurely, and exit the while loop.

8. end if test for the intersection being a separator.

9. if the size of the next separator on the path is not equal to s, then redefine bottom

as the current next parent b2,

10. in this case, define the new next parent b2 to be the parent of the new Cbottom in

jtree.

11. end while loop for testing all the separators on the path.

194

CHAPTER 8. APPENDICIES

end; % END 4th SECTION for code description

The fifth section of code is for the second case in which Cindex a2 and Cindex b2 are not

on the same branch, and none of the premature exit cases have been satisfied. In this case,

the cliques are separated by a fork. Therefore the comparison is between s and the size

of all the pairwise intersections of adjacent cliques in jtree on the 2 paths from Cindex a2

to the fork, and Cindex b2 to the fork. It is important that the comparison test terminates

when the fork clique is reached, and not before or after. It is therefore necessary to find

the fork clique. The fork clique need not be at the top of the tree, so the test for empty

parents cannot be used as a condition for being at the fork clique. The below code finds

the fork clique by finding the intersection of the set of indicies of the cliques on the path

from Cindex a2 to the top of the tree with the set of indicies of the cliques on the path from

Cindex b2 to the top of the tree. The maximum such index will be the index of the fork on

the shortest path between Cindex a2 and Cindex b2 in jtree. In a junction tree of a perfect

sequence constructed using the code in this chapter, every clique on the path from Cj to

the top of the tree must have index less than j in the perfect sequence.

1. begin elseif for the case where Cindex a2 and Cindex b2 are not on the same branch.

2. if quit is still zero and the cliques are not on the same branch, define bottom a2=index a2,

and next parent a2 as the parent of Cindex a2 in jtree.

3. similarly, define bottom b2=index b2, and next parent b2 as the parent of Cindex b2

in jtree.

4. initialise to zero a 1× index a2 vector ancestors a2 to record the indicies of Cindex a2

and all the cliques on the path from Cindex a2 to the top of the tree, allowing for the

maximum possible number of cliques on this path. Similarly for b2.

5. set the first next ancestor a2 to be index a2 to record Cindex a2 as the first clique on

the path, and similarly for b2.

6. begin for loop dependent on count= 1, . . . ,index a2 to find the indicies of the cliques

on the path from Cindex a2 to the top of the tree.

7. define the countth entry of ancestors a2 as next ancestor a2 to represent that Cnext ancestor a2

is the countth clique on the path.

8. find the new Cnext ancestor a2 as the parent of the current Cnext ancestor a2.

195

CHAPTER 8. APPENDICIES

9. if the new Cnext ancestor a2 is empty, then the current Cnext ancestor a2 is at the top of

the tree, so exit prematurely.

10. end for loop to find the indicies of the ancestors of Cindex a2.

11. use the inbuilt MATLAB function nonzeros to return only the nonzero entries of

ancestors a2.

12. begin for loop dependent on count= 1, . . . ,index b2 to find the indicies of the cliques

on the path from Cindex b2 to the top of the tree.

13. define the countth entry of ancestors b2 as next ancestor b2 to represent that Cnext ancestor b2

is the countth clique on the path.

14. find the new Cnext ancestor b2 as the parent of the current Cnext ancestor b2.

15. if the new Cnext ancestor b2 is empty, then the current Cnext ancestor b2 is at the top of

the tree, so exit prematurely.

16. end for loop to find the indicies of the ancestors of Cindex b2.

17. use the inbuilt MATLAB function nonzeros to return only the nonzero entries of

ancestors b2.

18. find fork set, the indicies of the set of all cliques which are ancestors of both Cindex a2

and Cindex b2.

19. calculate fork, the fork on the shortest path, as the maximum of fork set.

% END 5th SECTION for code description The final section first checks if the charac-

terisation is satisfied on the path from Cindex b2 to the fork clique. It calculates the correct

number of separators to test as the number of clique indicies contained in ancestors b2

that exceed the index of the fork clique, thus ensuring that the search does not go above

the fork clique. If the characterisation is still not satisfied, it does the same for the path

from Cindex b2 to the fork clique. This completes the testing of all cases in which the

characterisation could possibly be satisfied.

1. calculate num seps branch b2, the number of separators on the path from Cindex b2

to the fork clique (which is the number of pairs to be tested).

2. begin for loop dependent on count= 1, . . . , num seps branch b2, to test s for equality

with the size of each separator on the path.

196

CHAPTER 8. APPENDICIES

3. find the indicies of the next pair of adjacent cliques on the path.

4. begin if test for the characterisation being satisfied for this pair of cliques.

5. if s is the size of the separator between the next pair of adjacent cliques, then the

characterisation is satisfied. Return edge ok= 1, and C = {va, vb} ∪ (Cindex a2 ∩
Cindex b2).

6. set quit to exit the routine prematurely, and the indicator that the characterisa-

tion is satisfied on the branch of the fork that includes Cindex b2. Exit the for loop

prematurely.

7. end the if test for the characterisation.

8. end the for loop for testing the intersection of each pair of cliques on the path.

9. begin if test that the routine is not yet to be exited, and that the characterisation

was not satisfied on the branch of the fork that includes Cindex b2.

10. in this case, calculate the num seps branch a2, the number of separators on the path

from Cindex a2 to the fork clique (which is the number of pairs to be tested).

11. begin for loop dependent on count= 1, . . . , num seps branch a2, to test s for equality

with the size of each separator on the path.

12. find the indicies of the next pair of adjacent cliques on the path.

13. begin if test for the characterisation being satisfied for this pair of cliques.

14. if s is the size of the separator between the next pair of adjacent cliques, then the

characterisation is satisfied. Return edge ok= 1, and C = {va, vb} ∪ (Cindex a2 ∩
Cindex b2).

15. set quit to exit the routine prematurely, and the indicator that the characterisa-

tion is satisfied on the branch of the fork that includes Cindex b2. Exit the for loop

prematurely.

16. end the if test for the characterisation.

17. end the for loop for testing the intersection of each pair of cliques on the path.

18. end the begin if test that the routine is not yet to be exited, and that the charac-

terisation was not satisfied on the branch of the fork that includes Cindex b2.

197

CHAPTER 8. APPENDICIES

19. end the external elseif test for Cindex a2 and Cindex b2 not being on the same branch

of jtree.

20. if the premature exit indicator is still zero, then since all cases have been exhausted,

the edge addition is illegal. Return edge ok= 0, and C equal to the emptyset.

% END 6th and final SECTION for code description

function [edge_ok, C]=check_edge_add_same_component_cell(a,b, jtree, sepsize, cliques)

% inputs: 1. a, b, the indicies of the edge vertices with respect

% to the original ordering in the adjacency matrix g

% 2. jtree, the adjacency matrix of a junction tree

% with respect to cliques.

% 3. sepsize, a matrix array of the size of the separator sets, in which

% sepsize(i,j) = [number of elements in intersection between

% cliques cliques{i} and cliques{j} if they are adjacent, and zero else.

% 4. cliques, a 1 x t cell array of a perfect sequence of

% (nonempty) cliques,

% such as from chordal_to_ripcliques_cell.m

% outputs: 1. edge_ok=1/0

% (yes/no, can add and remain chordal)

% 2. C, the new clique which contains the vertices of the added edge,

% as represented by a 1 x |C| array of vertex indicies

% with respect to original g

% The likelihood depends on C, so it is outputted by

% this routine.

%%% NOTE: this routine is ONLY called by the main program if

%%% the verticies are in the same connected component.

edge_ok=0;

quit = 0;

fork=0;

CASE_same_branch=0;

CASE_sats_on_b2_branch =0;

locate_a2=0;

t=size(cliques,2); % END 1st SECTION for code description

index_b=find_clique_containing_cell(b, cliques);

index_a=find_clique_containing_cell(a, cliques);

%%% Re_name verticies so b is in clique{index_b2}, a is in clique{index_a2}

index_b2=max([index_a,index_b]);

% index_b2 >1, as it is greater of the two, and

% since a,b is NOT an edge, can’t have index_a2=index_b2

if index_b2==index_b; b2=b; a2=a;

else b2=a; a2=b;

end

clear index_a;

198

CHAPTER 8. APPENDICIES

index=index_b2;

next_index=parents_vertex_cell(jtree, index);

% tree, so parent is a single vertex, not a vector

for dummy=1: index_b2-1;

% perform the loop b2-1 times if no break

if isempty(next_index)==1 & locate_a2 ==0;

CASE_same_branch=0; break,

end

% if next_index is empty AND locate_a2 ==0,

% then at the top of the tree and KNOW

% that index_a2 and index_b2 are on separate branches.

% BUT can’t assume the fork is top of tree.

% Could be case of 3-2-4-5 with 1-2 the top of tree.

if is_in(a2, cliques{next_index}) ==1 & isempty(next_index) ==0;

index_a2=next_index; locate_a2= 1; CASE_same_branch=1; break,

end

% if you find a2 before you get to the top of the tree,

% then KNOW that index_a2 and index_b2 are on same

% branch of tree. So exit the loop, and set

% locate_a2 case indicator.

index=next_index;

next_index=parents_vertex_cell(jtree, index);

% if a2 is in any clique on the same side of the root

% vertex in jtree, then that clique and the first clique

% in the RIP ordering containing b2 will be the

% end points of the shortest path between 2 containing

% cliques for the verticies of the edge considered.

% Performs the loop at least b2-1 times if no break,

% which is the longest possible path to the top of a

% connected component of the possibly disconnected tree.

end; % END 2nd SECTION for code description

if CASE_same_branch==0,

index_a2=find_clique_containing_cell(a2, cliques);

end

% IF CASE_same_branch==0, (so locate_a2==0) then

% must be fork between them. So index_a2 for shortest path

% is first clique in RIP ordering containing a2.

intersection_of_cliques=intersect(cliques{index_a2}, cliques{index_b2});

s=length(intersection_of_cliques);

% find intersection, so can test to see if

% it is a separator. In practice, only need to

% check that the size of this intersection is

199

CHAPTER 8. APPENDICIES

% equal to the size of a separator on this path.

if s==0; edge_ok=0; C=[]; quit=1; end

% the empty set is not a separator in a connected

% tree, so condition cannot be satisfied. exit at this stage.

if jtree(index_a2, index_b2)==1;

edge_ok=1; C=union([a,b], intersection_of_cliques); quit=1;

end % END 3rd SECTION for code description

% if the cliques are adjacent in the tree, their

% intersection is by definition a separator so exit.

%%% if quit still zero, next test all the separators

%%% between clique{index_a2} and clique{index_b2}

%%% at any stage, if there exists a separator of length s

%%% then know edge legal, so set edge_ok=1, quit=1, and exit loop.

if ((quit ==0) & (CASE_same_branch==1));

% first consider where a2 is on same branch as b2. only need to

% test path from b2 to a2

bottom=index_b2;

next_parent_b2=parents_vertex_cell(jtree, index_b2);

while ((next_parent_b2 >= index_a2))

if sepsize(next_parent_b2, bottom) == s;

edge_ok=1; C=union([a,b], intersection_of_cliques);

quit=1; break,

end,

% only need to test equality of size,

% since intersection contained in every intermediate

% clique by RIP and junction tree property

bottom=next_parent_b2;

next_parent_b2 = parents_vertex_cell(jtree, bottom);

end; % END 4th SECTION for code description

elseif ((quit==0) & (CASE_same_branch==0));

% if on different branches, have to test from index_b2 and

% index_a2 to fork between them. CANNOT go to edge beyond fork.

% Safest strategy is to find the fork.

bottom_a2=index_a2; next_parent_a2=parents_vertex_cell(jtree, index_a2);

bottom_b2=index_b2; next_parent_b2=parents_vertex_cell(jtree, index_b2);

ancestors_a2=zeros(1, index_a2); ancestors_b2=zeros(1, index_b2);

next_ancestor_a2=index_a2; next_ancestor_b2=index_b2;

for count=1:index_a2

ancestors_a2(count)=next_ancestor_a2;

next_ancestor_a2 =parents_vertex_cell(jtree, next_ancestor_a2);

if isempty(next_ancestor_a2), break, end

end

200

CHAPTER 8. APPENDICIES

ancestors_a2=nonzeros(ancestors_a2)’;

% convert to only the ancestors using existing matlab function.

for count=1:index_b2

ancestors_b2(count)=next_ancestor_b2;

next_ancestor_b2 =parents_vertex_cell(jtree, next_ancestor_b2);

if isempty(next_ancestor_b2), break, end

end

ancestors_b2=nonzeros(ancestors_b2)’;

% convert to only the ancestors using existing matlab function.

fork_set=intersect(ancestors_a2, ancestors_b2);

fork=max(fork_set);

% the clique where the two paths up the tree meet must be the

% highest index in the intersection to the root.

% END 5th SECTION for code description

num_seps_branch_b2=length(find(ancestors_b2>fork));

for count=1: num_seps_branch_b2

index_row=ancestors_b2(count+1); index_col=ancestors_b2(count);

% sepsize is lower diagonal zero, and the ancestors are stored

% in descending order [index_b2,..., 1]

if sepsize(index_row, index_col) == s;

edge_ok=1; C=union([a,b], intersection_of_cliques);

quit=1; CASE_sats_on_b2_branch=1; break,

end,

end

if (quit==0 & CASE_sats_on_b2_branch==0)

% don’t want to perform the above loop

% if found separator=intersection.

num_seps_branch_a2=length(find(ancestors_a2>fork));

for count =1:num_seps_branch_a2

index_row=ancestors_a2(count+1); index_col=ancestors_a2(count);

% sepsize is lower diagonal zero, and the ancestors are stored

% in descending order [index_a2,..., 1]

if sepsize(index_row, index_col) == s;

edge_ok=1; C=union([a,b], intersection_of_cliques);

quit=1; break,

end,

end

end

end

if quit==0; edge_ok=0; C=[]; end

% END 6th and final SECTION for code description

201

CHAPTER 8. APPENDICIES

Matrix array version

The itemised list description of the matrix array version below is sectioned in the same way

as the cell array description. It is enumerated with respect to the lines of code (excluding

comment and blank lines) of the corresponding section rather than the entire program.

1. initialise to ‘no’ the indicator of a legal addition, edge ok.

2. initialise to ‘no’ the indicator quit that the routine can be aborted. quit will be set

equal to one for the first pair of cliques that satisfy the conditions of the characteri-

sation.

3. initialise to zero the index of the fork of the tree, fork.

4. initialise to ‘no’ the indicator CASE same branch that the vertices are on the same

branch of the tree.

5. initialise to ‘no’ the indicator CASE sats on b2 branch that the characterisation is

satisfied on the branch of the tree that contains the index b2 th clique in the perfect

sequence represented by the cell array cliques.

6. initialise to ‘no’ the indicator locate a2 that a clique containing va, the ath vertex

(with respect to the original adjacency matrix g), has been located.

7. find p, the maximum possible number of cliques.

p=size(cliques,1); % END 1st SECTION for code description

The second section has the same purpose as the second section of the cell array code

given above. The only difference is in the representation of sets.

1. initialise to zero ab edge vec, the p × 1 representation of the edge e = (a, b).

2. set ab edge vec(a)=1 and ab edge vec(a)=1 to represent that va, vb ∈ e.

3. find index b, the index with respect to cliques of the first clique in the perfect se-

quence that contains vb.

4. find index a, the index with respect to cliques of the first clique in the perfect se-

quence that contains va.

5. let index b2 be the greater of index a and index b.

202

CHAPTER 8. APPENDICIES

6. if index b2 is equal to index b, then set b2 = b, a2 = a.

7. otherwise, set b2 = a, a2 = b.

8. end if test to rename the indicies.

9. clear the original index a.

10. let index equal index b2. This will be equal to each of the indicies of the cliques Ck

with respect to the perfect sequence represented by cliques.

11. find next index, the index of the single parent of C index with respect to the junction

tree jtree. This parent must be unique because jtree is a tree.

12. begin for loop, dependent on dummy = 1, cdots, index b2−1, to look for va2 in every

clique on the path to the top of jtree, allowing for the maximum possible length path.

13. begin if test for reaching the top of the tree and not finding a clique containing va2.

At the top of the tree, the parent of the current clique is empty, so the sum of all

entries in its zero one vector will be zero.

14. if the top of the tree is reached, and the indicator for finding a clique containing va2

is still zero, then exit the loop and set CASE same branch= 0 to indicate that va2 is

not on the same branch as vb2.

15. end if test for reaching the top of the tree and not finding a clique containing va2.

16. find clique next index, the 1 × p zero one representation of the next index th clique

in the perfect sequence.

17. begin if test for va2 ∈ Cnext index and the parent Cnext index being well defined. Note

that the test sum(next index)== 0 means that there is a nonzero entry in next index,

so that the parent is well defined; i.e. that the very first clique Cindex b2 is not the top

of the tree. If Cindex b2 is the top of the tree, then, the first parents vertex zo(jtree,

index) will be a p × 1 array of zeros. Hence next index=find(parents vertex zo(jtree,

index))= 0, so clique next index=cliques(:,0) and results in an error message. So an

error message can result if the test is only for va2 ∈ Cnext index.

18. if va2 ∈ Cnext index and Cnext index is defined, then set index a2=next index, set the

indicators for locating va2 and va2 being on the same branch as vb2 both one (for

‘yes’), and exit the for loop as the closest clique containing va2 has been found.

203

CHAPTER 8. APPENDICIES

19. if va2 /∈ Cnext index, set index=next index.

20. find the parent of the new Cindex. This clique is the next clique on the path. Call

this parent the new Cnext index.

21. end for loop looking for va2 in every clique on the path to the top of jtree.

end; % END 2nd SECTION for code description

The third section has the same purpose and works on the same principles as the equiv-

alent cell array version already described.

1. begin if test for indicator CASE same branch= 0, indicating that Cindex a2 was not

on the same branch as Cindex b2.

2. if Cindex a2 was not on the same branch as Cindex b2, then there is a fork on the

shortest path between them, so Cindex a2 is the first clique in the perfect sequence

containing va2.

3. end if test for same branch.

4. find clique a2 int clique b2, the zero/one p × 1 representation with respect to the

original ordering of the adjacency matrix g of the intersection of the closest cliques,

Cindex a2 ∩ Cindex b2.

5. calculate s = |Cindex a2 ∩ Cindex b2|. The zero/one representation implies that s is

given by the sum of clique a2 int clique b2.

6. if s is zero, then the intersection is empty and cannot be a separator in any connected

component of g. So return ‘no’, not legal, by setting the indicator edge ok= 0. In

this case, set C equal to the empty set, and the indicator quit= 1 so that the routine

can be exited prematurely.

7. begin if test for the cliques being adjacent in jtree. By the construction of jtree,

adjacent cliques have intersection equal to a separator.

8. if the cliques are adjacent, return ‘yes’, legal, by setting the indicator edge ok= 1.

In this case, set C as the union of the edge vertices and the intersection, and the

indicator quit to 1 so that the routine can be exited prematurely.

9. end if test for continuing the routine and the cliques being on the same branch.

204

CHAPTER 8. APPENDICIES

end; % END 3rd SECTION for code description

The next two sections have the same purpose and work on the same principles as the

equivalent cell array versions already described. The first section deals with the first case;

i.e. that the cliques are on the same branch.

1. begin if test for quit still zero and Cindex a2 on the same branch as Cindex b2.

2. in this case, define bottom=index b2.

3. in this case, define next parent b2 as the first parent of Cindex b2 in jtree. The index

of this parent clique will be given by the position of the only nonzero entry in

parents vertex zo(jtree, index b2) (as returned by the MATLAB find function).

4. begin while loop to terminate once the next parent is Cindex a2; i.e. continue while

next parent b2≥ index a2 and the next parent is nonempty. If the next parent clique

is nonempty, the sum of the entries in its zero/one representation is nonzero.

5. if next parent b2≥ index a2, and the next parent is nonempty, then begin if test for

comparing s with the size of the separator between Cnext parent b2 and Cbottom.

6. if s the size of the separator between Cnext parent b2 and Cbottom is equal to s, then

the characterisation is satisfied. Return edge ok= 1, and C = {va, vb} ∪ (Cindex a2 ∩
Cindex b2).

7. set quit to exit the routine prematurely, and exit the while loop.

8. end if test for the intersection being a separator.

9. if the size of the next separator on the path is not equal to s, then redefine bottom

as the current next parent b2,

10. in this case, define the new next parent b2 to be the parent of the new Cbottom in

jtree.

11. end while loop for testing all the separators on the path.

end; % END 4th SECTION for code description

The fifth section of code is for the second case in which Cindex a2 and Cindex b2 are not

on the same branch, and none of the premature exit cases have been satisfied. It works on

the same principles as the equivalent cell array version already described.

1. begin elseif for the case where Cindex a2 and Cindex b2 are not on the same branch.

205

CHAPTER 8. APPENDICIES

2. if quit is still zero and the cliques are not on the same branch, define next parent a2

as the parent of Cindex a2 in jtree.

3. similarly, define next parent b2 as the parent of Cindex b2 in jtree.

4. initialise to zero a 1× index a2 vector ancestors a2 to record the indicies of Cindex a2

and all the cliques on the path from Cindex a2 to the top of the tree, allowing for the

maximum possible number of cliques on this path. Similarly for b2.

5. initialise the corresponding p × 1 zero/one representations.

6. set the first next ancestor a2 to be index a2 to record Cindex a2 as the first clique on

the path, and similarly for b2.

7. begin for loop dependent on count= 1, . . . ,index a2 to find the indicies of the cliques

on the path from Cindex a2 to the tree top.

8. define the countth entry of ancestors a2 as next ancestor a2 to represent that Cnext ancestor a2

is the countth clique on the path.

9. set the next ancestor a2 th entry of the zero/one representation to one, so that it

represents that Cnext ancestor a2 is the countth clique on the path.

10. find the new Cnext ancestor a2 as the parent of the current Cnext ancestor a2.

11. if the new Cnext ancestor a2 is empty (so the sum of its zero/one representation is

zero), then the current Cnext ancestor a2 is at the tree top, so exit prematurely.

12. end for loop to find the indicies from Cindex a2 to the tree top.

13. begin for loop dependent on count= 1, . . . ,index b2 to find the indicies of the cliques

on the path from Cindex b2 to the tree top.

14. define the countth entry of ancestors b2 as next ancestor b2 to represent that Cnext ancestor b2

is the countth clique on the path.

15. set the next ancestor b2 th entry of the zero/one representation to one, so that it

represents that Cnext ancestor b2 is the countth clique on the path.

16. find the new Cnext ancestor b2 as the parent of the current Cnext ancestor b2.

17. if the new Cnext ancestor b2 is empty (so the sum of its zero/one representation is

zero), then the current Cnext ancestor b2 is at the top of the tree, so exit prematurely.

206

CHAPTER 8. APPENDICIES

18. end for loop to find the indicies from Cindex b2 to the tree top.

19. find fork set, the zero/one vector which is equal to one at every position correspond-

ing to the index of a clique vertex in both paths to the tree top.

20. the index of the fork clique is given by the greatest index amongst the nonzero entries

in fork set.

% END 5th SECTION for code description The final section has the same purpose and

works on the same principles as the cell array version already described.

1. calculate num seps branch b2, the number of separators on the path from Cindex b2

to the fork clique (which is the number of pairs to be tested).

2. begin for loop dependent on count= 1, . . . , num seps branch b2, to test s for equality

with the size of each separator on the path.

3. find the indicies of the next pair of adjacent cliques on the path.

4. begin if test for the characterisation being satisfied for this pair of cliques.

5. if s is the size of the separator between the next pair of adjacent cliques, then the

characterisation is satisfied. Return edge ok= 1, and C = {va, vb} ∪ (Cindex a2 ∩
Cindex b2).

6. set quit to exit the routine prematurely, and the indicator that the characterisa-

tion is satisfied on the branch of the fork that includes Cindex b2. Exit the for loop

prematurely.

7. end the if test for the characterisation.

8. end the for loop for testing the intersection of each pair of cliques on the b2 path.

9. begin if test that the routine is not yet to be exited, and that the characterisation

was not satisfied on the branch of the fork that includes Cindex b2.

10. in this case, calculate the num seps branch a2, the number of separators on the path

from Cindex a2 to the fork clique (which is the number of pairs to be tested).

11. begin for loop dependent on count= 1, . . . , num seps branch a2, to test s for equality

with the size of each separator on the path.

12. find the indicies of the next pair of adjacent cliques on the path.

207

CHAPTER 8. APPENDICIES

13. begin if test for the characterisation being satisfied for this pair of cliques.

14. if s is the size of the separator between the next pair of adjacent cliques, then the

characterisation is satisfied. Return edge ok= 1, and C = {va, vb} ∪ (Cindex a2 ∩
Cindex b2).

15. set quit to exit the routine prematurely, and the indicator that the characterisa-

tion is satisfied on the branch of the fork that includes Cindex b2. Exit the for loop

prematurely.

16. end the if test for the characterisation.

17. end the for loop for testing the intersection of each pair of cliques on the path.

18. end the begin if test that the routine is not yet to be exited, and that the charac-

terisation was not satisfied on the branch of the fork that includes Cindex b2.

19. end the external elseif test for Cindex a2 and Cindex b2 not being on the same branch

of jtree.

20. if the premature exit indicator is still zero, then since all cases have been exhausted,

the edge addition is illegal. Return edge ok= 0, and C equal to the emptyset.

% END 6th and final SECTION for code description

function [edge_ok, C]=check_edge_add_same_component_zo(a,b, jtree, sepsize, cliques)

% inputs: 1. a, b, the indicies of the edge vertices with respect

% to the original ordering in the adjacency matrix g

% 2. jtree, the adjacency matrix of a junction tree

% (with respect to cliques) from ripcliques_to_jtree_zo.

% 3. sepsize, a matrix array of the size of the

% separator sets, in which

% sepsize(i,j) = |C_i intersection C_j| between

% adjacent cliques C_i and C_j with respect to jtree.

% 4. cliques, a p x p matrix array respresentation of a

% perfect sequence of cliques of g.

% (eg, from chordal_to_ripcliques_zo.m)

% outputs: 1. edge_ok=0(no)/1(yes)

% 2. C, the p x 1 zero/one vector representation of the new clique

% which contains the vertices of the added edge,

% The likelihood depends on C, so it is outputted by

% this routine.

%%% NOTE: this routine is ONLY called by the main program if

%%% the verticies are in the same connected component.

208

CHAPTER 8. APPENDICIES

edge_ok=0;

quit = 0;

fork=0;

CASE_same_branch=0;

CASE_sats_on_b2_branch =0;

locate_a2=0;

p=size(cliques,1); % END 1st SECTION for code description

ab_edge_vec=zeros(p,1);

ab_edge_vec(a)=1; ab_edge_vec(b)=1;

index_b=find_clique_containing_zo(b, cliques);

index_a=find_clique_containing_zo(a, cliques);

%%% Re_name verticies so b is in cliques(index_b2, :), a is in cliques(index_a2, :);

%%% Note: jtree indicies correspond to verticies of cliques in RIP,

%%% i.e. order of vertex=clique is same as column index of cliques.

index_b2=max([index_a,index_b]);

if index_b2==index_b; b2=b; a2=a;

else b2=a; a2=b;

end

% index_b2 >1, since max[]>1 (Can’t have both a and b in first clique, as

% there is no edge between them. Also, |index_a -index_b|>=1.

% hence if..else ensures correct ordering of index_a2, index_b2

% i.e. know clique(index_a2, :) precedes index_b2

clear index_a;

index=index_b2;

next_index=find(parents_vertex_zo(jtree, index));

% tree, so parent is unique

for dummy=1: index_b2-1; %this performs the loop at least b2-1 times if no break

if sum(next_index)==0 & locate_a2 ==0;

% if parents empty (=[0 0 ... 0]’) and not found a2, must be at tree top

CASE_same_branch=0; break,

end

% if next_index is empty AND locate_a2 ==0, then at tree top

% and KNOW index_a2 and index_b2 are on different branches. BUT can’t

% assume the fork is top of tree. could be case of 3-2-4-5 with 1-2

% the top of tree.

clique_next_index=cliques(:, next_index);

if clique_next_index(a2,1) ==1 & sum(next_index) ~=0;

% if a2 is in clique_next_index, and not at tree top

index_a2=next_index; locate_a2=1; CASE_same_branch=1; break,

end

% if you find a2 before you get to the top of tree, then

209

CHAPTER 8. APPENDICIES

% KNOW index_a2 and index_b2 are on same branch of tree. So

% break and set

% locate_a2 case indicator.

index=next_index;

next_index=find(parents_vertex_zo(jtree, index));

% if a2 is in any clique on the same side of the root

% vertex in jtree, then that clique and the first clique

% in the RIP ordering containing b2 will be the

% end points of the shortest path between 2 containing

% cliques for the verticies of the edge considered.

% Performs the loop at least b2-1 times if no break,

% which is the longest possible path to the top of a

% connected component of the possibly disconnected tree.

end; % END 2nd SECTION for code description

if CASE_same_branch==0,

index_a2=find_clique_containing_zo(a2, cliques);

end

% IF CASE_same_branch==0, (so locate_a2==0) then

% must be fork between them. So index_a2 for shortest path

% is first clique in RIP ordering containing a2.

clique_a2_int_clique_b2=intersect_zo(cliques(:,index_a2), cliques(:,index_b2));

s=sum(clique_a2_int_clique_b2);

% find intersection, so can test to see if

% it is a separator. In practice, only need to

% check that the size of this intersection is

% equal to the size of a separator on this path.

if s==0;

edge_ok=0; C=zeros(p,1); quit=1;

end

% the empty set is not a separator in a connected

% tree, so condition cannot be satisfied. exit at this stage.

if jtree(index_a2, index_b2)==1;

edge_ok=1; C=union_zo(ab_edge_vec, clique_a2_int_clique_b2); quit=1;

end % END 3rd SECTION for code description

% if the cliques are adjacent in the tree, their

% intersection is by definition a separator so exit.

%%% if quit still zero, next test all the separators

%%% between clique_a2 and clique_b2

%%% at any stage, if there exists a separator of length s

%%% then know edge add legal, so set edge_ok=1, quit=1, and exit loop.

if ((quit ==0) & (CASE_same_branch==1));

210

CHAPTER 8. APPENDICIES

% first consider where a2 is on same branch as b2. only need to

% test path from b2 to a2

bottom=index_b2;

next_parent_b2=find(parents_vertex_zo(jtree, index_b2));

while (sum(next_parent_b2)>0) & (next_parent_b2 >= index_a2)

if sepsize(next_parent_b2, bottom) == s;

edge_ok=1; C=union_zo(ab_edge_vec, clique_a2_int_clique_b2);

quit=1; break,

end,

% only need to test equality of size,

% since intersection contained in every intermediate

% clique by RIP and junction tree property

bottom=next_parent_b2;

next_parent_b2=find(parents_vertex_zo(jtree, bottom));

end; % END 4th SECTION for code description

elseif ((quit==0) & (CASE_same_branch==0));

% if on different branches, have to test from index_b2 and

% index_a2 to fork between them. CANNOT go to edge beyond fork.

% Safest strategy is to find the fork.

%%% NOTE: in below, the parent clique vertex of is unique,

%%% as only 1 parent in trees

next_parent_a2=find(parents_vertex_zo(jtree, index_a2));

next_parent_b2=find(parents_vertex_zo(jtree, index_b2));

ancestors_a2=zeros(1, index_a2); ancestors_b2=zeros(1, index_b2);

% ancestors_a2 elements are actual number indicies of clique ancestors

ancestors_a2_col_vec=zeros(p,1); ancestors_b2_col_vec=zeros(p,1);

% the col_vec equivalent

next_ancestor_a2=index_a2; next_ancestor_b2=index_b2;

for count=1:index_a2

ancestors_a2(count)=next_ancestor_a2;

ancestors_a2_col_vec(next_ancestor_a2)=1;

next_ancestor_a2 =find(parents_vertex_zo(jtree, next_ancestor_a2));

if sum(next_ancestor_a2)==0, break, end

end

for count=1:index_b2

ancestors_b2(count)=next_ancestor_b2;

ancestors_b2_col_vec(next_ancestor_b2,1)=1;

next_ancestor_b2 =find(parents_vertex_zo(jtree, next_ancestor_b2));

if sum(next_ancestor_b2)==0, break, end

end

fork_set=intersect_zo(ancestors_a2_col_vec, ancestors_b2_col_vec);

fork=max(find((fork_set)));

% need to find the place in the tree where the fork is, as defined

211

CHAPTER 8. APPENDICIES

% by the clique which is at this point of intersection

% the clique where the two paths up the tree meet must be the

% biggest index in the intersection to the root.

% i.e. if they both share clique(:,3), then the path of

% ancestors for both must include the ancestors of clique(:,3)

% which if were clique2, clique1, then where the paths split is

% at clique 3 = max(find(fork_set)))

% END 5th SECTION for code description

num_seps_branch_b2=length(find(ancestors_b2>fork));

%%%% VERY IMPORTANT %%% only test separators between clique_fork and indicies

for count=1: num_seps_branch_b2

index_row=ancestors_b2(count); index_col=ancestors_b2(count+1);

% sepsize is lower diagonal zero, and the ancestors are stored

% in descending order [index_b2,..., 1]

if sepsize(index_row, index_col) == s;

edge_ok=1; C=union_zo(ab_edge_vec, clique_a2_int_clique_b2);

quit=1; CASE_sats_on_b2_branch=1; break,

end,

end

if (quit==0 & CASE_sats_on_b2_branch==0)

% don’t want to perform the above loop

% if found separator=intersection.

num_seps_branch_a2=length(find(ancestors_a2>fork));

for count =1:num_seps_branch_a2

index_row=ancestors_a2(count+1); index_col=ancestors_a2(count);

% sepsize is lower diagonal zero, and the ancestors are stored

% in descending order [index_a2,..., 1]

if sepsize(index_row, index_col) == s;

edge_ok=1; C=union_zo(ab_edge_vec, clique_a2_int_clique_b2);

quit=1; break,

end,

end

end

end

if quit==0; edge_ok=0; C=[]; end

% END 6th and final SECTION for code description

8.1.13 checking legality of edge additions using Lemma 3.3.6

function [edge_ok, C]=check_edge_add_helen_cell(g, a,b, cliques)

edge_ok=0;

index_b=find_all_clique_containing(b, cliques);

212

CHAPTER 8. APPENDICIES

index_a=find_all_clique_containing(a, cliques);

C=[];

int_cliques=[]; max_int=[];

size_int=0; max_size=0;

for i=1:length(index_a)

for j=1:length(index_b)

int_cliques=intersect(cliques{index_a(i)},cliques{index_b(j)});

size_int=length(int_cliques);

if size_int>max_size

max_size=size_int;

max_int=int_cliques;

end

end

end

g_no_max_int=g;

g_no_max_int(max_int, max_int)=0 ;

reach_graph_g_no_max_int=reachability_graph(g_no_max_int) ;

if reach_graph_g_no_max_int(a,b)==0

edge_ok=1, C=union(max_int, [a,b]);

end

if edge_ok==0,

C=[];

end

% this will work in both connected and unconnected,

% since in unconnected

% the reach graph of g_no_max_int(a,b)= the reach graph g(a,b) = 0

8.1.14 calculating a g-constrained version of Σ.

The below code calculates the g-constrained version of any matrix B using the theory of

Section 2.5. By Lemma 2.5.2 this can be calculated efficiently as follows. Invert each

clique dependent subblock BCj ,Cj and fill to full dimension with zeros. Sum these, then

subtract the analogous sum of separator dependent subblocks, allowing for repetitions of

the Sj = Cj ∩ Hj−1. The full matrix B need not be inverted. The cell array version is

described before the matrix array version. The itemised list descriptions are enumerated

with respect to the lines of MATLAB code (excluding comment and blank lines) that

immediately follow each.

1. find p, the number of variables and dimension of B.

2. calculate seps, the cell array of separators.

213

CHAPTER 8. APPENDICIES

3. find num cliques, the number of cliques.

4. initialise to zero sum big K cliques and sum big K seps, a p × p array of the cumu-

lative sum of each term on the cliques and separators, respectively.

5. begin for loop j = 2, . . . num cliques to add each partial sum.

6. clear all the previous j loop values.

7. let cj be the jth clique in the sequence.

8. find B cj, the associated clique subblock of B.

9. calculate K cj, the inverse of the jth clique subblock.

10. initialise to zero big Kj, a temporary p× p array in which only those entries indexed

by the jth clique are nonzero.

11. embed K cj in big Kj.

12. calculate the next partial sum by adding big Kj to the previous partial sum.

13. end for loop to calculate the clique sum.

Lines 14 to 22 repeat the above process for the separators. Line 23 calculates K hat

as the difference in the partial sums sum big K cliques − sum big K seps, and Line 24

calculates B hat = (K hat)−1.

function [B_hat, K_hat]=g_constrain_cell(B, cliques)

% g must be decomposable

% B, symmetric positive definite

% inputs: 1. B, the p x p symmetric matrix with

% respect to an original ordering v_1, ..., v_p of g

% 2. cliques, a 1 x t cell array of a perfect sequence of

% (nonempty) cliques of g,

% such as from chordal_to_ripcliques_cell.m

% output: 1. B_hat, the g-constrained version of B

% 2. K_hat, the g-constrained version of inv(B_hat)

% THEORY: if (i,j) is edge or i=j, B_hat(i,j)=B(i,j)

% else B_hat satisfies [inv(B_hat)](i,j)=0

% such a B_hat for decomposable models has been

% shown to be unique

% (see either Grone et al 84, or

% Speed and Kiiveri, 1986, p. 142 Thereom 1.

214

CHAPTER 8. APPENDICIES

% Calculate using pp. 144, 145 Lauritzen 96, based on

% Lemma 5.5 p.136 Lauritzen 96 for block sum expression.

p=size(B,1);

seps=seps_resids_hists(cliques);

num_cliques=size(cliques, 2);

sum_big_K_cliques=zeros(p); sum_big_K_seps=zeros(p);

for j=1:num_cliques

clear cj B_cj K_cj

cj=cliques{j};

B_cj=B(cj, cj);

K_cj=inv(B_cj);

big_Kj=zeros(p);

big_Kj([cj], [cj])=K_cj;

sum_big_K_cliques=sum_big_K_cliques+big_Kj;

end

for j=2:num_cliques

%% NOTE i always set the first empty, as everyone numbers as 2, num_cliques.

clear sj B_sj K_sj

sj=seps{j};

B_sj=B(sj, sj);

K_sj=inv(B_sj);

big_Kj=zeros(p);

big_Kj([sj], [sj])=K_sj;

sum_big_K_seps=sum_big_K_seps+big_Kj;

end

K_hat=sum_big_K_cliques-sum_big_K_seps;

B_hat=inv(K_hat);

The matrix array code is now explained.

1. find p, the number of variables and dimension of B.

2. calculate seps, the matrix representation of the separators.

3. find num cliques, the number of cliques. This is calculated as the maximum index

of the columns of the matrix representation of the cliques with nonzero sum. Recall

that the sum of a column will be zero if and only if it represents the empty set of

variables.

4. initialise to zero sum big K cliques and sum big K seps, a p × p array of the cumu-

lative sum of each term on the cliques and separators, respectively.

5. begin for loop j = 2, . . . num cliques to add each partial sum.

215

CHAPTER 8. APPENDICIES

6. clear all the previous j loop values.

7. let cj be the jth clique in the sequence. The actual indices representing the variables

in the jth clique are needed for the embedding process. These are given by the

MATLAB find function, as the indicies of the rows in the jth column of cliques that

are not zero.

8. find B cj, the associated clique subblock of B.

9. calculate K cj, the inverse of the jth clique subblock.

10. initialise to zero big Kj, a temporary p× p array in which only those entries indexed

by the jth clique are nonzero.

11. embed K cj in big Kj.

12. calculate the next partial sum by adding big Kj to the previous partial sum.

13. end for loop to calculate the clique sum.

Lines 14 to 22 repeat the above process for the separators. Line 23 calculates K hat as the
difference in the partial sums sum big K cliques − sum big K seps, and Line 24 calculates
B hat = (K hat)−1.

function [B_hat, K_hat]=g_constrain_zo(B, order, cliques)

% g must be decomposable

% B, symmetric positive definite

% inputs: 1. B, the p x p symmetric matrix with

% respect to an original ordering v_1, ..., v_p of g

% 2. cliques, a p x p matrix array respresentation of a

% perfect sequence of cliques of g.

% (eg, from chordal_to_ripcliques_zo.m)

% output: 1. B_hat, the g-constrained version of B

% 2. K_hat, the g-constrained version of inv(B_hat)

% THEORY: if (i,j) is edge or i=j, B_hat(i,j)=B(i,j)

% else B_hat satisfies [inv(B_hat)](i,j)=0

% such a B_hat for decomposable models has been

% shown to be unique

% (see either Grone et al 84, or

% Speed and Kiiveri, 1986, p. 142 Thereom 1.

% Calculate using pp. 144, 145 Lauritzen 96, based on

% Lemma 5.5 p.136 Lauritzen 96 for block sum expression.

p=size(B,1);

seps=seps_resids_hists_zo(cliques);

216

CHAPTER 8. APPENDICIES

num_cliques=max(find(sum(cliques,1)~=0));

% sum(cliques,1)) gives sum of each col=numelts in clique

% find..~=0 returns indicies of non-zero cols, so take max for num

sum_big_K_cliques=zeros(p); sum_big_K_seps=zeros(p);

for j=1:num_cliques

clear cj B_cj K_cj

cj=find(cliques(:,j))’; % note the transpose =cliques{j};

B_cj=B(cj, cj);

K_cj=inv(B_cj);

big_Kj=zeros(p);

big_Kj([cj], [cj])=K_cj;

sum_big_K_cliques=sum_big_K_cliques+big_Kj;

end

for j=1:num_cliques %%% NOTE i always set the first empty, as everyone numbers as 2, num_cliques.

clear sj B_sj K_sj

sj=find(seps(:,j))’; %=seps{j};

B_sj=B(sj, sj);

K_sj=inv(B_sj);

big_Kj=zeros(p);

big_Kj([sj], [sj])=K_sj;

sum_big_K_seps=sum_big_K_seps+big_Kj;

end

K_hat=sum_big_K_cliques-sum_big_K_seps;

B_hat=inv(K_hat);

8.1.15 sampling Σ ∼ HIW (g, δ, I).

The below code samples Σid ∼ HIW (g, δ, I) based on Theorem 4.3.2 and the theory

explained in Section 4.3. It first creates the perfect elimination scheme by reversing the

order given by C1, R2, . . . , Rk. Next, it permutes the ordering of the adjacency matrix

g to the perfect elimination order. Theorem 4.3.2 can then be used to generate all the

elements of the Cholesky of Σ−1 independently, and calculates the Σid with respect to

the elimination order. The routine then permutes the rows and columns of the matrices

generated back to the original ordering of the vertices of g.

The cell array version is described before the matrix array version. The itemised list

descriptions are enumerated with respect to the lines of MATLAB code (excluding comment

and blank lines) that immediately follow each.

1. initialise index finish and index start, the variables for indexing the sequence of ver-

tices in perfect order.

2. find num cliques, the number of cliques.

217

CHAPTER 8. APPENDICIES

3. find residuals, the set of residuals.

4. initialise num Rj, a vector in which the ith entry is the number of elements in the

jth residual. Note that the sequence of (nonempty) residuals begins at j = 2.

5. find p, the number of vertices in g.

6. initialise perfect order, the 1× p permutation vector of indicies 1, . . . p (1, . . . p is the

original indexing in the adjacency matrix g) that gives the perfect numbering which

when reversed is the permutation vector of a perfect elimination scheme.

7. order vertices in C1 first in the perfect numbering.

8. set index finish as the index of the last element entered in the sequence so far. This

is |C1|. Then index start can be updated to the last index plus one in the loop that

follows.

9. begin for loop, j = 2, . . . ,num cliques to reorder the vertices.

10. set Rj as the jth residual.

11. find |Rj|, and store as the jth entry in num Rj.

12. update index start to the previous index finish plus one.

13. update index finish. This is the index of the last vertex entered in the current |Rj|.
It is given by the current index start plus |Rj| less one.

14. enter Rj as the index startth to index finishth vertices in the perfect sequence.

15. end for loop for reordering vertices.

16. initialise rev perf, the 1 × p permutation vector that gives the reverse perfect num-

bering required for a perfect elimination scheme.

17. initialise index to zero. This is a counter for putting the p − indexth element of

perfect order at the ith position in rev perf.

18. begin for loop, i = 1, . . . , p to create rev perf.

19. the ith entry in the reverse seqence is the p − indexth entry in perfect order.

20. increment index by one.

218

CHAPTER 8. APPENDICIES

21. end for loop to create rev perf.

22. initialise g rev perf, the permuted version of g.

23. permute the rows and columns of g to give g rev perf. Note that to undo the permu-

tation, the ith entry of perfect order is related to the jth entry in its reverse by the

relation i = p − j + 1. That is, i + j = p + 1. For example, for the p = 5 sequence

enumerations, we have [1, 2, 3, 4, 5] + [5, 4, 3, 2, 1] = 6 = (p + 1).

24. initialise Psi, the Cholesky of the inverse with respect to the elimination scheme

ordering.

25. begin for loop, i = 1, . . . , p to sample the diagonal entries of Psi.

26. begin internal if to test whether the parent set needs to be found. For the last case

i = p, the vertex is the first in the perfect ordering so has no parents.

27. the pth diagonal element is the square root of a χ2
δ .

28. begin alternative for i < p.

29. clear nu i, the previous i number of parents.

30. need to calculate nu i, the number of parents of the ith vertex in the perfect ordering.

This is equal to the number of adjacent vertices which come after the ith vertex in

the perfect elimination ordering. Vertices adjacent to i are represented by a 1 in the

ith row. Those following are indicated by ones in the i + 1, . . . p columns of the ith

row. Hence the number of parents, nu i, is given by the sum of the elements of the

ith row from the i + 1st to the pth column of the adjacency matrix g rev perf.

31. set the ith diagonal as the square root of a χ2
δ+nu i variable.

32. end if test for last vertex.

33. end for loop to sample the diagonal entries.

34. begin for loop, i = 1, . . . , p − 1 down the rows to sample the off-diagonal entries.

35. begin for loop, j = i+1, . . . , p across the columns in the upper diagonal half of Psi.

36. begin if test for sampling only the entries ij such that the edge (i, j) ∈ g rev perf.

37. if (i, j) /∈ g rev perf, set the ijth entry to zero.

219

CHAPTER 8. APPENDICIES

38. otherwise, for (i, j) ∈ g rev perf, sample the ijth entry from a N(0, 1) distribution.

39. end if test for edges

40. end j column loop.

41. end i row loop.

42. initialise K rev perf ∼ HW (g rev perf, δ, I) and sigma id rev perf ∼ HIW (g rev perf, δ, I),

the g rev perf -constrained hyper Wishart and hyper inverse Wishart matrices of the

inverse covariance and covariance respectively.

43. calculate K rev perf as the ‘square’ Psi’Psi.

44. calculate sigma id rev perf as the matrix inverse of K rev perf.

45. next need to ‘undo’ the permutation given by the perfect elimination reordering.

begin by initialising inverse permute, the vector of the inverse permutation that

satisfies inverse permute(rev perf) = I, for I the identity permutation.

46. begin for loop, j = 1, . . . , p to create the inverse permutation vector.

47. the jth entry of the inverse permutation is given by the index of the vertex labelled

j in rev perf. This is because the original graph g is indexed as 1, . . . , p. So if the

permutation of the perfect elimination is, for example, rev perf = (3, 1, 2, 4), then

need to apply the permutation inverse permute= (2, 3, 1, 4) to get back the string

(1, 2, 3, 4).

48. end for loop to find the inverse permutation vector.

49. initialise K id∼ HW (g, δ, I) and sigma id∼ HIW (g, δ, I), the g-constrained hyper

Wishart and hyper inverse Wishart matrices of the inverse covariance and covariance

respectively.

50. calculate K id by applying permutation inverse permute to the rows and columns of

K rev perf.

51. calculate sigma id by applying permutation inverse permute to the rows and columns

of sigma rev perf.

function [sigma_id, K_id]=generate_HIW_g_delta_identity_cell(g, cliques, delta)

% inputs: 1. g, the p x p symmetric matrix with

% respect to an original ordering v_1, ..., v_p

220

CHAPTER 8. APPENDICIES

% 2. cliques, a 1 x t cell array of a perfect sequence of

% (nonempty) cliques of g,

% such as from chordal_to_ripcliques_cell.m

% output: 1. sigma_id, a random draw from HIW(g, delta, identity)

% 2. K_id=inv(sigma_id), a random draw from HW(g, delta, identity)

% THEORY: Roverato00 Theorem 3.

% This routine is first step in generating Sigma_i~HIW(g_i, delta, Phi_i).

index_finish=0; index_start=0;

num_cliques=size(cliques, 1);

[seps, residuals, histories]=seps_resids_hists(cliques);

% NOTE seps{1} will be [], because everyone writes them as S_2,...

num_Rj=zeros(1, num_cliques);

%% create perfect ordering as per C1, R2, R3,..definition

p=length(g);

perfect_order=zeros(1,p);

perfect_order(1:length(cliques{1}))=cliques{1};

index_finish=length(cliques{1});

for j=2:num_cliques

Rj=residuals{j};

num_Rj(1,j)=length(Rj);

index_start=index_finish+1;

index_finish=index_start+num_Rj(j)-1;

perfect_order(index_start:index_finish)=Rj;

end

% now reverse the ordering, and use rev_perf=opposite

% order to perfect_order

% for indexing the graph and the parameter Phi

%% NOTE: can NOT assume that the ordering of g_reverse=

% my mcs ordering of g (had i computed it) in reverse. But

% by construction, it is opposite to a perfect order which

% satisfies at least one mcs with respect to g, and is constructed

% as C1, R2, R2, .., Rk as req’d by Roverato00p100

rev_perf=zeros(1,p);

index=0;

for i=1:p

rev_perf(i)=perfect_order(p-index);

index=index+1;

end

g_rev_perf=zeros(p);

g_rev_perf=g(rev_perf,rev_perf);

%%% to go back and forth: note that

% perf_order=p-rev_perf+1; perf+reverse=p+1

221

CHAPTER 8. APPENDICIES

Psi=zeros(p); % Psi is wrt reverse perfect ordering

% Psi(i,i) is a random Chi_squared(delta+nu_i).

for i=1:p

if i==p,

Psi(p,p)=(chi2rnd(delta))^(.5);

else

% find nu_i=num of parents=adj. predecessors

% of each vertex i wrt PERFECT

% order, NOT reverse= an elimination order. So nu_p=0

% because Psi is wrt reverse ordering.

% nu_i, i>1 could be zero for disconnected case.

clear nu_i

nu_i=sum(g_rev_perf(i,i+1:n));

Psi(i,i)=(chi2rnd(delta+nu_i))^(.5);

end

end

% Psi(i,j), j >i is N(0,1) if an edge

% i,j exists in g, and zero otherwise.

for i=1:p-1

for j=i+1:p

if (g_rev_perf(i,j)==0)

Psi(i,j)=0;

else

Psi(i,j)=randn;

end

end

end

K_rev_perf=zeros(p); sigma_id_rev_perf=zeros(p);

K_rev_perf=Psi’*Psi;

sigma_id_rev_perf=inv(K_rev_perf);

% is HIW(g_rev_perf, delta, id_rev_perf)

% Note that this is covariance of g wrt the rev_perf ordering,

% NOT wrt g. Should have zeros where off diagonal g_rev_perf does.

%%% Now need to do inverse permutation to get back to the Sigma for g

inverse_permute=zeros(1,p);

for j=1:p

inverse_permute(j)=find(rev_perf==j);

end

K_id=zeros(p); sigma_id=zeros(p);

K_id=K_rev_perf(inverse_permute, inverse_permute);

sigma_id=sigma_id_rev_perf(inverse_permute, inverse_permute); % ~HIW(g, delta, id)

% Check that sigma_id has zeros in right place:

% inv_sigma_id=inv(sigma_id);

% indices=find(~(inv_sigma_id==0)); inv_sigma_id(indices)=1;

% note that indices is not pairs, but where (1,1)=1, (1,2)=2, etc.

%%%%

222

CHAPTER 8. APPENDICIES

% NOTES

% ------

% it is critical that the adjacency matrix g_rev_perf

% is indexed OPPOSITE to the node ordering given by

% C_1, ,,,, C_k a PERFECT order of g (NOT g_elim),

% i.e. that given by C_1, R_2, R_3,... etc. (Roverato00

% p 100 2.1 para3 lines 3-> based on those preceding.)

% DESPITE the fact that any perfect mcs ordering

% is satisfies the reverse being a perfect mcs

% ordering also, regardless of the size of the

% last clique, or the first node you choose of the

% last clique to begin. And any perfect sequence

% of cliques can be reversed and it’s still a perfect

% sequence (so long as it was created under mcs)

% see my notes in folder "Generation: g must be wrt

% elim=perf1 opposite, but cliques with respect to

% perf1" and "Perfect=reverse Perfect" attached to "Perfect Orders".

% NOTE matlab orders union(a,b) as [min(a,b), max(a,b)]

% regardless of relative size of a,b

% so my cliques will always be ordered in strictly

% ascending order [min,..max]

% i.e. union([7,1,11,3], [4,9,18,2])

% becomes [1,2,3,4,7,9,11,18]

The matrix array code is now explained.

1. initialise index finish and index start, the variables for indexing the sequence of ver-

tices in perfect order.

2. find num cliques, the number of cliques. In the matrix array representation, cliques(i, j) =

1 if and only if the ith vertex is an element of the jth clique. Hence the number

of cliques is given by the number of columns with at least one nonzero entry. This

number can be found by finding the maximum index of the columns which have

nonzero sum.

3. find residuals, the matrix array representation of the set of residuals.

4. initialise num Rj, a vector in which the ith entry is the number of elements in the

jth residual. Note that the sequence of (nonempty) residuals begins at j = 2.

5. find p, the number of vertices in g.

6. initialise perfect order, the 1× p permutation vector of indicies 1, . . . p (1, . . . p is the

original indexing in the adjacency matrix g) that gives the perfect numbering which

223

CHAPTER 8. APPENDICIES

when reversed is the permutation vector of a perfect elimination scheme. Note that

entries in perfect order must be nonzero integers, not one/zero indicators of vertices

inclusion or not.

7. find c 1, the indicies of the vertices in the first clique with respect to the original

ordering 1, . . . , p of g. Note that the elements will be used to create a permutation,

so the zero/one representation must be converted to an integer that is the vertex

index in the graph. Hence c 1 is given by the MATLAB find function on the first

column of the matrix array representation cliques.

8. order vertices in C1 first in the perfect numbering.

9. set index finish as the index of the last element entered in the sequence so far. This

is |C1|. Then index start can be updated to the last index plus one in the loop that

follows.

10. begin for loop, j = 2, . . . ,num cliques to reorder the vertices.

11. set Rj as the jth residual. It must be a vector of integer indicies, not the zero/one

representation in order to create the permutation vector. Hence it is given by the

MATLAB find function on the jth column of the matrix array residuals.

12. find |Rj|, and store as the jth entry in num Rj.

13. update index start to the previous index finish plus one.

14. update index finish. This is the index of the last vertex entered in the current |Rj|.
It is given by the current index start plus |Rj| less one.

15. enter Rj as the index startth to index finishth vertices in the perfect sequence.

16. end for loop for reordering vertices.

The remaining code is identical to the cell array version, so its itemised list description

is omitted.

function [sigma_id, K_id, sigma_id_rev_perf, K_rev_perf]=generate_HIW_g_delta_identity_zo(g, cliques, delta)

% inputs: 1. g, the p x p symmetric matrix with

% respect to an original ordering v_1, ..., v_p

% 2. cliques, a p x p matrix array representation of the cliques of g.

% such as from chordal_to_ripcliques_zo.m

% output: 1. sigma_id, a random draw from HIW(g, delta, identity)

% 2. K_id=inv(sigma_id), a random draw from HW(g, delta, identity)

224

CHAPTER 8. APPENDICIES

% THEORY: Roverato00 Theorem 3.

% GENERATE Sigma and inv(Sigma)=K, from g-conditional HIW(g, delta, identity):

% i.e. a Sigma for empty graph

% NOTE K_id has EXACT zeros in the ’right’ places, no rounding errors

% First step to generate a random draw=Sigma_i~HIW(g_i, delta, Phi_i),

% where Phi_i are iterate

% outputs of the mcmc for each graph iterate g_i.

index_finish=0; index_start=0;

num_cliques=max(find(sum(cliques,1)~=0));

[seps, residuals, histories]=seps_resids_hists_zo(cliques);

% NOTE the seps(:,1) will be zeros(p,1), because everyone writes them as S_2,...

num_Rj=zeros(1, num_cliques);

%%% create perfect ordering as per C1, R2, R3,..definition

p=length(g);

perfect_order=zeros(1,p);

c_1=find(cliques(:,1))’;

perfect_order(1:length(c_1))=c_1;

index_finish=length(c_1);

for j=2:num_cliques

Rj=find(residuals(:,j))’; % note the transpose

num_Rj(1,j)=length(Rj);

index_start=index_finish+1;

index_finish=index_start+num_Rj(j)-1;

perfect_order(index_start:index_finish)=Rj;

end

% now reverse the ordering, and use rev_perf=opposite

% order to perfect_order

% for indexing the graph and the parameter Phi.

%% NOTE: can NOT assume that the ordering of g_reverse=

% my mcs ordering of g (had i computed it) in reverse. But

% by construction, it is opposite to a perfect order which

% satisfies at least one mcs with respect to g, and is constructed

% as C1, R2, R2, .., Rk as req’d by Roverato00p100

rev_perf=zeros(1,p);

index=0;

for i=1:p

rev_perf(i)=perfect_order(p-index);

index=index+1;

end

g_rev_perf=zeros(p);

g_rev_perf=g(rev_perf,rev_perf);

%%%% to go back and forth: note that

% perf_order=p-rev_perf+1; perf+reverse=p+1

225

CHAPTER 8. APPENDICIES

%%%%%%%%%%%

Psi=zeros(p); % Psi is wrt reverse perfect ordering

% Psi(i,i) is a random Chi_squared(delta+nu_i).

for i=1:p

if i==p,

Psi(p,p)=(chi2rnd(delta))^(.5);

else

% find nu_i=num of parents=adj. predecessors

% of each vertex i wrt PERFECT

% order, NOT reverse= an elimination order.

% nu_p=0 because Psi is wrt reverse ordering.

% nu_i, i>1 could be zero for disconnected case.

clear nu_i

nu_i=sum(g_rev_perf(i,i+1:p));

Psi(i,i)=(chi2rnd(delta+nu_i))^(.5);

end

end

% Psi(i,j), j >i is random N(0,1) if an edge

% i,j exists in g, and zero otherwise.

for i=1:p-1

for j=i+1:p

if (g_rev_perf(i,j)==0)

Psi(i,j)=0;

else

Psi(i,j)=randn;

end

end

end

K_rev_perf=zeros(p); sigma_id_rev_perf=zeros(p);

K_rev_perf=Psi’*Psi;

sigma_id_rev_perf=inv(K_rev_perf); % is HIW(g_rev_perf, delta, id_rev_perf)

% Note that this is covariance of g wrt the rev_perf ordering,

% NOT wrt g. Should have zeros where g_rev_perf does, less diag

%%% Now need to do inverse permutation to get back to the Sigma for g

inverse_permute=zeros(1,p);

for j=1:p

inverse_permute(j)=find(rev_perf==j);

end

K_id=zeros(p); sigma_id=zeros(p);

K_id=K_rev_perf(inverse_permute, inverse_permute);

sigma_id=sigma_id_rev_perf(inverse_permute, inverse_permute); % ~HIW(g, delta, id)

% Check that sigma_id has zeros in right place:

%inv_sigma_id=inv(sigma_id);

% indices=find(~(inv_sigma_id==0)); inv_sigma_id(indices)=1;

226

CHAPTER 8. APPENDICIES

% note that indices is not pairs, but where (1,1)=1, (1,2)=2, etc.

8.1.16 closed transformation of HIW (g, δ, •)
The below code transforms ΣB ∼ HIW (g, δ,B) to ΣD ∼ HIW (g, δ,D) based on The-

orem 4.3.3 and the theory explained in Section 4.3. It first creates the perfect elimi-

nation scheme by reversing the order given by C1, R2, . . . , Rk. Next, it permutes the

ordering of the adjacency matrix g to the perfect elimination order. Theorem 4.3.3 can

then be used to calculate the inverse covariance Krev perf
D ∼ HW (g rev perf, δ,D) and

Σrev perf
D ∼ HIW (g rev perf, δ,D) which are indexed according to g rev perf, in which the

vertices are enumerated according to a perfect elimination scheme. By Paulsen et al. (1989)

the transformation is independent of the elimination scheme chosen, so KD ∼ HW (g, δ,D)

and ΣD ∼ HIW (g, δ,D) are obtained by permuting the columns of Krev perf
D and Σrev perf

D

so that they are ordered as the original enumeration of the vertices in g.

The cell array version is described before the matrix array version. The itemised list

descriptions are enumerated with respect to the lines of MATLAB code (excluding comment

and blank lines) that immediately follow each.

1. find p, the number of vertices in g.

2. find num cliques, the number of cliques.

3. find seps, resids, hists, the sets of vertex indicies representing the separators, resid-

uals and histories, respectively.

4. initialise num Cj, a vector in which the ith entry is the number of elements in the

jth clique.

5. initialise num Sj, a vector in which the ith entry is the number of elements in the

jth separator. Note that the sequence of (nonempty) separators begins at j = 2, so

num Sj(1,1)=0.

6. initialise num Rj, a vector in which the ith entry is the number of elements in the

jth residual. Note that the sequence of (nonempty) residuals begins at j = 2, so

num Rj(1,1)=0.

7. find |C1|, and enter as the first element of num Cj.

227

CHAPTER 8. APPENDICIES

8. initialise perfect order, the 1× p permutation vector of indicies 1, . . . p (1, . . . p is the

original indexing in the adjacency matrix g) that gives the perfect numbering which

when reversed is the permutation vector of a perfect elimination scheme.

9. order vertices in C1 first in the perfect numbering.

10. set index finish as the index of the last element entered in the sequence so far. This

is |C1|. Then index start can be updated to the last index plus one in the loop that

follows.

11. begin for loop, j = 2, . . . ,num cliques to reorder the vertices.

12. set Cj,Rj and Sj as the index representation of the jth clique, residual and separator

respectively.

13. find |Cj |, |Rj|, |Sj|, and store as the jth entry in num Cj, num Rj and num Sj

respectively.

14. update index start to the previous index finish plus one.

15. update index finish. This is the index of the last vertex entered in the current |Rj|.
It is given by the current index start plus |Rj| less one.

16. enter Rj as the index startth to index finishth vertices in the perfect sequence.

17. end for loop for reordering vertices.

18. initialise rev perf, the 1 × p permutation vector that gives the reverse perfect num-

bering required for a perfect elimination scheme.

19. initialise index to zero. This is a counter for putting the p − indexth element of

perfect order at the ith position in rev perf.

20. begin for loop, i = 1, . . . , p to create rev perf.

21. the ith entry in the reverse seqence is the p − indexth entry in perfect order.

22. increment index by one.

23. end for loop to create rev perf.

228

CHAPTER 8. APPENDICIES

24. apply the permutation rev perf to the rows and columns of g to give g rev perf. To

undo the permutation, the ith entry of perfect order permutation is related to the jth

entry in its reverse by the relation i = p− j + 1. That is, i+ j = p + 1. For example,

for the p = 5 sequence enumerations, we have [1, 2, 3, 4, 5]+[5, 4, 3, 2, 1] = 6 = (p+1).

25. apply the permutation rev perf to the rows and columns of B to give B rev perf, the

permuted version of B. B is the parameter of the HIW distributed matrix ΣB that

is to be transformed.

26. apply the permutation rev perf to the rows and columns of D to give D rev perf. D is

the parameter of the HIW distributed matrix ΣD which is the result of transforming

ΣB ∼ HIW (g, δ,B) to ΣD ∼ HIW (g, δ,D).

27. apply the permutation rev perf to the rows and columns of the input matrix sigma B

D to give sigma B rev perf.

28. calculate K B, the inverse of sigma B rev perf.

29. calculate choleskyK B, the Cholesky of K B.

30. set c1 as the number of vertices in C1.

31. clear previous values of index start and index finish

32. set index start to p − |C1| + 1 and index finish= p.

33. initialise a 1 × |C1 variable indexC1 in Upsilon D. This variable will be the indicies

of C1 in the perfect elimination scheme; i.e. the indicies of the last |C1| columns of

the Upsilon D. Upsilon D is the Cholesky of the inverse of sigma D with respect to

the ordering of the perfect elimination scheme.

34. set indexC1 in Upsilon D= [p − |C1| + 1, cdots, p].

35. initialise Upsilon D, the Cholesky of the inverse matrix.

36. initialise the |C1 × C1| matrices B 1 and D 1. These will be the C1 dependent

subblocks of B and D respectively.

37. Similarly initialise Q 1, P 1 and O 1 of Theorem 4.3.3.

38. find B 1 as the last |C1| row/column subblock of the permuted B rev perf (as per

Theorem 4.3.3).

229

CHAPTER 8. APPENDICIES

39. calculate Q 1, the Cholesky of the inverse of B 1 (as per Theorem 4.3.3).

40. find D 1 as the last |C1| row/column subblock of the permuted D rev perf (as per

Theorem 4.3.3).

41. calculate P 1, the Cholesky of the inverse of D 1 (as per Theorem 4.3.3).

42. calculate O 1 = (Q 1)−1P 1 (as per Theorem 4.3.3).

43. calculate the C1 dependent subblock of Upsilon D (as per Theorem 4.3.3).

44. begin for loop, j = 2, . . . num cliques to calculate Upsilon D.

45. clear previous values of cj and indexCj in Upsilon D. These are the j dependent

variables analogous to c1 and indexC1 in Upsilon D.

46. find |Cj|.

47. initialise the 1 × |Cj | vector indexCj in Upsilon D.

48. clear previous values of Rj, rj indexRj inOj and indexRj in Upsilon D. Rj is the jth

residual Rj , and rj= |Rj|. indexRj inOj is the vector of indicies of Rj in the sub-

matrix O j. O j has columns and rows enumerated to follow the perfect elimination

scheme. indexRj in Upsilon D is defined analogously to indexCj in Upsilon D.

49. clear previous unsort indexRj in Upsilon D. the kth entry in this vector is the index

in the perfect elimination order, of the kth vertex in Rj , where Rj is with respect to

the original enumeration of vertices in g. For example, if the k = 3rd vertex in Rj is

v8 ∈ g = (V,E), and the perfect elimination permutation is [4, 1, 5, 6, 3, 8, . . . ,] then

unsort indexRj in Upsilon D(3) = 6. The prefix unsort indicates that the entries

in unsort indexRj in Upsilon D are not sorted from minimum to maximum or vice

versa.

50. find Rj.

51. calculate rj= |Rj |.

52. initialise indexRj inOj.

53. initialise indexRj in Upsilon D.

54. initialise unsort indexRj in Upsilon D.

230

CHAPTER 8. APPENDICIES

55. clear previous values of Sj, sj, indexSj inOj and indexSj in Upsilon D. They are each

defined analogously to the respective Rj dependent variable.

56. clear previous unsort indexSj in Upsilon D, which is defined analogously to unsort indexRj in Upsilon D

57. find Sj.

58. calculate sj= |Sj|.

59. initialise indexSj inOj.

60. initialise indexSj in Upsilon D.

61. initialise unsort indexSj in Upsilon D.

62. initialise the |Cj × Cj | matrices B j and D j. These will be the Cj dependent sub-

blocks of B and D respectively.

63. Similarly initialise Q j, P j and O j of Theorem 4.3.3.

64. begin inner for loop, k = 1, . . . rj to calculate unsort indexRj in Upsilon D.

65. set the kth entry of unsort indexRj in Upsilon D as the position in the perfect elim-

ination permutation rev perf of the kth vertex in Rj.

66. end inner for loop, k = 1, . . . rj to calculate unsort indexRj in Upsilon D.

67. sort the elements of unsort indexRj in Upsilon D in ascending order to give the

position indexes in Upsilon D of the vertices in Rj. This step is not essential, as

MATLAB takes subblocks A(B,B) of any matrix B independently of the ordering

of the position indexes in B.

68. begin inner for loop, k = 1, . . . sj to calculate unsort indexSj in Upsilon D.

69. set the kth entry of unsort indexSj in Upsilon D as the position in the perfect elim-

ination permutation rev perf of the kth vertex in Sj.

70. end inner for loop, k = 1, . . . sj to calculate unsort indexSj in Upsilon D.

71. sort the elements of unsort indexSj in Upsilon D in ascending order to give the po-

sition indexes in Upsilon D of the vertices in Sj.

231

CHAPTER 8. APPENDICIES

72. Because the sequences of separators and residuals are each enumerated with respect

to the perfect sequence of cliques, and because the sequence of separators includes

repetitions, the cliques Cj = Sj ∪ Rj. Hence can calculate the position indexes of

indexCj in Upsilon D as the position indexes in indexRj in Upsilon D followed by

those in indexSj in Upsilon D. Note that Rj follows Sj as Upsilon D is enumerated

in a reverse perfect numbering.

73. find B j as the Cj row/column subblock of the permuted B rev perf (as per Theo-

rem 4.3.3).

74. calculate Q j, the Cholesky of the inverse of B j (as per Theorem 4.3.3).

75. find D j as the Cj row/column subblock of the permuted D rev perf (as per Theo-

rem 4.3.3).

76. calculate P j, the Cholesky of the inverse of D j (as per Theorem 4.3.3).

77. calculate O j = (Q j)−1P j (as per Theorem 4.3.3).

78. set the position indexes of Cj as 1, . . . , |Cj |. The position indexes of Rj in this

subblock are 1, . . . |Rj |. The positon indexes of Sj follow these, so are given by

|Rj | + 1, . . . |Cj |

79. calculate the Rj , Rj dependent subblock of Upsilon D (as per Theorem 4.3.3).

80. calculate the Rj , Sj dependent subblock of Upsilon D (as per Theorem 4.3.3).

81. end external for loop to calculate Upsilon D.

82. initialise K D rev perf and sigma D rev perf. These are the transformed inverse

covariance and covariance, respectively, with rows and columns enumerated as per

the perfect elimination ordering.

83. calculate K D rev perf = Upsilon D′Upsilon D.

84. calculate sigma D rev perf = (K D rev perf)−1.

85. calculate inverse permute, the inverse permutation vector which will order the vari-

ables as per the original vertex enumeration in g.

86. find the inverse covariance K D ∼ HW (g, δ,D) by applying the inverse permutation

to the rows and columns of K D rev perf.

232

CHAPTER 8. APPENDICIES

87. finally find the transformed covariance sigma D ∼ HIW (g, δ,D) by applying the

inverse permutation to the rows and columns of sigma D rev perf.

function [sigma_D, K_D]=transform_g_conditional_HIW_cell(sigma_B, g, cliques, delta, B, D)

% inputs: 1. sigma_B~HIW(g, delta, B), the p x p covariance

% 2. g, the p x p symmetric matrix with

% respect to an original ordering v_1, ..., v_p

% 3. cliques, a 1 x t cell array of a perfect sequence of

% (nonempty) cliques of g,

% such as from chordal_to_ripcliques_cell.m

% 4. delta, the degrees of freedom parameter of the distribution of sigma_B

% 5. B, the matrix parameter of the distribution of sigma_B

% 6. D, the matrix parameter of the distribution of the transformed covariance

% output: 1. sigma_D, a random draw from HIW(g, delta, D)

% 2. K_D=inv(sigma_D), a random draw from HW(g, delta, D)

% THEORY: Roverato00 Theorem 4.

% sigma_B~g-conditional HIW(g, delta, B)

% to sigma_D~g-conditional HIW(g, delta, D)

% K_D is inv sigma_D

% NOTE B and D constrained to satisfy inv(B)(i,j)=0 iff g(i,j)=0.

% use to generate a random draw=Sigma_i~HIW(g_i, delta, Phi_i),

% where Phi_i are iterate

% outputs of the mcmc for each graph iterate g_i.

p=length(g);

num_cliques=length(cliques);

[seps, residuals, histories]=seps_resids_hists(cliques);

% NOTE the seps{1} will be [], because everyone writes them as S_2,...

num_Cj=zeros(1, num_cliques);

num_Sj=zeros(1, num_cliques); %num_Sj(1,1)=num_Rj(1,1)=0;

num_Rj=zeros(1, num_cliques);

num_Cj(1,1)=length(cliques{1});

%%% create perfect ordering as per C1, R2, R3,..definition

perfect_order=zeros(1,p);

perfect_order(1:length(cliques{1}))=cliques{1};

index_finish=length(cliques{1});

for j=2:num_cliques

Cj=cliques{j}; Rj=residuals{j}; Sj=seps{j};

num_Cj(1,j)=length(Cj);num_Rj(1,j)=length(Rj);num_Sj(1,j)=length(Sj);

index_start=index_finish+1;

index_finish=index_start+num_Rj(j)-1;

perfect_order(index_start:index_finish)=Rj;

end

% now reverse the ordering, and use rev_perf=opposite

% order to perfect_order

% for indexing the graph and the parameter Phi

%% NOTE: can NOT assume that the ordering of g_reverse=

233

CHAPTER 8. APPENDICIES

% my mcs ordering of g (had i computed it) in reverse. But

% by construction, it is opposite to a perfect order which

% satisfies at least one mcs with respect to g, and is constructed

% as C1, R2, R2, .., Rk as req’d by Roverato00p100

rev_perf=zeros(1,p);

index=0;

for i=1:p

rev_perf(i)=perfect_order(p-index);

index=index+1;

end

g_rev_perf=g(rev_perf,rev_perf);

B_rev_perf=B(rev_perf,rev_perf);

D_rev_perf=D(rev_perf,rev_perf);

%%%% to go back and forth: note that

% perf_order=p-rev_perf+1; perf+reverse=p+1

%%%% transformation as per thm 4 roverato2000

% sigma_B~HIW(g_rev_perf, delta, B_rev_perf) to

% Sigma_D~HIW(g_rev_perf, delta, D_rev_perf)

% Let Matrix_cj be the sub matrix of Matrix indexed by cliques of

% g NOT g_elim, and similarly for the separators and residuals.

sigma_B_rev_perf=sigma_B(rev_perf,rev_perf);

K_B=inv(sigma_B_rev_perf);

choleskyK_B=chol(K_B);

c1=num_Cj(1,1);

clear index_start index_finish

index_start=p-c1+1; index_finish=p;

indexC1_in_Upsilon_D=zeros(1,c1);

indexC1_in_Upsilon_D=[index_start: index_finish];

% this is the last c1 columns

Upsilon_D=zeros(p);

B_1=zeros(c1); D_1=zeros(c1);

Q_1=zeros(c1); P_1=zeros(c1); O_1=zeros(c1);

B_1=B_rev_perf(indexC1_in_Upsilon_D,indexC1_in_Upsilon_D);

Q_1=chol(inv(B_1));

D_1=D_rev_perf(indexC1_in_Upsilon_D,indexC1_in_Upsilon_D);

P_1=chol(inv(D_1));

O_1=inv(Q_1)*P_1; % this is a letter O

Upsilon_D(indexC1_in_Upsilon_D, indexC1_in_Upsilon_D)=...

choleskyK_B(indexC1_in_Upsilon_D,indexC1_in_Upsilon_D)*O_1;

for j=2:num_cliques

clear cj indexCj_in_Upsilon_D

cj=num_Cj(j);

indexCj_in_Upsilon_D=zeros(1, cj);

234

CHAPTER 8. APPENDICIES

clear Rj rj indexRj_inOj indexRj_in_Upsilon_D

clear unsort_indexRj_in_Upsilon_D

Rj=residuals{j};

rj=num_Rj(j);

indexRj_inOj=zeros(1,rj);

indexRj_in_Upsilon_D=zeros(1,rj);

unsort_indexRj_in_Upsilon_D=zeros(1,rj);

clear Sj sj indexSj_inOj indexSj_in_Upsilon_D

clear unsort_indexSj_in_Upsilon_D

Sj=seps{j};

sj=num_Sj(j);

indexSj_inOj=zeros(1,sj);

indexSj_in_Upsilon_D=zeros(1,sj);

unsort_indexSj_in_Upsilon_D=zeros(1,sj);

B_j=zeros(cj); D_j=zeros(cj);

Q_j=zeros(cj); P_j=zeros(cj); O_j=zeros(cj); % this is a letter O

for k=1:rj

unsort_indexRj_in_Upsilon_D(k)=find(rev_perf==Rj(k));

end

indexRj_in_Upsilon_D=sort(unsort_indexRj_in_Upsilon_D);

for k=1:sj

unsort_indexSj_in_Upsilon_D(k)=find(rev_perf==Sj(k));

end

indexSj_in_Upsilon_D=sort(unsort_indexSj_in_Upsilon_D);

indexCj_in_Upsilon_D=[indexRj_in_Upsilon_D, indexSj_in_Upsilon_D];

B_j=B_rev_perf(indexCj_in_Upsilon_D,indexCj_in_Upsilon_D);

Q_j=chol(inv(B_j));

D_j=D_rev_perf(indexCj_in_Upsilon_D,indexCj_in_Upsilon_D);

P_j=chol(inv(D_j));

O_j=inv(Q_j)*P_j;

indexRj_inOj=1:rj;

indexSj_inOj=rj+1:cj;

Upsilon_D(indexRj_in_Upsilon_D, indexRj_in_Upsilon_D)=...

choleskyK_B(indexRj_in_Upsilon_D, indexRj_in_Upsilon_D)*...

O_j(indexRj_inOj, indexRj_inOj);

Upsilon_D(indexRj_in_Upsilon_D,indexSj_in_Upsilon_D)=...

choleskyK_B(indexRj_in_Upsilon_D,indexRj_in_Upsilon_D)*...

O_j(indexRj_inOj,indexSj_inOj)+...

choleskyK_B(indexRj_in_Upsilon_D,indexSj_in_Upsilon_D)*...

O_j(indexSj_inOj,indexSj_inOj);

end

235

CHAPTER 8. APPENDICIES

K_D_rev_perf=zeros(p); sigma_D_rev_perf=zeros(p);

K_D_rev_perf=Upsilon_D’*Upsilon_D; % ~HW(g_rev_perf, delta, D_rev_perf)

sigma_D_rev_perf=inv(K_D_rev_perf); % ~HIW(g_rev_perf, delta, D_rev_perf)

% Note that this is covariance of g wrt the rev_perf ordering, NOT wrt g.

%%% Now need to do inverse permutation to get back to the Sigma for g

inverse_permute=zeros(1,p);

for j=1:p

inverse_permute(j)=find(rev_perf==j);

end

K_D=zeros(p);

sigma_D=zeros(p);

K_D=K_D_rev_perf(inverse_permute, inverse_permute); % ~Wishart(g, delta+p-1, D) (E(K_D) prop inv(D))

sigma_D=sigma_D_rev_perf(inverse_permute, inverse_permute); % ~HIW(g, delta, D) (E(D) prop D

The matrix array version differs in only two points. Firstly, the number of cliques

is given by: num_cliques=max(find(sum(cliques,1)~=0)); . The ijth entry of the

p × p matrix cliques is one if and only if the ith vertex is in the jth clique, so the num-

ber of cliques is equal to the index of the last column that has nonzero sum. Secondly,

the extra lines which convert a zero/one column representation of a set of vertices to

an integer string representation which consists of the vertex indicies with respect to the

original enumeration 1, . . . , p in g. The conversion is achieved by applying the MAT-

LAB find function to the appropriate column of the approprate matrix array, as follows:
Cj=find(cliques(:,j))’; % note the transpose

Rj=find(residuals(:,j))’; % note the transpose

Sj=find(seps(:,j))’; % note the transpose

The line by line description is omitted.

function [sigma_D, K_D, sigma_D_rev_perf, K_D_rev_perf]=...

transform_g_conditional_HIW_no_mcs_zo(sigma_B, g, cliques, delta, B, D)

% inputs: 1. sigma_B~HIW(g, delta, B), the p x p covariance

% 2. g, the p x p symmetric matrix with

% respect to an original ordering v_1, ..., v_p

% 3. cliques, a p x p matrix array representatino of a perfect sequence of

% cliques of g,

% such as from chordal_to_ripcliques_zo.m

% 4. delta, the degrees of freedom parameter of the distribution of sigma_B

% 5. B, the matrix parameter of the distribution of sigma_B

% 6. D, the matrix parameter of the distribution of the transformed covariance

% output: 1. sigma_D, a random draw from HIW(g, delta, D)

% 2. K_D=inv(sigma_D), a random draw from HW(g, delta, D)

% THEORY: Roverato00 Theorem 4.

% sigma_B~g-conditional HIW(g, delta, B)

% to sigma_D~g-conditional HIW(g, delta, D)

% K_D is inv sigma_D

% NOTE B and D constrained to satisfy inv(B)(i,j)=0 iff g(i,j)=0.

236

CHAPTER 8. APPENDICIES

% use to generate a random draw=Sigma_i~HIW(g_i, delta, Phi_i),

% where Phi_i are iterate

% outputs of the mcmc for each graph iterate g_i.

p=size(g,1);

num_cliques=max(find(sum(cliques,1)~=0));

[seps, residuals, histories]=seps_resids_hists_zo(cliques);

% NOTE the seps{1} will be [], because everyone writes them as S_2,...

num_Cj=zeros(1, num_cliques);

num_Sj=zeros(1, num_cliques); %num_Sj(1,1)=num_Rj(1,1)=0;

num_Rj=zeros(1, num_cliques);

num_Cj(1,1)=sum(cliques(:,1));

%%% create perfect ordering as per C1, R2, R3,..definition

perfect_order=zeros(1,p);

perfect_order(1:num_Cj(1,1))=find(cliques(:,1))’;

index_finish=num_Cj(1,1)

for j=2:num_cliques

Cj=find(cliques(:,j))’; % note the transpose

Rj=find(residuals(:,j))’; % note the transpose

Sj=find(seps(:,j))’; % note the transpose

num_Cj(1,j)=length(Cj);

num_Rj(1,j)=length(Rj);

num_Sj(1,j)=length(Sj);

index_start=index_finish+1;

index_finish=index_start+num_Rj(j)-1;

perfect_order(index_start:index_finish)=Rj;

end

% now reverse the ordering, and use rev_perf=opposite

% order to perfect_order

rev_perf=zeros(1,p);

index=0;

for i=1:p

rev_perf(i)=perfect_order(p-index);

index=index+1;

end

g_rev_perf=g(rev_perf,rev_perf);

B_rev_perf=B(rev_perf,rev_perf); % generate wrt new order

D_rev_perf=D(rev_perf,rev_perf);

%%%% to go back and forth: note that

% perf_order=p-rev_perf+1; perf+reverse=p+1

%%%% transformation as per thm 4 roverato2000

% sigma_B~HIW(g_rev_perf, delta, B_rev_perf) to

% Sigma_D~HIW(g_rev_perf, delta, D_rev_perf)

%%Let Matrix_cj be the sub matrix of Matrix indexed by cliques of

%g NOT g_elim, and similarly for the separators and residuals.

237

CHAPTER 8. APPENDICIES

sigma_B_rev_perf=sigma_B(rev_perf,rev_perf); % SIGMA in roverato2000

K_B=inv(sigma_B_rev_perf); % inv(SIGMA)PHI in rov

choleskyK_B=chol(K_B); %PHI in rov

c1=num_Cj(1,1);

clear index_start index_finish

index_start=p-c1+1; index_finish=p;

indexC1_in_Upsilon_D=zeros(1,c1);

indexC1_in_Upsilon_D=[index_start: index_finish]; % this is the last c1 columns

Upsilon_D=zeros(p);

B_1=zeros(c1);

D_1=zeros(c1);

Q_1=zeros(c1);

P_1=zeros(c1);

O_1=zeros(c1);

B_1=B_rev_perf(indexC1_in_Upsilon_D,indexC1_in_Upsilon_D);

Q_1=chol(inv(B_1));

D_1=D_rev_perf(indexC1_in_Upsilon_D,indexC1_in_Upsilon_D);

P_1=chol(inv(D_1));

O_1=inv(Q_1)*P_1; % this is a letter O

Upsilon_D(indexC1_in_Upsilon_D, indexC1_in_Upsilon_D)=...

choleskyK_B(indexC1_in_Upsilon_D,indexC1_in_Upsilon_D)*O_1;

for j=2:num_cliques

clear cj indexCj_in_Upsilon_D

cj=num_Cj(j);

indexCj_in_Upsilon_D=zeros(1, cj);

clear Rj rj indexRj_inOj

Rj=find(residuals(:,j))’; %Rj=residuals{j};

rj=num_Rj(j);

indexRj_in_Upsilon_D=zeros(1,rj);

indexRj_inOj=zeros(1,rj);

unsort_indexRj_in_Upsilon_D=zeros(1,rj);

clear Sj sj indexSj_inOj

Sj=find(seps(:,j))’; %=seps{j};

sj=num_Sj(j);

unsort_indexSj_in_Upsilon_D=zeros(1,sj);

indexSj_in_Upsilon_D=zeros(1,sj);

indexSj_inOj=zeros(1,sj);

B_j=zeros(cj);

D_j=zeros(cj);

Q_j=zeros(cj);

P_j=zeros(cj);

O_j=zeros(cj); % this is a letter O

238

CHAPTER 8. APPENDICIES

for k=1:rj

unsort_indexRj_in_Upsilon_D(k)=find(rev_perf==Rj(k));

end

indexRj_in_Upsilon_D=sort(unsort_indexRj_in_Upsilon_D);

for k=1:sj

unsort_indexSj_in_Upsilon_D(k)=find(rev_perf==Sj(k));

end

indexSj_in_Upsilon_D=sort(unsort_indexSj_in_Upsilon_D);

indexCj_in_Upsilon_D=[indexRj_in_Upsilon_D, indexSj_in_Upsilon_D];

B_j=B_rev_perf(indexCj_in_Upsilon_D,indexCj_in_Upsilon_D);

Q_j=chol(inv(B_j)); % this is trivially I(Cj,Cj)

D_j=D_rev_perf(indexCj_in_Upsilon_D,indexCj_in_Upsilon_D);

P_j=chol(inv(D_j));

O_j=inv(Q_j)*P_j;

indexRj_inOj=1:rj;

indexSj_inOj=rj+1:cj;

Upsilon_D(indexRj_in_Upsilon_D, indexRj_in_Upsilon_D)= choleskyK_B(indexRj_in_Upsilon_D, indexRj_in_Upsilon_D)*...

O_j(indexRj_inOj, indexRj_inOj);

Upsilon_D(indexRj_in_Upsilon_D,indexSj_in_Upsilon_D)= choleskyK_B(indexRj_in_Upsilon_D,indexRj_in_Upsilon_D)*...

O_j(indexRj_inOj,indexSj_inOj)+...

choleskyK_B(indexRj_in_Upsilon_D,indexSj_in_Upsilon_D)* O_j(indexSj_inOj,indexSj_inOj);

end

K_D_rev_perf=zeros(p);

sigma_D_rev_perf=zeros(p);

K_D_rev_perf=Upsilon_D’*Upsilon_D;

sigma_D_rev_perf=inv(K_D_rev_perf); % ~HIW(g_rev_perf, delta, D_rev_perf)

% Note that this is covariance of g wrt the rev_perf ordering, NOT wrt g.

%%% Now need to do inverse permutation to get back to the Sigma for g

inverse_permute=zeros(1,p);

for j=1:p

inverse_permute(j)=find(rev_perf==j);

end

K_D=zeros(p);

sigma_D=zeros(p);

K_D=K_D_rev_perf(inverse_permute, inverse_permute); % ~Wishart(g, delta+p-1, D)

sigma_D=sigma_D_rev_perf(inverse_permute, inverse_permute); % ~HIW(g, delta, D)

8.1.17 calculating the logarithm of the normalising constant

for the hyper inverse Wishart distribution.

The below code calculates the normalising constant h(g, δ,Φ) of (4.5) derived in Section 4.2.
The code is self explanatory, apart from the call to subroutine mvt gamma ln.m which is
given in Subsection 8.1.24. Therefore the line by line description is omitted. The cell array

239

CHAPTER 8. APPENDICIES

version is given first, followed by the matrix array version. The matrix array version is
identical apart from the representation of the cliques and separator sets. Note that a test
for Si = ∅, i > 1 is necessary. In the case of a disconnected graph, there will be at least 2
empty separators based on the definition Si = Ci∩Hi−1. These will be for each i such that
Ci is the top of a connected junction tree componenet in a junction forest representation
of g.

function [ln_h]=h_constant_ln_cell(cliques, delta, Phi)

% inputs: 1. cliques, a 1 x t cell array of the t nonempty

% cliques of g in RIP ordering

% (from chordal_to_ripcliques_cell.m)

% 2. delta, integer > 0

% 3. Phi>0, p x p parameter for Sigma_E~HIW(g, delta, Phi)

% output: 1. log of h(g, delta, Phi), the normalising constant for

% p(Sigma_E) where E is set of edges in g

% Appears in h_likelihood, the

% g-constrained likelihood p(Y=y |g).

% Y~ p-di Normal(0, inv(Omega))

% Based on Roverato 2000, Prop 2

ln_prod_top_terms=0;

ln_prod_bottom_terms=0;

seps=seps_resids_hists_cell(cliques);

for i=1:length(cliques)

C_i=cliques{i};

Phi_C_i=Phi(C_i, C_i);

numC_i=length(C_i);

ln_top_term_i= ((delta+ numC_i -1) /2) * log(det(Phi_C_i/2))...

- mvt_gamma_ln(numC_i, (delta+ numC_i -1) /2);

ln_prod_top_terms=ln_prod_top_terms+ln_top_term_i;

if i==1,

ln_bottom_term_i=0;

elseif isempty(seps{i});

% need this case for disconnected graph.

% If there are 2 components, then 2 empty seps

ln_bottom_term_i=0;

else

S_i=seps{i};

numS_i=length(S_i);

Phi_S_i=Phi(S_i, S_i);

ln_bottom_term_i=((delta+ numS_i -1) /2)* log(det(Phi_S_i/2))...

- mvt_gamma_ln(numS_i, (delta+ numS_i -1) /2);

end

ln_prod_bottom_terms=ln_prod_bottom_terms+ln_bottom_term_i;

end

ln_h=ln_prod_top_terms-ln_prod_bottom_terms;

240

CHAPTER 8. APPENDICIES

% recall det(cA)=c^p det(A) where A is nxn

function [ln_h]=h_constant_ln_zo(cliques, delta, Phi)

% inputs: 1. cliques, a p x p matrix repesentation of the

% cliques of g in RIP ordering

% (from chordal_to_ripcliques_zo.m)

% 2. delta, integer > 0

% 3. Phi>0, p x p parameter for Sigma_E~HIW(g, delta, Phi)

% output: 1. log of h(g, delta, Phi), the normalising constant for

% p(Sigma_E) where E is set of edges in g

% Appears in h_likelihood, the

% g-constrained likelihood p(Y=y |g).

% Y~ p-di Normal(0, inv(Omega))

% Based on Roverato 2000, Prop 2

ln_prod_top_terms=0;

ln_prod_bottom_terms=0;

seps=seps_resids_hists_zo(cliques)

for i=1:length(cliques)

C_i=cliques(:,i);

C_i_nodes=find(C_i);

Phi_C_i=Phi(C_i_nodes, C_i_nodes);

numC_i=sum(C_i);

ln_top_term_i= ((delta+ numC_i -1) /2) * log(det(Phi_C_i/2))...

- mvt_gamma_ln(numC_i, (delta+ numC_i -1) /2);

ln_prod_top_terms=ln_prod_top_terms+ln_top_term_i;

if i==1,

ln_bottom_term_i=0;

elseif sum(seps(:,i))==0;

% need this case for disconnected graph.

% If there are 2 components, then 2 empty seps

ln_bottom_term_i=0;

else

S_i_nodes=seps(:,i);

numS_i=length(S_i_nodes);

Phi_S_i=Phi(S_i_nodes, S_i_nodes);

ln_bottom_term_i=((delta+ numS_i -1) /2)* log(det(Phi_S_i/2))...

- mvt_gamma_ln(numS_i, (delta+ numS_i -1) /2);

end

ln_prod_bottom_terms=ln_prod_bottom_terms+ln_bottom_term_i;

end

ln_h=ln_prod_top_terms-ln_prod_bottom_terms;

% recall det(cA)=c^n det(A) where A is nxn

241

CHAPTER 8. APPENDICIES

8.1.18 calculating the logarithm of the ratio of normalising

constants h(g, δ, Φ)/h(g′, δ, Φ).

Let e = (u, v) ∈ E be an edge in g = (V,E) but not in g′ = (V,E′). Section 4.4 shows
that the ratio of marginal likelihoods p(y|gp, δ,Φ)/p(y|gc, δ, Phi) (4.18) in the MH accep-
tance probability for the transition proposal (4.17) required for sampling from the pos-
terior is a function of h(g, δ,Φ)/h(g′ , δ,Φ). This ratio can be calculated using (4.8) of
Lemma 4.4.3, and the terms in (4.8) can be calculated efficiently using Lemma 4.4.5. The
routines ln h ratio cell.m and ln h ratio zo.m calculate h(g, δ,Φ)/h(g′ , δ,Φ) using the re-
sults of Theorem 4.4.1, Lemma 4.4.3 and Lemma 4.4.5. The code is self explanatory so
the line by line description is omitted. The cell array version is given first, followed by the
matrix array version. The matrix array version is identical apart from the representation
of the new clique C.

function [ln_h]=ln_h_ratio_cell(C, a, b, delta, Phi)

% inputs: 1. C, the new clique

% as represented by a 1 x |C| array of vertex indicies

% with respect to original g.

% In the case of edge addition C

% contains the vertices of the added edge.

% In the case of edge deletion, C contains the deleted edge.

% 2. a, b, the index of the edge vertices with respect to the

% original ordering in the adjacency matrix g.

% 3. delta, integer > 0

% 4. Phi>0, p x p parameter for Sigma_E~HIW(g, delta, Phi)

% output: 1. log of h(g, delta, Phi)/h(g, delta, Phi), the

% ratio of normalising constants for

% p(Sigma_E) where E is set of edges in g, and

% p(Sigma_E’) where E is set of edges in g’.

% marginal likelihood ratio is h_ratio(delta, Phi)/h_ratio(delta+n, Phi+S_N)

% (the 2*pi terms cancel out)

D=[a,b];

Sq2=mysetdiff(C,D);

numSq2=length(Sq2);

delta_star=delta -1;

Phi_CC=zeros(length(C));

Phi_CC=[Phi(Sq2, Sq2) Phi(Sq2,D) ;...

Phi(D, Sq2) Phi(D,D)];

L=(chol(Phi_CC))’ ;

L_DD=L([numSq2+1, numSq2+2], [numSq2+1, numSq2+2]);

% this is correct: DD is the LOWER block.

% Sq2 is index of upper block.

% Hence the terms of the matrix containing DD

% are indexed as numSq2+1, numSq2+2

l_aa=L_DD(1,1);

l_bb=L_DD(2,2);

l_ab=L_DD(2,1); % L is lower diag: L_DD(1,2)=0

ln_top=(delta_star + numSq2 +2)*(log(l_aa)+log(l_bb));

242

CHAPTER 8. APPENDICIES

ln_bottom= (delta_star + numSq2 +1)/2*...

(log(l_aa^2*l_ab^2 + l_aa^2*l_bb^2)) ;

ln_gam_bit=-log(2*sqrt(pi))+gammaln((delta_star + numSq2 +1)/2)...

- gammaln((delta_star + numSq2 +2)/2);

ln_h= ln_top-ln_bottom + ln_gam_bit;

function [ln_h]=ln_h_ratio_zo(C, a, b, delta, Phi)

% inputs: 1. C, the p x 1 zero/one vector representation of the new clique

% which in the case of edge addition

% contains the vertices of the added edge, or

% in the case of edge deletion, contained the deleted edge.

% 2. a, b, the index of the edge vertices with respect to the

% original ordering in the adjacency matrix g.

% 3. delta, integer > 0

% 4. Phi>0, p x p parameter for Sigma_E~HIW(g, delta, Phi)

% output: 1. log of h(g, delta, Phi)/h(g, delta, Phi), the

% ratio of normalising constants for

% p(Sigma_E) where E is set of edges in g, and

% p(Sigma_E’) where E is set of edges in g’.

% marginal likelihood ratio is h_ratio(delta, Phi)/h_ratio(delta+n, Phi+S_N)

% (the 2*pi terms cancel out)

C_nodes=(find(C))’; % NOTE THE TRANSPOSE

D=[a,b];

% C_nodes and D are the actual nodes, not

% the col_vec representation

Sq2=setdiff(C_nodes,D);

numSq2=length(Sq2);

delta_star=delta -1;

Phi_CC=zeros(length(C_nodes));

Phi_CC=[Phi(Sq2, Sq2) Phi(Sq2,D) ;...

Phi(D, Sq2) Phi(D,D)];

L=(chol(Phi_CC))’ ;

L_DD=L([numSq2+1, numSq2+2], [numSq2+1, numSq2+2]);

% this is correct: DD is the LOWER block.

% Sq2 is index of upper block.

% Hence the terms of the matrix containing DD

% are indexed as numSq2+1, numSq2+2

l_aa=L_DD(1,1);

l_bb=L_DD(2,2);

l_ab=L_DD(2,1); % L is lower diag: L_DD(1,2)=0

ln_top=(delta_star + numSq2 +2)*(log(l_aa)+log(l_bb));

ln_bottom= (delta_star + numSq2 +1)/2*...

(log(l_aa^2*l_ab^2 + l_aa^2*l_bb^2)) ;

ln_gam_bit=-log(2*sqrt(pi))+gammaln((delta_star + numSq2 +1)/2)...

- gammaln((delta_star + numSq2 +2)/2);

ln_h= ln_top-ln_bottom + ln_gam_bit;

243

CHAPTER 8. APPENDICIES

8.1.19 randomly selecting a pair of vertices.

An irreducible chain of decomposable graphs results from single legal edge additions and

deletions. Rather than generating the edge indicators eij one at a time, an alternative

and efficient methodology is to randomly select a vertex pair (i, j) and use a Metropolis

Hastings proposal for deleting the edge e = (i, j) if the pair are adjacent, or adding the

edge e if they are not. The proposal is also conditional on the legality of the edge change.

This routine is used to randomly propose a pair of vertices (a, b). If the pair of vertices

are adjacent in the current chain iterate gc, and e = (a, b) is a legal deletion, then this

edge will be proposed for deletion. If the pair are not adjacent and e is a legal addition,

then e is proposed for addition. Note that the pair will only constitute a proposal if the

resulting change is legal Also note that the proposal graph gp will only be accepted as the

next chain iterate if it passes the Metropolis Hastings proposal test.

The following 4 lines of description are enumerated with respect to the 4 lines of

MATLAB code (excluding comment and blank lines) which follow them.

1. find p, the number of vertices.

2. define iota to be a random permutation of the vertex indicies 1, . . . , p.

3. choose the first and second vertices as the output. Note that the choice of the first

and second is arbitrary. Since iota is a random permutation, any pair will do.

4. define the 1 × 2 array edge candidate to be the representation of e = (vi, vj).

function [edge_candidate]=next_edge_candidate(g_current)

% input: 1. g_current, the p x p symmetric adjacency matrix

% of the current iterate graph of the chain with

% respect to an original ordering v_1, ..., v_p

% output: 1. edge_candidate, the randomly chosen vertices which

% will comprise the edge to be changed to give the

% proposal graph in the MHMCMC sampler IF the resulting

% graph is decomposable.

% g_proposal will only be

% accepted in that routine as the new g_current if it passes the acceptance

% ratio

p=length(g_current);

iota = randperm(p); % iota is a random permutation of 1:p.

i=iota(1); j = iota(2);

edge_candidate=[i,j];

244

CHAPTER 8. APPENDICIES

8.1.20 proposing the next graph

An irreducible chain of decomposable graphs results from single legal edge additions and

deletions. By choosing a distribution on the graph space, a Metropolis Hastings or Gibbs re-

duced conditional sampler can be used to transverse the space. The routine next graph candidate.m

generates a proposal graph for consideration in a Metropolis Hastings proposal based on

such a measure. It creates the proposal graph gp from the current graph gc as follows. First

randomly select a pair of vertices vi, vj . If vi � vj in gc and e = (vi, vj) is a legal addition,

then create gp from gc by adding e. If vi ∼ vj in gc and e = (vi, vj) is a legal deletion,

then create gp from gc by deleting e. Note that the proposal graph does not depend on a

distribution, apart from the uniform measure on the decomposable graph space. Also note

that gp will only be accepted as the next chain iterate if it passes the Metropolis Hastings

proposal test.

The code for the matrix array version is identical to that of the cell array version ex-

cepting that it makes calls to functions which assume the matrix representation of sets.

Therefore, only the itemised list description of the cell array version is given. It is enu-

merated with respect to the lines of MATLAB code (excluding comment and blank lines)

which follow it.

1. find p, the number of vertices.

2. initialise the adjacency matrix g proposal of gp as the adjacency matrix g current of

the current graph iterate gc = (V,Ec).

3. initialise to 0 CASE add and CASE delete, the 0(no)/1(yes) case indicators for

adding or deleting an edge from gc, respectively.

4. begin while loop for continuing the random proposal of edge vertex pairs to test.

5. while no legal edge change has been made to gc, use next edge candidate.m to pro-

pose a pair of vertices, or equivalently, an edge candidate. The edge candidate is

represented by the 1× 2 vector edge, with edge(1) the index of the first vertex of the

pair, and edge(2) the second.

6. set the edge e = (vedge(1), vedge(2)).

7. begin if condition for legal deletion of e.

8. if e ∈ Ec (so the ijth entry of the adjacency matrix g current is one), then call the

function check edge delete.m to see if deleting e from gc is legal.

245

CHAPTER 8. APPENDICIES

9. begin if test to see if the proposed deletion was legal.

10. if e is a legal deletion, then delete it; i.e. set the respective entries of the adjacency

matrix g proposal(edge(1), edge(2)) = 0.

11. if e is a legal deletion, then set CASE delete= 1 and define C as the output of

check edge delete.m. This represents the clique in gc that contained e. The cal-

culation of the likelihood depends on this clique, so it must be outputted by this

routine.Set a and b as the indicies of the vertices constituting e.

12. end internal if test for legal deletion.

13. begin alternative elseif for vi � vj , and not connected.

14. if vi and vj are in different connected components of gc, then the edge addition is

legal, so add the set CASE add= 1, e = (vi, vj) and C = {vi, vj}.

15. if vi and vj are in different connected components of gc, then add the legal edge to

gc to give the proposal graph gp.

16. begin alternative elseif test for vi � vj, but connected.

17. if vi � vj but connected, then call the program check edge add same component.m

to see if e = (vi, vj) is a legal addition.

18. begin internal if test based on the output indicator of the program check edge add same component.m.

If the indicator is 1, then adding e is legal.

19. if adding e is legal, set the output edge vertices of the extra edge to be vi, vj and

set C as the clique indicies that were outputted by check edge add.m. This clique is

needed to calculate the likelihood, so must be outputted by next graph candidate.m.

20. if e is a legal addition, create the proposal graph by adding e to gc.

21. end internal if test for the legality of adding e to gc.

22. end conditional elseif case for vi � vj , but connected.

23. end external while loop.

function [g_proposal, a,b, C, CASE_add, CASE_delete]=...

next_graph_candidate_cell(g_current, jtree, sepsize, cliques, reach_graph)

% inputs: 1. g_current, the adjacency matrix of the current graph in the chain.

% 2. jtree, the adjacency matrix of a junction tree with respect

246

CHAPTER 8. APPENDICIES

% to cliques.

% 3. sepsize, a matrix array of the size of the separator sets, in which

% sepsize(i,j) = [number of elements in intersection between

% cliques cliques{i} and cliques{j} if they are adjacent, and zero else.

% 4. cliques, a 1 x t cell array of nonempty cliques

% of a chordal graph in RIP ordering

% (such as re_index_cliques from chordal_to_ripcliques_cell.m).

% 5. reach_graph, a p x p symmetric matrix, in which

% reach_graph(i,j) = 1 iff there is a path from v_i to v_j in g

% outputs:1. g_proposal, the adjacency matrix of the graph proposed for

% the next graph in the chain. g_proposal will only be

% accepted as g_next if it passes the MH acceptance test.

% 2., 3. a, b, the indicies of the vertices of

% the edge whose addition or deletion from g_current gives g_proposal.

% 4. C, the clique in g_proposal which contains the extra edge

% in the case of addition, or the clique which contains the edge

% in g_current which is proposed for deletion.

% Likelihood depends on C, so it is outputted by this routine.

% 5., 6. CASE_add, CASE_delete, the 0/1 indicators of whether

% an edge is proposed for deletion or addition respectively.

p=length(g_current);

g_proposal=g_current;

% initialise the proposal graph to the current graph

CASE_add=0; CASE_delete=0;

while isequal(g_proposal,g_current);

edge=next_edge_candidate(g_current);

i=edge(1); j=edge(2);

if g_current(i,j)==1,

[CASE_delete, C_potential_delete]=check_edge_delete_cell(i,j, cliques);

if (CASE_delete==1) ;

g_proposal(i,j)=0; g_proposal(j,i)=0;

CASE_delete=1; a=i; b=j; C=C_potential_delete;

end

elseif (g_current(i,j)==0 & reach_graph(i,j)==0);

CASE_add=1; a=i; b=j; C=[a,b];

% if adding edge between 2 disjoint trees, new clique

% including that edge must be comprised soley of edge nodes a, b

g_proposal(i,j)=1; g_proposal(j,i)=1;

% if v_i and v_j are in different connected components of a decomposable

% graph, then adding (v_i, v_j) is legal.

elseif (g_current(i,j)==0 & reach_graph(i,j) ==1),

% v_i, v_j must be in the same connected component of tree for check_edge_add.

[CASE_add, C_potential_add]=...

check_edge_add_same_component_cell(i,j, jtree, sepsize, cliques);

if CASE_add==1

a=i; b=j; C=C_potential_add;

g_proposal(i,j)=1; g_proposal(j,i)=1;

end

end

end; % external while

247

CHAPTER 8. APPENDICIES

function [g_proposal, a,b, C, CASE_add, CASE_delete]=...

next_graph_candidate_zo(g_current, jtree, sepsize, cliques, reach_graph)

% inputs: 1. g_current, the adjacency matrix of the current graph in the chain.

% 2. jtree, the adjacency matrix of a junction tree with respect

% to cliques.

% 3. sepsize, a matrix array of the size of the separator sets, in which

% sepsize(i,j) = [number of elements in intersection between

% cliques cliques{i} and cliques{j} if they are adjacent, and zero else.

% 4. cliques, a p x p matrix representation of the cliques

% of a chordal graph in RIP ordering

% (such as cliques from chordal_to_ripcliques_zo.m).

% 5. reach_graph, a p x p symmetric matrix, in which

% reach_graph(i,j) = 1 iff there is a path from v_i to v_j in g

% outputs:1. g_proposal, the adjacency matrix of the graph proposed for

% the next graph in the chain. g_proposal will only be

% accepted as g_next if it passes the MH acceptance test.

% 2., 3. a, b, the indicies of the vertices of

% the edge whose addition or deletion from g_current gives g_proposal.

% 4. C, the p x 1 representation of the

% clique in g_proposal which contains the extra edge

% in the case of addition, or the clique which contains the edge

% in g_current which is proposed for deletion.

% Likelihood depends on C, so it is outputted by this routine.

% 5., 6. CASE_add, CASE_delete, the 0/1 indicators of whether

% an edge is proposed for deletion or addition respectively.

p=length(g_current);

g_proposal=g_current;

% initialise the proposal graph to the current graph

CASE_add=0; CASE_delete=0;

while isequal(g_proposal,g_current);

edge=next_edge_candidate(g_current);

i=edge(1); j=edge(2);

if g_current(i,j)==1,

[CASE_delete, C_potential_delete]=check_edge_delete_zo(i,j, cliques);

if (CASE_delete==1) ;

g_proposal(i,j)=0; g_proposal(j,i)=0;

CASE_delete=1; a=i; b=j; C=C_potential_delete;

end

elseif (g_current(i,j)==0 & reach_graph(i,j)==0);

CASE_add=1; a=i; b=j; C=[a,b];

% if adding edge between 2 disjoint trees, new clique

% including that edge must be comprised soley of edge nodes a, b

g_proposal(i,j)=1; g_proposal(j,i)=1;

% if v_i and v_j are in different connected components of a decomposable

% graph, then (v_i,v_j) is a legal addition.

elseif (g_current(i,j)==0 & reach_graph(i,j) ==1),

% v_i,v_j must be in the same connected component of tree for check_edge_add.

[CASE_add, C_potential_add]=...

check_edge_add_same_component_zo(i,j, jtree, sepsize, cliques);

if CASE_add==1

248

CHAPTER 8. APPENDICIES

% if check_edge_add_same_component(i,j, jtree, sepsize, cliques)==1,

a=i; b=j; C=C_potential_add;

g_proposal(i,j)=1; g_proposal(j,i)=1; CASE2=1;

end

end;

end; % external while

8.1.21 sampling the next graph iterate

This function can be used on its own as a reduced conditional sampler for g. Alternatively,

by omitting all the analysis outputs, and setting the number of iterations equal to 1, it

can be used to generate the next graph iterate in a covariance selection sampler such as

generate regression covariance RWMH.m which is given in Subsection 8.1.22.

Note that generate graph and analysis cell.m uses the Giudici & Green (1999) junction

tree characterisation for legal edge additions. It therefore calculates the junction tree and

uses junction tree dependent subroutines. generate graph and analysis cell.m makes calls

to most of the programs already given in this appendix.

The only section that requires explanation is:
if CASE_add==1,

ln_likelihood_ratio=ln_h_ratio_cell(C, a, b, delta, Phi)...

-ln_h_ratio_cell(C, a, b, delta+N, Phi+S_N);

likelihood_ratio=exp(ln_likelihood_ratio);

elseif CASE_delete==1,

ln_likelihood_ratio=ln_h_ratio_cell(C, a, b, delta+N, Phi+S_N)...

-ln_h_ratio_cell(C, a, b, delta, Phi);

likelihood_ratio=exp(ln_likelihood_ratio);

end

This section of code calculates the natural logarithm of the graph marginal likelihood

ratio in (4.18) using Lemma 4.4.3.
The rest of the code is self-explanatory, so a line by line explication is omitted in favour

of comments within the code which follows.

function [g_next, graph_pm, graph_tally, graph_tally_counts, graph_iter]=...

generate_graph_and_analysis_cell(g_current, delta, Phi, N, S_N, warmup, iter_multiple, iters_to_keep)

% inputs: 1. g_current, adj. matrix of current graph iterate

% 2., 3. delta, Phi, the parameters of the HIW(g, delta, Phi) prior for the covariance

% 3. N, the number of observations

% 4. S_N, the sum of squares matrix of the data

% 5. warmup, the number of warmup iterations

% 6. iter_multiple, the factor of iters_to_keep for the total number of iterates

% 7. iters_to_keep, the number of graph iterates to record

% outputs: 1. g_next, the last graph iterate

249

CHAPTER 8. APPENDICIES

% 2. graph_pm, a p x p adjacency matrix of the average graph sampled

% 3. graph_tally, a pxpx num_diff_graphs array of the distinct

% adjacency matrices.

% 3. graph_tally_counts, a 1 x p vector of counts of each graph sampled.

p=length(Phi);

iter=iter_multiple*iters_to_keep;

if (iter <= warmup),

error(’not enough iterations specified ’) ;

end

sample=iter-warmup;

counter_for_keeping=0;

graph_cumulative=zeros(p,p);

graph_pm=zeros(p,p);

graph_iter=zeros(n,n, iters_to_keep);

graph_tally=zeros(p,p, 1);

graph_tally_counts=zeros(p,p,1);

num_of_diff_graphs=1;

accept_count_warmup=0; accept_count_sample=0;

accept_percent_warmup=0; accept_percent_sample=0;

g_next=g_current;

for i=1:iter;

clear cliques jtree order clear sepsize reach_graph

clear g_proposal g_i

equal_indicator=0;

g_current=g_next;

cliques=chordal_to_ripcliques_cell(g_current) ; % find cliques

jtree=ripcliques_to_jtree_cell(cliques); % create jtree

sepsize=separators_cell(cliques, jtree); % find size of separators

reach_graph=reachability_graph_cell(g_current); % find path matrix

u=rand; accept_prob=0;

[g_proposal, a,b, C, CASE_add, CASE_delete]=...

next_graph_candidate_cell(g_current, jtree, sepsize, cliques, reach_graph);

if CASE_add==1,

ln_likelihood_ratio=ln_h_ratio_cell(C, a, b, delta, Phi)...

-ln_h_ratio_cell(C, a, b, delta+N, Phi+S_N);

likelihood_ratio=exp(ln_likelihood_ratio);

elseif CASE_delete==1,

ln_likelihood_ratio=ln_h_ratio_cell(C, a, b, delta+N, Phi+S_N)...

-ln_h_ratio_cell(C, a, b, delta, Phi);

likelihood_ratio=exp(ln_likelihood_ratio);

end

accept_prob=min(1, likelihood_ratio);

% accept g_proposal with probability=accept.

250

CHAPTER 8. APPENDICIES

if u<= accept_prob,

g_next=g_proposal;

if i<=warmup

accept_count_warmup=accept_count_warmup+1;

else accept_count_sample=accept_count_sample+1;

end

else g_next=g_current;

end

g_i=g_next;

% store graph_i into graph_iter

if mod(i, iter_multiple)==0

counter_for_keeping=counter_for_keeping+1;

graph_iter(:,:,counter_for_keeping)=g_next;

end

if i>warmup,

graph_cumulative=graph_cumulative+g_i;

% if g_i has already been sampled, update its count accordingly.

% otherwise, add g_i to the array of distinct graphs

for j=1:num_of_diff_graphs

graph_tally_j=graph_tally(:,:,j);

if (isequal(graph_tally_j, g_i));

graph_tally_cumulative(:,:,j)=graph_tally_cumulative(:,:,j)+g_i;

graph_tally_counts(1,j)=graph_tally_counts(1,j)+1;

equal_indicator=1;

break,

end

end % end of for j=1: num_of_diff_graphs loop

if equal_indicator==0

num_of_diff_graphs=num_of_diff_graphs+1;

graph_tally(:,:,num_of_diff_graphs)=g_i;

graph_tally_cumulative(:,:, num_of_diff_graphs)=g_i;

graph_tally_cumulative_counts(1,num_of_diff_graphs)=1;

end

end % end for the if i> warmup loop

end % end for the i=1:iter

accept_percent_warmup=accept_count_warmup/warmup;

accept_percent_sample=accept_count_sample/sample;

graph_pm=graph_cumulative/sample;

The matrix array version is identical, excepting that it makes calls to the matrix rep-

resentation alternatives of each subroutine. It is therefore omitted.

251

CHAPTER 8. APPENDICIES

8.1.22 generating the covariance selection iterates

This function generates the next iterates in the covariance selection MCMC sampler de-

scribed in Section 4.8.
A line by line explication of the code is omitted as each step is explained using comments

in the program which follows. Only the matrix array version is given, as it is identical to
the cell array version excepting calls to the respective cell array versions of each subroutine.

function [omega, sigma, g, order, cliques, tau, rho, Phi]=...

generate_regression_covariance_RWMH_zo...

(g, order, cliques, delta, tau, rho, Phi, N, S_N,...

g_prior, An, ...

gen_g, sample_graph, warmup_graph,...

model_Phi, var_ln_tau, var_rho)

% inputs: 1. g, adj. matrix of current graph iterate

% 2. order, a permutation vector giving a perfect numbering of vertices with

% respect to the adjacency matrix g

% 3. cliques, a p x p matrix representation of a perfect sequence of cliques of g

% 4. delta, the degrees of freedom parameter for the prior on Sigma ~HIW(g, delta, Phi)

% 5., 6. tau, rho, the parameters in Phi. These are generated using a random walk

% metropolis hastings scheme.

% 7. Phi, the matrix parameter of the HIW(g, delta, Phi) prior for the covariance

% 8. N, the number of observations

% 9. S_N, the sum of squares matrix of the data

% 10. g_prior, an indicator for whether to use the size or uniform prior

% 11. An, a vector such that An(k) is the number of graphs of size k on n vertices

% 12. gen_g, an indicator for the whether or not to thin the graph iterates

% 13., 14. sample_graph, warmup_graph, the number of sampling and warmup iterations

% to use if thinning the graph iterates.

% 15. model_Phi, a string indicating which model of Phi is assumed. Possible values

% are ’equicorrelated’, ’scaled_SSY’ and ’tauI’.

% 16., 17. var_ln_tau, var_rho, the variances for ln(tau) and rho in the

% random walk Metropolis Hastings sampler for tau and rho respectively.

% outputs: 1., 2. omega~HW(g, delta, Phi) and sigma~HIW(g, delta, Phi), the next

% iterates of the inverse covariance and covariance, respectively.

% 3. g, the next graph iterate

% 4. order, a permutation vector giving a perfect numbering of vertices with

% respect to the adjacency matrix of new g

% 5. cliques, a p x p matrix representation of a perfect sequence of cliques of new g

% 6., 7. tau, rho, the next iterates of the parameters in Phi.

% 8. Phi, the matrix parameter of the HIW(g, delta, Phi) prior for the covariance

p=length(g);

if (strcmp(gen_g,’single’)==1),

g_next=generate_graph_single_zo(g, g_prior, An, cliques, delta, Phi, N, S_N);

elseif (strcmp(gen_g,’not_single’)==1),

g_next=generate_graph_zo(g, g_prior, An, delta, Phi, N, S_N, warmup_graph, sample_graph);

else error_gen_g=’no gen_g specified’

end

if ~isequal(g,g_next) % don’t bother re-doing cliques if they ARE equal

252

CHAPTER 8. APPENDICIES

g=g_next;

[check, order]=check_chordal(g_next);

cliques=chordal_to_ripcliques_zo(g_next, order);

end

% Generate next tau for current rho and graph:

% routine depends on model_Phi internally, but

% does not refer to rho unless equicorrelated model_Phi

tau= generate_tau_RWMH_zo(tau, var_ln_tau, rho, model_Phi,...

cliques, delta, N, S_N);

% Generate next rho for new tau and current graph IF equicorrelated model_Phi

if (strcmp(model_Phi,’equicorrelated’)==1)

rho=generate_rho_RWMH_zo(rho, var_rho, tau, cliques, delta, N, S_N);

end

% Update Phi (deterministically

if (strcmp(model_Phi,’equicorrelated’)==1)

Phi=tau*(rho*ones(p)+(1-rho)*eye(p));

elseif (strcmp(model_Phi,’scaled_SSY’)==1),

Phi=tau*S_N/N;

elseif (strcmp(model_Phi,’tauI’)==1),

Phi=tau*eye(p);

else error_Phi=’no such model_Phi’

end

% Generate sigma_next by deterministically transforming a randomly drawn

% HIW(g, delta+N, Identity) to HIW(g, delta+N, Post_Phi)

sigma=zeros(p, p); Post_Phi=zeros(p, p); Post_Phi_hat=zeros(p, p); sigma_identity=zeros(p, p);

Post_Phi=Phi+S_N;

Post_Phi_hat=g_constrain_zo(Post_Phi, order, cliques);

sigma_identity=generate_HIW_g_delta_identity_zo(g, cliques, delta+N);

[sigma, omega, sigma_rev_perf, omega_rev_perf]=transform_g_conditional_HIW_zo...

(sigma_identity, g, cliques, delta+N, eye(p), Post_Phi_hat);

8.1.23 decomposable covariance selection script.

This script was used to generate the results of covariance selection reported in the simu-
lation sections, and is included to illustrate how the programs fit together for covariance
selection. It assumes the size prior for the graphs, and the equicorrelated form of the
parameter Φ. It is for p = 17, and uses 20 sets of data, each consisting of 40 observations.
The sampler uses 20K iterations.

%% main_id17n40_eqsize_idXnrep20s20

%% volratio is neq*(neq-1)/2 long vector "scales" sigma.

% CURRENT 10:25 21/09/04 and works perfectly

%% this version includes nx_KL=1 case

% this version uses RWMH for tau and rho

% _zo copied from CURRENT 09:25 8/04/04

253

CHAPTER 8. APPENDICIES

% copied from helen_main 15:32 03/04/04

% copied from helen_main 12.46 23/3/04, then updated phat, KL bits only

%contains the following subroutines of ed’s.

%init_CORR_J_R_Tvec_Jbind.m; initialise paramters

%comp_XtX_XtY_YtY.m; effecient computation of matrices outside loop

%comp_XtOX_XtOY_YtOY.m; effecient computation of matrices inside loop

%genb_post.m; generate Jbind and beta_vector

%comp_SSY.m efficient computation of SSY

%**

clear all

rand(’state’,sum(100*clock)) % causes matlab 5 generator to be used in rand calls

randn(’state’,sum(100*clock)) % causes matlab 5 generator to be used in randn calls

global dimb c_par maskb iota % ed’s global parameters

load DATAFILESn17nobs40nrep20idX/data_id17n40nrep20idX

neq, nobs, model_sigma

dimb, c_par, ’maskb=’, maskb’, iota

% idX means that there are no covariate regressors in the

% X matrix: it is a matrix of constants, hence Xbeta=mean which is

% independent of any random variables; i.e. regressors

% i.e. no regressors in the model. Just estimating mean and covariance.

% in this case may as well set X as the identity matrix, so that Xbeta=beta

% and beta is therefore the estimate of the mean.

% this is the ’trivial’ regression model.

load volratio_ful.dat

vol=volratio_ful(:,2);

clear warmup sampl

warmup=2000% 1000

sampl=20000% 10000% 5000

%%%

%% specify parameters and initial values for graph routines and sigma prior

model_Phi=’equicorrelated’, %’scaled_SSY’, %’tauI’, % ’equicorrelated’, % ’tauI’, % ’scaled_SSY’, % ’tauI’ ’equicorrelated’ ’

g_prior=’size_dependent’, %’uniform’,% ’uniform’,% ’size_dependent’,% ’uniform’,%

model_mean=’mean_unknown’ % =’mean_zero’%

gen_g=’single’;

sample_graph=1; warmup_graph=0;

delta=5;

% FINE TUNE BELOW so that acceptance rate is around 25%

254

CHAPTER 8. APPENDICIES

%

rho=1/2; % choose so that rho in (-1/(n-1), 1);

tau=4;

var_ln_tau=1/10;

var_rho=1/20; % this really gets into tails eg: rho <0 and rho >.9

% recall 95% data within 2 std (i.e. p(-1.96sigma<E(Z)<1.96sigma)=.95

% want variance so that generating from mini normal in (-1/(n-1), 1)

if (strcmp(model_mean,’mean_zero’)==1)

nobs_adjusted=nobs

elseif (strcmp(model_mean,’mean_unknown’)==1)

nobs_adjusted=nobs-1

% need to adjust degrees of freedom by -1 as mu integrated out

end

nC2=neq*(neq-1)/2;

An=zeros(1, nC2+1);

%load Ank_fortran_estimates/A8k_true

%An=A8k_true(neq+1,1:nC2+1);

%load Ank_fortran_estimates/A15Kalls20.out

%An=A15Kalls20(1:nC2+1);

%load Ank_fortran_estimates/A16Kalls20.out

%An=A16Kalls20(1:nC2+1);

load Ank_fortran_estimates/A17Kalls20.out

An=A17Kalls20(1:nC2+1);

g=zeros(neq); % should i should initialise to my g equivalent of ed’s Jind=upper only?

% i.e. a decomposable version

% NOTE: the empty graph corresponds to all independent.

[check, order]=check_chordal(g);

cliques=chordal_to_ripcliques_no_mcs_zo(g, order);

%%

Jind_iter=zeros(neq,neq,warmup+sampl); % my g_iter

omega_iter=zeros(neq,neq,sampl);

sigma_iter=zeros(neq,neq,sampl);

Jbind_iter=zeros(dimb,sampl);

beta_vector_iter=zeros(dimb,sampl);

Jind_pm=zeros(neq,neq,nrep);

sigma_pm=zeros(neq,neq,nrep);

omega_pm=zeros(neq,neq,nrep);

Jbind_pm=zeros(dimb,nrep);

beta_vector_pm=zeros(dimb,nrep);

tau_iter=zeros(warmup+sampl,1);

255

CHAPTER 8. APPENDICIES

tau_pm=zeros(1,nrep);

if (strcmp(model_Phi,’equicorrelated’)==1)

rho_iter=zeros(warmup+sampl,1);

rho_pm=zeros(1,nrep);

end

if(SIMULATE)

KL=zeros(1,nrep);

L1=zeros(1,nrep);

L1_SSY=zeros(1,nrep);

end %if simulate

fprintf(’ all data are inputted \n’)

%%%

%%% begin reps for KL

time_taken=zeros(1,nrep); % vector of times for reps

elapsed_time_per_mod=zeros(3, 5); % just save 3 nrep’s worth, and the first 5K

%zeros(nrep, 5);

for irep=1:nrep,

count_mod=0;

disp(sprintf(’***REPLICATION: %d’,irep))

Y_irep=squeeze(Y_learn(irep,:,:));

%%%

%%%% initialise graph and eds stuff

g=zeros(neq); % should i should initialise to my g equivalent of ed’s Jind=upper only?

% i.e. a decomposable version

% NOTE: the empty graph corresponds to all independent.

[check, order]=check_chordal(g);

cliques=chordal_to_ripcliques_no_mcs_zo(g, order);

if (strcmp(model_mean,’mean_zero’)==1)

SSY=Y_irep’*Y_irep;

elseif (strcmp(model_mean,’mean_unknown’)==1)

[omega,CORR,R,Jind,Tvec,Jbind]=init_CORR_J_R_Tvec_Jbind;

content=[1:1:neq];

[XtX_int,XtY_int,YtY_int]=comp_XtX_XtY_YtY(X,Y_irep);

[XtOX,XtOY,YtOY]=comp_XtOX_XtOY_YtOY(XtX_int,XtY_int,YtY_int,omega);

[Jbind,beta_vector]=genb_post(Jbind,YtOY,XtOX,XtOY);

SSY=cov(Y_irep)*(nobs-1);

% matlab covariance is sample average adjusted SSY/(nobs-1);

end

if (strcmp(model_Phi,’equicorrelated’)==1)

Phi=tau*(rho*ones(neq)+(1-rho)*eye(neq));

elseif (strcmp(model_Phi,’scaled_SSY’)==1),

256

CHAPTER 8. APPENDICIES

Phi=tau*SSY/nobs_adjusted;

elseif (strcmp(model_Phi,’tauI’)==1),

Phi=tau*eye(neq);

else error_Phi=’no such model_Phi’

end

%%%

%%% begin mcmc loop

tic

phat_running_total=zeros(nx_KL, ny_KL); % initialise the jth sum phat matrix to zeros

for iter=1:warmup+sampl,

if mod(iter,1000)==0 % print out replication every 1000, so can see where up to

disp(sprintf(’***ITERATION: %d’,iter))

end % if mod...

%

%% update Jbind and beta_vector.

%% specify constant matrices according to current values of TCORRT=omega.

[XtOX,XtOY,YtOY]=comp_XtOX_XtOY_YtOY(XtX_int,XtY_int,YtY_int,omega);

[Jbind,beta_vector]=genb_post(Jbind,YtOY,XtOX,XtOY);

%

% Generate sigma and omega

[omega, sigma, g, order, cliques, tau, rho, Phi]=...

generate_regression_covariance_RWMH_zo...

(g, order, cliques, delta, tau, rho, Phi,...

nobs_adjusted, SSY,...

g_prior, An, ...

gen_g, sample_graph, warmup_graph,...

model_Phi, var_ln_tau, var_rho);

%%

if (irep == 1)

Jind_iter(:,:,iter)=g;

tau_iter(iter,1)=tau;

if (strcmp(model_Phi,’equicorrelated’)==1)

rho_iter(iter,1)=rho;

end

end

if (iter > warmup)

if (irep == 1)

omega_iter(:,:,iter-warmup)=omega;

sigma_iter(:,:,iter-warmup)=sigma;

beta_vector_iter(:,iter-warmup)=beta_vector;

257

CHAPTER 8. APPENDICIES

Jbind_iter(:,iter-warmup)=Jbind;

end %if irep==1.

omega_pm(:,:,irep)=omega_pm(:,:,irep)+omega;

sigma_pm(:,:,irep)=sigma_pm(:,:,irep)+sigma;

beta_vector_pm(:,irep)=beta_vector_pm(:,irep) + beta_vector;

Jbind_pm(:,irep)=Jbind_pm(:,irep)+Jbind;

Jind_pm(:,:,irep)=Jind_pm(:,:,irep)+g; %my g_pm

tau_pm(:,irep)=tau_pm(:,irep)+tau;

if (strcmp(model_Phi,’equicorrelated’)==1)

rho_pm(:,irep)=rho_pm(:,irep)+rho;

end

if ~isequal(size(Y_KL), [nx_KL, ny_KL, neq])

error_dim_KL=’mistake in dimensions Y_KL’

end

if ~isequal(size(X_KL), [nx_KL, neq, dimb])

error_dim_XL=’ mistake in dimensions X_KL’

end

phat_running_total=phat_running_total+phat_irep_iter(X_KL,Y_KL,beta_vector,sigma, omega);

end %if iter>warmup

if mod(iter,1000)==0

count_mod=count_mod+1;

if irep<=3

elapsed_time_per_mod(irep, count_mod)=toc

end

end %end if mod...

end % end MCMC loop

time_taken(irep)=toc

%%%

%%

omega_pm(:,:,irep)=omega_pm(:,:,irep)/sampl;

sigma_pm(:,:,irep)=sigma_pm(:,:,irep)/sampl;

beta_vector_pm(:,irep)=beta_vector_pm(:,irep)/sampl;

Jbind_pm(:,irep)=Jbind_pm(:,irep)/sampl;

Jind_pm(:,:,irep)=Jind_pm(:,:,irep)/sampl; %my g_pm

tau_pm(1,irep)=tau_pm(1,irep)/sampl;

if (strcmp(model_Phi,’equicorrelated’)==1)

rho_pm(1,irep)=rho_pm(1,irep)/sampl;

end

phatY_KL_irep=phat_running_total/sampl; % take average for KL calc

258

CHAPTER 8. APPENDICIES

%%%% calculate KL and L1

%tic

KL(1,irep)=distance_KL_irep_idX(phatY_KL_irep,log_pYT)

L1(1,irep)=distance_L1(sigma_pm(:,:,irep), sigma_true)

L1_SSY(1,irep)=distance_L1(SSY/nobs_adjusted, sigma_true) % uses SSY from ed’s beta_vector

%time_takenKL(irep)=toc,

end % for irep=1:nrep of the KL, L1 distances

%%%

%%

%write out parameters of interest to file.

save DATAOUT/id17n40_eqsize_idXnrep20s20K

quit

% save DATAOUT/hel_4cyclen17nobs20tauI_unif_idXnrep20s20K 1

% save DATAOUT/hel_idn17nobs20tauI_size_idXnrep20s20K 2

% save DATAOUT/hel_idn17nobs20tauSSY_unif_idXnrep20s20K 3

% save DATAOUT/hel_idn17nobs20tauSSY_size_idXnrep20s20K

% save DATAOUT/hel_idn17nobs20equicorr_unif_idXnrep20s20K

% save DATAOUT/hel_idn17nobs20equicorr_size_idXnrep20s20K

% save DATAOUT/hel_fulln17nobs20tauI_unif_idXnrep20s20K

% save DATAOUT/hel_fulln17nobs20tauI_size_idXnrep20s20K

% save DATAOUT/hel_fulln17nobs20tauSSY_unif_idXnrep20s20K

% save DATAOUT/hel_fulln17nobs20tauSSY_size_idXnrep20s20K

% save DATAOUT/hel_fulln17nobs20equicorr_unif_idXnrep20s20K

% save DATAOUT/hel_fulln17nobs20equicorr_size_idXnrep20s20K

% save DATAOUT/hel_tridiagn17nobs20tauI_unif_idXnrep20s20K

% save DATAOUT/hel_tridiagn17nobs20tauI_size_idXnrep20s20K

% save DATAOUT/hel_tridiagn17nobs20tauSSY_unif_idXnrep20s20K

% save DATAOUT/hel_tridiagn17nobs20tauSSY_size_idXnrep20s20K

% save DATAOUT/hel_tridiagn17nobs20equicorr_unif_idXnrep20s20K

% save DATAOUT/hel_tridiagn17nobs20equicorr_size_idXnrep20s20K

%%write out parameters of interest to file.

%%save ../DATAOUT/var_cov_sel Jind_iter omega_iter sigma_iter ...

%beta_vector_iter Jbind_iter Jind_pm...

%omega_pm sigma_pm beta_vector_pm Jbind_pm

%Tvec_iter Tvec_pm

% L1 L1_SSY KL

259

CHAPTER 8. APPENDICIES

8.1.24 miscellaneous subroutines.

argmax.m

The following 2 item list description is enumerated with respect to the 2 lines of MATLAB

code that follows it. The code returns the index of the greatest element in the vector. In

the case of ties, it returns the lowest index.

Although the code is trivial, it can be used to produce cleaner code in the calling

programs. For example, in check chordal.m the line

u = U(argmax(score))

which would otherwise require the two lines [m, index] = max(score);u = U(index);.

Since the index of the greatest element is calculated in many of the calling programs, it is

worth having this subroutine as a function.

1. use the inbuilt MATLAB function max.

2. index=the second output variable.

function index=argmax(v)

% input: a vector v

% output: the index of the greatest element.

% Returns the first maximum in the case of ties.

[m i]=max(v);

index=i;

setdiag.m

The following 6 item list description is enumerated with respect to the 6 lines of MATLAB

code (excluding comment and blank lines) that follows it. The code returns the original

p × p matrix M with its diagonal entries replaced by the elements of v. v can be a scalar

or a vector, or a 1 × p or p × 1 array.

1. find p, the dimension of M .

2. begin if test for v being scalar.

3. if v is a scalar, convert it to a 1 × p vector for placing on the diagonal of M .

4. end if test to see if v is a scalar.

260

CHAPTER 8. APPENDICIES

5. calculate J , the linear index string corresponding to the i, ith entries of M . For

example, the p, 1th index is J = n, the 1, 2th entry is J = p + 1, etc.

6. set M at all the indicies of J equal to v.

function M = setdiag(M, v)

% inputs: 1. M, a p x p matrix

% 2. v, a scalar, vector, or p x 1 or 1 x p array.

% output: 1. M with diagonal set to v.

p = length(M);

if length(v)==1

v = repmat(v, 1, p);

% repmat is an existing matlab function

end

J = 1:p+1:p^2;

% J is the linear index corresponding to the i,ith entry of

% M. For example, the (p,1)th index is J=n, the 1,2 entry is

% J=p+1, etc

M(J) = v;

intersect zo.m

The following single item description is enumerated with respect to the single line of MAT-

LAB code (excluding comment and blank lines) that follows it. The code finds the inter-

section of two subsets of variables assuming the subsets are each represented by a vector

of zeros and ones. This works on the principle that the ith element of the elementwise

multiplication b = a1 � ∗a2 of two vectors a1 and a2 will be zero whenever either a1(i) = 0

or a2(i) = 0. Conversely, b(i) = 1 if and only if both a1(i) = 1 and a2(i) = 1. Thus b is

a vector of zeros and ones, such that b(i) = 1 if and only if the associated variable is in

both the subsets being intersected. For example, the intersection of A = {v1, v3, v4} with

B = {v2, v3} is given by

b=intersect zo([1 0 1 1]’ , [0 1 1 0]’), where b=[0 0 1 0]’.

1. take the elementwise multiplication of the two vectors.

function [b]=intersect_zo(a1, a2)

% input: a1, a2, a pair of [n,1] col vectors of zeros and ones only

% output: b, an n x 1 col vector representation of the intersection

between the subsets of variables represented by a1 and a2.

b=a1 .* a2;

% .* is elementwise multiplication

261

CHAPTER 8. APPENDICIES

% eg [0 0 1 0]’=intersect_zo([1 0 1 1]’ , [0 1 1 0]’)

% is equivalent to {v3}={v1, v3, v4} intersection {v2, v3}

% below is for error resistant version if required

% [n1,c1]=size(a1);

% [n2,c2]=size(a2);

%b=zeros(n1, c1);

%if (n1 ==n2) & (c1 == c2) & (c1 == 1)

%b=a1 .* a2;

%end

union zo.m

The following 6 item list description is enumerated with respect to the 6 lines of MATLAB

code (excluding comment and blank lines) that follows it. The code finds the union of two

subsets of variables assuming each subset is represented by a vector of zeros and ones. This

works on the principle that the ith element of the elementwise addition b = a1 + a2 of two

vectors a1 and a2 will be zero if and only if both a1(i) = 0 and a2(i) = 0. Conversely,

b(i) > 0 if and only if at least one of a1(i) = 1 or a2(i) = 1. The routine replaces any

b(i) = 2 with b(i) = 1. Thus b is a vector of zeros and ones, such that b(i) = 1 if and only

if the associated variable is in one of the subsets in the union. For example, the union of

A = {v1, v3, v4} with B = {v2, v3} is given by

b=intersect zo([1 0 1 1]’ , [0 1 1 0]’), where b=[1 1 1 1]’.

1. take the sum of the two vectors.

2. begin for loop to replace any b(j) > 1 by b(j) = 1.

3. begin if test for b(j) > 1.

4. if b(j) > 1, set b(j) = 1.

5. end if b(j) > 1 test.

6. end for loop.

function [b]=union_zo(a1, a2)

% input: a1, a2, a pair of [n,1] col vectors of zeros and ones only

% output: b, an n x 1 col vector representation of the union between

the subsets of variables represented by a1 and a2.

% b = elementwise addition, then make ones

262

CHAPTER 8. APPENDICIES

% eg [1 1 1 1]’=union_zo([1 0 1 1]’ , [0 1 1 0]’)

% is equivalent to {v1, v2, v3, v4}={v1, v3, v4} union {v2, v3}

b=v1 + v2;

for j=1:length(b)

if b(j)>1

b(j)=1;

end

end

% below is for error resistant version if required

% [n1,c1]=size(v1);

% [n2,c2]=size(v2);

%b=zeros(n1, c1);

%if (n1 ==n2) & (c1 == c2) & (c1 == 1)

%b=etc;

%end

set diff zo.m

The following 6 item list description is enumerated with respect to the 6 lines of MATLAB

code (excluding comment and blank lines) that follows it. The code finds the set difference

of two subsets of variables assuming each subset is represented by a vector of zeros and ones.

This works on the principle that the ith element of the elementwise subtraction b = a1−a2

of two vectors a1 and a2 will be one if and only if both a1(i) = 1 and a2(i) = 0. That

is, if and only if the ith variable is an element of the subset represented by a1 but not of

the subset represented by a2. If the ith variable is not an element of the set represented

by a1, then b(i) ≤ 0. The routine replaces any b(i) < 0 with b(i) = 0. Thus b is a vector

of zeros and ones, such that b(i) = 1 if and only if the associated variable is in the set

represented by a1, and not in the set represented by a2. For example, the setdifference

between A = {v1, v3, v4} with B = {v2, v3} is given by

b=set diff zo([1 0 1 1]’ , [0 1 1 0]’), where b=[1 0 0 1]’.

1. take the difference b = a1 − a2. The zero/one representation ensures that the ith

element of b is one if and only if vi ∈ a1 and vi /∈ a2. Otherwise, the ith element of

b is less than or equal to zero.

2. begin for loop to replace any b(j) < 0 by b(j) = 0.

3. begin if test for b(j) < 0.

263

CHAPTER 8. APPENDICIES

4. if b(j) < 0, then vj /∈ a1, so the jth element of the zero one representation of the set

difference should be zero.

5. end if b(j) < 0 test.

6. end for loop.

function [b]=setdiff_zo(a1, a2)

% input: a1, a2, an ORDERED pair of [n,1] col vectors

% of zeros and ones only.

% The ordering is such that the elements

% represented by a2 are removed from the set

% represented by a1.

% output: b, an n x 1 col vector representation of the

% set difference between the subsets of variables

% represented by a1 and a2.

% b = elementwise addition, then make ones

% eg [1 0 0 1]’=setdiff_zo([1 0 1 1]’ , [0 0 1 0]’)

% eg [1 0 0 1]’=setdiff_zo([1 0 1 1]’ , [0 1 1 0]’)

% eg [0 0 0 0]’=setdiff_zo([1 0 0 1]’ , [1 1 1 1]’)

b=a1 - a2;

for j=1:length(b)

if b(j)<0

b(j)=a1(j);

end

end

% below is for error resistant version if required

% [n1,c1]=size(a1);

% [n2,c2]=size(a2);

%b=zeros(n1, c1);

%if (n1 ==n2) & (c1 == c2) & (c1 == 1)

%b=etc;

%end

is in zo.m

The following 11 item list description is enumerated with respect to the 11 lines of MATLAB

code (excluding comment and blank lines) that follows it. The code tests whether or not

the integer a is a member of A. A can be input as a p × 1 or 1 × p array, or as a p

dimensional vector. The function returns element= 1 if a ∈ A, and element= 0 otherwise.

Note that A cannot be a cell array, and A is not a zero/one representation.

264

CHAPTER 8. APPENDICIES

1. begin if test for cases.

2. if A is empty, then a /∈ A.

3. otherwise test if a < min(A), the smallest entry in A.

4. if a < min(A), then a /∈ A.

5. otherwise test if a > max(A), the biggest entry in A.

6. if a > max(A), then a /∈ A.

7. if all the preceding tests fail, then test if a ∈ A.

8. initialise a bits, a 1 × max(A) array, to zero.

9. for each member α ∈ A, set bits(α) = 1. bits is consequently a vector in which the

αth entry equals 1 if α ∈ A, and zero otherwise.

10. set element = bits(a), the ath element of bits.

11. end if test for cases

function [element] = is_in(a, A)

% inputs: 1. A, a 1 x p or p x 1 array of integers.

% 2. a, the element to test whether a is a member of A.

% output: 1. element, a zero/one (yes/no) indicator of whether

% or not a is a member of A.

% if isempty(A) | a < min(A) | a > max(A) is slow

if length(A)==0

element = 0;

elseif a < min(A)

element = 0;

elseif a > max(A)

element = 0;

else

bits = zeros(1, max(A));

bits(A) = 1;

element = bits(a);

end

265

CHAPTER 8. APPENDICIES

mvt gamma ln.m

The below code calculates the natural logarithm of the multivariate gamma function

Γ(n, α), α > (n − 1)/2, as defined on p.61 of Muirhead (1982). From Theorem 2.1.12,

p.62 of Muirhead (1982) this can be expressed as the product of the ordinary gamma func-

tions. The calculation in the code uses this product. The logarithmic version is necessary

to avoid underflow/overflow problems
The code is self explanatory so the line by line description is omitted.

function [ln_mvt_gamma]=mvt_gamma_ln(n, alpha)

% returns the log of multivariate gamma(n, alpha) value.

% necessary for avoiding underflow/overflow problems

% alpha > (n-1)/2

% from Muirhead pp 61-62.

sum_terms=0;

for i=1:n

term_i=gammaln(alpha-.5*(i-1));

sum_terms=sum_terms+term_i;

end

ln_mvt_gamma=((n*(n-1))/4)*log(pi)+sum_terms;

ln gam pdf.m

This subroutine evaluates the density for W = ln(X), where X ∼ Γ(a, b) has a gammadis-
tribution with parameters a, b.

function [p_w, ln_p_w]=ln_gam_pdf(w, a, b)

p_w=exp(a*w)*exp(-b*exp(w))*b^a/gamma(a);

ln_p_w=a*w+-b*exp(w)+a*log(b)-gammaln(a);

% W=ln(X). Evaluates density for W=logX, where X is

% gamma(a,b)

8.1.25 Graphviz code and output

Download graphviz from http://www.graphviz.org/. Use MATLAB to input an adjacency

graph. Use the MATLAB functions for undirected and directed graphs given in Fig-

ure 8.1.25 and Figure 8.1.25 respectively to create the required format files for graphviz.

To create the .ps diagram, open an xterm in the same directory as your MATLAB output

file, and type the relevant command from Figure 8.1.25 at the command prompt.

function undirected_graph(gg,outfile);

p = size(gg,1);

fid = fopen(outfile,’w’);

266

http://www.graphviz.org

CHAPTER 8. APPENDICIES

fprintf(fid,’graph G {\p’);

for i = 1:p

for j = i:p

if (gg(i,j) == 1)

fprintf(fid,’%3.0f -- %3.0f [len=2];\p’, i,j);

end

end

end

fprintf(fid,’}\p’);

fclose(fid);

Undirected graph MATLAB interface for graphviz

function directed_graph(gg,outfile);

p = size(gg,1);

fid = fopen(outfile,’w’);

fprintf(fid,’digraph G {\p’);

for i = 1:p

for j = i:p

if (gg(i,j) == 1)

fprintf(fid,’%3.0f -> %3.0f [len=2];\p’, i,j);

end

end

end

fprintf(fid,’}\p’);

fclose(fid);

Directed graph MATLAB interface for graphviz

for an undirected graph:

neato -Tps -o u_graph1.ps u_graph1

for a directed graph:

dot -Tps -o d_graph1.ps d_graph1

Xterminal commands for using graphviz.

267

CHAPTER 8. APPENDICIES

8.2 Appendix B: Useful matrix theory

Theorem 8.2.1 (Muirhead, 1982,Theorem A5.2, p.580) Let A be a p × p nonsingular

matrix, and let B = A−1. Partition A and B as

A =

(
A11 A12

A21 A22

)
, andB =

(
B11 B12

B21 B22

)
, where A11 and A22 are nonsingular.

Put A11|2 = A11 − A12(A22)−1A21 and A22|1 = A22 − A21(A11)−1A12.

Then B11 = (A11|2)−1, B22 = (A22|1)−1, B12 = (A11)−1A12(A22|1)−1, and B21 =

(A22)−1A21(A11|2)−1.

8.3 Appendix C: Proofs of results

Lemma 8.3.1 The space of decomposable graphs becomes increasingly sparse in the space

of all graphs as p = |V | increases.

Proof. Let V = {v1, . . . , vp}, and let Ap denote the number of decomposable graphs

with vertex set V . It is easy to show that A4 = 61 (see Section 7.3). Let Bp denote

the number of simple undirected graphs on V . Clearly |Bp| = 2(
p
2) = 2p(p−1)/2. Define a

random graph Xp,1/2 as a simple undirected graph on p vertices where the probability of

any edge is 1/2 and the edges are independent. Let P be the product distribution over all

edges e ∈ E obtained as the product of the Bernoulli distribution on e with probability

1/2. The probability P(g) that Xp,1/2 = g is clearly uniform, because if g is a graph on

p vertices with m edges, then P(g) = 1
2

m 1
2
(p
2)−m = 2−(p

2) which is independent of m. We

need to show that |Ap|/|Bp| → 0 as p → ∞; i.e. P(g is chordal) → 0 as p → ∞. Partition

the vertices as C1 = {v1, v2, v3, v4}, C2 = {v5, . . . v8}, . . . , Ct = {v4t−31, . . . , v4t}, Ct+1 =

{v4t+1, . . . vp} where p/4 − 1 ≤ t ≤ p/4 is the largest integer less than or equal to p/4 and

so |Ct+1| ≤ 3. Let gCi , i = 1, . . . , t + 1 be the corresponding induced subgraphs, and note

that gCt+1 must be chordal as it contains fewer than 4 vertices. Then P(g is chordal) ≤
P(gC1 , . . . , gCt+1 are all chordal) ≤ (61/64)t → 0 as p → ∞ because the induced subgraphs

gCi of a chordal graph are all chordal, but an unchorded 4-cycle can be created by adding

edges between distinct subgraphs gCi and gCj , where j �= i.

Note that the bound is very conservative because there are many nonchordal graphs

that have chordal subgraphs gC1 , . . . , gCt+1 . For example, there many possible nonchordal

cycles of length 4 or more that can be created by adding edges between distinct chordal

subgraphs gCi and gCj , where j �= i.

Proof of Theorem 4.8.1

268

CHAPTER 8. APPENDICIES

Roverato (2000) shows that if Σ ∼ HIW (g, δ,Φ) and Ω = Σ−1 then

p(Ω|g, δ,Φ) ∝ |Ω|(δ−2)/2 etr
(
−1

2
ΩΦ

)
(8.1)

The result then follows from (4.12) since

p(Ω|y, g, δ,Φ) ∝ p(y|Ω)p(Ω|g, δ,Φ)

∝ |Ω|(n−1)/2 etr
(
−1

2
ΩSy

)
|Ω|(δ−2)/2 etr

(
−1

2
ΩΦ

)
= |Ω|(n+δ−3)/2 etr

(
−1

2
Ω (Sy + Φ)

)
.

Note that the conjugate prior result for Ω does not require the graph g to be decomposable.

Proof of Theorem 4.8.2

First

p(Y |δ,Φ, g) =
p(Y |Σ, δ,Φ, g)p(Σ|δ,Φ, g)

p(Σ|Y, δ,Φ, g)
.

The result then follows from (4.3), (4.4), (4.12) and Theorem 4.8.1.

Proof of Theorem 4.13.1

From Equation (5.23), Lemma 5.5 of Lauritzen (1996)

Ω =
k∑

i=1

[
(ΣCiCi)

−1
]V

−
k∑

i=2

[
(ΣSiSi)

−1
]V

and hence

E (Ω|Y, δ,Φ, g) =
k∑

i=1

[
E

(
(ΣCiCi)

−1 |Y, δ,Φ, g
)]V

−
k∑

i=2

[
E

(
(ΣSiSi)

−1 |Y, δ,Φ, g
)]V

.

Now Σ|Y, δ,Φ, g ∼ HIW (δ,Φ∗, g∗), so from Dawid and Lauritzen (1993), if A is a complete

set in g then (ΣAA)−1 |Y, δ,Φ, g ∼ Wishart (δ∗ + |A| − 1,Φ∗
AA). The result then follows

from the properties of the Wishart distribution.

Proof of Lemma 7.4.2

1. For a nondecomposable graph to have 4 edges it must contain exactly one chordless

4-cycle and no other edges. There are
(p
4

)
possible choices for the 4 vertices, and for

each choice of 4 vertices there are 3 different chordless 4-cycles.

2. For a graph to be nondecomposable with
(p
2

)
− 2 edges it must contain exactly one

4 cycle and all other edges must be present. Then apply the proof of the above.

269

CHAPTER 8. APPENDICIES

3. We can partition the nondecomposable graphs with 5 edges into 2 sets: (a) those

with a chordless 5-cycle and no other edges, and (b) those with a chordless 4-cycle

and an extra edge. For case (a) there are
(p
5

)
choices for the 5 vertices and for each

choice there are (5 − 1)!/2 = 12 different chordless 5-cycles. For case (b) there are(p
4

)
×3 choices for the chordless 4-cycle, and for each choice of chordless 4-cycle there

are (
(p
2

)
− 6) choices for the extra vertex pair constituting the edge.

8.4 Appendix D: FORTRAN code

MODULE graph_mod

! HELEN’s VERSION runs perfectly last update 25/08/04

! TO DO: 1) replace n by nverts throughout, VERY carefully

! 2) ensure all ’local’ vars in routines are initialised

! USE HARD COPY AND HIGHLIGHTER TO DO THIS

!

! Helen’s versions indicated

! last helen new routine next_graph_gibbs compiles and works on A12k 500 reps k_max=10

! last helen new routine 17:32 17/8/04 check_edge_add_same_component: testing gibbs routine heaps

! and no stepping outside chordal space, so i think it’s ok

! last helen new routine 14:30 7/8/04 check_edge_delete and worked ok

USE constants_mod

USE param_mod ! NOTE: n is shared variable declared here

USE random_mod

IMPLICIT NONE

INTERFACE argmax ! NOTE: in calling routine can just call argmax, not one of specific

! versions below

MODULE PROCEDURE r_argmax, i_argmax

END INTERFACE

INTERFACE setdiag

MODULE PROCEDURE setdiag01, setdiag02

END INTERFACE

CONTAINS

!!! --

FUNCTION i_argmax(v)

! input: 1. v, vector of integers

! output: returns only one number=arg of first answer if repeated inclusions

implicit none

integer, intent(in), dimension(:) :: v

integer, intent(out) :: i_argmax

270

CHAPTER 8. APPENDICIES

integer :: v1(1)

v1=maxloc(v, MASK=.TRUE.)

!the MASK argument set to TRUE is default:= "consider all elts"

!i.e. the "mask" covers some parts of the vector v

i_argmax = v1(1)

END FUNCTION i_argmax

!!! --

FUNCTION r_argmax(v)

implicit none

real(wp), intent(in), dimension(:) :: v

integer :: r_argmax

integer :: v1(1)

v1=maxloc(v,MASK=.TRUE.)

r_argmax = v1(1)

END FUNCTION r_argmax

!!! --

FUNCTION is_in(a,B)

! input: 1. B is zero one representation of NON-ORDERED set of

! non-zero integers. eg B=[1 0 1 1 0] ~ [3, 1, 4]

! 2. a is NON-ZERO element to find

! output: 0/1 for FASLSE/TRUE eg is_in(3,B)=1, is_in(5,B)=0

implicit none

integer, intent(in), dimension(:) :: B

integer, allocatable, dimension(:) :: bits

integer :: a, element, is_in

integer :: minB, maxB, i

element = 0

if (B(a) == 1) then

element = 1

endif

is_in = element

END FUNCTION is_in

!minB = minval(B,DIM=1,MASK=.TRUE.)

!maxB = maxval(B,DIM=1,MASK=.TRUE.)

!if (size(B,1)==0) then

! element = 0;

!elseif (a < minB) then

! element = 0;

!elseif (a > maxB) then

! element = 0;

!else

! allocate(bits(maxB))

! bits = 0.0

271

CHAPTER 8. APPENDICIES

! bits(B) = 1;

! element = bits(a);

!endif

!!! --

SUBROUTINE next_edge_candidate(g,edge_candidate)

!

! input: 1. g is [n,n] array where n is SHARED varibale defined in param_mod

! output: 1. edge_candidate is 1-di vector, 2 elts = edge vertices

integer, intent(in), dimension(:,:) :: g

integer, intent(out), dimension(2):: edge_candidate

integer, dimension(n) :: iota

integer :: i,j

iota=0

call randperm(iota,n)

i=iota(1); j = iota(2);

edge_candidate= iota(1:2)

END SUBROUTINE next_edge_candidate

!!! --

SUBROUTINE reachability_graph(g,reach_graph)

! input: 1. g is [n,n] array where n is SHARED varibale defined in param_mod

!

! output: 1. reach_graph is [n,n] arrary of all nodes reachable

integer, intent(in), dimension(:,:) :: g

integer, intent(out), dimension(:,:) :: reach_graph

! local variables

integer, dimension(n,n) :: A,B

integer :: i

A(n,n)=0

B(n,n)=0

A = g;

B = 0

do i=1,n-1

B = B + A;

A = matmul(A,g)

enddo

reach_graph = 0

where (B /= 0) reach_graph = 1

272

CHAPTER 8. APPENDICIES

END SUBROUTINE reachability_graph

!!! --

! SETDIAG NOTES: Fortran automatically calls the right version of the below

! two SETDIAG subroutines, via the "interface" declaration at the very beginning of

! the modules.

! NOTE: no need to say 01/02 in call

!!! --

SUBROUTINE setdiag01(M,v)

! DON’T USE THIS VERSION

! this version overwrites M with M+eye(n)

integer, intent(inout), dimension(:,:) :: M

integer, intent(in), dimension(:) :: v

integer :: i,j

if (size(v,1) == 1) then

do i = 1 , n

M(i,i) = v(1)

enddo

else

do i = 1 , n

M(i,i) = v(i)

enddo

endif

END SUBROUTINE setdiag01

!!! --

SUBROUTINE setdiag02(M,v,Mdiag)

!

! this version does NOT overwrite M

!

integer, intent(in),dimension(:,:) :: M

integer, intent(in), dimension(:) :: v

integer, intent(out), dimension(:,:) :: Mdiag

integer :: i,j

Mdiag=M

if (size(v,1) == 1) then

do i = 1 , n

Mdiag(i,i) = v(1)

enddo

else

do i = 1 , n

Mdiag(i,i) = v(i)

enddo

endif

273

CHAPTER 8. APPENDICIES

END SUBROUTINE setdiag02

!!! --

SUBROUTINE setdiff(A,B,C)

! input: 1. A(p), B(p) are each a NON-ORDERED zero one representations of sets of

! non-zero integers, but the ORDER of the call matters a lot

! setdiff(A,B,C)= A\B. eg B=[1 0 1 1 0] ~ [3, 1, 4]

! output:2. C(p) is NON-ORDERED zero one representation of setdiff(A,B)

! eg setdiff(B, [1 1 0 0 0])=[0 0 1 1 0] ~ [3,4]

integer, intent(in), dimension(:) :: A,B

integer, intent(out), dimension(:) :: C

C = A - (A*B)

END SUBROUTINE setdiff

!!! --

SUBROUTINE setunion(A,B,C)

! input: 1. A(p), B(p) NON-ORDERED zero one representations of sets of

! non-zero integers. eg B=[1 0 1 1 0] ~ {3, 1, 4}

! output:2. C(p) is NON-ORDERED zero one representation of union(A,B)

! eg setunion(B, [1 1 0 0 0])=[1 1 1 1 0] ~ {3,2, 1, 4}

integer, intent(in), dimension(:) :: A,B

integer, intent(out), dimension(:) :: C

C = A + B - (A*B) ! fortran * is elementwise

END SUBROUTINE setunion

!!! --

SUBROUTINE setintersect(A,B,C)

! input: 1. A(p), B(p) NON-ORDERED zero one representations of sets of

! non-zero integers. eg B=[1 0 1 1 0] ~ [3, 1, 4]

! output:2. C(p) is NON-ORDERED zero one representation of intersection(A,B)

! eg setintersect(B, [1 1 0 0 0])=[1 0 0 0 0] ~ {1}

integer, intent(in), dimension(:) :: A,B

integer, intent(out), dimension(:) :: C

C = A*B ! fortran * is elementwise

END SUBROUTINE setintersect

!!! --

SUBROUTINE indexes_of_nodes(vectorA, indicies)

! created by Helen 6/8/04 17:55 and works fine

! SHOULD I MAKE max_index assumed to be n thoughout?

274

CHAPTER 8. APPENDICIES

! aim: mimic matlab’s find(vectorA==1) by using vectorA as the mask in pack

! input: 1. vectorA is zero one representation of NON-ORDERED set of

! non-zero integers. eg vectorA=[1 0 1 1 0]= a clique or separator

! output: 1. indicies is sum(vectorA) length vector of indicies where vectorA==1

! eg find_indicies_equal_one(vectorA, indicies)=[3, 1, 4]

!! NOTE: prior to calling this must initialise

!! indicies as an allocatable vector of length=sum(vectorA)

integer, intent(in), dimension(:) :: vectorA

integer, intent(out),dimension(:) :: indicies

integer, allocatable, dimension(:) :: all_indicies

integer :: i, max_index, num_ones

max_index=size(vectorA, 1)

num_ones=sum(vectorA)

allocate(all_indicies(max_index))

all_indicies = 0

all_indicies = (/(i,i=1,max_index)/)

indicies=0

indicies=pack(all_indicies, vectorA /= 0)

! could alternatively write pack(all_indicies, vectorA /=0, indicies)

deallocate(all_indicies)

END SUBROUTINE indexes_of_nodes

! --

SUBROUTINE parents_node(g,a,ps)

! input: dimension(n,n) adjacency matrix g of graph and node a whose parents are

! required.

!outputs 1: dimension(n) vector ps of parent nodes

!

! NOTE: This only works if nodes in graph are ordered as per adj_mat.

! i.e. if mcs order is 1, 7, 3, 4, 2, ... then it will return

! [1 0 1 0 0 0 0]’=parents(adj_mat, 4) (=[1,3])

! which is WRONG (should be 1 7 3)

integer, intent(in), dimension(:,:) :: g

integer, intent(in) :: a

integer, intent(out), dimension(:) :: ps

ps = g(a,:)

ps(a:n) = 0

275

CHAPTER 8. APPENDICIES

END SUBROUTINE parents_node

! ps=zeros(n,1);

! nbs=neighbours_node_zo(g, a);

! works fine for no_cell version, as neighbours_node.m

! only uses vectors (no cell arrays)

! ps=nbs;

! ps(a:n,1)=0;

!!! --

SUBROUTINE neighbours_node(g,r,nbs)

! input: dimension(n,n) adjacency matrix g of graph and node r whose parents are

! required.

!outputs 1: dimension(n) vector of connected nodes (=neighbours)

!

! NOTE: This works for any mcs ordering of nodes as nbs are parents or descendants

integer, intent(in), dimension(:,:) :: g

integer, intent(in) :: r

integer, intent(out), dimension(:) :: nbs

nbs = g(:,r)

END SUBROUTINE neighbours_node

!!! --

SUBROUTINE check_chordal(G,chordal, order)

integer, intent(in), dimension(:,:) :: G

integer, intent(out),dimension(:) :: order

integer, intent(out) :: chordal

integer, dimension(n) :: numbered, iota, ones, U

integer, dimension(n) :: ulist, uint

integer, dimension(n) :: nns, ordertmp

integer, dimension(n,n) :: Gdiag

integer, allocatable, dimension(:) :: score, Upack

integer, dimension(1) :: jj ! needed as maxloc returns 1-di array, NOT a scalar

integer :: i,j,sumU,usmall

Gdiag=0

iota=0; U=0

ulist=0; uint=0; nns=0;

numbered = 0

ordertmp = 0

ones = 1

iota = (/(i,i=1,n)/)

Gdiag=0

call setdiag(G,(/1/), Gdiag); ! if use the setdiag01 which writes over G, must re-set G

! change G back into same as beginning with setdiag(G,(/0/))

276

CHAPTER 8. APPENDICIES

order = 0

chordal = 1;

numbered(1) = 1;

order(1) = 1;

do i=2,n

call setdiff(ones, numbered,U);

sumU = sum(U,1)

allocate(score(sumU))

allocate(Upack(sumU))

score = 0

Upack = pack(iota, U /= 0)

do j=1,sumU

usmall = Upack(j);

call neighbours_node(Gdiag,usmall,ulist)

call setintersect(ulist,numbered,uint)

score(j) = sum(uint,1)

enddo

deallocate(Upack)

jj=maxloc(score)

sumU = sum(U,1)

allocate(Upack(sumU))

Upack = pack(iota, U /= 0)

usmall = Upack(jj(1));

numbered(usmall) = 1

order(i) = usmall;

deallocate(Upack)

ordertmp = 0

where (order /= 0) ordertmp(order) = 1

ordertmp(i:n) = 0

call neighbours_node(Gdiag,usmall,ulist)

call setintersect(ulist,ordertmp,nns)

sumU = sum(nns,1)

allocate(Upack(sumU))

Upack = pack(iota, nns /= 0)

if (sum(sum(Gdiag(Upack,Upack),1),1) /= sumU**2) then

chordal = 0

print*, "chordal = " , chordal

return ;

endif

deallocate(Upack,score)

enddo

!call setdiag(G,(/0/)); ! alternative if use the "write over G version", so that

! G goes back to the same as passed in

277

CHAPTER 8. APPENDICIES

! print*, "chordal = " , chordal

! write(*,’(A,9(I3,2x))’) "order", order

END SUBROUTINE check_chordal

!!! --

SUBROUTINE chordal_to_ripcliques(g, order, cliques)

! created by Helen off _zo.m version

! last update Fortran: 6/8/04 14:18 AND IT WORKS!!!!!

!function [cliques, ladder]=chordal_to_ripcliques_no_mcs_zo(g, order)

! input: 1. a graph with nodes and corresponding adj_mat=g

! 2. mcs ordering, must be output of check_chordal

! output: 1. [n,n] cliques of g, st cliques(:,i) is the ith RIP ordered clique

! RIP is as per perfect mcs ordering of nodes. if

! order(j) is the ith ladder node, the ith column is the associated clique.

! (has zero cols padding to dimension [n,n] at the end

! 2. a vector of the ladder nodes, ordered as per mcs ordering

! calculated in the subroutine, with ladder(j)=order(j).

!

integer, intent(in), dimension(:,:):: g

integer, intent(in), dimension(:) :: order

integer, intent(out), dimension(:,:):: cliques

integer, dimension(n) :: pre_v, ns_v, pre_ns_v

integer, dimension(n) :: num_pre_ns, ladder

integer, dimension(n) :: v_col_i, cliques_index_non_zero_ladder

integer, dimension(n, n):: pre_ns

integer :: v,i,j, index_non_zero_ladder

ladder=0

pre_ns=0

num_pre_ns=0

! 0/1 matrix st pre_ns(:,i)=predecessor neighbs of node i in g

! = parents of node i in g wrt mcs order of g,

! NOT wrt index ordering of adjacency matrix

do i=2,n

v=order(i); ! select the ith node in the ordering, i=2, n

pre_v=0 ! initialise i dependent vectors to 0 for each i

ns_v=0 ! do NOT deallocate/allocate within loop as same size each i

pre_ns_v=0 ! these are i dependent as v=order(i), so v is order(i)^th node

! with respect to adjacency matrix and cliques matrix ordering

pre_v(order(1:i-1))=1

! in fortran, CAN have vector([3, 1, 7, 9])=value, and will do right thing

278

CHAPTER 8. APPENDICIES

! = 0/1 vector representing predecessors of v, the ith node in mcs ordering.

! NOT same as parents as predecessors in order are not necess. neighbours in g

call neighbours_node(g, v, ns_v)

!ns_v= 0/1 representation of set of neighbours of each v=order(i)

call setintersect(ns_v, pre_v, pre_ns_v);

num_pre_ns(i)=sum((pre_ns_v), 1); != number of pre_neighbours of v=ith mcs node

pre_ns(:, v)=pre_ns_v;

!= 0/1 matrix representation of set of neighbours of each v=order(i)

! do NOT reset these to zero on each i, as they are vals for all i

! must NOT deallocate pre_ns(n,n) and num_pre_ns(n)

! note these are allocated before do i=1, n endo

!find the sets of those neighbours which precede

!v=order(i) with respect to order. Store answer for cliques.

! so if order=[1 3 7 5 2 4 6], pre_ns(:,order(4)=5)=[0 0 1 0 0 0 1]’

! pre_ns =

! 0 0 1 0 0 0 1

! 0 0 0 1 0 0 0

! 0 0 0 0 1 0 1

! 0 0 0 0 0 0 0

! 0 0 0 0 0 0 0

! 0 0 0 0 0 0 0

! 0 1 0 0 1 1 0

! num_pre_ns ordered as per order (i) = 0 1 2 2 1 1 1

! corresponding to v= 1 3 7 5 2 4 6

! eg num of pre nbs of 3 for ladder test=sum(:,3), etc.

! note that the ith column

!corresponds to the pre-nbs of the ith node in order;

!i.e v=order(i), and NOT v=i. Simly for cardinality

!Need to keep variables ordered as per the

!mcs ordering, the vector called order.

enddo

!! NOTE: for ladder(i)~=0, ladder(i)=order(i)

do i=1, n

ladder(i)=0

if (i==n .or. (num_pre_ns(i) >= num_pre_ns(i+1))) then

! num_pre_ns(i)=sum(pre_ns (:, order(i)))

! = number of predecessor nbs of v=order(i)

!

! if i=n or cardinality of pre_ns decreasing with

! v=order(i), then the node v=order(i) is a ladder node.

! eg, i=4, order as above has ladder [0 0 7 5 2 4 6]

279

CHAPTER 8. APPENDICIES

! as == or decrease occurs num_pre_ns(i), i=3 4 5 6 7

! and order(3)=7,order(4)=5,order(5)=2,order(6)=4,order(7)=6.

ladder(i)=order(i) !make this v the next ladder node

endif

enddo

!!!!!!!!!!!!!!!!!!!!!!!

!!! NOTE: i output non-empty columns first, so clique ordering follows

!! matrix cliques column ordering.

!! if only 3 cliques, then cliques(:, 3:n)=zero(n,1);

!! cliques(:,i)=union of the ith non-zero ladder node and its predecessors)

!! eg cliques(:,3)=[0 1 0 0 0 0 0]+[0 0 0 0 0 0 1] = {2} U {7}

!! NOTE: for ladder(i)~=0, ladder(i)=order(i)

! num_cliques=size(find(ladder), 2);

! could find num_cliques via empty_cliques=like farids pack

! see check_chordal routine

index_non_zero_ladder=0

! initialise i dependent vars

v_col_i=0

cliques_index_non_zero_ladder=0

do i=1,n

if (ladder(i) /= 0) then

v_col_i=0 ! initialise new column vector rep. of v=ladder(i)

v_col_i(ladder(i))=1; ! ladder(i)=order(i)

index_non_zero_ladder=index_non_zero_ladder+1;

cliques_index_non_zero_ladder=0

!initialise clique with index of next NON_ZERO ladder node

call setunion(v_col_i,pre_ns(:,ladder(i)), cliques_index_non_zero_ladder)

cliques(:, index_non_zero_ladder)=cliques_index_non_zero_ladder

endif

enddo

! Theorem: cliques(index_non_zero_ladder, 1:size_cliques) are the cliques of g

! and clique ordering satisfies the RIP.

END SUBROUTINE chordal_to_ripcliques

!!! --

SUBROUTINE cliques_number_and_sizes(cliques, cliques_sizes, num_cliques)

! created by Helen 070804 14:50 and runs perfectly

! aim: return number of non-empty cliques, and sizes of each

! input: [n,n] matrix st

! clique_i=cliques(:,i), cliques(v,i)=0/1 indicator of node v in clique i

280

CHAPTER 8. APPENDICIES

! output: 1. clique_sizes(n) st clique_sizes(i)= no. nodes in clique i

! 2. num_cliques=number of non-empty cliques

integer, intent(in), dimension(:,:) :: cliques

integer, intent(out), dimension(:) :: cliques_sizes

integer, intent(out) :: num_cliques

integer, allocatable, dimension(:) :: cliques_indicator

cliques_sizes=0 ! note this can have zeros for final cols if they are empty

cliques_sizes=sum(cliques, 1) ! this is a 1xn vector of column totals

allocate(cliques_indicator(size(cliques_sizes)))

cliques_indicator=0

where (cliques_sizes > 0) cliques_indicator=1

num_cliques=sum(cliques_indicator,1)

deallocate(cliques_indicator)

END SUBROUTINE cliques_number_and_sizes

!!! --

SUBROUTINE non_empty_columns(mat_empty_cols, nnon_empty, mat_non_empty)

! aim: takes [n,n] matrix possibly containing all zero columns, and returns

! nnon_empty=number of non-empty columns (can be zero if all have element)

! and mat_non_empty=[n,nnon_empty] matrix = mat_empty_cols without the all

! zero columns.

! NOTE: this is NOT same as fortran "pack" which just makes it a 1-di array

integer, intent(in), dimension(:,:) :: mat_empty_cols

integer, intent(out), dimension(:,:):: mat_non_empty

integer, intent(out) :: nnon_empty

integer :: i, p, count, first_empty

integer, dimension(n) :: column_i

i=0

p=size(mat_empty_cols,2)

count=0

mat_non_empty=0

nnon_empty=0

first_empty=0

column_i=0

do i=1, p

column_i=mat_empty_cols(:,i)

if (sum(column_i) == 0) then

count=count+1

if (count == 1) then

281

CHAPTER 8. APPENDICIES

first_empty=i

!!!!exit

endif

endif

enddo

nnon_empty=p-count

mat_non_empty=mat_empty_cols(:, 1:first_empty-1)

END SUBROUTINE non_empty_columns

!!! --

SUBROUTINE num_non_empty_columns(mat_empty_cols, nnon_empty)

! aim: takes [n,n] matrix possibly containing all zero columns, and returns

! nnon_empty = index of last non_empty (can be zero if all have element)

! NOTE: this is NOT same as fortran "pack" which just makes it a 1-di array

integer, intent(in), dimension(:,:) :: mat_empty_cols

integer, intent(out) :: nnon_empty

integer :: i, p, count, first_empty

integer, dimension(n) :: column_i

count=0

nnon_empty=0

first_empty=0

column_i=0

do i=1, size(mat_empty_cols,2)

column_i=mat_empty_cols(:,i)

if (sum(column_i) == 0) then

count=count+1

if (count == 1) then

first_empty=i

exit

endif

endif

enddo

nnon_empty=p-count

END SUBROUTINE num_non_empty_columns

!!! --

SUBROUTINE ripcliques_to_jtree(cliques,jtree)

! this is HELEN’s version

282

CHAPTER 8. APPENDICIES

! input: 1. cliques=[n,n] matrix zero/one output of chordal_to_ripcliques_zo

! output: 2. jtree=[n,n] matrix array of associated junction tree.

!

integer, intent(in), dimension(:,:) :: cliques

integer, intent(out), dimension(:,:) :: jtree

integer, dimension(n) :: score, clique_i, sep_ik

integer :: i, j, k

clique_i=0; sep_ik=0

score=0

jtree=0

do i =2, n

clique_i=cliques(:, i)

if (sum(clique_i) > 0) then

do k=1, i-1

call setintersect(cliques(:,i), cliques(:,k), sep_ik)

score(k)=sum(sep_ik)

! must ONLY intersect with predecessor cliques in the RIP ordering

enddo

if (maxval(score) .ne. 0) then

! only add the edge if clique i IS connected to one of its

! predecessors. if score is all zeros, then clique has no intersection

! with any of its predecessors. Since the cliques are in RIP, it must

! follow that we are no longer in the same connected component of

! the graph.

! if clique i has no intersection with any of the preceding cliques,

! then the graph is disconnected, so the adjacency matrix will have

! a zero row/column for this i, and we have a forest, not a j_tree.

! add edge_ij between clique_i and the clique preceding it in the order with

! which has most intersection with clique_i

j=0

j=argmax(score)

jtree(i,j)=1

jtree(j,i)=1

endif

endif

enddo

END SUBROUTINE ripcliques_to_jtree

!!! --

SUBROUTINE separator_sizes(cliques,jtree,sepsize)

! HELEN’S VERSION

! input: 1. cliques=[n,n] matrix zero/one output of chordal_to_ripcliques_zo

! 2. jtree=[n,n] the associated junction tree.

! output: 1. a matrix array of the size of the separator sets, where

283

CHAPTER 8. APPENDICIES

! sepsize(i,j) is the number of elements in the separator set between

! adjacent cliques i and j with respect to jtree.

! NOTE: if you want a 1xnum_seps array of the separators, use

! seps_residuals_histories.m

integer, intent(in), dimension(:,:) :: jtree

integer, intent(in), dimension(:,:) :: cliques

integer, intent(out), dimension(:,:) :: sepsize

integer, dimension(n) :: sep_kj

integer :: k, j

sep_kj=0

sepsize=0

do k=1, n-1

!!if (jtree(:,i) .eq. 0) then ! NO this will be satisfied for disconnected jtrees

!!exit ! for disconnected graphs

!!end

do j=k, n

if (jtree(k,j) .eq. 1) then

sep_kj=0

call setintersect(cliques(:, k), cliques(:, j), sep_kj)

sepsize(k,j)=sum(sep_kj);

sepsize(j,k)=sum(sep_kj);

endif

enddo

enddo

END SUBROUTINE separator_sizes

!!! --

SUBROUTINE next_graph_candidate(g,jtree,sepsize,cliques,reach_graph, &

g_proposal, a,b, new_clique, CASE_add, CASE_delete);

integer, dimension(:,:) :: g,jtree,cliques,sepsize,reach_graph

integer, dimension(:,:) :: g_proposal

integer, dimension(:) :: new_clique

integer :: a,b, CASE_add, CASE_delete

integer, dimension(n) :: new_clique_potential_add, new_clique_potential_delete

integer, dimension(2) :: v

integer :: CASE1,CASE2

integer :: i,j

new_clique_potential_add=0

new_clique_potential_delete=0

new_clique = 0

284

CHAPTER 8. APPENDICIES

i=0; j=0; v=0; g_proposal=g

CASE_add=0; CASE_delete=0;

a=0; b=0;

new_clique_potential_add=0; new_clique_potential_delete=0;

CASE1=0; CASE2=0;

!print*, ALL (g_proposal == g)

do while (ALL (g_proposal == g))

call next_edge_candidate(g,v)

i=v(1); j=v(2);

if (g(i,j)==1) then

call check_edge_delete(i,j, cliques, CASE_delete, new_clique_potential_delete)

endif

if (g(i,j)==0 .and. reach_graph(i,j)==0) then

CASE1=1;

CASE_add=1; a=i; b=j;

new_clique(a)=1

new_clique(b)=1

g_proposal(i,j)=1; g_proposal(j,i)=1;

elseif (g(i,j)==0 .and. reach_graph(i,j) ==1) then

call check_edge_add_same_component(i,j,jtree,sepsize,cliques,CASE_add, new_clique_potential_add)

endif

if (g(i,j)==1 .and. CASE_delete==1) then

g_proposal(i,j)=0; g_proposal(j,i)=0;

CASE_delete=1; a=i; b=j; new_clique=new_clique_potential_delete;

elseif (g(i,j)==0 .and. reach_graph(i,j) ==1) then

if (CASE_add==1) then

a=i; b=j; new_clique=new_clique_potential_add;

g_proposal(i,j)=1; g_proposal(j,i)=1; CASE2=1;

endif

endif

enddo

END SUBROUTINE next_graph_candidate

!!! ---

SUBROUTINE check_edge_delete(v1,v2, cliques, delete_ok, clique_with_edge)

! created by Helen: 070804 16:15

!inputs: 1. v1, v2 the edge vertices (must exist)

! 2. the cliques=[n,n] matrix output of chordal_to_ripcliques in RIP

! according to the mcs order

285

CHAPTER 8. APPENDICIES

! outputs: 1. delete_ok=0/1, indicator for whether or not deletion ok

! 2. clique_with_edge(n) indicator col_vec of the clique

! which contains the edge v1, v2

!NOTE: if edge doesn’t exist, you can "delete it and remain chordal", so

!output is 1. however, don’t want to count this as a move.

integer, intent(in), dimension(:,:) :: cliques

integer, intent(in) :: v1,v2

integer, intent(out), dimension(:) :: clique_with_edge

integer, intent(out) :: delete_ok

integer :: k, counter, num_cliques, size_clique_k

! local variables

integer, dimension(n) :: cliques_sizes, clique_k, edge_zo,edge_int_clique

k=0

delete_ok=1

! initialise to ok, and make zero if "not_ok condition" NOT satisfied

! in below do loop

clique_with_edge=0

counter=0

! initialise number of cliques containing the edge i,j to 0

! but note that edge MUST be inside a clique for valid use of

! subroutine (every edge is in one clique)

!!! find the sizes of each clique, and the number of non-emtpy cliques

cliques_sizes=0

call cliques_number_and_sizes(cliques, cliques_sizes, num_cliques)

!!! create col vector representation of edge [v1,v2],

!!! and initialise intersection vector

edge_int_clique=0

edge_zo=0

edge_zo(v1)=1

edge_zo(v2)=1

do k=1,num_cliques

clique_k=0

clique_k=cliques(:,k)

size_clique_k=0

size_clique_k=cliques_sizes(k)

call setintersect(edge_zo, clique_k, edge_int_clique)

if (sum(edge_int_clique)==2) then

! since cliques are by definition complete, if a clique contains

! vertices i and j, then it contains the edge i,j.

286

CHAPTER 8. APPENDICIES

clique_with_edge=clique_k; ! if it’s ok to delete the edge, this will be the clique it’s in.

counter=counter +1

if (counter > 1) then ! could alternatively have if counter == 2, since need 1 for legal

delete_ok =0

clique_with_edge=0

exit ! exit does what i want: exits both nested internal if, AND the do loop

endif

endif

enddo

! THEORY: can ONLY delete edges that are in ONE SINGLE clique (else clique is in separator)

! draw picture and can see why

END SUBROUTINE check_edge_delete

!!! --

SUBROUTINE find_clique_containing(a,cliques,index_a)

! purpose: finds from nxn array of cliques, the index of 1st clique containing a

!NOTE: a MUST be inside one of the cliques or the routine never breaks.

! input: 1. the vertex a

! 2. cliques(n,n) zero/one matrix of NON-EMPTY cliques

! output: 1. the index of the first clique (in the order of the matrix array)

! that contains a

integer, intent(in) :: a

integer, intent(out) :: index_a

integer, intent(in), dimension(:,:) :: cliques

integer :: i,j,found

i=1; j=1; found=0;

index_a=1;

do while (found==0)

if (cliques(a,i)==1) then

index_a=i; found=1; return;

endif

if (found == 0) then

i=i+1

endif

enddo

END SUBROUTINE find_clique_containing

!!! --

SUBROUTINE check_edge_add_same_component(a,b, jtree, sepsize, cliques, edge_ok, new_clique)

! created 13/08/04 Helen Armstrong off _zo.m equivalent

! latest update 19/08/04 12:45 and is running for 30K iterations of the

! next_graph_gibbs call. so far, no problems on 18 nodes g4discon2.dat

287

CHAPTER 8. APPENDICIES

! input: 1. vertices a, b of the edge to be added. g(a,b) MUST be zero. a, b MUST be

! in SAME connected component of g.

! 2. [n,n] associated junction tree from ripcliques_to_jtree

! 3. matrix array of the size of the separator sets, where

! sepsize(i,j) is the number of elements in the separator set between

! adjacent cliques i and j with respect to jtree.

! 4. cliques=[n,n] matrix output of chordal_to_ripcliques

! output: 1. edge_ok=0(no)/1(yes)

! 2. [n,1] new_clique, the new clique

! NOTE: only works for mcs output cliques, and in same connected component.

! NOTE: ensure subroutine ONLY called by the main program if the nodes are in

! same connected component.

integer, intent(in) :: a,b

integer, intent(in), dimension(:,:) :: cliques, jtree, sepsize

integer, intent(out), dimension(:) :: new_clique

integer, intent(out) :: edge_ok

! print*, ’line 64’

! local variables

integer :: a2, b2, s, bottom, max_iterations, num_parents

integer :: tree_top, CASE_sat_on_same_branch,CASE_same_branch

integer :: CASE_sats_on_a2_branch, CASE_sats_on_b2_branch

integer :: index_a, index_b, index_a2, index_b2, next_index, index

integer :: next_parent_b2, next_parent_a2

integer :: next_ancestor_a2, next_ancestor_b2, num_int

integer :: count, index_row, index_col, num_seps_branch_a2, num_seps_branch_b2

integer :: fork, fork_index

integer :: locate_a2

integer :: quit, i, j, dummy

integer, dimension(n) :: clique_next_index

integer, dimension(n) :: ab_edge_vec, parent, clique_a2_int_clique_b2_zo

integer, dimension(n) :: ancestors_a2_zo, ancestors_b2_zo

integer, dimension(n) :: anc_a2_int_anc_b2_zo

integer, allocatable, dimension(:) :: ancestors_a2, ancestors_b2, anc_a2_int_anc_b2

! need ancestors and anc_a2_int_anc_b2 as a numeric i.e. NOT zero one rep

! initialise variables

new_clique=0

edge_ok=0

tree_top=0

fork=0

CASE_sat_on_same_branch=0

CASE_same_branch=0

CASE_sats_on_a2_branch=0

CASE_sats_on_b2_branch=0

288

CHAPTER 8. APPENDICIES

locate_a2=0

!initialise top of component to "not found". DON’T use 1, as the

!top might be >1 in a disconnected graph.

ab_edge_vec=0

ab_edge_vec(a)=1

ab_edge_vec(b)=1

quit = 0

i=0

j=0

!! Rename nodes so that a2<b2, and a2 in clique(index_a2), b2 in clique(index_b2),

!! Note that jtree indicis correspond to nodes of cliques in RIP, i.e. order of

!! node=clique is same as column index of clique.

call find_clique_containing(b, cliques, index_b)

call find_clique_containing(a, cliques, index_a);

!print*, ’a, b=’, a, b, ’index_a, index_b=’, index_a, index_b

index_b2=max(index_a,index_b)

!print*, ’max(index_a,index_b)’, max(index_a,index_b)

!index_b2 >1, since max[]>1 (Can’t have both a and b in first clique, as

! there is no edge between them. Also, |index_a -index_b|>=1.

! hence below if..else ensures correct ordering of index_a2, index_b2

! i.e. know clique(index_a2, :) precedes index_b2

! Re_name nodes so b is in clique(index_b2, :), a is in clique(index_a2, :);

if (index_b2==index_b) then

b2=b

a2=a

else

b2=a

a2=b

end if

index_a=0

index=index_b2

!print*, ’a2, b2=’, a2, b2, ’index_a2, index_b2=’, index_a2, index_b2

! find the next node up the tree: note this is unique, as in jtree is a tree

! g(a,b)=0, so they can’t be edge between, let alone in same clique

! hence no need to check that parent of b2 is non-zero, as it is higher

! of the two cliques: one containing a2, one containing b2

parent=0

call parents_node(jtree, index, parent)

next_index=i_argmax(parent)

289

CHAPTER 8. APPENDICIES

!print*, ’line 1006, index_b2-1’, index_b2-1

do dummy=1, index_b2-1

!this performs the loop at least b2-1 times if no break

! which must be sufficient to get to top of component

! note index_b2>=2, so does at least once

!print*, ’line 1010 inside do dummy=1 loop’

if (sum(parent)==0 .AND. locate_a2 == 0) then

!print*, ’line 1013 inside IF sum(parent)==0 and locate_a2==0’

! if parents empty (=[0 0 ... 0]’) and not found a2, must be at top of tree

tree_top=index

CASE_same_branch=0

!print*, ’tree tip, CASE_same_branch’,tree_top,CASE_same_branch

exit

end if

!if parent is empty AND locate_a2 ==0, then at the top of the tree and KNOW

!that index_a2 and index_b2 are on separate branches. BUT can’t

!assume the fork is tree_top. could be case of 3-2-4-5 with 1-2

!the top of tree.

clique_next_index=0

clique_next_index=cliques(:, next_index)

!print*, ’line 1029 clique_next_index’,clique_next_index

if ((clique_next_index(a2) ==1) .AND. (sum(parent) > 0)) then

! if a2 is in clique_next_index, and not at tree top

index_a2=next_index

locate_a2=1

CASE_same_branch=1

!print*, ’line 1036 locate_a2, index_a2, CASE_same_branch’,locate_a2, index_a2, CASE_same_branch

exit

end if

! if you find a2 before you get to the tree_top, then

! KNOW index_a2 and index_b2 are on same branch of tree. So

! break and set

! locate_a2 case indicator.

index=next_index

parent=0

call parents_node(jtree, index, parent)

next_index=i_argmax(parent)

!print*, ’line 1049 index, next_index’,index,next_index

! if a2 is in any clique on the same side of the root node in jtree, then

! that clique and the first clique in the RIP ordering containing b2 will be the

290

CHAPTER 8. APPENDICIES

! end points of the shortest path between 2 containing cliques for the nodes of

! the edge considered.

! performs the loop at least b2-1 times if no break, which is the longest possible

! path to the top of a connected component of the possibly disconnected

! tree.

enddo

if (CASE_same_branch==0) then

!must have locate_a2 == 0

index_a2=0

call find_clique_containing(a2, cliques, index_a2)

!print*, ’line 1065 index_a2’,index_a2

endif

! IF CASE_same_branch==0, (so locate_a2==0) then

! index_a2 for shortest path

! is first clique in RIP ordering containing a2.

clique_a2_int_clique_b2_zo=0

call setintersect(cliques(:,index_a2), cliques(:,index_b2), clique_a2_int_clique_b2_zo)

s=sum(clique_a2_int_clique_b2_zo) ! size of intersection of 2 cliques

!intersection is NOT necessarily a separator (2 cliques "far apart" in a

!connected tree can easily have empty intersection), so s is NOT

!sepsize(index_a2, index_b2). find intersection, so can test to see if

!it is a separator. In practice, only need to check that the size of

!this intersection is equal to the size of a separator on this path.

!print*, ’line 1081 clique_a2_int_b2, s’,clique_a2_int_clique_b2_zo, s

if (s==0) then

edge_ok=0

new_clique=0

quit=1

!print*, ’line 1087 edge_ok, new_clique, quit’, edge_ok, new_clique, quit

endif

! the empty set is not a separator in a connected

! tree, so condition cannot be satisfied. abort at this stage.

if (jtree(index_a2, index_b2)==1) then

edge_ok=1

call setunion(ab_edge_vec, clique_a2_int_clique_b2_zo, new_clique)

quit=1

!print*, ’line 1096 edge_ok, new_clique, quit’, edge_ok, new_clique, quit

endif

!if the cliques are adjacent in the tree, their intersection is by

!definition a separator so finished.

!!! If quit still zero, next test all the separators

!!! between clique_a2 and clique_b2 in the tree

291

CHAPTER 8. APPENDICIES

!!! at any stage,IF there exists a separator of length s,edge_ok=1,quit=1,break,end

if ((quit ==0) .AND. (CASE_same_branch==1)) then

! first consider where a2 is on same branch as b2. only need to

! test path from b2 to a2

bottom=index_b2

parent=0

call parents_node(jtree, index_b2, parent)

!print*, ’line 1112 bottom, parent’, bottom, parent

if (sum(parent)==0) then

next_parent_b2=0

else

next_parent_b2=i_argmax(parent)

endif

! if parent is empty, max(parent)=0 and i_argmax(parent)=1

! which is wrong. so must first check parent exists and

! not at top of tree component

!print*, ’line 1121 next_parent_b2’, next_parent_b2

do while((next_parent_b2>0) .AND. (next_parent_b2 >= index_a2))

! while next_parents non-empty and

if (sepsize(next_parent_b2, bottom) == s) then

edge_ok=1

call setunion(ab_edge_vec, clique_a2_int_clique_b2_zo, new_clique)

quit=1

CASE_sat_on_same_branch=1

!print*, ’line 1131 s, edge_ok, CASE_sat_on_same_branch’, s, edge_ok, CASE_sat_on_same_branch

exit

endif

! only need to test equality of size,

! since intersection contained in every intermediate clique by RIP

bottom=next_parent_b2

next_parent_b2=0

parent=0

call parents_node(jtree, bottom, parent)

if (sum(parent)==0) then

next_parent_b2=0

else

next_parent_b2=i_argmax(parent)

! next_parent_b2=find(parents_node_zo(jtree, bottom))

endif

! if parent is empty, max(parent)=0 and i_argmax(parent)=1

! which is wrong. so must first check parent exists and

! not at top of tree component

!print*, ’line 1151 bottom, next_parent_b2’,bottom, next_parent_b2

292

CHAPTER 8. APPENDICIES

enddo;

else if ((quit==0) .AND. (CASE_same_branch==0)) then

!print*, ’line 1156 (quit==0) .AND. (CASE_same_branch==0)’

! if on different branches, have to test from index_b2 and index_a2 to

! fork of branch between them. CANNOT go to edge beyond fork. Safest

! strategy is to find the fork.

!!! note that in below, parent clique=node of jtree is unique,

!! as only 1 parent in trees

! if parent is empty, max(parent)=0 and i_argmax(parent)=1

! which is wrong. so must first check parent exists and

! not at top of tree component

parent=0

call parents_node(jtree, index_a2, parent)

if (sum(parent)==0) then

next_parent_a2=0

else

next_parent_a2=i_argmax(parent)

! using i_argmax ok as parent is unique (no need for indexes_of_nodes subroutine)

! matlab==next_parent_a2 =find(parents_node_zo(jtree, index_a2))

endif

! WHAT IS BELOW ANOTHER CALL ??? FIND OUT

parent=0

call parents_node(jtree, index_b2, parent)

if (sum(parent)==0) then

next_parent_b2=0

else

next_parent_b2=i_argmax(parent)

endif

!! HELEN CHECK THIS IN SO FAR AS DIMENSIONS

allocate(ancestors_a2(index_a2), ancestors_b2(index_b2))

! already declared ancestors_a2_zo(n), ancestors_b2_zo(n)

ancestors_a2=0 ! =zeros(1, index_a2) ! need ancestors as a numeric NOT zero one rep

ancestors_b2=0 ! =zeros(1, index_b2)

!ancestors_a2 elements are actual number indicies of clique ancestors

ancestors_a2_zo=0 ! =zeros(n,1) this is the col_vec equivalent

ancestors_b2_zo=0 ! =zeros(n,1)

next_ancestor_a2=index_a2

next_ancestor_b2=index_b2

do count=1,index_a2

293

CHAPTER 8. APPENDICIES

!print*, ’line 1204 do count=1, index_a2: index_a2=’, index_a2

ancestors_a2(count)=next_ancestor_a2

ancestors_a2_zo(next_ancestor_a2)=1

parent=0

call parents_node(jtree, next_ancestor_a2, parent)

if (sum(parent)==0) then

exit ! i.e. if isempty(next_ancestor_a2), break, end

next_ancestor_a2=0

else

next_ancestor_a2=i_argmax(parent)

! using i_argmax ok as parent is unique (no need for indexes_of_nodes subroutine)

! matlab==next_ancestor_a2 =find(parents_node_zo(jtree, next_ancestor_a2))

endif

enddo

!print*, ’line 1220 ancestors_a2=’, ancestors_a2

do count=1, index_b2

!print*, ’line 1204 do count=1, index_b2: index_b2=’, index_b2

ancestors_b2(count)=next_ancestor_b2

ancestors_b2_zo(next_ancestor_b2)=1

parent=0

call parents_node(jtree, next_ancestor_b2, parent)

if (sum(parent)==0) then

exit ! i.e. if isempty(next_ancestor_b2), break, end

next_ancestor_b2=0

else

next_ancestor_b2=i_argmax(parent)

! matlab==next_ancestor_b2 =find(parents_node_zo(jtree, next_ancestor_b2))

endif

enddo

!print*, ’line 1236 ancestors_b2=’, ancestors_b2

anc_a2_int_anc_b2_zo=0

call setintersect(ancestors_a2_zo, ancestors_b2_zo, anc_a2_int_anc_b2_zo)

! replaced fork_set by anc_a2_int_anc_b2_zo

num_int=0

num_int=sum(anc_a2_int_anc_b2_zo)

!!!! HELEN CHECK BELOW IF, AND END IT

! if (num_int>0) ! ??? i think this MUST be true, as always the top of the tree in common

allocate(anc_a2_int_anc_b2(num_int))

!AFTERanc_a2_int_anc_b2=1, ! use for debugging

anc_a2_int_anc_b2=0

call indexes_of_nodes(anc_a2_int_anc_b2_zo, anc_a2_int_anc_b2)

! mimic matlab’s anc_a2_int_anc_b2=find(anc_a2_int_anc_b2_zo==1)

! input: 1. vectorA is zero one representation of NON-ORDERED set of

! non-zero integers. eg vectorA=[1 0 1 1 0]= a clique or separator

! output: 1. indicies is sum(vectorA) length vector of indicies where vectorA==1

294

CHAPTER 8. APPENDICIES

! eg find_indicies_equal_one(vectorA, indicies)=[3, 1, 4]

fork=0

fork=maxval(anc_a2_int_anc_b2)

!print*, ’line 1259 anc_a2_int_anc_b2=’, anc_a2_int_anc_b2, ’fork=’, fork

! if no maxval use below instead: mimic fork=max(anc_a2_int_anc_b2) = actual NUMBER

! i_argmax WILL find the biggest since anc_a2_int_anc_b2 is now a node rep eg [2, 5, 6]

! fork_index=0, fork_index=i_argmax(parent), fork=anc_a2_int_anc_b2(fork_index)

!AFTERfork=1, ! use for debugging

! need to find the place in the tree where the fork is, as defined

! by the clique which is at this point of intersection

! the clique where the two paths up the tree meet must be the

! biggest index in the intersection to the root.

! i.e. if they both share clique(:,3), then the path of

! ancestors for both must include the ancestors of clique(:,3)

! which if were clique2, clique1, then where the paths split is

! at clique 3 = max(find(anc_a2_int_anc_b2)))

count=1

index_row=0

index_col=0 ! initialise counters and indices

num_seps_branch_b2=sum(ancestors_b2_zo(fork+1:n))

! num_seps_branch_b2=length(find(ancestors_b2>fork))

! in a chain (=the branch of tree), the number of separators

! is the number of cliques-1. the cliques are fork=3, 4, 7=index_last_clique_in_branch

! then num_seps=sum(0 0 0 1 1 0 1 0 0)=sum(ancestors_b2_zo(fork+1:n))

!! NOTE: num_seps_branch_b2 could =zero. CHECK FORTRAN HANDLES do 1,0

!! like matlab does, by not entering loop YES I CHECKED AND IT DOES NOTHING

!!!! VERY IMPORTANT !!! only test separators between nodes clique_fork, and indicies

!!!! higher than fork i.e. further down the tree to index_b2

do count=1, num_seps_branch_b2

index_row=ancestors_b2(count)

index_col=ancestors_b2(count+1)

! sepsize is lower diagonal zero, and the ancestors are stored

! in descending order [index_b2,..., 1]

! FORTRAN version DOES have ancestors as the indicies (see above)

! as required, i.e. not a 0/1 vector

if (sepsize(index_row, index_col) == s) then

edge_ok=1

call setunion(ab_edge_vec, clique_a2_int_clique_b2_zo, new_clique)

quit=1

CASE_sats_on_b2_branch=1

295

CHAPTER 8. APPENDICIES

exit

endif

enddo

!print*, ’line 1304 num_seps_branch_b2=’,num_seps_branch_b2

!print*, ’line 1305 CASE_sats_on_b2_branch’,CASE_sats_on_b2_branch

if ((quit==0 .AND. CASE_sats_on_b2_branch==0)) then

!print*, ’line 1307 quit==0 .AND. CASE_sats_on_b2_branch==0’

! don’t want to perform the above loop if found separator=intersection.

!INSIDEif=1, !use to debug

num_seps_branch_a2=sum(ancestors_a2_zo(fork+1:n))

! num_seps_branch_a2=length(find(ancestors_a2>fork));

! in a chain (=the branch of tree), the number of separators

! is the number of cliques-1. the cliques are fork=3, 4, 7=index_last_clique_in_branch

! then num_seps=sum(0 0 0 1 1 0 1 0 0)=sum(ancestors_a2_zo(fork+1:n))

!print*, ’num_seps_branch_a2=’, num_seps_branch_a2

do count =1, num_seps_branch_a2

index_row=ancestors_a2(count+1)

index_col=ancestors_a2(count);

! sepsize is lower diagonal zero, and the ancestors are stored

! in descending order [index_a2,..., 1]

if (sepsize(index_row, index_col) == s) then

edge_ok=1

call setunion(ab_edge_vec, clique_a2_int_clique_b2_zo, new_clique)

quit=1

CASE_sats_on_a2_branch=1

exit

endif

enddo

!deallocate(ancestors_a2)

endif

!print*, ’line 1329 num_seps_branch_a2, CASE_sats_on_a2_branch’,num_seps_branch_a2, CASE_sats_on_a2_branch

!print*, ’line 1324 deallocate next’

deallocate(ancestors_a2, ancestors_b2, anc_a2_int_anc_b2)

endif !!!!!!!!!!!!!!!!!!!!!!! ENDIF the first main cases

!!!

if (quit==0) then

edge_ok=0

new_clique=0

endif

296

CHAPTER 8. APPENDICIES

END SUBROUTINE check_edge_add_same_component

!!! --

SUBROUTINE next_graph_gibbs(k_max, Ank_est_real, &

g_current, size_g_current, order, cliques, jtree, sepsize, reach_graph, &

g_next, size_g_next)

! function [g_next, size_g_next,jtree, sepsize, cliques, reach_graph]=...

! next_graph_gibbs(g_current, size_g_current, n, k_max, Ank_est,...

! jtree, sepsize, cliques, reach_graph)

! created 25/08/04 Helen Armstrong off _zo.m equivalent

! latest update 26/08/04 (found error=ladder not initialised zero)

! generates next graph using gibbs sampler and systematic choice of ij.

! ignore draws ij outside space

! i.e. DONT count g_ij_next=g_ij when at edge ij=x, and ij=~x is not decomp

! or exceeds maximum number of edges to learn=k_max.

! current_graph is decomposable, so doing gibbs via check edge add/delete

! will also be decomposable

! Uses the priors of robert’s notes:

! p(g) is prop to size(g), where size(g)=num edges in g,

! p(g|size(g))=1/An,size(g) i.e. uniform =1/num_graphs_of_size(g).

!!

! systematically go through all edges. Otherwise at boundary,

! q(x->y) =proposal_generating density NOT

! same as interior q=proposal_generating density, as

! nC2 poss. for interior, only k_maxC2 at boundary k_max

! NOTE: for Gibbs, ONE iteration is n*(n-1)/2 steps. Each is

! a sequential update of Jij, i=1:n, j=1:n-1

integer, intent(in) :: k_max, size_g_current

! integer, intent(inout) :: u_all_index

real(wp), intent(in), dimension(:) :: Ank_est_real !, u_all

integer, intent(in), dimension(:,:) :: g_current

integer, intent(inout), dimension(:) :: order

integer, intent(inout), dimension(:,:) :: cliques, jtree, sepsize, reach_graph

! NOTE: the main routine doesn’t need order, or ladder, so long as it has cliques, etc

integer, intent(out) :: size_g_next

integer, intent(out), dimension(:,:) :: g_next

! local variables

integer :: i,j, index, jj

integer :: size_g_ij, skip_j

integer :: check

297

CHAPTER 8. APPENDICIES

integer :: Jij, CASE_add, CASE_delete

integer :: accept0, reject0

real(wp):: u, L, inv_pi_1, inv_pi_o, normalised_p

integer, dimension(n) :: old_clique_with_deletable_edge, new_clique

integer, dimension(n,n) :: g_ij, g_ij_next

!! ONLY update following if g_ij_next isn’t same as the previous g_ij=g_ij

!! NOTE: for i=1, j=2 initial case, always equal, so use input to function values.

!! DO NOT CLEAR g_crnt input, as need at last few lines

!! NOTE: for Gibbs, ONE iteration is n*(n-1)/2 steps. Each is

!! a sequential update of Jij, i=1:n, j=1:n-1

g_ij=g_current

g_ij_next=g_current ! initialise routine g_ij values

size_g_ij= size_g_current

i=0

j=0

do i= 1, n-1

do j=i+1, n

skip_j=0

! indicator for outside space {size<=k_max, decomposable}

! skip_j=1 means "skip this j, outside space if Jij"

!!!!!! ONLY update following if g_ij_next isn’t same as the previous g_ij=g_ij

!!!!!! NOTE: for i=1, j=2 initial case, always equal, so use input to function values.

if (.not.(all(g_ij==g_ij_next))) then

order=0

cliques=0

jtree=0

sepsize=0

reach_graph=0

g_ij=0

size_g_ij=0

g_ij=g_ij_next ! update g_ij (the current graph)

size_g_ij=sum(g_ij)/2 ! size is number of edges

call check_chordal(g_ij, check, order)

!print*, ’==’

!print*, ’order=’, order

!print*, ’==’

!print *, ’g_ij=’

! do index = 1 , n

! write(*,999) (g_ij(index,jj), jj=1,n) ! shortcut do loop

! enddo

!print*, ’==’

298

CHAPTER 8. APPENDICIES

call chordal_to_ripcliques(g_ij, order, cliques) !find cliques for next_graph_candidate

!print *, ’THIS IS THE CLIQUES TO CHECK cliques=’

! do index = 1 , n

! write(*,999) (cliques(index,jj), jj=1,n) ! shortcut do loop

! enddo

!print*, ’==’

call ripcliques_to_jtree(cliques, jtree) !create jtree for next_graph_candidate

call separator_sizes(cliques, jtree, sepsize) !find seps for next_graph_candidate

call reachability_graph(g_ij, reach_graph) !get connected components for n_g_cand

endif

!! Proposal graph must be from allowable space;

! i.e. have s(g)<=k_max, and decomposable

! i.e. only select an edge so that Jij=0 or Jij=1 is inside conditional space

Jij=g_ij(i,j)

CASE_add=0; CASE_delete=0;

if ((size_g_ij==k_max) .AND. (Jij==0)) then

skip_j=1

!print*, ’case ((size_g_ij==k_max) .AND. (Jij==0))’

! outside space: Jij are "edges to change in CURRENT graph". Can’t add

! edge as size=k_max, so sampling dist. for Jij degenerate.

! p(Jij=1|rest)=0, p(Jij=0|rest)=1

! So skip this Jij parameter.

endif

if ((size_g_ij==k_max) .AND. (Jij==1)) then

!print*, ’case (size_g_ij==k_max) .AND. (Jij==1))’

!print*, ’before re-doing CASE_delete=’,CASE_delete

!print*, ’size_g_ij, cliques’, size_g_ij

!print*, ’==’

!print *, ’CHECK CASE DELETE cliques=’

! do index = 1 , n

! write(*,999) (cliques(index,jj), jj=1,n) ! shortcut do loop

! enddo

!print*, ’==’

!print *, ’g_ij=’

! do index = 1 , n

! write(*,999) (g_ij(index,jj), jj=1,n) ! shortcut do loop

! enddo

!print*, ’==’

call check_edge_delete(i,j, cliques, CASE_delete, old_clique_with_deletable_edge)

!print*, ’after re-doing CASE_delete=’, CASE_delete

if (CASE_delete==1) then

!print*, ’case (size_g_ij==k_max) .AND. (Jij==1)) AND CASE_delete==1’

299

CHAPTER 8. APPENDICIES

skip_j=0

!print*, ’RIGHT PLACE SKP J’, skip_j

else ! can’t delete so skip j

skip_j=1

!print*, ’case (size_g_ij==k_max) .AND. (Jij==1)) AND CASE_delete==0’

! deletion of Jij gives not decomposable, and

! deg. sampling distribution p(Jij=1|rest)=1, p(Jij=0|rest)=0.

! Can’t change this Jij so don’t count it as valid

! "next Jij" to update; i.e. skip this Jij choice

endif

endif

if ((size_g_ij< k_max) .AND. (Jij==1)) then

call check_edge_delete(i,j, cliques, CASE_delete, old_clique_with_deletable_edge)

if (CASE_delete==1) then

skip_j=0

!print*, ’case (size_g_ij<k_max) .AND. (Jij==1)) AND CASE_delete==1’

else

skip_j=1

endif

endif

if ((size_g_ij<k_max) .AND. (Jij==0)) then

!print*, ’case (size_g_ij<k_max) .AND. (Jij==0)’

if (reach_graph(i,j)==0) then

skip_j=0

endif

!!! NO NEED TO CHECK CASE ADD.

! if i and j are in different connected components of a decomposable

! graph, then new graph containing edge between them is also

! decomposable.

! if adding edge a-b between 2 disjoint trees, new clique

! containing that edge must be comprised soley of edge nodes a,b

if (reach_graph(i,j)==1) then

call check_edge_add_same_component(i,j, jtree, sepsize, cliques, CASE_add, new_clique)

! i,j must be in same connected component of

! tree for check_edge_add.m

if (CASE_add /= 1) then

skip_j=1

endif

endif

endif ! if (size_g_ij<k_max & Jij==0)

!!!!!!!!! Only randomly select Jij if skip_j==0

!!!!!!!!! Else just ignore this Jij and move to next j

!!!!!!!!! Will do GIBBS based on cdf for Jij=0, Jij=1 order, so only test

!!!!!!!!! u vs p(Jij=0) line (see notes in MCMC GIBBS stuff

300

CHAPTER 8. APPENDICIES

!!!!!!!!! Test is based on size of CURRENT graph where you ignore Jij itself,

!!!!!!!!! Then pi_o, pi_1 depend on size(g_ij with Jij=0), and size(g_ij with Jij=1)

!!! NOTE to helen: it’s ok not to check for "if case delete =, if add=" because

!!! we know (because skip_j=0) that Jij can be either 0 or 1. So either is decomposable,

!!! and within space size <=k_max. Hence, so long as know size of current graph, can

!!! work out bivariate distribution from which to randomly select Jij.

!print*, ’test to see if skip j=’, skip_j

if (skip_j==0) then

!print*, ’case (skip_j==0)’

if (Jij==1) then ! Jij=g_ij(i,j)

inv_pi_o=Ank_est_real(size_g_ij-1+1)

inv_pi_1=Ank_est_real(size_g_ij+1)

! Phi=Phi_o, Phi_1,.. so size=k is Phi(1,k+1)

! Currently Jij=1

! So UNNORMALISED

! pi_0 of Jij=0|rest=1/(Phi(size(g_ij)-1) +1)

! pi_1= of Jij=1|rest=1/(Phi(1, size(g_ij) +1).

! i.e if g_ij(i,j) currently 1,

! p(Jij=0)=p(g_Jij,rest)=p(’g_ij with Jij deleted’)

! but p(Jij=1)=p(g_Jij,rest)=p(g_ij) as g_ij(i,j) currently=Jij

else ! Jij=0 already is only other possibility

inv_pi_o=Ank_est_real(size_g_ij+1)

inv_pi_1=Ank_est_real((size_g_ij+1)+1)

! Currently Jij=0.

! pi for Jij=0|rest=1/Phi(size(g_ij) +1).

! pi for Jij=1|rest=1/(Phi(1,size(g_ij)+1+1),

! since g_Jij,rest=g_ij + extra edge Jij=1 if g_ij(i,j)=0, etc

endif ! if Jij==1/0

!!!!!! Now normalise bivariate pi_o, pi_1 via

!!!!!! normalised =pi_o/(pi_o+pi_1), =pi_1/(pi_o+pi_1).

! Then can randomly draw the next Jij from this bivariate

! distribution. Note that the u test below is not metropolis

! hastings test, but just a way to draw from the bivariate

! distribution normalised_p, a single normalised_p based on pi_o via

! it’s cdf graph. (Gibbs actually=MH with q(x,y) prop p(x,y), a

! symmetric MH density that satisfies reversibility (see Chibb, Greenberg))

!! working precision pi_o=1/Ank-1 ~0, so

!! use L=pi_0/pi_1=inv_pi_1/inv_pi_o=A_nk/A_nk-1 (actually use Phi guesses)

! Ank’s only one apart should be of same order.

! hence L is close to 1, or at least order .01-100

! so DON’T take logs as log 1=0.

301

CHAPTER 8. APPENDICIES

! might need to do cases using inv(L) for test

! i.e. do gibbs on case pi_1 rather than pi_0

! refer ed’s program

call r_uniform(u)

! u_all_index=u_all_index+1 for debugging, use a fixed data set of uniform

! u=u_all(u_all_index)

normalised_p=0.0_wp

L=inv_pi_1/inv_pi_o ! = pi_o/pi_1, so TEST BASED on Jij=0 ie Ank/Ank-1

normalised_p=L/(1+L) ! = prob(Jij=1|rest, decomposable, size<=k_max)

if (u < normalised_p) then

accept0=1

g_ij_next=g_ij

g_ij_next(i,j)=0

g_ij_next(j,i)=0

! print*, ’[i,j], Jij, accept0’, Jij, accept0, (/i, j/)

else ! Jij bivariate=0/1. if not zero, must be 1 (gibbs)

reject0=1

g_ij_next(i,j)=1

g_ij_next(j,i)=1

!print*, ’[i,j], Jij, reject0’, Jij, reject0, (/i,j/)

endif

!print*, ’u, u_all_index, L, normalised_p’, u, u_all_index, L, normalised_p

endif ! if skip_j==0

enddo ! for j loop

enddo ! for i loop

!!!! end GIBBS generate g_next via updating all Jij sequentially

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! the final output is the last graph you’re at after all updates

! if it’s not same as g_current inputted, then update all inputs

! NOTE: you CANNOT do test g_ij, g_ij_next as these might be the same,

! but the input g_current may not be the same as the current g_ij_next

g_next=g_ij_next ! the final output is the last graph you’re at after all updates

size_g_next=sum(g_next)/2

if (.not.(all(g_current== g_next))) then ! CANNOT do test g_ij, g_ij_next (see above)

cliques=0; jtree=0; order=0;

sepsize=0; reach_graph=0;

call check_chordal(g_next, check, order)

call chordal_to_ripcliques(g_next, order, cliques)

call ripcliques_to_jtree(cliques, jtree)

call separator_sizes(cliques, jtree, sepsize)

call reachability_graph(g_next, reach_graph)

endif

302

CHAPTER 8. APPENDICIES

!print*, ’size_g_next’, size_g_next

!print*, ’==’

!print *, ’g_next=’

! do index = 1 , n

! write(*,999) (g_next(index,jj), jj=1,n) ! shortcut do loop

! enddo

!print*, ’==’

!print*, ’skip_j=’, skip_j

!print*, ’==’

!999 format(25I5) ! make the format 20 integers, each I=integer is 5 spaces

END SUBROUTINE next_graph_gibbs

!!! --

END MODULE graph_mod

303

CHAPTER 8. APPENDICIES

304

Bibliography

Atay-Kayis, A. & Massam, H. (2005). A Monte Carlo method to compute the marginal

likelihood in non decomposable graphical gaussian models. Biometrika in press.

Barnard, J., McCulloch, R., & Meng, X. (2000). Modeling covariance matrices in

terms of standard deviations and correlations, with application to shrinkage. Statistica

Sinica 10, 1281–1311.

Brooks, S., Giudici, P., & Roberts, G. O. (2003). Efficient construction of reversible

jump Markov chain Monte Carlo proposal distributions (with discussion). J. Royal

Statistical Society B 65, 3–55.

Brown, P., Fearn, T., & Vannucci, M. (1999). The choice of variables in multivariate

regression: a non-conjugate Bayesian decision theory approach. Biometrika 86, 635–648.

Brown, P., Vannucci, M., & Fearn, T. (1998). Multivariate Bayesian variable selec-

tion and prediction. Journal of the Royal Statistical Society, Series B 60, 627–641.

Brown, P., Vannucci, M., & Fearn, T. (2002). Bayes model averaging with selection

of regressors. Journal of the Royal Statistical Society, Series B 64, 519–536.

Castelo, R. & Wormald, N. (2001). Enumeration of p4-free chordal graphs. Journal

of Graphs and Combinatorics (in press), or Universiteit Utrecht, Technical Report UU-

CS-2001-12, June 2001.

Chiu, T., Leonard, T., & Tsui, K. (1996). The matrix-logarithm covariance model.

Journal of the American Statistical Association 81, 310–20.

Cripps, E., Carter, C., & Kohn, R. (2005). Variable selection and covariance selection

for multivariate regression models. In Dey, D. & Rao, C., editors, Handbook of Statistics

25: Bayesian Thinking: Modeling and Computation, chapter 18, pages 519–552. Elsevier

B. V., Amsterdam.

305

BIBLIOGRAPHY

Dawid, A. (1979). Conditional independence in statistical theory. J. Royal Statistical

Society B .

Dawid, A. (1981). Some matrix-variate distribution theory: notational considerations and

a Bayesian application. Biometrika 68, 265–274.

Dawid, A. P. & Lauritzen, S. (1993). Hyper Markov laws in the statistical anlaysis of

decomposable graphical models. The Annals of Statistics 21, 1272–1317.

Dellaportas, P. & Forster, J. (1999). Markov chain Monte Carlo model determination

for heirachical and graphical log-linear models. Biometrika 86, 615–633.

Dellaportas, P., Giudici, P., & Roberts, G. (2004). Bayesian inference for non-

decomposable graphical Gaussian models. Sankyha, Series A.

Dempster, A. (1972). Covariance selection. Biometrics 28, 157–175.

Dempster, A. P. (1969). Elements of Continuous Multivariate Analysis. Addison-Wesley,

Reading, MA.

Diggle, P., Heagerty, P., Liang, K., & Zeger, S. (2002). Analysis of longitudinal

data. Oxford University Press.

Drton, M. & Perlman, M. D. (2004). Model selection for Gaussian concentration

graphs. Biometrika 91, 591–602.

Efron, B. & Morris, C. (1976). Multivariate Empirical Bayes estimation of covariance

matrices. Annals of Statistics 4, 22–32.

Frydenberg, M. & Lauritzen, S. (1989). Decomposition of maximum likelihood in

mixed interaction models. Biometrika 76, 539–555.

Geiger, D. & Heckerman, D. (2002). Parameter priors for directed acyclic graphical

models and the characterization of several probability distributions. Annals of statistics

30, 1412–1440.

Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2000). Bayesian Data Analysis.

Chapman and Hall/CRC.

Giudici, P. (1996). Learning in graphical Gaussian models. In J. Berger, J. M. Bernardo,

A. P. D. & Smith, A. F. M., editors, Bayesian Statistics 5: Proceedings of the Fifth

Valencia International Meeting, June 5-9, 1994, pages 621–628. Oxford University Press.

306

BIBLIOGRAPHY

Giudici, P. & Castelo, R. (2003). Improving Markov chain Monte Carlo model search

for data mining. Machine learning 50, 127–158.

Giudici, P. & Green, P. J. (1999). Decomposable graphical Gaussian model determi-

nation. Biometrika 86, 785–801.

Grone, R., Johnson, C., Sa, E., & Wolkowice, H. (1984). Positive definite comple-

tions of partial Hermitian matrices. Linear Algebra Applications 58, 109–124.

Hammersley, J. M. & Clifford, P. E. (1971). Markov fields on finite graphs and

lattices. Unpublished manuscript.

Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., & West, M. (2005).

Experiments in stochastic computation for high-dimensional graphical models. Statistical

Science 20, 388–400.

Kalmanson, K. (1986). An introduction to discrete mathematics and applications.

Addison-Wesley Publishing Company.

Kohn, R., Smith, M., & Chan, D. (2001). Nonparametric regression using linear

combinations of basis functions. Statistics and Computing 11, 313–322.

Larner, M. (1996). Mass and its relationship to physical measurements. Technical Report

MS305 Data Project, Department of Mathematics, University of Queensland. The data

can be downloaded from http://www.statsci.org/data/oz/physical.html.

Lauritzen, S. L. (1996). Graphical models. Oxford University Press.

Leimer, H.-G. (1989). Triangulated graphs with marked vertices. In L.D. Andersen,

C. Thomassen, B. T. & (ed.), P. V., editors, Graph Theory in Memory of G. A. Dirac,

volume 41 of Annals of Discrete Mathematics. Elsevier Science Publishers B.V. (North

Holland), Amsterdam.

Liechty, J. C., Liechty, M. W., & Müller, P. (2004). Bayesian correlation estima-

tion. Biometrika 91, 1–14.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. London:

Academic Press.

Muirhead, R. (1982). Aspects of Multivariate Statistical Theory. Wiley.

307

http://www.statsci.org/data/oz/physical.html

BIBLIOGRAPHY

Odell, P. & Feiveson, A. (1966). A numerical procedure to generate a sample covari-

ance matrix. Journal of the American Statistical Association .

Paulsen, V. I., Power, S. C., & Smith, R. R. (1989). Schur products and matrix

completion. Journal of Functional Analysis 85, 151–78.

Roverato, A. (2000). Cholesky decomposition of a hyper inverse Wishart matrix.

Biometrika 87, 99–112.

Roverato, A. (2002). Hyper inverse Wishart distribution for non-decomposable graphs

and its application to Bayesian inference for Gaussian graphical models. Scandinavian

Journal of Statistics 29, 391–411.

Roverato, A. & Whittaker, J. (1998). The isserlis matrix and its application to

non-decomposable graphical Gaussian models. Biometrika 85, 711–725.

Smith, M. & Kohn, R. (1996). Nonparametric regression using bayesian variable selec-

tion. Journal of Econometrics 75, 317–342.

Smith, M. & Kohn, R. (2002). Bayesian parsimonious covariance matrix estimation for

longitudinal data. Journal of the American Satistical Association 87, 1141–1153.

Speed, T. & Kiiveri, H. T. (1986). Gaussian Markov distributions over finite graphs.

Annals of Statistics 14, 138–150.

Sundberg, R. (1975). Some results about decomposable (or Markov-type) models for

multidimensional contingency tables: Distribution of marginals and partitioning of tests.

Scandinavian journal of statistics 2, 71–79.

Tarjan, R. & Yannakakis, M. (1984). Simple linear time algoithms to test chordality of

graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs. SIAM

journal of computing .

Wermuth, N. (1976). Analogies between multiplicative models in contingency tables and

covariance selection. Biometrics 32, 95–108.

Wermuth, N. (1980). Linear recursive equations, covariance selection, and path analysis.

Journal of the American Statistical Association 75, 963–972.

Wong, F., Carter, C., & Kohn, R. (2003). Efficient estimation of covariance selection

models. Biometrika 90, 809–830.

308

BIBLIOGRAPHY

Wong, K. F. K. (2002). An efficient sampler for decomposable covariance selection model.

Master’s thesis, The Hong Kong University of Science and Technology.

Wormald, N. (1985). Counting labelled chordal graphs. Graphs and combinatorics 1,

193–200.

Yang, R. & Berger, J. (1994). Estimation of a covariance matrix using the reference

prior. Annals of Statistics 22, 1195–1211.

309

	Title Page: Bayesian estimation of decomposable Gaussian graphical models
	Abstract
	Acknowledgements
	Table of Contents

	Chapter 1 - Introduction
	Chapter 2 - Introduction to Gaussian graphical models
	Chapter 3 - Decomposable graphical models
	Chapter 4 - Bayesian covariance selection models
	Chapter 5 - Variable and covariance selection in multivariate regression models
	Chapter 6 - Reduced conditional sampling for variable and covariance selection in multivariate regression models
	Chapter 7 - Evaluating and assessing the size prior for a graph
	Chapter 8 - Appendicies
	Bibliography

