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Abstract

From the moment we wake up each morning, we are faced with countless choices. Should

we press snooze on our alarm? Have toast or cereal for breakfast? Bring an umbrella?

Agree to work on that new project? Go to the gym or eat a whole pizza while watching

Netflix? The challenge when studying decision-making is to collapse these diverse scenarios

into feasible experimental methods. The standard theoretical approach is to represent

options using outcomes and probabilities and this has provided a rationale for studying

decisions using gambling tasks. These tasks typically involve repeated choices between a

single pair of options and outcomes that are determined probabilistically. Thus, the two

sections in this thesis ask a simple question: are we missing something by using pairs of

options that are divorced from the context in which we make choices outside the psychology

laboratory?

The first section focuses on the impact of extreme outcomes within a decision con-

text. Chapter 2 addresses whether there is a rational explanation for why these outcomes

appear in decisions from experience and numerous other cognitive domains. Chapters 3-5

describe six experiments that distinguish between plausible theories based on whether they

measure extremity as categorical, ordinal, or continuous; whether extremity refers to the

centre, the edges, or neighbouring outcomes; whether outcomes are represented as types or

tokens; and whether extreme outcomes are defined using temporal or distributional char-

acteristics. In the second section, we shift our focus to how people perceive uncertainty.

We examine a distinction between uncertainty that is attributed to inadequate knowledge

and uncertainty that is attributed to an inherently random process. Chapter 6 describes

iii



three experiments that examine whether allowing participants to map their uncertainty

onto observable variability leads them to perceive it as potentially resolvable rather than

purely stochastic. We then examine how this influences whether they seek additional in-

formation. In summary, the experiments described in these two sections demonstrate the

importance of context and uncertainty in understanding how we make decisions.
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Chapter 1

General introduction

The most recent US presidential election was shrouded in speculation about an event that

would usually be considered unlikely. What would happen if one of the major candidates

dropped from the race during the campaign? As one newspaper headline contemplated,

“Trump drops out. Biden gets sick. Pence is fired. What if 2020 gets really crazy?” (J. F.

Harris & Lippman, 2020). Despite its salience during this particular election, this question

was addressed nearly seventy years prior when Arrow (1951) asked how an analogous

situation should influence constituents’ preferences regarding the other candidates. His

proposed answer was that the winner should be determined by “blotting out the dead

candidate’s name, and considering only the orderings of the remaining names” (p. 26).

In essence, why should your preference for one candidate over another change based

on the availability of a third? If you were never going to choose that candidate either

way or it has become unavailable, there is simply no reason why it should influence the

option that you eventually select. To illustrate this further, consider a scenario in which

a customer in a restaurant orders pizza from a menu that includes risotto as the daily

special. Upon collecting the menu the waiter realises that it contains the special from the

previous day and informs the customer that the special for today is, in fact, the gnocchi.

Upon receiving this information, it would be strange if the customer were to respond with,

1



CHAPTER 1. GENERAL INTRODUCTION

“In that case, I’ll take the lasagne”.

This process of blotting out options that are inferior or unavailable has been proposed

as one of the foundational axioms of decision theory (Luce, 1959). It governs how people

should make decisions and is an appealing picture for the scientist attempting to make

sense of decision-making. It seemingly allows them to carve nature at its joints—into pairs

of options—examine each preference in isolation, and construct an explanation by treating

isolated preferences like Lego bricks. Whilst this is enticing, there is considerable evidence

that this approach fails to adequately capture the decisions that people actually make.

Already by the early 1970s, Luce had conceded that “it is clear from many experi-

ments that the conditions under which the choice axiom hold are surely delicate” (Luce,

1977, p. 215). Countless experiments have examined these conditions throughout the

course of the subsequent decades and the unambiguous conclusion is that the way people

evaluate options is influenced by the environments in which they are encountered (Huber

et al., 1982; Parducci, 2011; Ronayne & Brown, 2017; Simonson, 1989; Spektor et al.,

2018; Stewart et al., 2003; Tversky, 1972). Therefore, the axiom that options are evalu-

ated as hermetically sealed units appears to describe a world that is materially di�erent

from the one that cognitive scientists are attempting to explain (Cartwright, 1999; Giere,

1999).

To make things worse, this a�iction is not unique to the role of context and extends

more generally to theories of decision-making under uncertainty. Simon (1982) observed

that the expected utility model “is a beautiful object deserving a prominent place in

Plato’s heaven of ideas”, but continued that “vast di�culties make it impossible to employ

it in any literal way in making actual human decisions” (p. 13). Although these models

are valuable in the small worlds that conform to their assumptions, this is an exception

rather than the rule (Ellsberg, 1961; Keynes, 1921; Knight, 1921; Savage, 1954). Many

decisions involve long run frequencies that are not stationary, possible outcomes that are

not defined, situations that are di�cult to categorise, small inaccuracies that lead to large

errors, mechanisms that are not understood, and other assumptions that are violated in

2



practice (A. Gelman, 2018).

Similar criticisms of decision theory have circulated since at least the early 1700s

when Nicholas Bernoulli raised what has become known as the St. Petersburg problem.

These arguments are nothing new and neither are their rebuttals. For example, Friedman

(1953) argued that “the relevant question to ask about the ‘assumptions’ of a theory is

not whether they are descriptively ‘realistic’, for they never are, but whether they are

su�ciently good approximations for the purpose in hand” (p. 14). In other words, simply

pointing out that Homo economicus deviates from Homo sapiens is almost as misguided

as debunking the frictionless planes of Galileo (McMullin, 1985). These models were born

refuted because they were conceived as idealisations and emphasising their falsehood would

be merely tilting at windmills (Lakatos, 1978; Potochnik, 2017; Wimsatt & Wimsatt,

2007).

It would be similarly misguided to suggest that these criticisms have been overlooked

or ignored. Indeed, the heuristics and biases research programme that has dominated the

field over the last half-century focuses heavily on deviations from probability theory. We

all know that humans are not intuitive statisticians. Instead, our motivation for discussing

these assumptions was eloquently summarised by Lopes (1983):

Everyone knows about risk from experience, and most people would agree that

it has to do with uncertainty and with the possibility of loss. But the best

way to discover how psychologists define risk is to study their experiments on

risk. One feature stands out clearly: The simple, static lottery or gamble is as

indispensable to research on risk as is the fruit fly to genetics. The reason is

obvious; lotteries, like fruit flies, provide a simplified laboratory model of the

real world, one that displays its essential characteristics while allowing for the

manipulation and control of important experimental variables (p. 137).

Our point, following Lopes, is that cognitive scientists know that these models are

descriptively inadequate but that their methods betray their roots in early 20th century

3



CHAPTER 1. GENERAL INTRODUCTION

economic theory. Our point is also that they use these methods for a reason. Experiments

that study decisions from experience almost exclusively present participants with a single

pair of options and assume that they interpret uncertainty as probability (for a review, see

Wul� et al., 2018). This approach to studying decision-making, epitomised in the classic

bandit task, is well-suited to the good experimentalist.1 It allows them to manipulate

the variables in their theories and has led to the discovery of numerous robust empirical

regularities, such as the under-weighting of rare events (Hertwig et al., 2004).

We are drawn to tasks that allow us to precisely control these variables but we also

need to reflect on what might be lurking in the shadows. We know that context influences

our decisions and we know that people deviate from the laws of probability. These variables

have been investigated in tasks where participants were given explicit descriptions about

outcomes and probabilities but are usually neglected when this information is acquired

through experience. One pragmatic reason is that learning through experience requires

multiple encounters with each option and this quickly becomes infeasible when there are

too many. Moreover, researchers are often interested in the asymptotic preferences that

people acquire with su�cient knowledge but these preferences can take hundreds of trials

to stabilise (Luce & Suppes, 1965).

As a consequence, there is no standard laboratory model for studying the influence

of context in decisions from experience and this makes the assumption that options can be

studied in isolation all the more enticing. There is similarly no good model for examining

di�erent interpretations of uncertainty and we usually resort to methods that manipulate

uncertainty using static probabilities. This substitution does not arise because cognitive

1The bandit task is a common experimental method that has been used since the
1950s to examine how people make decisions from experience (Goodnow, 1955). Its name
refers to the one-armed bandit, which was a classic gambling machine that had a single
handle (arm). Each option in the standard bandit task is analogous to a one-armed bandit
machine. The participant can click on the option (pull the handle) and experience feedback
on the number of points earned (see whether they have won). The one-armed bandit used
static probabilities and this has carried over to its laboratory counterpart. The bandit task
almost exclusively employs a single pair of options but some notable exceptions include the
Iowa gambling task (Bechara et al., 1994) and experiments examining exploration (Daw
et al., 2006; Schulz et al., 2018; Wu et al., 2018).
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scientists are oblivious to the di�erences between bandit tasks and real world decisions.

You would never accuse a geneticist of being unable to distinguish between their Drosophila

melanogaster subjects and their Homo sapiens colleagues. Although there are countless

di�erences, enough of their genome has been conserved that many human genes have

matching Drosophila sequences.

The reason that model organisms can di�er extensively from their targets is that

they are similar in the ways that matter for the underlying theory. The nematode worm,

C. elegans, is used to study the human brain because it is similar enough based on theories

of neural development and the laboratory rat is used to study human psychology based

on theories of reinforcement learning. What are the analogous theories that underlie the

bandit task in decisions from experience? From a historical perspective, early experiments

based on slot-machine designs were used to study reinforcement learning and theories of

expected utility (for reviews, see Bush & Mosteller, 1955; Luce & Suppes, 1956). Although

these experience-based tasks fell out of fashion around the 1970s, they were reintroduced

into the experimental milieu by Barron and Erev (2003), Hertwig et al. (2004), and others

to assess the predictions of prospect theory, which had been studied almost exclusively

using described options.

Without even considering contemporary developments, we have already identified

three underlying theories: reinforcement learning, expected utility theory, and prospect

theory. Nonetheless, although these theories are usually described as fundamentally dis-

similar, they share a common notion of uncertainty as probability. On one hand, “The

objective chances of success were 75 percent to 25 percent on the respective sides” and

on the other there is “25% chance to win $150 and 75% chance to win $50”. Without

knowing that the former is a description of a reinforcement schedule for rats completing a

T-maze (Brunswik, 1939, p. 177) and the latter was a gamble o�ered to graduate students

at Stanford (Tversky & Kahneman, 1992, p. 305), these could easily be mistaken for two

descriptions of the same experiment.

This common notion of probability provides a reason for using bandit tasks as a
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model for decision-making. It explains why an undergraduate student selecting coloured

squares on a computer screen might tell us something about how people choose between

stocks and bonds, decide whether to purchase insurance, and select which career path they

want to pursue. These scenarios can be described as a series of outcomes and probabil-

ities that can be mapped onto those used in decisions from experience tasks. There are

compelling pragmatic reasons for using these simplified models and their use is warranted

when the model is similar enough in ways that matter to the underlying theory.

One consequence of this account is that our theories and experiments exist in a

reciprocal relationship. The first component of this relationship is that our experiments

influence our theories. We use them to make observations, test hypotheses, encounter

anomalies, and update our beliefs. Some version of these activities forms the basis of

every approach to conducting scientific experiments but there is also a second material

influence of experiments on our theories. As we mentioned above, there are pragmatic

reasons for selecting tasks that can be completed by undergraduate psychology students.

Theories that are not well-suited to these conditions are unlikely to receive much attention

regardless of their other virtues.

The second component is that our theories influence our experiments. Theories

matter because we are active participants in the growth of knowledge. We conduct exper-

iments “not in the capacity of a pupil who lets the teacher tell him whatever the teacher

wants, but in the capacity of an appointed judge who compels the witnesses to answer

the questions that he puts to them” (Kant, 1996, p. bxiii). In this way, our theories

dictate the questions that we pursue and the methods that we use. Although questions

and methods are rarely determined by the same theory in a single experiment, they are

situated within an ecology of theories, experiments, and observations that influence each

other (Duhem, 1991; Hacking, 1992).

A specific theory can provide the rationale for using an experimental task. An

observation can provide evidence against a theory. The feasibility of an experimental

task can lead the researcher to pursue one question rather than another. Within this
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ecology, they can even evolve self-sustaining or self-refuting systems where one component

influences another, which influences others until the series catches its own tail, influencing

the longevity of the original component (Kau�man, 1993; Maturana & Varela, 1991). For

example, an experiment that immediately undermines the rationale for its own methods

might leave the researcher wondering how they missed such an obvious shortcoming. This

researcher would almost certainly abandon the experiment and might even decide to pursue

other questions with established experimental paradigms.

How might this apply to decisions from experience? We have emphasised that sci-

entists often know at least some of the limitations of their theories and methods. As is

often the case, these limitations were discussed explicitly when decision-making research

was still in its infancy. Edwards (1956) employed a slot-machine task with static prob-

abilities but emphasised how people make choices based on hypotheses about sequences

of rewards. Goodnow (1955) presented participants with choices framed as gambles or

problem-solving to investigate the e�ects of whether uncertainty is perceived as purely

stochastic or potentially resolvable. Perhaps to a greater extent than anyone else, she

grasped the implications of how people interpret uncertainty and her experiments influ-

enced the ones presented in the second part of this thesis.

Nonetheless, these concerns gradually faded into the background as researchers fo-

cused on solving the puzzles o�ered by the emerging mathematical theories of decision-

making. How compatible are people’s decisions with the principle of stochastic transitiv-

ity? What are the properties of the function that maps utility onto the value of outcomes?

How do people allocate their choices when they encounter options with di�erent prob-

abilities of success? These questions were usually concerned with asymptotic behaviour

and bandit tasks o�er a simple method to manipulate important variables. Other tasks

such as the problem-solving scenarios of Goodnow (1955) manipulate variables that are

orthogonal to these questions and seemingly incorporate unnecessary complications.2

2Although our main focus is on problems-solving and gambling tasks, a similar argu-
ment could be made regarding experience- and description-based choices. Prospect theory
provides no rationale for examining experience and this might explain why the di�erences
between these tasks were not uncovered until prospect theory was old enough to enter a
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These theories reinforce the bandit task as the standard laboratory model and it

has been used to examine everything from loss aversion (Yechiam & Hochman, 2013) to

di�erences associated with age (Frey et al., 2015). Although the aim of these experiments

was seldom to examine the theories that support their methods, this in no way suggests

that the bandit task was unable to reciprocate the favour. As we mentioned above,

it quickly becomes infeasible to use these methods to examine contexts that comprise

multiple options. Consequently, most experience-based tasks use a single pair of options

and are incapable of demonstrating that context matters. They ensure that evidence never

conflicts with the enticing assumption that preferences can be studied in isolation.

Furthermore, bandit tasks usually involve options that are distinguished using static

features—colour or position—and their outcomes are usually associated with static prob-

abilities. The researcher who programmed the experiment knows that the choice is anal-

ogous to tossing a coin where it is impossible to improve over time. These scenarios,

however, are rare outside the casino or the psychology lab and the participant—who has

been asked to make 500 choices between two coloured squares—might interpret their un-

certainty as being soluble. They might devise spurious hypotheses regarding outcome

sequences or the flickering of a light bulb but unless these variables are included in the

data, these strategies will be indistinguishable from noise.

Thus, we have identified two components that might exist in a symbiotic relation-

ship. The theory gives rise to questions that are well-suited to the experiment and the

experiment conceals aspects of the theory that would otherwise conflict with observation.

In contrast with the experiment that undermines its own theoretical rationale, they would

comprise a self-sustaining system that ensures its own stability. Insofar as we have given

an accurate description of this relationship, we have reason to question whether our theo-

ries capture something about the outside world or whether they prevail as a system that

has become impervious to refutation. Have these theories and experiments taken on a life

of their own rather than serving the aims of the researcher?

nightclub.
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Before reaching this conclusion we should consider the evidence for each component

of this relationship. We asserted that theory influences experiment because the good

experimentalist selects tasks that manipulate the variables in their theories and avoids

tasks that include extraneous variables. We made the further assertion that theories that

interpret uncertainty as probability are well-suited to methods such as the bandit task.

We suspect that these assertions are relatively uncontroversial.

The same cannot be said for the influence of experiment on theory. We asserted that

the influence of context on decisions from experience might be underestimated because the

standard task consists of only two options. We suggested that a similar issue might a�ect

how people interpret uncertainty but what evidence could we possibly have for this? Both

of these assertions are about gaps in our knowledge and even though the standard task

is unable to examine these variables, this would be inconsequential unless we are actually

underestimating their influence. The problem is that we cannot know this until we have

an accurate estimate.

Nonetheless, we are clearly missing something because the behavioural methods we

use to elicit risk preferences fail to converge not only with self-report measures but they

even contradict each other (L. R. Anderson & Mellor, 2009; Frey et al., 2017; Holzmeister

& Stefan, 2021; Pedroni et al., 2017). Our account of the feedback loop between the-

ory and experiment might provide an explanation for why these issues are so enduring.

Furthermore, the few experiments that have examined multiple options in decisions from

experience suggest that the impact of context might diverge from decisions from descrip-

tion (Ert & Lejarraga, 2018; Hadar et al., 2018; Ludvig et al., 2014; Spektor et al., 2018).

Not only might we need to consider what we are missing in decisions from experience

tasks, we might be unable to simply generalise from other tasks where these attributes

have been studied more extensively.

Therefore, our aim throughout the remainder of this thesis will be to examine two

specific attributes that cannot be adequately examined using the standard bandit task

with two options. In the first section, we will examine the impact of introducing mul-
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tiple options into the context so that di�erent options are associated with the best and

worst experienced outcomes. In the second section, we will examine how people interpret

uncertainty when there is observable variability in the experienced options. Although

these sections ostensibly examine unrelated attributes, they both contribute to our under-

standing of the feedback loop between theory and experiment that we identified in this

section.

1.1 Context and extreme outcomes

The precariousness of generalising from bandit tasks with a single pair of options was

demonstrated in a series of experiments conducted by Ludvig, Madan, and colleagues

(Ludvig et al., 2018; Ludvig et al., 2014; Ludvig & Spetch, 2011; Madan et al., 2014,

2017). Their participants encountered numerous choices between pairs of options and

were able to learn about them by observing their outcomes. So far, this description is

consistent with the standard bandit task but instead of using a single pair of options

they interspersed a second pair so that the context consisted of four options. This minor

modification had the major consequence that the best and worst outcomes in the context

were no longer associated with the same option.

As a concrete example, the first experiment by Ludvig et al. (2014) involved a safe

option that always resulted in 20 points and a risky option that resulted in either 0 or 40

points with equal probability. The second pair also included safe and risky options but the

outcomes were mirrored across the zero point. Namely, the safe option always resulted in

-20 points and the risky option resulted in -40 or 0 points. As we mentioned above, using

either one of these pairs in isolation would mean that the best outcome (e.g., 40 points)

and the worst outcome (e.g, 0 points) would be associated with the same option. The

second pair ensured that the low-value risky option resulted in the worst outcome (-40

points) and the high-value risky option resulted in the best outcome (40 points).

These choices always involved a single pair of options but they were interspersed so
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that participants encountered every possible combination. The most interesting compar-

isons, however, were between the safe and risky options within each pair. These options

had the same expected value so it would be reasonable to assume that participants would

be relatively indi�erent between them. Alternatively, prospect theory suggests that they

would be risk-seeking with losses and risk-averse with gains (Kahneman & Tversky, 1979).

Participants choices were not consistent with either of these patterns. Instead, they se-

lected the risky option substantially more when deciding between the high-value pair than

the low-value pair.

Ludvig et al. (2014) conducted a series of followup experiments to investigate this

curious pattern. They eliminated the possibility that it resulted from the zero outcome

that was shared between the risky options, the absolute magnitude of the outcomes, or

whether they were positive or negative. The only alternative that remained was that the

di�erence between the pairs of options was their value relative to the other options in the

context. Importantly, they demonstrated that an option is evaluated di�erently depending

on the other experienced options but they did not observe any of these phenomena when

the same options were described to participants.

Madan et al. (2014) suggested that this di�erence arises because people must re-

member and aggregate multiple outcomes when learning from experience but not when

the outcomes and probabilities are described. They examined this possibility by presenting

participants with the experience-based task described above and then asked them to esti-

mate both the frequency of each outcome and which outcome came to mind first (Ludvig

et al., 2018; Madan et al., 2014, 2017). They observed that the best and worst outcomes

were over-represented on both of these memory measures. This observation is consistent

with their explanation because a bias towards these extreme outcomes would make the

low-value risky option appear worse and the high-value risky option appear better.

Ludvig et al. (2014) labelled this pattern the extreme-outcome e�ect and devised

an extreme-outcome rule that states that our decisions are disproportionately influenced

by the best and worst outcomes. This interpretation entails that these outcomes di�er
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categorically from intermediate outcomes but there are several other plausible accounts.

In addition to categorical extremity, extreme outcomes could be defined based on their

continuous or ordinal distance from the centre or edges of the experienced distribution or

even their temporal relationship with other outcomes. The scenarios used by Ludvig et al.

(2014) always consisted of options that were symmetrical around the average outcome and

this renders each of the alternatives indistinguishable.

In the first section of this thesis, we will describe six experiments that aim to dif-

ferentiate between these explanations. Our motivation for conducting this investigation

consists of two components: The first of these relates specifically to decisions from ex-

perience and the potential importance of context that we sketched above. The second

relates to the influence of extreme items more broadly throughout cognition. The notion

that extreme items are disproportionately influential appears in many explanations across

numerous cognitive domains (e.g., Fredrickson, 2000; Kunar et al., 2017; Neath, 1993).

This raises the question of whether the observations of Ludvig et al. (2014) are specific to

decisions from experience or whether they reflect a broader phenomenon.

The categorical definition endorsed by the extreme-outcome rule was heavily influ-

enced by the peak-end rule that explains how people integrate instantaneous experiences

into a holistic evaluation of an event (Fredrickson, 2000; Fredrickson & Kahneman, 1993).

Instead of amounting to a summation of all the moment-by-moment experiences, these

evaluations appear to incorporate only a small number of salient moments. For exam-

ple, the simple average of the eponymous peak and end is a much better predictor of

global evaluations than algorithms that incorporate the duration of experiences (Ariely

& Carmon, 2000; Kahneman et al., 1993; Redelmeier & Kahneman, 1996). This rule ei-

ther categorically includes or excludes moments from these evaluations and advocates an

equally categorical definition of the peak as the single most extreme moment.

The similarities between the peak-end and extreme-outcome rules are inescapable.

Both theories describe how people aggregate their experiences and their shared definition

of extremity establishes the latter as a natural extension of the former that considers risky
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decisions. Nonetheless, this categorical conception disqualifies them as explanations for

a number of other phenomena that are explained using other conceptions of extremity.

For example, either ordinal or continuous extreme outcomes are identified with greater

sensitivity (Berliner et al., 1977; D. L. Weber et al., 1977), capture more attention (Kunar

et al., 2017; Pleskac et al., 2019; Zeigenfuse et al., 2014), and are retrieved more easily than

mid-sequence items in free recall, forwards and backwards serial recall, and recognition

tasks (Capitani et al., 1992; Li & Lewandowsky, 1995; Murdock, 1962; Neath, 1993; Wright

et al., 1985).

The observations of Ludvig and colleagues and—we will argue—those underlying

the peak-end rule can be explained using an ordinal or continuous definition but these

other phenomena cannot be explained using a categorical one. Therefore, what is at stake

is not merely our understanding of decisions from experience but also the plausibility of a

unified explanation for the influence of extreme items across cognition. Our experiments

will raise serious issues for the categorical conception but to understand the structure

of the first section, we must begin by introducing a distinction between two explanatory

modes: mechanical explanations that describe how a mechanism gives rise to the influence

of extreme outcomes and rational explanations that describe why these outcomes are

influential.

1.1.1 Mechanical explanations

The mechanical explanatory mode is used in the vast majority of explanations for the

influence of extreme outcomes and arguably the majority of explanations throughout cog-

nitive science. These explanations describe component entities (or parts) whose actions

and organisation gives rise to the phenomena of interest (Bechtel & Abrahamsen, 2005;

Craver, 2006; Glennan, 2017; Machamer et al., 2000). The distinctiveness account pro-

posed by Brown and colleagues (2007) o�ers a concrete example of how these elements

of the mechanical explanatory mode can be used to explain the influence of extreme out-

comes. Their theory implies that items stored in memory (entities) interfere with the
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retrieval of other memory traces (actions) based on the distance between these items

along a psychological dimension (organisation). This mechanism explains the influence

of extreme outcomes (phenomenon) because these outcomes have fewer close neighbours

than intermediate outcomes. In other words, extreme outcomes are located in a sparser

region of psychological space where there is less retrieval interference and this enhances

memory performance.

The mechanical explanatory mode has the potential to provide a unifying expla-

nation for a seemingly diverse range of phenomena using a common mechanism. The

challenge with implementing this strategy is that we must di�erentiate between common

and separate mechanisms. How is this accomplished? There is both an analytical and an

empirical component to this process. The first component is analytical because the reach

of a well-specified mechanistic explanation can be derived from the attributes of the mech-

anism itself.3 For example, a narrow explanation that opium causes sleepiness by virtue

of its dormitive qualities has little applicability beyond this specific phenomenon (Molière

& Laun, 1673). In contrast, many of the fundamental theories in physics have almost

universal applicability (Deutsch, 2011). This component of the reach of an explanation

depends on the attributes of the mechanism rather than the intentions of the researcher,

and therefore, it often extends well beyond the phenomenon that it was designed to ex-

plain.

Returning to our example of the distinctiveness account, although it was primarily

designed to explain memory-based phenomena, the mechanism could easily be used to

explain downstream e�ects on decision-making. Even with phenomena that are less reliant

on memory, this account might appeal to broader mechanisms that underlie processes

such as discrimination between items based on psychological distance. Indeed, Brown and

colleagues (2007) emphasise that their model imports mechanisms that were developed to

3When the explanation is not well-specified, this analysis results in ambiguity. For ex-
ample, de Beauvoir (1949) employed this criticism against psychoanalysis: “If one criticises
the doctrine to the letter, the psychoanalyst maintains that its spirit has been misunder-
stood; if one approves of the spirit, he immediately wants to limit you to the letter.” A
well-specified explanation is one in which the spirit and the letter are inseparable.
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explain phenomena related to identification (Murdock, 1960) and categorisation (Nosofsky,

1986). Such a common mechanism that encompasses discrimination-based activities might

imply that extreme outcomes will be influential “whenever a set of items can be sensibly

ordered along a particular dimension” (M. R. Kelley et al., 2015, p. 1715).

The empirical component examines whether the mechanism is able to parsimoniously

explain the phenomena of interest without resorting to domain specific assumptions. For

example, in the distinctiveness account, interference primarily occurs between outcomes

that are close neighbours. This allows the model to explain numerous well-established

phenomena in the memory literature, notably that memory recall is easier for items with

fewer neighbours even when they are in the centre of the distribution (Hunt, 1995; Neath

et al., 2006; Wallace, 1965). This attribute might, however, restrict the reach of the

mechanism because there is some evidence that this e�ect is absent in decision-making

(Ludvig et al., 2018). The presence of this e�ect in memory and its absence in choice

might imply that a separate mechanism underlies the role of extreme outcomes in each

domain.4 Therefore, beginning in the third chapter, we will conduct a comprehensive

empirical examination of numerous candidate mechanisms for the influence of extreme

outcomes.

1.1.2 Rational explanations

The mechanical explanatory mode addresses the question of how extreme outcomes in-

fluence cognition and this is often what is sought in an explanation. But focusing solely

on mechanisms can lead us to “act as if God created the mind more or less arbitrarily,

out of bits and pieces of cognitive mechanisms, and [that] our induction task is to identify

an arbitrary configuration of mechanisms” (J. R. Anderson, 1990, p. 26). The question

4Admittedly, the presence of this e�ect may depend on task demands (requiring tem-
poral or positional encoding) and is not always present in memory (e.g., forward serial
recall) (Morin et al., 2010). For a second example, see Brown and colleagues (2008) for
a discussion regarding empirical evidence for a common mechanism underlying serial and
free recall.
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remains of why these seemingly arbitrary mechanisms exist and the rational explanatory

mode provides an answer by suggesting that they are in some sense optimal or rational.5 In

evolutionary biology, optimality models are used to explain the prevalence of traits within

a population (Parker & Smith, 1990). In economics, the behaviour of agents is explained

with reference to expected utility theory and stable equilibrium points (Nash, 1950; von

Neumann et al., 1944). Rational analysis provides a framework for the ACT-R cognitive

architecture (J. R. Anderson et al., 2004), ideal observer models are used to explain vi-

sual perception (Geisler, 2011), optimal foraging theory explains the movement of animals

(Charnov & Orians, 1973), and ecological rationality explains the benefits associated with

using simple heuristics (Gigerenzer & Todd, 1999).

Fredrickson (2000) explained the motivation underlying the rational explanatory

mode regarding the role of the most extreme moments (peaks) and the final moments

(ends) in a�ective experiences. “Why? Of all the moments people could select to represent

past a�ective experiences, why do they choose peaks and ends? Is it perceptual? Are peaks

and ends simply more salient than other moments? This is unlikely to be the whole story”

(p. 589). In response to this question, Fredrickson proposed a rational explanation that

extreme outcomes contain self-relevant information about the capacity required to endure

an event or achieve an outcome. In other words, as long as someone is capable of handling

the worst-case scenario, they are unlikely to be overwhelmed by less extreme outcomes.

Although future events sometimes exceed the experienced maxima, the most extreme

outcome in each interval is commonly used to estimate the probability of extreme natural

disasters, insurance losses, and stock market risks (Beirlant et al., 2004). It is plausible

that encoding the most extreme moment of each event enables a similar technique for

avoiding outcomes that would surpass capacity thresholds.

The rational explanatory mode has the potential to o�er a unifying explanation

5There is a close relationship between these explanatory modes and Marr’s (1982) levels
of analysis. Rational explanations and Marr’s computational level both address what a
mechanism does and why this is appropriate whereas mechanical explanations and Marr’s
algorithmic level both address how this is implemented (for further discussion of this
relationship, see Bechtel & Shagrir, 2015; Kaplan, 2017; Milkowski, 2013; Zednik, 2017).
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based on the attributes of a common reason. To accomplish this, we must distinguish be-

tween common and separate reasons, and similarly to our analysis of common mechanisms,

this process combines analytical and empirical components. In Fredrickson’s capacity

threshold account, described above, encoding the peaks enables people to avoid situations

that would otherwise harm them by exceeding their capacity. This readily explains why

unpleasant experiences are encoded based on the worst moment (e.g., Fredrickson & Kah-

neman, 1993) but how might this account explain why positive experiences are encoded

based on the best moment? Fredrickson suggests that positive outcomes also strain our

personal capacity, and to the extent that we are willing to accept this attribute of their

explanation, its reach might extend to positive outcomes. It is less plausible, however, that

there are similar consequences associated with neutral perceptual stimuli—a tone with the

lowest frequency or a circle with a largest diameter—and this limits the applicability of

their explanation.

The empirical component examines the extent to which a given rational explanation

o�ers an adequate description of the goals and capacities of the agent and the environment

in which they function. An example in which this empirical component became exceedingly

salient was the stock market crash of 2008 (Gigerenzer & Gaissmaier, 2011). The axioms

of decision theory provide the normative force for the majority of economic models but

this does not guarantee that the small worlds depicted in them accurately correspond

to the real world in which people live (Cartwright, 1999; Giere, 1999; Savage, 1954).

Observing that their models had failed to capture the complexity of the market, Lehman

Brothers’ head of quantitative research lamented that “Events that models only predicted

would happen once in 10,000 years happened every day for three days” (Whitehouse,

2007). This demonstrated without a doubt that even models with rigorous mathematical

foundations can be misleading unless their translation to the world is carefully examined.
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1.1.3 Integrative explanations

The two explanatory modes o�er two distinct strategies for understanding the pervasive-

ness of extreme outcomes in cognitive explanations: we can establish a common mechanism

or a common reason. These strategies are not mutually exclusive.6 To demonstrate this,

let us return once more to our previous example of the distinctiveness account. Although

this theory derives much of its explanatory force from its mechanism, Brown and col-

leagues (2007) also assert that their mechanism might “arise for the same reasons” across

multiple domains (p. 542). One of these common reasons is undoubtedly the intimate

connection between their model and Shepard’s universal law of generalisation (Chater &

Brown, 2008). Specifically, their similarity function is analogous to the one that Shepard

(1987) derived from universal principles of probabilistic geometry and natural kinds. This

provides evidence for a mechanism that incorporates this similarity function due to selec-

tive pressure towards an “increasingly close approximation in sentient organisms wherever

they evolve” (Shepard, 1987, p. 1323).

Within explanations that integrate these strategies, the answers to “Why?” that are

given by rational explanations constrain the plausible answers to “How?” that are given by

mechanical explanations. These constraints are useful because the empirical component of

mechanical explanations is typically under-determined. Nonetheless, one need only survey

the enormous catalogue of irrational behaviour that has accumulated in the heuristics-and-

biases research programme to conclude that responses to normative “Why should. . . ?”

questions must be distinguished from responses to descriptive “Why is. . . ?” or “Why

6They are also not necessarily exhaustive. Following Cummings (2000), functional
explanations are often presented as the canonical mode of explanation in cognitive sci-
ence. Although the relationship with other explanatory modes is beyond the scope of this
chapter, it should be noted that our definition of “mechanism” does not imply that psy-
chological explanations are mechanical to the extent that they correspond to the brain (see
Barrett, 2014; Kaplan & Craver, 2011; Piccinini & Craver, 2011; Shapiro, 2017; Weiskopf,
2011). Therefore, at least for our purposes, functional explanations can be interpreted
as a special case of the mechanical explanatory mode that minimises the emphasis on
robust entities whilst retaining attributes such as decomposition (Glennan, 1996; Piccinini
& Craver, 2011).
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will. . . ?” questions (Maccrimmon, 1968; Tversky & Kahneman, 1974). Furthermore,

from our modern scientific perspective, expecting the world to conform to our rational

models seems to imply a problematic backwards causality in which the rationality of the

final mechanism is the reason that it possesses certain attributes. These peculiarities of

descriptive rational explanations has led many researchers to approach them with outright

scepticism (see the numerous commentaries and special issues that discuss rationality:

J. R. Anderson, 1991; L. J. Cohen, 1981; Dennett, 1983; Elqayam & Evans, 2011; Felin

et al., 2017; Jones & Love, 2011; Kyburg, 1983; Lieder & Gri�ths, 2019; Oaksford &

Chater, 2009; Schoemaker, 1991; Stanovich & West, 2003; Todd & Gigerenzer, 2000).

Thus to avoid being dismissed as unscientific, we must develop a naturalistic account

that tolerates deviations from rationality and is consistent with our understanding of

causality. Towards this aim, consider the simple scenario of a marble released on the

rim of a spherical bowl. From this minimal description, most people would agree on

three things: 1) at least in principle, we could calculate the causal trajectory of the

marble using the established laws of physics, 2) even without performing this calculation,

we can be fairly certain that the marble will come to rest at the bottom of the bowl,

and 3) we can explain this prediction without referring to dubious notions such as final

causes or divine intervention. Instead, the shape of the bowl constrains the set of possible

causal trajectories and this allows us to disregard most of the complexity while remaining

confident that the actual trajectory will lead to the predicted equilibrium (Rice, 2015;

Strevens, 2003). Rational explanations provide evidence regarding mechanisms in the

same way. They constrain the set of causal trajectories such that there are often only two

plausible outcomes: “organisms either know the elements of logic or become posthumous”

(Fodor, 1981, p. 121).7

7One foreseeable counterargument is that our rational landscape analogy is prima facie
implausible because rational explanations can be employed without interpreting them as
constraints on a causal trajectory. For example, J. R. Anderson (1990) argues that ratio-
nality should be seen as a scientific hypothesis that cannot be proven or disproven using
“a priori considerations” but instead must be evaluated on how well it does “leading to
successful theory” (p. 29). This approach is not incompatible with our account. Instead,
the scientific hypothesis approach allows the researcher to recognise that many cognitive
mechanisms are approximately rational and the rational landscape analogy explains why
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Admittedly, the easily recognisable constraints imposed by the spherical bowl con-

trast with the intricacy of those that arise from the ability of an agent to pursue their

goals or the blind watchmaker of natural selection. These scenarios are analogous to a

rugged landscape in which the marble might end up at the bottom of the deepest valley

or a shallow crater in the peak of the highest mountain. Descriptive rational models serve

as topographic maps of this landscape but when there is more than one equilibrium, it

becomes impossible to predict the outcome without information regarding the actual tra-

jectory (Gould & Lewontin, 1979; Kau�man & Levin, 1987; Marcus, 2008; Rellihan, 2012).

In other words, relying exclusively on rational models to identify mechanisms encounters

the same problem of underdetermination that arises when using other empirical methods.

Have we merely ended up back where we started? Not necessarily. Although the

mechanical and rational explanatory modes are typically underdetermined on their own,

integrating them allows evidence from each one to constrain the other—like multiple cross-

word clues—to narrow down plausible mechanisms. On one hand, we can conduct exper-

iments that provide evidence regarding “the access to information and the computational

capacities that are actually possessed by organisms” (Simon, 1955, p. 99). This informa-

tion can be used to constrain the plausible area of the rational landscape in which the

mechanism might reside. On the other hand, we can employ these boundedly rational

models to further narrow down to the mechanisms that conform to constraints imposed

by rationality. When employed in succession, these integrative constraints form a virtuous

spiral that allows the initially inadequate explanations to e�ectively pull each other up by

their bootstraps.

Whereas the rational landscape analogy does not provide specific instructions for

using these constraints to identify mechanical explanations, Lieder and Gri�ths (2019)

have advanced resource-rational analysis as a concrete methodological framework. The

first stage in their approach is to identify a problem that organisms might encounter and a

this regularity occurs. The former is analogous to estimating outcome probabilities by re-
peatedly tossing a coin whereas the latter considers the relationship between the geometry
of the coin and these probabilities.
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class of plausible algorithms that can solve it. These algorithms are subsequently narrowed

down to the single algorithm with the highest performance given resource limitations.

Although this strict optimality assumption is untenable as a substantive claim about

the mind (e.g., Gould & Lewontin, 1979), it might serve as a “methodological device to

e�ciently search through the endless space of possible mechanisms” (Lieder & Gri�ths,

2019, p. 45).8 It o�ers somewhere to begin searching but the process does not end there.

The predictions of the optimal algorithm are evaluated against empirical evidence. Then

the procedure is repeated with an increasingly accurate understanding of the constraints

and mechanisms until an adequate explanation is discovered.

Resource-rational analysis has demonstrated considerable promise and has been used

to explain observations across numerous cognitive domains (for a review, see Lieder &

Gri�ths, 2019). Although we might attribute this success to the integration between me-

chanical and rational explanations, their approach is also notable for the inspiration that

it draws from computer science. Many of the potential cognitive mechanisms suggested

using the framework were originally designed to increase the e�ciency of estimation al-

gorithms. This translation between machines and humans relies on the observation that

we encounter similar computational challenges and must solve them e�ciently because we

have finite resources. As such, algorithms that have been selected by human engineers

might point us towards ones that were favoured by natural selection. This approach is

the foundation on which Lieder et al. (2018) constructed their rational utility-weighted

sampling model that we will examine in the second chapter.

8This methodological approach can be traced back to Kant’s Critique of the Power of
Judgement. He emphasises the di�culty in explaining biological organisms “in accordance
with merely mechanical principles of nature” (p. 270), and therefore, acknowledges that
teleological notions are necessary as “a heuristic principle for researching the particular
laws of nature” (p. 280).
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1.1.4 Summary of Chapter 2: Rational explanations

Lieder et al. (2018) suggest that the disproportionate influence of extreme outcomes stems

from an optimal Monte Carlo algorithm that uses fewer samples to accurately estimate

the value of each option. Their algorithm is based on a statistical method that reduces

estimation error by prioritising outcomes that have the greatest impact on the estimate

(Kroese et al., 2013; Tokdar & Kass, 2010). The accuracy of these estimates depends

on how well important outcomes are identified. Lieder and colleagues demonstrated that

sampling outcomes based on their distance from the expected value of the option being

estimated minimises the variance. The catch, however, is that this requires knowledge of

the expected value of the option, which is the parameter being estimated.

Therefore, they suggest that this optimal algorithm can be approximated by re-

placing the expected value of the option with the average outcome in the context. This

substitution underlies the potential of their utility-weighted sampling model to increase

the accuracy of estimates and explains the influence of extreme outcomes. The resulting

algorithm is biased towards outcomes based on their continuous extremity and is able to

capture choices and memory in decisions from experience (Ludvig et al., 2014; Madan

et al., 2014), the overestimation of extreme events (Lichtenstein et al., 1978), the tempo-

ral dynamics of the Technion choice prediction tournament (Erev et al., 2010), and the

pattern of preferences described in prospect theory (Allais, 1953; Lichtenstein & Slovic,

1971; Tversky & Kahneman, 1992).

Despite these promising credentials, we will discuss three attributes of their model

that undermine both the mechanical and rational components of their explanation. The

first attribute demonstrates that the sampling mechanism produces highly counterintuitive

predictions that are unlikely to capture actual behaviour. The second attribute uses the

flexibility of its free parameters to avoid these implausible predictions but undermines the

empirical evidence for the model. The third attribute demonstrates that the scenarios in

which utility-weighted sampling improves the accuracy of estimates is limited to options

that are close to the centre of the distribution. The combination of these attributes suggest
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that utility-weighted sampling does not o�er an adequate explanation for the influence of

extreme outcomes.

In response to this conclusion, we will describe an alternate rational model based

on the consequences associated with forgetting extreme outcomes. Compared with those

near the centre of the experienced distribution, forgetting an extreme outcome has a

greater impact on the probability of selecting the correct option and the expected value

of the choice. We will begin this investigation with a formal analysis of the model using

binary choices between safe options and then generalise our conclusions to choices involving

multiple risky options. In contrast with utility-weighted sampling, our model suggests that

there are always benefits associated with remembering extreme outcomes and this might

contribute to an explanation for why these outcomes are influential. Finally, we will

discuss the implications of this model for the definition of extremity and its relationship

with other potential rational explanations.

1.1.5 Summary of Chapters 3-5: Mechanical explanations

The subsequent chapters in the section on context examine potential mechanical expla-

nations for the influence of extreme outcomes. Numerous explanations have been sug-

gested including goal-directed attention (Tsetsos et al., 2012), environmental character-

istics (Lichtenstein et al., 1978), task relevance (Vanunu et al., 2020), outcome salience

(Madan et al., 2014), distinctiveness (Murdock, 1960; Neath et al., 2006), edge-based en-

coding (Berliner et al., 1977), bias-variance optimisation (Lieder et al., 2018), selective

attention (Luce et al., 1976), personal meaning (Fredrickson, 2000), and implicit reference

points (Holyoak, 1978). It would not be feasible to test each of these theories separately

so we will commence our investigation by developing a framework that categorises them

along numerous dimensions.

Chapter 3 examines the dimension that di�erentiates between theories based on

their levels of measurement. As we emphasised above, the peak-end and extreme-outcome

rules employ a categorical definition in which the best and worst outcomes are considered
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extreme and the intermediate outcomes are considered non-extreme (Fredrickson, 2000;

Ludvig et al., 2014). There are also numerous explanations that define extreme outcomes

based on their ordinal position within the distribution of experienced outcomes (Kunar

et al., 2017; Pleskac et al., 2019; Tsetsos et al., 2012; Vanunu et al., 2020; Zeigenfuse

et al., 2014). This conceptualisation is based on the notion that many of our interactions

with the world are based on rank: attending to one item entails neglecting another and

selecting an option entails rejecting others. There are considerable di�erences between

the members of this class but their ordinal definition gives rise to some shared empirical

predictions.

The third level of measurement defines extreme outcomes based on a measure of

continuous distance but the members of this class di�er along a second dimension depend-

ing on their answer to the question: continuous distance from what? Some theories, such

as utility-weighted sampling, define extreme outcomes based on their distance from the

centre of the distribution (Lieder et al., 2018). Others suggest that items are encoded

with reference to the edges of the distribution and that extreme outcomes are remembered

more easily because of their proximity to these anchors (Berliner et al., 1977; Braida et al.,

1984; Farrell & Lelièvre, 2009; Henson, 1998; Jou, 2010; Marley & Cook, 1984). Finally,

some theories suggest that items in memory interfere with the retrieval of similar items,

and therefore, items that have fewer close neighbours are more likely to be remembered

(M. C. Anderson & Neely, 1996; Schmidt, 1991). On average, outcomes located near the

edges of the distribution have fewer close neighbours than outcomes near the centre and

this would explain their influence in memory (Berliner et al., 1977; Bower, 1971; Eriksen

& Hake, 1957; Lacouture & Marley, 2004; Luce et al., 1982; Murdock, 1960; Neath et al.,

2006; D. L. Weber et al., 1977).

Chapter 4 examines a distinction between extreme outcomes based on types and to-

kens. This distinction has been employed primarily in linguistics (Richards, 1987; Templin,

1957) and philosophy (Fodor, 1974; Putnam, 1975; Quine, 1987) but can be illustrated

using the following passage from The Bells by Edgar Allan Poe:
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To the swinging and the ringing

Of the bells, bells, bells,

Of the bells, bells, bells, bells,

Bells, bells, bells—

To the rhyming and the chiming of the bells!

How many words are in this section of the poem? One reasonable response would

be that there are 29 words in the passage but another would be to notice that some are

repeated and that there are nine unique words: “to the swinging rhyming chiming and

ringing of bells”. There is a sense in which both of these responses are correct: the first is

the number of word tokens whereas the second is the number of word types.

When someone experiences numerous instances of the same type of outcome, the

type-token distinction can influence how we define extreme outcomes. As a concrete

example, imagine that you were o�ered a role with a salary of $75000 in a company that

has a pay transparency policy. Of the ten existing employees, seven of your potential

colleagues receive $50000, one receives $95000, and one receives $100000. The only salary

level lower than yours is $50000 and there are two higher salary levels, so based on types,

you might conclude that your o�er is on the lower end of the pay scale. Conversely, your

potential salary would be better than seven of your colleagues and only worse than two, so

based on tokens, you might conclude that the o�er is on the higher end of the scale. This

demonstrates that whether outcomes are considered extreme can depend on how they are

represented.

Finally, Chapter 5 examines whether extreme outcomes are conceptualised based on

their location within the experienced distribution or their temporal relationships. Every

single one of the distinctions examined in Chapters 3 and 4 are based on distributional

characteristics. Whether an outcome is the best or worst, how many neighbours it has, and

its rank within the distribution do not depend on whether the other outcomes occurred

immediately beforehand or preceded them by several minutes. Nonetheless, extreme out-

comes can also be conceptualised by whether they constitute a temporal peak relative to
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the outcomes immediately before and after them.

One reason that events are remembered based on moments such as the peak and end

might be that many experiences are not made up of discrete outcomes (Langer et al., 2005).

For example, painful medical procedures usually involve some moments that are better

and others that are worse but the overall experience is continuous rather than discrete.

Integrating all the moments that comprise this experience poses a computational challenge

that could be overcome by summarising events using a small number of salient aspects

(Ariely & Carmon, 2000). The temporal peaks—the moments where the experience stops

getting worse and starts getting better—might o�er one such particularly salient aspect

of continuous experiences.

1.2 Aleatory and epistemic uncertainty

The concept of probability has become inescapable when discussing how we interpret

uncertainty. This has not always been the case. Its dominance can be crudely described

as acquired through two revolutions that were separated by three hundred years. In fact,

although there were several qualitative notions of evidence and authority, attempts to

quantify uncertainty were essentially non-existent before the first probabilistic revolution

in the middle of the seventeenth century (Hacking, 1975; Hacking et al., 1990). Beginning

with Pascal, Huygens, Leibniz, and the other early mathematical probabilists, the concept

immediately became indispensable for a broad range of questions from games of chance

to jurisprudence (Daston, 1995).

What are the fair odds for a gamble? Is it rational to accept a hypothesis? Should we

believe in God? Probability soon acquired a normative character as underlying rational

beliefs in response to evidence. It was described as “good sense reduced to calculus”

(Laplace, 1814) and as “the very guide of life” (Butler, 1736). But in addition to this

normative status, probability was seen as equally descriptive of how people make decisions

(Daston, 1995). It was naturally interpreted in light of the early associationist idea that
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degrees of belief are attributed “in proportion as we have found it to be more or less

frequent” (Hume, 1748, p. 41).

A similar pattern played out in the computational and inferential revolution of

the 1950s. Following the newly axiomatised systems of von Neumann et al. (1944) and

Savage (1954), the notion of a utility-maximising Homo economicus was reminiscent of the

normative status of probability at the height of the European Enlightenment. There was

also a radical shift in the way that we described the mind. As emphasised by Gigerenzer et

al. (1989), “Once psychologists came to view statistics as an indispensable method, it was

not long before they began to conceive of the mind itself as an intuitive statistician” (p.

203). In other words, the computational metaphor and the development and application

of statistical procedures meant that uncertainty within our psychological theories was

represented almost exclusively as probability.

This presents us with a curious puzzle. How can a concept that was conceived a

few centuries ago explain something that is fundamental to the human condition? Can

probability explain how people dealt with uncertainty before the 1600s? What about

people in 2022 that have never studied mathematics? We at least need to take seriously

the possibility that the experience of uncertainty might not be captured using probabil-

ity. Uncertainty was a psychological reality long before probability was a set of axioms

and we might even need to consider the possibility that uncertainty comprises numerous

qualitatively distinct concepts.

Hacking (1975) emphasised one such distinction between what he labelled epistemic

uncertainty (derived from the Greek word for “knowledge”) and aleatory uncertainty (de-

rived from the Latin word for “dice”). The di�erence between these two notions of un-

certainty can be grasped in the following questions: “Who is the prime minister of the

UK?” and “What will be the outcome when I toss this coin?” Given the current political

landscape, both of these questions would likely entail some degree of uncertainty. You

might even exclaim that there is a 50/50 chance that your answer to the first question is

correct but would this render your uncertainty regarding these questions equivalent?
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Although the probabilities in both cases are identical, your uncertainty regarding the

first question would be perceived as arising from your own lack of knowledge. You could

resolve this uncertainty by reading today’s newspaper or doing a quick Google search.

The question is about a specific instance for which the truth is knowable, in principle. In

contrast, you would likely perceive the second question as reflecting an inherently stochastic

process. In some sense, this answer is also knowable in advance, but unless you have some

very high-tech equipment, the only way to learn the outcome would be to simply toss the

coin.

These two faces of uncertainty can be recognised throughout the history of probabil-

ity and di�erent versions of the distinction have been proposed by philosophers, scientists,

and statisticians (Carnap, 1945; Cournot, 1843; Fox & Ülkümen, 2011; Kahneman & Tver-

sky, 1982; Poisson, 1837; Russell, 1948; Savage, 1954). There are almost as many names

for knowledge-based and stochastic forms of uncertainty as there are people who have

written about them. In addition to epistemic and aleatory uncertainty, they have been

referred to as probability and chance, subjective and objective possibility, probability1

and probability2, credibility and probability, personalistic and objectivistic probability,

and internal and external uncertainty. Hacking (1975) suggested that the distinction has

a life of its own so that “the same idea crops up everywhere, on the pens of people who

have never heard of each other” (p. 16).

He also noted, however, that most people who use probability are oblivious to the

distinction and this raises the question of whether it only surfaces for a select few academics

who have thought about uncertainty for too long. Nonetheless, statements expressing

epistemic and aleatory uncertainty diverge across a wide range of attributes in natural

language (Juanchich et al., 2017; Løhre & Teigen, 2016; Olson & Budescu, 1997; Teigen,

1988; Ülkümen et al., 2016). People respond di�erently to tasks involving inadequate

knowledge about previous events and those involving a stochastic process that will occur

in the future (Beck et al., 2011; Chua Chow & Sarin, 2002; A. J. Harris et al., 2011;

Heath & Tversky, 1991; Robinson et al., 2009; Robinson et al., 2006). Investors are more

willing to pay a financial advisor when they interpret their uncertainty regarding the stock
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market as reflecting their own ignorance (Walters et al., 2022). And finally, distinct fMRI

activation patterns have been observed in tasks that involve inadequate knowledge and

those that involve stochastically determined outcomes (Volz et al., 2004, 2005).

1.2.1 Summary of Chapter 6: Variability and uncertainty

The unitary concept of probability appears to neglect the expansive and consequential

duality of uncertainty. The distinction between epistemic and aleatory uncertainty has

emerged numerous times and influences the behaviour of people that have never even

heard of the distinction. We know that the concept of probability might not capture the

nature of uncertainty. Nonetheless, most decisions from experience tasks involve static

probabilities and options are represented using coloured squares that are identical each

time they are encountered. These slot-machine-style tasks are well-suited to studying

aleatory uncertainty but they usually neglect its epistemic counterpart—we might be

missing half the picture.

To illustrate this possible issue, consider the example with which Hertwig et al.

(2004) began their classic article on decisions from experience: Patients and their doc-

tors often make decisions using information that is similar in its content but is acquired

through di�erent sources. The patient will often google the procedure and read a written

description of the probabilities associated with each outcome. The doctor has access to

this information but they also have extensive personal experience, gathered across many

patients, and use this information to estimate the probabilities associated with each out-

come. Thus, the doctor in this scenario o�ers an archetypical example of a decision from

experience and we might learn something about uncertainty by examining its relationship

with their experimental task.

Similarly to the options encountered by participants, when a patient comes in with

a sore throat, the doctor can either prescribe them antibiotics or bed rest, plenty of fluids,

and a good series on Netflix. They encounter hundreds of patients with the same condition

and receive feedback regarding the e�ectiveness of each treatment. The patient prescribed
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antibiotics is more likely to come back complaining of digestive issues but is less likely to

return with a persistent strep infection. Eventually, the doctor will learn the probabilities

associated with each of these outcomes and use this to inform their choices.

This description is more or less analogous to the participant who is repeatedly pre-

sented with two unlabelled buttons and receives feedback when one is selected. But

in contrast with the experimental task, the doctor also encounters observable variability

within each class of options. When they prescribe someone antibiotics, they are not merely

choosing between a generic Option A (antibiotics) and Option B (bed rest) based on the

probability of success. They are choosing between options for an individual patient who

varies along myriad potentially relevant dimensions. They have access to medical records

with the patient’s age, chronic illnesses, family history, whether they smoke or drink, and

prior treatments for the present condition.

This observable variability would elicit a completely di�erent interpretation of un-

certainty for the doctor and the participant choosing between unlabelled buttons. The

uncertainty regarding an individual patient can often be resolved by mapping potential

outcomes onto observable variables. The doctor is likely to interpret their uncertainty as

reflecting insu�cient knowledge (epistemic uncertainty) whereas the participant is more

likely to interpret their uncertainty as inherently stochastic (aleatory uncertainty). Given

that the doctor believes that their uncertainty is resolvable—at least in principle—they

are also more likely to seek additional information by asking questions, doing a physical

exam, or ordering tests (Walters et al., 2022).

Therefore, Chapter 6 examines whether introducing observable variability to a stan-

dard bandit task impacts how participants interpret uncertainty. As we mentioned above,

our experiments were partly inspired by the gambling and problem-solving tasks devised

by Goodnow (1955), but whereas her experiments focused on the propensity of partici-

pants to exhibit probability matching, our tasks examine information-seeking. The exper-

iments in this chapter will examine whether participants that are able to map potential

outcomes onto observable variability are more likely to experience epistemic uncertainty.
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They will examine whether—analogous to the doctor ordering tests—participants that

interpret their uncertainty as epistemic are more likely to seek additional information.

1.3 Thesis overview

The overarching aim of this thesis is to contribute to our understanding of how context

and uncertainty influence decisions from experience. To comprehend the role of these

attributes, we first needed to broaden our perspective to encompass the system in which

they are situated. Although context and uncertainty could be examined separately, the

relationship between them illuminates the symbiotic relationship between theories and

experiments. Specifically, we argued that interpreting uncertainty as probability gives rise

to questions that are conducive to bandit task experiments. These experiments reciprocate

by obscuring aspects of these theories that would otherwise conflict with observation.

Our exploration of context and uncertainty, therefore, aims to perturb this self-sustaining

system to see whether the theories and experiments can stand alone.

Second, we needed to narrow our focus to a tractable question regarding each of these

attributes. Our examination of context in the first section focuses on the disproportionate

influence of extreme outcomes. Chapter 2 addresses why these outcomes are influential

by reevaluating the utility-weighted sampling model and then developing an alternative

with a broader domain of applicability. The subsequent chapters examine the empirical

adequacy of numerous mechanical explanations by organising them according to three

primary dimensions. Chapter 3 examines whether extreme-outcome phenomena reflect

a categorical, ordinal, or continuous level of measurement. Chapter 4 examines whether

extreme outcomes are represented as types or tokens. And finally, Chapter 5 examines

whether these phenomena are e�ectuated by temporal or distributional characteristics.

In the second section, our examination of uncertainty focuses on epistemic and

aleatory uncertainty. This distinction has been observed across numerous domains but

the bandit tasks used to study decisions from experience were not designed to capture
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epistemic uncertainty. Therefore, Chapter 6 examines whether introducing observable

variability to these tasks promotes an epistemic interpretation of uncertainty, and in turn,

whether attributing uncertainty to inadequate knowledge elicits information-seeking be-

haviour. Finally, Chapter 7 summarises the main findings regarding context and uncer-

tainty and integrates them into a unified system.
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Chapter 2

Rational explanations

Items that are located on the edges of a given distribution appear to exert a dispro-

portionate influence across numerous cognitive domains. These extreme outcomes are

discriminated with greater sensitivity (Berliner et al., 1977; D. L. Weber et al., 1977)

and capture more attention (Kunar et al., 2017; Pleskac et al., 2019; Zeigenfuse et al.,

2014). The earliest and most recent items along the temporal dimension are retrieved

more easily than mid-sequence items in free recall, forwards and backwards serial recall,

and recognition tasks (Capitani et al., 1992; Li & Lewandowsky, 1995; Murdock, 1962;

Neath, 1993; Wright et al., 1985). The most intense moments of a�ective experiences are

strong predictors of how people subsequently evaluate them (Fredrickson & Kahneman,

1993; Kahneman et al., 1993; Redelmeier & Kahneman, 1996). People also tend to select

options that indicate an excessive influence of the best and worst outcomes (Ludvig et al.,

2018; Ludvig et al., 2014) and describe them as occurring with a higher frequency than

they were experienced (Lichtenstein et al., 1978; Madan et al., 2014).

These phenomena have been observed in distributions ranging from basic perceptual

features to higher-level semantic attributes (M. R. Kelley et al., 2015; Neath et al., 2006).

It has been observed in numerous perceptual modalities, including sight (Tsetsos et al.,

2012), sound (G. D. Brown et al., 2002; Schäfer et al., 2014), temperature (Kahneman
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et al., 1993), pressure (Ariely, 1998), and smell (Scheibehenne & Coppin, 2020). Their

influence is largely invariant to the scale of the distribution and has been observed in

short-term and long-term memory (Ludvig et al., 2014; Nairne & Dutta, 1992; Neath &

Brown, 2006). Finally, these phenomena have been observed across cultures (Wagner,

1975), at multiple stages of development (Capitani et al., 1992; Koppenol-Gonzalez et al.,

2014), and even amongst non-human animals (Kesner & Novak, 1982; Sands & Wright,

1980; Wright et al., 1985).

How can we explain this seeming pervasiveness of extreme outcomes in cognition?

Extreme outcomes are present within theories of perception, attention, a�ect, memory, and

decision-making, but does this merely reflect a superficial resemblance or might it point

towards a deeper regularity? Across these cognitive domains, a bewildering assortment

of distinct and frequently incompatible explanations have been o�ered regarding extreme

outcomes. For example, their influence has been attributed to environmental character-

istics (Lichtenstein et al., 1978), outcome salience (Madan et al., 2014), task relevance

(Vanunu et al., 2020), distinctiveness (Murdock, 1960; Neath et al., 2006), edge-based

encoding (Berliner et al., 1977), bias-variance optimisation (Lieder et al., 2018), selective

attention (Luce et al., 1976), personal meaning (Fredrickson, 2000), goal-directed attention

(Tsetsos et al., 2012), and implicit reference points (Holyoak, 1978).

Most of these theories were developed to explain specific phenomena within a single

cognitive domain, and because of this, theories across domains are commonly perceived

as separate or complementary rather than competing. Nonetheless, several of these the-

ories can account for observations associated with multiple phenomena. This raises the

possibility of an overarching explanation for the influence of extreme outcomes that parsi-

moniously encompasses some of the more constrained explanations. In the first section of

this chapter, we will evaluate a particularly expansive explanation for the role of extreme

outcomes that “provides a unifying mechanistic and teleological explanation for a wide

range of seemingly disparate cognitive biases” (Lieder et al., 2018, p. 2).

The rational component of this explanation employs a variance-reduction algorithm
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from computer science that improves the e�ciency of estimation but that is biased towards

extreme outcomes. Although this bias contributes to the overall error in the estimation,

Lieder and colleagues argue that their algorithm is rational because it enables a greater

reduction in the error caused by variance. They use this rational explanation to narrow

down the set of plausible mechanisms to the one that approximates the optimal algorithm

and that only uses information that would be available to the organism. This mechanism

purports to capture the influence of extreme outcomes in numerous experiments across

multiple cognitive domains.

Despite these promising credentials, the second section will examine attributes of the

model that are troublesome for both its rational foundation and its underlying mechanism.

Finally, in the third section, we will develop an alternative rational explanation based on

the assertion that prioritising extreme outcomes increases 1) the probability of making the

correct response and 2) the utility of the selected option. We will demonstrate this using

a formal analysis of binary choices across numerous domains and then examine attributes

that might influence the applicability of these idealised choices. This will allow us to

evaluate the degree to which this rational model o�ers a viable alternative explanation

that constrains the set of plausible mechanical explanations.

2.1 Utility-weighted sampling

2.1.1 Rational explanation

To understand the rational foundation of the utility-weighted sampling model proposed

by Lieder et al. (2018), we must begin by reflecting on the way we learn from experience.

The explicit outcomes and probabilities that appear in many theories of decision-making

are seldom encountered in our daily lives. Instead, options are typically evaluated by

aggregating experienced outcomes and this may be accomplished in numerous di�erent

ways. One of the most common explanations for this capacity is that experienced items

are randomly sampled from memory (Denison et al., 2013; Fiedler, 2000; Hau et al., 2010;
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Shadlen & Shohamy, 2016; Stewart et al., 2006). This method allows parameters such

as the mean of the distribution to be estimated with arbitrarily high precision and does

not rely on simplifying assumptions that are often necessary to obtain analytical solutions

(Diaconis & Efron, 1983; Sanborn et al., 2010). The downside of the sampling method is

that repeatedly retrieving items from memory is computationally expensive, which must

be balanced against the performance obtained using larger samples (Bogacz et al., 2006;

Kareev, 1995; Plonsky et al., 2015; Vul et al., 2014).

These computational costs increase the importance of sampling in the most e�-

cient manner and algorithms developed in computer science might o�er plausible ways in

which this was addressed by natural selection. We have grown so accustomed to hav-

ing vast amounts of computation at our fingertips that it is hard to imagine digital

computers encountering similar resource limitations to human brains. Nonetheless, the

foundational Monte Carlo sampling method was developed in the 1940s when the most

advanced computers were slow and expensive punched-card machines (Ulam, 1976). As a

consequence, there is a long history of attempts to improve the e�ciency of sampling algo-

rithms. These include rejection sampling (von Neumann, 1951), the Metropolis-Hastings

algorithm (Hastings, 1970; Metropolis et al., 1953), Gibbs sampling (S. Geman & Ge-

man, 1987), Hamiltonian Monte Carlo (Duane et al., 1987), hit-and-run sampling (Smith,

1984), data augmentation (Tanner & Wong, 1987), slice sampling (Neal, 2003), and this is

just the tip of the iceberg. A wide range of other variance reduction strategies have been

developed using controlled, adaptive, conditional, stratified, multilevel, and sequential al-

gorithms (Botev & Ridder, 2017; Fishman, 2013; Kroese et al., 2013; Luengo et al., 2020;

Rubinstein & Kroese, 2016).

Importance sampling is one of the most frequently used variance-reduction tech-

niques. It deviates from the standard Monte Carlo method by prioritising outcomes based

on their influence on the estimation error—their importance (Kroese et al., 2013; Robert

& Casella, 2004; Tokdar & Kass, 2010). This process involves two broad conceptual

stages: 1) outcomes are sampled using a biased importance-based probability distribution

and then 2) these samples are aggregated by weighting them according to the di�erence
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between the importance distribution and the unbiased (representative) probability distri-

bution. Importance sampling specifies a method for sampling and aggregation but allows

for numerous possible importance distributions. Choosing the right distribution can result

in estimation with zero variance whereas choosing the wrong one can result in estimation

with infinite variance (Owen & Zhou, 2000). Needless to say, the former scenario is prefer-

able to the latter but there is one considerable catch. The minimum-variance importance

distribution samples outcomes based on their distance from the expected value of the op-

tion being evaluated but this expected value is the very parameter being estimated (Lieder

et al., 2018).

In other words, it only makes sense to use importance sampling when there is uncer-

tainty regarding the minimum-variance importance distribution. Nonetheless, even though

this distribution is unavailable in practice, it might be possible to increase sampling ef-

ficiency by selecting one that is su�ciently similar to the minimum-variance distribution

(Kroese et al., 2013; Rubino & Tu�n, 2009). This raises the inevitable question of how

we determine su�cient similarity and Lieder et al. (2018) provide us with a concrete

recommendation: we can replace the expected value in the minimum-variance distribu-

tion with the average outcome of previous decisions made in a similar context. Their

utility-weighted sampling model—and thus their explanation for the influence of extreme

outcomes—is simply an implementation of importance sampling based on this assumption.

Concretely, the first stage consists of sampling s outcomes based on the distribution q̃(o),

which is defined as

q̃(o) Ã p(o) ·
---�u(o) ≠ �̄u

--- (2.1)

where the probability of sampling each outcome using the standard unbiased sam-

pling method p(o) is weighted by its distance from the average experienced outcome
---�u(o) ≠ �̄u

---.

The second stage in their implementation of importance sampling generates an es-

timate �Û
IS
q̃,s of the expected value by weighting the samples so that outcomes that were
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over-represented in the sampling stage are equivalently under-weighted in the aggregation

stage. Specifically,

�Û
IS
q̃,s = 1

qs
j=1 1/

---�u(oj) ≠ �̄u

---
·

sÿ

j=1

�u(oj)---�u(oj) ≠ �̄u

---
(2.2)

Whilst the derivation of this equation is unnecessary for our purposes (see Lieder

et al., 2018), the crucial attribute is that the utility of each sampled outcome �u(oj)

is divided by its distance from the average
---�u(oj) ≠ �̄u

---. In the previous stage, the

importance distribution was derived by multiplying the outcome probabilities with these

same distances. Therefore, by performing the opposite operation in the aggregation stage,

the e�ect of biased sampling is corrected in the subsequent stage. The e�ectiveness of this

process, however, depends on the sample size parameter s such that estimates based on

small samples remain biased towards extreme outcomes.

We now have the required information to grasp the utility-weighted sampling expla-

nation for the influence of extreme outcomes. Lieder et al. (2018) employ an importance

distribution that is biased towards extreme outcomes as a proxy for the minimum-variance

distribution. With a large enough sample, this bias would disappear in the aggregation

stage but estimates produced by the rational mechanism might remain biased due to the

costs associated with sampling (Bogacz et al., 2006; Kareev, 1995; Plonsky et al., 2015;

Vul et al., 2014). In other words, the disproportionate influence of extreme outcomes

might reflect an optimal balance between estimation error and computational costs. The

bias is only tolerated because the importance sampling algorithm permits an even greater

reduction in the variance and this reduces the overall estimation error for a given number

of samples.

Since we lack the computational omnipotence of Homo economicus or Laplace’s

demon, one of the fundamental challenges that we encounter is minimising estimation

error using our limited cognitive resources. This gives the utility-weighted sampling ex-

planation broad applicability across domains. It might explain why extreme outcomes are
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over-represented in memory and influential in choice (Ludvig et al., 2014; Madan et al.,

2014). It might explain why these phenomena are observed for items that provide minimal

information about capacity thresholds (Fredrickson, 2000). It might even employ attention

as a mechanism for increasing the probability that important outcomes are sampled from

memory, and therefore, explain why extreme outcomes capture more attention (Kunar

et al., 2017).

2.1.2 Mechanical explanation

Importance sampling forms the rational foundation of utility-weighted sampling but ac-

quiring a rational explanation is not the only purpose of the resource-rational analysis

framework. Lieder et al. (2018) used this analysis to suggest a mechanism that might give

rise to the influence of extreme outcomes. As we discussed in the Introduction section

of this thesis, resource-rational analysis progresses under the assumption that evolution,

learning, and cognitive development shaped mechanisms that are approximately rational,

and therefore, tentatively accepts the rational algorithm as the actual mechanism. This

simplifies the transition from rational to mechanical explanation: Lieder and colleagues

use importance sampling as a model of the mechanism underlying our capacity to evaluate

options based on experience.

Although we have focused entirely on the estimation mechanism derived from impor-

tance sampling, Lieder et al. (2018) integrate this component within a broader mechanism

that also includes a second component that encodes the utility associated with experi-

enced outcomes. The mechanism that implements this encoding can be decomposed into

a normalisation process that ensures that the range is always the same regardless of the

scale of the distribution and a stochastic component that reflects uncertainty regarding the

utility of the normalised outcomes. Formally, the utility u(o) associated with an outcome

is defined as

u(o) = o

omax
c ≠ omin

c
+ ‘ (2.3)
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where o
max
c ≠o

min
c is the range of the experienced outcomes and ‘ represents normally

distributed encoding noise that has a standard deviation estimated as a free parameter.

The normalisation process encodes outcomes relative to the local context of experi-

enced outcomes rather than encoding their absolute utility. This relative encoding scheme

is based on psychophysical and neural evidence (Carandini & Heeger, 2012; Louie et al.,

2013; Rangel & Clithero, 2012) and explains the approximate scale invariance observed

in extreme outcome phenomena (Ludvig et al., 2014; Neath & Brown, 2006). Consistent

with the resource-rational analysis framework, this empirical evidence is supplemented

with a rational explanation. Namely, assuming that the precision of encoded informa-

tion is constrained by the finite bandwidth of neural firing rates, e�cient use of these

computational resources will maximise the representational bandwidth employed in each

comparison (Heeger, 1992; Summerfield & Tsetsos, 2015; Tsetsos et al., 2016). Based

on a further assumption that outcomes encountered in a given context are usually cor-

related, normalising outcomes relative to the local context will increase the sensitivity of

the mechanism to di�erences between outcomes.

Therefore, the full utility-weighted sampling model comprises an encoding mech-

anism derived from e�cient normalisation and an estimation mechanism derived from

optimal importance sampling. Lieder et al. (2018) examined the empirical component of

this mechanical explanation using a diverse range of experimental evidence. Their model

is able to capture experience-based choices and memory recall (Ludvig et al., 2014; Madan

et al., 2014), the overestimation of extreme events, such as murder or dying in an acci-

dent (Lichtenstein et al., 1978), numerous description-based choice phenomena including

the pattern of risk preferences described in prospect theory (Allais, 1953; Lichtenstein &

Slovic, 1971; Tversky & Kahneman, 1992), and the temporal dynamics of participants’

choices in the Technion choice prediction tournament (Erev et al., 2010). Although the

resource-rational framework specifies a recursive process and Lieder et al. (2018) empha-

sise several deviations from the predictions of their model, the empirical evidence appears

broadly consistent with their conclusion that “the neural mechanisms of decision-making

share some of the abstract properties of utility-weighted sampling” (p. 24).
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2.2 Reconsidering utility-weighted sampling

Our primary objective in the previous section was to o�er an overview of utility-weighted

sampling that was faithful to the original derivation by Lieder et al. (2018) while empha-

sising its potential as a unifying explanation. We have described its rational foundation

in optimal importance sampling and explained why prioritising extreme outcomes might

reflect a rational trade-o� between bias and variance. We discussed evidence in favour

of its mechanical explanation, which encompasses encoding and estimation. In short, if

utility-weighted sampling lives up to its promise, it would explain both why and how ex-

treme outcomes are influential throughout cognition, leaving little room or requirement

for any other explanation.

As a consequence, this section is necessarily adversarial and we will demonstrate

three attributes that severely limit its applicability. Our goal is not to provide a refutation

of the utility-weighted sampling model, but instead, given its persuasiveness, to explain

why it will be necessary to develop an alternative rational explanation in the subsequent

section. To prevent this critique from drifting into abstraction, we will anchor it on the

concrete example of the first experiment conducted by Ludvig et al. (2014), which has

served as a paradigm for subsequent experiments (e.g., Ludvig et al., 2014; Madan et al.,

2014, 2017).1 Once we have described our alternative explanation—in the final section—

we will attempt to provide a more even-handed appraisal that draws upon utility-weighted

sampling and numerous other rational explanations.

In the experiment conducted by Ludvig et al. (2014), participants made numerous

choices between pairs of options that were depicted as coloured doors. In contrast with

decision tasks in which outcomes and probabilities are explicitly described, they were

required to learn about options by selecting them and observing the outcomes. There

1Assuming that outcomes are normalised during encoding so that range of utilities is
identical across contexts, Experiment 1, 3 (extreme options), 4G, and 4L conducted by
Ludvig et al. (2014) as well as both experiments conducted by Madan et al. (2014) are
structurally equivalent. In other words, they consist of options with identical normalised
utilities.
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were four options: two safe options that always resulted in a single outcome and two risky

options that resulted in a better or worse outcome with equal probability. Specifically,

there was a safe option (the red door in Figure 2.1) that caused participants to gain 20

points and a risky option (the yellow door) that caused them to gain either 0 or 40 points.

These outcomes were mirrored across the zero-point for the other options: there was a

safe option (the green door) that caused participants to lose 20 points and a risky option

(the blue door) that caused them to lose either 0 or 40 points.

Figure 2.1: Schematic depiction of the experiment conducted by Ludvig et al.
(2014). Participants repeatedly made choices between pairs of options represented using
coloured doors. They received feedback about the number of points resulting from their
choice.

Let us take a moment to consider the choices that participants might make when

presented with these options. When they encounter a choice between an option that allows

them to gain points and one that causes them to lose points, we would expect them to

prefer the positive option—gaining points is generally preferable to losing them. What

about when they encounter a choice between a safe and risky option when both are gains

or both are losses? These pairs of options have the same expected value so it might
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be reasonable to assume that participants would be relatively indi�erent between them.

Then again we might invoke the reflection e�ect described in prospect theory and suggest

that participants would be risk-averse with potential gains and risk-seeking with potential

losses (Kahneman & Tversky, 1979). Participants’ choices were not consistent with either

of these patterns. Instead, they were risk-seeking for the options that allowed them to

gain points and risk-averse for the options that caused them to lose points.

Ludvig et al. (2014) explained this curious pattern by pointing out that the positive

risky option was associated with the best outcome experienced in the experiment whereas

the negative risky option was associated with the worst outcome. Assuming that extreme

outcomes are disproportionately influential in memory, the best outcome would make the

positive risky option seem better than the positive safe option and the worst outcome

would make the negative risky option seem worse than the negative safe option. They

examined numerous alternative explanations and demonstrated that the pattern of choices

does not depend on whether there is a shared zero outcome (Experiment 2), the absolute

magnitude of outcomes (Experiment 3), or whether there are only positive or negative

outcomes (Experiment 4). Instead, participants’ choices appear to be influenced by the

extremity of outcomes relative to the experienced distribution.

Lieder et al. (2018) demonstrated that utility-weighted sampling can capture the

qualitative patterns observed in the four experiments conducted by Ludvig et al. (2014)

using a single set of parameters. They also demonstrated that its predictions were broadly

consistent with participants’ memory for experienced outcomes (Madan et al., 2014).

These experiments constitute a large proportion of the evidence for the utility-weighted

sampling mechanism and their design was highly similar to the first experiment that was

described above. This will facilitate the transition from the following attributes in the

context of this specific experiment to an evaluation of the model as a whole.
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2.2.1 Attribute 1: Counterintuitive predictions

Given that our interest in utility-weighted sampling is as an explanation for the influence

of extreme outcomes, it makes sense to begin our evaluation by identifying the component

of the model that is responsible for this capacity. Although other components impact the

magnitude of their influence, we can narrow down the source of this bias to the presence of
---�u(o) ≠ �̄u

--- in the importance distribution. This term corresponds to how extreme an

outcome is within a given context and has a major impact on the probability of sampling

each outcome. To state this more concretely, in the case where outcomes are experienced

with equal frequency, the probability of sampling an outcome is simply how extreme it is

relative to the average experienced outcome.

How might this component of the importance distribution influence predictions re-

garding the experiment by Ludvig et al. (2014)? Recall that the experienced outcomes

were symmetrical around zero and that the risky options were both associated with a

non-extreme outcome worth 0 points. If each outcome were experienced with the same

frequency, the symmetry across positive and negative outcomes would ensure that the

average outcome would be exactly 0 points. There would be no di�erence between the

non-extreme outcome and the average, and therefore, the probability of retrieving the non-

extreme outcome from memory would be exactly zero. The estimate for the risky options

would merely be the value of the extreme outcome—either -40 or 40 points. Therefore,

even though the corresponding safe option had an equivalent expected value, this model

predicts that participants would always select the positive risky option and always avoid

the negative risky option.

The above scenario involved options that have the same expected value and prefer-

ring one option over the other was relatively inconsequential. When this is not the case,

utility-weighted sampling can lead to absurd predictions. Imagine a second scenario in

which someone experienced both positive and negative outcomes so that the average is

very close to $0. In this context, they encounter a choice between two options that they

have encountered many times before. One of the outcomes always gave them $99 and the
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other option gave them $1 half the time and $100 the other half of the time. This decision

should be rather straightforward because the expected value of the first option is almost

twice as large as the second option.

Nonetheless, although the probability of sampling the non-extreme outcome is now

greater than zero, the $100 outcome would be more likely to be sampled than the $1

outcome. To make this statement more concrete we will briefly omit the encoding noise

from the model and additionally assume that the risky outcomes were experienced the

same number of times. In this simplified scenario, the $100 outcome is 100 times more

likely to be retrieved from memory on each sample than the $1 outcome. Therefore, if the

sample size parameter were equal to two samples, which was the best fitting parameter

estimate for the choices in the experiment conducted by Ludvig et al. (2014), roughly

98% of estimates would conclude that the worse option is worth exactly $100. If we

increase this to four samples, which was the estimate for the memory responses in the

experiment conducted by Madan et al. (2014), roughly 96% of estimates would reach this

same erroneous conclusion and select the worse option.2

Without running this experiment, we suggest that few people would make this choice

but this alone does not entail that we should discard the model. Most scientific expla-

nations are literally false but are su�ciently accurate within a domain that is limited by

numerous explicit and implicit conditions (Cartwright, 1983; Wimsatt & Wimsatt, 2007).

The standard example concerns Newton’s laws of motion, which were superseded by rela-

tivity and yet remain broadly applicable unless objects are approaching the speed of light.

In the case of utility-weighted sampling, the predictions are most implausible when out-

comes are close to the experienced average and the model might perform reasonably for

outcomes outside this class. This approach might salvage utility-weighted sampling but

necessarily diminishes its reach and leaves it vulnerable to alternative explanations that

2Our analysis in this section focuses on small values of the sample size parameter that
were used by Lieder et al. (2018) and that are consistent with other empirical evidence
(e.g., Vul et al., 2014). This is not essential to our conclusions. It is not until the sample
size reaches 70 samples that a narrow majority of estimates for the worse option are not
just the value of the extreme ($100) risky outcome.
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have a broader scope.

2.2.2 Attribute 2: Flexible parameters

When examining the previous attribute, our focus was on the role of extreme outcomes in

the importance distribution of utility-weighted sampling. We isolated this element using a

simplified model in which each risky outcome was experienced the same number of times

and outcomes were encoded noiselessly. This allowed us to calculate the exact probability

of sampling each outcome but also potentially gives rise to a compelling objection to our

critique: we cannot rule out the possibility that our simplifying assumptions amount to

nothing more than a straw man who lacks an encoding mechanism. In other words, the

stochastic elements of the complete model might generate predictions that are far more

plausible than those described above.

Given that the analytical method employed above is not practicable when examining

the complete stochastic model, we will outline an alternative simulation-based approach in

this section. Firstly, each estimate was based on simulated experienced outcomes from the

experiment conducted by Ludvig et al. (2014) instead of assuming that each outcome was

experienced with equal frequency. Secondly, instead of calculating sampling probabilities

using a simplified model, we simulated the behaviour of the complete utility-weighted

sampling model using numerous values of the sample size and noise parameters. We

simulated a total of 1.5 million utility-weighted sampling estimates and choices for both

the positive (blue: 40 or 0 points) and negative (orange: -40 or 0 points) risky options.3

These simulations are summarised visually in Figure 2.2. If we begin by focusing on

the top left-hand corner of Figure 2.2a we can observe similar predictions to those described

in the previous section. These estimates are based on small samples and there was minimal

encoding noise so the average estimate is very close to the more extreme outcomes (+/-40

points). As the number of samples increases, however, this bias gradually decreases so that

3Further details of these simulations are presented in Appendix A. The full simulation
code is available at https://github.com/joelholwerda
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the average estimate can be arbitrarily close to the expected value of the option (+/-20

points). Likewise, as the standard deviation parameter of the encoding noise increases

from 0.05 to 0.2 across the three vertical panels, the average estimate for a given sample

size steadily moves closer to the expected value.

A similar pattern can be observed in the simulated choices displayed in Figure 2.2b.

When both the sample size and standard deviation parameters are small, the positive

risky option is almost always selected and the negative risky option is almost always

rejected. When either of these parameters increases, preferences gradually become weaker

and eventually approach indi�erence. This attribute appears to salvage the model from the

most counterintuitive predictions described in the previous section. Moreover, at least one

combination of these parameters should be able to generate behaviour that is compatible

with the observations of Ludvig et al. (2014).

As such, instead of a single set of predictions, we can identify numerous patterns that

we might attribute to utility-weighted sampling: the predictions can be highly counterin-

tuitive when the parameters are small, relatively unbiased when the parameters are large,

and conform to participants’ behaviour somewhere in between. Which of these should

we use to assess the empirical support for the mechanism? The answer to this question

remains ambiguous because these parameters are entirely unconstrained by the rational

explanations that underlie the importance sampling and e�cient coding components of

the model—they are independent empirical assumptions that require their own rational

or mechanical justifications.

This attribute creates a problem for utility-weighted sampling. Insofar as the param-

eters are unconstrained—even though the model predicts preferences towards the positive

risky option and against the negative risky option—it cannot determine the strength of

this bias. This is problematic because it is not su�cient to demonstrate that the model

can fit the data. As emphasised by Roberts and Pashler (2000), “Without knowing how

much a theory constrains possible outcomes, you cannot know how impressed to be when

observation and theory are consistent” (p. 359). In other words, the flexibility of utility-
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Figure 2.2: Estimates and

choices for the utility-

weighted sampling simu-

lations of the first exper-

iment by Ludvig et al.

(2014). The positive risky

option (blue) resulted in 0 or

40 points and the negative

risky option resulted in -40

or 0 points. Each dot repre-

sents the mean of 10000 sim-

ulations.
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weighted sampling means that we should not be surprised that the model captures the

data and its ability to do so provides little empirical support (Mayo, 2018; Roberts &

Pashler, 2000).

Having said that, if we were to end our critique here, we would rightly face the

charge of attacking a straw man a second time. In addition to capturing the preferences

observed in the first experiment by Ludvig et al. (2014), utility-weighted sampling also

captures numerous qualitative patterns in the subsequent experiments. Firstly, the model

correctly predicted that doubling the magnitude of each outcome would not change the

strength of the bias. Secondly, it predicted that the bias observed in the first experiment

would diminish when these outcomes were presented alongside others that were even more

extreme. Thirdly, it predicted that a similar bias would be observed using only gains and

only losses when risky options were associated with outcomes located near the lower or

upper extremes of the distribution.4

Notably, these predictions are independent of the flexible parameters discussed

above. They each provide support for the utility-weighted sampling mechanism but this

support comes with an important caveat: they do not provide evidence for its impor-

tance sampling explanation for the influence of extreme outcomes. In the same way that

these predictions are independent of the parameters, they are also largely una�ected by

the characteristics of the sampling mechanism. Instead, they arise due to the e�cient

4Lieder et al. (2018) also present evidence regarding decisions from description and the
temporal dynamics of risk preferences. We have omitted this evidence because the models
used to explain these phenomena di�er markedly from the version described in this chapter.
The model used for decisions from description employs an importance distribution that
samples pairs of outcomes based on their di�erential utility rather than individual outcomes
based on their extremity within the context. Our goal in this chapter is to explain the
influence of extreme outcomes rather than providing a comprehensive refutation of utility-
weighted sampling, and therefore, this version of the model is beyond the scope of our
discussion. The temporal model uses the importance distribution described in this chapter
and even relies on the same qualitative predictions for empirical support. The di�erence
in this case is that the model uses five additional parameters to correctly predict that the
bias towards extreme outcomes increases over time. Recalling the famous saying by von
Neumann, we could use these parameters to fit an elephant, make him wiggle his trunk,
and we would still have two parameters in reserve (Dyson, 2004).
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coding mechanism and this provides further evidence that some form of normalisation is

carried out. This does not, however, provide a rational or mechanical explanation for

extreme-outcome phenomena. Conversely, e�cient coding is even cited as an explanation

for situations where extreme outcomes are neglected (Payzan-LeNestour & Woodford,

2020; Summerfield & Tsetsos, 2015).

Where does this leave us? In the first attribute, we observed that the importance

sampling mechanism makes counterintuitive predictions when examined in isolation. In the

second, we recognised that the flexibility of the complete model undermines the evidence

for this sampling mechanism. Therefore, although the amalgamation of these attributes

does not necessarily falsify utility-weighted sampling we also have little reason to prefer it

over the numerous alternative mechanical explanations (e.g., Madan et al., 2014; Neath et

al., 2006). The flip side of this conclusion is that—especially in decisions from experience—

there is little reason to prefer any explanation over the others. We will attempt to rectify

this empirical issue in the subsequent chapters of this thesis, but for the time being, it

su�ces that the mechanism underlying the influence of extreme outcomes is still a matter

of debate.

2.2.3 Attribute 3: Limited domain of rationality

The rational component of utility-weighted sampling is based on the assertion that over-

representing extreme outcomes reduces the estimation variance and consequently leads

to more e�cient and accurate decisions. Lieder et al. (2018) established evidence for this

claim using a mathematical proof that the estimation variance is minimised when outcomes

are prioritised based on their distance from the expected value of the option. But despite

the persuasiveness of these assertions, there are two potential issues that deserve further

scrutiny: 1) minimising the variance component of the error neglects the contribution of

the bias component and 2) the minimum-variance importance distribution identified in

their mathematical analysis is not the same as the one used in utility-weighted sampling.

Whereas the first issue could be easily remedied by examining the two components
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that comprise the overall estimation error, the resolution of the second issue is considerably

less straightforward. It is an unavoidable consequence that arises because the minimum-

variance distribution is derived from the expected value of the option being estimated—

information that is unavailable whenever there is any reason to estimate this parameter.

Lieder et al. (2018) were forced to propose an alternative and asserted that “the average

utility of the outcomes of previous decisions made in a similar context could be used as

a proxy for the expected utility gain” (p. 4). This is a plausible alternative but their

mathematical analysis—despite its rigour—does not guarantee that this distribution is

similar enough to improve the accuracy of the estimates.

Therefore, we compared the performance of the utility-weighted sampling estimates

for the experiment by Ludvig et al. (2014) that were examined in the previous section

(dark blue) with two alternative sampling algorithms, which are displayed visually in

Figure 2.3. The first alternative is the standard Monte Carlo method (green). This

algorithm is unbiased and serves as a baseline to evaluate the impact of introducing a

bias towards extreme outcomes in utility-weighted sampling. The second is a version of

utility-weighted sampling that uses the average sample in the aggregation phase rather

than the bias correction algorithm (light blue). This simplified model allows us to evaluate

whether correcting for the biased sampling algorithm improves the estimation accuracy,

which will become important when we revisit utility-weighted sampling in the discussion

section.

Looking first at the bias component displayed in Figure 2.3a, the utility-weighted

sampling algorithm consistently produces estimates that are more biased than the standard

Monte Carlo algorithm for every value of the sample size and noise parameters. This should

not be a surprise. Utility-weighted sampling aims to reduce the variance by introducing

a bias towards important outcomes. When the estimate is based on a single sample,

utility-weighted sampling is equivalent to the version of the model that omits the bias

correction algorithm. This equivalence occurs because reweighting a sample consisting of

a single outcome is entirely ine�ective. The divergent performance of these algorithms as

the sample size increases, however, demonstrates that the bias steadily diminishes as the
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Figure 2.3: Bias, variance, and

error for the utility-weighted

sampling simulations of the first

experiment by Ludvig et al.

(2014). These estimates are com-

pared with the standard Monte Carlo

method and a version of utility-

weighted sampling that does not re-

weight outcomes to correct for biased

sampling. Each dot represents the

mean of 10000 simulations.
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reweighting process becomes more e�ective.

The real question is whether utility-weighted sampling is similar enough to the

minimum-variance importance distribution that the lower variance compensates for the

biased sampling. Figure 2.3b indicates that this simply cannot be the case for most

values of the sample size and noise parameters. Although the variance for utility-weighted

sampling is lower than the standard Monte Carlo algorithm when the free parameters are

small, the variance rapidly overtakes the standard algorithm as the sample size increases.

Nonetheless, the best fitting parameter value for the sample size in the experiments by

Ludvig et al. (2014) was only two samples and this might fall into the narrow range where

utility-weighted sampling has lower variance.

For this reason, we must consider how the bias and variance are combined into the

error displayed in Figure 2.3c. The interpretation of this figure is unambiguous. For every

value of the sample size and noise parameters, the estimation error is higher for utility-

weighted sampling than the standard Monte Carlo algorithm. Put simply, using a sampling

algorithm that is biased towards extreme outcomes produces estimates that are worse than

the unbiased algorithm. Furthermore, the estimation error decreases for utility-weighted

sampling as the noise parameter increases because the influence of extreme outcomes—the

main attribute that distinguishes the model from the standard Monte Carlo algorithm—is

attenuated by the encoding noise.

It is exceedingly di�cult to see how this could possibly be rational and this explains

why the behaviour described in the first attribute was so counterintuitive. Nonetheless,

we should resist forming strong conclusions regarding the rationality of the model based

solely on these simulations. What we have demonstrated so far is that utility-weighted

sampling produces inferior estimates for options that result with equal probability in either

0 or 20 points that were experienced in a context where the average was 0 points and the

range was -40 to 40 points. This applies exclusively to binomially distributed options, to

outcomes that are equiprobable, and arguably to the specific values used in the task—

although the model is agnostic to the denomination so our analysis might also apply to
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options that result in $0 or $20.

The forgoing simulations are analogous to noticing that penguins are short-sighted

on land. Although this attribute might lead us to question whether their optical sys-

tem is well-adapted, further analysis reveals that their myopia is merely a consequence

of a mechanism that prioritises sharp focus underwater where they acquire their food

(Neander, 1991). The seemingly irrational behaviour of utility-weighted sampling in the

experimental task examined in this section might similarly be compensated by improving

performance in scenarios that are broader or more consequential. This possibility is not

unprecedented and numerous well-established biases have been reconceived as rational re-

sponses to environmental or cognitive constraints that di�ered from the assumptions of

the researcher (Dawes & Mulford, 1996; Fawcett et al., 2014; Hertwig & Gigerenzer, 1999;

Hertwig et al., 2005; Warren et al., 2018).

Therefore, given the narrow class of decisions that we have examined, we must resolve

numerous impediments to the breadth of our critique or what appears to be irrationality

might instead reflect an incomplete analysis. Firstly, even within the class of equiprobable

binomially distributed outcomes, we have only examined one specific option whereas the

number of possible options is infinite. This might initially appear to be insurmountable

but the normalisation mechanism allows us to abstract much of this variability away from

the predictions of the model. Specifically, the linear normalisation function that divides

each outcome by the di�erence between the maximum and minimum outcomes allows us

to perform three operations without altering the predictions of the model.

Firstly, we can change the value of the minimum and maximum outcomes as long

as the di�erence between them remains the same. This allows us to change the location of

the range so that, for example, a risky option that results in either $1 or $2 is equivalent

when encountered in a context where the range is $0 to $10 and one where the range is -$5

to $5. Secondly, we can simultaneously multiply the maximum and minimum outcomes

and divide the standard deviation of the encoding noise by the same value. This allows us

to change the scale of the range so that the above decision would be identical in a context
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where the range is $0 to $20 as long as the standard deviation of the noise parameter is

halved.

Thirdly, we can multiply each outcome by a constant value so that the risky option

that results in either $1 or $2 in a context where the mean is $3 and the range is $0 to

$10 is equivalent to an option that results in $100 or $200 in a context where the mean is

$300 and the range is $0 to $1000. In combination with the first and second operations

that abstract the range of the context away—its location and scale—the third operation

results in the following equivalence: increasing the scale of an option has the same impact

on the utility-weighted sampling estimate as decreasing its distance from the average. For

example, the distance between $1 and the average in the scenario above is double the

distance between $2 and the average. We can modify this scenario so that the distance is

four times greater by either changing the average to $2.50 or scaling the outcomes of the

option to -$2 and $2.

The implication of this equivalence is that varying the distance between an option

and the average outcome gives rise to utility-weighted sampling estimates that are iden-

tical to those generated by rescaling the option or varying the minimum and maximum

outcomes. This allowed us to evaluate the entire class of equiprobable binomial options by

simulating an option that resulted in -1 or 1 and varying the distance between the expected

value of this option and the average outcome. In principle, we would need to evaluate the

entire range of average outcomes from negative to positive infinity but we can simplify this

task by noting two characteristics: 1) This symmetrical option ensures that evaluating the

positive averages will generalise to the negative averages and 2) Utility-weighted sampling

is based on the ratio of distances from the average and converges towards the standard

Monte Carlo algorithm when the option is su�ciently far from the average.

We have made considerable progress but our aim is to evaluate utility-weighted

sampling not merely its behaviour with equiprobable binomial options. Unfortunately, this

raises a considerable challenge for our analysis. We cannot abstract away the complexity

in the distribution of outcomes associated with the option—at least not using any method
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we could conceive. Instead, we examined the generalisability of our analysis by generating

estimates using some of the most frequent classes of distributions. In addition to binomial

options, we simulated normal, uniform, exponential, right-skewed binomial, and right-

skewed normal distributions. It is entirely possible that this leaves out a consequential

option class that compensates for the examined distributions but this is far less plausible

than when our critique was based on a single experimental task.5

The relationship between the average outcome and the estimation error for utility-

weighted sampling is displayed in Figure 2.4. We normalised each distribution so the

average outcome in the context (x-axis) is identical to the expected value of each option

when the average equals zero. Three broad patterns appear to hold across each of these

distributions: Firstly, the performance of utility-weighted sampling is relatively similar to

the standard Monte Carlo algorithm when the average outcome equals zero. Secondly,

when the distance between the average outcome and the expected value of the option is

su�ciently large, its performance once again approaches the standard algorithm. Thirdly,

the performance of utility-weighted sampling is considerably worse than the standard

algorithm when the distance from the average is somewhere between these values.

Recall that we highlighted two potential issues for utility-weighted sampling at the

beginning of this section: 1) that minimising the variance neglects the contribution of the

bias to the overall error and 2) that in utility-weighted sampling, the expected value used

to generate the minimum-variance distribution was replaced with the average outcome

in the context. When the expected value of the option is equal to the average outcome

in the context—in this case, when the average equals zero—utility-weighted sampling is

5We simulated each of these distributions using numerous values of the sample size
and noise parameters. The predictions of the model change very gradually as the sample
size exceeds 20 samples and continues with the trend depicted in Figure 2.4. As we
observed with the experiment by Ludvig et al. (2014), increasing the encoding noise makes
utility-weighted sampling approach the behaviour of the standard Monte Carlo algorithm.
Unsurprisingly, this did not lead to any di�erences between the sampling algorithms that
were absent using minimal encoding noise. Therefore, somewhat arbitrarily, the encoding
noise for the simulations depicted in Figure 2.4 have a standard deviation of 0.05 on a
scale where each option has a mean of 0 and a standard deviation of 1.
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Figure 2.4: Error for the utility-weighted sampling simulations using various
distributions. These estimates are compared with the standard Monte Carlo method
and a version of utility-weighted sampling that does not re-weight outcomes to correct for
biased sampling. Each dot represents the mean of 10000 simulations.
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identical to the minimum-variance sampling algorithm. Therefore, insofar as the lower

variance of this algorithm decreases the error more than any potential bias increases it,

utility-weighted sampling should outperform the standard Monte Carlo algorithm when

the average outcome equals zero.

Is this what we observed in our simulations? We mentioned above that utility-

weighted sampling and the standard algorithm are similar when the average outcome is

close to zero. It is not possible to discern the better algorithm only using Figure 2.4,

however, because the y-axis must accommodate much larger di�erences in other regions.

Therefore, we re-plotted them in Figure 2.5 to emphasise some of the subtler di�erences

between the algorithms. This figure depicts a smaller region in which the expected value of

the estimated option and the average outcome in the context are close together. The blue

regions show where the error for utility-weighted sampling was lower than the standard

algorithm and the red regions show where its error was higher.

In each panel of Figure 2.5, there is a narrow blue region around zero. For these

values of the average outcome, utility-weighted sampling performs better than the standard

algorithm when the sample size is large enough.6 Specifically, the width of this region

is less than one standard deviation on the scale of each simulated distribution and the

minimum sample size is roughly five samples. The magnitude of the di�erence in this

region is many times smaller than the amount that utility-weighted sampling is worse in

the adjacent regions. This creates two problems for utility-weighted sampling: 1) The

sample size estimates in Lieder et al. (2018) were below the minimum sample size and 2)

This algorithm will only be rational when the expected value of most options is very close

to the average outcome.

This was the only region where utility-weighted sampling performed better than the

standard algorithm when the distributions were symmetrical, but there were two additional

regions for the skewed distributions. Utility-weighted sampling performs better than the

standard algorithm when the sample size is small and the average is located on the longer

6The only exception was the symmetrical binomial distribution in Figure 2.5a. Utility-
weighted sampling never outperformed the standard algorithm for this distribution.
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Figure 2.5: Heatmap of error for the utility-weighted sampling simulations us-
ing various distributions. These estimates are compared with the standard Monte
Carlo method. Blue regions depict the parameter values where utility-weighted sampling
outperformed the standard algorithm and red regions depict where its performance was
worse. Each square represents the mean of 10000 simulations.
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tail of the distribution. In our simulations, this occurred when the average outcome was

positive. The second region is where the sample size is large and the average is located on

the shorter tail. In our simulations, this occurred when the average outcome was negative.

The relatively small magnitude of these di�erences means they are not easily identifiable

in Figure 2.4 but they can be identified as blue regions in the lower-right and upper-left

corners of Figure 2.5d to Figure 2.5f.

What is the cause of these patterns? Regarding the first pattern, when only a single

sample is taken, the algorithm performs better when it exclusively samples outcomes

that are closer to the mean of the distribution. Utility-weighted sampling increases the

probability of sampling outcomes that are further from the average outcome in the context.

Therefore, locating the average outcome on the longer tail of the distribution increases

the probability of sampling an outcome from the shorter tail where outcomes are closer

to the expected value. One problem that arises is that a context in which most options

are consistent with this requirement would be necessarily bimodal because the average is

a rare outcome for most options.

The second pattern is more interesting than the first pattern for three reasons:

Firstly, this pattern corresponds to the main example that Lieder et al. (2018) used to

motivate utility-weighted sampling. They present a hypothetical choice regarding whether

someone should participate in a game of pistol roulette and argue that neglecting the less

common but more lethal outcome might give rise to an unwise decision. Secondly, although

importance sampling is used as a variance reduction method in multiple contexts, it is

particularly useful for estimating distributions containing rare events (Luengo et al., 2020;

Rubino & Tu�n, 2009). Thirdly, the previous pattern arises because the sample often

contains a single outcome. In contrast, the larger sample size in the second pattern allows

the reweighting function in utility-weighted sampling to correct for the biased importance

distribution. In other words, this scenario is characteristic of importance sampling rather

than merely biased sampling.

Despite these attributes, the second pattern faces two challenges when used as a
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rational explanation for the influence of extreme outcomes: 1) Unless the average outcome

in the context happens to be located on the shorter tail for most options, there will be

large regions where utility-weighted sampling performs worse than the standard algorithm.

In Figure 2.4, the di�erence between these algorithms was barely perceptible in the region

where utility-weighted sampling outperforms the standard algorithm. How plausible is

it that this small di�erence compensates for the large di�erences where utility-weighted

sampling performed worse? 2) The second pattern only arises when the sample is much

larger than the sample size parameter estimates reported by Lieder et al. (2018). Unless

subsequent evidence discovers that this parameter is larger than these estimates suggest,

the regions where utility-weighted sampling performs better than the standard algorithm

might be limited to the region where the average outcome in the context is similar to the

expected value of the option and the region outlined in the first pattern.

Therefore, we have finally reached the point where we can summarise our critique of

the utility-weighted sampling model. The first attribute demonstrated that the sampling

mechanism produces highly counterintuitive predictions that are unlikely to capture actual

behaviour. The second attribute salvaged the model from its most implausible predictions

but this was only possible because of the flexibility of the free parameters. This undermines

the empirical evidence supporting the complete mechanism. Finally, the third attribute

demonstrated that the domain in which utility-weighted sampling improves performance is

enormously limited and this emphasises the potential benefits of developing an alternative

rational explanation that has a broader scope.

2.3 An alternative rational explanation

Although our critique in the previous section was necessarily adversarial in response to

the persuasiveness of utility-weighted sampling, our approach throughout the remainder

of this chapter will be more integrative. It will become clear that we have not negated

their explanation without remainder and the approach taken by Lieder et al. (2018) will

be instructive as we attempt to develop an alternative rational explanation. To begin
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with, recall that the most consequential element of utility-weighted sampling was its use

of the average outcome in the context as a proxy for the expected value of the option.

This substitution allowed the model to capture the influence of extreme outcomes but this

capacity was purchased by sacrificing the minimum-variance importance distribution as

its rational foundation.

This dilemma emphasises a question that needs to be answered by any plausible

rational explanation for the role of extreme outcomes: why would it be beneficial for

an estimate regarding one option to be influenced by the attributes of other options that

comprise the context? Why does this make more sense than using the number of spectators

at the most recent Wimbledon championship to estimate the height of the Ei�el Tower

or using fluctuations in the price of crude oil to estimate the weight of the moon? The

simplest explanation is that much of our world involves clustering and nested structure.

As such, we can estimate someone’s salary based on their position within an organisation

within a country or the cost of renting an apartment based on its location within a building

within a neighbourhood within a city.

We can allocate some of the outcome variability to each level of this nested structure

and it might be possible to exploit information from multiple levels to improve the accuracy

of our estimates. With this in mind, we can interpret utility-weighted sampling as a single

species within a genus of estimators that uses the higher-level distribution to constrain

estimates of the lower-level options. There are numerous other algorithms within this

genus that have demonstrated the ability to outperform those that neglect the multilevel

structure of the environment (Efron & Morris, 1973; Greenland, 2000). With recent

advances in methodological tools and computing power, these multilevel approaches have

entered into routine statistical practice on both sides of the Frequentist-Bayesian divide

(Bates et al., 2014; Carpenter et al., 2017; R. Gelman & Gallistel, 2004; Snijders & Bosker,

2011).

The most common approach to multilevel estimation imposes shrinkage or regular-

isation on lower-level items that reflects a compromise between evaluating each item in
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isolation and aggregating them to evaluate the higher-level context (A. Gelman, 2006;

Heck & Thomas, 1999). In contrast with utility-weighted sampling where the same im-

portance distribution is used for every option, the amount of shrinkage is influenced by

the uncertainty for each option relative to the context. The influence of the context exists

on a continuum. When there is perfect knowledge regarding the lower-level items, the

context has no influence and when there is considerable uncertainty—such as when there

is missing data—the lower-level estimates are determined almost entirely based on the

upper-level distribution.

Given that uncertainty mediates the relationship between multiple levels in these

models, this attribute might o�er a clue to the question emphasised by utility-weighted

sampling. Namely, the influence of the context on individual options might make sense

when there is uncertainty regarding the lower level options. This is the prevailing situation

in decisions from experience. Most decisions involve numerous options, and therefore,

uncertainty arises from both insu�cient experience and our limited cognitive capacities.

Attentional and encoding mechanisms allow us to remember some options and outcomes

but this comes at the cost of remembering others.

This raises the question of how we should prioritise outcomes in memory—is it

possible to do better than forgetting at random? This could be achieved by prioritising

outcomes that reduce either the probability that forgetting will contribute to a suboptimal

action or the consequences of those actions. We often have some knowledge whether in-

formation will be useful in the future. For example, it makes more sense to pay attention

to the name of the barista where you get co�ee every morning than the one who served

you in a cafe you visited on an overseas holiday. We can exploit the spatio-temporal auto-

correlation in these situations by prioritising outcomes that we have experienced recently

or that occur frequently in our environment (e.g., J. R. Anderson, 1991; Plonsky et al.,

2015).

Throughout the remainder of this chapter, we will attempt to demonstrate that

it is also possible to improve our choices by prioritising memory for extreme outcomes
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within the higher-level context. This influence arises as a consequence of two attributes

of decision-making: 1) similarly to the multilevel estimators described above, uncertainty

means that the context becomes relevant when evaluating lower-level options and 2) the

comparative nature of choice means that the position of an option within the context

influences the consequences of uncertainty. The conjunction of these attributes entails

that extreme outcomes have a greater influence on whether our choices are aligned with

our goals.

We will examine these attributes in considerable detail but in the interim, the po-

tential rationality of the influence of extreme outcomes can be grasped intuitively in the

following example: Suppose that you were presented with a choice between a pair of op-

tions, one known and the other unknown. How likely are you to make the correct choice?

On the one hand, if the known option is either the best or worst you have encountered

within a given context, you can be relatively confident in either selecting or rejecting it.

On the other hand, the probability of making the correct choice is equivalent to a coin toss

when the known option is the median because there are an equal number of experienced

options that are better and worse than the known option.

In this example, the higher-level context is relevant due to uncertainty regarding the

lower-level options and the extreme outcomes provide more certainty when determining the

better option. In other words, extreme outcomes are more informative than intermediate

outcomes and forgetting them would have greater consequences. We will formalise this

intuition into a rational explanation that consists of two closely related models: one that

uses an ordinal criterion to explain the influence of extreme outcomes with judgements

that can be either correct or incorrect and another that uses a continuous criterion to

explain their influence when aiming to maximise expected utility.

2.3.1 Ordinal criterion

We will begin our exposition by putting some extra meat onto the bones of the intuition

sketched above. Imagine an idealised scenario in which each option is associated with a
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single outcome from a set of possible outcomes from 1 (the worst outcome) to 10 (the

best outcome). A decision-maker enters this context without any knowledge about these

options and must learn from experience by making a series of choices and observing the

outcome. Some of these options will be encountered again in the future and this will allow

the agent to perform better than chance but their memory is limited so they are unable

to recall all of the options. Importantly, they have an ordinal criterion where their goal is

to make the correct choice on as many decisions as possible rather than maximising the

expected value.

Imagine that they encounter a choice between the option associated with outcome

3 and the option associated with outcome 8. If they can access a memory associated with

both of these options, they will always choose outcome 8. They care about making the

correct choice but do not care how much the outcomes di�er. In this case, the outcome

was CORRECT. On the other hand, if they can access a memory associated with neither

of these options because they have not previously encountered or have forgotten them, the

decision-maker cannot do better than choosing an option at random. The outcome will

be CORRECT half the time and INCORRECT the other half of the time.

What about when only one option is remembered? This is less straightforward than

when both options were remembered or forgotten but we can derive an optimal decision-

rule by observing the consequences associated with each choice. In a situation where the

known option is associated with outcome 1 (the worst outcome), selecting this option will

always be INCORRECT. The decision-maker should always select the unknown option.

Similarly, when the known option is 10 (the best outcome), selecting the known option

will always be CORRECT. In other words, when the known option is associated with the

best or worst outcome in the context, whether an option is CORRECT or INCORRECT

can be known with certainty.

In contrast, uncertainty is the rule when the known option is associated with one

of the intermediate outcomes. For example, selecting an option associated with outcome

5 will be CORRECT when the unknown option is associated with the four outcomes
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in {1, 2, 3, 4} and INCORRECT when the unknown option is associated with the five

outcomes in {6, 7, 8, 9, 10}. If we tentatively grant the assumption that each option occurs

with equal frequency, there would be a 4/9 probability that this option is CORRECT.

Likewise, selecting an option associated with outcome 6 will be CORRECT when the

unknown option is associated with the five outcomes in {1, 2, 3, 4, 5} and INCORRECT

when the unknown option is associated with the four outcomes in {7, 8, 9, 10}. In this

case, there is a 5/9 probability that this option will be CORRECT.

These examples demonstrate that the probability that a known option will be COR-

RECT depends entirely on its rank whenever the unknown options occur with equal fre-

quency. Although these ranks are usually expressed as numbers from 1 to n, we can

normalise them using

rank
Õ
option = rankoption ≠ rankmin

rankmax ≠ rankmin
(2.4)

where rankoption is the unnormalised rank of the option and rank
Õ
option is the nor-

malised equivalent. This ensures that the options are evenly spaced across the range where

the worst option is 0 and the best option is 1 and we can interpret the normalised ranks

as probabilities.

Therefore, the probability that an option will be CORRECT is always greater than

0.5 whenever its rank is above the median and we can use this to derive an optimal decision

rule: the known option should be selected when it is above the median and avoided when

it is below. Admittedly, this requires knowledge of the median option but this can be

estimated using a relatively small sample of previous outcomes (Rider, 1960). We can also

generalise this rule to situations where the assumption of equiprobable options is violated

by weighting each option by its probability of occurrence.

At this point, it is worth emphasising three elements of our exposition that determine

the influence of extreme outcomes: Firstly, when either both options are known or both

are unknown, the probability of a choice being CORRECT is not influenced by the rank
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of the options. A choice is either made with certainty or an option is chosen randomly.

Secondly, when one option is known and the other is unknown, the probability that the

known option will be CORRECT is determined by its normalised rank. Thirdly, the

agent should select the known option whenever its value is above the value of the median

option. These elements are the three premises that underlie our rational explanation for

the influence of extreme outcomes using an ordinal criterion.

The journey from these premises to the conclusion involves seven steps. First,

the benefit associated with remembering an option is simply P (correct|known) ≠

P (correct|unknown) for the decision-maker with an ordinal criterion. This is simply the

di�erence between the probability of selecting the correct option when only that option

is known and when both options are unknown. Second, given that the median option

is defined as having an equal number of options on either side, the normalised rank for

the median, rank
Õ
median, is equal to 0.5. The probability that the correct option will be

chosen when both options are unknown is also 0.5, and therefore P (correct|unknown) is

equal to rank
Õ
median.

Third, we can use the function in Equation 2.4 to transform the rank of the known

option into a normalised rank, rank
Õ
known, which corresponds to the probability that the

known option will be CORRECT. Fourth, the known option is selected whenever its rank is

higher than the median, and therefore, P (correct|known) is equal to rank
Õ
known above the

median. Conversely, the known option is rejected whenever its rank is below the median,

and given that one option being CORRECT implies that the other is INCORRECT,

P (correct|known) is equal to (1 ≠ rank
Õ
known) below the median.

Fifth, using the equivalences from Step 2 and Step 4 and some basic arithmetic, we

can demonstrate that P (correct|known)≠P (correct|unknown) is rank
Õ
known ≠rank

Õ
median

when rank
Õ
known is higher than rank

Õ
median and is rank

Õ
median ≠rank

Õ
known when rank

Õ
known

is lower. In both of these cases, this corresponds to the di�erence between the normalised

ranks for the known option and the median option but the subtrahend and minuend

are mirrored when the known option is above or below the median. When the known
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option is the same as the median option, this di�erence is equal to zero. Otherwise, the

larger number is always subtracted from the smaller number and P (correct|known) ≠

P (correct|unknown) is always positive.

Sixth, we can use the arithmetic equivalence between |a≠b| and |b≠a| to demonstrate

that |P (correct|known) ≠ P (correct|unknown)| = |rank
Õ
known ≠ rank

Õ
median| regardless of

the option that is chosen. Because P (correct|known) ≠ P (correct|unknown) is always

greater or equal to zero, we can simplify this to

P (correct|known) ≠ P (correct|unknown) =
--rank

Õ
known ≠ rank

Õ
median

-- . (2.5)

The final step is to recognise that the definition of “extreme outcomes” in this

rational explanation is determined by the di�erence in rank between the known option

and the median, |rank
Õ
known ≠ rank

Õ
median|. The probability of choosing the correct option

increases monotonically with this conception of extremity. Therefore, we can conclude

that, ceteris paribus, it is rational for a decision-maker with an ordinal criterion to prioritise

extreme outcomes in memory.

2.3.2 Continuous criterion

Imagine that a second decision-maker enters into the scenario described in the previous

section. Everything about the context remains identical: there are still ten possible options

associated with outcomes from 1 to 10 and knowledge of these options must be acquired

through experience. The second decision-maker is identical to the first one except that

their goal is to maximise the outcome of their choices. In other words, they have the same

continuous criterion as the expectation-maximising Homo economicus but they possess an

extremely limited memory rather than omniscience and omnipotence.

There are numerous similarities between the first and second decision-makers. When

the second decision-maker can access a memory for both options, they will always select
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the option that the first decision-maker considered CORRECT. Similarly, when they re-

member neither of the options, they cannot do better than selecting a random option. In

this scenario—where the outcomes are evenly distributed from 1 to 10—the two decision-

makers also make the same choice when one option is known and the other is unknown.

Nonetheless, they choose this option for a slightly di�erent reason. Namely, given that the

second decision-maker has a continuous criterion, they care about the distance between

outcomes and should choose the known option whenever its outcome is above the mean

rather than the median.

We can use this information to construct a set of three premises that are analogous

to the ones we used for the ordinal criterion. Firstly, the decision-maker selects a random

option when neither option is known and selects the better option when both options are

known. Secondly, when one option is known and the other is unknown, the expected value

of the known option is simply the outcome associated with this option. Thirdly, the agent

should select the known option whenever it is better than the average option. Once again,

we will use these premises as the foundation of a rational explanation for the influence of

extreme outcomes—this time using a continuous criterion.

The first premise introduces an additional element of complexity. When examining

the ordinal criterion, we focused exclusively on the benefit of knowing one option relative

to knowing neither. This was not an erroneous neglect of the second di�erence between

knowing one option and knowing both. Instead, given that the probability of selecting the

correct option is a constant value in both cases (0.5 or 1), the latter di�erence is a simple

transformation of the former. The cost associated with forgetting an option when both

are known depends on the rank of the option that remains, such that the cost is simply

|rank
Õ
median ≠ rank

Õ
known|. This value decreases monotonically as the ordinal extremity of

the remembered option increases, and therefore, focusing on this di�erence would have led

to exactly the same conclusion.

This is not the case using a continuous criterion. Neither of these choices is indepen-

dent of the (potentially) known options, and therefore, we would reach di�erent conclusions
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depending on the comparison we chose. Examining the di�erence between decisions that

involve one known option and two known options will reveal a broader pattern that will be

relevant when we generalise from binary choices to those involving multiple options. This

pattern is also relevant to the ordinal criterion so we will examine the di�erence between

zero and one known option in this section and multiple known options in the following

section.

In contrast with the obstacle lingering in the first premise, the di�erence between the

second premise used for the ordinal and continuous criteria will make our task much easier.

A considerable proportion of our examination of the ordinal criterion was spent justifying

the transition between rank and probability. For the continuous criterion, the outcome

of the known option is directly isomorphic with the quantity that the decision-maker is

aiming to maximise—at least until we discuss risky options—and a similar transformation

will be unnecessary. Specifically, this will allow us to bypass the third step in the derivation

for the ordinal criterion leaving a path with six rather than seven steps.

First, the benefit associated with remembering an option is EVknown≠EVunknown for

the decision-maker with a continuous criterion. This is the di�erence between the expected

value of the chosen option when only that option is known and the expected value when

both options are unknown. Second, when neither option is known, the decision-maker

selects a random option. In contrast with the ordinal criterion where the probability

of selecting the correct option was always 0.5, the outcome of the potentially—but not

actually—known option influences the expected value of this random choice. The poten-

tially known option and the other unknown option have an equal probability of being

selected. On average, the outcome of the other unknown option will be equivalent to the

mean , and therefore, the expected value of this choice is (outcomeknown+outcomemean)/2,

where outcomeknown is the potentially known option.

As we mentioned above, the third step in the derivation for the ordinal criterion is

not necessary for the continuous criterion but we will keep the numbering consistent to

facilitate comparison between the two criteria. Fourth, when only one option is known, the

71



CHAPTER 2. RATIONAL EXPLANATIONS

known option is selected whenever its outcome is above average, and therefore, EVknown

is equal to outcomeknown above this value. Conversely, the unknown option is selected

whenever the outcome associated with the known option is below average. On average,

the outcome of the unknown option is the average outcome in the context, and therefore,

EVknown is equal to outcomemean when the known option is below this value.

Fifth, we can once again use the equivalences from Step 2 and Step 4 and some

basic arithmetic to calculate the expected utility gain associated with remembering an

option. EVknown ≠ EVunknown is outcomeknown ≠ (outcomeknown + outcomemean)/2 when

outcomeknown is above average and outcomemean ≠(outcomeknown +outcomemean)/2 when

outcomeknown is below. Similarly to the ordinal criterion, the smaller number is always

subtracted from the larger number, and therefore, EVknown ≠ EVunknown will always be

positive. This occurs because the average of the known outcome and the mean is always

1) smaller than the known outcome when the known outcome is larger than the mean and

2) smaller than the mean when the mean is larger than the known outcome.

Sixth, we can perform an identical sequence of arithmetic operations to those used

to rearrange the equation for the ordinal criterion based on the equivalence between |a≠b|

and |b ≠ a|. For the continuous criterion, this simplifies to

EVknown ≠ EVunknown = |outcomeknown ≠ outcomemean|
2 (2.6)

Once again, the final step is to recognise that the benefit of remembering an option

corresponds to our definition of “extreme outcomes” in this rational explanation but we

will define these outcomes di�erently for the continuous criterion. The numerator of

the benefit, |outcomeknown ≠ outcomemean|, is simply the continuous distance between

the potentially known option and the average outcome in the higher-level context. The

expected value associated with remembering an option increases monotonically with this

conception of extremity. Therefore, we can conclude that, ceteris paribus, it is rational for

a decision-maker with a continuous criterion to prioritise extreme outcomes in memory.
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2.4 Chapter discussion

In the previous section, our use of examples was limited to a single scenario where the out-

comes were amorphously described as “1 (the worst outcome)” and “10 (the best outcome)”

and it would be natural to question the generalisability of our analysis. Nonetheless, if

you only remembered one of the two options, you would have a better chance of answer-

ing which movie is longer if you remembered the length of Gone with the Wind than if

you remembered The Wizard of Oz, which element has a higher atomic number if you

know lithium than if you know barium, which of two routes is quicker if you remember

the road where the speed limit is 110km/h than if you remember the one where the limit

is 80km/h, which holiday is earlier in the year if you know Hanukkah than if you know

Halloween, which mountain is taller if you know Everest than if you know Kilimanjaro,

which monarch reigned longer if you remember King Charles III than if you know King

Edward II, and which job applicant was better if you remember the one who stumbled

in 30 minutes late reeking of alcohol than if you remember the one who stumbled over a

couple of questions.

Given that the economics literature is inundated with situations where the decision-

maker aims to maximise the expected utility of their choices, it feels superfluous to con-

struct a similar list for the continuous criterion. Our point is that our use of idealisation

contributes to the generalisability of our analysis rather than detracting from it. This

analysis used the ordinal and the continuous criteria to define the benefit associated with

remembering one option compared with remembering neither and supplemented this cri-

terion with three additional premises. Insofar as one is convinced that those premises and

the subsequent derivation are correct, they also have reason to believe that prioritising

extreme outcomes is rational within the domain to which our analysis pertains.
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2.4.1 Multiple options

The mathematical approach used in our analysis is based on the structural relationship

between items rather than their specific content. Similarly to the way that gravity applies

to objects regardless of whether they are planets within a galaxy or apples falling from a

tree, our model applies whenever items can be sensibly ordered along a dimension and are

selected according to either an ordinal or continuous criterion. Nonetheless, there are also

definite limitations on the applicability of our rational explanation that deserve further

emphasis. Of these, perhaps the most prominent boundary is between decisions in which

there are two available options and those in which there are three or more. In our analysis,

we focused exclusively on the former and we must venture beyond this province before

reaching any strong conclusions regarding multiple options.

There is a sense in which the benefits associated with remembering options across

this broader domain is a separate question. Regardless of our conclusion, our analysis

using two options would remain unscathed and we would still have reason to believe that

there are benefits to remembering extreme outcomes within this limited domain. Be that

as it may, it is simultaneously true that this independence would break down when using

our rational explanation to constrain potential mechanisms. It is a plausible assumption

that there would be some cost associated with having one mechanism for choices with two

options and another for those with three or more. We might need to take this potential

expense into consideration if prioritising extreme outcomes has a detrimental e�ect on

choices with multiple options.

Whilst a proper formal treatment of this broader class would inevitably double the

length of this chapter, we will attempt to provide a sketch of the implications for multiple

options. For the decision-maker with an ordinal criterion, they should always select the

best known option when at least one is above the median because it is not possible

to reliably perform better when selecting an unknown option. The probability that

this known option is better than one particular unknown option is max(RANK
Õ
known).

Therefore, the probability that this option is better than all unknown options is
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max(RANK
Õ
known)nunknown , where nunknown is the number of unknown options.

Conversely, when none of the known options is above the median, they cannot

perform better than randomly selecting one of the unknown options. Two things must be

true for this randomly selected option to be CORRECT: it must be the best unknown

option and it must be better than max(RANK
Õ
known). Given that max(RANK

Õ
known)

is the probability of that the best known option is CORRECT, the conjunction of these

events can be written as (1/nunknown)(1 ≠ max(RANK
Õ
known)). As we would expect, this

reduces to the equations in the ordinal criterion section when there is one known and one

unknown option.

We can roughly summarise the behaviour of these equations as follows: 1) Forgetting

any option—regardless of its position in the context—increases nunknown, which decreases

the probability that the choice is CORRECT. 2) When one or more known options is

above the median, the probability of selecting the correct option increases monotonically

as max(RANK
Õ
known) approaches the upper extreme. 3) When none of the known options

is above the median, the probability of selecting the correct option increases monotonically

as max(RANK
Õ
known) approaches the lower extreme. 4) Forgetting an option only changes

these probabilities when max(RANK
Õ
known) changes.

Similarly, for the decision-maker with a continuous criterion, they should always

select the best known option when at least one is above the mean. The expected value of

this choice is simply the outcome associated with this option, max(OUTCOMEknown).

Conversely, when none of the known options is above the mean, they cannot perform

better than randomly selecting an unknown option and the expected value of this choice

is outcomemean.

When an option is forgotten, there are two possible consequences: the best known

option will be selected when max(OUTCOMEknown) remains above the mean or a ran-

domly selected option will be chosen. As we discussed in the continuous criterion section,

we cannot merely ignore the potentially known option in the counterfactual where it has

been forgotten. Therefore, the expected value when an option has been forgotten is a
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weighted average between the potentially known option and the mean. The probability

of selecting this option decreases as the number of unknown options increases so that the

expected value is (outcomeknown + outcomemean ◊ (nunknown ≠ 1))/nunknown.

These broader equations encompass the ones we used in the continuous criterion

section and also capture the comparison between two and one known option that we

consigned to a promissory note. Once again, we can summarise the behaviour of these

equations as follows: 1) When at least one known option is above the mean, the expected

value of the choice increases monotonically as max(OUTCOMEknown) approaches the

upper extreme. 2) When none of these options is above the mean, the cost associated

with forgetting an option increases monotonically as outcomeknown approaches the lower

extreme. 3) The influence of each potentially known option decreases as nunknown increases

but this also ensures that there are more forgotten options. 4) When at least one known

option is above the mean, the expected value only changes when forgetting an option

influences max(OUTCOMEknown).

We now possess the information we need to evaluate whether our explanation gen-

eralises to multiple options. Consistent with our analysis using two options, the benefit

associated with remembering an option increases as it becomes more extreme but there

is a second variable that moderates these benefits. In this scenario, the decision-maker

must select one option and reject the others and this entails that remembering an option

only influences their choice when it modifies the best known option. When this occurs,

remembering extreme outcomes has advantages similar to those we ascertained using two

options but there is no guarantee that a memory lapse will change the best known option.

This attribute has two main implications for our rational explanation. Firstly, the

probability that forgetting an option will change the best known option decreases as the

number of known options increases. As a consequence, the advantages of extreme outcomes

are strongest when there is a single known option and decreases as this number increases.

Secondly, the probability that an option will change the best known option depends on

their rank within the distribution. The options that are located near the higher extreme
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are more likely to change the best option and this means that remembering or forgetting

them is more consequential. Therefore, increasing the number of known options mitigates

the influence of extreme options with one hand whilst introducing an additional reason

for remembering higher extreme options with the other.

2.4.2 Risky options

When introducing our discussion of risky options, it is useful to recall that our critique of

the utility-weighted sampling explanation was based on their substitution of the expected

value of the option with the average outcome in the context. We emphasised how Lieder

and colleagues provided a rigorous mathematical proof for the minimum-variance distribu-

tion and then merely assumed that this capacity would generalise to the average outcome.

This allowed the model to explain the behaviour of participants in the experiments by

Ludvig and colleagues but it undermined the rational foundation of their explanation.

We are bringing this up yet again because we suspect that if someone were to compose

a similar critique of our alternative explanation it would be focused on the substitution

discussed in this section—the section in which we will attempt to formulate that critique

ourselves.

We constructed our rational explanation based on a scenario in which each option is

associated with a single outcome. When there is only one possible outcome, the expected

value of each option is isomorphic with the outcome for that option and this was the basis

of our conclusion regarding extreme outcomes within this domain. Although it might be

enticing to perform a similar substitution when there are multiple possible outcomes—for

risky options—this would be illegitimate. The outcomes of risky options are partially

determined by their expected value but they also fluctuate around it. Therefore, we

must also consider the variance when determining whether extreme outcomes should be

prioritised for risky options.

Before we attempt to do this, we should reflect on why we even want to generalise our

explanation to these options. Can we not be satisfied with having explained the influence of
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extreme outcomes within a limited domain? The first reason is that prioritising extreme

options is entirely unable to explain the pattern of decisions observed by Ludvig and

colleagues. Their experiments employed safe and risky options with the same expected

value and we are unable to explain their observations without generalising from extreme

options to extreme outcomes. A second reason is that the way we learn about options

is usually by observing outcomes and an encoding bias towards extreme outcomes might

o�er a more feasible strategy for prioritising extreme options. Therefore, it appears that

we have found ourselves in the same position as Lieder and colleagues where we might be

required to sacrifice the rational component of our model to explain the phenomena.

At least to some extent, the utility of our explanation depends on our justification

for substituting options with outcomes but fortunately this only requires us to emphasise

two attributes: 1) The benefit of remembering an option increases monotonically towards

the edges so that remembering an even more extreme option is always preferable. 2)

Even when the variance of an option is enormous, there is always a positive correlation

between the expected value and the outcomes associated with the option. The strength

of this relationship depends on the variance but prioritising extreme outcomes will never

reduce the probability that you will remember an extreme option. Therefore, we can

conclude that remembering extreme outcomes always produces some proportion of the

benefits associated with remembering extreme options.

Have we achieved our aim? What we have demonstrated is that the relationship

between extreme outcomes and options increases the probability that the correct risky

option will be selected and the benefits associated with doing so. In contrast with utility-

weighted sampling, this relationship is favourable across its entire domain of applicability

instead of sacrificing performance in some common scenarios. Admittedly, this benefit is

moderated by the number of known options and the variance of each option but we have

ostensibly found an explanation that obeys the rationality equivalent of the Hippocratic

Oath: at the very least, it never makes things worse.

Although this is an unambiguously desirable quality, we have not yet answered
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whether it is rational to prioritise extreme outcomes in memory. This question remains

up for debate because there are two interpretations of our claim to do no harm and only

one of them is true. What we have demonstrated is that there are benefits associated with

remembering extreme outcomes but we have not shown that it is necessarily beneficial

to prioritise them. It is possible that there are negative consequences that outweigh the

positives, and therefore, adopting a strategy where extreme outcomes are prioritised might

give rise to worse decisions.

This is a lingering concern for every rational explanation because even when the

analytical component includes an ironclad logical deduction, the empirical component

can reveal neglected variables. There is some evidence, however, that our explanation is

vulnerable to this possibility when extended to include a bias towards extreme outcomes.

This bias in memory increases the probability of remembering informative options but

contributes to the mean squared error when subsequently making decisions. Therefore,

the viability of this explanation for the influence of extreme outcomes depends on whether

the positive consequences outweigh the negative ones.

The bias towards extreme outcomes would ideally be present in memory but com-

pletely absent in choice and this is another place where we can take inspiration from

Lieder and colleagues. Their model includes a bias-correction mechanism that weights

the retrieved outcomes based on their probability of being included in the sample. Com-

paring the light and dark blue lines in Figure 2.3 and 2.4 highlights the capacity of this

component to mitigate the consequences of biased sampling. It is plausible that a similar

mechanism attenuates the disadvantages associated with biases in choice su�ciently to

enable the advantages associated with biases in memory.

2.4.3 Conclusion

We began this chapter with the observation that extreme outcomes are disproportion-

ately influential across numerous cognitive domains and raised the question whether this

could be attributed to an underlying reason. We examined the explanation o�ered by
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utility-weighted sampling but ultimately concluded that its variance-reduction strategy is

only rational within a limited domain. This was the motivation for developing an alterna-

tive rational explanation based on the informativeness of extreme options relative to the

intermediate options. We demonstrated that prioritising extreme options and outcomes

increases the probability of selecting the correct option and the expected utility gained

from these choices. This rational explanation applies across a broad range of judgements

and decisions and might serve to unify several phenomena that have been assigned separate

explanations.
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Chapter 3

Levels of measurement

In the previous chapter, we used the experiments conducted by Ludvig et al. (2014) to cri-

tique utility-weighted sampling and motivate an alternative that applies across numerous

domains. In this chapter, we will narrow our focus to extreme outcomes in decisions from

experience and examine several mechanical explanations for this phenomenon. Ludvig,

Madan, and colleagues were responsible for the majority of the empirical work in this

area and our experiments in this section were influenced by their methods (Ludvig et al.,

2018; Ludvig et al., 2014; Ludvig & Spetch, 2011; Madan et al., 2014, 2017). There-

fore, although we have already discussed their experiments in the previous chapters, the

following paragraphs o�er another brief summary.

Participants in each of these experiments made numerous choices between pairs of

options. They were initially unaware of the potential outcomes and probabilities associated

with each option but were able to acquire information by observing the outcomes of their

choices. In contrast with most decisions from experience tasks, these participants were

presented with numerous options within the same context rather than a single pair (Wul�

et al., 2018). For example, one experiment included a low-value safe option that always

resulted in -25 points paired with a risky option that resulted in either -45 or -5 points

and a high-value safe option that always resulted in 25 points paired with a risky option
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that either resulted in 5 or 45 points (Ludvig et al., 2014, Experiment 2).

Participants’ choices stemming from this seemingly minor alteration were quite dif-

ferent from those that are observed when either of these pairs is presented in isolation

(Kahneman & Tversky, 1979).1 Specifically, they selected the risky option more often

when they chose between the high-value pair than when they chose between the low-value

pair. Ludvig et al. (2014) explained this pattern by emphasising that the risky option

results in both the best outcome and the worst outcome when these options are presented

in isolation. In contrast, when more than one pair is encountered in the same context,

the low-value risky option results in the worst outcome and the high-value risky option

results in the best outcome. Therefore, a preference towards options that result in the

best outcome and against options that result in the worst outcome could be explained by

these extreme outcomes (e.g., -45 or 45 points) exerting greater influence on choices than

intermediate outcomes (e.g., -5 or 5 points).

Ludvig et al. (2014) provided three additional pieces of evidence in support of this

explanation. First, that a similar preference towards the risky option of the high-value pair

and against the risky option of the low-value pair is observed when all outcomes are gains

or losses (Ludvig et al., 2014, Experiment 4). Second, that the e�ect is weaker or entirely

absent when options are not associated with the best or worst outcomes. And third, that

extreme outcomes are over-represented when participants estimate the frequency of each

outcome and when they report which outcome comes to mind first (Ludvig et al., 2018;

Madan et al., 2014, 2017). This suggests that the observed pattern of choices is associated

1Prospect theory implies that people are risk-seeking for losses and risk-averse for gains
that involve moderate to high probabilities. Although there is considerable support for
this conjecture when tasks involve written descriptions (e.g., Abdellaoui, 2000; Baucells
& Villasís, 2010; Holt & Laury, 2005; Tversky & Kahneman, 1992), there is growing
evidence for risk-neutrality across domains when decisions are based on experience (Erev
et al., 2010; Erev et al., 2008; Ert & Haruvy, 2017). This di�erence has been partly
attributed to the use of small magnitude outcomes in experience-based tasks (Erev et
al., 2008; Konstantinidis et al., 2017; B. J. Weber & Chapman, 2005), and therefore, we
might expect to observe relative indi�erence when these pairs of options are presented
in isolation. Nonetheless, these theories remain unable to explain the e�ects of context
observed by Ludvig, Madan, and colleagues.
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with a bias towards remembering the best and worst outcomes, which is consistent with

evidence that memory biases lead to extreme forecasts when a small number of outcomes

are retrieved (Fredrickson, 2000; Morewedge et al., 2005; D. L. Thomas & Diener, 1990;

Wilson & Gilbert, 2003; Wirtz et al., 2003).

Based on this evidence, Ludvig et al. (2014) devised an extreme-outcome rule that

the best and worst outcomes within a given context are over-represented in memory and

exert a disproportionate influence on decisions from experience. This theory suggests

that the best and worst outcomes di�er categorically from intermediate outcomes. In

this chapter we will examine whether other ways to conceptualise extreme outcomes are

equally consistent with the existing evidence. If outcomes were instead over-represented

in memory based on their ordinal or continuous extremity could we explain preferences

towards the risky option of the high-value pair and against the risky option of the low-

value pair? We suggest that the answer is “yes”. Furthermore, each of these alternatives

corresponds to a distinct literature in which they have been used to explain experimental

findings ranging from discrimination amongst perceptual stimuli to attentional phenomena

regarding sequences of numbers.

3.1 Categorical extreme outcomes

As is evident in their nomenclature, the extreme-outcome rule was influenced by the

peak-end rule, which describes the relationship between experiences as they unfold and

evaluations using memory (Fredrickson, 2000; Fredrickson & Kahneman, 1993). We might

expect these retrospective evaluations to correspond to the sum of the momentary experi-

ences. Instead, people appear to evaluate events based on the single most intense moment

(peak) and the final state (end) of an experience. Specifically, numerous experiments have

demonstrated that the peaks of an experience are highly predictive of retrospective eval-

uations across a diverse range of modalities, including painful and aversive experiences

(Ariely, 1998; Chajut et al., 2014; Kahneman et al., 1993; Redelmeier & Kahneman, 1996;

Stone et al., 2000), video clips (Baumgartner et al., 1997; Fredrickson & Kahneman, 1993),
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mental or physical exertion (Hargreaves & Stych, 2013; Hsu et al., 2018), music (Rozin

et al., 2004; Schäfer et al., 2014), prizes (Do et al., 2008), and odours (Scheibehenne &

Coppin, 2020).

Why might this be the case? One reason is that categorical extreme outcomes are

unique. There is considerable evidence going back to von Restor� (1933) that an item

possessing a unique attribute is easier to remember, such as when one word in a list of black

words is presented in red (for a review, see Schmidt, 1991). Categorical extreme outcomes

di�er from other outcomes in that they only have neighbours on one side whereas other

outcomes have neighbours that are better and neighbours that are worse. Consequently,

they are also the only outcomes that are either always preferred or always avoided no

matter which outcome they are compared with and this uniqueness might increase their

salience in memory.

These categorical extreme outcomes are also uniquely meaningful because they de-

fine the range of experienced outcomes. According to Fredrickson (2000), this “conveys

the personal capacity necessary for achieving, enduring, or coping with that episode. In

other words, the moment of peak a�ect intensity is the single moment that defines the

personal capacity needed to face the experience again” (p. 590). Therefore, it might be

advantageous to consider categorical extreme outcomes when making a decision because

if the most extreme outcomes are not beyond your capacity, neither are the intermediate

ones.

Despite this, there are also reasons to remain sceptical of the categorical peak-end

rule and extreme-outcome rule. Although the peak-end rule emphasises the role of cate-

gorical extreme outcomes, the bulk of the evidence supporting this component of the rule

depends on its ability to predict evaluations. Whilst this might initially appear innocu-

ous, the assertion that categorical extreme outcomes are disproportionately influential is

necessarily also dependent on the predictive ability of intermediate outcomes. Most early

experiments included only the peak and end as predictors but some recent experiments

have demonstrated that other aspects of the experience, such as the average, are similarly
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capable of predicting retrospective evaluations. It has, therefore, become less clear whether

the peaks are disproportionately influential or whether they merely capture equivalent in-

formation to the mean and median (Cojuharenco & Ryvkin, 2008; Ganzach & Yaor, 2019;

Kemp et al., 2008; Miron-Shatz, 2009; Rozin et al., 2004; Schäfer et al., 2014; Seta et al.,

2008; Ste�ens & Guastavino, 2015; Strijbosch et al., 2019).

Regarding the extreme-outcome rule, a recent experiment conducted by Ludvig and

colleagues demonstrated that the preference towards the risky option in the high-value pair

and against the risky option in the low-value pair can be observed with outcomes that

are adjacent to the best and worst outcomes (Ludvig et al., 2018). A similar e�ect was

observed in an experiment where the outcomes were drawn from a continuous distribution.

Participants reported experiencing outcomes that were near the edges of the distribution

that were not necessarily the best or worst outcome (Mason et al., 2020). Ludvig et al.

(2018) accounted for their results by invoking an auxiliary assumption that “the psycho-

logical representation of the edges is fuzzy” (p. 1916). Although this modification allows

the categorical extreme-outcome rule to accommodate these observations, they are more

easily explained using ordinal or continuous extreme outcomes.

3.2 Ordinal extreme outcomes

A genuine choice between options requires us to select some options and forgo others. This

action is necessarily comparative. The best options should be chosen regardless of the

magnitude of the di�erence and this is reflected in the influence of ordinal comparisons on

our judgements and decisions. For example, an outcome’s rank influences the relationship

between financial status and satisfaction (Boyce et al., 2010; G. D. Brown, Gardner, et

al., 2008; G. D. Brown et al., 2017; Osafo Hounkpatin et al., 2015), assessments regarding

the morality of actions (Aldrovandi et al., 2013; Parducci, 1968), perceptions of whether

behaviour is healthy (Maltby et al., 2012; Melrose et al., 2013; Moore et al., 2016; Wood

et al., 2012), and manipulations that aim to improve health-related decisions (Aldrovandi

et al., 2015; M. J. Taylor et al., 2015). Furthermore, ordinal representations of subjective
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value have been identified in the brain (Mullett & Tunney, 2013; Tremblay & Schultz,

1999; Winston et al., 2014) and even incidental exposure to rank-based information is

predictive of subsequent choices (Stewart, 2009; Stewart et al., 2015; Ungemach et al.,

2011).

Similarly, the limited capacity of attention and memory causes us to neglect some

outcomes and this implies that they are influenced by ordinal characteristics. This ob-

servation has given rise to the development of many rank-dependent models of selective

attention (e.g., Birnbaum, 2008; Birnbaum & Chavez, 1997; Diecidue & Wakker, 2001;

Ja�ray, 1988; Lopes & Oden, 1999; Quiggin, 1982; Wakker, 2001; E. Weber & Kirsner,

1997). It has also contributed to several attentional theories that employ ordinal defini-

tions of extreme outcomes (Pleskac et al., 2019; Tsetsos et al., 2012; Vanunu et al., 2020;

Zeigenfuse et al., 2014). These researchers suggest that items capture more attention as

their rank approaches the edges of the distribution and have demonstrated that extreme

items are associated with attention-based phenomena such as the attentional blink (Kunar

et al., 2017; Raymond et al., 1992).

In the previous chapter, we proposed an additional rank-based account of extreme

outcomes. Our rational explanation was based on the consequences of neglecting or for-

getting extreme options. To illustrate the role of rank in our account, suppose that you

were presented with a choice between a pair of options, one known and the other unknown.

How likely are you to make the correct choice? On the one hand, if the known option is the

best that you have encountered within a given context, you can be confident in selecting

it and if the known option is the worst that you have encountered, you can be confident in

rejecting it. On the other hand, the probability of making the correct choice is equivalent

to a coin toss for the median because there are an identical number of experienced options

that were better or worse than the known option.

Other options fall between these two extremes and the amount of information lost by

neglecting or forgetting an option is proportional to its ordinal distance from the median

option. We also showed that a bias towards ordinal extreme outcomes can be used as
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a proxy to minimise the information lost by neglecting extreme options. This ordinal

definition is similar to the categorical extreme-outcome rule in that the best and worst

outcomes are also most extreme based on rank. This allows ordinal theories to capture

the observations of Ludvig et al. (2014) but the influence of ordinal extreme outcomes

also extends to outcomes that are located near the edges. Therefore, in contrast with the

extreme-outcome rule, ordinal theories can capture the findings of Ludvig et al. (2018)

and Mason et al. (2020) without appealing to fuzzy representations.

3.3 Continuous extreme outcomes

Categorical extreme outcomes are always the best and worst and ordinal extremity always

refers to an outcome’s rank. In contrast, continuous extreme outcomes can be defined

with reference to multiple aspects of the experienced distribution. An outcome can be

considered extreme based on the extent to which it deviates from the centre or is located

near one of the edges. Finally, extreme outcomes can refer to the distance between an

outcome and its neighbours because this increases as outcomes approach the edges of a

distribution. These referents to which extreme outcomes are defined are identical when

the centre of an experienced distribution is equidistant from the edges but this equivalence

breaks down when outcomes are asymmetrical. Therefore, in the following sections, we

will briefly examine the evidence regarding continuous extreme outcomes with reference

to the centre, edges, and neighbours.2

2It is also possible to conceptualise ordinal extreme outcomes with reference to the
centre, edge, or neighbouring outcomes. Nonetheless, these three referents are functionally
identical because rank ignores the magnitude of continuous distances. The ordinal distance
between an outcome and the median or the edges is, therefore, complementary rather than
providing independent information. There might be theoretical reasons to favour one of
these referents over the others but our empirical work is silent regarding this distinction.
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3.3.1 Centre of the distribution:

Although the distance from the centre is employed less often compared with the edge-based

and neighbour-based accounts, we encountered two examples in the previous chapter.

Recall that utility-weighted sampling explained the influence of extreme outcomes based on

an optimal response to cognitive resource limitations. The idea that biases can be rational

initially appears counter-intuitive but is based on the well-established bias-variance trade-

o� (S. Geman et al., 1992; Gigerenzer & Brighton, 2009; Hastie et al., 2009). The bias

component decays faster than the variance component as the number of samples increases

and the variance eventually approximates the overall estimation error. This principle

suggests that the negative consequences of memory biases can be compensated by their

ability to reduce the variance.

Lieder et al. (2018) demonstrated that the minimum-variance estimator is based on

the continuous distance between each outcome and the expected value of the option. The

problem is that the expected value is the parameter being estimated and will be unavailable

whenever their is reason to use the estimator. Therefore, Lieder and colleagues suggested

that the average experienced outcome should be used as a proxy for the expected value.

This model is based on the continuous distance from the centre of the distribution and is

able to capture the qualitative e�ects reported by Ludvig et al. (2014) using a single set of

parameters. Insofar as the average outcome in the context is a reasonable substitute for the

expected value of the option, utility-weighted sampling o�ers a centre-based explanation

for why extreme outcomes are over-represented in memory.

In the second half of the previous chapter, we suggested that prioritising extreme

options and outcomes 1) increases the probability of selecting the correct option and 2)

increases the expected utility gained from these choices. The first claim was based on

an ordinal definition of extremity whereas the second employed a centre-based continuous

definition. Specifically, the expected utility of remembering an option is proportional to

the continuous distance between the option and the average outcome in the higher-level

context. We demonstrated that centre-based extreme outcomes can be used as an adequate
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proxy for these extreme options. Therefore, similarly to utility-weighted sampling, this

explanation suggests that recalling centre-based extreme outcomes can be advantageous.

3.3.2 Edges of the distribution:

Continuous extreme outcomes have primarily been used to explain the encoding of percep-

tual stimuli (e.g., Berliner et al., 1977; Braida et al., 1984; Marley & Cook, 1984) and the

e�ect of presentation order in short-term memory (e.g., Farrell & Lelièvre, 2009; Henson,

1998; Jou, 2010). In each of these domains, a robust phenomenon has been observed in

which items near the edges of a distribution (e.g., brightness, loudness, line length, pitch,

area, weight, numerosity, or temporal order) are retrieved from memory with greater speed

and accuracy than items near the centre (Berliner et al., 1977; Bower, 1971; Eriksen &

Hake, 1957; Lacouture & Marley, 2004; Luce et al., 1982; Murdock, 1960; Neath et al.,

2006; D. L. Weber et al., 1977). The serial position curve corresponding to the accuracy of

these items is typically U-shaped, gradually increasing towards the edges, and therefore,

either ordinal or continuous extreme outcomes are necessary to capture these phenomena.

Several explanations of these serial position curves have been proposed that suggest

that items are either encoded or retrieved with reference to salient aspects of the distribu-

tion (Berliner et al., 1977; Braida et al., 1984; Farrell & Lelièvre, 2009; Henson, 1998; Jou,

2010; Marley & Cook, 1984). These accounts suggest that the U-shaped curve reflects a

gradual increase in encoding or retrieval noise as items get further away from these salient

reference points or anchors. One of the most well-known examples of a reference point un-

derlies the diminishing sensitivity between outcomes in prospect theory as their distance

increases from the salient zero-point separating gains from losses (Kahneman & Tversky,

1979). This reference point is particularly salient but other aspects of the distribution,

such as the best and worst outcomes, might serve as additional reference points and this

could explain the U-shaped curves where accuracy diminishes as distance increases from

the edges.

These theories can be divided into two broad classes: the first suggests that items
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are imperfectly encoded based on their distance from salient anchors at the edges of the

distribution (Berliner et al., 1977; Braida et al., 1984) and the second suggests that the

edges are used as implicit reference points when items are compared with each other (e.g.,

Holyoak, 1978; Jou, 2010). In an experiment that teases apart these theories, Madan

et al. (2021) presented the same participants with options across multiple contexts. Some

options that were experienced in the first (encoding) context were later encountered in a

second (choice) context. Participants’ choices were relatively independent of the context

in which these choices were made, and instead, were based on whether outcomes were

extreme relative to the encoding context. This observation is consistent with the encoding

theories—referred to as end-anchor theories—but is also compatible with ordinal accounts

that are based on attention.

3.3.3 Neighbouring outcomes:

An alternative explanation for the U-shaped serial position curves in the previous section

is that items stored in memory tend to interfere with other similar memory traces, and

therefore, items are easier to remember when they are distinctive (M. C. Anderson &

Neely, 1996; Murdock, 1960; Schmidt, 1991). The characteristic U-shape arises because

the average distance between an item and the other remembered items is greater for those

that are located towards the edges of the distribution. You can convince yourself of this

claim either by remembering that the median minimises the sum of absolute deviations or

noticing that the distance between the highest and lowest items corresponds to the entire

range of the distribution whereas the furthest item from the midpoint is half this distance.

Neath et al. (2006) proposed an influential neighbour-based model (SIMPLE) in

which the distinctiveness of an item is primarily influenced by its immediate neighbours

(also see, G. D. Brown et al., 2007; Neath & Brown, 2006). In addition to explaining the

U-shaped serial position curves described above, this local similarity model is also able to

explain a phenomenon that arises when outcomes are irregularly spaced throughout the

distribution. Specifically, their model correctly predicts that central items with relatively
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few near neighbours are remembered more accurately than peripheral items with many

near neighbours (Bower, 1971; G. D. Brown et al., 2007; Neath et al., 2006). This observa-

tion cannot be explained using global similarity models that are based on the unweighted

average distance between items or using the accounts described in the previous sections.

The SIMPLE model was designed to explain discrimination performance based on

perceptual attributes. It o�ers a promising explanation of these phenomena but Ludvig et

al. (2018) argued that it cannot be extended to preferences in decisions from experience.

Similarly to their earlier experiment that was described in the opening section of this

chapter, Ludvig and colleagues presented participants with pairs of low-value options

(safe: 25 points; risky: 5 or 45 points) and high-value options (safe: 75 points; risky: 55 or

95 points). This combination of options would likely give rise to the now familiar pattern

of preferences towards the high-value risky option and against the low-value risky option.

In this experiment, however, they presented participants with two additional risky options

that were contingent on the condition they were allocated to.

In the near neighbours condition, these options resulted in outcomes that were sepa-

rated from the other risky options by a single point (low-value: 6 or 44 points; high-value:

56 or 94 points) whereas in the far neighbours condition these options were positioned

adjacent to the safe options (low-value: 24 or 26 points; high-value: 74 or 76 points).

The SIMPLE model stipulates that introducing additional near neighbours reduces the

distinctiveness of an outcome. Therefore, the best and worst outcomes should have been

less influential in the near-neighbours condition but Ludvig and colleagues observed a

negligible di�erence between their conditions.

How can we explain this observation? There were at least two large di�erences

between the experiments conducted by Neath et al. (2006) using perceptual attributes

and Ludvig et al. (2018) in decisions from experience. Firstly, the outcomes of Ludvig

and colleagues were separated from their near neighbours by a single point and it is quite

plausible that these outcomes were chunked in memory (Miller, 1956; Shi�rin & Nosofsky,

1994). In previous serial position experiments, spontaneous grouping of items led to a
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step-like “scalloping” pattern where near neighbours were treated as equivalent and an

increase in interposition errors within groups was observed (G. D. Brown et al., 2007;

Henson, 1998; Hitch et al., 1996; Ryan, 1969). These patterns are compatible with the

choices and memory responses reported by Ludvig et al. (2018).

Secondly, the additional risky options were designed to make the best and worst

outcomes less distinctive but they also resulted in outcomes that were one point away from

the non-extreme outcomes. It is possible that participants perceived the extreme outcome

(e.g., 95 points) that was adjacent to its near neighbour (94 points) as more distinctive than

the non-extreme outcome (55 points), which was similar to multiple outcomes clustered at

the centre of the distribution (44, 45, and 54 points). To the extent that this argument is

persuasive, it remains plausible that the observations of Ludvig et al. (2018) are compatible

with a neighbour-based account of extreme outcomes.3

3.4 Overview of experiments

In the previous sections, we described numerous theories that employed extreme outcomes

and defined them using di�erent levels of measurement. These theories cited their own

phenomena and mechanisms. Categorical extreme outcomes were used to explain memory-

based evaluations of a�ective experiences, ordinal extreme outcomes were used to explain

the allocation of attention, and continuous extreme outcomes were used to explain the

U-shaped serial position curve in short-term memory. Based on the existing evidence,

however, it is unclear where the experience-based choices observed by Ludvig, Madan,

and colleagues fit into this picture. Therefore, the aim of this chapter is to tease apart

3A similar argument was made by Brown and colleagues (2007): “The forgetting curve
in SIMPLE is closely approximated by exponential forgetting in the short term and power-
law forgetting over longer time periods, but the form of the best fitting function was
found to depend to a large (and perhaps intuitively surprising) extent on parameter values
that, from a theoretical point of view, seem rather peripheral to the core assumptions of
the model. We therefore suggest that the search for ‘the’ forgetting function may be
misguided” (p. 566).
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these explanations by manipulating attributes such as the value and variance of outcomes

and the skewness of the contexts in which they are experienced.

Across three experiments, we presented participants with a task that involved re-

peatedly making choices between pairs of options represented by coloured squares (see

Figure 3.1). Similarly to the experiments conducted by Ludvig et al. (2014), these in-

volved safe options that always resulted in a fixed outcome and risky options that had an

equal probability of resulting in an outcome that was better or worse than the outcome of

the safe option. For example, in the first experiment, participants were presented with a

safe option that always resulted in 50 points and a risky option that resulted in 40 or 60

points. Although a single choice never involved more than two options, each experiment

consisted of numerous options that were presented in an interspersed fashion. This allowed

us to examine the influence of extreme outcomes on participants’ choices.

50 points

Next

Figure 3.1: Screenshot of a decision trial between two options. In this example,
the participant selects the blue option and receives 50 points. Feedback is presented until
they click the ‘Next’ button.
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3.4.1 Terminology

One of the hurdles that we encountered when describing the experiments in this chapter

was that there were multiple manipulations involving “value” that could be described using

very similar labels. The inadequacy of language was particularly salient when describing

the high- and low-value options, the high- and low-value outcomes associated with these

options, the highest or lowest values within a given context, and the context manipu-

lations that resulted in high or low average values. In order to mitigate the inevitable

confusion that would arise from using nearly identical terminology, we aimed to consis-

tently describe these manipulations using the conventions described below, which are also

presented visually in Figure 3.2 with reference to the outcomes used in Experiment 1.

5040 602010 300 100

5040 60 8070 900 100

Right-skewed 

context

Left-skewed 

context

Shared options

Low value 

options

High value 

options

High value 

options

Context options Context options

Worst outcome Best outcome

Worse risky 
outcome

Safe
outcome

Better risky 
outcome

Low value 

options

Figure 3.2: Terminology use to describe each manipulation with reference to
the outcomes used in Experiment 1. Each square represents an outcome associated
with an option. Outcomes connected with a Û were associated with the same risky option.

In each experiment, participants encountered multiple pairs of safe and risky options.

These often included one pair that had a higher or lower expected value than the other

options. We will refer to these pairs as high-value and low-value options (or higher and

lower value options). For example, the first experiment involved a pair of high-value

options that had an expected value of 50 points and a low-value pair that had an expected

value of 20 points. The risky option within each pair was associated with one outcome

that was better than the value of the safe option and another that was worse (e.g., safe:

50 points; risky: 40 or 60 points). Therefore, we will refer to these as the better and worse
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outcomes associated with the risky option.

The extreme-outcome rule suggests that the single most extreme outcomes within a

given context are over-represented in memory. We will refer to these categorical extreme

outcomes as the best and worst outcomes. Finally, we manipulated the average value

of the outcomes that participants encountered in each condition to examine the role of

centre-based continuous extreme outcomes. To avoid confusion with the high- and low-

value options, we will refer to these distributions based on skewness. Left-skewed contexts

are those that have outliers on the left tail and an overall average value that is above the

midpoint of the distribution. In contrast, right-skewed contexts have outliers on the right

tail and an average below the midpoint.

3.4.2 Manipulation 1: Value

The extreme-outcome rule proposed by Ludvig et al. (2014) entails that the best and worst

outcomes are uniquely influential. We evaluated this conjecture by presenting participants

with low-value and high-value pairs of options that were not associated with either of

these categorical extreme outcomes. To provide a concrete example, participants in our

second experiment were presented with a low-value pair (safe: 25 points; risky: 10 or 40

points), a high-value pair (safe: 75 points; risky: 60 or 90 points), and an extreme pair

that resulted in the best and worst outcomes (safe: 50 points; risky: 0 or 100 points).

According to the ordinal and continuous accounts, the better outcome of the high-value

risky option and the worse outcome of the low-value risky option are more extreme than

the other outcomes associated with those options. Over-representation of these ordinal

and continuous extreme outcomes in memory should, therefore, generate a preference

towards the high-value risky option and against the low-value risky option. Given that

these options never resulted in the best or worst outcomes, the categorical accounts would

be entirely unable to explain these preferences.
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3.4.3 Manipulation 2: Variance

The defining characteristic of ordinal extreme outcomes is that they disregard the mag-

nitude of continuous di�erences between outcomes. This allowed us to empirically dis-

ambiguate the ordinal and continuous accounts by manipulating the variance of the risky

options. Again providing an example from Experiment 2, participants in the high-variance

condition were presented with the options described in the preceding paragraph whereas

participants in the low-variance condition were presented with a low-value pair (safe: 25

points; risky: 20 or 30 points) and a high-value pair (safe: 75 points; risky: 70 or 80

points) in which the standard deviations of the risky options were three times smaller.

Therefore, the continuous accounts predict that the influence of extreme outcomes should

be stronger in the high-variance condition than the low-variance condition and the ordinal

accounts suggest identical preferences across conditions because the outcomes’ rankings

are una�ected by the variance manipulation.

3.4.4 Manipulation 3: Skewness

Whereas every outcome exerts an influence on the average outcome, the edges of a distri-

bution are only influenced by the best and worst outcomes. This implies that manipulating

the skewness of intermediate outcomes should have a di�erent impact on extreme outcome

theories depending on whether they are defined with reference to the centre or the edges.

For example, in our first experiment (depicted in Figure 3.2), participants were presented

with a pair of options (safe: 50 points; risky: 40 or 60 points) that was located at the

midpoint between the best outcome (100 points) and the worst outcome (0 points). This

shared pair was identical across conditions.

In the right-skewed condition, participants also encountered a pair of options that

had a lower expected value (safe: 20 points; risky: 10 or 30 points). These options

shifted the average outcome below the midpoint, and therefore, the better outcome of

the shared risky option (60 points) was further from the average than the worse outcome
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Table 3.1: Summary of the predictions associated with each level of measure-
ment and referent (the aspect of the distribution to which ‘extremity’ refers).

Predicts greater risk-seeking for...
Higher value option? Right-skewed context?

Level Referent Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 3

Categorical Edge No No No No No
Ordinal Equivalent Yes Yes† Yes‡ Yes No
Continuous Edge Yes Yes* Yes No No
Continuous Centre Yes Yes* Yes Yes Yes
Continuous Neighbours ? ? ? Yes Yes

* These theories predict that greater risk-seeking for higher value option will be stronger
in the high variance condition.

† These theories predict that greater risk-seeking for higher value option will be equal
across variance condition.

‡ These theories predict a weaker e�ect in this experiment.

(40 points). This was reversed in the left-skewed condition where the additional pair had

a higher expected value than the shared pair (safe: 80 points; risky: 70 or 90 points).

For this reason, the centre-based accounts entail a preference towards the risky option of

the shared pair in the right-skewed condition and against this option in the left-skewed

condition whereas the edge-based accounts suggest similar preferences across conditions.

A summary of the hypotheses associated with each level of measurement are provided

in Table 3.1.

3.5 General method

3.5.1 Participants

All of the experiments described in this chapter were conducted using undergraduate psy-

chology students enrolled at UNSW Sydney. 80 students participated in Experiment 3a

and 130 students participated in each of the other experiments. Skewness and variance

were manipulated between-subjects and participants were randomly allocated into condi-
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Table 3.2: Summary of demographics for each experiment in Chapter 3.

Age Gender Bonus
Experiment N Mean SD Female Male Mean SD

1 Skewed (non-extreme) 130 20.0 2.4 84 45 $5.95 $2.85
2 Variance 130 19.7 4.0 78 52 $4.00 $0.00
3a Skewed (extreme) 80 19.6 4.4 60 20 $5.33 $2.47
3b Skewed (extreme) 130 19.6 2.8 87 43 $4.97 $2.88

Note:
The standard deviation of payments for Experiment 2 appears as $0.00 because par-
ticipants were paid based on the total number of points earned instead of based on
the outcome of a randomly selected choice and because payments were rounded to the
nearest dollar.

tions with balanced sample sizes. Further demographic information for each experiment

is presented in Table 3.2.

3.5.2 Design and procedure

Upon entering the laboratory, we informed participants—in groups no larger than four—

that the experiment involved a computer-based task in which they could earn real money

based on their choices. Participants completed this task in individual rooms where de-

tailed instructions were presented on the screen. These instructions emphasised that their

objective was to earn as many points as possible and explained how those points would be

converted into dollars. Following this, participants made a series of choices between pairs

of options (the choice task) and were then asked which outcome came to mind first and the

percentage of choices that resulted in each outcome (the memory tasks). These tasks were

closely analogous to those used by Ludvig et al. (2014). Each experiment was programmed

in MATLAB using PsychToolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) and

the code used for each experiment can be accessed at https://github.com/joelholwerda.
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Choice task

Participants encountered pairs of options in a task that interspersed between four and

six options. The options that participants encountered are displayed in Figure 3.3 and

will be described within the sections associated with each experiment. Although we never

explicitly distinguished them, each choice was either a decision trial or a catch trial.

Decision trials involved pairs of safe and risky options that had identical expected values.

These choices were used to examine our primary hypotheses regarding value, variance, and

skewness. Conversely, catch trials involved pairs that had di�erent expected values and

allowed us to ensure that participants were adequately engaging with the task. Following

the criterion proposed by Ludvig et al. (2014), we excluded data from participants who

selected the better option on less than 60% of choices.

Participants were not given written descriptions of each option and were required

to learn about options by selecting them and receiving feedback on the number of points

earned. No feedback was given for the option that was not chosen. In addition to the

decision and catch trials, we also presented participants with single-option trials in which

they had to click the presented option to continue. These trials were included to mitigate

the possibility that participants would completely avoid an option that was initially un-

favourable, and therefore, not have an opportunity to learn that it also produces better

outcomes (Denrell & March, 2001).

Following the experiment, we converted the points that participants earned into

real money. In Experiment 2, we paid them $1 for every 5000 points accumulated in

the choice task for comparability with Madan et al. (2014). These payments were based

on participants’ total scores, which incorporated the outcomes of 360 individual choices,

and therefore, the average outcome associated with each risky option was very similar to

its expected value. We aimed to address this issue in Experiment 1 and 3 by randomly

selecting a choice and paying participants $1 for every 10 points earned on that one

choice. This ensured that selecting risky options was associated with greater variability

in the amount of money that the participant earned.
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There was no time limit when making choices and feedback was presented until

participants selected the “next” button, which was positioned at the horizontal centre of

the screen to ensure that the starting position of the cursor was always roughly equidistant

from the two options. The colours associated with each option were randomised for each

participant and the side of the screen on which options were presented was randomised for

each trial. Choices were presented in a randomised order across five blocks and participants

were encouraged to take a short break before commencing each subsequent block.

Experim
ent 1

Right−skewed

Left−skewed

5040 602010 300 100

5040 60 8070 900 100

Experim
ent 2

High variance

Low variance

7560 902510 40 500 100

7570 802520 30 500 100

Experim
ent 3a

Right−skewed

Left−skewed

3020 40 5010 90

7060 805010 90

Experim
ent 3b

Right−skewed

Left−skewed

2015 25 5010 90

8075 855010 90

Figure 3.3: Diagram of the designs of each experiment in Chapter 3. Each square
represents an outcome associated with an option. Outcomes connected with a Û were
associated with the same risky option and occurred with equal probability. In the figures
displayed in this chapter, we adopt a convention that the low-value options are depicted in
orange, high-value options are depicted in blue, other options associated with a hypothesis
are depicted in green, and other options (not associated with a hypothesis) are depicted
in grey.
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Memory tasks

After participants completed the choice task, we examined their memory for each of the

experienced outcomes. We presented them with the coloured squares associated with each

option and asked them to report “the outcome that comes to mind first”. This first question

was designed to estimate the availability of each outcome in memory. Following this, we

again presented them with each coloured square and asked them, “When you selected the

option presented above, on what percentage of these choices did you experience each of the

outcomes listed below?” All experienced outcomes were listed regardless of whether they

were associated with the displayed option. This second question was designed to assess

whether the frequency of experienced outcomes was distorted in memory. In both of these

tasks, the coloured squares were presented sequentially in a semi-randomised order with

the risky options—used to examine the influence of extreme outcomes—always presented

before the safe options.

3.5.3 Analysis

We used Bayesian regression to analyse participants’ responses because it allowed us to

flexibly model the hierarchical structure of our experimental tasks, incorporate regularisa-

tion, and examine degrees of credibility rather than dichotomous indicators of significance

or non-significance. All posterior distributions reported in this section were determined

by Hamiltonian Monte Carlo using the brms package in R (Bürkner, 2017). For each

posterior, we report the probability that there was a di�erence between conditions in the

predicted direction. This statistic provides information about whether our results can be

attributed to sampling error but does not indicate the magnitude of the di�erence and

cannot provide evidence for the absence of an e�ect (Makowski, Ben-Shachar, et al., 2019;

Makowski, Ben-Shachar, et al., 2019). Consequently, we also report the highest density

interval that contained 95% of the posterior (95% CI) and discuss whether these intervals
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are consistent with the predictions of each theory.4

Weakly regularising priors were selected for each parameter. A student-t(7, 0, 0.5)

distribution was used for the slope, intercept, and threshold parameters. A half-student-

t(7, 0, 0.5) distribution was used for the standard deviation parameters in the hierarchical

models and an LKJ(4) distribution was used for the correlation between intercept and

slope parameters (Lewandowski et al., 2009). These priors were selected to conform with

the Stan prior choice recommendations (Stan Development Team, 2020)5 and predictions

from the prior distribution were inspected to ensure that they allowed the range of plau-

sible observations (Gabry et al., 2019). The same prior distributions were used for the

subsequent experiments with a small number of additions that will be described alongside

the relevant models. Numerical predictors were standardised (mean = 0, SD = 1) and

categorical variables were deviation coded (-1, 1) so that they were centred and their scale

was comparable when setting priors (A. Gelman, 2008).

All parameters had bulk and tail e�ective sample sizes greater than 10000 and an

R̂ < 1.01 suggesting adequate chain convergence (Vehtari et al., 2020). There were no

divergent transitions and the other Stan diagnostics did not indicate issues with esti-

mation. Rank histograms, posterior predictive distributions, and other diagnostic plots

4We chose to present these summaries of the posterior distribution because they are
analogous to frequentist statistics that might be more familiar to some readers. The
probability of direction corresponds roughly to the complement of a one-tailed p-value (1
- p) and the highest density interval corresponds roughly to a confidence interval. They
should not be treated as equivalent because our analysis incorporates informative priors
(Nalborczyk et al., 2019), but they both attempt to answer similar questions. The full
posterior distributions can be accessed at https://github.com/joelholwerda.

5The Stan prior choice recommendations suggest using a student-t distribution with
degrees of freedom between 3 and 7. We selected the latter to provide stronger protection
against implausible parameter estimates whilst still allowing us to learn from the data.
To examine the sensitivity of our conclusions to our choice of priors, we also assessed our
hypotheses using two alternate sets of priors: one more informative set that used normal(0,
0.5) distributions and one less informative set that used student-t(3, 0, 1) distributions.
To examine the sensitivity of our conclusions to our choice of likelihood functions, we
assessed each hypothesis using numerous alternate models that other researchers might
have justifiably used to answer our research questions. The parameter estimates using
these priors and likelihoods can be accessed at https://github.com/joelholwerda.
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3.6. EXPERIMENT 1: VALUE AND SKEWNESS (NON-EXTREME SHARED
OPTIONS)

were examined for each model and can be accessed at https://github.com/joelholwerda.

Preregistered hypotheses for each experiment can be accessed at https://osf.io/d8pq3.

3.6 Experiment 1: Value and skewness (non-extreme shared

options)

To understand the design of the experiments in this chapter, it will be useful to consider

an analogy with the rabbit-duck image that features in every undergraduate course on

visual perception. This image demonstrates that the same component that, from one

perspective, was interpreted as the ears of a rabbit can also be interpreted, from another,

as the bill of a duck. Each experiment in this chapter is similar to the rabbit-duck in that

each option is a component of a design that creates two distinct pictures when viewed

from di�erent perspectives. Consider the options used in our first experiment that are

depicted in Figure 3.2 (also see the top panel of Figure 3.3):

The first perspective interprets these options as manipulating the value of outcomes

(Manipulation 1 in the overview of experiments). This aspect consists of the horizontally-

aligned low-value options (orange) and high-value options (blue). Additional context op-

tions (grey) were included to ensure that these options were never associated with the

best or worst outcomes, and for that reason, the categorical theories assert that choices

involving only these options (e.g., the decision trials) should be una�ected by the over-

representation of extreme outcomes. In contrast, the ordinal and continuous theories

assert that the worse outcome of the low-value risky options (right-skewed: 10 points;

left-skewed: 40 points) and the better outcome of the high-value options (right-skewed:

60 points; left-skewed: 90 points) are extreme relative to the other outcomes associated

with these options. Consequently, they predicted a preference towards the high-value risky

option and against the low-value risky option whereas the categorical theories would be

unable to explain this pattern.

The second perspective interprets these same options as manipulating the skewness
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of the experienced distribution (Manipulation 3). This aspect consists of the vertically-

aligned shared options (within the yellow-shaded region) that are identical across condi-

tions and the flanking context options (right-skewed: orange; left-skewed: blue) that were

used to manipulate the average experienced outcome. Additional context options (grey)

were included to ensure that the range was identical across conditions, and for that reason,

the distance between each shared outcome and the edges of the distribution was similarly

identical. In contrast, the centre-based theories assert that the worst outcome of the shared

risky option (40 points) is further from the average in the left-skewed condition and the

better outcome of this option (60 points) is further from the average in the right-skewed

condition. Consequently, they predicted a preference towards the shared risky option in

the right-skewed condition and against this option in the left-skewed condition whereas

the edge-based theories would be unable to explain this pattern.

Therefore, viewing the options in our first experiment from these two perspectives

allowed us to simultaneously evaluate the adequacy of the categorical extreme-outcome

rule and disambiguate the centre-based and edge-based theories. Participants encountered

these options in a task that involved making a total of 330 choices across five blocks. Each

block consisted of 24 decision trials, 30 catch trials, and 12 single-option trials (see the

general method for more detail). The choice and memory data from one participant

(Right-skewed condition) was excluded because they selected the better option on less

than 60% of catch trials.

3.6.1 Results and discussion

Value manipulation

The proportion of decision trials in which participants selected the risky option is dis-

played in Figure 3.4a. The continuous and ordinal theories predicted that participants

would select the risky option more often for the high-value pairs (blue) than the low-value

pairs (orange) whereas the categorical theories predicted similar preferences across these
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options. Safely ignoring the shared options (bottom panel) until we discuss the skewness

manipulation, we observe a pattern consistent with the continuous and ordinal theories in

both the right-skewed condition (top panel) and the left-skewed condition (middle panel).

We examined this pattern further using Bayesian hierarchical logistic regression

predicting the choice that participants made on each decision trial. We included the

condition (right-skewed or left-skewed), option value (high-value or low-value), and their

interaction as fixed predictor variables. The intercept and the slope for option value were

allowed to vary for each participant. This model suggests that there is a 99.96% probability

that participants were more likely to select the risky option for the high-value options than

the low-value options. This di�erence corresponds to being roughly 1.50 times more likely

to select the risky option for the high-value options (95% CI = [1.18, 1.89]) and is di�cult

to explain using the categorical extreme outcome theories.

Assuming that participants’ preferences were influenced by the availability of ex-

treme outcomes in memory, their responses to the first to mind questions (displayed in

Figure 3.4b) should echo the choices displayed in Figure 3.4a. Specifically, we would ex-

pect that more participants would report the better outcome (dark blue) as coming to

mind first in response to the high-value risky option compared with the low-value risky

option. This is precisely what we observe in Figure 3.4b (again ignoring the bottom panel

until we discuss the skewness manipulation).

We examined this pattern further using Bayesian multinomial regression and the

same predictors as the model of participants’ choices. Consistent with the increased avail-

ability of continuous or ordinal extreme outcomes, this model suggests that there is a

greater than 99.99% probability that participants were more likely to report the better

outcome associated with the risky option for the high-value options compared with the

low-value options, a di�erence that corresponds to being roughly 5.27 times more likely

to report the better outcome for the high-value options (95% CI = [2.71, 10.79]).

A similar pattern is echoed in participants’ responses to the percentage estimate

questions, which are displayed in Figure 3.4c. This figure—and the subsequent analysis—
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Figure 3.4: Choices and re-

sponses to the memory ques-

tions for Experiment 1. The

white dots represent the median

response. The bottom (Shared)

panels reproduce the responses

to the high-value options in the

right-skewed condition (top panel)

and the low-value options in

the left-skewed condition (middle

panel), but emphasise that they

were identical across conditions.

Accuracy represents the propor-

tion of participants’ responses to

the first to mind questions that

corresponded to an experienced

outcome.
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depicts the di�erence between participants’ percentage estimates for the better and worse

outcomes of each option, thus allowing us to gauge the perceived relative frequency of these

outcomes.6 These responses appear to demonstrate that the perceived relative frequency

of the better outcome was higher for the high-value options (blue) compared with the

low-value options (orange).

We examined them further using Bayesian linear regression and the same predic-

tors as the previous models except that the varying slope was removed due to issues with

model convergence. This model suggests that there is a greater than 99.99% probability

that people are more likely to report the better outcome as occurring with greater fre-

quency when presented with the high-value options compared with the low-value options,

corresponding to a di�erence of roughly 0.73 standard deviations (95% CI = [0.51, 0.95]).

Therefore, we should conclude that participants’ choices and memory responses provide

considerable evidence against the categorical extreme outcome theories.

Skewness manipulation

The bottom (Shared) panel in each sub-figure of Figure 3.4 displays participants’ responses

to the option that was shared across conditions. This panel reproduces the responses to

the high-value options in the right-skewed condition (top panel) and the low-value options

in the left-skewed condition (middle panel), but emphasises their alignment within the

second perspective.

The centre-based theories predicted that participants would choose the risky option

more often in the right-skewed condition than the left-skewed condition. Participants’

choices in the bottom panel of Figure 3.4a appear to be broadly consistent with this

6Roughly 80% of percentage estimates included only the outcomes that were associated
with the relevant option. For these responses, the estimates for the better and worse
outcomes are complementary whereas the other (inaccurate) responses might not sum to
100% for these outcomes. Using the di�erence between them integrates information from
both estimates whilst eliminating the problems that arise when including highly collinear
variables in a regression analysis.
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conjecture. We further examined participants’ choices between the shared options us-

ing Bayesian hierarchical logistic regression. We included the condition (right-skewed or

left-skewed) as a fixed predictor variable and the intercept was allowed to vary for each

participant. This model suggests that there is an 85.03% probability that participants were

more likely to select the risky option in the right-skewed condition than the left-skewed

condition (Median odds = 1.23, 95% CI = [0.82, 1.81]). This estimate provides some

evidence in favour of the centre-based theories but also assigns non-trivial probability to

small di�erences that would be consistent with the edge-based theories.

The responses to the memory questions, however, provide considerably stronger

evidence in favour of the centre-based theories (see the bottom panels of Figure 3.4b and

3.4c). Similarly to the first perspective described above, we expected that choosing the

risky option would be echoed in both over-estimating the relative frequency of the better

outcome and reporting it as the first outcome that comes to mind. We examined the

first to mind responses using multinomial regression with the condition (right-skewed or

left-skewed) as a fixed predictor. This model suggests that there is a 99.92% probability

that participants were more likely to report the better outcome as coming to mind first

in the right-skewed condition than the left-skewed condition. This corresponds to being

roughly 2.99 times more likely to report the better outcome in the right-skewed condition

(95% CI = [1.43, 5.95]).

Similarly, we examined the percentage estimates displayed in Figure 3.4c using

Bayesian linear regression and the same predictor variable as the model of first to mind

responses. Consistent with the centre-based theories, this model suggests that there is

a 99.95% probability that participants in the right-skewed condition were more likely to

provide a higher percentage estimate for the better outcome than those in the left-skewed

condition. This di�erence corresponds to roughly 0.59 standard deviations (95% CI =

[0.25, 0.92]).

Thus, to summarise the results of our first experiment, viewing the options from

the first perspective provided strong evidence against the categorical theories and viewing
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them from the second perspective provided some evidence in favour of the centre-based

theories. It is worth noting, however, that the evidence of an e�ect of centre-based ex-

treme outcomes was much stronger in participants’ memory responses than it was on

their choices. We will revisit this distinction between centre- and edge-based theories in

Experiment 3.

3.7 Experiment 2: Value and variance

The first perspective in our second experiment interprets the options as a variation on

the value manipulation that was introduced in the previous experiment (Manipulation 1).

Looking now at the second panel of Figure 3.3, this aspect consists of the horizontally-

aligned low-value options (orange) and high-value options (blue) that similarly never re-

sulted in the best or worst outcomes. In accordance with the previous experiment, the

ordinal and continuous theories predicted a preference towards the high-value risky option

and against the low-value risky option whereas the categorical theories would be unable

to explain this pattern.

So what additional value is o�ered by this variation? One possible rebuttal to our

evidence against the categorical theories is that the psychological representation of the

edges is fuzzy, and therefore, outcomes that are close to the edges (e.g., 10 or 90 points in

our previous experiment) might be confused or chunked with the best and worst outcomes

(Ludvig et al., 2018). The variation used in our second experiment addresses this rebuttal

by ensuring that the categorical extreme outcomes were separated from their nearest

neighbours by a distance that would make fuzzy encoding implausible. Specifically, in

the low variance condition, this distance was equivalent to 20% of the entire range of

experienced outcomes and adopting this amount of fuzziness would render the categorical

accounts utterly vacuous.

The second perspective interprets these same options as manipulating the variance

of the outcomes associated with the risky options (Manipulation 3). This aspect consists
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of the vertically-aligned options that have identical expected values. The rank order of

these outcomes is identical across conditions, and for that reason, the ordinal theories

assert that choices involving only these options should be una�ected by the disproportion-

ate influence of extreme outcomes. Nonetheless, the continuous distance separating the

outcomes of the risky options was three times greater in the high variance condition (30

points) compared with the low variance condition (10 points). This continuous distance

corresponds to the magnitude of the di�erence in continuous extremity between these out-

comes. Consequently, the continuous theories predicted that the preferences towards the

high-value risky option and against the low-value option would be stronger in the high

variance condition whereas the ordinal theories would be unable to explain this pattern.

Therefore, viewing the options in our second experiment from these perspectives

allowed us to address the fuzzy encoding rebuttal whilst di�erentiating between the ordinal

and continuous theories. Participants encountered these options in a task that involved

making a total of 360 choices across five blocks. Each block consisted of 36 decision trials,

24 catch trials, and 12 single-option trials. All participants selected the better option on

greater than 60% of catch trials.

3.7.1 Results and discussion

Value manipulation

Similarly to the first experiment, participants’ choices (displayed in Figure 3.5a) appear

to exhibit a pattern of preferences towards the high-value risky option (blue) and against

the low-value risky option (orange). We examined this further using the same logistic

regression model that was used in the previous experiment but replacing the skewness

conditions with variance conditions. This model suggests that there is a greater than

99.99% probability that participants were more likely to select the risky option for the

high-value options than the low-value options (Median odds = 1.59, 95% CI = [1.24, 2.05]).

This provides additional evidence against the categorical extreme outcome theories.
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Figure 3.5: Choices and re-

sponses to the memory ques-

tions for Experiment 2. The

white dots represent the median

response. Accuracy represents

the proportion of participants’ re-

sponses to the first to mind ques-

tions that corresponded to an ex-

perienced outcome.
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To evaluate the fuzzy encoding rebuttal, we used contrasts to focus on participants’

choices in the low variance condition. These contrasts suggest that there is a 99.04%

probability that there was a similar pattern of preferences in this condition, corresponding

to participants being roughly 1.54 times more likely to select the risky option for the

high-value options 95% CI = [1.09, 2.21]). To explain these choices, the fuzzy encoding

rebuttal would be required to chunk outcomes together that were separated by a fifth of

the overall range of the experienced distribution.

This pattern of preferences is echoed in participants responses to the memory ques-

tions. The proportion of participants that reported the better outcome (dark blue) as

coming to mind first when presented with the risky options is displayed in Figure 3.5b.

We examined these responses using the same model as the previous experiment. This

model suggests that there is a greater than 99.99% probability that participants were

more likely to report the better outcome as coming to mind first for high-value options

compared with the low-value options (median odds = 5.25, 95% CI = [2.56, 11.15]). Fo-

cusing on the low variance condition, there is a 99.77% probability that this pattern was

present in the low variance condition, corresponding to participants being 3.17 times more

likely to report the better outcome for the high-value risky option (95% CI = [1.38, 8.08]).

A similar pattern is exhibited in participants’ percentage estimates (displayed in

Figure 3.5c). Based on the same model as the previous experiment, there is a greater

than 99.99% probability that people are more likely to report that the better outcome

occurs more often when presented with the high-value (blue) options compared with the

low-value (orange) options (Median = 0.57, 95% CI = [0.37, 0.75]). Again focusing on

the low variance condition, there is a 99.85% probability that participants in the right-

skewed condition were more likely to provide a higher percentage estimate for the better

outcome than those in the left-skewed condition. This di�erence corresponds to roughly

0.45 standard deviations (95% CI = [0.15, 0.74]).

Interpreted together, the choices that participants made and their responses to the

memory questions in Experiment 2 provide further evidence against the categorical ex-
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treme outcome theories. Although none of the outcomes were the best or worst, partici-

pants were still more likely to select the risky option when the better outcome associated

with the risky option was further from the centre of the distribution than when the worse

outcome was further from the centre. This evidence is particularly compelling because

the same pattern of responses was observed for the lower variance condition where there

was considerable distance between the outcomes associated with the risky options and the

edges of the distribution.

Variance manipulation

The continuous extreme outcome theories assert that the e�ect of the value manipulation

on choices (displayed in Figure 3.5a) should be stronger in the high variance condition

(top panel) than the low variance condition (bottom panel) whereas the ordinal theories

assert that preferences should be independent of variance. The evidence regarding these

hypotheses is not convincing. Someone arguing in favour of the continuous theories might

point out that the di�erence between the median of the low-value options (orange) and

high-value options (blue) is roughly seven percent greater in the higher variance condition.

In response to this assertion, someone arguing in favour of the ordinal theories might

emphasise that the di�erence in the means is less than one percent. They might further

declare that, using the model described in the previous section, there is only a 58.82%

probability that the e�ect is stronger in the higher variance condition (Median odds =

1.03, 95% CI = [0.80, 1.32]). This is scarcely better than a coin toss!

Participants’ responses to the memory questions o�er some further evidence in favour

of the continuous theories. The di�erence between the low-value options and high-value

options appears to be larger in the high-variance condition for both the first to mind

questions (Figure 3.5b) and percentage estimates (Figure 3.5c). We examined these pat-

terns further using the same predictors that we employed for the value manipulation in

the previous section. These models suggest that there is a 94.72% probability that the

value manipulation had a stronger e�ect on participants’ responses to the first to mind
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questions in the higher variance condition (Median = 1.64, 95% CI = [0.90, 3.09]) and an

88.87% probability of a similar interaction for percentage estimates (Median = 0.12, 95%

CI = [-0.07, 0.31]). This is hardly irrefutable evidence and further investigation will be

required before reaching any strong conclusions regarding these theories.

Thus, to summarise the results of the second experiment, the first perspective pro-

vided compelling evidence against the categorical extreme outcome theories. Even if these

theories were to evoke the auxiliary assumption that encoding is fuzzy, the amount of

noise required to explain our results would leave them categorical in name only. Unfor-

tunately, the second perspective was considerably less decisive. The memory responses

provide some evidence in favour of the continuous theories but an advocate of the ordinal

theories would undoubtedly maintain considerable scepticism. We will provide some fur-

ther evidence regarding these theories in the following experiment whilst attempting to

di�erentiate between the centre- and edge-based theories.

3.8 Experiment 3: Value and skewness (extreme shared op-

tions)

Our third experiment was conducted in two parts (3a and 3b) and these are displayed in the

third and fourth panels in Figure 3.3. For simplicity, we will illustrate the broad patterns

with reference to Experiment 3a and then highlight the distinct attributes of Experiment

3b. The first perspective in this experiment interprets the options as another variation on

the value manipulation that was employed in the previous experiments (Manipulation 1).

In contrast with these experiments, the low-value options (orange) and high-value options

(blue) are aligned along the diagonal so that participants were presented with either low-

value options (right-skewed condition) or high-value options (left-skewed condition). This

allowed us to examine whether the pattern of preferences towards the high-value risky

option and against the low-value risky option requires that these options are experienced

by the same participant.
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A broad distinction can be formed between two classes of theories based on their

predictions regarding this manipulation. As we emphasised with reference to the skewness

manipulation (Manipulation 3), the best and worst outcomes are the only other outcomes

that influence the continuous distance between an outcome and the edges of the distri-

bution. This independence from intermediate outcomes necessitates that the edge-based

theories would predict similar preferences regardless of whether these options are presented

within- or between-subjects. Conversely, every experienced outcome influences both the

overall average and the rank of other outcomes, and therefore, introducing or eliminating

an option might alter the predictions of the centre- and edge-based theories. This attribute

o�ers these theories a method for explaining potential di�erences between our within- and

between-subjects manipulations—a method that is unavailable to the edge-based theories.7

The second perspective in this experiment interprets options as a variation on the

skewness manipulation introduced in the first experiment (Manipulation 3). This aspect

consisted of the vertically-aligned shared options (green) and the context options that

manipulated the average experienced outcome. In contrast with the first experiment where

the shared option was located close to the midpoint of the distribution, the shared risky

7More specific predictions might be ascertained by examining the value manipulations
from our second and third experiments. The average outcome was roughly 53 points in
both conditions of our second experiment whereas in our third experiment the average
was 41.3 points in the right-skewed condition and 61.5 points in the left-skewed condition.
These averages are much closer to the non-extreme risky outcomes (40 and 60 points) than
they were in our second experiment. Therefore, assuming that our choices are influenced
by the ratio of the distances from the average outcome (e.g., utility-weighted sampling),
reducing the distance from the non-extreme outcomes would entail even stronger prefer-
ences in the third experiment. Regarding edge-based theories, the extreme risky outcomes
were separated from the closest edge by a single outcome in both experiments. In contrast,
the non-extreme outcomes in our second experiment (40 and 60 points) were separated
from the closest edge by three outcomes whereas those in our third experiment (also 40
and 60 points) were separated from the opposite edge by just two outcomes. Although
these designs both entail a preference towards the high-value risky option and against
the low-value risky option, the e�ect would arguably be weaker in our third experiment.
Despite this, these predictions should probably be taken with a grain of salt because they
are made based on specific instantiations of these broader classes. It is conceivable that
using a di�erent extremity function would alter—and even reverse—these predictions and
the more useful distinction is with the edge-based theories that predict independence from
the intermediate outcomes.
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option in our third experiment resulted in both the best outcome (90 points) and the worst

outcome (10 points). This ensured that the rank associated with these shared outcomes—

and therefore the predictions of the ordinal and the edge-based theories—were identical

across conditions. Nonetheless, the context options in the right-skewed condition (orange)

were positioned further away from the better outcome of the shared risky option and the

context options in the left-skewed condition (blue) were positioned further away from the

worse outcome. This manipulated the average experienced outcome and ensured that

the centre-based theories predicted a preference towards the shared risky option in the

right-skewed condition and against this option in the left-skewed condition.

Therefore, viewing the options in our third experiment from these perspectives al-

lowed us to simultaneously examine the impact of presenting options between-subjects

and further disambiguate the centre- and edge-based theories. In Experiment 3b, we at-

tempted to increase the strength of the skewness manipulation to provide a rebuttal to

the objection that the di�erence between conditions in Experiment 3a was insu�cient to

expect an e�ect of continuous extreme outcomes. We achieved this by presenting the con-

text options (i.e., the low-value and high-value options) twice as often and shifting their

outcomes closer to the best or worst outcomes. The di�erence between the average out-

come of the conditions was doubled from around 20 points in Experiment 3a to 40 points

in Experiment 3b, which is equivalent to half the range of the experienced outcomes.

In Experiment 3a, participants encountered these options in a task that involved

making a total of 240 choices across five blocks. Each block consisted of 24 decision trials,

16 catch trials, and 8 single option trials. In Experiment 3b the task involved making

300 choices and each block consisted of 36 decision trials, 16 catch trials, and 8 single

option trials. The options selected on catch trials were not used to exclude data in this

experiment. This was because, although the catch trial options had di�erent expected

values, risk-seeking and risk-averse participants may have genuinely preferred the lower

value option based on its variance.
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3.8.1 Results and discussion

Value manipulation

The proportion of decision trials in which participants selected the risky option is dis-

played in Figure 3.6a. The previous experiments in this chapter provided us with strong

evidence that participants were more likely to select the risky option when choosing be-

tween the high-value options than when choosing between the low-value options. Our

third experiment examined whether a similar pattern can be observed when participants

are presented with either low-value options (orange) or high-value options (blue). This

modification generated a strikingly di�erent configuration of preferences. Participants in

this experiment, instead, selected the risky option less often for high-value options than

low-value options.

We examined this pattern further using Bayesian logistic regression predicting the

choice that participants made on each trial. We included the experiment (3a or 3b) and

option value (low-value or high-value) as fixed predictors and allowed the intercept to

vary for each participant. This model suggests that there is only a 34.72% probability

that the e�ect of the between-subjects manipulation is even in the same direction as the

within-subject manipulations from the previous experiments (Median = 0.94, 95% CI =

[0.70, 1.27]).

A similar pattern can be observed in participants’ responses to the first to mind

questions (Figure 3.6b) and percentage estimates (Figure 3.6c). Regarding the first to

mind questions, fewer participants reported the better outcome (dark blue) associated with

the high-value option (top panel) than the low-value option (middle panel). We examined

this further using Bayesian multinomial regression predicting the outcome reported in

response to the first to mind questions. We included the experiment (3a or 3b) and option

value (low-value or high-value) as fixed predictors. This model suggests that there is

only a 6.83% probability that the e�ect was in the same direction as the within-subjects

manipulations (Median = 0.65, 95% CI = [0.36, 1.16]).
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Figure 3.6: Choices and re-

sponses to the memory ques-

tions for Experiment 3. The

white dots represent the median

response. The bottom (Shared)

panels reproduce the responses

to the high-value options in the

right-skewed condition (top panel)

and the low-value options in

the left-skewed condition (middle

panel), but emphasise that they

were identical across conditions.

Accuracy represents the propor-
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the first to mind questions that
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outcome.
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Correspondingly, the average percentage estimate for the better outcome was lower

for the high-value option (blue) than the low-value option (orange). We examined this

pattern further using a linear regression model with the same predictors as the first to

mind responses. This model suggests that there is only a 5.80% probability that the e�ect

was in the same direction as the within-subjects manipulation (Median = -0.23, 95% CI =

[-0.52, 0.06]). These responses produce substantial challenges for the edge-based theories

whereas the ordinal and centre-based theories might be more well-equipped to explain the

observed di�erences.

Skewness manipulation

Unlike the skewness manipulation in the first experiment, the bottom (Shared) panels in

each subfigure of Figure 3.6 do not merely reproduce the results displayed in the other

panels. This is because—viewed from the first perspective—these shared options were

neither high-value nor low-value and were instead context options that ensured that none

of the other outcomes was the best or worst. From the second perspective, locating the

shared risky outcomes at the edges of the distribution ensured that the continuous theories

predicted a preference towards the shared risky option in the right-skewed condition and

against this option in the left-skewed condition whereas the ordinal and edge-based theories

predicted similar responses across conditions.

Participants’ choices involving the shared options (green) are displayed in the bottom

panel of Figure 3.6a. The average proportion of risky choices was lower for the right-skewed

condition than the left-skewed condition and this is evidently not consistent with the

predictions of the continuous theories. We examined this pattern further using a Bayesian

logistic regression model predicting participants’ choices between the shared options. We

included the experiment (3a or 3b) and condition (right-skewed or left-skewed) as fixed

predictors and allowed the intercept to vary for each participant. This model suggests that

there is only a 5.65% probability that the e�ect was even in the same direction that was

predicted by the continuous theories—even the upper bound of the 95% credible interval
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is scarcely compatible (Median = 0.78, 95% CI = [0.57, 1.04]).

This provides some evidence against the continuous theories and we might, therefore,

expect that participants’ preferences would also be reflected in their responses to the

memory questions. Despite this, there was a considerable divergence between their choices

and memory responses. Looking at participants’ responses to the first to mind questions

in the bottom panel of Figure 3.6b, their responses were, instead, broadly consistent with

the continuous theories. We examined this further using a multinomial regression model

with the same predictors as the choice model. This model suggests that there is a greater

than 99.99% probability that participants were more likely to report the better outcome in

the right-skewed compared with the left-skewed condition, a di�erence equivalent to being

roughly 4.33 times more likely to report the better option in the right-skewed condition

(95% CI = [2.34, 7.84]).

Participants’ responses to the percentage estimate questions (displayed in the bot-

tom panel of Figure 3.6c) were similarly consistent with the continuous theories. The

average percentage estimate for the better outcome was higher in the right-skewed con-

dition than the left-skewed condition. We examined this pattern using a Bayesian linear

regression model with the same predictors as the choice model. This model suggests that

there is a 99.97% probability that participants were more likely to report that the better

outcome occurs more often in the right-skewed condition than the left-skewed condition.

This di�erence is equivalent to roughly 0.48 standard deviations 95% CI = [0.22, 0.76].

Therefore, in contrast with participants’ choices, their responses to the memory questions

o�er evidence that is compatible with the centre-based theories and is di�cult to reconcile

with the ordinal and edge-based theories.

To summarise the results of our third experiment, viewing the options from the first

perspective provided evidence that the influence of extreme outcomes depends on whether

options are presented within- or between-subjects. This was particularly troubling for the

edge-based theories. Viewing them from the second perspective unveiled a clear divergence

between participants’ choices and memory. This presented us with a conundrum where
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their choices seemed to provide evidence against the centre-based theories whereas their

memory responses seemed to provide evidence in favour of these theories and against the

ordinal and edge-based theories. We will examine potential resolutions to this conundrum

in the following discussion.

3.9 Chapter discussion

Ludvig et al. (2014) observed that their participants consistently selected the options asso-

ciated with the best outcome and avoided the options associated with the worst outcome

and explained this pattern using a categorical extreme-outcome rule. Although this rule

accurately captures their observations, it is not unique in this ability, and the same pattern

is also compatible with participants choosing options associated with ordinal or continuous

extreme outcomes. The experiments in this chapter, therefore, aimed to tease apart the

predictions of these theories by introducing three novel experimental manipulations. In

the following sections, we will employ these manipulations to demonstrate the inadequacy

of the categorical theories and examine the viability of other plausible alternatives.

3.9.1 Value manipulation

Consistent with the ordinal and continuous extreme outcome theories, the participants

in our first and second experiments were more likely to choose the risky options for the

high-value options than the low-value options. Their responses to the memory questions

were similarly compatible with the over-representation of either ordinal or continuous

extreme outcomes. But what about the categorical theories? Given that none of these

outcomes was the best or worst, are we able to reconcile these observations with their

predictions? One possible approach is to amend the categorical theories with an auxiliary

assumption regarding noisy encoding or chunking so that neighbouring outcomes are also

considered extreme. This approach o�ered a reasonable explanation for a similar pattern

of preferences when outcomes were separated from the edges by a single point (Ludvig
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et al., 2018) and perhaps even when outcomes were drawn from a continuous distribution

(Mason et al., 2020), but noisy encoding is unable to account for participants’ choices in

our experiments.

To demonstrate this, consider the design of the low-variance condition in our second

experiment in which the outcomes of the low-value and high-value options di�ered from

the best and worst outcomes by at least 20 points (see the second panel of Figure 3.3).

To appreciate the magnitude of this di�erence, it can be restated in the following ways:

1) there was a di�erence equivalent to 20% of the overall range, 2) there was a di�erence

of at least twice the distance between the better outcomes and worse outcomes associated

with these options, and 3) there was a di�erence of only 5 points between these outcomes

and the outcomes that were equidistant from the centre and the edge.

This amount of noise is simply not compatible with our experiments. For example,

over 90% of our participants in the low-variance condition accurately reported an expe-

rienced outcome in response to the first to mind questions (see the right-hand column

in Figure 3.5b). This creates a dilemma for the categorical theories where avoiding one

horn inevitably results in being impaled by the other. They are compelled to propose an

amount of noise that is simultaneously large enough to explain participants’ biased choices

and small enough to explain their accurate memory responses and—assuming this is even

possible—doing so would fundamentally alter their categorical nature.

For that reason, we find ourselves searching for a viable alternative amongst the

ordinal or continuous theories and our value manipulation also provides us with an initial

bearing in this search. Specifically, our third experiment presented participants with either

high-value options or low-value options and this modification led to substantial di�erences

from our previous experiments where these options were presented within-subjects. Par-

ticipants were no longer more likely to choose the risky option for the high-value options

than the low-value options and this observation is problematic for the edge-based theories.

These theories suggest that the evaluation of a particular option is completely blind to

the presence or absence of other options unless they influence the range of experienced
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outcomes. This is clearly contradicted by participants’ responses in our third experiment

when compared with those in our previous experiments.

The ordinal and centre-based theories are somewhat better equipped to explain these

di�erences because their predictions are influenced by every single experienced outcome.

Nonetheless, this does not necessitate that their predictions are consistent with our obser-

vations. The better high-value risky outcome and the worse low-value risky outcome were

still further from the average outcome than their counterparts and their ranks were still

closer to the edges. Therefore, at least some versions of these theories would predict that

participants in our third experiment should have chosen the risky option more often for

the high-value options than the low-value options. In contrast with the edge-based theo-

ries, however, these predictions depend on the specific extremity function (e.g., whether it

is linear or non-linear) and our experiments did not conclusively rule out a smaller e�ect

in the same direction as the previous experiments. Consequently, although it might be

possible to reject specific instantiations (see Footnote 7), it is much harder to justify a

general claim regarding the ordinal and centre-based theories.

The implications of the value manipulations might, therefore, be summarised as

providing evidence against three classes of theories with decreasing levels of certainty:

Firstly, there was strong evidence against the categorical theories across two experiments

that involved outcomes that were neither the best nor the worst. Secondly, there was

considerable evidence against the edge-based theories because the e�ect seems to be mod-

ulated by the presence of intermediate outcomes. Thirdly, there was evidence against

some specific instantiations of the ordinal and centre-based theories that were similarly

inconsistent with our third experiment but there might be versions of these theories that

could escape relatively unscathed, and consequently, the evidence regarding this third class

should be considered merely suggestive.
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3.9.2 Variance manipulation

The variance manipulation was designed to further di�erentiate between these ordinal and

continuous theories. The continuous theories predicted that the e�ect described above

would be stronger in the higher variance condition whereas the ordinal theories predicted

that the e�ect would be similar across conditions. Although there was very little evidence

for an e�ect of variance on the choices that participants made, the 95% credible inter-

val contained values that were consistent with both the ordinal and continuous theories.

Nonetheless, there was some evidence that variance influences memory for outcomes in a

way that is consistent with the over-representation of continuous extreme outcomes.

One possible explanation for these ambiguous results is that the variance manipula-

tion was insu�ciently strong, which could easily be addressed by increasing the di�erence

in the variance between the two conditions. This solution, however, might not be as

straightforward as it seems. The variance manipulation was specifically designed to be

as strong as possible without causing indi�erence between the safe and risky options or

confusion between the outcomes associated with the risky options and the best or worst

outcomes.

These constraints can be understood by comparing the design of our variance ma-

nipulation with a similar experiment conducted by Ludvig and colleagues (Experiment

2b, 2018). Although their goal was di�erent, they also manipulated the variance of risky

options in their experiment. In their high-variance condition, there were risky options

that resulted in outcomes that were separated by 38% of the overall range of experi-

enced outcomes and in their low-variance condition, there were risky options that resulted

in outcomes separated by just 2% of the overall range. As would be predicted by the

continuous-level theories, participants in the high variance condition were more likely to

choose the high-value risky option than the low-value risky option but a similar pattern

was not observed in the low-variance condition.

Given that outcomes in our low-variance condition were separated by 10% of the

overall range, the inconclusive results in our second experiment might be interpreted as

124



3.9.3 Skewness manipulation

reflecting an insu�ciently strong manipulation. Whilst this might be the case, the prob-

lem with this conclusion is that the results of the experiment conducted by Ludvig and

colleagues can also be interpreted as participants displaying indi�erence between the safe

and risky options that were separated by a single point in their low-variance condition.

Finding evidence of an e�ect of variance might, therefore, require a compromise between

increasing the strength of the manipulation whilst mitigating the possibility that the di�er-

ence between conditions results from attributes other than extremity, such as indi�erence

or confusion.

3.9.3 Skewness manipulation

The skewness manipulations were designed to further tease apart the edge- and centre-

based theories by keeping the distance from the edges constant while manipulating the

intermediate outcomes to shift the average of the experienced distribution. They also pro-

vided some evidence regarding the ordinal-level theories because the rank-based extremity

of the shared risky outcomes di�ered between conditions in the first experiment but re-

mained constant in the third. There was some suggestive evidence from Experiment 1 that

the skewness of the distribution influences choices in conformity with the continuous-level

theories but the choices in Experiment 3 were not consistent with these theories. In con-

trast to this, there was strong evidence across both of these experiments that the distance

between outcomes and the average of the distribution influenced participants’ responses

to the memory questions.

In previous experiments, such as those conducted by Madan et al. (2014), the choices

that participants made and their outcome memory responses after completing the choice

task were highly correlated. This was clearly not the case in our third experiment. As a re-

sult, our findings are not fully compatible with either the edge- or centre-based continuous-

level theories or with the ordinal-level theories. On one hand, the edge-based and ordinal-

level theories are able to explain the choices that participants made in the third experiment

but are unable to explain why people over-reported the outcome further from the average
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in the memory tasks. On the other hand, the centre-based theories struggle to explain the

choices made in the third experiment but successfully predicted the results of the memory

tasks.

So what are we to make of this dissociation between memory and choice? Similarly

to the variance manipulation, one possible explanation is that the di�erence between

conditions was strong enough to influence participants’ memory but not their preferences.

In favour of this explanation, there was greater variability in participants’ choices than in

their memory responses. In each of our experiments, there were some participants who

almost exclusively chose the safe option and others who almost exclusively chose the risky

option. The greater variability in their choices makes sense because—although choices

are necessarily memory-dependent—they are influenced by numerous other idiosyncratic

variables, such as risk-preferences.

Whilst a generic account of the relationship between memory and choice is not a very

convincing explanation, there was at least one confounding variable in our third experiment

that could further substantiate this account. The rank of the outcomes associated with the

shared risky option were the same in both conditions. In contrast, the shared safe option

was associated with the second best outcome (out of six outcomes) in the right-skewed

condition and the second worst in the left-skewed condition. Therefore, to the extent to

which there is evidence that our evaluation of outcomes is a least partially dependent on

their rank within the experienced distribution (Parducci, 1968; Stewart, 2009), it seems

plausible that this variable may have overwhelmed the e�ect of centre-based continuous

extreme outcomes on choice.

This explanation might initially appear to rescue the centre-based theories from the

seemingly contradictory evidence observed in Experiment 3 but it gives rise to another

potential issue. The di�erence in the average outcome between conditions in Experiment

3b was equal to roughly half the range of experienced values and the di�erence between

conditions in Experiment 1 was contrived to be as large as possible without leading to

indi�erence or confusion between outcomes. While it is still possible that the manipulation
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was insu�cient to observe an e�ect of these extreme outcomes on participants’ choices, this

would place considerable limitations on the situations in which we should expect to observe

the e�ect—perhaps even constraining it to situations in which there are non-overlapping

low-value and high-value pairs of options.

3.9.4 Conclusion

The experiments presented in this chapter were designed to tease apart di�erent extreme

outcome theories by organising them according to their level of measurement and referent

of extremity. The evidence was most compelling against the categorical theories, such as

the extreme-outcome rule, but none of the other theories we examined was left entirely

unscathed. As a result, further examination using contexts that deviate from those used

in previous experiments will be required to evaluate the adequacy and generalisability of

these theories—this was one of the primary aims of the experiments described in the next

chapter.
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Chapter 4

Types and tokens

The extreme-outcome e�ect observed by Ludvig and colleagues—that people choose the

risky option more often for higher value options than lower value options—clearly demon-

strates that the choices people make depend on the context in which they are made. In the

previous chapter, we examined the relationship between value and the extreme-outcome

e�ect as either categorical, ordinal, or continuous. The results of these experiments showed

that the categorical conceptualisation of extremity was an inadequate explanation of the

e�ect. Whilst there was also some evidence regarding the ordinal and continuous theories,

this was less conclusive. In this chapter we continue to examine these levels of measure-

ment but also investigate whether the frequency of occurrence of each outcome influences

the extreme-outcome e�ect.

When representing a distribution of outcomes, it is possible to either only consider

the value of outcomes or also include information about how often each outcome occurred.

As an example of this, suppose that you were o�ered a role with a salary of $75000 and

were presented with the salaries of the ten existing employees. Seven of your potential

colleagues received $50000, one receives $95000, and one receives $100000. Considering

that the position of your salary within the distribution a�ects satisfaction, it seems likely

that you would compare the o�ered amount to those received by your peers (e.g., G. D.
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Brown, Gardner, et al., 2008).

When doing so, whether you consider the frequency of each salary would play a

large role on the conclusion reached from this comparison. On one hand, the only salary

level lower than yours is $50000 but there are two levels that are higher. Based on this

frequency-independent assessment, you might conclude that your salary is at the lower end

of the pay scale. On the other hand, your potential salary would be better than seven of

your colleagues and only worse than two. If you include this frequency-based information,

you would be more likely to conclude that the salary is on the higher end of the scale.

This example illustrates a distinction between types and tokens that applies to both

continuous and ordinal interpretations of extremity. First proposed by Pierce (1906),

types refer to distinct classes or categories and tokens refer to concrete instances of a

type. Wetzel (2018) provides an illustrative example using the line “a rose is a rose is a

rose” from the poem Sacred Emily by Gertrude Stein. This line includes three types of

word (“is”, “a”, “rose”) but eight word instances or tokens; this same example includes

six types of letter (“a” “e” “i” “o” “r” “s”) and 19 letter tokens.

This distinction is ubiquitous in natural language. As a more prosaic example, in

order to comprehend a simple phrase such as “the two ladies were wearing the same dress”,

it is essential that we recognise that “ladies” refers to two tokens and “dress” refers to

a single type. The type-token distinction has been applied widely in linguistics (e.g.,

Richards, 1987; Templin, 1957) and philosophy (e.g., Fodor, 1974; Putnam, 1975; Quine,

1987). Although there is a sizeable literature discussing the nature of types and tokens (for

a review, see Armstrong, 1989), for the purpose of this chapter, it will su�ce that their

distinguishing feature is that the number of tokens is sensitive to frequency of occurrence

whereas the number of types is not sensitive to frequency.

In decision theory, the distinction between types and tokens is rarely explicitly dis-

cussed but is nonetheless inescapably present in the way theories represent the value of

options. The multitude of theories that evaluate options based on some form of expected

utility entail type-based representation because they represent value and probability as
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separate dimensions, and therefore, the representation of value is independent of the in-

formation about their frequency of occurrence (e.g., Kahneman & Tversky, 1979; von

Neumann et al., 1944). To give an example, when evaluating a gamble involving a coin

toss, rather than recalling specific instances, these theories represent the outcome types

associated with heads and tails (e.g., winning or losing a dollar) and weight these types

by their associated probabilities.

This type-based representation allows these theories to explain the observation that

people often act as if they are neglecting probabilities and making decisions entirely based

on the value of the possible outcomes. As an illustration of this, participants in an experi-

ment conducted by Rottenstreich and Hsee (2001) were ask to imagine a scenario in which

they were able to pay money to avoid a painful electric shock. As such, in the described

scenario, there were two outcome types: one in which the participant would receive a

shock and another in which they would not receive a shock.

The median price that participants said they were willing to pay to avoid the shock

with 100% certainty—thus removing the outcome type in which they would receive a

shock—was around $20. In contrast, when participants were told that they could pay to

avoid the shock with either 1% or 99% probability—in other words, where both outcome

types remained possible—the median amounts paid in these scenarios were $7 and $10,

respectively. This clearly demonstrates that the outcome types that remained had a

much larger e�ect on the price that participants were willing to pay than the probabilities

associated with them.

Although historically type-based representation of value has dominated decision-

theory, it is certainly not the only way to represent the value of outcomes. Several theories

of decision-making have been proposed that assume that options are evaluated based on

individual stored tokens (Dougherty et al., 1999; Stewart et al., 2006). For example, the

decision by sampling model proposed by Stewart et al. (2006) renders type-based represen-

tation of outcomes unnecessary by sampling and comparing stored outcome tokens. This

token-based approach has a number of advantages, including that it can parsimoniously
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explain the characteristic shapes of psycho-economic functions—such as those described

by prospect theory—based on the distribution of experienced outcomes and probabilities

(Stewart et al., 2006; Stewart et al., 2015). It can also at least partially explain loss aver-

sion (Walasek & Stewart, 2015, 2018), delay discounting (Stewart et al., 2015), and decoy

e�ects (Noguchi & Stewart, 2014; Ronayne & Brown, 2017).

These token-based theories have the additional benefit that they are similar to token-

based models of memory and categorisation. For example, the multiple trace theory of

memory is able to explain an array of experimental observations using a model that sug-

gests that tokens are encoded as separate memory traces that coexist in memory (Hintz-

man, 1976). Likewise, in categorisation research, Nosofsky (1988) compared type- and

token-based versions of a categorisation model by changing the frequency of exemplars in

a task that required people to categorise colours. In these experiments, the frequency-

sensitive models provided a better explanation of participants’ classification accuracy and

typicality ratings, which has contributed to the development of numerous influential token-

based models of categorisation (e.g., Kruschke, 1992; Nosofsky, 1986).

Given the success of the research programs that have formed based on the expected

utility and sampling approaches, it seems that there is some empirical support for both

type- and token-based representations of value. Therefore, instead of suggesting that peo-

ple encode value using one or the other, another possibility is that people are able to use

types and tokens. In support of this idea, there is evidence that people encode informa-

tion about individual people (types) and instances in which they were encountered (tokens;

Barsalou et al., 1998). Similarly, Brainerd and Reyna (1990) suggest that people encode

events using multiple levels of abstraction and show a preference for the highest level that

allows them to complete the required task. People also seem to use di�erent strategies

depending on the nature of the task, determining the frequency of outcomes using enu-

meration of instances, availability of memory traces, or direct retrieval of frequency-based

information (N. R. Brown, 1997).

Applying the distinction between types and tokens to the experiments described in
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the previous chapter, extreme-outcomes could be represented as either types or tokens.

Despite this, given the design of our experiments, these di�erent outcome representations

remained confounded. This is because whenever an outcome was extreme based on types,

it was also extreme based on tokens. As a concrete example, Experiment 1 manipulated

the skewness of the experienced distribution so that the number of outcome types above

the midpoint in the left-skewed condition was greater (60, 70, 80, 90, and 100 points) than

below the midpoint (0 and 40 points). Each of these outcomes was experienced a similar

number of times, and as such, the number of outcome tokens was manipulated along with

the number of outcome types. Therefore, it remains unclear whether the extreme-outcome

e�ect is driven by type- or token-based extremity or some combination of both forms of

representation.

Some aspects of the experimental design used in our previous experiments may

have influenced whether outcomes were represented as types or tokens. For example, the

options in the choice task were represented by coloured squares that were identical each

time they were presented, which reduces the ease of distinguishing between individual

tokens, whereas the outcome types were given verbal labels (e.g., “10 points”), which

increases the ease of representing outcomes as types (Waxman & Markow, 1995). Given

the di�erences between the choice task and memory tasks, it is also possible that a token-

based representation of value was used in one task and a type-based representation was

used in the other. This might o�er a potential explanation of the di�erences between

choices and memory in the previous chapter.

In light of this, the experiments in this chapter aimed to distinguish between type-

based and token-based theories of the extreme-outcome e�ect. In Experiment 4, we ma-

nipulate the skewness of the distribution based on tokens while holding the number of

types constant. We swap these manipulated and controlled variables in Experiment 5 by

manipulating the skewness of the distribution based on types while holding the number of

tokens constant. Finally, these experiments also provide additional evidence regarding the

ordinal and continuous levels of measurement that we examined in the previous chapter.

In order to manipulate only types or tokens, the experiments in this chapter deviated fur-
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ther from the designs used by Ludvig and colleagues, and therefore, allowed us to examine

the generalisability of these theories regarding the influence of extreme outcomes.

Experim
ent 5

Right−skewed

Left−skewed

1035-45 55-651-20 300 30

1035-45 55-651 300 30 80-100

100

Experim
ent 4

Right−skewed

Left−skewed

5030 7010 20 1009080 100

5030 70100 20 1009080 100

0x5

x1

x1

x5

Figure 4.1: Diagram of the designs of each experiment in Chapter 4. Each
square represents an outcome associated with an option. Rectangles that contain multiple
numbers represent a discrete uniform distribution between these values. Outcomes (or
sets of outcomes) connected with a Û were associated with the same risky option and
(each set) occurred with equal probability. In the figures displayed in this chapter, we
adopt a convention that the low-value options are depicted in orange, high-value options
are depicted in blue, other options associated with a hypothesis are depicted in green, and
other options (not associated with a hypothesis) are depicted in grey.

4.1 General method

4.1.1 Participants

Experiment 4 (skewed distributions - tokens) and 5 (skewed distributions - types) recruited

participants using Amazon Mechanical Turk. A total of 102 participants signed up for

Experiment 4 (Left-skewed: 51 participants, Right-skewed: 51 participants).1. Seven

participants did not complete the experiment (Left-skewed: 4; Right-skewed: 3) and three

failed the colour-blindness test. 125 participants signed up for Experiment 5 (Left-skewed:

1Unlike the experiments run in-person, allocating a precise number of participants to
each condition was not feasible on Mechanical Turk, and therefore, the sample size varies
slightly.
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58 participants; Right-skewed: 67 participants). Five participants did not complete the

task (Left-skewed: 4; Right-skewed: 1) and one failed the colour-blindness test. The

average age was 33.4 years (SD = 10.0). 103 participants were female, 122 were male, and

two were non-binary. Participants were paid US$3.50 for participating and were able to

earn an additional amount depending on their performance in the task (M = US$4.44, SD

= US$3.20).

4.1.2 Design and procedure

Participants signed up for the experiment using Amazon Mechanical Turk and completed

it on their own personal computers. At the beginning of the task, detailed instructions

were presented on the screen including the conversion rate from points to dollars and that

their objective within the task was to earn as many points as possible. Participants were

required to correctly answer three multiple-choice questions about the instructions before

continuing and completed a reCAPTCHA v2 challenge to prevent automated responding.

They were also required to answer a question from the Ishihara colour-blindness test to

mitigate the possibility that their data was included if they were unable to distinguish be-

tween the options. Following this, participants completed choice and memory tasks similar

to those used in the previous chapter. These experiments were programmed in Javascript

using jsPsych (de Leeuw, 2015) and the code used for each experiment is available at

https://github.com/joelholwerda.

Choice task

In the choice task, participants repeatedly made choices involving safe and risky options

that were represented by coloured squares. On most trials, participants were presented

with two options but these choices were made in a context involving six options in Ex-

periment 4 and four options in Experiment 5. Choices were either decision trials or

catch trials—these trials were not explicitly di�erentiated for participants. Decision tri-

als involved two options that had the same expected value. This allowed us to examine
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participants’ risk-preferences. Catch trials involved two options with di�erent expected

values and these trials allowed participants to earn points and acted as a measure of per-

formance. In addition to these choices, on single-option trials, options were presented

by themselves and participants had to click the option to continue. These options were

included to mitigate the possibility of hot stove e�ects (Denrell & March, 2001).

Participants were not given explicit information about the distribution of outcomes

associated with each option and were required to learn about options by selecting them and

receiving feedback. No feedback was given for the option that was not chosen. There was

no time limit for making choices and feedback was presented until the participant chose

to begin the next trial—the next button was positioned in the horizontal centre of the

screen to ensure that the cursor was equidistant from the options at the beginning of each

trial. Choices were presented in a randomised order in five blocks and participants were

encouraged to take a short break before starting the next block. The colours assigned to

each option in each experiment and the side on which options were presented on each trial

were also randomised to prevent the data being influenced by preferences for irrelevant

attributes.

Participants were able to convert the points they earned in the choice task into real

money following the experiment. Participants were given $1 for every 10 points earned on

a randomly selected choice. This method simplified the conversion from points to dollars

and ensured that the di�erence between the safe and risky options influenced the amount

of money earned.

Memory tasks

After completing the choice task, participants’ memory for each outcome was assessed

using two tasks. First, they were presented with the stimulus associated with each option

and asked to report “the outcome that comes to mind first” when presented with each

coloured square. The risky options were presented first in a randomised order and then the

safe options were presented. Second, participants were presented with the coloured squares
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and were asked “When you selected the option presented above, on what percentage of

these choices did you experience each of the outcomes listed below?”. Every outcome was

listed below the image in Experiment 4 but only the outcomes associated with the shared

option were listed in Experiment 5. This modification was necessary because we used

uniform distributions to manipulate type-based rank and participants experienced around

50 outcome types. To ensure that they understood that they were required to report

percentages, their answers needed to sum to 100 before they could continue to the next

section.

4.1.3 Analysis

Similarly to the experiments in the previous chapter, data was excluded from analysis for

participants that selected the better option on less than 60% of choices where all possible

outcomes of one option were better than the possible outcomes of the other. Participants

were also excluded if they started the task but failed to complete every section of the

experiment.

The posterior distributions were determined by Hamiltonian Monte Carlo using the

brms package in R (Bürkner, 2017) and weakly regularising priors were selected for each

parameter. These priors were selected using the Stan prior choice guidelines (Stan Devel-

opment Team, 2020). Their plausibility was checked using prior predictive distributions.

The prior for each analysis was identical to the ones used in the previous chapter with

the addition that option value in Experiment 4 was modelled as a monotonic e�ect and

a Dirichlet(3) distribution was used for the simplex parameter (Bürkner & Charpentier,

2020).

Once again, all parameters had bulk and tail e�ective sample sizes greater than

10000 and an R̂ < 1.01 suggesting adequate chain convergence (Vehtari et al., 2020). Rank

histograms, posterior densities for each chain, and posterior predictive distributions were

examined for each model. Sensitivity analyses were conducted to examine the robustness

of our conclusions to our choice of exclusion criterion. The code for these diagnostic
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analyses can be accessed at https://github.com/joelholwerda. Preregistered hypotheses

for each experiment can be accessed at https://osf.io/d8pq3.

4.2 Experiment 4: Skewed distribution (token-based)

Similarly to the experiments described in the previous chapter, the options in the top panel

of Figure 4.1 can be viewed from two di�erent perspectives. From the first perspective,

these options can be interpreted as another version of the value manipulation (Manipu-

lation 1 in the overview of experiments). In our previous experiments, participants chose

the risky option more often for the high-value pair than the low-value pair. This pattern

is consistent with outcomes near the upper and lower edges being over-represented in

memory but only one edge is necessary to explain this pattern with two options. If only

the upper extreme outcomes were over-represented, the expected value of the high-value

risky option would be over-estimated and it would be chosen more often relative to the

low-value risky option—the converse applies to the lower extreme outcomes.

A single comparison between two options cannot disambiguate the contribution of

the upper and lower extremes. Ludvig et al. (2014) addressed this issue by introducing a

third risky option that was associated with both the upper and lower extreme outcomes.

Assuming that the two extremes are equally influential, the influence of one would negate

the other and the proportion of choices for this option would be half-way between the low-

value and high-value risky options. In their experiment, Ludvig and colleagues observed

that this proportion was intermediate to the other options but also observed that it was

slightly closer to the proportion for the low-value options. This asymmetry suggests that

the upper extreme might be more influential than the lower extreme.

This evidence is suggestive rather than conclusive but there are some theoretical

reasons to believe that the influence of extreme outcomes might be asymmetrical. For

example, Fredrickson (2000) argued that the most extreme outcome conveys the personal

capacity necessary to endure an episode. Someone who can endure the worst outcome
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can usually endure intermediate outcomes but this claim is less compelling regarding the

best outcomes. In this manipulation, we aimed to further examine the possibility that the

influence of extreme outcomes is asymmetrical by comparing low-value options (orange),

medium-value options (green), and high-value options (blue). The medium-value options

provide an alternative baseline to the both-extremes method used by Ludvig et al. (2014).

The second perspective interprets these same options as a token-based version of

the skewness manipulation from our previous experiments (Manipulation 3). This aspect

consists of the shared medium-value options (green) and the high- and low-value context

options (blue and orange). Importantly, the outcome types (0, 10, 20, 30, 50, 70, 80,

90, and 100 points) were identical across conditions and the token-based skewness was

manipulated by changing the number of times the context options were encountered (See

Table 4.1).

In the left-skewed condition, the high-value context options were presented five times

as often as the low-value context options. This shifted the token-based rank of the shared

medium-value outcomes and the token-based mean so that the worse outcome of the shared

risky option was more extreme than the better outcome. Conversely, in the right-skewed

condition, the low-value context options were presented five times as often as the high-

value context options. The better outcome was more extreme than the worse outcome on

both token-based metrics. Consequently, the token-based theories predicted riskier choices

for the shared options in the right-skewed condition whereas the type-based theories would

be unable to explain this pattern.

Therefore, viewing the options in our fourth experiment from these perspectives al-

lowed us to examine the contribution of the two extremes and disambiguate the type-based

and token-based theories. Participants encountered these options in a task that involved

making a total of 204 choices across five blocks. Each block consisted of 12 decision trials

that involved the shared medium-value options. In the right-skewed condition, each block

included 20 trials involving the high-value context options and four trials involving the

low-value context options. These frequencies were swapped in the left-skewed condition.
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Table 4.1: The number of points associated with each option in Experiment 4.

Left-skewed Right-skewed
Safe Risky Safe Risky

Low value 10 0/20 10 0/20
Medium value 50 30/70 50 30/70
High value 90 80/100 90 80/100

Note:
Each of the outcomes associated with a risky option (separated by ’/’) occurred with
equal probability. In the left-skewed condition, the high value options were presented
five times as often as the low value options. In the right-skewed condition, the low
value options were presented five times as often as the high value options.

We presented the participants with 24 catch trials after they had completed the other

trials so we could assess their performance without sacrificing control over the number of

context options that were chosen. The choice and memory data from seven participants

was excluded because they selected the better option on less than 60% of catch trials. Five

of these participants were in the Left-skewed condition and two were in the Right-skewed

condition.2

4.2.1 Results and discussion

Value manipulation

The proportion of decision trials in which participants selected the risky option is displayed

in Figure 4.2a. Recall that the low-value risky option (orange) resulted in the worst

outcome but not the best outcome, the shared medium-value risky option (green) resulted

2Due to a coding error, the option chosen and feedback received was recorded but
the foregone option was omitted from the data. This meant that we could not always
determine whether the better option was chosen in the catch trials. Despite this, we were
able to recover the proportion of choices for the better option with enough precision to
establish whether the 60% inclusion criterion was met for all but four participants. This
was possible because we were certain that the participant chose the better option if they
chose the best possible option and were certain that they chose the worse option if they
chose the worst possible option. Incidentally, this recovery process was the inspiration for
our rational explanation in Chapter 2.
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in neither the best nor worst outcomes, and the high-value risky option (blue) resulted

in the best outcome but not the worse outcome. Therefore, the relative distance from

the high-value and low-value options to the medium-value options allows us to estimate

the relative weighting of the upper and lower extreme outcomes. These options appear to

be roughly equidistant from the medium-value options in the right-skewed condition (top

panel) but the low-value options are much more similar to the medium-value options in

the left-skewed condition (middle panel).

We examined this pattern further using Bayesian hierarchical logistic regression

predicting the choice that participants made on each decision trial. We included the

condition (right-skewed or left-skewed), option value (high-value, medium-value, or low-

value), and their interaction as fixed predictor variables. The intercept and the slope

for option value were allowed to vary for each participant. Compared with the medium-

value options, this model suggests that there was a greater than 99.9% probability that

participants were more likely to select the risky option for the high-value options (Median

= 1.73, 95% CI = [1.28, 2.37]) and less likely to select the risky option for the low-value

options (Median = 0.67, 95% CI = [0.54, 0.83]). What about the di�erence between these

distances? The model suggests that there is a 90.9% probability that the distance is larger

for the high-value options than the low-value options (Median = 1.16, 95% CI = [0.94,

1.44]).

We expected that this pattern would be echoed in participants’ responses to the

first to mind task displayed in Figure 4.2b). The proportion of participants that reported

the better outcome (dark blue) was highest for the high-value options and lowest for the

low-value options in both skewness conditions. We examined this pattern further using

Bayesian multinomial regression and the same predictors as the model of participants’

choices. There was a greater than 99.9% probability that participants were more likely

to report the better outcome for the high-value options (Median = 1.88, 95% CI = [1.28,

2.80]) and less likely to report the better outcome for the low-value options (Median =

0.48, 95% CI = [0.31, 0.73]). In contrast with their choices, however, there was only a

31.2% probability that this di�erence was larger for the high-value options (Median =
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Figure 4.2: Choices and re-

sponses to the memory ques-

tions for Experiment 4. The

white dots represent the median

response. The bottom (Shared)

panels reproduce the responses

to the high-value options in the

right-skewed condition (top panel)

and the low-value options in

the left-skewed condition (middle

panel), but emphasise that they

were identical across conditions.

Accuracy represents the propor-

tion of participants’ responses to

the first to mind questions that

corresponded to an experienced

outcome.
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0.90, 95% CI = [0.59, 1.37]).

A similar pattern can be observed in participants’ responses to the percentage es-

timate questions, which are displayed in Figure 4.2c. We examined them further using

Bayesian linear regression and the same predictors as the previous models except that

the varying slope was removed due to issues with model convergence. Compared with

the medium-value options, there is a greater than 99.9% probability that people are more

likely to report the better outcome as occurring with greater frequency for the high-value

options (Median = 0.36, 95% CI = [0.21, 0.51]) and less likely for the low-value options

(Median = -0.27, 95% CI = [-0.41, -0.12]). Similarly to their choices, there was an 88.7%

probability that this di�erence was slightly larger for the high-value options (Median =

0.09, 95% CI = [-0.06, 0.22]).

Skewed distributions

Similarly to the previous chapter, the ordinal-level and centre-based extreme outcome

theories suggested that participants were more likely to choose the shared medium-value

risky option in the right-skewed condition. In contrast, however, we manipulated the

frequency of outcomes whilst controlling type-based extremity so that only the token-

based theories would predict an e�ect of skewness on choice. The bottom (Shared) panel

in Figure 4.2a displays the proportion of risky choices for the shared medium-value option.

This panel reproduces the responses to the high-value options in the right-skewed condition

(top panel) and the low-value options in the left-skewed condition (middle panel), but

emphasises their alignment within the second perspective.

Participants’ choices in this experiment do not appear to have been influenced by

the token-based skewness manipulation so we examined them further using Bayesian hi-

erarchical logistic regression. We included the condition (right-skewed or left-skewed) as

a fixed predictor variable and the intercept was allowed to vary for each participant. This

model suggests that there is only a 27.94% probability that participants were more likely

to select the risky option in the right-skewed condition than the left-skewed condition. The
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median odds suggest that people were roughly 0.84 times as likely to select the risky option

in the right-skewed condition than the left-skewed condition (95% CI = [0.47, 1.53]).

Participants’ responses to the first to mind questions similarly do not appear to be

consistent with an e�ect of token-based extreme-outcomes (see the bottom panels of Figure

4.2b). The better outcome was reported slightly more often in the left-skewed condition

and we examined this pattern further using multinomial regression with the condition

(right-skewed or left-skewed) as a fixed predictor. This model suggests that there is only

a 32.77% probability that people are more likely to report the better outcome associated

with the risky option as coming to mind first in the right-skewed compared with the

left-skewed condition (Median = 0.83, 95% CI = [0.38, 1.94]).

This pattern was echoed in participants’ percentage estimates displayed in Figure

4.2c. We examined these responses further using Bayesian linear regression with the

condition (right-skewed or left-skewed) as a fixed predictor. This model suggests that there

is only a 49.40% probability that participants were more likely to report that the better

outcome occurred more often in the right-skewed condition (Median = -0.01, (95% CI =

[-2.29, 2.29])). Once again, an e�ect in the direction predicted by the token-based theories

was even less probable than an e�ect in the opposite direction. The credible intervals

for the memory questions contain both values that are consistent and inconsistent with

the frequency of occurrence influencing outcome memory. Nonetheless, interpreted as a

whole, the results of this experiment do not provide evidence in favour of the token-based

theories of extremity.

4.3 Experiment 5: Skewed distribution (type-based)

Our main goal in this experiment was to manipulate the type-based extremity of outcomes

while controlling their token-based extremity. In order to make this manipulation as

strong as possible and reduce the number of options that participants had to remember,

the options in the bottom panel of Figure 4.1 focused exclusively on this manipulation
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rather than o�ering two di�erent perspectives. A single context option (grey) was used

to manipulate the type-based extremity of the shared medium-value options (green). A

fourth option that always resulted in the worst outcome (0 points) was paired with the

context option. This option was only included to ensure that participants would select

the context option on the majority of context trials (See Table 4.2).

There was an equal probability that the outcome of the context option would be

above or below the outcomes of the shared medium-value options. Nonetheless, the context

option included a combination of discrete uniform distributions and single outcomes that

changed the type-based extremity of the shared medium-value outcomes. In the left-

skewed condition, when the context option resulted in an outcome better than the shared

medium-value options, the outcome was drawn from a discrete uniform distribution of

numerous outcome types (80 to 100 points) whereas when the outcome was below the

shared medium-value options, the result was always the same outcome type (1 point).

This ensured that the worse outcome of the shared medium-value risky option was close

to the edge of the distribution of outcome types and that the better outcome was near the

centre.

In the right-skewed condition the uniform distribution and single outcome were

switched. When the context option resulted in an outcome better than the shared medium-

value options, the result was always the same outcome type (100 points) whereas when

the outcome was below the shared medium-value options, the outcome was drawn from a

discrete uniform distribution of numerous outcome types (1 to 20 points). This ensured

that the better outcome of the shared medium-value risky option was close to the edge of

the distribution of outcome types and that the worse outcome was near the centre.

To increase the di�erence in type-based rank between the better and worse outcomes

of the shared medium-value risky option, the context option also resulted in outcomes that

were located between the better and worse outcomes of the shared medium-value pair.

These outcomes were drawn with equal probability from two discrete uniform distributions:

one below the shared medium-value safe option (35 to 45 points) and one above the shared
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medium-value safe option (55 to 65 points). The outcomes that were located between the

better and worse outcomes of the shared medium-value risky option, the outcomes located

above the better risky outcome, and those that were positioned below the worse outcome,

occurred with equal probability.

This ensured that there was eventually a di�erence of 24 type-based ranks between

the better and worse outcomes of the shared medium-value risky option in both conditions.

This meant that in the right-skewed condition, the worse outcome of the shared medium-

value risky option was the third worst outcome whereas the worse outcome in the right-

skewed condition was 22nd worst out of 47 potential outcomes. Similarly, the better

outcome of the shared medium-value risky option was the 20th best outcome of 47 possible

outcomes in the right-skewed condition whereas it was the second best outcome in the

right-skewed condition.

As trials progressed, the type-based rank di�erences approached those described

above but in order to increase the speed at which that happened, twice as many choices

between the context option and the worst option were presented than choices between the

shared medium-value options. Additionally, the uniform distributions were rigged so that

the same outcomes were not presented a second time until all other outcomes had been

presented. As a result, for a participant that avoided the worst option on most trials,

the di�erence between the rank of the outcomes associated with the shared medium-value

risky option would be roughly seven type-based ranks after the first block and 15 after

the second block.

Participants encountered these options in a task that involved making a total of 220

choices across five blocks. Each block consisted of 12 decision trials, 24 context trials,

and 8 single-option trials. The catch trials were omitted from this task to ensure that the

average outcome remained as similar as possible between conditions.
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Table 4.2: The number of points associated with each option in Experiment 5.

Left skewed Right skewed
Safe Risky Safe Risky

Shared 50 30/70 50 30/70
Context 0 1/35-45/55-65/80-100 0 1-20/35-45/55-65/100

Note:
Each of the outcomes associated with a risky option (separated by ’/’) occurred with
equal probability. Outcomes separated by ’-’ were drawn from a uniform distribution
where the two numbers are the min and max.

4.3.1 Results and discussion

In this experiment, the type-based continuous and ordinal theories of extremity predict

that people should choose the riskier option more often for the higher value pair of options.

The token-based mean and median were similar across conditions, and therefore, these

theories did not predict a di�erence between conditions. Participants’ choices in Figure

4.3a are not consistent with the type-based explanations for the extreme-outcome e�ect.

On average participants chose the risky option less often in the right-skewed condition

where there were fewer outcome types between the better risky outcome and the edge of

the distribution than the worse risky outcome.

We further examined participants’ choices between the shared options using Bayesian

hierarchical logistic regression. We included the condition (right-skewed or left-skewed) as

a fixed predictor variable and the intercept was allowed to vary for each participant. This

model suggests that there is only a 9.81% probability that participants were more likely

to select the risky option in the right-skewed condition than the left-skewed condition

and the median odds of selecting the risky option is 1.41 times lower in the right-skewed

condition (95% CI = [0.82, 2.44]).

Participants’ responses to the memory questions were less conclusive (see Figure

4.3b and 4.3c). On one hand, more participants in the right-skewed condition than the

left-skewed condition reported the better risky outcome as coming to mind first. We

examined these responses further using multinomial regression with the condition (right-
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Figure 4.3: Choices and re-

sponses to the memory ques-

tions for Experiment 5. The
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sponses to the first to mind ques-

tions that corresponded to an ex-

perienced outcome.

skewed or left-skewed) as a fixed predictor. This model suggests that there is an 85.52%

probability that participants were more likely to report the better outcome in the right-

skewed condition (Median = 1.48, 95% CI = [0.70, 2.93]). Even though they do not

provide compelling evidence either way, these estimates are compatible with a modest

e�ect of type-based extreme outcomes on memory.

On the other hand, participants’ percentage estimates appear to be quite similar

across conditions. We examined this further using Bayesian linear regression and the

same predictor variable as the model of first to mind responses. According to this model,

there is only a 65.10% probability that people are more likely to report that the better

outcome occurs more often in the right-skewed condition than the left-skewed condition

(Median = 0.07, 95% CI = [-0.27, 0.42]). The upper bound of the credible interval suggests

that it is unlikely that there is a di�erence greater than 16% in the percentage estimates

between the two conditions. Even if there is a di�erence, it is most likely fairly modest.

Therefore, interpreted together, the results of this experiment are not consistent with the

type-based theories of extremity.
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4.4 Chapter discussion

The experiments discussed in this chapter were designed to follow up on some of the

ambiguous findings from the previous chapter while also looking at the distinction between

types and tokens. At the end of the previous chapter, we concluded that the categorical

theories were inadequate to explain our results. Empirical challenges also arose for the

ordinal and continuous theories in that shifting the centre of the distribution seemed to

influence memory but there was conflicting evidence regarding its influence on choice. The

challenges faced by the ordinal and continuous theories deepened further in the present

chapter.

The influence of token-based extremity was examined in Experiment 4 by manipu-

lating the frequency of outcomes while keeping the outcome types constant across condi-

tions. This shifted both the token-based rank of the shared medium-value outcomes and

their relative distance from the token-based average of the distribution. The token-based

ordinal-level and continuous-level theories predicted that participants would select the

shared risky option more often in the right-skewed condition than the left-skewed condi-

tion. This is not what we observed. Instead, for both choices and memory, this pattern

was roughly half as likely as a pattern in the opposite direction to the predicted e�ect.

Similarly, the influence of type-based extremity was examined in Experiment 5 by

manipulating the number of types above and below the shared options while keeping the

distribution of tokens constant across conditions. This shifted the type-based rank of

the shared medium-value outcomes and their relative distance from the average of the

outcome types. As such, the type-based ordinal-level and centre-based theories predicted

that the shared risky option would be chosen more often in the right-skewed than left-

skewed conditions. Again this is not what we observed. The choices that participants

made suggest that it is quite unlikely that type-based extremity had more than a small

e�ect on choices in the predicted direction. In fact, the predicted e�ect was roughly ten

times less likely than an e�ect in the opposite direction.
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So what are we to make of these results? Neither types nor tokens generated the

expected patterns, and therefore, it is di�cult to draw strong conclusions about the role

of these representations of extremity for an e�ect that we failed to observe in either

experiment. In pursuit of exploring the implications of these results more fully, however,

let us briefly consider a generous case for each of these representations. An obvious place

to start—especially for the token-based manipulation in Experiment 4—is to emphasise

that while the median estimate suggests an e�ect in the wrong direction, a non-trivial

proportion of the posterior distribution was consistent with the predicted e�ect. As such,

despite providing suggestive evidence, the jury is still out and we are simply not able to

conclusively eliminate these representations of extremity.

One rationale for continuing to examine skewness in this chapter was that there

was some evidence that manipulating type-based and token-based extremity influenced

choices in the first experiment of the previous chapter. Specifically, the median odds

suggested that participants were roughly 1.24 times more likely to select the shared risky

option in the right-skewed condition compared to the left-skewed condition. Using this as

a crude benchmark, although there was only a 2% probability for an e�ect of at least this

magnitude for the type-based manipulation in Experiment 5, there was an 11% probability

for the token-based manipulation in Experiment 4. Admittedly, the odds aren’t great for

either, but if you had to place a bet on one of them based solely on these experiments,

you would be foolish to choose the type-based over the token-based representation of

extremity.3

Before we completely rule out the type-based representation, however, it might be

3Using the median of the previous experiment as a benchmark may seem somewhat
arbitrary but a similar conclusion would have been reached if we had instead looked at
the overlap between the posterior estimate in Experiment 1 and posterior estimates for
Experiment 4 (29%) or Experiment 5 (12%). Likewise, this conclusion would remain if we
had looked at the proportion of the posterior distribution consistent with any e�ect in the
predicted direction in Experiment 4 (30%) and Experiment 5 (10%). A more substantial
critique is that this analysis assumes that the strength of the manipulation was similar
across each experiment. This cannot be guaranteed and this analysis should be viewed as
a rough approximation.
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worth considering whether our manipulation even captures how people represent outcome

types. In Experiment 5, we used uniform distributions to ensure there was a large di�erence

between the number of types positioned above and below the shared pair of options (e.g.,

in the right-skewed condition, there were 21 types below and only one type above). On

paper, this should have produced a stronger e�ect than the skewness manipulation in the

first experiment where fewer types were introduced (e.g., in the right-skewed condition,

there were four outcomes below and one above).

In reality, however, using discrete uniform distributions dramatically increased the

number of outcome types that participants were presented with—they experienced up to

48 di�erent outcomes. This is much larger than the number of outcomes that can easily be

held in short-term memory (Miller, 1956). As such, it is possible that participants chunked

each of the uniform distributions into a single chunked type (e.g., “outcomes between 80

to 100 points”) and this might have contributed to the observed results.

Now that we have considered the generous case for the type-based and token-based

representations of extremity, we can move on to a more sceptical evaluation. While the

evidence around types and tokens was inconclusive, this distinction only makes sense if

there is an e�ect of rank or distance from the average in general. As we mentioned above,

there was some suggestive evidence in favour of an e�ect of skewness in Experiment 1,

but including the experiments in this chapter, we have manipulated skewness across four

experiments and the median estimate was in the wrong direction for choices in three

of those experiments. Although the evidence from each individual experiment was not

conclusive, together they paint a picture where the rank of outcomes and their distance

from the centre of the distribution might not have the predicted e�ect on choice.

These experiments also provided some further evidence regarding the connection

between choice and memory. In Experiment 3 of the previous chapter, we observed that

although participants’ memory reports were consistent with the extreme-outcome e�ect,

their choices were not consistent. In the previous chapter, we o�ered the rank of the safe

outcome as a potential explanation of this dissociation. Although certainly not conclusive,
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there was some evidence of a similar e�ect for the first to mind responses in Experiment

5 but the rank of the safe outcome was no longer a confounding variable. This might give

us reason to suspect the explanation that we provided in the previous chapter and further

question the connection between memory and choice.

Finally, our results provide evidence regarding the influence of upper and lower

extreme outcomes. There was a nontrivial probability that the distance between the high-

value options and the medium-value options was larger than the low-value options for

participants’ choices. This is compatible with the observation by Ludvig et al. (2014) that

the di�erence between participants’ choices was slightly larger between the high-value op-

tions and the option that resulted in the best and worst outcomes. Whilst neither of these

provides strong evidence, they both suggest that outcomes towards the upper extreme

influence decisions from experience more than outcomes towards the lower extreme.

Nonetheless, there are some reasons that we might want to take these results with

a grain of salt. Firstly, the di�erence between these options was observed in the left-

skewed condition but there was little evidence of a di�erence in the right-skewed condition.

Secondly, the evidence regarding participants’ memory responses was less conclusive and

the outcomes that they reported as coming to mind first provided some evidence in the

opposite direction. Thirdly, there is some circumstantial evidence that the e�ect of extreme

outcomes on memory is more consistent for lower extreme outcomes than upper extreme

outcomes (Ganzach & Yaor, 2019; Hui et al., 2014; Kemp et al., 2008; Ludvig et al.,

2018; Madan et al., 2014, 2017; Miron-Shatz, 2009; Rode et al., 2007). Fourthly, whilst

encountering a lower extreme outcome that is beyond your capacity might propel you

out of the gene pool, there is no equivalent consequence for upper extreme outcomes

(Fredrickson, 2000).

Future experiments will be required to conclusively determine the relative weighting

of these outcomes but there was one finding in these experiments that was unequivocal.

There was strong evidence of a monotonic trend from the low-value to medium-value to

high-value options in 1) the proportion of choices for the risky option, 2) the proportion
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of participants that reported the better risky outcome, and 3) the percentage estimates

for the better and worse outcomes. Regardless of whether extreme outcomes are weighted

equally, the e�ect almost certainly influences both the upper and the lower ends of the

distribution.

4.4.1 Conclusion

The evidence from these experiments progressed our understanding of the extreme-

outcome e�ect in two seemingly opposite directions. As our doubts regarding the ability

of ordinal and continuous theories to explain the results of the skewness manipulation

grew, we became more sure that the e�ect influences both high-value and low-value

options. This has been a consistent pattern throughout the experiments that we

have presented in this section. Namely, there seemed to be strong evidence for the

extreme-outcome e�ect whenever there were pairs of higher and lower value options in

the same context, but whenever we deviated from this design, it was exceedingly di�cult

to determine the criteria required to observe the e�ect. The scope of the e�ect may be

narrower than previously assumed and we might not be able to make broad statements

about extremity beyond the narrow bounds of the manipulations that have been used in

previous experiments.
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Temporal and distributional

In the previous chapters we examined numerous explanations for the influence of extreme

outcomes. These theories defined extreme outcomes using categorical, ordinal, or con-

tinuous levels of measurement, identified them with reference to the centre, edges, or

neighbouring outcomes, and employed either type-based or token-based representations.

Despite their myriad di�erences, these theories shared one common attribute: they were

based on the distribution of outcomes rather than temporal relationships between them. In

the distributional theories, the best and worst outcomes, the edges of the distribution, and

the rank of outcomes can all change as someone encounters new outcomes. Nonetheless,

the order in which outcomes are experienced is disregarded when identifying outcomes as

extreme.

The origin of the distributional approach can be traced to a common interpretation

of the peak-end rule (Fredrickson, 2000; Fredrickson & Kahneman, 1993). This rule

describes how people evaluate continuous a�ective experiences, such as painful medical

procedures or an exciting trip abroad. These experiences do not contain discrete outcomes

that can be aggregated by simply calculating their average (Langer et al., 2005). Instead,

continuous experiences consist of an infinite number of moments and this gives rise to a

more challenging computational task. How then do people evaluate these experiences?
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One possibility is that we harness a small number of salient aspects that correlate with

the overall quality of the experience (Ariely & Carmon, 2000).

Most theories suggest that these aspects are distributional components, such as the

most intense moment, but this is not the only possibility. There are numerous other

aspects that might o�er an e�cient method of aggregating the experience as a series of

discrete points. An experience could be evaluated based on the intensity of temporal peaks

where there is a change in the direction of a trend (e.g., things stop getting worse and

start getting better). This aggregation method captures the most intense moment because

the distributional maximum is always a temporal peak. It does this without needing to

continuously monitor whether the current experience is more intense than the previous

maximum and this arguably has computational advantages.

A second possible temporal explanation for the influence of extreme outcomes is

that an outcome’s subjective value is influenced by preceding outcomes due to adaptation,

loss aversion, or extrapolation (Ariely, 1998; Hsee & Abelson, 1991; Hsee et al., 1991;

Loewenstein & Prelec, 1993). This theory does not ascribe special importance to extreme

outcomes or temporal peaks. Instead, it suggests that previous outcomes determine the

reference point against which the current outcome is evaluated. An outcome is more likely

to induce disappointment when the previous outcome was better and excitement when

the previous outcome was worse. This could heighten the intensity of extreme outcomes

because the best outcome is always preceded by a worse (or equal) outcome and the worst

outcome is always preceded by a better (or equal) outcome.

As such, in this section, we have described two related temporal theories: the first

based on salient temporal peaks and the second based on whether an outcome is better or

worse than the previous outcome. In favour of these explanations, people prefer improving

rather than deteriorating sequences (Loewenstein & Prelec, 1993), they avoid options that

result in a higher number of peak losses (Langer et al., 2005), and satisfaction is influenced

by di�erential partitioning, the spacing of outcomes, and whether events are perceived as

a sequence (Ariely & Zauberman, 2000, 2003). The influence of extreme outcomes was
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less pronounced when images were presented simultaneously rather than as a sequence

(D. Thomas et al., 2018) and is not observed in decisions from description where temporal

peaks are absent (Madan et al., 2017).

Even though our focus was on distributional attributes, our previous experiments

also provided some evidence regarding temporal theories. Specifically, when options are

presented in a random order, the probability of each outcome being a temporal peak

and following a better or worse outcome is determined by the token-based rank of the

outcome. When an outcome is close to the edge of the distribution, the preceding and

following outcomes will seldom be one of the few outcomes closer to the edge and will

usually be one of the many intermediate outcomes. As a consequence of this correlation,

the temporal explanations for the influence of extreme outcomes rise and fall with their

token-based ordinal-level counterparts.

5.1 Experiment 6: Temporal extremity

In the previous chapter, there was some ambiguity regarding the adequacy of the ordinal-

level theories, and therefore, in this chapter, we aimed to directly examine the temporal

theories by manipulating the order of outcomes. To do this, we used the same outcomes

in both conditions so that the distributional forms of extremity were constant across

conditions. Similarly to the experiments by Ludvig et al. (2014), we used a low-value pair

that resulted in the worst outcome and high-value pair that resulted in the best outcome

(see Table 5.2). The order in which these outcomes were presented was manipulated

between two conditions.

The random order condition was similar to our previous experiments in that options

were presented in a randomised order. This is depicted in the top half of Table 5.1 where

the best outcome in the sequence (90 points) is always preceded by a worse outcome and is

always a temporal peak because the direction of change reverses. The worst outcome (-40

points) holds an analogous position for losses—it is always preceded by a better outcome
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and is always a temporal trough. On the other hand, the intermediate outcomes can form

part of either an upward or downward trend and can be either a peak or trough.

For example, 60 points is a peak on the third trial because the outcomes before

and after it are both worse and is part of an upward trend on the sixth trial because the

outcome before it is worse and the outcome after it is better. The median outcome has an

equal chance of following a better or worse outcome. As outcomes get closer to the edge

of the distribution, there are fewer outcomes that are more extreme, and therefore, they

are more likely to be a peak or trough.

In the alternating order condition, in contrast, trials cycled between one choice

involving the high-value pair and one choice involving the low-value pair in an alternating

fashion. In the bottom half of Table 5.1, every outcome associated with the high-value pair

that results in gains is surrounded on either side by a loss, and therefore, is always a local

peak. Similarly, every outcome of the low-value pair that results in losses is surrounded

by gains and is a local trough. Because the outcomes of the pair do not overlap, this

was always the case regardless of whether the participant chose the safe or risky option.

As a result, extreme outcomes were no longer more likely to result in a temporal peak

relative to non-extreme outcomes, and therefore, observing the extreme-outcome e�ect in

the alternating condition would provide evidence against these temporal theories.

In order to possess full control of the order of outcomes we did not include catch

trials for this experiment. As a result, choices were only made among pairs of options that

each had the same expected value. All of the previous experiments included choices that

mixed the low- and high-value pairs and excluding these choices allowed us to examine

whether this is required to observe the extreme-outcome e�ect. Participants encountered

these options in a task that involved making a total of 200 choices across five blocks.

Each block consisted of 16 high-value decision trials, 16 low-value decision trials, and 8

single-option trials.
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Table 5.1: Example of sequences presented in a random order or alternating
between gains and losses.

Options presented in a random order

Trial 1 2 3 4 5 6 7 8
Outcome -10 -40 75 -25 -40 60 90 -25
Position Start Trough Peak Down Trough Up Peak End
Domain Losses Losses Gains Losses Losses Gains Gains Losses
Choice Risky Risky Safe Safe Risky Risky Risky Risky

Options presented as alternating gains and losses

Trial 1 2 3 4 5 6 7 8
Outcome 75 -25 90 -25 60 -40 75 -10
Position Start Trough Peak Trough Peak Trough Peak End
Domain Gains Losses Gains Losses Gains Losses Gains Losses
Choice Safe Safe Risky Safe Risky Risky Safe Risky

Note:
When outcomes are presented in a random sequence, each outcome can be either a
peak, trough, or an intermediate outcome in an upward or downward trend. When
options alternate between gains and losses, all losses are troughs and all gains are peaks
regardless of whether the safe or risky option is chosen.

Table 5.2: The number of points associated with each option in Experiment 6.

Random Alternating
Safe Risky Safe Risky

Low-value -25 -40/-10 -25 -40/-10
High-value 75 60/90 75 60/90

Note:
Each of the outcomes associated with a risky option (separated by ’/’) occurred with
equal probability. In the random condition, the order of choices was randomised. In
the alternating condition, choices between high-value and low-value options alternated
in an ABAB fashion.
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5.1.1 Method

Participants

Experiment 6 (temporal extremity) was conducted using 130 undergraduate psychology

students enrolled at UNSW Sydney. These participants were randomly allocated into

either the Random or Alternating condition with balanced sample sizes. The average age

was 19.7 years (SD = 3.3). 411 participants were female and 188 were male. In addition

to receiving course credit, participants were able to earn $1 for every 1000 points that

they earned in the choice task (M = AU$5.02, SD = AU$2.18).

Design and procedure

Similarly to the experiments in Chapter 3, participants in this experiment were given verbal

instructions upon entering the laboratory that they could complete a computer-based task

in which they could earn real money based on their choices. They completed this task

in individual rooms where detailed instructions were presented on the screen. These

instructions emphasised that their objective was to earn as many points as possible and

explained how those points would be converted into dollars. Following this, they completed

a version of the choice task and memory tasks introduced in Chapter 3, in which they

encountered the outcomes in Table 5.2 in either a random or alternating sequence. The

experiment was programmed in MATLAB using PsychToolbox (Brainard, 1997; Kleiner

et al., 2007; Pelli, 1997) and the code is available at https://github.com/joelholwerda.

5.1.2 Analysis

The posterior distributions were determined by Hamiltonian Monte Carlo using the brms

package in R (Bürkner, 2017) and weakly regularising priors were selected for each param-

eter. These priors were selected using the Stan prior choice guidelines (Stan Development

Team, 2020). Their plausibility was checked using prior predictive distributions. The
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prior for each analysis was identical to the ones used in the previous chapters except

where specified below.

Once again, all parameters had bulk and tail e�ective sample sizes greater than

10000 and an R̂ < 1.01 suggesting adequate chain convergence (Vehtari et al., 2020).

Rank histograms, posterior densities for each chain, and posterior predictive distributions

were examined for each model and can be accessed at https://github.com/joelholwerda.

Preregistered hypotheses for each experiment can be accessed at https://osf.io/d8pq3.

5.1.3 Results and discussion

The temporal extreme outcome theories predicted that the high-value risky option would

be selected more often than the low-value risky option in the random condition but not in

the alternating condition. This is not compatible with participants’ choices in Figure 5.1a.

In the alternating condition, there is a greater than 99.99% probability that participants

were more likely to select the risky option for the higher value pair of options than the lower

value pair (Median = 2.01, 95% CI = [1.55, 2.66]. Additionally, there is only a 13.12%

probability that the extreme-outcome e�ect is stronger in the random condition where

outcomes closer towards the edges of the distribution were more likely to be temporal

peaks (Median = 0.90, 95% CI = [0.73, 1.07]). This provides fairly conclusive evidence

that the explanations based on temporal peaks are unable to explain the influence of

extreme outcomes.

A similar pattern was also observed in participants’ responses to the memory tasks

that are displayed in Figure 5.1b and Figure 5.1b. There is a probability of 99.43% that

people are more likely to report the better outcome associated with the risky option as

coming to mind first in the alternating condition. The median odds of reporting the better

outcome for the alternating sequences is 2.83 times greater for the higher value options

compared with the lower value options (95% CI = [1.27, 6.64]). Similarly to the choices,

there is only a 21.22% probability that the e�ect is stronger in the random order condition

(Median = 0.79, 95% CI = [0.44, 1.38]).
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Figure 5.1: Choices and re-

sponses to the memory ques-

tions for Experiment 6. The

white dots represent the median

response. Accuracy represents

the proportion of participants’ re-

sponses to the first to mind ques-

tions that corresponded to an ex-

perienced outcome.
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The proportion of choices for the risky option when participants were presented
with the High value or Low value pairs of options.
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B) First to mind responses
The proportion of participants that reported the Better outcome or the Worse
outcome associated with the High value or Low value options.
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C) Percentage estimates
The difference between percentage estimates (the better outcome minus the
worse outcome) for the High value or Low value risky options.
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Finally, there is a probability of 90.10% that people in the alternating condition

are more likely to report that the better outcome occurs more often when presented with

the higher value options compared with the lower value options and the median response

is 0.22 percent higher for the higher value options (95% CI = [-0.12, 0.52]). Although

this evidence is not quite as strong as was provided by the choices and responses to the

first to mind questions, the percentage estimates were quite similar across conditions and

there is only a 62.77% probability that the e�ect is stronger in the random order condition

(Median = 0.03, 95% CI = [-0.17, 0.24]).

Interpreting the choices and memory responses together, the results of this exper-

iment provide strong evidence against the extreme-outcome theories that are based on

temporal peaks or whether the previous outcome is better or worse. This conclusion is

particularly compelling in combination with the results of Experiment 4 in the previous

chapter. The results of this experiment were not consistent with the ordinal distribu-

tional theories, and therefore, also provide some evidence against the ordinal temporal

theories. Although the results of Experiment 4 alone were not entirely conclusive, these

complementary pieces of evidence allow us to reject these temporal accounts as candidate

explanations of the extreme-outcome e�ect with some degree of confidence.

Having said that, these theories are not an exhaustive set of all possible temporal

theories of the influence of extreme outcomes. An analogy can be established between

these temporal theories and the levels of measurement that we examined in Chapter 3.

The temporal theories examined in this chapter were analogous to the ordinal-level theories

because the number of temporal peaks and the probability that the previous outcome was

better or worse was correlated with the token-based rank of outcomes. Similarly to the

way that distance from the centre or edge of the distribution could be measured ordinally

or continuously, it is possible to conceive of a temporal theory that over-weights outcomes

not only based on whether the previous outcome was better or worse, but the amount that

it was better or worse.

In essence, this theory is a temporal counterpart to the continuous-level theories
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based on the distance between neighbouring outcomes (e.g., Murdock, 1960; Neath et al.,

2006). The di�erence between these theories is that the temporal version only compares

the present outcome with the previous outcome, but when outcomes are presented in

a random order, the temporal and distributional theories eventually end up predicting

identical results. As such, the continuous-level temporal theories rise and fall with the

continuous-level distributional theories that are based on similarity between outcomes.1

There is some evidence in favour of these continuous interpretations, for example,

Hsee and colleagues demonstrated that the rate of change from one outcome to the next

influences evaluations of hypothetical scenarios that are described or presented graphically

(Hsee & Abelson, 1991; Hsee et al., 1991). They are also able to account for choices and

memory responses described in this chapter. Although the high-value options in the

alternating condition were always presented following a worse outcome and the low-value

options were always presented following a better outcome, the rate of change was greater

for outcomes towards the edges. For example, if the previous outcome was -25 points, the

di�erence between this and the intermediate high-value risky outcome (60 points) is 85

points whereas the change for the high-value risky outcome at the edge of the distribution

(90 points) is 115 points. As a result, this continuous-level temporal theory might remain

a viable explanation of the extreme-outcome e�ect.

As we mentioned in the introduction to this chapter, this experiment also provides

some evidence regarding whether making choices between the high-value and low-value

pairs of options is required to observe the extreme-outcome e�ect. Recent experiments

have demonstrated that the e�ect is influenced by whether outcomes are considered as

1Although the evidence regarding the distributional theories applies to the temporal
theories, the applicability of evidence is asymmetrical. For example, the evidence provided
in this chapter by manipulating the temporal ordering of outcomes does not rule out that
we might observe a token-based distributional e�ect driven by non-temporal attributes.
Another issue that might influence whether evidence from one variant is applicable to the
other is that the theories of the extreme-outcome e�ect that rely on distance from neigh-
bouring outcomes can produce quite di�erent predictions depending on the function that
governs the relationship between outcomes. For the accounts based on similarity, there is
evidence in favour of local rather than global similarity, but there is little reason why the
same function should govern theories based on adaptation, loss aversion, or extrapolation.
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belonging to the same context (Madan et al., 2021). The previous experiments each

provided participants with an opportunity to make choices between high-value and low-

value outcomes and this might emphasise that both pairs should be considered as belonging

to a single context. The experiment in this chapter only included choices within pairs

but we still observed the extreme-outcome e�ect. This clearly demonstrates that choices

between pairs are not required to observe the e�ect.

Consequently, as was the case in the previous chapter, our theoretical understanding

of the extreme-outcome e�ect has made progress in two entirely di�erent directions. Whilst

we provided considerable evidence that the ordinal-level temporal theories are inadequate

to explain the e�ect, we also provided evidence that increases our confidence that the e�ect

is still observed regardless of whether people are able to make choices between high-value

and low-value options. In Chapter 7, we will attempt to integrate the results of the four

chapters in this thesis that examined extreme outcomes. Before doing so, however, we will

shift direction to explore how people interpret uncertainty in decisions from experience.
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Uncertainty
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Chapter 6

Epistemic and aleatory

uncertainty

Suppose that you were a contestant on a television quiz show and the host asks you the

following multiple-choice question: “What was John Lennon’s middle name? A) Alfred or

B) Winston”.1 After you answer this question, the host pulls a coin out of their pocket

and asks “What will be the outcome when I toss this coin? A) Heads or B) Tails”.

Unless you happen to be an aficionado of Beatles’ trivia, these questions would both

entail some degree of uncertainty but your perception of that uncertainty would likely

di�er considerably. Even if you had never even heard of John Lennon and exclaimed to

the host that you might as well toss a coin, you would still interpret your uncertainty

regarding the first question as arising from a lack of knowledge. The question is about a

specific instance for which the truth is knowable, in principle. In contrast, when presented

with the actual coin toss on the next round, your uncertainty would likely be interpreted

as resulting from an inherently stochastic process.

This duality in uncertainty has been proposed by numerous philosophers, statisti-

cians, and scientists. Poisson (1837) was the first to discuss these two forms of uncertainty

1For those playing at home, the answer is Winston.
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in print where he distinguished between “probability” and “chance”, a distinction that was

further elaborated by Cournot (1843) using the terms “subjective probability” and “objec-

tive possibility”. Carnap (1945) distinguished between “probability1” and “probability2”,

Russell (1948) between “credibility” and “probability”, and Savage (1954) between “per-

sonalistic” and “objectivistic” probability. Likewise, in psychology, Kahneman and Tver-

sky (1982) di�erentiated “internal” and “external” uncertainty and similar distinctions

have subsequently been proposed numerous times (e.g., Ascough et al., 2008; Bedford &

Cooke, 2001; Fox & Ülkümen, 2011; Frisch & Baron, 1988; Gillies, 2000; Helton et al.,

2010; Ho�man & Hammonds, 1994; Keren, 1991; Lawson, 1988; Peterson & Pitz, 1988;

Robinson et al., 2006; Thunnissen, 2003; W. Walker et al., 2003). Although these forms

of uncertainty have been described using almost as many distinct labels as the number of

people that have written about them, each suggests a duality between uncertainty that

arises due to insu�cient knowledge and probability that subsists in things themselves

independently of knowledge.

Perhaps the most detailed examination of these concepts was conducted by Hacking

(1975) who described them as epistemic uncertainty (derived from the Greek word for

“knowledge”) and aleatory uncertainty (derived from the Latin word for “dice”). Using

the work of Pascal as a representative example, he traces the duality back to the earliest

applications of probability theory in the seventeenth century. On one hand, the wager that

Pascal (1670) made regarding the existence of god is epistemic in nature—God is, or He

is not— was based on the inadequacy of our knowledge to rule out the existence of god.

On the other hand, the famous correspondence between Pascal and Fermat that is widely

credited as the origin of mathematical probability discussed interrupted games of chance

that can be perceived as essentially aleatory in nature. This duality between epistemic and

aleatory uncertainty traverses the history of probability and lies at the heart of the recently

reignited debates between the subjectivist-Bayesian approaches to statistics (e.g., Je�reys,

Keynes, Savage, Ramsey, and de Finetti) and the objectivist-frequentist approaches (e.g.,

von Mises, Reichenbach, Kolmogorov, Nayman, Pearson, and Fisher).2

2Although Hacking suggests that the distinction between epistemic and aleatory un-
certainty was implicitly evident in the writings of the early probablists, it is unlikely that
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6.1 Uncertainty as a psychological concept

Hacking (1975) emphasised the curiously autonomous nature of epistemic and aleatory

uncertainty so that “the same idea crops up everywhere, on the pens of people who have

never heard of each other” (p. 16). And yet despite this, he also pointed out that the

vast majority of people that employ probability seem oblivious to the distinction. This

raises the question of whether epistemic and aleatory uncertainty are only discernible after

someone has spent too long contemplating the foundations of probability or whether the

distinction is reflected in our daily lives. Several authors have suggested that the way

uncertainty is communicated in natural language might o�er an answer to this question

(Hacking, 1975; Kahneman & Tversky, 1982; Teigen, 1988). Ülkümen et al. (2016) exam-

ined a two-year corpus of New York Times articles and conducted laboratory experiments

based on the conjecture that people tend to use confidence statements (“sure”, “certain”)

to refer to epistemic uncertainty and likelihood statements (“chance”, “probability”) to

refer to aleatory uncertainty. They observed that these statements di�er across a wide

range of attributes including whether they refer to the past or future, the propensity to

quantify uncertainty numerically, and the perceived level of control (also see Olson &

Budescu, 1997). Likewise, experiments have demonstrated that first person (epistemic)

language was perceived as less informative, more indicative of the opinion of the speaker,

and was used more often to describe high probabilities than third person (aleatory) lan-

guage (Juanchich et al., 2017; Løhre & Teigen, 2016). Assuming that linguistic di�erences

either shape or reflect people’s concept of uncertainty, these di�erences observed in natural

language might indicate that the reach of epistemic and aleatory uncertainty extends far

beyond the deliberations of the philosopher or statistician.

Several other lines of research have provided additional support that people intu-

itively distinguish between epistemic and aleatory uncertainty. For example, numerous

Pascal and his contemporaries recognised the distinction. As argued by Daston (1995),
it is more likely that the associationist psychology that was prevalent during the Euro-
pean enlightenment obscured the distinction by implying a necessary connection between
degrees of belief and relative frequencies.

167



CHAPTER 6. EPISTEMIC AND ALEATORY UNCERTAINTY

experiments have demonstrated that adults and children distinguish between situations

that involve inadequate knowledge about an event that has already occurred and situa-

tions that involve a stochastic process that will occur in the future (e.g., Beck et al., 2011;

Chua Chow & Sarin, 2002; A. J. Harris et al., 2011; Heath & Tversky, 1991; Robinson

et al., 2009; Robinson et al., 2006). People tend to make more extreme probability judge-

ments when they interpret events as entailing more epistemic uncertainty and less aleatory

uncertainty (Tannenbaum et al., 2017). Investors are more willing to pay a financial ad-

visor when they interpret their uncertainty regarding the stock market as resulting from

a lack of knowledge (Walters et al., 2022). Beliefs about the nature of uncertainty are

associated with political ideology such that liberals tend to attribute higher aleatory un-

certainty to outcomes regarding financial well-being (Krijnen et al., 2020). Finally, brain

imaging studies have demonstrated distinct activation patterns associated with tasks that

suggest inadequate knowledge and those that involve stochastically determined outcomes

(Volz et al., 2004, 2005).

6.2 What is the nature of this duality?

In philosophy and statistics, aleatory and epistemic interpretations of probability have

been understood as answering the question what is probability? Within the context of

the apparent success of the deterministic laws of Newtonian mechanics, proponents of

the duality have often faced a criticism, articulated by Boole (1854), that “a perfect ac-

quaintance with all the circumstances a�ecting the occurrence of an event would change

expectation into certainty, and leave neither room nor demand for a theory of probabilities”

(p. 188). More recently, the emergence of quantum indeterminacy has revived the discus-

sion regarding the ontological status of probability but the uncertainty that we encounter

in our lives is generally macroscopic and the di�erence between insu�cient knowledge and

processes that are truly stochastic can be thought of as a “distinction without a di�erence”

(Taleb, 2008, p. 319).

If the philosophical question has no bearing on our lives, another question arises
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as to the origin of the distinction that has been observed in natural language. Fox and

colleagues have recently suggested an approach that examines the cognitive di�erences

that characterise aleatory and epistemic uncertainty (Fox & Ülkümen, 2011). This psy-

chological approach no longer runs into the question of whether god plays dice but instead

distinguishes aleatory uncertainty as attributed to outcomes that “for practical purposes

cannot be predicted and are therefore treated as stochastic” (Fox & Ülkümen, 2011, p.

26). The philosophical question is transformed into a pragmatic choice about whether to

treat outcomes as members of a class or whether it is worth attempting to determine their

internal structure.3

This psychological approach has at least two important consequences: Firstly, it

is no longer necessary to classify uncertainty as either epistemic or aleatory. Instead,

uncertainty can be interpreted as consisting of degrees of each form of uncertainty—the

weather tomorrow might be considered as more epistemic than the weather in two weeks,

but these events would also be associated with a considerable degree of aleatory uncer-

tainty. Secondly, the interpretation of uncertainty is subjective, and therefore, di�erent

people might experience di�erent forms of uncertainty regarding the same event. Just as

over-confidence can arise from blissful ignorance, someone might be convinced that a prob-

lem is easily conquered and continue to strive in vain. In contrast, someone might treat

uncertainty as insurmountable when it would have been easily resolved. The psychological

distinction between epistemic and aleatory uncertainty exists only within the mind of the

person who doubts. Whilst resolving the challenge posed by determinism, this approach

runs into a challenge of its own in the necessity to define “practical purposes” and why

this should matter. But as we shall see, although the psychological approach makes the

duality of uncertainty subjective, it does not make it entirely arbitrary and is constrained

3The psychological distinction between epistemic and aleatory uncertainty that was
proposed by Fox and colleagues is closely related to the psychological concept of am-
biguity when interpreted as partial knowledge. For example, Frisch and Baron define
ambiguity as “the subjective experience of missing information relevant to a prediction”.
Similarly, Camerer and Weber (1992) emphasise the pragmatic nature of the distinction,
defining ambiguity as “uncertainty about probability, created by missing information that
is relevant and could be known”.
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by a number of factors, most notably, exploration and competition.

6.2.1 Exploration

Homo sapiens is a species of informavores, compelled by an epistemic hunger to improve

our grasp on the world (Miller, 1983). We are constantly striving to reduce our uncertainty

but the probabilistic representation of that uncertainty alone is not su�cient to dictate

whether seeking information will prove beneficial. Analogous to the evolution of food-

foraging strategies, the success of the informavore is determined by the amount of valuable

information they acquire per unit cost. Pirolli and Card (1999) describes the objective of

information foraging as follows:

If profitability of prey is defined as the energy returned per unit of handling

time, then clearly less profitable prey should be ignored if they would prevent

the predator from the opportunity to pursue a more profitable prey. For exam-

ple, a predator that relentlessly pursued small hard-to-catch prey while large

easy-to-catch prey were equally available would have a suboptimal diet. It has

been noted in biology that predators will often ignore potential low-profitability

prey in order to seek out higher-profitability prey (p. 11).

Acquiring information is rarely free, and therefore, distinguishing between epistemic

situations in which seeking useful information will bear fruit and aleatory situations in

which such attempts would prove futile is often beneficial. This suggests that our choices

should be influenced by an evaluation of whether—for practical purposes—it seems possi-

ble to improve on our current understanding. Consistent with this, Walters et al. (2022)

demonstrated that stock market investors who interpret uncertainty regarding the mar-

ket as predominantly epistemic in nature are more likely to seek information by paying

for financial advice whereas people who view uncertainty as aleatory are more likely to

diversify their portfolio. Likewise, A. R. Walker et al. (2021) demonstrated that people in-

crease the amount that they explore options after experiencing outcomes that are di�cult
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to integrate into their understanding of the outcome distribution, and therefore, suggest

that their knowledge is incomplete.

Finally, in an experiment that demonstrated the e�ect of uncertainty on explo-

ration, Goodnow (1955) presented participants with either a problem-solving task that

involved matching geometric patterns (emphasising epistemic uncertainty) or a gambling

task (emphasising aleatory uncertainty). Importantly, the problem-solving task was insol-

uble. Perfect accuracy could not be attained using the geometric patterns, but instead,

the outcomes were determined stochastically using the same probabilities used in the gam-

bling task (e.g., one pattern was correct 70% of the time, the other was correct 30% of the

time). Therefore, the problem-solving and gambling tasks involved options that were iden-

tical with respect to their underlying outcome probabilities, but participants’ behaviour

di�ered depending on the task framing. Specifically, participants in the problem-solving

condition were considerably more likely than those in the gambling condition to select the

option that was associated with the lower probability of success. This observation might

reflect participants sacrificing short-run accuracy in order to seek information that would

improve their performance in the long-run.

6.2.2 Competition

The belief that it is possible to reduce our uncertainty, whilst providing a motivation to

seek additional information, also implies the possibility that others are more knowledge-

able. This is consequential because the outcomes of our choices are often influenced by the

knowledge and choices of others—either through cooperation or competition. To provide

an illustration, imagine that you are in the market to purchase a used car. Ideally, you

want to find the best car for the lowest possible amount. The person selling the car, on

the other hand, is seemingly hoping to sell you a lemon worth a small fraction of the price.

The problem that you face is that you are unsure whether the car is one of the lemons

whereas the seller has more experience with the car and might know something that you
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are missing.4

As such, the ability to estimate the degree to which additional information would

reduce your uncertainty might help you avoid exploitation by a more knowledgeable adver-

sary, either by attempting to improve your own knowledge or avoiding options associated

with epistemic uncertainty. Consistent with this, people are more willing to bet on uncer-

tain events—such as stock prices, football matches, and die rolls—that will be resolved in

the (indeterminate) future compared with the same events that have already occurred in

the (potentially knowable) past (Brun & Teigen, 1990; Heath & Tversky, 1991; Rothbart

& Snyder, 1970). Likewise, Ellsberg (1961) demonstrated that people generally prefer to

gamble on events where probabilities are explicitly presented rather than events where the

probabilities are unknown to them (also see Becker & Brownson, 1964; Curley & Yates,

1989; Einhorn & Hogarth, 1985; Keren & Gerritsen, 1999; Sarin & Weber, 1993). Using

an extended version of the Ellsberg task, Fox et al. (2021) showed that these preferences

cannot be attributed, as is often suggested (e.g., Halevy, 2007; Segal, 1987), to an aver-

sion to compound lotteries and instead reflects a preference for gambles that are associated

with lower epistemic uncertainty.5

Providing further evidence for competition as a basis of the psychological distinction

between epistemic and aleatory uncertainty, numerous experiments suggest that people

make decisions based on the amount they know relative to the amount that they believe is

knowable. Chua Chow and Sarin (2002) found that people are more averse to ambiguous

4This example was explored by George Akerlof (1970) in a paper for which he was
eventually awarded the Nobel Prize in economics. He describes how asymmetrical infor-
mation can lead to complete market failure. This can occur because the amount that the
buyer is willing to pay takes into account their uncertainty regarding the quality of the
car and the sellers who have reason to believe their product is not a lemon are unwill-
ing to accept this lower price. Many of the solutions to this problem—such as signalling
(Spence, 1973), screening (Stiglitz, 1975), and fair disclosure legislation—involve reducing
epistemic uncertainty so that predominantly aleatory uncertainty remains.

5Ellsberg (1961) emphasises that ambiguity aversion cannot merely be attributed to a
“mistake” that is corrected upon further reflection. He notes that even L. J. Savage, upon
realising that his choice in the task violated his own axioms, decided to persist with the
o�ending choice rather than following the axioms.
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events when it is plausible that other people might possess more information than when

that information is not available, for practical purposes, to anyone. Heath and Tversky

(1991) showed that people avoid epistemic uncertainty when they perceive their own lack of

knowledge or competence within a specific domain but that they seek epistemic uncertainty

when they are confident in their knowledge (also see, Graham et al., 2009; Hadar et al.,

2013). Likewise, people avoid betting on options when more knowledgeable individuals are

evaluating the same bet and are more sensitive to their relative competence when playing

a competitive game (Fox & Tversky, 1995; Fox & Weber, 2002). As such, the basis of the

duality of uncertainty appears, at least in part, to arise from the necessity to gauge ones

own knowledge relative to the knowledge of others.6

6.3 An example with two dice

Given the psychological approach proposed by Fox and colleagues, we are left with the

possibility that people might disagree whether uncertainty is epistemic or aleatory. But

are there some general features that influence the interpretation of uncertainty? A possible

answer to this question might be derived from an examination of the elements that are

logically required in order to reduce uncertainty. In essence, uncertainty arises from the

inability to map outcome states onto observable states. Therefore, in order to always

perfectly predict the outcome of some mechanism, there must be at least as much possible

observable variability as there is outcome variability. As an example, imagine a game in

which you attempt to guess the outcome of two unbiased six-sided dice that are rolled

sequentially—one die and then the other—so that there are 36 possible outcomes (6 sides

x 6 sides). Before the first die is rolled, it seems reasonable to believe that, for practical

purposes, there is no observable variability that can be mapped onto those 36 outcome

6A third suggested influence on whether uncertainty is interpreted as epistemic or
aleatory is the psychological consequences that result from self-evaluation or evaluation by
others (Curley et al., 1986; Fox et al., 2021; K. A. Taylor, 1995). According to this account,
attributing negative outcomes to chance rather than ignorance can mitigate the regret and
blame that is experienced whereas attributing positive outcomes to ones knowledge or skill
can allow credit for making the choice.
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states. In this situation, most people would interpret their uncertainty as almost entirely

aleatory.7

The dealer rolls the first die. Each of the six observable faces of this die could be

mapped onto a di�erent set of the 36 possible outcome states so that observing the first

die roll would reduce your uncertainty so that only six outcome states remain plausible.

Suppose that instead of openly rolling the first die on the table, the dealer rolls the die

in secret and it remains hidden beneath a cup until you decide whether to place a bet.

Mapping an observable state onto the set of outcome states certainly seems more plausible

than before the first die was rolled. Indeed, both adults and children treat gambles dif-

ferently before and after they have been resolved (Robinson et al., 2009; Robinson et al.,

2006). But in this case, observing the state of the first die seems implausible within the

constraints of the game. Thus, even if you are aware of possible variability that might be

mapped onto the outcome states, your assessment of “practical purposes”, and therefore

your interpretation of uncertainty, might also depend on your perceived ability to acquire

this information.

To complicate the game further, suppose that instead of numbers on the six faces

of the first die, there are six shapes that the dealer assures you will be converted into

numbers after the second die is rolled. In this version of the game, you might observe the

state of the first die and yet still remain uncertain about the outcome unless you are able

to correctly map the outcome state to the variability in the observable state. As such, your

definition of “practical purposes” will also depend on your perceived ability to understand

this mapping. To the degree that you possess information without understanding the

mapping, it remains possible that variability that you currently believe is related to the

outcome states, in fact, provides no information. When this is the case, we will refer to

the observable variability as surface variability in contrast with structural variability that

7Some epistemic uncertainty might enter the mix as demonstrated by the gambler’s
fallacy (Jarvik, 1951) and the superstitious beliefs—wearing red, itchy hands, and lucky
charms—that commonly arise among casino patrons. In these cases, people are mapping
their uncertainty regarding the outcomes onto surface variability, a concept that will be
discussed below.
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can be successfully mapped onto the outcome states in order to reduce our uncertainty.

As such, an evaluation of “practical purposes” is based on your awareness of poten-

tially observable variability, your perceived ability to acquire information regarding that

variability, and your perceived ability to understand the mapping between the observable

variability and the variability in the outcome states. In general, as your interpretation

of uncertainty increases along each of these three dimensions, the tendency to interpret

uncertainty as epistemic rather than aleatory should also increase. Having said that,

this framework does not provide a comprehensive explanation and there are possible ap-

proaches to evaluating the solubility of uncertainty that might not include these three

dimensions. Instead, in some situations, it might be reasonable to di�erentiate between

epistemic and aleatory uncertainty based on an assessment of whether it has been possible

to reduce uncertainty in previous similar situations or infer the solubility of uncertainty

based on the existence of experts within a given domain. Nonetheless, this three dimen-

sional framework might provide us with an approach to understand some of the di�erences

in the interpretation of uncertainty across domains and individuals.8

8There are two additional observations that—whilst not central to the current
investigation—are demonstrated by our game of two dice. Firstly, this example illus-
trates that uncertainty can be interpreted as both epistemic and aleatory with varying
degrees. In this case, epistemic uncertainty was associated with the die that had already
been rolled and aleatory uncertainty was associated with the die that would be rolled on
the next round. Their combination arose due to a conjunction of separate events but it is
equally possible to experience second-order (epistemic) uncertainty regarding (aleatory)
propensities or dispositions that are associated with a single event. This latter possibility
underlies the uncertainty in the Ellsberg urn task and is expressed in statements such as
“the probability is 50% [±20%]”. Secondly, we suggested that epistemic uncertainty arises
when another person could be more knowledgeable but your response to this possibility
should also di�er markedly depending on who possesses that knowledge. If the dealer is
able to observe the die under the cup, you might still be willing to place a bet. It is
unlikely that would still be the case if the dealer also showed the die to the person betting
against you on the other side of the table.
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6.4 Decisions from experience

The three dimensional account suggests that observable variability plays an essential role

in estimating the degree to which uncertainty is perceived as epistemic or aleatory but most

experiments that examine decisions based on experience involve options that are identical

each time they are encountered (for a review, see Wul� et al., 2018). Adapting the words of

George Loewenstein (2007), we treat options in our experiments “like the characters ‘thing

one’ and ‘thing two’ in Dr Suess’ Cat in the Hat. . . and all other information that might

make the situation familiar and provide a clue about how to behave is removed” (p.155).

It is no mere accident that observable variability has been neglected, and instead, it has

been intentionally expunged from experimental designs because the dominant theories of

decision-making consider it to be irrelevant. These theories (e.g., Kahneman & Tversky,

1979) represent uncertainty as subjective probabilities over classes of events—as aleatory

uncertainty—and therefore, there is no reason to di�erentiate between specific instances

in which an option is experienced. There is no reason to suggest that a coloured square

presented on a computer screen would di�er from the options that we encounter in our

daily lives.

This conclusion, however, falls apart when you consider even a mundane example

such as buying apples from a supermarket. Similarly to the options presented in exper-

iments, apples come in distinct varieties (Granny Smith, Royal Gala) and there is some

degree of uncertainty regarding the value (the sweetness of the apple) that will result from

selecting each of these options. On average, a Royal Gala apple will be sweeter than a

Granny Smith but there is also considerable variability within each class. So far, so good.

But in contrast with the experiments, there is also observable variability within each of the

distinct classes. The presence of this variability suggests that it might be possible to map

the variability in the apples’ sweetness onto their colour, shape, or size. You might at-

tempt to acquire additional information by examining their aroma or firmness. Although

there are some similarities with the options presented in decision-making experiments, the

way that people interact with options in the real world and the reasons they select one

176



6.4. DECISIONS FROM EXPERIENCE

option over another might di�er considerably.

Even in previous experiments in which options were visually identical each time

they were presented, there is evidence that people, nonetheless, interpret uncertainty as

being somewhat epistemic. The choices that participants make in these experiments of-

ten exhibit sequential dependencies that suggest they are not treating the outcomes as

independent and identically distributed (for a review, see D. Cohen & Erev, 2021). They

search for patterns even when there are none. This also seems to be the case in the few

experiments that have used options that were not visually identical each time they were

presented. As described above in the section on exploration, Goodnow (1955) observed

that when each presentation of an option was individuated using unique geometric pat-

terns, people were more likely to attempt to discern underlying patterns in the outcomes,

as demonstrated by a tendency to split their choices between alternatives (probability

matching) rather than always selecting the option with the greater probability of success

(probability maximising).

In the three experiments described in this chapter, we examine whether introducing

surface variability to a decisions from experience task—the bandit task—influences the

degree to which people interpret uncertainty as epistemic or aleatory. Learning about

options in this task requires participants to choose that option and experience the conse-

quences, and as such, epistemic uncertainty might prove to be a double-edged sword. On

the forward edge, it might allow people to increase their knowledge over time, but on the

reverse edge, it might suggest that other people are more knowledgeable. This presents

participants with a dilemma not encountered in previous experiments where they could

learn about options without selecting them (e.g., by paying for advice in Walters et al.,

2022) or where they were not able to learn from experience (e.g., when presented with a

one-shot decision in Ellsberg, 1961). We examined which of the two horns of this dilemma

people tend to select and whether their choices are markedly di�erent from the standard

bandit task that omits observable variability.
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6.5 Experiment 7: Partial-feedback

The first experiment in this chapter aimed to examine whether introducing observable sur-

face variability influences the way people interpret uncertainty in a bandit task. Similarly

to most decisions from experience tasks, participants in the identical images condition

were repeatedly presented with a pair of options that were represented by the same im-

age each time the option was encountered. In contrast, in the unique images condition,

participants were presented with pairs of options that were easily distinguished by their

colour and location on the screen (similarly to the options in the identical images condi-

tion), but each time an option was encountered, it was represented by an image that was

subtly di�erentiated from the other images used to represent the option (see Figure 6.1).

This observable variability was not predictive of the experienced outcomes. It was surface

variability rather than structural variability, and therefore, all participants had access to

the same amount of useful information.9

Despite this, to the degree that participants in the unique images condition believed

it was possible to understand the mapping between this surface variability and the vari-

ability in the outcomes, we predicted that they would interpret their uncertainty as being

more epistemic. We also predicted that the surface variability manipulation would have

an e�ect on the amount of aleatory uncertainty that participants reported. Assuming

that the amount of total uncertainty remains constant across conditions, an increase in

epistemic uncertainty would lead to a decrease in aleatory uncertainty. This might be

further decreased if participants believed that they actually possessed an accurate map-

ping between the surface variability and the outcome variability. In this case, their total

uncertainty would decrease (even though this would not be accompanied by an increase in

9We expected that introducing observable variability would influence participants’
choices and were interested in the pathway mediated by their interpretation of uncer-
tainty. Using surface variability was essential for examining this relationship because
structural variability would allow the participants to improve their performance across
trials. This might cause participants to preference riskier options based on the increased
expected value rather than di�erences in their interpretation of uncertainty. Using surface
variability thus allowed us to decouple the influence of performance and uncertainty.
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their performance) and this might lead to a consequent further reduction in their aleatory

uncertainty.

In both conditions, there was a safe option that always resulted in similar outcomes

and a risky option that resulted in outcomes that were either better or worse—with equal

probability—than the outcomes associated with the safe option. We expected that partici-

pants would experience relatively little epistemic and aleatory uncertainty associated with

the safe option. In contrast, we expected that participants would experience a consider-

able amount of uncertainty associated with the risky option and that its interpretation

would depend on the presence or absence of observable variability, as described above.

Therefore, we suggest that di�erences in participants’ choices between conditions might

reflect similar di�erences in their interpretation of uncertainty. Specifically, we expected

the risky option to be associated with greater epistemic uncertainty in the unique images

condition, and therefore, a stronger preference for the risky option in this condition might

suggest epistemic uncertainty seeking and a stronger preference for the safe option might

suggest epistemic uncertainty aversion.

The results of Experiment 7a suggested that participants might be responding with

reference to their uncertainty regarding the appearance of the options rather than un-

certainty regarding the outcomes. Experiment 7b aimed to minimise this possibility by

emphasising that the questions referred to the outcome of a specific future choice. It also

aimed to increase the likelihood that participants were correctly di�erentiating between

the options by paying them based on their performance and making the outcome distri-

butions more distinct. These and other relevant di�erences between Experiment 7a and

7b are discussed below.10

10In addition to examining the influence of surface variability on participants’ interpre-
tation of uncertainty and their choices, we also examined two supplementary questions:
one theoretical and the other methodological. The theoretical question aimed to ascertain
whether there is a relationship between one-shot measures of epistemic uncertainty pref-
erences (Ellsberg tasks) and responses to epistemic uncertainty when uncertainty might
be resolved through repeated experience (bandit tasks). The methodological question ex-
amined whether it is possible to reduce within-condition variability by controlling for the
specific sequence that participants experienced throughout the task. Given their periph-
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6.5.1 Method

Participants

A total of 240 undergraduate psychology students from UNSW Sydney participated in

Experiment 7 (120 each in Experiment 7a and 7b). The average age was 19.3 years (SD =

2.4) and 178 participants were female. In addition to receiving course credit, participants in

Experiment 7b were able to earn a small amount of money depending on their performance

in the task (M = AU$5.67, SD = AU$1.48).

Design and procedure

Bandit task. Participants completed the experiment in individual testing booths. At

the beginning of the task, they were presented with written instructions that the task

involved repeatedly making choices between pairs of options presented on a screen and

that they should try to earn as many points as possible. They were not given information

about the distributions of points; instead they were required to learn about options by

receiving feedback about the number of points that resulted from selecting an option.

Participants did not receive feedback on options unless they selected them, and therefore,

being exposed to the consequences of choosing an option (in this case, gaining a specific

number of points) was necessary in order to learn about it.

Each participant made 110 choices between a safe and a risky option that both had

the same expected value. In Experiment 7a the outcomes of both options were drawn

from a Gaussian distribution with a mean of 50 points. The standard deviation of the safe

option was 1 point and the risky option was 20 points—this distribution was truncated so

that all outcomes were two-digit numbers between 10 and 90. The outcome distribution

for the risky option in Experiment 7a was centred on the same mean as the safe condition,

and therefore, 50 points was the most likely outcome for both options. To accentuate the

eral relationship with the main research questions in this chapter, these investigations are
described in Appendix D and E, respectively.
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di�erent levels of risk associated with each of the options in Experiment 7b, a bimodal

distribution that had peaks at 30 and 70 points was used for the risky option.

Participants were randomly allocated into either the identical images or unique im-

ages condition with balanced sample sizes. In the identical images condition, the safe

and risky options were di�erentiated by their colour (red or blue) and by their position

on the screen (left or right) and the images used to represent them remained identical

across trials. In the unique image condition, the options were di�erentiated by colour and

position but a slightly di�erent image was used to represent these options on every trial.

Importantly, the amount of observable variability was identical for the safe and risky op-

tions and although each image was unique, the outcomes were still drawn from the same

distribution as the options in the constant image condition.

Figure 6.1: Examples of the images used to represent options in Chapter 6.
Each quadrant depicts a choice between a pair of options as they were presented on the
screen to participants. They were required to learn about each option by selecting it and
observing the outcome.

Epistemic and Aleatory Rating Scale. Following this decision-making task,

participants completed the ten-item Epistemic and Aleatory Rating Scale (EARS) that
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was developed by Ülkümen et al. (2016) to examine the perceived amount of epistemic

and aleatory uncertainty associated with an event—in this case, the outcome of selecting

the safe or risky option. In Experiment 7a, participants were asked to think about the

outcomes (numbers of points) that they received in the decision-making task when they

selected a red or blue option.11 They responded to items on a seven-point Likert-scale

that either indicated an epistemic interpretation (e.g., “The outcomes were in principle

knowable in advance”) or an aleatory interpretation (e.g., “The outcomes could play out

in di�erent ways on similar occasions”). The EARS items, instructions, and reliability

estimates are available in Appendix B.

The EARS in Experiment 7a was phrased with reference to aggregated choices in the

decision-making task, referring collectively to the outcomes of blue or red options instead

of uncertainty regarding a specific future choice. Based on the results of this experiment, it

was plausible that referring to aggregated past choices caused some participants to respond

with reference to their uncertainty regarding the observable variability in the appearance

of the options. Experiment 7b aimed to address this issue by presenting the EARS with

reference to a future choice regarding a specific instance of each option. Participants were

asked to imagine that they were going to select an option that was displayed on the screen

and were presented with the EARS with reference to the “outcome (number of points)”

that would result from that specific choice.

Analysis

We used Bayesian regression to analyse participants’ responses because it allowed us to

flexibly model the hierarchical structure of our experimental tasks, incorporate regularisa-

tion, and examine degrees of credibility rather than dichotomous indicators of significance

or non-significance. All posterior distributions reported in this chapter were determined

by Hamiltonian Monte Carlo using the brms package in R (Bürkner, 2017). For each

11The “safe” and “risky” options were never explicitly described to participants using
those labels.
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posterior, we report the probability that there was a di�erence between conditions in the

predicted direction. This statistic provides information about whether our results can be

attributed to sampling error but does not indicate the magnitude of the di�erence and

cannot provide evidence for the absence of an e�ect (Makowski, Ben-Shachar, et al., 2019;

Makowski, Ben-Shachar, et al., 2019). Consequently, we also report the highest density

interval that contained 95% of the posterior (95% CI) and discuss whether these intervals

are consistent with the predictions of each theory. We chose to present these summaries of

the posterior distribution because they are analogous to frequentist statistics that might

be more familiar to some readers. The probability of direction corresponds roughly to

the complement of a one-tailed p-value (1 - p) and the highest density interval corre-

sponds roughly to a confidence interval. They should not be treated as equivalent because

our analysis incorporates informative priors (Nalborczyk et al., 2019), but they both at-

tempt to answer similar questions.12 The full posterior distributions can be accessed at

https://github.com/joelholwerda.

Weakly regularising priors were selected for each parameter. A student-t(7, 0, 0.5)

distribution was used for the slope, intercept, and threshold parameters. A half-student-

t(7, 0, 0.5) distribution was used for the standard deviation parameters in the hierarchical

models and an LKJ(4) distribution was used for the correlation between intercept and

slope parameters (Lewandowski et al., 2009). These priors were selected to conform with

the Stan prior choice recommendations (Stan Development Team, 2020)13 and predictions

12One possible source of confusion when interpreting these two posterior summaries is
that the probability that there is an e�ect in the specified direction excludes probability
from a single tail whereas the highest density interval excludes probability from both
tails. They answer slightly di�erent questions. This is not a issue but the reader should
remember that the probability of an e�ect in the specific direction can be slightly greater
than 95% when the 95% highest density interval includes the possibility of a small e�ect
in the opposite direction.

13The Stan prior choice recommendations suggest using a student-t distribution with
degrees of freedom between 3 and 7. We selected the latter to provide stronger pro-
tection against implausible parameter estimates whilst allowing us to learn from the
data. To examine the sensitivity of our conclusions to our choice of priors, we also
assessed our hypotheses using two alternate sets of priors: one more informative set
that used normal(0, 0.5) distributions and one less informative set that used student-
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from the prior distribution were inspected to ensure that they allow the range of plau-

sible observations (Gabry et al., 2019). The same prior distributions were used for the

subsequent experiments with a small number of additions that will be described alongside

the relevant models. Numerical predictors were standardised (mean = 0, SD = 1) and

categorical variables were deviation coded (-1, 1) so that they were centred and their scale

was comparable when setting priors (A. Gelman, 2008).

All parameters had bulk and tail e�ective sample sizes greater than 10000 and an

R̂ < 1.01 suggesting adequate chain convergence (Vehtari et al., 2020). There were no

divergent transitions and the other Stan diagnostics did not indicate issues with esti-

mation. Rank histograms, posterior predictive distributions, and other diagnostic plots

were examined for each model and can be accessed at https://github.com/joelholwerda.

Preregistered hypotheses for each experiment can be accessed at https://osf.io/d8pq3.

6.5.2 Results and discussion

Does surface variability influence the interpretation of uncertainty? Partici-

pants’ responses to the EARS for the risky option are shown in Figure 6.2a. We hypoth-

esised that participants who were presented with unique images for each choice would

report higher epistemic and lower aleatory uncertainty associated with the risky option

compared with participants who were always presented with the same images. To assess

this hypothesis, we predicted responses to the EARS questionnaire for the risky option

using hierarchical Bayesian ordinal (probit) regression. We included the experiment (7a

or 7b), condition (unique images or identical images), option type (safe or risky), un-

certainty type (epistemic or aleatory), and their interactions as fixed predictor variables.

The correlated intercept and slope parameters for option type and uncertainty type were

allowed to vary for participants within each condition. The correlated intercept and slope

parameters for experiment, option type and condition were allowed to vary for each item

t(3, 0, 1) distributions. The parameter estimates using these priors can be accessed at
https://github.com/joelholwerda.
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of the EARS within each uncertainty type.

Based on this model, there is a 99.32% probability that presenting participants

with unique or identical images influenced the di�erence between their responses to the

epistemic and aleatory items of the EARS (median = 0.43, 95% CI = [0.09, 0.77]). This

is consistent with our first hypothesis that introducing surface variability influences the

interpretation of uncertainty. We followed up this analysis by interrogating the posterior

distribution using contrasts to examine the epistemic and aleatory items. These contrasts

suggest that there is a 98.72% probability that participants in the unique images condition

were more likely to report higher epistemic uncertainty than participants in the identical

images condition and this corresponds to a di�erence of roughly 0.40 standard deviations

on the latent scale (95% CI = [0.05, 0.75]). Conversely, there is a 97.22% probability

that these participants were more likely to report lower aleatory uncertainty and this

di�erence was around -0.46 standard deviations on the latent scale (95% CI = [-0.92, 0.03]).

These observations are consistent with our hypothesis that people interpret uncertainty as

more epistemic when risky options are associated with greater surface variability. Given

that surface variability cannot be used to improve performance, we assumed that total

uncertainty would be comparable between conditions, and therefore, the reduction in

aleatory uncertainty could be explained on the basis of its complementary relationship

with epistemic uncertainty.

EARS responses for the safe option. Participants’ responses to the EARS for

the safe option are shown in Figure 6.2b. Although our primary hypothesis concerned the

risky option, we also analysed participants’ responses to the EARS with reference to the

safe option. The outcomes that resulted from selecting the safe option had a standard

deviation that was 20 times smaller than the risky option, and therefore, we predicted

that participants would experience considerably less uncertainty regarding this option.

We did not have strong hypotheses regarding the interpretation of this uncertainty for the

safe option but assumed that the proportion of epistemic and aleatory uncertainty might

coincide with the risky option. In contrast, however, participants’ responses appear to

di�er markedly between the safe and risky option. Using the same model that was applied
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Figure 6.2: Responses to

the EARS questionnaire and

choices for Experiment 7. The

white dots represent the median

response. Average item ratings

reflect the average response for

each participant on the epistemic

or the aleatory subscales.

| | || | || | |||| || || | || ||||| | || || | |||| || || | ||||| || | ||| || |||| ||||

||| | ||||| || || ||| ||| | || || | |||| || || || || || ||||| | | |||| | ||| || ||| |

||| | || || ||| || | || || | || | ||| || | | ||| || || | || | | ||| || | |||| ||| ||| || |

|| || || || || || || ||||| || | ||| |||| ||| | || ||||| || ||| ||| || || || |||| ||

|| ||| | ||| | ||| | | ||| || | || ||| || | || || || || ||| | | | || ||| | | | || || || | | |

|| |||| ||| || | || |||| ||| || ||| | || ||| ||| | || || || || ||| |||| | | |||| | | |

| ||| ||| ||| || || | || || | | ||| | | | | || | || || ||| ||| | ||| || | |||| ||| | || ||

||| | | ||||| || | || || | || ||| | ||| | || | | || || || | ||| |||| | ||| | || | || ||| |

Aleatory Epistemic

Experim
ent A

Experim
ent B

1 
           Not at all

2 3 4 5 6 7 
 Very much            

1 
           Not at all

2 3 4 5 6 7 
 Very much            

Constant images

Unique images

Constant images

Unique images

Average item rating

A) Epistemic and aleatory rating scale (risky option)
Average item ratings on the aleatory and epistemic subscales for the risky option
in the Unique images and Constant images conditions.

|| || || | || | || || || || || || || || | ||| ||| ||| | ||| |||| |||| | || || | ||| | ||

| | | ||| || | ||| || || | || | || | |||| || ||| || | | || || | ||| ||| || ||| ||||| |||

| ||| || |||| || || || ||| || | ||| | || |||| | ||| | || ||| ||| | || ||| || || ||| ||

| || ||| | | || || || | || || | || | || | ||| | || || || ||| ||| ||| | || || || ||| || |||

|| | || ||| || | || || || || || || ||| || | || | | || ||| | || || || | ||| | || |||| | || |

|| || | | |||| || || |||| | || || || ||| || | || || | ||| | || || || | || || ||| || | || |

||| | ||| || || || |||| | | || | ||| || | || ||| || || | ||| | || || ||| || | |||| | |||

|| || | || | | |||| || ||| ||| | || |||| || || ||| |||| | || | ||| | |||||| ||| || | |

Aleatory Epistemic

Experim
ent A

Experim
ent B

1 
           Not at all

2 3 4 5 6 7 
 Very much            

1 
           Not at all

2 3 4 5 6 7 
 Very much            

Constant images

Unique images

Constant images

Unique images

Average item rating

B) Epistemic and aleatory rating scale (safe option)
Average item ratings on the aleatory and epistemic subscales for the safe option
in the Unique images and Constant images conditions.

| ||| ||| | || | || || || || || |||||| | || || || |||| | ||||| | || || || || || ||| ||

||||||| | | |||| || | || |||| || || | ||| || | |||| |||| | || | || | || ||| ||| || ||

| | ||| | |||| || || |||| | | | |||| ||| || ||| ||| || ||| || |||| || ||| || | | ||||

| || || |||| || || | || || | | ||| || | |||| | ||| ||||| | || || | || | ||| || || || || |

Experiment A Experiment B

0 .25 .5 .75 1 0 .25 .5 .75 1

Constant images

Unique images

Proportion of choices for the risky option

C) Choices
The proportion of choices for the risky option in the Unique images and Constant
images conditions.

186



6.5.2 Results and discussion

to the risky option, there is a 99.39% that responses to the safe option showed the opposite

pattern to the median estimate for the risky option (median = -0.46, 95% CI = [-0.77,

-0.11]).

It is debatable how much emphasis should be placed on this observation. On one

hand, it seems plausible that participants merely provided confused answers when asked

a confusing question. We asked them to evaluate their uncertainty regarding outcomes

for which they had minimal uncertainty and they may have responded to this absurdity

with reference instead to the visual appearance of the options rather than their outcomes.

We aimed to address this possibility in Experiment 7b by emphasising that the EARS

items referred to a specific outcome of a concrete choice associated with a specific image

but the results were nearly identical to Experiment 7a (the instructions for the EARS can

be found in Appendix B). In the chapter discussion, we will propose a more substantial

explanation for this pattern that is based on the relationship between observable variability

and outcome variability.

Is there an e�ect on choices? Participants’ choices in the bandit task are shown

in Figure 6.2c. We hypothesised that epistemic interpretations might influence partici-

pants’ choices, either by promoting exploration or avoidance of the risky option. Given

that participants probably interpreted uncertainty as more epistemic in the unique images

condition—based on their responses to the EARS—we were interested in whether there

was a resultant influence of surface variability on their choices. We examined this using

Bayesian hierarchical logistic regression predicting the choice participants’ made on each

trial. The experiment (7a or 7b), condition (unique images or identical images), and their

interaction were included as fixed predictor variables. The intercept was allowed to vary for

each participant. This model suggests that there is a 95.74% probability that participants

in the unique images condition were more likely to select the risky option than partici-

pants in the identical images condition. This evidence is more consistent with participants

responding to epistemic uncertainty with exploration than responding with avoidance and

the median odds ratio suggests that participants in the unique images condition were

roughly 1.18 times more likely to select the risky option (95% CI = [0.97, 1.41]). This
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posterior distribution is consistent with a moderate e�ect of surface variability but also

assigns non-trivial credibility to small di�erences that we would not consider meaningful.

We will attempt to di�erentiate between these possibilities with greater precision in the

subsequent experiments.

To further examine the role of uncertainty, we also examined the relationship be-

tween participants’ epistemic uncertainty ratings and their choices. We used a similar

model to the one described in the previous paragraph but replaced the condition predictor

with participants’ ratings on the epistemic items of the EARS. Based on this model, there

is an 93.55% probability that reporting greater epistemic uncertainty is associated with

choosing the risky option more often, but similarly to the previous model, our results are

consistent with participants displaying a relatively modest preference (median odds-ratio

= 1.07, 95% CI = [0.98, 1.17]). Even if the true parameter value is situated near the

upper 95% credible interval, scoring one standard deviation higher on the epistemic items

would be associated with being merely 1.2 times more likely to select the risky option.

This suggests that, in the context of this experiment, epistemic uncertainty plays a minor

role in determining the influence of observable variability on participants’ choices.

To examine this relationship more directly, we conducted a mediation analysis using

a Bayesian multivariate linear regression with the mediator variable (participants’ aver-

age response to the epistemic EARS items) predicted by the condition (unique images

or constant images) and the outcome variable (the proportion of choices for the risky

option) predicted by the condition and mediator variable. We then used the bayestestR

package (Makowski, Ben-Shachar, et al., 2019) to calculate the direct e�ect (the poste-

rior distribution for the condition variable in the model predicting the outcome variable)

and the indirect e�ect (the multiplication of the posterior distribution for the mediator

variable in the model predicting the outcome variable and the condition variable in the

model predicting the mediator variable). Based on this analysis, the median estimate of

the direct e�ect was 0.016 (95% CI = [-0.003, 0.035] and the median estimate of the in-

direct e�ect was 0.002 (95% CI = [-0.001, 0.007]). Consistent with our conclusions based

on the relationship between epistemic uncertainty and choice, the indirect e�ect suggests
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that epistemic uncertainty does not play a large role in the relationship between surface

variability and choice. The estimated proportion of this relationship that was mediated

by epistemic uncertainty was roughly 12%. In the chapter discussion, we will propose an

alternative pathway that appears to o�er a better explanation of the relationship between

surface variability and participants’ choices. At this point, however, we will merely men-

tion the possibility that participants choices reflect an attempt to balance the positive and

negative consequences associated with epistemic uncertainty. Determining the plausibility

of this account would require us to tease apart the influence of exploration and epistemic

uncertainty aversion and this was our primary objective in the next experiment.

6.6 Experiment 8: Information or reward

The first experiment in this chapter manipulated observable surface variability in a ban-

dit task where participants could learn about options by selecting them and receiving

feedback. The information acquired about an option was necessarily dependent on the ex-

perienced outcome and we suggested that this creates a potential dilemma. Interpreting

uncertainty as epistemic suggests that you might improve your future performance by ac-

quiring additional information but people are often averse to choosing options associated

with epistemic uncertainty.

We observed some evidence that, on average, people resolve this dilemma by increas-

ing exploration rather than avoiding epistemic uncertainty (but the e�ect size was small).

In this experiment, we aimed to further examine the contribution of these two aspects of

the dilemma by separating the ability to acquire information about an option from the

outcomes that might be obtained. Based on a task designed by Tversky and Edwards

(1966), each time a participant selected an option, they were presented with a subsequent

choice between acquiring information or reward from the option (also see, Navarro et al.,

2016; Rakow et al., 2010). They could choose to observe the outcome but not have the

points added to their final score or claim the outcome but not find out the number of

points until after the experiment. This task required all participants to complete the same
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number of trials, thus eliminating a potential confound that is present in free sampling

tasks that people might engage for longer in the unique images condition because the novel

images make the task more interesting.

There was no longer a dilemma between approaching and avoiding options associated

with epistemic uncertainty, but there was still a trade-o� between exploring and exploiting

their existing knowledge. Observing an outcome was inherently costly because it precluded

the opportunity to claim the points associated with the outcome. Therefore, the number

of times that participants chose to observe an option might reflect whether they believed

that acquiring additional information would be beneficial. In other words, it might reflect

the degree to which they perceived uncertainty as soluble or epistemic. As such, we

hypothesised that participants would observe options more often when they rated them

on the EARS as associated with greater epistemic uncertainty. We predicted that the

risky option in the unique images condition would be associated with greater epistemic

uncertainty, and therefore, that participants would choose to observe more outcomes in

that condition, particularly for the risky option.

Similarly to one-shot experiments based on Ellsberg’s (1961) urn task, claiming an

outcome associated with an option did not provide the participant with information that

would improve their performance. Consequently, to the degree to which people display

an aversion to epistemic uncertainty, we expected that participants would avoid claiming

options that were associated with greater epistemic uncertainty. Separating information

and reward, therefore, allowed us to individually examine the two horns of the dilemma

that participants, supposedly, faced in the first experiment in this chapter.

6.6.1 Method

Participants

137 undergraduate psychology students from UNSW Sydney participated in Experiment 8.

The average age was 19.2 years (SD = 2.3) and 100 participants were female. In addition to
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receiving course credit, participants were able to earn a small amount of money depending

on their performance in the task (M = AU$4.59, SD = AU$0.68).

Design and procedure

Participants completed a decision-making task similar to the one used in the previous

experiment in which they were repeatedly presented with safe and risky options represented

by either identical or unique images. The images and outcome distributions were identical

to Experiment 7b. The key di�erence was that instead of having the points both displayed

on the screen and added to their total score, participants were required to decide whether

they wanted to observe or claim the points associated with the option.

If they chose to observe, the number of points associated with the option was dis-

played on the screen but not added to their final score. If on the other hand, they chose

to claim the outcome, the number of points was not displayed but was added to their final

score and “points added to total” was presented on the screen. The distinction between

observing and claiming was explained in detail prior to beginning the task and partici-

pants were told that they would make a total of 100 choices. They were also required to

obtain a perfect score on a short multiple-choice questionnaire designed to ensure adequate

knowledge of the task.

Participants were not given explicit information about the outcome distributions

and the only way to learn about options was to choose to observe the outcome. Doing so

required them to forego the opportunity of claiming the points associated with the option,

and therefore, it only made sense to observe an outcome if they believed it would provide

information that could be exploited in future choices. Following this decision-making task,

participants were presented with the EARS that was used in Experiment 7b.
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6.6.2 Results and discussion

Does surface variability influence the interpretation of uncertainty? Partici-

pants’ responses to the EARS for the risky option are shown in Figure 6.3a. We again

hypothesised that participants in the unique images condition would report higher epis-

temic uncertainty and lower aleatory uncertainty than the participants in the identical

images condition. To address this hypothesis, we used the same ordinal regression model

that was used in the previous experiment with the exception that—for obvious reasons—

the experiment predictor (7a or 7b) was omitted. Based on this model, there is a 96.22%

probability that presenting participants with unique or identical images influences the

di�erence between participants’ responses to the epistemic and aleatory items (median =

0.36, 95% CI = [-0.04, 0.74]). This is consistent with the results of the previous experiment

and provides further evidence that surface variability can influence the interpretation of

uncertainty.

Once again, we used contrasts to examine the influence of surface variability for

the epistemic and aleatory items of the EARS. These contrasts suggested that there is a

78.52% probability that people report experiencing more epistemic uncertainty (median

= 0.14, 95% CI = [-0.22, 0.50]) and a 97.14% probability that people report experienc-

ing less aleatory uncertainty (median = -0.57, 95% CI = [-1.14, 0.02]) when considering

options that are represented by unique images relative to options represented by identical

images. Whilst both of these estimates are compatible with our hypotheses and the results

of the previous experiment, there is a notable di�erence in the strength of the evidence.

The first estimate provides some weak evidence that surface variability increases epis-

temic uncertainty but is also compatible with a modest decrease in epistemic uncertainty.

In contrast, the second estimate provides considerable evidence that surface variability

decreases aleatory uncertainty.

Given that our hypotheses primarily concerned epistemic uncertainty and its ef-

fects on exploration and choice, what are we to make of these findings? We hypothesised

that surface variability would indirectly impact aleatory uncertainty. This was based on
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the assumption that the amount of total uncertainty would be roughly equivalent across

conditions because surface variability cannot be used to improve performance. There-

fore, increasing epistemic uncertainty would indirectly cause a decrease in its complement,

aleatory uncertainty. Our assumption that total uncertainty would remain constant would

be erroneous, however, if participants believed that they possessed an accurate mapping

between the surface variability and the outcome variability. This spurious association

might decrease their total uncertainty (even though this would not be accompanied by an

increase in performance) and this would lead to a consequent reduction in both their epis-

temic and aleatory uncertainty. The separation between observing and claiming outcomes

in this experiment might have played a role in participants’ illusory mapping between sur-

face and outcome variability because most participants chose to observe a small number

of outcomes, and therefore, were not presented with disconfirmatory evidence that would

cause them to doubt their illusions. This could explain the potential di�erences with the

results of the previous experiment.

EARS responses for the safe option. Participants’ responses to the EARS

for the safe option are shown in Figure 6.3b. In the first experiment in this chapter, we

unexpectedly found that the EARS questionnaire referring to the safe option produced the

opposite pattern of responses to the risky option. Based on our model, there is only a 2.77%

probability that we observed this e�ect again in this experiment (median = 0.44, 95% CI

= [-0.01, 0.85]). How can we explain this salient contrast between our experiments? As

was the case with the risky option, one plausible explanation emphasises that the median

number of observations for the safe option was ten times lower in this experiment than

the number of observations in the previous experiment. The plausibility of this account

will be discussed further in the chapter discussion where we will attempt to integrate the

evidence regarding the safe option into a coherent explanation.

Is there an e�ect on exploration? The second main question we aimed to

address was whether epistemic uncertainty would lead to higher exploration when there

was no longer a necessary connection with the consequences of choosing an option. The

proportion of trials in which participants chose to observe an outcome rather than having
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its value added to their score is shown in Figure 6.3c. We predicted that participants would

choose to observe more outcomes in the unique images condition, especially for the risky

option, which we predicted would be associated with greater epistemic uncertainty. We

examined this hypothesis using Bayesian hierarchical logistic regression predicting whether

participants observed or claimed the outcome on each trial. The condition (unique images

or identical images), the outcome variance associated with the option type (safe or risky),

and their interaction were included as fixed predictor variables. The intercept and slope

for the outcome type was allowed to vary for each participant. This model suggests that

there is a 75.11% probability that participants were more likely to observe outcomes in

the unique images (median odds-ratio = 1.15, (95% CI = [0.75, 1.73])). Regarding our

prediction that the di�erences in the amount of exploration would be particularly salient

for the risky option, the model suggests that there is a 76.34% probability associated with

this interaction (median odds-ratio = 1.07, (95% CI = [0.88, 1.30])). These estimates do

not provide meaningful evidence in favour of the hypothesised e�ect of surface variability

on information seeking, which is not entirely surprising given that there was considerable

uncertainty regarding the e�ect of surface variability on the epistemic items of the EARS.

We also directly modelled the relationship between responses to the epistemic items

and whether participants observed or claimed the outcome on each trial. We used the same

model as described in the previous paragraph but replaced the condition predictor with the

participants’ ratings on the epistemic items of the EARS. According to this model, there is

only a 33.39% probability that epistemic uncertainty is associated with choosing to observe

more outcomes (median odds-ratio = 0.96, (95% CI = [0.76, 1.17])). This is not consistent

with our hypothesis that epistemic uncertainty would lead participants to observe more

outcomes. It is possible that we failed to observe an e�ect of epistemic uncertainty on

exploration because participants observed such a small number of outcomes. A single

additional observation would be equivalent to a 17% increase for the median participant

and this might suggest that our experiment lacked adequate precision. We attempt to

address this potential issue in the next experiment.14

14Before selecting the information or reward task used in this experiment, we piloted
another task in which there was an explicit cost associated with acquiring observations.
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Is there an e�ect on choice? The option (safe or risky) that participants chose

when they subsequently claimed the points associated with the option are shown in Figure

6.3d. Given that participants would not learn the outcome of these choices, and therefore,

there was no possibility to reduce their uncertainty, we hypothesised that they would avoid

options associated with greater epistemic uncertainty. We predicted that this would result

in fewer choices for the risky option in the unique images condition. We examined this

using Bayesian hierarchical logistic regression predicting the choice participants’ made each

time they chose to claim the outcome. The condition (unique images or identical images)

was included as a fixed predictor variable and the intercept was allowed to vary for each

participant. This model suggests that there is a 78.01% probability that participants in

the unique images condition were more likely to avoid the risky option (median odds-ratio

= 0.85, (95% CI = [0.56, 1.28])). This does not provide strong evidence for an e�ect of

surface variability on choice, and similarly to the e�ect on exploration, this is not entirely

surprising given our uncertainty regarding the e�ect of surface variability on the epistemic

items of the EARS.

Finally, we modelled the relationship between participants’ responses to the epis-

temic items for the risky option and whether they chose to claim the safe or risky option.

We used the same model that was described in the preceding paragraph but replaced the

condition predictor with the average response to the epistemic items for the risky option.

Similarly to our hypothesis regarding surface variability, there was no real evidence that

epistemic uncertainty influences information seeking. Instead, our model suggests that

there is only a 39.50% probability that participants in the unique images condition were

more likely to avoid claiming the risky option (median odds-ratio = 1.01, (95% CI = [0.94,

1.08])). Similarly to the previous experiment, these findings do not provide evidence that

Participants could pay a small amount (less than one cent) to observe outcomes from each
option before making a consequential choice. Most participants chose to observe less than
two outcomes and some even opted to make a choice without observing a single outcome.
Based on this pilot, we concluded that participants were more willing to observe in the
"information or reward" task used in this chapter in which the cost of observing was the
lost opportunity to claim than in the task where there were (very small) direct monetary
costs.
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epistemic uncertainty was associated with information seeking in our tasks, even when

exploration was decoupled from choice. We will discuss these observations further in the

chapter discussion after we have described our final attempt to investigate the relationship

between observable variability, epistemic uncertainty, information seeking, and choice.

6.7 Experiment 9: Free sampling

In the first experiment of this chapter, exploration was necessarily yoked with choice

and entailed the possibility of exploitation by others that were more knowledgeable. In

the second experiment, exploration was decoupled from choice but precluded the ability

of participants to exploit their own knowledge by claiming the outcome. In this final

experiment, we removed both of these trade-o�s by allowing participants to freely observe

outcomes until they decided that they were ready to make a single consequential choice.

We hoped that this would mitigate the possibility that participants were responding to

these trade-o�s in a way that was masking their preference to explore options associated

with greater epistemic uncertainty. Specifically, participants in Experiment 8 chose to

claim on most trials and observed a relatively small number of outcomes. As a consequence,

it is quite plausible that using the number of observations as a measure of exploration was

insu�ciently sensitive to capture the e�ect of epistemic uncertainty and we removed the

constraints on sampling to mitigate this issue.

6.7.1 Method

Participants

130 undergraduate psychology students from UNSW Sydney participated in Experiment

9. The average age was 19.1 (SD = 1.9) and 84 participants were female. In addition to

receiving course credit, participants were able to earn a small amount of money depending

on their performance in the task (M = AU$4.47, SD = AU$0.41).
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Design and procedure

Participants completed a decision-making task involving six rounds. In each round, there

was an observation phase where they were able to learn about a risky option that would

be encountered in the subsequent choice phase. These six rounds alternated between

two sampling types. In fixed sampling rounds, participants were allowed to observe a

predetermined number of outcomes associated with the option and were then required

to progress to the choice phase regardless of whether they believed that they possessed

enough information. Specifically, they were able to observe 5, 10, or 20 outcomes with

the order of these restrictions randomised across the three fixed sampling rounds. In free

sampling rounds, on the other hand, participants were informed that they should continue

observing outcomes until they were comfortable progressing to the choice phase. There

was no limit on the number of outcomes that they could observe.15

In order to encourage sampling in each of the six rounds, we varied the mean asso-

ciated with the risky option. Each outcome was drawn from a normal distribution with

a standard deviation of 20 points but the mean in each round was drawn from one of six

uniform distributions: 10-20, 30-40, 50-60, 70-80, 90-100, or 110-120 points. The order of

these distributions was randomised for each participant. Using this method allowed us to

analyse the influence of the mean outcome on the number of outcomes that participants

chose to observe while ensuring initial uncertainty regarding the distribution of outcomes

in each round.

Participants were allocated to either the identical images or unique images condition.

The same images were used as the previous experiments but they were di�erentiated across

15The free sampling rounds were included to examine whether surface variability in-
fluences the amount of information that people choose to acquire. In contrast, the fixed
sampling rounds were used to provide a measure of epistemic and aleatory uncertainty
independent of potential di�erences in the number of samples taken. For example, if par-
ticipants in the identical images condition chose to observe 10 outcomes and those in the
unique images condition chose to observe 25 outcomes, any di�erences in their responses
on the EARS might reflect the outcomes sampled rather than the presence of surface
variability.
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rounds using six colours (red, orange, yellow, green, blue, and purple). We predicted that

participants in the unique images condition would report greater epistemic uncertainty and

choose to observe more outcomes in the free sampling rounds than those in the identical

images condition.

During the choice phases, participants were presented with a decision between the

risky option they had sampled in the preceding observation phase and a specified number

of points that was displayed on the screen. Depending on which option they selected, a

draw from the risky option or the specified number of points was added to their final score,

which was converted into real money at the end of the experiment. They were paid AU$1

for every 100 points earned during the task.

The specified number of points served the same purpose as the experienced safe

options in the previous experiments. It provided an alternative to selecting the risky

option, and therefore, we predicted that participants would select this option more often

in the unique images condition because the risky option would be associated with greater

epistemic uncertainty. In contrast, however, the expected value of the safe option was

not always equal to the risky alternative. The safe outcome was either 20 points better

than, equal to, or 20 points worse than the mean of the risky option. The order of these

di�erences was shu�ed within each sampling type (free or fixed).

After completing the choice phase in each round, participants were presented with

a 4-item version of the EARS to examine their uncertainty regarding the risky options.

6.7.2 Results and discussion

Does surface variability influence the interpretation of uncertainty? Partici-

pants’ responses to the EARS are shown in Figure 6.4a. We again predicted that partici-

pants in the unique images condition would report higher epistemic uncertainty and lower

aleatory uncertainty than participants in the identical images condition. We used the same

ordinal regression model that was used in the previous experiment. Consistent with the
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predicted e�ect of surface variability on uncertainty, this model suggested that there is a

95.81% probability that presenting participants with unique or identical images influenced

the di�erence between their responses to the epistemic and aleatory items (median = 0.59,

95% CI = [-0.13, 1.20]).

Using contrasts to examine epistemic and aleatory items separately suggested that

there is an 82.46% probability that people report experiencing more epistemic uncertainty

and this corresponds to a di�erence of roughly 0.40 between these groups on the latent

scale (95% CI = [-0.76, 1.38])). This only provides weak evidence that surface variabil-

ity increases epistemic uncertainty.The evidence regarding aleatory uncertainty was more

clear-cut. There was a 96.67% probability that experiencing unique images resulted in

reporting less aleatory uncertainty and that the di�erence between groups was roughly

-0.81 standard deviations on the latent scale (95% CI = [-1.54, 0.05]). These estimates

echo the results of Experiment 8. Although we predicted that surface variability would

predominantly influence epistemic uncertainty, the evidence regarding this relationship

has been somewhat inconclusive. In contrast, there has been considerable evidence across

all three experiments that surface variability influences aleatory uncertainty.

Is there an e�ect on exploration? The number of outcomes that participants

chose to observe in free sampling blocks is displayed in Figure 6.4b. We predicted that

greater epistemic uncertainty regarding the risky option in the unique images condition

would give rise to increased exploration. Given that we had some reason to doubt the

relationship between surface variability and epistemic uncertainty, we also have reason to

doubt this hypothesis. Nonetheless, we evaluated this hypothesis using Bayesian hierar-

chical negative binomial regression predicting the number of outcomes that participants

chose to observe before making a choice.16 The condition (unique images or identical

images), block (1-6), and their interaction were included as fixed predictor variables. The

intercept was allowed to vary for each participant. This model suggests that there is a

16We apply the student-t distribution to the inverse of the shape parameter so that the
mode of the prior distribution corresponds to the simpler Poisson distribution rather than
a negative binomial with large amounts of over-dispersion. Taking the square root places
the shape parameter on a similar scale to the other parameters (Simpson, 2018).
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66.20% probability that participants were more likely to observe outcomes in the unique

images condition (median odds ratio = 1.05, (95% CI = [0.83, 1.32])). This does not

provide any meaningful evidence that surface variability increases exploration and there

is even a considerable probability that the e�ect could fall in the opposite direction. To

examine the relationship between epistemic uncertainty and exploration more directly, we

also modelled the relationship between participants’ responses to the epistemic items of

the EARS and the number of outcomes they chose to observe. This model suggested that

there is a only a 19.81% probability that there is a positive relationship between epistemic

uncertainty and observing more outcomes (median odds-ratio = 0.96, (95% CI = [0.86,

1.06])). These results provide additional problems for our hypothesis regarding epistemic

uncertainty and information seeking.

Is there an e�ect on choice? Participants’ choices between the safe and risky

options are shown in Figure 6.4c. We hypothesised that participants would avoid options

associated with epistemic uncertainty, and consequently, that participants in the unique

image condition would select the risky option less often than participants in the identical

images condition. We examined this hypothesis using Bayesian hierarchical logistic regres-

sion predicting the choices that participants made in each round. The condition (unique

images or identical images) was included as a fixed predictor variable and the intercept

was allowed to vary for each participant. Based on this model, there is an 88.71% prob-

ability that participants were more likely to avoid the risky option in the unique images

condition (median odds-ratio = 0.56, (95% CI = [0.21, 1.47])). We again examined the

relationship between epistemic uncertainty and participants’ choices by replacing the con-

dition predictor in the model described above with responses to the epistemic items of the

EARS. According to this model, there is only a 40.45% probability that participants in

the unique images condition were more likely to avoid the risky option (median odds-ratio

= 1.06, (95% CI = [0.66, 1.79])). Similarly to our findings regarding information seeking,

these results place doubt on our hypothesis regarding epistemic uncertainty aversion and

we will examine both of these findings in the chapter discussion.
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6.8 Chapter discussion

The main purpose of these experiments was to determine whether introducing observ-

able variability would influence the interpretation of uncertainty when people could learn

about options through experience. This research question was motivated by the sim-

ple observation that the observable characteristics of real-world options vary each time

they are encountered. In contrast, experimental methods, such as the classic bandit task,

represent options using images that remain constant throughout the task, and therefore,

uncertainty cannot be resolved by mapping outcome variability onto observable variabil-

ity. Consequently, we expected that people would experience greater epistemic uncertainty

when instances of options were di�erentiated by varying the images used to represent each

instance. We found that observable variability influenced how uncertainty was interpreted

but our results were not wholly consistent with our expectations. Namely, the evidence

that surface variability influences aleatory uncertainty was stronger than for epistemic

uncertainty and we observed little evidence of an impact on either exploration or choice.

6.8.1 Epistemic and aleatory uncertainty

In this chapter, we examined the influence of surface variability on epistemic uncertainty

across three experiments. One reasonable approach to aggregating this evidence would

be to include the experiments in a single multilevel model and this combined analysis

suggests that there is a 97.88% probability that surface variability increases epistemic

uncertainty (median = 0.26, 95% CI = [0.01, 0.52]). This model ostensibly suggests that

surface variability influences epistemic uncertainty but this might not tell the whole story.

Examining each of these experiments separately, there was considerable evidence of an

e�ect on epistemic uncertainty in the first experiment in this chapter but the second and

third experiments were less conclusive. On one hand, if this di�erence between these

experiments is merely attributable to sampling error, the combined model would provide

the best estimate and we might conclude that, on average, surface variability increases

epistemic uncertainty. On the other hand, if this di�erence is attributable to dissimilarities
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between the experiments, it would call into question the robustness of the e�ect and further

investigation would be required to determine the extent to which we can generalise beyond

the context of the first experiment.

In contrast, the evidence that surface variability influenced participants’ responses

to the aleatory items was relatively unequivocal. The combined model suggests that there

is a 99.49% probability that surface variability influenced responses to the aleatory items

(median = -0.49, 95% CI = [-0.78, -0.17]) and the e�ect was consistent across the three

experiments. We expected that ratings of aleatory uncertainty would decrease but mainly

as a consequence of increasing epistemic uncertainty. Assuming that the total amount of

uncertainty experienced in each condition was similar, an increase in epistemic uncertainty

would lead to a decrease in its complement, aleatory uncertainty, but were we justified in

making this assumption regarding total uncertainty? Although surface variability cannot

be used to improve their performance, this does not preclude participants from believing

they had successfully mapped surface variability onto the outcome variability. This would

lead to a decrease in total uncertainty, which is consistent with participants reporting that

the outcomes were less “random” or “unpredictable.” This decrease in total uncertainty

would compound with the decrease in the absolute amount of aleatory uncertainty, but

even if there was an increase in the proportion of epistemic uncertainty relative to aleatory

uncertainty, a decrease in total uncertainty would act in the opposite direction to decrease

the absolute amount of epistemic uncertainty.

We will revisit this distinction between relative and absolute uncertainty later when

we discuss measuring uncertainty using the EARS. First, let us consider the possible sce-

nario that—at least in the second and third experiments in this chapter—there might

have been a reduction in reported aleatory uncertainty without a corresponding increase

in reported epistemic uncertainty. This scenario seems to suggest two possible alterna-

tives: either at some point participants interpreted their uncertainty as epistemic but

we failed to accurately measure this or their aleatory uncertainty decreased without ever

a�ecting their epistemic uncertainty. The first alternative might plausibly have resulted

from inadequate measurement precision for epistemic uncertainty or because we presented
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the EARS at the end of the experiment. Participants might have figured out that there

was no mapping between observable and outcome variability, and therefore, presenting

the EARS at di�erent points throughout the task would allow us to examine the time

course of uncertainty. The second alternative—that observable variability does not influ-

ence epistemic uncertainty—might be asserted because people instead use heuristics, such

as the performance of others, to evaluate whether uncertainty is resolvable. This alterna-

tive must contend, however, with the evidence of an e�ect on epistemic uncertainty in the

first experiment and the apparent absurdity, but not impossibility, of reducing uncertainty

without ever believing that it was possible.

6.8.2 Outcome and observable variability

In Experiment 7a, we observed an unexpected pattern in participants’ responses to the

EARS. In contrast with the risky option, participants rated the safe option as higher in

aleatory uncertainty and lower in epistemic uncertainty when unique images were pre-

sented on each trial. We were initially sceptical of this observation so replicated the

experiment to reduce the possibility that we were grasping illusory patterns. Given that

we observed the same pattern again in Experiment 7b, we are confident that this was not

a statistical anomaly but it is less clear whether this pattern is theoretically meaningful.

In response to this latter concern, we examined the amount of observable and outcome

variability associated with each option. This relationship is presented visually in Figure

6.5. Below the diagonal in Figure 6.5, there is less observable variability than outcome

variability and this divergence increases with distance along the y-axis from the diago-

nal. For this reason, we predicted that the risky option in the constant images condition

would be primarily associated with aleatory uncertainty. For options positioned along the

diagonal, such as the risky option in the unique images condition, the observable variabil-

ity is proportional to the outcome variability. Therefore, to the degree that the person

believes they can map this observable variability onto the outcome variability, we expect

that people would predominantly experience epistemic uncertainty.
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The safe option in the unique images condition is positioned in the vast space above

the diagonal where there is more observable variability than is expected in the outcomes.

Although the space above the diagonal initially seems unusual, options could be located

there whenever there are factors that influence observable variability but not variability

in the outcomes—in other words, whenever there is a considerable amount of surface

variability. Returning to participants’ responses to the EARS, the location above the

diagonal of the safe option in the unique images condition might have highlighted that

there were other factors present in the environment that might influence the outcome of

selecting the option. Consequently, participants might have perceived the option as less

predictable. This is consistent with responses to the EARS, and if this o�ers an adequate

explanation, we might also expect to observe an e�ect on participants’ choices. Given that

participants were generally risk averse, increasing uncertainty regarding the safe option

would decrease its attractiveness relative to the risky option. As such, we would expect

that the preference for the safe option would decrease in the unique images condition.

Consistent with this prediction, there is evidence that responses to the aleatory EARS

items for the safe option mediated roughly 42% of the e�ect of the surface variability

manipulation on participants’ choices in Experiment 7.17 Contrast this with responses to

the epistemic items for the risky option—the subject of our primary hypothesis—which

only mediated roughly 12% of this e�ect.

Despite this evidence, there are two forceful rebuttals against our interpretation of

these results. Firstly, it seems plausible that participants were merely responding in a

strange way to a strange question. We asked them to describe their uncertainty regarding

outcomes for which they had little uncertainty, and therefore, they might have responded

with reference to their uncertainty regarding the appearance of the options rather than

the outcomes. To address this concern, we presented participants in Experiment 7b with

a specific instance of each option and emphasised that the EARS questions referred to the

17The median estimate of the direct e�ect was 0.011 (95% CI = [-0.009, 0.031] and the
median estimate of the indirect e�ect was 0.008 (95% CI = [0.002, 0.015]). The estimates
for the risky option and further details on the mediation analysis are presented in the
results section of Experiment 7.
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Observable 
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High
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Constant images
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Figure 6.5: The relationship between observable and outcome variability. There
is a straightforward interpretation of three corners of the square: 1) When observable
and outcome variability are low, there is minimal uncertainty, 2) When observable and
outcome variability are high, uncertainty is interpreted as epistemic, 3) when observable
variability is low and outcome variability is high, uncertainty is interpreted as aleatory.
The interpretation of the final corner is less obvious.
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outcome that would result from selecting this instance. Their responses in this version were

similar to Experiment 7a. As an additional piece of evidence that their responses to the

safe option were—at the very least—not complete nonsense, we conducted exploratory and

confirmatory factor analyses, which suggested that participants were interpreting items in

a way that was broadly similar to their interpretation of items for the risky option (see

Appendix C for more details).

The second rebuttal is more di�cult to address using the available evidence. This

rebuttal asserts that, although we replicated the e�ect in Experiment 7b, the same pattern

was not observed in Experiment 8. Prior to conducting the latter experiment, we had no

reason to believe that there would be a di�erence in participants’ responses to the EARS.

Therefore, in order to convincingly argue that the pattern is meaningful, we would need to

describe a region that includes the manipulation in the first experiment and excludes the

manipulation in the second. One plausible di�erence between these experiments is that

participants in the second experiment observed ten times fewer outcomes (the median

was six outcomes for the safe option) and it is plausible that the contrast between the

observable and outcome variability was less pronounced than the first experiment where

the median was 61.5 outcomes. Further investigation would be required to determine

whether this is an adequate defence against the second rebuttal. Given that the current

experiments focused primarily on the region below the diagonal in Figure 6.5, this inves-

tigation might provide a more detailed understanding of the role of observable variability

in decision-making.

6.8.3 Measuring uncertainty using the EARS

In these experiments we aimed to di�erentiate between two distinct concepts: the amount

of uncertainty (total uncertainty) and the type of uncertainty (epistemic or aleatory uncer-

tainty). This distinction can be captured using two equivalent conceptualisations provided

that epistemic and aleatory uncertainty are complementary: either by measuring the abso-

lute amount of epistemic and aleatory, the sum of which corresponds to the total amount

208



6.8.3 Measuring uncertainty using the EARS

of uncertainty, or measuring the total uncertainty and the relative amount (proportion) of

epistemic and aleatory uncertainty.18 As an example, when comparing EARS responses

for options involving di�erent amounts of total uncertainty, if the EARS is an absolute

measure, the safe options should be rated as involving both lower epistemic and aleatory

uncertainty than the risky options. If the EARS is a relative measure, the proportion of

epistemic and aleatory uncertainty might instead be similar for comparable safe and risky

options. In our first experiment, there was a greater than 99.9% probability that whether

an option was safe or risky influenced ratings of both epistemic (median = 1.17, 95% CI

= [0.63, 1.67]) and aleatory uncertainty (median = -1.72, 95% CI = [-2.35, -0.97]).19 This

decrease in aleatory uncertainty for the safe option might be consistent with the EARS

measuring the absolute amount of each uncertainty type but the large increase in epis-

temic uncertainty is di�cult to reconcile with either conceptualisation and suggests that

the scale might be confounding the amount and type of uncertainty.

To examine the origin of this issue, let us examine the framework proposed by

Fox and Ülkümen (2011). They propose that “aleatory uncertainty can be measured by

entropy”, which maps neatly onto EARS items such as, “... is unpredictable”. Likewise,

they suggest that “as subjective knowledge decreases, epistemic uncertainty increases”,

18Although not explicitly discussed, the absolute conceptualisation can be recognised in
the separate predictions associated with the epistemic and aleatory subscales in Ülkümen
et al. (2016) and relative conceptualisation in the “epistemicness” index that averaged
epistemic items and reverse-coded aleatory items in Tannenbaum et al. (2017). In this
latter article, the authors justify their use of the relative index by asserting that they
obtained “qualitatively identical results” using the separate scales. One exception to this
was in their final experiment where they used a modified bandit task to prime the interpre-
tation of uncertainty in a subsequent task. Similarly to the second and third experiments
in this chapter, there was a di�erence between conditions of the aleatory subscale but no
reliable di�erence on the epistemic subscale. Due to the evident similarities, the discussion
of epistemic uncertainty regarding our experiments might equally apply to the experiment
described by Tannenbaum et al. (2017).

19A similar e�ect was observed in the second experiment but the e�ect size was dimin-
ished (median for epistemic uncertainty = 0.28, 95% CI = [0.00, 0.57]; median for aleatory
uncertainty = -0.48, 95% CI = [-0.88, -0.04]). This was most likely because—as discussed
above in the section regarding outcome and observable variability—the small number of
observations in the second experiment reduced the distinctiveness of the two options.
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which maps onto items such as “... is knowable in advance, given enough information”.

With the benefit of additional experimental evidence and hindsight, the authors of this

chapter recognise that both of these conceptualisations confound the amount and type of

uncertainty. Entropy (or total uncertainty) only determines aleatory uncertainty when the

absolute amount of epistemic uncertainty is held constant and subjective knowledge (or

the proportion of uncertainty that is attributed to inadequate knowledge) only determines

epistemic uncertainty to the extent that total uncertainty is held constant. Therefore,

although the EARS has demonstrated convergent validity as a measure of epistemic and

aleatory uncertainty (e.g., Tannenbaum et al., 2017; Ülkümen et al., 2016; Walters et al.,

2022), our experiments seem to suggest that it does not adequately discriminate between

the amount and type of uncertainty. Further refinement of the EARS items to improve

its discriminative validity would o�er a valuable contribution to our ability to investigate

epistemic and aleatory uncertainty.

6.8.4 Information seeking

We predicted that observable variability would influence information seeking by increasing

epistemic interpretations of uncertainty. The conclusions drawn in this section are conse-

quently less definitive given the inconclusiveness of the evidence regarding this potential

mediator—the absence of an e�ect of surface variability on exploration would be wholly

unsurprising if surface variability does not influence epistemic uncertainty. Despite this,

let us briefly consider the implications of the alternative possibility in which—at least at

some point—surface variability caused participants to interpret uncertainty as more epis-

temic and we merely failed to capture this e�ect using the EARS. Based on our results,

would we expect a di�erence in the number of outcomes that participants observed?

Our prediction that surface variability would cause an increase in exploration relied

on an assumption that participants would not be able to reduce their total uncertainty

because surface variability was uncorrelated with the outcomes. Given that this appears to

have been violated, an increase in epistemic uncertainty might coincide with an increased
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impression that each observation contains useful information. Based on a simple model in

which people seek information until the disadvantages associated with exploration (e.g, op-

portunity cost) no longer outweigh the perceived benefits of further reducing uncertainty, a

steeper decline in uncertainty caused by illusory patterns in surface variability could mean

that people more rapidly approach the threshold at which further exploration no longer

appears beneficial. This perceived di�erence in the informativeness of each observation

could o�er a potential explanation for the similar number of outcomes that participants

observed in the constant images and unique images conditions.

6.8.5 Competition and risk

The decisiveness of our conclusions based on participants’ choices between safe and risky

options are equally subject to the inconclusiveness of our evidence regarding epistemic

uncertainty. As such, we will allow the reader to draw their own conclusions based on

each experiment, and instead, focus in this section on a reasonable criticism of our hy-

pothesis regarding risk. One of the reviewers of an earlier conference paper based on the

first two experiments in this chapter (Holwerda & Newell, 2021) responded to our claim

that epistemic uncertainty implies that adversaries might possess more knowledge with

the question, “Who is the opponent?” Indeed, many of the explanations for epistemic

uncertainty aversion hinge on social characteristics (e.g., information asymmetry, poten-

tial blame, or embarrassment) so why should it be surprising that participants in private

testing booths are indi�erent to epistemic uncertainty? Good question. Nonetheless, we

conjectured that we would observe a di�erence in participants’ choices because epistemic

uncertainty aversion was founded using equally sterile conditions(Camerer & Weber, 1992).

For example, in his thought experiments, Ellsberg (2001) emphasised that the game is set

up by an observer that has “no other interest in your choices, nor in the outcome of a

gamble, than to learn your opinions; the prize money at risk is, in his eyes cheap payment

for this information” (p. 131). Although there is also evidence that this e�ect is stronger

when people perceive their own comparative ignorance (Curley et al., 1986; Fox & Weber,

2002), our hypothesis is also consistent with an expansive heuristic that it is generally
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beneficial to avoid unnecessary epistemic uncertainty (Al-Najjar & Weinstein, 2009).

Although we argue that our hypothesis is robust to this particular criticism, the

question posed by this reviewer implicitly draws attention to a deeper issue that threatens

the parsimonious duality of epistemic and aleatory uncertainty. Although our concept of

epistemic uncertainty—uncertainty attributed to lack of knowledge—can be used to esti-

mate the benefits of avoiding certain options, we could potentially improve our accuracy

by evaluating our knowledge relative to our opponent and weighting this estimate using

the predicted consequences of each piece of asymmetrical information. In contrast, we

could more accurately evaluate the benefits associated with exploration by estimating the

cost of acquiring more information and the probability that this would improve our per-

formance. Furthermore, this approach might consider each potential source of information

rather than our uncertainty regarding each option. Therefore, our concept of uncertainty

attributed to lack of knowledge might be too crude to explain some meaningful patterns

in behaviour. Notably our current concept of epistemic uncertainty does not capture the

di�erential impact of who lacks knowledge or distinguish between inadequate information

or understanding.20 These distinctions might not make a meaningful di�erence on the

way people interpret uncertainty but it is equally plausible that we may need to refine our

understanding of epistemic and aleatory uncertainty.

6.8.6 Conclusion

The di�erent ways that people interpret uncertainty has often been neglected when exam-

ining decisions based on experience. As is often the case when traversing largely unexplored

20One potential example of sensitivity to who lacks knowledge was exhibited in partic-
ipants’ responses to the ninth question of the EARS in our experiments. This question
asks whether “consulting an expert” would improve prediction, and unsurprisingly, this
question made less sense to participants in our experiment than it would when discussing
sports or the stock market. The standardised loading of this item onto the epistemic
uncertainty factor in our confirmatory factor analysis reached as low as .13 for the safe
option in the first experiment. Although our conclusions were robust to the removal of
this question, the responses to this item demonstrate that the relevance of a particular
agent’s knowledge state might di�er between contexts.
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territory, the current investigation has raised almost as many questions as it answered.

The treatment of epistemic and aleatory uncertainty as a psychological distinction is still in

its infancy but there is already evidence that people di�erentiate between them in several

aspects of natural language (Ülkümen et al., 2016) and the consequences of this distinction

are slowly becoming apparent in areas such as the extremity of judgements (Tannenbaum

et al., 2017) and investment behaviour (Walters et al., 2022). In our experiments, we did

not observe strong evidence that surface variability influences risk preferences. This might

provide some reassurance that standard bandit tasks generalise to decisions where the op-

tions involve observable variability but we also recognise the somewhat artificial nature of

surface variability in our experiments. Future experiments could strengthen this conclu-

sion by deviating further from the standard task and incorporating observable variability

that is semantically meaningful to the participant. Finally, we have discussed several areas

in which we could refine our theoretical understanding and measurement of epistemic and

aleatory uncertainty. Implementing these suggestions—such as discriminating between the

amount and type of uncertainty—will be essential in further investigations into variants

of uncertainty.
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Chapter 7

General discussion

The nine experiments in this thesis examined the influence of context and uncertainty on

decisions from experience. The first section focused on extreme outcomes. We began our

investigation in Chapter 2 by addressing the question of why these outcomes appear not

only in decisions from experience but also throughout numerous other cognitive domains.

Although utility-weighted sampling o�ered a persuasive answer to this question, a closer

examination revealed multiple issues with both its mechanical and rational components.

In response to this conclusion, we devised an alternative rational explanation based on the

informativeness of extreme outcomes. We demonstrated that prioritising these outcomes

increases both the probability of selecting the best option and the expected utility gained

from these choices.

In Chapter 3, we introduced a framework that categorises the many plausible me-

chanical explanations according to whether: 1) their level of measurement is categorical,

ordinal, or continuous, 2) extreme outcomes refer to the centre, the edges, or neighbouring

outcomes, 3) outcomes are represented as types or tokens, and 4) peaks are identified us-

ing temporal or distributional characteristics. We then described three experiments that

manipulated the expected value, the variance, and the skewness of the experienced out-

comes. These experiments provide considerable evidence against both the categorical and
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edge-based explanations but also hinted at potential issues for many of the alternatives.

The two experiments in Chapter 4 were designed to follow up on some of the anoma-

lies from the previous chapter whilst investigating the distinction between types and to-

kens. Once again, participants were more likely to select the risky option in the high-value

pair than the risky option in the low-value pair. Nonetheless, we also noted that when-

ever we deviated from the design used by Ludvig et al. (2014), we were unable to predict

whether we would observe this phenomenon. Finally, in Chapter 5, we manipulated the

order in which outcomes were experienced so that the temporal and distributional peaks

were no longer correlated. The results of this experiment were highly incompatible with

the theories that are based on ordinal-level temporal peaks.

The second section in this thesis focused on epistemic and aleatory uncertainty. The

vast majority of previous decisions from experience tasks have represented each option

using a single image that remained constant across trials. Therefore, in Chapter 6 we

examined whether introducing variability to the appearance of each option would elicit an

epistemic interpretation of uncertainty. Across three experiments, we demonstrated that

observable variability influences how uncertainty is interpreted but the impact on aleatory

uncertainty was stronger than epistemic uncertainty and we observed little evidence of an

impact on either exploration or choice.

Given that the discussion section in the previous chapter integrated all three exper-

iments that examined uncertainty, we will not subject the reader to this content twice in

almost as many pages. We have not yet performed a similar integration of the six exper-

iments in the extreme outcome chapters and we will rectify this deficit in the following

section. We will then discuss a series of concepts that were important to our examination

of both context and uncertainty. Finally, we will conclude our discussion by revisiting the

relationship between theory and experiment that we encountered at the beginning of this

thesis.
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7.1 Context and extreme outcomes

The extreme-outcome e�ect described by Ludvig et al. (2014) has been replicated dozens

of times (e.g., Madan et al., 2017; Madan et al., 2015; Madan et al., 2021), and there-

fore, our aim was not to question the existence of the e�ect but instead to reconcile two

simple observations. On one hand, the explanations for this e�ect, such as the extreme-

outcome rule, assume a broad definition of extremity that is applicable across a range of

contexts. On the other hand, the experiments used to assess these theories have always

operationalised extreme outcomes using symmetrical high- and low-value pairs of options.

Several theories were consistent with the existing evidence and it remained unclear when

it was legitimate to generalise to situations that deviated from these experiments.

Thus, in contrast with our predecessors, we exposed these theories to scenarios where

none of the relevant outcomes were the best or worst. We manipulated the expected value,

the variance, the skewness, and the order of the experienced outcomes. We observed that

the broad definitions of extremity that appeared promising in the previous experiments

crumbled under these new conditions. Some of these manipulations were present across

multiple experiments and chapters. In this section, we will integrate them to assess each

of the attributes that comprise the framework described in Chapter 3.

7.1.1 Categorical extreme outcomes

Perhaps the strongest evidence in the context section concerns the categorical definition

of extremity. The extreme-outcome rule established by Ludvig et al. (2014) is a member

of this class and given that their theory was based explicitly on decisions from experience,

we should consider the rationale for its categorical definition. It consists primarily of two

pieces of evidence: Firstly, when participants chose between two options with the same

expected value, they were more likely to select the risky option associated with the best

outcome than the risky option associated with the worst outcome. Secondly, there was

no significant di�erence between participants’ choices for high-value and low-value options
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that were not associated with the best or worst outcomes (Ludvig et al., 2014, Experiment

3).

The prominence of the best and worst outcomes in this description naturally suggests

a categorical definition but these observations could also be explained as suggesting that

the e�ect is weaker rather than absent for outcomes near the centre of the distribution.

This interpretation is compatible with the ordinal and continuous definitions. In contrast,

the categorical class of theories is unable to explain the results of Experiment 1 and 2 of

this thesis. These experiments found considerable evidence that participants were more

likely to choose the risky option for high-value pairs relative to low-value pairs even when

none of the relevant outcomes was the best or worst in the context of the experiment.

This evidence is consistent with two recent experiments that each suggest that ex-

treme outcomes must extend—at the very least—to those located close to the best and

worst outcomes (Ludvig et al., 2018; Mason et al., 2020). The deviations from the cate-

gorical extreme-outcome rule that were observed in these experiments were attributed to

encoding noise but this is inadequate to explain our results. Specifically, participants in

the low-variance condition of our second experiment chose the risky option more often for

the high-value than low-value pair. We observed this pattern even though these outcomes

were separated from the best and worst outcomes by 40% of the distance between the

centre and the edges of the distribution.

Unless you are willing to accept a gargantuan amount of encoding noise, we suggest

that even the modified version of the categorical definition is unable to explain the influence

of extreme outcomes in decisions from experience. The only avenue that remains for these

categorical theories would be to argue that the phenomenon in our experiments was not—

in fact—an instance of the e�ect observed by Ludvig et al. (2014). Instead, our results

should be attributed to a di�erent bias that influences intermediate outcomes. This is

possible but o�ers a much less parsimonious approach than adopting a definition that

extends beyond the best and worst outcomes.
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7.1.2 Continuous extreme outcomes

The most straightforward alternative to the categorical extreme-outcome rule is the class

of continuous theories in which memory deteriorates with increasing distance between an

outcome and the edges of the distribution (e.g., Berliner et al., 1977; Braida et al., 1984).

The best and worst outcomes retain their unique status in these edge-based theories.

Rather than acquiring their importance through their influence on estimates, however, they

serve as anchor or reference points. The influence of extreme outcomes decreases gradually

and this allows these theories to accommodate the results of our second experiment that

were so disastrous for the categorical-level theories.

The attribute that distinguishes these edge-based definitions from the other

continuous-level theories is that the role of intermediate outcomes is passive. In other

words, memory is only influenced by the distance between each outcome and the edge

of the distribution, and therefore, intermediate outcomes do not—even collectively—

influence memory for other outcomes. This attribute entails that options can be evaluated

quasi-independently, only taking into account the best and worst outcomes and remaining

blind to the presence or absence of intermediate outcomes. Therefore, edge-based theories

can easily account for why manipulating the skewness of intermediate outcomes in our

third, fourth, and fifth experiments had little influence on choices.

Although the passive role of intermediate outcomes allows the edge-based theories to

explain the relationship between skewness and choice in these experiments, it necessarily

disqualified them from explaining two other observations. Firstly, there was evidence that

skewness influenced the memory responses for the shared options in Experiment 1, 3, and

5. And secondly, in contrast with other experiments using similar options, participants did

not select the risky option more often for the high-value pair than the low-value pair when

they were presented separately in Experiment 3. The best and worst outcomes were held

constant across these conditions, and therefore, these observations cannot be explained by

assuming a passive relationship between intermediate outcomes.

In contrast, centre-based continuous-level theories, such as utility-weighted sam-
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pling, posit an active relationship between intermediate outcomes. Every outcome influ-

ences the location of the centre of the distribution and the skewness manipulation would

have influenced the weighting of each outcome associated with the shared risky options.

Therefore, these theories can easily explain the influence of skewness on memory but—as

was the case with its passive counterpart—this attribute cuts both ways. The centre-

based theories struggle to explain why the predicted e�ect of skewness on choices was not

observed in our third, fourth, and fifth experiments.

In summary, the most consequential di�erence between the edge-based and centre-

based theories is whether there is a passive or active relationship between intermediate

outcomes. They both struggle to explain some of our observations but they struggle with

opposite aspects of the data. Whereas one class was unable to explain the presence of a

phenomenon that was not predicted, the other class of theories was unable to explain the

apparent absence of a phenomenon that was predicted. We will consider the implications

of this distinction further in the evidence and rebuttals section of this discussion.

In contrast with the edge-based and centre-based theories, the final class of

continuous-level theories do not involve a direct relationship between extreme outcomes

and memory. Instead, their influence in neighbour-based theories arises because each

outcome stored in memory interferes with the retrieval of other similar outcomes (Mur-

dock, 1960; Neath et al., 2006). Items that are located near the edges of a distribution

usually have fewer immediate neighbours than those located near the centre. Therefore,

extreme outcomes are usually—though not necessarily—easier to retrieve from memory

than intermediate outcomes.

One consequence of this indirect relationship is that the predictions regarding ex-

treme outcomes are quite sensitive to the attributes of the similarity function. We provided

an example of this in the levels of measurement chapter. Ludvig et al. (2018) demonstrated

that the best and worst outcomes were still disproportionately influential when additional

outcomes were included in the context that were separated from them by a single point.

This design also included outcomes near the non-extreme risky outcomes so that there were

219



CHAPTER 7. GENERAL DISCUSSION

four highly similar outcomes in the centre of the distribution. Although the exponential

similarity function employed by Neath et al. (2006) predicts a diminished extreme-outcome

e�ect in this experiment, other distinctiveness models that assign less weight to almost

identical outcomes would diverge from this prediction.

This creates a challenge when interpreting the value and variance manipulations in

our experiments because there is no consensus amongst the neighbour-based theories. The

skewness manipulation, however, produces unambiguous predictions for most plausible

similarity functions. These predictions were broadly similar to the centre-based theories.

The skewness manipulation introduced three additional outcomes near either the better or

worse outcome of the shared option. Therefore, the neighbour-based theories assert that

the shared outcome with fewer neighbours would be more influential on both memory

responses and choices. In other words, these neighbour-based theories can explain the

e�ect of skewness on memory but not the seeming absence of an e�ect on choice.

7.1.3 Ordinal extreme outcomes

Ordinal-level theories o�er an alternative explanation for the di�erence between the high-

value and low-value options when they were not associated with the categorical extreme

outcomes. They assume that the influence of extreme outcomes diminishes gradually, but

in contrast with the continuous-level theories, the value of these outcomes is not situated

on an external scale. Instead, an outcome’s rank depends on a direct comparison with the

other outcomes and the distance between adjacent outcomes cannot vary—the distance is

always exactly one rank. This attribute o�ers a parsimonious account for the invariance

of extreme-outcome phenomena to both the scale and location of the distribution (e.g.,

Ludvig et al., 2014; Neath & Brown, 2006). Continuous-level theories resort to normalising

outcomes (e.g., Lieder et al., 2018) but this is unnecessary for the ordinal theories due to

the absence of an external scale.

This attribute also means that the rank of the median outcome is always equidistant

from the edges and there is no di�erence between centre-based and edge-based ordinal-level
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theories. Having said that, ordinal theories are more similar to centre-based or neighbour-

based continuous-level theories than edge-based continuous-level theories. Introducing

an intermediate outcome actively influences the extremity of other outcomes by changing

their rank. Therefore, similarly to the centre-based theories, ordinal-level theories are able

to explain the influence of skewness on memory but struggle to explain the inconsistency

of its influence on choice.

We aimed to disentangle the ordinal-level and continuous-level theories in our second

experiment by manipulating the variance of the risky options. This changed the distance

between each outcome and the centre or edges of the distribution whilst keeping their

rank constant. Unfortunately, the results of this manipulation were somewhat ambiguous.

There was some evidence that variance influenced memory for the outcomes associated

with low-value options but this was not observed for the high-value options. Therefore,

distinguishing between these levels of measurement requires further experimentation.

7.1.4 Temporal extreme outcomes

In the final chapter of the context section, we examined the possibility that the extreme-

outcome e�ect is driven by the temporal relationship between outcomes. Specifically, we

examined two closely related ordinal-level temporal theories: the first suggests that the

e�ect can be attributed to temporal peaks and the second suggests that the subjective

value of each experienced outcome depends on whether the previous outcome was better

or worse. We acquired strong evidence that neither of these theories is su�cient to explain

the extreme-outcome e�ect. Although this was the case, our evidence does not rule out

a continuous-level theory in which outcomes are evaluated based on the amount that

the previous outcome was better or worse. This theory could be examined in future

experiments using a similar approach in which presentation order is used to eliminate the

correlation between temporal and distributional peaks.
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7.1.5 Evidence and rebuttals

So far, in this discussion section, we have examined several candidate explanations for the

extreme-outcome e�ect. Not one of those explanations was left entirely unscathed in the

light of our results. So where does that leave us? If each of the existing explanations is

refuted, we would need to develop new theories but before accepting this as necessary, we

will examine four possible rebuttals that might be o�ered as a defence of the existing the-

ories. These consist of the following: 1) attributing the results to sampling variability, 2)

questioning the relationship between the manipulation and the theory, 3) questioning the

relationship between the observations and the e�ect, and 4) emphasising that additional

variables exist beyond the scope of the theory.

These rebuttals were not selected arbitrarily and instead reflect limitations associ-

ated with three fundamental scientific assertions. First, the randomisation assertion states

that experiments can assess the adequacy of a theory by randomly allocating participants

to conditions. This process ensures that the di�erence between conditions reflects either

the manipulation or sampling variability. Although the latter component diminishes as

the number of participants increases, the first rebuttal emphasises that our conclusions

might be contingent on our sample. The plausibility of this rebuttal is quantified in the

statistical analyses described in the previous chapters.

This rebuttal is not very compelling regarding the categorical-level or temporal theo-

ries but might gain some traction with the edge-based and centre-based theories evaluated

using our skewness manipulation. Although there was considerable evidence that skew-

ness influenced memory in our first and third experiments, there was little evidence that

it influenced participants’ behaviour in our fourth and fifth experiments. The edge-based

theories imply a passive relationship between intermediate outcomes and the e�ect of

skewness on memory was di�cult to reconcile with these theories. Given that there were

two experiments that found an e�ect and two that did not, this appears to legitimise

the rebuttal that our evidence against the edge-based theories was based on sampling

variability.
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To explore this possibility, we combined the four experiments that manipulated

skewness and analysed their results in a single multilevel Bayesian model. Although the

same number of experiments were consistent and inconsistent with the edge-based theories,

the combined model implies that there is a greater than 99.9% probability that there was

an e�ect of skewness on memory. This analysis suggests that attributing the alleged

skewness e�ect to sampling variability does not o�er the edge-based theories a plausible

rebuttal. Neither does it necessitate, however, that the e�ect of skewness was present in

every single experiment and potential di�erences between them remain an open question.

What about the e�ect of skewness on choices predicted by the centre-based,

neighbour-based, and ordinal theories? A sizeable proportion of the posterior distribution

was consistent with an e�ect of skewness on choices and the sampling variability rebuttal

might be more successful. This ranged from 9% in Experiment 3 to 86% in Experiment 1,

and therefore, once again, we combined them into a single multilevel model. This analysis

suggests that there is a 16% probability that there is any e�ect of skewness on choices

in the predicted direction. This is roughly equivalent to predicting the outcome when

rolling a single die—thus within the realm of possibility—but employing the sampling

variability rebuttal is not without consequences. It subjects these theories to the dilemma

of limiting the predicted strength of the e�ect or making predictions that are increasingly

improbable given the empirical evidence.

The mapping assertion states that one of the primary aims of scientific theories is to

explain phenomena using a function that maps input variables onto an output state that

encompasses the phenomenon to be explained. This assertion features prominently in the

deductive-nomological model of Hempel and Oppenheim (1948). According to their model,

an explanation comprises a sentence describing the phenomenon that can be deduced

from a class of sentences describing antecedent conditions and general laws (Hempel &

Oppenheim, 1948). Although the rational and mechanical explanations described in this

thesis are usually presented as fundamentally opposed to this account, they similarly

depend on a version of the mapping assertion (Cartwright, 1983; Cartwright et al., 2020).

This also arguably applies to other recent accounts of explanation such as counterfactual
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(Pearl, 2000; J. Woodward & Woodward, 2003), statistical relevance (Salmon, 1971),

probabilistic (Suppes, 1970), unificationist (Kitcher, 1981), pragmatist (Mitchell, 1997),

and explanatory virtue theories (Keas, 2018).

To determine the adequacy of a theory, we conduct experiments that examine

whether a given set of input variables produces an output state that is compatible with

the mapping specified by the theory. This requires us to manipulate the input variables

and the second rebuttal emphasises the potential mismatch between the variables in the

theory and those that were actually manipulated. In the case of extreme outcomes, this

rebuttal challenges the correspondence between the definition of extremity and the way

we operationalised it in our experiments. This rebuttal is most frequently encountered

when a predicted e�ect is not observed, and therefore, the researcher questions whether

the manipulation was strong enough to observe the e�ect.

We discussed this possibility in Chapter 3 regarding the apparent absence of an e�ect

of the skewness and variance manipulations. We conceded that a manipulation that a�ects

memory might be inadequate to impact choice because the selected option is influenced

by variables other than memory. Nonetheless, we also argued that each manipulation was

designed to produce the strongest possible e�ect within the contrived experimental task.

For example, the di�erence between the average outcomes in the skewness conditions in

Experiment 3b was roughly equal to half the overall range of the experienced outcomes.

It is possible that this manipulation was inadequate but adopting this rebuttal would

severely limit the scenarios in which we should expect to observe the e�ect.

Similarly to the way that the second rebuttal questions the relationship between

the input variables and the manipulation, the third rebuttal questions the correspondence

between the output variables and our observations. It usually concedes that there was a

legitimate di�erence between conditions but asserts that the di�erence does not share a

common explanation with the phenomenon accounted for by the theory. We mentioned

earlier that this might be one of the few remaining avenues for the categorical-level theo-

ries because there was strong evidence for a di�erence between conditions when the best
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and worst outcomes were identical. Its persuasiveness depends on whether positing two

separate causes gives the theory more explanatory power than the parsimonious explana-

tion that attributes them to a single cause. There is some precedence for this approach in

the distinct theories that account for the e�ect of extreme outcomes in di�erent domains

(e.g., Fredrickson & Kahneman, 1993; Neath et al., 2006), but further evidence would be

required to make this a compelling case.

The ceteris paribus assertion renounces the claim that genuine scientific explana-

tions must appeal to universal laws (e.g., Hempel & Oppenheim, 1948). This nomothetic

account might be compatible with the theories in fundamental physics but is incompatible

with those in the special sciences, such as psychology or economics. Instead, our explana-

tions hold only within a limited range and there are often deviations and exceptions even

within that range (Cartwright, 1999; Fodor, 1974; Wimsatt & Wimsatt, 2007; J. Wood-

ward, 2000). Based on this assertion, the fourth rebuttal emphasises that even limited

theories can be useful and that there are always potential disruptive factors that were

not explicitly specified in the theory. An e�ect that was predicted might not be observed

because there are multiple conditions that must be satisfied (e.g., water and sunlight are

both required for a plant to grow) or there are other factors acting in the opposite direction

(e.g., a feather falls slower than a bowling ball because of air resistance).

We employed this rebuttal to explain why skewness only a�ected memory responses

in our third experiment. Specifically, we noted that the context variables were changing

the rank of the safe option and this might be suppressing the e�ect of skewness on choice.

Once again, however, employing this rebuttal is not without potential consequences. The

usefulness of a theory depends on its degree of invariance across the domain in which it

is applied. Lange (2000) describes this as follows: “Suppose someone says ‘I can run a

four-minute mile’ but with each failure reveals a proviso that she had not stated earlier:

‘except on this track’, ‘except on sunny Tuesdays in march’ and so on. It quickly becomes

apparent that this person will not acknowledge having committed herself to any claim

by asserting ‘I can run a four-minute mile’ ” (p. 172). This problem is so pervasive in

cognitive science that it has prompted some to propose that theories should come with

225



CHAPTER 7. GENERAL DISCUSSION

a toll-free number that the reader can call for advice on whether its predictions can be

applied to a given scenario (Erev & Greiner, 2015).

These four rebuttals are not necessarily exhaustive but o�er a systematic approach

to examining many of the possible defences for the existing theories. In summary, there

is considerable evidence that categorical and temporal extremity will be unnecessary in

a parsimonious account of extreme outcomes. Not one of the rebuttals examined in this

section o�ered a compelling argument for clinging to these theories. As for the remaining

theories, the rebuttals available to the centre-based, neighbour-based, and ordinal-level

theories appear to be somewhat more plausible than those available to the edge-based

theories. Specifically, the absence of an e�ect of skewness on choice could be attributed

to sampling variability, the strength of our manipulation, or disruptive factors acting in

the opposite direction.

Finally, the conflicting predictions regarding skewness emphasise two possible ways

that experimental results can contradict a theory: either a predicted di�erence is not

observed or a di�erence is observed that was not predicted. When a di�erence between

conditions is predicted but not observed—as was the case for skewness on choices—it

challenges the validity of conditional statements, such as “if an outcome is extreme, then

it will exert a disproportionate influence on choice”. It demonstrates that the conditions in

the theory are not su�cient to observe the e�ect. Conversely, when an observed di�erence

is not predicted—as was the case for skewness on memory—it shows that the conditions

in the theory are not necessary to observe the e�ect. In other words, at the very least,

the theory leaves some aspects of the phenomenon unexplained.

7.1.6 Future directions

If the existing theories cannot overcome the empirical challenges discussed in this thesis,

new theories will be required. Some of these might be minor modifications of the existing

theories but given the challenges faced by each of the theories we examined, a radically

di�erent conceptualisation of the e�ect might be required. A similar argument has been
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made regarding the peak-end e�ect. As more experiments have been conducted, it has

become less clear that peaks are used in retrospective evaluation or whether they merely

capture similar information to other variables, such as the mean and median (Cojuharenco

& Ryvkin, 2008; Ganzach & Yaor, 2019; Kemp et al., 2008; Miron-Shatz, 2009; Rozin et

al., 2004; Schäfer et al., 2014; Seta et al., 2008; Ste�ens & Guastavino, 2015; Strijbosch

et al., 2019). It is indisputable that participants in the experiments conducted by Ludvig

and colleagues selected the risky option more often when it was associated with the best

outcome. As we have demonstrated, however, this might not be the only way to parse the

di�erence between their conditions. If nothing else, our experiments provide a compelling

case that we cannot rely on a narrow set of manipulations if we hope to understand the

extreme-outcome e�ect.

Beyond this, one of the major contributions of this section was to provide an overar-

ching framework in which theories regarding extremity can be categorised. We examined

the level of measurement, the referent against which extremity is measured, whether it is

represented using types or tokens, and whether it is temporal or distributional. Despite

the breadth of this framework, there are some notable attributes that were absent. For

example, most theories suggest that extreme outcomes are more influential than other ex-

perienced outcomes (e.g., Madan et al., 2014) but it is also possible that their subjective

value is systematically shifted. The influence-based accounts suggest that safe options are

unbiased because influence is a relative concept and reweighting a single outcome has no

impact. There is some evidence, however, that there is a similar e�ect of extreme out-

comes for safe options (Wispinski et al., 2017) and this could be explained by value-based

theories (e.g., Chanales et al., 2020; Favila et al., 2016; Hulbert & Norman, 2015).

As mentioned in the introduction, our motivation for conducting the experiments

in the context section was simultaneously narrow and broad. The narrower aim was to

examine the adequacy of the existing theories for the extreme-outcome e�ect in risky

choice and we successfully eliminated some of the candidate theories. The broader aim

was to begin looking at extremity in theories beyond just risky choice. Extreme outcomes

can be found in theories across numerous domains but the relationship between them has
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not received much attention. Although di�erent explanations have been influential within

each domain, the observed e�ects are often compatible with multiple explanations (for one

exception, see Neath et al., 2006). We have made some progress in refining the explanation

of the extreme-outcome e�ect in risky choice but similar e�orts will be required in other

domains.

In this section, we have demonstrated the importance of using a wide variety of ma-

nipulations and have provided a framework to organise the many definitions of extremity.

When we examined the extreme-outcome e�ect in contexts that diverged from those used

in the original experiments by Ludvig et al. (2014), we observed multiple anomalies that

have improved our understanding of the e�ect. We suspect that examining the nature of

extremity across other domains will lead to similar observations. This process will refine

our understanding of each cognitive domain as well as the influence of extreme outcomes

throughout cognition. In the few pages remaining in this thesis, we will shift our atten-

tion to concepts that appeared across multiple chapters—not only in the first section on

context but also in the second section on uncertainty.

7.2 Representation

The concept of representation identifies the semantic content of mental states and has been

foundational in many areas of philosophy, psychology, and artificial intelligence (Bringsjord

& Govindarajulu, 2022; Pitt, 2022; Rescorla, 2020; Schlosser, 2019; Shapiro & Spaulding,

2021; Siegel, 2021; Thagard, 2020). In the early days of experimental psychology, a fierce

disagreement erupted between Wundt and members of the Würzburg School about whether

our representations necessarily include sensory content (Humphrey, 1951). This question

of how we represent aspects of the environment acquired further significance following the

emergence of the computational theory of mind (e.g., Johnson-Laird, 1983; Kosslyn, 1980;

Pylyshyn, 1973). This approach emphasises that representational systems influence how

e�ciently certain computations can be performed. For example, the same number can be

represented using Arabic or Roman numerals and these are equivalent for some purposes.
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Nonetheless, calculating 42 times 96 is much easier than XLII times XCVI because Arabic

numerals represent value using positional notation.

Mental representation remains a major topic of debate in many areas of cognitive

science (e.g., Brette, 2019; Felin et al., 2017; Hebart et al., 2020; Szollosi et al., 2022).

It was similarly essential across multiple chapters in this thesis. Our discussion of con-

text focused on how extreme outcomes are represented (e.g., as types or tokens) and the

distinction between epistemic and aleatory uncertainty describes how people represent

uncertainty. These chapters concentrated on how certain aspects of the environment are

represented but also considered whether the reasons that explain our behaviour are nec-

essarily represented by us. In Chapter 2, we developed a rational model that included

the mean or median outcomes in the context and this inevitably raised the question of

whether people have access to this information. In Chapter 6, we noted that the di�erence

between epistemic and aleatory uncertainty can be observed in the behaviour of people

who have never even heard of the distinction.

This suggestion that there are unrepresented reasons for our behaviour seems out

of place in psychological science. It might be interpreted as regressing to the dark ages of

behaviourism when mental representations were renounced as being irrelevant to psycho-

logical research (Watson, 1925). Nonetheless, explanations without representations are

commonplace in other fields such as biology and economics. For example, the density of

leaves around a tree can be explained by claiming that each leaf behaves in a way that

maximises the amount of sunlight it receives “as if it knew the physical laws” (Friedman,

1953, p. 19). There are myriad similarities between this explanation and those o�ered in

psychology but scarcely anyone would claim that components of this theory are represented

by the tree.

The reasons for an action can even di�er from those represented by an organism. For

example, a mother Black lace-weaver spider drums on her web in a way that triggers her

o�spring to attack and consume her body. Her behaviour is explained by arachnologists

with reference to the reproductive benefits associated with transferring her body-mass to

229



CHAPTER 7. GENERAL DISCUSSION

her o�spring compared with the alternative of producing a second clutch (Kim & Horel,

1998; Kim et al., 2000). The spider might have her own reasons for doing this but she

never recognises the evolutionary rationale as the reason for her behaviour—neither did

her mother or her grandmother. In fact, until it was represented by a human scientist,

this reason was only recognised by Mother Nature herself (Dennett, 1983).

These unrepresented reasons are not exclusive to non-human animals and similar ex-

planations can be given for why we prefer ice cream over Brussels sprouts or why we pursue

romantic partners with certain physical characteristics. The reason for these preferences

can be attributed to natural selection but what about clearly intentional behaviour with

no obvious evolutionary rationale? In their classic experiment, Nisbett and Wilson (1977)

presented customers in a shopping centre with four identical articles of clothing and asked

them to indicate which one was the highest quality. The participants in this experiment

showed a strong tendency to select the right-most item in the array but when they were

asked to explain their decision, no one mentioned the position of the chosen item. Instead,

they reported that “it was the knit, weave, sheerness, elasticity, or workmanship that they

felt to be superior” (Wilson & Nisbett, 1978, p. 124).

Newell and Shanks (2014) attributed this phenomenon to the order in which options

were evaluated. They suggested that people usually appraise options from left to right

and compare subsequent items with the best one they have encountered so far. Each

choice is based on the perceived attributes of the available options but the options in this

experiment were identical so there should be no systematic quality-based preference for

any single option. Nonetheless, assuming that the attributes of the current option are

more salient than the previous items, which are stored in memory, this might increase the

probability of selecting the current option on each choice. This would result in a tendency

to select options that were evaluated later, and therefore, the observed pattern might

reflect a temporal process rather than a spatial preference.

As such, there are multiple explanations for the choices that participants made in

this task. Some reasons were represented by the participants and may correspond to their
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verbal reports. Similarly to those of the mother spider, however, there were also reasons

that were never represented by anyone until they were recognised by cognitive scientists.

This account paints a very di�erent picture from the claim that people are unable to ac-

curately explain their own behaviour because they “have little or no introspective access

to higher-order cognitive processes” (Wilson & Nisbett, 1978, p. 188). Instead, although

we recognise that there are often unrepresented reasons that underlie our behaviour, it

remains plausible that people accurately report their reasons—the reasons that are repre-

sented by them.1

We can use this concept to interpret the explanations in this thesis that contain

information that is not available to the people whom they describe. On one hand, peo-

ple often have represented reasons for their behaviour. Someone might select an option

because it gave rise to positive outcomes on previous occasions, because they are curious,

or because the alternative is riskier. There are countless possible ways in which people

might represent their environment and there is no guarantee that this will contain infor-

mation such as the mean or median outcome. On the other hand, our rational model can

be interpreted as an unrepresented reason that encompasses the broader system in which

the choice is situated and the selective pressures that are exerted when people prioritise

certain outcomes.

Which of these is the correct explanation? The answer to this question is the one

given by the Cheshire Cat when Alice asked them which path she should follow: “That

depends a good deal on where you want to get to” (Carroll, 1896, p. 90). Cognitive scien-

tists are often looking for computational or psychological explanations and this destination

must be reached by taking the representationist route. Other scientists travel down the

anti-representationist route to discover interesting behavioural, ecological, neurological, or

1An early precursor of this idea appears in the emphasis that Hegel (1807) bestows
on the things that his readers recognise about the consciousness being discussed that are
not explicitly available to the consciousness itself. It is also evident in his distinction be-
tween what Brandom (2019) describes as “a broadly behaviorist, externalist view, which
identifies and individuates actions according to what is actually done. . . and an intention-
alist, internalist view, which identifies and individuates actions by the agent’s intention or
purpose in undertaking them” (p. 384).
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dynamical explanations (e.g., Beer, 2000; Chemero, 2009; Gibson, 1979; Skinner, 1953).

Many questions can be answered using either strategy but the chosen path is not always

an ideological decision. Some problems involving absent, non-existent, or counterfactual

states are “representation-hungry” and are not easily amenable to non-representational

explanation (Adams & Aizawa, 2008; Clark & Toribio, 1994; Wheeler, 2005). Other prob-

lems involve causal webs that can be explained as dynamical systems but are too strongly

connected to decouple representational units from their environment (Brooks et al., 1991;

Chemero, 2009; Clark, 1998).

In this thesis, we have attempted to follow a middle path that recognises both

represented and unrepresented reasons and that allows “many theoretical flowers to bloom”

(Chemero, 2009, p. 16). This pluralist approach allowed us to answer a broader range

of questions than either of the individual routes described above. Furthermore, as we

have discussed in this section, recognising that there are unrepresented reasons for our

behaviour functions as a prophylactic against several inadequate arguments that people

lack insight into their own mental processes (for a review, see Newell & Shanks, 2014).

These concepts can also be used to refine our understanding of the explanations o�ered

by rational models. When they are recognised as o�ering unrepresented reasons, concepts

such as probability have a much broader scope than the relatively minor role they play

when we only consider represented reasons (Szollosi et al., 2022).

7.3 Idealisation

In the opening paragraphs of the general introduction, we emphasised that there have been

countless refutations of expected utility theory as a true description of human behaviour.

When we were developing our rational model in Chapter 2, we discussed two hypothetical

agents that possessed limited memory but that were only slightly more plausible than the

already refuted Homo economicus. Across each of the experimental chapters, participants

made repeated choices between options that would never be encountered outside the psy-

chology laboratory. Each of these theoretical and experimental models has been falsified
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in the Popperian sense but we suggested that rejecting them on this basis would be as

misguided as debunking the frictionless planes of Galileo.2

This assertion is incompatible with the widespread belief that the proper aim of

science is to produce a veridical description of nature. Surely, we should always prefer

models that conform to reality as closely as possible but the undesirable consequences

of this position were sketched out by Borges (1998) in his short story, On exactitude in

Science:

. . . In that Empire, the Art of Cartography attained such Perfection that the

map of a single Province occupied the entirety of a City, and the map of

the Empire, the entirety of a Province. In time, those Unconscionable Maps

no longer satisfied, and the Cartographers Guilds struck a Map of the Empire

whose size was that of the Empire, and which coincided point for point with it.

The following Generations, who were not so fond of the Study of Cartography

as their Forebears had been, saw that that vast Map was Useless, and not

without some Pitilessness was it, that they delivered it up to the Inclemencies

of Sun and Winters. In the Deserts of the West, still today, there are Tattered

Ruins of that Map, inhabited by Animals and Beggars; in all the Land there

is no other Relic of the Disciplines of Geography. (p. 325)

The moral of the story is that building models is pointless unless we can use them.

Cartographers unapologetically make maps that deviate from reality in their spatial scale

and are conveniently made using paper and ink rather than soil, rocks, trees, and water.

2Experimental methods are transparently non-propositional and the reader might ob-
ject that they possess no truth value. Although less obvious, the same objection also
applies to the Homo economicus and our other examples. They should be interpreted
as models, which Morgan (2012) describes as follows: models are “either real objects, or
pen-and-paper objects that are diagrammatic, algebraic, or arithmetic in form. Despite
their variations in form, these objects share recognisable characteristics: each depicts, ren-
ders, denotes, or in some way provides, some kind of representation of ideas about some
aspects of [nature]” (p. 13). Thus, our claim that these models were falsified refers to the
proposition that they represent—they are isomorphic with—their target system.
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These inaccuracies are tolerated because maps allow us to achieve our aims. Their useful-

ness depends not only on whether they preserve the necessary structure of the landscape

but also on the attributes of the limited beings who use them. This is the reason that the

map is not the territory (Korzybski, 1958), that all models are wrong (Box, 1976), that

ceci n’est pas une pipe (Magritte, 1929) and that the menu is not the meal (Watts, 1957).

Otherwise, they would not serve their intended purposes.

Psychological theories disregard countless attributes of their target systems. They

scarcely ever mention neurons or glial cells and even fewer incorporate quarks or bosons.

This is a strength rather than a weakness. To illustrate this, consider the two explanations

o�ered by Putnam (1979) for why a square peg with one-inch sides will not fit through

a round hole that has a one-inch diameter. The first explanation recognises that the peg

and the board that surrounds the hole are both systems of particles. It uses equations

from quantum mechanics to deduce that the peg system does not pass through the hole

region. In contrast, the second explanation simply identifies that the peg and the board

are inelastic and that the cross-section of the peg is larger than the diameter of the hole.

Which of these explanations is better? Although the geometric explanation omits

the ultimate constituents of the target system, it emphasises the features that are relevant

to the person seeking an explanation. The relationship between the size and shape of rigid

objects applies to items made of wood, plastic or steal whereas the quantum explanation

only applies to systems that have the same arrangement of particles. Thus, the geometric

explanation applies to a more interesting class of systems than the quantum explanation.

This is precisely because it abstracts away distinctions between microstates that realise

equivalent macroscopic structures or functions.3

3The concept of bounded rationality would be incomprehensible to someone who only
acknowledges the quantum explanation. According to this perspective, even if there is
indeterminacy at the quantum-level, our behaviour is more or less deterministic. This is
not compatible with rational explanation because ascribing rationality to an action implies
that the agent can perform the behaviour and that they can do otherwise. Rational
behaviour is influenced by the constraints that we choose to ignore and is not simply
acquired through “some metaphysical hotline to the nature of absolute truth” (Binmore,
2008, p. 2).
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Upon recognising that models are influenced by the purposes and capacities of their

creators, we are compelled to relinquish the assumption that science aims to discover a

single unified model that would render the others obsolete. This is not the only notion

regarding the aims of science that is called into question. Instead, the compromise between

preserving relevant structures and ensuring tractability opens the door to theories that

deliberately maintain false assumptions. The costs incurred by using a more accurate

model can outweigh the benefits of eliminating falsehoods. As a result, achieving our

scientific aims might require us to employ idealisation (Batterman, 2009; Elgin, 2017;

Levins, 1966; Potochnik, 2017; Wimsatt & Wimsatt, 2007).

In contrast with the notion that science always pursues the truth, idealised models

are known to be false but they are neither removed nor consigned to the periphery of

our theories (Potochnik, 2017). Scientists routinely discuss physical systems without any

friction or intermolecular forces, economic agents that have perfect knowledge, and evo-

lutionary processes in an infinite population. These systems cannot be found anywhere

in nature. Nonetheless, the relevant structure is preserved and idealised models support

counterfactuals that are “true enough” for their intended purpose (Elgin, 2017). They

highlight relevant attributes that are concealed in non-idealised models, can explain why

a target phenomenon is observed across a heterogeneous class of systems, and can be used

to indicate whether an explanation is invariant to certain assumptions (Elgin, 2007; Rice,

2015; Wimsatt & Wimsatt, 2007).

The concept of idealisation is essential for understanding the role of probability in

this thesis. An enormous catalogue of inconsistencies between human behaviour and the

predictions of expected utility theory have accumulated over the past 50 years. Our aim

was not to falsify these theories or to suggest that they should be abandoned. “The art of

model-building is the exclusion of real but irrelevant parts of the problem” (P. Anderson,

1977, p. 381). But this exposes us to the danger that we will neglect an aspect that is

genuinely important to achieving our aims. Thus, the experiments in this thesis examined

whether context and how people interpret uncertainty are essential in at least some of our

models of decisions from experience.
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7.4 Theory and experiment

The reciprocal relationship between theory and experiment was the glue that held the

two main sections of this thesis together. One side of this relationship is that theories

influence the questions that we pursue and the methods that we use. This occurs because

scientists employ tasks that manipulate the important variables in their theories and avoid

those that include extraneous variables. The other side is that experiments influence our

theories both in their capacity to provide evidence and as a consequence of pragmatic

constraints. Scientists abandon theories that are incompatible with their observations and

neglect those that are not amenable to available experimental methods.

In decisions from experience, we argued that probabilistic theories are well-suited

to bandit task experiments because the researcher can manipulate the probability of ex-

periencing each outcome. These experiments return the favour by precluding evidence

that would be incompatible with the probabilistic assumptions underlying the theories.

In particular, there are pragmatic constraints regarding the number of options that can

be experienced in a single experiment and this might obscure the impact that context has

on our choices. Furthermore, bandit task experiments were inspired by gambling tasks

that intentionally eliminate observable variability and are unable to di�erentiate between

alternative interpretations of uncertainty.

The reciprocal nature of this relationship suggests that many probabilistic theories

are impervious to refutation but the significance of their persistence depends on whether

there is something hiding in the shadows. In the general introduction, we emphasised that

we could not know whether there was something lurking there until after we conducted our

experiments. This is a challenging epistemic position that is analogous to realising that

some conspiracy theories turn out to be true. As summarised by Sunstein and Vermeule

(2008):

The Watergate hotel room used by Democratic National Committee was, in

fact, bugged by Republican o�cials, operating at the behest of the White

236



7.4. THEORY AND EXPERIMENT

House. In the 1950s, the Central Intelligence Agency did, in fact, administer

LSD and related drugs under Project MKULTRA, in an e�ort to investigate

the possibility of “mind control.” Operation Northwoods, a rumored plan by

the Department of Defense to simulate acts of terrorism and to blame them on

Cuba, really was proposed by high-level o�cials (though the plan never went

into e�ect). (p. 4)

The di�culty is that we are required to reason with censored evidence. Suppose

that Neil Armstrong’s “great leap for mankind” was fabricated by a government desperate

to beat the Russians in the space race, that Covid-19 escaped from the Wuhan Institute

of Virology, or that the September 11 attacks were orchestrated as pretence for an oil-

driven invasion. There is a plausible motivation for covering up each of these operations.

There is little evidence but this is exactly what we would expect if there were a successful

concealment e�ort by powerful individuals or government agencies.4

Admittedly, drawing parallels between your position and those of tin-foil-wearing

flat-earther crackpots is a terrible rhetorical move so let us attempt to recover at least some

of our credibility by considering a Bayesian perspective. Scientists are active participants

in the creation of knowledge. They approach experiments with a prior probability P (h)

that conducting them will achieve their epistemic aims and some theory that specifies

the likelihood P (d|h) of observing data d given di�erent degrees to which the experiment

would accomplish those aims.

Where does censored evidence fit into this perspective? Suppose that a scientist is

considering a research project that would establish the existence of an alien spacecraft

on an airbase in the Nevada desert. Their search through the existing literature reveals

4Some people suggest that the implied existence of competent government agencies is
enough to rule out most conspiracy theories. Similarly, Popper1945 criticises the “con-
spiracy theory of society” that whatever happens “is the result of direct design by some
powerful individuals and groups” (p. 306). It is worth noting that—analogously to our
discussion of reasons without representation—the relationship between theory and exper-
iment gives rise to censorship without conspiracy.
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numerous studies that failed to produce any photographic evidence. In the absence of cen-

sorship, this observation is more likely given a hypothesis that there are only tumbleweeds

in the desert than that there is an alien spacecraft. The relative likelihood of there being

no photographic evidence becomes more similar, however, when we assume the existence

of a classified military operation. In this case, we would not expect there to be positive

evidence either way.5

Therefore, the question regarding alien spacecraft remains unanswered and the sci-

entist might decide that their proposal to storm Area 51 is aligned with their epistemic

aims. We presented a similar argument regarding the influence of bandit tasks on deci-

sions from experience. How does this argument hold up in the light of our results? Our

experiments clearly demonstrate that context influences how people make decisions. We

evaluated whether that influence is driven by extreme outcomes. We also demonstrated

that surface variability influences how people interpret uncertainty.

These observations are consistent with theory and experiment concealing the role of

context and uncertainty. Should we consider ourselves vindicated? One compelling rebut-

tal is that we are ignoring existing research programmes in each of these areas. Multiple

experiments have examined context in decisions from experience (Ert & Lejarraga, 2018;

Hadar et al., 2018; Ludvig et al., 2014; Spektor et al., 2018) and there is a long history

associated with epistemic and aleatory uncertainty (Fox & Ülkümen, 2011; Goodnow,

1955; Hacking, 1975; Kahneman & Tversky, 1982). Does this render our claim simply an

elaborate rationalisation used to unify the unrelated sections of this thesis? There could

be some truth to this rebuttal, but even so, the relationship between theory and exper-

iment might o�er a valuable heuristic for guiding scientific discovery (Gigerenzer, 1991;

Reichenbach, 1978).6

5Less dramatic forms of censored evidence influence the likelihood of observing data
in many scientific domains from biased sampling in election forecasts (Keeter, 2006) to
the mesh size of fishing nets in marine surveys (Hamley, 1975). Censorship also impacts
the way people acquire and generalise concepts (Hayes et al., 2019; Ransom et al., 2022;
Shafto et al., 2014; Tenenbaum & Gri�ths, 2001).

6Numerous heuristics to develop and investigate scientific theories have been proposed.
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To understand the nature of this heuristic, it will be useful to compare our account

of theory and experiment with that of Hacking (1992). He posits a self-vindicating system

in which scientists create apparatus to assess their theories and judge the correctness

of their apparatus by its alignment with their theories. In contrast with our account,

Hacking applies this relationship exclusively to what he calls “mature laboratory science”.

The defining feature of these sciences is that the phenomena under study seldom or never

occur before they are created in the laboratory. The phenomena cannot be separated from

the apparatus used to generate them, and therefore, the theories are tested with reference

to the created phenomena rather than the untamed world.

Notably, he emphasises that “although there is plenty of experimentation in sociol-

ogy, psychology, and economics, not much of it is what I call laboratory science, not even

when there is a university building called the psychology laboratory” (Hacking, 1992, p.

34). Were we mistaken in applying this concept to decisions from experience? It is possible

that Hacking was simply unaware of how contingent most psychological phenomena are

on contrived laboratory conditions. Indeed, until bandit task phenomena were created in

the laboratory, “nowhere in the universe, so far as we know”, were undergraduate students

instructed to repeatedly choose between coloured squares in order to earn points.

Regardless of whether psychological phenomena can be created in the laboratory,

the narrower scope of Hacking’s concept reveals a meaningful distinction between our ac-

counts. His description of self-vindication is based on the claim by Heisenberg (1948) that

Newtonian mechanics and quantum physics are internally consistent “closed systems” of

knowledge. Their consistency ensures stability because there is no conflict within and thus

no pressure for revision. They “hold for all time” wherever phenomena can be described

using the concepts of the theory, and although this domain of applicability is limited, the

They include using tools from statistics and computer science as metaphors for the mind
(Gigerenzer, 1991) and examining mechanisms that are adaptive (Matsumoto, 2021; Rel-
lihan, 2012) or rational (J. R. Anderson, 1991; Lieder & Gri�ths, 2019). These heuristics
are an essential element of scientific practice. As recognised by Tooby and Cosmides
(1998), “being guided towards hypotheses that are more likely to be true is critical: the
di�erence between a living science and an inert one is whether practising scientists have
good heuristic principles guiding their research” (p. 197).
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components are so interconnected that they are not susceptible to further modification

(Bokulich, 2006; Kuhn, 2012).

The exclusion of the social sciences makes sense when mature laboratory science is

viewed as a closed system. Laboratory sciences create non-contextual systems of theories,

experiments, and observations that are independent from the external world. In contrast,

experiments in the social sciences examine people who change in response to historical

and cultural factors. They describe complex systems that seldom allow the degree of

internal consistency required of a closed system. For example, the concept of risk prefer-

ences is central to many theories of decision-making. Nonetheless, there are discrepancies

across elicitation methods and this might prompt scientists to amend their theories or

experiments (L. R. Anderson & Mellor, 2009; Pedroni et al., 2017).

The existence of research programmes examining context and uncertainty is not

compatible with the “closed system” account of probabilistic theories and bandit task ex-

periments. This account describes stability that emerges from the absence of opposition

rather than stability that endures in its presence. Our explanation for the robustness of

these systems was based on feedback loops. This is compatible with the closed systems

account but there are numerous other descriptions of this concept. Feedback loops have

been examined across numerous domains and they have accumulated myriad di�erent

labels including self-organisation, recursivity, complexity, homeostasis, reflexivity, nonlin-

earity, autopoiesis, and autocatalysis (e.g., Arthur, 2014; Chomsky, 1995; Godfrey-Smith,

1998; Hofstadter, 2007; Kau�man, 1993; Maturana & Varela, 1991).

The concept of niche construction in evolutionary biology o�ers a better analogy for

the reciprocal relationship between theory and experiment (Lewontin, 1983; Odling-Smee

et al., 2013). This concept diverges from the traditional interpretation of natural selection

as a one-way process in which “[t]he organism proposes and the environment disposes”

(Lewontin, 2000, p. 43). Instead, organisms are moulded by the selective pressures in their

environments but are also constantly modifying aspects of those environments. They can

contribute to the creation or destruction of their own and others’ ecological niches and the
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environment should be viewed as evolving alongside the organisms that live there.

In the same way, the relationship between theory and experiment is not a one-

way process of conjecture and refutation. They each contribute to the preservation or

destruction of the other. They can form self-maintaining systems but these are not the

hermetically sealed units mentioned in the closed systems account. They exist within

a dynamic ecosystem that also includes creatures such as funding bodies, research ethics

committees, academic journals, scientists’ aspirations to advance their careers, historical or

cultural influences on the phenomena of interest, and the desire to use scientific knowledge

to change aspects of the external world.

Novel theories and experiments can be introduced to this system but when the ex-

isting occupants are well-adapted, the introduced species encounter a hostile environment.

In decisions from experience, probabilistic theories and bandit task experiments have cre-

ated a niche in which they mutually benefit from each other. Introduced theories must

contend with the inability of bandit tasks to contradict the assumptions underlying prob-

abilistic theories. Introduced experiments must justify the inclusion of variables that seem

irrelevant based on these assumptions. This gives probabilistic theories a competitive edge

over potential alternatives and could explain their stability despite experiments that have

attempted to overthrow the established order (e.g., Ert & Lejarraga, 2018; Ludvig et al.,

2014).

This raises the question of what we have achieved in this thesis. Although we have

made numerous valuable empirical contributions, our experiments could be interpreted as

yet another invasive species attempting to enter a hostile niche. We have not resolved the

pragmatic constraints associated with examining multiple options and future experiments

will encounter the same challenges when attempting to do so. Nonetheless, the discovery

heuristic identified in this section has the capacity to make the ecosystem inhospitable

to theories that fail to serve our scientific aims. That is to say, recognising experimen-

tal methods that censor incompatible evidence can enable us to weed out theories and
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experiments that only prevail as self-maintaining systems.7

7.5 Summary and conclusion

In this thesis, we have made numerous theoretical and empirical contributions to the un-

derstanding of context and uncertainty in decisions from experience. On the theoretical

side, we clarified the distinction between rational and mechanical explanations, evaluated

the contribution of the utility-weighted sampling model, established an alternative ra-

tional explanation, developed a framework to organise the numerous theories regarding

extreme-outcome phenomena, illuminated the relationship between observable variabil-

ity and di�erent forms of uncertainty, and illustrated the role of numerous philosophical

elements, such as representation, idealisation, and the relationship between theory and

experiment.

On the empirical side, we described three experiments that provided compelling evi-

dence against the categorical and edge-based theories of extreme outcomes. We described

two experiments that examined whether extremity is determined using a type-based or

token-based representation. We then described an experiment that essentially ruled out

any extreme-outcome theory based on ordinal-level temporal peaks. Finally, we described

three experiments that examined how observable variability influences the way that people

interpret uncertainty and whether they seek additional information. Therefore, in all of

these di�erent ways, the theoretical and empirical components of this thesis have advanced

our knowledge regarding decisions from experience and the experimental methods we use

to study them.

7As we emphasised in our discussion of conspiracy theories, recognising the existence
of censorship can either uncover genuine information or entrench prior beliefs. To avoid
the latter, we should consider the influence that censorship has on the likelihood function
but also examine whether there is other evidence, avoid strong conclusions in the absence
of compelling evidence, and where possible, conduct further experiments.
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Appendix A

Additional details for

utility-weighted sampling

simulations

The experiences of participants in decisions from experience tasks depend on their choices

and this introduces an additional element of complexity to our simulation. One approach

would be to simulate the outcomes that were experienced by the actual participants at

certain points throughout the experiment. Using this approach, the behaviour of the

model would be influenced by the actual behaviour of the participants and this would

leave us with two choices. Either describe this behaviour in detail or allow our analysis to

be influenced by numerous implicit attributes.

Neither of these alternatives is adequate and given that our goal in this chapter was

to examine the behaviour of utility-weighted sampling rather than any specific experiment,

we simulated the outcomes presented by Ludvig et al. (2014) based on the assumptions

that 1) each simulated estimate and choice occurred when the participant had completed

80% of the experiment and 2) one of the available options was selected randomly on each

of the preceding trials. Although these assumptions are somewhat arbitrary, they ensure
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APPENDIX A. ADDITIONAL DETAILS FOR UTILITY-WEIGHTED SAMPLING
SIMULATIONS

that there was su�cient experience with each outcome and that the experienced average

is roughly equal to the average of the possible outcomes.

How does this compare with participants’ actual experience? Once the average

experienced outcome stabilises the specific trial number has minimal impact. The risk

preferences on previous trials would also have a minimal impact because both options had

the same expected value. Neglecting the catch trials used by Ludvig et al. (2014) has a

larger e�ect because the participants would be more likely to select the better option on

these trials. The average would be above zero, and therefore, would be further away from

the negative outcomes than the positive outcomes—this would result in an asymmetric

distribution of estimates.

The full simulation code is available at https://github.com/joelholwerda. This in-

cludes additional simulations for the other experiments conducted by Ludvig et al. (2014),

a simulation in which participants always selected the better option rather than randomly

selecting an option, and simulations that examine the robustness of our conclusions re-

garding the third attribute of utility-weighted sampling.
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Appendix B

Details on the epistemic and

aleatory rating scale (EARS)

We used the 10-item version of the EARS (Ülkümen et al., 2016) to measure participants’

interpretation of uncertainty. In Experiment 7a, these items were phrased in past tense

with reference to either the red or blue option encountered in the choice task. Before

completing the EARS, participants were presented with the following instructions:

You have finished the first section of the experiment. The second section

will involve questions about the outcomes (numbers of points) that you

experienced when you chose options during the game. Each question will refer

either to when you selected a red or blue option. Please answer each question

carefully. Click Next when you are ready to begin.

The following instructions were displayed on the screen above the list of EARS items:

Thinking now of outcomes (numbers of points) that you received when you

chose a [red, blue] option, please answer the following questions:
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APPENDIX B. DETAILS ON THE EPISTEMIC AND ALEATORY RATING SCALE
(EARS)

After observing participants’ responses to EARS items for the safe option, we were

concerned that the responses were based on their uncertainty regarding the visual appear-

ance of options rather than their outcomes. In the subsequent experiments, we attempted

to mitigate this potential issue by presenting participants with a specific image associ-

ated with each option (in the unique images condition, this image was one they had not

encountered in the task). Prior to completing the EARS, they were presented with the

following instructions:

On the next screen, you will be asked to imagine that you are going to select

the option presented on the [left, right]-hand side of the screen. You will be

asked a number of questions about the outcome (number of points) that

would occur if you were to select that option.

The following instructions were displayed on the screen above the list of EARS items:

Imagine that you are going to select the option presented here. Please

answer the following questions regarding the outcome (number of points)

that would result from your choice:

The EARS items were presented in a randomised order and were rated on a seven-

point scale with the endpoints labelled as “Not at all” and “Very much”. The items

in experiment 7b and 8 were as follows (these items were phrased in the past tense in

Experiment 7a):

1. The outcome is something that has an element of randomness.

2. The outcome is unpredictable.

3. The outcome is determined by chance factors.

4. The outcome could play out in di�erent ways on similar occasions

5. The outcome is in principle knowable in advance

6. The outcome is something that has been determined in advance.
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7. The outcome is knowable in advance, given enough information.

8. The outcome is something that well-informed people would agree on.

9. The outcome is something that could be better predicted by consulting an expert.

10. The outcome is something that becomes more predictable with additional knowledge

or skills.

After observing outcomes associated with the risky option in each round in Exper-

iment 9, participants made a choice between this risky option and a number of points

presented on the screen. After making this decision—and before they were told the

outcome—we presented them with an abridged 4-item version of the EARS that included

items 1, 3, 7, and 8 (Tannenbaum et al., 2017).

Reliability estimates

For each experiment, we examined the reliability of the epistemic and aleatory subscales

of the EARS. We used the MBESS package (K. Kelley, 2007) to calculate McDonald’s

omega using the Green and Yang (2009) method for ordered categorical variables and

95% confidence intervals using bias-corrected and accelerated (BCA) bootstrapping (K.

Kelley & Pornprasertmanit, 2016). The interpretation of omega is similar to the more

commonly reported Cronbach’s alpha. The main di�erence is that omega does not make

the often erroneous tau equivalence assumption that factor loadings are equal for all items

(FLORA).
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APPENDIX B. DETAILS ON THE EPISTEMIC AND ALEATORY RATING SCALE
(EARS)

Table B.1: Reliability estimates for each subscale

95% CI
Experiment Option Factor Omega Lower Upper

1 Risky Aleatory 0.83 0.78 0.87
1 Risky Epistemic 0.87 0.83 0.89
1 Risky Aleatory 0.86 0.81 0.89
1 Risky Epistemic 0.78 0.71 0.83
2 Safe Aleatory 0.83 0.76 0.88

2 Safe Epistemic 0.80 0.72 0.85
2 Safe Aleatory 0.84 0.77 0.89
2 Safe Epistemic 0.86 0.80 0.90
3 Risky Aleatory 0.86 0.83 0.89
3 Risky Epistemic 0.82 0.79 0.84

Note:
Omega is the categorical McDonald’s omega. 95% confidence intervals were estimated
using BCA bootstraping.
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Appendix C

Factor analysis for the epistemic

and aleatory rating scale (EARS)

We used numerous methods for dimensionality reduction on participants’ responses to

better understand the internal structure of the EARS items. In this section, we report the

results of the confirmatory factor analyses that were mentioned in the discussion section.

The code for item correlations, cluster analysis, and exploratory factor analysis can be

accessed at https://github.com/joelholwerda.

We used the lavaan package (Rosseel, 2012) to assess the factor loadings of EARS

items 1-4 onto an aleatory uncertainty factor and EARS items 5-10 onto an epistemic

uncertainty factor. We conducted this analysis separately for the safe and risky options in

Experiment 7 and 8 to gauge whether participants were responding to the items di�erently

across options or experiments. Goodness of fit statistics for each analysis are displayed in

Table C.1. Factor loadings for each item are displayed in Table C.2 for Experiment 7 and

Table C.3 for Experiment 8.

Some general patterns can be observed when examining these factor loadings. The

first three items of the aleatory subscale loaded strongly onto their factor whereas the

fourth item was not as closely related. This suggest that “play out in di�erent ways in
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APPENDIX C. FACTOR ANALYSIS FOR THE EPISTEMIC AND ALEATORY
RATING SCALE (EARS)

Table C.1: Goodness of fit indicators for confirmatory factor analysis

Experiment Option ‰
2 df CFI RMSEA SRMR

1 Risky 75.25 34 0.99 0.07 0.05
1 Safe 74.10 34 0.99 0.07 0.05
2 Risky 64.03 34 0.99 0.08 0.07
2 Safe 57.11 34 1.00 0.07 0.06

Note:
CFI is the comparative fit index, RMSEA is the root mean-square error of approxima-
tion, and SRMR is the standardized root mean square

similar conditions” is capturing something di�erent from the other aleatory items. This

might allow the fourth item to capture di�erent aspects of aleatory uncertainty but might

also result from ambiguity in the intended meaning of “similar occasions." A similar con-

clusion could be drawn for items 6 (“determined in advance”) and 9 (“consult an expert”)

that were not loaded as strongly onto the epistemic uncertainty factor as the other four

items on the subscale.

The factor loadings for the safe options were roughly similar for the safe and risky

options, especially for the aleatory items. There was more variability amongst the epis-

temic items but there were no clear patterns that were consistent across experiments. The

one exception to this was that item 9 (“consult an expert”) was more weakly related to

the other epistemic items for the safe option. This item also had the lowest loading for

the risky options and we suspect that this was because participants were unsure who this

supposed expert in computer-based decision-making tasks could possibly be.
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Table C.2: Confirmatory factor analysis loadings for Experiment 7

Option Factor Item Unstandardised Standardised Residual

Risky Aleatory 1 1.00 (—) 0.83 0.31
Risky Aleatory 2 1.08 (0.04) 0.90 0.19
Risky Aleatory 3 0.93 (0.04) 0.78 0.39
Risky Aleatory 4 0.62 (0.05) 0.52 0.73
Risky Epistemic 5 1.00 (—) 0.78 0.38

Risky Epistemic 6 0.77 (0.06) 0.61 0.63
Risky Epistemic 7 1.17 (0.05) 0.92 0.16
Risky Epistemic 8 0.91 (0.05) 0.71 0.49
Risky Epistemic 9 0.67 (0.06) 0.52 0.73
Risky Epistemic 10 1.06 (0.04) 0.83 0.31

Safe Aleatory 1 1.00 (—) 0.84 0.30
Safe Aleatory 2 1.01 (0.03) 0.84 0.29
Safe Aleatory 3 0.98 (0.03) 0.82 0.32
Safe Aleatory 4 0.85 (0.04) 0.71 0.50
Safe Epistemic 5 1.00 (—) 0.86 0.27

Safe Epistemic 6 0.84 (0.05) 0.72 0.48
Safe Epistemic 7 0.90 (0.03) 0.77 0.41
Safe Epistemic 8 0.91 (0.04) 0.78 0.40
Safe Epistemic 9 0.15 (0.06) 0.13 0.98
Safe Epistemic 10 0.54 (0.05) 0.46 0.79

Note:
Dashes (—) indicate the standard error was not estimated. The correlation between
the Epistemic and Aleatory factors was 0.78 for the risky option and 0.80 for the safe
option.
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APPENDIX C. FACTOR ANALYSIS FOR THE EPISTEMIC AND ALEATORY
RATING SCALE (EARS)

Table C.3: Confirmatory factor analysis loadings for Experiment 8

Option Factor Item Unstandardised Standardised Residual

Risky Aleatory 1 1.00 (—) 0.85 0.28
Risky Aleatory 2 1.04 (0.05) 0.88 0.22
Risky Aleatory 3 0.88 (0.05) 0.74 0.45
Risky Aleatory 4 0.67 (0.07) 0.57 0.68
Risky Epistemic 5 1.00 (—) 0.64 0.59

Risky Epistemic 6 0.54 (0.11) 0.34 0.88
Risky Epistemic 7 1.06 (0.10) 0.68 0.54
Risky Epistemic 8 1.34 (0.11) 0.85 0.27
Risky Epistemic 9 1.04 (0.12) 0.66 0.56
Risky Epistemic 10 1.06 (0.11) 0.67 0.55

Safe Aleatory 1 1.00 (—) 0.87 0.25
Safe Aleatory 2 0.96 (0.04) 0.84 0.30
Safe Aleatory 3 0.90 (0.05) 0.78 0.39
Safe Aleatory 4 0.66 (0.07) 0.57 0.68
Safe Epistemic 5 1.00 (—) 0.74 0.46

Safe Epistemic 6 0.88 (0.06) 0.65 0.58
Safe Epistemic 7 1.17 (0.05) 0.86 0.26
Safe Epistemic 8 1.17 (0.06) 0.86 0.25
Safe Epistemic 9 0.42 (0.09) 0.31 0.90
Safe Epistemic 10 1.10 (0.06) 0.81 0.35

Note:
Dashes (—) indicate the standard error was not estimated. The correlation between
the Epistemic and Aleatory factors was 0.64 for the risky option and 0.87 for the safe
option.
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Appendix D

Details of the dynamic Ellsberg

urn task

In Chapter 6, we examined whether observable variability increases the amount of epis-

temic uncertainty associated with risky options and whether this gives rise to the avoidance

of risky options in these contexts. In addition to this primary research question, we were

also curious whether preferences regarding epistemic uncertainty generalise across other

contexts such as Ellsberg’s (1961) urn task. Fox et al. (2021) recently demonstrated that

aversion to ambiguity—unknown outcome probabilities—in this task reflects preferences

regarding epistemic uncertainty. Therefore, we predicted that participants who avoid am-

biguous options in the urn task would also avoid options in our experiment that they

associate with epistemic uncertainty.

To investigate this, we presented participants in Experiment 7b and 8 with a dynamic

version of the task proposed by Ellsberg (1961). This task required them to choose between

an option where the probabilities associated with each outcome were known and another

option where they were unknown. Specifically, we presented participants with two virtual

boxes—each containing 100 balls that were either orange or purple—and proposed the

following choice: “The box on the left-hand side contains 50 orange balls and 50 purple
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APPENDIX D. DETAILS OF THE DYNAMIC ELLSBERG URN TASK

balls. The box on the right-hand side contains an unknown proportion of orange and

purple balls. One ball will be randomly selected from the box you choose. If the ball is

orange you will win one dollar but if it is purple you will win nothing.”

Participants were subsequently presented with a sequence of three similar choices

between pairs of options where the proportion of orange and purple balls depended on

their previous choices. If the box with known outcome probabilities was selected on the

previous round, this option was made less attractive by reducing the number of winning

(orange) balls. Contrastingly, if the box with unknown outcome probabilities was selected,

the option with known outcome probabilities was made more attractive by increasing the

number of winning balls.

The number of winning balls in the box with known outcome probabilities was

increased or decreased by 20 balls in the second round (e.g., 30 winning and 70 losing).

This was further increased or decreased by 10 winning balls in the third round (e.g., 40

winning and 60 losing) and 5 winning balls in the final round (e.g., 45 winning and 55

losing). The choice that participants made between the first pair of boxes is analogous

to the standard urn task but the dynamic procedure also allowed us to determine the

indi�erence point between these options with an accuracy of +/- 5 balls.

We used this indi�erence point as a measure of participants’ epistemic uncertainty

preferences and their responses to the epistemic EARS items for the risky option in the

main decision task as a measure of their interpretation of uncertainty. If preferences

regarding epistemic uncertainty generalise across tasks, we would expect that participants

who avoided epistemic uncertainty in the Ellsberg task and perceived higher epistemic

uncertainty associated with the risky option in the main decision task would be more

likely to avoid the risky option. In other words, we predicted that the proportion of

choices for the risky option could be predicted using the interaction between the responses

to the Ellsberg task and epistemic EARS items.

We examined this hypothesis using Bayesian hierarchical logistic regression predict-

ing the choice participants’ made on each trial. The indi�erence point on the Ellsberg,
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average responses to the epistemic EARS items, and their interaction were included as

fixed predictor variables. The intercept was allowed to vary for each participant. Based

on this model, there was very little evidence that the interaction between responses to

the Ellsberg task and epistemic EARS items influenced participants’ choices between the

safe and risky option. The probability that this interaction was in the predicted direction

was 66.32% in Experiment 7b (median = -0.03, 95% CI = [-0.18, 0.11]) and 62.73% in

Experiment 8 (median = -0.01, 95% CI = [-0.08, 0.06]). This estimate is compatible with

sampling error and does not provide strong evidence that responses in the Ellsberg task

are able to predict participants’ responses to epistemic uncertainty.
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Appendix E

Variance reduction using outcome

sequences

One of the most common approaches to studying decision-making is to simply describe

options to participants but it has become increasingly clear over the past two decades that

people respond di�erently when they instead learn about options through experience (Wul�

et al., 2018). Most of our decisions are based on experience rather than explicit descriptions

but studying experience-based decisions has its own methodological di�culties. In contrast

with choices where the probabilities are described (e.g., 50% chance of $10, otherwise

nothing), the same underlying probability distribution could result in a large number of

possible experienced sequences. In the simplest possible case where people are observing

the outcome of a single coin toss, there are only two possible outcomes (H or T). For two

sequential coin tosses there are four possible sequences (HH or TT or HT or TH), for three

coin tosses there are eight, and so on. A combinatorial explosion!

Given that the participants in our first experiment made a sequence of 110 choices

and there were 80 possible outcomes associated with the risky option, no two participants

would ever receive the same sequence if outcomes were generated randomly. This already

daunting issue is exacerbated in partial-feedback experiments because participants’ choices
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influence the outcomes they observe. Each participant is wandering through a garden of

forking paths. One participant might experience the worst possible outcome the first time

they choose the risky option and avoid it for the remainder of the task whilst another

experiences a sequence of favourable outcomes. It seems plausible that we could decrease

the within-condition variability in participants’ responses by decreasing the variability of

their experience during the task.

One simple approach would be to assign each option a predetermined sequence of

outcomes. If we generated a predetermined sequence of 110 outcomes for each option,

we could ensure that every participant that chooses the risky option on a given trial

receives the same outcome. We employed a similar approach but attempted to address

two potential issues. The first issue is that roughly half the participants choose the safe

option on the first trial and the other half choose the risky option. Suppose that the first

two outcomes in the sequence for the risky option were 20 points and 75 points. For the

participants that selected the risky option as their first choice, their first impression would

di�er considerably from those who waited until their second choice. To address this issue,

we presented participants with outcomes based on the number of times they had selected

each option. The first time they selected an option, they experienced the first outcome

in the sequence for that option (e.g., 20 points) regardless of whether they chose it on

the first trial or the 50th. The next time they selected that option, they experienced the

second outcome in the sequence (e.g., 75 points) and so on.

The second issue with the simple approach is that using a single distribution im-

pacts the ability to generalise the findings. It is possible that an experimental manipulation

causes a di�erence between conditions using one sequence (e.g., one where the first out-

come is good) but not using another sequence (e.g., when the first outcome is bad). The

experimenter might reach a di�erent conclusion based entirely on the sequence. There-

fore, we attempted to reduce the within-condition variability whilst remaining confident

that our results were not subject to the quirks of a single sequence by randomly assigning

each participant to one of ten possible outcome sequences. We employed this method in

Experiment 7a and used model comparison to determine whether using predetermined
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APPENDIX E. VARIANCE REDUCTION USING OUTCOME SEQUENCES

sequences successfully reduced the within-condition variability.

We examined three Bayesian hierarchical logistic regression models that each pre-

dicted the choice participants’ made on each trial. The first (baseline) model included

condition (unique images or identical images) as a fixed predictor variable and allowed

the intercept to vary for each participant. The outcome sequence was not included as

a predictor in this model. The second (intercept) model allowed the intercept to vary

for each distribution and the third (slope) model allowed the intercept and the slope for

condition to vary for each distribution. These models suggest that including the outcome

sequence as a predictor has no appreciable influence on our ability to estimate the e�ect of

our primary manipulation. Firstly, we predicted that including the outcome sequence in

the model would explain some variability, and therefore, that we would observe a decrease

in the variability in the varying intercepts for the participants. The standard deviation

was 0.65 for the baseline model and 0.64 for the intercept and slope models.

Secondly, there was a di�erence of less than 0.01 in the standard deviation of the pos-

terior distributions (estimation error) of the condition parameter across the three models.

Finally, we conducted ten-fold cross validation using the loo package (Vehtari et al., 2017)

to estimate the expected predictive accuracy of each model. The expected log predictive

density (ELPD) was highest for the baseline model suggesting that it is expected to be

slightly better in terms of predictive accuracy. The di�erence was -0.8 for the intercept

model and -2.4 for the slope model with a standard error of 1.5. Therefore, based on these

three pieces of evidence, we concluded that using predetermined sequences does not o�er

a promising method to reduce within-condition variability in participants choices.
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