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Abstract

Software testing is a critical stage in the life cycle of software development.
The testing process costs hundreds of billions of dollars per year worldwide.
Therefore, even small improvements in it could lead to very large savings.

In software, testing mainly refers to dynamic testing. It involves designing
and generating proper test cases for the software, executing the software with
these test cases, and observing the results. The aim is to find maximum
number of errors with minimum number of test cases.

Black-box testing involves seeing whether the program behaves as ex-
pected. White-box testing involves knowledge of the code, to see which
parts of the software were exercised during program execution. This thesis
is concerned with white-box testing.

The strongest form of white-box testing is path testing, in which test
data is sought that leads to all different execution paths through a program
being exercised. Searching for an input datum in the program’s input space
that meets the path coverage criterion is a search problem. Evolutionary
algorithms have proven to be suitable for searching for test data.

The aim of this thesis is to evaluate and improve the use of genetic al-
gorithms (GA) for path testing. First, the capability and limitations of
GA-based path testing are identified. Next we investigate possible ways to
improve GA for test data generation. The obtained results are a collection of
test programs; a classification scheme for test programs; understanding key
GA parameters and identifying an effective default GA parameter setup; un-
derstanding the effects of infeasible paths; a model that stops GA searching
when it seems ineffective to keep going, saving time while still finding almost
all feasible paths; and identifying an effective hybrid of GA and local search
techniques.

The results have the following implications:

• The collection of test programs can serve as a testing benchmark for
proposed software testing approaches.

• The classification of test programs provides ways to group test pro-
grams with similar characteristics.
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• The key parameters are shown in order to be population size, allele
range, and number of generations. Suitable default values for these
parameters are identified, which can represent a common setup to be
used with an unknown new test program.

• The existence of infeasible paths is shown not to hinder the process
of test data generation, rather it improves the performance by encour-
aging diversity in the population. This means that the costly task of
analyzing target paths to identify and remove infeasible ones is not
necessary.

• The proposed stopping criteria can stop searching whenever it is not
worth continuing because the likelihood of finding further paths is too
low. It is shown to be effective in stopping searching quite early, while
missing almost no feasible paths. One less arbitrary system parameter
(maximum number of generations to search) can be removed as a result.

• The hybrid GAs improve the performance both in terms of path cov-
erage and number of generations required for the search.
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Chapter 1

Introduction

1.1 Background

Software testing is an important phase in the life cycle of software develop-

ment. Errors in software can have very bad consequences. Finding errors

in software is critical, because if it does not work as expected, it can have

significant impacts including financial loss, time loss, the creation of bad

reputation, and injury or even loss of life.

Some examples of incidents related to software failure are [1]: in February

2003 the U.S. Treasury Department sent 50,000 social security checks by

mail with the beneficiaries’ names missing; in October 1999 NASA lost its

Mars Climate Orbiter (an interplanetary weather satellite), which cost $125

million, due to data conversion error (the system expected metric units in

meters but received them in the English units of yards); and in June 1996 the

European Space Agency’s launch of the Ariane 5 rocket’s first flight failed,

resulting in an uninsured loss of $500 million, because of the lack of exception
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handling for a floating-point conversion (loss of precision).

Thus, detecting errors before the software goes into operation is very

important, and this is the task of software testing. Software testing is a

process of making sure that the software being developed will function as

specified and/or executing it with the intention of finding errors [2].

The testing process can consume almost half the total cost of software

development [3]. Since this amounts to hundreds of billions of dollars per year

worldwide [1], even small improvements could lead to very large savings.

Dynamic software testing involves designing and generating suitable test

cases for the software. It feeds the test cases into the system and observes the

results. The aim is to produce the minimum number of test cases that can

find the maximum number of errors. Since test data generation is expensive

[3], there is a great deal of interest in automating it.

Dynamic testing is divided into black box and white box testing. In the

former, a program is given a set of test cases the input of each of which is

fed into the program, and the actual output is compared with its expected

output. In white box testing (a.k.a. structural testing), the internal structure

(e.g. source code or control flow graph CFG) of the program is visible. CFG

is a logical flow that shows the transfer of controls from one statement to

another inside a program. White box testing involves executing a program

and seeing which parts of it are executed; if there are any unreachable parts

of the program after thorough testing, it is likely that the program contains

logical error(s).

White box testing can be classified into (from the weakest to the strongest)
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[2, 4, 5, 6, 7]: statement, decision/branch, condition, decision-condition,

and path coverage. Statement coverage aims for every statement of code

in the program to be executed at least once. Decision coverage aims for

each branch of each decision to be exercised at least once. Condition and

decision-condition coverages are stronger versions of branch coverage. Path

testing is the strongest form of structural testing, but the hardest to achieve.

Its aim is to execute every logical path through the program. This is difficult

in the presence of loops, because executing a loop once before loop termi-

nation is considered to be a different path from executing it twice, and so

on. Therefore, in a program that has loops, complete path coverage testing

is impossible. However, a limited version of path coverage, i.e. limiting the

number of loop iterations required, may be achieved.

Given the scale of testing, even small gains add up to a lot [3, 1]. This has

driven a desire to automate it. The next challenge is to answer the following

question. Is black/white box testing amenable to automation?

As one of the black box testing techniques, equivalence partitioning is

to find minimum test cases that cover maximum equivalence partitions [2].

It has two main steps [2]: (1) identifying the equivalence classes and (2)

defining the test cases. The former involves examining each input condition,

which is a sentence or phrase in the specification and partitioning it into two

or more groups. The latter involves selecting specific values from each valid

and invalid equivalence class. Although this testing is a mainly heuristic

process, it is still possible to be automated.

In white-box testing, one must see the internal structure of the program

in order to assess the coverage of its logical flow [2]. Since the structure/flow
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of a test program is visible, it is also called (logic) coverage or structural test-

ing. Coverage testing has the following stages: selection of coverage criterion,

construction of coverage (assessment) function, instrumentation of test pro-

gram, and test data generation. Criteria of the coverage are selected based

on the test program requirements. The coverage function can be constructed

from the structure of a test program with respect to the chosen coverage cri-

teria. The instrumentation is a process of parsing and inserting probes into

the test program at certain spots concerning the coverage function needs.

All the involved stages are amenable to automation.

This research is concerned with white box testing, in particular, path

testing. Path testing is worth studying because it is the strongest form of

white box testing. It has the greatest chance of detecting potential errors.

1.2 GA-based Path Testing

Searching for an input datum in an input space of a program that satisfies

a testing coverage criterion, e.g., directing to navigate to a particular path,

is a search problem. This branch of knowledge is part of what is now called

search-based software engineering (SBSE).

Most test data generators used a gradient descent algorithm to automate

software testing during the early stages of its automation [8]. The core of the

algorithm is a kind of hill-climbing. It was quite time-consuming and could

not escape from local optima in the input space.

Later on, meta-heuristic search algorithms became a promising alterna-

tive for developing test data generators [9, 10]. These algorithms include
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Simulated Annealing (SA), Taboo Search (TS), Genetic Algorithm (GA),

Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO).

Each has its advantages and limitations. The algorithms are highly problem

domain dependent because of the usage of domain-dependent knowledge or

heuristics related to the domain of the test program. Of these algorithms,

Wegener et al. have proven the suitability of using evolutionary algorithms

in test data generation [11].

Recently, many successful applications of genetic algorithms for the gen-

eration of test data for structural testing have been evidenced [12]. Most of

these research has concentrated on statement or branch coverage, with little

on path coverage [13, 5, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], and has

treated high coverage as the only objective. In reality, most of the time, test

data generation is undertaken with not only one objective but others, such

as maximizing coverage while minimizing memory consumption or minimiz-

ing the number of test cases. Some research exploring a multiobjective GA

(MOGA) for test data generation is beginning to appear, but with weaker

criteria than those of path coverage [26].

1.3 Improving GA-based Path Testing

The aim of this thesis is to improve the use of GA for path coverage test

data generation.

First, the capability and limitations of GA for this purpose will be identi-

fied. This step involves understanding its behavior with different parameter

values and different fitness functions, and the types of programs or paths for
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which it is difficult/easy for GA to generate test data.

Then we investigate ways to improve GA for test data generation. We

investigate the practical setup of GA parameters; how to stop a GA run as

soon as the search is not worth continuing further; and hybridizing GA with

other search techniques.

Setting up the parameters using generic values is most practical in GA-

based path testing. To search for best parameter values for each test program

is a time-consuming trial and error process. It would be an invaluable con-

tribution to know a common parameter setup that works well for most test

programs without missing significant numbers of target paths.

Having infeasible paths in a program is almost inevitable, especially in

programs that have many selections, loops, and/or compound selection state-

ments. Therefore, in general it is unlikely that searching will be able to stop

with all target paths found. Determining when to stop searching for test

cases to cover further uncovered paths is very crucial. Premature stopping

could be costly, by missing some feasible paths, while continuing to search

for too long wastes time, and can never be successful if some target paths are

infeasible. So, a mechanism is needed that could stop the test data generator

when it is not worth continuing while achieving a high level of coverage.

Hybridization is one way that may improve the test data generation. A

GA can be hybridized with a local search algorithm such as hill climbing.

The purpose is to locally improve a certain number of best candidates within

the GA population. Thus, it is expected to improve GA performance in

general.
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1.4 Contributions to Knowledge

The thesis’s main contributions are a new test program classification system,

new stopping criteria, and hybridization of GA-based path testing. The

following are the details:

1. Classification of test programs based on their structure and the com-

plexity of their expressions. The classification is utilizable for exploring

the characteristics of test programs with respect to the approaches be-

ing used.

2. Collection of some test programs that are used in the GA-based cover-

age testing criteria studies and mapping them to the classification. This

enables a set of benchmark test programs to be identified, supporting

comparisons between different studies.

3. Providing a generic parameter setup for practical GA-based test data

generation.

4. Studying the effect of the existence of infeasible paths. We show that

infeasible paths do not degrade the performance of the generator. Mak-

ing all target paths feasible, by going to the effort of removing the in-

feasible ones, causes the test data generation to work longer to find the

same number of feasible paths.

5. Proposing a new dynamic stopping criterion, avoiding the need for a

parameter to represent the maximum number of search generations.

This is helpful and practical in the presence of infeasible target paths.
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6. Hybridizing GA with local search LS, showing that this can improve

path testing, and identifying a way to combine GA with LS that per-

forms best.

1.5 Structure of The Thesis

The remainder of this thesis is organized into the following chapters. This

organization reflects the methodology adopted for this research.

Chapter 2 presents a theoretical background of the main issues studied

in the thesis.

Chapter 3 reviews the relevant literature and state-of-the-art of evolu-

tionary path testing. In detail, the chapter covers search-based software en-

gineering (SBSE), GA-based test data generation, software reliability growth

models, infeasible path detection, and test programs.

Chapter 4 describes a classification scheme for test programs, and the

choice of test programs used in this research. It also describes the test pro-

gram preparation steps, and the preparation and execution of the experi-

ments conducted in this research.

Chapter 5 explores the challenges and key parameters in GA-based path

testing. It also provides a baseline and basic experimental setup for the

following chapters. Best and common parameters setups are extracted from

the results.

Chapter 6 presents and evaluates a model for deciding when to stop

searching for test cases to cover paths that are not covered yet. The chapter
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presents the theory behind the model and evaluates its performance experi-

mentally with different decision rules.

Chapter 7 describes hybridization between GA and local search. Several

hybrid variants are elaborated in detail. Training and testing phases yield

experimental results that validate the analysis empirically. The analysis in-

cludes test program classification, effects of infeasible paths, and effects of

the dynamic stopping condition.

Chapter 8 summarizes the results and analysis and concludes the thesis.
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Chapter 2

Theoretical Background

This chapter briefly explains primary topics in search-based software testing,

in order to build up fundamental knowledge to understand the thesis work. In

detail, it covers topics on software testing, test data generation, search-based

software testing, GA-based test data generation, infeasible path detection,

and software reliability.

2.1 Software Testing

The purpose of software testing is to detect software defects, so they can be

fixed and the software then functions as specified when it is delivered to its

users [3, 27].

Although it is not possible to remove every error in a large software

package, the goal of testing is to remove as many as possible during the

development cycle. However, as it can only reveal the presence of errors in

software, not their absence, testing cannot prove that a program is bug-free
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[3, 27]. In other words, if the testing found any errors then the software

is certainly faulty. On the other hand, if no errors were found it does not

necessarily mean that the software is flawless.

In general, software testing approaches are classified into two groups

[28, 7, 3]: static and dynamic methods. Static testing requires no actual

execution of software; rather it analyzes the internal software representation.

It includes symbolic execution, which assigns expressions to variables as a

path in the code, and domain reduction, which reduces input domain until

no further reduction is feasible and generates random input from it. In static

analysis, a code reviewer reads the program source code, statement by state-

ment, and mentally follows the logical program flow by tracing the processing

of an input. This type of testing is highly dependent on the reviewer’s expe-

rience. Static analysis uses the program requirements and design documents

for visual review. This type of testing is not completely manual work because

some automated supports are available.

In contrast, dynamic testing techniques execute the program and observe

its output. Most logical errors are hard to find, unless the actual program is

physically executed with input combinations that expose incorrect behaviour.

Usually, the term “testing” in relation to software refers to dynamic testing.

In software testing, test cases are fed into the program, and the behaviour

or actual output is observed. The main task in dynamic software testing

is test case generation, i.e. producing a set of input data (test data) or

a pair of input data and its expected output, that meets certain testing

criteria. Because generating test cases is expensive, the objective of test case

generation is to generate as few test cases as possible that can reveal as many
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errors as possible.

2.1.1 Static Analysis

For years, the majority of programmers assumed that the only way to test a

program is by executing it on a machine. This attitude began to change in

the early 1970s, because of Weinberg’s work, “The Psychology of Computer

Programming” [29]. Weinberg provided a convincing argument for programs

being read by people and indicated that this could be an effective error-

detection process.

Experience has shown that static analysis (a.k.a. non-computer-based or

human testing) methods are quite effective in finding errors [7]. They are

intended to be applied during the period between code completion and the

beginning of execution-based testing.

Typical static analysis methods are code inspections, code walkthroughs,

desk checking, and code reviews [7]. Code inspections and walkthroughs are

the two primary static analysis methods. They have a lot in common, as

they both involve the reading or visual inspection of a program by a group

of people. Both methods involve some preliminary work by the participants.

The climax is a brainstorming meeting in a conference-like gathering, the

objective of which is to find errors but not solutions to them, i.e., to test but

not debug.

Code Inspection This is a set of procedures and error-detection techniques

for code reading by a group [7]. Its discussions focus on the procedures,

forms to be filled out, etc.
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Two main activities are conducted: code narration and code exami-

nation. The code is read, line by line, and analyzed with respect to

a checklist of common programming errors, e.g., data-reference, data-

declaration, computation, comparison, control-flow, input/output, and

interface errors [7].

Code Walkthroughs Its task is similar to that of the inspection process

[7]. The difference is that, rather than simply reading the program or

using error checklists, one participant acts as a tester with a set of test

cases that consists of sets of input and expected output. During the

assembly, each test data is walked through the logic of the program

and the programmer explains the logic of their code.

Desk Checking This can be considered as a one-person inspection/walkthrough

[7]. A person reads code, checks it, and/or walks test data through it.

Code Review (Peer Rating) This is a method to review anonymous pro-

grams in terms of quality, maintainability, extensibility, usability, and

clarity [7]. The purpose of the code review is to provide an assess-

ment of the programmer. A group of programmers rates some selected

unidentified programs based on a scale written on a review form.

2.1.2 Dynamic Analysis

Dynamic testing techniques execute the program and observe its output.

There are two types of dynamic testing [7, 27]: black-box and white-box.

The latter is concerned with the degree to which test cases exercise or cover

the logical flow of the program [7]. On the other hand, black-box testing
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tests the functionality of the software regardless of its internal structure,

a.k.a. functional or specification-based testing.

1. White-box testing. It is also called logic-coverage testing or structural

testing because it looks at the structure of a program [30]. Its objective

is to exercise the different logical structures and flows in the program.

The adequacy of logic-coverage testing can be judged using different cri-

teria [30]: statement, decision (branch), condition, decision/condition,

multiple-conditions, and path-coverage (ordered from the weakest to

the strongest [6, 5, 4, 7]).

Statement coverage This criterion requires every statement in the

program to be executed at least once. This is a weak criterion

because, while it exercises every statement at least once, it does

not guarantee that the same statement is exercised in different

flows. For example, given the following program segment:

S1

IF (A>1) THEN S2

S3

One is not required to generate an input test datum that exer-

cises the FALSE branch in order to satisfy the statement coverage

criterion. In this case, test cases may check for the correctness of

the sequence S1-S2-S3, but not necessarily for the correctness of

the sequence S1-S3, which may have a problem.

Decision (branch) coverage This has a stronger logic-coverage cri-

terion [31], which states that one must write enough test cases for

each decision, i.e., an IF statement, to have at least one TRUE

and one FALSE outcome. The following example shows why the

branch coverage criterion is stronger than statement coverage.
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IF (A>1) THEN X = S2

In order to fulfil the branch coverage criterion, one must generate

at least two test input data that satisfy both TRUE and FALSE

branches regardless of any statements that follow either, whereas

to fulfil the statement coverage criterion, the tester needs to gen-

erate only input test data that leads to the TRUE branch.

The problem with branch coverage is that it does not check for

all different sequences; for example, in the following two serial

selection statements.

IF C1 THEN S1

ELSE S2

IF C2 THEN S3

ELSE S4

Branch coverage might test only the S1-S3 and S2-S4 sequences

OR the S1-S4 and S2-S3 sequences. In fact, all sequences of S1 to

S4 should be checked in order to reveal any potentially infeasible

combinations of sequences.

Condition coverage This criterion has stronger coverage than that

of decision coverage, as sufficient test cases must be written for

each condition in a decision to handle all possible outcomes at

least once.

Although the condition coverage criterion appears, at first glance,

to satisfy the decision coverage criterion, it does not always. If

the decision IF (A AND B) is being tested, the condition coverage

criterion will require one to write two test cases, i.e. A is TRUE

and B is FALSE, and A is FALSE and B is TRUE, neither of which
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would cause the THEN clause of the IF statement to execute.

The two cases already covered all possible conditions for A and B

such as A is TRUE or FALSE, and B is TRUE or FALSE. The way

of combining both conditions, that causes the TRUE side will not

be executed. As with decision coverage, condition coverage does

not always lead to the execution of each sequence.

Decision/condition coverage This criterion combines both the de-

cision and condition coverage criteria.

It requires sufficient test cases for each condition in a decision to

handle all possible outcomes at least once, each decision to handle

all possible outcomes at least once, and each point of entry to be

invoked at least once. A weakness of decision/condition coverage

is that, although it may appear to check the effect of all outcomes

of all conditions, it frequently does not because certain conditions

mask other conditions, e.g. in IF (A AND B), the outcome of the

statement will be FALSE if A is FALSE without considering B’s

value at all.

Also, errors in logical expressions are not necessarily made visible

by the condition coverage and decision/condition coverage crite-

ria, since they do not test all possible combinations of condition

outcomes in each decision.

Multiple-conditions coverage This criterion covers the problem faced

by decision/condition coverage.

It requires one to write sufficient test cases for all possible combi-

nations of condition outcomes in each decision, and all points of
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entry, to be invoked at least once.

Path coverage This achieves the utmost logical coverage since it cov-

ers all the previously-mentioned testing coverage criteria [4, 30, 7].

The path coverage criterion is concerned with the execution of all

logically different paths in a program. For a program with loops,

since the execution of every path is usually infeasible, complete

path testing is not considered a feasible testing goal.

2. Black-box testing, a.k.a. functional or specification-based testing, tests

the functionalities of a software against its specification, regardless of its

structure. There are four types [7]: equivalence partitioning, boundary-

value analysis, cause-effect graphing, and error guessing.

Equivalence partitioning partitions the input space of a program

into a set of equivalence classes. An input from a particular class

is equivalent to any other input within the same class. If this input

exposed an error then any other inputs from this class could expose

the same error too. On the contrary, if this input did not expose

an error then no other inputs in the equivalent class would expose

an error.

Boundary-value analysis analyzes the boundary conditions which

are directly on, above and/or beneath the edges of the input and

output equivalence classes.

Empirical evidence shows that test cases that make use of values

on and adjacent to boundaries between equivalence classes are

more effective than those that do not [7]. Boundary-value analysis

and equivalence partitioning do not explore combinations of input
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data as decision/condition coverage does. However, cause-effect

graphing has been developed to tackle this problem [7].

Cause-effect graphing is a formal language that translates natural-

language specification. It takes out incompleteness and ambi-

guities in the specification. It is similar to that of the deci-

sion/condition coverage criterion. This analogy means cause-effect

graphing outperforms boundary-value analysis and equivalence

partitioning.

Error guessing is an ad-hoc and intuitive process. Its procedure is

difficult to formalize. It needs expertise to point out errors. It

works by enumerating a list of error-prone situations and gener-

ating test cases based on the list.

2.2 Test Data Generation

In this thesis, we focus on white-box testing.

The first step in applying white-box testing is to select an adequacy cri-

terion, e.g., statement coverage, branch coverage, path coverage. The next

is to generate a set of test data that satisfies the selected adequacy criterion,

which is called adequate test data [8, 32, 33]. As generating adequate test

data manually is a labour intensive and time-consuming process, researchers

have been motivated to create test data generators that can examine a pro-

gram’s structure and generate adequate test data automatically [34]. How-

ever, how to generate test data automatically and evaluate them are major

questions to which researchers in the area of automated software testing are
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trying to find the answers [8, 7, 33, 35, 36].

It is not a trivial task to judge whether a finite set of input test data is

adequate. The goal is to uncover as many faults as possible using a limited

number of tests. Obviously, a test series that has the potential to uncover

many faults is better than one that can find only a few.

A number of automatic test data generation techniques have been de-

veloped [36]. A test data generator is a system (or a set of programs) that

generates the input data for a target program such that these input data sat-

isfy a particular testing adequacy criterion. Pargas [37] classifies them into

random, structural or path-oriented, goal-oriented, and intelligent. The first

three are in accord with the classifications of test data generators espoused

by Edvardsson [9] and Korel [8].

Random test data generators select random inputs for the test data from

a distribution [8, 38]. Structural test data generators typically use the pro-

gram’s control flow graph, select a particular path, and use a technique such

as symbolic evaluation to generate test data to cause that path to be ex-

ecuted [8, 13, 39, 40]. Goal-oriented test data generators select inputs to

execute the selected goal, such as a statement, irrespective of the path taken

[8]. Intelligent test data generators often rely on a sophisticated analysis of

the code, to guide the search for new test data [13, 39, 37, 41].

This thesis is concerned with automatic structural test data generation,

for path coverage. In general, the process consists of three major steps:

1. Construction of a control logic graph, e.g. control flow graph (CFG),

control dependence graph (CDG),
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2. Identification of different execution paths,

3. Test data generation, which involves dynamic execution of the target

program.

The target program must be instrumented in order to monitor assess-

ments of its testing objective when it is executed with given input data. In

most test data generators, the instrumentation is considered to be in the

pre-process stage before the generator can be used [9]. This instrumentation

process involves inserting probes (tags) at the beginning/ending of every

block of the code of interest, i.e., at the beginning/ending of each function

and after the true and false outcomes from each condition. For example,

in path coverage, these tags are used to monitor and provide the test data

generator with feedback on the path traversed within the program while it

is being executed with trial test data.

As discussed in the next section, search techniques play an important role

in generating proper test data using the feedback the test data generator

obtains from the target program.

2.3 Search-based Software Testing

Searching for an input datum in a pool of possible input data (or domain or

set) that conforms to the test adequacy criterion, e.g. forcing the traversal

of a specific path, is a search problem.

In the early stages of automated software testing, most test data gener-

ators used gradient descent algorithms [8]. As the essence of this type of
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method is a kind of hill-climbing, it was quite inefficient, time-consuming

and could not escape from local optima in the search space of the domain of

possible input data.

Accordingly, meta-heuristic search algorithms proposed a potentially bet-

ter alternative for developing test data generators [9, 10]. Efficient existing

meta-heuristic search algorithms include Simulated Annealing (SA), Taboo

Search (TS), GA, Ant Colony Optimization (ACO), and Particle Swarm Op-

timization (PSO). Each has its advantages and disadvantages. They are

strongly problem domain dependent because they use domain-dependent

knowledge or heuristics related to the domain of the problem under con-

sideration.

Of these algorithms, Wegener et al. have shown the suitability of using

EA in software testing [11].

2.4 Path Testing

White-box testing is widely adopted [7]. It is also called logic-coverage or

structural testing because it requires the structure of the program to be

visible [30]. The main objective of the testing is to exercise different logic

structures and flows in the program [7].

Different logic-coverage criteria are available, as described in Section 2.1.2.

The utmost coverage is achieved by path coverage.

Path coverage is concerned with the execution of all different logical paths

through the program. In a program with loops, the execution of every path
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is usually not feasible. Thus, complete path testing is not considered in such

cases. One way to handle these cases is to limit the number of iterations

of loops. For example, every loop may be considered only up to a certain

number of iterations: e.g. 0, 1, and 2 iterations. The logic is to cover all

possible combinations: no iterations (not entering the loop), execute the

loop once, and execute the loop multiple times, which is represented by two

iterations.

2.5 GA-based Test Data Generation

GAs were invented by John Holland in the 1960s and developed by him,

his students and colleagues at the University of Michigan during the 1960s

and 1970s [42]. Holland’s original goal was not to design algorithms to solve

specific problems, but rather to formally study the phenomenon of adaptation

as it occurs in nature and to develop ways in which the mechanisms of natural

adaptation might be imported into computer systems [43].

Since that time, GAs have been a very interesting area of study in many

disciplines and the number of research studies into either their behaviours

or applications for particular purposes has increased rapidly. Some appli-

cations of GAs are optimization, automatic programming, machine learn-

ing, economics, immune systems, ecology, population genetics, evolution and

learning, and social systems [42].

Some features of GAs, which other normal optimization and search pro-

cedures do not have, are their capabilities to directly manipulate a represen-

tation of a solution to a problem, as well as search from a population (not
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a single point) via sampling (a blind search) and using stochastic operators

(non-deterministic rules) [44].

The basic steps in GA are:

1. Define a genetic representation of the problem

2. Create an initial population P (0) = x1, . . . , xn, and set t = 0

3. Compute the average fitness f ′(t), and assign each individual the nor-

malized fitness value

4. Assign each xi a survival probability p(xi, t) proportional to its normal-

ized fitness. Using this distribution, select N vectors or parents from

P (i), which gives the set of selected parents

5. Pair all parents at random using their survival probabilities to form N
2

pairs; then apply a crossover with a certain probability to each pair,

and other genetic operators such as mutation, to form a new population

P (t+ 1)

6. Set t = t+ 1 and return to Step 3

In order to use a GA to solve an optimization problem, we need to know

how to represent the problem as well as its solution in a chromosome-like

expression, i.e., a sequence of binary digits that a GA can understand and

manipulate [45, 46]. As the GA then works on this encoded problem and de-

livers the interpreted result as the problem solution, the user should provide

the semantics of the encoded problem. The most widely used representa-

tion is a binary string. However, in recent developments, representation can
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be extended into higher numbering systems, up to more complicated data

structures [4, 42, 47]. Investigations into more advanced representations,

e.g., character, integer, float, grouped, messy, and record, are continuing

[42].

The fitness value of an individual is the measure of its strength to survive

in the next generation [43, 46, 48]. It reflects the chance that the individual

has to be directly present in the next generation or to be selected for mating

with other individuals in the current generation to produce children for the

next generation. This fitness value is calculated based on the syntax and

semantics of the individual representation and is, mainly, a normalized value

of its objective value such that it can be minimized or maximized accordingly.

A complete iteration from Step 3 to Step 5 above is called a generation.

The stopping criteria comprise a desired number of generations or a measure

of convergence or saturation.

There are two approaches for implementing a GA as a problem solver [49]:

(1) a classical GA, which operates on a binary string, requires modification

of the original problem into an appropriate form (suitable for a GA). This

includes a mapping between potential solutions and binary representations,

taking care of the decoders or repairing algorithms, etc; and (2) a GA can

leave a problem unchanged but modify an individual representation of a

potential solution (using “natural” data structures) and apply appropriate

“genetic” operators.

A good operator is one that can guide a search faster, thereby reducing

the time it takes and significantly reducing its search space. Many advanced

GA operators have been explored, and some researchers are trying to create
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a parameter-less GA for which the user does not need to select or adjust

operators [10].

Two major operators are used in almost every implementation of a GA:

crossover and mutation. A simple crossover operator is a single-point or

uniform crossover while simple mutation means native mutation as specified

in [45]. For example, consider two binary-string individuals x1 = 10101 and

x2 = 01010 with single-point crossover and mutation rates of 0.9 and 0.1,

respectively. In the crossover stage, the GA generates a random number

between 0 and 1. Suppose it happens to be 0.5, which is less than 0.9:

hence the two individuals cross towards each other at a randomly selected

point between them; suppose that point is 3. Hence, the new individuals are

x1 = 10110 and x2 = 01001. In a uniform crossover, both bit-sequences are

shuffled between these two individuals, i.e. x1 = 11111 and x2 = 00000. In

the case of a mutation after a cross-over, the GA generates a random number

between 0 and 1 for each and, if it happens to be less than 0.1, any bits within

that individual, the positions of which are again selected randomly, will be

flipped, i.e., from 0 to 1 or vice versa. Based on experience, typically, the

mutation rate is set to between 0 and 0.1 and the crossover rate to between 0.6

and 1 [45, 44, 49, 50, 51, 5]. These two operator rates control the population

in terms of the exploration and exploitation of the search space. In order

to choose the most suitable rate, a trial and error approach is still the most

widely used method among researchers.

During the selection stage, a GA will most probably select individuals

that have performances above that of the current population average, to

persist in the upcoming intermediate generation resulting from the crossover
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and mutation stages. Individuals with lower strength will vanish as the GA

evolves from generation to generation. The next population is highly likely

to contain copies of previous individuals (i.e., parents), as well as some new

individuals that are totally different from their ancestors. The degree of

variation among the new individuals introduced into this new population

depends on the crossover and mutation rates. A high crossover rate will

completely mix the characteristics of both parents into its offspring, while a

high mutation rate will produce an offspring that has different traits from

its parents, i.e., the offspring introduces new traits that do not exist in its

parents at all.

Why does a GA work? This is a very interesting question for anyone

regardless of whether he/she knows about GAs. A GA works based on the

number of schemata (sometimes called higher-order structures, hyper-planes

or similarity templates) being processed from generation to generation. A

short, low-order and above-average schema is called a building block since it

will be reproduced more and more in subsequent generations [45].

Initially, metaheuristic techniques gained greater popularity than tradi-

tional optimisation methods due to their capabilities to solve complex op-

timisation problems more effectively and efficiently [52]. As time passed, it

was realised that metaheuristic and metaheuristic/non-metaheuristic tech-

niques do not compete against, but complement, each other, which led to

the development of hybrid methods [52]. In other words, a hybrid combines

the strengths of all participating methods in order to compensate or reduce,

if not eliminate, one or all of their weaknesses [53]; for example, although a

GA is one of the most successful metaheuristic techniques, it may still suffer
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from premature convergence. However, as SA is often slow to converge to an

optimal or near-optimal solution, hybridising these two methods is one way

of overcoming their disadvantages [54].

Readers that are interested in the theoretical background to, and/or ap-

plications of, GAs are encouraged to consult distinguished references [45, 44,

49, 42, 53, 52].

Many research papers have shown that GA has a promising future in the

development of test data generators [13, 39, 46, 55] and some indicate that it

outperforms both Simulated Annealing and Taboo Search [10]. However, in

2004, Mansour and Salame [18] reported that Simulated Annealing slightly

outperforms Genetic Algorithm for path testing.

In testing coverage criteria, especially branch or path coverage, most test

data generators make use of approximation level and branch distance (or

predicate value) as components in their fitness functions [56]. The approx-

imation level measures the number of overlapping branches between a tra-

versed path and a target path: more overlapped branches means closer to

the target path. The branch distance is the value required to change the

traversed path changes to the target path on the last overlapped branch: to

make the branch distance 0. The distance is calculated using Korel’s distance

function as listed in Table 2.1 [8].

2.6 Infeasible Path Detection

Infeasible path detection approaches can be classified into three classes:

static, dynamic, and hybrid. A static approach uses an analytical process
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Table 2.1: Korel’s Distance Function
No Branch Distance if path taken is different

1 A = B ABS(A − B)

2 A 6= B K

3 A < B (A − B) + k

4 A ≤ B (A − B)

5 A > B (B − A) + k

6 A ≥ B (B − A)

7 X OR Y MIN(Distance(X), Distance(Y))

8 X AND Y Distance(X) + Distance(Y)

to generate test data and/or detect feasible (or infeasible) paths while a dy-

namic one makes use of actual program execution using real test data. A

hybrid approach merges both analysis and real execution approach. A static

approach always gives a correct result, but it requires meticulous work and

more time, and it is hard to automate. On the other hand, a dynamic ap-

proach produces results with varying degree of correctness, but it is easy to

automate. Hybrid approaches aim to combine the benefits of always getting

correct results and easy automation.

Two common major drawbacks in existing work are lack of test problem

scalability and generalization.

2.7 Software Reliability

A new stopping criterion for GA-based path testing is investigated in this

thesis. It is inspired by software reliability growth models. The following

presents the background for this idea.

Reliability is one characteristic of software quality [57, 27, 3]. According
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to ISO 9126, it can be defined as “a set of attributes that bear on the capa-

bility of software to maintain its performance level under stated conditions

for a stated period of time” [57].

Reliability is a user-oriented quality metric related to the operation of

a software system. A fault-free software is considered to be highly reliable,

and even one that has an acceptable level of frequency of failure may also

be considered reliable. In discussing reliability, the followings are three of its

key concepts [57]:

Failure is an observable behaviour of a program execution that is different

from the expected one.

Fault is something that can cause a failure, which is most likely invisible

and very hard to detect in advance.

Time being short between two successive failures indicates less reliable soft-

ware. Two forms of time are execution time τ and calendar time t.

Two ways of measuring reliability are counting the number of failures

over periodic intervals and assessing a failure’s intensity [57]. The former is

the total number of failures until time τ and denotes a cumulative failure

count µ(τ). The latter is the number of failures observed per unit time after

time τ and denotes failure intensity λ(τ). Hence, the relationship between

them can be formulated as λ(τ) = dµ(τ)
dτ

.

From a user’s perception, software reliability has always been influenced

by the number of faults and the user’s operational profile [57], which is re-

lated to the ways in which the user operates the software. The number of

faults is mainly affected by: (1) the size and complexity of the code; (2)
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the development process’s characteristics; (3) the education, experience and

training of the development personnel; and (4) the operational environment.

If one knows how to measure the reliability of software, one can apply

this in several ways. The one that is relevant here is that it can be used to

decide whether more tests need to be conducted [57].

A way of formalizing the software reliability concept is to develop math-

ematical models for µ(τ) and λ(τ). The following are five basic assumptions

for developing a reliability model [57]:

1. Faults in the programs are independent.

2. The execution time between failures is larger than the instruction’s

execution time.

3. The potential test space covers the used space.

4. The set of inputs per test run is randomly chosen.

5. The fault causing a failure is immediately fixed or else its re-occurrence

is not counted again.

Intuitively, by observing new system failures and fixing previous faults,

there will be fewer faults remaining and a smaller failure intensity. In other

words, as µ(τ) increases λ(τ) decreases. As depicted in Fig. 2.1, two types

of decrement processes for failure intensity can be defined as follows [57]:

Basic model The failure intensity decreases constantly as failures are man-

ifested, and their corresponding faults fixed.
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Figure 2.1: Plot of λ(µ)

Logarithmic model Each failure intensity level is smaller than the previ-

ous one as failures are manifested, and their corresponding faults fixed.

Having established the basic assumptions and intuitive idea, the next

step is to define the parameters of the models and then build them. Three

identified parameters are the initial failure intensity λ0, the expected number

of failures over infinite time v0, and the non-linear drop failure intensity θ,

which give the following models [57]:

Basic model Assumption: λ(µ) = λ0(1− µ
v0

)

dµ(τ)
dτ

= λ0(1− µ(τ)
v0

)

µ(τ) = λ0(1− µ
v0

)

λ(τ) = λ0e
−λ0τ

v0
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Logarithmic model Assumption: λ(µ) = λ0e
−θµ

dµ(τ)
dτ

= λ0e
−θµ(τ)

µ(τ) = ln(λ0θτ+1)
θ

λ(τ) = λ0
λ0θτ+1

For example, given λ0 = 10, v0 = 500, and θ = 0.0075 for Logarithmic

Model. Fig. 2.2 describes the function µ(τ), the cumulative failure µ as a

function of the execution time τ . In Fig. 2.3, the failure intensity λ as a

function of the execution time τ is depicted.
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Figure 2.2: Plot of µ(τ)

The following are the details of the model. The model can be defined in

terms of a random process {M(τ), τ ≥ 0} which represents the number of

failures occurred during execution time τ . The distribution of M(τ) has the



Chapter 2. Theoretical Background 34

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Execution time

F
a
ilu

re
 i
n
te

n
s
it
y

Figure 2.3: Plot of λ(τ)

mean value function

µ(τ) = E[M(τ)] (2.1)

and the failure intensity function

λ(τ) =
dµ(τ)

dτ
(2.2)

The following model assumptions for the execution time component are

[58]:

1. There is no failure observed at time τ = 0, i.e. M(0) = 0 with proba-

bility one.

2. The failure intensity will decrease exponentially with the expected num-

ber of failures experienced. In other words, λ(τ) = λ0e
−θµ(τ), where λ0



35 2.7. Software Reliability

and θ are the initial failure intensity and the rate of reduction in the

normalized failure intensity per failure, respectively.

3. For a small time interval ∆τ the probabilities of one and more than one

failure during (τ, τ + ∆τ ] are λ(τ)∆τ + o(∆τ) and o(∆τ), respectively,

where o(∆τ)
∆τ
→ 0 as ∆τ → 0. This is to prove that the model is of type

Poisson.

Having these assumptions in mind, both µ(τ) and λ(τ) can be derived as

[58]:

µ(τ) =
1

θ
ln(λ0θτ + 1) (2.3)

λ(τ) =
λ0

λ0θτ + 1
(2.4)

µ(τ) represents the number of failures that occurred during execution time

τ . λ(τ) is the failure intensity, the expected number of failures at a certain

point in time. λ0 is the initial failure intensity. θ is the rate of reduction in

the normalized failure intensity per failure.

In [58], the two unknown parameters λ0 and θ are estimated using maxi-

mum likelihood estimation method to guess the product of Φ = λ0θ by using

conditional joint density function. Two types of failure data were used for

the estimations, i.e. failure intervals and number of failures per interval.

1. Failure Intervals Estimation based. Estimation is performed at a spec-

ified time τe where m failures had occurred during (0, τe] period. So,

θ̂ =
1

m
ln(Φ̂τe + 1) (2.5)
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and

λ̂0 =
Φ̂

θ̂
. (2.6)

2. Number of Failures per Interval Estimation based. Assume that an

observation interval (0, xp] is partitioned into a set of p disjoint subin-

tervals (0, x1], (x1, x2], . . . , (xp−1, xp] and the number of failures in each

subinterval is recorded. Let yl(l = 1, 2, . . . , p) be the number of failures

in (0, xl]. So,

θ̂ =
1

yp
ln(Φ̂xp + 1) (2.7)

and

λ̂0 =
Φ̂

θ̂
. (2.8)

Deciding when to stop testing for unfound errors is analogous to deciding

when to stop searching for uncovered target paths.

Equation 2.4 calculates the expected number of paths found at τ gener-

ations; it provides information on whether to stop searching. The likelihood

of finding new target paths θ in Equation 2.4 is updated using θ̂ in Equation

2.7. Software reliability models base their decisions on the history of how

many new errors are found after a given amount of testing; the analogy here

is that the decision of when to stop searching is based on the history of how

many new target paths are covered after a given amount of searching. This

number of errors is computed using Equation 2.3.

2.8 Summary

This chapter has presented essential materials on GA-based path testing.
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Sections 2.1 to 2.3 set the scene. Section 2.1 described approaches to

testing, in particular defining different coverage criteria for white-box testing

and highlighting the value of path coverage. Section 2.2 outlined some is-

sues relating to test data generation, and Section 2.3 illustrated search-based

approaches to test data generation. Section 2.4 addressed path testing in

particular.

Sections 2.5 to 2.7 underpin the contributions of the thesis. Section 2.5

described search-based test generation using GA, and hybrid methods in-

cluding GA (these are the main topics of Chapters 5 and 7). Section 2.6

discussed infeasible paths in path coverage, which both motivates the need

for a criterion to decide when to stop searching (Chapter 6), and is studied in

its own right for its effect on convergence (Chapter 7). Section 2.7 introduced

the theory behind the stopping criteria studied in Chapter 6.

The next chapter reviews the development in the literature of these fun-

damental topics.
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Chapter 3

Literature Review

This chapter presents a literature review on topics related to search-based

software testing. The fundamental theories on the topics are described in

the previous Chapter 2. In detail, the review covers advancements in the

following topics: search-based software engineering, genetic algorithm (GA)

based test data generation, software reliability growth models, infeasible path

detection, and test programs.

3.1 Search-based Software Engineering

During the past decade, there has been a tremendous amount of work under-

taken in search-based software engineering (SBSE), i.e., the application of

search techniques to solve optimisation problems in the context of software

engineering. SBSE is very interesting in terms of its flexibility, that is, it can

be adjusted to an automatic or semi-automatic approach, and has the capa-

bility to handle problems with typically huge search spaces and competing
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and conflicting objectives.

SBSE can be applied throughout the whole software engineering life cycle,

ranging from project planning and requirements gathering to maintenance

as well as re-engineering [59]. So far, though, SBSE is mostly used in the

testing and debugging phase in the software development life cycle [12, 60].

For example, the most challenging question in software testing is to find the

smallest set of test cases that cover all branches or whatever testing criteria

are in a program. This is essentially an optimization question.

In 2009, Harman et al. [12] conducted a comprehensive survey on SBSE,

covering over 500 publications. The survey reported that 70% of the publi-

cations relate to software testing. It also reported that 435 publications are

on evolutionary algorithms, which includes genetic algorithms (beyond 315

publications), genetic programming (beyond 65 publications), and evolution-

ary strategies (beyond 55 publications). Thus, it is obvious that the most

embraced technique in SBSE is evolutionary algorithms.

On one hand, GA has the following advantages: stochastic process, direct

representation of the problem solution domain, handling constraint and ob-

jective functions, handling multiple solutions, handling large search space,

not dependent on error surface (so it can solve multi-dimensional, non-

differential, non-continuous, and non-parametric problems), handling mod-

elling, and easier to run in parallel. On the other hand, it has the following

drawbacks: no guarantee that optimal solution will be obtained and, like

other optimization techniques, there is no assurance of constant optimiza-

tion running (or response) times, making it hard to implement in real time

situations.
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In this research, GA is used for path testing because it can solve types of

problem that the software testing has, i.e. test data generation in particular.

In order to generate test data, a vast area of test data search space must

be explored to find test data that meet the testing criteria. GA also has

objective (or heuristic) function with the following surface characteristics:

non-differential, non-continuous, and multi-modal. So, these are the driving

factors that considered in choosing GA for path testing. Further, it also has

been widely used for test data generation and empirically proven. In reality,

finding near-optimal solutions with roughly constant running time is still

acceptable for most of the optimization problems. This does not make GA

unfavorable for test data generation, because all non-deterministic techniques

share the same characteristics.

There are other meta-heuristic techniques that are population and stochastic-

based, such as Ant Colony Optimization and Particle Swarm Optimization.

However, GA has the advantages of direct encoding of problem domain, sim-

pler operations, and fewer parameters, whose values can be set up using

generic values, while producing optimal solutions with fewer resources for

most optimization problems. GA’s performance can be improved significantly

by creating and/or selecting appropriate fitness functions and fine-tuning its

parameters to fit the semantics of the problem domain and the representa-

tion of the solution. Having non-GA based optimization techniques would

possibly require alternative fitness functions, and definitely require other pa-

rameter setups. Knowing these techniques’ characteristics, there is no guar-

antee that they will work more effectively and efficiently on average. Thus,

we consider that it is better to concentrate on improving GA’s performance

for path testing than to explore other meta-heuristic techniques.
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3.2 GA-based Test Data Generation

In reviewing the literature, a set of assessment attributes is required to com-

pare different approaches [56]: objective(s), fitness function, benchmark pro-

grams (including complexity measure {e.g. cyclomatic complexity, number

of branches, and nesting level for selection and loop}, input {domain and

representation}, and constraint{s}) and genetic operators.

Selecting what kind of information to use to guide the search has always

been the main issue in applying GA for testing, because it will be the essence

of its fitness function. Finding the best combination of parameter values can

also be interesting and challenging, because the parameter values can make

a significant difference to the overall performance of the search technique.

The fitness function typically consists of branch or predicate distance

(BD) [8] and approximation level (AL) [61, 62]. Predicate distance is a

quantifiable difference in the branch statement between a target path and the

actual path taken. The approximation level shows the number of matched

branches between a target path and the actual path traversed until they de-

viate from each other. Ahmed and Hermadi [20] employed GA to satisfy

path testing. Approximation level and branch distance were used as compo-

nents for the fitness function. Ahmed and Hermadi conducted experiments

with several fitness functions. The best fitness function was found to be the

following: normalized BD and AL, path-wise traversal for AL computation,

no weighted BD and AL, and relative fitness values to the population. A

separate contribution of their work was to aim to minimize the number of

fitness function evaluations by generating a set of test data that can cover

multiple target paths in each generation.
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In 2009, Blanco et al. [63] initiated scatter search (SS), another evolu-

tionary algorithm, to generate test data automatically. They reasoned for

SS that it solves the same class of combinatorial optimization problems and

also has the same control flow graph representation as software test data

generation. Their objective was to efficiently construct a small set of test

data for branch coverage. Two versions of the test data generator were de-

veloped, in which one is hybridized with local search. Thirteen benchmark

programs were selected to validate and compare both generators in terms of

number of test data generated and time consumed. They reported that SS

does not always outperform other work reviewed in the paper; however it

does on average. Additionally, hybridizing it with local search accelerates its

efficiency.

In 2008, Sagarna and Yao [64] proposed an approach for generating test

data using multiobjective evolution, which considers branch coverage testing

and penalty constraints at the same time. It made use of branch distance

and approximation level as its fitness function, as described in [33, 61, 62].

Alba and Chicano [26] analyzed the application of parallel and sequential

evolutionary algorithms for condition coverage test data generation. A study

of the influence of several parameters in their proposed approach is an ad-

ditional aspect of their work. Decentralized evolutionary strategy (ES) and

decentralized GA were proposed. Twelve test programs were used to test

the approaches. The results showed that there was no significant difference

between the decentralized versions and the panmictic versions, in terms of

coverage or effort.

In 2007, Harman et al. [65] developed weighted and Pareto GAs for multi-
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objective test data generation. Their objectives were to satisfy branch cover-

age and to minimize dynamic memory allocation. Both versions of GA’s fit-

ness functions were composed from branch distance and approximation level.

They used the IGUANA (Input Generation Using Automated Novel Algo-

rithms) framework, developed by McMinn [66] using NSGA II [67]. Weighted

GA uses stochastic universal sampling as its selection method, while Pareto

GA uses elitist selection and reinsertion strategy. The results revealed that

neither algorithm outperformed the other on all test data. However, the work

has shown a promising result for applying a multi-objective EA approach to

generating test data.

In 2007, Yoo and Harman [68] applied multi-objective EA for selecting

test cases in regression testing, aiming at minimizing or avoiding retest-all

method, i.e. re-running all test cases whenever new changes are introduced.

Their objectives were to meet the following criteria: code coverage, past

fault-detection history, and execution cost. The work was implemented using

NSGA-II [67] and its variant vNSGA-II.

The next work in this review was on testing coverage using hybrid EA.

In 2004, Ferreira and Vergilio [69] worked on code/decision coverage using

random, GA, and hybrid GA. They reported that hybrid GA is more effective,

with a lower average running time.

In the same year, McMinn and Holcombe [70] merged a chaining approach

(CA) into GA’s fitness function, such that inherent data dependencies are

taken into consideration. This was meant to guide the search directly into a

potential unexplored input domain. Later, McMinn and Holcombe extended

the previous work [71] of Baresel et al., that is able to generate input sequence
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[72], and their own work that addresses difficulties with internal variables,

using hybrid GA with CA [73, 74]. The CA was initially introduced in 1996

by Ferguson and Korel [75, 76, 77]. The basic idea is to set the current

state of a test program to a certain condition that meets an individual target

structure, e.g. statement or branch coverage. This is done by selecting and

executing a sequence of statements that assign boolean flags, enumerations,

and counters to specific values.

In 2006, Wappler and Wegener [78] developed hybrid genetic program-

ming (GP) for branch unit testing of object-oriented software. The results

show hybrid GP is feasible and can outperform random branch testing. They

also reported that further investigation of node distance function being used

in its fitness function is required.

In 2007, Sofokleous and Andreou [79] proposed a dynamic software testing

framework using hybrid GA, which was designed to satisfy selected testing

coverage criteria.

In 2008, Arcuri and Yao [80] developed a memetic algorithm (MA) for

generating test data for object-oriented software. Branch distance was used

as the guiding function. Hill climbing (HC), GA, and MA were compared,

with MA found to outperform the other two algorithms.

Table 3.1 lists all the work on testing coverage test data generation, in

chronological order.
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Table 3.1: Testing Coverage based on EA

Year Reference Coverage Technique(s)

1994 Pei [13] Path GA

1995 Jones [81] Branch GA

Jones [82] Branch GA

Roper [39] Code (Statement) GA

Sthamer [46] Branch GA

1996 Jones [50] Branch GA

1997 Roper [83] Branch GA

1998 Jones [84] Branch GA

1999 Pargas [37] Branch GA

2000 Bueno [14] Path GA

Lin [5] Path GA

2001 Bueno [15] Path GA

Lin [85] Branch GA

Wegener [61] Branch EA

2002 Baresel [62] Statement EA

Bueno [16] Path GA

2003 Diaz [86] Branch TS

Hermadi [17] Path GA

2004 Ferreira [69] Decision GA, Hybrid GA

Hermadi [56] Path GA

Mansour [18] Path GA, SA

McMinn [70] Branch Hybrid EA with CA

(Chaining Approach)

2005 Girgis [19] Path GA

Hierons [87] Branch EA

Korel [88] Branch HC/AVM (Alternat-

ing Variable Method)

Liu [89] Code ACO, GA

McMinn [90] Code EA

McMinn [71] Branch Hybrid EA with CA

Continued on next page
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Table 3.1 – continued from previous page

Year Reference Coverage Technique(s)

Sagarna [91] Branch EDA

Wappler [92] Statement, Branch, Condi-

tion

EA

Xie [93] Code GA, SA

Xie [94] Statement, Branch GA

2006 Alshraideh [95] Branch GA

McMinn [96] Branch EA

Sagarna [97] Branch SS, EDA

Seesing [98] Branch GP

Seesing [99] Branch GP

Wang [100] Branch GA

Wappler [101] Branch GP

Wappler [78] Branch GA, Hybrid GP

Levin [102] Branch GA

2007 Blanco [103] Branch Scatter Search

Harman [65] Branch & dynamic memory

allocation

NSGA-II

Liaskos [104] Data flow (d-u) GA

Liaskos [105] Data flow (d-u) GA, AIS

Sagarna [106] Branch EDA

Sagarna [107] Branch EDA, SS

Sofokleous [79] Selected coverage Hybrid GA

2008 Arcuri [80] Unit & minimize the length

of the test sequences

RS, HC, SA, GA, MA

(Memetic Algorithm)

Chen [21] Path GA

Gupta [108] Program GA

Wang [109] Branch EA

Makai [110] Branch GA

Lefticaru [22] Path SA, GA, PSO

Harman [111] Branch EA

2009 McMinn [112] Branch GA, HC

Continued on next page
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Table 3.1 – continued from previous page

Year Reference Coverage Technique(s)

2010 Hermadi [23] Path GA

Li [24] Path GPSMA

2011 Alshraideh [113] Branch Multi-pop GA

Table 3.1 permits some observations on trends in software coverage test-

ing, hybrid methods, multi-objective approaches, and non-GA methods. EA

based coverage testing started in 1994, and its numbers increased since 2004.

The most popular coverage testing is branch coverage, followed by path cover-

age. One of the approaches uses multiobjective GA, such as NSGA-II. Some

hybrid methods were proposed since 2004, such as hybrid GA, hybrid EA

with chaining approach (CA), memetic algorithm (MA), hybrid genetic pro-

gramming (GP), and Genetic-Particle Swarm Mixed Algorithm (GPSMA).

Some research work also compared GA to non-GA methods for the same test-

ing coverage criteria. They are Tabu search (TS), simulated annealing (SA),

hill climbing (HC), alternating variable method (AVM), ant colony opti-

mization (ACO), estimation of distribution algorithm (EDA), scatter search

(SS), artificial immune system (AIS), random search (RS), particle swarm

optimization (PSO), and BLAST.

The path coverage literature started with Pei et. al. in 1994 [13]. They

proposed a dynamic path coverage, which had been mostly developed using

symbolic execution in their era. They considered symbolic execution to be

impractical, as the complexity of a set of predicate equations is exponential.

Pei et. al. [13] developed a test data generator for path testing, using a genetic
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algorithm with two variants of fitness functions. The first fitness function was

based on the number of matching branches, while the second was based on

the branch predicate values, which is more sensitive. Only one test program

was used to validate the approach. It takes an array of integer numbers and

returns minimum and maximum values of the array. The 21 target paths

included 13 feasible paths and 8 infeasible paths. The approach was able to

cover all 13 feasible paths.

Jones et. al. [50] presented a GA-based branch coverage test data gen-

erator. Their fitness function made use of weighted Hamming distance to

branch predicate values. They used unrolled control flow graph of a test

program such that it is acyclic. Six small programs were used to test the

approach.

In 2000, Lin and Yeh [5] extended Jones et al.’s work [50] from branch

coverage to path coverage. The ordinary (weighted) Hamming distance was

extended to handle different ordering of target paths that have the same

branches. The fitness function is called SIMILARITY, which computes sim-

ilar items with respect to their ordering within two different paths between

actual executed path and the target path. Only one program was used to test

the approach, i.e. simple triangle classifier. They reported that the approach

outperformed random search.

Bueno et al. [14, 15, 16] proposed an approach that utilizes control and

data flow dynamic information to achieve path coverage testing using GA. In

addition, the work also tackled the detection of infeasible paths by monitoring

the progress of evolutionary search. The fitness function was formulated by

number of coincidence branches and the normalized branch predicate value
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at which the actual executed path starts to deviate from the target path. Six

small test programs were used to validate the approach, with 10 repetitions

each to minimize random variations. Two execution modes were used, i.e.

one with initialized population and the other with a random initial popula-

tion. The experiment results were promising.

In 2003, Hermadi and Ahmed [17] presented evolutionary test data gen-

eration for path testing using multiple paths. Prior to this work, almost all

of the evolutionary test data generators only sought to cover a single target

path at a time. The fitness function used the number of matching branches

and branch predicate values using Korel’s fitness function [8]. It also con-

sidered path traversal techniques, neighbourhood influence, weighting, and

normalization. Three small programs were used to validate the approach:

minimum-maximum finder, triangle classifier, and a combination of both of

them. Results were more effective and efficient by tackling multiple paths at

a time.

Mansour and Salame [18] compared simulated annealing (SA), genetic

algorithm (GA), and Korel’s algorithm (KA) for path testing using weighted

Hamming distance as the objective function. Eight programs were selected

to test the approach. The empirical results showed that SA and GA were

able to cover more paths than KA, and SA was slightly better than GA. In

terms of time complexity, KA was the fastest and GA was faster than SA.

In 2008, Ahmed and Hermadi [20] extended Hermadi and Ahmed’s work

of 2003 [17]. The extensions were adding a rewarding scheme and using a

more efficient test data generator. A total of 32 fitness function variations

were tested empirically and analysed to determine which was the best. There
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were 7 test programs used in the experiments. The results demonstrated that

the approach was better compared to other existing work.

In the same year, Chen and Zhong [21] developed a multi-population

genetic algorithm (MPGA) for path testing. This work has been improv-

ing GA-based path testing as described in Section 1.4. The work reported

that the proposed approach outperformed a simple genetic algorithm based

approach, using the triangle classifier as the test program.

To summarize: several EAs have been studied for test data generation;

some observations have been made here about how GA compares with other

methods on different types of problems, and hybridization of GA with local

search has been suggested to improve GA’s performance; most work has

been on weaker testing criteria than path testing; and research with multi-

objective GA is in its early stages.

3.3 Stopping Criteria for Evolutionary Com-

putation

In the real world, most problems are computationally expensive and con-

strained. Thus an evolutionary algorithm should be stopped as soon as the

pseudo-optimal solution has been detected, because the actual optimum is

unknown or the evolutionary process is not worth continuing because no

further improvement is likely.

Up to now, the most used stopping criteria are objective value, fitness

value, number of generations, time elapsed, number of stall generations, and
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stall time. Most of these involve arbitrary decisions on when to stop search-

ing. Thus, adaptive and real-time stopping criteria are urgently required that

make computation efficient while being effective by delivering (near) optimal

solutions.

In general, there are three classes of adaptive stopping criteria for evolu-

tionary algorithms [114]: improvement-based criteria, movement-based cri-

teria, and distribution-based criteria. Improvement-based criteria monitor

improvement of the objective function value: if the improvement decreases

to a small value over several generations then it can be considered that the

search has converged. Movement-based criteria consider convergence in the

search space: at early generations, individuals were scattered in the search

space, and towards the end of evolutionary process these individuals normally

converge to one spot. Distribution-based criteria are similar to movement-

based criteria, and use distance to measure the distribution of individuals.

For example, in 2002, Bergh [115] used no-further-improvement stopping cri-

teria and distribution-criterion to halt his global particle swarm optimizer.

In 1996, Aytug and Koehler [116] studied convergence behaviour or stop-

ping criteria for finite length genetic algorithms. The criteria will enable

genetic algorithm to set the maximum number of generations (or number of

fitness function executions) given a confidence that it has seen all the possible

individual strings irrespective of its starting state. Analytically proven, the

result was promising.

Greenhalgh and Marshall [117] described convergence properties for ge-

netic algorithms using Markov Chain Model in 2000. Their approach speci-

fied the upper bound on the number of generations, and they proved analyt-
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ically that the upper bound is the lowest so far.

In 2008, Zielinski and Laur [114] experimented with some improvement-

, movement-, and distribution-based criteria to stop differential evolution

algorithms. They used 16 test functions, and found that distribution-based

criteria were best in terms of convergence rate and computation time.

In 2009, Trautmann et al. [118] proposed two approaches, i.e. offline

and online modes, using statistical methods to detect convergence of multi-

objective evolutionary algorithms. Offline mode analyses performance indi-

cators of some repeating runs with increasing number of generations using

statistical tools, and decides what the optimal number of generations is. The

online mode monitors variance of the performance indicators. If they fall

below given thresholds, or the overall trend indicates stagnation, the evolu-

tionary process stops. The experimental results showed that both modes are

effective and efficient by avoiding maximum loss of computation time.

In 2010, Studniarski [119] found the maximum number of generations

at which to stop evolutionary algorithms, using a Markov Chain approach.

The proposed approach uses only some properties of mutation. Studniarski

analytically proved that the approach works.

Up to now, no stopping criteria have used the analogy of software reli-

ability modelling. Software reliabilty modelling uses the numbers of errors

recorded over some period of software running time to calculate the prob-

ability of error occurrence, and uses this probability to predict the future

occurrence of errors. In software testing context, one of the main issues is to

gain confidence that the software will function correctly at any running time;

this is what software reliability is all about. So, in this research, the analogy
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of a software reliability growth model is adopted to propose stopping criteria

that stop GA as soon as the tester has reached a desired level of confidence

that further searching will not cover more target paths.

3.4 Software Reliability Growth Models

Many software reliability growth models are available nowadays. Some cri-

teria for selecting a good model are: it is able to predict future failure be-

haviour; it is able to produce meaningful results; it is simple, widely appli-

cable, and based on sound assumptions.

In general, software reliability models are classified into two schemes [58].

First, the finite failure category model, which consists of exponential, weibull,

and pareto; this model fits Poisson, Binomial, and other type distributions.

Second, the infinite failure category model, which consists of geometric, in-

verse linear, inverse polynomial, and power models; this fits type T1, T2, T3,

and Poisson distributions as defined in [58].

The Logarithmic-Poisson model described in [58] is the most appropriate

for this thesis work. This is because it can predict future paths finding,

it produces a prediction number that is interpretable as number of paths

covered, and its assumptions match the type of data available in this research.

A variety of statistical techniques exist that aim to do the same thing

(predict logarithmically decaying phenomena) and are similar in data behav-

iors with the proposed approach in the thesis, i.e. finite failures category

models. These include Musa Execution Time [120], Goel-Okumoto NHPP

(non homogeneous Poisson process) [121, 122], Moranda Geometric Poisson
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[123], Shneidewind [124], and Crow [125]. Most of these models agree that

failure intensity is equally reduced as each failure is exercised, and correction

is made.

Musa’s Execution Time Model [120] was introduced in 1974. It makes

use of exponential Poisson distribution to predict software reliability growth.

Musa’s 1984 execution time version [58] proposed basic and logarithmic ex-

ecution time models. This version is categorized in the finite failures cate-

gory which takes into account failure intensity over time. The basic model

describes that failure intensity reduction is constant over time, while the

logarithmic one is considered as a logarithmic Poisson process.

In 1979, Goel and Okumoto [121] proposed a stochastic model to describe

software failure manifestation using NHPP. The model is tested using data

collected from Naval Tactical Data System (NTDS) and showed good fitting

in describing the failure phenomenon.

In 1985, Goel [122] surveyed the proposed analytical models to approach

software reliability measurement for the previous 15 years. For each model,

the survey provided an overview, critical analysis of the underlying assump-

tions, limitations, and applicability. Four classes of analytical models were

presented, based on the failure history of software and the nature of the

failure process: times between failures models, failure count models, fault

seeding models, and input domain based models.

Moranda [123] proposed a Geometric Poisson model to measure reliability

growth of software in 1975. The model is classified into finite failures cat-

egory models that use exponential Poisson approach by Musa [58] in 1984.

The model estimate risk rate of the failure interval decreases in a geometric
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fashion.

Shneidewind [124] presented an estimation method to supply values of

parameters of a non-homogeneous Poisson process to model failure occur-

rences in software. The estimation process used a combination of maximum

likelihood and weighted least squares methods. The software error data were

taken from Naval Tactical Data System. The test produced promising re-

sults. This model falls into the category of finite failures, which employ

exponential Poisson approach according to Musa’s classification [58] in 1984.

3.5 Infeasible Path Detection

In 1994, Jasper et. al [126] proposed new presentations combined with au-

tomated theorem proving to overcome the problems of exponential number

of paths explosion and feasible path determination. Offutt et. al [127] de-

veloped mathematical constraints to automatically detect infeasible paths.

Gustafsson et. al [128] proposed 3 algorithms that are inclusive to one an-

other for detecting infeasibility of nodes, pairs of nodes, and paths, i.e. in-

feasible nodes are covered by the infeasible pairs of nodes, and the infeasible

paths cover the infeasible pairs of nodes. Souter and Pollock [129] demon-

strated an approach to identify type infeasibility of call chains in object-

oriented programs. Most recently, Balakrishnan [130] proposed static analy-

sis of an abstract interpretation of a program to infer infeasible paths, and a

syntactic language refinement technique that is able to automatically exclude

semantically infeasible paths from a program during static analysis.

The following are dynamic approaches. In 2000, Bueno and Jino [14]
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monitored the improvement of best fitness values of a target path over gen-

erations, using this as an indication of whether the path is likely infeasible or

not. Zhuang et. al [131] used correlation between branches to identify infea-

sible paths for memory anomaly detection. Suhendra et. al [132] detected

path infeasibility in a directed acyclic graph but only tracked conflicting pairs

of branch-assignment or branch-branch. Ngo et. al [133] determined infeasi-

bility by empirical correlation evidence between some conditional statements

along the path. Yan et. al [134] presented a method to generate feasible

paths for basis path testing, based on path linear independence and the min-

imal subset of feasible paths that satisfies test coverage. Ju et. al [135]

shared similar ideas with Ngo et. al [133] and Suhendra et. al [132]; they

employed 4 infeasible path patterns by observing conflicting pairs, i.e. pairs

of assignment-branch or branch-branch. In 2010 Delahaye et. al [136] pro-

posed a method to generalize an infeasible path automaton.

3.6 Test Programs

This section summarizes the test programs that have appeared in the litera-

ture on test coverage using evolutionary algorithms.

Table 3.2 presents the test programs, their source, and the problem they

address.
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Table 3.2: Collection of Test Programs

No Test Program Ref.(s) Description

1 triangle ahmed [137, 50,

37, 5, 14,

41, 15, 16,

10, 11, 17,

26, 20, 21,

64]

determination of triangle types: equi-

lateral, isosceles, scalene, not triangle

2 minimaxi ahmed [13, 17, 20] determination of minimum and maxi-

mum numbers from an array of num-

bers

3 insertion ahmed [26, 20] sorting an array of numbers using in-

sertion sort

4 bisection ahmed [138, 37,

20, 63]

calculation of a number square root us-

ing bisection method

5 binary ahmed [50, 20] searching a key (number) from an array

of numbers by returning the index if it

is found and nothing if is not found

6 bubble ahmed [37, 20, 25] sorting an array of numbers using bub-

ble sort

7 gcd ahmed [26, 20] calculation of greatest common divisor

between two integers

8 remainder ahmed [50, 20, 64,

63]

calculation of a division remainder

9 mmTriangle [17, 20] artificial program by merging minimaxi

(TP 10) with triangle (TP 1) in serial

10 triangle mansour [18] classification of triangle types: scalene,

isosceles, right, iso-right, equilateral

11 expint rapps [139] accepts an integer and a float variable

for exponentiation

Continued on next page
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Table 3.2 – continued from previous page

No Test Program Ref.(s) Description

12 quotient gallagher [140] calculation of the quotient and the re-

mainder of the division of two positive

integers

13 tritype bueno [16] triangle classifier

14 expint bueno [34, 14, 15,

16]

accepts an integer and a float variable

for exponentiation

15 quotient bueno [14, 15, 16] calculation of the quotient and the re-

mainder of the division of two positive

integers

16 strcomp bueno [14, 15, 16] comparing 3 chars with a 5-char string

17 floatcomp bueno [14, 15, 16] performing simple computation on

three floating point variables

18 find bueno [14, 15, 16] partially sort an array

19 bubble gong [25] sorting an array of numbers using bub-

ble sort

20 flex gong [25, 141] a unix utility taken from GNU site

21 space gong [25, 141] to read a file that contains several ADL

statements and check the contents of

the file for adherence to the ADL gram-

mar and specific consistency rules

22 linear search [50] using linear search on arrays of integers

and characters

23 quicksort [50, 26] quicksort application on arrays of inte-

gers and characters

24 shell [26] sorting by shell method

25 triangle wegener [61, 63] to classify a triangle either equilateral,

isosceles, orthogonal, obtuse angle, or

not-triangle

26 triangle myers [7, 63] to determine the types of triangle:

equilateral, isosceles, scalene, or not-

triangle

Continued on next page
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Table 3.2 – continued from previous page

No Test Program Ref.(s) Description

27 triangle michael [41, 63] triangle classification

28 triangle sthamer [46, 63] more complete triangle classification

that also checks the right angles of the

triangle

29 remainder sthamer [46, 63] to calculate the remainder of a division

30 grading [18] computing the letter grade from a nu-

meric score

31 roll dice-1 [18] is to read sum1 of die value and deter-

mine a game status

32 roll dice-2 [18] is to read sum1 and sum2 of die values

and determine a game status

33 interview [18] is to read subject, college, and age, then

decide whether to interview a candidate

34 answer [18] is to read a value and evaluate an ex-

pression, then classify the result as cor-

rect or too high

35 guess [18] is to guess a number then check

whether it is the magic number

36 evaluate [18] is to read two numbers and evaluate an

expression, and then classify the result

as too high or too low

38 elements classification [142, 37,

14, 15, 16]

placing all elements of an integers array

less than given key element (by supply-

ing its index) on the left and greater

than or equal on the right of it

39 quadratic [138, 50,

63]

solution of quadratic equation

40 four balls [37] determines the weight of the balls rela-

tive to each other out of four given in-

tegers representing the weight of balls

Continued on next page
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Table 3.2 – continued from previous page

No Test Program Ref.(s) Description

41 middle value [37] determines the middle value out of

three given integers

42 asin [11] typical C library function to calculate

the arcsin or arccos of a double type

number

43 atof [61, 11, 64,

63]

typical C library function to convert a

string to its corresponding float value

44 powi [11] a function that raise a float to integer,

i.e. floatint

45 incbet [11] a larger test function that calculates

the incomplete beta-integral out of

three given floats argument

46 line coverage [143, 63] to determine the position of a line with

respect to a rectangle

47 sed [25, 141] Linux patches

48 netflow [61, 26] network optimization

49 calday [26, 63] to calculate the day of the week

50 crc [26] cyclic redundant code

51 heapsort [26] sorting by heapsort

52 select [26] to select the kth element of unordered

list

53 bessel [26] Bessel Jn and Yn functions

54 simulated annealing [26] simulated annealing method

55 complex branch [63] artificial program that contains several

difficult branches

56 number of days [63] to calculate the number of days be-

tween two dates

57 quadratic sthamer [46, 63] to determine the type of quadratic

equation roots: real and unequal, real

and equal, or complex
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The average number of test programs (NoTP) used in the most relevant

literature in testing coverage using EAs is 6. Table 3.3 describes how many

test programs are used in each main reference.

Table 3.3: Number of Test Programs

Year Reference Coverage NoTP

1994 Pei [13] Path 1

1996 Jones [50] Branch 6

1999 Pargas [37] Branch 6

2000 Lin [5] Path 1

Bueno [14] Path 6

2001 Bueno [15] Path 6

2002 Bueno [16] Path 6

Wegener [10] Branch 5

2003 Hermadi [17] Path 3

2004 Mansour [18] Path 8

2007 Alba [26] Condition 12

2008 Ahmed [20] Path 9

Chen [21] Path 1

Sagarna [64] Branch 3

2009 Blanco [63] Branch 13

2010 Hermadi [23] Path 12

2011 Gong [25] Path 4

Table 3.4 shows the most used test programs in the literature. The two

most used test programs have no loops, and all their target paths are feasible.

The others are more difficult for path coverage, by involving one or more of

loops, variable-length input, complicated branch statements, and infeasible

target paths.
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Table 3.4: The Most Used Test Programs

Test Program(s) Used

(times)

triangle 15

triangle variants 11

elements classification 5

bisection, quotient, expint, atof 4

minimaxi, bubble, remainder, floatcomp, quadratic 3

Table 3.5 lists which test programs have been used in research with which

testing coverage criteria. The acronyms P, B, and C stand for path, branch,

and code coverage respectively. Two test programs used in almost all cov-

erage research are triangle and remainder. Triangle has no loops and no

infeasible paths, while Remainder has one loop and at least one infeasible

path if a limit is placed on the number of iterations.

Test programs that have been used in research on two or more coverage

criteria are bubble, insertion, binary, bisection, gcd, elements classification,

quicksort, and calday.

Table 3.5: Test Program based on the Testing Coverage

No Test Program Coverage

1 triangle ahmed P, B, C

2 minimaxi ahmed P

3 insertion ahmed P, C

4 bisection ahmed P, B

5 binary ahmed P, B

6 bubble ahmed P, B

7 gcd ahmed B, C

8 remainder ahmed P, B, C

Continued on next page
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Table 3.5 – continued from previous page

No Test Program Coverage

9 mmTriangle P

10 triangle mansour P

11 expint rapps P

12 quotient gallagher P

13 tritype bueno P

14 expint bueno P

15 quotient bueno P

16 strcomp bueno P

17 floatcomp bueno P

18 find bueno P

19 bubble gong P

20 flex gong P

21 space gong P

22 linear search B

23 quicksort B, C

24 shell C

25 triangle wegener B, C

26 triangle myers B, C

27 triangle michael B, C

28 triangle sthamer B, C

29 remainder sthamer B, C

30 grading P

31 roll dice-1 P

32 roll dice-2 P

33 interview P

34 answer P

35 guess P

36 evaluate P

38 elements classification P, B

39 quadratic B

40 four balls B

Continued on next page
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Table 3.5 – continued from previous page

No Test Program Coverage

41 middle value B

42 asin B

43 atof B

44 powi B

45 incbet B

46 line coverage B

47 sed P

48 netflow C

49 calday B, C

50 crc C

51 heapsort C

52 select C

53 bessel C

54 simulated annealing C

55 complex branch B

56 number of days B

57 quadratic sthamer B

Test programs do not add information if their relevant characteristics are

the same as other test programs. The 57 test programs identified above

include some that are redundant, in that their expression structure or logic

structure is equivalent to other programs. Section 4.1 presents a classification

scheme, based on expression structure and logic structure, which is used in

this thesis to select a non-redundant subset of test programs.

The average number of test programs used in the literature for EA based

coverage testing is 6. As shown in Table 3.3, more test programs were used in

later years. In research, more test programs means more general results can
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be achieved. So, most of the industrial research involves more test programs

and more challenges.

The two most used test programs are Triangle and Remainder. They

are popular due to their representativeness, in terms of selection statements,

having loops or not, and path infeasibility. They are used in this thesis,

along with others that include more loops, variable-length input, complicated

branch statements, presence of infeasible paths, and real-time processing.



Chapter 4

Experimental Design

This chapter describes a classification scheme for test programs, selection of

test programs, preparation for using a test program, and operation of the

test data generation system.

4.1 Selection of Test Programs

4.1.1 Classification Scheme for Test Programs

Numerous test programs are used in the literature. It is unclear how they

were chosen for use in testing the proposed approaches. It is also not clear

that test programs differ from each other in relevant ways, for the purpose

of validating testing approaches. In other words, how do we know that a

given new test program will provide new information, and is not essentially

equivalent to another test program that has already been studied?

For this purpose, we propose a classification scheme for test programs.
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The classification can be used to select test programs that cover a range of

relevant characteristics; also to recognize if a new test program fills in a gap

or just replicates existing test programs. The classification scheme is used

when selecting test programs for study in this thesis.

Two aspects to the classification are control structures (structure classi-

fication) and expression structures (expression classification) in conditional

expressions. The control structures are directly related to the CFG while the

expression structures are related to the various types of decision coverage.

Two types of control structures are selection (S) and iteration (IP). A

selection could be IF, IF-ELSE, or SWITCH statement. An iteration could

be FOR, WHILE, or DO-WHILE loop. These cover the control structures

typically found in most programming languages.

The classification considers sequence vs. nesting because these lead to

different paths in a program. Further detail on the paths identification is

presented in Section 4.2.2.3.

In principle, there is no limit to number of selections or loops in a program.

In order to bound the set of possibilities, the numbers for consideration are

limited to 4 of each. Possible values for S are 0, 1, 2, and 3 (representing 3

or more) selections, and for IP are 0, 1, 2, and 3 (representing 3 or more)

loops, respectively. The trivial case (0 loops and 0 selections) is not included

in the classification because it means only one path, and there is no need to

search for test data. In total, the structure classification has 101 classes (the

detail is in Appendix A.1).

For example, the control structure of tA2008 contains 3 increasingly
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nested IF-THEN-ELSE selections (source code in Section 4.2.2.1). It is clas-

sified as class S03NIII in the structure classification (in Appendix A.1).

The S03NIII code means S for structure classification, 03 for 0 loops and

3 selections, NIII for 3 increasingly nested selections.

In the expression classification, a simple expression can be an arithmetic

(A), relational (R) expression, or A and R, i.e. an operator with its cor-

responding operand(s). Simple expressions can be combined using logical

connectors AND (N) or OR (O). More complex expressions (compound ex-

pression) can be constructed by using one or more logical operators connect-

ing two or more simple expressions. The details of the operators are shown

in Table A.4.

The complexity measure of each program is cyclomatic complexity (CC) [144].

Two versions of CC are proposed for the purpose of these classifications: CCL

(the lower bound of CC) and CCU (the upper bound of CC). CCL measures

the number of paths in the control flow graph, and is simply equal to CC,

while CCU also takes into account the expression structures (or compound

statement with logical connectors AND and OR) in the selections or itera-

tions, which is relevant to the classification of expression structures. For ex-

ample, consider a test program with an IF-THEN statement and a compound

statement inside the IF (or condition) part with an AND logical connector:

The CC for this program is 2, while its CCL is 3 because the AND operator

will break down the logical flow into two possibilities. Thus, this measure is

very sensitive in detecting implicit logical flow in path testing.

Theoretically, the number of logical connectors in an expression has no

limit. For the classification purpose, we limit the set of possible logical
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connectors to 2, which means a maximum of 3 simple expressions can be

present. A test program with more than 2 logical connectors in an expression

would be classified the same as a program with 2 logical connectors.

The order of the connector matters, because it leads to exercising different

paths (breakdown of decisions). For example, N-O and O-N are considered

two different classes. Connector N does not consider the second operand

value if the first one is already FALSE. Similarly, connector O does not

consider the second operand if the first one is already TRUE. In total, the

number of classes is 24 (see Appendix A.2 for the detail).

A program can fall into several classes in the expression classification

because it can have many expressions with different types and/or number of

logical connectors. For example, tA2008 is included in the following classes

E1R, E3NNRRR, and E3NNIII. The E3NNRRR code means E for the

expression classification, 3 for 3 simple expressions, NN for N-N logical

operators, and RRR for 3 simple relational expressions.

Details of test programs and their classification are described in Table A.2

and Table A.5 for the structure classification and the expression classification,

respectively. The first 28 test programs in Table 3.2 are available in the

classification tables. The remainder could not be classified because we do

not have access to their source code.

4.1.2 Choice of Test Programs

The test programs used in this thesis are selected based on the structure

classification and the expression classification presented in the previous Sec-
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tion 4.1.1. They are selected from different classes from both classification

schemes and variations of the target paths.

In order to be able to compare the proposed approach properly with

other path testing approaches, every test program we have found in the

path testing literature was classified according to both classification schemes.

Unfortunately, the number of these test programs and their variations are not

enough to fill in all the classes in either of the classification tables at the time

the experiments were conducted. In addition, some of the test programs fall

into the same classes as others in one or both classification schemes, and this

condition makes classification tables sparser. In time, we hope that these

empty classes could be filled in with new test programs.

The purpose of the classification schemes is to classify test programs

based on their logical characteristics, which drive the logical flow inside

the programs while they are being executed. In choosing test programs

for this research, all possible logical flow drivers, such as looping, selection,

and expression, have been considered to some extent, while the classifica-

tion schemes consider more, such as their numbers (or occurrences) and/or

repetition structures (serial or nested), and complexity of the branch expres-

sion/statement along a logical path.

The test programs studied in this research are generally one page of code

or less. When modern software may contain millions of lines of code, it may

be questioned whether such small test programs are relevant. The point to

remember is that path testing applies at the level of single code modules, or

methods. Thus the question is whether these test programs are representative

of methods in typical software.
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In 2013, Fraser and Arcuri [145, 146, 147, 148] selected 100 open source

software projects (called SF100 corpus) randomly from SourceForge (source-

forge.net) for the purpose of object oriented testing. The SF100 corpus con-

tains 8,784 classes and 291,639 bytecode branches [145]. On average, it has

87.84 classes per project, and 33.20 branches per class [145]. What we need to

know is not branches per class, but branches per method. This information

is not published for the SF100 corpus, but other evidence suggests that the

number of methods (NOM) in a typical class is around six [149, 150]. Lanza

et al. [149] stated that the average NOM per class is 6.5, which is the average

between the lower and the upper NOM per class. Haug et al. [150] described

that the average NOM per class is between 5.67 and 5.97 for two projects.

Averages of six methods per class and 33 branches per class suggests that the

average number of branches in a method (or test program) is 5.5. Our test

programs average 7 branches, which is 27% more. Further, in 2014 Fraser

and Arcuri [151] and Fraser et al. [152] conducted an experiment using an

extended SF110 corpus, which consists of 110 projects, with 23,886 classes,

more than 800,000 bytecode level branches, and 6.6 millions of lines of code.

Methods in this corpus have an average CC value of 2.63, while ours is 5.4

(recall Table 4.3), which is more than twice that of SF110.

In summary, firstly, path testing applies at the level of single code modules

or methods. Even a large program would be broken into modules, and the

modules used for testing here are typical in size compared to advice when

writing code modules now (no more than a page). Thus, the test programs

are not unrepresentative. Secondly, although the number of test programs is

limited, i.e. limited instance space, the nature of all typical combination of

programs’ characteristics (or combination of path control flows) have been
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well addressed. As long as the fitness function represents relevant building

blocks, i.e. considering Struct and Expr, the search algorithm will perform

well (proportional to the search space) regardless of the increase of the test

program’s complexity [153, 154]. So, the limited instance space does not

affect significantly the conclusion drawn.

Table 4.1 lists all 21 test programs which are selected from the collection

mentioned in Chapter 3.6. It shows Test Program name, (abbreviated)

Name, Total number of target paths, and number of feasible paths (Feas.)

included in Total.

These test programs are selected from each class in both the structure and

the expression classifications. If some of them belong the same class, they

have different number of target paths with respect to feasible and infeasible

paths. The other 7 classifiable programs were not used as test programs, due

to their redundancy.

The 21 test programs cover only 11.88% (or 12) of the structure classes

and 37.5% (or 9) of the expression classes. In the structure classification, 7

classes have 1 test program, 3 classes have 2 test programs, 1 class has 3 test

programs, and 1 class has 5 test programs. In the expression classification,

all the test programs (100%) have at least one simple relational statement,

7 test programs (33.33%) have one logical connector, and 3 test programs

(14.29%) have two logical connectors.

For identification purpose, a test program is named after its (real) name

followed by its author’s (last) name and year in which it is published, re-

spectively. For example, triangleAhmed2008 means its real program name is

triangle, which appears in a publication whose author’s name is Ahmed and
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was published in 2008. The abbreviated version Name will be used for the

rest of the thesis.

Table 4.1: List of Test Programs

No Test Program Name
No. of Paths

Total Feas.

1 triangleAhmed2008 tA2008 4 4

2 minimaxiAhmed2008 mmA2008 13 13

3 insertionAhmed2008 iA2008 6 5

4 bisectionAhmed2008 bisA2008 9 6

5 binaryAhmed2008 binA2008 7 7

6 bubbleAhmed2008 bubA2008 15 4

7 gcdAhmed2008 gA2008 8 5

8 remainderAhmed2008 rA2008 5 4

9 mmTriangleAhmed2008 mtA2008 52 20

10 triangleMansour2004 tM2004 8 7

11 expintRapps1985 eiR1985 12 3

12 quotientGallagher1997 qG1997 21 4

13 tritypeBueno2002 ttB2002 8 8

14 expintBueno2002 eiB2002 31 8

15 quotientBueno2002 qB2002 27 10

16 strcompBueno2002 scB2002 15 4

17 floatcompBueno2002 fcB2002 5 5

18 findBueno2002 fB2002 32 8

19 bubbleGong2011 bG2011 20 11

20 flexGong2011 fG2011 30 30

21 spaceGong2011 sG2011 32 32

These names are listed in Table 4.1. Comprehensive details of two of the

test programs are presented in this chapter as examples, i.e. tA2008 and

mmA2008. The rest are provided in Appendix B.

Input description for each test program is shown in Table 4.2. The
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description covers information on input Type, Size, Range, and Space.

Type can be integer, real, float, character, or string (a set of characters).

For example, int+ means positive integer input. Size is the input size or

number of input components. For variable length input, Low and Upp in-

dicates its lower and upper limits, respectively. Each input component (or

allele) has its range of values, which is stated under column Range. The

size of the input space is written in the column Space. For example, if a

program requires an int+ input with fix length 3, i.e. 3 positive integers all

the time, that ranges between 0 and 200 each then its input space size is

equal to 2013 (= 8,120,601).

Table 4.3 summarises the logical structure of the test programs. The

structure includes number of loops No., loops configuration Config., and

cyclomatic complexity number CC. Loops configuration applies only to test

programs with 2 loops or more because it describes the order of the loops. As

for CC, Low is the basic CC number that equals to the number of decision

points plus one while Upp is the details version of Low, such that each

selection statement contains no logical operators anymore. In other words,

Upp means each and every selection statement has been broken down into

simple statements (as opposed to compound one). A simple statement is an

expression that has arithmetic operators and/or relational operators only.

Based on the number of loops in Table 4.3, the test programs are classified

into four classes, i.e. no loops, single loops, double loops, and multiple loops.

This classification is presented in Table 4.4. Full details of the classification,

which decomposes the configuration of loops, are described in Appendix A.1.

Based on the logical expression complexity inside the selection statement
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Table 4.2: Input of Test Programs

Name

Input

Type
Size Range

Space (size)
Low Upp Low Upp

tA2008 int+ 3 3 0 200 8,120,601

mmA2008 int 1 3 -100 100 8,161,203

iA2008 int 1 6 -100 100 66,273,881,404,206

bisA2008 real 2 2 1.72 1.75 900,000,000

binA2008 int 2 6 -100 100 66,273,881,404,005

bubA2008 int 1 6 -100 100 66,273,881,404,206

gA2008 int+ 2 2 0 200 40,401

rA2008 int+ 2 2 0 200 40,401

mtA2008 int+ 3 3 0 200 8,120,601

tM2004 int+ 3 3 0 200 8,120,601

eiR1985 int+ 2 2 0 200 40,401

qG1997 int+ 2 2 1 200 40,000

ttB2002 int+ 3 3 0 200 8,120,601

eiB2002 int+ 2 2 -100 100 40,401

qB2002 int+ 2 2 0 200 40,401

scB2002 int+ 8 8 1 128 72,057,594,037,927,936

fcB2002 int+ 3 3 -100 100 8,120,601

fB2002 int 2 6 1 200 1,608,040,201,000

bG2011 int 1 8 -100 100 2,664,210,362,169,924,600

fG2011 int 7 7 -100 100 13,254,776,280,841,400

sG2011 int 5 5 -100 100 328,080,401,001

(looping criteria), the test programs are classified into three classes, i.e. 1

(simple or no logical operator), 2, and 3 or more, as seen in Table 4.5. De-

tailed breakdown of this classification can be found in Appendix A.2.
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Table 4.3: Structure of Test Programs

Name

Structure

Loops CC

No. config. Low Upp

tA2008 0 4 13

mmA2008 1 4 4

iA2008 2 nested 4 5

bisA2008 1 5 7

binA2008 1 3 3

bubA2008 2 nested 4 5

gA2008 1 4 4

rA2008 1 4 4

mtA2008 1 7 16

tM2004 0 5 5

eiR1985 1 4 4

qG1997 2 serial 4 4

ttB2002 0 8 11

eiB2002 3 serial 11 15

qB2002 2 serial 6 7

scB2002 1 5 5

fcB2002 0 5 8

fB2002 3 serial 9 10

bG2011 2 nested 4 4

fG2011 0 7 7

sG2011 0 6 6

4.2 Experimental Setup

4.2.1 Overview

One must provide the following prior to conducting path testing, with respect

to the program under test: source code, CFG, target paths, instrumented
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Table 4.4: Structure Classification of Test Programs

Loops Test Program

0 tA2008, tM2004, ttB2002, fcB2002, fG2011,

sG2011

1 mmA2008, bisA2008, binA2008, gA2008, rA2008,

mtA2008, eiR1985, scB2002

2 iA2008, bubA2008, qG1997, qB2002, bG2011

≥ 3 eiB2002, fB2002

Table 4.5: Expression Classification of Test Programs

Exp. Test Program (TP)

1 mmA2008, iA2008, bisA2008, binA2008,

bubA2008, gA2008, rA2008, mtA2008,

tM2004, eR1985, qG1997, ttB2002, eiR1985,

eiB2002, qB2002, scB2002, fcB2002, fB2002,

bG2011, fG2011, sG2011, linear search,

quicksort, shellsort, triangle myers, triangle

michael, triangle sthamer, triangle wegener,

triangle sthamer, triangle wegener

2 iA2008, ttB2002, qG1997, qB2002, shell-

sort, triangle wegener, bubA2008, fcB2002,

fB2002

≥ 3 tA2008, mtA2008, bisA2008, triangle myers,

triangle michael

code, and fitness function. The process is illustrated in this section for two

test programs. Details for all test programs are given in Appendix B.

All test programs are rewritten in Matlab (C-like language) source code.

4.2.2 Example: tA2008

The following steps are necessary for testing tA2008 for path coverage.
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4.2.2.1 Source Code

The following is the source code of tA2008.

function [type] = triangle(sideLengths)

A = sideLengths(1); % First side

B = sideLengths(2); % Second side

C = sideLengths(3); % Third side

if ((A+B > C) && (B+C > A) && (C+A > B)) % Branch # 1

if ((A ~= B) && (B ~= C) && (C ~= A)) % Branch # 2

type = ’Scalene’;

else

if (((A == B) && (B ~= C)) || ((B == C) && (C ~= A)) || ...

((C == A) && (A ~= B))) % Branch # 3

type = ’Isosceles’;

else

type = ’Equilateral’;

end

end

else

type = ’Not a triangle’;

end

4.2.2.2 Control Flow Graph

The following Figure 4.1 is CFG of tA2008. tA2008 has four (logical) paths

and no loops.

4.2.2.3 Target Path Identification

The requirement for path testing that all paths inside the test program must

be exercised at least once. However, due to the presence of loops the number

of paths could be a huge number. Therefore, we limit the number of iterations

to 3 situations, i.e. 0 (means the loop is not executed at all), 1, and 2. The

reasoning is that a loop is logically tested if it is exercised not at all, once,

and multiple times.



Chapter 4. Experimental Design 80

Start

B1

B2 B3

True

False

Scalene Isosceles
Not

Triangle
Equilateral

True True

False

False

Stop

Figure 4.1: CFG of tA2008

For a test program without any loops, the number of (required) target

paths for path testing is equal to its CC number.

In general, if k is the number of selections then the number of target

paths p is as follows

p =

 2k serial

k + 1 nested

If k is the number of loops then p is formulated as

p =

 3k serial

nk nested
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As for nested loops, nk is derived from the following

nk =

 1 k = 0∑2
i=0{n(k−1)}i k > 0

For loops in series, the number of times each loop is executed is indepen-

dent of the number of times the other loops are executed. The number of

target paths is three raised to the power of the number of loops. For exam-

ple, if there are 3 loops in series, the number of paths is equal to 3 × 3 × 3

(=33 = 3k).

The number of paths in nested loops is a bit more complicated to calcu-

late. It all starts with a single path with no loops, i.e. k = 0 (the outer loop is

not executed). Nested loops are only executed if the outer loop is exercised,

i.e. the single and double or more iterations paths. So, the inner loop will be

executed once in the single iteration that yields another 31 paths, and twice

in the sequential order that produces 32 paths. In total, for two nested loops,

i.e. one loop nested inside the other, will have 1 path that avoids the inner

loop, 3 paths for the single inner loop iteration, and 9 paths for the twice

inner loop iterations. The number of loops can be formulated as follows.

p =



1 = 30 n0

1 + 1 + 1 =
∑2

i=0 (30)
i

=
∑2

i=0 (n0)i n1

1 + 3 + 32 =
∑2

i=0

{∑2
j=0 (30)

j
}i

=
∑2

i=0 (n1)i n2

...
...

=
∑2

i=0{n(k−1)}i nk
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In reality, a program most likely will not contain only selections or only

loops. In case of selections and loops are interleaved, the inner most branches

will be calculated first as if it were in a recursive pattern.

In the case of tA2008, there are no loops. We can see from the CFG

(Figure 4.1) that there are four paths, representing Not Triangle, Scalene,

Isosceles, and Equilateral.

4.2.2.4 Target Path Representation

In this thesis, we represent a path by using a sequence of selection number -

decision pairs coding. For example, the path that leads to Not Triangle can

be written as [1 F], which means it traverses selection (or Branch) number

1 and takes F(alse) decision. For calculation purpose, (T)rue is represented

by 0 (originally derived from 0 distance for desired branch/decision) and F

by 1 in the rest of the thesis. With this notation, the four target paths in

tA2008 are [1 1] for Not Triangle, [1 0 2 0] for Scalene, [1 0 2 1 3 0] for

Isosceles, and [1 0 2 1 3 1] for Equilateral.

4.2.2.5 Instrumented Test Program

In the instrumented version, a probe that has variable traversedPath in it is

inserted before any selection statements for tracking traversed path. Upon

entering a selection, the probe merges previously traversed branch number -

decision pair with the currently executed pair in traversedPath. The current

executed branch is assigned a decision value by fitness function fitnessTri-

angle(). After the execution, traversedPath will contain a path traversed by
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particular input.

function [traversedPath, type] = triangle(sideLengths)

traversedPath = [];

A = sideLengths(1); % First side

B = sideLengths(2); % Second side

C = sideLengths(3); % Third side

% instrument Branch # 1

traversedPath = [traversedPath 1 fitnessTriangle(1, A, B, C)];

if ((A+B > C) && (B+C > A) && (C+A > B)) % Branch # 1

% instrument Branch # 2

traversedPath = [traversedPath 2 fitnessTriangle(2, A, B, C)];

if ((A ~= B) && (B ~= C) && (C ~= A)) % Branch # 2

type = ’Scalene’;

else

% instrument Branch # 3

traversedPath = [traversedPath 3 fitnessTriangle(3, A, B, C)];

if (((A == B) && (B ~= C)) || ((B == C) && (C ~= A)) || ...

((C == A) && (A ~= B))) % Branch # 3

type = ’Isosceles’;

else

type = ’Equilateral’;

end

end

else

type = ’Not a triangle’;

end

4.2.2.6 Fitness Function

The following is source code for fitnessTriangle() function. Korel’s fitness

function is embedded in the function. Each case inside the switch statement

represents each selection function in the tA2008. So, each case is already

embedded with Korel’s fitness function (see branchVal) on how to evaluate

the decision based on the parameter values supplied to it.

function branchVal = fitnessTriangle(branchNo, A, B, C)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% branch #1: (A+B > C) & (B+C > A) & (C+A > B)

term(1) = C - (A+B);

term(2) = A - (B+C);
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term(3) = B - (C+A);

for i=1:3

if (term(i) < 0),

term(i) = term(i) - k;

else

term(i) = term(i) + k;

end

end

branchVal = sum(term);

if (~((A+B > C) & (B+C > A) & (C+A > B)) & (branchVal < 0)), % Branch # 1

branchVal = -branchVal;

end

case 2,

% branch #2: (A ~= B) & (B ~= C) & (C ~= A)

if (A ~= B), term(1) = 0; else term(1) = k; end

if (B ~= C), term(2) = 0; else term(2) = k; end

if (C ~= A), term(3) = 0; else term(3) = k; end

branchVal = sum(term);

case 3,

% branch #3: ((A == B) & (B ~= C)) | ((B == C) & (C ~= A)) | ((C == A) & (A ~= B))

if (A == B), subTerm(1) = 0; else subTerm(1) = abs(A-B); end

if (B ~= C), subTerm(2) = 0; else subTerm(2) = k; end

if (B == C), subTerm(3) = 0; else subTerm(3) = abs(B-C); end

if (C ~= A), subTerm(4) = 0; else subTerm(4) = k; end

if (C == A), subTerm(5) = 0; else subTerm(5) = abs(C-A); end

if (A ~= B), subTerm(6) = 0; else subTerm(6) = k; end

term(1) = subTerm(1) + subTerm(2);

term(2) = subTerm(3) + subTerm(4);

term(3) = subTerm(5) + subTerm(6);

branchVal = min(term);

end

end

4.2.3 Example: mmA2008

The second test program is mmA2008 with the following source code. It has

a single loop, with two sequential selection IFs inside the loop. Figure 4.2 is

CFG of mmA2008.

function [miniMaxi] = minimaxi(num)

numLength = length(num);

mini = num(1);

maxi = num(1);

idx = 2;

while (idx <= numLength) % Branching #1

if maxi < num(idx) % Branching #2
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maxi = num(idx);

end

if mini > num(idx) % Branching #3

mini = num(idx);

end

idx = idx+1;

end % while end

miniMaxi = [mini maxi];

end

Start

Stop

B1

B2

B3

True

True
False

False

True

False

Figure 4.2: CFG of mmA2008

The existence of the loop at B1 increases the number of paths. The

following are the 13 target paths for mmA2008.

• loop executed 0 times:

[1 1]
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• loop executed one time:

[1 0 2 0 3 1 1 1]

[1 0 2 1 3 0 1 1]

[1 0 2 1 3 1 1 1]

• loop executed two times:

[1 0 2 0 3 1 1 0 2 0 3 1 1 1]

[1 0 2 0 3 1 1 0 2 1 3 0 1 1]

[1 0 2 0 3 1 1 0 2 1 3 1 1 1]

[1 0 2 1 3 0 1 0 2 0 3 1 1 1]

[1 0 2 1 3 0 1 0 2 1 3 0 1 1]

[1 0 2 1 3 0 1 0 2 1 3 1 1 1]

[1 0 2 1 3 1 1 0 2 0 3 1 1 1]

[1 0 2 1 3 1 1 0 2 1 3 0 1 1]

[1 0 2 1 3 1 1 0 2 1 3 1 1 1]

The instrumented version of mmA2008 source code is as follows.

function [traversedPath, miniMaxi] = minimaxi(num)

traversedPath = []; % traversedPath contains branch# and its corresponding branchVal.

numLength = length(num);

mini = num(1);

maxi = num(1);

idx = 2;

traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])]; % instrument

while (idx <= numLength) % Branching #1

traversedPath = [traversedPath 2 fitnessMiniMaxi(2, [maxi num(idx)])]; % instrument

if maxi < num(idx) % Branching #2

maxi = num(idx);

end

traversedPath = [traversedPath 3 fitnessMiniMaxi(3, [mini num(idx)])]; % instrument

if mini > num(idx) % Branching #3

mini = num(idx);

end

idx = idx+1;

traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])]; % instrument

end % while end

miniMaxi = [mini maxi];

end
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The following is the code for fitness function fitnessMiniMaxi(). Korel’s

fitness function is already formulated in every branchVal evaluation.

function branchVal = fitnessMiniMaxi(branchNo, predicate)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% branch #1: (idx <= numLength)

branchVal = predicate(1) - predicate(2);

case 2,

% branch #2: (maxi < num(idx))

branchVal = predicate(1) - predicate(2);

case 3,

% branch #3: (mini > num(idx))

branchVal = predicate(2) - predicate(1);

end

if ((branchNo == 2) || (branchNo == 3)),

if (branchVal < 0)

branchVal = branchVal - k;

else

branchVal = branchVal + k;

end

end

end

4.2.4 Test Program Preparation

Appendix B presents full details (source code, CFG, target paths, instru-

mented source code, fitness function) for all test programs. All of the details

have been prepared manually, in this thesis. Automation of these tasks is an

important research area, but beyond the scope of this thesis.

4.3 System Operation

In order to apply the proposed approach appropriately, a testing manual for

using the test generation system (TGS) has been developed. The manual
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consists of two major parts: testing guide and operating instruction. The

detail of it is presented in Appendix C.1.

4.3.1 Preparation

Test program preparation has been described in Section 4.2.

4.3.2 Test Data Representation

For each test problem, a test case is one set of input values. Each input

(chromosome) has its domain, which is further decomposed into sub-domains,

i.e. allele range. For tA2008, the input is three integers, e.g. (3, 4, 5), and

each integer has its domain, e.g. 0 to 10000.

4.3.3 Execution

In general, the execution of GA-based path testing is as follows:

1. Initial population is generated

2. For each chromosome, i.e. set of input values

(a) Execute instrumented program with this input

(b) Record which execution path is followed

If this is a path not covered before,

• record this test data,

• note this path is now covered
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(c) Evaluate fitness

3. If stopping condition not yet reached, go to Step 2

4. Record statistics

Ideally, if there are N target paths, the search stops with N different

chromosomes recorded, each of which causes execution of a different target

path. In practice, one path could be covered by many test data, but it is not

the other way around. So, only the first test datum that covered a path is

recorded. When a path is covered, it is removed from the target list in the

next generation, if the search is still going on.

Information regarding test data that cover the same path is a potential

heuristic for supporting identification of equivalence partitioning. It is also

useful for estimating the path complexity with respect to the other target

paths. This is an interesting research area.

4.3.4 Experiment

Each variation of a test program is run 30 times. The same 30 seeds are used

for all variations on experiments. The test programs are those identified in

Section 4.1.2.
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Chapter 5

Challenges and Key Parameters

5.1 Introduction

Hundreds of papers on testing and debugging in search based software engi-

neering (SBSE) have appeared in the literature from as early as 1976 [12].

Most of them have concentrated on either branch or statement coverage and

relatively few have considered path testing. Those that have, used GAs to

evolve test cases.

Path testing can find deeper logical errors that may not be found using

branch or statement coverage, because errors associated with different num-

bers of iterations through loops can be exposed. Each different number of

iterations in loops is considered a different path. For example, a loop can be

executed in several ways, such as no iterations, once, twice, and more. All

these executions represent different paths.

Path testing requires coverage of the feasible target paths as well as recog-
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nition of infeasible paths. It is unlikely that complete path coverage can be

found because a loop may be repeated infinite times. One way to overcome

this problem is to limit the executions for a loop to a reasonable number.

Even though this is not complete path coverage, the expectation is that it is

enough to expose the most likely errors.

This work aims to analyze some challenges of path testing, identify the

control parameters that have most effect on the performance of GA-based

path testing, and find appropriate values for those control parameters. The

challenges include test program instrumentation, target paths generation,

control flow generation, fitness function generation, and infeasible paths de-

tection. Relying on analytical and manual work to handle these challenges

is time consuming and error prone. In particular, this is likely to happen as

test programs are getting bigger and more complicated. Although automat-

ing these processes could have more benefit by having bigger test programs

and more number of test programs, the effort to do it does not relate to the

contribution of the thesis. In this work, all manual works have been carefully

taken by verifying and validating several times.

The experiments were conducted using 21 test programs from the litera-

ture, varying each parameter through a set of plausible values. In a two-step

process the best parameter settings as well as the most influential parameters

were determined.

The chapter is organized as follows. Section 5.2 describes proposed ap-

proaches, test programs preparation, and experiments design. In Section

5.3, the experimental results are presented. Section 5.4 explains the analysis

on parameters setup, test program characteristics, path testing adequacy,
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and search technique. Some threats to the experimental results validity are

showed in Section 5.5. Section 5.6 concludes the chapter.

5.2 Approach and Test Programs

The experiments described in this chapter aim to shed some light on the

challenges and limitations of path testing. These experiments build on the

previous work of Ahmed and Hermadi in 2008 [20]. The previous experi-

ments concentrated on the effect of using different fitness functions. These

experiments seek to reveal behaviors of path testing as parameter settings

are changed, e.g. path coverage achievement as the population size and other

parameters vary. Test programs and their target paths are selected from the

literature. The following sections describe the details of the experiments.

5.2.1 Test Programs

In this research, 21 test programs are selected for experimentation as listed

in Table 4.1. The details of the test programs are presented in Section 4.1.

The test programs cover a range of program types and so are a valid set

of test data. The details are described in the classification of test programs

in Section 4.1.1

5.2.2 Search Setup

GA is used as the search technique in these experiments, in line with other

recent research in this area [12].
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The following settings are used: random seeded initial population genera-

tion, Roulette Wheel selection (RWS), single point crossover, and generation

gap. Generation gap is set to 90%, i.e. 90% of the population experiences

GA’s operators. 30 runs were made with each combination of parameter

settings, always using the same 30 random number seeds.

The fitness function used in the experiments combines approximation

level and branch distance [20]. Approximation level (AL) measures similar-

ity/dissimilarity between the path taken by an input data and a target path;

it is counted as the number of matched/unmatched branches. The count

continues as far as the first unmatched branch encountered. Branch distance

(BD) is calculated as Korel’s distance function [8], if the path taken differs

from the target path of interest. AL and BD can be combined in different

ways, each combination representing a different fitness function. The best

fitness function out of 32 different fitness functions, studied in [56], is cho-

sen in this research. It is one that considers all current (uncovered) target

paths, path-wise traversal, normalized branch distance, normalized violation

(negation of AL), normalized fitness value, and no weighting between AL

and BD.

In test programs that have variable-sized chromosomes, the range of chro-

mosome lengths is determined by two extreme values related to the number

of loop iterations in the test programs, i.e. exercising no iterations and many

iterations. For example, suppose a test program may require at least two

positive integers to either avoid a loop or enter a loop once, but it needs

three positive integers to execute a loop twice: thus its input length must be

varied between two and three positive integers. For example, a test program
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that accepts an input between 2 and 3 integers at a time may have input

either [-1 30] or [10 -3 400].

5.2.3 Control Parameters

Four GA parameters are considered in the experiments. They are population

size, number of generations, allele range, and mutation rate. Others are fixed,

as mentioned in Section 5.2.2. The ranges of values for those parameters were

chosen based on past experiences [56, 20].

To begin with, 9 different values (10, 30, 50, 70, 100, 150, 200, 250, 300)

were investigated for population size, 5 values (50, 100, 250, 500, 1000) for

the number of generations, 4 ranges ([0 10000], [0 1000], [0 100], [0 10]) for

allele range, and 2 values (0.15, 0.3) for mutation rate.

As the experiments progressed, the ranges of the parameter values were

narrowed down as it became clear that some values were beyond the range

of being useful. This approach of setting GA parameters is similar to that of

the racing algorithm [155].

5.3 Experimental Results (Key Parameters)

5.3.1 Best Parameters

For each test program, a two-phase analysis was done. Firstly, best parameter

settings were identified by cumulative plotting of the results over all runs as

parameters vary. Secondly, deciding which parameter matters most was then
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done by seeing the effect of varying each parameter by itself while each other

parameter is fixed at its best value.

5.3.1.1 Detailed Example

To illustrate, the process of finding the best parameter settings for population

size, number of generations, allele range, and mutation rate is presented in

detail for tA2008.

In searching for best population size, Figure 5.1 depicts that at least 85%

of 1200 runs per population size that covered all 4 target paths is achieved at

a population size of 150. Having bigger population size such as 200, 250, and

300 does not significantly increase the number of runs that cover the same

number of paths. Thus, the population size 150 is the optimal choice.
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Figure 5.1: Effect of population size on tA2008
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Similarly, Figure 5.2 shows cumulative number of runs as number of gen-

erations varies. At 250 generations, over 73% of 2160 runs found all the

paths. Neither doubling (500) nor quadrupling (1000) the number of genera-

tions significantly increases the number of runs that found all the paths. This

also means that the efforts exerted are doubled or quadrupled, but the gain

is not commensurate. So, 250 generations is taken as the optimal parameter

value.
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Figure 5.2: Effect of number of generations on tA2008

As for allele range, the best range is [0 10], with which over 98% of 2700

runs covered all the paths as presented in Figure 5.3. This means that even

though the range is very narrow, it suffices to cover almost all the paths.

In Figure 5.4, mutation rate 0.3 has the most number of runs that found

all the paths: 72.8% of 5400 runs found all the paths. However, this is very
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Figure 5.3: Effect of allele range on tA2008

close to 0.15 mutation rate which achieved 68.5%.

5.3.1.2 All Test Programs

The tA2008 program was investigated first. There are 360 different combi-

nations of parameter values, with 30 runs per combination, requiring 10800

runs.

The experimental results suggested that the number of generations and

the allele range could be narrowed down. For the next 5 programs, 216

combinations of parameter values were used (dropping 1000 for the number

of generations, and the longest allele range). 30 runs per combination were

still executed, requiring 6480 runs.
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Figure 5.4: Effect of mutation rate on tA2008

Based on the analysis of results from the first 6 test programs, the param-

eter ranges for the next 3 programs were further reduced to (30, 100, 250)

for population size, (50, 500) for number of generations, 2 allele ranges that

are program dependent, and 0.15 for mutation rate. Each program required

360 runs (12 combinations × 30 runs).

The remaining 12 test programs were run using the same parameter set-

tings as had been used for the previous test program(s) with the most similar

program characteristics (classified similarly in the proposed classification of

test programs). For example, eR1985 and qG1997 have similar character-

istics to some other test programs in terms of input type and length e.g.

binA2008, bubA2008, gA2008, iA2008, mmA2008, and rA2008. For both of

these, a low population size (50) was best.
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Having regard to the cumulative plots for all parameters, Table 5.1 presents

the best parameter settings for all of the test programs. It has best com-

binations of population size Pop, number of generations Gens, allele range

Allele, and mutation rate Mut.

Table 5.1: Best Parameter Settings

No Program Pop Gens Allele Mut

1 tA2008 150 250 0 10 0.30

2 mmA2008 200 100 -10 10 0.15

3 iA2008 70 50 -10 10 0.15

4 bisA2008 100 100 1.72 1.75 0.30

5 binA2008 30 50 -10 10 0.15

6 bubA2008 50 50 -10 10 0.30

7 gA2008 250 50 0 20 0.10

8 rA2008 250 500 0 20 0.10

9 mtA2008 250 50 0 20 0.10

10 tM2004 150 250 0 10 0.30

11 eiR1985 50 50 0 10 0.30

12 qG1997 50 50 1 10 0.30

13 ttB2002 250 500 0 20 0.15

14 eiB2002 250 500 -10 10 0.15

15 qB2002 250 500 0 20 0.15

16 scB2002 250 500 1 128 0.15

17 fcB2002 250 500 -10 10 0.15

18 fB2002 100 100 1 200 0.15

19 bG2011 100 50 -10 10 0.15

20 fG2011 250 500 -10 10 0.15

21 sG2011 250 50 -10 10 0.15

Table 5.2 presents path coverage when the best parameter setting was

used for each test program. The table has number of target paths Paths,

number of feasible paths Feas, maximum of Feas found PFM, average over
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30 runs of Feas found PF, number of Feas missing out of PFM MPFM,

number of missing Feas out of PF MPF, CCL, and CCU. Twenty out

of 21 test programs achieve 100% coverage of feasible paths in at least one

run. bisA2008 program has 3 paths remaining not found, this is due to the

requirement that the root of the equation being solved need to be exactly

0 (zero), so any approximations are not accepted. In other words, these 3

paths are feasible but they are less likely to find unless the root is exactly

0.0. The least coverage is seen with fG2011, which has the highest MPF.

Table 5.2: Path Coverage

Program Paths Feas PFM PF MPFM MPF CCL CCU

tA2008 4 4 4 4.00 0 0 4 13

mmA2008 13 13 13 13.00 0 0 4 4

iA2008 6 5 5 5.00 0 0 4 5

bisA2008 9 9 6 6.00 3 3 5 7

binA2008 7 7 7 7.00 0 0 3 3

bubA2008 15 4 4 4.00 0 0 4 5

gA2008 8 5 5 5.00 0 0 4 4

rA2008 5 4 4 4.00 0 0 4 4

mtA2008 52 20 20 19.00 0 1 7 16

tM2004 8 7 7 6.23 0 0.77 5 5

eiR1985 12 3 3 2.97 0 0.03 4 4

qG1997 21 4 4 4.00 0 0 4 4

ttB2002 8 8 8 8.00 0 0 8 11

eiB2002 31 5 5 5.00 0 0 11 15

qB2002 27 10 10 10.00 0 0 6 7

scB2002 15 4 4 4.00 0 0 5 5

fcB2002 5 5 5 5.00 0 0 5 8

fB2002 32 8 8 7.87 0 0.13 9 10

bG2011 20 11 11 11.00 0 0 4 4

fG2011 30 30 30 25.13 0 4.87 7 7

sG2011 32 32 32 32.00 0 0 6 6
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Considering Table 5.1, a reasonable set of common parameter values is

as follows: Pop 100, Gens 100, Allele about 200 range, crossover rate 0.9,

and Mut 0.15. Path coverage using this common set of parameter values

is also evaluated throughout this thesis, and compared with path coverage

using the best parameter values.

The reason for considering a common set of parameter values is to un-

derstand the performance that can be expected by a tester starting on a

new test program. They will not know what the best parameters are for the

program, and considerable effort (perhaps more than is saved by automating

the search for test data) might be needed to find them. The best parameters

setup is expected to cover more paths than that of the common one, but it

is valuable to know what path coverage is possible without spending time or

adding testing complexity to find the optimal setup.

5.3.2 Influence of Parameters

Varying one parameter and fixing the rest is a way to identify parameter

influence as mentioned earlier. For example, Figure 5.5 shows which param-

eter most matters for program tA2008. Varying population, generation, or

mutation rate does not change the path coverage as shown in Figure 5.5(a),

Figure 5.5(b), and Figure 5.5(d). On the contrary, Figure 5.5(c) shows that

varying the allele range between [0 100] and [0 10] changes the path coverage.

Another example is mmA2008: varying 3 parameters can change the path

coverage. Figure 5.6 presents the parameters variation. Population size and

allele range are the parameters that matter as shown in Figure 5.6(a) and
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Figure 5.5: Parameters influence for tA2008
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Figure 5.6: Parameters influence to mmA2008

Figure 5.6(c), respectively.

In general, more target paths are found, regardless of the test program,

with larger population sizes, more generations, narrower allele ranges, and

higher mutation rate. If these four parameters are ordered in decreasing order

of impact, they are: population size, allele range, number of generations, and

mutation rate. However, the magnitude of increment varies from one test

program to the next.

Further observations of the experimental results are:

1. The hardest target paths for GA to cover involve generating multiple

input numbers with exactly the same values, regardless of the test pro-
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gram. For example, a path that requires 3-integer input to be exactly

the same numbers (such as in tA2008, mtA2008, tM2004, and ttB2002)

is always covered last.

2. One of the hardest paths is one that must be covered by producing

an exact real input number from an approximation. For example, a

path in bisA2008 is always found the latest on average, because its

input data must be exactly zero input value that is computed from the

previous statements.

3. The longer the path the longer time is consumed in terms of the pro-

gram execution and the number of generations. A longer path means

more branches to traverse in the path representation. In most of the

test programs, the longer paths are the later ones to be covered, al-

though not always. For example, some longer paths are found earlier

than the shorter one such as in mmA2008 and mtA2008.

4. The more complex a branch the longer time to cover it. For example,

some shorter paths in mmA2008 and mtA2008 were covered later than

the longer. The path is shorter but the complexity that builds up from

each traversed branch adds up, making it harder to cover.

5. In general, the number of paths found (almost) logarithmically de-

creases as number of generations increases as shown in Figure 5.7.

6. The presence of loop(s) greatly increases the computation complexity.

For example, mtA2008 has more paths and longer paths (20 feasible

out of 52 paths; 1 loop) than its components tA2008 (4 feasible out of

4 paths) and mmA2008 (13 feasible out of 13 paths; 1 loop).
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Figure 5.7: PF of the 2nd run of fG2011 using best parameters setup

7. Higher CC number means more difficult to cover the paths.

8. Variable length input means more time complexity due to larger search

space. Test programs that have such inputs are mmA2008, iA2008,

binA2008, bubA2008, fB2002, and bG2011.

5.3.3 Path Complexity of Classes of Test Programs

Intuitively, complexity of program (target) paths (hereafter paths complex-

ity) is a function of many aspects of the program: input size, control flow

structure, complexity of selection statements, and infeasible paths. Path

complexity can be approached using the one or more of the following: the

percentage of average number of path founds (over several runs or repe-

titions), the average number of test data generated (over several runs or

repetitions), the size of the input space, the percentage of infeasible (target)

paths, and the ratio between infeasible and feasible (target) paths. Except
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for the first, for all these measures a higher value means a more complex test

program.

The measures in percentage, i.e. the percentage of average number of

paths found and the percentage of infeasible paths, are comparable, which

means it makes sense to compare the value of a test program with the value

of other test programs. The percentage of average number of paths found pf

is calculated as the average number of paths covered over some repetitions

divided by the number of feasible paths of the test program. It is formulated

in Equation 5.1.

pf =
1
n
×

∑n
i=1 |pfi|
|fp|

(5.1)

where n is the number of repetitions, |pfi| is the number of paths found for

the ith repetition, and |fp| is the number of feasible paths. This measure is

to find the efficacy of the search and the maximum value, i.e. 100%, means

that all the (target) paths are feasible and covered.

The average number of test data generated notd is calculated as in Equa-

tion 5.2.

notd =

∑n
i=1 |tdi|
n

(5.2)

where n is the number of repetitions and |tdi| is the number of test data

generated until the last feasible paths found for the ith repetition. It also

means that if a test program has 5 feasible paths regardless of any number of

infeasible ones, and the maximum number of generations has been reached

and only 4 feasible paths were found before the maximum number of genera-

tions then the number of test data generated is up to where the 4th feasible

one was found. notd is a measure of the search efficiency. In order to make



Chapter 5. Challenges and Key Parameters 108

it a comparable measure, it must be normalized or scaled to certain range.

The percentage of infeasible paths if is formulated as in Equation 5.3.

if = 1− |fp|
|tp|

(5.3)

where |fp| is the number of feasible paths and |tp| is the number of all target

paths. The if is to measure the composition of infeasible target paths.

The size of input space is is formulated as in Equation 5.4.

is =
n∏
i=1

|Di| (5.4)

where n is the number of input components and |Di| is the size of the ith

input component.

The ratio between feasible and infeasible paths rif is computed as in

Equation 5.5.

rif =
|ip|
|fp|

(5.5)

where |ip| is the number of infeasible paths and |fp| is the number of feasible

paths.

The rif is to measure the strength or influence of the infeasible paths over

the feasible ones. is, if , and rif are inherent for a test program, while pf

and notd apply to the execution of the test program with certain parameters

setup.

In this report, all the measures are considered for the analysis as listed in

the following Table 5.3. Column Best Pars means that the search is using the

best parameter setup for each test program, Column Comm Pars means that
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the search is using the common parameter setup for every program, while

Column C-Only Pars means the search is using common parameters and all

the infeasible paths are excluded from the target paths for all test programs.

Table 5.3: Path Complexity Measures
Program is

Paths
if rif

Best Pars Comm Pars C-Only Pars

All Feas pf notd pf notd pf notd

tA2008 8,120,601 4 4 100.0% 195.0 92.5% 3,570.0 92.5% 3,570.0

mmA2008 8,161,203 13 13 100.0% 820.0 90.8% 3,513.3 90.8% 3,513.3

iA2008 66,273,881,404,206 6 5 16.7% 0.2 100.0% 102.7 100.0% 81.9 100.0% 74.7

bisA2008 900,000,000 9 9 66.7% 183.0 66.7% 183.0 66.3% 200.0

binA2008 66,273,881,404,005 7 7 100.0% 33.9 100.0% 30.0 100.0% 30.0

bubA2008 66,273,881,404,206 15 4 73.3% 2.8 100.0% 50.0 100.0% 55.0 100.0% 56.7

gA2008 40,401 8 5 37.5% 0.6 100.0% 257.5 71.4% 5,242.5 88.0% 7,308.3

rA2008 40,401 5 4 20.0% 0.3 100.0% 250.0 99.3% 4,192.5 94.2% 4,000.0

mtA2008 8,120,601 52 20 61.5% 1.6 95.0% 1,700.0 87.7% 2,900.0 89.7% 10,350.0

tM2004 8,120,601 8 7 12.5% 0.1 89.0% 319.5 58.1% 2,675.0 57.1% 3,135.0

eiR1985 40,401 12 3 75.0% 3.0 99.0% 53.5 100.0% 496.5 86.7% 1,151.5

qG1997 40,000 21 4 81.0% 4.3 100.0% 50.0 100.0% 50.0 100.0% 50.0

ttB2002 8,120,601 8 8 100.0% 5,907.5 87.9% 767.5 87.9% 766.7

eiB2002 40,401 31 5 83.9% 5.2 100.0% 250.0 98.0% 3,132.5 98.6% 4,132.5

qB2002 40,401 27 10 63.0% 1.7 100.0% 257.5 86.3% 750.0 89.0% 3,900.0

scB2002 72,057,594,037,927,936 15 4 73.3% 2.8 100.0% 767.5 95.8% 2,825.0 96.7% 4,191.7

fcB2002 8,120,601 5 5 100.0% 292.5 98.0% 4,007.5 98.0% 4,008.3

fB2002 1,608,040,201,000 32 8 75.0% 3.0 98.4% 487.0 98.4% 487.0 95.8% 633.3

bG2011 2,664,210,362,169,924,600 20 11 45.0% 0.8 100.0% 153.0 100.0% 147.0 100.0% 146.7

fG2011 13,254,776,280,841,400 30 30 83.8% 64,792.5 31.0% 14,682.5 31.0% 14,682.5

sG2011 328,080,401,001 32 32 100.0% 3,032.5 55.5% 16,432.5 55.5% 16,432.5

Average 55.2% 2.0 96.8% 3,807.4 86.5% 3,153.4 86.6% 3,920.7

Min 12.5% 0.1 66.7% 33.9 31.0% 30.0 31.0% 30.0

Max 83.9% 5.2 100.0% 64,792.5 100.0% 16,432.5 100.0% 16,432.5

Median 63.0% 1.7 100.0% 257.5 95.8% 2,675.0 92.5% 3,513.3

StDev 25.8% 1.6 8.1% 14,040.5 19.1% 4,461.2 18.5% 4,704.1

The following Table 5.4 lists the test programs based on its structure

(Struct column), expression (Expr column) classification, and combination

of both (SC column), which means the second and the third digits in Ap-

pendix A.1 that represent complexity of a program without considering its

structure. Recall, in the Struct, class 0 means that the program has no loop,

at most, and in the Expr, class 1 means that the program has one simple

expression, at most, i.e. no logical connectors in it.

In this subsection, the aim of the analysis is to find out what program

characteristics affect the search performance in term of path coverage and

number of test data generated. In other words, it is to analyse the efficacy

and the efficiency of the search method.
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Table 5.4: Test Program Class

No Program
Classification

Struct Expr SC

1 tA2008 0 3 03

2 mmA2008 1 1 11

3 iA2008 2 2 22

4 bisA2008 1 3 13

5 binA2008 1 1 11

6 bubA2008 2 2 22

7 gA2008 1 1 11

8 rA2008 1 1 11

9 mtA2008 1 3 13

10 tM2004 0 1 01

11 eiR1985 1 1 11

12 qG1997 2 2 22

13 ttB2002 0 2 02

14 eiB2002 3 1 31

15 qB2002 2 2 22

16 scB2002 1 1 11

17 fcB2002 0 2 02

18 fB2002 3 2 32

19 bG2011 2 1 21

20 fG2011 0 1 01

21 sG2011 0 1 01

The parameters setup being used for this classification analysis is the

common one.

The best parameters setup is expected to cover more paths than that of

the common one. To check this, we conducted statistical t-test, comparing

the efficacy measure pf with significance level α=0.05. The null hypothesis

H0 is that there is no significant difference in pf between the best and the

common parameters setup. The t-test results that H0 is rejected with P(T≤t)
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two-tail = 0.01, which is less than α. This means that best parameters

setup has better efficacy than the common one. This result matches with

expectation.

Another thing to consider is that having infeasible paths might hinder the

search. So, we conducted t-test for the test programs having all (feasible and

infeasible) paths and only feasible paths by removing the infeasible ones,

if any. The test result shows that there is no significant different in path

coverage between having all paths and only feasible ones; with P(T≤t) two-

tail = 0.98, which is greater than α. That is, the presence of infeasible paths

in the list of target paths does not hinder the search for the feasible paths.

In order to achieve the aim of this sub section, i.e. investigating the rela-

tionship between the classification schemes and the programs characteristics,

the following pf , if , and notd measures of the paths complexity is plotted

against the classification scheme using common parameters setup and a curve

is fitted using non-linear regression model. The model is evaluated using the

goodness of fit R2; if it is 1 then exactly fit, and the closer to 1 the fitter the

curve.

Figure 5.8 describes the SC classification that merges structure classifi-

cation (the first digit) and expression classification (the second digit). So,

SC 01 means that no loops and one simple expression. In the figure, there

are 3 SC classes that have no test programs, i.e. Class 12, 23, and 33. pf-C

means the pf (number of paths found) when the common parameters setup

is applied.

Figure 5.9 describes the structure classification. In the figure, the number

of paths found (pf-C) increases polynomially (Poly. (pf-C); y = 0.0045x3 −
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Figure 5.8: SC Classification

0.0777x2 + 0.3858x+ 0.3924; R2 = 1) as the number of loops increases, while

the number of infeasible paths (if) increases exponentially (Expon. (if);

y = 0.0022e1.5153x;R2 = 0.9583). The number of test data (notd) increases

polynomially (Poly. (notd); y = 0.0046x3 +0.0562x2−0.4081x+0.6021;R2 =

1) as the numbers of infeasible paths and loops increase. Further, if any of the

paths is infeasible then the search will necessarily continue for the maximum

number of generations, so notd reaches the maximum number of test data;

while in the figure the number of test data is only considered until the last

path was found irrespective of having infeasible paths or not.

A two stage analysis has been conducted to evaluate the experimental

results.

The first stage is to see how Struct and Expr affect the difficulty of

the search problem, as represented by the numbers of feasible paths (fp)

and infeasible paths (if). Table 5.5 and Table 5.6 present the regression
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Figure 5.9: Structure Classification

analysis of Struct and Expr against fp and of Struct and Expr against

if , respectively.

Table 5.5: The regression of Struct and Expr against fp

Element Coefficient p-value

Intercept 14.556 0.007

Struct -2.914 0.137

Expr -1.110 0.654

In Table 5.5, only the intercept has p-value below 0.05, representing statis-

tical significance: neither Struct nor Expr significantly affects fp. Further,

the regression adjusted R2 value 0.0313 is very low, which means that Struct

and Expr explain almost none of the variation in fp.

Table 5.6: The regression of Struct and Expr against if

Element Coefficient p-value

Intercept -5.148 0.261

Struct 7.023 0.001

Expr 2.987 0.202

In Table 5.6, the p-value of Struct is significant, which suggests that
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Struct is relevant to (or does affect) if . However, Expr does not affect if .

In addition, the adjusted R2 value is 0.45, so the model explains nearly half

of variation in if .

Analysis of Variance (ANOVA) showed no significant relationship be-

tween fp and any of Struct (p-value = 0.137), Expr (p-value = 0.654),

and their interaction (p-value = 0.116). For if , there was again no sig-

nificant relationship with Expr (p-value=0.202) or the interaction term (p-

value=0.9999), but there was a significant relationship with Struct (p-value=0.0007).

This confirms the regression analysis.

Suppose we consider the percent of total paths that are infeasible (if

percent), instead of just the raw number of infeasible paths. The results are

the same: the p-value of Struct is significant (below 0.05), while the p-values

of Expr and the interaction term are not.

To summarise, the regression analysis and ANOVA have confirmed the

following findings: Struct is significantly related to if but not to fp, Expr

is not significantly related to either of fp and if , and there is no significant

interaction between Struct and Expr.

The second analysis is to see if and how Struct and Expr affect the

performance of the searching system. This is done by investigating whether

there is a relationship between Struct and Expr and the pf and notd.

The rationale for this is that Struct and Expr may affect fp and if (we

have seen that Struct does, but Expr does not. In turn, fp and if have

an indirect effect on pf and notd: fp puts an upper limit on the value of

pf , and the presence of infeasible paths means that a stopping condition is
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needed and this affects notd.

Tables 5.7 to 5.9 present the regression analysis of Struct and Expr

against pf and notd using best, common (comm), and common only

(commo) parameter values.

Table 5.7: The regression of Struct and Expr against notd-best

Element Coefficient p-value

Intercept 14489.83 0.095

Struct -4489.94 0.178

Expr -3428.61 0.422

In Table 5.7, none of the p-values is below 0.05, so neither Struct nor

Expr significantly affect notd. Furthermore, the adjusted R2 value is very

low, and the p-value of ANOVA for the interaction term is 0.317 (well above

0.05), which means Struct and Expr can be considered as independent

variables.

Table 5.8: The regression of Struct and Expr against notd-comm

Element Coefficient p-value

Intercept 8927.09 0.0009

Struct -2315.19 0.0165

Expr -1931.86 0.1075

In Table 5.8, the p-values of the intercept and Struct are well below 0.05,

so Struct affects notd. However, the adjusted R2 value is 0.28 (quite low).

The p-value of ANOVA for the interaction term is 0.388, suggesting again

that there is no significant interaction between Struct and Expr.

The results in Table 5.9, are the same as in Table 5.8: the p-values of the

intercept and Struct are significant, Expr is not significant, the adjusted
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Table 5.9: The regression of Struct and Expr against notd-commo

Element Coefficient p-value

Intercept 8319.64 0.0047

Struct -2176.93 0.0442

Expr -1180.36 0.3797

R2 value is low (0.15), and the p-value of ANOVA for the interaction term

is not significant (0.39).

Since Expr is not seen to be significantly related to any of the dependent

variables of interest, i.e. fp, if , pf , and notd, the rest of the analysis of the

performance of the system concentrates on Struct only.

The regression equation relating Struct to pf , using best parameter val-

ues, has a very low adjusted R2 value (0.058). The p-value of ANOVA for

Struct is 0.152 (not significant) and for the intercept it is 0.0002 (significant).

The regression equation relating Struct to pf , using common parameter

values, has an even lower adjusted R2 value (-0.038). The p-value of ANOVA

for Struct is 0.608 (not significant) and for intercept is 0.00006 (significant).

These results are identical when using common parameter values but exclud-

ing any test program that has infeasible paths.

In summary, Expr is not significantly related to the difficulty of the search

(fp and if), or to the performance of the searching system (pf or notd, for all

parameters variations). Struct is significantly related to if and if percent:

as Struct increases, the number of infeasible paths increases. Struct is

also weakly related to notd, with all parameters variations. There is no

significant interaction between Struct and Expr, so they may be considered

as two independent variables.
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5.4 Analysis

The analysis presented in this section is based on best parameter settings,

test program characteristics, path testing adequacy, and search technique

used.

Recall, as seen in Table 5.1, population size can be set to 100 for low

or medium CC programs, and 250 for medium or high CC programs. The

number of generations can be set to 50 for low or medium CC programs,

or 500 for medium or high CC programs. Having allele range as narrow as

possible is always better, as long as the region of feasible solutions is not

removed. Higher mutation rate helps for some test programs, but broadly it

can just be set to one reasonable value.

Recall that the common parameter values are as follows: Pop 100, Gens

100, Allele about 200 range, crossover rate 0.9, and Mut 0.15. Table 5.10

shows the path coverage when all test programs are processed using this

parameter setup.

Comparing PF with best parameters and common parameters, paired t-

test results in P(T≤t) two-tail = 0.07, which is more than 0.05. This suggests

that there is no statistically significant different in PF between using the

best and common parameters setup. However, the best parameters setup is

usually better on average.

Using common parameters reduces computational time, by avoiding the

need of fine tuning to find the best parameters. Moreover, knowing that

there is no significant difference between using best and common parameters

gives confidence that using common parameters setup will not significantly
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Table 5.10: Path Coverage using Common Parameter Values

Program Feas Allele PFM PF MPFM MPF CCL CCU

tA2008 4 0 100 4 3.70 0 0.30 4 13

mmA2008 13 -100 100 13 11.80 0 1.20 4 4

iA2008 5 -100 100 5 5.00 0 0.00 4 5

bisA2008 9 1.72 1.75 6 6.00 3 3.00 5 7

binA2008 7 -100 100 7 7.00 0 0.00 3 3

bubA2008 4 -100 100 4 4.00 0 0.00 4 5

gA2008 5 0 200 5 3.57 0 1.43 4 4

rA2008 4 0 200 4 3.97 0 0.03 4 4

mtA2008 20 0 200 18 17.53 2 2.47 7 16

tM2004 7 0 200 6 4.07 1 2.93 5 5

eiR1985 3 0 200 3 3.00 0 0.00 4 4

qG1997 4 1 200 4 4.00 0 0.00 4 4

ttB2002 8 0 200 8 7.03 0 0.97 8 11

eiB2002 5 -100 100 5 4.90 0 0.10 11 15

qB2002 10 0 200 10 8.63 0 1.37 6 7

scB2002 4 1 128 4 3.83 0 0.17 5 5

fcB2002 5 -100 100 5 4.90 0 0.10 5 8

fB2002 8 1 200 8 7.87 0 0.13 9 10

bG2011 11 -100 100 11 11.00 0 0.00 4 4

fG2011 30 -100 100 13 9.30 17 20.70 7 7

sG2011 32 -100 100 32 17.77 0 14.23 6 6

reduce effectiveness.

Test program characteristics can be used to describe computational com-

plexity of generating test data for required paths. Looking at Table 5.2, CC

alone (either CCL or CCU) could not be used to estimate test program

complexity with respect to path testing. There is no connection, because

they are not dependent on one another, between CCL and/or CCU and

MPFM and/or MPF. However, CC, number of loops, and loop configura-
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tion together are good candidates to measure the complexity.

Increasing the population size increases effectiveness more than increasing

the number of generations. According to the schemata theorem of genetic

algorithms, the number of good/promising chromosomes is proportional to

population size. For example, Figure 5.6(a) shows that population variation

matters more to path coverage than generation variation as can be seen in

Figure 5.6(b). A formula for deriving suitable population size was presented

by Goldberg et. al. [156]. The population sizes we studied align with that

formula, i.e. population size corresponds to promising input data.

Narrowing the allele range significantly improves the effectiveness of the

test data generator. Narrowing the allele range means reducing the search

space itself. For example, in mmA2008, narrowing the allele range from

[−100 100] to [−10 10] increases the number of runs that cover 13 paths

from 6 runs to 30 runs. However, it is more risky to do this, because optimal

solution(s) can be missed unless the domain of the search space, and possibly

optimal solution location(s), are well known.

Infeasible paths do not always mean a flawed algorithm, but if one of

them appears then it is worth investigating to ensure that the algorithm is

not incorrect.

Loops contribute more to path infeasibility than selections. Most of the

time, infeasible paths caused by loop(s) do not mean faults, it is merely that

their input is outside the feasible space.

On the contrary, selection-based infeasible paths have higher chance to

identify faulty logic, although this does not always apply. In reality, if a
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program contains both loops and selections then most likely it will have

infeasible paths with intertwined paths between loops and selections. For

example, eR1985 has two paths, i.e., [1 1 2 1 3 0] and [1 1 2 1 3 1], that need

to traverse to FALSE decisions of both the first and the second branches (see

its target paths in the Appendix B.9). These paths are infeasible because

both branches hold some expressions that do not allow both of them to go to

FALSE decisions at the same time. Therefore, there is nothing wrong with

them because they are infeasible by design.

GA has following characteristics [45]: incompleteness, probabilistic, and

randomness. This means that (1) whenever a path is not found it does not

mean that the path is infeasible, it just may not have been found yet; and (2)

running GA with the same parameters but different seeds can give different

outputs. As an example for (1), 3 feasible paths in bisA2008 are always

covered last if at all, because all of them require precise zero input values

that are calculated from the previous statements. The example for (2) is

that each experiment treatment in this research is always run 30 times with

different random seed each time and all of them produced different outputs.

5.5 Threats to Validity

There are at least two threats to the validity of the approach: program

scaling, and determining the range of values for variable-length chromosomes.

As the test program gets larger, sizing population, determination of allele

range, and generating target paths may be slightly different. There should

be a more rigorous or formulated approach for deciding what must be the
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range of chromosome length for test programs that require variable-length

chromosomes.

The approach used in the experiments to decide the range is done man-

ually, based on the number of loops required by target paths. In sorting

algorithms such as iA2008 and bubA2008, the input length varies from 1 to

6 to satisfy the different loops in the target paths. For example, one path

can require 1 input, such as [2] or [30], while another one requires 3 inputs,

such as [1 3 90] or [30 -4 28]. Such a manual approach is not practical for

larger programs.

So, both population sizing and formulated variable length chromosome

must be related to program size or at least to its input size. For exam-

ple, algorithms that take various number of inputs must use variable-length

chromosomes, such as mmA2008, iA2008, binA2008, bubA2008, fB2008, and

bG2011. Further, as the range of variable-length chromosome increases the

population size must increase too.

5.6 Conclusions

The experimental results have shown that varying the population size and

the allele range generally has significant impact on path testing performance,

while varying the number of generations and mutation rate has less impact

in term of number of paths found.

Population size and number of generations can be set to 100 or 250 and 50

or 500, respectively, for low-medium or medium-high complexity programs.

The narrowest possible allele range really helps the search, as long as feasible
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solution regions are not omitted as a result. Mutation rate can be set to a

single reasonable value.

CC alone is not enough to estimate complexity of test program with

respect to path testing. It has to be combined with some other measures

that give more information on path coverage.

These conclusions will assist us in future work on GA-based path testing.

Further investigation is needed to understand test program complexity, such

as combination of CC, number of loops, and loops configuration. Further

work can also involve how to decide whether a path is infeasible whenever no

test data has been found for it; and whether other types of search techniques,

for example combining GA with local search, are suitable for path testing.

These are the subjects of later chapters.



Chapter 6

Automating the Decision of

When to Stop Searching

6.1 Introduction

Any evolutionary algorithm requires one or more stopping criteria to halt

the evolution [45].

Most real-world problems are computationally expensive and constrained.

An evolutionary algorithm should be stopped as soon as a pseudo-optimal

solution seems to have been detected, because the actual optimum is un-

known and there may be no assurance that further improvement is likely, or

even possible.

The objective of this chapter is to develop criteria to halt the evolution-

ary test data generation process as soon as it seems not worth continuing,

without compromising testing confidence level. This can be achieved if there



Chapter 6. Automating the Decision of When to Stop Searching 124

is a mechanism that can predict the likelihood of producing test data that

can cover target paths that are not yet covered, in the coming evolutionary

processes.

The idea that is proposed in this chapter was inspired by reliability models

used in software testing [58]. These models estimate the future reliability of

software, based on the past history of what errors were found, and when.

Originally, such models were proposed to forecast logarithmically decaying

phenomena that are common in nature.

In software testing, reliability means the probability of failure-free op-

eration of software at a particular time in a certain environment: in other

words, the probability that no new faults will be encountered as the software

continues to execute beyond a given time. The analogy to test data genera-

tion is to determine the probability that no new paths will be covered as the

search continues for further generations. When this probability falls below

a certain threshold, the search can cease. The assumption is that any paths

that are not yet covered at the time when searching stops are infeasible.

In path testing, it is most likely that some target paths will be infeasi-

ble. The existence of an infeasible path means that it can never succeed to

search until all target paths are covered: searching beyond covering the last

feasible path is worthless. To keep searching for infeasible paths is useless

and wastes resources for no possible gain. Any criteria that can stop the

process earlier, without compromising testing reliability, i.e. by not missing

any feasible paths, will be able to save much time and cost. In particular,

stopping criteria that are based on the information obtained during the test

process itself (i.e. number of failures found, and when), are desirable, rather
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than using arbitrary values for stopping parameters. Moreover, having these

stopping criteria at hand can identify potentially infeasible paths, though

further analytical investigation is required to be sure.

6.2 Approach

6.2.1 Model fitting

Estimating the number of failures expected in a testing interval is analogous

to estimating the number of paths to be covered in a test data generation.

To complete the analogy, we must identify what things in reliability growth

models map to corresponding things in evolutionary path coverage.

In Section 3.4, the reliability growth model defines that λ(τ) represents

the expected number of failures λ at a certain point in time τ . In evolutionary

path coverage, λ(τ) is to be the expected number of previously-uncovered

target paths λ that are covered at a certain generation τ . λ0 is the number

of paths that are covered in the first generation. θ is the rate of reduction in

the normalized path coverage rate. Both values of λ0 and θ can be obtained

from the data.

In our experiments the value of θ is initially set to 0.3, because prelim-

inary investigation shows that the average number of paths covered from

one finding generation to the next is always about a third across all the test

programs. This value is refined after each new generation.

Every new generation adds a tuple to the series of (generation number,

newly covered paths) pairs (“generations-paths pairs”). For example, if 13
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paths were covered in the first generation, no new paths were covered in

generations 2 to 4, and 2 new paths were covered in generation 5, the first

five tuples in the series would be {(1,13), (2,0), (3,0), (4,0), (5,2)}.

A series of curves can be constructed by fitting the series of generation-

paths pairs. For example, after two generations a curve can be fitted based

on the points {(1,13), (2,0)}. After 3 generations, a curve can be fitted based

on three points {(1,13), (2,0), (3,0)}, and so on.

From this equation, a new refinement or estimate of θ can be calculated.

The curve can be used either to predict the number of new paths found in the

next generation, using Equation 2.4, or the number of generations required

to cover a certain number of paths, using Equation 6.1.

In order to visualize the approach, let us plot a few curves for the following

set of data using Equation 2.4. Suppose the (x, y) pairs of generation number

x and non-zero number of paths found y are {(1, 13), (5, 2), (16, 1), (22,

1)}; for other x values up to 25 the y value is zero. Figure 6.1 shows the set

of curves fitted as the number of data points increases from 2 to 25. The

topmost curve has the least number of pairs of data, and the bottom one has

the most pairs of data present. As the number of pairs of data increases, the

curves tend to converge. In this example, the curves converge in fewer than

10 generations.

6.2.2 Decision Rules

One of the main research questions is how to make use of the model to stop

the evolutionary path testing as soon as it is identified that it is not useful to
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Figure 6.1: Plot of λ(τ)

continue the search any more. This means a decision rule must be defined.

We investigate two proposed decision rules, separately and then in com-

bination.

6.2.2.1 Reliability Rule:

One decision rule is to stop the search when the probability of finding new

paths λ(τ) in generation τ , i.e. Equation 2.4, is small enough, as indicated

by reaching a certain threshold. This is called (coverage) reliability rule,

because it also can be interpreted as at what generation τ(λ) will a given

reliability λ be achieved. This is stated in Equation 6.1, which is derived
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from Equation 2.4.

τ(λ) =
λ0
λ
− 1

λ0θ
(6.1)

6.2.2.2 Stability Rule:

Another rule is to stop as soon as the fitted curves from consecutive genera-

tions have converged sufficiently i.e. when the change in θ from one genera-

tion to the next falls below a threshold.

6.2.2.3 Reliability Stability Rule:

This rule combines the above two rules, to require that both the Reliability

Rule and the Stability Rule be satisfied. The Stability Rule means that

extrapolations are stable, and the Reliability Rule means that the chance of

finding test data to cover newly uncovered paths is low.

6.3 Experiments

The purpose of the experiments is to study the proposed method as an alter-

native stopping criterion in evolutionary path testing. What sort of informa-

tion is most helpful that can be extracted from the model? What confidence

level can be achieved about feasible and infeasible paths should the approach

be applied? How does the performance vary across different runs for the

same test program, or across different test programs?
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6.3.1 Test Programs

The same 21 test programs studied in Chapter 5 were used to answer these

questions. Seven of them have no infeasible paths: tA2008, mmA2008,

binA2008, ttB2002, fcB2002, fG2011, and sG2011. The rest have one or

more infeasible paths.

Test programs are divided into two groups, for parameter tuning and eval-

uation. The parameter tuning group is used to identify appropriate thresh-

olds for the decision rules (what threshold value of λ is best for deciding that

further searching is not worthwhile, and what threshold change in θ is best

for judging that a model is stable). The evaluation group is used to evaluate

the resulting rules.

The parameter tuning group consists of mmA2008, iA2008, bisA2008,

and mtA2008. These four programs cover the set of different program char-

acteristics, making them a reasonable training set: some include infeasible

paths, and others do not; they have a range of CC, and all include loops.

The rest form the evaluation group.

6.3.2 Setup

The aim of the experiments is to find useful decision rules, as described in

Section 6.2.2. The main aim is to find optimal thresholds for the rules and

to investigate their respective strengths and weaknesses.

In the parameter tuning phase, 30 runs were made with each of the four

programs selected for tuning. The best threshold settings were identified in

this phase. 30 runs were then made with these settings, for each evaluation
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program.

The population size for each tuning program varied from 50 to 250, de-

pending on the program, using the best values identified in Table 5.1 and as

suggested in [23]. The tuning programs were set up using the best parameter

values while the evaluation programs were investigated using both the best

and common parameters values.

For the reliability rule, three different threshold values were investigated

for λ: 0.5 (meaning 0.5 probability that a new path is found in the next

generation of searching), 0.25, and 0.1. There is a trade-off: it takes more

generations to reach a lower threshold, but there is less chance of missing

feasible paths by stopping early.

For the stability rule, θ starts at 0.3 as mentioned in Section 6.2.1. The

value of θ is refined each time the model is updated. We observe that each

time the model is refitted, the curve becomes more stable. A stable curve

means that the expected number of paths to be covered will not change much

in many more generations to come. This is one of the signs to stop looking

for new paths. This stability can be detected by small changes in θ values

across generations or so called ∆θ. As the required ∆θ must be small enough,

without prior information on how small it should be, experiments are needed

to identify a good threshold for ∆θ. So, six thresholds were investigated for

∆θ: 1
1000

(=0.001), 1
2000

(=0.0005), 1
3000

(=0.00033), 1
4000

(=0.00025), 1
5000

(=0.0002), and 1
10000

(=0.0001).
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6.4 Experimental Results (Stopping Criteria)

6.4.1 Performance measures

In this section, various statistics are reported.

Some represent parameter settings:

• Gens: the number of generations at which searching will stop. If all

target paths are covered sooner, searching stops straight away; oth-

erwise it continues until this number of generations. Gens is set to

100 throughout, based on the best values identified in Table 5.1 and

experience from [23];

• the threshold applied to the value of λ;

• the threshold applied to the value of ∆θ.

The rest report performance:

• PFM (paths found maximum): the maximum number of target paths

found (across 30 runs);

• PF (average paths found): the mean number of target paths found

(averaged across 30 runs);

• PFMR (paths found maximum using the rule): the maximum number

of target paths found if the rule is applied (across 30 runs);

• PFR (average paths found using the rule): the mean number of target

paths found if the rule is applied (averaged across 30 runs);



Chapter 6. Automating the Decision of When to Stop Searching 132

• GR (number of generations using the rule): the number of generations

at which the decision rule suggests that searching should stop (averaged

across 30 runs). Note that it is possible for GR to be greater than

Gens, if the history suggests that searching is still worthwhile when

Gens generations are reached;

• MP (missed feasible paths): the number of feasible target paths that

are missed by stopping early instead of going through to Gens gener-

ations (averaged across 30 runs);

• MTP (missed target paths): the number of test programs that miss

out some of their target paths;

• MPP (missed feasible paths in percentage): MP in percentage;

MPP =
MP

PF
× 100 (6.2)

• Eff (efficiency), efficiency achieved: the fraction of total execution time

that is saved by stopping early instead of going through to Gens gen-

erations (averaged across 30 runs);

Eff =
Gens - GR

Gens
(6.3)

• Ex-Eff (efficiency that excludes inefficiency): exclusive Eff that ex-

cludes negative efficiency;

• ITP (inefficient test programs): number of test programs that have

negative efficiency (i.e. searching continues beyond Gens generations)

when stopping rule is applied.



133 6.4. Experimental Results (Stopping Criteria)

6.4.2 Execution time

Another important aspect of implementing a rule is its computational time.

In other words, rule execution should not cause detrimental computation

overhead, which would mean that the benefit of saving time from stopping

the search earlier is not significant.

Experiments show that the execution time cost involved in fitting curves

and making early-stopping decisions is very small. In our research environ-

ment, the average execution time over 30 runs per GA generation of mtA2008

using best parameters setup was about 9.72 seconds, whereas the average ex-

ecution time for curve fitting was about 0.05 seconds. Thus, any cost incurred

in applying the decision rules considered here is insignificant.

6.4.3 Training programs

6.4.3.1 Reliability Rule (RR)

Table 6.1 summarizes the training result for RR. At λ = 0.1, there is very

little chance that a path is missed, but that level of confidence is reached

by searching for longer so the efficiency is lower, i.e. 40.2% (the average of

Eff at λ = 0.1 across 4 training programs, shown in Table 6.1) compared to

λ = 0.5 and λ = 0.25 which achieve 88.3% and 76.2%, respectively.

λ ≤ 0.25 is a reasonable trade-off between efficiency (above 60% for all

four programs) and getting an effective result (3% chance or less of missing

paths, in all four programs). Based on this, λ ≤ 0.25 and λ ≤ 0.10 are

selected for thorough testing.
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Table 6.1: Training Programs, Reliability Rule

Program Gens λ GR PFR MPP (%) Eff (%)

mmA2008 100 0.50 16.00 12.93 0.54 84.00

0.25 32.23 13.00 0.00 67.77

0.10 80.94 13.00 0.00 19.06

iA2008 100 0.50 6.29 5.00 0.00 93.71

0.25 13.20 5.00 0.00 86.80

0.10 33.10 5.00 0.00 66.90

bisA2008 100 0.50 6.51 5.43 5.24 93.49

0.25 13.39 5.57 2.97 86.61

0.10 34.04 5.67 1.22 65.96

mtA2008 100 0.50 18.02 16.62 3.37 81.98

0.25 36.31 17.13 0.41 63.69

0.10 91.09 17.20 0.00 8.91

6.4.3.2 Stability Rule (SR)

Table 6.2 summarizes the result of the SR rule with the four training pro-

grams. In the first three training programs, ∆θ ≤ 0.00025 (column ∆θ) is

the point at which no missing path is encountered (column MPP(%)) and

yet it still has high efficiency on average. On the other hand, ∆θ ≤ 0.0001

has the fewest number of missed paths. So, ∆θ ≤ 0.00025 and ∆θ ≤ 0.0001

are selected for thorough testing.

6.4.3.3 Reliability Stability Rule (RSR)

Table 6.3 summarizes the RSR rule with the training programs. The thresh-

olds of λ and ∆θ for RSR are as identified immediately above. With these

thresholds, there are no missing paths in the first three training programs,

and efficiency above 50% is achieved for all four programs.
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Table 6.2: Training Programs, Stability Rule

Program Gens ∆θ GR PFR MPP (%) Eff (%)

mmA2008 100 0.001 13.74 12.93 0.54 86.26

0.0005 21.07 12.93 0.54 78.93

0.00033 26.03 12.93 0.54 73.97

0.00025 30.03 13.00 0.00 69.97

0.0002 33.33 13.00 0.00 66.67

0.0001 43.17 13.00 0.00 56.83

iA2008 100 0.001 22.41 5.00 0.00 77.59

0.0005 31.55 5.00 0.00 68.45

0.00033 39.41 5.00 0.00 60.59

0.00025 44.69 5.00 0.00 55.31

0.0002 49.69 5.00 0.00 50.31

0.0001 70.82 5.00 0.00 29.18

bisA2008 100 0.001 23.47 5.70 0.52 76.53

0.0005 34.93 5.70 0.52 65.07

0.00033 42.07 5.82 0.00 57.93

0.00025 47.10 5.79 0.00 52.90

0.0002 53.63 5.80 0.00 46.37

0.0001 72.50 5.73 0.00 27.50

mtA2008 100 0.001 12.17 15.67 8.90 87.83

0.0005 20.58 16.70 2.91 79.42

0.00033 24.04 16.88 2.03 75.96

0.00025 27.32 16.82 2.09 72.68

0.0002 31.76 17.04 0.47 68.24

0.0001 64.15 17.22 0.06 35.85

Table 6.4 presents the distribution of GR across all runs with λ ≤ 0.25

and ∆θ ≤ 0.00025, i.e. minimum Min, maximum Max, average Mean,

and standard deviation Stdev. It shows that GR has little variation, which

means the prediction is quite stable, with StDev about 1 generation across

all runs for all four programs.
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Table 6.3: Training Programs, RSR Rule

Program Gens GR PFR MPP (%) Eff (%)

mmA2008 100 30.53 13.00 0.00 69.47

iA2008 100 22.41 5.00 0.00 77.59

bisA2008 100 33.00 6.00 0.00 67.00

mtA2008 100 32.33 16.67 1.92 67.67

Table 6.4: Training Programs, GR Distribution

Program Min Max Mean Stdev

mmA2008 30 31 30.53 0.51

iA2008 22 25 22.41 1.05

bisA2008 33 33 33.00 0.00

mtA2008 32 33 32.33 0.58

As just noted, two RSRs are investigated. Based on the training results,

the focus will be the combination of RSRs and there are two λ values and

two ∆θ values that construct two RSR combinations, i.e. λ ≤ 0.25 and

∆θ ≤ 0.00025 (RSR1), and λ ≤ 0.1 and ∆θ ≤ 0.0001 (RSR2).

6.4.4 Testing programs

Each of these RSRs will be executed using the best and common parameters

setups. So, total number of testing combinations is four, i.e. RSR1 with

best parameters (RSR1-B), RSR1 with common parameters (RSR1-C),

RSR2 with best parameters (RSR2-B), and RSR2 with common param-

eters (RSR2-C).

Table 6.5 presents the results for RSR1-B for all 21 test programs.

Mostly, efficiency is not relevant for programs with no infeasible paths be-

cause the search will stop as soon as all target paths are covered; this is
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usually before GR would suggest stopping. However, a few runs of pro-

grams with no infeasible paths still can go beyond Gens generations: in six

test programs, i.e. rA2008, mtA2008, tM2004, ttB2002, fB2002, and fG2011,

some feasible paths have been missed in a very few runs, that would have

been found if the search had not stopped early according to RSR1-B. On

average, the number of missed paths is 0.48. Two test programs have nega-

tive efficiencies, i.e. mtA2008 and sG2011. A negative efficiency means that

the suggested number of generations by the rule is higher than the default

100 generations. mtA2008 has more infeasible target paths (above 60% of

the total target paths) than feasible ones; this could be one of the factors

that made the rule suggest stopping at more than 100 generations. As for

sG2011, even though it has no infeasible paths, it is still not efficient. This

could be due to the high number of target paths, i.e. 32 paths. On average,

the efficiency is 59% and Ex-Eff is 72.85%.

Table 6.6 shows the results for RSR1-C. As expected, in comparison with

RSR1 with best parameters, the number of missing paths is not as good: it

increases to 0.84 on average. The number of test programs that miss some

feasible paths has doubled; from six to ten test programs. They are gA2008,

rA2008, mmA2008, tM2004, eiR1985, qB2002, scB2002, fB2002, fG2011, and

sG2011. However, only 3 out of 8 are the same as the test programs that

miss the feasible paths in RSR1-B. On average, the efficiency is 74%, with

no inefficiency at all.

Table 6.7 displays the results for RSR2-B. This has the most stringent

thresholds, and the best parameter settings for each test program, so it would

be expected to miss the fewest feasible paths. The number of missing paths is
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Table 6.5: Testing Programs RSR1-B

No Program PFM PF PFMR PFR GR MP Eff %

1 tA2008 4 4.00 4 4.00 25.83 0.00 89.67

2 mmA2008 13 13.00 13 13.00 30.00 0.00 70.00

3 iA2008 5 5.00 5 5.00 23.00 0.00 54.00

4 bisA2008 6 6.00 6 6.00 20.93 0.00 79.07

5 binA2008 7 7.00 7 7.00 19.10 0.00 61.80

6 bubA2008 4 4.00 4 4.00 29.00 0.00 42.00

7 gA2008 5 5.00 5 5.00 22.10 0.00 55.80

8 rA2008 4 4.00 4 3.97 26.27 0.03 94.75

9 mtA2008 20 19.00 20 18.88 78.79 0.12 -57.58

10 tM2004 7 6.23 7 6.21 21.34 0.02 57.32

11 eiR1985 3 2.97 3 2.97 29.37 0.00 41.26

12 qG1997 4 4.00 4 4.00 25.00 0.00 50.00

13 ttB2002 8 8.00 8 7.53 19.11 0.47 96.18

14 eiB2002 5 5.00 5 5.00 22.00 0.00 95.60

15 qB2002 10 10.00 10 10.00 27.07 0.00 94.59

16 scB2002 4 4.00 4 4.00 27.67 0.00 94.47

17 fcB2002 5 5.00 5 5.00 22.40 0.00 95.52

18 fB2002 8 7.87 8 7.67 20.61 0.20 79.39

19 bG2011 11 11.00 11 11.00 27.33 0.00 45.34

20 fG2011 30 25.13 18 15.83 31.33 9.30 87.47

21 sG2011 32 32.00 32 32.00 95.40 0.00 -90.80

0.18 on average, and there are only four test programs that miss any feasible

paths, i.e. ttB2002, mtA2008, fB2002, and fG2011. In term of efficiency,

more test programs were less efficient, i.e. 9 test programs. This is due to

more restricted rule in setting up number of generations as more feasible

paths were found as the search progresses. On average, total efficiency is

8.74% and Ex-Eff 66.86% on average.

Table 6.8 exhibits the results for RSR2-C. This has the same stringent
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Table 6.6: Testing Programs RSR1-C

No Program PFM PF PFMR PFR GR MP Eff %

1 tA2008 4 3.83 4 3.83 29.53 0.00 70.47

2 mmA2008 13 11.63 11 11.41 32.5 0.22 67.50

3 iA2008 5 5.00 5 5.00 22.50 0.00 77.50

4 bisA2008 6 6.00 6 6.00 20.90 0.00 79.10

5 binA2008 7 7.00 7 7.00 19.00 0.00 81.00

6 bubA2008 4 4.00 4 4.00 25.23 0.00 74.77

7 gA2008 5 3.57 1 1.00 6.57 2.57 93.43

8 rA2008 4 3.97 4 3.80 56.80 0.17 43.20

9 mtA2008 18 17.53 18 17.53 67.16 0.00 32.84

10 tM2004 6 4.20 6 3.90 37.83 0.30 62.17

11 eiR1985 3 2.97 1 1.00 6.19 1.97 93.81

12 qG1997 4 4.00 4 4.00 25.00 0.00 75.00

13 ttB2002 8 7.03 8 7.03 19.13 0.00 80.87

14 eiB2002 5 4.90 5 4.90 23.83 0.00 76.17

15 qB2002 10 8.63 8 8.00 20.00 0.63 80.00

16 scB2002 4 3.83 1 1.00 7.00 2.83 93.00

17 fcB2002 5 4.90 5 4.90 25.16 0.00 74.84

18 fB2002 8 7.87 8 7.67 20.61 0.20 79.39

19 bG2011 11 11.00 11 11.00 27.62 0.00 72.38

20 fG2011 13 9.30 12 7.69 26.31 1.61 73.69

21 sG2011 32 17.77 18 10.69 27.30 7.08 72.70

thresholds as RSR2-B, but uses the common parameter setting. It has the

fewest missing paths on average, i.e. 0.1 paths. It has the same number (8) of

test programs that miss some feasible paths as RSR1-C, and more programs

that miss some feasible paths than RSR2-B. Only 3 of them match the test

programs that miss feasible paths with RSR1-C. On average, total efficiency

is 32% and Ex-Eff is 34.59% on average.

Table 6.9 shows which test programs have missed one or more feasible
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Table 6.7: Testing Programs RSR2-B

No Program PFM PF PFMR PFR GR MP Eff %

1 tA2008 4 4.00 4 4.00 51.37 0.00 79.45

2 mmA2008 13 13.00 13 13.00 76.27 0.00 23.73

3 iA2008 5 5.00 5 5.00 72.13 0.00 -44.26

4 bisA2008 6 6.00 6 6.00 64.90 0.00 35.10

5 binA2008 7 7.00 7 7.00 58.10 0.00 -16.20

6 bubA2008 4 4.00 4 4.00 88.00 0.00 -76.00

7 gA2008 5 5.00 5 5.00 70.20 0.00 -40.40

8 rA2008 4 4.00 4 4.00 55.17 0.00 88.97

9 mtA2008 20 19.00 20 18.87 112.70 0.13 -125.40

10 tM2004 7 6.23 7 6.23 66.57 0.00 -33.14

11 eiR1985 3 2.97 3 2.97 89.53 0.00 -79.06

12 qG1997 4 4.00 4 4.00 32.67 0.00 34.66

13 ttB2002 8 8.00 8 7.87 58.60 0.13 88.28

14 eiB2002 5 5.00 5 5.00 70.00 0.00 86.00

15 qB2002 10 10.00 10 10.00 61.93 0.00 87.61

16 scB2002 4 4.00 4 4.00 48.52 0.00 90.30

17 fcB2002 5 5.00 5 5.00 70.83 0.00 85.83

18 fB2002 8 7.87 8 7.86 61.38 0.01 38.62

19 bG2011 11 11.00 11 11.00 66.80 0.00 -33.60

20 fG2011 30 25.13 30 21.61 90.60 3.46 63.76

21 sG2011 32 32.00 32 32.00 135.37 0.00 -170.74

paths with which RSR. Only one test program misses feasible paths with

every RSR.

Table 6.10 shows statistics of rules in term of MP. Although both RSR1-

C and RSR2-C have the same size of ITP, RSR2-C has the fewest missing

paths on average, i.e. 0.1 paths. Further, it also has the lowest standard

deviation on average, i.e. 0.17 paths.

Table 6.11 presents statistics of rules in term of Eff. RSR1-C is the
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Table 6.8: Testing Programs RSR2-C

No Program PFM PF PFMR PFR GR MP Eff %

1 tA2008 4 3.83 4 3.83 29.53 0.00 70.47

2 mmA2008 13 11.63 13 11.57 63.50 0.07 36.50

3 iA2008 5 5.00 5 5.00 71.00 0.00 29.00

4 bisA2008 6 6.00 6 6.00 65.03 0.00 34.97

5 binA2008 7 7.00 7 7.00 59.00 0.00 41.00

6 bubA2008 4 4.00 4 4.00 41.37 0.00 58.63

7 gA2008 5 3.57 5 3.18 106.00 0.32 -6.00

8 rA2008 4 3.97 4 3.97 72.30 0.00 27.70

9 mtA2008 18 17.53 18 17.53 91.97 0.00 8.03

10 tM2004 6 4.20 6 4.10 112.83 0.10 -12.83

11 eiR1985 3 2.97 3 2.40 91.60 0.57 8.40

12 qG1997 4 4.00 4 4.00 32.67 0.00 67.33

13 ttB2002 8 7.03 8 7.03 59.53 0.00 40.47

14 eiB2002 5 4.90 5 4.90 62.57 0.00 37.43

15 qB2002 10 8.63 10 8.63 56.60 0.00 43.40

16 scB2002 4 3.83 4 3.82 60.82 0.00 39.18

17 fcB2002 5 4.90 5 4.90 68.63 0.00 31.37

18 fB2002 8 7.87 8 7.86 61.38 0.00 38.62

19 bG2011 11 11.00 11 11.00 66.73 0.00 33.27

20 fG2011 13 9.30 13 8.76 89.31 0.45 10.69

21 sG2011 32 17.77 32 15.96 99.23 0.30 0.77

most efficient rule with no test program showing any inefficiencies.

Table 6.12 summarizes PF and PFR for all test programs across all

applicable rules. Using paired t-Test for means, PFRs for RSR1-C and

RSR2-C are significantly different with P (T ≤ t) = 0.03; that is; the more

stringent rule covers significantly more paths.
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Table 6.9: Test Programs with Missing Paths

No Program RSR1-B RSR1-C RSR2-B RSR2-C

1 tA2008

2 mmA2008 x x

3 iA2008

4 bisA2008

5 binA2008

6 bubA2008

7 gA2008 x x

8 rA2008 x x

9 mtA2008

10 tM2004 x x

11 eiR1985 x x

12 qG1997

13 ttB2002 x x

14 eiB2002

15 qB2002 x

16 scB2002 x x

17 fcB2002

18 fB2002 x x x

19 bG2011

20 fG2011 x x x x

21 sG2011 x x

Table 6.10: Statistics of Rules on MP
Rule MTP MP STD MIN MAX

RSR1-B 2 0.48 2.02 0.00 9.30

RSR1-C 0 0.84 1.69 0.00 7.08

RSR2-B 9 0.18 0.77 0.00 3.52

RSR2-C 2 0.17 0.42 0.00 1.81

6.5 Analysis

6.5.1 Test Program Classification

Analytically, a test problem can fall into the following classes. Knowing how

many are in each class can help to understand the value of the proposed
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Table 6.11: Statistics of Rules on Efficiency

Rule ITP Eff(%) STD MIN MAX

RSR1-B 2 58.85 48.73 -90.80 96.18

RSR1-C 0 73.99 14.46 32.84 93.81

RSR2-B 9 8.74 78.28 -170.74 90.30

RSR2-C 2 31.96 23.03 -12.83 70.47

Table 6.12: Summary of PF and PFR

Program
Paths PF PFR

All Feas Best Comm RSR1-B RSR1-C RSR2-B RSR2-C

tA2008 4 4 4.00 3.83 4.00 3.83 4.00 3.83

mmA2008 13 13 13.00 11.63 13.00 10.50 13.00 11.57

iA2008 6 5 5.00 5.00 5.00 5.00 5.00 5.00

bisA2008 9 9 6.00 6.00 6.00 6.00 6.00 6.00

binA2008 7 7 7.00 7.00 7.00 7.00 7.00 7.00

bubA2008 15 4 4.00 4.00 4.00 4.00 4.00 4.00

gA2008 8 5 5.00 3.57 5.00 1.00 5.00 3.18

rA2008 5 4 4.00 3.97 3.97 3.73 4.00 3.97

mtA2008 52 20 19.00 17.53 18.88 17.54 18.87 17.53

tM2004 8 7 6.23 4.20 6.21 3.90 6.23 4.10

eiR1985 12 3 2.97 2.97 2.97 1.00 2.97 2.40

qG1997 21 4 4.00 4.00 4.00 4.00 4.00 4.00

ttB2002 8 8 8.00 7.03 7.53 7.03 7.87 7.03

eiB2002 31 5 5.00 4.90 5.00 4.90 5.00 4.90

qB2002 27 10 10.00 8.63 10.00 8.00 10.00 8.63

scB2002 15 4 4.00 3.83 4.00 1.00 4.00 3.82

fcB2002 5 5 5.00 4.90 5.00 4.90 5.00 4.90

fB2002 32 8 7.87 7.87 7.67 7.67 7.86 7.86

bG2011 20 11 11.00 11.00 11.00 11.00 11.00 11.00

fG2011 30 30 25.13 9.30 15.83 7.69 21.61 8.76

sG2011 32 32 32.00 17.77 32.00 10.69 32.00 15.96
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approach.

Class F1 All paths are feasible, and all are found before GR says to stop.

For these programs, searching stops early anyway, so the proposed ap-

proach is just overhead. However, as noted in section 6.4.2, timing test

shows the overhead is trivial, so this is not a problem.

Class F2 All paths are feasible, but GR would suggest stopping before the

last feasible path(s) are actually found. For these, the GR approach

means there is a loss of performance, i.e. it is wrong to assume that all

paths not found yet when GR says to stop are infeasible. Execution

time is shorter, but something is lost, so this is a trade-off.

Class I1 Some paths are infeasible, but all that are feasible are found by

the time GR says to stop. The assumption that missed paths are

infeasible is correct. GR saves time, and there is no loss of accuracy,

so the proposed approach is beneficial.

Class I2 Some paths are infeasible, and some that are actually feasible get

missed if searching stops at the time suggested by GR. The assumption

that all remaining uncovered paths are infeasible is wrong. Like Class

F2, it is a trade-off of run time for coverage.

Table 6.13 presents the classification of test programs. One test program

is completely in F1 and F2 across all RSR combinations, i.e. tA2008 and

fG2011, respectively. Across all rules, completely in F1 is fine, but completely

in F2 means it needs further elaboration. As for fG2011, although all its

paths are feasible, they are many, i.e. 30 paths, and its space is the third

largest among the test programs (see Table 4.2).
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Seven test programs are completely in I1, i.e. iA2008, bisA2008, bubA2008,

mtA2008, qG1997, qB2002, and bG2011. The rest are combinations between

I1/F1 and I2/F2.

In term of rule restriction, the expected changes are from more to less

restricted: from I1/F1 to I2/F2, but not the opposite. Variations between

the best and common parameters setup under rule influence are not com-

parable. In other words, the comparison is only applicable between more

and less restricted rules, e.g. RSR1-B and RSR2-B. For example, in Table

6.13, gA2008 changes class from I1 to I2 when the rule changes from best to

common parameters.

Detailed inspection of the results from each run showed that the missing

paths are always the same ones, regardless of the parameter setup, the rule

restriction, randomness, or repetitions. So, the difficulty level of a path does

not change regardless of the treatments.

6.5.2 Decision Rules

The combined rule RSR merges the strengths of both RR and SR. RR ensures

that the likelihood of covering further paths is low. As λ→ 0 it is still possible

that further paths might be found but of course with very low probability.

On the other hand, SR considers the stability of the number of generations

prediction. As long as ∆θ is high, the predicted λ values over generations

may be low but they are not stable. In other words, SR affects the rate of

change of λ over generations.

As for the thresholds, smaller values mean less chance of missing feasi-
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Table 6.13: Test Programs Classification

Program RSR1-B RSR1-C RSR2-B RSR2-C

tA2008 F1 F1 F1 F1

mmA2008 F1 F2 F1 F2

iA2008 I1 I1 I1 I1

bisA2008 I1 I1 I1 I1

binA2008 F1 F1 F1 F1

bubA2008 I1 I1 I1 I1

gA2008 I1 I2 I1 I2

rA2008 I2 I2 I1 I1

mtA2008 I1 I1 I1 I1

tM2004 I1 I2 I1 I2

eiR1985 I1 I2 I1 I2

qG1997 I1 I1 I1 I1

ttB2002 F2 F1 F2 F1

eiB2002 I1 I1 I1 I1

qB2002 I1 I2 I1 I1

scB2002 I1 I2 I1 I2

fcB2002 I1 I1 I1 I2

fB2002 F2 F2 F1 F2

bG2011 I1 I1 I1 I1

fG2011 F2 F2 F2 F2

sG2011 F1 F2 F1 F2

ble paths, but they also mean searching continues for longer, costing more

computation time. On average over all test programs, the lower the value

of λ the longer time required. Selecting the threshold should be based on

the user’s preference. So, it depends on how much the user wants to spend

resources and is willing to tolerate the chance of missing some feasible paths.
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6.5.3 Efficacy and Efficiency

In all of the testing programs, very small 0.1 paths MP shows up for RSR2-

C (see Table 6.10), and GR is more efficient. The proposed approach seems

to be effective and beneficial.

This approach might suggest that it is not yet time to stop searching

when the normal maximum number of generations is reached. In this case

efficiency would appear to be negative. However, it would imply that by

keeping searching there is a real possibility to cover more paths. Thus an

arbitrary upper limit on the number of generations is replaced by an upper

limit determined by the history of finding test cases that cover paths: in

other words, an arbitrary parameter can be replaced by parameters related

to the searching performance itself. The tester can define their preferred

limits on stability and the probability of covering new paths, and let these

determine the time spent searching.

6.5.4 Threats To Validity

The following are considered to be challenges to make the approach appli-

cable. Firstly, fine tuning the rule thresholds could be better with more

training programs, because the results could be more generic and representa-

tive. However, the training programs used here represent a range of relevant

program characteristics. So, we believe the thresholds used here are reason-

able.

Secondly, testing with further programs that have different characteristics

is needed. This is in order to gain more confidence that the approach will
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be successful for a range of programs. Again, the test programs used here

display a range of characteristics; however, broader testing is a matter for

further work.

6.6 Conclusions

The proposed approach, inspired by software reliability growth models, is a

novel and promising approach to be used as a stopping criterion in evolution-

ary path testing. The justification and the experimental results have shown

its feasibility.

In deciding the threshold values for rules, the user’s preferences and the

resources available should be considered. The over-riding objective is path

coverage. As long as this is achieved, efficiency can be a consideration. In

other words, path coverage cannot be compromised to achieve higher effi-

ciency. The reliability model parameter values identified for in this work, i.e.

λ ≤ 0.1 and ∆θ ≤ 0.0001 (RSR1-C), are effective, with 0.1 feasible paths

missed and 32% more efficient on average over 21 test programs.

To conclude, this dynamic stopping criterion approach means one less

arbitrary parameter to worry about, as it is replaced by parameters oriented

to the tester’s priorities.



Chapter 7

Hybridization with Local

Search

7.1 Introduction

Genetic Algorithm (GA) has been successfully employed for path testing [12].

It has been empirically proven to be an effective and efficient approach for

generating test data. Apart from its successes, one of the main issues in

GA based path testing is its computational time. As program complexity

increases the number of target paths dramatically increases too, especially

when the program includes loops.

Generating test data that can cover a huge number of target paths can

be much harder. In addition, higher program complexity also means longer

execution time per data input. This applies just as much to methods other

than GA, because the nature of path testing as a dynamic testing approach

requires a test program to be executed using real data. Test program exe-
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cution adds a significant contribution to the overall computation of fitness

evaluation of a data input. Thus, an aim is to reduce the number of fitness

evaluations to lessen its computational time, without compromising its ef-

fectiveness. One potential way to achieve this efficiency is to hybridize GA

with local search (LS).

In this chapter, GA hybridization is investigated as an approach to creat-

ing more effective and more efficient GA-based path testing. Construction of

hybrid variants is based on the position/order of LS, size of LS, and variable

sizing of LS. The experimental results are assessed in term of number of paths

found and number of generations taken. Analysis section sheds some light

on what variants work for which test programs and why they work. Some

validity threats and conclusions end the chapter.

7.2 Local Search

Hill climbing (HC) is used as the LS algorithm. Basically, HC will exploit the

surrounding areas of selected input data for better path coverage. HC will

replace a selected input datum with a more fit neighbor, if any is available.

The best few members of the population will be selected to participate

in HC. The number of (local) neighbors for each selected member is decided

based on the size of its program input. For performance measures, both the

number of paths found and the number of generations are used as efficacy and

efficiency measures, respectively. The number of generations corresponds to

the number of fitness evaluations.

The number of chromosomes (sets of input data) to be selected for LS is
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termed LS size. A set of neighbors will be generated for each selected input

data. A selected input datum will be replaced by its best neighbor. At the

end of LS call, all newly generated and successfully selected (for being the

best) input data will be inserted to the population. The following is the

pseudo-code.

1. Select the N fittest members of population

2. Set the number of stall iterations SI to STALL ITERATIONS (3 is the

default value)

3. Initiate SI counter stall-it to 0

4. For each selected input data do

(a) Generate n neighbors; n is the size of input datum

(b) Evaluate the neighbors

(c) If the best neighbor is better, then replace the input datum and

set stall-it to 0, else increment stall-it by 1

(d) If stall-it ≤ SI and not all paths are covered yet then go to (4a),

else go to (5)

5. Insert the survived and newly created input data into the population

The number of neighbors equals the length of input datum. For example,

the number of neighbors for a 3-integer input datum is 3. Each input has two

possible movements: it could be varied up or down. A neighbor is generated

by randomly selecting an element of the input and a direction to vary. The

amount of subtraction or addition is based on the smallest increment or
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decrement of input data type. For example, an integer would be -1 or +1

and a real would be -0.1 or +0.1. Further, this amount also can be multiplied

or divided several times, in order to make larger step (or leap) in the input

data (or search) space in order to avoid local optimum. The following pseudo

code describes the generation of neighbors.

1. Set number of neighbors n for an input datum INPUT

2. If input datum is integer then set step to INT STEP, else set step to

REAL STEP

3. For n neighbors do

(a) Set IS to the size of input datum

(b) Generate a set of IS random integers between -1 and 1 named loci

(c) Multiply loci with step

(d) Create neighbor by adding loci to INPUT

(e) Check and adjust the newly created neighbor to be valid input

4. Return a set of n newly created neighbors

7.3 Hybrid Variants

LS can be called in several different ways based on its calling position and

number of iterations per call. The calling position determines its role to

prepare the population while the number of iterations contributes to how

much local optimization is wanted.
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LS can be called in several different positions with respect to generations

in GA: (1) after the initial population is created but before commencing

evolution, (2) after every generation, (3) after every certain number of gen-

erations, and (4) after every certain number of stall generations. In case (1),

the initial population will be optimized locally with the hope that GA will

start with a good population. In case (2), every newly generated population

is locally optimized before entering the next generation of the evolutionary

process. Case (3) ensures that the population is optimized locally after every

certain number of generations. This will refresh the input population with

exploitive members of the population. Case (4) introduces some locally op-

timized population in the hope that it can make its way out of a stagnant

situation.

LS can be run once, or for a certain number of iterations, or repeatedly

until there is no further improvement in best fitness value and/or path cov-

erage. The more iterations are done, the more exploitive the population.

Fewer iterations mean less time, but could miss potential improvement.

In this experiment, LS is called at the end of each certain number of gen-

erations, and it will run until there is no further improvement in either best

fitness value or path coverage after 5 iterations, on each selected neighbor.

Three LS variations are constructed: LS-GA (LS is called once, before

any generation of GA), GA-LS (LS is called after every certain number of

generations of GA), and LS-GA-LS (combination of LS-GA and GA-LS). LS-

GA aims to optimize locally the initial population, to boost GA performance

at the beginning in the hope that good seeds will find more paths more

quickly at later stages. GA-LS means that LS is called periodically, aiming
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to improve the population in the hope that it will make it easier to cover

new paths in every generation.

LS-GA-LS aims to combine the benefits of better chromosomes in the

beginning and improving the population at intervals later.

In principle, we would expect LS-GA to be a bit better than GA; GA-LS

to be better than LS-GA, because LS is executed multiple times instead of

just once; and LS-GA-LS to be better than all the others.

In Memetic Algorithm (MA), LS is executed in every generation and

applied on each population member. In contrast, we investigate less frequent

use of LS, and LS using some selected population members only.

Analytically, the proposed approach will outperform native MA in terms

of the average number of generations. It means that the number of generated

test data by the proposed approach is less than that those of MA generated

for the same path coverage. It also means fewer fitness evaluations, avoiding

an expensive part of test data generation.

7.4 Experiments

Comparison between GA and hybrid GA (hGA) with LS is performed against

18 and 21 test programs for training and testing, respectively. Each test

program is run 30 times with different random seeds. The same set of random

seeds is used across all test programs.

GA is set up with elitism and common parameters across all test problems.

However, the length of input datum (chromosome) and the allele range are
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set based on each test program’s input requirements.

As for LS size, the objectives are exploitation (not exploration) and short

execution. For these reasons, the size must be at least 1 but not too large.

Five numbers were chosen as candidates for LS size: 1, 3, 5, 10, and 15.

Experiments show that these sizes do not add significant execution time.

Other than fixed LS size, variable LS size is also introduced. Variable LS

size (LSv) changes its size in each call until it reaches a specified limit, i.e.

can be increasing or decreasing. Logically, the search is getting harder as

generations progress so that more local searching may help. So, increasing

LS size is selected, from 1 initially to 10 finally with an increment of 1 each

time.

Having LSv in mind, two more variations are added to the collection of

hybrids: GA-LSv and LS-GA-LSv. LSv-GA is not applicable because in this

variation, LS is only called once, thus has no chance to change its size.

Experiments are designed to have both training and testing processes.

The training process is to find the optimal LS size in each applicable variant,

and ultimately find the optimal hybrid among them all. In testing, the

optimal LS size and the optimal hybrid from training are tested with different

feasibility of target paths, i.e. tests that may include infeasible paths, and

feasible paths only.

Eighteen of the 21 test programs are used for training. The other 3

programs are used for testing only, i.e. bG2011, fG2011, and sG2011. These

programs are selected for testing because they are more challenging, and are

intended to assess the generalization ability of the proposed approach. In the
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training process, the total number of experiments is 17 (3 fixed LS size times

5, plus 2 LSv). For naming purpose, LSx means LS with size x (LS=x), and

LSvx means LSv with range size x (LSv=x). For example, GA-LS5 means

hybrid GA-LS with size 5, and GA-LSv110 means hybrid GA-LSv with size

between 1 and 10.

In the testing process, the optimal hybrid in each LS size (3 hybrids) and

2 hybrid LSv are used to test all 21 test programs. Statistical paired t-Test is

also conducted to judge the significance of differences between two compared

hybrids.

7.5 Experimental Results (Hybrid Variants)

7.5.1 Training

The following sub sections present different size of LS. Each sub section

reveals which hybrid variant performs best in term of number of paths found

PF and number of generations Gen. Number of paths (Paths {All}) and

number of feasible paths (Paths {Feas}) for each test program are also

shown in each comparison table.

7.5.1.1 Hybrids with LS size 1

Table 7.1 shows the comparison between GA and its hybrids with LS=1 (that

is, one chromosome is chosen for local search). GA-LS outperforms GA, LS-

GA, and LS-GA-LS both in terms of PF and Gen. GA-LS has the highest

PF and the least Gen with values 6.12 and 8.76, respectively. So, GA-LS1 is
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selected as the best in its size, i.e. LS=1.

Table 7.1: Hybrid GA with LS size 1 using All Paths

No Program
Paths GA GA-LS LS-GA LS-GA-LS

All Feas PF Gen PF Gen PF Gen PF Gen

1 tA2008 4 4 3.70 23.80 3.77 17.17 3.87 19.27 3.77 19.37

2 mmA2008 13 13 11.80 17.57 11.93 18.07 11.70 15.57 11.87 21.90

3 iA2008 6 5 5.00 1.07 5.00 1.07 5.00 1.07 5.00 1.07

4 bisA2008 9 9 6.00 1.77 6.00 1.77 6.00 1.70 6.00 1.70

5 binA2008 7 7 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00

6 bubA2008 15 4 4.00 1.10 4.00 1.10 4.00 1.07 4.00 1.07

7 gA2008 8 5 3.57 20.97 3.40 15.20 3.30 25.63 3.60 22.30

8 rA2008 5 4 3.97 16.77 3.97 15.17 3.83 14.60 3.87 12.03

9 mtA2008 52 20 17.53 11.60 17.53 10.47 17.40 12.43 17.47 14.93

10 tM2004 8 7 4.07 17.83 4.13 17.97 3.63 23.40 4.07 21.23

11 eiR1985 12 3 3.00 9.93 3.00 7.67 3.00 9.03 3.00 8.17

12 qG1997 21 4 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00

13 ttB2002 8 8 7.03 3.07 7.00 1.13 7.03 1.33 7.07 1.33

14 eiB2002 31 5 4.90 12.53 4.97 14.37 4.90 24.07 4.83 14.07

15 qB2002 27 10 8.63 3.00 8.60 1.77 8.43 1.60 8.57 8.87

16 scB2002 15 4 2.87 12.30 2.97 14.87 2.87 19.43 2.90 16.87

17 fcB2002 5 5 4.90 16.03 4.93 13.23 4.77 12.83 4.83 11.43

18 fB2002 32 8 7.87 4.87 7.93 4.70 7.90 6.80 7.90 7.10

Average 15.44 6.94 6.10 9.79 6.12 8.76 6.04 10.66 6.10 10.30

Figure 7.1 presents relative PF of GA and each hybrid variant. The test

programs are represented as a number in the x-axis. For example, number 1

is for tA2008 in the first row in Table 7.1. A positive value means more PF

than GA, which is desirable. In most of the test programs, GA-LS1 graph

is on or above the x-axis. LS1-GA performed the least in test program 10,

achieving the least PF, i.e. 0.4 paths less than GA. GA-LS has the fewest

test programs with negative PF (-PF), i.e. 3, while LS-GA-LS and LS-GA

have 5 and 7, respectively.

Figure 7.2 shows efficiency of each hybrid variant in term of Gen com-

pared to GA. A positive value means more Gens, which is less efficient and
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Figure 7.1: Comparison of PF with LS=1

undesirable. In other words, lower values are better. Most of the time, GA-

LS1 is closest to the x-axis and some points are below the axis. LS1-GA has

the most positive points in the figure, which indicates more generations are

required in some test programs compared to GA. GA-LS1 is more efficient

than LS1-GA and LS1-GA-LS1, with more test programs with the least gen-

erations. GA-LS1 has 9 test programs with negative Gens (-Gens), while

LS1-GA and LS1-GA-LS1 have 7 and 5 test programs, respectively.

The aim of LS-GA-LS was to improve at the start and also during execu-

tion, so LS-GA-LS should be better than both LS-GA and GA-LS. However,

it is not. This happens because only one chromosome is varied in LS before

GA starts, so it has only a minor effect.
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Figure 7.2: Comparison of Gens with LS=1

7.5.1.2 Hybrids with LS size 3

Table 7.2 presents the comparison between GA and its hybrids with LS=3.

Although GA-LS3 is not the most efficient, it is the best performed because

it has the highest PF of 6.15, which is the most desirable feature.

Figure 7.3 presents PF comparison between GA and its hybrids with

LS=3. GA-LS3 has the highest points among LS3-GA and LS-GA-LS3. It

also has the least -PF with 3 test programs, while LS3-GA and LS-GA-LS3

have 11 and 5 test programs respectively.

Figure 7.4 compares Gen between GA and its hybrids. LS3-GA is the

most efficient with 8 -Gen test programs, while GA-LS3 and GA-LS3 have 6

and 7 test programs, respectively. The figure also reveals that GA-LS3 graph

is about the x-axis.
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Table 7.2: Hybrid GA with LS size 3 using All Paths

No Program
Paths GA GA-LS LS-GA LS-GA-LS

All Feas PF Gen PF Gen PF Gen PF Gen

1 tA2008 4 4 3.70 23.80 3.87 16.87 3.87 19.53 3.83 12.53

2 mmA2008 13 13 11.80 17.57 12.03 19.13 11.63 16.10 12.00 19.33

3 iA2008 6 5 5.00 1.07 5.00 1.07 5.00 1.07 5.00 1.07

4 bisA2008 9 9 6.00 1.77 6.00 1.77 6.00 1.67 6.00 1.67

5 binA2008 7 7 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00

6 bubA2008 15 4 4.00 1.10 4.00 1.10 3.97 1.03 3.97 1.03

7 gA2008 8 5 3.57 20.97 3.73 19.47 3.50 19.13 3.70 20.77

8 rA2008 5 4 3.97 16.77 3.97 13.07 3.83 10.00 3.80 9.47

9 mtA2008 52 20 17.53 11.60 17.50 9.20 17.40 16.20 17.43 11.13

10 tM2004 8 7 4.07 17.83 4.17 18.53 3.93 21.97 4.20 17.57

11 eiR1985 12 3 3.00 9.93 2.93 6.83 3.00 10.10 3.00 6.60

12 qG1997 21 4 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00

13 ttB2002 8 8 7.03 3.07 7.07 5.33 7.00 1.13 7.00 1.13

14 eiB2002 31 5 4.90 12.53 4.97 16.50 4.87 10.97 4.97 13.10

15 qB2002 27 10 8.63 3.00 8.70 9.50 8.43 1.43 8.63 13.67

16 scB2002 15 4 2.87 12.30 2.90 13.43 2.83 16.90 2.93 16.53

17 fcB2002 5 5 4.90 16.03 4.87 13.60 4.77 13.23 4.87 18.33

18 fB2002 32 8 7.87 4.87 7.93 5.60 7.93 3.83 7.97 5.30

Average 15.44 6.94 6.10 9.79 6.15 9.61 6.05 9.24 6.13 9.51

Again, the actual ranking does not seem as expected of GA, LS-GA, GA-

LS, LS-GA-LS. This is very likely because there are still too few chromosomes

modified by the initial LS for it to have noticeable effect.

7.5.1.3 Hybrids with LS size 5

Table 7.3 shows the comparison between GA and its hybrids with LS=5.

Both GA-LS5 and LS-GA-LS5 have equal PFs, i.e. 6.13 paths, but LS-GA-

LS5 outperforms GA-LS5 in term of Gens, i.e. 8.43 vs. 8.93 generations.

So, LS-GA-LS5 is more preferable than GA-LS5.

Figure 7.5 presents PF comparison of hybrids with LS=5. GA-LS5 and
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Figure 7.3: Comparison of PF with LS=3

LS-GA-LS5 cover the same number of paths on average, but they have dif-

ferent number of -PF test programs, i.e. 4 and 3 test programs, respectively.

LS5-GA-LS5 has the most -PF, i.e. 6 test programs.

Figure 7.6 shows that both GA-LS5 and LS-GA-LS5 have some points

that are close to each other. However, LS-GA-LS5 is more efficient because

it has the most -Gens, i.e. 12 test programs. The rest have 8 and 10 test

programs for GA-LS5 and LS5-GA, respectively.

By now, the observed LS-GA-LS ranking is best, as expected. This in-

dicates that LS needs to work on enough chromosomes before it is very

effective.
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Figure 7.4: Comparison of Gens with LS=3

7.5.1.4 Hybrids with LS size 10

Table 7.4 presents the comparison between GA and its hybrids with LS=10.

LS-GA-LS is the optimal variant in this LS size because it has the most PF

6.18 paths regardless of its Gens value. Its Gens with 8.64 generations is

only outperformed by GA-LS10 with Gens 8.12 generations.

Figure 7.7 shows that some PFs between GA-LS10 and LS-GA-LS10 are

close to each other. They are very similar in PF, but LS-GA-LS10 has some

points that are higher than GA-LS10. This has made LS-GA-LS10 the best

with 2 -PF test programs. GA-LS10 and LS10-GA have 4 and 5 -PF test

programs, respectively.

In Figure 7.8, both GA-LS10 and LS-GA-LS10 have similar Gens pat-

terns. Although GA-LS10 has the most -Gens with 10 test programs, on

average the most efficient is LS-GA-LS10 with 9 test programs. LS10-GA is
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Table 7.3: Hybrid GA with LS size 5 using All Paths

No Program
Paths GA GA-LS LS-GA LS-GA-LS

All Feas PF Gen PF Gen PF Gen PF Gen

1 tA2008 4 4 3.70 23.80 3.73 15.17 3.83 18.10 3.87 19.77

2 mmA2008 13 13 11.80 17.57 12.17 16.50 11.77 18.73 11.97 12.93

3 iA2008 6 5 5.00 1.07 5.00 1.07 5.00 1.07 5.00 1.07

4 bisA2008 9 9 6.00 1.77 6.00 1.77 6.00 1.60 6.00 1.60

5 binA2008 7 7 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00

6 bubA2008 15 4 4.00 1.10 4.00 1.10 4.00 1.07 4.00 1.07

7 gA2008 8 5 3.57 20.97 3.53 20.03 3.67 19.27 3.63 18.63

8 rA2008 5 4 3.97 16.77 3.97 17.97 3.87 11.40 3.87 11.07

9 mtA2008 52 20 17.53 11.60 17.53 8.70 17.33 11.17 17.43 10.57

10 tM2004 8 7 4.07 17.83 4.13 15.07 3.83 29.33 4.10 17.17

11 eiR1985 12 3 3.00 9.93 2.93 7.80 3.00 8.97 3.00 7.73

12 qG1997 21 4 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00

13 ttB2002 8 8 7.03 3.07 7.00 1.13 7.00 1.13 7.00 1.13

14 eiB2002 31 5 4.90 12.53 4.87 10.07 4.90 15.50 4.97 11.50

15 qB2002 27 10 8.63 3.00 8.63 4.87 8.60 4.83 8.67 6.70

16 scB2002 15 4 2.87 12.30 2.90 13.37 2.97 11.37 2.97 11.93

17 fcB2002 5 5 4.90 16.03 4.97 19.07 4.97 14.83 4.93 12.63

18 fB2002 32 8 7.87 4.87 7.93 5.03 7.97 4.07 7.97 4.20

Average 15.44 6.94 6.10 9.79 6.13 8.93 6.09 9.69 6.13 8.43

the least -Gens with 6 test programs.

LS-GA-LS is best in both PF and Gens terms. This shows that the

observed ranking is as expected, and this size of LS is effective for improving

the generator.

7.5.1.5 Hybrids with LS size 15

Table 7.5 shows the comparison between GA and its hybrids with LS=15.

GA-LS has the most PF, with 6.17 paths found on average, but LS-GA-LS15

is very close with only 0.02 paths difference.

Figure 7.9 presents PF for all LS=15 hybrids relative to GA. Five test
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Figure 7.5: Comparison of PF with LS=5

programs have peaks in both opposite directions, i.e. test program 2, 7, 9,

10, and 15. All these programs have -PF if either LS15-GA or LS-GA-LS15

is used. It is possible that the first generation is locally over optimized,

which may lead to the traps of local optima, before any evolutionary process

is started. Similarly, although LS-GA-LS15 first generation is locally over

optimized, its coming generations are locally re-optimized repeatedly, which

means LS-GA-LS15 outperforms LS15-GA. This also means that GA-LS15

outperforms both of them because it never calls LS before any evolutionary

process, which means it never has the initial generation that is locally over

optimized. Moreover, this also shows that LS=15 is the limit of effective LS.

Only GA-LS15 has no -PF test programs. LS15-GA and LS-GA-LS15 have

9 and 6 -PF test programs, respectively.

Figure 7.10 shows Gens for all LS=15 hybrids relative to GA. Program

15 is the least efficient for both GA-LS15 and LS-GA-LS15. While both GA-
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Figure 7.6: Comparison of Gens with LS=5

LS15 and LS15-GA have the same 9 -Gens test programs each, LS-GA-LS15

has 11 test programs.

7.5.1.6 Hybrids with variable LS size

Table 7.6 presents the comparison between GA and its variable LS size vari-

ants. LS-GA-LSv110 is the most desirable hybrid with the most PF 6.23

paths and the least Gen 6.67 generations. Both variable size variants are

very competitive to each other with only 0.03 paths and 0.09 generations

different.

Figure 7.11 shows the efficacy graphs of GA-LSv110 and LS-GA-LSv110

compared to GA. Both graphs have similar patterns.

Figure 7.12 describes the efficiency graph of GA-LSv110 and LS-GA-

LSv110 compared to GA. Both GA-LSv110 and LS-GA-LSv110 have similar
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Table 7.4: Hybrid GA with LS size 10 using All Paths

No Program
Paths GA GA-LS LS-GA LS-GA-LS

All Feas PF Gen PF Gen PF Gen PF Gen

1 tA2008 4 4 3.70 23.80 3.83 17.53 3.90 20.30 3.90 9.53

2 mmA2008 13 13 11.80 17.57 12.13 10.37 11.83 18.50 12.17 11.00

3 iA2008 6 5 5.00 1.07 5.00 1.07 5.00 1.07 5.00 1.07

4 bisA2008 9 9 6.00 1.77 6.00 1.77 6.00 1.83 6.00 1.83

5 binA2008 7 7 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00

6 bubA2008 15 4 4.00 1.10 4.00 1.10 4.00 1.13 4.00 1.13

7 gA2008 8 5 3.57 20.97 3.70 14.43 3.63 22.90 3.67 19.60

8 rA2008 5 4 3.97 16.77 3.90 12.07 3.90 11.40 3.87 11.30

9 mtA2008 52 20 17.53 11.60 17.50 8.37 17.37 10.90 17.50 10.90

10 tM2004 8 7 4.07 17.83 4.33 23.60 3.70 19.93 4.37 18.87

11 eiR1985 12 3 3.00 9.93 2.93 7.90 3.00 6.77 3.00 5.23

12 qG1997 21 4 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00

13 ttB2002 8 8 7.03 3.07 7.03 1.13 7.00 1.10 7.07 3.07

14 eiB2002 31 5 4.90 12.53 4.93 10.73 4.93 14.53 4.93 16.50

15 qB2002 27 10 8.63 3.00 8.77 10.93 8.57 1.73 8.87 18.93

16 scB2002 15 4 2.87 12.30 2.90 7.57 2.93 15.27 2.97 8.90

17 fcB2002 5 5 4.90 16.03 4.87 10.63 4.97 21.93 5.00 11.50

18 fB2002 32 8 7.87 4.87 7.93 4.90 8.00 5.67 8.00 4.17

Average 15.44 6.94 6.10 9.79 6.15 8.12 6.10 9.83 6.18 8.64

performance. GA-LSv110 has 10 -Gens test programs and LS-GA-LSv110

has 2 more test programs than GA-LSv110. This makes LS-GA-LSv110 more

efficient than GA-LSv110.

Table 7.7 compares hybrids with fixed LS size 10 and variable LSv110.Only

GA-LS10 and LS-GA-LS10 are comparable with GA-LSv110 and LS-GA-

LSv110 because they have the most treatment similarities, i.e. variant type

and LS size. On the average, LS-GA-LSv110 outperforms all of them in

terms of both PF and Gen.

Figure 7.13 shows comparison between hybrids with fixed LS=10 and

LSv110. LS-GA-LSv110 is the most dominant in all test programs. Most of
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Figure 7.7: Comparison of PF with LS=10

the graphs follow similar patterns. LS10-GA has test program 10 with the

most -PF.

Figure 7.14 presents Gens comparison between hybrids with fixed LS=10

and LSv110. Most of the graphs have similar patterns, except LS10-GA that

slightly deviates from the rest. The number of -Gens test programs for all

hybrids are LS10-GA 6, GA-LS10 10, LS-GA-LS10 9, GA-LSv110 9, and

LS-GA-LSv110 11.

7.5.1.7 Best Hybrids based on LS Size

Figure 7.15 and Figure 7.16 show the best hybrids in its LS Size class in

terms of PF and Gens, respectively. In Figure 7.15, almost all PF graphs

follow similar pattern, except for GA-LS1 graphs that have some points with

larger deviations in test program 7 and 15. In general, the graphs suggest
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Figure 7.8: Comparison of Gens with LS=10

that hybrids perform better than GA.

In Figure 7.16, all graphs have similar shapes and are close to each other.

The graphs show that most of the time all hybrids perform more efficiently

than GA, although some test programs require more computational time,

such as test program 13, 14, 15, and 16. Test program 15 is the least efficient

for almost all hybrids, except for GA-LS1, which has the least LS size. It

has a high number of feasible paths and a high number of infeasible paths.

If this was the explanation, test program 9 should also have poor efficiency,

but it does not. It turns out that test program 15 has 2 loops, while test

program 9 has 1 loop only. In term of path complexity, adding another loop

into a program means greatly multiplying its existing number of paths. So,

its computational complexity is much harder. This means that its paths are

harder to cover than that of test program 9. The number of -Gens test

programs for all hybrids are GA-LS1 9, GA-LS3 6, LS-GA-LS5 3, LS-GA-
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Table 7.5: Hybrid GA with LS size 15 using All Paths

No Program
Paths GA GA-LS LS-GA LS-GA-LS

All Feas PF Gen PF Gen PF Gen PF Gen

1 tA2008 4 4 3.70 23.80 3.77 14.87 3.80 19.67 3.83 9.23

2 mmA2008 13 13 11.80 17.57 12.13 9.83 11.63 9.93 12.10 8.77

3 iA2008 6 5 5.00 1.07 5.00 1.07 5.00 1.07 5.00 1.07

4 bisA2008 9 9 6.00 1.77 6.00 1.77 6.00 1.83 6.00 1.83

5 binA2008 7 7 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00

6 bubA2008 15 4 4.00 1.10 4.00 1.10 4.00 1.07 4.00 1.07

7 gA2008 8 5 3.57 20.97 3.63 15.00 3.53 21.10 3.47 17.80

8 rA2008 5 4 3.97 16.77 3.93 15.73 3.90 14.67 3.90 15.10

9 mtA2008 52 20 17.53 11.60 17.53 8.20 17.47 13.97 17.60 13.63

10 tM2004 8 7 4.07 17.83 4.37 19.40 3.90 14.07 4.00 7.60

11 eiR1985 12 3 3.00 9.93 3.00 8.10 3.00 8.47 3.00 5.77

12 qG1997 21 4 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00

13 ttB2002 8 8 7.03 3.07 7.07 5.37 7.00 1.10 7.03 1.10

14 eiB2002 31 5 4.90 12.53 4.93 10.47 4.93 10.80 4.87 11.80

15 qB2002 27 10 8.63 3.00 8.87 19.20 8.47 1.70 8.80 18.37

16 scB2002 15 4 2.87 12.30 2.90 3.57 2.97 14.03 2.97 7.03

17 fcB2002 5 5 4.90 16.03 4.93 12.47 4.77 13.63 4.83 9.67

18 fB2002 32 8 7.87 4.87 7.93 4.87 7.83 4.70 7.83 3.90

Average 15.44 6.94 6.10 9.79 6.17 8.50 6.07 8.54 6.12 7.54

LS10 10, GA-LS15 10, GA-LSv110 11, and LS-GA-LSv110 12.

7.5.2 Testing

7.5.2.1 Hybrids with All Paths

Table 7.8 shows the testing results for hybrid GA with fixed LS size and

involving all paths both feasible and infeasible ones. The hybrids are all the

optimal variant within each class of LS size.

Why might the inclusion of infeasible paths matter? An infeasible path

means that the search for test data could go forever unless some other stop-



Chapter 7. Hybridization with Local Search 170

0.2

0.3

0.4
GA LS15 LS15 GA LS GA LS15

 0.2

 0.1

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

p
f

Test Programs

GA LS15 LS15 GA LS GA LS15

Figure 7.9: Comparison of PF with LS=15

ping conditions are being used. On the other hand, it also draws the search

in other directions, adding diversity.

Both LS-GA-LS5 and LS-GA-LS10 have equal PFs, but the former is

slightly more efficient (0.21 generations) than the latter. All the hybrids are

very competitive because all of their PFs lie in the range of 0.16 paths only

(max PF - min PF). Similarly, the Gen for all hybrids are within the range

of 1.1 generations only.

Table 7.9 presents the testing results for hybrid variants with variable

LS size and considering all paths. LS-GA-LSv110 slightly outperforms GA-

LSv110 with 0.04 paths more and 0.01 generations less in terms of PF and

Gen, respectively. Across all hybrid variants, LS-GA-LSv110 is the most

effective and efficient one with the highest PF 7.86 paths and the least Gen

10.96 generations. Overall, LSv hybrids perform better than the fixed LS

size ones both in terms of PF and Gen.
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Figure 7.10: Comparison of Gens with LS=15

Figure 7.17 presents comparison of PF across all hybrids. Almost all

hybrid graphs are on or above the x-axis and only a few are slightly below.

This means that the hybrids outperform GA in general. The efficacy between

hybrids is very competitive as shown by the closeness among the graphs.

The improvement made by hybrids are within 0.5 paths in most of the test

programs, except for the last two of them that improved significantly, i.e.

test program 20 and 21.

Figure 7.18 shows comparison of Gen for all hybrids. In most test pro-

grams, hybrids are more efficient than GA, except for four test programs: 14,

15, 16, and 21. Test program 15 has the least efficiency. The graphs generally

follow similar patterns. The number of -Gens test programs for all hybrids

are GA-LS1 10, GA-LS3 8, LS-GA-LS5 16, LS-GA-LS10 11, GA-LS15 11,

GA-LSv110 13, and LS-GA-LSv110 15.
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Table 7.6: Hybrid GA with LSv size 1 to 10 using All Paths

No Program
Paths GA GA-LSv110 LS-GA-LSv110

All Feas PF Gen PF Gen PF Gen

1 tA2008 4 4 3.70 23.80 4.00 4.50 3.93 4.73

2 mmA2008 13 13 11.80 17.57 12.23 9.47 12.23 6.87

3 iA2008 6 5 5.00 1.07 5.00 1.07 5.00 1.07

4 bisA2008 9 9 6.00 1.77 6.00 1.77 6.00 1.83

5 binA2008 7 7 7.00 1.00 7.00 1.00 7.00 1.00

6 bubA2008 15 4 4.00 1.10 4.00 1.10 4.00 1.13

7 gA2008 8 5 3.57 20.97 3.53 10.40 3.67 11.97

8 rA2008 5 4 3.97 16.77 3.90 13.50 3.93 12.83

9 mtA2008 52 20 17.53 11.60 17.57 8.53 17.47 9.13

10 tM2004 8 7 4.07 17.83 4.63 16.03 4.93 17.60

11 eiR1985 12 3 3.00 9.93 3.00 6.63 3.00 5.57

12 qG1997 21 4 4.00 1.00 4.00 1.00 4.00 1.00

13 ttB2002 8 8 7.03 3.07 7.00 1.13 7.10 1.67

14 eiB2002 31 5 4.90 12.53 4.90 13.97 4.97 11.90

15 qB2002 27 10 8.63 3.00 8.90 20.47 8.90 18.47

16 scB2002 15 4 2.87 12.30 2.97 2.17 2.97 3.90

17 fcB2002 5 5 4.90 16.03 4.97 4.63 5.00 5.13

18 fB2002 32 8 7.87 4.87 7.93 4.40 7.97 4.33

Average 15.44 6.94 6.10 9.79 6.20 6.76 6.23 6.67

7.5.2.2 Hybrids with Feasible Paths

Infeasible paths make the search infinite, if searching continues until all target

paths are found. This raises an interesting question, what might be the

impact of only having feasible target paths? The expectation is that the

search would be quicker to cover all the feasible paths.

Table 7.10 shows the two most similar fixed LS size variants with the

variable LS size ones. LS-GA-LSv110 slightly found more paths than its
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Figure 7.11: Comparison of PF for LSv hybrids

Table 7.7: Hybrid Comparison between Fixed and Variable LS Sizes

No Program
Paths GA GA-LS10 LS-GA-LS10 GA-LSv110 LS-GA-LSv110

All Feas PF Gen PF Gen PF Gen PF Gen PF Gen

1 tA2008 4 4 3.70 23.80 3.83 17.53 3.90 9.53 4.00 4.50 3.93 4.73

2 mmA2008 13 13 11.80 17.57 12.13 10.37 12.17 11.00 12.23 9.47 12.23 6.87

3 iA2008 6 5 5.00 1.07 5.00 1.07 5.00 1.07 5.00 1.07 5.00 1.07

4 bisA2008 9 9 6.00 1.77 6.00 1.77 6.00 1.83 6.00 1.77 6.00 1.83

5 binA2008 7 7 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00

6 bubA2008 15 4 4.00 1.10 4.00 1.10 4.00 1.13 4.00 1.10 4.00 1.13

7 gA2008 8 5 3.57 20.97 3.70 14.43 3.67 19.60 3.53 10.40 3.67 11.97

8 rA2008 5 4 3.97 16.77 3.90 12.07 3.87 11.30 3.90 13.50 3.93 12.83

9 mtA2008 52 20 17.53 11.60 17.50 8.37 17.50 10.90 17.57 8.53 17.47 9.13

10 tM2004 8 7 4.07 17.83 4.33 23.60 4.37 18.87 4.63 16.03 4.93 17.60

11 eiR1985 12 3 3.00 9.93 2.93 7.90 3.00 5.23 3.00 6.63 3.00 5.57

12 qG1997 21 4 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00

13 ttB2002 8 8 7.03 3.07 7.03 1.13 7.07 3.07 7.00 1.13 7.10 1.67

14 eiB2002 31 5 4.90 12.53 4.93 10.73 4.93 16.50 4.90 13.97 4.97 11.90

15 qB2002 27 10 8.63 3.00 8.77 10.93 8.87 18.93 8.90 20.47 8.90 18.47

16 scB2002 15 4 2.87 12.30 2.90 7.57 2.97 8.90 2.97 2.17 2.97 3.90

17 fcB2002 5 5 4.90 16.03 4.87 10.63 5.00 11.50 4.97 4.63 5.00 5.13

18 fB2002 32 8 7.87 4.87 7.93 4.90 8.00 4.17 7.93 4.40 7.97 4.33

Average 15.44 6.94 6.10 9.79 6.15 8.12 6.18 8.64 6.20 6.76 6.23 6.67

sibling GA-LSv110 by 0.01 paths only. Overall, both LSv variants outperform

the LS variants in terms of efficacy and efficiency. LSv hybrids have found
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Figure 7.12: Comparison of Gens for LSv hybrids

Table 7.8: Testing, Hybrid GA with fixed LS size and All Paths

No Program
GA GA-LS1 GA-LS3 LS-GA-LS5 LS-GA-LS10 GA-LS15

PF Gen PF Gen PF Gen PF Gen PF Gen PF Gen

1 tA2008 3.70 23.80 3.77 17.2 3.9 16.9 3.87 19.77 3.90 9.53 3.77 14.87

2 mmA2008 11.80 17.57 11.93 18.1 12.0 19.1 11.97 12.93 12.17 11.00 12.13 9.83

3 iA2008 5.00 1.17 5.00 1.2 5.0 1.2 5.00 1.17 5.00 1.17 5.00 1.17

4 bisA2008 6.00 1.83 6.00 1.8 6.0 1.8 6.00 1.66 6.00 1.90 6.00 1.83

5 binA2008 7.00 1.00 7.00 1.0 7.0 1.0 7.00 1.00 7.00 1.00 7.00 1.00

6 bubA2008 4.00 1.10 4.00 1.1 4.0 1.1 4.00 1.07 4.00 1.13 4.00 1.10

7 gA2008 3.57 20.97 3.40 15.2 3.7 19.5 3.63 18.63 3.67 19.60 3.63 15.00

8 rA2008 3.97 16.77 3.97 15.2 4.0 13.1 3.87 11.07 3.87 11.30 3.93 15.73

9 mtA2008 17.53 11.60 17.53 10.5 17.5 9.2 17.43 10.57 17.50 10.90 17.53 8.20

10 tM2004 4.07 17.83 4.13 18.0 4.2 18.5 4.10 17.17 4.37 18.87 4.37 19.40

11 eiR1985 3.00 9.93 3.00 7.7 2.9 6.8 3.00 7.73 3.00 5.23 3.00 8.10

12 qG1997 4.00 1.00 4.00 1.0 4.0 1.0 4.00 1.00 4.00 1.00 4.00 1.00

13 ttB2002 7.03 3.07 7.00 1.1 7.1 5.3 7.00 1.13 7.07 3.07 7.07 5.37

14 eiB2002 4.90 12.53 4.97 14.4 5.0 16.5 4.97 11.50 4.93 16.50 4.93 10.47

15 qB2002 8.63 3.00 8.60 1.8 8.7 9.5 8.67 6.70 8.87 18.93 8.87 19.20

16 scB2002 3.83 11.30 3.93 13.9 3.9 12.4 3.93 10.93 3.93 7.90 3.86 2.57

17 fcB2002 4.90 16.03 4.93 13.2 4.9 13.6 4.93 12.63 5.00 11.50 4.93 12.47

18 fB2002 7.87 4.87 7.93 4.7 7.9 5.6 7.97 4.20 8.00 4.17 7.93 4.87

19 bG2011 11.00 1.47 11.00 1.5 11.0 1.5 11.00 1.40 11.00 1.33 11.00 1.47

20 fG2011 9.30 58.73 9.70 56.7 9.8 49.5 9.83 53.53 9.53 48.23 9.60 45.33

21 sG2011 17.77 65.73 18.77 70.0 20.0 63.1 21.80 67.83 21.07 73.83 20.43 64.20

Average 7.09 14.35 7.17 13.57 7.26 13.63 7.33 13.03 7.33 13.24 7.29 12.53
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Figure 7.13: Comparison of PF for hybrids with LS=10 and LSv≤10

at least 0.5 paths more than the fixed size ones.

Figure 7.19 presents a comparison of PF between LS10 and LSv hybrids,

with all infeasible paths excluded. On average, all hybrids found more paths

than GA, although some hybrids perform worse than GA in 3 test programs:

7, 14, and 18. For all hybrids, a significant improvement is achieved in the

last test program 21.

Figure 7.20 shows comparison of Gens between LS10 and LSv hybrids

with infeasible paths excluded from the list of target paths. The number

of -Gens test programs for all hybrids are GA-LS10 12, LS-GA-LS10 13,

GA-LSv110 12, and LS-GA-LSv110 14.
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Figure 7.14: Comparison of Gens for hybrids with LS=10 and LSv≤10

7.5.2.3 Hybrids with SRMSC

When there are infeasible target paths, searching can never stop with all

target paths found. It can only stop when an arbitrary number of generations

is reached, or some other stopping condition is used.

Table 7.11 presents the performance of LS-GA-LSv110 variant using all

target paths, that makes use of rules RSR1-C and RSR2-C. RSR1-C

and RSR2-C allow the search to stop when the likelihood of finding new

target paths drops below a threshold. The idea is to understand the trade-

offs involved in number of target paths found versus execution time, if these

stopping rules are used; RSR2-C is more conservative. RSR1-C can achieve

more efficiency up to 78% by sacrificing 1.87 paths compared to LS-GA-

LSv110 without any rules, while RSR2-C is about 29% more efficient by

losing 1.14 paths.
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Figure 7.15: Comparison of PF for the best hybrids in LS size group

Figure 7.21 shows PF with RSR1-C and RSR2-C on LS-GA-LSv110

hybrid. The application of rules has suggested the hybrid to stop earlier in

some test programs, resulting in missing some paths that should be found if

the search continued. The biggest loss is suffered by RSR1-C with 1.1 paths

missing while RSR2-C missed 0.37 paths. The test program that missed the

most paths is test program 21.

Figure 7.22 presents the efficiency achieved by applying RSR1-C and

RSR2-C on LS-GA-LSv110 hybrid. RSR1-C and RSR2-C could achieve

efficiency about 80% and 30%, respectively. The range of variation in RSR2-

C is twice that in RSR1-C.
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Figure 7.16: Comparison of Gens for the best hybrids in LS size group

7.6 Analysis (Hybrid & Local Search)

7.6.1 Class of Test Programs

The experimental results of hybrid GA application can be classified into the

following groups:

1. CO. Nothing changes in both path coverage and efficiency. Hybridiza-

tion is of no benefit to GA.

2. CD. Both path coverage and efficiency experience degradation. Imple-

mentation of LS is a disadvantage to GA in both respects.

3. CDP. Less path coverage. There is no change in efficiency, but less

path coverage has failed the whole idea of hybridization.
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Table 7.9: Testing, Hybrid GA with variable LS size and All Paths

No Program
GA LS-GA-LS10 GA-LSv110 LS-GA-LSv110

PF Gen PF Gen PF Gen PF Gen

1 tA2008 3.70 23.80 3.90 9.53 4.00 4.50 3.93 4.73

2 mmA2008 11.80 17.57 12.17 11.00 12.23 9.47 12.23 6.87

3 iA2008 5.00 1.17 5.00 1.17 5.00 1.17 5.00 1.17

4 bisA2008 6.00 1.83 6.00 1.90 6.00 1.83 6.00 1.90

5 binA2008 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00

6 bubA2008 4.00 1.10 4.00 1.13 4.00 1.10 4.00 1.13

7 gA2008 3.57 20.97 3.67 19.60 3.53 10.40 3.67 11.97

8 rA2008 3.97 16.77 3.87 11.30 3.90 13.50 3.93 12.83

9 mtA2008 17.53 11.60 17.50 10.90 17.57 8.53 17.47 9.13

10 tM2004 4.07 17.83 4.37 18.87 4.63 16.03 4.93 17.60

11 eiR1985 3.00 9.93 3.00 5.23 3.00 6.63 3.00 5.57

12 qG1997 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00

13 ttB2002 7.03 3.07 7.07 3.07 7.00 1.13 7.10 1.67

14 eiB2002 4.90 12.53 4.93 16.50 4.90 13.97 4.97 11.90

15 qB2002 8.63 3.00 8.87 18.93 8.90 20.47 8.90 18.47

16 scB2002 3.83 11.30 3.93 7.90 3.93 1.17 3.93 2.90

17 fcB2002 4.90 16.03 5.00 11.50 4.97 4.63 5.00 5.13

18 fB2002 7.87 4.87 8.00 4.17 7.93 4.40 7.97 4.33

19 bG2011 11.00 1.47 11.00 1.33 11.00 1.47 11.00 1.33

20 fG2011 9.30 58.73 9.53 48.23 10.77 44.33 11.03 49.73

21 sG2011 17.77 65.73 21.07 73.83 29.97 63.63 29.97 59.80

Average 7.09 14.35 7.33 13.24 7.82 10.97 7.86 10.96

4. CDE. Less efficient. Hybridization has added extra cost without any

improvement in path coverage.

5. CI. Both path coverage and efficiency have improved. The hybridiza-

tion shows its fruitful result.

6. CIP. More path coverage but no change in efficiency. The hybrid pri-
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Figure 7.17: Testing, Comparison of PF for all hybrids with all paths

oritized effectiveness over efficiency and yet still maintained efficiency.

7. CIE. More efficient but no change in path coverage. Hybrid GA has

better efficiency and is advisable to use.

8. CIDP. More path coverage but less efficient. Assuming that effective-

ness should be prioritized over efficiency, hybrid has benefit.

9. CIDE. More efficient but less path coverage. Hybrid GA has failed

to preserve the most important objective, i.e. path coverage. So, it is

suggested not to be implemented.

The two most desirable classes are CI and CIP. The two least desirable

ones are CD and CDP. The Following Table 7.12 shows test programs clas-

sification based on the best hybrid LS-GA-LSv (see Table 7.9 and Figure
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Figure 7.18: Testing, Comparison of Gens for all hybrids with all paths

7.17). The rows have been organized in such a way that from top to bottom

is from the most desirable class to the least desirable one.

In Table 7.12, most of the test programs are in the most desirable class

CI, i.e. 11 test programs. Another 3 test programs are still in the desirable

classes CIDP and CIE. CO is the mid-class, which has 3 test programs with

no improvement in any ways. Four test programs are in the less desirable

classes CDE and CIDE. None of the test programs is in the least desirable

classes CDP and CD.

The distribution of test programs in Table 7.12 suggests that the hybrid

is better than GA. In other words, more test program performances can be

improved by the hybrid.
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Table 7.10: Testing, Hybrid GA with Feasible Paths

No Program
Paths GA GA-LS10 LS-GA-LS10 GA-LSv110 LS-GA-LSv110

All Feas PF Gen PF Gen PF Gen PF Gen PF Gen

1 tA2008 4 4 3.70 23.80 3.83 17.53 3.90 9.53 4.00 4.50 3.93 4.73

2 mmA2008 13 13 11.80 17.57 12.13 10.37 12.17 11.00 12.23 9.47 12.23 6.87

3 iA2008 6 5 5.00 1.07 5.00 1.07 5.00 1.07 5.00 1.07 5.00 1.07

4 bisA2008 9 9 5.97 2.00 5.97 2.13 6.00 1.83 5.97 2.07 6.00 1.83

5 binA2008 7 7 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00

6 bubA2008 15 4 4.00 1.13 4.00 1.13 4.00 1.07 4.00 1.13 4.00 1.07

7 gA2008 8 5 4.40 29.23 4.30 21.43 4.13 24.83 4.33 10.93 4.27 21.00

8 rA2008 5 4 3.77 16.00 3.73 9.40 3.80 18.10 3.73 18.20 3.77 14.37

9 mtA2008 52 20 17.93 41.40 18.37 51.90 18.23 31.77 18.67 43.30 18.77 45.43

10 tM2004 8 7 4.00 20.90 4.17 22.67 4.17 20.57 4.37 19.33 4.37 24.80

11 eiR1985 12 3 2.60 23.03 2.63 15.20 2.77 22.90 2.70 13.00 2.63 15.00

12 qG1997 21 4 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00

13 ttB2002 8 8 7.03 3.07 7.03 1.13 7.07 3.07 7.00 1.13 7.10 1.67

14 eiB2002 31 5 4.93 16.53 4.97 18.47 4.97 18.30 4.47 2.33 4.43 1.27

15 qB2002 27 10 8.90 15.60 8.87 14.03 8.70 15.27 8.83 17.13 8.83 24.33

16 scB2002 15 4 3.87 16.77 3.97 8.03 4.00 7.87 4.00 1.97 4.00 1.93

17 fcB2002 5 5 4.90 16.03 4.87 10.63 5.00 11.50 4.97 4.63 5.00 5.13

18 fB2002 32 8 7.67 6.33 7.67 2.07 7.53 1.87 7.67 2.07 7.57 4.70

19 bG2011 20 11 11.00 1.47 11.00 1.47 11.00 1.47 11.00 1.47 11.00 1.47

20 fG2011 30 30 9.30 58.73 9.70 46.97 9.53 48.23 10.77 44.33 11.03 49.73

21 sG2011 32 32 17.77 65.73 20.00 62.60 21.07 73.83 29.97 63.63 29.97 59.80

Average 17.14 9.43 7.12 18.02 7.29 15.25 7.33 15.53 7.84 12.56 7.85 13.72

All test programs in class CI by using GA has PF 7.16 paths and Gen

22.95 generations on the average. The hybrid is able to find 8.61 paths,

which is 1.45 paths more than GA. In term of path finding, 1.45 paths is

very meaningful. Further, the hybrid has the chance to make use of LS

during the search and is able to achieve efficiency – about 30% generations

less than GA, or 16.06 generations, using the hybrid.

In class CO, all test programs have found all their feasible target paths in

very few generations. So, it is most likely that the LS in the hybrid version

has not really been engaged for finding the paths. This explains why it is

not getting more paths and/or fewer generations in searching for the target

paths than GA.
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Figure 7.19: Testing, Comparison of PF for LS=10 and LSv hybrids with
feasible paths

Test programs in class CDE, i.e. test program 4 (bisA2008) and 6 (bubA2008),

have the average of Gen less than 2 generations each, i.e. 1.9 and 1.13, re-

spectively. This indicates that additional process in the hybrid already adds

more computational time than helping in finding more paths.

As for test programs in class CIDE, the improvement in efficiency has

been traded off with a bit fewer paths. However, the loss on paths found

is very small, less than 0.1 paths in any test program, i.e. 0.03 paths for

test program 8 (rA2008) and 0.07 paths for test program 9 (mtA2008). In

contrast, the improvement achieved in term of Gen is above 20% in any test

programs, i.e. 3.93 out of 16.77 generations (23.4%) for test program 8 and

2.47 out of 11.6 generations (21.3%) for test program 9. So, the trade-off for
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Figure 7.20: Testing, Comparison of Gen for LS=10 and LSv hybrids with
feasible paths

the test programs in class CIDE is still acceptable because the loss in number

of paths is small compared to the gain in efficiency.

At test program 21 (sG2011), the hybrid found almost 70% paths more

than GA. Test program sG2011 has the most feasible paths among the test

programs, i.e. 32 paths, and no loops. Test program 20 (fG2011) has the

second largest number of feasible paths, i.e. 30 paths, but its input space

size is at least 40,400 times that of sG2011 (see Table 4.2). This makes it

harder for the hybrid to find more paths in fG2011 than in sG2011. All the

test programs that gained 0.5 paths more have no loops at all (see Table

4.2). In detail, the improvements on GA are 0.87 paths for tM2004 (test

program 10), 1.73 paths for fG2011, and 12.2 paths for sG2011 (see Table
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Table 7.11: Testing, Hybrid GA with SRMSC

No Program
Paths GA RSR1-C RSR2-C

All Feas PF Gen PF Gen Eff PF Gen Eff

1 tA2008 4 4 3.83 8.40 3.27 30.70 69.30 3.27 94.83 5.17

2 mmA2008 13 13 11.63 16.50 10.29 24.00 76.00 10.80 61.33 38.67

3 iA2008 6 5 5.00 1.17 5.00 22.20 77.80 5.00 70.40 29.60

4 bisA2008 9 9 6.00 1.83 6.00 20.90 79.10 6.00 65.87 34.13

5 binA2008 7 7 7.00 1.00 7.00 19.00 81.00 7.00 59.00 41.00

6 bubA2008 15 4 4.00 1.10 4.00 25.27 74.73 4.00 41.40 58.60

7 gA2008 8 5 3.57 20.97 1.04 7.00 93.00 2.77 100.03 -0.03

8 rA2008 5 4 3.97 16.77 3.77 27.67 72.33 3.93 72.27 27.73

9 mtA2008 52 20 17.53 11.60 13.67 32.00 68.00 15.50 87.20 12.80

10 tM2004 8 7 4.20 26.63 1.07 7.00 93.00 3.23 102.70 -2.70

11 eiR1985 12 3 3.00 9.93 1.05 6.15 93.85 2.00 66.69 33.31

12 qG1997 21 4 4.00 1.00 4.00 25.00 75.00 4.00 38.00 62.00

13 ttB2002 8 8 7.03 3.07 7.00 19.13 80.87 7.00 59.53 40.47

14 eiB2002 31 5 4.90 12.53 5.00 23.83 76.17 4.87 64.73 35.27

15 qB2002 27 10 8.63 3.00 7.50 19.50 80.50 8.73 56.70 43.30

16 scB2002 15 4 3.83 11.30 1.00 7.00 93.00 2.15 91.30 8.70

17 fcB2002 5 5 4.90 16.03 5.00 24.67 75.33 4.30 59.57 40.43

18 fB2002 32 8 7.87 4.87 7.69 20.75 79.25 7.83 61.43 38.57

19 bG2011 20 11 11.00 1.47 9.50 24.50 75.50 10.80 65.90 34.10

20 fG2011 30 30 9.30 58.73 6.70 25.90 74.10 6.90 87.53 12.47

21 sG2011 32 32 17.77 65.73 16.29 34.94 65.06 20.95 89.63 10.37

Average 17.14 9.43 7.09 13.98 5.99 21.29 78.71 6.72 71.24 28.76

7.9 in columns GA and LS-GA-LSv110).

There is not enough evidence to say in advance whether using the hy-

brid application will be beneficial, from test program input size, cyclomatic

complexity number, and structure of loops. In other words, so far there is

no direct commonality in these terms above of the test programs that fall

into desirable classes. However, it is suspected that there is such complex

relation among the terms and number of feasible paths. This is a topic for

future research.



Chapter 7. Hybridization with Local Search 186

 6

 4

 2

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

RSR1 C RSR2 C

 14

 12

 10

 8

 6

 4

 2

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

p
f

Test Programs

RSR1 C RSR2 C

 14

 12

 10

 8

 6

 4

 2

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

p
f

Test Programs

RSR1 C RSR2 C

Figure 7.21: Comparison of PF between RSR1-C and RSR2-C for LS-GA-
LSv110

Table 7.12: Classification of Test Programs

Class Test Programs

CI 1, 2, 7, 10, 13, 14, 16, 17, 18, 20, 21

CIP

CIDP 15

CIE 11, 19

CO 3, 5, 12

CDE 4, 6

CIDE 8, 9

CDP

CD

In general, the use of hybrid is encouraged as it performs better than GA.

In order for hybrids to be more useful, there are two things to be considered.

Firstly, whatever hybridization is being used, it should have a chance to be

exercised, i.e. making sure that LS is called at least once during the evolution.
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Figure 7.22: Comparison of Eff between RSR1-C and RSR2-C relative to
LS-GA-LSv110

Essentially, the more it is called the better. Secondly, a test program with at

least 5 or more feasible target paths is likely to get the benefit out of hybrid.

The more paths to cover the more reason to use the hybrid.

7.6.2 Effects of Infeasible Paths

Making all target paths feasible by removing all the infeasible ones does not

cause GA and its hybrids to perform better. On the contrary, removing

infeasible paths has made GA to find 0.03 more paths, but also made GA

less efficient by 25.6% (compare PF(GA) columns in Table 7.9 and Table

7.10).

Statistical paired t-Test of PF has shown that there is no significant
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difference between having infeasible paths (see PF(GA) column in Table 7.9)

and not having infeasible paths (by means of deliberate removal of infeasible

paths; see PF(GA) column in Table 7.10). The null hypothesis of the test

says that both samples, i.e. before and after feasibility treatments of target

paths, are taken from distributions with equal population means. The test

gave a two-tail P(T <= t) value of 0.55, which is not enough evidence to

reject the null hypothesis at 5% significance level.

Similar statistical test for Gen has indicated that there is a significant

different between allowing and avoiding infeasible target paths. The two-tail

P(T <= t) yields 0.03 value, which means the test has enough evidence to

reject the null hypothesis at 5% significance level. Gen is significantly lower

when infeasible paths are not removed.

Intuitively, having infeasible paths will add diversity in the evolutionary

process. The population will be evolving in different directions as it attempts

to cover the infeasible paths, leading to faster coverage of the feasible paths.

So, the number of paths found will be about the same amount on average,

but it will be covered faster. This is important because it means the difficult

task of analyzing all paths to determine if they are feasible is not necessary;

it is even detrimental.

This finding is general as long as the fitness constructs are functions of

paths that consists of branch distance and approximation level. As for the

genetic operators, they are not parts of the fitness function that guides the

search. Rather, their roles are to explore and exploit the input search space

according to the direction that is provided by the fitness function.
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7.6.3 SRMSC for hybrid

Statistical t-Test paired two sample for means is conducted to find out

whether the treatment of applying SRMSC rules will affect LS-GA-LSv110

hybrid performance or not. The rules used are the ones that use common

parameters setup (recall Section 6.4.4), i.e. RSR1-C and RSR2-C. The

test are NR (no rule) vs. RSR1-C, NR vs. RSR2-C, and RSR1-C vs.

RSR2-C. Each test is applicable to both terms PF and Gen, so there are

six tests in total.

In term of PF, NR vs. RSR1-C test results t 2.78, P(T<=t) two-tail

0.01, and t Critical two-tail 2.09. This means that there is a significant

difference for having RSR1-C with 1.8 paths less than without the rule. For

NR vs. RSR2-C, the results are t 2.53, P(T<=t) two-tail 0.02, and t critical

two-tail 2.09. This indicates that there is a significant difference for having

RSR2-C with 1.14 paths less. As for RSR1-C vs. RSR2-C, the test yields

t -2.81, P(T<=t) two-tail 0.01, and t critical one-tail 1.72. This points out

that RSR1-C is significantly producing 0.72 paths less than RSR2-C. This

is not surprising since RSR2-C involves more stringent thresholds and is

expected to keep searching for longer.

In the case of Gen, NR vs. RSR1-C test results t -3.08, P(T<=t) two-

tail 0.01, and t critical one-tail 1.72. In addition, RSR1-C suggest 10.33

generations more than NR (10.96 generations) on average (compare Gen of

LS-GA-LSv110 between in Table 7.9 and in Table 7.11). However, RSR1-C

has an almost half standard deviation of Gen than NR, which tells that it

is more stable. NR vs. RSR2-C test produces t -15.32, P(T<=t) two-tail

0.01, and t critical one-tail 1.72. This indicates very significant different
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Gen between NR and RSR2-C. On average, RSR2-C recommends 60.28

generations more than NR (10.96 generations). This is an indication of very

significant different Gen between NR and RSR2-C. The last test results

for RSR1-C vs. RSR2-C returns t -10.69, P(T<=t) two-tail 0.00, and t

critical one-tail 1.72. This reveals that RSR2-C advocates more generations,

by 49.95 generations on average.

Logically, recommended stopping generations proposed by the rule fall

into the following cases. Firstly, if all target paths are feasible and all of them

were found before the recommended number of generations, the evolution will

stop immediately. In this case, the rule has no effect. Secondly, infeasible

paths will force the evolutionary process to keep on going forever should they

exist in the target paths. The stopping rule avoids this problem, by ordering

to stop at a certain number of generations and yet still have confidence that

most if not all of the feasible ones are already found.

7.6.4 Statistical Test for Hybrids

7.6.4.1 All Paths

Table 7.13 summarizes all the t-Tests paired two sample for means conducted

between GA and each of its hybrids across all 21 test programs. The legend

is t for Statistic t, P1 for P(T<=t) one-tail, t1 for t critical one-tail, P2 for

P(T<=t) two-tail, t2 for t critical two-tail, d-mean for PF mean different

between the hybrid and GA, and H0 for decision on accepting or rejecting

H0.

In general, the hybrids are not significantly different with GA. The test
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Table 7.13: PF t-Test Paired Two Sample for Means

No Paired two sample t P1 t1 P2 t2 d-mean H0

1 GA vs. GA-LS1 -1.58 0.06 1.72 0.13 2.09 0.08 accept

2 GA vs. GA-LS3 -1.57 0.07 1.72 0.13 2.09 0.17 accept

3 GA vs. LS-GA-LS5 -1.27 0.11 1.72 0.22 2.09 0.24 accept

4 GA vs. LS-GA-LS10 -1.53 0.07 1.72 0.14 2.09 0.24 accept

5 GA vs. GA-LS15 -1.56 0.07 1.72 0.13 2.09 0.20 accept

6 GA vs. GA-LSv10 -1.27 0.11 1.72 0.22 2.09 0.73 accept

7 GA vs. LS-GA-LSv10 -1.33 0.10 1.72 0.20 2.09 0.77 accept

results reveal that there is not enough evidence to reject the null hypothesis

(H0), which is the two samples are taken from the same population distri-

bution. The acceptance is shown by P2 in Table 7.13: all values above 0.1,

which is higher than the 5% significance level.

In Table 7.13, d-mean values for the first 5 fixed LS-size hybrids are much

less than 0.5 paths. This means that the hybrids have less possibility even

to find another one path. However, the variable LS-size hybrids (recall LSv

hybrids) are likely able to find another path as its values are above 0.7 paths.

Table 7.14 presents all the test results for Gen. P2 values in the ta-

ble mostly are greater than 0.05. This means that having additional LS

in hybrids do not really add computation on average. There are 3 paired

two samples that reject the null hypothesis: GA vs. LS-GA-LS5, GA vs.

GA-LSv110, and GA vs. LS-GA-LSv110. For these 3, the differences are

significant. For example, Gen is reduced from 14.35 on average to 10.96

with LS-GA-LSv110, a relative improvement of 24%. Table 7.9 shows that

Gen is better, not worse, with the hybrid methods than with GA.
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Table 7.14: Gen t-Test paired two sample for means

No Paired two sample t P1 t1 P2 t2 d-mean H0

1 GA vs. GA-LS1 1.45 0.08 1.72 0.16 2.09 0.77 accept

2 GA vs. GA-LS3 0.96 0.17 1.72 0.35 2.09 0.72 accept

3 GA vs. LS-GA-LS5 2.60 0.01 1.72 0.02 2.09 1.32 reject

4 GA vs. LS-GA-LS10 0.82 0.21 1.72 0.42 2.09 1.10 accept

5 GA vs. GA-LS15 1.44 0.08 1.72 0.17 2.09 1.82 accept

6 GA vs. GA-LSv10 2.09 0.02 1.72 0.05 2.09 3.38 reject

7 GA vs. LS-GA-LSv10 2.31 0.02 1.72 0.03 2.09 3.39 reject

7.6.4.2 Feasible Paths

In order to be comparable, all hybrids use the same LS size 10. Target paths

of each program are only the feasible ones.

Table 7.15 shows t-Test results for PF for all pairs. P2 values for all pairs

are at least 0.12, which is greater than the 5% significance level. This means

that no hybrid has a significantly different population distribution from any

other. The hybrids with variable LS size has more chance to find a path more

than GA, i.e. at least 0.7 paths for each of GA-LSv110 and LS-GA-LSv110

(see d-mean column in Table 7.15).

Table 7.15: PF t-Test paired two sample for means of feasible paths

No Paired two sample t P1 t1 P2 t2 d-mean H0

1 GA vs GA-LS10 -1.62 0.06 1.72 0.12 2.09 0.17 accept

2 GA vs LS10-GA -1.12 0.14 1.72 0.28 2.09 0.12 accept

3 GA vs LS10-GA-LS10 -1.36 0.09 1.72 0.19 2.09 0.21 accept

4 GA vs GA-LSv110 -1.24 0.11 1.72 0.23 2.09 0.72 accept

5 GA vs LS10-GA-LSv110 -1.26 0.11 1.72 0.22 2.09 0.73 accept

In Table 7.16, only one pair is unable to reject H0 (see column P2). This

indicates that most of the hybrids significantly require fewer generations
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compared to GA, except for LS10-GA hybrid (see column Gen for GA and

all hybrids in Table 7.10). Although LS10-GA has no significant difference

with GA, it is still bit more efficiency than GA, because it only calls LS once

at the beginning compared to the other hybrids that could call LS multiple

times during the evolution. On average, the hybrids needs 3 fewer generations

than GA.

Table 7.16: Gen t-Test paired two sample for means of feasible paths

No Paired two sample t P1 t1 P2 t2 d-mean H0

1 GA vs GA-LS10 2.56 0.01 1.72 0.02 2.09 2.77 reject

2 GA vs LS10-GA 2.01 0.03 1.72 0.06 2.09 2.23 accept

3 GA vs LS10-GA-LS10 2.21 0.02 1.72 0.04 2.09 2.49 reject

4 GA vs GA-LSv110 3.46 0.00 1.72 0.00 2.09 5.46 reject

5 GA vs LS10-GA-LSv110 2.75 0.01 1.72 0.01 2.09 4.29 reject

This means that statistically, there is no significant difference in paths

found, but there is a significant difference in the number of generations. In

general, when confronted with a new test program some infeasible paths are

likely. So it is likely that hybrid is best.

7.6.5 Repetition Issue

In practice, the number of repetitions (runs) required to get certain per-

centage of coverage is very important for path testing. It will add more

confidence level to the tester that the test is sufficient. Actually, this is the

case for almost any empirical software engineering and not only path testing.

In Figure 7.23, in the first run, GA can achieve path coverage of 91%

using common parameters setup and 97% using the best parameters setup
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on average out of 198 feasible paths. GA covers maximum 96% target paths

using the common parameters setup from run eight up to run thirty, while

best parameters setup reaches 100% coverage at run twenty-four.
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Figure 7.23: Cumulative Path Coverage of Best vs. Common Parameter
Setups for GA

In that light, it is valuable to know that 96% of target paths are found

in only 8 runs, with common parameters. We have used 30 runs throughout

the thesis to provide data for statistical analysis, but in real operation we

see that far fewer runs would be needed.

In reality, given a new test program, one has no idea of its best parameter

settings, so common settings are the ones to consider.

7.7 Threats to Validity

Two things considered as crucial threats in hybridizing GA with LS for path

testing are external and internal threats.
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An external threat is an outside factor that could affect in taking conclu-

sions of the experiments. For example, number of test programs, perception,

decision maker influence, and tester/programmer interests. The number of

test programs might have affected the generalization of the empirical con-

clusions. To handle this threat, 21 test programs were involved in the ex-

periments with varying characteristics in terms of CC, path complexity (or

number of feasible/infeasible target paths), and input space. This is way

above the average number of test programs in research on coverage testing,

i.e. 6 test programs (see Table 3.3).

Internal threats would be contributing to faulty approach, hybrid, or ex-

periment. The internal threat is to make sure that the components of hybrid

are integrated and exercised properly. LS must be called several times in

order to fully use its advantage to exploit the surrounding search space of

potential input data. The more it is called, the more chance it can con-

tribute to overall performance. Therefore, to overcome this potential threat,

GA was hybridized with different sizes and ordering position of LS, and

meeting statistical requirements such as each treatment is repeated 30 times

with different seeds each time, and conducting statistical test to support the

conclusions.

7.8 Conclusions

Some hybridization techniques between GA and LS for path testing have

been proposed. Various techniques are based on the position of LS in the

evolutionary process, the number of LS calls, and LS size. Based on these
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criteria, 17 hybrids are defined, which consist of 15 hybrids with fixed LS size

(LSx; x for size) and 2 hybrids with variable LS size (LSvx; x for size). Five

LS sizes are proposed: 1, 3, 5, 10, and 15. Each class can form combinations

of LS-GA, GA-LS, and LS-GA-LS. For example, class LS1 consist of LS1-

GA, GA-LS1, and LS1-GA-LS1 (or LS-GA-LS1). So, LSx hybrids are 15 in

total. LSvx hybrids consist of GA-LSv110 and LS-GA-LSv110, where x is

110, which means the size ranges from 1 to 10 with 1 increment each time it

is called.

Eighteen test programs were used for training, to find out which LSx

hybrids outperform others in the same LS size class. The same test programs

were also used to train LSvx hybrids and compare their performance with

LSx hybrids. Another 3 new test programs were added for testing the best

LSx hybrids in its class and LSvx hybrids. So, there are 21 test programs for

testing in total.

Training results yield five best LSx hybrids: GA-LS1, GA-LS3, LS-GA-

LS5, LS-GA-LS10, and GA-LS15. The best and the second best among other

hybrids are LS-GA-LSv110 and its sibling GA-LSv110, respectively. Testing

has shown that LS-GA-LSv110 outperforms other hybrids. Hybrid LS-GA-

LSv110 found on average 0.77 paths more and required 3.39 generations less

than GA. The proposed hybrids have empirically been proven to be more

effective and more efficient on average than GA alone.

The existence of infeasible paths does not hinder the evolutionary process

in covering the feasible ones. On the contrary, it increases the selection

pressure and perturbation evolution, which leads to finding feasible paths

more quickly. In other words, removing infeasible paths from target paths,
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should the program have them, will make the evolution slower in covering

the feasible ones. This is important because it means the difficult task of

analyzing all paths to determine if they are feasible is not necessary, and is

even detrimental.

For test programs with no a priori knowledge about its target paths fea-

sibility, and stopping number of generations, the following can be used as

guidelines. Firstly, it can be left to SRMSC to decide how many generations

are required to reach a given confidence level that all feasible paths have been

found. The average number of generations in our test programs is about 70,

using the most conservative stopping rule, and almost no feasible paths are

missed that would be found if searching continued up to 100 generations.

Secondly, it only needs about 10 runs or less to find nearly all of the feasible

target paths.
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Chapter 8

Conclusions and Future

Research

The chapter consists of three sections: contributions, findings, and future re-

search. The contributions section discusses the significance of new approaches

and explains their experimental limitations. The findings section lists all em-

pirical observations from the experimental results. Research directions are

presented in the Future Research section.

As mentioned in Chapter 1, the aim of the thesis is to improve path testing

using GA. This is achieved in the thesis by investigating three research areas:

• firstly, some fundamental research questions on path testing using GA,

such as how GA-based single objective path testing works, how it be-

haves as GA parameters vary, what are the limits of the test data gen-

erator as test programs vary, what kind of fitness functions are good,

how to compare test data generators, and what test programs to use
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and how to choose them. This is the subject of Chapter 5.

• specific research questions on how to improve GA-based path testing

by stopping earlier whenever it is not worth continuing. This is the

subject of Chapter 6.

• Some potential improvements can be done by hybridizing with local

search (LS), or by using variants of evolutionary algorithm (EA). Chap-

ter 7 investigated the first of these.

Other avenues for improving evolutionary path coverage include paral-

lelizing to speed up; multiobjective optimization and automation of the whole

GA-based path testing. These are promising research questions, but beyond

the scope of this thesis.

8.1 Contributions

The thesis has proposed new test program classification systems, new stop-

ping criteria, and hybridization of GA-based test data generators. The fol-

lowing are the major contributions:

1. Collection of test programs. The collection draws together some test

programs that are used in path and/or branch testing research. Recon-

structable test programs in the collection can be used as benchmarks

for white-box testing.

2. Test program classification. Test programs are classified based on their

structures, including loops, decisions, and selection expression com-

plexity. The classification helps to understand how GA-based test data
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generation works on certain test program characteristics, and can help

to determine whether new test programs are useful because programs

with similar characteristics are not already represented in the collec-

tion.

3. Parameters setup. Identifying a standard parameter setup for GA-

based test data generation makes the generator easy to use and more

handy to run, when a new test program is encountered. We identi-

fied settings for different complexity problems, and which test program

attributes determine complexity for this purpose.

4. Evidence is presented that the existence of infeasible paths does not

harm test data generation. Making all target paths feasible by re-

moving the infeasible ones causes the test data generator to take more

generations to cover the same number of paths than if the infeasible

ones are present. In practice, this means that one does not need to

worry about infeasible paths in new test programs, so long as one is

able to stop searching at some sensible point.

5. Dynamic stopping criteria. A method is presented to stop searching

for test data when it seems not worth continuing anymore, based on

the history of path coverage. This is particularly important should

any target paths be infeasible. This stopping condition is adaptive and

data-based, not arbitrary. This also means that there is one less system

parameter (the maximum number of generations) to worry about.

6. Hybrid GA-based test data generator. Hybridizing GA with local

search LS has been shown able to find more paths more quickly on
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average than just using GA. Experiments have compared several hy-

bridization methods and identified the best overall.

8.2 Findings

8.2.1 Classification of Test Programs

Hitherto, selection criteria for a test program to be used in path testing

research are not clear. Mostly, they are selected due to having some basic

logical control flows, and being used in previous (related) work.

Two classifications of test programs are proposed, based on logical control

flows and control expression complexity. They are called structure classifica-

tion and expression classification, respectively.

In structure classification, a test program is classified based on the number

of logical control nodes. A control node can be either an iteration (e.g.

FOR, WHILE, and DO -like statements) or selection (e.g. IF, IF-ELSE, and

SWITCH -like statements). The numbers of nodes considered are 0, 1, 2,

and 3 (or more). The order of two or more nodes can be sequential or nested

into one another. Based on the number of nodes and their order, there are

101 classes in total.

In expression classification, a test program is categorized with its number

of sub (or simple) control expressions. Two or more control expressions are

combined using logical connector(s) AND or OR. Each control expression is

either a relational or arithmetic-relational expression. The control expression

with the most sub control expressions in a test program is considered for
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classification. In total, there are 24 classes in the expression classification.

Lower-bound Cyclomatic Complexity (CCL) number is used to measure

class complexity both in structure and expression classifications. The classi-

fication has finer granularity level than CCL. Thus, several classes may have

equal CCLs.

28 test programs have been identified from the literature. Between them

they cover 13 out of 101 classes in the proposed structure classification. There

are 5 of 1 test program (1TP) classes (4.95%), 4 2TP classes (3.96%), 3 3TP

classes (2.97%), and 1 7TP classes (1%). This leaves a sparse classification,

because 88% of classes are not yet represented by a test program.

As for expression classification, all 28 test programs have at least one

simple relational expression. Nine test programs have two connected simple

expressions that are connected using logical connector AND or OR. Five test

programs have three connected simple expressions. Nine classes are filled in

with the following details 3 1TP classes, 1 3TP classes, 2 4TP classes, 1 6TP

classes, 1 8TP classes, and 1 28TP classes. Thus, 62.5% of classes have no

test programs.

Knowing both classifications enables further analysis on test data genera-

tor performance and test program characteristics. Results showed that a test

program that is likely to be able to achieve full path coverage has the fol-

lowing common characteristics: no or single loop, more feasible target paths

(above 20), and simple expressions or expressions with at most one logical

connector.

This classification scheme was used to select the 21 test programs used
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in this thesis.

8.2.2 Path Complexity

Path complexity is primarily affected by the number of loops or selections.

The number of paths, both feasible and infeasible, increases exponentially

as the number of loops increases. This also means longer paths due to more

branches to be traversed. Infeasible paths do not hinder the search for finding

the feasible ones, but they would make the search continue infinitely unless

some stopping condition is used other than all target paths being covered.

Having the right stopping criteria is highly recommended, because in

reality and practice, no one knows whether the (target) paths of a program

are infeasible without complicated analysis. This analysis is tedious and

laborious, and gets more difficult as the number of paths and the path lengths

increases.

The expression of loop or selection statement also contributes additional

complexity to a path. In this case, a more complex expression means more

complex function of input for a path that traverses the expression. This

is because the expression complexity directly decides the size of the input

space. Thus, it could change the input space. Changing the input space

could change the probability of covering a path. Less input space means less

probability to generate that particular input.
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8.2.3 Path Infeasibility

Unless an analytical examination is conducted, saying a path is infeasible

is very hard. In reality, dynamic infeasible path detection can only be con-

ducted by conducting exhaustive input search. The search is unlikely to

happen due to excessive amount of work and resources required.

More plausible dynamic approaches in detecting infeasible paths are by

employing empirical observations and some statistical methods. They are

monitoring best fitness improvement over generations, observing correlation

between selection branches, and tracking conflict pairs of branch-assignment

or branch-branch. However, all these methods are only to detect (potential)

infeasible paths and not capable of stating that the paths are infeasible.

Our experimental results show that the presence of infeasible paths among

the target paths does not hinder the test data generator in covering the fea-

sible ones, rather they are helpful in term of keeping the selection pressure

high so as to maintain competition. The infeasible paths create a competi-

tive environment among generated input data in the population, and more

feasible paths are found more quickly. In other words, making target paths

all feasible by analytically removing all the infeasible ones means more gener-

ations are required to cover the same number of paths as when the infeasible

ones are included.

8.2.4 Key Parameters and Parameters Setup

The experimental results have shown that allele range and population size

are the two most influential parameters in term of path coverage. The less
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influential parameters are number of generations and mutation rates.

Two parameter setups were extracted from the empirical results: best and

common parameters setups, respectively. Best parameters were identified for

each program while common ones are selected across all test programs.

In reality, best parameters setup is impractical because for each new test

program it needs several runs with different combinations of parameter values

to figure out. These runs are expensive in term of time and resources. So,

the common one is more useful in practice.

For the common parameter setup, population size can be set to 100 and

250 for low-medium and medium-high complexity programs, respectively.

The number of generations can be assigned to 50 and 500 for the same

complexity levels, respectively. Allele range can be made as narrow as feasible

without leaving out input space that covers feasible paths. As a guide, an

integer can be set to between -100 and +100, a positive integer between 0

and +200, real about 200 intervals that depends on required accuracy (e.g.

0.01), letter ASCII code, and word based on the letter. Cross over and

mutation rates matter less, and can be assigned common values 0.9 and 0.1,

respectively.

In general, all parameters are encouraged to be set up in the most re-

stricted manner possible. For example, an integer input can initially be set

up between -100 and 100, but if some target paths are still uncovered af-

ter certain number of generations then it can be enlarged between -1000 and

1000 or whatever range is reasonable without adding too much computational

time. In addition, knowledge about program input and what the program

does can be helpful in determining its allele range.
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Another important finding is that CC number is not really useful in es-

timating the complexity of a test program with respect to path testing. For

example, there is no pattern allowing us to estimate the number of genera-

tions or population size required based on the CC number.

8.2.5 Dynamic Model for Stopping Criteria

A reliability growth model can be used to estimate the number of future fail-

ures expected in black-box software testing, based on the history of defects

found during testing so far. In white-box testing, the analogy to the number

of defects detected so far, and when, is the number of target paths covered

so far, and when. This has been the inspiration for a model, based on soft-

ware reliability growth models, to predict the number of paths that may be

expected to be covered in further searching. This can be used as condition to

stop generating test data when it is not worth continuing anymore. As the

estimated likelihood of finding further paths approaches a certain threshold

it is time to stop.

The adopted path coverage model has two parameters, namely the ex-

pected number of paths found λ at a certain generation and the rate of reduc-

tion in the normalized path coverage rate θ. For parameter θ, the difference

between current and previous θ values ∆θ is used as a stopping criterion.

Changes in the values of these two parameters are monitored as searching

proceeds, so that the generator stops when certain thresholds are reached.

Empirical validation has shown that both parameters λ and ∆θ are useful

as stopping criteria. The best values identified for λ and ∆θ are 0.1 and
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0.0001, respectively. On average, the application of these criteria missed

only 0.1 feasible paths while achieving about 30% more efficiency over 21

test programs. The number of missing feasible paths is small. So, the model

is empirically proven to be an effective stopping criterion.

In general, the model can be used as stopping criteria for a test program

with no information of its target paths feasibility. The parameters for the

model can be assigned initial values as aforementioned. As the number of

paths found from the first generation is tracked, gradually the parameter

values can be tightened up to increase the likelihood that all feasible paths

are covered, and all paths that are not covered are infeasible.

8.2.6 Hybridization

Seventeen hybrid variants of GA-based test data generator with local search

LS were proposed. They are designed based on the following criteria, i.e.

relative position of LS with GA, fixed LS size, and variable LS size. Two of

them incorporate variable LS size.

The experimental results demonstrated that the two variable LS size hy-

brids are the best, over 21 test programs. The two show very similar per-

formance to one another in terms of number of paths found and number of

generations. In the end, hybrid LS-GA-LSv110 outperforms other hybrid

variants. It covered 0.77 paths more and required 3.39 generations less than

GA. In general, a hybrid is recommended for a test program with at least

five feasible paths with sparse distribution of number of paths found over

generations.
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The presence of infeasible paths does not hamper the test data generator

in finding the feasible paths. On the contrary, it helps feasible paths to be

found earlier, i.e. in fewer generations, by creating higher selection pressure

in the generation of a new population. It means that taking out infeasible

paths from target paths, if there are any, will require more generations to

cover the same number of paths. It is difficult to analyze paths to decide

which are infeasible; so it is good to note that there is no advantage — in

fact, a disadvantage — to do so.

8.3 Future Research

There are many areas for improvement in the area of path testing and GA

based path testing specifically. The following are major future research di-

rections.

Filling up the sparse structure and expression classifications tables is one

future work. The more complete the table, the more test programs can be

used for path testing benchmarks. Moreover, it will allow more comprehen-

sive understanding on how path testing works and what kind of test programs

are difficult to cover.

It is concluded that having infeasible paths in the target paths can be

helpful in finding more target paths in the earlier generations. Plausibly,

more feasible paths are covered by chance while GA is searching for test

data for the infeasible ones. Having this logic in mind, might the insertion

of infeasible paths assist to cover more paths in fewer generations?

Manual instrumentation and fitness function generation for a test pro-
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gram are relatively not difficult. However, these two tasks become more and

more complicated and error prone as the program gets bigger in terms of

number of selections, number of loops, and selection statements complexi-

ties. Automating the tasks will make path testing quicker, less difficult, and

less error prone.

This research has approached the analysis of multivariate data sets by

considering only one value of parameter or measure/dependent variable at a

time. This could miss interaction effects that involve multiple values/factors.

Thus, performing extra statistical analysis involving multiple parameters is

further work.

This research has investigated only one of many statistical approaches

for predicting logarithmically decaying phenomena, which could be used to

identify stopping criteria for searching. Investigating other methods can be

a topic for further work.
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Test Programs Classification

A.1 Structure Classification

Table A.1 presents program structure classification. The acronyms used in

the table are IP for Iteration Point (the number of loops), S for Selection

(the number of simple selection statements), Conf. for configuration IP and

S, i.e. serial or parallel or nested, PS for Point of Selection (the order of

occurrences of something representing selections {could be IF or UNLESS},

e.g. PS1 for IF statement in the first order), CCL for Cyclomatic Complex-

ity Number, and Class for the Class Name, I for IF statement, and P for

loop statement, e.g. WHILE, DO, and FOR.

Table A.1: Program Structure Classification

No IP S Conf.
Point-Selections (PS)

CCL Class
PS1 PS2 PS3 PS4

1 0 1 I (IF) 2 S01I

Continued on next page
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Table A.1 – continued from previous page

No IPs Ss Conf.
Point-Selections (PS)

CCL Class
PS1 PS2 PS3 PS4

2 2 Serial (S) I I 3 S02SII

3 Nested (N) I I 3 S02NII

4 3 S-S I I I 4 S03SSIII

5 S-N I I I 4 S03SNIII

6 N-S I I I 4 S03NSIII

7 N I I I 4 S03NIII

8 ≥ 4 5 S04

9 1 0 P(oint) 2 S10P

10 1 S P I 3 S11SPI

11 N P I 3 S11NPI

12 I P 3 S11NIP

13 2 S-S P I I 4 S12SSPII

14 I P I 4 S12SSIPI

15 I I P 4 S12SSIIP

16 S-N P I I 4 S12SNPII

17 I P I 4 S12SNIPI

18 I I P 4 S12SNIIP

19 N-S P I I 4 S12NSPII

20 I P I 4 S12NSIPI

21 I I P 4 S12NSIIP

22 N P I I 4 S12NPII

23 I P I 4 S12NIPI

24 I I P 4 S12NIIP

25 ≥ 3 5 S13

26 2 0 S P P 3 S20SPP

27 N P P 3 S20NPP

28 1 S-S P P I 4 S21SSPPI

29 P I P 4 S21SSPIP

30 I P P 4 S21SSIPP

31 S-N P P I 4 S21SNPPI

Continued on next page
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Table A.1 – continued from previous page

No IPs Ss Conf.
Point-Selections (PS)

CCL Class
PS1 PS2 PS3 PS4

32 P I P 4 S21SNPIP

33 I P P 4 S21SNIPP

34 N-S P P I 4 S21NSPPI

35 P I P 4 S21NSPIP

36 I P P 4 S21NSIPP

37 N P P I 4 S21NPPI

38 P I P 4 S21NPIP

39 I P P 4 S21NIPP

40 2 S-S-S P P I I 5 SPPII

41 P I P I 5 SPIPI

42 P I I P 5 SPIIP

43 I P I P 5 SIPIP

44 I I P P 5 SIIPP

45 I P P I 5 SIPPI

46 S-S-N P P I I 5 SPPII

47 P I P I 5 SPIPI

48 P I I P 5 SPIIP

49 I P I P 5 SIPIP

50 I I P P 5 SIIPP

51 I P P I 5 SIPPI

52 S-N-S P P I I 5 SPPII

53 P I P I 5 SPIPI

54 P I I P 5 SPIIP

55 I P I P 5 SIPIP

56 I I P P 5 SIIPP

57 I P P I 5 SIPPI

58 N-S-S P P I I 5 SPPII

59 P I P I 5 SPIPI

60 P I I P 5 SPIIP

61 I P I P 5 SIPIP

Continued on next page
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Table A.1 – continued from previous page

No IPs Ss Conf.
Point-Selections (PS)

CCL Class
PS1 PS2 PS3 PS4

62 I I P P 5 SIIPP

63 I P P I 5 SIPPI

64 S-N P P I I 5 SPPII

65 P I P I 5 SPIPI

66 P I I P 5 SPIIP

67 I P I P 5 SIPIP

68 I I P P 5 SIIPP

69 I P P I 5 SIPPI

70 N-S P P I I 5 SPPII

71 P I P I 5 SPIPI

72 P I I P 5 SPIIP

73 I P I P 5 SIPIP

74 I I P P 5 SIIPP

75 I P P I 5 SIPPI

76 N(S-S) P P I I 5 SPPII

77 P I P I 5 SPIPI

78 P I I P 5 SPIIP

79 I P I P 5 SIPIP

80 I I P P 5 SIIPP

81 I P P I 5 SIPPI

82 N(S-N) P P I I 5 SPPII

83 P I P I 5 SPIPI

84 P I I P 5 SPIIP

85 I P I P 5 SIPIP

86 I I P P 5 SIIPP

87 I P P I 5 SIPPI

88 N(N-S) P P I I 5 SPPII

89 P I P I 5 SPIPI

90 P I I P 5 SPIIP

91 I P I P 5 SIPIP

Continued on next page
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Table A.1 – continued from previous page

No IPs Ss Conf.
Point-Selections (PS)

CCL Class
PS1 PS2 PS3 PS4

92 I I P P 5 SIIPP

93 I P P I 5 SIPPI

94 N(N) P P I I 5 SPPII

95 P I P I 5 SPIPI

96 P I I P 5 SPIIP

97 I P I P 5 SIPIP

98 I I P P 5 SIIPP

99 I P P I 5 SIPPI

100 ≥ 3 6 S23

101 ≥ 3 4 S3

Table A.2 classifies test programs based on their structure.

Table A.2: Structure Classification of Test Programs

Class Test Program (TP)

S01I quicksort

S02SII

S02NII

S03SSIII

S03SNIII

S03NSIII

S03NIII tA2008, triangle michael,

triangle myers

S04 tM2004, ttB2002, fcB2002,

fG2011, sG2011, triangle

wegener, triangle sthamer

Continued on next page
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Table A.2 – continued from previous page

Class Test Program (TP)

S10P

S11SPI

S11NPI binA2008, linear search

S11NIP

S12SSPII

S12SSIPI eiR1985

S12SSIIP

S12SNPII

S12SNIPI

S12SNIIP

S12NSPII mmA2008, bisA2008

S12NSIPI

S12NSIIP

S12NPII

S12NIPI gA2008

S12NIIP rA2008, remainder sthamer

S13 mtA2008, scB2002

S20SPP

S20NPP

S21SSPPI

S21SSPIP

S21SSIPP

S21SNPPI qG1997

S21SNPIP

S21SNIPP

S21NSPPI

S21NSPIP

S21NSIPP

S21NPPI iA2008, bubA2008, bG2011

S21NPIP

S21NIPP

Continued on next page
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Table A.2 – continued from previous page

Class Test Program (TP)

SPPII

SPIPI

SPIIP

SIPIP

SIIPP

SIPPI

SPPII

SPIPI

SPIIP

SIPIP

SIIPP

SIPPI

SPPII

SPIPI

SPIIP

SIPIP

SIIPP

SIPPI

SPPII

SPIPI

SPIIP

SIPIP

SIIPP

SIPPI

SPPII

SPIPI

SPIIP

SIPIP

SIIPP

SIPPI

SPPII

Continued on next page
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Table A.2 – continued from previous page

Class Test Program (TP)

SPIPI

SPIIP

SIPIP

SIIPP

SIPPI

SPPII

SPIPI

SPIIP

SIPIP

SIIPP

SIPPI

SPPII

SPIPI

SPIIP

SIPIP

SIIPP

SIPPI

SPPII

SPIPI

SPIIP

SIPIP

SIIPP

SIPPI

SPPII

SPIPI

SPIIP

SIPIP

SIIPP

SIPPI

S23 qB2002

S3 eiB2002, fB2002, shellsort
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A.2 Expression Classification

Table A.3 classifies test programs based on their expression. The acronyms

used in the table are NoE for Number of Simple Expressions, Exp1 for

expression number 1, and CCL for Cyclomatic Complexity Number.

Table A.4 shows all the operators that could involve in a statement ex-

pression.

Table A.5 is the expression classification of test programs.
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Table A.3: Program Expression Classification

No NoE Connector
Expressions

CCL Class
Exp1 Exp2 Exp3

1 1 Relational 1 E1R

2 Arith-Rel 1 E1I

3 2 AND (N) Relational Relational 2 E2NRR

4 Arith-Rel (I) 2 E2NRI

5 Arith-Rel Arith-Rel 2 E2NII

6 OR (O) Relational Relational 2 E2ORR

7 Relational Arith-Rel 2 E2ORI

8 Arith-Rel Arith-Rel 2 E2OII

9 3 AND-AND Relational Relational Relational 3 E3NNRRR

10 Relational Arith-Rel 3 E3NNRRI

11 Arith-Rel Arith-Rel 3 E3NNRII

12 Arith-Rel Arith-Rel Arith-Rel 3 E3NNIII

13 OR-OR Relational Relational Relational 3 E3OORRR

14 Relational Relational Arith-Rel 3 E3OORRI

15 Relational Arith-Rel Arith-Rel 3 E3OORII

16 Arith-Rel Arith-Rel Arith-Rel 3 E3OOIII

17 AND-OR Relational Relational Relational 3 E3AORRR

18 Relational Arith-Rel 3 E3AORRI

19 Arith-Rel Relational 3 E3AORIR

20 Arith-Rel Arith-Rel 3 E3AORII

21 Arith-Rel Relational Relational 3 E3AOIRR

22 Arith-Rel 3 E3AOIRI

23 Arith-Rel Relational 3 E3AOIIR

24 Arith-Rel 3 E3AOIII
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Table A.4: Types of Operators

Type Operators Sign

Arithmetic Addition +

Substraction -

Multiplication *

Division /

Relational Equal To ==

Not Equal To !=

Less Than <

Greater Than >

Less Than or Equal To <=

Greater Than or Equal To >=

Logical And &&

Or ||
Not ∼
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Table A.5: Expression Classification of Test Programs

Class Test Program (TP)

E1R mmA2008, iA2008, bisA2008, binA2008, bubA2008,

gcd, rA2008, mtA2008, tM2004, eR1985, qG1997,

ttB2002, eiR1985, eiB2002, qB2002, scB2002, fcB2002,

fB2002, bG2011, fG2011, sG2011, linear search, quick-

sort, shellsort, triangle myers, triangle michael, triangle

sthamer, triangle wegener

E1I bisA2008, tM2004, ttB2002, eiR1985, eiB2002, scB2002,

triangle sthamer, triangle wegener

E2NRR iA2008, ttB2002, qG1997, qB2002, shellsort, triangle

wegener

E2NRI bubA2008

E2NII fcB2002

E2ORR ttB2002, fB2002, triangle wegener

E2ORI

E2OII

E3NNRRR tA2008, mtA2008, triangle myers, triangle michael

E3NNRRI

E3NNRII

E3NNIII tA2008, mtA2008, triangle myers, triangle michael

E3OORRR

E3OORRI

E3OORII

E3OOIII

E3AORRR

E3AORRI

E3AORIR

E3AORII

E3AOIRR bisA2008

E3AOIRI

E3AOIIR

E3AOIII
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Test Programs

Description of each test problem consists of instrumented source code, CFG,

target paths, and fitness function, respectively. The original source code

is not included, because it can easily be extracted from the instrumented

version by removing all the probes.

B.1 Test Program iA2008

The source code of iA2008

function [traversedPath, sortedArray] = insertion(anyArray)

k = 1; % The smallest integer increment

traversedPath = [];

n = length(anyArray);

i = 2;

traversedPath = [traversedPath 1 fitnessInsertion(1, [i n])]; % instrument Branch # 1

for i=2:n % Branch # 1

x = anyArray(i);

j = i - 1;

% instrument Branch # 2

traversedPath = [traversedPath 2 fitnessInsertion(2, [j anyArray(j) x])];

while ((j > 0) & (anyArray(j) > x)), % Branch # 2

anyArray(j+1) = anyArray(j);

j = j - 1;
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if (j > 0), % Added for instrumentation purpose only

% instrument Branch # 2

traversedPath = [traversedPath 2 fitnessInsertion(2, [j anyArray(j) x])];

else

traversedPath = [traversedPath 2 k]; % anyArray(j) is undefined, because j=0.

end

end

anyArray(j+1) = x;

% instrument Branch # 1

traversedPath = [traversedPath 1 fitnessInsertion(1, [(i+1) n])];

end

sortedArray = anyArray;

end

The CFG of iA2008

Start

Stop

B1

B2
False

True

False

True

Figure B.1: CFG of iA2008

The target paths of iA2008

[1 1];

[1 0 2 1 1 1];

[1 0 2 0 2 1 1 1];

[1 0 2 0 2 0 2 1 1 1]; % infeasible

[1 0 2 1 1 0 2 0 2 1 1 1];

[1 0 2 0 2 1 1 0 2 1 1 1]

The fitness function of iA2008

function branchVal = fitnessInsertion(branchNo, predicate)

k = 1; % the smallest step for integer
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switch (branchNo)

case 1,

% Branch #1: (for i=2:n) ==> (i <= n)

branchVal = predicate(1) - predicate(2);

case 2,

% Branch #2: ((j > 0) & (anyArray(j) > x))

term(1) = 0 - predicate(1); % predicate(1) = j

% predicate(2) = anyArray(j); predicate(3) = x

term(2) = predicate(3) - predicate(2);

for i=1:2

if (term(i) < 0)

term(i) = term(i) - k;

else

term(i) = term(i) + k;

end

end

branchVal = term(1) + term(2);

% Branch # 2

if (~((predicate(1) > 0) & (predicate(2) > predicate(3)) ) & (branchVal < 0)),

branchVal = -branchVal;

end

end

B.2 Test Program bisA2008

The source code of bisA2008

function [traversedPath, roots] = bisection(input)

EPS_ABS = 1e-2; % constant

EPS_STEP = 1e-2; % constant

traversedPath = []; % traversedPath contains branch# and its corresponding branchVal

a = input(1);

b = input(2);

c = NaN;

if (f(a) * f(b)) >= 0,

return;

end

% B1 instrument

traversedPath = [traversedPath 1 fitnessBisection(1, a, f(a), b, f(b), EPS_ABS, EPS_STEP)];

while (b-a >= EPS_STEP || (abs(f(a)) >= EPS_ABS && abs(f(b)) >= EPS_ABS))

c = (a + b)/2;

traversedPath = [traversedPath 2 fitnessBisection(2, f(c))]; % B2 instrument

if (f(c) == 0)

roots = c;

return;

else

traversedPath = [traversedPath 3 fitnessBisection(3, f(a), f(c))]; % B3 instrument
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if (f(a)*f(c) < 0)

b = c;

else

a = c;

end

end

% B1 instrument

traversedPath = [traversedPath 1 fitnessBisection(1, a, f(a), b, f(b), EPS_ABS, EPS_STEP)];

end

roots = c;

end

% find the root of the following function y = 3*x^2 + 10*x - 3

function y = f(x)

% y = 3*x^2 + 10*x - 3;

y = x^2 - 3; % root = 1.7344

end

The CFG of bisA2008

Start

Stop

B1

B2

B3

False

True

True

False

TrueFalse

Figure B.2: CFG of bisA2008

The target paths of bisA2008

[1 1]; % Reach B1 then end (No loop @ B1)

[1 0 2 0]; % Reach B2 then end (No loop @ B2)

[1 0 2 1 3 0 1 1]; % One loop @ B1 or B2 with True @ B3
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[1 0 2 1 3 1 1 1]; % One loop @ B1 or B2 with False @ B3

[1 0 2 1 3 0 1 0 2 0]; % Two loops @ B1 & one loop @ B2 with True @ B3

[1 0 2 1 3 1 1 0 2 0]; % Two loops @ B1 & one loop @ B2 with False @ B3

[1 0 2 1 3 0 1 0 2 1 3 0 1 1]; % Two loops @ B1 & B2 with 2 Trues @ B3

[1 0 2 1 3 0 1 0 2 1 3 1 1 1]; % Two loops @ B1 & B2 with True & False @ B3

[1 0 2 1 3 1 1 0 2 1 3 1 1 1]; % Two loops @ B1 & B2 with 2 Falses @ B3

The fitness function of bisA2008

function branchVal = fitnessBisection(branchNo, a, fa, b, fb, EPS_ABS, EPS_STEP)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% branch #1: (b-a >= EPS_STEP || (abs(f(a)) >= EPS_ABS && abs(f(b)) >= EPS_ABS))

term(1) = b-a >= EPS_STEP;

term(2) = abs(fa) >= EPS_ABS;

term(3) = abs(fb) >= EPS_ABS;

if term(1),

val(1) = 0;

else

val(1) = EPS_STEP - (b-a);

end

if term(2),

val(2) = 0;

else

val(2) = EPS_ABS - abs(fa);

end

if term(3),

val(3) = 0;

else

val(3) = EPS_ABS - abs(fb);

end

value = min(val(1), (val(2)+val(3)));

case 2,

% branch #2: f(c) == 0; note: f(c) = a

if (a == 0),

value = 0;

else

value = abs(a);

end

case 3,

% branch #3: f(a)*f(c) < 0; note: f(a) = a; f(c) = fa

if a * fa < 0,

value = 0;

else

value = (a * fa) + k;

end

end

branchVal = value;
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B.3 Test Program binA2008

The source code of binA2008

function [traversedPath, itemIndex] = binary(itemNumbers)

item = itemNumbers(1);

numbers = itemNumbers(1,2:end);

lowerIdx = 1;

upperIdx = length(numbers);

traversedPath = [];

% instrument Branch # 1

traversedPath = [traversedPath 1 fitnessBinary(1, [lowerIdx upperIdx])];

while (lowerIdx ~= upperIdx), % Branch # 1

temp = lowerIdx + upperIdx; % additional statement

if (mod(temp, 2) ~= 0), temp = temp - 1; end % additional statement

idx = temp / 2;

% instrument Branch # 2

traversedPath = [traversedPath 2 fitnessBinary(2, [numbers(idx) item])];

if (numbers(idx) < item), % Branch # 2

lowerIdx = idx + 1;

else

upperIdx = idx;

end

% instrument Branch # 1

traversedPath = [traversedPath 1 fitnessBinary(1, [lowerIdx upperIdx])];

end

% Additional code that returns -1 if the item is not found

if (item == numbers(lowerIdx)),

itemIndex = lowerIdx;

else

itemIndex = -1;

end

end

The CFG of binA2008

The target paths of binA2008

[1 1];

[1 0 2 0 1 1];

[1 0 2 1 1 1];

[1 0 2 0 1 0 2 0 1 1];

[1 0 2 1 1 0 2 1 1 1];

[1 0 2 0 1 0 2 1 1 1];

[1 0 2 1 1 0 2 0 1 1];

The fitness function of binA2008



229 B.4. Test Program bubA2008

Start

B1

B2

Stop

False

True True

False

Figure B.3: CFG of binA2008

function branchVal = fitnessBinary(branchNo, predicate)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% Branch #1: (lower ~= upper)

if (predicate(1) ~= predicate(2)), branchVal = 0; else branchVal = k; end

case 2,

% Branch #2: (numbers(idx) < item)

branchVal = predicate(1) - predicate(2);

if (branchVal < 0),

branchVal = branchVal - k;

else

branchVal = branchVal + k;

end

end

B.4 Test Program bubA2008

The source code of bubA2008

function [traversedPath, sortedArray] = bubble(anyArray)

sorted = 0; % 0 means false

i = 1; n = length(anyArray);

traversedPath = [];
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% instrument Branch # 1

traversedPath = [traversedPath 1 fitnessBubble(1, [i (n-1) ~sorted])];

while ((i <= (n-1)) && ~sorted), % Branch # 1

sorted = 1;

j = n;

% instrument Branch # 2

traversedPath = [traversedPath 2 fitnessBubble(2, [j (i+1)])];

for j=n:-1:i+1 % Branch # 2

% instrument Branch # 3

traversedPath = [traversedPath 3 fitnessBubble(3, [anyArray(j) anyArray(j-1)])];

if (anyArray(j) < anyArray(j-1)) % Branch # 3

%exchange(anyArray(j), anyArray(j-1));

temp = anyArray(j);

anyArray(j) = anyArray(j-1);

anyArray(j-1) = temp;

sorted = 0;

end

% instrument Branch # 2

traversedPath = [traversedPath 2 fitnessBubble(2, [(j-1) (i+1)])];

end

i = i + 1;

% instrument Branch # 1

traversedPath = [traversedPath 1 fitnessBubble(1, [i (n-1) ~sorted])];

end

sortedArray = anyArray;

end

The CFG of bubA2008

Start

Stop

B1

B2

B3

False

True

False

True

True

False

Figure B.4: CFG of bubA2008

The target paths of bubA2008
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[1 1];

[1 0 2 1 1 1];

[1 0 2 1 1 0 2 1 1 1];

[1 0 2 0 3 0 2 1 1 1];

[1 0 2 0 3 1 2 1 1 1];

[1 0 2 0 3 0 2 0 3 0 2 1 1 1];

[1 0 2 0 3 1 2 0 3 1 2 1 1 1];

[1 0 2 0 3 0 2 0 3 1 2 1 1 1];

[1 0 2 0 3 1 2 0 3 0 2 1 1 1];

[1 0 2 0 3 0 2 0 3 1 2 0 3 1 2 1 1 1];

[1 0 2 0 3 1 2 0 3 1 2 0 3 0 2 1 1 1];

[1 0 2 0 3 0 2 0 3 0 2 0 3 1 2 1 1 1];

[1 0 2 0 3 1 2 0 3 1 2 0 3 0 2 1 1 1];

[1 0 2 0 3 0 2 0 3 1 2 0 3 0 2 1 1 1];

[1 0 2 0 3 1 2 0 3 0 2 0 3 1 2 1 1 1];

The fitness function of bubA2008

function branchVal = fitnessBubble(branchNo, predicate)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% Branch #1: ((i <= (n-1)) && ~sorted)

term(1) = predicate(1) - predicate(2);

if predicate(3) > 0, term(2) = 0; else term(2) = k; end

if (term(2) <= 0) && (term(1) <= 0)

branchVal = 0;

else

branchVal = term(1) + term(2);

end

case 2,

% Branch #2: j=n:-1:i+1 ==> (j >= i+1)

branchVal = predicate(2) - predicate(1);

case 3,

% branch #3: (anyArray(j) < anyArray(j-1))

branchVal = predicate(1) - predicate(2);

if (branchVal < 0)

branchVal = branchVal - k;

else

branchVal = branchVal + k;

end

end

end
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B.5 Test Program gA2008

The source code of gA2008

function [traversedPath y] = gcd(number)

a = number(1);

b = number(2);

% traversedPath contains branch# and its corresponding branchVal

traversedPath = [];

traversedPath = [traversedPath 1 fitnessGCD(1, a)]; % B1 Instrument

if (a == 0),

y = b;

else

traversedPath = [traversedPath 2 fitnessGCD(2, b)]; % B2 Instrument

while b ~= 0

traversedPath = [traversedPath 3 fitnessGCD(3, a, b)]; % B3 Instrument

if a > b

a = a - b;

else

b = b - a;

end

traversedPath = [traversedPath 2 fitnessGCD(2, b)]; % B2 Instrument

end

y = a;

end

end

The CFG of gA2008

The target paths of gA2008

[1 0] % Reach B1 then end

[1 1 2 1]; % No loop @ B2

[1 1 2 0 3 0 2 1]; % IF: One loop @ B2 with True @ B3

[1 1 2 0 3 1 2 1]; % One loop @ B2 with False @ B3

[1 1 2 0 3 0 2 0 3 0 2 1]; % IF: Two loops @ B2 with T & T @ B3

[1 1 2 0 3 0 2 0 3 1 2 1]; % Two loops @ B2 with T & F @ B3

[1 1 2 0 3 1 2 0 3 0 2 1]; % IF: Two loops @ B2 with F & T @ B3

[1 1 2 0 3 1 2 0 3 1 2 1]; % Two loops @ B2 with F & F @ B3

The fitness function of gA2008

function branchVal = fitnessGCD(branchNo, a, b)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,
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% branch #1: (a == 0) => F: abs(a)

if (a == 0),

value = 0;

else

value = abs(a);

end

case 2,

% branch #2: b ~= 0

if (a ~= 0),

value = 0;

else

value = k;

end

case 3,

% branch #3: a > b

if a > b,

value = 0;

else

value = (b - a) + k;

end

end

branchVal = value;

end
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B.6 Test Program rA2008

The source code of rA2008

function [traversedPath, y] = remainder(input)

traversedPath = [];

a = input(1);

d = input(2);

traversedPath = [traversedPath 1 fitnessRemainder(1, d)]; % B1 instrument

if d == 0 % divisor can not be zero

y = NaN;

else

traversedPath = [traversedPath 2 fitnessRemainder(2, a, d)]; % B2 instrument

if a < d

y = a;

else

traversedPath = [traversedPath 3 fitnessRemainder(3, a, d)]; % B3 instrument

while a >= d

a = a - d;

traversedPath = [traversedPath 3 fitnessRemainder(3, a, d)]; % B3 instrument

end

y = a;

end

end

end

The CFG of rA2008

The target paths of rA2008

[1 0] % Reach B1 then end

[1 1 2 0]; % Reach B2 then end

[1 1 2 1 3 1]; % IF: No loop @ B3

[1 1 2 1 3 0 3 1]; % One loop @ B3

[1 1 2 1 3 0 3 0 3 1]; % Two loops @ B3

The fitness function of rA2008

function branchVal = fitnessRemainder(branchNo, a, d)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% branch #1: d == 0 => F: abs(d)

if (a == 0),

value = 0;

else
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value = abs(a);

end

case 2,

% branch #2: a < d

if (a < d),

value = 0;

else

value = (a - d) + k;

end

case 3,

% branch #3: a >= d

if a >= d,

value = 0;

else

value = (d - a);

end

end

branchVal = value;

end

B.7 Test Program mtA2008

The source code of mtA2008
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function [traversedPath, minimaxi, type] = mmTriangle(num)

numLength = length(num);

mini = num(1);

maxi = num(1);

idx = 2;

% traversedPath contains branch# and its corresponding branchVal

traversedPath = [];

traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])];

while (idx <= numLength) % Branching #1

traversedPath = [traversedPath 2 fitnessMiniMaxi(2, [maxi num(idx)])];

if maxi < num(idx) % Branching #2

maxi = num(idx);

end

traversedPath = [traversedPath 3 fitnessMiniMaxi(3, [mini num(idx)])];

if mini > num(idx) % Branching #3

mini = num(idx);

end

idx = idx+1;

traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])];

end

minimaxi = [mini maxi];

A = num(1); % First side

B = num(2); % Second side

C = num(3); % Third side

% instrument Branch # 4

traversedPath = [traversedPath 4 fitnessTriangle(1, A, B, C)];

if ((A+B > C) & (B+C > A) & (C+A > B)) % Branch # 4

% instrument Branch # 5

traversedPath = [traversedPath 5 fitnessTriangle(2, A, B, C)];

if ((A ~= B) & (B ~= C) & (C ~= A)) % Branch # 5

type = ’Scalene’;

else

% instrument Branch # 6

traversedPath = [traversedPath 6 fitnessTriangle(3, A, B, C)];

% Branch # 6

if (((A == B) & (B ~= C)) | ((B == C) & (C ~= A)) | ((C == A) & (A ~= B)))

type = ’Isosceles’;

else

type = ’Equilateral’;

end

end

else

type = ’Not a triangle’;

end

end

The CFG of mtA2008

The target paths of mtA2008
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% First combination: Tail => Equilateral

[1 1 4 0 5 1 6 1];

[1 0 2 0 3 1 1 1 4 0 5 1 6 1];

[1 0 2 1 3 0 1 1 4 0 5 1 6 1];

[1 0 2 1 3 1 1 1 4 0 5 1 6 1];

[1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 1];

[1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 1];

[1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 1];

[1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 0 5 1 6 1];
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[1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 0 5 1 6 1];

[1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 0 5 1 6 1];

[1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 1];

[1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 1];

[1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 1];

% Second combination: Tail => Scalene

[1 1 4 0 5 0];

[1 0 2 0 3 1 1 1 4 0 5 0];

[1 0 2 1 3 0 1 1 4 0 5 0];

[1 0 2 1 3 1 1 1 4 0 5 0];

[1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 0 5 0];

[1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 0 5 0];

[1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 0 5 0];

[1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 0 5 0];

[1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 0 5 0];

[1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 0 5 0];

[1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 0 5 0];

[1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 0 5 0];

[1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 0 5 0];

% Third combination: Tail => Not Triangle

[1 1 4 1];

[1 0 2 0 3 1 1 1 4 1];

[1 0 2 1 3 0 1 1 4 1];

[1 0 2 1 3 1 1 1 4 1];

[1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 1];

[1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 1];

[1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 1];

[1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 1];

[1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 1];

[1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 1];

[1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 1];

[1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 1];

[1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 1];

% Forth combination: Tail => Isosceles

[1 1 4 0 5 1 6 0];

[1 0 2 0 3 1 1 1 4 0 5 1 6 0];

[1 0 2 1 3 0 1 1 4 0 5 1 6 0];

[1 0 2 1 3 1 1 1 4 0 5 1 6 0];

[1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 0];

[1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 0];

[1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 0];

[1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 0 5 1 6 0];

[1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 0 5 1 6 0];

[1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 0 5 1 6 0];

[1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 0];

[1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 0];

[1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 0];
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The fitness function of mtA2008 consists of tA2008 and mmA2008 fitness

functions.

B.8 Test Program tM2004

The source code of tM2004

function [traversedPath type] = triangleMansour2004(sideLengths)

traversedPath = [];

A = sideLengths(1); % First side

B = sideLengths(2); % Second side

C = sideLengths(3); % Third side

type = ’Scalene’;

% instrument Branch # 1

traversedPath = [traversedPath 1 fitnessTriangleMansour2004(1, A, B)];

if (A == B)

% instrument Branch # 2

traversedPath = [traversedPath 2 fitnessTriangleMansour2004(2, B, C)];

if (B == C)

type = ’Equilateral’;

else

type = ’Isosceles’;

end

else

% instrument Branch # 3

traversedPath = [traversedPath 3 fitnessTriangleMansour2004(3, B, C)];

if (B == C)

type = ’Isosceles’;

end

end

% instrument Branch # 4

traversedPath = [traversedPath 4 fitnessTriangleMansour2004(4, A, B, C)];

if (A^2 == (B^2 + C^2))

type = ’Right’;

end

end

The CFG of tM2004

The target paths of tM2004

[1 0 2 1 4 1]; % SP1-p1 @mansour2004; isosceles with A=B

[1 1 3 0 4 1]; % SP1-p2 @mansour2004; isosceles with B=C

[1 0 2 0 4 1]; % SP1-p3 @mansour2004; equilateral
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[1 1 3 1 4 0]; % SP1-p4 @mansour2004; right-angle

[1 1 3 0 4 0]; % IF: SP1-p5 @mansour2004; isosceles + right-angle

[1 1 3 1 4 1]; % SP1-p6 @mansour2004; scalene

[1 0 2 0 4 0]; % added by the author: equilateral + right-angle: inf

[1 0 2 1 4 0] % added by the author: isosceles + right-angle

The fitness function of tM2004

function branchVal = fitnessTriangleMansour2004(branchNo, A, B, C)

switch (branchNo)

case 1,

% branch #1: (A == B)

branchVal = abs(A-B);

case {2, 3},

% branch #2: (B == C)

branchVal = abs(A-B);

case 4,

% branch #4: (A^2 == (B^2 + C^2))

branchVal = abs(A^2 - (B^2 + C^2));

end

end
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B.9 Test Program eR1985

The source code of eR1985

function [traversedPath Z] = expintRapps1985(integers)

traversedPath = [];

X = integers(1);

Y = integers(2);

% instrument Branch #1

traversedPath = [traversedPath 1 fitnessExpintRapps1985(1, Y)];

if (Y >= 0)

power = Y;

else

power = -Y;

end

Z = 1;

% instrument Branch #2

traversedPath = [traversedPath 2 fitnessExpintRapps1985(2, power)];

while (power ~= 0)

Z = Z * X;

power = power - 1;

traversedPath = [traversedPath 2 fitnessExpintRapps1985(2, power)];

end

% instrument Branch #3

traversedPath = [traversedPath 3 fitnessExpintRapps1985(3, Y)];

if (Y < 0)

Z = 1 / Z; % this is the original one; by removing if TRUE

end

Z = Z + 1;

end

The CFG of eR1985

The target paths of eR1985

[1 0 2 1 3 0];

[1 0 2 1 3 1];

[1 1 2 1 3 0];

[1 1 2 1 3 1];

[1 0 2 0 2 1 3 0];

[1 0 2 0 2 1 3 1];

[1 1 2 0 2 1 3 0];

[1 1 2 0 2 1 3 1];

[1 0 2 0 2 0 2 1 3 0];

[1 0 2 0 2 0 2 1 3 1];

[1 1 2 0 2 0 2 1 3 0];
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[1 1 2 0 2 0 2 1 3 1];

The fitness function of eR1985

function branchVal = fitnessExpintRapps1985(branchNo, A)

k = 1;

switch (branchNo)

case 1,

% branch #1: (A >= 0)

branchVal = -A;

case 2,

% branch #2: (A ~= 0)

if (A ~= 0)

branchVal = 0;

else

branchVal = k;

end

case 3,

% branch #3: (A < 0)

branchVal = A + 1;

end

end
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B.10 Test Program qG1997

The source code of qG1997

function [traversedPath q r] = quotientGallagher1997(integers)

traversedPath = [];

q = 0; % q: quotient

r = integers(1); % r: remainder; integers(1): nominator

t = integers(2); % integers(2): denominator

% instrument Branch # 1

traversedPath = [traversedPath 1 fitnessQuotientGallagher1997(1, r, t)];

while (r >= t)

t = t * 2;

traversedPath = [traversedPath 1 fitnessQuotientGallagher1997(1, r, t)];

end

% instrument Branch # 2

traversedPath = [traversedPath 2 fitnessQuotientGallagher1997(2, t, integers(2))];

while (t ~= integers(2))

q = q * 2;

t = t / 2;

% instrument Branch # 3

traversedPath = [traversedPath 3 fitnessQuotientGallagher1997(3, t, r)];

if (t <= r)

r = r - t;

q = q + 1;

end

traversedPath = [traversedPath 2 fitnessQuotientGallagher1997(2, t, integers(2))];

end

end

The CFG of qG1997

The target paths of qG1997

% no loop @ B#1 & B#2

[1 1 2 1];

% no loop @ B#1 & one loop @ B#2 with TRUE @ B#3

[1 1 2 0 3 0 2 1];

% no loop @ B#1 & one loop @ B#2 with FALSE @ B#3

[1 1 2 0 3 1 2 1];

% no loop @ B#1 & two loops @ B#2 with two TRUEs @ B#3

[1 1 2 0 3 0 2 0 3 0 2 1];
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% no loop @ B#1 & two loops @ B#2 with TRUE then FALSE @ B#3

[1 1 2 0 3 0 2 0 3 1 2 1];

% no loop @ B#1 & two loops @ B#2 with two FALSEs @ B#3

[1 1 2 0 3 1 2 0 3 1 2 1];

% no loop @ B#1 & two loops @ B#2 with FALSE then TRUE @ B#3

[1 1 2 0 3 1 2 0 3 0 2 1];

% one loop @ B#1 and no loop @ B#2

[1 0 1 1 2 1];

% one loop @ B#1 & one loop @ B#2 with TRUE @ B#3

[1 0 1 1 2 0 3 0 2 1];

% one loop @ B#1 & one loop @ B#2 with FALSE @ B#3

[1 0 1 1 2 0 3 1 2 1];

% one loop @ B#1 & two loops @ B#2 with two TRUEs @ B#3

[1 0 1 1 2 0 3 0 2 0 3 0 2 1];

% one loop @ B#1 & two loops @ B#2 with TRUE then FALSE @ B#3

[1 0 1 1 2 0 3 0 2 0 3 1 2 1];

% one loop @ B#1 & two loops @ B#2 with two FALSEs @ B#3

[1 0 1 1 2 0 3 1 2 0 3 1 2 1];

% one loop @ B#1 & two loops @ B#2 with FALSE then TRUE@ B#3

[1 0 1 1 2 0 3 1 2 0 3 0 2 1];

% two loops @ B#1 and no loop @ B#2

[1 0 1 0 1 1 2 1];

% two loops @ B#1 & one loop @ B#2 with TRUE @ B#3

[1 0 1 0 1 1 2 0 3 0 2 1];

% two loops @ B#1 & one loop @ B#2 with FALSE @ B#3
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[1 0 1 0 1 1 2 0 3 1 2 1];

% two loops @ B#1 & two loops @ B#2 with two TRUEs @ B#3

[1 0 1 0 1 1 2 0 3 0 2 0 3 0 2 1];

% two loops @ B#1 & two loops @ B#2 with TRUE then FALSE @ B#3

[1 0 1 0 1 1 2 0 3 0 2 0 3 1 2 1];

% two loops @ B#1 & two loops @ B#2 with two FALSEs @ B#3

[1 0 1 0 1 1 2 0 3 1 2 0 3 1 2 1];

% two loops @ B#1 & two loops @ B#2 with FALSE then TRUE @ B#3

[1 0 1 0 1 1 2 0 3 1 2 02 1 3 0 2 1];

The fitness function of qG1997

function branchVal = fitnessQuotientGallagher1997(branchNo, A, B)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% branch #1: (r >= t); r=A; t=B

branchVal = B - A;

case 2,

% branch #2: (t ~= integers(2)); t=A; integers(2)=B

if (abs(A - B) == 0)

branchVal = k;

else

branchVal = 0;

end

case 3,

% branch #3: (t <= r)

branchVal = A - B;

end

end

B.11 Test Program tB2002

The source code of tB2002

function [path, type, area] = tritypeBueno2002(side)

a = side(1);

b = side(2);

c = side(3);

path = [];

% Instrument Branch #1

path = [path 1 fitnessTritype(1, a, b, c)];

if ((a < b) || (b < c))

type = ’Invalid input. Input must be ordered a >= b >= c’;
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area = 0;

% Instrument Branch #2

path = [path 2 fitnessTritype(2, a, b, c)];

elseif ( a >= (b + c) )

type = ’Not a triangle’;

area = 0;

% Instrument Branch #3

path = [path 3 fitnessTritype(3, a, b, c)];

elseif ( (a ~= b) && (b ~= c) ) % /* escaleno */

as = a*a;

bs = b*b;

cs = c*c;

% Instrument Branch #4

path = [path 4 fitnessTritype(4, as, bs, cs)];

if (as == bs + cs) % /* retangulo */

type = ’Rectangle’;

area = b * c / 2.0;

else

s = (a+b+c) / 2.0;

area = sqrt(s*(s-a)*(s-b)*(s-c));

% Instrument Branch #5

path = [path 5 fitnessTritype(5, as, bs, cs)];

if ( as < bs + cs )

type = ’Agudo’; % /* agudo */

else

type =’Obtuso’; % /* obtuso */

end

end

% Instrument Branch #6

path = [path 6 fitnessTritype(6, a, b, c)];

elseif ( (a == b) && (b == c) )

type = ’Equilateral’; % /* equilatero */

area = a*a*sqrt(3.0)/4.0;

else

type = ’Isosceles’; % /* isoceles */

% Instrument Branch #7

path = [path 7 fitnessTritype(7, a, b)];

if ( a == b )

area = c*sqrt(4*a*b-c*c)/4;

else

area = a*sqrt(4*b*c-a*c)/4;

end

end

end

The CFG of tB2002

The target paths of tB2002

[1 1]; % equilateral
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Figure B.11: CFG of tB2002

[1 0 2 1]; % invalid input

[1 1 3 0]; % not a triangle

[1 1 4 0 6 1]; % rectangle

[1 1 7 1]; % isosceles

[1 1 4 1 5 0]; % agudo

[1 1 4 1 5 1]; % obtuso

[1 1 3 0]; % escalano

The fitness function of tB2002

function branchVal = fitnessTritype(branchNo, a, b, c)
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k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% branch #1: ((a < b) || (b < c))

term1 = fitnessKorel(’<’, a, b);

term2 = fitnessKorel(’<’, b, c);

branchVal = fitnessKorel(’||’, term1, term2);

case 2,

% branch #2: a >= (b + c)

branchVal = fitnessKorel(’>=’, a, (b+c));

case 3,

% branch #3: (a ~= b) && (b ~= c)

term1 = fitnessKorel(’~=’, a, b);

term2 = fitnessKorel(’~=’, b, c);

branchVal = fitnessKorel(’&&’, term1, term2);

case 4,

% branch #4: as == bs + cs

branchVal = fitnessKorel(’==’, a, (b+c));

case 5,

% branch #1: as < bs + cs

branchVal = fitnessKorel(’<’, a, (b+c));

case 6,

% branch #2: (a == b) && (b == c)

term1 = fitnessKorel(’==’, a, b);

term2 = fitnessKorel(’==’, b, c);

branchVal = fitnessKorel(’&&’, term1, term2);

case 7,

% branch #3: a == b

branchVal = fitnessKorel(’==’, a, b);

end

end

The Korel’s fitness function

function distance = fitnessKorel(operator, operand1, operand2)

k = 1;

% distance <= 0 means TRUE branch is exercised

switch operator

case ’==’

distance = abs(operand1 - operand2);

case ’~=’

if (abs(operand1 - operand2) > 0)

distance = 0;

else

distance = k;

end

case ’<’

distance = operand1 - operand2 + k;

case ’<=’

distance = operand1 - operand2;
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case ’>’

distance = operand2 - operand1 + k;

case ’>=’

distance = operand2 - operand1;

case ’||’

distance = min(operand1, operand2);

case ’&&’

distance = max(operand1, operand2);

end

end

B.12 Test Program eB2002

The source code of eB2002

function [path, result] = expintBueno2002(numbersIn)

n = numbersIn(1); % integer

x = numbersIn(2); % float

path = [];

MAXIT = 100;

EULER = 0.5772156649;

FPMIN = 1.0e-30;

EPS = 1.0e-7;

nm1 = n - 1;

% instrument B1

path = [path 1 fitnessExpintBueno2002(1, n, x)];

if (n < 0 || x < 0.0 || (x == 0.0 && (n == 0.0 || n==1)))

result = 0;

% disp(’bad arguments in expintBueno2002’);

% instrument B2

path = [path 2 fitnessExpintBueno2002(2, n, 0)];

elseif (n == 0)

result = exp(-x)/x;

% instrument B3

path = [path 3 fitnessExpintBueno2002(3, x, 0.0)];

elseif (x == 0.0)

result = 1.0/nm1; % strangy: what is nm1?

% instrument B4

path = [path 4 fitnessExpintBueno2002(4, x, 1.0)];

elseif (x > 1.0)

b = x + n;

c = 1.0 / FPMIN;

d = 1.0 / b;

h = d;

% instrument B5

i = 1; % for instrumentation purpose only

path = [path 5 fitnessExpintBueno2002(5, i, MAXIT)];
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for i=1 : MAXIT

a = -i * (nm1 + i);

b = b + 2.0;

d = 1.0 / (a*d+b);

c = b + a / c;

del = c * d;

h = h * del;

% instrument B6

path = [path 6 fitnessExpintBueno2002(6, abs(del-1.0), EPS)];

if (abs(del-1.0) < EPS) % abs is fabs in C

result = h * exp(-x);

return;

end

path = [path 5 fitnessExpintBueno2002(5, i, MAXIT)];

end

disp(’continuated fraction failed in expint’);

else

% ans = (nm1!=0 ? 1.0/nm1 : -log(x)-EULER);

% is interpreted as follows

% instrument B7

path = [path 7 fitnessExpintBueno2002(7, nm1, 0)];

if (nm1 ~= 0)

result = 1.0 / nm1;

else

result = -log(x)-EULER;

end

fact = 1.0;

% instrument B8

i = 1; % for instrumentation purpose only

path = [path 8 fitnessExpintBueno2002(8, i, MAXIT)];

for i = 1 : MAXIT

fact = fact * (-x / i);

% instrument B9

path = [path 9 fitnessExpintBueno2002(9, i, nm1)];

if (i ~= nm1)

del = -fact / (i - nm1);

else

psi = -EULER;

% instrument B10

ii = 1; % for instrumentation purpose only

path = [path 10 fitnessExpintBueno2002(10, ii, nm1)];

for ii = 1 : nm1

psi = psi + (1/ii);

path = [path 10 fitnessExpintBueno2002(10, ii, nm1)];

end

del = fact * (-log(x) + psi);

end

result = result + del;

% instrument B11

path = [path 11 fitnessExpintBueno2002(11, abs(del), (abs(result)*EPS))];

if (abs(del) < abs(result) * EPS) % abs is fabs in C

return;
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end

path = [path 8 fitnessExpintBueno2002(8, i, MAXIT)];

end

disp(’series failed in expint’);

end

end

The CFG of eB2002

The target paths of eB2002

% No loop at B1

[1 1];

[1 0 2 0]; % input: [0 0]

[1 1 3 1]; % input: [0 1]

[1 0 2 1]; % input: [1 0]

[1 1 4 1]; % input: [2 0]

% One loop at B1 via B2-TF and B5-TF

[1 0 2 0 3 0 4 0 5 0];

[1 0 2 0 3 0 4 0 5 1];

[1 0 2 1 3 0 4 0 5 0];

[1 0 2 1 3 0 4 0 5 1];

% One loop at B1 via B2-TF and B4-F

[1 0 2 0 3 0 4 1];

[1 0 2 1 3 0 4 1];

% One loop at B1 via B2-TF and no loop at B6 & B7 via B8-TF

[1 0 2 0 3 1 6 1 7 1 8 0];

[1 0 2 0 3 1 6 1 7 1 8 1];

[1 0 2 1 3 1 6 1 7 1 8 0];

[1 0 2 1 3 1 6 1 7 1 8 1];

% One loop at B1 via B2-TF and one loop at B6 & B7 via B8-TF

[1 0 2 0 3 1 6 0 6 1 7 0 7 1 8 0];

[1 0 2 0 3 1 6 0 6 1 7 0 7 1 8 1];

[1 0 2 1 3 1 6 0 6 1 7 0 7 1 8 0];

[1 0 2 1 3 1 6 0 6 1 7 0 7 1 8 1];

% One loop at B1 via B2-TF and two loops at B6 & B7 via B8-TF

[1 0 2 0 3 1 6 0 6 1 6 0 6 1 7 0 7 1 7 0 7 1 8 0];

[1 0 2 0 3 1 6 0 6 1 6 0 6 1 7 0 7 1 7 0 7 1 8 1];

[1 0 2 1 3 1 6 0 6 1 6 0 6 1 7 0 7 1 7 0 7 1 8 0];

[1 0 2 1 3 1 6 0 6 1 6 0 6 1 7 0 7 1 7 0 7 1 8 1];

% One loop @B1 via B2-TF and one loop @B6 & two loops @B7 via B8-TF

[1 0 2 0 3 1 6 0 6 1 7 0 7 1 7 0 7 1 8 0];

[1 0 2 0 3 1 6 0 6 1 7 0 7 1 7 0 7 1 8 1];
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Figure B.12: CFG of eB2002

[1 0 2 1 3 1 6 0 6 1 7 0 7 1 7 0 7 1 8 0];

[1 0 2 1 3 1 6 0 6 1 7 0 7 1 7 0 7 1 8 1];
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% One loop @B1 via B2-TF and one loop @B7 & two loops @B6 via B8-TF

[1 0 2 0 3 1 6 0 6 1 6 0 6 1 7 0 7 1 8 0];

[1 0 2 0 3 1 6 0 6 1 6 0 6 1 7 0 7 1 8 1];

[1 0 2 1 3 1 6 0 6 1 6 0 6 1 7 0 7 1 8 0];

[1 0 2 1 3 1 6 0 6 1 6 0 6 1 7 0 7 1 8 1];

The fitness function of eB2002

function branchVal = fitnessExpintBueno2002(branchNo, A, B)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% branch #1: (n < 0 || x < 0.0 || (x == 0.0 && (n == 0.0 || n==1)))

% n = A; x = B

t1 = fitnessKorel(’<’, A, 0);

t2 = fitnessKorel(’<’, B, 0.0);

t3 = fitnessKorel(’==’, B, 0.0);

t4 = fitnessKorel(’==’, A, 0.0);

t5 = fitnessKorel(’==’, A, 1);

t45 = fitnessKorel(’||’, t4, t5);

t345 = fitnessKorel(’&&’, t3, t45);

t12 = fitnessKorel(’||’, t1, t2);

t12345 = fitnessKorel(’||’, t12, t345);

branchVal = t12345;

case 2,

% branch #2: (n == 0)

branchVal = fitnessKorel(’==’, A, B);

case 3,

% branch #3: (x == 0.0)

branchVal = fitnessKorel(’==’, A, B);

case 4,

% branch #4: (x > 1.0)

branchVal = fitnessKorel(’>’, A, B);

case 5,

% branch #5: (i <= MAXIT)

% i = A; MAXIT = B

branchVal = fitnessKorel(’<=’, A, B);

case 6,

% branch #6: (abs(del-1.0) < EPS)

branchVal = fitnessKorel(’<’, A, B);

case 7,

% branch #7: (nm1 ~= 0)

branchVal = fitnessKorel(’~=’, A, B);

case 8,

% branch #8: (i <= MAXIT)

% i = A; MAXIT = B

branchVal = fitnessKorel(’<=’, A, B);

case 9,

% branch #9: (i ~= nm1)



Appendix B. Test Programs 254

branchVal = fitnessKorel(’~=’, A, B);

case 10,

% branch #10: ii <= nm1

branchVal = fitnessKorel(’<=’, A, B);

case 11,

% branch #11: (abs(del) < abs(result) * EPS)

branchVal = fitnessKorel(’<’, A, B);

end

end

B.13 Test Program qB2002

The source code of qB2002

function [path, q, r] = quotientBueno2002(operands)

path = [];

n = operands(1); % First number

d = operands(2); % Second number

q = 0;

% instrument B1

path = [path 1 fitnessQuotientBueno2002(1, d)];

if (d ~= 0)

% instrument B2

path = [path 2 fitnessQuotientBueno2002(2, d, n)];

if ( (d > 0) && (n > 0) )

q = 0;

r = n;

t = d;

% instrument B3

path = [path 3 fitnessQuotientBueno2002(3, r, t)];

while (r >= t)

t = t * 2;

% instrument B3

path = [path 3 fitnessQuotientBueno2002(3, r, t)];

end

% instrument B4

path = [path 4 fitnessQuotientBueno2002(4, t, d)];

while (t ~= d)

q = q * 2;

t = t / 2;

% instrument B5

path = [path 5 fitnessQuotientBueno2002(5, t, r)];

if (t <= r)

r = r - t;

q = q + 1;

end

% instrument B4
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path = [path 4 fitnessQuotientBueno2002(4, t, d)];

end

end

end

end

The CFG of qB2002
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Figure B.13: CFG of qB2002

The target paths of qB2002

[1 1]; % f

[1 0 2 1]; % f

% No loop at B3 & no loop at B4

[1 0 2 0 3 1 4 1]; % f
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% No loop at B3 & One loop at B4 with TRUE at B5

[1 0 2 0 3 1 4 0 5 0 4 1];

% No loop at B3 & One loop at B4 with FALSE at B5

[1 0 2 0 3 1 4 0 5 1 4 1];

% No loop at B3 & two loops at B4 with TRUE-TRUE at B5

[1 0 2 0 3 1 4 0 5 0 4 0 5 0 4 1];

% No loop at B3 & two loops at B4 with FALSE-FALSE at B5

[1 0 2 0 3 1 4 0 5 1 4 0 5 1 4 1];

% No loop at B3 & two loops at B4 with TRUE-FALSE at B5

[1 0 2 0 3 1 4 0 5 0 4 0 5 1 4 1];

% No loop at B3 & two loops at B4 with FALSE-TRUE at B5

[1 0 2 0 3 1 4 0 5 1 4 0 5 0 4 1];

% One loop at B3 & no loop at B4

[1 0 2 0 3 0 3 1 4 1];

% One loop at B3 & one loop at B4 with TRUE at B5

[1 0 2 0 3 0 3 1 4 0 5 0 4 1]; % f

% One loop at B3 & one loop at B4 with FALSE at B5

[1 0 2 0 3 0 3 1 4 0 5 1 4 1];

% One loop at B3 & two loops at B4 with TRUE-TRUE at B5

[1 0 2 0 3 0 3 1 4 0 5 0 4 0 5 0 4 1];

% One loop at B3 & two loops at B4 with FALSE-FALSE at B5

[1 0 2 0 3 0 3 1 4 0 5 1 4 0 5 1 4 1];

% One loop at B3 & two loops at B4 with TRUE-FALSE at B5

[1 0 2 0 3 0 3 1 4 0 5 0 4 0 5 1 4 1];

% One loop at B3 & two loops at B4 with FALSE-TRUE at B5

[1 0 2 0 3 0 3 1 4 0 5 1 4 0 5 0 4 1];

% Two loops at B3 & no loop at B4

[1 0 2 0 3 0 3 0 3 1 4 1];

% Two loops at B3 & one loop at B4 with TRUE at B5

[1 0 2 0 3 0 3 0 3 1 4 0 5 0 4 1];

% Two loops at B3 & one loop at B4 with FALSE at B5

[1 0 2 0 3 0 3 0 3 1 4 0 5 1 4 1];

% Two loops at B3 & two loops at B4 with TRUE-TRUE at B5

[1 0 2 0 3 0 3 0 3 1 4 0 5 0 4 0 5 0 4 1]; % f

% Two loops at B3 & two loops at B4 with FALSE-FALSE at B5

[1 0 2 0 3 0 3 0 3 1 4 0 5 1 4 0 5 1 4 1];

% Two loops at B3 & two loops at B4 with TRUE-FALSE at B5

[1 0 2 0 3 0 3 0 3 1 4 0 5 0 4 0 5 1 4 1]; % f

% Two loops at B3 & two loops at B4 with FALSE-TRUE at B5

[1 0 2 0 3 0 3 0 3 1 4 0 5 1 4 0 5 0 4 1];

% Feasible

[1 0 2 0 3 0 3 0 3 0 3 1 4 0 5 0 4 0 5 1 4 0 5 1 4 1];

[1 0 2 0 3 0 3 0 3 0 3 1 4 0 5 0 4 0 5 1 4 0 5 0 4 1];
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[1 0 2 0 3 0 3 0 3 0 3 1 4 0 5 0 4 0 5 0 4 0 5 1 4 1];

The fitness function of qB2002

function branchVal = fitnessQuotientBueno2002(branchNo, a, b)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% branch #1: d ~= 0

branchVal = fitnessKorel(’~=’, a, 0);

case 2,

% branch #2: (d > 0) && (n > 0)

term1 = fitnessKorel(’>’, a, 0);

term2 = fitnessKorel(’>’, b, 0);

branchVal = fitnessKorel(’&&’, term1, term2);

case 3,

% branch #3: r >= t

branchVal = fitnessKorel(’>=’, a, b);

case 4,

% branch #4: t ~= d

branchVal = fitnessKorel(’~=’, a, b);

case 5,

% branch #1: t <= r

branchVal = fitnessKorel(’<=’, a, b);

end

end

B.14 Test Program scB2002

The source code of scB2002

function [path, result] = strcompBueno2002(strin)

path = [];

result = ’ ’;

i = 1;

% strin is an array of integers (double) with length 8.

str = char(strin);

% instrument B1

path = [path 1 fitnessStrcompBueno2002(1, i, str)];

while ((str(i) ~= ’ ’) && (i <= 5))

i = i + 1;

path = [path 1 fitnessStrcompBueno2002(1, i, str)];

end

% instrument B2
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path = [path 2 fitnessStrcompBueno2002(2, i, str)];

if (~strcmp(str(1:5),’test1’))

% instrument B3

path = [path 3 fitnessStrcompBueno2002(3, i, str)];

if (str(6) == ’a’)

% instrument B4

path = [path 4 fitnessStrcompBueno2002(4, i, str)];

if (str(7) == ’b’)

% instrument B5

path = [path 5 fitnessStrcompBueno2002(5, i, str)];

if (str(8) < ’c’)

result = ’Gotcha’;

end

end

end

end

end

The CFG of scB2002
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Figure B.14: CFG of scB2002
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The target paths of scB2002

[1 1 2 1];

[1 1 2 0 3 1];

[1 1 2 0 3 0 4 1];

[1 1 2 0 3 0 4 0 5 1];

[1 1 2 0 3 0 4 0 5 0];

% One loop at B1

[1 0 1 1 2 1];

[1 0 1 1 2 0 3 1];

[1 0 1 1 2 0 3 0 4 1];

[1 0 1 1 2 0 3 0 4 0 5 1];

[1 0 1 1 2 0 3 0 4 0 5 0];

% Two loops at B1

[1 0 1 0 1 1 2 1];

[1 0 1 0 1 1 2 0 3 1];

[1 0 1 0 1 1 2 0 3 0 4 1];

[1 0 1 0 1 1 2 0 3 0 4 0 5 1];

[1 0 1 0 1 1 2 0 3 0 4 0 5 0];

% Five loops at B1 & exit at B2

[1 0 1 0 1 0 1 0 1 0 2 1];

The fitness function of scB2002

function branchVal = fitnessStrcompBueno2002(branchNo, i, str)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% branch #1: ((str(i) ~= ’ ’) && (i <= 5))

bv1 = fitnessKorel(’~=’, str(i), ’ ’);

bv2 = fitnessKorel(’<=’, i, 5);

branchVal = fitnessKorel(’&&’, bv1, bv2);

case 2,

% branch #2: ~strcmp(str(1:5),’test1’)

branchVal = ~strcmp(str(1:5),’test1’);

case 3,

% branch #3: (str(6) == ’a’)

branchVal = fitnessKorel(’==’, str(6), ’a’);

case 4,

% branch #4: (str(7) == ’b’)

branchVal = fitnessKorel(’==’, str(7), ’b’);

case 5,

% branch #5: (str(8) < ’c’)

branchVal = fitnessKorel(’<’, str(8), ’c’);

end

end
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B.15 Test Program fcB2002

The source code of fcB2002

function [traversedPath, result] = floatcompBueno2002(floats)

traversedPath = [];

f1 = floats(1); % First number

f2 = floats(2); % Second number

f3 = floats(3); % Third number

result = ’ ’;

% instrument B1

traversedPath = [traversedPath 1 fitnessFloatcomp(1, f3, f2)];

if (f3 > f2) % B1

% instrument B2

traversedPath = [traversedPath 2 fitnessFloatcomp(2, f2, f1)];

if (f2 > f1) % B2

result = ’f3 > f2 > f1’;

t = f1 + f2;

% instrument B3

traversedPath = [traversedPath 3 fitnessFloatcomp(3, t, f3)];

if (t < f3)

result = ’f3 > f1 + f2’;

t2 = f1 * f2;

% instrument B4

traversedPath = [traversedPath 4 fitnessFloatcomp(4, t2, f3)];

if (((t2 - f3) <= 5) && ((t2 - f3) >= 0))

result = ’(((f1 * f2) - f3) <= 5) && (((f1 * f2) - f3) >= 0))’;

end

else

result = ’f3 <= f1 + f2’;

end

end

end

end

The CFG of fcB2002

The target paths of fcB2002

[1 1];

[1 0 2 1];

[1 0 2 0 3 1];

[1 0 2 0 3 0 4 1];

[1 0 2 0 3 0 4 0];

The fitness function of fcB2002
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Figure B.15: CFG of fcB2002

function branchVal = fitnessFloatcomp(branchNo, A, B)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

f3 = A; f2 = B;

branchVal = fitnessKorel(’>’, f3, f2);

case 2,

f2 = A; f1 = B;

branchVal = fitnessKorel(’>’, f2, f1);

case 3,

t = A; f3 = B;

branchVal = fitnessKorel(’<’, t, f3);

case 4,

% branch #4: (((t2 - f3) <= 5) && ((t2 - f3) >= 0))

t2 = A; f3 = B;

bv1 = fitnessKorel(’<=’, (t2-f3), 5);

bv2 = fitnessKorel(’>=’, (t2-f3), 0);

branchVal = fitnessKorel(’&&’, bv1, bv2);

end

end
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B.16 Test Program fB2002

The source code of fB2002

function [path, a] = findBueno2002(numbersIn)

path = [];

f = numbersIn(1); % key or index

a = numbersIn(2:end); % an array of integers to be re-arranged

% n = length(numbers);

b = 0;

m = 1;

ns = length(a);

% Probe added on 02.09.2010

if f > ns

f = mod(ns,f);

end

i = 1;

% instrument B1

path = [path 1 fitnessFindBueno2002(1, m, ns, b)];

while ((m < ns) || b)

% instrument B2

path = [path 2 fitnessFindBueno2002(2, ~b)];

if (~b)

i = m;

j = ns;

else

b = 0;

end

% /*-------------------------------*/

% instrument B3

path = [path 3 fitnessFindBueno2002(3, i, j)];

if (i > j)

% instrument B4

path = [path 4 fitnessFindBueno2002(4, f, j)];

if (f > j)

% instrument B5

path = [path 5 fitnessFindBueno2002(5, i, f)];

if (i > f)

m = ns;

else

m = i;

end

else

ns = j;

end

% /*-------------------------------*/

else

% instrument B6

path = [path 6 fitnessFindBueno2002(6, a(i), a(f))];

while (a(i) < a(f))

i = i + 1 ;
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path = [path 6 fitnessFindBueno2002(6, a(i), a(f))];

end

% instrument B7

path = [path 7 fitnessFindBueno2002(7, a(f), a(j))];

while (a(f) < a(j))

j = j - 1 ;

path = [path 7 fitnessFindBueno2002(7, a(f), a(j))];

end

% instrument B8

path = [path 8 fitnessFindBueno2002(8, i, j)];

if (i <= j)

w = a(i);

a(i) = a(j);

a(j) = w;

i = i + 1;

j = j - 1;

end

b = 1;

end

path = [path 1 fitnessFindBueno2002(1, m, ns, b)];

end

end

The CFG of fB2002

The target paths of fB2002

% No loop at B1

[1 0]; % feasible

% All feasible paths:

[1 0 2 1 3 1 6 1 7 1 8 0 1 0 2 0 3 0 4 1 1 0];

[1 0 2 1 3 1 6 1 7 0 7 1 8 0 1 0 2 0 3 0 4 0 5 0 1 0];

[1 0 2 1 3 1 6 1 7 1 8 0 1 0 2 0 3 1 6 1 7 1 8 0 1 0 2 0 3 0 4 1 1 0];

[1 0 2 1 3 1 6 1 7 1 8 0 1 0 2 0 3 1 6 1 7 0 7 1 8 1 1 0 2 0 3 0 4 1 1 0];

[1 0 2 1 3 1 6 1 7 0 7 1 8 0 1 0 2 0 3 0 4 1 1 0];

% One loop at B1 via B2-TF and B5-TF

[1 0 2 0 3 0 4 0 5 0];

[1 0 2 0 3 0 4 0 5 1];

[1 0 2 1 3 0 4 0 5 0];

[1 0 2 1 3 0 4 0 5 1];

% One loop at B1 via B2-TF and B4-F

[1 0 2 0 3 0 4 1];

[1 0 2 1 3 0 4 1];

% One loop at B1 via B2-TF and no loop at B6 & B7 via B8-TF

[1 0 2 0 3 1 6 1 7 1 8 0];

[1 0 2 0 3 1 6 1 7 1 8 1];
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Figure B.16: CFG of fB2002

[1 0 2 1 3 1 6 1 7 1 8 0];

[1 0 2 1 3 1 6 1 7 1 8 1];

% One loop at B1 via B2-TF and one loop at B6 & B7 via B8-TF

[1 0 2 0 3 1 6 0 6 1 7 0 7 1 8 0];

[1 0 2 0 3 1 6 0 6 1 7 0 7 1 8 1];

[1 0 2 1 3 1 6 0 6 1 7 0 7 1 8 0];

[1 0 2 1 3 1 6 0 6 1 7 0 7 1 8 1];

% One loop at B1 via B2-TF and two loops at B6 & B7 via B8-TF

[1 0 2 0 3 1 6 0 6 1 6 0 6 1 7 0 7 1 7 0 7 1 8 0];

[1 0 2 0 3 1 6 0 6 1 6 0 6 1 7 0 7 1 7 0 7 1 8 1];

[1 0 2 1 3 1 6 0 6 1 6 0 6 1 7 0 7 1 7 0 7 1 8 0];

[1 0 2 1 3 1 6 0 6 1 6 0 6 1 7 0 7 1 7 0 7 1 8 1];

% One loop @B1 via B2-TF and one loop @B6 & two loops @B7 via B8-TF
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[1 0 2 0 3 1 6 0 6 1 7 0 7 1 7 0 7 1 8 0];

[1 0 2 0 3 1 6 0 6 1 7 0 7 1 7 0 7 1 8 1];

[1 0 2 1 3 1 6 0 6 1 7 0 7 1 7 0 7 1 8 0];

[1 0 2 1 3 1 6 0 6 1 7 0 7 1 7 0 7 1 8 1];

% One loop @B1 via B2-TF and one loop @B7 & two loops @B6 via B8-TF

[1 0 2 0 3 1 6 0 6 1 6 0 6 1 7 0 7 1 8 0];

[1 0 2 0 3 1 6 0 6 1 6 0 6 1 7 0 7 1 8 1];

[1 0 2 1 3 1 6 0 6 1 6 0 6 1 7 0 7 1 8 0];

[1 0 2 1 3 1 6 0 6 1 6 0 6 1 7 0 7 1 8 1];

The fitness function of fB2002

function branchVal = fitnessFindBueno2002(branchNo, A, B, C)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% branch #1: ((m < ns) || b)

term1 = fitnessKorel(’<’, A, B);

branchVal = fitnessKorel(’||’, term1, C);

case 2,

% branch #2: (~b); means A = ~b

branchVal = A;

case 3,

% branch #3: (i > j)

branchVal = fitnessKorel(’>’, A, B);

case 4,

% branch #4: (f > j)

branchVal = fitnessKorel(’>’, A, B);

case 5,

% branch #5: (i > f)

branchVal = fitnessKorel(’>’, A, B);

case 6,

% branch #6: (a(i) < a(f))

branchVal = fitnessKorel(’<’, A, B);

case 7,

% branch #7: (a(f) < a(j))

branchVal = fitnessKorel(’<’, A, B);

case 8,

% branch #8: (i <= j)

branchVal = fitnessKorel(’<=’, A, B);

end

end
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B.17 Test Program bG2011

The source code of bG2011

function [traversedPath, pop] = bubbleGong2011(depop)

[px,py]=size(depop);

traversedPath = [];

i = 1; % added for instrumentation purpose

traversedPath = [traversedPath 1 fitnessBubbleGong2011(1, [i px])];

for i=1:px % Branch # 1

q=1;

p=depop(i,:);

j = 1; % added for instrumentation purpose

traversedPath = [traversedPath 2 fitnessBubbleGong2011(2, [j (py-1)])];

for j=1:py-1 % Branch # 2

k = j+1; % added for instrumentation purpose

traversedPath = [traversedPath 3 fitnessBubbleGong2011(3, [k py])];

for k=j+1:py % Branch # 3

d(q,1)=p(k)-p(j)+0.1;

d(q,1)=1-1.001^(-d(q,1));

d(q,2)=p(j)-p(k);

d(q,2)=1-1.001^(-d(q,2));

traversedPath = [traversedPath 4 fitnessBubbleGong2011(4, [p(j) p(k)])];

if p(j)>p(k) % Branch # 4

temp=p(j);

p(j)=p(k);

p(k)=temp;

d(q,1)=0;

else

d(q,2)=0;

end

q=q+1;

traversedPath = [traversedPath 3 fitnessBubbleGong2011(3, [k py])];

end

traversedPath = [traversedPath 2 fitnessBubbleGong2011(2, [j (py-1)])];

end

pop(i,:) = p;

traversedPath = [traversedPath 1 fitnessBubbleGong2011(1, [i px])];

end

end

The CFG of bG2011

The target paths of bG2011

% B1’s loop

% => not required as if at least one individual is processed

% [1 1]; % no loop
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Figure B.17: CFG of bG2011

[1 0 2 1 1 1]; % B2: no loop

% => not required as if at most one individual is processed

% [1 0 2 1 1 0 2 1 1 1]; % 2 loops

% B2’s loop

[1 0 2 0 3 1 2 1 1 1]; % 1 loop & no loop @ B3

[1 0 2 0 3 1 2 0 3 1 2 1 1 1]; % 2 loops

% B3’s loop

[1 0 2 0 3 0 4 1 3 1 2 1 1 1]; % 1 loop

[1 0 2 0 3 0 4 0 3 1 2 1 1 1]; % 1 loop

[1 0 2 0 3 0 4 0 3 0 4 0 3 1 2 1 1 1]; % 2 loops

[1 0 2 0 3 0 4 0 3 0 4 1 3 1 2 1 1 1]; % 2 loops

[1 0 2 0 3 0 4 1 3 0 4 1 3 1 2 1 1 1]; % 2 loops

[1 0 2 0 3 0 4 1 3 0 4 0 3 1 2 1 1 1]; % 2 loops

% Input-based target path (feasible)

% 1-number input

[1 0 2 1 1 0]; % Input ([x]), e.g. [1]

% 2-number input

[1 0 2 0 3 0 4 1 3 0 2 0 1 0]; % Input [x y]; x <= y

[1 0 2 0 3 0 4 0 3 0 2 0 1 0]; % Input [x y]; x > y
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% 3-number input;

% [0 0 0], [0 0 1], [0 1 2]

[1 0 2 0 3 0 4 1 3 0 4 1 3 0 2 0 3 0 4 1 3 0 2 0 1 0];

% [0 1 0]

[1 0 2 0 3 0 4 1 3 0 4 1 3 0 2 0 3 0 4 0 3 0 2 0 1 0];

% [1 0 0]

[1 0 2 0 3 0 4 0 3 0 4 1 3 0 2 0 3 0 4 0 3 0 2 0 1 0];

% [1 2 0]

[1 0 2 0 3 0 4 1 3 0 4 0 3 0 2 0 3 0 4 0 3 0 2 0 1 0];

% [0 2 1]

[1 0 2 0 3 0 4 1 3 0 4 1 3 0 2 0 3 0 4 0 3 0 2 0 1 0];

% [2 1 0]

[1 0 2 0 3 0 4 0 3 0 4 0 3 0 2 0 3 0 4 0 3 0 2 0 1 0];

% [1 0 2]

[1 0 2 0 3 0 4 0 3 0 4 1 3 0 2 0 3 0 4 1 3 0 2 0 1 0];

% [2 0 1]

[1 0 2 0 3 0 4 0 3 0 4 1 3 0 2 0 3 0 4 0 3 0 2 0 1 0];

The fitness function of bG2011

function branchVal = fitnessBubbleGong2011(branchNo, predicate)

k = 1; % the smallest step for integer

switch (branchNo)

case {1, 2, 3}

% Branch #1: for i=1:px ==> i <= px

% Branch #2: for j=1:py-1 ==> j <= py-1

% branch #3: for k=j+1:py ==> k <= py

branchVal = predicate(1) - predicate(2);

case 4,

% Branch #4: if p(j)>p(k)

branchVal = predicate(2) - predicate(1);

if branchVal < 0

branchVal = branchVal - k;

else

branchVal = branchVal + k;

end

end

end
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B.18 Test Program fG2011

The source code of fG2011

% The function accept a population of 7-number inputs

function [traversedPath, pop] = flexGong2011(depop)

[px,py]=size(depop);

traversedPath = [];

i = 1; % added for instrumentation purpose

traversedPath = [traversedPath 1 fitnessFlexGong2011(1, [i px])];

for i=1:px % Branch # 1

q=1;

p=depop(i,:);

lex_compat=p(1);

C_plus_plus=p(2);

fulltbl=p(3);

csize =p(4);

unspecified=p(5);

fullspd=p(6);

C_plus=p(7);

d(1,1)=2;

d(1,1)=1-1.001^(-d(1,1));

d(1,2)=lex_compat;

d(1,2)=1-1.001^(-d(1,2));

d(1,3)=0;

d(2,1)=2;

d(2,1)=1-1.001^(-d(2,1));

d(2,2)=C_plus_plus;

d(2,2)=1-1.001^(-d(2,2));

d(2,3)=0;

d(3,1)=2;

d(3,1)=1-1.001^(-d(3,1));

d(3,2)=fulltbl;

d(3,2)=1-1.001^(-d(3,2));

d(3,3)=0;

d(4,1)=abs( csize-unspecified)+2;

d(4,1)=1-1.001^(-d(4,1));

d(4,2)=2;

d(4,2)=1-1.001^(-d(4,2));

d(4,3)=0;

d(5,1)=2;

d(5,1)=1-1.001^(-d(5,1));

d(5,2)=fullspd;

d(5,2)=1-1.001^(-d(5,2));

d(5,3)=0;

d(6,1)=2;

d(6,1)=1-1.001^(-d(5,1));

d(6,2)=C_plus;

d(6,2)=1-1.001^(-d(5,2));



Appendix B. Test Programs 270

d(5,3)=0;

u=3*ones(1,6);

traversedPath = [traversedPath 2 fitnessFlexGong2011(2, [lex_compat 0])];

if (lex_compat ~= 0) % Branch # 2

d(1,1)=0;

u(1)=1;

traversedPath = [traversedPath 3 fitnessFlexGong2011(3, [C_plus_plus 0])];

if (C_plus_plus ~= 0) % Branch # 3

flexerror = ’Can not use -+ with -l option’;

d(2,1)=0;

else

d(2,2)=0;

end

traversedPath = [traversedPath 4 fitnessFlexGong2011(4, [fulltbl 0])];

if (fulltbl ~= 0) % Branch # 4

flexerror=’Can not use -f or -F with -l option’;

d(3,1)=0;

else

d(3,2)=0;

end

else

d(1,2)=0;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

traversedPath = [traversedPath 5 fitnessFlexGong2011(5, [csize unspecified])];

if (csize == unspecified) % Branch # 5

d(4,1)=0;

traversedPath = [traversedPath 6 fitnessFlexGong2011(6, [fullspd 0])];

if (fullspd ~= 0) % Branch # 6

csize = ’DEFAULT_CSIZE’;

d(5,1)=0;

else

d(5,2)=0;

csize = csize;

end

else

d(4,2)=0;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

traversedPath = [traversedPath 7 fitnessFlexGong2011(7, [C_plus 0])];

if (C_plus ~= 0) % Branch # 7

suffix=’cc’;

d(6,1)=0;

else

d(6,2)=0;

suffix=’c’;

outfilename = ’outfile_path’;

end
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pop(i,:) = p;

traversedPath = [traversedPath 1 fitnessFlexGong2011(1, [i px])];

end

The CFG of fG2011

The target paths of fG2011

[1 0 2 1 5 1 7 1];

[1 0 2 1 5 1 7 0];

[1 0 2 1 5 0 6 0 7 0];

[1 0 2 1 5 0 6 0 7 1];

[1 0 2 1 5 0 6 1 7 0];

[1 0 2 1 5 0 6 1 7 1];

[1 0 2 0 3 1 4 1 5 1 7 1];

[1 0 2 0 3 1 4 1 5 1 7 0];

[1 0 2 0 3 0 4 1 5 1 7 1];

[1 0 2 0 3 0 4 1 5 1 7 0];

[1 0 2 0 3 1 4 0 5 1 7 1];

[1 0 2 0 3 1 4 0 5 1 7 0];

[1 0 2 0 3 0 4 0 5 1 7 1];

[1 0 2 0 3 0 4 0 5 1 7 0];

[1 0 2 0 3 1 4 1 5 0 6 1 7 1];

[1 0 2 0 3 1 4 1 5 0 6 0 7 1];

[1 0 2 0 3 1 4 1 5 0 6 1 7 0];

[1 0 2 0 3 1 4 1 5 0 6 0 7 0];

[1 0 2 0 3 1 4 0 5 0 6 1 7 1];

[1 0 2 0 3 1 4 0 5 0 6 0 7 1];

[1 0 2 0 3 1 4 0 5 0 6 1 7 0];

[1 0 2 0 3 1 4 0 5 0 6 0 7 0];

[1 0 2 0 3 0 4 1 5 0 6 1 7 1];

[1 0 2 0 3 0 4 1 5 0 6 0 7 1];

[1 0 2 0 3 0 4 1 5 0 6 1 7 0];

[1 0 2 0 3 0 4 1 5 0 6 0 7 0];

[1 0 2 0 3 0 4 0 5 0 6 1 7 1];

[1 0 2 0 3 0 4 0 5 0 6 0 7 1];

[1 0 2 0 3 0 4 0 5 0 6 1 7 0];

[1 0 2 0 3 0 4 0 5 0 6 0 7 0];

The fitness function of fG2011

function branchVal = fitnessFlexGong2011(branchNo, predicate)

k = 1; % the smallest step for integer
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switch (branchNo)

case 1,

% Branch #1: for i=1:px ==> i <= px

branchVal = predicate(1) - predicate(2);

case {2, 3, 4, 6, 7},

% Branch #2: if (lex_compat ~= 0)

% Branch #3: if (C_plus_plus ~= 0)

% Branch #4: if (fulltbl ~= 0)

% Branch #6: if (fullspd ~= 0)

% Branch #7: if (C_plus ~= 0)

if predicate(1) ~= 0

branchVal = 0;

else

branchVal = k;

end

case 5,

% Branch #5: if (csize == unspecified)

if predicate(1) == predicate(2)

branchVal = 0;

else

branchVal = k;

end

end

end

B.19 Test Program sG2011

The source code of sG2011

% The function accepts a population of 5-number inputs

function [traversedPath, pop] = spaceGong2011(depop)

[px,py]=size(depop);

traversedPath = [];

i = 1; % added for instrumentation purpose

traversedPath = [traversedPath 1 fitnessSpaceGong2011(1, [i px])];

for i=1:px % Branch # 1

q=1;

p=depop(i,:);

unit1=p(1);

unit2=p(2);

unit3=p(3);

error1=p(4);

error2=p(5);

d(1,1)=abs(unit1-1);

d(1,2)=2;
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d(1,1)=1-1.001^(-d(1,1));

d(1,2)=1-1.001^(-d(1,2));

d(2,1)=abs(unit2-2);

d(2,1)=1-1.001^(-d(2,1));

d(2,2)=2;

d(2,2)=1-1.001^(-d(2,2));

d(3,1)=abs(unit3-3);

d(3,1)=1-1.001^(-d(3,1));

d(3,2)=2;

d(3,2)=1-1.001^(-d(3,2));

d(4,1)=abs(error1-0);

d(4,1)=1-1.001^(-d(4,1));

d(4,2)=2;

d(4,2)=1-1.001^(-d(4,2));

d(5,1)=abs(error2-0);

d(5,1)=1-1.001^(-d(5,1));

d(5,2)=2;

d(5,2)=1-1.001^(-d(5,2));

u=zeros(1,5);

traversedPath = [traversedPath 2 fitnessSpaceGong2011(2, [unit1 1])];

if unit1 == 1 % Branch # 2

x_ptr=10;

d(1,1)=0;

else

d(1,2)=0;

end

traversedPath = [traversedPath 3 fitnessSpaceGong2011(3, [unit2 2])];

if unit2 == 2 % Branch # 3

x_ptr=100;

d(2,1)=0;

else

d(2,2)=0;

end

traversedPath = [traversedPath 4 fitnessSpaceGong2011(4, [unit3 3])];

if unit3 == 3 % Branch # 4

x_ptr=1000;

d(3,1)=0;

else

d(3,2)=0;

end

traversedPath = [traversedPath 5 fitnessSpaceGong2011(5, [error1 0])];

if error1 == 0 % Branch # 5

d(4,1)=0;

% return 1

else

d(4,2)=0;

end
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traversedPath = [traversedPath 6 fitnessSpaceGong2011(6, [error2 0])];

if error2 == 0 % Branch # 6

d(5,1)=0;

else

d(5,2)=0;

end

pop(i,:) = p;

traversedPath = [traversedPath 1 fitnessSpaceGong2011(1, [i px])];

end

end

The CFG of sG2011

The target paths of sG2011

% => not required as if at least one individual is processed

% [1 1];

% One loop @ B1 with full combinations @ B2, B3, B4, B5, B6

[ 1 0 2 0 3 0 4 0 5 0 6 0 1 0 ];

[ 1 0 2 0 3 0 4 0 5 0 6 1 1 0 ];

[ 1 0 2 0 3 0 4 0 5 1 6 0 1 0 ];

[ 1 0 2 0 3 0 4 0 5 1 6 1 1 0 ];

[ 1 0 2 0 3 0 4 1 5 0 6 0 1 0 ];

[ 1 0 2 0 3 0 4 1 5 0 6 1 1 0 ];

[ 1 0 2 0 3 0 4 1 5 1 6 0 1 0 ];

[ 1 0 2 0 3 0 4 1 5 1 6 1 1 0 ];

[ 1 0 2 0 3 1 4 0 5 0 6 0 1 0 ];

[ 1 0 2 0 3 1 4 0 5 0 6 1 1 0 ];

[ 1 0 2 0 3 1 4 0 5 1 6 0 1 0 ];

[ 1 0 2 0 3 1 4 0 5 1 6 1 1 0 ];

[ 1 0 2 0 3 1 4 1 5 0 6 0 1 0 ];

[ 1 0 2 0 3 1 4 1 5 0 6 1 1 0 ];

[ 1 0 2 0 3 1 4 1 5 1 6 0 1 0 ];

[ 1 0 2 0 3 1 4 1 5 1 6 1 1 0 ];

[ 1 0 2 1 3 0 4 0 5 0 6 0 1 0 ];

[ 1 0 2 1 3 0 4 0 5 0 6 1 1 0 ];

[ 1 0 2 1 3 0 4 0 5 1 6 0 1 0 ];

[ 1 0 2 1 3 0 4 0 5 1 6 1 1 0 ];

[ 1 0 2 1 3 0 4 1 5 0 6 0 1 0 ];

[ 1 0 2 1 3 0 4 1 5 0 6 1 1 0 ];

[ 1 0 2 1 3 0 4 1 5 1 6 0 1 0 ];

[ 1 0 2 1 3 0 4 1 5 1 6 1 1 0 ];

[ 1 0 2 1 3 1 4 0 5 0 6 0 1 0 ];

[ 1 0 2 1 3 1 4 0 5 0 6 1 1 0 ];

[ 1 0 2 1 3 1 4 0 5 1 6 0 1 0 ];

[ 1 0 2 1 3 1 4 0 5 1 6 1 1 0 ];

[ 1 0 2 1 3 1 4 1 5 0 6 0 1 0 ];
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[ 1 0 2 1 3 1 4 1 5 0 6 1 1 0 ];

[ 1 0 2 1 3 1 4 1 5 1 6 0 1 0 ];

[ 1 0 2 1 3 1 4 1 5 1 6 1 1 0 ];

% => not required as if at most one individual is processed

% Two loops @ B1 with some combinations @ B2, B3, B4, B5, B6

% [ 1 0 2 0 3 0 4 0 5 0 6 0 1 1 2 0 3 0 4 0 5 0 6 0 1 1 ];

% [ 1 0 2 0 3 0 4 0 5 0 6 1 1 1 2 0 3 0 4 0 5 0 6 1 1 1 ];

% [ 1 0 2 0 3 0 4 0 5 1 6 0 1 1 2 0 3 0 4 0 5 1 6 0 1 1 ];

% [ 1 0 2 0 3 0 4 0 5 1 6 1 1 1 2 0 3 0 4 0 5 1 6 1 1 1 ];

% [ 1 0 2 0 3 0 4 1 5 0 6 0 1 1 2 0 3 0 4 1 5 0 6 0 1 1 ];

% [ 1 0 2 0 3 0 4 1 5 0 6 1 1 1 2 0 3 0 4 1 5 0 6 1 1 1 ];

% [ 1 0 2 0 3 0 4 1 5 1 6 0 1 1 2 0 3 0 4 1 5 1 6 0 1 1 ];

% [ 1 0 2 0 3 0 4 1 5 1 6 1 1 1 2 0 3 0 4 1 5 1 6 1 1 1 ];

% [ 1 0 2 0 3 1 4 0 5 0 6 0 1 1 2 0 3 1 4 0 5 0 6 0 1 1 ];

% [ 1 0 2 0 3 1 4 0 5 0 6 1 1 1 2 0 3 1 4 0 5 0 6 1 1 1 ];

% [ 1 0 2 0 3 1 4 0 5 1 6 0 1 1 2 0 3 1 4 0 5 1 6 0 1 1 ];

% [ 1 0 2 0 3 1 4 0 5 1 6 1 1 1 2 0 3 1 4 0 5 1 6 1 1 1 ];

% [ 1 0 2 0 3 1 4 1 5 0 6 0 1 1 2 0 3 1 4 1 5 0 6 0 1 1 ];

% [ 1 0 2 0 3 1 4 1 5 0 6 1 1 1 2 0 3 1 4 1 5 0 6 1 1 1 ];

% [ 1 0 2 0 3 1 4 1 5 1 6 0 1 1 2 0 3 1 4 1 5 1 6 0 1 1 ];

% [ 1 0 2 0 3 1 4 1 5 1 6 1 1 1 2 0 3 1 4 1 5 1 6 1 1 1 ];

% [ 1 0 2 1 3 0 4 0 5 0 6 0 1 1 2 1 3 0 4 0 5 0 6 0 1 1 ];

% [ 1 0 2 1 3 0 4 0 5 0 6 1 1 1 2 1 3 0 4 0 5 0 6 1 1 1 ];

% [ 1 0 2 1 3 0 4 0 5 1 6 0 1 1 2 1 3 0 4 0 5 1 6 0 1 1 ];

% [ 1 0 2 1 3 0 4 0 5 1 6 1 1 1 2 1 3 0 4 0 5 1 6 1 1 1 ];

% [ 1 0 2 1 3 0 4 1 5 0 6 0 1 1 2 1 3 0 4 1 5 0 6 0 1 1 ];

% [ 1 0 2 1 3 0 4 1 5 0 6 1 1 1 2 1 3 0 4 1 5 0 6 1 1 1 ];

% [ 1 0 2 1 3 0 4 1 5 1 6 0 1 1 2 1 3 0 4 1 5 1 6 0 1 1 ];

% [ 1 0 2 1 3 0 4 1 5 1 6 1 1 1 2 1 3 0 4 1 5 1 6 1 1 1 ];

% [ 1 0 2 1 3 1 4 0 5 0 6 0 1 1 2 1 3 1 4 0 5 0 6 0 1 1 ];

% [ 1 0 2 1 3 1 4 0 5 0 6 1 1 1 2 1 3 1 4 0 5 0 6 1 1 1 ];

% [ 1 0 2 1 3 1 4 0 5 1 6 0 1 1 2 1 3 1 4 0 5 1 6 0 1 1 ];

% [ 1 0 2 1 3 1 4 0 5 1 6 1 1 1 2 1 3 1 4 0 5 1 6 1 1 1 ];

% [ 1 0 2 1 3 1 4 1 5 0 6 0 1 1 2 1 3 1 4 1 5 0 6 0 1 1 ];

% [ 1 0 2 1 3 1 4 1 5 0 6 1 1 1 2 1 3 1 4 1 5 0 6 1 1 1 ];

% [ 1 0 2 1 3 1 4 1 5 1 6 0 1 1 2 1 3 1 4 1 5 1 6 0 1 1 ];

% [ 1 0 2 1 3 1 4 1 5 1 6 1 1 1 2 1 3 1 4 1 5 1 6 1 1 1 ];

% % Input-based target paths: feasible paths

% % 5-number input: [0 0 0 0 0]

% [1 0 2 1 3 1 4 1 5 0 6 0 1 0];

%

% % [0 0 0 0 1]

% [1 0 2 1 3 1 4 1 5 0 6 1 1 0];

%

% % [0 0 0 1 0]

% [1 0 2 1 3 1 4 1 5 1 6 0 1 0];

%

% % [0 0 1 0 0], [0 1 0 0 0]

% [1 0 2 1 3 1 4 1 5 0 6 0 1 0];

%
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% % [1 0 0 0 0]

% [1 0 2 0 3 1 4 1 5 0 6 0 1 0];

%

% % [0 0 0 1 1]

% [1 0 2 1 3 1 4 1 5 1 6 1 1 0];

%

% % [0 0 1 1 0]

% [1 0 2 1 3 1 4 1 5 1 6 0 1 0];

%

% % [0 1 1 0 0]

% [1 0 2 1 3 1 4 1 5 0 6 0 1 0];

%

% % [1 1 0 0 0]

% [1 0 2 0 3 1 4 1 5 0 6 0 1 0];

%

% % [0 0 1 1 1]

% [1 0 2 1 3 1 4 1 5 1 6 1 1 0];

%

% % [0 1 1 1 0]

% [1 0 2 1 3 1 4 1 5 1 6 0 1 0];

%

% % [1 1 1 0 0]

% [1 0 2 0 3 1 4 1 5 0 6 0 1 0];

%

% % [0 1 1 1 1]

%

% % [1 1 1 1 0]

%

% % [1 1 1 1 1]

The fitness function of sG2011

function branchVal = fitnessSpaceGong2011(branchNo, predicate)

k = 1; % the smallest step for integer

switch (branchNo)

case 1,

% Branch #1: for i=1:px ==> i <= px

branchVal = predicate(1) - predicate(2);

case {2, 3, 4},

% Branch #2: if unit1 == 1

% Branch #3: if unit2 == 2

% Branch #4: if unit3 == 3

if predicate(1) == predicate(2)

branchVal = 0;

else

branchVal = k;

end

case {5, 6},

% Branch #5: if error1 == 0

% Branch #6: if error2 == 0
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if predicate(1) == 0

branchVal = 0;

else

branchVal = k;

end

end

end
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Appendix C

Test Generation System

Figure C.1 is the legend for the flow chart symbols used in the rest of the

thesis.

Process

(function)

Data

Document (file) A set of 

data

A set of 

documents

Control/data

flow

Decision

Manual input

Stored data

Conditional

Invocation

Figure C.1: Flow Chart Symbols

C.1 Testing Manual

In order to use the proposed approach properly, a testing manual has been

developed. It consists of two major parts, i.e. testing guide and operating

instruction.
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C.1.1 Testing Guide

Figure C.2 shows step by step guide for conducting path testing. Mainly,

there are two things to do prior calling TDGOI 1.0, i.e. setting up parameter

values and determining stopping condition of the test data generator (TDG).

test program Any similar 

programs/inputs?

Use same input/

TDG parameters
Y

N

test program 

oracle

TDG common 

parameters 

(tcpars)

Use program input 

parameters (pars)

Use tcpars 

setup?
Supply tcparsY

Supply own pars

N

TDG pars

Feasible paths 

known?

pars setup

tcpars 

setup

Apply SRMSC

N

Supply own 

stopping criteria
Y

No. of generations

TDGOI 1.0

Figure C.2: Testing Guide 1.0

Basically, there are two main steps in Testing Guide 1.0. First is to find

similar program in the test program oracle with the current test program, in

terms of logical structure and/or input type/criteria taken. If more than one

oracle test programs are similar then choose the most similar one and use the

same parameters setup and/or input type/criteria out of if for that particular

program under test. The parameters setup and input type/criteria used by

the oracle test programs have been proven to be the optimal one over certain

number of feasible parameters values and/or input type/criteria.

Second is to encourage dynamic stopping criteria if feasible paths are
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not known yet, otherwise number of generations will be supplied by the user.

This is crucial, because mistakenly choosing inappropriate criteria could lead

to missing (some) feasible paths and/or incorrectly identifying feasible paths

as infeasible ones. The dynamic stopping criteria employed makes use of

software reliability model (SRM) growth analogy. SRM is to monitor the

performance of TDG while it is in progress. It is called SRMSC, which

stands for SRM for Stopping Criteria.

C.1.2 Operating Instruction

Having decided the parameters setup and stopping criteria in the previous

Sub Chapter C.1.1, the next step is TDG operating instruction v1.0 (TDGOI

1.0), which is depicted in Figure C.3.

TDGOI 1.0 has two main roles, i.e. to control the operations of TDG 2.0

and SR 2.0. TDG 2.0 is a representation of the main part of path testing, i.e.

generating test data. SR 2.0 is to summarize one of the fundamental output

files produced by TDG 2.0 for further analysis.

The operating instruction shows that there are three pre-processes before

calling test data generator TDG 2.0. The processes are instrumentation,

target paths generation, and fitness function construction. Instrumentation

is to probe a test program such that it is able to monitor logical path exercised

by certain test data. Its output is instrumented test program. Target path

generation is to enumerate all the required and existed logical paths in a

test program. It gathers all the target paths in a target list. Fitness function

construction is to formulate a function to evaluate a test data for a particular



Appendix C. Test Generation System 284

test program

Instrumented 

test program

target paths 

(base & 

limited loops)

test program 

fitness

function

TDG 2.0

parameters 

(pars) setup

Summary_G2G_All_datetime.txt

(a set of benchmarks -wise)

Summary_SUT_runs

_datetime.xls

(currently disabled)

Summary_G2G_SUT_runs_datetime.xls

(a set of runs -wise)

Summary run-wise

(run_SUT_pars)

traceFile run-wise

(run_SUT_pars_trace)

bestFitness run-wise

(run_SUT_pars

_BestFitness)

.xls

_comp.xls

_comp_exec.xls

_comp_exec_gen.xls

_comp_exec_lsv.xls

SR 2.0

Instrumentation

Fitness 

function 

construction

Target 

paths

generation

Figure C.3: TDG Operating Instruction 1.0

test program. It evaluates the closeness of a path taken by test data with a

target path in guiding the search conducted by TDG.

TDG 2.0 produces five active text based output files:

1. Summary run-wise, which contains basic information and grouped by

run-wise. The information are date, time, folder, file name, GA param-

eters setup, TDG parameters setup, initial target paths, target paths

along its satisfying test (input) data as covered in progress, population
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(set of test data) every generation, population fitness (set of test data

fitness) every generation, and the best fitness of each generation.

File name format example, 1 triangle 1 2 1 -1 100 100 0.9 0.9 0.1.txt

2. bestFitness run-wise, which contains number of paths found on every

finding generation, the best fitness and input data every generation,

and grouped by run-wise.

File name format example, 1 triangle 1 2 1 -1 100 100 0.9 0.9 0.1 BestFitness.xls

3. traceFile run-wise, which records the evolution of population after every

evolutionary operation, e.g. just after selection, crossover, mutation,

and insertion, and grouped by run-wise.

File name format example, 1 triangle 1 2 1 -1 100 100 0.9 0.9 0.1 trace.txt

4. Summary of a set of run-wise, which writes generation-to-generation

progress, i.e. number of paths found on every finding generation.

File name format example, Summary G2G triangle 30 20111102T112957.xls

5. Summary of a set of benchmark-wise, which summarizes Point 4 over

several benchmarks, e.g. number of paths found in every run, descrip-

tive statistic over all runs.

File name format example, Summary G2G All 20111102T112956.txt

The fifth output file (Point 5) is subject to further analysis and an input

to SR 2.0. The outputs of SR 2.0 are five text based files in comma separated

values (CSV) format:

1. comp.xls, which compares performance between GA and its variants

-based TDG
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2. comp exec.xls, which compares performance between GA and its vari-

ants -based TDG, and provides comparison measures between GA and

its variants -based TDG, i.e. normalized number of paths found over

total paths for each test program (N-pf), number of paths found (pf),

and elapsed time (et)

3. .xls, which converts the fifth output file of TDG 2.0 (Point 5 of TDG

2.0 output file) into excel format, i.e .xls

4. comp exec gen.xls, which is similar output with Point 2, but it is

grouped by generation-wise

5. comp exec lsv.xls, which is similar output with Point 2 with additional

comparison with variable local search

C.2 Path Testing Architecture

The architecture of path testing comprises of four major components: TDG,

SRMSC, benchmark generator (BG), and summary reader (SR).

C.2.1 Test Data Generator

Figure C.4 depicts the inside of TDG, which is currently on version 2 (TDG

2.0). It has four sub components: dagerFetcher (dF), six versions of TDG,

(abstract) GA, and local, which is the local search.

dF acts as a feeder to all the versions of TDG. It takes input dF feeder,

which contains a set of benchmarks. Each benchmark consists of a test
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program, its target paths, and its parameters setup.

target paths

(SUTPS.m)

test

program 

(SUT.m)

dagerFetcher

(dF)

dager_GA

dager_hLS_GA

dager_hGA_LS

dager_hLS_GA_LS

dager_hLS_GA_LSv

dager_hGA_LSv

benchmark

(irhbenchmark)

parameters 

setup

Summary_G2G_All_datetime.txt

(a set of benchmarks -wise)

Summary run-wise

(run_SUT_pars)

Summary_SUT_runs

_datetime.xls

(currently disabled)

seed

fitness

getFitness

ranking

select

recombine

mutate

local

reins

uniquePopNBest
GA

traceFile run-wise

(run_SUT_pars_trace)

bestFitness run-wise

(run_SUT_pars

_BestFitness)

Summary_G2G_SUT_runs_datetime.xls

(a set of runs -wise)

PCDPCV

SUT fitnessSUT

dF_feeder

validRange

Figure C.4: Test Data Generator 2.0

Six versions of TDG are

1. dager GA, GA based TDG

2. dager hGA LS, hybrid TDG using GA and local search (LS)
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3. dager hLS GA, hybrid TDG using LS and GA

4. dager hLS GA LS, hybrid TDG using LS, GA, and LS

5. dager hGA LSv, hybrid TDG using GA and variable-size LS (LSv)

6. dager hLS GA LSv, hybrid TDG using LS, GA, and LSv

GA has the following seven sub components:

1. getFitness, a function to evaluate fitness function, which comprises of

another three sub components: fitness, SUT, and PCDCV.

fitness is a set of Korel’s fitness functions. SUT is to call a given

(instrumented) test program and to evaluate a fed test data according

to Korel’s fitness function. It also requires fitnessSUT as its input

to match which fitness function need to be used at which branch (or

predicate). PCDCV is a function to compute branch distance and

approximation level.

2. ranking, a function to rank all the chromosomes in population based

on their fitness values.

3. select, a selection function that selects which chromosomes are chosen

to participate and/or survive in the next generation.

4. recombine, a function that mates two selected parent chromosomes.

5. mutate, a function that makes slight perturbation to one or more sub

components of a chromosome.

6. reins, a function to insert all newly generated chromosomes into the

next population.



289 C.2. Path Testing Architecture

7. validRange, a function to check whether a newly generated chromosome

is in valid form of a test data or not. If it is invalid then it maps the

invalid one to a valid one.

C.2.2 SRM for Stopping Criteria

SRMSC is a function to simulate the application of SRM growth as one of the

stopping criteria for TDG 2.0. Figure C.5 shows the architecture of SRMSC.

dlwfParameters setup

(SUT, NoF)
*.xls files

dtheta_writer lambda_writerrule_dtheta_lambda_*.xls

lambda_*.xls

rule_gens_*.xls

rule_dtheta_*.xls

fitoptions fittype fit

Figure C.5: SRMSC

SRMC has the following main functions: dtheta writer, lambda writer,

fitoptions, fittype, and fit. While the first two functions are defined in details

in Sub Chapter 6.2.2, the rest are parts of Curve Fitting Matlab Toolbox.

Function dtheta writer is to simulate Stability Rule by computing a set

of θ values across several generations. Then the set is scanned to monitor

whether any changes in between two adjacent values (∆θ) is less than certain

threshold. If it does then the search will stop and report its performance in

terms of number of paths found and time elapsed at the stopping point.
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Function lambda writer is a simulation function for Reliability Rule that

generates a set of λ values along some generations. It also monitors the set

to find any changes between two respective values (∆λ) that is less than pre-

defined limit. It will stop the search as soon as the limit is reached and report

its performance in the forms of number of paths found and time elapsed at

that time.

SRMC takes an input and yields four output files. Its input consists of

parameters setup and excel files. These files are the fifth output file of TDG

2.0, which is a summary of a set of benchmark-wise (See Chapter C.1.2).

The outputs are

1. lambda *.xls, which contains three set of λ values and their generation

to generation achievements, i.e. number of paths found. This is to

monitor their performances in order to find out which λ value achieves

the most reasonable number of paths found over certain number of

generations.

2. rule gens *.xls, which lists combinations of some ∆θ values and some

∆λ values after every certain number of generations. This is to seek

the most reasonable combination that balances number of paths found

over number of generations.

3. rule dtheta *.xls, which contains list of ∆θ over several generations.

4. rule dtheta lambda *.xls, which has similar contents with Point 2, but

it only lists certain combinations of ∆θ values, i.e. 0.001 ( 1
1000

), 0.0005

( 1
2000

), 0.00033 ( 1
3000

), 0.00025 ( 1
4000

), 0.0002 ( 1
5000

), and 0.0001 ( 1
10000

),

and ∆λ values, i.e. 0.1 and 0.25.
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C.2.3 Benchmark Generator

Benchmark Generator 1.5, which is shown in C.6 has ability to generate setup

(preparation) file for running several test programs. It makes parameters

setup as its input and produces a Matlab (text) file with .m extension.

benchgen_feeder benchgen
Parameters setup

(folder, SUT, paths)

benchmark_*.m

(irhbenchmark)

Figure C.6: Benchmark Generator 1.5

The parameters setup consists of folder name to store the output file,

test program, target paths, set of number of generations, set of population

sizes, input (or chromosome) length, values range for each allele, mutation

rate, and type of GA. The output file will enumerate each combination of

parameter values whose values range are defined in the input file.

C.2.4 Summary Reader

The following Figure C.7 shows five functions to further summarize and ana-

lyze the output of TDG 2.0. Each of these functions serves different analysis.

The purpose for each function is

1. summary reader, a function to convert descriptive (textual) summary

into tabular form in CSV format.

2. summary reader comp, a similar function with summary reader with

additional feature that it can compare different approaches, which are

applied to the same test program.
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summary_reader

summary_reader_comp_exec

summary_reader_comp

.xls

_comp.xls

_comp_exec.xls

summary_G2G_All_datetime.txt

summary_reader_comp_exec_gen

summary_reader_comp_exec_lsv

_comp_exec_gen.xls

_comp_exec_lsv.xls

Figure C.7: Summary Reader 2.0

3. summary reader comp exec, a similar function with summary reader comp

with additional comparative executive summary across certain number

different approaches over the same test program in terms of number of

paths found and elapsed time.

4. summary reader comp exec gen, a similar function with summary reader comp exec

that can accept any number of different approaches under generic col-

umn names.

5. summary reader comp exec lsv, a similar function with summary reader comp exec

that is able to compare with hybrid GA with variable size local search

(LSv).
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