
High-performance microkernels and virtualisation on ARM
and segmented architectures

Author:
van Schaik, Carl; Heiser, Gernot

Publication details:
1st international workshop on microkernels for embedded systems: MIKES
2007, Proceedings
pp. 11-21
1833-9646 (ISSN)

Event details:
1st international workshop on microkernels for embedded systems: MIKES
2007
Sydney, Australia

Publication Date:
2007

DOI:
https://doi.org/10.26190/unsworks/515

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39903 in https://
unsworks.unsw.edu.au on 2024-03-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/515
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39903
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


High-Performance Microkernels and Virtualisation
on ARM and Segmented Architectures

Carl van Schaik† and Gernot Heiser†‡§

† Open Kernel Labs
‡ National ICT Australia∗

§ University of New South Wales
cvansch@ok-labs.com

Abstract
This paper describes the techniques used to achieve high
context-switching performance on ARM processors for
the L4 microkernel and a para-virtualised Linux running
on top. We examine how the previously-published tech-
niques can be used in L4 with minimal changes to the
kernel API. We also propose future API changes which
make it easier to maximise memory-management per-
formance, not only on ARM but also on architectures
supporting a segmented memory model.

1 Introduction
ARM [Jag95] is a processor architecture particularly
popular for battery-powered devices with moderate
CPU performance requirements. It has been adopted in
a wide range of applications from automotive to mobile
phones, PDAs and networking gear.

Historically, most applications using the ARM archi-
tecture have been implemented on simple real-time ex-
ecutives with no memory protection. Increasingly, how-
ever, security and isolation requirements have driven the
need for running systems with memory protection on the
ARM processor. Unfortunately, many such uses suffer
from high context-switching costs due to idiosyncrasies
of the widely-deployed cores conforming to versions 4
and 5 of the ARM architecture (ARM v4/v5 cores).

L4 [Lie95] is a high-performance microkernel that
aims to provide a minimal but efficient set of abstrac-
tions, general enough to implement almost arbitrary sys-
tems on top. It is increasingly deployed in embedded
products, particularly on ARM processors, as a real-
time kernel and virtualisation platform. This makes it
highly important that the kernel minimises overheads on
ARM v4/v5, in particular for context switches.

A number of techniques have been developed over
the years that allow L4 to achieve excellent context-

∗National ICT Australia is funded by the Australian Government’s
Department of Communications, Information Technology, and the
Arts and the Australian Research Council through Backing Australia’s
Ability and the ICT Research Centre of Excellence programs.

switching performance on ARM processors [WH00,
WTUH03]; these techniques are collectively called fast
address-space switching (FASS).

This paper discusses work done at National ICT Aus-
tralia (NICTA) and Open Kernel Labs (OKL) on en-
hancements to the L4 API that allow us to make the
best possible use of hardware mechanisms, in particu-
lar for minimising the overheads of virtualisation. At the
same time we aim to retain a high degree of architecture-
independence of the API, and thus attempt to develop
a model that will map cleanly to related mechanisms
on architectures other than ARM, specifically PowerPC
and Itanium.

This work is reflected in the evolution of the
NICTA and OKL versions of the L4 API — the
N-series API [NIC05], and its implementation in
NICTA::Pistachio-embedded and OKL4, which are de-
scendents of L4Ka::Pistachio. We describe the changes
made to the API and implementation and then demon-
strate the results on our Wombat server, a mostly
architecture-independent para-virtualised Linux system
running on top of L4 [LvSH05].

We also provide an overview of recent and forthcom-
ing API changes aimed at improving the suitability of
L4 for resource-restricted embedded systems, particu-
larly systems with small memories. In particular, we
show that the FASS techniques will enable a signifi-
cant reduction of the memory required for the ARM’s
hardware-walked page-tables.

2 ARM v4/v5 architecture
Since this paper deals mostly with the ARM v4/v5
MMU and ways to provide general abstractions for its
use, we will focus our overview of the architecture on
aspects of its MMU.

It is important to note that the ARM v6 architecture
introduces a number of changes to the MMU which
avoid many of the problems of v4/v5. However, ARM-
v6 compliant cores tend to be significantly larger and
thus more expensive and resource-hungry than v5 im-
plementations. Therefore, v5 cores will continue to re-

mailto:cvansch@ok-labs.com


Physical
AddressPhysical

Memory

TLB

D−Cache

I−Cache PID

FCSE

Load/
Store
Uint

ARM Core
Virtual
Address

HW Walker

MVA

Figure 1: ARM MMU structure.

main popular for low-power and low-cost applications
for years to come.

Furthermore, ARMv6 is backwards compatible with
v5, and the same mechanisms can still be employed.
While they are no longer required on v6 cores, owing
to changes in the memory architecture, the techniques
discussed in Section 3.3 will still be beneficial for sup-
porting sharing and for reducing the kernel’s memory
overhead.

From here on we will simply refer to the “ARM ar-
chitecture” when talking about the ARM v4/v5.

Shown in Figure 1, on the surface, ARM implements
a fairly traditional MMU structure. The MMU consists
of a translation-lookaside buffer (TLB), a split or unified
L1 Cache and a hardware page-table walker. However,
on further inspection it becomes evident that the ARM
MMU contains a number of features that contribute to
performance problems. It also provides mechanisms for
avoiding high overheads, but they are difficult to use.

2.1 Caches

The ARM architecture specifies that caches are virtu-
ally indexed and virtually tagged (VIVT caches). This
is done to reduce cache latencies by removing the re-
quirement for a TLB lookup before accessing the cache.
Furthermore, the caches do not contain any information
that associates cache lines with address spaces.

This means that data cannot be kept in the cache
when switching to another address space which uses the
same virtual addresses. Otherwise, that address space
could read valid cache data belonging to another address
space, and worse, write data into another address space’s
memory.

Since Unix-like operating systems use the same
address-space layout for all user processes, specifically
mapping the text segment to a fixed address in each ad-
dress space, operating systems typically flush the cache
on each address space switch. The direct cost of flushing
the cache depends on the cache size and memory band-

width, but typically costs 10 to 100 times more than the
operating cost of the address space switch.

Interestingly, ARM caches keep the physical address
of each cache line in a secondary hidden tag, which gets
updated in the background after a virtual address has
been translated in the TLB. This removes the need of
looking up the address in the TLB when writing back
data. But since the tag is not used during data access
from the cache, it is of no use for avoiding cache flushes.

2.2 TLB

The ARM TLB is a typical content-addressed memory
(CAM) for translating virtual addresses to physical ad-
dresses. Its entries also control cache behaviour, by
specifying the cache write policy and whether the cache
is to be bypassed for a particular page.

Unlike most processor architectures, the ARM TLB
does not contain an address-space identifier. Conse-
quently, operating systems avoid mixing mappings from
different address spaces in the TLB, and hence flush the
TLB on each context switch.

While the direct costs of flushing the TLB is low, the
indirect cost of reloading the TLB through page faults is
significant, and has a major performance impact.

2.3 Page Tables

Since ARM processors use a hardware page-table
walker, the page-table format is fixed by processor de-
sign.

The ARM architecture has a two-level page-table for-
mat and supports four page sizes (1MiB, 64KiB, 4KiB
and 1KiB). The top level is a 16KiB array containing
4096 4-byte entries, each covering 1MiB of the 4GiB
address space. Each top-level entry may either represent
a single 1MiB page or may be a pointer to a second-level
table containing smaller pages. The second level may
either be a 1KiB array containing 64KiB and 4KiB page
sizes or a 4KiB array which additionally supports 1KiB



page sizes. The table is always indexed with the small-
est supported page size; entries for larger-sized pages
are replicated so that the hardware walker requires only
a single lookup.

In spite of the use of a hardware walker, TLB reload
costs are high, as page-table pointers are physical ad-
dresses which bypass the cache. Hence reloads typically
require two memory accesses. This is a main reason for
the high indirect costs of TLB flushes.

2.4 Domains

The ARM architecture has an interesting feature in that
in addition to protection information, regions of mem-
ory at a 1MiB granularity can be tagged with a domain
ID. Altogether there are 16 domain IDs provided by the
hardware. The processor contains a domain access con-
trol register (DACR) which contains an array of 2-bit
permissions for each domain number. The permissions
field allows a domain to be marked as no-access, man-
ager mode or client mode. No-access prevents access
to any page in this domain, regardless of page permis-
sions, manager mode bypasses all page permissions and
allows full RWX access, and client mode respects the
permissions of the pages tagged with the domain.

Typically, a process is given access to only a single
domain such that trying to access pages tagged with
a different domain causes a domain fault. Since the
DACR contains a domain-mask array, it is possible to
give more than one process access to the same domain.
We call this domain sharing.

2.5 Fast-Context-Switch Extension

In v4 of the architecture, ARM introduced a fea-
ture called the fast context switching extension (FCSE)
which was originally developed for supporting Win-
dows CE [Mur98]. This feature uses a 6-bit (7-bit on
v5) process identifier (PID) to re-map the bottom end of
the address space.

The re-mapping works by replacing the 7 most sig-
nificant bits of the address, if they are zero, by the con-
tents of the PID register, effectively mapping the low-
est 32MiB of address space into a different 32MiB slot.
This re-mapping happens prior to the virtual address
translation and the resulting modified virtual address
(MVA) is seen by the TLB and caches. The feature
thus allows up to 128 small address spaces, each using
a traditional Unix-style layout, to be transparently re-
mapped to another slot in virtual memory, which avoids
address-space overlap between processes, and thus pre-
vents cache alias problems.

FCSE avoids the need for flushing caches and TLB
on address-space switches, and the scheme is used by
Windows CE [Mur98]. Without further effort, however,
this leads to a loss of memory protection.

FCSE can be used safely if domains are used as a
poor-man’s address-space tag for the TLB [WH00] —

the basic idea behind FASS. An implementation of this
scheme in Linux has demonstrated context-switching
costs reduced by as much as a factor of 50 [WTUH03].

3 Kernel Implementation
FASS has recently been implemented in the
L4Ka::Pistachio [L4K] implementation of the V4
API. This kernel is the base for the NICTA versions
of L4, called NICTA::Pistachio-embedded and OKL’s
version, called OKL4. The implementation of FASS in
OKL4 is discussed here.

3.1 L4Ka::Pistachio
As indicated above, FASS is based on using ARM do-
mains as address-space tags for TLB entries. The L4 im-
plementation uses the same basic approach as described
in [WTUH03]. At context-switch time, the DACR is
reloaded by a mask disabling access to pages belong-
ing to the address space that is being switched out, and
enabling access to pages belonging to the address space
that is being switched in. In this scheme, a caching page
directory (CPD) is used as the global top-level page-
table used by the hardware walker and 1MiB top-level
entries are copied in and out from the per-address-space
page-tables. The CPD thus points to leaf page tables of
multiple address spaces concurrently.

Flushes are then only required if the new address
space does not have a valid domain and no free domains
are available. In this case, the kernel needs to free a
domain to preempt. If two address spaces overlap, this
is detected by hardware thanks to the access mask in
the DACR, and the kernel then flushes TLB entries and
caches selectively.

The kernel uses three data structures to keep track of
domain usage: a bitfield of dirty domains, a bitfield of
dirty user TCBs (UTCBs) and a bitfield of CPD domain
ownership. In L4, each thread has a UTCB, a datastruc-
ture which is shared between the kernel and user which
serves as an efficient means for threads to communicate
with the kernel.

The dirty-domains bitfield is used to keep track of do-
mains which may have data present in the cache. When-
ever domain ownership of an ARM section changes, the
kernel checks whether the domain of the original sec-
tion is dirty and flushes the TLB and caches if that is the
case. If the domain is clean, it is safe to leave the cache
alone, and the kernel only flushes the TLB. Whenever
the cache is flushed, all the domains are marked clean.
A clean domain is marked dirty when switching to an
address space which has access to pages in that domain.

The implementation minimises changes to the kernel
API for the ARM architecture. The L4 V4 API spec-
ifies that the UTCB area of an address be user config-
urable. The kernel, however also needs to access the
UTCB of all threads in the system. Typically, L4 ac-
cesses UTCBs directly in the kernel heap and users ac-



cess them through a mapping in their address space. On
ARM, this presents a problem due to cache aliasing:
Owing to the VIVT caches, virtual aliases present the
same problem as overlapping address spaces described
earlier in Section 2.1. To avoid this, whenever L4 ac-
cesses a UTCB it performs a check to test whether the
UTCB’s user mapping is in the CPD and tagged with the
user’s domain. If this is true, the kernel accesses the user
mapping, otherwise it accesses the address in its heap.
Accessing the UTCB in the heap, however, may cause
the user’s UTCB mapping to present stale data when it
is faulted in at a later stage. The kernel thus keeps a
UTCB-dirty bitfield which it uses to indicate whether a
UTCB of a domain has been accessed via a kernel map-
ping. Since this only happens when the domain’s UTCB
mapping was not in the CPD; a subsequent user access
will cause a domain fault and the kernel knows to flush
the dirty UTCB data from the cache.

Lastly, the kernel keeps a bitfield of domain owner-
ship for the CPD. This is used during domain recycling
to optimise flushing the CPD of entries belonging to a
particular domain.

One compromise the ARM implementation had to
make to the API was to map the kernel information page
(KIP) to a fixed address common to all address spaces,
rather than let user-level code determine the KIP ad-
dress. This was required to allow the kernel to prevent
cache aliases from occurring in the KIP.

With these features, L4Ka::Pistachio was able to pro-
vide a simple, essentially unmodified API to the user.
Unmodified applications can run, with potential perfor-
mance loss due to domain faults on conflicting virtual
address ranges, but no loss of correctness. Further-
more, applications only need to adhere to a simple set
of memory-layout guidelines in order to make full use
of fast address-space switching. Iguana is a good exam-
ple of such a system, since it uses a single address space
(SAS) model where no conflicting virtual addresses are
allowed, except when using shared data.

3.2 NICTA N2 API

While the original L4Ka::Pistachio implementation
worked well for a some classes of systems, it had a num-
ber of limitations relevant to memory-constrained em-
bedded systems. Some of those limitations could not be
addressed without API changes. As NICTA and OKL
are engaged in deploying L4 in a wide range of embed-
ded applications, we needed an API that supported im-
plementations optimised for such systems.

Commercial realities demanded a smooth and incre-
mental migration path, and we therefore decided to
evolve the existing API in several steps. This also allows
us to provide a reasonable migration path towards the
forthcoming seL4 API [EDE07]. The first step was the
N1 API released in October 2005, which was followed
by the N2 API (not yet released at the time of writing but
available from the public source repository). This sec-

tion describes some of the changes provided by the N2
API relative to the X2 API on which L4Ka::Pistachio is
based.

3.2.1 PID relocation

A simple extension to the API (and one that does not
affect other architectures) is a provision for associating
an ARM PID value with each address space, utilising
the FCSE (or PID relocation) feature of the processor.
If non-zero, this PID forces the lower 32MiB of the ad-
dress space to be remapped as described in Section 2.5.

This raises the issue that now within an address space
two different virtual addresses, one smaller, the other
larger than 32MiB, can reference the same data. In or-
der to simplify the interface, the kernel treats all user
addresses passed in or out of the kernel as MVAs (i.e. re-
mapped virtual addresses). This specifically applies to
addresses specifying mappings or fault addresses. How-
ever, the kernel will not modify user-visible thread state,
such as the PC. This implies, for example, that a page
fault triggered by an instruction fetch may show a fault
address different from the faulting PC value (by 32MiB
times the PID value).

3.2.2 UTCB addresses

One X2 API feature that is problematic on ARM proces-
sors is the user-determined mapping address of UTCBs.
The kernel must prevent inconsistencies in the UTCB
resulting from aliasing, and should also ensure that
UTCB accesses do not result in performance degrada-
tion resulting from domain conflicts. It was therefore
decided to allow the kernel to determine UTCB loca-
tions on some architectures, specifically ARM.

In our implementation of the N2 API on the ARM,
the kernel reserves a 256MiB region of global virtual ad-
dress space for use as UTCB areas. Each address space
is allocated a 1MiB area corresponding to a single CPD
entry for its UTCBs. This allows for up to 256 address
spaces in the system, which is sufficient for most em-
bedded systems (and this limit could be made a kernel
configuration option). That way the kernel can guaran-
tee that no cache aliases occur in the UTCB area and the
kernel and user processes can access the same UTCB
address safely. This can be achieved without having to
keep track of “dirty” state.

L4 still needs to handle domain faults on UTCBs, as
it frequently needs to access the UTCB of a thread other
than the current thread (e.g., during IPC). Faults will be
generated when the domain of the third-party UCTB has
been recycled.

3.2.3 Shared pages

Another issue with the X2 API is that it does not support
efficient sharing of memory between address spaces on
the ARM. As each address-space’s mappings are tagged
with a (at any given time) unique domain ID, accesses



to shared memory would always result in domain mis-
matches and hence flushing of caches.

The obvious way of dealing with sharing on the ARM
is to use a separate domain ID for shared pages, and
configure the DACR to provide access to all sharers.
Implementing this cleanly, without making the API too
architecture-specific and implanting too much policy in
the kernel, is tricky, however. For the N2 API, we there-
fore settled for a simpler approach that is almost as as ef-
fective for the problems at hand, but is definitely seen as
an interim solution. The idea is to let the system’s policy
layer identify sharing environments, called vspaces.

A standard way of efficiently sharing data on the
ARM is to introduce global address-space regions for
sharing. Iguana, which is our policy and resource-
management component that is the core of L4-based
systems, provides such a single-address-space layout in
a way similar to Opal [CLFL94], Mungi [HEV+98] or
Nemesis [LMB+96]. In such a system, there exists a
single, system-wide mapping from virtual to physical
addresses, and as such no cache aliasing problems exist.

While a similar approach is also used by QNX and
Windows CE, this is done at the expense of forego-
ing memory protection, a tradeoff we are not willing
to make. Instead we allow address spaces with non-
conflicting layouts to be tagged with a common vspace
ID, which the kernel can use to avoid cache flushes.

Specifically, on a domain fault, the kernel compares
the vspace ID of the faulting address space with that
of the address space owning the domain that is used
to tag the faulting page in the CPD. If the two vspace
IDs match and are non-zero, the kernel assumes a non-
conflicting address-space layout and does not flush the
cache. The TLB is still flushed, ensuring that each ad-
dress space can only access data explicitly mapped to it
by its pager.

It is the responsibility of the policy layer to ensure
that this is used securely, the kernel only provides the
mechanisms. Incorrect use of the primitives by a pager
can therefore lead to data corruption (not different from
accidentally mapping the wrong page), but not to se-
curity violations beyond what the pager could cause by
other misuse of mappings.

In our Iguana system, all processes running in the
single address space use a vspace ID of one. Iguana
also supports external address spaces (mostly used for
legacy emulation and not intended to share memory),
these all use a vspace ID of zero, and therefore require
cache flushes on domain faults.

If shared memory regions used separate (shared) do-
main IDs, the TLB flush could also be avoided (and
shared pages would be mapped by shared TLB entries),
at the expense of a more complex implementation, and
increased contention for domain IDs. This is planned
for the future, as discussed below.

A complete TLB flush can be avoided where the con-
flicting CPD entry is a 1MiB superpage. In this case, a
single mapping can be flushed from the TLB, eliminat-

Hardware
Defined

Defined
Software

CPD

Figure 2: L4 software compressed page tables with the
CPD.

ing the indirect costs of flushing.

3.2.4 Cache control

The L4Ka::Pistachio kernel does not provide a clean
API for cache management. Cache management is im-
portant for applications that share data with explicit
cache aliases. A typical example is a Unix-like oper-
ating system server, which maps pages to client address
spaces and needs to copy data in from and out to the
client.

For the N2 API, a new system call called CacheCon-
trol was created. This allows address-space pagers
(threads with privileges to map and unmap pages in a
client) and clients to perform various cache manipula-
tion operations, such as cache-range flushing, as well
as more complex control such as cache-line locking and
cache setup/partitioning.

3.3 Planned Enhancements
A number of enhancements are proposed for the next
versions of OKL4. These aim to provide better sup-
port on ARM for shared domains as part of a gen-
eral model for improved address-space management,
memory-usage optimisations and further performance
improvements.

The ARM’s hardware-walked two-level page tables
are quite expensive in terms of memory overhead, par-
ticularly in an embedded system with a significant num-
ber of small address spaces. Each address space has a
16KiB top-level page table, which for small processes
will only contain a handful of valid entries — 16KiB of
wasted space per process.

Owing to our implementation of FASS, the top level
of an address-spaces page table is never walked by hard-
ware, the page-table walker only accesses the CPD. This
means that software is free to implement a different
page-table structure, as long as the leaf page tables re-
main unchanged. Hence we can replace the page di-
rectory by a data structure more suitable for small ad-
dress spaces, such as a simple linked list or a two-level
page table with small fanout as shown in Figure 2. It is
even possible to use different formats for different ad-
dress spaces, as long as the root of the data structure
indicates the format.



While this change is a pure implementation optimi-
sation, other planned changes will be visible at the API
level. This includes making address spaces first-class
citizens (again); the present X2 approach of naming
address spaces indirectly via threads allocated in them
never felt quite right, and interferes with other improve-
ments.

Note that the compressed page-table structure dis-
cussed above will still be useful for reducing kernel
memory overhead on ARM v6 cores, even though the
CPD will no longer be required for avoiding cache
flushes.

A more drastic change aims at further improving the
support for memory sharing, in a way that abstracts
over mechanisms found in several different architec-
tures. This is discussed in Section 3.4, and will also
be beneficial on ARM v6.

3.4 Segmentation API Proposal
While the unit of hardware-supported memory sharing
is the page, in typical scenarios the logical unit of shar-
ing is a more arbitrary region of contiguous address
space. Examples are producer-consumer buffers and
memory-mapped files.

Furthermore, several architectures (ARM, PowerPC
[MSSW94] and Itanium [Int00]) provide hardware sup-
port for sharing, including the ability to share a single
TLB entry for shared pages, an attractive way to re-
duce TLB pressure. While previous studies [WTUH03,
CWH03] could not find a significant performance im-
pact from TLB sharing, those were done in Linux. A
microkernel-based system tends to have orders of mag-
nitude higher context-switching rates than Linux. It
also makes much more intense use of shared memory
between user-level processes, as OS servers (such as
Wombat) accessing client memory run at user level.
Hence, the ability of the TLB to concurrently map the
working sets of several processes is much more impor-
tant in such a system. Similarly important is the ability
to share page-table subtrees for shared memory regions
in order to minimise kernel memory overheads.

The present API has no provisions that allow the ker-
nel to utilise such hardware features or share page ta-
bles. An abstraction that identifies shared regions could
achieve that, and at the same time significantly reduce
the number of kernel entries required for setting up
shared regions. An obvious abstraction, which maps
directly on the hardware mechanisms in some architec-
tures, is segmentation. Before presenting the model, we
will first describe the relevant architectural features in
PowerPC and Itanium.

3.4.1 PowerPC Segmentation

A number of commonly used PowerPC processors sup-
port segmentation, including the IBM’s POWER pro-
cessors and the newer embedded PPC603 cores. Tra-
ditional operating systems, as well as L4, have under-

utilised the segmentation architecture of these proces-
sors, essentially turning segmentation into address space
identifiers. A memory-management model that supports
PowerPC-style segmentation has been desired by the L4
community for some time.

In the case of the POWER processors, segmentation
leads to a two-step address translation. The high-end
bits of the CPU-issued effective address form an effec-
tive segment ID, which is used as an index into a per-
process segment table to obtain a virtual segment ID.
The latter is a system-wide unique identifier for a seg-
ment of up to 256MiB in size. It is combined with the
remainder of the address to form the virtual address.
The combined virtual segment ID and per-segment page
number is translated into a physical address using a page
table. That translation is cached in a TLB, while the seg-
ment translation is cached in a segment lookaside buffer
(SLB). The latest generations of POWER processor also
feature a device called an ERAT which caches the com-
plete address translation.

On the PowerPC, addresses can efficiently share seg-
ments by using effective segment IDs that map to the
same virtual segment ID. As the TLB is indexed by the
virtual address, shared segments naturally share TLB
entries. Since the segment table contains protection bits,
this is possible even if the address spaces have differ-
ent access rights to the segment (e.g., in a consumer-
producer scenario).

3.4.2 Itanium Region Registers

The Itanium architecture also divides the virtual address
space into a (much smaller) number of segments, called
regions. The top three bits of the 64-bit virtual ad-
dress form the virtual region number, which selects one
of 8 region registers, containing a global 24-bit region
ID. Regions serve as a generalised form of ASID tags
on TLB entries, but can also be used for very coarse-
granular sharing. For example, Linux [ME02] reserves
one region for shared libraries, which means that they
share TLB entries.

The Itanium region scheme only supports sharing
with uniform access rights, and only at the same address
for all participants. However, there is another feature,
called protection keys, which allows the OS to further
restrict access rights to pages on a per-process base.

3.4.3 Segmentation example

Consider the example in Figure 3 which consists of three
address spaces: A, B and C. These address spaces each
have their private mappings, as well as the shared re-
gions x and y in their address spaces.

In the current L4 API, constructing such a system is
possible, however L4 does not take advantage of spe-
cial hardware support for segmentation and TLB shar-
ing. On ARM processors, the problem is compounded
by significant performance overheads: the TLB needs
to be flushed whenever a context switch occurs between



x y

C

x y

B

x y

A

Figure 3: Three address spaces, with shared segments
x and y.

these address spaces. Address spaces A and B could be
placed in the same vspace since their private mappings
do not conflict. The private mappings of address space
C, however, conflict with those of the other spaces, and
would require cache flushes.

If only address space A and B are considered on
ARM, the preferred approach would be to tag the pri-
vate mappings of address space A with a unique do-
main ID, and use a different domain ID for the private
mappings of B. Assuming suitable alignment (to 1MiB
ARM sections), a third domain ID could be used to tag
the shared regions x and y; that domain would be en-
abled in the DACR whenever A or B are running. On
a context switch between the two address spaces, the
DACR would be the only addressing/protection infor-
mation that would need to be updated. The TLB entries
mapping x and y would be valid for both address spaces.
However, a switch to address space C, which maps the
shared regions at different addresses, would require a
cache flush.

On PowerPC, the same effect can be achieved by us-
ing separate segments for regions x and y (subject to
appropriate alignment). In this case, TLB entry sharing
is even possible between all three address spaces. Cache
flushes and TLB flushes are never necessary on that ar-
chitecture, irrespective of address-space layout.

On Itanium, sharing could be achieved by allocating
x and y in separate regions. Given the coarseness of
regions, this is not a very feasible approach. Alterna-
tively, one region can be reserved for shared memory (as
in Linux). This forces shared regions to use a fixed vir-
tual address, hence rules out the layout of address space
C (but without restrictions on usage of other regions, in
particular no need for non-conflicting mappings outside
the sharing region).

Protection keys provide additional flexibility, but in
any case, TLB entry sharing is only possible if the
shared region is mapped to a unique address [CWH03].
As on the PowerPC, TLB or caches never need to be
flushed on context switches.

The three architectures are representative of hardware
support for sharing. We can see that an abstraction of
a contiguous segment of memory as a unit of sharing

could be used to exploit the hardware support mecha-
nisms offered, as long as the usage is compatible with
the requirements of the underlying hardware. The ker-
nel needs to be able to detect the case where the use of
the mechanism allows the use of the hardware support
mechanisms, and otherwise needs to ensure correctness
(at the expense of performance). It is then up to the pol-
icy layer to ensure that the hardware mechanisms are
used.

3.4.4 API Design

We propose to extend the L4 API with a generic abstrac-
tion of the segmentation and TLB sharing capabilities of
some modern processor architectures. We introduce the
concept of a segment, and a system call called Segment-
Control for their manipulation.

A segment is a contiguous page-aligned range of vir-
tual memory which can be shared by (mapped into) one
or more L4 address spaces at an arbitrary (page-aligned)
address. A segment logically has its own page tables,
and changes to a segment’s mappings are visible in all
address spaces sharing the segment. It is up to user-level
code to create segments which are compatible with the
limitations of the underlying hardware architecture in
order to make full use of the API. Incompatible segment
layout, or using segments on a processor without TLB
sharing or segmentation support, will result in L4 emu-
lating the API.

Segments are mapped and unmapped into address
spaces as indivisible units; that is, they are either shared
in their entirety or not at all. Mapping pages within seg-
ments uses the existing L4 API for mapping pages to
address spaces. Pages are not mapped directly to seg-
ments, rather, segments are poulated implicitly by map-
ping into the virtual-address range of a segment in a
target address space. In addition to permissions of in-
dividual pages, there are per-segment permissions: An
address space’s access rights on a particular page is the
intersection of the rights with which the page is mapped
and the rights with which the segment is mapped.

In the N2 API, mapping segments is a privileged op-
eration.1 The handling of page faults is unchanged, they
are delivered to the faulting thread’s page fault handler.

SegmentControl provides four basic operations:

1. Segment creation.
A segment of a specified size is created, and as-
signed a unique, caller-specified, segment ID. The
segment is initially empty (i.e. does not contain any
mappings).

2. Segment deletion.
Deletion removes a segment and its page tables.
The segment and its pages are unmapped from all
address spaces to which it has been mapped.

1This will change in the seL4 API, which supports the delegation
of privileges.



3. Segment mapping.
This allows a segment to be mapped into an address
space. The base address of the segment and the
access rights are specified by the caller. If different
pagers map the same segment (not possible in the
N2 API as mapping is restricted to the privileged
root task) then those pagers must communicate the
segment ID once the segment has been created.

4. Segment unmapping.
Unmapping removes a segment from a particular
address space, and implies unmapping all its pages
from that address space.

3.4.5 ARM Implementation

On ARM, the kernel will allocate a new domain ID, dif-
ferent from any per-address-space domain ID, when a
segment is first mapped into an address space. If the seg-
ment is subsequently mapped into other address spaces
at the same base address, its domain is enabled (in the
DACR) for all those address spaces. Provided that the
segment is mapped with full access rights in all partici-
pating address spaces, TLB entries will be shared and no
TLB or cache flushes are required on context switches.

In order to minimise bookkeeping and the amount of
policy in the kernel, domains will only be allocated to
segments that are aligned to MiB boundaries (i.e., CPD
entries). Such segments, of course, are described by a
range of leaf page tables, and can therefore naturally be
represented as a small top-level page table. Instead of
being tagged with an address-space ID, they are tagged
with a segment ID. In terms of domain management
(e.g., domain recycling), segments will be treated like
address spaces.

For segments which do not conform to the above re-
strictions (alignment and permissions), the kernel can
implement the same functionality as for the vspaces ab-
straction in the present kernel.

Theoretically the kernel could detect cases where
several segments are shared between the same address
spaces, and use the same domain ID for all of them.
While this could reduce pressure on domain IDs, this
would put unnecessary policy into the kernel, as the
same effect can be achieved by proper user-level man-
agement of segments.

PowerPC and Itanium implementations are left as an
exercise for the reader.

4 Wombat Implementation

Wombat [LvSH05] is a port of the Linux 2.6 kernel
to the L4/Iguana operating system and runs on ARM,
i386 and MIPS64 processors. Since the port has been
done such that L4/Iguana is treated as a new architec-
ture, the portability to other L4-supported architectures
is increased.

On the ARM platform, the original port of Wombat
suffered from very poor performance. This was mostly
due to inefficient implementation of Wombat and insuf-
ficient abstraction provided by the L4 API.

The main reason for the performance problems were
that the Wombat server and its user processes reside
in separate L4 address spaces, and thus Wombat can-
not access the client’s address spaces. Componding the
problem is the memory layout of Unix-style processes,
which create address conflicts between clients, causing
cache and TLB flushing to occur. Also, since Wombat,
unlike native Linux, cannot directly access the clients’
address spaces, it needs to access the base pages from
which clients’ pages are mapped. Wombat has map-
pings for all memory that is available to the Linux sub-
system, including those in use by Linux client processes.
However, such pages are mapped at different addresses
in Wombat’s address space than in the client’s, result-
ing in cache-alias problems that need to be managed by
Wombat.2

Two ARM-related changes have been made in Wom-
bat to reduce these performance problems:

Firstly, Wombat was updated to use the CacheCon-
trol API introduced in the N2 API, which allows finer
control of cache flushing. This reduces overheads by
allowing Wombat to flush cache lines selectively when
accessing user memory.

Secondly, Wombat has been modified to make use of
the PID-relocation extensions to L4, also introduced in
the N2 API. In contrast to FASS on native Linux, we
opted to simplify the implementation and restrict user
applications to a 32MiB address space (the system will
presently refuse to load larger programs). Although
seemingly small, this is more than adequate for most
embedded applications. PID relocation is used by allo-
cating a PID register value for each Linux user process.
This PID subsequently remaps each user address space
to a higher 32MiB slot. Since L4 handles domain allo-
cation and reuse transparently, no notion of domains is
needed in Wombat. For PID-relocation support, the only
changes required where translating all user addresses to
MVAs when dealing with L4.

4.1 Future Work

The proposed API needs to be inspected to test its suit-
ability on a larger range of machine architectures includ-
ing IA32. Once done and suitably revised, it will make
up part of future NICTA L4 APIs.

We plan to modify Wombat to take advantage of the
segmentation concept in order to match native Linux’s
ability to directly access user address spaces. On ma-
chines that support it, Wombat will additionally be able
to share TLB entries with its clients. On ARM, TLB
sharing is possible under the proposed API and perfor-

2While Wombat itself runs inside Iguana’s single address space,
binary-compatible Linux applications each run in their own external
address space, using the standard Linux address-space layout.



Table 1: Lmbench performance of native Linux vs.
Wombat before and after FASS optimisations. Gain
shows the relative improvement due to FASS. Relative
shows the performance of optimised Wombat (after) rel-
ative to native Linux.

native before after gain relative
Latency [µs] [µs] [µs]
ctx 0k 190.8 207.9 6.48 32.1 29
ctx 1k 218.7 204.8 6.43 31.9 34
ctx 4k 257.7 209.3 7.15 29.3 36
fifo 377.0 1146 80.0 14.3 4.7
pipe 378.4 1146 81.6 14.0 4.6
unix 764.5 1440 107.5 13.4 7.1
syscall 0.82 5.27 4.0 1.32 0.21
fork 4334 28918 5706 5.07 0.76
exec 4600 29473 6400 4.61 0.72
Bandwidth [MB/s] [MB/s] [MB/s]
file IO 39.4 2.12 12.43 5.86 0.32
mmap IO 106.7 105.4 106.1 1.01 0.99
mem rd 416.0 412.8 416.1 1.01 1.00
pipe 10.15 6.59 15.3 2.32 1.51
unix 24.23 11.32 11.32 1.00 0.47

mance will be greatly improved due to the removal of
cache alias problems. Furthermore, with PID relocation
for fast context switching, Wombat on ARM L4 should
outperform native Linux in many areas.

5 Evaluation

We evaluated the performance benefits of the implemen-
tation of FASS in NICTA::Pistachio-embedded by run-
ning Wombat and the lmbench suite [MS96].

All results were obtained on a PLEB2 [SPH05] ma-
chine which comprises an Intel PXA255 XScale proces-
sor running at 400MHz and with 64MiB of RAM. The
XScale has an ITLB and DTLB, each fully associative
with 32-entries. It has a 32KiB instruction cache and
data cache, both VIVT and 32-way associative.

Lmbench system latency and bandwidth results are
shown in Table 1. The first set of results in laten-
cies shows context switching latency between user pro-
cesses. The second set shows hot-potato latencies and
the third shows raw system call overhead and process
creation overheads. The final set of numbers shows the
memory bandwidth of various Lmbench tests.

The context switching numbers show the dramatic ef-
fect that FASS has on address-space switching, with the
para-virtualised Wombat outperforming native Linux by
an average factor of 30. Even the hot-potato bench-
marks, which copy data between processes, benefited
significantly. This is particularly noteworthy, given
that the Wombat implementation presently supports no
shared domains, and thus needs to flush caches for all
data copying operations into and out of Wombat. The
high numbers for the Wombat before hot potato bench-

mark reflect the vast overhead of the previous cache
flushing implementation in L4.

The system call overhead shows the overhead of the
para-virtualisation implementation. L4 needs to switch
address spaces from the user’s context to Wombat’s con-
text, whereas native Linux simply enters kernel mode
via a trap. Process creation times have been greatly im-
proved in Wombat, however they still present a 31% to
39% overhead over native Linux. This is a result of
sharing (where Wombat accesses user memory) lead-
ing to domain conflicts that result in cache flushes, an
effect that will be eliminated by implementing the seg-
ment API.

In the bandwith benchmarks, it is clear that file-IO
performance is presently poor. Although the cache-API
changes improved Wombat significantly, domain shar-
ing is still needed to aproach native Linux’s kernel-user
copy performance. Memory accessed by user mode
only (mmap and mem rd), displays identical perfor-
mance to Linux.

Interestingly, pipe bandwidth on Wombat surpasses
Linux. This is due to the benefits of fast context switch-
ing outweighing the cost of cache flushing, while in the
unix benchmark, the cache flushing outweighed the fast
context switching. Using shared domains should further
boost these numbers in Wombat.

6 Related Work
QNX [Hil92] is a microkernel system that provides a
message passing primitive which may involve a context
switch between the message sender and receiver. Like
L4, this results in a higher frequency of context switches
compared to other kernels.

To alleviate the cost of context switching on ARM,
QNX uses FCSE (PID relocation) with support for up
to 63 concurrent processes that are limited to 32MiB
of virtual memory. Any shared objects are mapped
uncached, since the objects reside at different MVA’s.
Hence, memory-access cost is traded against context-
switching overheads.

QNX also uses memory above 2GiB as a global
shared memory area that processes can use to map and
shared objects which can be cached. It is unclear (but
seems unlikely) that QNX uses domains for address
space protection, as opposed to simply switching page-
tables and flushing the TLB.

In contrast, L4 on ARM, as described in Section 3.2,
supports a maximum of 256 address spaces. Further-
more, each address space supports over 400 threads. L4
does not restrict the address space like QNX. Applica-
tions may choose to use FCSE and are treated no dif-
ferently to those not using it. Furthermore, each L4 ad-
dress space can use up to 3.25GiB of virtual memory.
Applications may use any address freely, however if do-
main conflicts occur due to address space conflicts in the
CPD, L4 will flush the cache and TLB on each domain
fault.



Windows CE uses FCSE [Hur, Mic], however not
much information is available about its implementation.
The latest version, Windows CE 5.0, supports 32 ad-
dress spaces each limited to 32MiB in size which are lo-
cated in the first 1GiB of virtual memory. The next 1GiB
area is used for global objects and memory mapped files.
The top 2GiB is kernel address space. Address spaces
are protected, but it is not clear if domains are used or
the TLB is flushed on context switches. TLB flushing is
suspected since it is possible to disable memory protec-
tion in Windows CE for performance reasons.

FASS has been implemented in Linux [WH00,
WTUH03] previously and reported vastly increased im-
proved context switching times over standard Linux.
However, the maintainers, who were offered the FASS
patches several times, did not seem to consider the ob-
tained performance improvements significant enough.
This has resulted in the paradoxical situation of Wom-
bat (virtualised Linux) on ARM outperforming native
Linux.

EROS [SSF99] exposes the logical page-table struc-
ture to applications and allows mapping of complete
subtrees. This inherently leads to efficient sharing of
address-space regions (effectively superpages) and can
naturally support segmentation hardware and share TLB
entries on such architectures. On ARM v4/v5, it would
still require a mechanism for associating subtrees with
domains. The seL4 API [EDE07] will similarly expose
a generalised mapping data structure, which will ease
the implementation of the mechanisms discussed here.

7 Conclusions
This paper discussed the present implementation of fast
context switching in L4 on ARM v4/v5 processors, and
identified is limitations. The implementation produced
the impressive result that context-switching overheads
of a virtualised Linux system are 1–2 magnitudes less
than in standard Linux. However, system calls that ac-
cess client memory are still up to a factor of three more
expensive in the virtualised system. We proposed imple-
mentation strategies which will eliminate this extra cost,
and proposed a segment abstraction as an API mecha-
nism that will map well those strategies. An additional
benefit is that this will support the efficient use of seg-
mentation hardware.

References
[CLFL94] Jeffrey S. Chase, Henry M. Levy, Michael J. Fee-

ley, and Edward D. Lazowska. Sharing and pro-
tection in a single-address-space operating sys-
tem. Trans. Comp. Systems, 12:271–307, 1994.

[CWH03] Matthew Chapman, Ian Wienand, and Gernot
Heiser. Itanium page tables and TLB. Techni-
cal Report UNSW-CSE-TR-0307, School Comp.
Sci. & Engin., University NSW, Sydney 2052,
Australia, May 2003.

[EDE07] Dhammika Elkaduwe, Philip Derrin, and Kevin
Elphinstone. A memory allocation model for an
embedded microkernel. In 1st MIKES, pages 28–
34, Sydney, Australia, Jan 2007. NICTA.

[HEV+98] Gernot Heiser, Kevin Elphinstone, Jerry
Vochteloo, Stephen Russell, and Jochen Liedtke.
The Mungi single-address-space operating
system. Softw.: Pract. & Exp., 28(9):901–928,
Jul 1998.

[Hil92] Dan Hildebrand. An architectural overview of
QNX. In USENIX WS Microkernels & other
Kernel Arch., pages 113–126, Seattle, WA, USA,
Apr 1992.

[Hur] Tim Hurman. Exploring Windows CE shell-
code. http://www.pentest.co.uk/documents/
exploringwce/exploring wce shellcode.html,
last visited 25 January 2007.

[Int00] Intel Corp. Itanium Architecture Software De-
veloper’s Manual, Feb 2000. http://developer.
intel.com/design/itanium/family.

[Jag95] Dave Jagger, editor. Advanced RISC Machines
Architecture Reference Manual. Prentice Hall,
Jul 1995.

[L4K] L4Ka Team. L4Ka::Pistachio kernel. http://l4ka.
org/projects/pistachio/.

[Lie95] Jochen Liedtke. On µ-kernel construction. In
15th SOSP, pages 237–250, Copper Mountain,
CO, USA, Dec 1995.

[LMB+96] Ian Leslie, Derek McAuley, Richard Black, Tim-
othy Roscoe, Paul Barham, David Evers, Robin
Fairbairns, and Eoin Hyden. The design and im-
plementation of an operating system to support
distributed multimedia applications. J. Selected
Areas Comm., 14:1280–1297, 1996.

[LvSH05] Ben Leslie, Carl van Schaik, and Gernot Heiser.
Wombat: A portable user-mode Linux for em-
bedded systems. In 6th Linux.Conf.Au, Canberra,
Apr 2005.

[ME02] David Mosberger and Stéphane Eranian. IA-64
Linux Kernel: Design and Implementation. Pren-
tice Hall, 2002.

[Mic] Microsoft. Windows CE memory architecture.
http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/wcecoreos5/html/
wce50conMemoryArchitecture.asp, last
visited 19 October 2006.

[MS96] Larry McVoy and Carl Staelin. lmbench:
Portable tools for performance analysis. In 1996
USENIX Techn. Conf., San Diego, CA, USA, Jan
1996.

[MSSW94] Cathy May, Ed Silha, Rick Simpson, and Hank
Warren, editors. The PowerPC Architecture: A
Specification for a New Family of RISC Proces-
sors. Morgan Kaufmann, 1994.

[Mur98] John Murray. Inside Microsoft Windows CE. Mi-
crosoft Press, 1998.

[NIC05] National ICT Australia. NICTA L4-embedded
Kernel Reference Manual Version N1, Oct
2005. http://ertos.nicta.com.au/Software/
systems/kenge/pistachio/refman.pdf.

http://www.pentest.co.uk/documents/exploringwce/exploring_wce_shellcode.html
http://www.pentest.co.uk/documents/exploringwce/exploring_wce_shellcode.html
http://developer.intel.com/design/itanium/family
http://developer.intel.com/design/itanium/family
http://l4ka.org/projects/pistachio/
http://l4ka.org/projects/pistachio/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wcecoreos5/html/wce50conMemoryArchitecture.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wcecoreos5/html/wce50conMemoryArchitecture.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wcecoreos5/html/wce50conMemoryArchitecture.asp
http://ertos.nicta.com.au/Software/systems/kenge/pistachio/refman.pdf
http://ertos.nicta.com.au/Software/systems/kenge/pistachio/refman.pdf


[SPH05] David C. Snowdon, Stefan M. Petters, and Ger-
not Heiser. Power measurement as the basis for
power management. In 2005 WS Operat. Syst.
Platforms for Embedded Real-Time applications,
Palma, Mallorca, Spain, Jul 2005.

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. EROS: A fast capability sys-
tem. In 17th SOSP, pages 170–185, Charleston,
SC, USA, Dec 1999.

[WH00] Adam Wiggins and Gernot Heiser. Fast address-
space switching on the StrongARM SA-1100
processor. In 5th Aust. Comp. Arch. Conf, pages
97–104, Canberra, Australia, Jan 2000. IEEE CS
Press.

[WTUH03] Adam Wiggins, Harvey Tuch, Volkmar Uhlig,
and Gernot Heiser. Implementation of fast
address-space switching and TLB sharing on
the StrongARM processor. In 8th Asia-Pacific
Comp. Syst. Arch. Conf, Aizu-Wakamatsu City,
Japan, Sep 2003. Springer Verlag.


	Introduction
	ARM v4/v5 architecture
	Caches
	TLB
	Page Tables
	Domains
	Fast-Context-Switch Extension

	Kernel Implementation
	L4Ka::Pistachio
	NICTA N2 API
	PID relocation
	UTCB addresses
	Shared pages
	Cache control

	Planned Enhancements
	Segmentation API Proposal
	PowerPC Segmentation
	Itanium Region Registers
	Segmentation example
	API Design
	ARM Implementation


	Wombat Implementation
	Future Work

	Evaluation
	Related Work
	Conclusions

