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Abstract 
Increasing population and resource demands, a changing hydroclimate, and increasing risks of 

extreme events means that sustainable water management is more important now than ever before. 

Water planners are increasingly recognising that short instrumental records are insufficient to 

understand fully natural trends and variability in climate. High resolution paleoclimate proxies, 

like tree rings, can provide long time series of observations prior to the instrumental period, to 

better understand instrumental and pre-instrumental variability, the occurrence, trends, and 

drivers of extreme events, and provide insights into possible future hydroclimatic scenarios. 

However, tree-ring proxies are not evenly distributed in the landscape, and the South Pacific has 

very few high-resolution paleoclimate proxies to develop detailed reconstructions of climate 

variability.  

This thesis explores whether the relationships between tree-ring proxies in regions with strong 

teleconnections to the Pacific (i.e., ‘remote’ tree rings) can be exploited to reconstruct 

hydroclimatic indices across eastern Australia and the South Pacific Islands. Methods for 

hydroclimatic reconstruction are investigated, considering the unique challenges of the region: 

strong inter-annual and inter-decadal variability, very short data records, data gaps, and potential 

non-stationarities in climate teleconnections. Existing methods for tree-ring reconstructions have 

been successfully applied in the South Pacific (Chapter 2); however, overcoming the challenges 

posed by very short and non-continuous records required adaptations to existing methods 

(Chapter 3) and the development of new methods (Chapter 5). In the final two chapters, the thesis 

focuses on how catchment-scale tree-ring reconstructions can be most useful to water managers. 

In these chapters, methods of identifying, explaining, and representing extreme event frequency, 

return periods, and trends are explored, as are methods for using paleoclimate data along with 

climate model projections to help contextualise future risks of climate change.  

Overall, this thesis highlights the enormous potential of remote tree-rings for improving our 

understanding of past climate in the South Pacific. The reconstructions consistently demonstrate 

that the instrumental period underestimates the full range of natural climate variability and shows 

how century-long records provided by tree rings can help us better understand past climate 

drivers, contextualise the instrumental period, and refine estimates of future climate risks. This 

thesis builds upon a growing body of work that demonstrates the considerable value of tree-ring 

based reconstructions for current and future water resource decision making, most notably in 

remote regions that are highly vulnerable to climate change but where there are limited 

instrumental records. Maximising the potential of tree-ring data for water management will 

require ongoing collaboration between dendrochronologists and water managers.
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Chapter 1 Introduction 
1.1 Rationale  
Increasing population and demands on water resources, and a changing hydroclimate regime, 

means there is an urgent need for sustainable water management. Increasingly, water planners are 

recognising that the relatively short instrumental (historic) records of hydrological observations 

are insufficient to fully understand, natural trends, variability, and climate drivers. The analysis 

of multi-centennial-long hydroclimate-sensitive tree ring series allow us to extend the records 

further back in time (Ljungqvist et al., 2020; Turney & Fogwill, 2021). Variability in the width 

of annual tree rings and other wood properties are influenced by climate conditions during the 

growing season; most notably a combination of temperature and soil moisture (Fritts, 1991). 

Reconstruction of climate and/or hydrology from tree rings can therefore provide detailed 

information on sub-annual to annual climate variability, extending the instrumental record from 

the eighteenth and nineteenth centuries, back potentially millennia (Jones & Mann, 2004). These 

long records can be used to better understand instrumental and pre-instrumental variability, the 

occurrence, trends, and drivers of extreme events, and provide insights into possible future 

hydroclimatic scenarios (Neukom et al., 2019). In this way, tree rings can contribute to robust 

water resource planning that considers both the plausible range of natural hydrologic variability 

and climate change impacts (Meko & Woodhouse, 2011). 

The South Pacific is a region that could greatly benefit from longer datasets of climate 

information. South Pacific Island countries are highly vulnerable to extreme events such as 

droughts and floods. Their small size and remote location provides limited opportunities to 

naturally buffer the resilience of populations in the face of climate variability (Johnson et al., 

2021). Meteorological records from these countries are typically very short, often only a few 

decades long, whilst pervasive multidecadal variability is considered to play an important role in 

the spatial and temporal patterns of climate and extremes (McGree et al., 2016); the latter a 

characteristic of Australia and New Zealand, while of very different size and socio-economic 

circumstances to the South Pacific islands. For the region as a whole, characterising natural 

hydroclimatic variability is challenging due to the short duration of the instrumental record (Deser 

& Phillups, 2017). This leaves a substantial gap in our understanding of long-term natural climate 

variability, which is a requirement for reasonable estimates of potential future changes.  

While ‘paleo-reconstructions’ can help fill this knowledge gap, tree rings are not evenly 

distributed across the region, and the South Pacific has very few local, high-resolution 

paleoclimate proxies to develop hydroclimatic reconstructions. Only New Zealand has a high-

density spatial coverage of tree-ring chronologies (Palmer et al., 2015). In Australia, tree rings 

are primarily restricted to the island state of Tasmania, with a dearth of chronologies available 
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over much of the mainland. The small land area, and difficulty in finding tropical tree species 

with annual growth rings (Rozendaal & Zuidema, 2011), have prevented the development of 

chronologies from the South Pacific Islands. In the absence of local proxies, tree-ring 

chronologies from regions that have strong teleconnections to the South Pacific can be used to 

reconstruct climate variables of interest (Buckley et al., 2019; Li et al., 2013; Lough & Fritts, 

1985; MacDonald & Case, 2005; Stahle et al., 1998).  

The standard approach for tree-ring climate reconstructions is to use statistical models to 

determine the relationship between the instrumental record and the chronology during the period 

of overlap (Hernández et al., 2020; Jaume-Santero et al., 2020; Jones & Mann, 2004; Neukom et 

al., 2019). This calibration process provides a transfer function that enables the proxy to be used 

as a surrogate for past climate. A significant source of uncertainty in paleoclimate reconstructions 

is that the relationship between tree-rings and climate is not perfect. The methodological 

challenge, therefore, is to filter the climate signal from multiple noisy proxies whilst addressing 

the limitations of short calibration periods and decreasing numbers of proxies going back in time 

(Riedwyl et al., 2009).  

Additional methodological considerations exist for reconstructions based largely or entirely on 

remote tree-rings. Using tree rings from a single teleconnection region can bias the reconstruction 

toward the influence of the climate driver on that region, which will be different from the signal 

in the tropical Pacific (Woodhouse, 1997). Another important consideration is whether the 

relationship between the Pacific and the teleconnection region is stationary (stable) over time 

(Mann, 2000). Non-stationary relationships between the climate and the teleconnected region can 

result from changes in the ocean-atmosphere linkages (Hernández et al., 2020; Power et al., 1999) 

or due to local climate factors which weaken the climate driver-proxy relationship (Cook et al., 

2018). Using networks of tree rings from multiple teleconnection regions can resolve or partially 

resolve these issues. The common climate signal identified amongst proxies from separate 

teleconnected regions must be the common expression of the climate driver. Using proxies from 

different geographical regions also minimises the potential impact of non-stationarities between 

a climate driver and any single region on the reconstruction (Batehup et al., 2015). The network 

approach has produced remarkably robust reconstructions of Pacific climate variability despite 

the remote location of the tree-ring predictors from the tropics (e.g., Buckley et al., 2019; Cook 

et al., 2018; Li et al., 2013; Stahle et al., 1998).  

This thesis explores the potential and limitations of networks of remote tree-ring proxies (i.e., 

proxies from regions with strong teleconnections to the South Pacific) to reconstruct the 

hydroclimate across the South Pacific region. Through a series of regional to catchment-scale 

case studies, the thesis investigates existing and new methods for hydroclimatic reconstructions 
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considering the unique challenges of the South Pacific region: strong inter-annual and inter-

decadal variability, multi-decadal (or shorter) instrumental records, data gaps, and potential non-

stationarities in climate teleconnections. In the final chapters, the thesis focuses on how these 

reconstructions can be most helpful to water managers. Methods of identifying, explaining, and 

representing extreme event frequency, return periods, and trends are explored, as are methods for 

using paleoclimate data to help contextualise future risks of climate change. 

1.2 Study region 
This thesis investigates the potential of remote tree-ring reconstructions over the broad South 

Pacific region, which includes eastern Australia, New Zealand, and the South Pacific Islands. The 

large-scale atmospheric circulation patterns which cause sub-annual variability in climate, and 

the climate drivers primarily responsible for inter-annual regional climate variability, are shown 

in (Figure 1-1). Here, a brief introduction is provided on the most important climate features for 

the reconstructions; further details on the climate specific to each case study are provided in their 

respective chapters.  

 
Figure 1-1 The major climate features affecting eastern Australia, New Zealand, and the South 
Pacific Islands. The position of the Inter-tropical Convergence Zone and South Pacific Convergence 
Zone are based on the twentieth Century Reanalysis v3 data set Omega at 500 hPa (Lorrey et al., 
2012). Predominant wind directions are depicted by arrows, after CSIRO et al. (2015). 

Precipitation across the Pacific varies spatially due to the position and strength of two large bands 

of cloudiness and precipitation, the Intertropical Convergence Zone (ITCZ) and the South Pacific 

Convergence Zone (SPCZ) (CSIRO et al., 2015). Seasonal movement of the convergence zones 

results in the wet/dry seasonality experienced by the South Pacific Islands. The ITCZ is a zonal 

rain band driven by the collision of the northerly and southerly trade winds near the 
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equator (Byrne et al. 2018). The mean location of the ITCZ is a few degrees north of the Equator 

(Gruber, 1972), because of hemispheric differences in energy transport and therefore mean 

temperature (Schneider et al., 2014). The ITCZ typically follows the seasonal solar cycle toward 

the warming hemisphere, resulting in a Northern Pacific wet season from May to October 

(CSIRO et al., 2015; Schneider et al., 2014).  

The SPCZ is a persistent, convective cloud band that stretches from Papua New Guinea in a south-

easterly direction toward French Polynesia. In the north-western sector, the SPCZ merges with 

the ITCZ over the western equatorial Pacific warm pool (Vincent, 1994). The presence and 

northwest-southeast orientation of the SPCZ is controlled by underlying sea surface temperature 

(SST) gradients (van der Wiel et al., 2016; Widlansky et al., 2011), which determine the near-

surface wind conditions that result in low-level moisture convergence (Ganachaud, 2014). The 

southwest Pacific wet season occurs from November to April when the westerly duct is present 

over the equatorial Pacific, leading to heightened activity in the SPCZ (Matthews, 2012; van der 

Wiel et al., 2016), and tropical cyclone activity for the southwest Pacific Islands and northeastern 

Australia (Magee et al., 2020).  

The northern Australian wet season also occurs from November to April (austral summer) due to 

the influence of the Indo-Australian monsoon (Wang et al., 2014). From June to August the high-

pressure zone moves over southern Australia, the south-east trade winds are over the South 

Pacific, and the SPCZ is weaker, bringing dry conditions to northern Australia and the southwest 

Pacific Islands (Vincent, 1994). In contrast, austral winter is southern and eastern Australia’s 

wettest period of the year for, with precipitation resulting from extra-tropical weather systems 

(Gallant et al., 2012; Wright, 1997). 

The Southern Annular Mode (SAM) describes (non-seasonal) variations in the position of the 

Southern Hemisphere mid-latitude (~40–50˚S) storm track (Renwick & Thompson, 2006). 

During its positive phase, the SAM contracts poleward and is associated with relatively light 

winds and lower rainfall in New Zealand. In the opposite (negative) phase, the westerlies increase 

over New Zealand with greater windiness and storm activity (Renwick & Thompson, 2006). The 

relationship between the phases of SAM and southern Australian rainfall depends on the season 

and the latitude. Positive phases enhance summer rainfall over south-eastern and eastern 

Australia, and winter rainfall over eastern Australia, but suppress winter rainfall over south-

eastern Australia. The reverse pattern occurs during negative phases (Gallant et al., 2012).  

On inter-annual time scales, the climate of the region is influenced by the phases of the El Niño-

Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). For the Pacific Islands, periods 

of extreme wet and extreme dry are correlated to strengthening (La Niña) or weakening (El Niño) 

of the atmospheric pressure gradient (and associated trade winds) between the east and west 
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tropical Pacific (CSIRO et al., 2015). The SPCZ and ITCZ move away from the equator during 

La Niña events when zonal sea surface temperature gradients are strengthened, bringing dry 

conditions to the north-eastern Pacific Islands (van der Wiel et al. 2016; Werner et al. 2017). The 

southwest Pacific Islands and eastern Australia experience higher rainfall and more frequent 

tropical cyclones (Magee et al., 2020). For New Zealand, north-easterly wind patterns become 

more common bringing rainy conditions to northeastern areas of the North Island and reduced 

rainfall to the lower and western South Island (Thompson, 2006). 

The ITCZ and SPCZ migrate equatorward during El Niño events when warm water from the 

warm pool moves eastward and decreases the zonal sea surface temperature gradient (van der 

Wiel et al. 2016). The southwest Pacific and eastern Australia experience dry conditions and 

tropical cyclones more frequently occur in the northeast Pacific (Magee et al., 2020). The 

relationship between eastern Australian rainfall anomalies and the strength of ENSO events is not 

linear, so the strength of a La Niña episode has a much greater influence on the occurrence of 

extreme high rainfall events than the strength of an El Niño episode on extreme low rainfall events 

(Gallant et al., 2012; King et al., 2013). For New Zealand, westerly winds in summer bring dry 

conditions to the east and more rain in the west during El Niño events (Thompson, 2006). 

The Indian Ocean Dipole (often abbreviated to IOD), is an intrinsic interannual fluctuation in 

Indian Ocean sea surface temperatures, tends to occur synchronously with ENSO (Luo et al., 

2010) and has been linked to the occurrence of extreme ENSO events (Hameed et al., 2018). 

Precipitation anomalies are enhanced over eastern Australia when La Niña/negative IOD 

(increased rainfall) or El Niño/positive IOD (suppressed rainfall) periods co-occur (Cleverly et 

al., 2016; Holgate et al., 2022). The IOD also affects northern Australian rainfall, with positive 

phases linked to decreased winter-spring rainfall, but minimal impact on the peak of the monsoon 

(Jourdain et al., 2013). 

Large volcanic eruptions are a key source of global temperature variability on interannual to 

decadal timescales (Robock, 2005; Sigl et al., 2015). Changes in radiation due to volcanic 

emissions also affect the hydroclimate, suppressing the global water cycle (Robock, 2000; 

Timmreck, 2012), causing an El Niño-like sea surface temperature response in the Pacific 

(Stevenson et al., 2016) and weakening monsoon circulation (Liu et al., 2016; Man et al., 2014). 

At longer timescales South Pacific climate is modulated by the Inter-decadal Pacific Oscillation 

(IPO), a low frequency (approximately 15-30 years) variation in Pacific sea surface temperatures 

and basin-wide circulation (Power et al., 1999), similar to the Pacific Decadal Oscillation (King 

et al., 2013). Changes in the phase of the IPO have been linked to significant changes in climate 

regimes across the wider Pacific Ocean. For example, the rapid transition from a negative (lower 

than average sea surface temperatures, a south-westerly shift of the SPCZ) to a positive IPO phase 
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(higher than average SST, north-easterly change of the SPCZ) during the mid-1970s was 

associated with a transition to an El Niño dominated period (McGree et al., 2016) with more 

severe droughts occurring southwest of the SPCZ (Ludert et al., 2018).  

The IPO modulates the ENSO-extreme rainfall teleconnection over eastern Australia (Power et 

al., 1999). During IPO-negative phases, the relationships between La Niña events and extreme 

high rainfall and El Niño events and low rainfall, strengthen over eastern Australia. However, 

during IPO-positive phases, these relationships break down (King et al., 2013). During IPO-

positive phases New Zealand experiences conditions similar to an El Niño event, with a climate 

more ‘La Niña-like’ during IPO-negative phases (Thompson, 2006). Several plausible 

mechanisms have been proposed to explain Pacific multidecadal variability, including slow 

westward propagating oceanic Rossby waves, changing concentrations of anthropogenic aerosols, 

and tropical-extratropical coupling of atmospheric and oceanic processes (Henley, 2017). 

However, recent studies have questioned the very existence of intrinsic low-frequency 

oscillations in SSTs, as distinguishable from climatic noise (Mann et al., 2020).  

A significant contributing factor to the uncertainty around low-frequency Pacific climate 

variability is the relatively short and asymmetric coverage of observations (Henley, 2017); 

meteorological and oceanic data records are too short to fully capture multidecadal variability. 

Centuries-long tree-ring reconstructions can help us understand long-term multidecadal natural 

climate variability in South Pacific climate. The short meteorological data record does not only 

hamper efforts to identify low-frequency variability. Relatively little is known about historical 

and recent trends in hydroclimate, particularly for extreme events, due to the lack of records 

longer than a few decades. Again, tree-ring reconstructions can fill this gap by providing 

information on the occurrence, trends, and drivers of extreme events. 

1.3 Tree-ring chronologies 
The large-scale climate drivers described in Section 1.2 (ENSO, IOD, IPO) not only impact the 

climate of the South Pacific but are major drivers of precipitation variability worldwide (da Silva 

et al., 2011; Gershunov & Barnett, 1998; Lenssen et al., 2020; Rifai et al., 2019; Williams & 

Hanan, 2011). Pacific and Indian Ocean sea surface temperature variability affects the climate in 

different regions of the world via teleconnections - atmospheric or oceanic ‘bridges’ between 

climate variability in non-contiguous areas (Yang et al., 2018). In this thesis, teleconnections are 

leveraged to utilise remote tree-ring chronologies to reconstruct South Pacific hydroclimatic 

variability. In most of the following chapters, ENSO is the major driver of inter-annual variability 

in the case study region, and tree-ring chronologies are selected from regions that experience 

changes in climate during El Niño (Figure 1-2) and La Niña (Figure 1-3) phases of ENSO. 

However, as will be discussed in Chapter 5, remote tree-rings from the region are also impacted 
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by the Indian monsoon, which has a strong anti-correlation to precipitation in the Indo-Australian 

monsoon, providing climate insights beyond ENSO (Wang et al., 2014). 

The tree-ring chronologies used in this thesis are nearly all publicly available1 chronologies 

previously used in the development of the Monsoon Asia Drought Atlas (MADA; Cook et al., 

2010), Eastern Australia and New Zealand Drought Atlas (ANZDA; Palmer et al., 2015), 

Mexican Drought Atlas (MXDA; Stahle et al., 2016), and South American Drought Atlas (SADA; 

Morales et al., 2020). These four regions all experience climate variability in response to ENSO 

phases. Climate variability in monsoon Asia has further been linked to phases of the IOD 

(Ummenhofer et al., 2013) whilst the South American climate is influenced by SAM (Morales et 

al., 2020). 

 
Figure 1-2 Publicly available tree-ring chronologies used in this thesis (black dots) compared to the 
typical ENSO-precipitation teleconnections during El Niño events. Regions with anomalous 
precipitation during El Niño events from 1951–2016 were derived from the probabilistic estimates of 
Lenssen et al. (2020). Further information on the seasonality of the teleconnections is provided in 
Figure 1 of Lenssen et al. (2020). 

                                                 
1 Unpublished chronologies incorporated into the reconstructions are listed in the relevant chapters. 
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Figure 1-3 Publicly available tree-ring chronologies used in this thesis (black dots) compared to the 
typical ENSO-precipitation teleconnections during La Niña events. Regions with anomalous 
precipitation during La Niña events from 1951–2016 were derived from the probabilistic estimates 
of Lenssen et al. (2020). Further information on the seasonality of the teleconnections is provided in 
Figure 2 of Lenssen et al. (2020). 

1.4 Thesis aims 
This thesis aims to reconstruct past climate in the South Pacific region using tree-ring 

chronologies. However, these climate reconstructions are underpinned by relatively short 

instrumental climate records. This then requires the careful examination of the associated 

uncertainty around past and future trends in hydroclimate, and the occurrence of extremes. 

Specifically, the thesis addresses this uncertainty around past and future climate trends and 

extreme events by: 

i. Investigating existing and novel methods to reconstruct hydroclimatic variables in 

Australia and the South Pacific considering the region’s unique challenges. 

ii. Describing past climate in Australia and the South Pacific using tree-ring reconstructions 

and assessing results in terms of major climate drivers. 

iii. Identifying the occurrence and frequency of extreme events in the paleoclimate record to 

contextualise extremes in the instrumental period. 

iv. Demonstrating the value of tree-ring reconstructions for water management by translating 

paleoclimate data into decision-relevant formats. 
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1.5 Paleoclimate reconstructions 
Five examples of paleoclimate reconstructions (Chapters 2-6) are used to address the specific 

aims of this thesis. Each case study develops, describes, and analyses a tree-ring reconstruction 

of an aspect of the South Pacific hydroclimate. The geographical target of each case study, in 

relation to the climate drivers of the region described in Section 1.2, is shown in Figure 1-4. 

 
Figure 1-4 The five reconstructions explored in Chapters 2-6: 2) Variability in the position of the 
South Pacific Convergence Zone; 3) South Pacific Island drought; 4) New Zealand temperature 
response following volcanic eruptions; 5) A monsoon river reconstruction for the Daly River, 
Australia; 6) Past and future streamflow in the Murray-Darling Basin, Australia. 

Chapters 2 to 4 utilise existing methods for tree-ring reconstructions and consider how they can 

best be applied to the South Pacific region, considering the unique challenges of very short data 

records, data gaps, and the lack of annually resolved terrestrial proxies. The past climate of the 

South Pacific is described and assessed in terms of major climate drivers. 

• South Pacific Island communities experience significant rainfall variability between 

seasons and years, due to changes in the average position and intensity of the South 

Pacific Convergence Zone (SPCZ), the largest rain belt in the Southern Hemisphere. 

Lower frequency variability is also present in the SPCZ; however, this variability is 

poorly understood because data records from the region are too short. Chapter 2 presents 

a millennial-length reconstruction of the SPCZ and explores potential drivers of 

multidecadal variability over the past 1300 years including volcanic eruptions and solar 

forcing. The SPCZ reconstruction provides a ‘proof of concept’ for using a trans-Pacific 

network of remote tree-ring proxies for reconstructing hydroclimatic variables for the 

South Pacific region.  
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• Following on from this work, in Chapter 3 the remote tree-ring methodology is extended, 

exploring spatial drought reconstructions for the South Pacific Islands using a circum-

Pacific network of tree rings. Small Pacific Islands are particularly susceptible to 

droughts compromising water availability, food security, public health, and economic 

activity. A major cause of droughts is shifts in the mean position of the convergence 

zones, modulated by interannual fluctuations in ENSO. The chapter analysis shows how 

spatial reconstructions can be used to inform on past climatic variability using a 

supervised machine learning algorithm, focusing on extreme El Niño events. If 

successful, the drought reconstructions would represent the only continuous pre-1950s 

climate data available for many Pacific Islands, providing a unique opportunity to both 

contextualise the instrumental data period and address some of the uncertainties resulting 

from the short data record.  

• Large volcanic eruptions can have a major impact on temperature and hydroclimate 

variability on interannual to decadal timescales. However, little is known about their 

impact on the climate of the low to mid-latitudes of the Southern Hemisphere. In Chapter 

2, a small but observable volcanic signal was identified in tree rings from New Zealand, 

conflicting with previous studies which found no volcanic impact. In Chapter 4, this 

finding is investigated in detail. The study explores potential species and site-specific 

factors that influence the expression of volcanic signals in tree rings from eight New 

Zealand dendrochronological species. The influence of large eruptions on New Zealand’s 

average temperature is also explored through two new tree-ring temperature 

reconstructions. This case study contributes to the broader question of how large volcanic 

eruptions impact Southern Hemisphere climate, which is key to understanding existing 

discrepancies between paleo-reconstructions and climate models. 

The final two technical chapters focus on how remote tree-ring reconstructions can provide 

decision-relevant information for water managers, producing paleo-streamflow reconstructions 

for two important catchments in Australia. New methods are proposed to address some of the 

limitations identified for applying existing methods for climate reconstructions in the South 

Pacific region.  

• Streamflow in Australia’s northern rivers has been steadily increasing since the 1970s, 

most likely due to increased intensity in the Indo-Australian monsoon. However, because 

of limited data availability, it is hard to assess this recent trend and therefore contextualise 

potential future climatic changes. Chapter 5 considers how local and remote tree-ring 

proxies can be used in conjunction to reconstruct monsoon streamflow for the Daly River, 

incorporating a novel pre-reconstruction step that adjusts the variance spectra of the tree 
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rings to that of streamflow. As the available gauge data records are short and non-

continuous, we developed our streamflow reconstructions using Hierarchical Bayesian 

Regression and a ‘moving-block’ calibration and verification scheme. These 

methodological advancements resolve some of the challenges discussed for the drought 

reconstructions in Chapter 3. The 600-year record of paleo-streamflow is used to 

contextualise the very short instrumental period and to highlight the risk associated with 

determining future water allocations using only recent data.  

• Chapter 5 demonstrates the benefits of using paleo data for water management. The 

natural extension of this work is to combine paleo-reconstructions with climate model 

outputs to better understand the potential impacts of climate change on water resources. 

Chapter 6 proposes a method for producing both past reconstructions and future 

projections of streamflow from gridded records of the Palmer drought severity index. The 

chapter analysis demonstrates how paleoclimate reconstructions can be used to 

contextualise the severity of past drought events and help understand how the likelihood 

of such events may change in the future due to climate change. Joint distribution models 

are used to derive numerical probability statements about drought occurrence which can 

help inform science-based management and policy decisions. 

Finally, Chapter 7 provides a summary and conclusions of the body of work and outlines the 

future research opportunities. Chapters 2, 4, and 5 are reproduced, with minor formatting changes, 

from a series of published journal articles; the data, methods, results, and analysis undertaken for 

each case study are presented in the associated chapters. Along with this introduction, a chapter-

specific literature review is presented at the beginning of each chapter.  
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Chapter 2 One thousand three hundred years of variability in the 
position of the South Pacific Convergence Zone 

 
The content in this chapter has been reproduced (with reformatting) from the following journal 

paper:  

Higgins, P. A., Palmer, J. G., Turney, C. S. M., Andersen, M. S., & Cook, E. R. (2020). One 

Thousand Three Hundred Years of Variability in the Position of the South Pacific Convergence 

Zone. Geophysical Research Letters, 47(17), 1–11. https://doi.org/10.1029/2020GL088238. 

 
2.1 Abstract  
The South Pacific Convergence Zone (SPCZ) is the largest rain belt in the Southern Hemisphere 

and a key driver of precipitation variability, impacting South Pacific island communities. Our 

millennial‐long reconstruction is based on a trans‐Pacific tree‐ring network, containing 

chronologies sensitive to changes in the SPCZ because of its pervasive nature, spatial extent, and 

link to the El Niño‐Southern Oscillation. The reconstruction explains 58% of variance in the 

instrumental SPCZ index from 1911–1998. El Niño‐Southern Oscillation cycles are identified 

throughout the reconstruction period. Multidecadal periodicities wax and wane, coinciding with 

a sustained eastward shift during the Medieval Climate Anomaly (~1000–1200 CE). We find 

large volcanic eruptions increased the tendency for the SPCZ to be displaced eastward. The 

reconstruction helps improve our understanding of past hydroclimatic behaviour in the southwest 

Pacific and can be used to validate general circulation model projections for Pacific Island 

communities and the wider region in the 21st century.  

2.2 Plain Language Summary  
South Pacific Island communities experience significant variability in their rainfall between 

seasons, across years, and between decades. This variability is due to changes in 

the average position and intensity of the South Pacific Convergence Zone (SPCZ), the largest rain 

belt in the Southern Hemisphere. The SPCZ tends to move from east to west in response to 

changes in sea surface temperatures and winds that accompany the El Niño‐Southern Oscillation. 

Lower frequency variability is also present in the SPCZ; however, this variability is poorly 

understood because data records from the region are too short. In this research, we extended the 

record of SPCZ variability back in time to 700 CE using a statistical model based on moisture‐

sensitive tree‐ring records from both sides of the Pacific. We analysed the SPCZ reconstruction 

during periods when the average climate conditions were different from today and assessed the 

impact that changes in solar output and volcanic eruptions may have had during these periods. 

https://doi.org/10.1029/2020GL088238
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This research helps us to understand the long‐term behaviour of the SPCZ, which is essential to 

understand how it may change under future climate conditions.  

2.3 Introduction  
The South Pacific Convergence Zone (SPCZ), a convective cloud band stretching from the 

Western Pacific Warm Pool toward French Polynesia (Trenberth, 1976; Vincent, 1994), is the 

largest rain band in the world during austral summer (December–February). The extensive and 

pervasive nature of this climate feature means the SPCZ plays a major role in South Pacific 

cyclogenesis and rainfall (Vincent et al., 2011) and a significant role in global‐scale circulation 

(Vincent, 1994), influencing the ocean freshwater budget, cross‐equatorial flow (Lorrey et al., 

2012; Matthews, 2012), and circulation patterns across the southern oceans (Clem et al., 2019; 

Clem & Renwick, 2015). The presence and northwest‐southeast orientation of the SPCZ is 

controlled by underlying sea surface temperature (SST) gradients (van der Wiel et al., 2016; 

Widlansky et al., 2011), which determine the near‐surface wind conditions that result in low‐level 

moisture convergence (Ganachaud, 2014). Precipitation in the SPCZ is triggered by transient 

Rossby waves originating from the Australian subtropical jet, which are deflected toward the 

upper tropospheric westerlies in the equatorial eastern Pacific, elongating in a northwest‐

southeast direction and triggering convection, forming the distinctive “diagonal” component of 

the rain band (Matthews, 2012; van der Wiel et al., 2016; Widlansky et al., 2011).  

Due to strong precipitation gradients in the vicinity of the SPCZ, even small shifts in its mean 

position can result in dramatic changes in precipitation across the region, impacting the small, 

South Pacific islands communities under its influence (Vincent et al., 2011). The position and 

intensity of the SPCZ are moderated by the El Niño‐Southern Oscillation (ENSO) on interannual 

timescales (Harvey et al., 2019; van der Wiel et al., 2016; Vincent, 1994). During strong El Niño 

events the SPCZ can shift up to 10° of latitude toward the equator, becoming zonally orientated 

(Cai et al., 2012). For instance, during the 1997–1998 El Niño event, record low streamflow was 

recorded in Fiji, along with widespread and sustained damage to agriculture (Terry & Raj, 2002), 

while the strong 2010–2012 La Niña was associated with severe water shortages, crop failure, 

and economic impacts for Tuvalu, hundreds of kilometres to the north (McGree et al., 2016).  

On decadal to multidecadal timescales variation in Pacific SSTs related to the Interdecadal Pacific 

Oscillation (IPO) modulates ENSO teleconnections within the SPCZ region (Folland et al., 2002; 

McGree et al., 2016). Changes between the positive (El Niño‐like) and negative (La Niña‐like) 

phases of the IPO influence the mean SPCZ position and thus decadal climate variability in 

region, both in terms of average precipitation and the frequency of extremes (Salinger et al., 

2014). However, there is little knowledge of SPCZ variability prior to the start of meteorological 
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observations at ~1890 CE. The data record does not fully capture multidecadal variability, leading 

to considerable uncertainty around past and future SPCZ behaviour and impacts.  

Climate models suggest increased drying in the south‐eastern branch of the SPCZ under emission 

scenarios SRES A1B and RCP8.5 and moderate (~1–2°C) SST warming (Dutheil et al., 2019; 

Widlansky et al., 2013), increased ENSO‐driven precipitation variability (Power et al., 2017), and 

an increase in the frequency of extreme zonal SPCZ events (Cai et al., 2014, 2012). However, 

many models exhibit large biases in western Pacific SSTs, influencing the modelled position and 

movement of the SPCZ, thus limiting confidence in projections (Brown et al., 2013, 2015; Dutheil 

et al., 2019; Grose et al., 2014). In the absence of instrumental records, there is a need for SPCZ 

proxy reconstructions extending back to periods with different climate conditions to the 

instrumental period (Partin et al., 2013) which can provide a constraint on climate models. Here 

we present the first millennial‐length paleoclimate proxy network reconstruction of the SPCZ, 

providing a record of variability in the southwest Pacific, capturing behaviour during both the 

periods described as the Medieval Climate Anomaly (MCA; ~1000 to 1200 CE) and Little Ice 

Age (LIA; (∼1450 to 1850 CE).  

2.4 Methods  
2.4.1 The Instrumental SPCZ Index  

The SPCZ index (SPCZI; Salinger et al., 2014) is a mean sea level pressure‐based (MSLP) index 

which captures monthly east‐west variations in the position of the SPCZ. The SPCZI is derived 

from the MSLP difference between Apia, Samoa (13°48′S, 171°48′W), and Suva, Fiji (18°9′S, 

178°26′E), normalised to the 1933–1992 period. The index is positive when the SPCZ moves east 

of its mean position toward Apia during El Niño events and IPO positive years, and negative 

when it is displaced westward toward Suva during La Niña events and IPO negative years. The 

SPCZI replaced the older SPCZ position index (SPI; Folland et al., 2002) based on the same 

station pair, using higher quality MSLP data and extending the index forward in time from 1999 

to 2019. As a point index, the SPCZI does not capture the full extent of zonal El Niño events 

when significant north‐south movement occurs (Salinger et al., 2014; E. M. Vincent et al., 2011).  

2.4.2 Predictor Selection and Reconstruction  

Climate proxies were selected from a trans‐Pacific network of 428 precipitation‐sensitive tree‐

ring chronologies underlying two recently published drought atlases—the Eastern Australia and 

New Zealand Drought Atlas (ANZDA; Palmer et al., 2015) and the Mexican Drought Atlas 

(MXDA; Stahle et al., 2016). The tree‐ring network includes chronologies from Australia, New 

Zealand, and Indonesia on the south‐western border of the Pacific, and from Mexico, the southern 

United States and western Guatemala to the east, two clusters from approximately opposite sides 

of the Pacific Ocean. Both atlases have been shown to have strong teleconnections to the South 
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Pacific region (Figure A-1), with drought in the ANZDA strongly linked to El Niño events and, 

conversely, La Niña events associated with drought in the MXDA (Cook et al., 2018). To 

reconstruct the November to April (Nov‐Apr) SPCZI, we used a nested, principal components‐

based regression method, point‐by‐point regression (PPR; Cook et al., 1999, 2007, 2010). The 

Nov‐Apr window was selected to coincide with the tropical South Pacific wet season, when the 

westerly duct is present over the equatorial Pacific, leading to heightened activity in the SPCZ 

(Matthews, 2012; van der Wiel et al., 2016). The reconstruction window aligns within the Austral 

warm growing season and to winter‐spring precipitation in Mexico, which is modulated by Pacific 

SSTs (Cleaveland et al., 2003; Stahle et al., 2016).  

 
Figure 2-1 Location of the tree‐ring predictors selected for the reconstruction (red circles) and the 
mean Nov‐Apr position axis of low‐level convergence (SPCZ, black dashed line) based on the 
twentieth Century Reanalysis v3 data set Omega at 500 hPa 1911–1998 (Lorrey et al., 2012). The 
black circles show the locations of Suva, Fiji, and Apia, Samoa, the MSLP stations used to calculate 
the instrumental SPCZI (Salinger et al., 2014).  

While other paleoclimate records (such as Antarctic ice cores, e.g., Vance et al., 2015; and coral, 

e.g., Linsley et al., 2006; and speleothem records, e.g., Partin et al., 2013; from the SPCZ region) 

may provide predictors of the SPCZ position, only replicated chronologies precisely dated at 

absolute annual resolution were included in the predictor pool. Reconstructions based on PPR 

typically include a search radius limiting predictor selection to those closely located to the 

reconstruction target (Cook et al., 1999; Stahle et al., 2016). The lack of tree‐ring chronologies 

from the South Pacific region necessitated the removal of the search radius from the predictor 

selection. Remote tree‐ring proxies have been shown to skilfully reconstruct major climate drivers 
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(Buckley et al., 2019; Cook et al., 1999; Palmer et al., 2015), but implicitly assume that local‐

remote climate teleconnections are stationary. Predictors were limited to tree-ring chronologies 

with a significant relationship (P ≤ 0.1) to instrumental SPCZI. The final reconstruction was based 

on 95 tree‐ring chronologies, 59 from the MXDA and 36 from the ANZDA (Figure 2-1).  

2.4.3 Calibration and Verification  

The SPCZI reconstruction (SPCZIr) captures 58% of the variation in the instrumental SPCZI 

(Figure 2-2) as estimated by the PPR regression model fitted to the entire instrumental period 

(1911–1998). The last year of the calibration period was limited to 1998 which is the end date of 

many of the New Zealand tree‐ring chronologies. Using the entire instrumental period follows a 

similar approach described by Briffa et al. (1990) and is better able to capture twentieth century 

SPCZI extremes. Those same selected tree‐ring chronologies were then subjected to standard 

50/50 split calibration and verification tests (Figure A-2, Table A-1). The verification tests 

included the reduction of error (RE) and coefficient of efficiency (CE; Cook & Kairiukstis, 1990). 

In general, RE and CE values greater than zero indicate some reconstruction skill (Fritts, 1991). 

The very strong RE and CE test results clearly demonstrate that despite the remoteness of the 

tree‐ring proxies from the Southwest Pacific, they are able to capture east‐west movement in the 

SPCZ. The reconstruction was then independently verified against composite local coral proxy 

records from the SPCZ region (Bagnato et al., 2005; Linsley et al., 2006, 2008; Table A-2). The 

reconstruction shows good fidelity with coral records during both the instrumental and pre-

instrumental periods (Table A-2), further demonstrating the ability of the reconstruction to 

represent local hydroclimate.  

 
Figure 2-2 Comparison of the instrumental SPCZI and SPCZIr over the calibration period (1911–
1998). The instrumental SPCZI is shown in black, SPCZIr is shown in red, and the grey bars show 
the 5–95% bootstrap confidence interval of the reconstruction. 
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The reconstruction has a strong and statistically significant correlation to the Nov‐Apr Niño‐3.4 

index (R = 0.71, P < 0.001), IPO index (R = 0.73, P < 0.001), and the Henley et al. (2015) tripole 

IPO index (R = 0.75, P < 0.001). These correlations are of similar magnitude and significance as 

found between the instrumental SPCZI and climate indices (Salinger et al., 2014). Further 

verification is provided by the ability of the SPCZI reconstruction to accurately capture the regime 

shift from negative to positive IPO in 1977–1978. Regime shift analysis (Rodionov & Overland, 

2005) also captures the earlier shift to negative IPO that occurred in 1943–1944, however, it is 

attributed to 1947 in the reconstruction.  

2.5 Results and Discussion  
Wavelet analysis (Figure 2-3; Torrence & Compo, 1998) reveals persistent concentrations of 

power in the inter-annual band corresponding to ENSO periodicities (~3–8 years), significant 

above an AR(1) red noise model (P < 0.05). Significant multidecadal periodicities (~55 years), 

with power concentrated between 1000 and 1400 CE in the wavelet spectrum, are also identified, 

corresponding to the core warming period (1000– 1200 CE) of the MCA (Lüning et al., 2019), 

and the following two centuries. During this period, lower than average variance in the ENSO 

band can be observed, along with an increase in the frequency of both extreme, multiyear 

eastward and westward shifted SPCZ events (see Appendix A). The period ~1050– 1130 CE, 

falling in the middle of the MCA, is a period of sustained anomalously high average SPCZIr. This 

suggests that the MCA was characterised by an eastward shifted SPCZ and drier than average 

conditions in the southwest Pacific. The first 30 years of this eastward‐SPCZr period (~1060–

1090) has the second highest average values of the reconstruction, eclipsed only by the 20‐year 

period from ~1310–1330 CE.  

There are very few millennial‐length paleoclimate proxy records from the Southern Hemisphere 

which can contribute to our understanding of the climate during the MCA (Emile‐Geay et al., 

2017; Lüning et al., 2019). Those available suggest the period was characterised by higher-than-

average temperatures and predominantly positive IPO (Lüning et al., 2019; Vance et al., 2015). 

A relatively warm and dry southwest Pacific is consistent with sediment records from the eastern 

and western equatorial Pacific (Conroy et al., 2009; Moy et al., 2002; Tierney et al., 2010) which 

suggest an El Niño‐like mean state during the MCA. However, this conflicts with noncontinuous 

coral records (Cobb et al., 2003; Y. Liu et al., 2017), sediment cores (Khider et al., 2011; Rein et 

al., 2004), and modelling studies (Mann et al., 2005) which found cool, La Niña‐like eastern 

Pacific SSTs during the MCA, consistent with the “ocean thermostat” model of heating (Clement 

et al., 1996). Several possible explanations could account these discrepancies, including dating or 

analysis errors in some proxy records, misattribution of regional climate effects to global climate 

drivers, different seasonal reconstruction targets, or nonstationarity in the relationship between 

ENSO and past hydroclimate variability across the Pacific (Tierney et al., 2010). The basis of the 
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SPCZI reconstruction on a trans‐Pacific network of tree‐ring records gives us confidence that we 

capture basin‐wide patterns of variability and not localised effects. However, we cannot discount 

that the shift in the axis of convergence of the SPCZ during the MCA could be the result of 

changes in ocean‐atmospheric patterns unrelated to ENSO.  

 
Figure 2-3 (a) SPCZIr from 700 to 1998 CE. The red line shows the smoothed reconstruction using a 
13‐year Gaussian low pass filter, bands indicate the approximate timing of the MCA and LIA and 
triangles represent the timing of large volcanic eruptions; (b) wavelet spectrum of the SPCZI 
reconstruction (Torrence & Compo, 1998). Black contours indicate power above the 95% confidence 
interval when using an AR(1) red noise model. 

By contrast, the LIA (∼1450 to 1850 CE; Ahmed et al., 2013; Grove, 1988), a period of relatively 

cool temperatures and glacial advance in the Northern Hemisphere, is not discernible in the 

SPCZI reconstruction. The LIA is sometimes considered to be a Northern Hemisphere‐only 

phenomenon due to the difficulty in identifying its effects in Southern Hemisphere climate 

proxies and large differences in timing and magnitude observed between regions (Chambers et 

al., 2014; Jones et al., 2009; Putnam et al., 2012). Cooling is commonly attributed to the combined 

effects of increased volcanic forcing and decreased solar sunspot activity, particularly during the 

Maunder Minimum (Ahmed et al., 2013; Jones et al., 2009; Miller et al., 2012). To explore the 

possible role of these proposed drivers, we investigate whether volcanic or solar forcing 

contribute to variability in the SPCZ reconstruction.  



CHAPTER 2 
 

 
 

19 

2.5.1 Response to Volcanic and Solar Forcing  

Large volcanic eruptions can eject sufficient gases, aerosols, and particles into the stratosphere to 

reduce solar insolation, cooling the Earth's surface (Robock, 2000). Past studies have linked 

changes in major circulation patterns, including the phase of ENSO, to tropical volcanism (Adams 

et al., 2003; Christiansen, 2008; Emile‐Geay et al., 2008; McGregor & Timmermann, 2011; Miao 

et al., 2018). While most studies based on observations and proxy data find an increased 

likelihood of an El Niño event following a large volcanic eruption, modelling studies are yet to 

reach a consensus on the mechanisms behind the linkage (Khodri et al., 2017). If the SPCZIr 

results are consistent with previously observed paleoclimate “volcano‐El Niño” linkages, a 

positive (eastward shifted) SPCZIr would follow a large eruption. We tested this hypothesis using 

superposed epoch analysis (SEA), a composite analysis technique extensively used to identify the 

impacts of external perturbations on climate (e.g., Adams et al., 2003; D'Arrigo et al., 2009; 

Dätwyler et al., 2019; Handler, 1984; F. Liu et al., 2016; Meehl & Arblaster, 2009), following the 

“double‐bootstrap” methodology of Rao et al. (2019), which addresses many of the criticisms of 

SEA as a statistical tool (Adams et al., 2003; Haurwitz & Brier, 1981). Large tropical volcanic 

eruption key years since 700 CE were identified from the eVolv2k volcanic stratospheric sulphur 

injection (VSSI) database, with selection criterion VSSI > 10 Tg [S] (Toohey & Sigl, 2017).  

 

Figure 2-4 Normalised SPCZIr SEA results for large tropical volcanic eruptions since 700 CE. 
Results are shown for the reconstruction presented in this paper (a), and for SPCZIr based on the 
subset of tree rings from the Northern Hemisphere (b) and Southern Hemisphere (c). The vertical 
bars show the 5th to 95th percentiles of the SPCZIr response based on 1,000 unique draws of key 
years, while the dashed horizontal lines indicate the threshold for epochal anomalies to be statistically 
significant using random bootstrapping. Positive values indicate an eastward‐shifted SPCZ. 

Of the 20 large volcanic events identified during the reconstruction period, El Chicon in 1982 and 

Pinatubo in 1991 postdate the start of a known El Niño event and were therefore excluded from 

analysis. The mean SEA result of the remaining 18 eruptions shows a significant (99%) tendency 

toward an eastward shifted SPCZr the year following an eruption (Figure 2-4a). The 5th–95th 

percentile result, which represents variability in the response to volcanic events based on 1000 

unique draws of key years, is also significant (P < 0.05) at t + 1 years. SPCZr rebounds to a 

westward shifted SPCZr 3–5 years post event, consistent with the findings of Adams et al. (2003), 
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with the significant eastward shift in the SPCZ 8 years post event likely representing the return 

of the system to its irregularly periodic state.  

While volcanic signals in tree‐ring proxy data sets from the Northern Hemisphere have been 

extensively studied (e.g., D'Arrigo et al., 2009, 2013; Mann et al., 2012; Scuderi, 1990), Southern 

Hemisphere data sets have not been widely investigated (Palmer & Ogden, 1992). We tested 

whether a similar volcanic impact could be identified in both the Northern and Southern 

Hemisphere tree rings by reconstructing SPCZI using proxies from a single hemisphere. Figure 

2-4b shows that the Northern Hemisphere chronologies drive most, but not all, of the volcanic 

signal in the combined reconstruction at t + 1 years. While the volcanic impact at t + 1 years is 

not significant in the Southern Hemisphere‐only reconstruction, the combined reconstruction 

responds more strongly and consistently to volcanic events than the Northern Hemisphere‐only 

reconstruction.  

The location, seasonality, and distribution of volcanic aerosols in relation to the location and 

growing season of the Southern Hemisphere chronologies contributes to the minimal response 

seen in year t + 1 (Adams et al., 2003; Zanchettin et al., 2019). Additionally, regional and species 

variations in volcanic response (see Appendix A) mute the Southern Hemisphere signal. 

Conversely, the Southern Hemisphere‐ only reconstruction shows a stronger (P < 0.1) shift toward 

a La Niña‐like SPCZr 3–5 years after a volcanic event, likely due to the tree ring wet bias, where 

a stronger signal is recorded in a wet year, which occurs when the SPCZ is westward of its mean 

position for the Southern Hemisphere and hence toward the location of the sampled trees. Figure 

2-4 demonstrates that the trans‐Pacific network of tree rings underpinning the reconstruction 

produces a more robust and less biased reconstruction than can be produced from either the 

ANZDA or MXDA chronologies alone.  

Variations in solar intensity have also been proposed as a cause of decadal‐scale variability in the 

SPCZ region (Meehl et al., 2008; Meehl & Arblaster, 2009; van Loon et al., 2007). We find no 

consistent response to variation in total solar irradiance associated with the ~11‐year Schwabe 

sunspot cycle. Analysis using SEA (see Appendix A) suggests no response to the Schwabe cycle 

in either the Northern Hemisphere or Southern Hemisphere tree‐ring chronologies, and we 

conclude that the 11‐year periodicity identified by wavelet and multitaper spectrum analysis is 

not linked to the solar cycle, but rather to internal variability in the ocean‐atmosphere system. 

Reduced sunspot activity associated with the Maunder Minimum (1645–1715 CE) is not 

distinguishable in the reconstruction, although a strong multiyear La Niña‐like event did occur 

from 1667–1670 CE. The lack of solar fingerprinting on the SPCZ and the short‐term impact of 

large volcanic events might explain why LIA cooling is not discernible in the SPCZIr.  
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2.5.2 Paleoclimate Implications  

If the reconstruction accurately captures movements of the SPCZ in pre-instrumental times, the 

eastward shift identified during the MCA period could have important implications for our 

understanding of colonization processes in East Polynesia. While the drivers of Polynesian 

migration are not known (Goodwin et al., 2014), paleoclimate evidence suggests that changing 

hydroclimatic conditions and prolonged drought may have instigated eastward exploration (Sear 

et al., 2020). A recently published synthesis of high precision radiocarbon samples from the 

region has narrowed the phases of colonization down to two periods, the earliest representing 

colonization of the Society Islands from Samoa during ∼1025– 1120 CE, followed by migration 

to the outer islands from ∼1190–1290 (Wilmshurst et al., 2011). The “ENSO hypothesis” of 

maritime migration between the Pacific Islands proposes that periods of increased frequency of 

strong El Niño events and consequently reduced strength in the easterly trade winds in the central 

Pacific provided windows of opportunity for eastward migration without the need for windward 

sailing technology (Anderson et al., 2006). For the early migration window this hypothesis is 

strongly supported by the SPCZIr, which suggests climatic conditions during the MCA would 

have contributed to prolonged drought in West Polynesia and may have eased eastward travel. 

The wind field reconstruction of Goodwin et al. (2014) also supports this hypothesis, identifying 

two multidecadal intervals with persistent westerly wind anomalies during this period. The later 

migration window is characterised by periods with both an eastward and westward shifted SPCZr, 

with no significant difference from the long‐term average (two‐sided Student's t test).  

2.6 Conclusions  
We present a robust 1300‐year reconstruction of precipitation variability in the SPCZ region 

which explains 58% of the variance in the November–April instrumental SPCZI data and provides 

context to the instrumental period. During the MCA (1,000–1,400 CE), the main axis of 

convergence in the SPCZ was to the east of the current position, suggesting a period of sustained 

dry conditions in the Southwest Pacific. The distinct SPCZ behaviour during the MCA, when the 

climate was warmer on average than during the instrumental period, can be used to assess general 

circulation model projections for Pacific Island communities and the wider region. Discrepancies 

between the SPCZI reconstruction and proxy records from the eastern Pacific during the MCA 

highlight the complexity of interpolating regional climate patterns and trends from local records, 

and the need for additional high‐resolution proxy records from the Southern Hemisphere.  
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Chapter 3 Towards a drought atlas for the South Pacific 
 
3.1 Abstract 
Understanding drought occurrence and trends across the South Pacific islands is limited by the 

paucity of long meteorological records. The South Pacific Drought Atlas (SPaDA), a new 

paleoclimatic reconstruction of South Pacific hydroclimate based on tree-ring chronologies, is 

presented to partially fill this gap. The SPaDA is based on a trans-Pacific network of tree rings, 

made possible by the teleconnections between the El Niño-Southern Oscillation (ENSO), the 

major driver of inter-annual precipitation and drought in the Pacific, and four 

dendrochronological regions. Instrumental-period ENSO events and four historical droughts are 

accurately reproduced by the SPaDA demonstrating its strong reconstruction ability back to the 

1780s. A random forest classifier, a supervised machine learning algorithm, was used to identify 

modes of ENSO variability in the pre-instrumental reconstruction period, providing a multi-

centennial context for their occurrence. The Chapter concludes with several suggestions to 

improve future iterations of the SPaDA and produce robust, long term drought reconstructions 

for the South Pacific islands. 

3.2 Introduction 
Small Pacific Islands are particularly susceptible to droughts which compromise water 

availability, food security, public health, and economic activity (Annamalai et al., 2015; Barkey 

& Bailey, 2017). In the South Pacific, the spatial distribution of precipitation – and precipitation 

deficits – is strongly controlled by the position and movement of two large bands of low 

atmospheric pressure, the Intertropical Convergence Zone (ITCZ) and the South Pacific 

Convergence Zone (SPCZ), see Figure 1-1. Shifts in the mean position of these convergence 

zones, modulated by interannual fluctuations in the El Niño-Southern Oscillation (ENSO) and 

longer-term variability from the Interdecadal Pacific Oscillation (the IPO) (Power et al., 1999), 

strongly influence moisture availability across the region (Ludert et al., 2018; McGree et al., 

2016). 

Generally, an equatorward movement of the convergence zones during El Niño events and 

positive phases of the IPO results in dry conditions in the southwestern Pacific. Conversely, 

during La Niña events and negative IPO phases, the SPCZ and ITCZ move away from the equator, 

making drought conditions more likely for those South Pacific islands lying at the northeast end 

of the region (van der Wiel et al. 2016; Werner et al. 2017). During extreme events, the impacts 

across the region (and globally) can be substantial. During extreme El Niño events, the SPCZ can 

shift by up to ten degrees of latitude toward the equator, achieving a near-zonal (west-east) 

orientation and merging with the ITCZ (Cai et al., 2012). The strong El Niño of 2015/16 was 
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experienced across a large swathe of the Pacific Ocean from New Caledonia to Kiribati, by below-

average rainfall, with 2.7 million Papua New Guineans impacted through drought and forest fires, 

and Palau declaring a State of Emergency (FAO 2016). This extreme El Niño was one of the three 

strongest events since 1950 (Santoso et al., 2017) and its impacts reached beyond the Pacific 

basin, extending across the planet (Rifai et al., 2019). Climate models suggest both the frequency 

and intensity of ENSO events have increased since the pre-industrial age and will continue to 

increase (Power et al., 2017). Extreme El Niño events are also projected to occur more frequently 

in a warmer world (Cai et al., 2014, 2012). However, our understanding of extreme El Niño events 

and how and why they differ from other El Niño events, is limited by their infrequency; with only 

three events having occurred during the satellite era, in 1982/1983, 1997/1998, and 2015/16 

(Santoso et al., 2017). 

During extreme El Niño events, the maximum sea surface temperature (SST) anomaly is situated 

in the eastern equatorial Pacific, which weakens the east-west SST gradients. This strengthens the 

ITCZ in the eastern equatorial Pacific region and allows the SPCZ to swing upwards towards the 

Equator (Cai et al., 2015). As a result of the extreme shift in position and changes in intensity of 

the ITCZ and SPCZ, extreme El Niño events cause a unique pattern of precipitation anomalies 

across the Pacific Islands. Intense rainfall occurs in the otherwise dry and cold eastern equatorial 

Pacific Ocean (Santoso et al., 2017) and some countries, such as Nauru, experience rainfall 

anomalies the opposite way to other El Niño events (i.e., decreased rather than increased 

precipitation; Murphy et al., 2014). This distinct precipitation pattern provides a potential way to 

identify the occurrence of extreme events in the past – through patterns of anomalous 

precipitation, or drought. Characterising extreme events through spatial patterns of drought is not 

only physically meaningful but has an additional benefit in placing the focus on the impacts these 

events have on small Pacific Island nations.  

Climate records for the Pacific region are quite sparse. For many Pacific Islands robust records 

are only available from the 1950s (Lorrey et al., 2012). Documentary data has greatly enhanced 

our understanding of drought occurrence prior to instrumental records in many parts of world and 

is the best source for information on the effects of drought on societies (Brázdil et al., 2018). 

Despite significant research efforts, documentary climate information for the Pacific Islands is 

limited. D’Aubert and Nunn (2012) have collated the most extensive record of historical drought 

in the Pacific, covering the period 1722-1987. However, it is not a complete record, as drought 

information is difficult to identify in historical records. Records are also unevenly distributed over 

the different island groups and through time, which makes it is particularly hard to identify spatial 

drought patterns which might indicate a zonal event (D’Aubert & Nunn, 2012). 
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Another data source capable of providing spatially resolved drought records at high temporal 

resolution are tree-ring chronologies (Brázdil et al., 2018). Moisture-sensitive tree stands can 

provide excellent records of unusually dry or wet years. There is a long history of utilising tree 

rings to develop records of growing season drought in many parts the world. The compilation of 

such records to cover a spatial area are normally referred to as ‘drought atlases’ (Cook, 

Anchukaitis, et al., 2010; Cook & Jacoby, 1977; Cook et al., 1999, 2015; Morales et al., 2020; J. 

G. Palmer et al., 2015; Stahle et al., 2016). A lack of island-based tree-ring proxies has precluded 

the development of a drought atlas for the Pacific region to date. However, as shown in Chapter 

2, remote tree-ring chronologies can be used successfully in reconstructions of Pacific climate 

variables. The SPCZ reconstruction relied on tree-ring chronologies from Central America and 

Australasia – regions with strong teleconnections to the Pacific. Chapter 2 demonstrates that 

robust reconstructions can be developed even in the absence of local proxies.  

This Chapter explores whether remote tree rings from ENSO-sensitive regions can be used not 

only to reconstruct a point index, like the SPCZ, but also to develop a drought atlas for South 

Pacific islands (the SPaDA). In developing the atlas, the methods used in Chapter 2 are modified 

to address the scarcity of data in the Pacific. The Chapter then investigates whether the spatial 

pattern of drought in the atlas, in conjunction with documentary evidence, can be used to identify 

zonal El Niño events and provide multi-centennial context for their occurrence. 

3.3 Data and methods 
3.3.1 Climate data 

Previous drought atlases have targeted the Palmer Drought Severity Index (PDSI; W. C. Palmer, 

1965) for which global gridded datasets are available. Gridded self-calibrating PDSI data are 

available over much of the South Pacific (Van Der Schrier et al., 2013). However, due to a lack 

of meteorological data, calculation of the evapotranspiration component relies on default 

parameters for most islands. This negatively influences tree-ring reconstructions based on this 

data, as shown in Figure B-1 and Figure B-2 for the island of Rapa Nui. 

Like PDSI, the Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et 

al., 2010) is a water balance-based drought index, but is computationally much simpler, resolving 

some of the data issues of PDSI in the South Pacific. It has the additional advantage of being a 

multi-scalar index, which increases its suitability for regions with strong wet/dry seasonality. 

Indices which integrate over periods with different precipitation incidences, like PDSI, will be 

biased by the wet season and may not be able to identify seasonal droughts in wet/dry climates 

(Romero et al., 2020). SPEI has been successfully used as the calibration target for tree-ring 

drought reconstructions in extra-tropical climate regions (Seftigen et al., 2015; Tejedor et al., 
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2017). Here, we present the results of a six-month SPEI reconstruction for the southwest Pacific 

wet season (i.e., November-April).  

To calculate SPEI, monthly values of precipitation minus potential evapotranspiration are 

calculated and summed over the timescale of interest. SPEI is then obtained by fitting a log-

logistic probability distribution function to the series and transforming it to a standardised normal 

distribution with reference to a baseline period (refer to Beguería et al., 2014; Vicente-Serrano et 

al., 2010 for details). The potential evapotranspiration component of the SPEI was calculated 

according to the method of Thornthwaite (1948), which only requires monthly precipitation and 

temperature. More complex methods for estimating evapotranspiration are not suitable for a South 

Pacific-wide study as most stations do not have sufficient data for additional meteorological 

parameters. The Thornthwaite method therefore provide a consistent approach for the entire 

region. 

Monthly precipitation and temperature data for Pacific Island meteorological stations was sourced 

from the Climatic Research Unit (University of East Anglia) and Met Office CRU TS version 

4.04 database. Data for islands not included in the CRU TS v4.04 database (Willis Is., Norfolk 

Is., Raoul Is., Pitcairn Is., and Nauru) was sourced from the relevant meteorological agencies. A 

long baseline period (30 to >50 years) that captures natural variability is required to calculate 

SPEI (Vicente-Serrano et al., 2010). Data availability for Pacific Islands varies through time, with 

the number of stations increasing across the region rapidly following World War Two but 

decreasing after 1990 (Figure 3-1).  

 
Figure 3-1 Location of precipitation (top left) and temperature stations (top right) with data available 
during the baseline period 1960-1990. Filled diamonds indicate stations with less than 10% of 
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monthly values missing over the baseline period. The total number of stations with data over time is 
also shown in bottom panel, with the baseline period indicated by the grey bar. 

The period 1960-1990 was selected for the baseline to maximise both the number of individual 

stations with data and the geographical coverage of those stations. Rather than computing SPEI 

directly from gauge data, the grid points associated with the gauge stations were extracted from 

the CRU TS v4.04 gridded precipitation and temperature datasets. Using the gridded data takes 

advantage of the CRU TS v4.04 methodology (see Harris et al., 2020) to fill data gaps, allowing 

the analysis to be extended to island groups that would otherwise have insufficient data over the 

baseline period.  

Tree-ring chronologies were selected from locations bordering the South Pacific with strong 

ENSO teleconnections. Chronologies previously used in the development of the Monsoon Asia 

Drought Atlas (MADA; Cook et al., 2010), Eastern Australia and New Zealand Drought Atlas 

(ANZDA; Palmer et al., 2015), Mexican Drought Atlas (MXDA; Stahle et al., 2016), and South 

American Drought Atlas (SADA; Morales et al., 2020) were downloaded from the International 

Tree-Ring Data Bank (ITRDB). The raw wood properties were standardised (i.e., detrended and 

transformed into dimensionless growth indices) using methods which preserve medium-term 

(multi-decadal) variability, including the ‘signal free’ method (Wilson et al., 2019). 

3.3.2 Reconstruction method 

Consistent with other regional drought atlases, SPEI was reconstructed using point-by-point 

regression (PPR; Cook et al., 2010, 1999, 2007), a nested, principal components-based regression 

method. Using this method, regressive models are sequentially applied to the principal 

components of the tree ring chronologies during a common calibration period between the 

predictors (tree rings) and the predictands (SPEI data points). Only tree-ring chronologies 

beginning at or before 1700 CE with a significant relationship (p ≤ 0.1; Spearman, Pearson, and 

robust Pearson) with the target SPEI were included in the potential predictor pool (Figure 3-2). 

Each successive group of chronologies (nest) includes fewer chronologies but extends further 

back in time and is individually calibrated and verified against the instrumental target. We 

excluded any nest (and preceding nests) with a correlation of less than 0.4 with the most recent, 

best replicated nest. The variance of the final reconstruction was stabilised using a 300-year spline 

to correct variance effects related to decreasing sample size back in time (Esper et al., 2002; Frank 

et al., 2006; Osborn et al., 1997). 
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Figure 3-2 Locations of all tree-ring chronologies included in the initial predictor pool (red) and the 
CRU grid point reconstruction targets (blue). Five grid points were calculated from instrumental 
data not included in the CRU gridded products. 

In contrast to previous studies, a consistent calibration interval was not used for all SPEI data 

points. The last year of the calibration period was limited to 1998 which is the end date of many 

of the tree-ring chronologies. Based on data availability, the initial calibration year was then 

selected on an island group basis to maximise the calibration interval length. Between 38 - 57 

years were used for calibration (Table 3-1). The calibration interval for the island groups is too 

short to undertake split-period calibration and verification, which is the standard for 

dendrochronological reconstructions (see Chapter 2, Section 2.4.3). To address this issue, the 

reconstructions were primarily validated using a leave-one-out cross-validation procedure 

(Morales et al., 2020), using the cross-validation reduction of error (CVRE; Meko, 1997) as the 

primary validation statistic. A reconstruction point was considered valid with CVRE > 0.2. The 

CVRE is a relatively easy calibration target to pass and the selection of predictors using correlation 

to the instrumental data may lead to inflation of this statistic. Therefore, for individual stations with 

a sufficiently long data record, independent verification was undertaken and the more stringent 

verification statistics, reduction of error (VRE) and coefficient of efficiency (VCE), were also 

calculated.  

Table 3-1 Calibration and verification intervals for each island/island group. Refer to Figure 3-6 for 
a spatial reference of island/island group names. 

Island/ 
island group 

No. CRU 
points 

Calibration 
interval 

Calibration 
years 

Verification 
points 

Verification 
interval 

Verification 
years 

Cook Islands 4 1943-1995 52 3 1931-1942 11 
Federated States 
of Micronesia 4 1950-1998 48    

Fiji  16 1947-1998 51 2 1927-1947 20 
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French 
Polynesia  10 1953-1998 45 1 1920-1952 32 

Kiribati 22 1948-1990 42 2 1908-1938 30 
Marshall Islands 2 1951-1998 47    
Nauru 1 1952-1998 46    
New Caledonia 19 1953-1998 45 1 1902-1952 50 
Niue 2 1941-1996 55    
Norfolk Island 1 1941-1998 57    
Pitcairn Island  1 1956-1998 42    
Raoul Island 1 1941-1998 57    
Samoa 2 1959-1998 39 1 1916-1956 40 
Tokelau 1 1951-1995 44    
Tonga 6 1948-1998 50 1 1931-1941 10 
Tuvalu 7 1948-1996 48 1 1932-1947 15 
Vanuatu 4 1960-1998 38    
Willis Island 1 1950-1998 48    
Wallis and 
Futuna 1 1949-1998 49    

The reconstruction methodology is based on the implicit assumption that the teleconnections 

between the climates of the South Pacific and the locations of the tree-ring predictors are 

stationary in time. The assumption of stationarity is particular problematic for reconstructions 

calibrated to short datasets (Gallant et al., 2013), where it is likely that the instrumental data does 

not account for the full range of natural variability. The impact of the calibration interval on the 

robustness of the drought reconstructions was tested using two stations with data stretching back 

to the 1890s: Tahiti, French Polynesia, and Apia, Samoa (Figure 3-3). Reconstructions were 

developed on calibration periods ranging between 40 and 80 years, using all available periods of 

each length. For example, 21 reconstructions for Tahiti were calibrated using 40 years of 

continuous data between 1938 and 1998.  
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Figure 3-3 Precipitation (blue) and temperature (orange) data availability for two gauges with long 
records. 

3.3.3 Identifying ENSO-related droughts 

A Random Forest Classifier (RFC; Breiman, 2001) was used to identify ENSO phases based on 

spatial patterns of drought in the SPaDA. An RFC is an ensemble machine learning algorithm 

which calculates multiple decision trees from bootstrap samples of the dataset, with the final 

classification prediction taken as the most commonly selected across the ensemble. The training 

dataset was reconstructed SPEI at each grid point from 1875-1998, with years classified as La 

Niña, neutral, El Niño or extreme/Zonal El Niño based on instrumental data and known events. 

Recorded ENSO events since 1900 were taken from the Australian Bureau of Meteorology listing 

(http://www.bom.gov.au/) and from 1876-1900 from the compilation of Meyers et al. (2007). 

Zonal El Niño events were identified as 1972/73, 1982/83, 1991/92, and 1997/98 based on the 

characterisation of Santoso et al. (2017) and Vincent et al. (2011) for events since 1950. While 

the 1991/92 El Niño exhibited a zonal SPCZ in the satellite data, in terms of sea surface 

temperature (SST) and precipitation anomalies it is not considered extreme (Santoso et al., 2017; 

Vincent et al., 2011). The average December-February (DJF) Niño3.4 index calculated from 

HadISST sea surface temperatures during these four event years was +1.98 °C. Two other years, 

1877/78 and 1888/89, significantly exceeded this value and were also included in the zonal El 

Niño list. The El Niño event in 1940/41 has a DJF Niño3.4 index of +1.903 °C and thus could 

also be classified as an extreme event based on this metric. The base classification model was 

trained on all seven ‘zonal’ events, with the sensitivity of the model results to the selection of 

training events tested using a leave-one-out procedure, in which one zonal event was reclassified 

as El Niño in each iteration and the classification model re-run. 

As so few extreme El Niño events occur during the instrumental period, the classification problem 

is highly imbalanced. Conventional RFC seeks to minimise the overall error rate, and therefore 

performance is typically poor for very rare cases in imbalanced datasets. Random under-sampling 

was therefore employed as a standard modification to adapt RFC to the imbalanced classification 

(Chen et al., 2004). Random under-sampling down-samples the majority cases (i.e., La Niña, 

neutral, and El Niño events) to provide a more balanced dataset for training on rare cases (zonal 

El Niño events). However, down sampling the majority cases for this dataset would result in a 

very small training sample. To rectify this, 300 maximum entropy bootstrap replications (Vinod 

& López-de-Lacalle, 2009) of reconstructed SPEI were applied at each grid point to provide 

additional data samples, increasing the dataset to 300 x 124 classified ENSO events for training 

and validation. A 50:50 train/test split was employed, with model performance assessed using the 

metrics of precision, recall, and F1 score, which assess the ability of the model to correctly classify 

ENSO phases (true positives) without falsely identifying ENSO events (false positives).  

http://www.bom.gov.au/
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To verify the classification results, the RFC model classification was compared to other 

paleoclimate reconstructions of ENSO. As all reconstructions contain large uncertainties, 

multiple proxy comparisons are made to develop the best possible picture of the climate 

conditions in each year. The reconstruction of Li et al., (2013) was based on more than 2,000 tree 

rings from a similar geographical range as this study. The multi-proxy ENSO reconstructions of 

Gergis & Fowler (2009) and McGregor et al. (2010) include coral proxies from the tropical 

Pacific, and tree rings and ice cores from regions with strong teleconnections to the Pacific. The 

coral-based El Niño reconstruction of Freund et al. (2019), which additionally classifies El Niño 

events as either eastern Pacific (canonical) events or central Pacific (El Niño Modoki) events, is 

the fourth proxy comparison. Most of the coral proxies used in Freund et al. (2019) were collected 

from the Pacific rather than teleconnected regions. Each of these reconstructions uses a different 

suite of proxy records and different reconstruction methods. However, only the drought atlas and 

the reconstruction of Freund et al (2019) are truly independent from one another, as there is some 

overlap in the proxies used amongst the other reconstruction pairs. 

3.4 Results 
3.4.1 Model calibration and validation 

The fraction of variance explained in the calibration period (CRSQ) is above 29% for all grid 

points, above 50% for 94 grid points (90%), and above 70% for 45 grid points (43%). The 

reconstruction explains the most variance in SPEI for the Kiribati Line Islands, Tonga, and 

Vanuatu, and the least variance in SPEI for Norfolk Island, the Cook Islands, and Tuvalu (refer 

to Figure 3-6 for a spatial reference of island/island group names). Figure 3-4 shows that all grid 

points pass the CVRE threshold of 0.2 during the calibration period, with values very similar, but 

slightly lower than CRSQ for all grid points. Using the CVRE threshold, the reconstruction can 

extend back to 1410 CE for all grid points. 
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Figure 3-4 Calibration period leave-one-out cross-validation reduction of error (CVRE) for each 
reconstructed grid point for the best-replicated nest. 

Verification statistics for individual island grid points with suitable long-term records show that 

the model has some reconstruction skill at 11 of the 12 locations (Table 3-2), as indicated by VRE 

and VCE values greater than 0 in the last, best replicated nest. Moving back in time, the 

reconstruction is considered valid for all nests with VRE and VCE greater than 0. The valid 

reconstruction period varies considerably between the verification points, with the first year of 

validity ranging between 350 – 1640 CE. This raises the question about the selection of a common 

period over which to analyse the reconstruction. All reconstructed grid points are analysed over 

the interval 1640-1998 CE, but it should be noted that reconstruction uncertainty is spatially 

variable and increases back in time. 

Verification statistics for the reconstructions of Apia, Samoa and Tahiti, French Polynesia with 

varying calibration period lengths are shown in Table 3-3. Calibration and verification statistics 

for Apia remain strong for all models with calibration periods ranging from 40 to 80 years. 

However, the models for Tahiti calibrated on 40 years of data only pass the verification tests in 

3/21 iterations, despite very high CRSQ values for all iterations. This suggests overfitting due to 

the short calibration period. The grid point reconstruction for Tahiti used in the SPaDA (Table 

3-1) has a 45-year calibration period. This model barely passes verification, indicating that it is 

only slightly more informative than the mean of the calibration period in predicting the 

verification period values. Increasing the length of the calibration period to 60 years results in a 

well-verified model for Tahiti. 

Table 3-2 Verification statistics for selected island grid points based on long instrumental records. 
Year refers to the earliest year of reconstruction validity using a cut-off of VRE and VCE > 0. 



CHAPTER 3 
 

 
 

33 

Island group  Gauge  Calibration 
interval  

Verification 
interval  VRE  VCE Year (CE) 

Cook Islands  Aitutaki  1943-1995  1931-1942  0.01 -0.85 - 
 Puka Puka    0.29 0.05 1640 
 Rarotonga    0.37 0.31 410 
Samoa  Apia  1959-1998  1916-1956  0.19 0.16 1390 
Fiji  Suva  1947-1998  1927-1947  0.40 0.39 350 
 Rotuma  1947-1998  1927-1947  0.19 0.19 1510 
French Polynesia  Tahiti  1953-1998  1920-1952  0.08 0.03 1640 

Kiribati - Line 
Islands  

Washington Is.  1948-1990  1908-1938  0.50 049 480 
Fanning Is.    0.50 0.50 800 

New Caledonia  Noumea  1953-1998  1902-1952  0.35 0.34 1100 
Tonga  Vavua  1948-1998  1931-1941  0.21 0.15 350 
Tuvalu  Funafuti  1948-1996  1932-1947  0.14 0.14 1550 
Niue  Alofi  1941-1996  1907-1940  0.31 0.28 480 

 
Table 3-3 Calibration and verification statistics for Apia and Tahiti for reconstructions models using 
different calibration period lengths. The mean and standard deviation are provided for each statistic 
across all iterations of a calibration period length. 

Calibration 
interval 

Calibration 
years 

Verification 
interval 

No. 
iter CRSQ CVRE VRE VCE 

Apia        
1958-1998 40 1893-1917 41 0.72 ± 0.06 0.68 ± 0.06 0.24 ± 0.06 0.22 ± 0.07 
1938-1998 60 '' 21 0.58 ± 0.05 0.55 ± 0.06 0.21 ± 0.04 0.2 ± 0.04 
1918-1998 80 '' 1 0.564 0.539 0.177 0.172 

Tahiti        
1958-1998 40 1897-1907 21 0.75 ± 0.14 0.72 ± 0.16 -0.19 ±0.21 -0.35 ± 0.28 
1938-1998 60 '' 1 0.693 0.615 0.234 0.191 

 

3.4.2 Selected tree ring proxies and teleconnections to the Pacific 

A total of 598 tree-ring chronologies contribute to one or more of the SPaDA grid point 

reconstructions. Figure 3-5 shows the distribution of these chronologies, with colours 

representing the number of individual grid points to which the chronology contributed. 

Approximately 20% of chronologies contribute to fewer than five grid point reconstructions. For 

some of these chronologies, the relationships to island climate appears to have a geographical 

explanation, for example, chronologies in the MXDA which are correlated only with the Line 

Islands. However, other relationships suggest some spurious correlations have been included in 

the selection of predictors. Future iterations of the SPaDA may benefit from using a more 

stringent selection criteria to screen out spurious correlations when calibration periods are short. 

Conversely, around 7% of the chronologies contributed to over 50% of the grid point 

reconstructions. These chronologies come from all the predictor regions except for the ANZDA, 
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possibly because ENSO teleconnections are stronger in the Equatorial regions compared to the 

temperate zones like New Zealand, where many of the ANZDA tree-ring chronologies are located 

(refer to Figure 1-2 and Figure 1-3). 

 

Figure 3-5 Number of reconstructed grid points to which each tree-ring chronology contributes. 

Figure 3-6 shows the proportional weighting of chronologies from each of the predictor regions 

to the reconstructions – summed for all grid points in an island group. Here, the weighting is the 

sum of the absolute regression beta weights for each chronology, which represents the 

contribution of that chronology to the regression equation. The same figure shows that 

chronologies from the MADA region dominate most reconstructions across the SPaDA domain. 

However, as MADA chronologies are the largest proportion of the total predictor pool (39%), this 

may be more representative of chronology numbers than the strength of the teleconnection. There 

is no clear spatial pattern in the distribution of weightings, i.e., the contribution of each predictor 

region does not appear to fade with distance, indicating the influence of large-scale climate 

patterns in common to each of the regions.  
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Figure 3-6 Proportional weighting of chronologies from each of the four regions (ANZDA – Australia 
and New Zealand, SADA – South America, MXDA – Central and North America, and MADA – 
Monsoon Asia) to the reconstruction by island group. The weighting for each island/island group is 
defined as the sum of the absolute value of beta weights of all chronologies from a region.  

3.4.3 Drought anomalies during instrumental ENSO events 

The ability of the SPaDA to reconstruct the Pacific Island drought response to warm and cold 

ENSO events was investigated using composite analysis. Figure 3-7 shows the average anomalies 

in the instrumental and reconstructed SPEI during the El Niño events that occurred during the 

data period – 12 for instrumental SPEI (1950-2018), and 20 for reconstructed SPEI (1875-1998). 

The SPEI for two years falling within the calibration (i.e., overlapping) period, in which the SPCZ 

took a zonal orientation, is also compared.  
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Figure 3-7 Instrumental (left) versus reconstructed (right) November-April SPEI during El Niño 
events during the data period (1950-2018 for instrumental, 1875-1998 for reconstruction). The 
average of all El Niño events is shown in the top row, and individual El Niño years in which the SPCZ 
took a zonal orientation are shown in the remaining two rows. 

Similarly, Figure 3-8 compares instrumental and reconstructed SPEI during the La Niña events 

that occurred during the data period – 22 for instrumental SPEI and 34 for reconstructed SPEI, as 

well as the SPEI during two calibration period years in which the SST anomalies suggest an 

extreme event occurred. Reconstructed drought conditions in the SPaDA compare favourably 

with instrumental SPEI during both warm and cold ENSO events. Both the magnitude and spatial 

pattern of SPEI anomalies are consistent between the instrumental and reconstructed data in the 

‘all event’ composites. The SPaDA also shows a good ability to replicate the selected calibration 

period extreme events, although SPEI anomalies are somewhat underestimated for the strong La 

Niña in 1989/90. 
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Figure 3-8 Instrumental (left) versus reconstructed (right) November-April SPEI during La Niña 
events during the data period (1950-2018 for instrumental, 1875-1998 for reconstruction). The 
average of all La Niña events is shown in the top row, and individual strong La Niña years are shown 
in the remaining two rows. 

The stability of the relationship between soil moisture in the SPaDA and SSTs is tested by 

calculating the 50-year running Pearson correlation between the first principal component (PC1) 

of the reconstruction and the Niño-34 index, and spatial correlations between SPEI and Niño-34 

for overlapping 50-year periods (Figure 3-9). This is important because changes in the SPaDA-

SST relationship could be an indicator of non-stationary teleconnections between the Pacific and 

the predictor regions, which would affect any conclusions drawn from the SPaDA results. The 

correlation between PC1, which explains 53% of variance in the data, and Niño-34 over the 1875 

– 1998 CE period is -0.78 (p < 0.0001).  

Figure 3-9 shows that the relationship is stationary as indicated by correlations remaining within 

the 95% confidence interval calculated from 1000 synthetic reconstructions with the same 

statistical characteristics as the SPaDA (Gallant et al., 2013). However, the spatial maps show 

that the relationship with Niño-34 is not stable for all grid points, with some grid points (e.g., 

Northern Vanuatu) only showing significant correlations during some periods. This is most likely 

due to poor reconstruction validity at these grid points rather than a true change in the strength of 

the relationship. 
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Figure 3-9 (Top) 50-year running Pearson correlation between the first principal component of 
reconstructed SPEI and the instrumental Niño-34 index with 95% confidence interval calculated 
from synthetic data. (Bottom) Spatial correlation between SPEI and Niño-34 for overlapping 50-year 
periods. Correlations not significant at p < 0.05 are greyed out.  

3.4.4 Drought anomalies during significant historical drought events 

In the absence of an independent validation period for most SPaDA grid points, the 

reconstructions can be verified by comparing the SPaDA to documentary and paleoclimate 

evidence for significant historical droughts events. Figure 3-10 shows reconstructed SPEI for four 

historical drought events, three centred on the southwest Pacific, and one centred on the eastern 

and equatorial Pacific. The ‘Year of Hunger’, was a series of droughts and unseasonable frosts 

which occurred over 1785-1787 in Mexico, resulting in famine and the estimated deaths of 

300,000 people (Therrell, 2005). Tree-ring reconstructions have shown that the pattern of drought 

in central America was consistent with influence of La Niña (Therrell, 2005). The SPaDA SPEI 

anomalies show dry conditions over the eastern and equatorial Pacific, and wet conditions in the 

southwest Pacific, and north of the equator, consistent with La Niña conditions during this period. 

However, as many of the same tree rings used in Therrell (2005) are also incorporated into the 

SPaDA, the evidence for this drought event is not entirely independent. 



CHAPTER 3 
 

 
 

39 

Historical records (Russell, 1877) describe a severe drought experienced by European colonialists 

within two years of arriving in Sydney, Australia. Tree-ring reconstructions indicate that drought 

conditions were experienced across eastern Australia from 1791-1795, with the most extreme soil 

moisture deficits occurring in the summer of 1791/92 (Palmer et al., 2015). Simultaneously, 

drought and famine were occurring over much of India and the Caribbean (Grove, 2007). 

Paleoclimate records suggest the Settlement Drought was associated with an unusually strong El 

Niño (Gergis & Fowler, 2009). No documentary evidence is available to confirm whether this 

event also caused anomalous rainfall over the Pacific Islands (D’Aubert & Nunn, 2012); however, 

SPEI anomalies during 1791/92 are amongst the highest during the reconstruction period. Based 

on the SPaDA reconstruction, extreme drought should have occurred over much of the Southwest 

Pacific, with extreme wet conditions across the Equatorial Pacific (Figure 3-10b). 

Stalagmite isotopes from Espiritu Santo, Vanuatu indicate an unusually dry year in 1866 ± 3 years 

(Partin et al., 2013). A drought occurring around 1866 or 1867 was also recorded in the dairy of 

John G. Paton, who was a missionary on Aniwa, 500 km to the south (Paton, 1893). Orissa (now 

Odisha) in the Bengal region of India experienced a devastating famine in 1866 after a weak 

monsoon the proceeding summer caused the rice harvest to fail. It is estimated that a million 

people died in Orissa alone. The SPaDA shows localised drought conditions in southern Vanuatu, 

New Caledonia, and parts of Fiji during 1865/66. 

The Great Drought (1876-1878) was a concurrent period of multiyear droughts across Monsoon 

Asia, Brazil, Africa, and the Pacific. Widespread crop failures resulted in the ‘Global Famine’, 

with estimated fatalities exceeding 50 million people (Singh et al., 2018). In New Caledonia, a 

disastrous drought at the end of 1877 exacerbated tensions between the Melanesian Kanak 

peoples and the French colonial regime, with thousands of Kanak casualties (Davis, 2002). The 

yam crop in Fiji and taro crop in Vanuatu – both staples – failed due to lack of rainfall. In contrast, 

torrential rain damaged native crops on Kiribati leading to starvation deaths on the Gilbert Group 

islands (D’Aubert & Nunn, 2012). The Great Drought is attributed to an El Niño of extreme 

strength and duration occurring in 1877/78 with impacts more severe and widespread than the 

extreme El Niño events of 1982/83 and 1997/98 (Singh et al., 2018). Figure 3-10d shows average 

reconstructed SPEI from 1876 to 1878. The SPaDA shows anomalously dry conditions over much 

of the southwest Pacific, with extreme drought occurring in Niue and Wallis and Futuna. 

However, unusual wet conditions are only seen in parts of French Polynesia.  

The selected historical cases demonstrate that the SPaDA provides reliable spatiotemporal 

information on drought events outside of the instrumental period. The identification of droughts 

in the SPaDA for which significant documentary or other non-tree ring evidence is available (i.e., 

the Settlement Drought, the Great Drought) greatly increases the confidence in the results. It is 
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also promising that the SPaDA can capture localised drought events, which may be related to 

climate patterns other than strong El Niño/La Niña which drive regional events. Verification 

against independent records shows that the SPaDA has the potential to contribute to our 

knowledge of climate extremes in the Pacific at least back until the 1780s.  

 
Figure 3-10 November-April SPEI during known historical droughts: the Mexican Year of Hunger 
(1785-86), the Australian Settlement Drought (1791-93), the Vanuatu drought (1865-66), and the 
Great Drought (1876-78). 

3.4.5 Characteristics of the reconstruction 

There is considerable year-to-year variability in the estimates of the wet/dry conditions across the 

SPaDA domain (Figure 3-11). The spatial pattern of alternating wet/dry conditions between the 

western and eastern Pacific Island is also clearly visible, in that a large proportion of grid points 

are severely dry (SPEI < -1) and severely wet (SPEI > 1) in the same year. Wavelet spectra of the 

first two (unrotated) principal components are shown in Figure 3-12 below. The wavelet spectra 

for PC1, which explains 53% of variance, shows power concentrated in the ENSO band (2-8 

years). Multi-taper method spectral analysis (MTM; Mann & Lees, 1996) indicates that the peak 

at 3-4 years is significant at the 99% level. The second PC (PC2), which explains 7.5% of 

variance, also shows significant high-frequency variability at ~3 years, but additionally shows 

periods with significant power in the decadal to multi-decadal frequency range, with MTM 

analysis identifying significant peaks at ~24 years (99% level) and ~70 years (95% level). The 

IPO influences drought in the Pacific Islands through shifting the mean position of the SPCZ 

(McGree et al., 2016) thus variability on multi-decadal timescales is expected in the 

reconstruction.  
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Figure 3-11 Percentage of area under severely dry (SPEI < −1, orange) and extremely dry (SPEI < -
2, red) conditions, and for severely wet (SPEI > 2, light blue) and extremely wet (SPEI > 4, blue) 
conditions over the whole SPaDA domain. The dashed lines indicate 95% percentiles of the 
distribution. The black triangles indicate the occurrence of the four historical drought years and the 
seven ‘zonal’ El Niño years (1877/78 is common to both groups of events). Only years 1940/41 and 
1991/92 do not have a substantial proportion of extremely wet/extremely dry grid points. 

 
Figure 3-12 Wavelet spectra of the first two (unrotated) principal components of the SPEI 
reconstruction (Torrence & Compo, 1998) a) PC1, and b) PC2. Black contours indicate power above 
the 95% confidence interval when using an AR(1) red noise model.  

3.4.6 Performance of the Random Forest classifier (RFC) 

Figure 3-7 and Figure 3-8 show that the SPaDA reliably captures spatial patterns of drought in 

response to ENSO events over the entire instrumental period (1875-2012). Therefore, the RFC 

trained on the SPaDA grid points is expected to contain useful information about the occurrence 

of ENSO events over the reconstruction period. Table 3-4 shows the testing results for the model, 

which measures how well the model identified instrumental ENSO events for the 50% of data 

retained for training. The model performs extremely well during the testing period. Precision is 

lowest for the neutral class, and recall lowest for the El Niño class, which reflects the 

misattribution of some El Niño events as neutral. Importantly, the model distinguishes between 

El Niño and zonal El Niño events in most instances. However, as the maximum entropy bootstrap 

replications used as training/testing years are not truly independent from one another, the model 
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performance is likely overstated, and further work is required to accurately quantify the classifier 

performance. 

Table 3-4 Testing results for the Balanced Random Forest classifier 

Category Precision Recall F1-score 
La Niña 0.99 0.95 0.97 
Neutral 0.95 0.99 0.97 
El Niño 1.00 0.92 0.96 
Zonal 1.00 0.97 0.98 
Weighted average 0.97 0.97 0.97 

 
3.4.7 Identification of extreme events 

Based on the RFC classification, composite SPEI for all years from 1640-1874 CE for each ENSO 

category are shown in Figure 3-13. The spatial patterns and magnitude of the SPEI anomalies are 

consistent with the results during the instrumental period for La Niña and El Niño events. The 

percentage years in each category also matches well with the percentages during the instrumental 

period: 57% of years are classified as neutral compared to 53% in the instrumental period, and 

26%, 12% and 4% classified as La Niña, El Niño and zonal compared to 29%, 13% and 5% during 

the instrumental period. The composite for the 10 years identified as zonal events shows the same 

spatial pattern as the El Niño composite but with much larger SPEI anomalies. Averaged across 

the SPaDA domain, grid point anomalies are 1.7 times larger during zonal years compared to 

other El Niño years. The hypothesis underlying this study was that for some islands, atypical 

patterns of precipitation occurring during zonal events would allow them to be identified via RFC. 

Atypical rainfall during zonal events occurs due to the extreme shift and change in intensity of 

the SPEI (Murphy et al., 2014). For most countries, this means more extreme precipitation 

anomalies than other El Niño years, but for some particular cases, namely Nauru and Tarawa 

(Kiribati), precipitation anomalies of the opposite sign to other El Niño years can be observed 

(Murphy et al., 2014). These atypical patterns are not seen in the zonal composite in Figure 3-13.  
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Figure 3-13 Summary of results of the Random Forest classification for pre-instrumental years 1640 
– 1874 CE. November-April SPEI during years classified as neutral (135 years), La Niña (61 years), 
El Niño (29 years), and Zonal (10 years). 

For reference, Figure 3-14 shows instrumental SPEI for four gauges identified in Murphy et al. 

(2014) as displaying atypical precipitation anomalies during extreme El Niño events. Funafuti 

and Majuro are both examples of islands with more extreme precipitation anomalies during zonal 

events, Tarawa and Nauru are examples of ‘sign switching’ precipitation anomalies. For all four 

grid points, the stars indicate years with a zonal El Niño event in which instrumental SPEI 

identifies atypical conditions. Only at Majuro do all three calibration-period zonal events 

(1982/83, 1991/92 and 1997/98) show atypical conditions. At Tarawa, 1982/83, and 1997/98 are 

atypical but 1991/92 is not, and for Funafuti and Nauru only one year is atypical (1982/83 and 

1997/98 respectively). Even during the instrumental period, the characteristics of each event are 

quite different. Figure 3-15 shows reconstructed SPEI for the same four grid points during the 10 

years identified as zonal by the RFC. At Majuro and Funafuti, 4 and 6 out of the 10 years 

respectively show atypical SPEI similar to the instrumental period. For Nauru only one year 

shows the atypical drought pattern, and no years are atypical for Tarawa. The SPaDA is better 

able to represent those grid points with extreme anomalies during zonal years than grid points 

demonstrating ‘sign switching’, which explains why extreme anomalies, but not atypical spatial 

patterns are observed in the zonal composite in Figure 3-13.  
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Figure 3-14 Instrumental November-April SPEI during neutral, La Niña, and El Niño years for 
gauges with anomalous precipitation regimes during zonal El Niño events. Starred years indicate the 
zonal events demonstrating anomalous SPEI during the data period. Nauru is calculated from 
precipitation and temperature data with the other gauges taken as the nearest CRU grid point. 

 
Figure 3-15 Average reconstructed November-April SPEI during years classified as La Niña, and El 
Niño by the random forest model, with SPEI during the 13 zonal events plotted individually. Starred 
years indicate the zonal events demonstrating anomalous SPEI matching the gauge behaviour during 
the instrumental period.  

Table 3-5 lists the 10 events classified as zonal El Niño events. The column ‘probability’ shows 

the proportion of the 300 maximum entropy bootstrap (MEboot) replications for which the event 

was classified as zonal. The probability, therefore, is an estimate of the uncertainty around the 

classification as a zonal event internal to the Random Forest model. The leave-one-out hit rate 

indicates the number of leave-one-out model iterations in which the event was classified as zonal 
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and is an indicator of the sensitivity of the RFC to the training data classification. In general, low 

probability events have lower hit rates, indicating high sensitivity to event selection and only two 

events (1783 and 1869) were consistently selected in all iterations. Years with atypical grid point 

anomalies (starred years in Figure 3-15) show very high probabilities, indicating that the 

anomalous SPEI was consistent across the MEboot replications and consistently identified as 

zonal by the RFC. 

Table 3-5 Probability of a zonal El Niño event according to Random Forest classification of MEboot 
replications of reconstructed drought. 

Year Probability Leave-one-out hit rate 
1647 0.59 6/8 
1651 0.84 6/8 
1692 0.66 5/8 
1747 0.84 5/8 
1771 0.86 6/8 

1783* 1.00 8/8 
1792 0.51 3/8 
1800 0.49 4/8 
1804 0.98 7/8 

1869* 0.89 8/8 
*Starred years are insensitive to the choice of zonal events used in training the Random Forest Model, 
that is, are classified as zonal events in every leave-one-out iteration.  

3.4.8 Comparison to other reconstructions 

The tree-ring ENSO reconstruction of Li et al. (2013) and multiproxy ENSO reconstruction of 

McGregor et al. (2010) are annual reconstructions and can be compared directly to PC1 of the 

SPaDA, which shows predominantly ENSO-frequency variability (Figure 3-12). Figure 3-16 

shows the running Pearson correlation between the SPaDA PC1 and the two reconstructions over 

the common reconstruction interval. There is a high degree of fidelity between the results of this 

study and both the reconstructions. The correlation is slightly stronger between PC1 and the Li et 

al. reconstruction, which is unsurprising as they are based on similar predictor sets. Nevertheless, 

the strength and stability of the correlations is quite remarkable considering the SPaDA is a 

spatially resolved SPEI reconstruction and the other studies reconstructed ENSO directly. 

Figure 3-17 compares the event based multiproxy reconstruction of Gergis and Fowler (2009) 

and coral reconstruction of Freund et al. (2019) with SPaDA drought years classified as either El 

Niño or zonal El Niño by the RFC prior to the instrumental period. Most zonal years were 

identified as strong or very strong El Niño events in the multi-proxy reconstruction. There is also 

substantial overlap in years identified as El Niño events by the RFC with the Gergis and Fowler 

event list, although the RFC model has not identified many of the events classified as weak or 

medium El Niño by Gergis and Fowler. This is very likely due to a difference in the criteria used 

to discriminate between El Niño and neutral events. In comparison, there is low correspondence 
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between the SPaDA event list and the coral reconstruction of Freund et al. (2019). The RFC 

classified 39 years as El Niño or zonal El Niño and 45 El Niño events were identified by Freund 

et al. There are 11 overlapping events between the reconstructions, which is fewer than would be 

expected by chance (p = 0.15, binomial test). 

 
Figure 3-16 50-year running Pearson correlation between the SPaDA PC1 and the ENSO 
reconstructions of a) McGregor et al. (2010) over 1650-1977 CE and b) Li et al. (2013) over the period 
1640-1998 CE All correlations are significant (p << 0.01). 

 
Figure 3-17 Event-based comparison between the published reconstructions of a) Gergis and Fowler 
(2009) and b) Freund et al. (2019) with c) events identified by the RFC model as El Niño (blue) and 
zonal El Niño (orange) for the period 1640-1875 CE. The calendar year events of Gergis and Fowler 
(2009) have been shifted forwards by one year for consistency with the other reconstructions. 
While Freund et al. (2019) report event amplitude, Gergis and Fowler presented a qualitative 
ENSO strength index. For potting purposes weak, medium, strong, very strong, and extreme 
events have been given amplitudes of 0.1, 0.25, 0.5, 0.75, and 1. Events identified in the SPaDA 
have similarly been given an amplitude of 0.5 (El Niño) or 1 (zonal El Niño). 

3.5 Wider Considerations 
The primary aim of this Chapter was to explore whether remote tree rings from ENSO-sensitive 

regions can be used to develop a spatially resolved drought atlas for the South Pacific. A 

secondary aim was to investigate whether the spatial patterns of drought in the SPaDA could be 

used to identify extreme or zonal El Niño events thus providing multi-centennial identification of 

their occurrence. Underpinning both these aims was the intention to provide long-term 

information on drought in the Pacific Islands that can be used to better understand hydrological 
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risks. Considerable progress towards calibrating and verifying the SPaDA has been made in this 

Chapter. For example, the SPaDA is able to replicate documented droughts linked to ENSO 

events and compares well to previously published ENSO reconstructions. Similar to the findings 

of Chapter 2, this Chapter shows that when applied in a network, remote tree-ring proxies have 

considerable reconstruction ability for the South Pacific. There were two major challenges in 

developing the SPaDA, both relating to the instrumental dataset: 1) The lack of independent 

verification data; and 2) the short calibration period. Neither of these challenges was able to be 

satisfactorily overcome in this work, reducing confidence in the results of the SPaDA, particularly 

for the period prior to 1780 CE. The following sections discuss some of the necessary 

considerations for future development of the SPaDA. 

3.5.1 The need for independent verification 

Data availability was a major limitation in developing the SPaDA and has resulted in several 

changes to the established methodology for producing reconstructions from tree rings. A major 

consequence of the short instrumental data is the lack of an independent verification period for 

most grid points. Although using CVRE as the primary verification metric has precedence in the 

development of drought atlases (Morales et al., 2020), CVRE is a measure of the variance 

explained during the calibration period and not a true verification statistic. Verification data is 

only available for a very small number of the SPaDA grid points (Table 3-1), and thus, the 

majority of the SPaDA domain remains statistically unverified. In the absence of verification data, 

evidence for reconstruction skill in the SPaDA is demonstrated in two ways. First, the SPaDA 

accurately captures high-frequency Pacific SST dynamics over the entire instrumental data period 

(Figure 3-9), providing evidence of spatial and temporal reliability back to 1875. The SPaDA was 

then qualitatively compared to reports of unusual hydroclimatic variability from historical climate 

records, which is a standard verification procedure even for tree-ring reconstructions that have 

independent verification periods. The ability of the SPaDA to represent the four historical 

droughts (Figure 3-10) does improve confidence in the results, however, much of the information 

we have on the timing and magnitude of these droughts were derived from tree rings, are and not 

completely independent of the SPaDA estimates. A lack of documentary evidence also means 

there is no historical event verification for the first 140 years of the reconstruction. 

The final verification was undertaken by comparing the results of the SPaDA and the Random 

Forest classifier to other ENSO reconstructions. There is excellent agreement between PC1 of the 

SPaDA and the two annually resolved ENSO reconstructions (Figure 3-16) which improves 

confidence in the results. There is also good agreement between the RFC classification results 

and the event-based multiproxy ENSO reconstruction, although the RFC identified far fewer El 

Niño events than were identified by Gergis and Fowler (2009) which suggests a mismatch in the 

criteria used to define an El Niño. However, there is very little fidelity between the RFC 
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classification and the coral-only reconstruction of Freund et al. (2019) (Figure 3-17). This is 

problematic because only the coral-based reconstruction is truly independent of the SPaDA 

results. The fidelity between the other three reconstructions is increased by shared tree-ring 

predictors. 

Many paleo reconstructions of ENSO have been developed (e.g., Cobb et al., 2003; D’Arrigo et 

al., 2005; Emile-Geay et al., 2013; Khider et al., 2011; Li et al., 2013; Wilson et al., 2009; Zhu et 

al., 2022), but in many cases there is little correspondence between them outside of the data period 

(Yun & Timmermann, 2019). The choice of proxy type/s and locations impact the divergence 

between reconstructions much more than the choice of reconstruction method (Wilson et al., 

2009). Tree-rings are incorporated into many reconstructions due to a lack of proxy data from 

within the Niño-34 region. However, using data from teleconnected regions necessarily assumes 

stationarity and cannot provide independent verification for the ENSO impacts on megadroughts 

discussed in many drought atlases (Emile-Geay et al., 2013). While coral proxies are located close 

to the geographical centre of ENSO action, they have several disadvantages including short 

length, discontinuities, and dating errors (DeLong et al., 2013; Zhu et al., 2022). Dating errors of 

even one year degrade correlations and make it impossible to compare event years between 

reconstructions, and the probability of such errors in coral records increases back in time (Wilson 

et al., 2009). In addition, the current coral network is dominated by records from the western and 

central equatorial Pacific which have been shown to capture La Niña events more faithfully than 

El Niño events (Zhu et al., 2022). 

To further demonstrate the difficulty in comparing tree-ring and coral based reconstructions, 

Figure 3-18 plots the running correlation between PC1 of the SPaDA and two new ENSO 

reconstructions (Zhu et al., 2022), one based only on coral records (Zhu_c2022) and one 

incorporating both corals and tree rings (Zhu_ctr2022). These reconstructions were both 

developed using paleo data assimilation methods and calibrated using the same data and 

calibration interval. As Figure 3-18a shows, PC1 of the SPaDA and the multiproxy Zhu_ctr2022 

reconstruction are highly correlated over the entire common reconstruction interval (1640-1998), 

with similar correlation strength as the previous comparisons in Figure 3-16. In contrast, PC1 and 

Zhu_c2022 are only significantly correlated over the period from ~1850 CE (Figure 3-18b). 

Despite the overlap in coral proxies used, and the consistent methods and calibration, 

Zhu_ctr2022 and Zhu_c2022 also lose fidelity prior to 1850, with non-significant correlations 

during much of the first half of the common reconstruction interval (Figure 3-18c).  
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Figure 3-18 50-year running Pearson correlation between the SPaDA PC1 and the ENSO 
reconstructions of Zhu et al., (2022): a) PC1 vs the multiproxy coral and tree-ring reconstruction, b) 
PC1 vs the coral only reconstruction, and c) the Zhu et al. reconstructions compared directly. Grey 
bars indicate periods where correlations are not significant (p > 0.05). 

Therefore, the lack of fidelity between the SPaDA and the coral reconstruction of Freund et al. 

(2019) does not necessarily invalidate the SPaDA results. Nor do potential dating errors negate 

the usefulness of the coral reconstructions in Freund et al., which are used to investigate the 

changing frequency of El Niño events over time. Errors in the chronology of a few years are 

negligible to frequency calculations over centuries. However, this does mean that the SPaDA is 

still without independent statistical verification during the instrumental period for most of the 

spatial domain, and without documentary or truly independent paleo verification for most of the 

reconstruction length. Without this verification and considering the limitations of the calibration 

period discussed above, the SPaDA results prior to ~1780 should be used with caution. 

3.5.2 Length of the calibration period 

Capturing low-frequency climate variability is important to accurately represent past extreme 

events in the SPaDA. The underestimation of low-frequency variability is a common problem in 

paleo-reconstructions (Christiansen & Ljungqvist, 2017). Predictor selection almost always 

includes screening predictors against instrumental data; but, due to the data length, screening is 

largely restricted to high-frequency variability (Christiansen & Ljungqvist, 2017). Linear 

regression models calibrated to short instrumental data periods are therefore optimised to the 

calibration period frequencies (years to decades) and can underestimate low-frequency 

information (Osborn & Briffa, 2004). 
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If the relationship between the predictor and the predictand are frequency-dependant, only the 

calibration period frequencies will be accurately captured in the reconstruction (Christiansen & 

Ljungqvist, 2017). Thus, Franke et al. (2013) showed that tree-ring reconstructions can 

systematically overestimate low-frequency variability (i.e., redden the reconstruction) due to bias 

in the spectral frequency of the tree-ring proxies compared to the instrumental data being 

propagating through to the reconstructions. The pseudoproxy experiments of Smerdon et al. 

(2016) demonstrated that regression techniques themselves can both increase and decrease the 

ratio of low-to-high spectral frequency, independent of spectral biases in the proxies. They found 

complex and spatially variable changes to reconstruction spectral variance in their pseudoproxy 

climate field reconstructions.  

Additionally, Yun & Timmermann (2019) found that selection of the calibration period (i.e., 

length independent) has a large effect on multidecadal to centennial-scale climate variability in 

their pseudoproxy reconstructions of ENSO. They concluded that low-frequency variability has 

a stronger dependency on the selected calibration period due to the role of external forcing, which 

explains why there was calibration period-independent fidelity in the internally forced ENSO 

band, but a lack of fidelity in the low-frequency band in their reconstructions.  

These studies show that regression techniques used for paleo-reconstructions can change the 

spectral characteristics of the reconstructed variable with respect to the data used for calibration. 

Both the length of the calibration period in relation to the main frequencies of Pacific climate 

variability, and the period used for calibration, play important roles in the spectral variance of the 

final reconstruction. These studies used calibration periods ranging from 80-150 years. Most grid 

points in the SPaDA have a very short calibration period, which may further contribute to spectral 

bias in the low-frequency range. Figure 3-12 demonstrates that low-frequency variability at 

interdecadal and longer frequencies is present in PC2 of the SPaDA. Note that the separation of 

modes of variability by frequency is a common artifact in principal component analysis, and, with 

appropriate rotation of the EOFs, a method used to distinguish between ENSO and lower-

frequency climate modes without filtering (Chen & Wallace, 2016; Chen et al., 2017). 

Whether low-frequency information in the SPaDA is underestimated, however, is almost 

impossible to quantify because of the same data limitations that prevent the use of a longer 

calibration period. The impact of the calibration period length on the spectra of reconstructions 

for Apia, Samoa, was tested using the multi-taper method. Figure 3-19 shows timeseries of the 

proportional band-power in the decadal (10-20 year) and multidecadal (> 20 year) frequency 

bands in 50-year moving windows, for all reconstructions calibrated using 40 and 60 years of data 

(Table 3-3). While the reconstructions agree on the periods of higher or lower band-variance, 

there is a large spread in the proportion of total power represented by the decadal and multidecadal 
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band, and the divergence between the reconstructions increases moving further back in time. 

Pearson correlations between the reconstructions also vary widely, between 0.38 - 0.97 for the 

40-year calibration periods and 0.57 – 0.93 for the 60-year calibration periods. The strength of 

the correlation is not closely related to the overlap in the calibration period datasets, indicating 

that the reconstructions are sensitive to the characteristics of the calibration period, particularly 

when only 40 years are used. This analysis was not repeated for the Tahiti variable calibration 

period reconstructions as almost none passed the verification tests. 

 

Figure 3-19 Power in the decadal (10-20 years, orange) and multidecadal (> 20 years, blue) frequency 
bands as a proportion of total power in 50-year moving windows for all reconstructions of Apia, 
Samoa calibrated using 40 or 60 years of instrumental data. 

The implication, if low-frequency variability in the SPaDA is underestimated, is that the results 

will underestimate the true range of climate variability over the reconstruction interval. The RFC 

could reasonably be expected to have underestimated the occurrence of extreme or zonal El Niño 

events in the past. The wider implication of the short calibration period is that there is less 

certainty in the reconstruction results then there would be if a longer calibration period was used, 

even for grid points with independent verification periods. 

3.5.3 Assumptions of stationarity 

As mentioned above, the major criticism of using tree-ring reconstructions to discuss ENSO 

dynamics is the likelihood that teleconnections are not stationarity over centuries. However, the 

purpose of using a circum-Pacific network of tree rings in the SPaDA is to reduce the influence 

of non-stationarities between the Pacific and any single region on the reconstruction. Both 

temporal instabilities in ENSO-precipitation relationships, and the effects of non-linear ENSO 

teleconnections (e.g., regions where the precipitation response to one phase of ENSO is stronger 

than the other), should be reduced using the SPaDA predictor network. Using pseudoproxy 
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experiments, Batehup et al. (2015) demonstrated that choosing proxies from multiple 

teleconnected regions minimises the effects of non-stationarities on reconstruction skill. Further 

evidence that non-stationarities are unlikely to have affected the SPaDA is provided by the 

stability of the correlation between the SPaDA PC1 and the multiproxy reconstruction of Zhu et 

al. (2022) (Zhu_ctr2022; Figure 3-18a). The Zhu_ctr2022 reconstruction incorporates the 

MADA, North American drought atlas, New Zealand North Island kauri composite and a tree-

ring composite from Altiplano, South America, as well as coral proxies. The SPaDA incorporates 

the MADA, MXDA, and the full ANZDA and SADA domains. If regional non-stationarities were 

affecting either reconstruction, periods of low fidelity should be apparent in the running 

correlation. While the SPaDA is likely robust to instability in ENSO teleconnections, until a long, 

continuous, error-free proxy from a centre of ENSO action is developed, the potential effects of 

non-stationarity on the SPaDA reconstruction cannot be fully assessed.  

3.6 Conclusions 
Recent research has made considerable progress on understanding recent trends in and causes of 

meteorological drought in the South Pacific (e.g., McGree et al., 2016). However, due to data 

limitations, the quantification and attribution of historical drought trends and variability is still 

lacking (Iese et al., 2021). The severe impacts droughts can have on small Pacific Islands, and 

uncertainty around future drought trends, means this is an important research gap. If a well 

verified SPaDA can be developed, it has the potential to substantially contribute to the 

understanding of past droughts in the South Pacific. In addition to resolving some of the 

limitations addressed in the previous section, future work could focus on reconstructing SPEI for 

both the wet and dry seasons to improve the understanding of the seasonal behaviour of droughts 

over the South Pacific. 

The use of the RFC to identify extreme events shows great promise. The RFC result composites 

in Figure 3-13 demonstrate that the trained classifier can identify La Niña and El Niño events 

faithfully throughout the reconstruction interval. Anomalous patterns of precipitation do not 

consistently identify zonal events, as was hypothesised at the start of this study, which is due to 

the large differences in drought conditions in the instrumental data used to train the model, rather 

than the performance of the RFC itself. The ability of the RFC to provide the probability 

associated with a classification in addition to classifying each year is very useful. This method 

has the potential to explore the different impacts ENSO events have on Pacific Island drought. 

What else is needed to develop a drought atlas for the South Pacific? Updated tree-ring 

chronologies would allow SPEI data after 1998 to be used for calibration, potentially allowing 

more grid points to be independently verified. New calibration methods could also be explored, 

such as moving-block calibration and verification (see Chapter 5, Appendix D), although the 
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results for Apia and Tahiti show that 40 years of data is the minimum period needed for 

calibration. Further efforts to recover documentary evidence of climate from the Pacific Islands 

would provide additional data for verifying the SPaDA results independent of proxies. Critically, 

more research effort is needed to develop new proxies from the centres of ENSO action – be they 

marine proxies or terrestrial proxies from the Pacific Islands.  
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Chapter 4 Do Southern Hemisphere tree rings record past volcanic 
events? A case study from New Zealand  

 
The content in this chapter has been reproduced (with reformatting) from the following journal 

paper:  

Higgins, P. A., Palmer, J. G., Turney, C. S. M., Andersen, M. S., & Johnson, F. (2022). Do 

Southern Hemisphere tree rings record past volcanic events? A case study from New Zealand. 

Climate of the Past, 18(5), 1169–1188. https://cp.copernicus.org/articles/18/1169/2022/ 

 
4.1 Abstract 
Much of our knowledge about the impacts of volcanic eruptions on climate comes from proxy 

records. However, little is known about their impact on the low to mid-latitudes of the Southern 

Hemisphere. Using superposed epoch analysis, we investigated whether volcanic signals could 

be identified in annual tree-ring series from eight New Zealand dendrochronological species. We 

found that most species are reliable recorders of volcanic cooling and that the magnitude and 

persistence of the post-event response can be broadly linked to plant life history traits. Across 

species, site-based factors, particularly altitude and exposure to prevailing conditions, are more 

important determinants of the strength of the volcanic response than species. We then investigated 

whether chronology selection impacts the magnitude of post-volcanic cooling in tree-ring-based 

temperature reconstructions by developing two new multispecies reconstructions of New Zealand 

summer (December–February) temperature with one reconstruction from the pool of all available 

chronologies, and the other from a selected subset shown to be sensitive to volcanic eruptions. 

Both reconstructions record temperature anomalies that are remarkably consistent with studies 

based on instrumental temperature and the ensemble mean response of climate models, 

demonstrating that New Zealand ring widths are reliable indicators of regional volcanic climate 

response. However, we also found that volcanic response can be complex, with positive, negative, 

and neutral responses identified – sometimes within the same species group. Species-wide 

composites thus tend to underestimate the volcanic response. This has important implications for 

the development of future tree-ring and multi-proxy temperature reconstructions from the 

Southern Hemisphere.  

4.2 Introduction 
Emissions from large volcanic eruptions are a key source of temperature and hydroclimate 

variability on interannual to decadal timescales (Iles et al., 2013; Robock, 2005; Sigl et al., 2015). 

As few large volcanic eruptions have occurred during the instrumental era, much of our 

knowledge about volcanic impacts on climate, particularly regional and global temperature, 

https://cp.copernicus.org/articles/18/1169/2022/
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comes from proxy records spanning centuries to millennia (D’Arrigo et al., 2013; Tejedor et al., 

2021; Wilson et al., 2016). These records are predominantly high-altitude or high-latitude tree-

ring proxies from the Northern Hemisphere (e.g., Briffa et al., 1998; D’Arrigo et al., 2009; Pieper 

et al., 2014). In comparison, there are very few proxy-based characterisations of the temperature 

response to volcanic events from the Southern Hemisphere (Neukom et al., 2014; Tejedor et al., 

2021). The limited number of studies considering Southern Hemisphere tree-ring proxies have 

generally not found significant impacts following what are considered “large” volcanic eruptions 

(Allen et al., 2018; Cook et al., 1992; Krakauer & Randerson, 2003; Palmer & Ogden, 1992). 

Two eruptions (Santa Maria in 1902 CE and Agung in 1963 CE) have been identified in tree-ring 

sites spanning South America, but the impacts of other eruptions on growth have proved less 

conclusive (Villalba & Boninsegna, 1992). 

Discovering whether the hemispheres have contrasting sensitivities to volcanic eruptions is vital 

to understanding future climate projections (Neukom et al., 2014). The muted volcanic impact in 

Southern Hemisphere proxy reconstructions could be due to a maritime dampening effect on 

post-eruption cooling and/or the distribution of landmasses toward the Equator (Allen et al., 2018; 

Krakauer & Randerson, 2003; Raible et al., 2016). Such explanations suggest that the magnitude 

of Southern Hemisphere cooling is too small to be reliably recorded in tree-ring archives. 

However, climate models show a clear Southern Hemisphere volcanic signal via reduced mean 

surface air temperatures (Neukom et al., 2014, 2018). There are several potential explanations for 

the discrepancy between proxy reconstructions and climate models in the Southern Hemisphere. 

These include the underestimation of the moderating effects of the ocean on post-eruption cooling 

in climate models, changes to the hydrological cycle in response to volcanic cooling, uncertainties 

in volcanic forcing data, and/or proxy noise and spatial distribution (Neukom et al., 2018; Zhu et 

al., 2020).  

The question remains as to whether Southern Hemisphere proxies – specifically tree rings – do 

record volcanic events. To our knowledge, no studies have explored the factors which influence 

whether (or not) volcanic signals can be identified using tree-ring data from the Southern 

Hemisphere. Tree growth depends on a range of environmental and biological factors, and thus 

careful site and tree selection is necessary to ensure that a specific influence of interest can be 

studied (Norton & Ogden, 1987). Northern Hemisphere tree-ring studies are predominantly from 

high latitudes or mid-latitude alpine treeline sites where tree growth is temperature limited 

(Scuderi, 1990). Around 80% of chronologies from such sites show significant growth reductions 

following large eruptions due to unusually low growing-season temperatures (Krakauer & 

Randerson, 2003). For high-latitude sites, decreased light availability after eruptions also 

contributes to the strong growth reduction (Tingley et al., 2014). Tree-ring studies from Northern 

Hemisphere mid-latitude lowland sites have shown that volcanic response is less clear, as 
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temperate-zone trees are less temperature-limited and have more complex relationships with 

multiple climate variables (Pieper et al., 2014; Wilson et al., 2016).  

Exploring possible responses to volcanic eruptions, Pieper et al. (2014) proposed three modes for 

tree growth in temperate regions: (1) growth reduction due to decreased growing-season 

temperature, resulting in narrow rings, (2) neutral or no response if the climate sensitivity to 

volcanic eruptions is insufficient to influence tree growth, and (3) enhanced growth due to an 

increase in the diffuse light fraction and reduced water stress, resulting in wide rings. 

Temperate-zone trees from the Southern Hemisphere are also likely to display similar mixed 

volcanic signals, depending on their relative sensitivity mode and the magnitude of the regional 

cooling effect. Understanding these factors will help elucidate the proxy archive contribution to 

the Southern Hemisphere model–data discrepancy. This knowledge will benefit future studies of 

hemispheric temperatures and help identify which species and/or regions should be prioritised for 

future proxy development.  

Our goal in this study is to assess whether Southern Hemisphere tree rings record past volcanic 

events using a multispecies network of high-quality, replicated tree-ring chronologies from New 

Zealand. This country is a long, narrow, archipelagic landscape stretching from 34 to 47 °S. 

Climatically, the northern part protrudes into the warm sub-tropical ridge, whereas the southern 

end is embedded in the cool southwesterlies (Salinger, 1980). The North Island and South Island 

axial ranges, which rise to 3764 m, are a significant barrier to east–west airflow, leading to strong 

regionalisation of precipitation anomalies (Salinger, 1980). Land clearing has resulted in the loss 

of forests from most low-land areas and nearly all of the eastern drylands. The most common 

remaining forest types are wet conifer–broadleaved forests and montane to alpine forests 

dominated by southern beech (Nothofagaceae) (McGlone et al., 2017). 

Tree-ring chronologies have been developed from locations widely distributed throughout New 

Zealand. Since the initial dendrochronological studies undertaken by LaMarche et al. (1979), 

records have been generated from nine endemic species, of which seven are conifers and two are 

Nothofagaceae (Table 4-1). Five main species have been used to develop multi-centennial tree-

ring chronologies: kauri (Agathis australis), pink pine (Halocarpus biformis), silver pine 

(Manoao colensoi), cedar (Libocedrus bidwillii), and silver beech (Lophozonia menziesii). Most 

chronologies are primarily sensitive to austral summer temperatures, with temperature 

reconstructions developed from beech (Norton et al., 1989), silver pine (Cook et al., 2002), cedar 

(Palmer & Xiong, 2004), pink pine (Duncan et al., 2010), and multi-species networks (Salinger 

et al., 1994). Thus, New Zealand, with its wide latitudinal and altitudinal range, regionalised 

climate zones, and wide distribution of tree-ring chronologies from multiple species – including 

some instances of multiple species from the same site – is ideal for studying tree-ring sensitivities 
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to past volcanic events. Using the New Zealand dendrochronological dataset, we aim to answer 

the following specific questions.  

1. Can we identify volcanic signals in high-quality tree-ring series from the Southern 

Hemisphere? 

2. Are there differences in the expression of volcanic signals amongst the species?  

3. Does chronology selection impact the magnitude of post-volcanic cooling in tree-ring-

based temperature reconstructions?  

4.3 Data and methods  
4.3.1 Tree-ring chronologies  

The New Zealand tree-ring chronologies analysed in this study were collated to develop the 

Eastern Australia and New Zealand Drought Atlas (Palmer et al., 2015; Figure 4-1). Palmer et al. 

(2015) identified chronologies from the International Tree Ring Data Bank and personal 

collections, screened the tree-ring measurements for dating problems using the software program 

COFECHA (Holmes., 1983), and developed site “master” chronologies from the raw ring widths 

using the “signal-free” method of standardisation (Melvin & Briffa, 2008). The metadata for all 

New Zealand chronologies are provided in Table C-1 in Appendix C. As only a single chronology 

has been developed from mountain toatoa (Phyllocladus alpinus), it was excluded from the study, 

leaving a pool of 96 chronologies from eight dendrochronological species for volcanic response 

analysis.  

 
Figure 4-1 Distribution of tree-ring chronologies in New Zealand. Elevation data sourced from the 
LINZ Data Service and licensed for reuse under CC BY 4.0. 
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Table 4-1 Distribution, reported climate sensitivities, and key references for New Zealand dendrochronological species.  

Code Species Common 
name 

No. 
chronologies 

Ring width 
(mm/y) 

Persistence 
(GINI2) Distribution Reported climate 

sensitivity 
Temperature 
sensitivity3 Chronology development 

AGAU Agathis australis  Kauri  17 (9*)1 1.66 ± 0.59 0.106 
North Island, north of 38°S; 
predominantly lowland 
forests, can be > 500 m 

ENSO; inverse 
relationship to current 
year temperature and 
precipitation. 

Inverse relationship to 
current summer 
temperatures. 

(Boswijk et al., 2006; Buckley 
et al., 2000; Fowler et al., 
2008; LaMarche et al., 1979; 
Ogden & Ahmed, 1989; 
Palmer et al., 2006) 

HABI Halocarpus biformis Pink pine 20 (19*) 0.44 ± 0.1 0.074 
Low altitude to sub-
alpine; central North Island to 
Stewart Island 

Frost tolerant; sensitive 
to year-round 
temperatures 

Current growing 
season (P); prior 
summer (S). 

(D’Arrigo et al., 1996; 
Fenwick, 2003; Xiong et al., 
1998) 

LACO 
Manoao colensoi 
(formerly Lagerostrobos 
colensoi) 

Silver pine 6 (4) 0.56 ± 0.20 0.065 
Low-elevation forests of the 
South Island west coast and 
some North Island locations. 

Summer temperatures 

Inverse relationship to 
prior autumn (P); 
Current summer/ 
autumn (S). 

(Cook et al., 2002; D’Arrigo et 
al., 1998) 

LIBI Libocedrus bidwillii  New Zealand 
cedar 26 (21) 0.7 ± 0.17 0.091 

Widely distributed over North 
and South Islands south of 
38°S; 200 to 1200 m above 
sea level 

Summer temperatures, 
precipitation 

Inverse relationship to 
prior summer (P); 
Current summer (S). 

(LaMarche et al., 1979; Xiong 
& Palmer, 2000) 

NOME 
Lophozonia menziesii 
(formerly Nothofagus 
menziesii) 

Silver beech 7 (1) 1.14 ± 0.24 0.136 
Montane and subalpine 
forests, common in the South 
Island 

Summer temperatures 

Inverse relationship to 
prior summer/ autumn 
(P); Current summer 
(S). 

(Norton, 1983b, 1984) 

NOSO 

Fuscopora cliffortioides 
(formerly Nothofagus 
solandri var. 
cliffortioides) 

Mountain 
beech 11 (4) 0.92 ± 0.23 0.136 

Closed forests of the central 
North Island and the eastern 
South Island, valley floor to 
~1300 m 

Summer temperatures 

Inverse relationship to 
prior summer/ autumn 
(P); Mixed current 
summer signal (S). 

(Norton, 1983a, 1984) 

PHAL Phyllocladus alpinus Mountain 
toatoa 1 0.59 ± 0.22 0.065 Throughout New Zealand, 

lowland to subalpine forests N/A N/A (LaMarche et al., 1979) 

PHGL Phyllocladus toatoa 
(formerly P. glaucus) Toatoa 4 0.63 0.129 North Island, montane forest 

between 850 and 1000 m 

Summer temperatures, 
precipitation, pressure 
anomalies 

Inverse relationship to 
prior summer/ 
autumn. 

(Dunwiddie, 1979; LaMarche 
et al., 1979; Palmer, 1989; 
Salinger et al., 1994) 

PHTR Phyllocladus 
trichomanoides Tanekaha  5 1.04 0.118 Lowland forest up to 800 m 

above sea level, north of 42°S 

Summer temperatures, 
precipitation, pressure 
anomalies 

Inverse relationship to 
prior summer/ 
autumn. 

(Dunwiddie, 1979; LaMarche 
et al., 1979; Palmer, 1989; 
Palmer & Ogden, 1992; 
Salinger et al., 1994) 

 1 Number in brackets indicate the number of chronologies extending to 1990 available for the temperature reconstructions. *Includes published master chronology. 
2 GINI coefficient – an all-lag measure of diversity in tree-ring records (Biondi & Qeadan, 2008) 
3 Summary of sensitivity to New Zealand average temperatures, calculated for this study (see also Figure C-1 to Figure C-6). Where significant relationships to both prior and current season temperatures exist, 
P indicates the primary (dominant) sensitivity and S indicates the secondary sensitivity. 
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Table 4-1 summarises the distribution, average climate responses, and main wood properties 

(average annual ring growth and temporal correlation or persistence) of the species, as described 

by the studies documenting the development of the chronologies. In addition, the response of each 

species to average New Zealand monthly temperatures, calculated for this study, is also 

summarised. All species show significant (p < 0.05) relationships with average New Zealand 

temperatures (Mullan, 2012; Salinger, 1981) during individual months of the current growing 

season, except toatoa (Table 4-1, Figure C-1 to Figure C-6 in the Appendix C). Tree growth is 

only weakly correlated with average monthly temperatures, with |r | < 0.3 for most chronologies. 

Pink pine shows stronger correlations with summer temperatures, with r values of 0.4–0.6. Pine 

pink is also significantly correlated to temperatures over the entire growing season, whereas the 

other species are seasonally restricted with significant correlations to peak summer temperatures 

only. Most species are positively correlated to current season temperatures, with wider ring widths 

associated with warm years; however, kauri and beech show an inverse relationship to 

temperature, with warm temperatures restricting growth. Cedar, silver pine, mountain beech, and 

both Phyllocladus species show stronger sensitivities to prior than current season temperatures 

(Figure C-1 to Figure C-6).  

4.3.2 Selection of volcanic events  

Event selection is a significant source of uncertainty in tree-ring studies of volcanic cooling. The 

choice of volcanic events can greatly influence the magnitude of average regional cooling 

identified (Esper et al., 2013; Wilson et al., 2016). In addition, for many events that occurred 

before instrumental records, the timing, location, and size of eruptions are uncertain (Garrison et 

al., 2018; Timmreck et al., 2021). For this analysis, we are interested in those events which would 

likely have reduced growing-season temperatures over New Zealand and thus be identifiable as 

ring-width anomalies. Therefore, we selected events using a regional volcanic dimming threshold 

rather than an eruption magnitude. Prior to the instrumental era, we picked events from the 

Greenland and Antarctic ice core sulfate aerosol analysis of Toohey and Sigl (2017) based on 

peak stratospheric atmospheric aerosol depth (SAOD). We averaged SAOD, modelled using the 

Easy Volcanic Aerosol module (Toohey et al., 2016), over the latitudinal range of New Zealand 

(30 to 50 °S). The SAOD magnitude corresponding to a substantial temperature response is 

unknown before analysis. However, selecting a magnitude post-analysis based on the observed 

response risks biasing the results (Haurwitz & Brier, 1981). Therefore, the following two different 

SAOD thresholds were used: SAOD > 0.08, which resulted in 10 eruptions for analysis between 

1400 and 1900 CE, and SAOD > 0.04, resulting in 18 eruptions for the same period (Figure 4-2). 

Between 1900 and 1990 CE, we selected the three largest tropical eruptions, which have been 

shown to have significant impacts on instrumental temperatures in New Zealand (Salinger, 1998). 

At each methodological step, the analysis was carried out using both the 13 (10 pre-1900 CE 
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events plus 3 post-1900CE) and 21 (18 pre-1900CE events plus 3 post-1900 CE) event lists 

separately. Full details of all selected eruptions are provided in Table C-2 in Appendix C.  

 
Figure 4-2 Selection of volcanic events based on thresholds of peak modelled stratospheric 
atmospheric optical depth (Toohey and Sigl, 2017), averaged over 30–50 °S, greater than 0.04 (blue) 
and 0.08 (red). Known eruptions are labelled.  

4.3.3 Superposed epoch analysis  

We tested whether a volcanic signal can be identified in New Zealand tree-ring chronologies 

using superposed epoch analysis (SEA; Haurwitz and Brier, 1981), a statistical technique widely 

used to determine the impacts of volcanic eruptions on climate (Adams et al., 2003; Rao et al., 

2019; Salinger, 1998; Scuderi, 1990; Tejedor et al., 2021). The composite response of individual 

chronologies to the 13 largest eruptions and the 21 full eruption list between 1400 and 1990 CE 

was studied 0–5 years post-event, with anomalies calculated by subtracting the average of the 

nearest 5-year background period undisturbed by volcanic forcing (Table C-2; Büntgen et al., 

2020). Species-level responses were then tested using a composite chronology produced by 

simple averaging of annual values across sites (Cook & Kairiukstis, 1990). Volcanic responses 

were categorised as positive or negative if the anomalies exceeded the 5th or 95th percentile 

response of 10 000 random samples of years undisturbed by volcanic forcing or neutral if they 

fell between these bounds.  

4.3.4 Temperature reconstructions 

To investigate the influence of chronology selection on the identification of volcanic signals in 

temperature reconstructions, we report two new reconstructions of New Zealand summer 

temperatures (December–February). We used the New Zealand average “seven-station” monthly 

instrumental temperature series (Mullan, 2012; Salinger, 1981), obtained from the New Zealand 

National Institute of Water and Atmospheric Research (NIWA), to examine the temperature 

response of the chronologies. Correlations were calculated between autoregressively modelled 
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chronologies and monthly climate data, with each month treated as a separate time series. A 

20-month window was selected for correlation analysis, extending from October of the previous 

growing season to May at the end of the current austral growing season. Two growing seasons 

were included as significant prior season climate sensitivities have been reported for some 

species.  

Based on the response analysis, December–February (DJF) was selected as the seasonal target, 

as this window captures the strongest correlations across all species (Table 4-1). To ensure 

sufficient overlap between the chronologies and the temperature dataset for calibration and 

verification, only chronologies extending to or beyond 1990 CE were retained for the 

reconstructions. As many sites have not been updated since they were originally sampled in the 

1970s and 1980s, only 58 of the 96 chronologies were retained. The first reconstruction (NZall) 

included the full suite of available chronologies extending to 1990 CE, while the second (NZsel) 

was limited to those chronologies that showed a significant volcanic signal using SEA. In each 

case, only those chronologies significantly (p < 0.1) correlated to average DJF temperatures over 

the period 1911–1990 CE were used. The tree-ring series were also tested as potential predictors 

with a lag of 1 year with respect to the temperature data, as prior climate often has a lingering 

influence on current year’s tree growth (Fritts, 1976; Table 4-1). Average DJF temperatures were 

reconstructed using nested principal component linear regression (Cook et al., 1999, 2007, 2010). 

A 50:50 split calibration–validation scheme was used in which the model was initially calibrated 

on the first half of the data (1911–1950 CE) and validated on the second half (1951– 1990 CE); 

following this, the model was re-estimated with the calibration and validation periods reversed. 

Once the split models were verified based on the verification period reduction of error (VRE) and 

verification period coefficient of efficiency (VCE; Cook and Kairiukstis, 1990) metrics, the entire 

data period was used to produce the final reconstructions (Briffa et al., 1990). 

The volcanic response in tree-ring reconstructions of temperature was also tested using SEA and 

the two sets of volcanic eruption years. Further, variation in the temperature response to different 

volcanic events was estimated by calculating the 90th percentile bootstrap confidence interval 

from 1000 replicates drawn without replacement from the event list (Rao et al., 2019). In each 

iteration, approximately two-thirds (9 of 13 or 15 of 21) of the volcanic events were selected. The 

confidence interval provides some indication of how eruptions of different sizes, locations, and 

seasonality may impact the SEA results. To further assess how event selection may have affected 

the SEA results, the analysis was repeated using volcanic events selected from the ice core 

analysis of Crowley & Unterman (2013), using a Southern Hemisphere-wide average threshold 

of SAOD > 0.08 and SAOD > 0.04 rather than a regional threshold (Table C-3).  
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We compared the volcanic response seen in our multi-species reconstructions to the ensemble 

mean DJF response of seven climate models from the Coupled Model Intercomparison Project 5 

(CMIP5) suite with Last Millennium (past1000, 850–1850 CE) simulations. The CMIP5 models 

were forced with either the Gao et al. (2008) or Crowley and Unterman (2013) volcanic forcing 

series (see Table C-4). Data from the historical simulations were appended to extend the dataset 

from 1850 to 2005 CE. 

4.4 Results 
4.4.1 Overall species volcanic responses  

The results of the superposed epoch analysis for the 13 largest volcanic eruptions between 1400 

and 1990 CE are shown in Figure 4-3. Two composite responses are shown for each species: the 

response averaged across all sites (“all chronology composite”) and the response calculated only 

from the site chronologies that individually showed a significant (either positive or negative) 

response to volcanic eruptions (“sensitive chronology composite”). Analysis was repeated for the 

full set of 21 eruptions with SAOD > 0.04, with similar (but weaker) results for most species, 

suggesting that not all events had a measurable climatic impact over New Zealand (Figure C-7).  

The species-wide response to volcanic events varied widely between New Zealand 

dendrochronological species. Three out of eight species, i.e., silver pine, mountain beech, and 

tanekaha, recorded a composite neutral response. Tanekaha is only weakly correlated to New 

Zealand average temperatures (Figure C-6b), which may explain its subdued response. However, 

compared to other species, mountain beech and silver pine both show relatively strong 

temperature sensitivities (Figure C-1a and Figure C-4). As many mountain beech chronologies 

extend only to the mid-1700s, the species composites were tested against a smaller subset of 

volcanic events, which may contribute to this result.  

Of the remaining five species, one recorded a positive response, while four recorded a negative 

response. Kauri (Figure 4-3a) was the only species to show a composite positive response to 

volcanic events, maximal in year t + 1. Kauri showed a consistent response across sites, with all 

except two chronologies showing a positive anomaly following an event, although only 8 of the 

17 positive responses were significant at p < 0.05. The sensitive chronology composite recorded 

a very strong t + 1 response, indicating that at these eight sites, kauri receives a significant growth 

benefit from the climatic changes following a volcanic eruption. This response is coherent with 

the predominant kauri temperature sensitivity, which is an inverse response to current summer 

temperatures (Figure 4-3). However, as most kauri chronologies are only weakly correlated to 

monthly temperatures, the strong volcanic response suggests climatic changes other than 

temperature also contribute to the post-event growth benefit.  
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Pink pine, cedar, silver beech, and toatoa show lagged negative responses to volcanic events, with 

peak negative anomalies recorded in years t +2 or t +3 (Figure 4-3b, c, e, and g). The pink pine 

response is consistent across sites. All except one pink pine chronology recorded a negative 

response in t + 2, which was significant for most of the chronologies (14/21; p < 0.05). This 

response is coherent with the pink pine’s broad sensitivity to temperatures over the current 

growing season (Figure C-2), i.e., cooler spring–summer–autumn temperatures suppress growth 

across most pink pine sites. Similarly, the negative silver beech response is coherent with its 

current season temperature sensitivity (Figure C-1b), although neither the temperature correlation 

nor the volcanic response is particularly strong. All four toatoa chronologies recorded a significant 

negative response in t + 3. However, as toatoa shows only weak lagged correlation with monthly 

temperatures (Figure C-6a), the link between temperature sensitivity and volcanic response is not 

easily elucidated. In contrast, cedar does not show a consistent species-wide response. Both 

significant negative and positive responses were recorded in 13 of the 26 chronologies, with the 

rest showing a neutral response. This is despite a largely consistent within-species temperature 

sensitivity, which is an inverse response to prior season temperatures (Figure C-5).  

 
Figure 4-3 Mean chronology departures 5 years before and 5 years after the 13 largest eruption years 
(year 0), separated by tree species. The chronologies contributing to the species-wide composite are 
shown in black, with the number of chronologies indicated in parentheses. The sensitive chronology 
composite in shown in blue and the number of contributing chronologies is shown in brackets. 
Significance bands (dotted grey lines) are the 1st, 5th, 95th, and 99th percentile of 10 000 random 
samples of non-event years from the species-wide composite.  

4.4.2 Within-species variability in volcanic response  

The overall muted species response of cedar masks very different individual chronology 

responses. Cedar ring-width series respond differently to volcanic events depending on their 

location, with both very negative and very positive responses recorded. The other species do not 
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show similar variation. The cedar chronologies have the widest geographical distribution of any 

species, and thus geographical factors may influence the variability in response. We used k-means 

clustering via principal component analysis (Ding & He, 2004) to investigate whether 

within-species variation could be explained by obvious factors like regional climate or elevation. 

Principal component analysis (PCA) was applied to the longest common time interval of the 

chronologies (1732– 1976 CE), and the first four principal components were retained.  

Five chronology groups were identified via clustering (Figure 4-4a), broadly corresponding to 

differences in region and altitude. North Island chronologies were distributed in two groups. All 

chronologies are from montane to subalpine areas above 800 m, with groups differentiated 

between coastal (G1) and inland (G2) locations. A single chronology from the north of the South 

Island was included in G2. Chronologies from the western coast of the South Island were also 

distributed in two groups, differentiating between lowland (G3) and montane (G4) forest. The 

final grouping (G5) includes three chronologies from the dry eastern lowlands. Strong – but 

opposing – volcanic responses are identified via clustering. Significant lagged post-eruption 

growth reduction is identified in groups G1 and G2 from montane to subalpine sites from the 

North Island, including Takapari (Figure C-8c), and the southernmost grouping, G5. Group three 

(G3), which includes lowland chronologies from the north-western coast of the South Island, 

including Ahaura and Flagstaff Creek (Figure C-8d and e), receives a growth benefit in the two 

years following an eruption similar to that observed in North Island kauri. In cedar, we observed 

all three of the proposed temperate-zone tree responses to volcanic events – positive, negative, 

and neutral growth – all within a single species, highlighting the importance of site-based factors 

in determining tree response in temperate zones.  

4.4.3 Calibration and validation of the temperature reconstructions  

The peak summer period was selected as the seasonal reconstruction target, as the largest number 

of chronologies across species showed significant correlations with temperatures between 

December and February (Table 4-1). Selecting only those chronologies correlated at p < 0.1 with 

average DJF temperatures resulted in a predictor pool of 45 chronologies for reconstruction NZall, 

of which 25 showed significant volcanic impacts and were used to produce the reconstruction 

NZsens.  

Both New Zealand DJF average temperature reconstructions are shown in Figure 4-5 alongside 

their instrumental fit over the 1911–1990 CE calibration period. There is good agreement between 

the reconstructions, with a Pearson r of 0.81 over the entire reconstruction period and 0.9 after 

1750 CE. The initial, best-replicated nests, which cover the period 1790–1990 CE, account for 

67.5% and 58.2% of instrumental temperature variability for the NZall and NZsens 

reconstructions, respectively. The minimum amount of variance explained over all nests is 44.1% 
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for NZall and 34.3% for NZsens. The full calibration and validation statistics are provided in 

Figure C-9 and Figure C-10. For both reconstructions, VRE values are positive over all nests from 

1413 to 1990 CE; however, VCE values are only positive after 1520 CE in the NZsens 

reconstruction when calibrated to the early window (1911–1950 CE). The declining instrumental 

data quality in the early period and the relatively few predictors retained for NZsens, are likely 

responsible for the negative values.  

 

Figure 4-4 a) Results of k-means clustering of New Zealand cedar chronologies. b–f) Mean 
chronology departures 5 years before and after eruption years (year 0), separated by cluster, and the 
95th and 99th significance levels calculated by generating 10 000 random samples of non-event years 
from the group composite. The map in a) was made with Natural Earth free vector map data, which 
are available at http://naturalearthdata.com (last access: 17 November 2021).  

Increasing temperatures are observable in both reconstructions from around 1950 CE, matching 

the trend in instrumental temperatures. Prior to the instrumental period, temperatures were higher 

than average for a sustained period during the 16th century and for a shorter period in the early 

18th century. Periods of cooler-than-average temperatures have also occurred, starting at ∼ 1470, 

1630, and 1860 CE. The reconstructions are consistent with previously published temperature 

reconstructions from New Zealand (Cook et al., 2002; Duncan et al., 2010; Palmer & Xiong, 

2004) despite differences in the climate targets (seasons and locations), reconstruction 

methodologies, and large differences in the number and geographical distribution of chronologies 

used in their development (Figure C-11 and Table C-5).  
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Figure 4-5 New Zealand average DJF temperature reconstructions. Unfiltered (black) and filtered 
(20-year spline; blue) mean DJF reconstruction with 90% uncertainty interval (grey) between 1400 
and 2018 CE for a) NZall and b) NZsens. Reconstruction fit to instrumental temperature (red) over 
the full calibration period 1911–1990 CE for c) NZall and d) NZsens. The 90% uncertainty interval 
was calculated from 300 maximum entropy bootstrap replications.  

4.4.4 Volcanic signals in the temperature reconstructions  

Figure 4-6 shows the results of the SEA analysis for the two New Zealand temperature 

reconstructions, for both sets of volcanic events, compared to the volcanic response of an 

ensemble of seven CMIP5 model outputs for the New Zealand region. For the 21 events with 

SAOD > 0.04, results are remarkably similar between the temperature reconstructions and the 

model ensemble. Both the timing and magnitude of the post-event anomaly, which is only 

significant in year t + 1, are consistent across the models and reconstructions, as is the timing of 

the post-event recovery, which occurs in year t + 2. The response to the subset of the 13 largest 

events shows larger year t + 1 temperature anomalies for both the climate models and the 

reconstructions, with the greatest increase in response magnitude displayed by the model 

ensemble. Year t +1 anomalies are ∼ 0.1 °C larger for NZall, ∼ 0.2 °C larger for NZsens, and ∼ 

0.4 ◦C larger for the model ensemble than the 21-event anomalies. However, the mean model 

ensemble lies within the 90% uncertainty range of both reconstructions, indicating that the 

difference in magnitude between models and reconstructions is not significant for either the 

restricted 13-event set or the full 21-event set. The difference in post-event recovery is significant, 

with temperatures recovering by year t + 2 in the reconstructions and modelled temperature 
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anomalies persisting in year t + 2. This is the opposite result to many tree-ring-based temperature 

reconstructions from the Northern Hemisphere, which show lagged persistence compared to 

climate models due to biological effects in the ring-width series (see Sect. 4.4).  

 
Figure 4-6 Mean anomalies 5 years before and after 21 eruption years with SAOD > 0.04 a, c) and 13 
eruption years with SAOD > 0.08 b, d) for both the NZall (blue) and NZsens (red) reconstructions. 
The mean response from an ensemble of seven climate models to the same set of events is shown in 
black. The 90th percentile bootstrap confidence intervals were constructed from 1000 replicates of 
either 15 or 9 event years at random.  

The difference between the NZall and NZsens reconstruction response is minor for both subsets 

of volcanic events. The anomaly recorded by NZsens is 0.07 °C larger than NZall for the 21-event 

series and 0.1 °C larger for the 13-event series. The small difference between the reconstructions 

can be explained by the weightings applied to the chronologies in each reconstruction, with both 

reconstructions heavily weighted towards the same subset of chronologies. Four of the eight 

highest-weighted chronologies under-pinning NZall are sensitive to volcanic events, and three of 

these are within the top four highest-weighted chronologies underpinning NZsens (Figure 4-7). 

Thus, limiting NZsens to only sensitive chronologies had less impact on post-eruption 

temperature anomalies than was expected.  
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Figure 4-7 Distribution of tree rings used in a) the NZall temperature reconstruction and b) the 
NZsens temperature reconstruction. Larger, darker red markers represent chronologies with 
greater relative weighting in the multiple regression. Made with Natural Earth free vector map data 
available at http://naturalearthdata.com (last access: 17 November 2021).  

4.5 Discussion 
4.5.1 Volcanic responses recorded by New Zealand trees  

Previous studies have not identified significant volcanic responses in Southern Hemisphere tree 

rings (Krakauer and Randerson, 2003; Palmer and Ogden, 1992) or in the temperature 

reconstructions based on them (Allen et al., 2018; Cook et al., 1992). In contrast to previous 

studies, we found that volcanic events can be clearly identified in New Zealand ring widths, 

although some species are stronger recorders of volcanic signals than others. Unlike Northern 

Hemisphere high-latitude and treeline sites, which tend to show a consistent reduction in growth 

due to volcanic cooling and reductions in light availability, no consistent response was identified 

across New Zealand conifer and Nothofagaceae species. Predominantly negative (pink pine, 

cedar, toatoa, silver beech), positive (kauri), and neutral (mountain beech, t nekaha, silver pine) 

responses were recorded. As most New Zealand chronology sites have been sampled from 

localised areas of residual forest that are restricted compared to their natural distributional range, 

it is difficult to distinguish between species-related sensitivities to volcanic eruptions and regional 

climate factors that may control the response. In reality, it is the combination of biological 

characteristics, including intrinsic species sensitivity, regional climate, and site-specific factors 

(e.g., soils, exposure to prevailing conditions), which determine the observed volcanic response. 

While necessarily simplified, here we discuss some possible explanatory factors for the 

species-wide responses.  

The species-level results in Figure 4-3 and Figure C-7 clearly show two response types following 

volcanic events: a rapid but short-lived response and a delayed response that begins in year t + 2 

or t + 3 but then persists over several years. The first response, demonstrated by mountain beech 
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and kauri, we label here the “fast responder”, and the second, shown by pink pine, silver pine, 

cedar, and silver beech, we label the “stress tolerator” (after Grime, 1979). Many New Zealand 

conifers appear as typical stress-tolerator species, which have adapted to growing in highly 

stressful conditions. As a group, they are longer-lived, slower-growing, taller, and markedly frost-

tolerant species compared to endemic angiosperms and are tolerant of poor soils (e.g., low 

nutrients and often poor drainage). Silver beech is highly frost and exposure resistant, shade 

tolerant, and grows on extreme exposure sites (Manson, 1974; Stewart, 2002). Several species, 

including pink pine and silver pine, show an affinity for leached, low-nutrient, and waterlogged 

soils (McGlone et al., 2017). The stress tolerators are characterised by narrow average ring widths 

and high biological persistence (temporal autocorrelation) arising from carbohydrate storage or 

leaf retention (see Table 4-1). Therefore, stress tolerators are slow to respond to changes in 

conditions, such as volcanic cooling. The stress-tolerator response resembles the response of 

high-latitude Northern Hemisphere trees, although arctic trees display even greater lagged 

persistence, with suppressed growth for up to 10 years following volcanic events (Krakauer and 

Randerson, 2003).  

In contrast, the fast responders both respond and recover more quickly from a detrimental change 

in conditions (e.g., mountain beech) or can rapidly capitalise on beneficial conditions (e.g., kauri). 

These are relatively fast-growing species, indicated by wider average ring widths than the stress 

tolerators, and they have lower persistence (Table 4-1). Mountain beech is shade intolerant but 

has several responses to abnormally cold temperatures, including rapid shoot growth and 

temporarily halting bud formation, which allows it to rebound quickly after a poor summer 

(Wardle, 1970). Kauri could be considered a stress tolerator due to its affinity for poor soils, 

occurrence on ridges and slopes, and drought tolerance (McGlone et al., 2017); however, relative 

to other New Zealand conifers in this study, it is a fast responder.  

In contrast to the subdued, persistent decrease in growth shown by the stress tolerator species, the 

initial decline in toatoa ring width in year t + 0, subsequent extreme decline in year t + 3, and 

recovery by year t + 4 closely resembles the boom–bust behaviour of the fast responders, but with 

several years’ lag. The dominant climate response of toatoa is a weak negative correlation to prior 

growing-season temperatures (Figure C-6a) but a strong positive correlation to summer 

temperatures two growing seasons prior. This results in a quasi-biennial pattern of wide and 

narrow rings, which has also been observed in other species of Phyllocladus. This pattern may be 

related to a climate-triggered flowering cycle (Allen, 1998; Ogden & Dunwiddie, 1982), foliage 

production followed by cladode senescence, or a mast seeding event, which can be triggered by 

multiple cool summers in New Zealand Podocarpaceae (Norton & Kelly, 1988). All three 

potential explanations suggest toatoa channel resources to reproduction at the expense of cambial 

growth (Harper, 1977) following a climate trigger after volcanic events – perhaps increased 
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humidity and reduced summer water stress at low-elevation North Island sites or an increase in 

photosynthesis due to a greater fraction of diffuse radiation. More research on the ecology and 

life history of toatoa is needed to confirm these possible mechanisms.  

We compared the response at six sites which each have chronologies from two different species 

(Figure C-8), providing the unique opportunity to compare species differences in volcanic 

sensitivity directly whilst controlling for most other factors. The three species that are co-located 

and thus available for site-based comparison (cedar–pink pine and cedar–silver pine) all showed 

stress-tolerator responses to volcanic eruptions. Pink pine and cedar often grow together in mixed 

stands. Both species are sensitive to temperature, although pink pine has a maximum correlation 

to late summer temperature, whereas cedar responds to conditions in the winter prior to the 

growing season and in spring (Fenwick, 2003). A significant difference in the response between 

species was observed only at one of three sites. Comparison over additional sites is therefore 

required to determine whether the difference in seasonal temperature response may result in a 

difference in the sensitivity of pink pine and cedar to climate disturbance following eruptions. 

Differences between the cedar and silver pine responses were observed at two of the three sites, 

with cedar showing greater sensitivity to volcanic eruptions. Silver pine is primarily found in the 

moist, temperate, low-elevation forests of the western coast of the South Island. It is a shade-

tolerant species that grows in highly competitive closed-canopy forests on infertile, poorly 

drained or waterlogged soils (Cook et al., 2002; Wardle, 1977). It is an exceptionally slow-

growing species and shows little year-to year variability in ring width (Table 4-1). Thus, it is 

unsurprising that volcanic effects were more readily identified in cedar at the Ahaura and Flagstaff 

Creek sites (Figure C-8).  

4.5.2 A kauri growth benefit  

An interesting result of this study is the strong positive species-wide response of North Island 

kauri to volcanic events (Figure 4-3a) despite the weak correlation of the chronologies to monthly 

temperatures (Figure C-3). Over 70% of the kauri chronologies recorded a small but significant 

increase in ring width in the year following a large eruption (SAOD >0.04), indicating a growth 

benefit from volcanism. Previous studies of kauri climate response function have shown that 

growth is not primarily related to temperature but is enhanced during cool, dry years, with the 

strongest (negative) correlation to austral spring temperatures (Buckley et al., 2000; Ogden & 

Ahmed, 1989). Ring growth is thus enhanced during El Niño events, which result in cool, dry 

spring conditions in northern New Zealand, and kauri has been successfully used as a proxy for 

the El Niño–Southern Oscillation (ENSO; Fowler et al., 2008). The mechanism behind this 

relationship remains largely unclear, although it has been proposed that reduced cloud cover 

during El Niño events may benefit kauri growth via increased insolation (Fowler et al., 2000). 

The opposite conditions follow a volcanic eruption, with reduced direct insolation and increased 
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diffuse insolation due to scattering by volcanic aerosols (Gu et al., 2003). The commonality 

between the two sets of events is cooler-than-average spring and summer temperatures.  

This suggests that kauri may capitalise on a decrease in summer evapotranspiration during both 

El Niño events and following significant eruptions. Maximum kauri growth occurs during spring, 

with large declines in growth rate over the peak summer months when evapotranspiration exceeds 

precipitation in the northern North Island (Fowler et al., 2005). Dendrometer band studies suggest 

that reduced spring and summer moisture stress may delay the cessation of growth, resulting in 

wider annual rings (Palmer and Ogden, 1983). No summer cessation of growth was observed by 

Palmer and Ogden (1983) at the highest-altitude site, Mt Moehau (1MOE, Table C-1). This site 

receives moisture from condensation and fog drip, as well as rainfall, reducing the summer 

precipitation deficit. Plausibly, the increase in diffuse radiation and resulting enhanced 

photosynthesis (Gu et al., 2003; Robock, 2005) may also contribute to post-event kauri growth. 

However, tree growth is generally more constrained by the environment than photosynthesis 

(Fatichi et al., 2019; Zweifel et al., 2021), and thus increased photosynthesis may not necessarily 

translate into growth (i.e., a wider ring) in the presence of another limiting factor, such as the 

summer moisture deficit. Additional research is needed to understand the relative importance of 

temperature, light availability, humidity, and soil moisture to sub-annual growth in kauri.  

Many observational and modelling studies propose a link between large tropical volcanic 

eruptions and sea surface temperature variability in the tropical Pacific, with El Niño-like 

conditions more likely in the year following a significant event (Adams et al., 2003; Christiansen, 

2008; Emile-Geay et al., 2008; Khodri et al., 2017; McGregor et al., 2010; Miao et al., 2018), 

although this link is not always identifiable in the paleoclimate data (Dee et al., 2020). The three 

eruptions included in this analysis since 1900 CE co-occurred with an El Niño event, and the 

1982/83 CE El Niño is one of the largest on record (Santoso et al., 2017). While we do not wish 

to debate the eruption–ENSO response as part of this study, these potential interactions 

complicate our analysis of the volcanic signal in kauri.  

In an attempt to distinguish between the effects of El Niño events and volcanic eruptions on kauri 

growth, we repeated the SEA analysis, removing the three volcanic eruptions since 1900 CE. A 

smaller composite ring-width anomaly was recorded without the three events, but the response 

remained significant in year t + 1 (Figure C-13). To test the potential follow-through impact of 

the kauri response to El Niño events on the temperature reconstructions, we removed the ENSO 

component via linear regression of the Southern Oscillation Index on the reconstructed 

temperature series. There is a negligible difference between the original and ENSO-adjusted 

temperature reconstructions for all volcanic events between 1880 and 1990 CE, except for the 

response to El Chichón in 1982 CE, which is much larger in the unadjusted reconstruction (Figure 
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C-14). Based on currently available data, we cannot confidently discount that the kauri growth 

benefit identified in year t + 1 may be a secondary response to changes in tropical Pacific sea 

surface temperatures following a large eruption. However, this is unlikely to have a large impact 

on the post-event anomalies identified in the temperature reconstructions.  

4.5.3 Site-related volcanic responses  

Differences in volcanic response between sites are observed for all species, largely between sites 

with significant decreases in growth and sites with neutral responses (Figure 4-3 and Figure C-7). 

More temperature-limited sites, such as sites at higher elevation and lower latitude, are expected 

to be more sensitive to volcanic cooling and thus experience the most reduction in growth. 

Broadly in line with this expectation, chronologies that are highly correlated to monthly 

temperatures show greater sensitivity to volcanic eruptions (Figure C-15). However, there are 

many exceptions, both for temperature-sensitive sites with a neutral volcanic response and sites 

that are only weakly correlated to temperature but that are markedly affected by the climatic 

changes following volcanic eruptions. Thus, volcanic response cannot be simply interpreted as a 

response to cooler-than-average temperatures.  

Based on the variability in volcanic response observed in cedar (Figure C-8) it is evident that site-

related factors can have a substantial impact on the volcanic response within a species group. This 

finding was further explored using k-means clustering of the widely distributed cedar 

chronologies (Figure 4-4). Altitude and latitude are expected to be important explanatory factors 

for cedar tree growth, as together they represent the relative importance of temperature and water 

stress at a site. Temperature-limited high-altitude cedar sites at or near the treeline in the North 

Island ranges show a significant decline in tree growth following eruptions, as did coastal sites at 

higher latitudes (∼ 46 °S). We observed a significant increase in cedar growth at low-elevation 

sites on the northern South Island (Group 3) in response to volcanic cooling, which we interpret 

as a reduction in summer evaporative demand. Low-elevation trees are more likely to experience 

summer water stress than their high-elevation counterparts due to higher average temperatures if 

precipitation rates are similar. In contrast to the significant positive correlation of treeline cedar 

sites to average summer temperatures (Figure C-5), the Group 3 chronologies display a negative 

correlation to summer temperatures (not significant at p < 0.05) indicating that soil moisture may 

be a limiting factor at these sites. Thus, we find that both high- and low-elevation cedar stands 

can reliably record volcanic signals, provided that the sites experience sufficient temperature or 

moisture stress. Sites that are neither strongly temperature nor water limited (Group 4; Figure 4-4) 

show a neutral response to volcanic eruptions. A limitation of this analysis is that we have not 

considered potential spatial differences in the regional pattern of cooling or changes in regional 

atmospheric circulation patterns (Salinger, 1998), which could also impact the results for species 

with a wide distributional range (e.g., cedar).  
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Tree growth of species at different sites is limited by a variety of environmental factors, of which 

temperature and soil moisture are only two (Fritts, 1976). For many New Zealand species, little 

is known about what types of sites might accentuate these factors and thereby enhance the climatic 

sensitivity in the tree-ring series (Dunwiddie, 1979). Although the overall Group 2 cedar response 

was significant, not all high-altitude sites recorded a volcanic signal. Considering the location, 

aspect, forest characteristics, and soil type at individual cedar sites, we find that exposure to 

prevailing conditions is the key explanatory variable for the within-species response for sites near 

the altitudinal limit. Sites that record a significant growth response have high exposure to 

prevailing winds and are more sensitive to abnormally low growing-season temperatures. In 

contrast, chronologies from sites characterised by undulating ridgelines and more continuous 

forest showed a neutral growth response. Sites experiencing mesic conditions and closed-canopy 

forests tend to show lower sensitivity to adverse environmental conditions, such as low 

temperatures (Phipps, 1982). Closed-canopy forests are also more likely to be sensitive to 

increases in the fraction of diffuse radiation driving photosynthesis (Gu et al., 2003; Tingley et 

al., 2014), and thus the increase in diffuse radiation fraction may compensate for the decrease in 

temperature to a greater extent compared to sites with more open canopies.  

North Island kauri is another species for which exposure appears to be a determining factor in the 

chronology response to eruptions. For kauri, sites with a strong positive response to volcanic 

eruptions are coastal sites exposed to prevailing wind conditions or sites limited by poor 

underlying sediment substrates (e.g., 1TRO, 1KAW; Table C-1). In comparison, sites that showed 

little volcanic response were those on the leeward side of the coastal range, which are buffered 

by inland microclimate effects (e.g., 1PBL, 1PKF; Table C-1). These sites likely experience less 

water stress during the summer; therefore, we expect that they receive less benefit from reduced 

evaporative demand related to volcanic  

cooling, resulting in a neutral response. The importance of aspect to climate sensitivity – 

particularly when windward sites are exposed to prevailing winds – has been highlighted in many 

previous studies (e.g., Dang et al., 2007; Rozas et al., 2013). For New Zealand, a thorough 

exploration of the importance of site-based parameters other than elevation and latitude (e.g., 

aspect, exposure, soil type) to volcanic sensitivity is limited because these parameters have not 

been recorded for many sites.  

4.5.4 Implications for temperature reconstructions  

We expected to find a substantially greater volcanic response in NZsens (i.e., limited to only those 

chronologies with an individual significant volcanic response) compared to NZall. However, 

while NZsens shows a larger post-volcanic temperature response, the difference between the two 

reconstructions is not significant Figure 4-6 As shown in Figure 4-7, both reconstructions are 
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heavily weighted towards the same subset of chronologies. Since, sites with higher sensitivity 

(correlation) to temperature in general show higher volcanic response (Figure C-15), limiting 

NZsens to only sensitive chronologies has only a small impact on post-eruption temperatures. 

Another factor leading to the minimal difference between the reconstructions is that many 

volcanically sensitive chronologies, particularly kauri, were cored before 1990 CE and therefore 

not included in either temperature reconstruction. These sites should be updated with priority for 

future studies of volcanic impact in the Southern Hemisphere. In developing NZsens, we used a 

“volcanic sensitivity” threshold based on the SEA result significance (p < 0.05). By doing so, we 

reduced the size of the predictor pool, which reduced the strength of the reconstruction, 

particularly over the initial 100 years, when there were relatively few predictors (Figure C-10a).  

When testing the reconstructions using the event list from Toohey and Sigl (2017) (Figure 4-6), 

we concluded that losing reconstruction strength outweighs the small increase in volcanic 

sensitivity in NZsens and that it is not beneficial to restrict the predictor pool. However, when we 

then repeated the SEA analysis using the event list derived from Crowley and Unterman (2013), 

the mean response of NZall to the largest subset of 12 events with SAOD > 0.08 (Table C-3; 

Figure C-12c) was not significant (p > 0.05). The benefit of the restricted predictor set in 

strengthening the volcanic signal in NZsens is highlighted when using this event list. It is 

important to note that the mean NZall response to the full set of Crowley and Unterman (2013) 

events with Southern Hemisphere-average SAOD > 0.04 is significant (Figure C-12a), which 

suggests that some eruptions classified as SAOD > 0.08 in Table C-3 were not climatically 

effective over New Zealand. Potential reasons for the differences between the two volcanic 

datasets, which may have impacted the findings here, are discussed Sigl et al. (2014) and Toohey 

and Sigl (2017).  

Figure C-12c indicates that the SEA compositing procedure can fail when using a small number 

of events if the volcanic signal is small compared to other sources of interannual variability, 

especially when not all events have a climate impact. This is one potential reason that this study 

has identified significant volcanic signals in Southern Hemisphere tree rings when previous 

studies did not. Before Gao et al. (2008), no comprehensive reconstruction of global aerosol 

loading was available. Uncertainty in eruption dates and sizes likely contributed to the lack of 

volcanic signal identified in studies undertaken prior to the release of the “Gao” dataset (e.g., 

Cook et al., 2002; Villalba & Boninsegna, 1992). Revisiting the data from other major Southern 

Hemisphere dendrochronology regions (e.g., Tasmania, South America) is therefore an important 

aspect for future research.  

Previous studies that narrowly focused on the impacts of the 1815 CE eruption of Tambora on 

New Zealand tree rings (Norton, 1992; Palmer & Ogden, 1992) also presented inconclusive 



CHAPTER 4 
 

 
 

75 

results. The authors of these studies were seeking synchronous growth reductions across species, 

whereas our analysis, with the benefit of much more data, shows responses vary widely between 

species. Because of this variation in response, studies that rely on compositing across species and 

regions (e.g., Krakauer and Randerson, 2003) are also likely to underestimate the true volcanic 

response in Southern Hemisphere tree rings.  

In this study we also compared reconstructed temperature anomalies with anomalies from climate 

models over the New Zealand region for DJF – peak growing season in the Southern Hemisphere. 

We found no difference between the magnitude of the year t + 1 anomaly for either the 13- or 

21-event composites, with the difference between the reconstructed and modelled anomalies 

< 0.12 °C for both sets of events. Recent work investigating the reasons for differences between 

climate model and proxy reconstructions of post-event temperature anomalies in the Northern 

Hemisphere (Zhu et al., 2020) found that these differences can be minimised by focusing on the 

growing season rather than annual temperatures, undertaking regional rather than hemispheric 

analysis, and resolving biological persistence. By focusing on regional DJF temperatures, we 

resolved two of these issues. A criticism of temperature reconstructions based solely on ring 

widths is that biological persistence in treeline conifers decreases the abruptness and magnitude 

of volcanic cooling. In the Northern Hemisphere, more emphasis is now being placed on 

maximum latewood density (MXD) or mixed MXD and ring widths for investigations of volcanic 

cooling (Wilson et al., 2016; Zhu et al., 2020). For this study, we focused only on ring widths, as 

few investigations of alternative wood properties have been undertaken in New Zealand (Blake 

et al., 2020; Xiong et al., 1998).  

Unlike some Northern Hemisphere studies, our ring-width temperature reconstructions show no 

increased persistence in temperature anomalies following eruptive events compared to the climate 

model ensemble (Figure 4-6). Ring widths from New Zealand conifers therefore appear suitable 

for volcanic investigations. Northern Hemisphere high-altitude and high-latitude trees 

predominantly used to determine the temperature impacts of volcanic eruptions contain higher 

biological persistence than the chronologies we used in our temperature reconstructions, 

influencing their post-eruption response. For example, the average first-order autocorrelation of 

our predictor chronologies is 0.53 (range 0.15–0.87; SD 0.15) compared to Arctic sites with an 

average of 0.62 (range 0.15–0.93; SD 0.13; Cropper and Fritts, 1981). Nevertheless, several New 

Zealand species do show a lagged volcanic response (Figure 4-3 and Figure C-7) that is not 

present in the final temperature reconstructions. Methodological decisions play an important role 

in the persistence of tree-ring-based temperature reconstructions (Büntgen et al., 2021). In our 

reconstructions, pre-whitening of both the tree-ring predictors and the temperature data, including 

significant lagged predictors, and the selection of predictors from multiple species all contribute 

to the responses we identified.  
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4.6 Conclusions  
Very few studies have considered whether volcanic signals are identifiable in tree-ring 

chronologies from the Southern Hemisphere. We investigated whether volcanic events could be 

identified in New Zealand tree rings using data from eight dendrochronological species. In doing 

so, we set out to answer the following three questions. First, can volcanic signals be identified in 

the Southern Hemisphere? Second, are there species-level differences in volcanic signal strength? 

Finally, does chronology selection impact the magnitude of post-volcanic cooling in temperature 

reconstructions from tree rings?  

In answering the first two questions, we found that New Zealand dendrochronological species are 

reliable recorders of volcanic cooling, but that response varies across species. The magnitude and 

persistence of the species-wide volcanic response can be broadly linked to plant life history traits. 

The larger magnitude and more immediate responses are recorded by the “fast-responder” 

species, such as mountain beech and kauri, and more delayed but persistent responses are recorded 

by the “stress-tolerator” species, such as silver pine. In general, volcanic events can be more 

readily observed in the ring widths of fast-responder species, which should be prioritised for 

future regional or hemispheric studies. Unfortunately, the paucity of information on the ecology 

of many New Zealand species limits our understanding of how species allocate resources to 

processes other than cambial growth in response to short-term changes in climatic conditions.  

The volcanic response of New Zealand trees is complex, with positive, negative, and neutral 

responses identified sometimes within the same species group. For subalpine sites, this finding is 

not dissimilar to previous studies of temperate-zone Northern Hemisphere species. We found that 

site-related factors have greater control over displayed volcanic responses than species and 

presented a suite of plausible, testable hypotheses explaining the results. The altitude of the site 

with respect to the species altitudinal limit and exposure to prevailing conditions are factors 

thought to determine whether a tree-ring volcanic response could be identified. In some cases, 

sites near the lower altitudinal limit of the species were also strong responders, suggesting a 

reduction in summer moisture stress could also be an important factor in post-volcanic growth. 

Our results indicate that studies intending to utilise tree rings to investigate regional volcanic 

cooling should carefully consider the characteristics of the sample site. While valid for all 

dendrochronological studies, it is particularly important for identifying volcanic signals, as we 

find that the range of temperature-sensitive sites is greater than the range of volcanically sensitive 

sites.  

In answer to the last question, we developed two new reconstructions of New Zealand summer 

temperature to investigate whether chronology selection impacted the magnitude of post-volcanic 

cooling. There was little difference in the post-event anomalies, suggesting that limiting the 
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predictor pool for volcanic sensitivity is unnecessary when targeting average growing-season 

temperatures in New Zealand. Both reconstructions showed temperature anomalies remarkably 

consistent with studies based on instrumental temperature and the ensemble mean response of 

CMIP5 climate models. Based on these results, New Zealand ring widths are reliable indicators 

of regional volcanic climate response.  

More broadly, the findings of this study have important implications for the development of future 

tree-ring or multiproxy hemispheric temperature reconstructions from the Southern Hemisphere, 

which often incorporate species-specific “master” chronologies (i.e., composite chronologies 

developed from across many sites) into their predictor pool. As shown in this study, the 

compositing process can result in reduced volcanic signals when more than one type of response 

(i.e., positive, negative, or neutral) is recorded by a single species. However, as most New Zealand 

species-level composites show significant volcanic responses, temperature reconstructions based 

on composite chronologies should also show the influence of volcanic eruptions.  

4.6.1 Data availability 

All data and software used in this study are publicly available. The New Zealand “seven-station” 

temperature series was downloaded from NIWA at https://niwa.co.nz/seven-stations (last access: 

4 July 2021; NIWA Research, 2021). The Southern Oscillation Index time series was sourced 

from https://climatedataguide.ucar.edu/climate-data/southern-oscillation-indices-signal-noise-

and-tahitidarwin-slp-soi (last access: 7 August 2021; Trenberth and National Center for 

Atmospheric Research Staff, 1984). The raw tree-ring width series can be downloaded from the 

International Tree Ring Data Bank at https://www.ncei.noaa.gov/products/paleoclimatology/tree-

ring (last access: 13 March 2021; NCEI, 2022). Superposed epoch analysis was undertaken using 

R code published on Mendeley Datasets with https://doi.org/10.17632/8p7y29hz5h.1 (Rao et al., 

2019). The two new temperature reconstruction series can be accessed through the NOAA/World 

Data Service for Paleoclimatology archives (https://www.ncdc.noaa.gov (last access: 6 February 

2022; NOAA, 2022).  

4.6.2 Supplement 

The supplement related to this article is available online at: https://doi.org/10.5194/cp-18-1-2022-

supplement.  
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Chapter 5 Unprecedented High Northern Australian Streamflow 
Linked to an Intensification of the Indo-Australian Monsoon  

The content in this chapter has been reproduced (with reformatting) from the following journal 

paper:  

Higgins, P. A., Palmer, J. G., Rao, M. P., Andersen, M. S., Turney, C. S. M., & Johnson, F. 

(2022). Unprecedented high Northern Australian streamflow linked to an intensification of the 

Indo-Australian monsoon. Water Resources Research, 58, e2021WR030881. https://doi. 

org/10.1029/2021WR030881  

5.1 Abstract  
Streamflow in Australia’s northern rivers has been steadily increasing since the 1970s, most likely 

due to increased intensity in the Indo-Australian monsoon. However, because of limited data 

availability, it is hard to assess this recent trend and therefore contextualise potential future 

climatic changes. In this study, we used a network of 63 precipitation-sensitive tree-ring 

chronologies from the Indo-Australian and Asian monsoon regions to reconstruct streamflow in 

the Daly catchment in the Northern Territory of Australia from 1413 to 2005 CE. We used a novel 

wavelet-based method to transform the variance structure of the tree-ring chronologies to better 

match the hydroclimate prior to reconstruction with a hierarchical Bayesian regression model. 

Our streamflow reconstruction accounts for 72%–78% of the variance in the instrumental period 

and closely matches both historical flood events and independent proxy records, increasing 

confidence in its validity. We find that while streamflow has been increasing since the 1800s, the 

most recent 40-year period is unprecedented in the last ∼600 years. Comparison to an independent 

coral-based streamflow record shows regional coherency in this trend. Extreme high flows were 

found to be linked to La Niña events, but we found no significant relationship between streamflow 

and El Niño events, or streamflow and other regional climatic drivers. More work is therefore 

needed to understand the drivers of the recent streamflow increase, but, regardless of the cause, 

water managers should be aware of the paleoclimatic context before making decisions on water 

allocations. 

5.2 Plain Language Summary  
Large-scale agricultural development has been proposed for the Daly catchment in the Northern 

Territory of Australia. Since the start of record keeping in the Daly catchment in the 1970s, 

streamflow has been steadily increasing, most likely due to increases in Australian monsoon 

rainfall. However, because of the limited amount of data, it is hard to assess whether this recent 

increase in streamflow is unusual, part of a longer trend, or a natural cycle in monsoon rainfall. 

In this study, we used rainfall-sensitive tree growth and a statistical model to reconstruct Daly 

River streamflow over the past 592 years. Our streamflow reconstruction closely matches known 
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past flood events, increasing confidence in its validity. We find that streamflow has increased 

since the 1800s but that the most recent 40-year period is unprecedented in the last 600 years. 

More work is needed to understand the drivers of this increased streamflow but regardless of the 

cause, water managers should be aware of the Daly River’s history before making decisions on 

allocating water to agriculture or other large users. 

5.3 Introduction 
Water resources in the large floodplains of monsoonal north Australia are determined by the 

onset, duration, and intensity of the Indo-Australian summer monsoon (IASM). Importantly, 

recharge to aquifers contributing critical dry season discharge to groundwater fed springs and 

rivers is also linked to the intensity of monsoon rainfall (McCallum et al., 2010; Singh et al., 

2019). Endemic flora and fauna, and the cultural values of Indigenous peoples, are dependent on 

the wet/dry seasonality in flows (CSIRO, 2009; Russell-Smith et al., 1997). The IASM is closely 

tied to the El Niño–Southern Oscillation (ENSO). Both climatic phenomena, the IASM and 

ENSO, exhibit substantial inter-annual and decadal variability (Smith et al., 2008; Suppiah, 

1992). This variability can cause both droughts and floods, with severe impacts on the lives and 

livelihoods of people living in the region.  

Since 1950, monsoonal Australia has experienced an increase in summer rainfall (Taschetto & 

England, 2009), and annual streamflow (Zhang et al., 2016), thought to be a result of changes in 

the IASM. Historical meteorological records from ship logs show that this recent trend is part of 

a longer-term intensification of the IASM, occurring at least since the early 1800s (Gallego et al., 

2017). Despite this intensification, rainfall variability remains high; consecutive years of 

monsoon failure occurred during the 2018–19 and 2019–20 wet seasons, resulting in very low 

river levels and water restrictions over much of Australia’s north (BOM, 2019, 2020a). 

It is highly uncertain whether the recent trend in rainfall will continue. Projections of future 

monsoon rainfall are challenging because of the strong climate coupling between the land, 

atmosphere, and oceans. Climate models predict a future thermodynamic increase in mean 

monsoonal rainfall (Christensen et al., 2013), however, there are large inter-model uncertainties, 

most notably for the IASM (Brown et al., 2017). The ensemble mean of the Climate Model 

Intercomparison Project Phase 5 projects an increase in IASM rainfall variability at daily to 

decadal timescales (Brown et al., 2017). Increased variability has important implications for the 

management of water resources, as existing infrastructure, management plans, and entitlements 

may be inadequate for future changes (De Loe & Kreutzwiser, 2000), particularly in regions like 

monsoonal Australia where water storage potential is limited (CSIRO, 2009). 

Palaeohydrological reconstructions are useful tools for supporting water resource management 

and planning under uncertainty (Allen et al., 2015; Rice et al., 2009). There has been a recent 
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interest in palaeohydrological reconstructions for monsoon rivers (e.g., Nguyen et al., 2020 and 

references therein) due to the inability of short instrumental records to fully characterise 

hydroclimatic variability, and uncertainty around future changes in streamflow and flood 

frequency (Rao et al., 2020). Long reconstructed records can increase our understanding of 

variability in monsoon streamflow and floodplain dynamics, as well as their relationship with 

major drivers of climate variability such as ENSO. However, very few streamflow reconstructions 

are available for the IASM region (see D’Arrigo et al., 2011; Verdon-Kidd et al., 2017) in part 

due to the limited availability of high-resolution (sub-annual to annual) precipitation and 

streamflow proxies across the region (Allen et al., 2015; D’Arrigo et al., 2008). There is an urgent 

need for multi-centennial reconstructions of streamflow variability in monsoonal Australia to 

reduce the uncertainty over the impact of future climate change and increasing resource demands.  

The Daly River, a monsoonal river system in the northwest of the Northern Territory, is one of 

the northern Australia’s largest rivers and one of the few with perennial flows (Morrison, 1970). 

Annual streamflow is highly dominated by monsoon rainfall, with dry season flows, fed by 

groundwater discharge, accounting for less than 10% of total annual flow. Reliable stream 

gauging stations and monitoring bores for the Daly River system are sparse. Very limited data 

exists prior to the mid-1970s and there is low confidence in dry season flow records for many 

gauges. The paucity of data greatly inhibits the potential to assess the linkages between the 

hydrological regime, resource availability and dependent ecosystems (CSIRO, 2009). Declining 

rainfall trends in southern Australia and the perception of abundant land and water resources in 

the monsoon tropics have recently renewed interest in agricultural development in northern 

Australia and the Daly region (Petheram et al., 2008; Yeates et al., 2013). With limited storage 

potential in seasonally dynamic aquifers, increased dry season agricultural demand is likely to 

change surface and groundwater regimes with consequences for the environment (CSIRO, 2009). 

Extending short hydrological records is essential for improving the assessment and management 

of water resources in the Daly catchment and the IASM region more broadly.  

Here we present a paleohydrologic reconstruction of Daly River streamflow that extends available 

instrumental observations by more than five centuries and discuss its linkages with both changes 

in the IASM and Pacific atmosphere-ocean climate variability. Our Daly River streamflow 

reconstruction was developed using a tree-ring network from across the IASM region and remote 

sites with strong teleconnections to the IASM. We demonstrate the benefits of a new method for 

paleohydrologic reconstruction, in which a wavelet-based variance transform maximises the 

ability of the tree-ring predictors to characterise the hydroclimate, resulting in a streamflow 

reconstruction that better matches the instrumental data. We then compare our record to other 

observational and proxy records for the region, specifically low-resolution sediment cores from 

the Daly River and a coral-based river reconstruction from subtropical eastern Australia, 
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demonstrating that recent increases in streamflow are regionally coherent and unprecedented in 

the reconstruction interval. 

5.4 Study area and data availability 
5.4.1 The Daly catchment 

The 320-km Daly River flows from the foothills of Arnhem Land to discharge into the Timor Sea 

in the northwest, with a catchment area of approximately 53,000 km2 (Figure 5-1). Important 

tributaries of the Daly River include the Katherine, which contributes around 40% of the total 

flow in the system, and the Flora, Edith and Douglas rivers, all of which have high conservation 

and tourism value (CSIRO, 2009). 

 
Figure 5-1 The Daly catchment showing the location of the four selected stream gauges (blue triangles 
with gauge numbers). The inset map shows the location of the Daly catchment (grey) and Burdekin 
catchment (beige) within the Australian tropical monsoon region (light blue), and the locations 
of Callitris intratropica and C. columellaris tree-ring chronologies within and proximal to the 
monsoon region (black diamonds). The approximate southern monsoon region boundary was 
adapted from the Australian Bureau of Meteorology climate classification.  

The Daly region receives an average of 1020 mm of rainfall annually of which more than 95% 

falls in the November to April wet season. Annual potential evapotranspiration is 1940 mm/year; 

thus the region is water limited (CSIRO, 2009). There is a steadily increasing trend in total annual 

rainfall (significant at p < 0.001; Mann-Kendall test) throughout the historical period (Figure 

5-2a). and consequently, evapotranspiration is also increasing due to increased catchment water 

availability (Wasko et al., 2021). Annual streamflow is closely linked to wet season rainfall, with 

an average of 94% of runoff occurring during wet season months. Peak discharge occurs during 
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January, February, and March (Figure 5-2b). Dry season baseflow in the perennial reaches of the 

Katherine and Daly rivers is the result of discharge from the region’s two major karstic aquifers, 

the Tindall Limestone and the Oolloo Dolostone (CSIRO, 2009). Variations in dry season 

baseflow are due to higher or lower aquifer levels in the preceding wet season (CSIRO, 2009).  

 
Figure 5-2 (a) Catchment average annual water year (September-August) rainfall (mm) from 1896 
to 2018, with the long-term trend shown in red; (b) Boxplots showing monthly discharge (km3/month, 
left axis) for the instrumental period (1961-2018) at gauge G8140040, Daly River at Mount Nancar, 
with catchment average monthly rainfall (mm, right axis) plotted in blue. 

5.4.2 Hydrological data 

Daily streamflow data (ML/day) for gauges in the Daly River catchment were downloaded from 

the Northern Territory Government Water Data Portal at https://water.nt.gov.au/. Gauges on 

perennial rivers with at least 40 years of data before 2005 (the last year for many tree-ring 

chronologies) were selected. Suitable gauges were identified on the Douglas River downstream 

of the Old Douglas Homestead, the Katherine River at Railway Bridge, and the Daly River 

upstream of Dorisvale Crossing (Figure 5-1). For the Daly River at Mount Nancar, the gauge 

nearest to the catchment outlet, the time series was extended from 1961 to 1971 using data from 

nearby gauges and a regression model (see Appendix D).  

Years with more than 15% of daily values missing during the peak discharge period (January-

March), were excluded from analysis (Table 5-1). For other years, gap-filled daily streamflow 

data was downloaded from the Australian Bureau of Meteorology (BOM) Hydrologic Reference 

Stations database (http://www.bom.gov.au/water/hrs/index.shtml). Annual streamflow (km3) was 

then calculated for the Northern Territory water year of September to August (CSIRO, 2009). 

Streamflow between the four gauges is highly correlated (Pearson r = 0.78 – 0.97; Figure D-2). 

Including all four gauges in the reconstruction model meant that 1962 was the only year without 

any streamflow data (i.e., missing data from all four gauges).  

 

 

https://water.nt.gov.au/
http://www.bom.gov.au/water/hrs/index.shtml
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Table 5-1 Selected streamflow gauges in the Daly catchment.  

Gauge 
number River Gauge location Catchment 

area (km2) 
Average flow 

(km3/year) 
Data 

period 
Missing years 
(before 2005) 

G8140040 Daly Mount Nancar 47,652 8.55 1961-2018 
1962, 1966, 
1977, 1978, 
1985 

G8140067 Daly 
Upstream 
Dorisvale 
Crossing 

33,227 5.79 1966-2018 
1968, 1975, 
1980, 1989, 
1991, 2000 

G8140063 Douglas Old Douglas 
Homestead 831 0.25 1959-2018 

1962, 1968, 
1969, 1971, 
1976, 1977, 
1993, 2002 

G8140001 Katherine Railway Bridge 8,357 2.34 1963-2018 1971, 1975 

Daly catchment-average water year rainfall was calculated from monthly gridded data from the 

Queensland Government SILO Climate Database (https://www.data.qld.gov.au/dataset/silo-

climate-database). Daily rainfall for the town of Katherine was downloaded for the BOM gauges 

014902 and 014903 from their website at http://www.bom.gov.au/climate/data/. Years missing 

more than 15% of daily rainfall values were excluded from the analysis. The Global Precipitation 

Climatology Project (GPCP; Adler et al., 2003) monthly gridded rainfall from 1979-2020, used 

to calculate the correlation between Daly catchment and regional rainfall, and the Extended 

Reconstructed Sea Surface Temperature (ERSST) v5 dataset, were both obtained from the 

NOAA/OAR/ESRL PSL website at https://psl.noaa.gov/.  

5.4.3 Historical flood records 

The largest settlement in the Daly catchment is the town of Katherine on the Katherine River, 

also the location of gauge G8140001. Three significant flood events, in 1998, 2006, and 2011, 

have occurred since streamflow was reliably recorded at Katherine. However only the 1998 event 

falls within the reconstruction period. Pre-instrumental data sources, predominantly newspaper 

articles, provide a record of major flood events since the permanent European occupation of the 

region began in 1872. Large floods at Katherine occurred in December 1897 (reconstruction year 

1898), 1914, 1931, 1940, and 1957 (Water Studies Pty Ltd., 2000).  

5.4.4 Tree-ring proxy records 

Very few tree-ring chronologies exist for the tropics, including northern Australia, due to the 

difficulty in finding tropical tree species with annual growth rings (Rozendaal & Zuidema, 2011). 

However, recent efforts have identified the dendrochronological potential of both Callitris 

intratropica and C. columellaris (cypress pine) species (Allen et al., 2019, 2020; Baker et al., 

2008; O’Donnell et al., 2015). While these species have great potential to inform understanding 

of the hydroclimate of monsoonal Australia (Allen et al., 2020; D’Arrigo et al., 2008), the 

chronologies developed to date are short, with the majority ~100-250 years in length. Longer 

reconstructions can be developed by utilizing remote tree-ring proxies (Allen et al., 2015) from 

https://www.data.qld.gov.au/dataset/silo-climate-database
https://www.data.qld.gov.au/dataset/silo-climate-database
http://www.bom.gov.au/climate/data/
https://psl.noaa.gov/
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regions with strong teleconnections to monsoonal Australia. For the initial predictor pool, we 

downloaded all publicly available tree-ring chronologies from Australia, New Zealand and 

Monsoonal Asia located between 70°E, 40°N and 180°E, 47°S (Figure D-4) from the 

International Tree Ring Databank (ITRDB). The wood property series from each site were 

converted to chronologies by the process of standardization (i.e., detrended and transformed into 

dimensionless growth indices). The process aims to remove growth trends thought to be largely 

unrelated to climate using the ‘signal free’ (Melvin & Briffa, 2008) and ‘Regional Curve 

Standardization’ (Briffa et al., 1992) methods of tree-ring standardization.  

5.5 Methods 
Figure 5-3 provides a schematic overview of the methods used to reconstruct Daly catchment 

streamflow. The methods are described briefly below and in further detail in Appendix D. 

 

Figure 5-3 Schematic overview of the reconstruction methodology. 1Partial information correlation. 

5.5.1 Streamflow reconstruction  

Tree rings are useful predictors of streamflow because both tree growth and variations in 

streamflow are controlled by soil moisture, which is influenced by rainfall and evapotranspiration 

(Meko et al., 1995). However, tree rings provide only indirect information about climate 

variations. In addition, factors including local proxy noise, seasonal sensitivities, and 

standardization methods result in biases in the high- to low-frequency spectrum of proxy records 

compared to the instrumental datasets they are attempting to reconstruct (Franke et al., 2013). 

Spectral biases are likely to be compounded when using remote tree-ring chronologies in 

reconstructions as only a portion of the climatic information contained in the proxy - related to 

the teleconnection - is relevant to the reconstruction.  

To address these issues, after selecting the tree-ring chronology predictor pool, we applied a novel 

method for paleohydrologic reconstruction, in which a unique wavelet-based variance transform 

javascript:void(0)
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(Jiang et al., 2021, 2020) was used to modify the spectral characteristics of each tree-ring 

chronology to better match Daly catchment average annual rainfall (see Appendix D). A nested 

hierarchical Bayesian regression model with partial pooling (Devineni et al., 2013; Rao et al., 

2018), which is suitable for our short data records with missing years, was then used to produce 

the streamflow reconstruction from the transformed chronologies. The partial pooling framework 

combines the regression strength of the model across the four gauges, which can result in lower 

uncertainty in estimated parameters and reconstructed discharge, as well as improved final model 

skill (see Appendix D). We used a moving block calibration-verification scheme (Nguyen et al., 

2020) in which 7-year, overlapping periods of the instrumental record were successively withheld 

to independently test the modelling (see Appendix D).  

To evaluate the reconstruction, we used standard verification tests in dendrochronology: the 

calibration period coefficient of multiple determination (CRSQ or R2), the validation period 

reduction of error (VRE), and the validation period coefficient of efficiency (VCE) (Cook & 

Kairiukstis, 1990). The VCE is equivalent to the Nash-Sutcliffe efficiency test (Nash & Sutcliffe, 

1970) and is the most stringent verification criteria. The Bayesian R2, a data-based estimate of the 

proportion of the variance explained for new data, and the Sign Test, which calculates the number 

of years that the reconstruction correctly (+) or incorrectly (-) tracks the sign of observations 

during the calibration period (Cook & Kairiukstis, 1990), were also used in verifying the model. 

5.5.2 Historical flood events 

To further verify our results, the ability of the streamflow reconstruction to identify historical 

flood events recorded at the Katherine township was assessed via superposed epoch analysis 

(SEA), a compositing technique that tests the probability of an association between high flows 

and flood years occurring by chance (Haurwitz & Brier, 1981; Rao et al., 2019). To apply SEA 

to flood identification in our reconstruction, the six historical flood events which occurred during 

the reconstruction interval were used as key event years for SEA. A composite matrix was created 

by selecting reconstructed streamflow at Katherine (G8140001) from ten years prior to five years 

following each event. Streamflow was normalised to the ten years before an event to remove noise 

unrelated to the event signal, then averaged across all events to determine the composite signal 

(see Appendix D). The significance of the flood event-streamflow relationship was tested by 

comparing the key event composite to that generated from 10,000 draws of six years at random 

without replacement (‘pseudo-flood years’) from the reconstruction between 1888 (first event 

year - 10) and 2005 CE. 

5.5.3 Extreme event analysis and climate forcing 

Extreme dry/wet events were classified as those exceeding below the 5th and above the 95th 

percentiles of flows, respectively, during the reconstruction period (1413-2005 CE). Changes in 
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the frequency of extreme events were estimated using a nonparametric Gaussian kernel function 

(Mudelsee et al., 2004) with bandwidth selected via the method of Sheather & Jones (1991) and 

95% confidence intervals estimated based on 1,000 bootstrap simulations. Trends in the 

recurrence rate of extreme events were tested against the null hypothesis of constant recurrence 

rate using the Cox-Lewis statistic (Cox & Lewis, 1966): 

𝑈𝑈 =  
∑ (𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) /𝑚𝑚)𝑚𝑚
𝑗𝑗=1 − [𝑇𝑇(1) + 𝑇𝑇(𝑛𝑛)] /2

[𝑇𝑇(𝑛𝑛) − 𝑇𝑇(1)] × (12𝑚𝑚)−1/2  

 
which is a standard normal distribution under the null hypothesis (Mudelsee et al., 2003), where 

T(1), T(n) are the first and last years of the observation interval, and m is the number of extreme 

events. 

Bootstrapping was used to assess whether extreme events are significantly associated with 

different ENSO phases (Allen et al., 2020). The occurrences of El Niño/La Niña events since 

1875 were determined based on December-February (DJF) Niño3.4 sea surface temperature 

(SST) anomalies above/below 0.5 °C and referenced against the events listed on the Australian 

Bureau of Meteorology website (www.bom.gov.au). Bootstrap replicates were drawn with 

replacement from the SST data to match the same number of years as the wet and dry extremes. 

The co-occurrence of extremes and ENSO phases was considered significant if the number of 

actual events lay outside the 95% bias-corrected and accelerated (BCA) bootstrap confidence 

interval (Efron, 1987) of the distribution based on 30,000 bootstrap replicates. The number of 

bootstrap replicates was increased from 1,000 until the confidence interval remained unchanged.  

5.6 Results and Discussion  
5.6.1 Tree-ring predictor selection 

Figure 5-4 shows the correlations between Daly catchment average rainfall and rainfall from 

regions with strong teleconnections to the IASM, during both the dry and wet (monsoon) seasons. 

Daly catchment rainfall is significantly correlated to rainfall in south-eastern Australia during the 

May-September dry season when Indian Ocean sea surface temperatures affect Australian rainfall 

(McBride & Nicholls, 1983; Risbey et al., 2009). Conversely, Daly catchment rainfall is 

significantly anti-correlated to the Asia Summer Monsoon during the November-April wet 

season, reflecting coherence between the regional monsoons (Wang et al., 2014). Correlations 

between Indonesian and northern Australian rainfall are significant throughout the year but are 

stronger during the dry season. 

Figure 5-4 also shows the locations of the 63 tree-ring chronologies with significant correlation 

to Daly catchment streamflow retained for the final model (see Table D-1 for details). Nearly 

70% of the retained predictors are from regions impacted by monsoon rainfall. Five chronologies 
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are within the IASM region, of which three are proximal to the Daly catchment (within 20 km, 

see Figure 5-1). A further 36 are within the Asian Summer Monsoon region, and the remaining 

22 from subtropical to temperate Australia, and New Zealand.  

 
Figure 5-4 Left: Spatial Pearson correlation fields comparing average Daly catchment (red square) 
GPCP rainfall and GPCP rainfall over Australia, the South-east Asian Monsoon and Asian Monsoon 
regions during the northern Australia dry season (May-Sept) between 1979 and 2020. Right: Same 
figure for the northern Australia wet season (Nov-Apr). Correlations not significant at p < 0.1 are 
greyed out. Black diamonds represent the location of the 63 tree-ring chronologies with a significant 
correlation to at least three of four Daly catchment streamflow gauges after variance transformation.  

Absolute Pearson correlations between streamflow and significant tree-ring predictors vary from 

r = 0.28 to 0.61 with a median value of r = 0.42. This is a substantial increase in correlation 

compared to the pre-transform predictors, which varies from r = 0.0 to 0.51 with a median value 

of r = 0.21. Transforming the spectral variance of the tree-ring chronologies is therefore shown 

to strengthen their correlation to Daly catchment streamflow.  

5.6.2 Streamflow reconstruction 

The final nested reconstruction based on the variance transformed tree-ring chronologies spans 

1413 to 2018 CE, with instrumental data appended after 2005. Figure 5-5a compares observations 

with reconstructed streamflow at the most downstream gauge, G8140040 at Mount Nancar, using 

the tree-ring data for the best replicated (1898–2005) nest. Results for the other three gauges are 

shown in Figure D-9. This reconstruction accounts for 72-78% of the variance in streamflow 

observations at each gauge over the calibration period from 1959 to 2005. Table 5-2 shows the 

calibration-validation statistics used to evaluate the validity and stability of the nested models for 

the best-replicated nest, and median statistics of all nests between 1413 and 2005 CE. Timeseries 

results for all nests are provided in Figure D-10.  
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Table 5-2 Calibration and verification statistics for the best-replicated nest (1895-2005) and median 
values for the whole reconstruction interval (1413-2005) for the four Daly catchment gauges. 

 Initial nest (1895-2005) Median values (1413-2005) 
Gauge 
number R2 Bayes 

R2 VRE VCE Sign Test (p)* R2 Bayes 
R2 VRE VCE 

G8140040 0.78 0.62 0.60 0.36 27+8- (0.002) 0.68 0.58 0.61 0.36 
G8140067 0.78 0.65 0.59 0.34 23+4- (<0.001) 0.69 0.58 0.61 0.40 
G8140063 0.78 0.64 0.69 0.50 27+5- (<0.001) 0.70 0.59 0.66 0.37 
G8140001 0.72 0.60 0.56 0.26 28+6- (<0.001) 0.67 0.57 0.57 0.26 

*n is less than the number of calibration years due to data gaps. 

The calibration and verification statistics demonstrate that the reconstruction is reliable, despite 

the relatively short calibration period. Despite the decreasing number of tree-ring predictors 

moving back in time, the statistical results remain strong for the earliest part of the record, with 

the least replicated nest accounting for 59-62% of the calibration period variance. Uncertainty 

intervals (Figure D-9) show that the 5th percentile VRE and VCE values are above zero 

throughout the reconstruction period, indicating that the reconstruction contains meaningful 

information over its entire length (Cook & Kairiukstis, 1990). In addition, the significant (p < 

0.01) Sign Test results are a good indication that the tree-ring chronologies are accurately tracking 

the direction of year-on-year variability in streamflow during the calibration period.  

 
Figure 5-5 (a) Instrumental (black) versus reconstructed (blue) streamflow in km3/year for Daly 
River gauge G8140040 over the instrumental period 1961-2018. (b) Reconstructed flow at G8140040 
from 1413 to 2005 CE with the 90% confidence interval for the reconstruction shown in light blue. 

The full reconstruction for G8140040 is shown in Figure 5-5b; results are similar for the other 

gauges (not shown). The reconstruction shows that streamflow during the instrumental period 

represents a period of unusually high flow that is unprecedented in the preceding five centuries. 
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The 57-year gauge instrumental period from 1961 to 2018 has mean streamflow of 7.79 km3/year, 

which is significantly higher (p < 0.001, two-sided Student’s t-test) than the pre-instrumental 

mean of 4.60 km3/year, and any period of equivalent length in the reconstruction. Similarly, the 

gauge calibration period from 1961 to 2005, which has mean streamflow of 6.99 km3/year, 

exceeds any previous 44-year period, but the difference is not significant for periods between 

1873-1922 CE. These results are consistent with an intensification of IASM rainfall starting in 

the early to mid-1800s.  

5.6.3 Historical comparisons 

The largest recorded flood event at Katherine occurred in 1998 after ex-Tropical Cyclone Les 

brought 400-500 mm of rain within three days (Skertchly & Skertchly, 1999). The rainfall 

characteristics of other major historical flood events are similar, with several hundred millimetres 

of rain falling within a few days (Water Studies Pty Ltd., 2000). There is a moderately strong and 

significant positive correlation (r = 0.60; p < 0.001) between the annual maximum five-day 

rainfall, which represents the approximate length of rainfall events resulting in historical floods, 

and total water year rainfall at Katherine (Figure 5-6). In most cases, major floods occurred during 

very wet years, with total rainfall in the top ~11% of the record. The exceptions are 1914 and 

1931, which were average rainfall years. These results are indicative only as extreme rainfall 

events, especially those related to cyclonic rainfall, are not evenly distributed over the catchment, 

and there is a paucity of rainfall gauges in the early part of the record. 

The significant positive relationship between high-intensity events which may cause flooding and 

total annual rainfall suggests flood years should be identifiable by higher-than-average 

reconstructed Katherine River streamflow. We tested the probability of random association 

between flood years and high streamflow at gauge G814001 using superposed epoch analysis. 

We found that mean reconstructed flows across these six years are significantly higher (p < 0.01) 

than would be expected by chance (Figure 5-6). The ability of the reconstruction to identify pre-

calibration historical flood events increases confidence in the reconstruction model outside of the 

instrumental period. 
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Figure 5-6 (a) Relationship between maximum five-day rainfall and total annual (September-August) 
rainfall at Katherine for all years on record (blue) and historical flood years (red). The blue line 
shows the significant positive trend (r = 0.60; p < 0.001) between the variables within the 95% 
confidence interval. (b) Superposed epoch analysis showing that Katherine River streamflow is 
significantly (p < 0.01) higher than expected by chance during historical flood years.  

5.6.4 Extreme events 

Surface warming of the equatorial Pacific associated with El Niño events drives an intensification 

of the Walker circulation, resulting in decreased average deep convection over Australia (Holland, 

1988; McBride & Nicholls, 1983). The reverse occurs during La Niña events, with weakening of 

the Walker Circulation and increased convection. However, this relationship is not symmetric, 

with La Niña events generally more highly correlated with rainfall over Australia than El Niño 

events (Power et al., 2006; Risbey et al., 2009). Teleconnections between ENSO phases and 

Australian rainfall also vary with the phases of the Interdecadal Pacific Oscillation, with warm 

(positive) phases decreasing the strength and spatial coherence of ENSO-rainfall relationships 

(Power et al., 1999). Recent research (Allen et al., 2020) has shown that precipitation at the end 

of the wet season (March-May) in monsoonal Australia is asymmetrically linked to ENSO, with 

increasingly extreme wet events associated with increasingly cooler SSTs, but less clear 

relationships between dry extremes and El Niño phases.  

We tested the relationship between annual Daly River streamflow extremes and Pacific SSTs by 

comparing the number of high and low streamflow events that co-occurred with a known ENSO 

event. Figure 5-7 shows that extreme high streamflow events, defined as exceeding the 95th 

percentile of reconstructed flow, are significantly linked to Pacific SST anomalies, as 

demonstrated by the significant co-occurrence with La Niña events. Conversely, low flow events, 

defined as below the 5th percentile of reconstructed flow, were found to significantly not co-occur 

with La Niña events. El Niño events were not found to be significantly related to either high or 

low flow extremes, with the number of co-occurring events very similar to the mean of the 

bootstrap distribution. Not all El Niño events are associated with weak IASM rainfall. While 

lower-than-average monsoon rainfall occurs during canonical El Niño events, there is little 
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change in total rainfall during El Niño Modoki events, which result in a shorter but more intense 

monsoon (Taschetto et al., 2010). We tested the relationships between El Niño events and Daly 

River low flow extremes for canonical El Niño and El Niño Modoki events separately, but again 

the results were not significant (Figure D-11).  

These findings are consistent with the relationship between cool Pacific SSTs and rainfall over 

Australia in observations, and are similar to the findings of Allen et al. (2020), despite the 

differences in the study period. Figure 5-7, panels e and f, shows the composite December-

January SSTs over the 9 extreme low and 15 extreme high flow years. High streamflow years are 

associated with warmer-than-average SSTs off the coast of Australia which lead to greater 

convection and monsoon rainfall, whereas low flow extremes are associated with cool SST 

anomalies and suppressed convection (BOM, 2012). The mechanisms behind the asymmetrical 

relationship between ENSO and northern Australian rainfall and streamflow is an area of active 

research, with the interaction between ENSO and other modes of variability a likely cause (Cai 

& van Rensch, 2013; Heidemann et al., 2021; Power et al., 2006). 

While high total annual streamflow is more likely to occur during a La Niña than El Niño phase, 

the rainfall events that cause significant flooding at Katherine cannot be linked to ENSO phasing 

based on the available data. While the flooding at Katherine during 2011 was associated with a 

strong La Niña that also caused extensive flooding in Eastern Australia, other major historical 

floods at Katherine have occurred during years with average Pacific SSTs and El Niño years. As 

most of the region’s rain falls as intense, intermittent, tropical showers, monsoon troughs, or ex-

tropical cyclone lows, rain events during average years are sufficient to cause local flooding. 

Tropical cyclones in the instrumental record are ~20% more likely to occur in northern Australia 

during La Niña years (Kuleshov et al., 2009), but ENSO phases do not significantly impact the 

occurrence of monsoon bursts which are more likely to occur during active phases of the Madden–

Julian Oscillation (Berry & Reeder, 2016). Rainfall event timing linked to antecedent conditions 

is also a factor, with heavy rainfalls occurring later in the wet season when the subsurface is 

saturated more likely to result in extreme discharge than equivalent events earlier in the season 

(Chappell & Bardsley, 1985). 
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Figure 5-7 Kernel density estimate plots of 30,000 bootstrapped replications of instrumental Niño3.4 
DJF SST anomalies from 1875-2005 showing the co-occurrence of extremes in the reconstructed 
streamflow and El Niño (a, b) and La Niña (c, d) events. The number of extreme low and high flow 
events in the reconstruction associated with each ENSO phase is shown in black and compared to the 
bootstrap mean (dashed lines); significant values lying outside the 95% bias-corrected bootstrap 
confidence interval are shown in red. The average December to January (DJF) SST anomalies during 
low flow years (e) and high flow years (f) are also shown, with the approximate location of the Daly 
catchment indicated by the black square. 

Indian Ocean SSTs also affect northern Australian rainfall, with positive phases of the Indian 

Ocean Dipole (IOD) linked to decreased winter-spring rainfall. The influence of the IOD begins 

in May-June, and peaks in September-October, diminishing rapidly at the start of the monsoon. 

Therefore, the IOD has very little impact on the peak of the monsoon (Jourdain et al., 2013; 

Taschetto et al., 2010), and, as expected, we found no relationship between the IOD and Daly 

River annual average or extreme streamflow. An IASM-region streamflow reconstruction for the 

Citarum Basin in Java, Indonesia, which specifically targets spring (Sept-Nov) streamflow, has 

shown an increase in the frequency of low streamflow events accompanying the increase in the 

frequency and magnitude of positive IOD events since the 1960s (D’Arrigo et al., 2011). This 

illustrates the importance of the seasonality of reconstructions when considering the impacts of 

different climate drivers on extreme events in the IASM region. 

Changes in the frequency of extreme low and high streamflow events in the Daly catchment were 

investigated using a Gaussian kernel technique. Results for the Katherine River and Daly River 

gauge G8140040 are shown in Figure 5-8a, b and remaining gauges in Figure D-12. Persistent 

weak monsoons have been proposed as the cause of the 16th-century megadrought (1560-1587 

CE) in monsoon Asia (Cook et al., 2010b). We also see a peak in the occurrence of low flow 

events in the mid-16th century, noting that the Daly River reconstruction is not independent of 

the drought reconstruction of Cook et al. (2010).  
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The mid-1600s to early 1800s shows low reconstruction variance and a low frequency of both 

low and high streamflow events. Paleoclimate studies suggest two potential mechanisms that 

could explain this result. The low variance period broadly coincides with the Little Ice Age (LIA), 

a period of lower-than-average temperatures in the Northern Hemisphere, believed to result from 

both low solar activity (Maunder and Dalton grand solar minima) and high volcanic activity 

(Grove, 1988). Climate proxy reconstructions and modelling suggest a contraction of the seasonal 

latitudinal migration of the Intertropical Convergence Zone (ITCZ) during the LIA, with modest 

rainfall reductions over monsoonal Australia, cantered on the 1600-1700 CE period (Denniston 

et al., 2016; Yan et al., 2015). Proxy reconstructions of ENSO by D’Arrigo et al. (2005) and 

McGregor et al. (2010) have also identified a period of low ENSO amplitude over the 17th and 

18th centuries, although their findings disagree with other studies (Cobb et al., 2003). Either 

smaller north-south movements of the ITCZ or lower ENSO amplitude could plausibly result in 

lower monsoon streamflow variability during the LIA. 

Figure 5-8 shows that the occurrence of high flow events has increased markedly over the last 

~100 years. A significant (p < 0.001) increasing trend in 95th and 90th percentile flows at Daly 

River gauge G8140040 was identified over the period 1800 to 2018 CE using the Cox-Lewis test 

against the null hypothesis of a constant occurrence rate. Noting that the Daly catchment gauge 

reconstructions are not independent, trends in both 95th and 90th percentile flows at Katherine 

River gauge G8140001 were also significant over this interval (p < 0.01; p = 0.05, respectively), 

although the increase in high flows began slightly earlier at ~1770 CE. The results did not change 

if either the reconstruction end date of 2005 or the observation end date of 2018 were used, and 

increasing trends calculated over the entire reconstruction interval from 1413 CE were also 

significant for both gauges.   

A sand splay deposit taken at the Nancar Hideout on the lower Daly River, close to the location 

of streamflow gauge G8140040, shows that low rates of deposition occurred from ~1420 to ~1760 

CE, indicating a dry period, followed by an increase in deposition and streamflow in the period 

from ~1760 to 2005 CE (Wasson et al., 2010). Flood frequency derived from the sediment cores 

has risen steadily over the last ~160 years, with a doubling in the last ~60 years (Wasson et al., 

2010). Noting the dating uncertainties (± 10-60 years), this record is highly consistent with our 

tree ring-based reconstruction, providing independent verification of the recent trend in extreme 

streamflow. 

5.6.5 Regional coherency 

To test whether recent increases in monsoon streamflow are regionally coherent or unique to the 

Daly catchment, we compared our terrestrial proxy reconstruction to a coral luminescence-based 

reconstruction of the Burdekin River from 1648–2011 (Lough et al., 2015). The Burdekin River, 
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located in the dry tropics of Northeast Queensland (Figure 5-1), also experiences wet season 

rainfall related to the IASM. Lough et al. (2015) found an increase in the magnitude and frequency 

of high flow events from the mid-1900s compared to the preceding century in their Burdekin 

streamflow reconstruction. 

We assessed changes in Burdekin River streamflow using the same methods described above for 

the Daly catchment (Figure 5-8c), extending the reconstruction from 2011 to 2018 using 

instrumental data. As for the Daly catchment, trends in both 95th and 90th percentile Burdekin 

River flows increased significantly over the reconstruction interval from 1800 to 2018 CE 

(p < 0.05), with trends also significant since the beginning of the reconstruction period at 1648 CE 

(p < 0.05). 

Both catchment and rainfall changes may have contributed to the increasing streamflow trends. 

Agricultural development in the Burdekin Catchment since the settlement period (1851-1900) has 

likely contributed to higher discharge through vegetation cover and soil compaction changes to 

rainfall-runoff ratios (Lough et al., 2015). However, there are currently low levels of development 

and intensive agriculture in the Daly, with less than 10% of land under intensive use (Álvarez-

Romero et al., 2016). Land surface changes, therefore, are unlikely to have had a significant 

contribution to the observed increase in streamflow in the Daly River or the coherent trend 

between the catchments. 

Recent increasing trends in northern Australia summer rainfall are well documented. The 

increasing trend has been observed using rainfall data from 1900 onward, but may have begun in 

the early 1800s (Gallego et al., 2017). The trend has intensified since the 1950s (Nicholls, 2004; 

Rotstayn et al., 2007; Suppiah, 1992; Taschetto & England, 2009), which matches the observed 

changes in the frequency of extreme events in the Daly and Burdekin catchments. Most of the 

increasing rainfall trend can be explained by an increase in the frequency of multi-day rainfall 

events during active monsoon phases, rather than changes in the intensity of individual rainfall 

events (Clark et al., 2018; Dey et al., 2020). This implies that the weather systems causing heavy 

rainfall patterns are developing more often (Clark et al., 2018).  

The mechanisms behind increasing monsoon rainfall are still unclear. Recent changes in ENSO 

are not a contributing factor as the increased frequency of El Niño events in the late 20th Century 

should result in fewer wet years and fewer high annual streamflow events (Shi et al., 2008). Nor 

does the trend follow the thermodynamic increase in rainfall event intensity expected with climate 

change (Berry et al., 2011; Clark et al., 2018; Smith et al., 2008). Rotstayn et al. (2007) showed 

that increased concentrations of anthropogenic aerosols can drive temperature and pressure-

induced changes in monsoonal winds and increased precipitation in climate modelling, but these 

findings were later disputed (Shi et al., 2008). Changes in regional sea surface temperatures (Shi 



CHAPTER 5 
 

 
 

96 

et al., 2008), land-ocean temperature differences (Wardle & Smith, 2004), and timing of the 

monsoon onset (Taschetto & England, 2009), are also proposed mechanisms. It follows that the 

causes of the recent increasing trend in Daly and Burdekin annual streamflow totals are currently 

unknown, and further research effort is required. 

 
Figure 5-8 Extreme high flow/low flow event years and the time-varying frequency of the occurrence 
of these events between 1413 and 2018 for the a) Daly River at G8140040 and b) Katherine River at 
G8140001. A kernel smoothing method was used with a bandwidth of 38 years (solid lines), with 
dashed lines showing the adjusted frequency curve if instrumental data is appended to the 
reconstruction after 2005. In c) the frequency of extremes between 1648 and 2018 for the Burdekin 
River coral reconstruction of Lough (2015) is plotted with a bandwidth of 38 years, with instrumental 
data appended to the reconstruction after 2011. The shaded areas (blue and orange) represent the 
95% confidence intervals based on 1,000 bootstrap simulations.  

5.7 Conclusions 
A long-term perspective on past northern Australian streamflow variability is provided by our 

tree-ring reconstruction for the Daly catchment, one of the few high-resolution streamflow proxy 

reconstructions for the IASM region. Despite the relatively short length of the instrumental 

records used for calibration and verification, little decrease in model statistics was observed 

moving back in time, indicating that the reconstruction provides useful information throughout 

the reconstruction period. Our Daly catchment reconstruction extends the record by more than 

five centuries. The length and robustness of the reconstruction, ability to identify historical flood 

events and coherence with other proxy reconstructions demonstrate the utility of the variance 

transform methodology to isolate streamflow signals from noisy tree-ring proxies, particularly 

when proxies far from the reconstruction target location are used. This method can be applied to 

reconstructions from other catchments in regions with few local proxies. 
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The reconstruction shows that high annual streamflow in the Daly catchment is associated with 

La Niña events, but low streamflow is not associated with El Niño events, confirming previous 

findings that IASM rainfall responds asymmetrically to ENSO. More generally, warm (cool) SST 

anomalies near the Australian coastline are associated with high (low) annual streamflow due to 

enhanced (suppressed) convection.  

The recent magnitude and frequency of high streamflow events is unmatched over the past five 

centuries, regionally coherent, and closely follows observed trends in summer monsoon rainfall. 

The mechanisms behind the increasing trend in monsoon rainfall, and thus streamflow, are 

currently unknown. Increasing annual streamflow cannot be directly interpreted as a trend in flood 

hazard, because the increased frequency of rainfall events rather than increased event intensity 

lies behind this trend. The short duration high-intensity rainfall events that cause flooding at 

Katherine can occur in otherwise dry years, and antecedent catchment conditions and tropical 

cyclone events also contribute to flood occurrence.  

Although it is unclear how average IASM rainfall will change with continued global warming, 

rainfall variability will likely increase. The consecutive failure of two monsoon seasons in 2019 

and 2020 demonstrate that despite robust and regionally coherent trends in high streamflow, 

multi-year dry events still occur. Increased variability could have serious implications for water 

resources in the Daly catchment, as ecological and social functions rely on dry season baseflow 

from aquifers recharged during the previous summer’s monsoon. Our reconstruction shows that 

current resource allocations in the Daly have been set during a period of unprecedented high river 

and aquifer levels which should be carefully considered by water managers when deciding on 

sustainable future allocations. 

5.8 Conflict of Interest  
The authors declare no conflicts of interest relevant to this study.  

5.9 Data Availability Statement  
All tree-ring chronologies included in the modelling are publicly available from the 

NOAA/World Data Service for Paleoclimatology archives at https://www.ncdc.noaa.gov. The 

code underpinning this paper is available on request from the corresponding author.  

5.10 Acknowledgments 
The authors acknowledge the efforts of all the dendrochronologists who have contributed tree-

ring chronologies to the ITRDB, allowing for studies such as this one to be undertaken. Our thanks 

also to Ze Jiang for his helpful discussions on methodology and to Hung Nguyen and two 

anonymous reviewers, whose comments have improved this manuscript. PAH is supported by an 

Australian Government Research Training Scholarship and the UNSW Scientia PhD Scholarship 

Scheme. MPR is supported by a NOAA Climate and Global Change Fellowship under UCAR 



CHAPTER 5 
 

 
 

98 

CPAESS award #NA18NWS4620043B. FJ is supported by the UNSW Scientia Program. Further 

support provided by the ARC Centre of Excellence in Australian Biodiversity and Heritage 

(CE170100015). Open access publishing facilitated by University of New South Wales, as part 

of the Wiley-University of New South Wales agreement via the Council of Australian University 

Librarians.  



CHAPTER 6 
 

 
 

99 

Chapter 6 Combining paleoclimate data and future climate 
projections to predict hydrological drought risk  

6.1 Abstract 
Climate change is projected to cause more frequent and severe hydrological droughts. 

Understanding future drought risk is critical to support good water management decision-making. 

Combining paleo-streamflow reconstructions with climate model outputs allows us to compare 

past variability to future projections and produce better estimates the potential risk of future 

droughts. Here, we present a technique for developing both streamflow reconstructions and future 

projections, based on gridded estimates of the Palmer drought severity index, using the Murray-

Darling Basin (MDB) as a case study. To verify the method, the reconstruction is compared to a 

reconstruction developed using the more traditional, tree-ring method. The future projections are 

compared to an existing ensemble of downscaled and bias-corrected climate model outputs for 

the MDB. The gridded method is shown to be suitable for the MDB and could be extended to any 

other region globally with a similar existing dataset. To show how water managers could utilise 

the reconstructions, we fit joint probability models to characteristics of drought events and analyse 

the likelihood that the most severe historical drought events, the Millennium Drought (~1997-

2010) and the Recent Drought (2017-2019) could be exceeded in the future. The future 

projections show that droughts as or more severe (longer duration and/or greater magnitude) than 

the Millennium Drought are likely to occur in future and should be considered in future scenario 

planning. 

6.2 Introduction  
While droughts are a natural and recurring feature of the Australian hydroclimate (Kiem et al., 

2016), the severity of the recent droughts, particularly in eastern Australia, is increasingly 

attributed to anthropogenic climate change. Research has shown that rising temperatures and 

associated changes in atmospheric circulation contribute to streamflow deficits observed during 

periods of low precipitation (Cai & Cowan, 2008; Nguyen et al., 2021; Ummenhofer et al., 2009). 

Climate change is also predicted to contribute to more frequent and severe droughts (Burke, 2011; 

Cook et al., 2014; Satoh et al., 2022; Sheffield et al., 2012), with cascading environmental and 

socio-economic impacts for affecting communities. While much progress has been made towards 

understanding the causes and impacts of drought in Australian catchments (e.g., Ummenhofer et 

al., 2009; Allen et al., 2020; King et al., 2020; Nicholls, 2004), there are still research gaps. 

Information contained in paleoclimate records shows that the instrumental data does not account 

for the full range of natural climate variability in Australia (see Chapter 5, and Flack et al., 2020; 

Gallant & Gergis, 2011; Ho et al., 2015b; Kiem et al., 2020; Palmer et al., 2015; Verdon & Franks, 

2007). Thus, drought risk estimates based only on the instrumental period are likely to 
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underestimate the actual risks considering natural variability and climate change (Kiem et al., 

2020).  

Two key research needs have been identified, firstly improving records of pre-instrumental 

drought characteristics using paleo records and secondly, identifying methods for translating 

paleoclimate drought information into useful future scenarios for water management (Kiem et al., 

2016). Paleoclimate data provides a good understanding of the baseline hydroclimate variability 

over long timescales which can be used to improve drought risk estimates. However, to 

understand the impact of climate change on drought, projections of future trends in climate 

obtained from General Circulation Models (GCMs) are also required (Armstrong et al., 2020; 

Kiem & Verdon-Kidd, 2011). The combination of paleoclimate reconstructions with climate 

model outputs allows us to compare past variability to future projections and better estimate the 

potential risk of future droughts exceeding those in the instrumental period (Cook et al., 2015; 

Hessl et al., 2018).  

Despite the promises of these research advances, there are multiple technical challenges. Firstly, 

producing paleo-reconstructions for Australia, and secondly, combining paleo-reconstructions 

with climate model projections. There is a dearth of suitable paleoclimate proxies (i.e., annually, 

or seasonally resolved, and precisely dated) over much of mainland Australia. Hydroclimate 

reconstructions must therefore primarily rely on remote proxies (see Chapter 5 and publications 

including Gallant and Gergis, 2011; McGowan et al., 2009; Ho et al., 2015). Once a 

reconstruction has been developed, a method for reconciling the paleoclimate data with future 

projections must be identified. Armstrong et al. (2020) applied the ‘change factor’ approach to 

simulate future rainfall scenarios compared to a paleo-reconstruction of rainfall in the Lockyer 

Valley (Vance et al., 2015). Cook et al. (2016) derived the Palmer Drought Severity Index (PDSI) 

from an ensemble of climate model outputs which could then be directly compared to PDSI 

reconstructions from eastern Australia (Palmer et al., 2015). GCMs do not simulate streamflow 

sufficiently well for outputs to be used directly (Kundzewicz et al., 2018), thus, additional steps 

are required to post-process model outputs. Ideally, regionally downscaled and bias corrected 

model outputs would be routed through a catchment model. However, downscaling GCMs is 

computationally and resource intensive, as is building and calibrating a large catchment model. 

Such a workflow is prohibitive in many circumstances, particularly for large-scale studies over 

multiple catchments.  

There is a need for regionally specific hydrological projections which quantify the impacts of 

both natural climate variability and anthropogenic change, and their associated uncertainties, to 

support water management decision-making (Kiem & Verdon-Kidd, 2011) that can be developed 

in a timely manner. In this Chapter, we present a method using existing PDSI spatial-field data 
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that can be directly applied to derive continuous past and future streamflow projections. The 

Murray-Darling Basin (MDB) in eastern Australia is used as a case study; however, the method 

as described could be applied to catchments across Australia or any other region in the world with 

a similar dataset. This Chapter presents three related pieces of work.  

1) Reconstructions of past streamflow using PDSI fields that are then verified against 

reconstructions developed using the more traditional, tree-ring chronology method.  

2) Projections of future streamflow using PDSI fields that are then verified against runoff 

from existing downscaled and bias corrected model outputs for the MDB.  

3) Analysis of the occurrence and characteristics of droughts in the past and future gridded 

streamflow reconstructions demonstrating the benefits of reconstructions to 

understanding future drought risk.  

6.3 Past and future streamflow reconstructions from gridded PDSI 
The Palmer Drought Severity Index (PDSI) is a widely used regional drought index that 

incorporates temperature, precipitation, and soil moisture storage into a single measure of drought 

severity (Palmer, 1965). Tree-ring ‘drought atlases’ are gridded reconstructions of PDSI derived 

from networks of tree rings. Drought atlases have been used to investigate various scientific 

questions, mostly related to the causes, frequency, and recurrence interval of severe, prolonged 

droughts over the Common Era (Cook et al., 2007, 2010b, 2016). Drought atlases have also been 

shown to be practical proxies for streamflow reconstruction (Coulthard et al., 2016; Ho et al., 

2016, 2017; Nguyen et al., 2020). The theoretical basis for drought atlas streamflow 

reconstruction is that PDSI is a measure of soil moisture, which is directly related to streamflow 

(Nguyen et al., 2020), as both components of the hydrologic cycle depend on the same set of 

climate variables including precipitation, temperature, and evaporation (Ho et al., 2016). The 

practical basis for drought atlas streamflow reconstruction is that as both streamflow and PDSI 

can be reconstructed from tree rings, it should be possible to build a model that directly relates 

streamflow to PDSI derived from tree rings (Coulthard et al., 2016; Ho et al., 2016).  

There are several benefits to using drought atlases for streamflow reconstruction: atlas outputs 

remove the need for standardisation of tree-ring chronologies and nested reconstructions; they are 

more spatially uniform, making them applicable for large-scale studies (Nguyen et al., 2020); and 

they may filter non-climatic noise compared to using tree rings directly (Ho et al., 2016). 

Nevertheless, drought atlases should be used cautiously, as they contain non-stationary 

uncertainties which increase back in time due to decreased sample depth (the number of tree-ring 

chronologies available for reconstruction) (Nguyen et al., 2020). The impact of underlying 
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drought atlas reconstruction uncertainties on the derived streamflow reconstruction uncertainty is 

difficult to quantify. 

Here, the motivation for using drought atlases to reconstruct streamflow is that gridded PDSI 

products are available for both past (drought atlas) and the future - derived from climate models 

(Cook et al., 2014). Thus, if a suitable model for streamflow can be developed from gridded PDSI 

during the instrumental period, this provides the opportunity also to project future streamflow 

trajectories based on modelled PDSI projections. The Murray-Darling Basin was selected as a 

case study for continuous PDSI-based past and future streamflow reconstructions to help place 

recent severe droughts in the context of past natural variability and expected future changes due 

to anthropogenic climate change. However, as climate model PDSI outputs are available over all 

inhabited continents, and drought atlases have been developed for much of the Americas, Europe, 

continental Asia, and Australasia, the method described here could be used to produce past and 

future streamflow for catchments in any of these regions. 

6.4 Case study catchment: the Murray-Darling Basin 
The Murray-Darling Basin (MDB) produces around 50% of Australia’s irrigated agriculture and 

is often termed Australia’s ‘food bowl’ (Alston & Whittenbury, 2013). At ~2700 km, the Darling 

River is the longest in Australia (Bowling and Baker, 1996), and its drainage basin and tributaries 

form the upper half of the MDB (Figure 6-1a). The Darling flows from the tropical/subtropical 

highlands in Queensland to the arid/semi-arid interior of western New South Wales (Meredith et 

al., 2009). The Murray River and its tributaries form the southern portion of the basin (Figure 

6-1a), flowing for almost 2500 km across the heavily populated states of New South Wales, 

Victoria, and South Australia.  

 
Figure 6-1 a) Location of the study sites, the Darling River at Wilcannia (blue dot), located in the 
upper Murray-Darling Basin (green), and the Murray River at Lock-7 (red dot), located in the lower 
Murray-Darling Basin (grey); Historical (1961-1990 CE) average annual rainfall (mm; b) and 
Morton point potential evapotranspiration (mm; c) over the MDB. Data from the SILO gridded 
database (QLD Government, last accessed 14/7/2022). 
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The MDB is predominantly semi-arid, with potential evapotranspiration rates far exceeding 

annual rainfall over much of the catchment (Figure 6-1b, c). The region is characterised by 

extreme climatic variability, and flow is highly right-skewed, with a large proportion of average 

flows occurring in very wet years and during major floods (Thoms and Sheldon, 2000). The basin 

faces environmental pressures from over-extraction and climate change, which both reduce water 

availability in the river system (Meredith et al., 2009).  

Flow in the Darling River largely reflects the rainfall pattern for the northern part of the Murray-

Darling region. Flow is approximately bimodal (Figure 6-2), with the highest streamflow in the 

late summer–early autumn (February–March) following the summer rainfall period and a second 

peak in the late winter–early spring (August–October) following the winter rainfall. Most of the 

rain in the upper basin stems from tropical systems or from interactions between tropical and 

extra-tropical systems and is thus more prevalent during the warmer months (Gallant et al., 2012). 

During the Australian monsoon season (November–April), strong cold fronts can penetrate the 

sub-tropics, triggering thunderstorms and very heavy, localised rainfall (Gallant et al., 2012). 

Tropical cyclones moving inland from the coast can also contribute to heavy summer rainfall. 

Winter rainfall results from meridional troughs extending through eastern Australia's subtropics. 

The convergence associated with these troughs accounts for around 25-40% of annual rainfall in 

the northern MDB (Wright, 1997). 

In contrast, most rainfall in the southern MDB results from extra-tropical weather systems, such 

as cold fronts, low-pressure cut-off systems and cloud bands, and mostly occurs from May–

October (Gallant et al., 2012; Wright, 1997). The highest rainfall occurs over the Great Dividing 

Range range, which forms the eastern border of the basin, with orographic uplift as the primary 

mechanism (Gallant et al., 2012). Cut-off low-pressure systems contribute between 25% and 50% 

of rainfall across the lower MDB and are responsible for over 80% of the rainfall that occurs on 

heavy rain days during the cool months (Wright, 1997).  

On interannual scales, major climate drivers also affect MDB rainfall and streamflow. The El-

Niño Southern Oscillation (ENSO) is a significant driver of rainfall variability across the MDB 

and has a magnified impact on streamflow variability (Chiew & McMahon, 2003). Winter, spring 

and summer MDB rainfall variations are most strongly associated with ENSO events, but the 

relationship between rainfall anomalies and the strength of ENSO events is not linear (Gallant et 

al., 2012; King et al., 2013). Some of the inter-annual variability in winter/spring rainfall in the 

MDB can also be attributed to the Indian Ocean Dipole (IOD; Gallant et al., 2012; Verdon and 

Franks, 2005), which has stronger influences over the southern basin. Increasing research effort 

is being placed on the interactions between these climate drivers, particularly when it comes to 

the causes of severe and prolonged droughts in the MDB (Gallant et al., 2012; King et al., 2020; 
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Ummenhofer et al., 2009), along with the influence of multi-decadal climate variability (Verdon-

Kidd et al., 2014). Precipitation anomalies are enhanced over the MDB La Niña/negative IOD 

and El Niño/positive IOD periods co-occur (Cleverly et al., 2016; Holgate et al., 2022), and major 

droughts have been linked to the absence of the ENSO and IOD phases that bring drought-

breaking rains, rather than to below-average precipitation (King et al., 2020).  

While a recurring feature of the basin’s climate, drought in the MDB has severe consequences, 

decreasing water security, increasing food and cotton prices, and causing environmental harm. 

During the instrumental period, three protracted droughts and several droughts of shorter duration 

have occurred. The ‘Federation drought’ (~1895–1902), ‘World War II drought’ (~1937–1945) 

and the ‘Millennium drought’ (~1997–2009) all differed in their severity and spatial extent and 

were affected by different combinations of climate drivers (Kiem et al., 2016). While of shorter 

duration, the most recent drought (2017–2019) has been the most severe for the upper basin, with 

very low flows and extreme heat leading to catastrophic environmental consequences in the lower 

Darling (Vertessy et al., 2019). The 2017-19 drought coincided with a positive IOD mode and a 

central Pacific El Niño (Nguyen et al., 2021). Rainfall for the northern MBD was 43% below the 

1961−1990 average over 2017−2019, and 52% below average over 2018−2019 (BOM, 2020b). 

Both these rainfall anomalies are record lows for the instrumental period, breaking the previous 

records set during the Federation Drought in 1900−1902. Conditions were very dry but less 

extreme in the southern MDB (BOM, 2020b). 

During the Millennium drought, the longest recorded instrumental drought in the MDB, the 

reverse situation occurred, with the southern basin experiencing extreme rainfall deficits and more 

modest deficits experienced in the northern basin (BOM, 2020c). The Millennium Drought was 

exceptional for both its length and effect on water resources. The only severely dry years over 

large parts of the MDB were 2002 and 2006, however, long periods without major wet episodes 

prevented water storage from recovering. The drought resulted in much more significant declines 

in the runoff than expected from the rainfall deficits (Saft et al., 2015) and low streamflow 

persisted over parts of the basin long after high rainfall ended the meteorological drought in 2010 

(Peterson et al., 2021). The Millennium and the Recent droughts are the focus of the drought 

analysis in Section 6.5.2. 

6.4.1 Streamflow data  

The diversion, storage, and extraction of water from the Murray River system have resulted in a 

very different hydrological regime compared to pre-development conditions, with large 

reductions in Murray flow and the reversal of the natural flow seasonality in some reaches 

(Leblanc et al., 2012). While water management measures have had comparatively less impact 

on flows in the Darling, dams, weirs, and irrigation diversions have also affected natural flows 
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(Thoms & Sheldon, 2000). Tree-ring streamflow reconstructions build on the correlation between 

tree growth and discharge, and cannot be directly developed for heavily managed catchments 

(Galelli et al., 2021). Therefore, for this work, we use the ‘predevelopment flow’, which is 

modelled discharge in the absence of water management measures by the Murray-Darling Basin 

Authority (MDBA; datarequests@mdba.gov.au). Streamflow is modelled for two gauges, the 

Darling River at Wilcannia, representing flow at the mouth of the upper MDB, and the Murray 

River upstream of lock number 7 (hereafter, Lock-7) representing flow in the lower MDB (Figure 

6-1a). Modelled streamflow data is also available for a much longer period (1896 – 2019) than 

gauge data which has only been reliably measured since the 1970s. 

Figure 6-2 compares the naturalised (modelled pre-development) streamflow to measured gauge 

data at Wilcannia (a, b) over the common period. Figure 6-2a shows that while naturalised 

streamflow is higher than gauged streamflow at Wilcannia in most years due to water extractions, 

there is little difference in inter-annual variability between the series. Figure 6-2b shows similar 

monthly patterns in Darling streamflow between the two series, although the seasonality is muted 

in the gauge data due to extractions and managed releases. Volumetric data is not available for 

Lock-7 and water levels have only been measured since 2007, so a similar comparison is not 

possible for Murray streamflow.  

Figure 6-2c and d show the high variability and right-skewness of streamflow based on the entire 

timeseries of monthly naturalised streamflow for the Darling at Wilcannia and Murray at Lock-7, 

respectively. The approximately bimodal nature of streamflow in the Darling and strong 

seasonality in the Murray can be observed in the monthly boxplots.  

 
Figure 6-2 a) Time series of naturalised average monthly streamflow (blue) compared to gauged 
average monthly streamflow (brown) in the Darling River at Wilcannia (1970-2022). Decreasing 
trends (dashed lines) in both gauge (1973-2022) and naturalised (1970-2019) streamflow are 
significant (Mann-Kendall trend test, p < 0.05); b) Comparison of the proportion of annual 
streamflow occurring in each month at Wilcannia, for the naturalised (blue) and gauged (brown) 
streamflow; c) Average monthly naturalised streamflow in the Darling River at Wilcannia; d) 
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Average monthly naturalised streamflow in the Murray River at Lock-7. Data from the Murray-
Darling Basin Authority (2020). 

Both the naturalised and gauged annual streamflow series at Wilcannia show significant declining 

trends from the 1970s to the current year (Mann-Kendall trend test, p < 0.05), despite very high 

streamflow in 2021 and the first half of 2022 in the gauge data. Similarly, there has been a 

significant declining trend from the 1970s in the naturalised Murray River streamflow at Lock-7 

(Mann-Kendall trend test, p << 0.01). Declining streamflow trends have been observed at gauges 

in undisturbed catchments across the MDB over the last 50 years, with steeper declines in the 

lower basin compared to the upper basin (BOM, 2020c). Streamflow declines are predominantly 

observed in the winter (JJA) and spring (SON), with no trends apparent during autumn (MAM; 

(BOM, 2020c).  

6.5 Streamflow reconstruction and projection 
6.5.1 Streamflow reconstructions  

The paleoclimate proxy data for the Darling River streamflow reconstruction were the gridded, 

tree-ring-based drought reconstructions contained in the Eastern Australia and New Zealand 

Drought Atlas (ANZDA; Palmer et al., 2015), the Mexican Drought Atlas (MXDA; Stahle et al., 

2016), the Monsoon Asia Drought Atlas (MADA; Cook et al., 2010), and the South American 

Drought Atlas (SADA; Morales et al., 2020). Published streamflow reconstructions based on 

drought atlases have been developed using a range of methods, including a generalised linear 

model with regularised canonical correlation analysis (Ho et al., 2016, 2017) and a linear 

dynamical system model based on principal components (Nguyen et al., 2020). Both these 

methods share similarities with the principal components of point-by-point regression (PPR; 

Cook et al., 1999, 2007, 2010) previously described in Chapters 2 and 3.  

Here, PPR is used to produce the streamflow reconstruction from gridded PDSI. Streamflow was 

first power transformed using the exponent that best reduced skewness in the data (p = 0.3 for the 

Darling and p = 0.2 for the Murray). Before selecting predictor grid points, each atlas was 

reprojected to a 2° grid using bilinear interpolation of spherical coordinates with the python 

package ‘xesmf’. Interpolation retains variance compared to spatial averaging of grid points. A 

stringent predictor cut-off (p ≤ 0.05) was used due to the large number of grid points (> 900) and 

due to the high spatial correlation in the gridded PDSI compared to the tree rings, which results 

from the filtering and smoothing of the data during the drought atlas reconstruction. The power-

transformed streamflow data and the tree-ring chronologies were autoregressively pre-whitened 

before modelling. Predictor selection, calibration and verification of the model were undertaken 

on the transformed, autoregressively modelled data, with the final reconstruction reddened and 

transformed back into data units. 
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None of the tree rings used to underpin the ANZDA are located within the MDB. Nevertheless, 

the ANZDA appears to capture drought signals localised to the upper and lower basin (Cook et 

al., 2016), as well as drought signals related to large-scale climate drivers. The inclusion of the 

MADA, MXDA, and SADA domains in the reconstruction solely relies on teleconnections (i.e., 

large-scale climate drivers) between these regions and the upper and lower MDB. All four drought 

atlases have identified a link between ENSO phases and drought. Drought in the MADA has 

further been linked to phases of the IOD (Ummenhofer et al., 2013), and the SADA additionally 

displays a signal related to the Southern Annular Mode (SAM; Morales et al., 2020). The benefit 

of using predictors from teleconnected regions when few or no local paleoclimate predictors are 

available has been previously established in Chapters 2, 3, and 5.  

Previous gridded streamflow reconstructions have incorporated grid points from a single drought 

atlas, from the same region as the catchment (Ho et al., 2016, 2017; Nguyen et al., 2020). To test 

the assumption that grid points from drought atlases from teleconnected regions can also be 

reliably used to reconstruct MBD streamflow, a second reconstruction was developed for 

comparison, using tree-rings directly. All publicly available tree-ring chronologies underpinning 

the four drought atlases from the International Tree Ring Databank (ITRDB) were downloaded 

for the initial predictor pool. The wood property series from each site were converted to 

chronologies by the process of standardization (i.e., detrended and transformed into 

dimensionless growth indices). The process aims to remove growth trends thought to be largely 

unrelated to climate using the “signal free” (Melvin and Briffa, 2008) and “Regional Curve 

Standardization” (Briffa et al., 1992) methods of tree-ring standardization. Pre-selection of tree-

ring predictors considered only those chronologies with a significant relationship (p ≤ 0.1) to 

average naturalised streamflow. The final predictor pool was determined via a backwards 

stepwise regression approach (Miller, 2019; Woodhouse et al., 2006). 

6.5.2 Calibration and verification 

The last year of the calibration period was limited to 2000 for both reconstructions as this is the 

final year of many of the tree‐ring chronologies and the last reconstruction year of the SADA. As 

is standard procedure in dendrochronological reconstructions, a 50/50 split calibration and 

verification regime was used, with models first calibrated to the first half of the data (e.g., 

1897-1948) and validated on the second half (e.g., 1949-2000), then the periods reversed. If both 

split periods pass the verification tests, the model is considered to suitably predict unseen data 

and therefore appropriate for reconstruction purposes. Once verified both ways, a final model is 

then fit to the entire instrumental period (Briffa et al., 1990). Standard verification tests applied 

to split period models are the calibration period coefficient of multiple determination (CRSQ or 

R2), the validation period reduction of error (VRE), and the validation period coefficient of 

efficiency (VCE; Cook & Kairiukstis, 1990). 
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VRE is a measure of the performance of a model relative to the mean of the calibration period 

where: 

𝑉𝑉𝑉𝑉𝑉𝑉 = 1 − [ 
∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�𝑖𝑖)2

∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�𝑐𝑐)2
] 

𝑋𝑋𝑖𝑖 and 𝑋𝑋�𝑖𝑖  refer to the observed and simulated value at 𝑖𝑖, and 𝑋𝑋�𝑐𝑐 is the mean value over the 

calibration period. VRE ranges from -∞ to +1.0, with VRE > 0 indicating that the model is more 

successful at predicting verification data than the calibration mean. Similarly, VCE compares the 

model fit to the verification period mean 𝑋𝑋�𝑒𝑒:  

𝑉𝑉𝑉𝑉𝑉𝑉 = 1 − [ 
∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�𝑖𝑖)2

∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�𝑒𝑒)2
] 

Again, VCE > 0 indicates some model skill over the mean of the verification period. Unless 𝑋𝑋�𝑐𝑐 = 

𝑋𝑋�𝑒𝑒, VCE will always be less than VRE by a factor related to the difference in the calibration and 

validation period means.  

6.5.3 Future streamflow projections from modelled PDSI  

To investigate climate change impacts on streamflow, we produced a forwards streamflow 

projection using PDSI calculated from CMIP5 model projections of the 21st century (Cook et al., 

2014, 2016). Cook et al., (2014) calculated PDSI from GCMs. Model PDSI calculations use 

Penman-Monteith potential evapotranspiration and are thus consistent with the PDSI 

reconstruction target used to develop the four drought atlases. The projections cover the time 

interval 1901–2099 at a monthly resolution, using the historical (1850–2005) and RCP 8.5 (2006–

2099; business-as-usual, high greenhouse gas emissions) forcing scenarios. The ensemble 

includes projections from 14 models for a total of 30 individual simulations (Table E-1). It may 

be beneficial to exclude models that perform poorly in terms of simulating important processes 

for the MBD, for example, the ENSO-rainfall relationship over Australia in spring (Moise et al., 

2015). However, as the method also relies on modelled PDSI from regions outside of Australia, 

it was decided to retain these three models (MIROC-ESM-Chem, MIROC-ESM, and 

GISS-E2-R). 

Climate models are not temporally consistent with instrumental data over their ‘historical’ period. 

Thus, it is not possible to create a regression model for streamflow using the modelled PDSI 

during the calibration period. To ensure continuity between the reconstruction and future 

projections, PDSI outputs from each of the CMIP5 models were reprojected to a 2° grid, and the 

model grid points corresponding to the selected drought atlases predictors were extracted. Model 

PDSI was averaged over either DJF or JJA, consistent with the reconstruction target (growing 

season) of each drought atlas. Over the common historical period (1900-2000), the GCM PDSI 

grid points were scaled to have the same mean and variance as the corresponding drought atlas 

grid points. Drought atlas data from 1897-2000 was then pre-appended to the modelled grid points 
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from 2001-2099 and the PPR algorithm was run as a forward projection. Using the same historical 

data (drought atlas grid points) with the same PPR parameterisation used to produce the 

reconstructions ensures that very similar weightings were applied to each grid point over all 

projected models and reconstructions, allowing the projections to be appended to the streamflow 

reconstruction to produce a continuous time series from 1500-2099.  

6.5.4 Future streamflow projections from downscaled runoff estimates 

To verify that gridded PDSI outputs from global climate models are suitable for projecting 

streamflow, the PDSI-based projections were compared to streamflow projections from the 

Australian Water Outlook (AWO; Azarnivand et al., 2022). The AWO projections are derived 

from four CMIP5 climate models (Table E-2), chosen from amongst the subset of models which 

best represent Australian climate conditions, and covering the range of projected changes in 

precipitation and temperature. These models have been subjected to one dynamical downscaling 

and three statistical bias correction methods. Here, only the model output bias corrected using the 

Multivariate Recursive Nested Bias Correction (MRNBC) method are used for comparison to the 

PDSI projections. The MRNBC method incorporates the interaction among variables across daily, 

monthly, and annual timescales to better represent low-frequency variability (Johnson & Sharma, 

2012; Mehrotra & Sharma, 2016). Projections of the landscape water balance components were 

generated from the bias-corrected CMIP5 model outputs using the Australian Water Resource 

Assessment Landscape model v6 (AWRA-L; Frost and Wright, 2018).  

The 5-km resolution gridded AWRA-L projected runoff was used to derive potential future 

Darling and Murray streamflow. Over the historical period (1961-2019), modelled streamflow at 

Wilcannia and Lock-7 lags the AWRA-L runoff by two months over most catchment grid cells 

(Figure E-1 and Figure E-2). Averaging runoff over the entire upper or lower MDB with a two-

month lag was shown to suitably approximate streamflow over the historical period (Figure E-3; 

Pearson r = 0.88 for the Darling and r = 0.92 for the Murray). Therefore, projections of future 

streamflow were also generated by averaging AWO estimated runoff at a two-month lag and 

converting from millimetres to streamflow units using the entire catchment area. 

6.5.5 Analysis of drought risk  

Before undertaking analysis, the model simulations over the historical period (PDSI and AWO) 

were rescaled to the mean of the 1961-2019 instrumental period to allow for comparison between 

future and instrumental period droughts. Scaling was undertaken by applying the percentage 

change from the modelled 1961-2019 baseline in each projection year to the instrumental 

1961-2019 baseline. The streamflow reconstructions were not rescaled as they were already 

scaled to instrumental data during the calibration period (1897-2000) and have instrumental data 

appended from 2001-2019.  
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To examine how instrumental droughts compare to the streamflow reconstructions, droughts were 

ranked by separately assigning a rank score to each episode by duration, magnitude (cumulative 

streamflow anomaly), and peak value (maximum streamflow anomaly), with increasing ranks for 

increasing parameter values. Each of the three rank scores was then summed to obtain the final 

score, where a higher score represents a stronger drought episode (Biondi et al., 2005). Drought 

events were defined as one or more consecutive years with streamflow below a reference level. 

Following Biondi et al. (2005), the power-transformed streamflow was converted to standard 

deviation units (SDUt), and thus the reference level is 0, which represents the long-term mean. 

Figure 6-3 provides a stylised graphical representation of the three drought variables – duration, 

magnitude, and peak. Analyses of all three variables are sensitive to the selection of the reference 

level, and thus what constitutes a drought (Hessl et al., 2018). Therefore, the start and end of 

drought episodes identified in this analysis do not necessarily correspond to the accepted 

beginning and end of historical drought periods, which were defined based on other metrics. 

Nevertheless, selecting a constant threshold allows drought events to be assessed relative to one 

another.  

In addition to comparing events by rank, it is useful for extreme event risk assessment to calculate 

exceedance probabilities (the likelihood that droughts of a particular strength will be exceeded in 

future), or alternatively, the return period of these events. The various drought elements (duration, 

magnitude, and peak) have different distributions and are typically correlated, necessitating a joint 

probability approach (Hessl et al., 2018). The joint distribution of drought duration and magnitude 

can be represented by a bivariate distribution with geometric marginals for duration and 

exponential marginals for drought magnitude (Biondi et al., 2005). The joint distribution of 

drought duration and peak can be represented by a bivariate distribution with geometric marginals 

for duration and truncated logistic marginals for the event peak (Biondi et al., 2008). Details on 

the mathematical properties and derivation of these two joint distribution models can be found in 

Kozubowski and Panorska (2005, 2008) and their application to streamflow reconstructions is 

described in Biondi et al. (2005, 2008). Once the fitted model parameters are calculated, the 

bivariate models can be used to calculate the chance of occurrence of a drought of both longer 

duration and higher magnitude or peak than a given drought. The return period of that drought 

can then be approximated as the inverse of its exceedance probability (Kim et al., 2003).  

To assess how drought risk may change in the future, for each of the 30 streamflow projections 

joint probability models of duration/magnitude and duration/peak were fit to the entire streamflow 

timeseries (1500-2099 CE) with SDUt calculated from the historical mean (1500-2019 CE). The 

fitted parameters were then used to calculate the change in likelihood of known historical droughts 

given the potential future streamflow projections. 
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Figure 6-3 Stylised plot of streamflow anomalies (standard deviation units) in blue showing how 
drought duration, magnitude, and peak are defined for each drought event. 

6.6 Results  
6.6.1 Continuous past and future streamflow reconstructions 

6.6.1.1 Seasonality in the drought atlases  

All four drought atlases target peak growing season (summer) drought in their respective 

hemispheres; thus, the ANZDA and SADA target DJF and the MADA and MXDA target 

JJA. The focus on the summer window for drought-atlas reconstructions highlights droughts are 

most likely to adversely affect plant growth (Cook et al., 2010a). However, the seasonal signature 

contained in the atlases is broader than just the target season (Palmer et al., 2015). The PDSI 

integrates soil moisture anomalies over several months and thus may contain a signal from 

precipitation in previous seasons. Similarly, annual ring widths, with which the atlases are 

constructed, likely also include temperature and precipitation signals from growing-season 

months outside of the target window (St. George et al., 2010). 

To investigate the seasonal signals contained in each atlas, and thus which season might be an 

appropriate reconstruction target for MDB streamflow, we calculated bootstrapped Pearson 

correlations between seasonal averaged power-transformed Darling and Murray streamflow and 

the first four principal components (PCs) of each drought atlas at lags of t0 (concurrent year) and 

t+1 (streamflow lags climate by one year). The first four PCs explain ~70% of the variance in the 

ANZDA and MXDA, but much lower variance in the SADA (54%) and MADA (36%). For the 

Darling at Wilcannia (Figure 6-4), the best-correlated drought atlas is the ANZDA as expected, 

with strong correlations in the austral spring (SON), summer (DJF), and autumn (MAM). The 

SADA also shows significant but weaker correlations in austral spring and summer, with a winter 

(JJA) signal also present. The Northern Hemisphere drought atlas seasonal correlations are less 

clear. The MXDA shows weak correlations to Darling streamflow throughout the year, with the 

strongest correlations in austral spring and summer. In comparison, the MADA is not well 
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correlated to Darling streamflow, possibly because the first three PCs capture relatively little 

variance in PDSI. 

Streamflow lags precipitation by approximately two months in the Darling catchment. The 

seasonal correlations in Figure 6-4 are well-aligned with the seasonality of the common large-

scale climate drivers which act over austral winter-spring-summer in the upper MDB (Section 

6.3). Based on the seasonal correlations, and the seasonality of these large-scale climate modes, 

July – December (July-Dec) streamflow was selected as the reconstruction target. The second 

half of the year corresponds to the smaller of the two peaks in streamflow, accounting for around 

40% of annual flow, and matches the seasons for which significant declining trends in streamflow 

have been observed for the upper MDB (winter-spring). Longer periods, such as the calendar or 

water year were also tested, however models generally performed less well when calibrated to the 

late summer peak in streamflow. Summer rainfall in the northern MDB predominantly results 

from high-intensity, short-duration tropical disturbances (Gallant et al., 2012), which is less well 

captured by tree rings. 

 
Figure 6-4 Correlation between seasonally averaged, transformed Darling River streamflow and the 
first four principal components of the four drought atlases a) ANZDA, b) MADA, c) SADA, and d) 
MXDA. Significant correlations based on 1000 bootstrap replications are shown in bold circles/lines, 
correlations not significant (p > 0.05) by light circles/dashed lines. The hatched periods correspond 
to the seasonal reconstruction targets of each drought atlas (a, c – DJF; b, d – JJA).  

Figure 6-5 shows the same correlation analysis for the Murray River at Lock-7. Apart from the 

SADA, which appears to be a poor predictor of Murray streamflow, the atlases have predictive 

strength throughout the year. The first principal component of the ANZDA is particularly well 

correlated to all seasons of Murray streamflow. For this reason, the water year (June-May) was 

selected as the reconstruction target. While choosing a single target across both basins would be 

simpler, selecting separate periods maximises the reconstruction skill and reduces the uncertainty 

in each reconstruction.  
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Figure 6-5 Correlation between seasonally averaged, transformed Murray River streamflow and the 
first four principal components of the four drought atlases a) ANZDA, b) MADA, c) SADA, and d) 
MXDA. Significant correlations based on 1000 bootstrap replications are shown in bold circles/lines, 
correlations not significant (p > 0.05) by light circles/dashed lines. The hatched periods correspond 
to the seasonal reconstruction targets of each drought atlas (a, c – DJF; b, d – JJA).  

The grid point predictors selected from each drought atlas are based on their correlation with 

power-transformed July-Dec Darling streamflow and water year Murray streamflow significant 

at p < 0.05 (Figure 6-6). The grid points selected for the Murray at t=0 and the Darling at a lag of 

1 year (Figure 6-6a, d) are virtually identical. As the Murray water year falls over two years, this 

is consistent with the strong correlations between the drought atlases and current year winter-

spring-summer streamflow in both the upper and lower MDB (i.e., 2001 in the Darling 

reconstruction corresponds to ANZDA reconstruction year 2002 and water year 2002 in the 

Murray reconstruction). Most of the ANZDA domain (mainland Australia and Indonesia) is 

positively correlated with Darling streamflow, with stronger correlations over the Darling 

catchment than the rest of Australia, as expected.  
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Figure 6-6 Drought atlas grid points selected as predictors for the gridded reconstruction based on 
a) significant (p < 0.05) correlation with transformed Darling July-Dec streamflow at Wilcannia and 
b) significant (p < 0.05) correlation with transformed water year Murray streamflow at Lock-7. 

Correlations between the Murray and ANZDA are even stronger than the Darling and ANZDA, 

likely because the longer seasonal window captures significant variability in ANZDA PDSI over 

the late summer/autumn. Streamflow is also negatively correlated to most of the MXDA domain, 

but positively correlated to grid points over southern Mexico (Oaxaca). This pattern matches the 

inverse drought signal between north and central Mexico and southern Mexico during ENSO 

phases (Stahle et al., 2016). Correlations are weak over most of the SADA domain, with a stronger 

relationship to grid points over the La Plata Basin, a region without local tree-ring chronologies 

(Morales et al., 2020). It is possible that this region, which is far from the Andes and not affected 

by orographic precipitation, may better represent variability related to large-scale climate divers 

concerning both the MDB and South America. The positive and negative correlations with the 

grid points selected from the MADA are also plausible when the impact of ENSO and the IOD 

on drought in monsoon Asia are considered. Drought is spatially variable over monsoon Asia 

with the Himalayas and the Tien Shan mountains affecting regional patterns (Ummenhofer et al., 

2013). The selected grid points appear to represent genuine teleconnections between the upper 

and lower MDB and the drought atlases. 

6.6.1.2 Reconstruction calibration and verification 

Darling July-December streamflow could be successfully reconstructed using both the tree-ring 

predictors directly and the gridded PDSI. Figure 6-7 compares the two final reconstructions over 

the entire calibration period (1987-2000). Both reconstructions show good statistical skill based 

on the split period calibration and validation. The reconstruction based directly on tree-ring 

chronologies (Figure 6-7a) accounts for ~70% of the variance in naturalised streamflow over the 
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calibration period, with the whole reconstruction period covering 1600 – 2000 CE, which is the 

period over which both the early-period calibration and late-period calibration show positive 

verification statistics (VRE and VCE > 0; Figure E-4). In comparison, the reconstruction based 

on gridded drought atlas outputs (Figure 6-7b) accounts for ~60% of the variance in naturalised 

streamflow and covers the period 1500 – 2000 CE, the common period of the four drought atlases. 

The decrease in variance explained in the gridded reconstruction is largely due to reduced ability 

to capture the extreme values during the 1950s compared to the tree-ring reconstruction. The 

reconstruction shows little skill (RE > 0, VCE = 0) prior to 1500 CE when there is no contribution 

from the ANZDA grid points. As the gridded reconstruction is not nested over the skilful period, 

there is only a single set of verification statistics.  

 
Figure 6-7 Reconstructed (blue) versus instrumental (black) Darling July-Dec naturalised 
streamflow over the full calibration period (1897-2000) for a) the reconstruction based on tree-ring 
chronologies and b) the reconstruction based on gridded drought atlas outputs. The uncertainty 
interval (light blue shading) is based on 300 maximum entropy bootstrap replications.  

Figure 6-8 compares the tree-ring chronology and gridded reconstructions of Murray water year 

streamflow over the full calibration period (1987-2000). The reconstruction statistics are very 

similar, with both reconstructions accounting for approximately 60% of the instrumental variance. 

The tree-ring reconstruction covers the period 1440 – 2000 CE (Figure E-4), and as for the 

Darling, the gridded reconstruction shows little skill prior to 1500 CE. 
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Figure 6-8 Reconstructed (blue) versus instrumental (black) Murray water year naturalised 
streamflow over the full calibration period (1897-2000) for a) the reconstruction based on tree-ring 
chronologies and b) the reconstruction based on gridded drought atlas outputs. The uncertainty 
interval (light blue shading) is based on 300 maximum entropy bootstrap replications.  

Both Murray reconstructions underestimate the most extreme flood peak in the instrumental data 

(the water year 1956/57). In 1956, an exceptional flood event occurred in the Murray Basin, far 

exceeding the next highest streamflow year on record (1917, 80% smaller than 1956). This event 

resulted from consecutive months of above-average rainfall, with the highest totals falling in 

March due to Tropical Cyclone Agnes (Callaghan, 2019). Wet catchment conditions contributed 

to the extreme flooding, as the rainfall followed widespread flooding in the previous year 

(Callaghan, 2019). It has long been recognised that tree-ring widths are less able to capture 

extreme wet events than droughts (Fritts, 1976; Meko & Woodhouse, 2011; Wise & Dannenberg, 

2019). Partly, this is a saturation problem; once the soil moisture store is filled, water is no longer 

the limiting factor to growth. Additionally, much of the precipitation during extreme events 

results in runoff rather than percolation to the root zone (Fritts, 1976). The 1956 event is so large 

that none of the standard streamflow transformations (power weighting, log-transform, Box-Cox 

transform could successfully normalise the water year time series (Figure E-5). In contrast, the 

gridded model for the Darling substantially overestimates the flood peak in 1955, which again 

indicates poor capture of extreme high flow years during the instrumental period.  

To test whether the gridded models perform poorly for extreme streamflow values in general, a 

residuals plot for the Darling and Murray gridded reconstructions are shown in (Figure 6-9). The 

error estimation is undertaken on the power-transformed streamflow values used for model 

calibration. Figure 6-9 shows that neither gridded model has residuals biased towards the high or 

low-flow extremes. Except for 1955 in the Darling reconstruction, the highest instrumental 

streamflow values are not within the top 10% of underpredicted or overpredicted years. Similarly, 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082295#grl58743-bib-0013
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only one of the five lowest streamflow values in the Darling and Murray reconstructions falls 

within the top 10% of overpredicted years. Nevertheless, the inability to capture the magnitude 

of extreme flood events during the instrumental period suggests events occurring in the pre-

instrumental period may also be poorly captured. Additional work is needed to improve the 

reconstruction of extremely high flow events in the MDB.  

 

Figure 6-9 Residuals for the full calibration period (1897-2000) for a) the reconstruction of July-Dec 
Darling streamflow based on gridded drought atlas outputs and b) the reconstruction of water year 
Murray streamflow based on gridded drought atlas outputs. The top 10% of overpredicted values 
are shown in red, the top 10% of underpredicted values are shown in brown, and the remaining 80% 
of values are shown in blue.  

Despite the over/underestimation of the peak values in 1955 and 1956/57, the lack of bias in the 

residuals and the positive verification statistics suggest the gridded reconstructions have suitable 

reconstruction ability and can be used for further analysis. The tree-ring and gridded 

reconstructions for each river are significantly correlated over the entire 500-year reconstruction 

interval (Pearson r = 0.47 for the Darling and r = 0.59 for the Murray), and while correlations 

decrease outside of the calibration period, they otherwise remain stable (Figure E-6). The gridded 

PDSI from the drought atlases shows similar variance explained for MDB streamflow to the 

underlying tree-ring chronologies, confirming that grid-based reconstructions are appropriate for 

Australian catchments. However, the decline in the performance of the chronology reconstruction 

of the Darling River before 1600 CE suggests the first 100 years of the grid-based reconstruction 

should be interpreted with caution. 

6.6.1.3 Comparison of the streamflow projection methods 

The performance of the gridded PDSI streamflow projection methodology was assessed by 

comparing the 30 gridded projections to the four bias-corrected model projections from the 

Australian Water Outlook (Figure 6-10). The AWO projections have already been extensively 

evaluated for their performance in simulating key aspects of the MDB climate over the historical 
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period (E. Vogel, personal communication, 11 July 2022) and are considered plausible future 

scenarios for the region. Figure 6-10 shows that the mean, median, and range of annual 

streamflow between 2020-2099 in the gridded projections are similar to the characteristics of the 

AWO projections, although many of the gridded projections for the Darling River show higher 

streamflow variance than the AWO projections. As expected from the larger model ensemble, the 

gridded projections represent a broader range of future scenarios. 

 
Figure 6-10 Boxplots of a) July-Dec streamflow at Wilcannia and b) Water year streamflow at Lock-7 
in the reconstruction period (1500-2019 CE; light blue) and each year from 2020-2099. The 30 
projections based on gridded PDSI (brown) are compared to the four simulations from the AWO 
bias-corrected model outputs (purple), with the mean of each simulation shown as a red diamond. 

Figure 6-11 shows the average percentage change in streamflow over the 2020-2099 CE 

projections compared to the 1961-2019 CE historical period used for scaling for the 30 gridded 

and four AWO projections. Most models predict lower streamflow in future compared to the 

baseline period across the MDB. Future streamflow is more uncertain for the Darling than the 

Murray, as models predict a larger range of possible future conditions (-47 to +29% deviation 

from the baseline for the Darling and -28 to +4% deviation from the baseline for the Murray). 

The range of changes predicted by the gridded projections is very similar to the range predicted 

by the smaller AWO ensemble (-52 to +3% deviation from the baseline for the Darling and -25 

to +0.3% deviation from the baseline for the Murray). The models downscaled and bias corrected 

in the AWO were selected to cover the range of plausible future scenarios. The gridded PDSI 

projection method provides a good estimation of future streamflow when compared to the best 

available estimates. As the gridded projections have been shown to be suitable for Australian 
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catchments, all remaining results are based only on the gridded results, with the final streamflow 

time series covering the period 1500-2099 CE. 

 
Figure 6-11 The average percent change in streamflow over 2020-2099 in the projections compared 
to the 1961-2019 instrumental period used for scaling for a) projected July-Dec streamflow at 
Wilcannia and b) projected water year streamflow at Lock-7. Projections based on gridded PDSI are 
shown in brown and derived from the AWO bias-corrected model outputs in purple. 

6.6.1.4 Streamflow from 1500-2099 CE 

For both the Darling and Murray reconstructions, the average streamflow over the entire 

reconstruction interval (1500-2019 CE) is not statistically different from the average streamflow 

during the 1897-2019 CE instrumental period (Darling: 7650 vs 7580 GL; Murray: 30800 vs 

29500 GL). Neither gauge shows any significant trend in streamflow over the reconstruction 

interval. Concurrent dry epochs in the upper and lower MBD before the instrumental period 

occurred in the early 1500s, through most of the 1600s, and from ~1820-1850 CE These match 

periods of aridity identified in previous paleoclimate studies (Cook et al., 2016; Ho et al., 2015a). 

Wet epochs are less coherent between the two halves of the basin. The highest streamflow 

anomalies in the Darling River reconstruction occur from ~1560-1580 CE, whereas high 

streamflow during the 1950s is unmatched in the Murray River reconstruction. The flood of 1956 

remains an anomaly compared to the entire reconstruction period, with no similar magnitude 

event identified in the Murray reconstruction. However, as previously discussed, extreme wet 

years are likely underestimated, and thus it is difficult to assess how anomalous this event was.  

The complete 1500-2099 CE July-December streamflow simulation for the Darling River at 

Wilcannia is shown in Figure 6-12. The multi-model ensemble interquartile range (IQR—25th to 

75th percentile of projected streamflow) of the 30 gridded projections shows a decreasing trend 
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from 2020 to ~2040. From 2040 to the end of the century the range of future projections widens, 

with the 25th percentile result showing a continuing declining trend, but the 95th percentile result 

showing an increasing trend. The trend in the median of the model ensemble is not significant 

(Mann-Kendall trend test, p > 0.05), but average future streamflow in the Darling is likely to be 

lower than the average of the past 500 years (Students t-test, p << 0.01). The full 1500-2099 CE 

water year streamflow simulation for the Murray River at Lock-7 is shown in Figure 6-13. The 

multi-model ensemble interquartile range of the 30 gridded projections shows a decreasing trend 

in streamflow from 2020 to the end of the century, although the trend in the 75th percentile result 

is not significant (Mann-Kendall trend test, p > 0.05). The projections indicate that declines in 

streamflow observed in the Murray over the last 50 years of instrumental data are likely to 

continue. 

 

Figure 6-12 Reconstructed Darling River July-Dec streamflow for each year between 1500 and 2000 
CE as a departure from the ‘historical’ period mean (1500-2019 CE; blue and brown bars, with 90% 
confidence interval as light shaded bars), along with the 30-year low-pass filtered reconstruction 
(black) highlighting multi-decadal variability. The instrumental Darling dry season streamflow 
between 1897 and 2019 CE is shown as black bars. Projected streamflow modelled using PDSI 
derived from the multi-model CMIP5 RCP8.5 ensemble (Table E-1) during the ‘future’ (2001–2099 
CE) simulation period of these runs is shown as the grey lines. The 30-year low-pass filtered projected 
streamflow is shown as bold brown (median), dashed red (25th percentile), and dashed blue lines 
(75th percentile).  

Compared to the reconstructions, flow duration curves calculated from the full model ensemble 

(Figure E-7) also indicate future drying in both rivers, with a decrease in the Q50 (the flow 

exceeded 50% of the time) by -26% in the Darling and -23% in the Murray. For the dry extremes 

(Q95 flow), the decline in the Darling is much greater than in the Murray, at -56% and -23% 

respectively. The wet extremes (Q5 flow) also show a decrease in the full ensemble compared to 

the past 500 years, by 13% in both rivers. There is, however, no decrease in the most extreme 

flood years. 
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Figure 6-13 Reconstructed Murray River water year streamflow for each year between 1500 and 
2000 CE as a departure from the ‘historical’ period mean (1500-2019 CE; blue and brown bars, with 
90% confidence interval as lightly shaded bars), along with the 30-year low-pass filtered 
reconstruction (black) highlighting multi-decadal variability. The instrumental Murray streamflow 
between 1897 and 2019 CE is shown as black bars. Projected streamflow modelled using PDSI 
derived from the multi-model CMIP5 RCP8.5 ensemble (Table E-1) during the ‘future’ (2001–2099 
CE) simulation period of these runs is shown as the grey lines. The 30-year low-pass filtered projected 
streamflow is shown as bold brown (median), dashed red (25th percentile), and dashed blue lines 
(75th percentile).  

6.6.2 Analysis of past and future drought occurrence 

6.6.2.1 Droughts over the past 500 years 

The reconstructed streamflow series were analysed in terms of drought duration, peak, and 

magnitude. On average, the 104 dry episodes in the Murray reconstruction had a marginally 

longer duration (mean of 2.5 years and range from 1 to 10 years) than the 108 episodes in the 

Darling reconstruction (mean of 2.4 years and range from 1 to 9 years). Nearly half (46%) of the 

dry events in the Darling reconstruction are single-year events, compared to 35% for the Murray.  

The ten strongest drought events in the Darling and Murray reconstructions, based on the 

combined ranking of the three drought parameters are listed in Table 6-1. Millennium, recent, and 

Federation droughts are the three highest ranked droughts in the Murray reconstruction, 

suggesting that the instrumental period has been exceptional for both dry and wet extremes. 

Another well-documented historic drought, the Settlement Drought of the late 1700s, is also 

ranked in the top ten Murray River droughts.  

Table 6-1 List of the ten “strongest” drought episodes in the Darling River and Murray River 
reconstructions over the period 1500-2019 CE. Bold events are coherent in both the upper and lower 
MDB. The final rank score was derived from the sum of the individual rank scores for duration, 
peak, and magnitude (not shown) thus ties are possible. The higher the score, the stronger the event.  

Darling River at Wilcannia Murray River upstream of Lock-7 
Start 
year 

End 
year 

Duration 
(years) 

Peak 
(SDU) 

Magnit
ude 

(SDU) 

Rank 
score 

Start 
year 

End 
year 

Duration 
(years) 

Peak 
(SDUt) 

Magni
tude 

(SDUt) 

Rank 
score 

1991 1995 5 3.06 8.42 313 2002 2010 9 3.67 13.17 311 
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2000 2004 5 3.03 6.77 310 2012 2019 8 2.77 11.66 307 
1523 1531 9 2.14 6.09 308 1897 1901 5 2.14 4.49 289 
1501 1507 7 1.78 6.18 301 1634 1636 3 2.91 5.67 282 
1957 1961 5 2.69 4.37 298 1816 1823 8 1.38 6.65 278 
2011 2015 5 2.49 4.42 298 1503 1508 6 1.57 4.22 276 
1813 1818 6 1.76 5.73 296 1659 1661 3 2.21 4.81 275 
1965 1969 5 2.34 4.61 296 1678 1684 7 1.38 5.22 272 
1646 1653 8 1.45 6.94 296 1791 1793 3 2.47 4.18 272 
2006 2009 4 2.11 6.50 288 1966 1970 5 1.59 2.95 262 

 
Similarly, the highest ranked droughts for the Darling occurred during the instrumental period, 

but the early 1500s shows more sustained low streamflow anomalies. The Millennium drought is 

listed in the top ten droughts for the Darling reconstruction; however, it is not a contiguous period. 

Here we can see the effect of the choice of threshold on drought identification. Because 

streamflow in 2005 was not below the long-term average in the Darling, the Millennium drought 

appears as two dry periods, 2000-2004 (rank 2) and 2006-2009 (rank 10). This is a potential 

weakness of the methodology for defining drought periods, as a single wet year is unlikely to be 

sufficient to return a catchment to pre-drought conditions, but it terminates the drought run in this 

analysis. Despite its exceptional peak streamflow anomaly, the recent drought is only the 18th 

ranked event in the Darling reconstruction, due to its short duration (2017-2018 in this analysis). 

Based on precipitation anomalies, the recent drought continued through 2019 (BOM, 2020b), 

however, it is only identified as a two-year drought in the runs analysis as naturalised streamflow 

data is not available for all of 2019. 

Bivariate models for drought duration/magnitude and drought duration/peak were fit to each 

streamflow reconstruction to assess the exceedance probabilities for the strongest drought 

episodes. Figure E-8 and Figure E-9 show that the marginal distributions are good approximations 

for drought characteristics in the Darling and Murray rivers. The goodness-of-fit of the joint 

probability models was tested by considering the fit of the model parameters to the conditional 

distributions of magnitude or peak for droughts of a given duration. Figure E-10 and Figure E-11 

show that the magnitude of droughts with a duration of 1-3 years (the durations where there are a 

reasonable number of samples) can be approximated by a gamma distribution with the shape and 

scale parameters estimated by fitting the model to the entire time series. Similarly, the conditional 

distributions of peak streamflow anomaly for droughts with a duration of 1-3 years are suitably 

approximated by the modelled cumulative distribution function (Figure E-10 and Figure 

E-11). The goodness-of-fit of the models can also be explored by comparing sample and 

theoretical correlation coefficients between drought durations/magnitudes and durations/peaks. 

For the entire Darling River time series (1500-2019 CE), drought duration and magnitude have a 

correlation of 0.80 with a calculated model correlation of 0.77, and duration and drought peak 

have a correlation of 0.54 with a calculated model correlation of 0.42. The models show a 

similarly good fit for the Murray River time series, with sample correlation between drought 
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duration and magnitude of 0.80 and a calculated model correlation of 0.77, and sample correlation 

between duration and drought peak of 0.48 with a calculated model correlation of 0.41. The 

sample and model correlations are quite close, especially for duration and magnitude. 

The 30 highest ranked droughts that occurred over the entire reconstruction period (1500-2019) 

in the Darling and Murray rivers are plotted against selected quantiles derived from the fitted 

conditional probability of drought magnitude and peak given droughts of durations between 1 and 

14 years (Figure 6-14 and Figure 6-15, respectively). For both the Darling and the Murray, 

droughts of longer duration than the instrumental period droughts have occurred, with the 1500s 

appearing as a particularly dry period. However, in terms of drought magnitude, the droughts of 

the instrumental period are unmatched in both the upper and lower basin. This suggests a role of 

increasing temperature on the severity of recent droughts in eastern Australia.  

 

Figure 6-14 The top 30 ranked droughts during the historical period (1500-2019 CE) for the Darling 
River at Wilcannia compared to selected quantiles of the conditional distribution for a) drought 
duration and magnitude and b) drought duration and peak. The colours indicate the century when 
the drought began, and points are jittered for display purposes. 

Both the Millennium and recent droughts exceed the 95th percentile for the conditional 

distribution of magnitude given duration in the upper and lower MDB (Figure 6-14a, Figure 

6-15a). The likelihood that a drought of nine years would have exceeded the magnitude of the 

Millennium drought in the Murray River is 1.4%, and the possibility that a drought of eight years 

would have exceeded the Murray streamflow anomaly from 2012-2019 is 2.6%. For the Darling, 

the chance that a drought of four years would have exceeded the magnitude of the worst period 

of the Millennium drought (2006-2009) is 3.4%, and the chance of a more substantial two-year 

drought than 2017-2018 is 2.6%.  

Now considering the peak streamflow anomaly (Figure 6-14b, Figure 6-15b), only the recent 

drought in the Darling River exceeds the 95th percentile of the conditional distribution, with a 

likelihood of exceedance of 3.2%. The peak of the recent drought in the Murray and the 
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Millennium drought in both basins are less severe, with an exceedance probability of greater than 

5%, given their durations.  

 

Figure 6-15 The top 30 ranked droughts during the historical period (1500-2019 CE) at Murray River 
Lock-7 compared to selected quantiles of the conditional distribution for a) drought duration and 
magnitude and b) drought duration and peak. The colours indicate the century when the drought 
began, and points are jittered for display purposes. 

Because joint probability models were fit to the drought characteristics, it is also possible to 

calculate joint exceedance probabilities. For example, the likelihood that a drought lasted longer 

than nine years with a magnitude more significant than the Millennium drought in the Murray 

basin is 0.11%. A drought longer than eight years with a magnitude greater than the recent drought 

is twice as likely to have occurred, at 0.23%. This represents a return period of around 430 years 

for the recent drought and over 900 years for the Millennium drought. In comparison, while still 

severe, the recent drought in the Darling is less extreme; the chance that a drought of two years 

would have had a peak streamflow anomaly greater than the recent drought is 2.4%, and the 

chance that a drought would have lasted longer than two years and had a greater magnitude than 

the recent drought is 17.4%.  

6.6.2.2  Future drought risk 

To investigate how drought risk might change in future, the joint probability analysis was repeated 

30 times, with a time series comprised of the reconstruction (1500-2019) and one of the gridded 

projections (2020-2099). Figure 6-16 and Figure 6-17 show how the calculated quantiles derived 

from the conditional probability of drought magnitude and peak for a given duration could change 

based on the revised parameters for each series. Against these quantile ranges, the top 30 droughts 

from the historical period (plotted in blue) are compared to the single highest ranked future 

drought from each simulation (plotted in red).  
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Figure 6-16 The top 30 ranked droughts during the historical period (1500-2019 CE; blue) compared 
to the highest ranked drought for each streamflow projection (2020-2099 CE; red) for the Darling 
River at Wilcannia for a) drought duration and magnitude and b) drought duration and peak. The 
dark blue dots indicate the Millennium and recent droughts. The dashed black lines represent 
selected quantiles of the conditional distribution based on historical data, the dashed brown lines 
represent the median quantiles for the conditional distribution of historical and projected streamflow 
for each of the 30 gridded PDSI projections, and the yellow bands represent the full range of 
projected quantiles from the gridded projections. Points are jittered for display purposes and may 
appear in slightly different locations to the points in Figure 6-14. 

For both the Darling and Murray Rivers, Figure 6-16 and Figure 6-17 show an increase in the 

severity of future droughts, with droughts of much longer duration and higher magnitude 

projected. Future predictions of drought peak given duration are less exceptional, with much 

longer durations but only a small increase in peak streamflow anomaly for the Darling. No future 

model projects a single-year low flow period that matches the Murray's extremely low flow seen 

in 2006/2007 (water year streamflow of ~2900 GL compared to the instrumental average of 

~30800 GL). It is important to note that drought peak is naturally bounded, as streamflow cannot 

go below zero. While the same constraint theoretically exists for drought magnitude, there are no 

instances of multiple years with no or exceptionally low streamflow in either the reconstructions 

or projections. 
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Figure 6-17 The top 30 ranked droughts during the historical period (1500-2019 CE; blue) compared 
to the highest ranked drought for each streamflow projection (2020-2099 CE; red) for the Murray 
River at Lock-7 for a) drought duration and magnitude and b) drought duration and peak. The dark 
blue dots indicate the Millennium and recent droughts. The dashed black lines represent selected 
quantiles of the conditional distribution based on historical data, the dashed brown lines represent 
the median quantiles for the conditional distribution of historical and projected streamflow for each 
of the 30 gridded PDSI projections, and the yellow bands represent the full range of projected 
quantiles from the gridded projections. Points are jittered for display purposes and may appear in 
slightly different locations to the points in Figure 6-15. 

It is also possible to calculate the change in the likelihood that droughts of the same strength as 

the Millennium or recent droughts will be exceeded in future. In the Murray, the chance of a nine-

year drought exceeding the magnitude of the Millennium drought increases from 1.3% to 1.7% 

under the median future projection (dashed brown line in Figure 6-17a), and more than doubles 

under the driest future projection reaching 3%. The chance of an eight-year drought exceeding 

the magnitude of the recent drought also increases substantially, from 2.6% to 3.7% and 5% under 

the median and driest future scenarios respectively. The joint probability that a drought will be 

longer than nine years and more severe than the Millennium drought increases to 0.36% under 

the worst-case scenario. While the likelihood is still minimal, this represents a decrease in the 

return period from 900 years to 280 years. Similarly, the return period of a longer and more 

extreme drought than the recent drought decreases from 430 years to only 150 years under the 

driest future scenario. 

In the Darling, the chance of a two-year drought having a higher peak streamflow anomaly than 

2017-2018 increases from 2.4% based only on historical data to 3.5% under the median future 

scenario and 4.5% under the driest future scenario. The chance that such a drought would have a 

higher peak value and last longer than two years increases from 17% to 21% and 23% under these 

scenarios. The joint probabilities are so high because the chance of a drought lasting longer than 

two years is very high (41%). 

6.7 Discussion  
6.7.1 Implications for water management 

Water managers need information on plausible future trends in streamflow and the likely 

occurrence of hydrological extremes for resource planning and to feed into the design of 

adaptation and mitigation measures. A thorough understanding of natural variability is required 

to fully understand the future risk of extreme events, like droughts. Due to the limitations of the 

instrumental record, paleoclimate data is used to provide a much longer time series to evaluate 

recent extremes against previous centuries. In this Chapter, a direct method is introduced for 

developing continuous past and future streamflow reconstructions, building on prior studies 

which demonstrated the utility of gridded drought atlases for streamflow reconstruction 

(Coulthard et al., 2016; Ho et al., 2016, 2017; Nguyen et al., 2020). Applied to two time series of 

naturalised streamflow from the Murray-Darling Basin, the results of this Chapter show that 
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streamflow reconstructions from 1500-2000 CE developed from gridded PDSI have similar 

reconstruction strength to the more traditional chronology-based method and account for a similar 

proportion of instrumental variance. In addition, streamflow projections developed from PDSI 

derived from climate models display similar streamflow characteristics over the 2020-2099 CE 

period as the best available estimates from bias-corrected and downscaled climate model outputs. 

Through these comparisons, the gridded method is suitable for producing continuous past and 

future streamflow series for eastern Australia. As the method used to develop streamflow 

projections is not subject to the computational constraints as downscaling climate models, a larger 

ensemble of model outputs, and thus potential future conditions could be explored. 

The streamflow time series indicate drier future conditions in the MDB compared to streamflow 

over the last 500 years. The median projection shows a continuous decline in streamflow for the 

Murray River to the end of the century. There is broad agreement across the projections, with 

declines also predicted by the 25th and 75th percentile results. This is consistent with projected 

decreases in winter rainfall in southeast Australia, which contributes a large proportion of water 

year streamflow in the lower basin (Moise et al., 2015; Timbal et al., 2015). For the Darling, the 

median projection stabilises after an initial decline in streamflow, albeit below the mean of the 

last 500 years. Toward the end of the century the projections diverge, with an increasing trend in 

the 75th percentile result and a decreasing trend in the 25th percentile result. There is large 

uncertainty in the climate model rainfall projections, with models disagreeing on the direction of 

rainfall change (Kirono et al., 2020; Moise et al., 2015). Although there is higher certainty in the 

trend in winter/spring rainfall which predominantly contributes to July-Dec streamflow compared 

to summer rainfall (Ekström et al., 2015), uncertainty in projected rainfall is mainly responsible 

for the uncertainty in the streamflow projections.  

In addition to long-term trends in streamflow, the likelihood of extreme events is important for 

future water management planning. For water supply planning, duration and magnitude are the 

most important features of drought episodes (Biondi et al., 2005; Biondi & Meko, 2019). The 

Millennium Drought is a good example; despite relatively modest precipitation deficits in most 

individual years, the length of the drought and its magnitude (cumulative deficit) resulted in 

substantial economic and ecological impacts in the Murray catchment. Because severe multi-year 

droughts are rare and have different spatial and temporal characteristics (Kiem et al., 2016), their 

effects are difficult to predict and manage. Events that are much more severe than preceding 

events almost always result in larger impacts (Kreibich et al., 2022). This is because infrastructure 

and non-structural drought risk measures are generally implemented after a severe event and not 

proactively. A tendency to place a large subjective probability on extreme events can result in the 

failure of these risk management strategies for future, unprecedented events (Kreibich et al., 2022; 

Van Dijk et al., 2013). 
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Therefore, numerical probability statements about drought occurrence can be used to inform 

science-based management and policy decisions (Biondi et al., 2005). The benefit of continuous 

past and future streamflow reconstructions for risk management is that they can provide a more 

accurate estimation of the baseline likelihood of extremes with which to compare to (internally 

consistent) future projections. For example, we can say that more prolonged droughts than the 

Millennium drought have almost certainly occurred in the Murray in the past, but that the 

likelihood that longer droughts had a higher magnitude than the Millennium drought is very small 

(0.11%). This is clearly more informative than ‘worst on record’. The likelihood that a drought 

as severe as the Millennium drought will be exceeded in future is also beneficial when designing 

adaptation measures. Droughts longer than the Millennium drought are not unlikely considering 

the range of future projections; with nearly half (14/30) of the models predicting droughts of more 

than nine years. While the likelihood of a drought both longer and with greater magnitude than 

the Millennium drought remains small under the range of projections (0.36% under the worst-

case projection), it is certainly a scenario worth considering in long-term planning considering 

the potential consequences.  

Paleo-reconstructions are often criticised for their failure to agree and thus considered too 

uncertain for use in water management planning. Published estimates of the return period for the 

Millennium drought in the MDB have ranged from 300 years, based only on instrumental data 

(Potter et al., 2010), up to ~1500 years, based on a multiproxy paleo-streamflow reconstruction 

from 1783-1988 (Gallant & Gergis, 2011; Gergis et al., 2012). The estimate here, of more than 

900 years, is in good agreement with the results of Gallant and Gergis (2011), considering the 

baseline is much longer, from 1500-2000 CE. Estimates of the severity of historical droughts will 

always differ depending on the length of the record used for comparison, as well as other factors 

such as proxy selection, calibration period, reconstruction method etc. The longer the record, the 

more likely there will have been an event approaching or exceeding the most extreme event in 

the instrumental period. Outside the instrumental period, the 1500s emerges as the driest period 

in the gridded MDB reconstructions. Other, longer paleoclimate records indicate that the 1100s 

were even drier in eastern Australia (Flack et al., 2020). Thus, if it was possible to extend the 

streamflow reconstructions back to this period, estimates of likelihood could be different.  

Valid conclusions can be drawn from comparing estimates from different reconstructions, even 

if they don’t precisely agree. For example, the two paleo-streamflow reconstructions of the 

Murray River agree that using only instrumental data results in an estimate of the return period 

that is too low. This should not be interpreted as the paleo-record indicating a lower likelihood of 

exceedance compared to the instrumental data. Rather, it illustrates that when a greater range of 

natural variability is considered, the Millennium drought still emerges as an extreme event, 
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pointing towards the role of increasing air temperatures in amplifying the impact of below-

average precipitation in recent droughts. 

Water storages are more resilient to short droughts with high peak streamflow anomaly but small 

cumulative deficits. However, for the environment, such droughts can be catastrophic. The 

2017-2019 drought was unprecedented in the northern MBD, with the highest temperatures and 

the lowest three-year precipitation totals on record (BOM, 2020b). The Darling ceased to flow at 

Wilcannia over the second half of 2018. The loss of flow and extremely high temperatures caused 

an ecological shock resulting in the estimated deaths of hundreds of thousands to over a million 

fish in Menindee Lakes, downstream of Wilcannia (Vertessy et al., 2019). In-stream infrastructure 

that prevents fish movement during low flow events, and over-extraction of water from the 

river, place the lower Darling at a high risk of fish deaths during severe droughts (Vertessy et al., 

2019).  

The results of the joint probability modelling of drought duration and peak for the Darling River 

should be interpreted with this context in mind. Based on natural variability over the past 500 

years, the likelihood that a two-year drought would have a peak streamflow anomaly greater than 

the recent drought is 2.4%, increasing to 4.5% under the driest future scenario, a return period of 

22 years. It is, therefore, very likely that the low streamflow conditions that resulted in the 

environmental catastrophe of December 2018-January 2019 in the Darling have occurred in the 

past and will occur with greater frequency in the future. The chance that a future drought will last 

longer than two years with a peak greater than the recent drought is extremely high because 

drought events are projected to increase in length.  

Drought is a natural hazard, not a disaster in and of itself. Understanding the likelihood of drought 

occurrence in future is only one element needed for a comprehensive understanding of future 

drought risk. The consequences of droughts for people and the environment also depend on the 

economic, environmental, and social vulnerabilities of different regions and sectors and the ability 

of water resource systems to respond during drought events (Prosser et al., 2021). The impact of 

past drought events with similar peak anomalies was probably much smaller in the absence of 

extreme temperatures and the management infrastructure which contributed to the catastrophe. 

Whether future events will have similar impacts will depend on the management decisions that 

are made in the short term to mitigate this risk. Protecting native fishes from future fish kill events 

requires sufficient environmental flows to ensure connectivity with weir pools, providing refugia 

for species during severe drought events (Vertessy et al., 2019). Future streamflow scenarios like 

the ones presented in this Chapter can be used to test the suitability of different planning 

alternatives in maintaining flows during droughts. 
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A key challenge for action on future projections is the uncertainty reflected in the large range of 

potential outcomes. Clear presentation and communication of drought projections and their 

uncertainty can help overcome this challenge (Kirono et al., 2020). Figure 6-16 and Figure 6-17 

present a very clear and alarming future for the Darling and Murray rivers whilst incorporating 

the uncertainty of the model ensemble. It is hoped that communication tools like these figures can 

help push back on the view that if water management can be shown to be effective across 

instrumental hydrological variability, then it should be effective in the future (Prosser et al., 2021). 

6.7.2 Expanding gridded projections to a more extensive study and other future work 

Drought atlases have been previously shown to be suitable for streamflow reconstructions in the 

United States and across monsoon Asia. In this Chapter, we demonstrate that they are also suitable 

for reconstructing streamflow in eastern Australia. Once a model relating PDSI grid points to 

streamflow has been developed and verified, it can also be applied to produce future streamflow 

projections for any catchment. However, there are technical challenges to upscaling the method 

compared to reconstructing a single catchment. The first challenge is to automate the selection of 

the reconstruction season. In their regional studies of the United States and Monsoon Asia, Ho et 

al. (2017) and Nguyen et al. (2020) both averaged streamflow annually, over the water year and 

the calendar year, respectively. A large proportion of the gauges reconstructed by Ho et al. (2017) 

were not validated. Poorly performing models were spatially aggregated, suggesting that drivers 

of water year streamflow in some parts of the United States are not well captured by the gridded 

PDSI reconstruction used in that study. For large-scale studies, it would be preferable to 

specifically target the reconstruction season to the season over which variability in streamflow is 

captured by the drought atlas/es, as done here for the Darling (July-Dec) and Murray (water year). 

As illustrated by these two rivers, this would not necessarily be the same season over the entire 

reconstruction domain. One simple method would be to cluster streamflow gauges into climate 

zones and determine the appropriate season for each zone. For Australia, climate regions are well 

defined and likely to be an appropriate reconstruction target (e.g., Freund et al., 2017). For other 

regions, hierarchical clustering of streamflow stations could be employed. 

The number of grid points posed a significant challenge for using the point-to-point (PPR) 

algorithm, which has limitations on the number of predictor inputs. In this study, PPR was used 

for consistency with the tree-ring based reconstruction. However, there are many other suitable 

methods for reconstruction based on similar workflows, i.e., reducing the number of predictors 

through PCA and then developing a regression model that relates the predictors to streamflow, 

that could be employed instead. One such method is described in Chapter 5, and Ho et al. (2017) 

and Nguyen et al. (2020) describe two others. These methods can be set up to run in projection as 

well as reconstruction mode (i.e., both forwards and backwards) which would simplify the method 

used to produce projections from the PPR algorithm in this work. 



CHAPTER 6 
 

 
 

131 

Finally, streamflow gauge records are commonly much shorter than the modelled naturalised 

streamflow available for the Darling at Wilcannia and Murray at Lock-7. In many cases, 

streamflow records are too short for split period validation. Thus, another suitable validation 

scheme (e.g., moving block validation, see Chapter 5) would need to be employed. One benefit 

to using drought atlases for reconstruction is that instrumental data is generally appended to the 

end of the reconstruction extending the reconstruction period beyond the end date of many tree-

ring chronologies (this was not the case for the SADA; hence the end date at the year 2000). Thus, 

the period available for calibration is extended relative to the tree-ring predictors used in the atlas 

production. None of these challenges poses many limitations to scaling up the method for a 

regional study. Solutions to all points raised are already available and can be implemented 

relatively simply. 

The streamflow reconstructions produced to date (Gallant & Gergis, 2011; McGowan et al., 2009) 

have relied on proxies remote from the MDB and thus necessarily assume stationarity. This is 

also an assumption underpinning the reconstructions presented in this Chapter. However, as 

previously discussed in Chapter 3, utilizing a network of tree-ring chronologies from multiple 

teleconnected regions minimises the effects of non-stationarities on the reconstruction (Batehup 

et al., 2015). Nevertheless, efforts should continue to develop high-resolution local proxies to 

further strengthen streamflow reconstructions. The reconstructions cannot explain about 40% of 

Darling and Murray streamflow variance, and this percentage could be reduced by adding local 

predictors from key parts of the catchment. Identifying proxies capable of recording summer 

precipitation signals from the upper MDB (e.g., proxies that capture short-duration, heavy 

rainfalls, such as isotopes) may allow the full water year to be captured in the Darling River 

reconstruction. The importance of heavy rains for breaking drought events in the MDB also points 

to the need to better capture high flow extremes in the reconstructions. Information on the 

maximum interval between drought-relieving rain events could be critical to refining the risk of 

multi-year droughts. 

The gridded projections in this Chapter were based on the CMIP5 model outputs. Early studies 

based on the CMIP6 suite of models find that future drought changes are larger and more 

consistent in CMIP6 compared to CMIP5 (Ukkola et al., 2020). Thus, it may be worthwhile 

update the gridded projections using the CMIP6 model suite. Nevertheless, both CMIP5 and 

CMIP6 models tend to underestimate rainfall persistence, or the occurrence of sustained rainfall 

anomalies, which results in a tendency to underestimate drought duration and magnitude relative 

to instrumental data (Rocheta et al., 2014; Ukkola et al., 2020). The MRNBC bias correction 

method applied to the AWO model ensemble adjusts the model outputs to better represent 

persistence (Johnson & Sharma, 2012). No adjustment has been made to account/correct for 

persistence in the gridded PDSI model outputs. Further work is therefore needed to validate the 
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representation of drought characteristics in the gridded projections relative to the AWO ensemble 

to determine whether an adjustment for persistence is required.  

6.8 Conclusions  
Regionally specific hydrological projections which quantify the impacts of both natural climate 

variability and anthropogenic change are needed to support water management decision-making. 

Using the Murray-Darling Basin as a case study, a technique for developing both streamflow 

reconstructions and future projections is presented based on gridded estimates of the Palmer 

drought severity index. To verify the method, gridded reconstructions of the Darling and Murray 

rivers are compared to reconstructions developed using the more traditional, tree-ring method, 

and show similar reconstruction statistics. The future projections, based on an ensemble of 14 

climate models and 30 individual simulations, are compared to an existing ensemble of 

downscaled and bias-corrected climate model outputs for the MDB, and produce similar 

streamflow characteristics as these ‘best available’ estimates. The gridded method is therefore 

found to be suitable for the MBD and could be extended to a regional study with minimal 

additional development.  

We fit joint probability models to characteristics of drought events (duration, magnitude, and 

peak) identified in the reconstructions and analysed the likelihood that the most severe historical 

drought events could be exceeded in the future. The Millennium Drought, the most severe 

recorded drought in the Murray catchment, is shown to be exceptional compared to the 500-year 

paleorecord, with a return period exceeding 900 years. This suggests increasing temperatures 

likely amplified precipitation anomalies during this drought. The future projections show that 

droughts of this severity are more likely to occur in future, with the return period decreasing to 

280 years under the driest future projection. Droughts as or more severe (longer duration and/or 

greater magnitude) than the Millennium Drought should be considered in future scenario 

planning. 

In contrast, events as severe as the 2017-2019 drought in the Darling catchment have a return 

period of only ~42 years based on the paleorecord. The impact of such events in the past was 

probably much smaller in the absence of extreme temperatures and the water management 

infrastructure which contributed to the catastrophic environmental outcomes of that drought in 

the summer of 2018/19. Based on the model projections, such events are likely to occur with 

greater frequency in future. Whether future events will have similar impacts will depend on the 

management decisions that are made in the short term to mitigate this risk. 

The visual presentation of the joint probability model results, which demonstrate an alarming 

future for the Darling and Murray rivers, are a powerful tool to communicate the drought 

projections and their uncertainties. However, as CMIP5 models tend to underestimate rainfall 
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persistence, it is possible that drought duration and magnitude are also underestimated in the 

gridded projections. Further work is therefore needed to validate the representation of drought 

characteristics in the gridded projections. 
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Chapter 7 Conclusions 
To achieve sustainable water resource planning, a robust understanding of long-term natural 

climate variability as well as the likely impacts of climate change are urgently required. However, 

short instrumental records are insufficient to fully understand natural trends and variability in 

climate. This thesis aimed to use remote tree-ring chronologies to reconstruct past hydroclimate 

in the South Pacific to address uncertainty around past and future trends and detect the occurrence 

of extreme events. This broad objective, and the specific aims outlined in Section 1.4, were 

addressed across five case studies, each reconstructing and analysing a different aspect of South 

Pacific hydroclimate. 

Overall, this thesis highlights the enormous potential of remote tree-rings for improving our 

understanding of past climate in the South Pacific. The reconstructions consistently demonstrate 

that the instrumental period underestimates the full range of natural climate variability and 

demonstrates how century-long records provided by tree rings can help us better understand past 

climate drivers, contextualise the instrumental period, and refine estimates of future climate risks. 

Existing methods for tree-ring reconstructions have been applied with success in the region 

(Chapter 2); however, overcoming the challenges posed by very short and non-continuous records 

required adaptations to existing methods (Chapter 3) and the development of new methods 

(Chapter 5). The new baselines generated by this research allow scientists, academics, and 

policymakers from across the region to analyse and address climate impacts and risks over time 

spans not previously possible. The specific achievements of this thesis are described in more 

detail below. 

7.1 Summary of main findings 
The South Pacific Convergence Zone (SPCZ) is the largest rain belt in the Southern Hemisphere 

and a key driver of precipitation variability impacting South Pacific Island communities. In 

Chapter 2, a 1300-year-long record of precipitation variability in the SPCZ region was presented, 

providing an important context for understanding historic changes captured by instrumental 

period. We found that during the medieval climate anomaly (MCA, ~1000–1200 CE), a period 

when the climate was warmer on average than during the instrumental period, the main axis of 

convergence in the SPCZ was to the east of its current position. This suggests that during the 

MCA the southwest Pacific experienced a period of sustained dry conditions, similar to an El 

Niño event. This could have important implications for our understanding of colonization 

processes in East Polynesia and supports the ‘El Niño hypothesis’ of Pacific migration. The 

distinct behaviour of the SPCZ during the MCA can also be used to assess general circulation 

model projections for Pacific Island communities and the wider region. The success of the SPCZ 

reconstruction, indicated by its length and positive verification statistics, showed that robust 
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reconstructions of South Pacific climate variability are possible using remote chronologies 

sensitive to changes in the El Niño‐Southern Oscillation (ENSO). This case study provides the 

‘proof-of-concept’ for using remote tree rings for hydroclimatic reconstructions in the South 

Pacific in Chapters 3, 5, and 6. 

Following from the SPCZ case study, the same methods, with some modification, were applied 

to produce spatially resolved reconstructions of drought for the South Pacific Islands. Small 

Pacific Islands are particularly susceptible to droughts, yet due to data limitations, quantifying 

and attributing historical drought trends and variability is still a research gap. In Chapter 3, 

considerable progress was made towards producing a drought atlas for the South Pacific (called 

the SPaDA), describing variability in the November-April Standardized Precipitation 

Evapotranspiration Index for the period 1640-1998 CE. The suitability of using a trans-Pacific 

network of tree rings to produce the SPaDA is demonstrated by its ability to reproduce four known 

historical drought events, and the strong and stable correlation between the first principal 

component of the SPaDA and previously published tree-ring and multi-proxy (tree ring, coral, ice 

core) ENSO reconstructions. A random forest classifier, a supervised machine learning algorithm, 

was used to identify extreme El Niño events based on the spatial drought patterns in the SPaDA. 

Nevertheless, the SPaDA has some limitations. The extremely short meteorological data records 

for many of the Pacific Islands precludes statistical verification over much of the reconstruction 

domain. In addition, ENSO events in the SPaDA have little correspondence to previously 

published coral-based ENSO reconstructions, which means the SPaDA is without truly 

independent verification (i.e., no proxy overlap) over the first ~ 140 years of the reconstruction. 

Further work is therefore needed to improve the SPaDA before it can be used to support drought 

attribution analysis for the Pacific Islands. 

In Chapter 4 one of the unresolved questions identified in Chapter 2 was thoroughly investigated: 

do Southern Hemisphere tree rings record volcanic signals? Data from eight New Zealand 

dendrochronological species was used to test whether volcanic events could be identified in tree 

rings. We found that New Zealand dendrochronological species are reliable recorders of volcanic 

cooling, but that response varies across species. In general, volcanic events can be more readily 

observed in the ring widths of “fast-responder” species, those which rapidly respond to climate 

changes. These species should be prioritised for future regional or hemispheric studies. However, 

volcanic responses are not consistent within a species, and site-related factors was found to have 

greater control over the displayed volcanic response than the species. Two new reconstructions 

of New Zealand summer temperature were developed which showed anomalies remarkably 

consistent with the ensemble mean response of CMIP5 climate models. Based on these results, 

New Zealand ring widths are reliable indicators of regional volcanic climate response, which 

supports the findings of Chapter 2. However, carefully site selection is required when developing 
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chronologies to study volcanic impacts. More broadly, the findings of this study have important 

implications for the development of future tree-ring or multiproxy hemispheric temperature 

reconstructions from the Southern Hemisphere, which often incorporate species-specific “master” 

chronologies (i.e., composite chronologies developed from across many sites) into their predictor 

pool. As shown in this case study, the compositing process can result in reduced volcanic signals 

when more than one type of response is recorded by a single species.  

In the second half of the thesis, the research focus narrowed to developing decision-relevant tree-

ring reconstructions of streamflow, looking at two catchment-scale case studies from Australia. 

Chapter 5 provides a long-term perspective on past streamflow variability in the Daly catchment 

and is one of the few high-resolution streamflow proxy reconstructions produced for the Indo-

Australian monsoon region. Tree-rings from Australia and monsoon Asia were used to create the 

reconstruction, leveraging the teleconnection between the regional monsoons. This case study 

demonstrates the utility of remote tree rings in a region where ENSO is not the primary target 

climate teleconnection. The Daly River gauge data is short and non-continuous, sharing similar 

characteristics and shortcomings to the data used to calibrate the SPaDA. In this chapter, several 

methodological advancements were proposed to overcome the shortcomings of the data: a novel 

variance transformation of the tree-ring predictors that maximises the ability of the tree-ring 

predictors to characterise the hydroclimate, hierarchical Bayesian regression to account for the 

short data and gaps, and a ‘moving-block’ verification scheme to ensure independent statistical 

verification of the reconstruction. Together, these methodological advancements resulted in a 

streamflow reconstruction that better matches the instrumental data and extends back much 

further than would otherwise be possible. The Daly River reconstruction extends the streamflow 

record by more than five centuries. The length and robustness of the reconstruction, ability to 

identify historical flood events, and coherence with other proxy reconstructions demonstrate the 

utility of the new method. We found that the recent magnitude and frequency of high streamflow 

events are unmatched over the past five centuries and closely follow observed trends in summer 

monsoon rainfall. Our reconstruction shows that current resource allocations in the Daly have 

been set during a period of unprecedented high river and aquifer levels which should be carefully 

considered by water managers when deciding on sustainable future allocations. 

Chapter 5 demonstrates how long time series of annual streamflow can provide relevant 

information for water management decisions. Water managers also need information on plausible 

future trends in streamflow and the likely occurrence of hydrological extremes for resource 

planning. In Chapter 6, we continue identifying methods for translating paleoclimate information 

into useful scenarios for water management. Using the Murray-Darling Basin (MDB) as a case 

study, a technique for developing both streamflow reconstructions and future projections is 

presented, based on gridded estimates of the Palmer drought severity index. To verify the method, 
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the reconstruction is compared to a reconstruction developed using the more traditional, tree-ring 

method, with predictors selected from the same trans-Pacific network of tree rings used in 

Chapter 3. The future projections are compared to an existing ensemble of downscaled and 

bias-corrected climate model outputs for the MDB. The gridded method is shown to be suitable 

for the MDB and could be extended to any other region globally with a similar existing dataset. 

To show how water managers could utilise the reconstructions, we fit joint probability models to 

characteristics of drought events and analyse the likelihood that the most severe historical drought 

events could be exceeded in the future. Emphasis is placed on visual presentation of the joint 

probability model results, which is a powerful tool to communicate the drought projections and 

their uncertainties.  

7.2 Recommendations for future work 
Several topics covered in this thesis would benefit from further research to improve climate 

reconstructions for the South Pacific region and ensure paleoclimate information is relevant for 

water management. Based on the outcomes of this thesis, the following research priorities are 

suggested. 

Remote tree rings present an enormous opportunity to produce paleo-reconstructions for regions 

with few or no terrestrial proxies. Nevertheless, as demonstrated in Chapters 2, 3, and 6, there is 

a limit to the amount of instrumental variance remote tree-ring reconstructions can explain. Even 

with noise-free proxies and perfect reconstruction methods, the proportion of explained variance 

is related to how well the large-scale climate driver/s explain local climate variability. Thus, 

resources should be invested in producing new chronologies from target locations such as the 

Pacific Islands and mainland Australia, to capture local climate variability and improve the skill 

of climate reconstructions. In addition, most of the available tree-ring chronologies from the 

Southern Hemisphere ended during (or before) the late 1990s, which is problematic because of 

the short period of overlap between the proxies and the instrumental period. Updating older 

collections should be undertaken with priority. Continued efforts to digitise documentary climate 

records and develop other proxy records such as corals and speleothems will also contribute to 

the understanding of South Pacific climate; however, dating errors must be minimised to allow 

for inter-proxy comparisons, reconcile discrepancies between different proxies (see Chapter 3), 

and support multi-proxy reconstructions. 

In Chapter 4 we present the first conclusive evidence that large volcanic eruptions impact tree 

growth in the Southern Hemisphere. We introduced a suite of plausible, testable hypotheses 

explaining how site-related factors affect the magnitude and direction of the observed volcanic 

response. In future research, these hypotheses can be tested either directly (e.g., via dendroband 

studies) or indirectly (e.g., using process-based forward models and site-specific climate data). 
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The climate response to eruptions is known to vary regionally and therefore revisiting the data 

from other major Southern Hemisphere dendrochronology regions (e.g., Tasmania, South 

America) is an important aspect for future research. A good understanding of the factors affecting 

whether tree rings record volcanic signals across the Southern Hemisphere, considering ring 

width and other wood properties, is needed to elucidate the proxy contribution to the proxy-model 

discrepancy in hemispheric temperature reconstructions. 

The value of tree-ring reconstructions of streamflow has been well demonstrated in previous 

research (e.g., Rice et al., 2009; Woodhouse et al., 2017) and again in Chapters 5 and 6 of this 

study. However, ongoing work is required to maximise the benefits of tree-ring streamflow 

reconstructions for water resources management. A major hurdle to overcome is the seasonality 

of reconstructions, which are generally produced for the water year, and may not have a suitable 

resolution for water managers. For example, in Chapter 5, dry season streamflow is extremely 

important for the ecological function of the Daly River, yet since the wet season dominates the 

water year reconstruction, no trends in dry season streamflow can be inferred. Producing sub-

annual streamflow reconstructions from tree rings is an emerging field of study, and studies 

reported to date rely on wood properties other than ring widths to target high streamflow (Nguyen 

et al., 2021). Development of alternative wood properties (such as stable isotopes) may also aid 

in better capturing the high-flow portion (extremes) in reconstructions, a limitation to the record 

produced in Chapter 6.  

This thesis builds upon a growing body of work that demonstrates the considerable value of tree-

ring based reconstructions in the analysis of trends, extremes, and allocations of water resources 

for current and future decision making, most notably in remote regions where there are limited 

instrumental records and that are highly vulnerable to climate change. Maximising the potential 

of tree-ring data for water management will require continued collaboration between 

dendrochronologists and water managers. Future work should prioritise the communication of 

this rich data resource to users in industry, government, and communities. 
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Appendix A. Supplementary information for Chapter 2 

 
Figure A-1 Correlation (P < 0.05) between Nov-Apr instrumental SPCZI anomalies and 20th Century 
Reanalysis v3 Nov-Apr precipitation anomalies for 1911-1998, showing teleconnections between 
SPCZ convergence and precipitation in the ANZDA and MXDA tree-ring regions. Red dots indicate 
the location of tree-ring predictors used in the SPCZI reconstruction. 

Full calibration and validation statistics for the South Pacific Convergence Zone Index 

reconstruction (SPCZIr) are provided in Figure A-1 and Table A-1. Following standard 

procedures in dendrochronology, the split calibration/verification period was verified both ways, 

using first the 1955-1998 period for calibration and the 1911-1954 period for verification and 

then repeating with the periods reversed. Successful verification both ways indicates stability in 

the reconstruction. The final SPCZIr used the full instrumental period (1911-1998) for calibration 

to maximise the timescale of variability against which the final regression equation could be 

fitted. 
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Figure A-2 Calibration and validation statistics for the Nov-Apr mean SPCZI reconstruction along 
with the number of tree ring series (black line) used as predictors in each nest. The shaded 
uncertainties represent the 5-95% confidence interval for each statistic based on 300 maximum 
entropy bootstrap replications. CRSQ - calibration period coefficient of multiple determination; 
VRSQ - validation period square of the Pearson correlation; VRE - validation period reduction of 
error; and VCE validation period coefficient of efficiency. VRE and VCE values consistently greater 
than 0 indicate skill in the reconstruction. 

Table A-1 November to April SPCZ reconstruction calibration (c) and validation (v) statistics for 
early calibration (1911-1954) and late calibration (1955-1998) models, restricted to those tree-ring 
predictors correlated to the entire instrumental period (1911-1998).  

Test Score-c Probability-c Score-v  Probability-v 
Early calibration (1911–1954) and late verification (1955–1998) 
Pearson correlation 0.724 0.000 0.551 0.000 
Spearman correlation 0.678 0.000 0.554 0.000 
Kendall Tau 0.502 0.000 0.410 0.000 
Reduction of error 0.270    
Coefficient of efficiency 0.269    
Late calibration (1955–1998) and early verification (1911–1954) 
Pearson correlation 0.719 0.000 0.539 0.000 
Spearman correlation 0.718 0.000 0.543 0.000 
Kendall Tau 0.528 0.000 0.373 0.000 
Reduction of error 0.287    
Coefficient of efficiency 0.285    
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Table A-2 Pearson correlation (R) between instrumental SPCZI and annually resolved coral proxies 
from the SPCZ region over the common instrumental period. Significant correlations P < 0.05 are 
shown in bold. 

Coral proxy (𝝏𝝏18O) Location Common period R P Reference 
Rarotonga Porites lutea Cook Islands 1911-1996 -0.339 0.001 Linsley et al., 2004 
Savusavu Bay Porites 
lutea AB Fiji 1911-2001 0.361 0.000 Linsley et al., 2008 
Savusavu Bay Porites 
lutea 1F Fiji 1911-1996 0.470 0.000 Linsley et al., 2006 
Savusavu Bay 
Diploastrea  Fiji 1911-2001 0.506 0.000 Bagnato et al., 2005 
Amedee Lighthouse 
Porites lutea  

New 
Caledonia 1911-1992 -0.273 0.013 Quinn et al., 1998 

Ha’afera Island, 
Porites lutea TH1* Tonga 1911-2004 0.220 0.033 Linsley et al., 2006 
Malinoa Island, Porites 
lutea TN12* Tonga 1911-2004 0.082 0.433 Linsley et al., 2006 
Santo Platygyra 
lamellina  Vanuatu 1911-1979 0.010 0.934 Quinn et al., 1996 
Sabine Bank Porites 
lutea  Vanuatu  1911-1989 -0.434 0.000 Gorman et al., 2012 

*TH1 and TN12 are not annual average isotope records but reconstructions based on the multi-decadal 
(~9-55 year) variance of the isotope data. Tonga Porites lutea TM1 from Linsley et al. (2006) has not 
been included due to fungal infestation which inhibited growth (Linsley et al., 2008).  
 
Independent verification of the reconstruction was undertaken using local coral proxies from the 

SPCZ region. The three-core average of the two Savusavu Bay Porites lutea and the Savusavu 

Bay Diploastrea core was selected as the verification series. Averaging multiple cores reduces 

the impact of potential dating errors which can result in very low correlations between proxies 

that otherwise contain a coherent signal. The Pearson correlation over the common reconstruction 

period (1781-1996; R = 0.347, P < 0.01) is similar to the correlations between coral proxies and 

instrumental SPCZI (Table A-3) demonstrating the ability of the reconstruction to represent local 

climate. 

Table A-3 Comparison between the Nov-Apr SPCZI reconstruction and mean Nov-Apr values of 
published instrumental indices over the calibration/verification period 1911-1998. Indices for 
comparison are the Niño3.4 index (https://climatedataguide.ucar.edu), Multivariate ENSO Index 
(MEI; https://www.esrl.noaa.gov/psd/enso/mei/), Tripole Index (Henley et al., 2015), and 
Interdecadal Pacific Oscillation (IPO) index (http://cola.gmu.edu/c20c/). All Pearson RSQ values are 
significant at P < 0.001.  

 Niño3.4 
(Nov-Apr) 

MEI 
(Nov-Apr) 

TPI 
(Nov-Apr) 

IPO 
(Nov-Apr) 

SPCZI (Nov-Apr) 0.713 0.737 0.747 0.729 

MEI (Nov-Apr) 0.942  0.861 0.806 

TPI (Nov-Apr) 0.861 0.861  0.967 

IPO (Nov-Apr) 0.806 0.806 0.967  

 

https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://www.esrl.noaa.gov/psd/enso/mei/
http://cola.gmu.edu/c20c/
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Table A-4 Comparison between the Nov-Apr SPCZI reconstruction and related paleoclimate 
reconstructions over the common reconstruction period 1650-1998: Buckley IPO (Buckley et al., 
2019), Vance piecewise linear fit (PLF) IPO (Vance et al., 2015), and the Fiji-Tonga Interdecadal-
decadal Pacific Oscillation (FT-IDPO; (Linsley et al., 2006)). Pearson correlations for unfiltered 
reconstructions significant at P  0.05 are shown in bold. For comparisons with the PLF IPO (for 
which only the filtered data has been made publicly available), the remaining reconstructions were 
smoothed with a 13-year Gaussian low-pass filter. The correlation coefficients for filtered series were 
calculated with bootstrapped confidence intervals using the PearsonT3 software (Olafsdottir & 
Mudelsee, 2014) which accounts for autocorrelation in the smoothed time series. Correlations are 
significant at P < 0.05 if the 95% confidence interval does not span 0 (bold values).  

 Buckley IPO F-T IDPO Vance PLF IPO 
SPCZI  0.182 0.127 na 
Buckley IPO   0.137 na 
F-T IDPO   na 
SPCZI (filtered) 0.377 [0.06, 0.63] 0.187 [-0.16, 0.49] 0.199 [-0.16, 0.38] 
Buckley IPO (filtered)  0.262 [-0.03, 0.51] 0.199 [0.03, 0.36] 
F-T IDPO (filtered)   0.181 [-0.01, 0.36] 
 Buckley IPO (filtered) F-T IDPO (filtered) Vance PLF IPO 

 

 
Figure A-3 Stacked plot comparing SPCZIr to Southern Hemisphere reconstructions of ocean-
atmosphere climate modes stretching back to the Medieval Climate Anomaly (MCA); a) SPCZIr, b) 
Niño3.4 sea surface temperatures (Emile-Geay et al., 2013), c) PLF IPO (Vance et al., 2015), d) 
temperature (Neukom et al., 2014). The records have been smoothed with a 13-year (grey line) and 
50-year (black line) Gaussian filters. Vertical bars indicate the approximate timing of the MCA and 
LIA.  

Regime shift analysis (Rodionov & Overland, 2005) was used to identify significant shifts in the 

reconstruction mean (at the 95% confidence limit). Mean values of 15-year periods were 

compared on either side of each year throughout the reconstruction. The analysis successfully 

identified the well-reported shifts in climate associated with changing IPO mode in 1944 and 

1973. Significant regime shifts were also identified in CE 725, 991, 1049, 1130, 1162, 1212, 

1300, and 1333. 

The presence of a likely El Niño (or La Niña) event in a given reconstruction year was estimated 

by an SPCZI at least one standard deviation above (below) the mean. These threshold values are 
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very close to the average SPCZI for recorded ENSO events during the instrumental period. An 

extreme shift eastwards (westwards) was defined by a period of three or more years of sustained 

positive (negative) SPCZI where the average of the period was above the El Niño (La Niña) 

threshold. Table A-5 displays the results of the frequency analysis. 

Table A-5 Number of extreme events per 100 years with sustained eastward (dry) and westward (wet) 
shifts in the SPCZ: for the whole reconstruction period (700-1998), for the MCA envelope period 
(1000-1400), and for the LIA (1450-1850).  

 Dry events Wet events Total 

CE 700-1998 3.08 2.62 5.7 

MCA envelope 2.5 3.75 6.25 

LIA 2.75 0.75 3.5 

 
Large tropical volcanic eruption key years since 700 CE were taken from Toohey & Sigl (2017). 

Eruptions with VSSI > 10 Tg [S] occurred in 1107, 1170, 1229, 1257, 1285, 1344, 1452, 1457, 

1585, 1600, 1694, 1640, 1808, 1815, 1831, 1835, 1883, 1887, 1902.The eruption in Parker, 

Philippines occurred in December 1640 and has been designated 1641 in the key event year list 

for consistency with the designation of years in the SPCZI reconstruction. 

There are several potential factors contributing to the lack of volcanic fingerprinting in the 

Southern Hemisphere-only reconstruction in year t+1. Even limiting the analysis to very large 

eruptions (VSSI > 10 Tg [S]), all trees may not record every event. The location of events (14/18 

in the Northern Hemisphere) suggests that volcanic dimming may often be too weak to force a 

Southern Hemisphere tree-ring response. The maritime climate effect also likely reduces the 

temperature response of the Southern Hemisphere chronologies compared to the largely 

continental Northern Hemisphere chronologies (Fritts, 1991).  

Nevertheless, the Southern Hemisphere trees strengthen the volcanic response in the combined 

SPCZI reconstruction. Therefore, we further investigated the Southern Hemisphere response by 

undertaking superposed epoch analysis (SEA) for the same set of volcanic key years on the 

standardised tree-ring chronologies underlying the reconstruction (Table A-6). Composites were 

calculated for chronologies of the same species, and SEA was only undertaken for species with 

at least two chronologies. The species composites are also representative of discrete geographical 

locations, and therefore local climate effects.  

Of the six species composites studied, three show a significant volcanic impact. The New Zealand 

pink pine (HABI) composite shows a typical volcanic imprint at t+1. The kauri pine (AGAU) 

actually increases in t+1, suggesting it receives a secondary benefit from volcanism. The location 

of the AGAU chronologies in the subtropical/temperate transition zone on the northern coast of 
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New Zealand (latitude ~35°S) suggests a decrease in summer evapotranspiration following a 

volcanic event may provide a growth benefit to this species.  

Tasmania cedar (ATCU) is the only Tasmanian species composite which shows a significant 

volcanic signal; a lagged response which persists over several years. Biological persistence, 

particularly in ring width indices, has been shown to result in a lagged volcanic response in several 

tree species, underestimating both the abruptness and magnitude of cooling (e.g. D’Arrigo et al., 

2009 and references within). The lack of response in the other Tasmanian species is an interesting 

question for future research. 

Table A-6 Species and location of the Southern Hemisphere chronologies included in the 
reconstruction. 

   Chronologies  
Tree Species Common name Abbreviation Number *Geographic location 
Agathis austrais  Kauri pine AGAU 5 North coast NZ 
Athrotaxis cupressoides  Tasmanian cedar ATCU 10 Tasmania 
Athrotaxis seaginoides  King Billy pine ATSE 2 Tasmania 
Phyllocladus 
aspleniifolius 

Celery-top pine CTOP 1 Tasmania 

Haocarpus biformis  Pink pine HABI 9 West- and south coast NZ 
Lagarostrobus colensoi Silver pine LACO 1 Westcoast NZ 
Lagarostrobus franklinii  Huon pine LGFR 4 Tasmania 
Libocedrus bidwillii  New Zealand 

cedar 
LIBI 3 Westcoast NZ 

Tectona grandis  Teak TEGR 1 Indonesia 
*Refers only to geographic location of chronologies used in the reconstruction. 
 

 
Figure A-4 Results of SEA analysis for species composites based on 18 large tropical volcanic events. 
SEA was carried out on a 21-year window (-10 to +10 years) but only results for - 1 to +5 years are 
shown. The response shows the sensitivity of the species growth (ring width or density) to changing 
climate conditions after a large event. Significant results at P < 0.05 are shown by black bars; the 
results for ATCU in year t+2 and t+3 are significant at P < 0.01.  

The effect of the 11-year Schwabe solar cycle on SPCZI was assessed using the ‘double-

bootstrap’ SEA methodology of Rao et al. (2019) where the 5th to 95th uncertainty interval is 
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based on multiple unique draws of key event years. Key event years were defined as the maxima 

of the solar cycle calculated using a 24-month FWHM Gaussian with sunspot number data, 

sunspot area data, and 10.7 cm radio flux data (Hathaway, 2015). Cycles -4 to -1 were calculated 

using the 13-month mean of Group Sunspot Number due to limited data availability. The results 

with and without groups -4 to -1 were not significantly different. For consistency with the 

definition of the years of the SPCZI reconstruction (November to April, year starting January), 

years in which the solar maximum fell in November or December (cycles 11, 12, 15, 16 and 17) 

were labelled year+1. Solar maxima occurring within five years of a major volcanic eruption were 

removed from the key event list to maintain distinct signals. No response to solar maxima was 

identified (Figure A-5).  

 
Figure A-5 Superposed epoch analysis showing the mean SPCZI response (blue line) to solar peak 
years, and the 5th to 95th percentiles of the SPCZI response (grey shading) based on 1000 unique 
draws of 10 key years. 
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Appendix B. Supplementary information for Chapter 3 

 
Figure B-1 Time series of reconstructed 12-month SPEI for Rapa Nui, with 13-year Gaussian filtered 
values (black lines). The 5th and 95th percentiles of the reconstruction are shown as dashed lines. 

 
Figure B-2 Time series of reconstructed 12-month PDSI for Rapa Nui, with 13-year Gaussian filtered 
values (black lines). The 5th and 95th percentiles of the reconstruction are shown as dashed lines. 
Compared to Figure B-1 above, the PDSI reconstruction shows an unusual periodicity. 
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Appendix C. Supplementary information for Chapter 4 

 
Figure C-1 Correlation between beech ring widths and monthly New Zealand seven-station average 
monthly temperature from for the 20-month window extending from October of the previous 
growing season to May at the end of the current austral growing season: a) Mountain beech 
(Fuscopora cliffortioides), b) Silver beech (Lophozonia menziesii), c) Average of all mountain beech 
chronologies (NOSO_av) and average of all silver beech chronologies (NOME_av). Horizontal lines 
indicate the approximate threshold for significance at p < 0.05 calculated for the average length of 
all chronologies intersecting with the temperature data (n = 73 for mountain beech, n = 78 for silver 
beech) although series have different lengths and thus thresholds for significance.  
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Figure C-2 Correlation between pink pine (Halocarpus biformis) ring widths and monthly New 
Zealand seven-station average monthly temperature for the 20-month window extending from 
October of the previous growing season to May at the end of the current austral growing season: a) 
Chronologies from the North Island, b) Chronologies from the western coast of the South Island, c) 
Chronologies south of latitude -45° on the South Island, d) Pink pine master chronology (2Pink) and 
average of all chronologies (HABI_av). Horizontal lines indicate the approximate threshold for 
significance at p < 0.05 calculated for the average length of all chronologies intersecting with the 
temperature data (n = 87) although series have different lengths and thus thresholds for significance.  
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Figure C-3 Correlation between kauri (Agathis australis) ring widths and monthly New Zealand 
seven-station average monthly temperature for the 20-month window extending from October of the 
previous growing season to May at the end of the current austral growing season: a) Chronologies 
north of latitude -36° on the North Island, b) Chronologies south of -36° but north of 37°, latitude c) 
Chronologies south of -37°, d) Kauri master chronology (1Kauri) and average of all chronologies 
(AGAU_av). Horizontal lines indicate the approximate threshold for significance at p < 0.05 
calculated for the average length of all chronologies intersecting with the temperature data (n = 80) 
although series have different lengths and thus thresholds for significance. Chronologies 1HUI.r, 
1MOE.r, and 1MWL.r are not significantly correlated with New Zealand average temperatures in 
any month. Chronology 1WFD.r does not overlap with instrumental temperature and is not plotted.  
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Figure C-4 Correlation between silver pine (Manoao colensoi) ring widths and monthly New Zealand 
seven-station average monthly temperature for the 20-month window extending from October of the 
previous growing season to May at the end of the current austral growing season. a) All silver pine 
chronologies, b) Silver pine master chronology (3Silver) and average of all chronologies (LACO_av). 
Horizontal lines indicate the approximate threshold for significance at p < 0.05 calculated for the 
average length of all chronologies intersecting with the temperature data (n = 78) although series 
have different lengths and thus thresholds for significance.  

 
Figure C-5 Correlation between cedar (Libocedrus bidwillii) ring widths and monthly New Zealand 
seven-station average monthly temperature for the 20-month window extending from October of the 
previous growing season to May at the end of the current austral growing season: a) Chronologies 
from the North Island, b) Chronologies from the South Island, c) average of all cedar chronologies. 
Horizontal lines indicate the approximate threshold for significance at p < 0.05 calculated for the 
average length of all chronologies intersecting with the temperature data (n = 84) although series 
have different lengths and thus thresholds for significance.  

 



APPENDICES 
 

 
 

171 

  
Figure C-6 Correlation between Phyllocladus ring widths and monthly New Zealand seven-station 
average monthly temperature for the 20-month window extending from October of the previous 
growing season to May at the end of the current austral growing season: a) Toatoa (Phyllocladus 
toatoa), b) Tanekaha (Phyllocladus trichomanoides), c) Average of all toatoa chronologies (PHGL_av) 
and average of all tanekaha chronologies (PHTR_av). Horizontal lines indicate the approximate 
threshold for significance at p < 0.05 calculated for the average length of all chronologies intersecting 
with the temperature data (n = 68 for toatoa, n = 69 for tanekaha) although series have different 
lengths and thus thresholds for significance. Chronology 8WKT.r is not significantly correlated with 
New Zealand average temperatures in any month.  

 
Figure C-7 Mean chronology departures five years before and after 21 eruption years with SAOD > 
0.04 (year 0), separated by tree species. The chronologies contributing to the species-wide composite 
are shown in black, with the number of chronologies indicated in the round brackets. The sensitive 
chronology composite in shown in blue and the number of contributing chronologies is shown in the 
square brackets. Significance bands (dotted grey lines) are the 1st, 5th, 95th, and 99th percentile of 
10,000 random samples of non-event years from the species-wide composite.  
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Figure C-8 Kernel density (violin) plots of the five-year post event anomaly for the standardised ring-
width series contributing to the chronologies at six sites, three sites where cedar is co-located with 
pink pine (a-c) and three sites where cedar is co-located with silver pine (d-f). Dashed lines indicate 
the 25th, 50th, and 75th percentiles of the distributions of the response to the 21-volcanic event series, 
with the mean series response shown by the black dot. At some sites (a - Camp Creek, b - Mount 
French, f - Mangawhero River) neither species shows a significant volcanic response, indicating that 
the change in conditions following an eruption is not sufficient to be recorded. At the remaining three 
sites, significant responses are recorded by one or both species. Both pink pine and cedar recorded 
significant negative volcanic responses at Takapari (c), with a significantly larger response from 
cedar (Mann-Whitney U-test, p < 0.05). At Ahaura and Flagstaff Creek, only cedar recorded a 
significant positive growth response compared to a neutral silver pine response. At both these sites, 
the difference between the species’ response is significant (Mann-Whitney U-test, p < 0.001; d-e).  

 
Figure C-9 Verification statistics for the NZall temperature reconstruction: using a) the early 
calibration window and b) the late calibration window. The 90% uncertainty interval around the 
verification period reduction of error (VRE; orange) and verification period coefficient of efficiency 
(VCE; green) were calculated from 300 maximum entropy bootstrap replications. The secondary 
axis shows the number of tree-ring chronologies contributing to the reconstruction over time.  



APPENDICES 
 

 
 

173 

 
Figure C-10 Verification statistics for the NZsens temperature reconstruction: a) using the early 
calibration window and b) using the late calibration window. The 90% uncertainty interval around 
the verification period reduction of error (VRE; orange) and verification period coefficient of 
efficiency (VCE; green) were calculated from 300 maximum entropy bootstrap replications. The 
secondary axis shows the number of tree-ring chronologies contributing to the reconstruction over 
time.  

 
Figure C-11 New Zealand summer temperature reconstructions: a, b) DJF New Zealand average 
temperatures (this study) for all (a) and sensitive chronologies (b); c) January-March temperature 
at Hokitika, Westland, based on Oroko Swamp silver pine (Cook et al., 2002); d) Annual average 
New Zealand temperature based on pink pine chronologies (Duncan et al., 2010); e) February-March 
average New Zealand temperature based on cedar chronologies (Palmer & Xiong, 2004). 
Reconstructed temperature is shown in black, and the 20-year filtered series is in red. All series were 
transformed into anomalies using a baseline of reconstructed temperature over 1961-1990, except for 
the pink pine reconstruction which was calibrated directly against instrumental temperature 
anomalies for the same period and therefore not transformed.  
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Figure C-12 Comparison of SEA analysis of the NZall and NZsens temperature reconstructions use 
two sets of volcanic event years (Table C-3): a) the ice core analysis of Toohey and Sigl (2017) using 
a regional threshold of SAOD > 0.04 or 0.08 averaged over the New Zealand latitudinal range (30-
50°S), and b) the ice core analysis of Crowley and Unterman (2013) using a threshold of SAOD > 0.04 
or 0.08 averaged over the Southern Hemisphere (0-90°S). Both datasets show that the New Zealand 
temperature reconstructions significantly respond to volcanic events in year t+1. However, there are 
some differences, most notably a larger response to the Toohey & Sigl event list in b). There are also 
some issues with the compositing in c), with values in the normalisation period not close to 0, and the 
volcanic response of NZall is not significant at p < 0.05 when tested against the event list of Crowley 
and Unterman (2013).  

 

Figure C-13 Impact of removing volcanic events occurring simultaneously with a known El Niño 
event (1902, 1963, and 1982) from the key event list on the SEA results for kauri. All results are 
significant in year t+1 except for the ‘All chronology composite’ for the events with SAOD > 0.08 
after the known El Niño events are removed (n = 10). For this series, only the t+2 anomaly is 
significant. 
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Figure C-14 Reconstructed temperatures in black and the same data with ENSO removed in red for 
a) reconstruction NZall and b) reconstruction NZsens. The eruption years for the four large volcanic 
eruptions occurring during the period for which instrumental ENSO indices are available (Southern 
Oscillation Index; 1778 CE to present) are also shown.  

 

Figure C-15 Summary of the relationship between sensitivity to temperature and magnitude of the 
volcanic response for the eight species. Left: maximum temperature correlation in any month of the 
prior growing season against maximum volcanic response in the five years following an eruption for 
the 13 largest events. Right: Same plot but for the current growing season. Filled markers indicate 
that a site has a significant temperature correlation (p < 0.05) and a significant volcanic response (< 
5th or > 95th percentile of bootstrapped responses). Open markers are not significant for either the 
temperature or volcanic response, or both.  
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Table C-1 Meta data for New Zealand chronologies used in the analysis. 

Site Species Start End Longitude Latitude 
Altitude 
(m asl) 

ITRDB 
Code Notes 

1CAS AGAU 1559 1982 -36.88 174.53 180 newz082 Cascades 
1HID AGAU 1679 2002 -36.20 175.43 220 newz083 Hidden Valley 
1HUI AGAU 1720 1981 -36.97 174.57 274 newz085 Huia 
1HUP AGAU 1483 1997 -36.82 174.50 90 newz084 Huapai 
1KAT AGAU 1698 1996 -37.60 175.87 350 newz091 Katikati 
1KAW AGAU 1710 1996 -37.92 174.92 80 newz087 Kawhia 
1KON AGAU 1770 1976 -37.07 175.13 335 newz008 Konini Forks 

1LTB AGAU 1790 1981 -36.20 175.13 274 newz086 
Little Barrier 
Island 

1MAS AGAU 1269 1998 -36.90 175.55 350 newz088 Manaia Sanctuary 
1MOE AGAU 1360 1980 -36.53 175.55 630 newz089 Mount Moehau 
1MWL AGAU 1580 1981 -37.22 175.03 350 newz090 Mount William 
1PBL AGAU 1675 1981 -35.18 173.75 305 newz078 Puketi Bluff 
1PKF AGAU 1504 2002 -35.27 173.73 290 newz079 Puketi Forest 

1TRO AGAU 1408 2002 -35.72 173.65 175 2 
Trounson Kauri 
Park 

1WFD AGAU 1628 1903 -35.65 173.57 180 newz022 Waipoua Forest 
1WWF AGAU 1462 2002 -35.37 173.28 468 newz081 Warawara Plateau 
2BON HABI 1463 1999 -43.08 170.65 850 1 Mount Bonar 
2CCP HABI 1410 1998 -42.72 171.57 970 1 Camp Creek 
2CRS HABI 1483 1999 -42.28 171.38 900 1 Croesus Track 

2DBY HABI 1457 2010 -47.03 167.72 100 newz118 
Doughboy - 
Adams Hill  

2ELD HABI 1338 1999 -45.75 167.47 750 1 Eldrig Peak 
2GLS HABI 1461 1999 -41.62 172.03 950 1 Mount Glasgow 

2HEL HABI 1407 2013 -46.98 167.75 100 newz119 
Hellfire Ruggedy 
Mt 

2MAP HABI 1567 1976 -45.53 167.30 305 newz010 Manapouri Dam 
2MAT HABI 1508 1999 -41.57 172.32 1060 1 Matiri Range 
2MEL HABI 1440 1999 -42.50 171.83 1050 1 Mount Elliot 
2MGR HABI 1400 1999 -42.95 170.82 865 1 Mount Greenland 
2MTF HABI 1367 1999 -42.67 171.33 750 1 Mount French 
2OMO HABI 1578 1999 -43.40 170.10 320 1 Omoeroa Saddle 

2PEG HABI 1667 1991 -46.92 167.73 450 2 
Pegasus Stewart 
Island 

2PUT HABI 1646 1993 -40.67 175.52 650 newz010 Putara 
2SPD HABI 1447 1999 -46.37 169.05 560 1 Slopedown Hill 
2TKG HABI 1450 1999 -42.65 171.50 950 1 Mount Tekinga 
2TKP HABI 1708 1995 -40.08 176.00 800 NEWZ076 Takapari 
2TOS HABI 1590 1998 -42.98 170.85 210 1 Totara Saddle 
3AHA LACO 1209 2000 -42.38 171.80 244 newz005 Ahaura 
3FLG LACO 1230 2003 -42.50 171.72 200 newz120 Flagstaff Creek 
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Site Species Start End Longitude Latitude 
Altitude 
(m asl) 

ITRDB 
Code Notes 

3MWO LACO 1464 1976 -39.35 175.48 1000 newz011 
Mangawhero 
River Bridge 

3ORO LACO 470 1999 -43.23 170.28 110 newz121 Oroko Swamp 
3SWF LACO 1130 1969 -43.13 170.40 200 newz122 Saltwater Forest 
4AHA LIBI 1303 2009 -42.38 171.80 244 newz127 Ahaura 

4ARM LIBI 1446 1958 -43.83 173.00 731 newz007 
Armstrong 
Reserve 

4CCC LIBI 1064 2010 -42.72 171.57 965 newz124 Camp Creek 
4CLW LIBI 1450 1991 -39.63 176.10 1220 newz064 Clearwater 
4CRG LIBI 1492 2010 -45.83 170.53 576 newz128 Mount Cargill 
4CRK LIBI 1460 1978 -43.08 170.98 800 newz039 Cream Creek 
4EMT LIBI 1616 1990 -39.25 174.08 1050 newz003 Mount Egmont 
4FLG LIBI 1464 2004 -42.50 171.72 200 newz125 Flagstaff Creek 
4FLH LIBI 1683 1991 -41.27 172.60 950 newz065 Flanagans Hut 
4HIT LIBI 1431 1991 -39.53 175.73 976 newz066 Hihitahi 
4MOA LIBI 1490 1991 -40.93 172.93 1036 newz067 Moa Park 
4MTF LIBI 1330 1999 -42.67 171.33 855 newz126 Mount French 

4MWO LIBI 1662 1976 -39.35 175.48 1000 newz012 
Mangawhero 
River Bridge 

4NET LIBI 1625 1990 -39.28 174.10 991 newz014 North Egmont 
4OHT LIBI 1585 1991 -39.62 176.12 1140 newz068 Ohutu Ridge 
4OKA LIBI 1732 1976 -46.38 169.45 305 newz016 Owaka 
4RAH LIBI 1480 2012 -42.32 172.12 672 newz129 Rahu Saddle 
4RUC LIBI 1473 1991 -39.63 176.18 1200 newz069 Ruahine Corner 

4STR LIBI 1626 1990 -39.32 174.12 860 newz071 
Stratford side - 
East Egmont 

4TKP LIBI 1256 1992 -40.07 175.98 838 newz062 Takapari Road 

4TOA LIBI 1511 1992 -39.23 175.43 1160 newz072 
Hauhangatahi Site 
A 

4TOB LIBI 1332 1992 -39.23 175.43 1100 newz073 
Hauhangatahi Site 
B 

4TOC LIBI 1213 1992 -39.23 175.43 1000 newz074 
Hauhangatahi Site 
C 

4TRK LIBI 1526 1978 -43.08 170.97 925 newz055 Tarkus Knob 
4UWR LIBI 1140 1992 -38.68 177.20 854 newz063 Urewera 
4WBF LIBI 1674 1992 -43.07 171.28 780 newz075 Wilberforce 
5BOR NOME 1389 2007 -45.78 167.37 200 2 Borland 
5KEA NOME 1580 1980 -43.87 169.78 1150 newz036 Kea Flat 
5LKE NOME 1676 1980 -45.25 167.48 950 newz048 Lake Eyles  
5LKO NOME 1584 1980 -45.30 167.68 1000 newz051 Lake Orbell  

5UHV NOME 1710 1980 -44.77 168.00 950 newz033 
Upper Hollyford 
Valley 

5UTV NOME 1622 1979 -45.20 167.65 1000 newz054 
Upper Takahe 
Valley  

6GHC NOSO 1795 2006 -43.25 171.75 870 newz046 Ghost Creek 
6HDC NOSO 1730 1979 -43.13 171.60 1350 newz037 Hidden Creek 
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Site Species Start End Longitude Latitude 
Altitude 
(m asl) 

ITRDB 
Code Notes 

6LCV NOSO 1730 1979 -43.08 171.72 1350 newz035 
Lower Cass 
Valley 

6LGH NOSO 1740 1979 -43.08 171.70 1400 newz031 Logos Hill 
6LGS NOSO 1760 1979 -43.05 171.60 1300 newz024 Lagoon Saddle 
6LKP NOSO 1713 2006 -43.12 171.78 970 newz049 Lake Pearson 
6MKW NOME 1730 1979 -43.05 171.68 1275 newz023 Mirkwood 
6RTC NOSO 1787 2006 -43.15 171.80 950 newz052 Rata Creek 
6SSS NOSO 1760 1979 -43.05 171.72 1250 newz030 Snowslide Stream 
6TKV NOSO 1630 1979 -45.30 167.68 1100 newz031 Takahe Valley 
6TST NOSO 1840 1979 -45.28 167.65 1000 newz032 Takahe Stream 
6WND NOSO 1760 2006 -43.08 171.58 1350 newz053 Windy Creek 
7PLC PHAL 1717 2015 -42.90 171.57 915 newz130 Pegleg Creek 

8WER PHGL 1740 1976 -38.57 175.70 518 newz020 

Waimanoa 
Ecological 
Reserve 

8WHS PHGL 1550 1986 -38.65 175.63 780 newz056 Waihora Stream 
8WKT PHGL 1535 1976 -38.70 177.20 853 newz009 Lake Waikareiti 
8WPA PHGL 1585 1976 -35.68 173.55 244 newz022 Waipoua Forest 
9OWI PHTR 1709 1976 -41.12 173.67 15 newz015 Okiwi 
9PAP PHTR 1779 1975 -36.12 174.25 160 newz001 Paparoa 
9WHH PHTR 1613 1986 -38.70 175.60 575 newz058 Waihaha Terrace 
9WHL PHTR 1650 1985 -38.65 175.67 640 newz057 Waihora Lagoon 
9WMU PHTR 1664 1976 -37.03 175.53 61 newz021 Waiomu 
1Kauri AGAU 0 2002 na na na 2 Kauri network  
2Pink HABI 1400 1999 na na na 2 Pink pine network   

3Silver LACO 0 2003 na na na 2 
South Island silver 
pine  

1 https://researcharchive.lincoln.ac.nz/handle/10182/2141    
2 Private collection       
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Table C-2 Details of volcanic eruptions between 1400 and 1990 CE selected using the two thresholds 
of modelled SAOD over New Zealand (> 0.04 or > 0.08), and prior and secondary eruptions with 
SAOD > 0.01. Eruptions within 5 years prior of the target eruption were removed and the baseline 
period selected as the closest non-volcanically disturbed period. Secondary eruptions occurring 
within 5 years of the target eruption were also removed prior to averaging the SEA ensemble 
(Büntgen et al., 2020).   

Eruption date 
(month/year) Eruption Locality Latitude SAOD 

threshold 
Prior 
Eruption 

Secondary 
Eruption 

1452 Unknown  16.8°S > 0.04 1448 (-4) 1457 (+5) 

1457 Unknown   > 0.08 1452 (-5)  

2/1477 Bárðarbunga  Iceland 64.6°N > 0.04   

1595 Unknown   > 0.08 1590 (-5) 1600 (+5) 

2/1600 Huaynaputina Peru 16.6°S  > 0.08 1595 (-5)  

1620 Unknown   > 0.04   

†12/1640 Parker Philippines 6.1°N  > 0.08   

1653 Unknown   > 0.04   

1673 Gamkonora Japan 1.4°N > 0.04   

1694 Unknown   > 0.08   

1761 Unknown   > 0.04   

5/1783 
Grímsvötn  
Asama 

Iceland 
Japan 

64.4°N  
36.4°N  

> 0.08   

1809 Unknown   > 0.08   

4/1815 Tambora Sundas 8.3°S  > 0.08   

1831 Unknown* Philippines 19.5°N > 0.04  1835 (+4) 

1/1835 Cosigüina Nicaragua 13.0°N > 0.08 1831 (-4)  

†12/1861 Makian  0.3°N > 0.04   

8/1883 Krakatau Indonesia 6.1°S > 0.08  1886 (+3) 

10/1902 Santa Maria Guatemala 14.8°N  not 
modelled 

  

3/1963 Agung Bali 8.3°S  not 
modelled 

  

3/1982 El Chicon México 17.4°N  not 
modelled 

  

†Eruptions occurring in December were assigned an eruption year of year+1 in the superposed epoch 
analysis event list for consistency with the designation of years in the temperature reconstruction 
(reconstruction year 1641 is Dec 1640 – Feb 1641). 
* Location is disputed (Garrison et al., 2018).
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Table C-3 Comparison of volcanic event years between 1400 and 1990 CE selected using two different 
datasets: a) the ice core analysis of Toohey and Sigl (2017) using a regional threshold of SAOD > 0.04 
or 0.08 averaged over the New Zealand latitudinal range (30-50°S), and b) the ice core analysis of 
Crowley and Unterman (2012) using a threshold of SAOD > 0.04 or 0.08 averaged over the Southern 
Hemisphere (0-90°S). Event selection between the two datasets is largely consistent. Potential 
reasons for the differences, including the underlying ice core data and differences in methodology, 
are discussed by Toohey & Sigl (2017).  

Eruption date 
(month/year) Eruption Toohey & Sigl 

threshold 
Crowley & Unterman 
threshold 

1441 Unknown Not selected > 0.04 

1452 Unknown > 0.04 Not selected 

1457 Unknown > 0.08 > 0.08 

2/1477 Bárðarbunga  > 0.04 > 0.08 

1588 Unknown Not selected > 0.04 

1595 Unknown > 0.08 > 0.08 

2/1600 Huaynaputina > 0.08 > 0.08 

1620 Unknown > 0.04 > 0.04 

12/1640 Parker > 0.08 > 0.08 

1653 Unknown > 0.04 Not selected 

1673 Gamkonora > 0.04 > 0.08 

1694 Unknown > 0.08 > 0.08 

1761 Unknown > 0.04 Not selected 

5/1783 
Grímsvötn  
Asama 

> 0.08 
Not selected 

1804 Unknown Not selected > 0.04 

1809 Unknown > 0.08 > 0.08 

4/1815 Tambora > 0.08 > 0.08 

1831 Unknown* > 0.04 Not selected 

1/1835 Cosigüina > 0.08 > 0.08 

12/1861 Makian > 0.04 > 0.04 

8/1883 Krakatau > 0.08 > 0.08 

10/1902 Santa Maria not modelled > 0.04 

3/1963 Agung not modelled > 0.08 

3/1982 El Chicon not modelled > 0.04 
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Table C-4 Coupled Model Intercomparison Project 5 (CMIP5) models used in the analysis. 

Model No. of 
Ens. 

Solar Volcanic GHG Land Use Reference 

GISS-E2-R 121 1 Steinhilber et al Crowley & 
Unterman (2013) 

Schmidt et al. 
(2012) 

Pongratz et 
al. (2008) 

Schmidt et al. 
(2014) 

GISS-E2-R 124 1 Viera et al. (2011) Crowley & 
Unterman (2013) 

Schmidt et al. 
(2012) 

Pongratz et 
al. (2008) 

Schmidt et al. 
(2014) 

GISS-E2-R 127 1 Viera et al. (2011) Crowley & 
Unterman (2013) 

Schmidt et al. 
(2012) 

Kaplan et al. 
(2010) 

Schmidt et al. 
(2014) 

FGOALS-gl 1 Crowley (2000) Crowley (2000) Amman et al. 
(2007) 

- Guo and 
Zhou (2013) 

MRI-CGCM3 1 Delaygue & Bard 
(2011) + Wang et 
al. (2005) 

Gao et al. (2008) Schmidt et al. 
(2012) 
 

- Yukimoto et 
al. (2012) 

MPI-ESM-P 3 Viera et al. (2011) Crowley & 
Unterman (2013) 

Schmidt et al. 
(2012) 

Pongratz et 
al. (2008) 

Jungclaus et 
al. (2014) 

MIROC-ESM 1 Delaygue & Bard 
(2011) + Wang et 
al. (2005)  

Crowley et al. 
(2008) 
 

Schmidt et al. 
(2012) 

- Sueyoshi et 
al. (2013) 
 

 
Table C-5 Pearson correlations between New Zealand summer temperature reconstructions over the 
common reconstruction interval (1720-1987 CE): a, b) DJF New Zealand average temperatures (this 
study) for (a) all and (b) sensitive chronologies; c) January-March temperature at Hokitika, 
Westland, based on Oroko Swamp silver pine (Cook et al., 2002); d) Annual average New Zealand 
temperature based on pink pine chronologies (Duncan et al., 2010); e) February-March average New 
Zealand temperature based on cedar chronologies (Palmer & Xiong, 2004). All correlations are 
significant at p < 0.001 except for pink pine and cedar, which are not significantly correlated.  

 NZall NZsens Oroko Swamp Pink pine 

a. NZall - 0.83 0.44 0.62 

b. NZsens 0.83 - 0.33 0.52 

c. Oroko Swamp 0.44 0.33 - 0.23 

d. Pink pine 0.62 0.52 0.23 - 

e. Cedar 0.36 0.52 0.36 0.06 
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Appendix D. Supplementary information for Chapter 5 
Introduction  
Here we provide a detailed description of the methods used in the development of the Daly 

catchment streamflow reconstruction as well as additional results. 

Contents of this file  
• Text D1 to D5 

• Figures D1 to D12 

• Table D1  

D1. Methodological framework 
A step-by-step schematic of our streamflow reconstruction approach is illustrated in Figure 5-3 

in the main manuscript. Based on a network of hydroclimate-sensitive tree-ring chronologies we 

reconstructed streamflow at four gauges in the Daly catchment over the past 592 years using a 

Bayesian hierarchical regression model with a novel predictor variance transform. This section 

explains the methodology in detail and discusses the methodological choices and data limitations. 

D2. Data preparation 
D2.1 Daly River streamflow 

For the Daly River at Mount Nancar, the gauge nearest to the catchment outlet, the time series 

was extended from 1961 to 1971 using data from two nearby gauges and a linear regression 

model. Daily streamflow data from Gauge G8140041 Daly River at Gourley, approximately 12 

km upstream, and gauge G8140003, Daly River at Police Station, approximately 7 km 

downstream, were used to infill missing daily values from the Mount Nancar gauge (Figure D-1). 

Values from Gourley were used in preference when data from both G8140041 and G8140003 

were available. Years missing more than 15% of daily values during wet season months across 

all three gauges were discarded.  

 
Figure D-1 Relationship between daily discharge at gauge G8140040 Mount Nancar and G8140041 
Gourley (left), and G8140003 Police Station (right).  
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For the remaining gauges, gap-filled daily streamflow data was downloaded from the Australian 

Bureau of Meteorology (BOM) Hydrologic Reference Stations database. Water year (September 

to August) streamflow was calculated from the daily data. Figure D-2 shows that streamflow is 

highly correlated across the four gauges. 

 

      
Figure D-2 Water year streamflow correlation between the four gauges in the Daly catchment 
(1959-2018): Douglas River downstream of the Old Douglas Homestead (G8140063), Katherine 
River at Railway Bridge (G8140001), Daly River at Mount Nancar (G8140040), and Daly River 
upstream of Dorisvale Crossing (G8140067).  

There is a decreasing trend in average annual rainfall from northwest to southeast across the Daly 

catchment. The relationship between Daly catchment average water year rainfall and water year 

streamflow at each of the four gauges over the 1959-2018 period is shown in Figure D-3. The 

correlation with rainfall increases moving toward the catchment mouth as a greater proportion of 

the catchment contributes to streamflow. 
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Figure D-3 Relationship between Daly catchment average water year rainfall and water year 
streamflow at the four gauges in the Daly catchment (1959-2018).  

D2.2 Proxy network 

Remote proxies were selected from a network of 595 precipitation-sensitive tree-ring 

chronologies underlying two recently published drought atlases - the Eastern Australia and New 

Zealand Drought Atlas (Palmer et al., 2015) and the Monsoon Asia Drought Atlas (Cook et al., 

2010) – which together encompass the monsoon Asia and Indo-Australian monsoon regions. The 

end date of the streamflow reconstruction was chosen to maximise both the number of available 

chronologies and the length of the overlapping data period. Only the 186 chronologies ending at 

or after streamflow year 2005 were retained for the initial predictor pool (Figure D-4), first 

accounting for the Schulman shift, in which Southern Hemisphere chronologies are dated based 

on the year in which the growing season starts (i.e., chronology year 2004 is equal to water year 

2005).  
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Figure D-4 Distribution of the initial predictor pool of 186 precipitation-sensitive tree ring 
chronologies (black diamonds) with the approximate extent of the Daly catchment indicated by the 
red box. 

D3. Detailed methods 
D3.1 Predictor transformation 

For the first time in a paleohydrologic application, we applied a wavelet-based approach (Jiang 

et al., 2021, 2020) to transform the tree-ring chronologies before reconstruction. In this approach, 

a unique variance transform is applied to each predictor variable in a predictor suite, transforming 

their spectral properties to better match the spectral properties of the response variable. This 

approach mathematically optimises the predictor-predictand match, which improves the 

modelling of hydroclimatic variables (Jiang et al., 2021). We hypothesise that transforming tree-

ring chronologies in the spectral domain will improve the historical prediction of streamflow by 

maximizing the useful information extracted from multiple noisy proxies predominantly remote 

from the target catchment.  

The WAvelet System Prediction (WASP) R-package (Jiang et al., 2021) was used to calculate a 

unique variance transformation for each tree-ring chronology, modifying its spectral 

characteristics to match Daly catchment average annual rainfall. The spectral decomposition of 

both rainfall and streamflow (Figure D-5) shows that rainfall is a suitable proxy for streamflow 

to use as a spectral target, and as the rainfall data is much longer than streamflow allows for 
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greater decomposition of the data. Using catchment-average rainfall also ensures streamflow data 

later used verify the model remains independent.  

 
Figure D-5 Comparison between Daly catchment average rainfall (orange) and streamflow at gauge 
G8140040 (blue) both decomposed using the maximal overlap direct wavelet transform with a Haar 
wavelet filter and maximum decomposition level J=6 and J=5 respectively. All correlations are 
significant at p < 0.01. Missing years in the Daly River streamflow record were filled using gap-filled 
daily streamflow data from the Australian Bureau of Meteorology.  

Each tree-ring chronology Xi was decomposed into a matrix of wavelet and scaling coefficients 

using the maximal overlap direct wavelet transform with a Haar wavelet filter. The decomposition 

level selected, J = 6, is the maximum possible decomposition level based on the constraint of the 

length of the rainfall data (102 years before 2005). At the maximum level, the number of data 

after the last subsampling becomes smaller than the wavelet filter length (Jiang et al., 2020). The 

transformed chronology Xi’ was then obtained by redistributing the variance in its spectrum based 

on the covariance between the coefficients matrix and the rainfall time series (Figure D-6). See 

Jiang et al. (2020) for the full derivation of the algorithm.  
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Figure D-6 Proportion of variance in each decomposition level before (orange) and after (blue) 
variance transformation for ten tree-ring chronologies used in the final model, and the proportion of 
variance in the Daly catchment-average rainfall series used as the transformation target (black). 
Tree-ring chronologies representative of the variance transform procedure, and which cover the 
geographical distribution of the proxy set, were selected for display.  

As the maximum decomposition is 32 years, all chronologies were filtered with a 100-year spline 

that retains 50% variance at frequencies greater than 100 years before variance transformation, 

retaining the high-to-medium frequency information which can be extracted from a rainfall time-

series of length ~100 years. Maximizing long-term variability in tree-ring chronologies is 

desirable to produce reconstructions that accurately capture low-frequency variability; however, 

we cannot calibrate the low-frequency information contained in the tree rings based on the much 

shorter rainfall time series. This is the major drawback of the variance transform methodology 

for paleohydrologic applications. Future work will focus on addressing this deficiency so that 

low-frequency information can be retained.  

D3.2 Selection of predictors for the model 

Variance transformed tree-ring chronologies were initially retained for inclusion in the model if 

they passed a p < 0.1 correlation threshold for at least three of the four streamflow gauges. 

Principal component analysis was used to reduce the dimensionality of the data, and the number 

of free parameters to be estimated, with the principal component (PC) scores used as model 

predictors rather than the variance transformed tree-ring chronologies directly. One decision to 

be made when undertaking principal components regression is the number of PCs to retain. Often, 

this decision is based on a cutoff determined by either the eigenvalue (e.g., all eigenvectors with 

eigenvalues > 1) or a percentage of the explained variance (e.g., 80%), due to the belief that 

components with small variances are of little use in predicting variations in the dependent variable 
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(Artigue & Smith, 2019). However, as the eigenvector weights depend solely on the correlations 

among the explanatory variables and not the dependent variable (Artigue & Smith, 2019), 

arbitrary cut-off values may discard PCs highly correlated with the predicted variable, while 

retaining uncorrelated PCs (Hadi & Ling, 1998). 

Here, we employed the partial information correlation (PIC; (Sharma & Mehrotra, 2014)) as an 

alternative method to decide which PCs to retain for the final model. Only significant PCs were 

retained, where significance was determined based on the PIC between measured streamflow and 

the candidate PCs with a significance level of p < 0.01. After selecting the initial PC predictor, 

the PIC algorithm (Sharma et al., 2016) selects additional PCs based on their ability to 

characterise the residual streamflow information after accounting for the effect of the pre-selected 

PCs. The choice of the significance level is still a somewhat arbitrary decision, as is the choice of 

the initial correlation threshold. Both thresholds were selected via trial and error and represent a 

balance between maximizing the useful information from the tree rings (assessed via model 

calibration-validation statistics) while decreasing model noise (assessed via the ensemble spread). 

D3.3 Ensemble modelling approach 

We used a nested reconstruction approach in which the initial model was based on all the tree-

ring predictors with shorter tree-ring series sequentially dropped and a new model developed for 

the remaining predictors (a predictor ‘nest’). The nest was dropped, and no further nests added if 

less than two significant principal components were retained as model predictors. The 

reconstructions for each nest were scaled to the variance of the calibration period and appended 

to the initial nest to create the longest possible reconstruction. The final reconstruction 

incorporates 14 nests and covers the period from 1413 to 2005 CE.  

We used a weighted ensemble method (Cook et al., 2010) to produce the reconstruction. The 

ensemble method explicitly incorporates the covariance between streamflow and the tree-ring 

series, while acknowledging that noise in the data means there is no optimal correlation threshold 

for the inclusion of a tree-ring predictor in the model. Each weighted ensemble was created by 

multiplying the variance transformed tree-ring predictors by a power of their correlation with the 

streamflow data during the calibration period prior to principal component analysis. The 

weighting took the form rw where w ranged from 0.0 to 2.0 (0.0, 0.1, 0.25, 0.5, 0.67, 1.0, 1.25, 

1.5, 1.75, 2.0). As w increases, predictors highly correlated with streamflow are given 

progressively more weight in the principal component analysis.  

D3.4 Hierarchical Bayesian model 

We used a Bayesian hierarchical regression model with partial pooling (Devineni et al., 2013; 

Rao et al., 2018) as our reconstruction method due to its ability to handle both short data records 

and data gaps. Annual streamflow is not normally distributed (Shapiro-Wilk normality test p < 
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0.05), therefore we power-transformed the data prior to modelling with an exponent of 0.425 to 

ensure minimal skew. As streamflow is highly correlated across the gauges (Figure D-2), we 

modelled the regression coefficients by drawing them from a common multivariate normal 

distribution (MVN). By sharing information across the gauges, the partial pooling framework can 

result in lower uncertainty in estimated parameters and reconstructed discharge, as well as 

improved final model skill (Devineni et al., 2013).  

In the model described below, streamflow y at each gauge i in year t was based on multiple linear 

regression of the predictor vector Xt: 

𝑦𝑦𝑖𝑖,𝑡𝑡�𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖 =  𝛼𝛼𝑖𝑖 +  𝛽𝛽𝑖𝑖 × 𝑋𝑋𝑡𝑡 +  𝜀𝜀𝑖𝑖,𝑡𝑡   

𝛽𝛽𝑖𝑖~𝑀𝑀𝑀𝑀𝑀𝑀(𝜇𝜇𝐵𝐵 , Σ𝐵𝐵) 

With non-informative priors modelled as: 

𝛼𝛼𝑖𝑖 ~𝑀𝑀(0, 104) 

𝜀𝜀𝑖𝑖,𝑡𝑡~𝑀𝑀(0, 104) 

𝜇𝜇𝐵𝐵~𝑀𝑀𝑀𝑀𝑀𝑀(0, 104𝐼𝐼) 

Σ𝐵𝐵~𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 −𝑊𝑊𝑊𝑊𝐼𝐼ℎ𝑎𝑎𝐼𝐼𝑎𝑎∨0(Λ0) 

The matrix X contains the principal components (PCs) for all variance-transformed tree ring 

predictors that met the threshold for that nest; 𝛽𝛽𝑖𝑖 is a vector with the corresponding regression 

coefficients for the predictor PCs; and 𝛼𝛼𝑖𝑖 and 𝜀𝜀𝑖𝑖 are the intercept and error term respectively. 

Pooling of information across sites was implemented by drawing the covariance structure of the 

regression coefficients βi from an MVN. Parameter βi is described by two hyperparameters, μB 

and a dispersion matrix ∑B, leading to the hierarchical framework in our model (Gelman & Hill, 

2006). For the prior of the covariance matrices, we assumed an inverse-Wishart distribution with 

scale matrix Λ0, specified to be an identity matrix I and v0 degrees of freedom set to be one more 

than the total number of principal component predictors used in that nest (Devineni et al., 2013). 

We modelled the associated prediction error terms, or residuals, εi,t be derived from a normal 

distribution and not from a MVN as the gauges span a different range of years, meaning the spatial 

covariance of the error term cannot be computed (Rao et al., 2018).  

D3.5 Moving block validation 

We chose the 46 years between 1959 and 2005 CE for calibration and validation to maximise 

both the length of the calibration period and the number of tree-ring predictors available. 

Conventionally, tree-ring reconstruction models use a split‐sample cross‐validation scheme in 

which the model is initially calibrated with the first half of the data and validated with the second 

half, then calibrated with the second half and validated with the first (e.g., D’Arrigo et al., 2011). 
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However, our Daly catchment gauge records are too short for split-sample validation, as only 20-

25 data points would be available for calibration.  

Instead, we implemented a moving-block calibration/validation approach (Nguyen et al., 2020), 

a modification of a k-fold validation scheme in which k contiguous blocks of data are withheld. 

This method retains the independent verification period of split-sample validation, while keeping 

enough data for calibration, and improving the model’s ability to capture a regime shift by 

maintaining contiguous data blocks (Briffa et al., 1988). The length of the validation block was 

selected to be larger than the largest number of significant autocorrelation lags for any chronology 

in the predictor pool. 

In each iteration, 7 consecutive years (~15% of instrumental time span and ~20% of the span of 

the shortest gauge) were withheld and the model was calibrated on the remaining years. The 

selection of significant predictors via PIC (Section 3.2) was also only undertaken on the 

calibration set to maintain the complete independence of the validation set. In total, 40 moving 

block iterations were run for each of the 10 ensemble members described in Section S3.3. The 

final reconstruction and verification statistics described below were calculated as Tukey’s 

biweight robust mean (Mosteller & Tukey, 1977) of the 400 ensemble members with uncertainty 

intervals calculated as the 5th and 95th percentile results. The robust mean was found to limit the 

effect of outliers more robustly than the median of the ensemble.  

Model validation was determined by calculating the calibration period coefficient of multiple 

determination (CRSQ or R2), the Bayesian R2 (Gelman et al., 2019), the validation period 

reduction of error (VRE) and the verification period coefficient of efficiency (VCE) (E. R. Cook 

& Kairiukstis, 1990) for each iteration. The Bayesian R2 is a data-based estimate of the proportion 

of the variance explained for new data, where: 

𝑅𝑅2 =  
𝑀𝑀𝑎𝑎𝐼𝐼𝜇𝜇

𝑀𝑀𝑎𝑎𝐼𝐼𝜇𝜇 +  𝑀𝑀𝑎𝑎𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟
 

Varμ is the variance of modelled predictive means, and Varres is the modelled residual variance 

calculated for the set of posterior simulation draws. VRE is a measure of the performance of a 

model relative to the mean of the calibration period where: 

𝑀𝑀𝑅𝑅𝑉𝑉 = 1 − [ 
∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�𝑖𝑖)2

∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�𝑐𝑐)2
] 

𝑋𝑋𝑖𝑖 and 𝑋𝑋�𝑖𝑖  refer to the observed and simulated value at 𝑊𝑊, and 𝑋𝑋�𝑐𝑐 is the mean value over the 

calibration period. VRE ranges from -∞ to +1.0 with VRE > 0 indicating that the model is more 

successful at predicting omitted values than the calibration mean. Similarly, VCE compares the 

model fit to the verification period mean 𝑋𝑋�𝑣𝑣:  
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𝑀𝑀𝑉𝑉𝑉𝑉 = 1 − [ 
∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�𝑖𝑖)2

∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�𝑣𝑣)2
] 

Unless 𝑋𝑋�𝑐𝑐 = 𝑋𝑋�𝑣𝑣, VCE will always be less than VRE and is therefore considered a more rigorous 

statistic. VCE > 0 indicates some model skill. The Sign Test (E. R. Cook & Kairiukstis, 1990) 

was also used to calculate the number of years in which the reconstruction correctly (+) or 

incorrectly (-) tracks the sign of change between consecutive observations during the calibration 

period with significance tested against the normal approximation to the binomial distribution. 

D3.6 Superposed epoch analysis (SEA) 

Superposed epoch analysis (Haurwitz & Brier, 1981) is a compositing technique very commonly 

used in paleoclimate reconstruction studies to identify volcanic impacts (e.g., Adams et al., 2003; 

Higgins et al., 2020; Rao et al., 2019), but with wider applications, including identifying flood 

events in streamflow reconstructions (Rao et al., 2020). SEA requires two independent datasets. 

The first is a discrete list of events, such as years when historical floods occurred. The second 

variable is a long, continuous, and evenly sampled timeseries, such as reconstructed streamflow. 

SEA assumes that ‘key events’ of interest are either a cause or response to a characteristic of a 

timeseries; and that the identification of the sign, magnitude, and timing of such a response can 

be optimised by averaging across all events. To test this assumption, a ‘composite matrix’ is 

created by drawing fixed windows of consecutive observations from the timeseries that span years 

before, during, and after the event. The statistical significance of the mean of this composite 

matrix (the ‘epochal response’) can then be tested. Figure D-7 represents the compositing 

procedure.  

 
Figure D-7 Schematic representation of a SEA composite matrix, where fixed windows of consecutive 
observations spanning events of interest are aligned, then averaged to create an epochal mean 
response. 

D4. Additional results 
D4.1 Predictor selection 

Table D-1 shows the names, species, and coordinate locations of the tree-ring chronologies 

retained for the regression model. Only chronologies meeting the initial threshold of a significant 

(p < 0.1) correlation with Daly catchment streamflow were retained. Some sites have multiple 
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chronologies produced from different wood properties. In these cases, only the most highly 

correlated chronology was retained. The mean of the correlation coefficients between each 

chronology and the four streamflow gauges are also provided in the table. Correlations greater 

than ~0.34 are significant at p < 0.05 and greater than ~0.42 are significant at p < 0.01. The nests 

to which each chronology contributed are also shown, where nest 1 is the most recent nest (1898-

2005, all chronologies contribute). 

Table D-1 Metadata for tree-ring chronologies significantly correlated (Pearson r, p < 0.1) with Daly 
catchment streamflow (1959-2005) after variance transform, and the reconstruction nests to which 
each chronology contributes. 

Country ID code Species Lat Lon r Nests Description 
Australia AUSL046 PHAS -42.3 146.6 -0.50 1 - 6 TNE  
Australia AUSL038 ATCU -41.8 146.7 -0.49 1 - 14 Mickey Creek  
Australia Speroa LGFR -42.7 145.4 -0.44 1 - 14 Spero River 
Australia LTYMAS CACO -33 120.7 -0.43 1 - 8 Lake Tay 
Australia BCHMRD LGFR -42.3 145.8 -0.42 1 - 14 Buckleys Chance  
Australia TPKDHP LGFR -41.9 145.6 -0.35 1 - 14 Teepookana  
Australia SWCTRW PHAS -42 146.6 -0.34 1 - 10 Southwest Celery Top 
Australia AUSL036 LGFR -42.2 145.5 0.30 1 - 4 Butters 
Australia AUSL047 ATSE -43.8 146.8 0.33 1 - 5 Mesa  
Australia KBPSTH ATSE -43.8 146.8 0.33 1 - 14 King Billy South  
Australia AUSL057 CAIN -13.6 131.5 0.35 1 Hayes farm 
Australia KBSTRW ATSE -42.9 146.6 0.38 1 - 8 King Billy Saddle  
Australia AUSL056 CAIN -13.5 132.4 0.38 1, 2 El Sharana 
Australia AUSL049 ATCU -41.8 146.3 0.40 1 - 14 The Walls of Jerusalem 
Australia AUSL060 CAIN -11.7 130.8 0.40 1 Tiwi Islands  
Australia CODNCT PHAS -42.4 146.5 0.42 1 - 7 CO (north Florentine) 
Australia AUSL039 ATSE -41.6 146.8 0.43 1 - 12 February Creek  
Australia AUSL007 ATCU -41.8 146.7 0.44 1 - 14 Pine Lake 
Australia AUSL040 ATCU -42.7 146.6 0.45 1 - 14 Mt Field 
Australia AUSL037 CACO -22.9 118.6 0.50 1 - 4 Juana Downs Gully 

Australia AUSL048 ATSE -43.3 146.6 0.51 1 - 14 
Lake Riveaux/ Abtotonella 
Rise 

Australia AUSL042 ATCU -41.6 146.4 0.56 1 - 14 Lake Mackenzie  
China CHIN017  JUTI 28.9 99.8 -0.41 1 - 13 Xiangchen, Sichuan  
China ZHANGX  34.6 104.5 -0.36 1 - 9 Zhangxian, Gansu  
China CHIN019 ABFO 29.2 99.9 -0.30 1 - 11 Xiangchen Maxiong Valley 
China CHIN020 PIFL 30.2 100.3 0.36 1 - 14 Litang, Sichuan 
China CHIN021 PIFL 29.0 99.9 0.39 1 - 14 Xiangchen, Sichuan 
China CHIN026 ABFO 27.6 99.8 0.39 1 - 10 Shangri La, Yunnan 
China CHIN081 PITW 30.3 119.4 0.41 1 - 8 Tianmu Mountain Forest 
China CHIN024 JUTI 28.4 99 0.42 1 - 7 Baimang Snow Mountain  
China CHIN028 PIFL 27.3 99.3 0.48 1 - 14 Weixi County, Yunnan 
China GOUQIN JUPR 34.7 100.8 0.48 1 - 14 Hebei, Qinghai 
China CHIN040 TSDU 28.0 99.0 0.52 1 - 14 Hengduan Mountains 13YE  
China CHIN057 JUSP 34.5 110.1 0.58 1 - 11 Huashan HSS 
China CHIN018 JUPR 29.3 100.1 0.61 1 - 10 Docheng 
Indonesia INDO005 TEGR -5.5 123 -0.55 1 - 9 Muna, Sulawesi  
Indonesia INDO008 TEGR -7.1 111.4 0.36 1 - 6 Bekutuk  
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Country ID code Species Lat Lon r Nests Description 

India 22550 CDDE 29.6 79.9 -0.49 1 - 7 
Jageshwar D18O 
Chronology   

India 22549 ABPI 32.2 77.2 -0.45 1 - 3 
Manali, NW India D18O 
Chronology   

India INDICD CDDE 31.4 78.6 0.29 1 - 14 India All Cedrus Deodora  
India BHAICD CDDE 31.2 78.9 0.32 1 - 4 Bhairoghati Cedrus Deodora  
India JANGCD CDDE 31.4 78.2 0.46 1 - 10 Jangla Cedrus Deodora  
Japan JAPA020 CMJA 30.3 130.5 -0.46 1 - 4 Yakushima  
Japan CCB FACR 35.9 138.8 0.31 1 - 6 Yasue Chichibu Beech 
Nepal NEPA046  28.5 84.8 0.31 1 - 3 Kalchuman Lake 
New 
Zealand NEWZ052 NOSO -43.2 171.8 -0.53 1 - 3 Rata Creek  
New 
Zealand NEWZ053 NOSO -43.1 171.6 -0.34 1 - 4 Windy Creek  
New 
Zealand NEWZ124 LIBI -42.7 171.6 0.34 1 - 14 Camp Creek  
Philippines PH001 PIKE 16.8 120.7 -0.44 1 - 5 Bakun, Philippines  
Pakistan PAKI033 PIGE 35.5 74.8 0.30 1 - 14 Mushkin  
Pakistan PAKI024 PCSM 35 74.6 0.33 1 - 14 Chera (Gilgit) 
Pakistan PAKI039 CDDE 35 70.8 0.43 1 - 9 Tangi-Kamdesh Nuristan  
Pakistan CDACDD CEDE 35.5 71.5 0.44 1 - 6 Afganistan Cedrus Deodora 
Pakistan PAKI027 CDDE 35.4 71.9 0.46 1 - 11 Islam Baiky  
Pakistan PAKI023 CDDE 35.9 71.7 0.46 1 - 10 Chitral-Gol NP 
Pakistan PAKI040 CDDE 35.4 71.8 0.50 1 - 12 Zairat Chitral  
Pakistan PAKI018 PIWA 35.3 74.8 0.53 1 - 14 Astore-Rama  
Pakistan PAKI021 PIGE 35.7 71.6 0.56 1 - 14 Kalash Valley Bumburet  
Pakistan PAKI036 PCSM 36.2 74.2 0.58 1 - 14 Naltar Gilgit  
Tibet CENTIB JUTI 29.4 92 -0.28 1 - 14 Central Tibet Juniper 
Tibet CHIN046 JUTI 31.1 97 0.37 1 - 14 Qamdo  
Thailand TH001 TEGR 19.3 98.9 0.42 1 - 9 Mae Hong Son Teak 
Thailand TH004 PIME 15 99.4 0.43 1 - 6 Phu Toei  

 

D4.2 Tree ring-climate relationships 

We examined the relationship between monthly Daly catchment rainfall and water year 

(September to August) streamflow (Figure D-8a) and tested for both contemporaneous and lagged 

relationships between climate and streamflow. We found water year streamflow to be positively 

correlated with current year December through March precipitation (ρ < 0.01), which covers the 

peak rainfall period of the Indo-Australian monsoon. Correlations between streamflow and 

rainfall in all other individual months were not significant.  

We then examined the tree growth response to the climate of the predictor suite used in the first 

nest for the streamflow reconstruction (Figure D-8b). In our reconstruction model, we used the 

PIC algorithm to determine which principal components (PCs) should be retained in the model 

based on their relationship to instrumental streamflow. Six PCs were retained for the first nest, 

PC1, PC3, PC5, PC13, and PC22. We used the first PC, which represents 34% of variance 

amongst the chronologies, to test tree ring-climate relationships. We found that PC1 also shows 
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a positive correlation with peak monsoon (December through March) precipitation (ρ < 0.01, 

January p < 0.05) but also a lagged response to monsoon rainfall in the previous year (December, 

February p < 0.05, January, March p < 0.1) representing autocorrelation in the tree-ring series.  

 
Figure D-8 Pearson correlations between a) instrumental water year discharge at Daly River gauge 
G8140040 (1961–2005) and month-by-month precipitation (blue; +, p < 0.05 and *, p < 0.01) for 
months between prior year (t - 1) September through current year (t = 0) August; b) same figure as 
a) but for PC1 of the initial nest.  

D4.3 Calibration and validation 

The reconstruction fit to the instrumental data during the calibration period is shown in Figure 

D-9. The full calibration and validation statistics for each gauge over all nests, along with the 

number of tree-ring predictors contributing to the reconstruction model over time are provided in 

Figure D-10. A summary table is provided in the main article. Figure D-10 shows that despite the 

decreasing number of tree-ring predictors moving back in time, the statistical results remain 

strong for the earliest part of the record. The 5th percentile VRE and VCE values are above zero 

throughout the reconstruction period, indicating that the reconstruction contains meaningful 

information over its entire length. 
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Figure D-9 Instrumental (black) versus reconstructed (blue) streamflow in km3/year for the four 
Daly catchment streamflow gauges over the instrumental period 1959-2018. 

 
Figure D-10 Verification statistics for each reconstruction nest from 1413 to 2005 CE, for each of the 
four Daly catchment streamflow gauges. The number of tree-ring chronologies contributing to each 
reconstruction nest is plotted in black. 

D4.4 Links between El Niño and low flow extremes 

Differences in the relationship between warm Pacific SSTs and monsoon rainfall have been 

identified when considering the different ‘flavours’ of El Niño. Canonical El Niño events, 

characterised by peak SST anomalies in the eastern Pacific, result in a lower-than-average 

monsoon rainfall. El Niño Modoki events, however, with warmer SSTs in the central-western 
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Pacific, tend to result in shorter but more intense peak monsoon season, with little impact on total 

monsoon rainfall (Taschetto et al., 2010). The lack of a significant relationship between El Niño 

events and low Daly streamflow (see the main article) may therefore be due to the confounding 

influence of El Niño Modoki, which has become more prevalent since the 1970s.  

Too few low flow extremes co-occurred with El Niño events to assess the impact of different 

types of El Niño on streamflow using only instrumental SST data. We tested the influence of El 

Niño types by repeating the bootstrap significance testing using the coral-based 

Canonical/Modoki event classification of Freund et al. (2019) and reconstructed Daly streamflow 

from 1619 to 2005 CE. Three low flow thresholds were examined, the 5th, 10th and 25th 

percentile flow. While under each threshold Daly River low flow extremes were found to be more 

likely to occur during a canonical than an El Niño Modoki event, none of the relationships were 

significant (Figure D-11).  

 
Figure D-11 Kernel density estimate plots of 30,000 bootstrapped replications of canonical/Modoki 
events from 1619 to 2005 CE showing the co-occurrence of El Niño events with low flow extremes in 
the reconstructed streamflow at the 5th percentile (a, b), 10th percentile (c, d), and 25th percentile 
(e, f). The number of extreme low flow events in the reconstruction associated with each ‘flavour’ of 
El Niño are shown in black and compared to the bootstrap mean (dashed lines); no values lie outside 
the 95% bias-corrected bootstrap confidence interval. 

 

 

 

 

 

 



APPENDICES 
 

 
 

197 

D4.5 Trends in extreme events 

 
Figure D-12 Extreme high flow/low flow event years and the time-varying frequency of their 
occurrence of these events between 1413 and 2018 for the a) Daly River at G8140067 and b) Douglas 
River at G8140063. A kernel smoothing method was used with a bandwidth of 38 years (solid lines), 
with dashed lines showing the adjusted frequency curve if instrumental data is appended to the 
reconstruction after 2005.
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Appendix E. Supplementary information for Chapter 6 
Table E-1 CMIP5 models used in this analysis, including the modelling group, number of ensemble 
members from each model, and spatial resolution before reprojection to a 2° × 2° grid. Continuous 
runs from the historical+RCP8.5 experiments were used (years 2000 – 2099). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aCanadian Centre for Climate Modelling and Analysis 
bNational Center for Atmospheric Research 
cCommonwealth Scientific and Industrial Research Organization in collaboration with Queensland 
Climate Change Centre of Excellence 
dNOAA Geophysical Fluid Dynamics Laboratory 
eNASA Goddard Institute for Space Studies 
fInstitute for Numerical Mathematics  
gInstitut Pierre-Simon Laplace 
hAtmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine-Earth Science and Technology 
iMeteorological Research Institute 
jNorwegian Climate Centre 
 
 
 
 
 
 
 
 
 
 
 
 

Model Modelling centre (or Group) # Runs Lat/Lon resolution 

CanESM2 CCCMAa 5 2.8° × 2.8° 

CCSM4 NCARb 6 0.94° × 1.25° 

CSIRO-MK3.6.0 CSIRO-QCCCEc 5 1.87° × 1.87° 

GFDL-CM3 NOAA GFDLd 1 2.0° × 2.5° 

GFDL-ESM2G NOAA GFDLd 1 2.0° × 2.5° 

GFDL-ESM2M NOAA GFDLd 1 2.0° × 2.5° 

GISS-E2-R NASA GISSe 1 2.0° × 2.5° 

INMCM4.0 INMf 1 1.5° × 2.0° 

IPSL-CM5A-LR IPSLg 4 1.9° × 3.75° 

MIROC5 MIROCh 1 1.4° × 1.4° 

MIROC-ESM MIROCh 1 2.8° × 2.8° 

MIROC-ESM-CHEM MIROCh 1 2.8° × 2.8° 

MRI-CGCM3 MRIi 1 1.1° × 1.1° 

NorESM1-M NCCj 1 1.9° × 2.5° 
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Table E-2 CMIP5 models used in the Australia Water Outlook projections, including the modelling 
group and the spatial resolution, before downscaling to ~5 km grid. A single run was used from each 
model. 

Model Modelling centre (or Group) Lat/Lon resolution 

ACCESS1-0  CSIRO-BoMa 
 

1.25° × 1.875°  

CNRM-CM5 CNR-CERFACSb 
 

1.4° × 1.4° 

GFDL-ESM2M NOAA GFDLc 2.0° × 2.5° 

MIROC5 MIROCd 1.4° × 1.4° 
 

aCommonwealth Scientific and Industrial Research Organization and the Bureau of Meteorology 
bCentre National de Recherches Météorologiques / Centre Européen de Recherche et Formation Avancée 
en Calcul Scientifiqu 
cNOAA Geophysical Fluid Dynamics Laboratory 
dAtmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine-Earth Science and Technology 
 

 
Figure E-1 a) Lag in months for maximum correlation between AWRA-L runoff and Darling 
streamflow (1960-2018) for each grid cell; b) Maximum correlation between AWRA-L monthly 
runoff and Darling monthly streamflow (1960-2018) for each grid cell. The black dot indicates the 
location of the gauge at Wilcannia.  

 
Figure E-2 a) Lag in months for maximum correlation between AWRA-L runoff and Murray 
streamflow (1960-2018) for each grid cell; b) Maximum correlation between AWRA-L monthly 
runoff and Murray monthly streamflow (1960-2018) for each grid cell. The black dot indicates the 
location of the gauge at Lock-7. 
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Figure E-3 Streamflow (black) derived from averaging AWRA-L runoff over the entire catchment 
with a two-month lag compared to modelled pre-development streamflow (blue) during the historical 
period (1960-2018) for a) Darling River at Wilcannia (July-Dec average), and b) Murray River at 
Lock-7 (water year average).  

 

 
Figure E-4 Verification statistics, the reduction of error (VRE; red line) and coefficient of efficiency 
(VCE; blue) across all nests for the tree-ring chronology-based reconstructions calibrated to the early 
period (1897-1948; top row) and late period (1949-2000; bottom row) for the Darling and Murray 
rivers. The confidence intervals were based on 300 maximum entropy bootstrap replications. The 
number of tree-ring chronologies contributing to each nest is shown on the right-hand axis (black 
line). Based on these statistics, the vertical black line indicates the first year of the skilful 
reconstruction.  
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Figure E-5 Distributions of water year streamflow (1897-2019) in the Murray River after standard 
streamflow transformations (power weighting, log-transform, Box-Cox transform) and showing the 
extreme 1956 flood year outlier effect. 

 

 
Figure E-6 Running Pearson correlations in 100-year blocks between the reconstructions developed 
using the tree rings directly and using gridded PDSI for a) Darling July-Dec streamflow and b) 
Murray water year streamflow. The grey band in b) indicates correlations not significant at p < 0.01. 
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Figure E-7 Flow-duration curves for a) the Darling River at Wilcannia and b) the Murray River at 
Lock-7, comparing the reconstruction from 1500-2019 (blue line) with the full model ensemble over 
2020-2019 (brown line). 

 
Figure E-8 Marginal distributions fitted to event characteristics for the Darling July-December 
streamflow reconstruction. a) Empirical (blue line) and hypothesised (black line) geometric 
cumulative density function (CDF) of drought duration; b) Empirical CDF of peak drought values 
and the fitted truncated logistic model; c) Probability histogram and fitted exponential distribution 
for drought magnitudes. 

 
Figure E-9 Marginal distributions fitted to event characteristics for the Murray water year 
streamflow reconstruction. a) Empirical (blue line) and hypothesised (black line) geometric 
cumulative density function (CDF) of drought duration; b) Empirical CDF of peak drought values 
and the fitted truncated logistic model; c) Probability histogram and fitted exponential distribution 
for drought magnitudes. 
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Figure E-10 (a-b) Conditional distribution of drought magnitude given drought duration of 1 (n=48) 
and 2 (n=23) years for the Darling July-December streamflow reconstruction. The data histogram is 
overlaid with the model gamma density with estimated parameters 𝒑𝒑� = 0.41 and 𝜷𝜷� = 1.40. (c,d) 
Conditional distribution of drought peak given drought duration of 1 (n=48) and 2 (n=23) years for 
the Darling July-December streamflow reconstruction. The empirical cumulative distribution 
function (CDF; blue) closely follows CDF (black) model. 

 
Figure E-11 (a-c) Conditional distribution of drought magnitude given drought duration of 1 (n=37), 
2 (n=32), and 3 (n=16) years for the Murray water year streamflow reconstruction. The data 
histogram is overlaid with the model gamma density with estimated parameters  𝒑𝒑� = 0.40 and 𝜷𝜷� = 
1.34. (d-f) Conditional distribution of drought peak given drought duration of 1 (n=37), 2 (n=32), and 
3 (n=16) years for the Murray water year streamflow reconstruction. The empirical cumulative 
distribution function (CDF; blue) closely follows CDF (black) model. 
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